sha
null
last_modified
null
library_name
stringclasses
154 values
text
stringlengths
1
900k
metadata
stringlengths
2
348k
pipeline_tag
stringclasses
45 values
id
stringlengths
5
122
tags
listlengths
1
1.84k
created_at
stringlengths
25
25
arxiv
listlengths
0
201
languages
listlengths
0
1.83k
tags_str
stringlengths
17
9.34k
text_str
stringlengths
0
389k
text_lists
listlengths
0
722
processed_texts
listlengths
1
723
tokens_length
listlengths
1
723
input_texts
listlengths
1
61
embeddings
listlengths
768
768
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # spanbert-base-cased-few-shot-k-256-finetuned-squad-seed-2 This model is a fine-tuned version of [SpanBERT/spanbert-base-cased](https://huggingface.co/SpanBERT/spanbert-base-cased) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10.0 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
{"tags": ["generated_from_trainer"], "datasets": ["squad"], "model-index": [{"name": "spanbert-base-cased-few-shot-k-256-finetuned-squad-seed-2", "results": []}]}
question-answering
anas-awadalla/spanbert-base-cased-few-shot-k-256-finetuned-squad-seed-2
[ "transformers", "pytorch", "bert", "question-answering", "generated_from_trainer", "dataset:squad", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #bert #question-answering #generated_from_trainer #dataset-squad #endpoints_compatible #region-us
# spanbert-base-cased-few-shot-k-256-finetuned-squad-seed-2 This model is a fine-tuned version of SpanBERT/spanbert-base-cased on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10.0 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
[ "# spanbert-base-cased-few-shot-k-256-finetuned-squad-seed-2\n\nThis model is a fine-tuned version of SpanBERT/spanbert-base-cased on the squad dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- num_epochs: 10.0", "### Training results", "### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #bert #question-answering #generated_from_trainer #dataset-squad #endpoints_compatible #region-us \n", "# spanbert-base-cased-few-shot-k-256-finetuned-squad-seed-2\n\nThis model is a fine-tuned version of SpanBERT/spanbert-base-cased on the squad dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- num_epochs: 10.0", "### Training results", "### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ 42, 56, 6, 12, 8, 3, 106, 4, 38 ]
[ "passage: TAGS\n#transformers #pytorch #bert #question-answering #generated_from_trainer #dataset-squad #endpoints_compatible #region-us \n# spanbert-base-cased-few-shot-k-256-finetuned-squad-seed-2\n\nThis model is a fine-tuned version of SpanBERT/spanbert-base-cased on the squad dataset.## Model description\n\nMore information needed## Intended uses & limitations\n\nMore information needed## Training and evaluation data\n\nMore information needed## Training procedure### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- num_epochs: 10.0### Training results### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ -0.09546346962451935, 0.11630092561244965, -0.0023504605051130056, 0.0914682075381279, 0.11875256150960922, 0.022348016500473022, 0.10047981888055801, 0.12805958092212677, -0.09776324033737183, 0.08641652017831802, 0.08787635713815689, 0.03832802176475525, 0.04681330546736717, 0.14512260258197784, -0.019056620076298714, -0.26079118251800537, 0.010405387729406357, -0.004223830997943878, -0.03501170128583908, 0.11173348873853683, 0.08585860580205917, -0.10986869037151337, 0.08598999679088593, 0.01519002579152584, -0.15466320514678955, 0.01954800821840763, -0.036715514957904816, -0.03444463759660721, 0.11325221508741379, -0.033013880252838135, 0.10853555798530579, 0.02597665786743164, 0.13475124537944794, -0.20998859405517578, 0.004569557961076498, 0.07273060083389282, 0.046612005680799484, 0.10063295066356659, 0.05102524906396866, 0.01596488617360592, 0.0893438383936882, -0.15386153757572174, 0.09244793653488159, 0.029089832678437233, -0.09049420803785324, -0.12955816090106964, -0.09566113352775574, 0.02524188533425331, 0.05314967408776283, 0.0677354633808136, 0.0018619478214532137, 0.15106897056102753, -0.059926047921180725, 0.07846932113170624, 0.26626065373420715, -0.3276076316833496, -0.06440626829862595, 0.03205225616693497, 0.05955515056848526, 0.053650837391614914, -0.12170962244272232, -0.006281107198446989, 0.027269789949059486, 0.02961335889995098, 0.1186748668551445, -0.01708277314901352, -0.11284784972667694, -0.013300164602696896, -0.12871481478214264, -0.0018707560375332832, 0.07165881246328354, 0.035625159740448, -0.05304476618766785, -0.09341900050640106, -0.07563532888889313, -0.09110801666975021, -0.024994025006890297, -0.06542833149433136, 0.05678554251790047, -0.0544450469315052, -0.08145022392272949, -0.03828814625740051, -0.057504475116729736, -0.07664133608341217, -0.018439844250679016, 0.158922016620636, 0.04032986983656883, 0.020952701568603516, -0.031718671321868896, 0.1093897819519043, 0.002884801710024476, -0.14128261804580688, -0.015841303393244743, -0.0008013220503926277, -0.09696761518716812, -0.04693247750401497, -0.05138250067830086, -0.01695346087217331, 0.010234805755317211, 0.1762000024318695, -0.08070594072341919, 0.07507462054491043, 0.010097727179527283, -0.028912490233778954, -0.00647730752825737, 0.14852246642112732, -0.042727552354335785, -0.04496801644563675, -0.010343749076128006, 0.07348711788654327, 0.003539435565471649, -0.014146016910672188, -0.06555633991956711, -0.028204912319779396, 0.10317026078701019, 0.04631715640425682, -0.060305580496788025, 0.03862181305885315, -0.023725666105747223, -0.028386099264025688, 0.016413159668445587, -0.11560224741697311, 0.04415217041969299, -0.0023629057686775923, -0.08418992906808853, -0.002169005572795868, 0.00033168791560456157, -0.004590427502989769, -0.007227140013128519, 0.10917782038450241, -0.09842661023139954, -0.0012617899337783456, -0.06291595101356506, -0.08172771334648132, 0.008931045420467854, -0.15568508207798004, -0.015885135158896446, -0.05787983536720276, -0.1699339747428894, -0.030145158991217613, 0.03712144121527672, -0.07464016228914261, -0.011134009808301926, -0.048387546092271805, -0.06418125331401825, 0.024617692455649376, -0.014715075492858887, 0.17357659339904785, -0.05340415984392166, 0.07271263003349304, -0.0005533587536774576, 0.04626351222395897, 0.014631959609687328, 0.0353730283677578, -0.10429439693689346, 0.025770599022507668, -0.13824836909770966, 0.06995224207639694, -0.0838518738746643, -0.004125004168599844, -0.13425296545028687, -0.09813620895147324, 0.01009853184223175, -0.022694377228617668, 0.09030427783727646, 0.1387033313512802, -0.19280272722244263, -0.01755589433014393, 0.12702015042304993, -0.0757000669836998, -0.06324300169944763, 0.06292745471000671, -0.061121683567762375, 0.03232312202453613, 0.051279012113809586, 0.21082305908203125, 0.0407416857779026, -0.16593803465366364, -0.03126402199268341, -0.004055963363498449, 0.040709979832172394, 0.02676253952085972, 0.041485246270895004, 0.00402451679110527, 0.062002528458833694, 0.01446553971618414, -0.07781229168176651, -0.032443251460790634, -0.09193336218595505, -0.06585696339607239, -0.054985515773296356, -0.0724107176065445, 0.042644768953323364, 0.0019296882674098015, 0.04289917275309563, -0.06433438509702682, -0.10080806165933609, 0.11984525620937347, 0.09745097160339355, -0.047962162643671036, 0.03762660548090935, -0.07944329082965851, 0.01922762207686901, -0.021635551005601883, -0.03966132551431656, -0.2062169313430786, -0.12958048284053802, 0.05322343856096268, -0.057682063430547714, 0.034299228340387344, 0.007145078852772713, 0.08054858446121216, 0.06143449991941452, -0.04331836476922035, -0.011910676024854183, -0.09385332465171814, 0.002563855377957225, -0.11769338697195053, -0.18819186091423035, -0.07785231620073318, -0.040125295519828796, 0.09486113488674164, -0.17341138422489166, -0.007540668826550245, 0.015082672238349915, 0.14365066587924957, 0.026995092630386353, -0.06771409511566162, -0.003716640407219529, 0.03677238151431084, 0.0021719657815992832, -0.09508141130208969, 0.04463176801800728, 0.008752296678721905, -0.09434600919485092, -0.06202266737818718, -0.13398340344429016, -0.011094972491264343, 0.058676883578300476, 0.052403874695301056, -0.096689872443676, -0.04594990983605385, -0.07084905356168747, -0.040893182158470154, -0.07624552398920059, 0.013113426975905895, 0.20131246745586395, 0.03447125479578972, 0.11293230205774307, -0.06782376021146774, -0.07739250361919403, -0.003535453462973237, 0.02110874466598034, 0.011987674050033092, 0.07642252743244171, 0.040797095745801926, -0.054769907146692276, 0.07290735840797424, 0.10043694823980331, -0.023265717551112175, 0.12313743680715561, -0.04707719013094902, -0.08412032574415207, -0.034814316779375076, -0.022813523188233376, -0.02882537432014942, 0.12280898541212082, -0.03923013433814049, 0.006084402557462454, 0.036187686026096344, 0.0451764240860939, 0.017099281772971153, -0.16322804987430573, 0.00834602303802967, 0.02228873036801815, -0.054673708975315094, -0.03555602207779884, -0.0014858219074085355, 0.027157647535204887, 0.09220617264509201, 0.03155555948615074, -0.01366437692195177, 0.0038614775985479355, -0.011593556962907314, -0.062157779932022095, 0.18471239507198334, -0.09788040071725845, -0.08553814888000488, -0.07633981108665466, 0.006169972475618124, -0.05929284915328026, -0.036140091717243195, 0.01604667864739895, -0.08672385662794113, -0.03842433542013168, -0.08765372633934021, -0.016611207276582718, -0.01906965859234333, 0.02122795209288597, 0.032611194998025894, -0.022578487172722816, 0.08186597377061844, -0.13850073516368866, 0.0016085999086499214, -0.051755983382463455, -0.09262537211179733, -0.0002283143112435937, 0.07496769726276398, 0.09820310771465302, 0.07912364602088928, -0.017024507746100426, 0.029456524178385735, -0.03417111560702324, 0.24252384901046753, -0.044793594628572464, 0.010535704903304577, 0.10424191504716873, -0.014451717026531696, 0.05697852373123169, 0.09497124701738358, 0.03694063425064087, -0.0935468077659607, 0.021162958815693855, 0.08212022483348846, -0.029179777950048447, -0.22893927991390228, -0.026119448244571686, -0.003696180647239089, -0.07973229885101318, 0.10627847164869308, 0.03149707242846489, -0.03964782878756523, 0.045425284653902054, 0.021433280780911446, 0.001954735955223441, -0.05605345964431763, 0.08146864920854568, 0.07596560567617416, 0.05702431499958038, 0.10000662505626678, -0.008837372064590454, -0.029202276840806007, 0.062464892864227295, 0.008504313416779041, 0.2470264732837677, -0.025008708238601685, 0.10024819523096085, 0.032789334654808044, 0.15305927395820618, -0.027052326127886772, 0.06411781907081604, 0.004428844433277845, -0.009120166301727295, -0.015287203714251518, -0.06703681498765945, -0.02537187747657299, 0.023847782984375954, -0.045303281396627426, 0.02979489043354988, -0.08226194232702255, 0.02756461873650551, 0.027398420497775078, 0.28074389696121216, 0.03479916229844093, -0.27296972274780273, -0.06581532955169678, -0.012424355372786522, -0.04232358932495117, -0.06309014558792114, 0.006410944275557995, 0.12117952853441238, -0.133270263671875, 0.06409479677677155, -0.07631256431341171, 0.0890931561589241, -0.03888282552361488, 0.010843084193766117, 0.04577110335230827, 0.15314802527427673, -0.01690642535686493, 0.05151533707976341, -0.18405483663082123, 0.24243327975273132, 0.024693850427865982, 0.10679223388433456, -0.063845694065094, 0.010507593862712383, 0.018414685502648354, 0.0075941127724945545, 0.10958965867757797, 0.001534913550131023, -0.069127157330513, -0.1379888653755188, -0.10028562694787979, 0.04681578651070595, 0.14269210398197174, -0.03571401536464691, 0.09933219850063324, -0.02847924642264843, 0.012775072827935219, 0.034141600131988525, -0.029412413015961647, -0.15699785947799683, -0.07284396141767502, 0.00993756577372551, 0.026432016864418983, -0.01662764698266983, -0.052486520260572433, -0.10427986085414886, -0.03744913637638092, 0.11944999545812607, 0.0031364108435809612, -0.045934047549963, -0.1503559947013855, 0.08556688576936722, 0.14581705629825592, -0.05895314738154411, 0.015100984834134579, 0.014078988693654537, 0.11240702867507935, 0.033026233315467834, -0.08609902858734131, 0.06618726253509521, -0.053191542625427246, -0.17400410771369934, -0.057393502444028854, 0.1199108362197876, 0.07902879267930984, 0.04566282778978348, 0.0006358107202686369, 0.056601572781801224, 0.0024631188716739416, -0.09687899053096771, 0.036472730338573456, 0.004287844989448786, 0.051540445536375046, 0.029250076040625572, -0.0856865867972374, 0.07886111736297607, -0.0341402031481266, 0.018267584964632988, 0.1310667246580124, 0.23464301228523254, -0.09986494481563568, 0.10289862751960754, 0.08017773926258087, -0.07659845054149628, -0.1594030261039734, 0.06040877103805542, 0.12676987051963806, 0.004380606114864349, 0.08526960760354996, -0.20050249993801117, 0.13414330780506134, 0.10655944049358368, -0.014129912480711937, 0.018710268661379814, -0.2734469473361969, -0.13200204074382782, 0.06481468677520752, 0.10970161855220795, 0.050486695021390915, -0.12092560529708862, -0.03575963154435158, -0.010045114904642105, -0.1198149248957634, 0.12845958769321442, -0.07551444321870804, 0.11724022775888443, -0.02104036509990692, 0.1233946904540062, 0.02439168654382229, -0.03652780130505562, 0.11440178751945496, 0.07100733369588852, 0.08476632088422775, -0.0388602539896965, -0.0022644177079200745, 0.06421168148517609, -0.06284328550100327, 0.03650935739278793, -0.03728321194648743, 0.06367433071136475, -0.14794966578483582, 0.006387044209986925, -0.07745718955993652, 0.059736136347055435, -0.046981558203697205, -0.06522039324045181, -0.027585741132497787, 0.04679057374596596, 0.07293284684419632, -0.03570247069001198, 0.04453258961439133, 0.009853833355009556, 0.08853977173566818, 0.10143212229013443, 0.072367824614048, -0.02101597748696804, -0.08278690278530121, 0.012948376126587391, 0.004690942820161581, 0.046746402978897095, -0.08572236448526382, 0.01661228947341442, 0.14580483734607697, 0.05970475450158119, 0.10224327445030212, 0.045248597860336304, -0.043998800218105316, 0.006207639817148447, 0.016186105087399483, -0.14266803860664368, -0.10179730504751205, 0.02757570706307888, -0.05780600756406784, -0.15505561232566833, 0.03287492319941521, 0.1245538741350174, -0.03724298253655434, -0.016373181715607643, -0.007095059379935265, 0.008995495736598969, -0.012109378352761269, 0.18406268954277039, 0.04213373363018036, 0.05468728393316269, -0.09044548124074936, 0.11460289359092712, 0.036024097353219986, -0.04064503312110901, 0.05390782281756401, 0.06675736606121063, -0.09911442548036575, 0.013644249178469181, 0.07233376801013947, 0.14901600778102875, -0.06752602756023407, -0.012670770287513733, -0.09159742295742035, -0.0770348384976387, 0.04444195702672005, 0.1438271552324295, 0.05390258878469467, -0.004830132704228163, -0.0608736053109169, 0.03563135862350464, -0.11776527762413025, 0.06873353570699692, 0.053014375269412994, 0.08255593478679657, -0.10885485261678696, 0.12460847944021225, -0.007462050300091505, 0.02542250230908394, -0.028157277032732964, 0.017923761159181595, -0.10005071759223938, -0.034607697278261185, -0.10973379760980606, -0.013340919278562069, -0.017474276944994926, -0.003433177713304758, -0.018926698714494705, -0.07585888355970383, -0.043033163994550705, 0.0332452692091465, -0.07654562592506409, -0.04891510680317879, 0.016719983890652657, 0.04026465117931366, -0.1605832725763321, 0.002588934963569045, 0.026779400184750557, -0.08785627782344818, 0.08869129419326782, 0.06918508559465408, 0.016250532120466232, 0.02806272730231285, -0.12144172936677933, -0.033013951033353806, 0.0010791171807795763, 0.010790668427944183, 0.0769667774438858, -0.09415129572153091, -0.03019677847623825, -0.030396590009331703, 0.04944169148802757, 0.01459003146737814, 0.10344788432121277, -0.1193767786026001, -0.013310959562659264, -0.0470912866294384, -0.03877551481127739, -0.05701439082622528, 0.026106925681233406, 0.11323916167020798, 0.04555857181549072, 0.15779642760753632, -0.07041624933481216, 0.05466447398066521, -0.2043170928955078, -0.032735683023929596, 0.010737897828221321, -0.046234942972660065, -0.07518849521875381, -0.04573403298854828, 0.08321705460548401, -0.050250280648469925, 0.12100505828857422, -0.015845289453864098, 0.09275433421134949, 0.04393598437309265, -0.004759157542139292, -0.06864606589078903, -0.011456158012151718, 0.18319791555404663, 0.057787902653217316, -0.02099188044667244, 0.12035787850618362, 0.0026099092792719603, 0.0433274507522583, 0.06685510277748108, 0.23435457050800323, 0.15251806378364563, -0.011700605042278767, 0.07522571831941605, 0.06680069863796234, -0.0743282362818718, -0.14190053939819336, 0.1224692091345787, -0.020602038130164146, 0.10609132051467896, -0.0513722226023674, 0.1892610341310501, 0.03834651783108711, -0.17659740149974823, 0.05319315567612648, -0.024468176066875458, -0.10828454792499542, -0.1258784830570221, -0.01666993275284767, -0.08292018622159958, -0.11634693294763565, 0.027613457292318344, -0.12356971949338913, 0.06788772344589233, 0.09562619030475616, 0.006530427373945713, 0.035551682114601135, 0.18310043215751648, -0.05742675065994263, 0.010977468453347683, 0.07238172739744186, 0.020579108968377113, -0.002964702667668462, -0.038257062435150146, -0.06745589524507523, 0.03751412034034729, 0.04505590721964836, 0.07119890302419662, -0.05103762075304985, 0.010395965538918972, 0.01484358124434948, -0.01108929980546236, -0.07820700854063034, 0.00807184912264347, 0.014255219139158726, 0.049225904047489166, 0.03404758498072624, 0.047381795942783356, 0.008249693550169468, -0.05321227014064789, 0.27537116408348083, -0.06760665774345398, -0.06242189556360245, -0.12343522161245346, 0.19443932175636292, 0.032534681260585785, -0.01806526444852352, 0.05696238949894905, -0.09261194616556168, -0.01333378255367279, 0.16161733865737915, 0.13391010463237762, -0.0923173725605011, -0.02159261889755726, -0.02417534776031971, -0.008975010365247726, -0.012751351110637188, 0.10537828505039215, 0.07125111669301987, 0.0006812670617364347, -0.067132867872715, -0.014863036572933197, -0.03017476573586464, -0.04694359004497528, -0.06323087215423584, 0.0589791014790535, 0.02673014998435974, -0.00546529283747077, -0.058844976127147675, 0.06287180632352829, -0.003587854327633977, -0.23459941148757935, 0.03719703480601311, -0.17226558923721313, -0.17408962547779083, -0.013244089670479298, 0.07090387493371964, 0.0008809108985587955, 0.05617930367588997, -0.007697461172938347, 0.009760379791259766, 0.11600451916456223, -0.016891948878765106, -0.014126207679510117, -0.1159362643957138, 0.10996492952108383, -0.10841033607721329, 0.21247562766075134, -0.0008546898607164621, 0.06591647118330002, 0.09852612018585205, 0.03766172379255295, -0.1356099545955658, 0.018092013895511627, 0.06248864531517029, -0.12492421269416809, 0.0019505913369357586, 0.1461915671825409, -0.034320950508117676, 0.06321822106838226, 0.03253651410341263, -0.1492004096508026, -0.004352053627371788, 0.02813700959086418, -0.0373096689581871, -0.06893940269947052, -0.010986611247062683, -0.05745144560933113, 0.16540378332138062, 0.20635585486888885, -0.02938218042254448, 0.012750054709613323, -0.08401136845350266, 0.02210722118616104, 0.04838372394442558, 0.06037896126508713, -0.038315970450639725, -0.21625417470932007, 0.02078722044825554, 0.07237577438354492, -0.0023933309130370617, -0.19601137936115265, -0.09745045006275177, 0.043049730360507965, -0.03595304116606712, -0.04609289765357971, 0.09253069013357162, 0.024350065737962723, 0.03673742339015007, -0.018782274797558784, -0.11710353940725327, -0.028578108176589012, 0.14531438052654266, -0.17576919496059418, -0.04249763861298561 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # spanbert-base-cased-few-shot-k-256-finetuned-squad-seed-4 This model is a fine-tuned version of [SpanBERT/spanbert-base-cased](https://huggingface.co/SpanBERT/spanbert-base-cased) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10.0 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
{"tags": ["generated_from_trainer"], "datasets": ["squad"], "model-index": [{"name": "spanbert-base-cased-few-shot-k-256-finetuned-squad-seed-4", "results": []}]}
question-answering
anas-awadalla/spanbert-base-cased-few-shot-k-256-finetuned-squad-seed-4
[ "transformers", "pytorch", "bert", "question-answering", "generated_from_trainer", "dataset:squad", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #bert #question-answering #generated_from_trainer #dataset-squad #endpoints_compatible #region-us
# spanbert-base-cased-few-shot-k-256-finetuned-squad-seed-4 This model is a fine-tuned version of SpanBERT/spanbert-base-cased on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10.0 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
[ "# spanbert-base-cased-few-shot-k-256-finetuned-squad-seed-4\n\nThis model is a fine-tuned version of SpanBERT/spanbert-base-cased on the squad dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- num_epochs: 10.0", "### Training results", "### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #bert #question-answering #generated_from_trainer #dataset-squad #endpoints_compatible #region-us \n", "# spanbert-base-cased-few-shot-k-256-finetuned-squad-seed-4\n\nThis model is a fine-tuned version of SpanBERT/spanbert-base-cased on the squad dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- num_epochs: 10.0", "### Training results", "### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ 42, 56, 6, 12, 8, 3, 106, 4, 38 ]
[ "passage: TAGS\n#transformers #pytorch #bert #question-answering #generated_from_trainer #dataset-squad #endpoints_compatible #region-us \n# spanbert-base-cased-few-shot-k-256-finetuned-squad-seed-4\n\nThis model is a fine-tuned version of SpanBERT/spanbert-base-cased on the squad dataset.## Model description\n\nMore information needed## Intended uses & limitations\n\nMore information needed## Training and evaluation data\n\nMore information needed## Training procedure### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- num_epochs: 10.0### Training results### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ -0.09605805575847626, 0.11538566648960114, -0.002311817603185773, 0.09229128807783127, 0.11982187628746033, 0.022684704512357712, 0.10114018619060516, 0.1272805631160736, -0.09795808792114258, 0.085903599858284, 0.08793768286705017, 0.03803246468305588, 0.04614812135696411, 0.1448981910943985, -0.018858006224036217, -0.2607820928096771, 0.010202617384493351, -0.0036979641299694777, -0.034340422600507736, 0.11187586188316345, 0.08487848937511444, -0.11045607924461365, 0.08650356531143188, 0.01491569634526968, -0.1553596556186676, 0.020002884790301323, -0.03740735724568367, -0.03434440866112709, 0.11343974620103836, -0.03299093246459961, 0.10881082713603973, 0.02569727972149849, 0.1346348226070404, -0.20856553316116333, 0.0048093427903950214, 0.07266949117183685, 0.046039704233407974, 0.10009679943323135, 0.05070909112691879, 0.01572827249765396, 0.08847644180059433, -0.15379323065280914, 0.09255356341600418, 0.028841005638241768, -0.09067782759666443, -0.12997350096702576, -0.09502339363098145, 0.024135341867804527, 0.05253751948475838, 0.0687292218208313, 0.0013044936349615455, 0.15032055974006653, -0.06048935651779175, 0.078739695250988, 0.26388442516326904, -0.3287176191806793, -0.06476029008626938, 0.032368820160627365, 0.059832632541656494, 0.05374632403254509, -0.12251009047031403, -0.0057088397443294525, 0.027361860498785973, 0.030537230893969536, 0.11909055709838867, -0.017377294600009918, -0.11263196170330048, -0.012870997190475464, -0.12857837975025177, -0.000281134998658672, 0.07224635779857635, 0.03586443141102791, -0.05277292802929878, -0.09419044107198715, -0.07456452399492264, -0.09240240603685379, -0.02542221173644066, -0.064608134329319, 0.056793589144945145, -0.05544332042336464, -0.08202998340129852, -0.036352016031742096, -0.057342659682035446, -0.07565072178840637, -0.018245607614517212, 0.15752412378787994, 0.040245965123176575, 0.020663119852542877, -0.03132137283682823, 0.10886823385953903, 0.002785523422062397, -0.14102621376514435, -0.014719159342348576, -0.0014857781352475286, -0.09683414548635483, -0.046957314014434814, -0.052057743072509766, -0.015257232822477818, 0.010411984287202358, 0.17637120187282562, -0.08087678253650665, 0.07577923685312271, 0.011219097301363945, -0.029766391962766647, -0.006368170026689768, 0.1472429484128952, -0.04419485479593277, -0.04664606228470802, -0.010681218467652798, 0.07401883602142334, 0.0026851240545511246, -0.014182008802890778, -0.06556862592697144, -0.027176905423402786, 0.10217370092868805, 0.0456576943397522, -0.06149033084511757, 0.040398210287094116, -0.022746948525309563, -0.02811785228550434, 0.016810335218906403, -0.11542539298534393, 0.043852899223566055, -0.002328047528862953, -0.08446566760540009, -0.001411261036992073, -0.0004384554922580719, -0.00544752785935998, -0.007638951763510704, 0.10945695638656616, -0.09934193640947342, -0.002087925560772419, -0.06334934383630753, -0.0827900767326355, 0.00835376512259245, -0.15552440285682678, -0.014918025583028793, -0.05742425099015236, -0.17032775282859802, -0.0316651277244091, 0.036963123828172684, -0.07454222440719604, -0.010110236704349518, -0.04848853498697281, -0.06482633203268051, 0.024171223863959312, -0.01473509892821312, 0.17417477071285248, -0.053832609206438065, 0.07170756906270981, 0.0005927608581259847, 0.046212732791900635, 0.014345335774123669, 0.035446807742118835, -0.10409491509199142, 0.025082549080252647, -0.1381714940071106, 0.06937029212713242, -0.08442158997058868, -0.0024119350127875805, -0.13309265673160553, -0.09932161122560501, 0.010870298370718956, -0.02158115990459919, 0.0898241326212883, 0.13848663866519928, -0.1924690157175064, -0.01782541535794735, 0.12641072273254395, -0.07470392435789108, -0.06336003541946411, 0.06266132742166519, -0.06135678291320801, 0.031100327149033546, 0.05197831615805626, 0.21086134016513824, 0.04097462818026543, -0.16535590589046478, -0.03252193704247475, -0.004988887347280979, 0.04109002649784088, 0.026118189096450806, 0.040062639862298965, 0.005380693357437849, 0.062292519956827164, 0.015143568627536297, -0.07680442929267883, -0.032417234033346176, -0.09140069037675858, -0.06544588506221771, -0.054096709936857224, -0.07232818752527237, 0.042220160365104675, 0.0024934241082519293, 0.04292420670390129, -0.06537680327892303, -0.1013021320104599, 0.11932910978794098, 0.09718266874551773, -0.048519525676965714, 0.03618309646844864, -0.07982015609741211, 0.019773444160819054, -0.02165275067090988, -0.03913358971476555, -0.20576056838035583, -0.13073179125785828, 0.05215860530734062, -0.055215828120708466, 0.0341779924929142, 0.007565580308437347, 0.0813431367278099, 0.06176438182592392, -0.043734338134527206, -0.012394712306559086, -0.09275095164775848, 0.0029077595099806786, -0.11743243038654327, -0.18865399062633514, -0.07833117991685867, -0.03998451307415962, 0.0953030064702034, -0.17461657524108887, -0.007147399242967367, 0.015417705290019512, 0.14283062517642975, 0.02656194195151329, -0.06727422028779984, -0.0028111429419368505, 0.03805665299296379, 0.003098964225500822, -0.09491053968667984, 0.04524841532111168, 0.008614645339548588, -0.09325069189071655, -0.06308790296316147, -0.13441023230552673, -0.00943235494196415, 0.05977441370487213, 0.05168162286281586, -0.09707317501306534, -0.04590946063399315, -0.07059622555971146, -0.04091203585267067, -0.07459887117147446, 0.013107187114655972, 0.2022535651922226, 0.034053463488817215, 0.11265796422958374, -0.06696098297834396, -0.0769868865609169, -0.0034359553828835487, 0.02251923270523548, 0.013059510849416256, 0.07630147784948349, 0.03966758772730827, -0.052640337496995926, 0.07320720702409744, 0.09949493408203125, -0.023629792034626007, 0.12393485754728317, -0.04731408506631851, -0.0836067870259285, -0.03416691720485687, -0.02381647564470768, -0.02933431603014469, 0.12356950342655182, -0.03967259079217911, 0.004796166438609362, 0.035862553864717484, 0.044512052088975906, 0.017423685640096664, -0.1623886376619339, 0.008323460817337036, 0.0215449221432209, -0.05367428809404373, -0.036699078977108, -0.0011135010281577706, 0.026526235044002533, 0.09179257601499557, 0.031355418264865875, -0.014987795613706112, 0.0037273066118359566, -0.011433488689363003, -0.06155019626021385, 0.18522019684314728, -0.0979851558804512, -0.08439996838569641, -0.07611439377069473, 0.004476947244256735, -0.060274429619312286, -0.03657343611121178, 0.015615495853126049, -0.08819235116243362, -0.038608305156230927, -0.08733224868774414, -0.017624400556087494, -0.018756577745079994, 0.021074343472719193, 0.031796686351299286, -0.022900709882378578, 0.08133210986852646, -0.1381857842206955, 0.00185838108882308, -0.05201856046915054, -0.09263650327920914, 0.00037327580503188074, 0.07527121156454086, 0.098484106361866, 0.07897311449050903, -0.016762729734182358, 0.029507866129279137, -0.03435896709561348, 0.2432532161474228, -0.04495634511113167, 0.010656381957232952, 0.1040826216340065, -0.013617806136608124, 0.05582791566848755, 0.0950319692492485, 0.037874799221754074, -0.09395825862884521, 0.020976999774575233, 0.08257611095905304, -0.028710266575217247, -0.22871169447898865, -0.025521114468574524, -0.00404210714623332, -0.07972637563943863, 0.10620232671499252, 0.031446170061826706, -0.03912033885717392, 0.046183258295059204, 0.022280342876911163, 0.002854897640645504, -0.056280672550201416, 0.08099433034658432, 0.07733945548534393, 0.05649995803833008, 0.10101363807916641, -0.008938122540712357, -0.029478590935468674, 0.06164930388331413, 0.008716527372598648, 0.24766132235527039, -0.025313306599855423, 0.09994111955165863, 0.033324021846055984, 0.15246348083019257, -0.026564795523881912, 0.06494245678186417, 0.003911864478141069, -0.009777864441275597, -0.015025651082396507, -0.0668579488992691, -0.024136539548635483, 0.022949539124965668, -0.046354688704013824, 0.029201235622167587, -0.08235213160514832, 0.02603829838335514, 0.027548640966415405, 0.2802988886833191, 0.034784283488988876, -0.27550506591796875, -0.0666365697979927, -0.013210872188210487, -0.041971929371356964, -0.06261470168828964, 0.006599244195967913, 0.12066928297281265, -0.13263849914073944, 0.06482827663421631, -0.07638005167245865, 0.08874117583036423, -0.03897840902209282, 0.011792282573878765, 0.04779600352048874, 0.1541430503129959, -0.017777999863028526, 0.05108502134680748, -0.18447767198085785, 0.241279736161232, 0.02480662614107132, 0.10754191130399704, -0.0640241727232933, 0.010387539863586426, 0.019295696169137955, 0.008830553852021694, 0.10922883450984955, 0.0009006643085740507, -0.06874965131282806, -0.13784965872764587, -0.09941113740205765, 0.04802892729640007, 0.14179106056690216, -0.034778814762830734, 0.10014806687831879, -0.02756614051759243, 0.012370293028652668, 0.03381287679076195, -0.030470477417111397, -0.15713706612586975, -0.07341014593839645, 0.009225169196724892, 0.02762586809694767, -0.016188861802220345, -0.05181208997964859, -0.10479192435741425, -0.0388856939971447, 0.11872988939285278, 0.004454180132597685, -0.04615698382258415, -0.15088361501693726, 0.08491233736276627, 0.1459839642047882, -0.057837698608636856, 0.015056937001645565, 0.014861061237752438, 0.11149871349334717, 0.034003954380750656, -0.08576877415180206, 0.06624802201986313, -0.05387137830257416, -0.17278973758220673, -0.05736885592341423, 0.11906818300485611, 0.07874821126461029, 0.04493340104818344, 0.0003912109532393515, 0.056497521698474884, 0.0016470263944938779, -0.09747333824634552, 0.03681157901883125, 0.0023698245640844107, 0.052445173263549805, 0.028835320845246315, -0.08646345883607864, 0.07869022339582443, -0.03353273868560791, 0.019220052286982536, 0.12921524047851562, 0.23185795545578003, -0.09910091012716293, 0.1009884849190712, 0.08062111586332321, -0.07617458701133728, -0.15896861255168915, 0.06139129400253296, 0.1256677657365799, 0.0051294234581291676, 0.08385124057531357, -0.20134074985980988, 0.13527072966098785, 0.10599713027477264, -0.013122539967298508, 0.02057298831641674, -0.27078160643577576, -0.1312893033027649, 0.06517080962657928, 0.11042829602956772, 0.05128590017557144, -0.12131273746490479, -0.035148587077856064, -0.010139735415577888, -0.11923923343420029, 0.1276622712612152, -0.07812292873859406, 0.11731924116611481, -0.021381918340921402, 0.12377038598060608, 0.023662781342864037, -0.036604251712560654, 0.11351503431797028, 0.07189572602510452, 0.08577481657266617, -0.0389927476644516, -0.001524658757261932, 0.06413334608078003, -0.062157269567251205, 0.03643925487995148, -0.03835460543632507, 0.06306929141283035, -0.1483425498008728, 0.006387913599610329, -0.07829950749874115, 0.05945536866784096, -0.046770066022872925, -0.06499131768941879, -0.026649391278624535, 0.04711519926786423, 0.07188086956739426, -0.03582943603396416, 0.043146178126335144, 0.008904479444026947, 0.08892123401165009, 0.1001858338713646, 0.07303166389465332, -0.022194446995854378, -0.08364073932170868, 0.01411316730082035, 0.004320780746638775, 0.04671579226851463, -0.08533129841089249, 0.015317177399992943, 0.14651960134506226, 0.058986637741327286, 0.1019655391573906, 0.046074774116277695, -0.04302499070763588, 0.005725590046495199, 0.01725105755031109, -0.1427859365940094, -0.10060283541679382, 0.027781151235103607, -0.06125636771321297, -0.1548287719488144, 0.03396044299006462, 0.12443593144416809, -0.03709472715854645, -0.01614762656390667, -0.007069293409585953, 0.008365290239453316, -0.012266202829778194, 0.18528388440608978, 0.0422811359167099, 0.054290544241666794, -0.09153192490339279, 0.11399000138044357, 0.03592486307024956, -0.04127230495214462, 0.05384349822998047, 0.06752129644155502, -0.10011660307645798, 0.012680190615355968, 0.07148559391498566, 0.15036121010780334, -0.06640935689210892, -0.013545121066272259, -0.09286266565322876, -0.07751162350177765, 0.04446304962038994, 0.1426847279071808, 0.053653568029403687, -0.005560294259339571, -0.06121278554201126, 0.035132672637701035, -0.1184074655175209, 0.06833638995885849, 0.05223572254180908, 0.08280861377716064, -0.10891871899366379, 0.12394699454307556, -0.007529906928539276, 0.024644194170832634, -0.028159335255622864, 0.01845712773501873, -0.10077137500047684, -0.034660059958696365, -0.10982786864042282, -0.014270815066993237, -0.01788683608174324, -0.002912495518103242, -0.01923864521086216, -0.07456796616315842, -0.04367350414395332, 0.03325961157679558, -0.0768347829580307, -0.048314839601516724, 0.01835499331355095, 0.04085639491677284, -0.15995542705059052, 0.0029712936375290155, 0.025605522096157074, -0.08779601752758026, 0.08852152526378632, 0.06911735236644745, 0.016024844720959663, 0.028434118255972862, -0.11984244734048843, -0.033539067953825, 0.0006039126892574131, 0.010058115236461163, 0.07751182466745377, -0.09344347566366196, -0.02956533059477806, -0.030606253072619438, 0.04970991238951683, 0.014835333451628685, 0.10261882841587067, -0.11860086023807526, -0.01296150404959917, -0.046315841376781464, -0.03751818835735321, -0.057490307837724686, 0.02659677341580391, 0.11394655704498291, 0.04498285800218582, 0.158230721950531, -0.07043416798114777, 0.05382515490055084, -0.20458079874515533, -0.03309888020157814, 0.010594865307211876, -0.04752326384186745, -0.07446518540382385, -0.04572737589478493, 0.0839611366391182, -0.050793230533599854, 0.12251725792884827, -0.01607673242688179, 0.09316608309745789, 0.04340260848402977, -0.004507581703364849, -0.06972228735685349, -0.010864298790693283, 0.18293118476867676, 0.05732829123735428, -0.021658675745129585, 0.12009924650192261, 0.0038191110361367464, 0.04249972477555275, 0.06811554729938507, 0.23258110880851746, 0.15167519450187683, -0.011000202968716621, 0.07543674111366272, 0.06748735159635544, -0.07481499761343002, -0.14064526557922363, 0.12339027971029282, -0.020577169954776764, 0.10673166066408157, -0.05225397273898125, 0.18811509013175964, 0.03757116571068764, -0.17574994266033173, 0.05358582362532616, -0.025304948911070824, -0.10844812542200089, -0.12466070801019669, -0.01577555388212204, -0.08226384967565536, -0.11696812510490417, 0.027758803218603134, -0.12407475709915161, 0.06652525812387466, 0.09675601124763489, 0.0073431553319096565, 0.03506787121295929, 0.18462106585502625, -0.05630696937441826, 0.011655263602733612, 0.07270197570323944, 0.020048052072525024, -0.0033022791612893343, -0.03803618624806404, -0.06666076928377151, 0.03694182634353638, 0.043555498123168945, 0.07074430584907532, -0.05195499584078789, 0.009707145392894745, 0.015523191541433334, -0.010280163027346134, -0.07778321206569672, 0.007875040173530579, 0.014514386653900146, 0.048949237912893295, 0.035038579255342484, 0.046924080699682236, 0.007413040846586227, -0.053382959216833115, 0.27427804470062256, -0.06761101633310318, -0.06118005886673927, -0.1242690458893776, 0.19411511719226837, 0.032393306493759155, -0.01866655983030796, 0.056055281311273575, -0.09174101799726486, -0.012214358896017075, 0.16287770867347717, 0.13579659163951874, -0.0923306792974472, -0.021945064887404442, -0.02369621768593788, -0.008974737487733364, -0.01291604619473219, 0.10572057217359543, 0.07123469561338425, 0.00021287990966811776, -0.0671599730849266, -0.014757469296455383, -0.02957061305642128, -0.04692716896533966, -0.06283977627754211, 0.05844695866107941, 0.02790057100355625, -0.005836991127580404, -0.05817985534667969, 0.06309203058481216, -0.0038977758958935738, -0.234405517578125, 0.03813330829143524, -0.17169706523418427, -0.17453211545944214, -0.014353472739458084, 0.07018331438302994, 0.00165753869805485, 0.05693543702363968, -0.007586387917399406, 0.009563068859279156, 0.11656007915735245, -0.017151689156889915, -0.013269730843603611, -0.11675620824098587, 0.11010018736124039, -0.10813423246145248, 0.21123401820659637, -0.0015462059527635574, 0.06590951979160309, 0.09898059815168381, 0.03729658201336861, -0.1353580355644226, 0.018764425069093704, 0.061713941395282745, -0.1254614144563675, 0.002526669530197978, 0.14534051716327667, -0.03416861593723297, 0.06241767853498459, 0.031343087553977966, -0.14829429984092712, -0.003522661980241537, 0.028353026136755943, -0.037129905074834824, -0.0689920112490654, -0.010677393525838852, -0.05703576281666756, 0.16593047976493835, 0.2079044133424759, -0.029216095805168152, 0.012632901780307293, -0.08390983194112778, 0.022321289405226707, 0.04889502376317978, 0.05910002812743187, -0.03913543000817299, -0.2162637710571289, 0.0209213737398386, 0.07288092374801636, -0.0029320656321942806, -0.19709259271621704, -0.09628436714410782, 0.04310246929526329, -0.035828012973070145, -0.04632046818733215, 0.09245806932449341, 0.025265661999583244, 0.03779496252536774, -0.01927279494702816, -0.11475367099046707, -0.028513867408037186, 0.1450241655111313, -0.1761130392551422, -0.0432141087949276 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # spanbert-base-cased-few-shot-k-256-finetuned-squad-seed-6 This model is a fine-tuned version of [SpanBERT/spanbert-base-cased](https://huggingface.co/SpanBERT/spanbert-base-cased) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10.0 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
{"tags": ["generated_from_trainer"], "datasets": ["squad"], "model-index": [{"name": "spanbert-base-cased-few-shot-k-256-finetuned-squad-seed-6", "results": []}]}
question-answering
anas-awadalla/spanbert-base-cased-few-shot-k-256-finetuned-squad-seed-6
[ "transformers", "pytorch", "bert", "question-answering", "generated_from_trainer", "dataset:squad", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #bert #question-answering #generated_from_trainer #dataset-squad #endpoints_compatible #region-us
# spanbert-base-cased-few-shot-k-256-finetuned-squad-seed-6 This model is a fine-tuned version of SpanBERT/spanbert-base-cased on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10.0 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
[ "# spanbert-base-cased-few-shot-k-256-finetuned-squad-seed-6\n\nThis model is a fine-tuned version of SpanBERT/spanbert-base-cased on the squad dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- num_epochs: 10.0", "### Training results", "### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #bert #question-answering #generated_from_trainer #dataset-squad #endpoints_compatible #region-us \n", "# spanbert-base-cased-few-shot-k-256-finetuned-squad-seed-6\n\nThis model is a fine-tuned version of SpanBERT/spanbert-base-cased on the squad dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- num_epochs: 10.0", "### Training results", "### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ 42, 56, 6, 12, 8, 3, 106, 4, 38 ]
[ "passage: TAGS\n#transformers #pytorch #bert #question-answering #generated_from_trainer #dataset-squad #endpoints_compatible #region-us \n# spanbert-base-cased-few-shot-k-256-finetuned-squad-seed-6\n\nThis model is a fine-tuned version of SpanBERT/spanbert-base-cased on the squad dataset.## Model description\n\nMore information needed## Intended uses & limitations\n\nMore information needed## Training and evaluation data\n\nMore information needed## Training procedure### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- num_epochs: 10.0### Training results### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ -0.09611675888299942, 0.11506524682044983, -0.0022690631449222565, 0.09200654178857803, 0.11999661475419998, 0.022231798619031906, 0.10075999796390533, 0.12770316004753113, -0.09725208580493927, 0.08629079908132553, 0.08714986592531204, 0.038843728601932526, 0.04662603512406349, 0.14475257694721222, -0.0188559852540493, -0.2603597342967987, 0.01048896461725235, -0.003385183634236455, -0.03424552083015442, 0.1118900403380394, 0.08487607538700104, -0.11067185550928116, 0.08575831353664398, 0.01440374180674553, -0.15555377304553986, 0.020261704921722412, -0.03766871988773346, -0.03399287909269333, 0.11328829079866409, -0.033467475324869156, 0.10844962298870087, 0.02581438422203064, 0.13458169996738434, -0.20918457210063934, 0.004838097840547562, 0.07325578480958939, 0.04619140177965164, 0.10028402507305145, 0.051511719822883606, 0.015892647206783295, 0.09025190025568008, -0.15352143347263336, 0.09239989519119263, 0.029414629563689232, -0.0905521959066391, -0.12821924686431885, -0.09549057483673096, 0.0234205424785614, 0.053186800330877304, 0.06941893696784973, 0.0008658781880512834, 0.15129905939102173, -0.0609947144985199, 0.07895851135253906, 0.2655561864376068, -0.32725247740745544, -0.06472030282020569, 0.03342960402369499, 0.05968736857175827, 0.05276748165488243, -0.12337823957204819, -0.0066198743879795074, 0.027386777102947235, 0.030213668942451477, 0.11811120063066483, -0.016933415085077286, -0.11411579698324203, -0.013241943903267384, -0.12890753149986267, -0.00034507300006225705, 0.07066646218299866, 0.035920511931180954, -0.0522216334939003, -0.09394876658916473, -0.07506299018859863, -0.09184139221906662, -0.02523687668144703, -0.06455917656421661, 0.05699559673666954, -0.05549929663538933, -0.08148149400949478, -0.036196913570165634, -0.05709391087293625, -0.0767948105931282, -0.01803278550505638, 0.15723378956317902, 0.04022248834371567, 0.02049601823091507, -0.0320817232131958, 0.10870169848203659, 0.002766501856967807, -0.14118793606758118, -0.015719523653388023, -0.0008203383185900748, -0.09721005707979202, -0.04717562720179558, -0.05152745544910431, -0.017027830705046654, 0.009945016354322433, 0.17459379136562347, -0.08109069615602493, 0.07621031999588013, 0.010293080471456051, -0.029854753986001015, -0.007002931088209152, 0.1474197506904602, -0.043288931250572205, -0.0451529435813427, -0.011360474862158298, 0.07398974895477295, 0.0021748701110482216, -0.013832769356667995, -0.06498351693153381, -0.027327468618750572, 0.10260554403066635, 0.04549197480082512, -0.06100216507911682, 0.04006801173090935, -0.02297579124569893, -0.028247306123375893, 0.01712048053741455, -0.11528225243091583, 0.04402152821421623, -0.002784508280456066, -0.08488667756319046, -0.002475727815181017, -0.0002336165780434385, -0.005735834129154682, -0.007978429086506367, 0.11016290634870529, -0.09969929605722427, -0.0018592504784464836, -0.06436474621295929, -0.08264285326004028, 0.008790960535407066, -0.15716101229190826, -0.015311711467802525, -0.056650418788194656, -0.17076611518859863, -0.03177459165453911, 0.03662184998393059, -0.07456763833761215, -0.009478241205215454, -0.04909461736679077, -0.06541342288255692, 0.024469733238220215, -0.01433630846440792, 0.17516468465328217, -0.053551774471998215, 0.0723767876625061, 0.00034325261367484927, 0.04597047343850136, 0.01480388455092907, 0.03606599569320679, -0.10501181334257126, 0.024835774675011635, -0.1376476287841797, 0.06943301111459732, -0.0853472501039505, -0.0025977655313909054, -0.1340150088071823, -0.09861554950475693, 0.009673378430306911, -0.02209128811955452, 0.09058307111263275, 0.1391936093568802, -0.1928074061870575, -0.017464542761445045, 0.1268923133611679, -0.07549098879098892, -0.0633821040391922, 0.06168295815587044, -0.06105482205748558, 0.030726946890354156, 0.05154084041714668, 0.21117882430553436, 0.04029781371355057, -0.16514676809310913, -0.033603206276893616, -0.0055679455399513245, 0.04154879227280617, 0.02556019090116024, 0.03983382508158684, 0.005293391644954681, 0.06336427479982376, 0.014855310320854187, -0.0766463652253151, -0.03270915895700455, -0.09158556908369064, -0.06483130156993866, -0.054618969559669495, -0.0724518746137619, 0.04165276885032654, 0.003718388034030795, 0.04258492961525917, -0.06492765992879868, -0.1008373349905014, 0.11932864785194397, 0.09716238081455231, -0.047897569835186005, 0.03643408417701721, -0.0793846920132637, 0.018656175583600998, -0.022135229781270027, -0.0390663780272007, -0.20710738003253937, -0.13099591434001923, 0.05258467420935631, -0.05578748136758804, 0.034327633678913116, 0.007047789636999369, 0.08125259727239609, 0.06092143803834915, -0.04387272521853447, -0.012391744181513786, -0.09348472207784653, 0.002470229519531131, -0.11793718487024307, -0.18875297904014587, -0.0784095898270607, -0.04064769670367241, 0.09308468550443649, -0.17408622801303864, -0.007451931945979595, 0.0154434097930789, 0.14343024790287018, 0.026804344728589058, -0.06774493306875229, -0.0028050330001860857, 0.0378011129796505, 0.002794424071907997, -0.0951734185218811, 0.045062337070703506, 0.007747276220470667, -0.09280752390623093, -0.0631980150938034, -0.13473816215991974, -0.01114532072097063, 0.059464871883392334, 0.05308579280972481, -0.09727446734905243, -0.04591469094157219, -0.07053982466459274, -0.041082195937633514, -0.07575452327728271, 0.01409445982426405, 0.20170798897743225, 0.03434578701853752, 0.11219370365142822, -0.06712491065263748, -0.07718658447265625, -0.002910551382228732, 0.022798238322138786, 0.012618264183402061, 0.07729468494653702, 0.041419945657253265, -0.05445403605699539, 0.07395488023757935, 0.09999097883701324, -0.023065416142344475, 0.12427034229040146, -0.047454845160245895, -0.08402828872203827, -0.03285641968250275, -0.023483719676733017, -0.029210740700364113, 0.12338421493768692, -0.03937321901321411, 0.005188161041587591, 0.0356830433011055, 0.04498419165611267, 0.017452750355005264, -0.16254371404647827, 0.00833907537162304, 0.02136061154305935, -0.05351770669221878, -0.037435028702020645, -0.0011443666880950332, 0.02647251822054386, 0.09213317930698395, 0.031055327504873276, -0.014670349657535553, 0.0030785787384957075, -0.011467360891401768, -0.061564140021800995, 0.18605908751487732, -0.0976032167673111, -0.08328773081302643, -0.07482561469078064, 0.005247254855930805, -0.05984016880393028, -0.03684558346867561, 0.01577439345419407, -0.08922410011291504, -0.03863291069865227, -0.08730123937129974, -0.01741274632513523, -0.018578842282295227, 0.020278748124837875, 0.031109357252717018, -0.022592199966311455, 0.08057305216789246, -0.1389220505952835, 0.0020629388745874166, -0.052502043545246124, -0.09286369383335114, 0.00006475533882621676, 0.0748816728591919, 0.09839984774589539, 0.07923344522714615, -0.01716417260468006, 0.02957046777009964, -0.03446396067738533, 0.2420383244752884, -0.04544955864548683, 0.010209904052317142, 0.10394835472106934, -0.01254227478057146, 0.05624080449342728, 0.09529311954975128, 0.03719385340809822, -0.09399154037237167, 0.02129019983112812, 0.08326724916696548, -0.02902253344655037, -0.22976453602313995, -0.025707315653562546, -0.00420048413798213, -0.07989540696144104, 0.10619185119867325, 0.03174397349357605, -0.03915560990571976, 0.04602208733558655, 0.021642709150910378, 0.0015458473935723305, -0.05624578893184662, 0.08132142573595047, 0.07521731406450272, 0.05722302570939064, 0.1006859764456749, -0.008965196087956429, -0.028863297775387764, 0.06098255515098572, 0.008736690506339073, 0.24878540635108948, -0.02559984289109707, 0.09964830428361893, 0.032877203077077866, 0.15213973820209503, -0.02709169127047062, 0.06542520970106125, 0.003678292967379093, -0.009895442984998226, -0.014856314286589622, -0.06667030602693558, -0.024279681965708733, 0.02291863225400448, -0.04705125465989113, 0.029351823031902313, -0.08221065253019333, 0.02641519159078598, 0.027000995352864265, 0.28095096349716187, 0.034870609641075134, -0.27452000975608826, -0.06590276211500168, -0.013464605435729027, -0.04225609079003334, -0.06324540078639984, 0.006415608339011669, 0.1202663704752922, -0.13221906125545502, 0.06462480127811432, -0.07680199295282364, 0.08965381979942322, -0.037680432200431824, 0.011137322522699833, 0.04712491109967232, 0.15432406961917877, -0.017748326063156128, 0.05149969458580017, -0.18553505837917328, 0.24332523345947266, 0.024938002228736877, 0.10768340528011322, -0.06429681926965714, 0.01018726546317339, 0.018678121268749237, 0.007311126217246056, 0.10972753167152405, 0.000857018050737679, -0.06939128786325455, -0.13762551546096802, -0.0987028181552887, 0.047805704176425934, 0.1426747441291809, -0.03483140096068382, 0.09959068149328232, -0.0275471992790699, 0.01245130319148302, 0.034591689705848694, -0.030581749975681305, -0.15749208629131317, -0.07330041378736496, 0.009495879523456097, 0.027061481028795242, -0.016933506354689598, -0.051473457366228104, -0.1045328751206398, -0.037712544202804565, 0.11836659908294678, 0.004398067481815815, -0.045533277094364166, -0.15088659524917603, 0.08570300787687302, 0.1460379958152771, -0.058201856911182404, 0.014954742044210434, 0.014564769342541695, 0.1110953614115715, 0.03311656042933464, -0.08626560121774673, 0.06720227003097534, -0.053888414055109024, -0.17308741807937622, -0.05729875713586807, 0.11857448518276215, 0.07938043028116226, 0.045339327305555344, 0.0002040179242612794, 0.056892555207014084, 0.0018930271035060287, -0.09717600792646408, 0.037094201892614365, 0.002644259249791503, 0.05237172916531563, 0.02935013733804226, -0.08602682501077652, 0.07738637179136276, -0.03412388265132904, 0.018670406192541122, 0.12883083522319794, 0.23281075060367584, -0.09900295734405518, 0.1013229489326477, 0.08109667152166367, -0.07654595375061035, -0.1596553474664688, 0.06230475381016731, 0.12598061561584473, 0.004612141288816929, 0.08456747233867645, -0.20120398700237274, 0.135209858417511, 0.10582312196493149, -0.01346365176141262, 0.01977190561592579, -0.27155783772468567, -0.1313038021326065, 0.06511843204498291, 0.11029860377311707, 0.04925752431154251, -0.12123055011034012, -0.0349380299448967, -0.009863654151558876, -0.11884415149688721, 0.12839289009571075, -0.07697220146656036, 0.11753394454717636, -0.021703587844967842, 0.12390153110027313, 0.023834656924009323, -0.037134092301130295, 0.11213044077157974, 0.07201343029737473, 0.0860728845000267, -0.03875898942351341, -0.0017574889352545142, 0.06420876085758209, -0.062299374490976334, 0.036600545048713684, -0.03843911364674568, 0.06348219513893127, -0.14715924859046936, 0.006760005839169025, -0.07880418002605438, 0.05996205285191536, -0.04667843133211136, -0.06501283496618271, -0.02677895314991474, 0.04755817726254463, 0.07229529321193695, -0.036269377917051315, 0.044455189257860184, 0.008930507116019726, 0.09059972316026688, 0.10033981502056122, 0.07354790717363358, -0.021971073001623154, -0.08255864679813385, 0.013598061166703701, 0.005048500839620829, 0.046891119331121445, -0.0863039493560791, 0.015103263780474663, 0.14662617444992065, 0.06008845195174217, 0.10184202343225479, 0.04647800698876381, -0.04365590214729309, 0.0057638115249574184, 0.016431588679552078, -0.1420828104019165, -0.101497121155262, 0.02811262011528015, -0.0577232763171196, -0.15519827604293823, 0.03450038284063339, 0.12304256856441498, -0.03803040087223053, -0.016171781346201897, -0.006857586558908224, 0.008915852755308151, -0.011689823120832443, 0.18592633306980133, 0.04231688007712364, 0.05487504228949547, -0.09138303995132446, 0.11438249796628952, 0.03547251597046852, -0.042458001524209976, 0.05403415858745575, 0.0677531510591507, -0.09951659291982651, 0.012661641463637352, 0.07303567975759506, 0.1494629681110382, -0.0664593055844307, -0.012286141514778137, -0.09182029217481613, -0.07721967995166779, 0.04474629834294319, 0.14441703259944916, 0.05349651351571083, -0.0056678494438529015, -0.060871608555316925, 0.03558872267603874, -0.11896095424890518, 0.06857617199420929, 0.05178975686430931, 0.08301086723804474, -0.1085646003484726, 0.12268650531768799, -0.007359572686254978, 0.024845991283655167, -0.02808772400021553, 0.01887296512722969, -0.10054414719343185, -0.03459993004798889, -0.10782849043607712, -0.014472488313913345, -0.0179241131991148, -0.0033906553871929646, -0.019712179899215698, -0.07496973127126694, -0.04288638010621071, 0.03332255035638809, -0.07707314938306808, -0.04879918694496155, 0.017727011814713478, 0.04038049653172493, -0.16037575900554657, 0.003115374594926834, 0.025762315839529037, -0.08719516545534134, 0.08752837032079697, 0.06843283772468567, 0.016098329797387123, 0.028768321499228477, -0.12236052751541138, -0.03318532556295395, 0.0008535300730727613, 0.010110766626894474, 0.07749436050653458, -0.09277983754873276, -0.029894856736063957, -0.0308107640594244, 0.04984612390398979, 0.014655581675469875, 0.10190269351005554, -0.11907292902469635, -0.013682231307029724, -0.04763225093483925, -0.03819047659635544, -0.056907590478658676, 0.027132200077176094, 0.11431443691253662, 0.04511943459510803, 0.15787498652935028, -0.07021201401948929, 0.05449474975466728, -0.20455829799175262, -0.032997164875268936, 0.010887875221669674, -0.04732292890548706, -0.07492067664861679, -0.044999413192272186, 0.08432972431182861, -0.050854019820690155, 0.12020742148160934, -0.015503679402172565, 0.09382221102714539, 0.043780598789453506, -0.004386188928037882, -0.07016514241695404, -0.011004259809851646, 0.18249693512916565, 0.05711350589990616, -0.021143712103366852, 0.12170993536710739, 0.004085435997694731, 0.042142294347286224, 0.06957272440195084, 0.23461920022964478, 0.1528048813343048, -0.011998885311186314, 0.07553248852491379, 0.06726159155368805, -0.07542289793491364, -0.14051350951194763, 0.12328511476516724, -0.02024291828274727, 0.10660578310489655, -0.05260084196925163, 0.18881359696388245, 0.037524476647377014, -0.17543327808380127, 0.054195743054151535, -0.025747308507561684, -0.10827741026878357, -0.12474998831748962, -0.01567872241139412, -0.08220061659812927, -0.11680600047111511, 0.028121838346123695, -0.12427365779876709, 0.0672697201371193, 0.097078837454319, 0.007357392925769091, 0.035287920385599136, 0.18532109260559082, -0.05604834854602814, 0.011708113364875317, 0.07305154204368591, 0.020194580778479576, -0.0037041327450424433, -0.03834041580557823, -0.06628098338842392, 0.03806370869278908, 0.04342738911509514, 0.07085980474948883, -0.05183114483952522, 0.008643876761198044, 0.01535320095717907, -0.010245200246572495, -0.07790607959032059, 0.00808943435549736, 0.014852123335003853, 0.04912996664643288, 0.035682085901498795, 0.046840425580739975, 0.007899695076048374, -0.05348087474703789, 0.2759856879711151, -0.06798730790615082, -0.0609833188354969, -0.12338440865278244, 0.19495448470115662, 0.033424027264118195, -0.018596915528178215, 0.05594586953520775, -0.0925811380147934, -0.012470502406358719, 0.1614169329404831, 0.13409040868282318, -0.09130249917507172, -0.02172037959098816, -0.024088917300105095, -0.00884418934583664, -0.012769877910614014, 0.10539711266756058, 0.07156574726104736, 0.0009517869912087917, -0.06743204593658447, -0.014508131891489029, -0.029561588540673256, -0.047720056027173996, -0.06186247617006302, 0.058572981506586075, 0.028292862698435783, -0.006298460997641087, -0.058375317603349686, 0.06337269395589828, -0.004064241424202919, -0.23400761187076569, 0.037432439625263214, -0.1727382391691208, -0.17405781149864197, -0.014306584373116493, 0.07010842114686966, 0.0017492888728156686, 0.05669410154223442, -0.007448614574968815, 0.010057750158011913, 0.1145237386226654, -0.0170243289321661, -0.013561583124101162, -0.1180097684264183, 0.1094338521361351, -0.10873474180698395, 0.21176981925964355, -0.0016602486139163375, 0.0650615319609642, 0.09898346662521362, 0.03741194307804108, -0.1358819305896759, 0.01854456216096878, 0.061992496252059937, -0.12608171999454498, 0.0023818351328372955, 0.14638054370880127, -0.03423341363668442, 0.06273989379405975, 0.03098211996257305, -0.1499023735523224, -0.00310093373991549, 0.027279792353510857, -0.036713857203722, -0.06956394761800766, -0.008980288170278072, -0.05681468918919563, 0.1660158783197403, 0.20810925960540771, -0.028920037671923637, 0.012437586672604084, -0.08443623036146164, 0.02204689383506775, 0.04787500202655792, 0.05991097912192345, -0.038952477276325226, -0.2163068652153015, 0.021300969645380974, 0.07272624969482422, -0.003130511846393347, -0.19680023193359375, -0.0958777442574501, 0.043298572301864624, -0.03677055984735489, -0.046355266124010086, 0.09182168543338776, 0.025436008349061012, 0.037256430834531784, -0.019400782883167267, -0.11686301976442337, -0.028140839189291, 0.14555558562278748, -0.176206573843956, -0.042861208319664 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # spanbert-base-cased-few-shot-k-256-finetuned-squad-seed-8 This model is a fine-tuned version of [SpanBERT/spanbert-base-cased](https://huggingface.co/SpanBERT/spanbert-base-cased) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10.0 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
{"tags": ["generated_from_trainer"], "datasets": ["squad"], "model-index": [{"name": "spanbert-base-cased-few-shot-k-256-finetuned-squad-seed-8", "results": []}]}
question-answering
anas-awadalla/spanbert-base-cased-few-shot-k-256-finetuned-squad-seed-8
[ "transformers", "pytorch", "bert", "question-answering", "generated_from_trainer", "dataset:squad", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #bert #question-answering #generated_from_trainer #dataset-squad #endpoints_compatible #region-us
# spanbert-base-cased-few-shot-k-256-finetuned-squad-seed-8 This model is a fine-tuned version of SpanBERT/spanbert-base-cased on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10.0 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
[ "# spanbert-base-cased-few-shot-k-256-finetuned-squad-seed-8\n\nThis model is a fine-tuned version of SpanBERT/spanbert-base-cased on the squad dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- num_epochs: 10.0", "### Training results", "### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #bert #question-answering #generated_from_trainer #dataset-squad #endpoints_compatible #region-us \n", "# spanbert-base-cased-few-shot-k-256-finetuned-squad-seed-8\n\nThis model is a fine-tuned version of SpanBERT/spanbert-base-cased on the squad dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- num_epochs: 10.0", "### Training results", "### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ 42, 56, 6, 12, 8, 3, 106, 4, 38 ]
[ "passage: TAGS\n#transformers #pytorch #bert #question-answering #generated_from_trainer #dataset-squad #endpoints_compatible #region-us \n# spanbert-base-cased-few-shot-k-256-finetuned-squad-seed-8\n\nThis model is a fine-tuned version of SpanBERT/spanbert-base-cased on the squad dataset.## Model description\n\nMore information needed## Intended uses & limitations\n\nMore information needed## Training and evaluation data\n\nMore information needed## Training procedure### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- num_epochs: 10.0### Training results### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ -0.09660891443490982, 0.11594275385141373, -0.0022939175833016634, 0.09240933507680893, 0.12006375193595886, 0.022873030975461006, 0.10037589818239212, 0.12763796746730804, -0.09690495580434799, 0.08590693771839142, 0.08741127699613571, 0.03814011812210083, 0.04656323790550232, 0.14407165348529816, -0.019002964720129967, -0.2604576051235199, 0.010023348964750767, -0.00287490151822567, -0.032424069941043854, 0.11141398549079895, 0.08493701368570328, -0.11074067652225494, 0.08569508790969849, 0.014249629341065884, -0.15487700700759888, 0.0200912244617939, -0.03714637830853462, -0.03450867161154747, 0.11361522972583771, -0.03284633159637451, 0.10846753418445587, 0.025074703618884087, 0.1346234530210495, -0.209883451461792, 0.004643324296921492, 0.0735207200050354, 0.046060703694820404, 0.10034556686878204, 0.050346337258815765, 0.016798678785562515, 0.08929542452096939, -0.1540527045726776, 0.0926218256354332, 0.029027897864580154, -0.09037990868091583, -0.12859958410263062, -0.09468056261539459, 0.024567363783717155, 0.05257558077573776, 0.06878430396318436, 0.0018517444841563702, 0.15287615358829498, -0.05974341183900833, 0.07933807373046875, 0.2658204138278961, -0.3270338773727417, -0.06395169347524643, 0.03239760175347328, 0.059529952704906464, 0.05399635061621666, -0.12256857752799988, -0.006444322410970926, 0.02703256532549858, 0.030081987380981445, 0.11865938454866409, -0.017682917416095734, -0.1155630350112915, -0.013385211117565632, -0.12839238345623016, -0.0007901607896201313, 0.07114572823047638, 0.036090534180402756, -0.052429407835006714, -0.09401651471853256, -0.07576585561037064, -0.09263817220926285, -0.02573348581790924, -0.06492692232131958, 0.05644727125763893, -0.05513268709182739, -0.08062766492366791, -0.03632901981472969, -0.05658743903040886, -0.07596825063228607, -0.017734460532665253, 0.15722419321537018, 0.04035162925720215, 0.020410209894180298, -0.03131626173853874, 0.108339823782444, 0.0008907117880880833, -0.14126308262348175, -0.015316096134483814, -0.0005542942672036588, -0.09730064123868942, -0.04738088324666023, -0.05176674947142601, -0.01805596984922886, 0.009564812295138836, 0.17608274519443512, -0.08073500543832779, 0.07595723867416382, 0.010734181851148605, -0.029301680624485016, -0.006593712605535984, 0.14820720255374908, -0.04395946487784386, -0.046067021787166595, -0.010405274108052254, 0.0736556351184845, 0.0030683695804327726, -0.014740333892405033, -0.0659775361418724, -0.02807306870818138, 0.10330983251333237, 0.044986121356487274, -0.06095373257994652, 0.0395544059574604, -0.023113321512937546, -0.028452882543206215, 0.01799052208662033, -0.11514420062303543, 0.04422278329730034, -0.0028435764834284782, -0.08456351608037949, -0.0017121840501204133, 0.0004803251940757036, -0.005027483217418194, -0.008271697908639908, 0.10929813235998154, -0.09888572990894318, -0.001411779085174203, -0.06397267431020737, -0.08280790597200394, 0.009137190878391266, -0.15709516406059265, -0.014558189548552036, -0.05784938856959343, -0.1710127890110016, -0.03130291402339935, 0.03677091374993324, -0.07399597764015198, -0.009206295944750309, -0.0480223074555397, -0.06412561237812042, 0.024305248633027077, -0.014936883002519608, 0.1731480360031128, -0.05377255007624626, 0.07198631763458252, 0.0003676059131976217, 0.04557833820581436, 0.013548259623348713, 0.036144547164440155, -0.10458287596702576, 0.024678558111190796, -0.13774023950099945, 0.06934612989425659, -0.0847153514623642, -0.0024689147248864174, -0.1327403038740158, -0.09855187684297562, 0.010701990686357021, -0.021466989070177078, 0.09123402088880539, 0.1385006159543991, -0.19282600283622742, -0.0172786433249712, 0.1260719895362854, -0.07517998665571213, -0.06357865780591965, 0.06318139284849167, -0.061223104596138, 0.030629128217697144, 0.05210324004292488, 0.21102431416511536, 0.041887614876031876, -0.16518568992614746, -0.03289134427905083, -0.0043618637137115, 0.04219619184732437, 0.024520186707377434, 0.039703961461782455, 0.005653927568346262, 0.06383057683706284, 0.015165993012487888, -0.07558291405439377, -0.03189771622419357, -0.09146220237016678, -0.06522722542285919, -0.05487681180238724, -0.07217097282409668, 0.04129716008901596, 0.004347868263721466, 0.04259774461388588, -0.06473434716463089, -0.10134294629096985, 0.1208370178937912, 0.09684126079082489, -0.04825441166758537, 0.03649936243891716, -0.07899176329374313, 0.019220145419239998, -0.021365661174058914, -0.03897527605295181, -0.20667411386966705, -0.12984679639339447, 0.05277381092309952, -0.05567743256688118, 0.03382328525185585, 0.007410047575831413, 0.08059201389551163, 0.0613645501434803, -0.04334452003240585, -0.011614620685577393, -0.0929216742515564, 0.0027462018188089132, -0.11870867758989334, -0.18764719367027283, -0.07857084274291992, -0.04013534262776375, 0.09353578090667725, -0.1748964935541153, -0.006915098987519741, 0.015094561502337456, 0.14283357560634613, 0.026434484869241714, -0.06766866147518158, -0.002790502505376935, 0.03847728297114372, 0.0025988288689404726, -0.09546604007482529, 0.04522198811173439, 0.008360743522644043, -0.09360211342573166, -0.06422030925750732, -0.13508088886737823, -0.010169179178774357, 0.05920986458659172, 0.05220121517777443, -0.09714514762163162, -0.0465090312063694, -0.07001978158950806, -0.04089651629328728, -0.07504414021968842, 0.013182701542973518, 0.20257677137851715, 0.03465012088418007, 0.11319273710250854, -0.06699973344802856, -0.07661055028438568, -0.0028453811537474394, 0.022733446210622787, 0.013229778967797756, 0.0763556957244873, 0.04091906547546387, -0.05230487510561943, 0.07320322841405869, 0.09920230507850647, -0.024021577090024948, 0.12363121658563614, -0.04714059457182884, -0.08360258489847183, -0.033038340508937836, -0.023761112242937088, -0.029008449986577034, 0.123371422290802, -0.04089965298771858, 0.004565287381410599, 0.03595065325498581, 0.044552430510520935, 0.017576118931174278, -0.1624908149242401, 0.008237140253186226, 0.02220269851386547, -0.05307353287935257, -0.03648049756884575, -0.0017747521633282304, 0.026143386960029602, 0.09137332439422607, 0.030708329752087593, -0.014991515316069126, 0.0037573191802948713, -0.01118615735322237, -0.061853744089603424, 0.18538141250610352, -0.09761416912078857, -0.08465886116027832, -0.07614236325025558, 0.005630496423691511, -0.059949371963739395, -0.03687925264239311, 0.016115104779601097, -0.0875081717967987, -0.038471002131700516, -0.08768977969884872, -0.019178781658411026, -0.017953654751181602, 0.02023346535861492, 0.03141528367996216, -0.023082446306943893, 0.08117401599884033, -0.13874636590480804, 0.0018447416368871927, -0.051871899515390396, -0.09201523661613464, 0.00047090352745726705, 0.07482922822237015, 0.0992441475391388, 0.07969322055578232, -0.017897319048643112, 0.029239444062113762, -0.03421841934323311, 0.24188221991062164, -0.044955749064683914, 0.010575386695563793, 0.10431099683046341, -0.013551024720072746, 0.056477684527635574, 0.09475480765104294, 0.03750636801123619, -0.09394723922014236, 0.02080417424440384, 0.08218743652105331, -0.029562881216406822, -0.22890731692314148, -0.025629142299294472, -0.004353605676442385, -0.07970144599676132, 0.1064695343375206, 0.031681351363658905, -0.0386386513710022, 0.04646061733365059, 0.021738961338996887, 0.0031019661109894514, -0.057036351412534714, 0.08123414218425751, 0.07590582966804504, 0.05715465545654297, 0.10053269565105438, -0.008588739670813084, -0.0289025716483593, 0.061278827488422394, 0.008129152469336987, 0.24674583971500397, -0.025803515687584877, 0.10055696219205856, 0.03183342516422272, 0.1527666449546814, -0.02702602744102478, 0.06553223729133606, 0.0034036925062537193, -0.010171202942728996, -0.015072260983288288, -0.06685642153024673, -0.025734392926096916, 0.023464461788535118, -0.04767264798283577, 0.02972574532032013, -0.08244118094444275, 0.027085645124316216, 0.02676786482334137, 0.28048983216285706, 0.03464389219880104, -0.2747097909450531, -0.06618443876504898, -0.013729200698435307, -0.04213427007198334, -0.06373891979455948, 0.006320635788142681, 0.12110531330108643, -0.13190612196922302, 0.06417690217494965, -0.07618501782417297, 0.08974217623472214, -0.03876972571015358, 0.011497672647237778, 0.046375423669815063, 0.15436951816082, -0.017451997846364975, 0.0517527312040329, -0.18619833886623383, 0.24174289405345917, 0.02527017891407013, 0.10795578360557556, -0.06467042118310928, 0.010743455961346626, 0.018367525190114975, 0.008988065645098686, 0.108883336186409, 0.001213589683175087, -0.06827961653470993, -0.1389939934015274, -0.09907452762126923, 0.04781953990459442, 0.14141105115413666, -0.03333171084523201, 0.0991780087351799, -0.02767886035144329, 0.012539335526525974, 0.03484518453478813, -0.02986793778836727, -0.15749996900558472, -0.07398346811532974, 0.009104226715862751, 0.028293561190366745, -0.016609657555818558, -0.05127957835793495, -0.10422265529632568, -0.039174217730760574, 0.11854296922683716, 0.005179506726562977, -0.04576897248625755, -0.15087175369262695, 0.08622666448354721, 0.1452796310186386, -0.05843203514814377, 0.014883211813867092, 0.01453807856887579, 0.1112993136048317, 0.0328819565474987, -0.08541698008775711, 0.06718123704195023, -0.053658224642276764, -0.1722797304391861, -0.057648904621601105, 0.11774621903896332, 0.07890895009040833, 0.045472364872694016, 0.0006619741907343268, 0.0566248744726181, 0.0017906082794070244, -0.09722816199064255, 0.035825613886117935, 0.003317074151709676, 0.05148433893918991, 0.029242824763059616, -0.08611011505126953, 0.0782768577337265, -0.03378568962216377, 0.018888846039772034, 0.1299893856048584, 0.23238438367843628, -0.09938392788171768, 0.10053471475839615, 0.08187302947044373, -0.07643775641918182, -0.15929976105690002, 0.06186666339635849, 0.1253844052553177, 0.004652710631489754, 0.08478561043739319, -0.20061849057674408, 0.13520179688930511, 0.10684642940759659, -0.013038484379649162, 0.019542619585990906, -0.2715294063091278, -0.13153348863124847, 0.06588338315486908, 0.11033093184232712, 0.051358312368392944, -0.12184128165245056, -0.034906964749097824, -0.010578745976090431, -0.12002124637365341, 0.12750424444675446, -0.07663556188344955, 0.11731354892253876, -0.021544426679611206, 0.12248032540082932, 0.023953013122081757, -0.037326179444789886, 0.11248892545700073, 0.072651706635952, 0.08598288148641586, -0.03903026878833771, -0.0013843430206179619, 0.06399045884609222, -0.06248985603451729, 0.037347204983234406, -0.0383266806602478, 0.06350439786911011, -0.14890924096107483, 0.006581475026905537, -0.07753404229879379, 0.06049145385622978, -0.046372584998607635, -0.0652947649359703, -0.026658598333597183, 0.046505074948072433, 0.07219377160072327, -0.03611728921532631, 0.04546603187918663, 0.009267359972000122, 0.08985539525747299, 0.1018035039305687, 0.07214216142892838, -0.025189749896526337, -0.0827055349946022, 0.013604152016341686, 0.00481441942974925, 0.04718458652496338, -0.08590571582317352, 0.015645550563931465, 0.14674660563468933, 0.06014425307512283, 0.10212893038988113, 0.04543355107307434, -0.043098583817481995, 0.005883889738470316, 0.01594882644712925, -0.1419604867696762, -0.100608691573143, 0.02755427546799183, -0.05804605409502983, -0.15476654469966888, 0.03355433791875839, 0.12358328700065613, -0.03874462842941284, -0.015561042353510857, -0.007126145530492067, 0.007658562622964382, -0.011567349545657635, 0.18550069630146027, 0.042928557842969894, 0.05467825010418892, -0.09129692614078522, 0.11395347118377686, 0.035932958126068115, -0.04151114076375961, 0.054379526525735855, 0.06732511520385742, -0.09981381893157959, 0.012495793402194977, 0.07301333546638489, 0.14936591684818268, -0.06723026186227798, -0.01332948263734579, -0.0923643484711647, -0.07617995887994766, 0.04430307820439339, 0.14337359368801117, 0.053873591125011444, -0.005975607316941023, -0.06118239834904671, 0.034864187240600586, -0.11909633129835129, 0.06806404143571854, 0.051476139575242996, 0.08330940455198288, -0.10884224623441696, 0.12406528741121292, -0.0066903941333293915, 0.02480112574994564, -0.028028756380081177, 0.018480390310287476, -0.10052336007356644, -0.03439553454518318, -0.10921546071767807, -0.014218290336430073, -0.01784392260015011, -0.0029599126428365707, -0.019805781543254852, -0.07475250959396362, -0.04290010407567024, 0.0332057885825634, -0.07635199278593063, -0.04863252118229866, 0.018087495118379593, 0.0400206558406353, -0.15991543233394623, 0.0027862493880093098, 0.02540387213230133, -0.08708616346120834, 0.08784591406583786, 0.06781355291604996, 0.01567053236067295, 0.02838805690407753, -0.12259089946746826, -0.03317432850599289, 0.0009079048759303987, 0.010982939973473549, 0.07752785831689835, -0.09117718040943146, -0.029055003076791763, -0.030381087213754654, 0.04975909739732742, 0.014538734219968319, 0.1022830381989479, -0.11926307529211044, -0.013545902445912361, -0.04738793522119522, -0.03818495199084282, -0.05732795223593712, 0.027075698599219322, 0.1141282171010971, 0.04433266445994377, 0.15783901512622833, -0.07010569423437119, 0.05433986335992813, -0.20482726395130157, -0.03321265056729317, 0.011089639738202095, -0.04711590334773064, -0.07483040541410446, -0.0458422526717186, 0.08401711285114288, -0.050274670124053955, 0.12201591581106186, -0.015508403070271015, 0.0944395437836647, 0.04338032007217407, -0.004966467618942261, -0.07009084522724152, -0.011686825193464756, 0.18337030708789825, 0.05825401842594147, -0.02114408276975155, 0.1209075078368187, 0.00436515873298049, 0.043236296623945236, 0.06889896094799042, 0.23225915431976318, 0.1527746468782425, -0.012755798175930977, 0.07557403296232224, 0.06708145141601562, -0.07493174076080322, -0.14053627848625183, 0.12292690575122833, -0.020348049700260162, 0.10701119899749756, -0.05256844684481621, 0.18883676826953888, 0.03748589754104614, -0.1753225177526474, 0.05386146157979965, -0.025051940232515335, -0.1084703579545021, -0.12488483637571335, -0.01510030496865511, -0.0822862982749939, -0.11684613674879074, 0.02765747718513012, -0.12372583895921707, 0.06686879694461823, 0.09737326949834824, 0.006851743441075087, 0.035070501267910004, 0.18462154269218445, -0.056078966706991196, 0.012033055536448956, 0.07278682291507721, 0.020071882754564285, -0.0033323802053928375, -0.03940886631608009, -0.06713466346263885, 0.037969447672367096, 0.04359026998281479, 0.0713900625705719, -0.05189223960042, 0.010567697696387768, 0.015745310112833977, -0.009989725425839424, -0.07837661355733871, 0.008047835901379585, 0.01424796599894762, 0.048845209181308746, 0.03451721742749214, 0.047116830945014954, 0.008039302192628384, -0.05364425107836723, 0.27442625164985657, -0.06729774177074432, -0.061564017087221146, -0.12329519540071487, 0.19385266304016113, 0.033827632665634155, -0.01835550181567669, 0.05591506510972977, -0.09257826209068298, -0.011766724288463593, 0.1616879254579544, 0.13344238698482513, -0.0920015498995781, -0.0216678474098444, -0.023786604404449463, -0.008981889113783836, -0.0137874074280262, 0.10595278441905975, 0.07169071584939957, -0.00019968205015175045, -0.06664247810840607, -0.014668297953903675, -0.029673917219042778, -0.04770153760910034, -0.06308766454458237, 0.057838112115859985, 0.028396541252732277, -0.005582099314779043, -0.05794670060276985, 0.06287825852632523, -0.0031856826972216368, -0.23460066318511963, 0.03757234290242195, -0.17302381992340088, -0.17394232749938965, -0.014125008136034012, 0.07039304077625275, 0.0019941036589443684, 0.05626882240176201, -0.007340960204601288, 0.010477796196937561, 0.11528418213129044, -0.017310166731476784, -0.013955574482679367, -0.11687645316123962, 0.10876777023077011, -0.10755512863397598, 0.2114909142255783, -0.0016065433155745268, 0.06570212543010712, 0.09894607961177826, 0.037789005786180496, -0.13513995707035065, 0.018792463466525078, 0.06168599799275398, -0.12514916062355042, 0.0021209048572927713, 0.14492809772491455, -0.0342196561396122, 0.06257011741399765, 0.03143903240561485, -0.14954189956188202, -0.0038023199886083603, 0.02615940384566784, -0.03673716261982918, -0.06918322294950485, -0.01043025217950344, -0.0562095083296299, 0.16606460511684418, 0.20723198354244232, -0.02867380529642105, 0.011853715404868126, -0.0845348909497261, 0.021853027865290642, 0.048364993184804916, 0.059775080531835556, -0.03916340321302414, -0.2160986065864563, 0.021795162931084633, 0.07262589782476425, -0.00290510430932045, -0.19645161926746368, -0.09643978625535965, 0.04325177147984505, -0.03716134652495384, -0.0461021363735199, 0.09190284460783005, 0.025476522743701935, 0.0375407338142395, -0.019468046724796295, -0.11703924089670181, -0.028624743223190308, 0.14557506144046783, -0.176247701048851, -0.0430610217154026 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # spanbert-base-cased-few-shot-k-32-finetuned-squad-seed-0 This model is a fine-tuned version of [SpanBERT/spanbert-base-cased](https://huggingface.co/SpanBERT/spanbert-base-cased) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 200 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
{"tags": ["generated_from_trainer"], "datasets": ["squad"], "model-index": [{"name": "spanbert-base-cased-few-shot-k-32-finetuned-squad-seed-0", "results": []}]}
question-answering
anas-awadalla/spanbert-base-cased-few-shot-k-32-finetuned-squad-seed-0
[ "transformers", "pytorch", "bert", "question-answering", "generated_from_trainer", "dataset:squad", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #bert #question-answering #generated_from_trainer #dataset-squad #endpoints_compatible #region-us
# spanbert-base-cased-few-shot-k-32-finetuned-squad-seed-0 This model is a fine-tuned version of SpanBERT/spanbert-base-cased on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 200 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
[ "# spanbert-base-cased-few-shot-k-32-finetuned-squad-seed-0\n\nThis model is a fine-tuned version of SpanBERT/spanbert-base-cased on the squad dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- training_steps: 200", "### Training results", "### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #bert #question-answering #generated_from_trainer #dataset-squad #endpoints_compatible #region-us \n", "# spanbert-base-cased-few-shot-k-32-finetuned-squad-seed-0\n\nThis model is a fine-tuned version of SpanBERT/spanbert-base-cased on the squad dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- training_steps: 200", "### Training results", "### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ 42, 55, 6, 12, 8, 3, 104, 4, 38 ]
[ "passage: TAGS\n#transformers #pytorch #bert #question-answering #generated_from_trainer #dataset-squad #endpoints_compatible #region-us \n# spanbert-base-cased-few-shot-k-32-finetuned-squad-seed-0\n\nThis model is a fine-tuned version of SpanBERT/spanbert-base-cased on the squad dataset.## Model description\n\nMore information needed## Intended uses & limitations\n\nMore information needed## Training and evaluation data\n\nMore information needed## Training procedure### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- training_steps: 200### Training results### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ -0.09857524931430817, 0.09789428859949112, -0.002358255675062537, 0.09164634346961975, 0.12360285967588425, 0.018879951909184456, 0.0933256521821022, 0.1295999437570572, -0.0999157652258873, 0.06915223598480225, 0.08869295567274094, 0.033378686755895615, 0.04174807667732239, 0.14055795967578888, -0.006309207528829575, -0.2775788903236389, -0.0006739717209711671, -0.003385382005944848, -0.053037721663713455, 0.12033379822969437, 0.08888635784387589, -0.1096535250544548, 0.07459181547164917, 0.007612418383359909, -0.152072474360466, 0.016420722007751465, -0.030734622851014137, -0.0348871573805809, 0.12345098704099655, -0.02699551172554493, 0.10732850432395935, 0.02834458462893963, 0.13622553646564484, -0.21106760203838348, 0.007419598288834095, 0.07853086292743683, 0.05532877892255783, 0.09811637550592422, 0.047243472188711166, 0.011612510308623314, 0.101263627409935, -0.14747972786426544, 0.09509944170713425, 0.030328329652547836, -0.09003821760416031, -0.15564410388469696, -0.08850023150444031, 0.027406198903918266, 0.04981593042612076, 0.07612768560647964, 0.003172264201566577, 0.13406871259212494, -0.07145257294178009, 0.08591347932815552, 0.2521916329860687, -0.3124181032180786, -0.06773930042982101, 0.02428918331861496, 0.05998457968235016, 0.06189024820923805, -0.12508969008922577, -0.002360164187848568, 0.01657453551888466, 0.027512677013874054, 0.12352945655584335, -0.011904319748282433, -0.1035810261964798, -0.01067600678652525, -0.12206027656793594, -0.0021632022690027952, 0.062008317559957504, 0.02889268286526203, -0.04930701106786728, -0.10777385532855988, -0.06770946085453033, -0.08033910393714905, -0.022785276174545288, -0.050759270787239075, 0.04638848826289177, -0.05119309574365616, -0.09862659871578217, -0.042879778891801834, -0.05933251976966858, -0.08095046132802963, -0.007402525283396244, 0.17059093713760376, 0.033491428941488266, 0.01992524042725563, -0.03137236461043358, 0.11616477370262146, 0.0301158856600523, -0.1389746516942978, -0.011467691510915756, -0.0039337798953056335, -0.09689826518297195, -0.039807144552469254, -0.05592269077897072, -0.006721255369484425, 0.003161252476274967, 0.1657295972108841, -0.07287505269050598, 0.07434195280075073, 0.013937640003859997, -0.02650478482246399, -0.015145305544137955, 0.15328171849250793, -0.042052801698446274, -0.04541639983654022, -0.015963105484843254, 0.08131176978349686, -0.0018992989789694548, -0.021890416741371155, -0.06404407322406769, -0.02861454337835312, 0.09449753165245056, 0.05488870292901993, -0.05868060514330864, 0.037649743258953094, -0.02720893919467926, -0.024882327765226364, 0.016242198646068573, -0.118272565305233, 0.03999975696206093, 0.001996675506234169, -0.07669937610626221, -0.003002728568390012, 0.0011647290084511042, -0.010821468196809292, -0.0052072759717702866, 0.10044974088668823, -0.08611289411783218, -0.005453294143080711, -0.06720774620771408, -0.07862738519906998, -0.000515446939971298, -0.1425522267818451, -0.009410507045686245, -0.058205585926771164, -0.16141846776008606, -0.03675154596567154, 0.04330424591898918, -0.07502451539039612, -0.014680561609566212, -0.04361090064048767, -0.06208418309688568, 0.023038506507873535, -0.01236721407622099, 0.19969502091407776, -0.05076201632618904, 0.08418929576873779, -0.010057761333882809, 0.04860275238752365, 0.028993699699640274, 0.038779545575380325, -0.09649484604597092, 0.025994107127189636, -0.13278602063655853, 0.08415858447551727, -0.08480783551931381, -0.0061844284646213055, -0.1363307386636734, -0.09862534701824188, 0.007540466263890266, -0.01893651857972145, 0.08954204618930817, 0.13385766744613647, -0.1956453174352646, -0.022173522040247917, 0.12597501277923584, -0.07398252934217453, -0.04439331963658333, 0.06303448230028152, -0.06468883901834488, 0.03775124251842499, 0.05385682359337807, 0.20612725615501404, 0.060265202075242996, -0.14958007633686066, -0.005618989933282137, 0.013927476480603218, 0.05119091644883156, 0.030137833207845688, 0.04302091896533966, 0.00016716100799385458, 0.05427522957324982, 0.013175250962376595, -0.09304738789796829, -0.020969601348042488, -0.09154953062534332, -0.06452420353889465, -0.049886226654052734, -0.07495597749948502, 0.05412406846880913, 0.010430019348859787, 0.03825896233320236, -0.05978512018918991, -0.10640811175107956, 0.11532089859247208, 0.10012563318014145, -0.056146781891584396, 0.0387846864759922, -0.07681280374526978, 0.010574947111308575, -0.004501188639551401, -0.03469756245613098, -0.21295617520809174, -0.12364828586578369, 0.04735467582941055, -0.03540565073490143, 0.02108345739543438, 0.013434487394988537, 0.0851110965013504, 0.05675245448946953, -0.052942026406526566, -0.013474696315824986, -0.09890645742416382, 0.0021986565552651882, -0.11366868019104004, -0.1920257806777954, -0.0867251306772232, -0.04507143795490265, 0.09678143262863159, -0.17674751579761505, -0.009417184628546238, 0.023762237280607224, 0.13278570771217346, 0.026533853262662888, -0.06839405000209808, -0.001799576566554606, 0.04364262521266937, 0.011827107518911362, -0.09654484689235687, 0.05494490638375282, 0.01298143994063139, -0.10745897889137268, -0.04495273530483246, -0.12689223885536194, -0.017748836427927017, 0.05149058252573013, 0.05909903347492218, -0.09912052005529404, -0.058887165039777756, -0.07436507195234299, -0.03777701407670975, -0.079025037586689, 0.01650303788483143, 0.21254658699035645, 0.04051206260919571, 0.11050346493721008, -0.06181267276406288, -0.08174702525138855, -0.00844074971973896, 0.030007049441337585, 0.024208953604102135, 0.08947869390249252, 0.0230821892619133, -0.043501656502485275, 0.06683510541915894, 0.10300995409488678, -0.022053858265280724, 0.13109362125396729, -0.055517613887786865, -0.08455649763345718, -0.03036651946604252, -0.018599728122353554, -0.02568242698907852, 0.12528809905052185, -0.037420038133859634, 0.0016822535544633865, 0.035129714757204056, 0.04087414965033531, 0.01128216739743948, -0.16828063130378723, 0.0015225327806547284, 0.03136580064892769, -0.05629555135965347, -0.043553005903959274, -0.003966138698160648, 0.019040698185563087, 0.08677763491868973, 0.03119952790439129, -0.002119694370776415, 0.006613490637391806, -0.013831255957484245, -0.05680624395608902, 0.19074611365795135, -0.09387664496898651, -0.0763261541724205, -0.07248029112815857, 0.01766609586775303, -0.04431798309087753, -0.03663873299956322, 0.006372081581503153, -0.09257812052965164, -0.029096217826008797, -0.0811418816447258, -0.020436303690075874, -0.027602940797805786, 0.020093176513910294, 0.023510176688432693, -0.018734736368060112, 0.07966871559619904, -0.13650347292423248, 0.007151873782277107, -0.04854517802596092, -0.09737181663513184, 0.0036463767755776644, 0.07482778280973434, 0.09065389633178711, 0.08480440825223923, -0.013663023710250854, 0.024610158056020737, -0.03950360044836998, 0.23225915431976318, -0.05595932528376579, 0.011044054292142391, 0.1173558458685875, -0.015038713812828064, 0.052054282277822495, 0.09370984137058258, 0.038310568779706955, -0.0917968600988388, 0.023622091859579086, 0.07973190397024155, -0.037644606083631516, -0.22786518931388855, -0.01537142600864172, -0.00693148747086525, -0.08302333205938339, 0.1023908481001854, 0.031631357967853546, -0.05075884982943535, 0.04052462801337242, 0.018549606204032898, -0.010151468217372894, -0.04095952585339546, 0.0688871517777443, 0.0776354968547821, 0.047685544937849045, 0.10846377164125443, -0.0050396062433719635, -0.019099179655313492, 0.05549578368663788, 0.014752209186553955, 0.26061487197875977, -0.041412413120269775, 0.1048530712723732, 0.03301529958844185, 0.14985620975494385, -0.0211020614951849, 0.06333069503307343, 0.00031932853744365275, -0.009613635949790478, -0.012173817493021488, -0.06242990866303444, -0.030221683904528618, 0.01332408282905817, -0.042801156640052795, 0.023523129522800446, -0.08142010867595673, 0.02644820138812065, 0.02165834978222847, 0.286399245262146, 0.029641224071383476, -0.2539968192577362, -0.07794493436813354, -0.014403361827135086, -0.05030372738838196, -0.06048048287630081, 0.008518744260072708, 0.13829351961612701, -0.13956321775913239, 0.045389533042907715, -0.07814832031726837, 0.08686554431915283, -0.05075492709875107, 0.011510670185089111, 0.05115087702870369, 0.1493704468011856, -0.0178054291754961, 0.053751785308122635, -0.19479864835739136, 0.2544858753681183, 0.017407217994332314, 0.10349921137094498, -0.06554127484560013, 0.013058343902230263, 0.022877775132656097, 0.018546365201473236, 0.1149417832493782, 0.0023475110065191984, -0.07014615088701248, -0.14509998261928558, -0.0909082442522049, 0.04763183742761612, 0.14173240959644318, -0.045662540942430496, 0.08971570432186127, -0.03721855953335762, 0.013235214166343212, 0.03699818253517151, -0.03489183261990547, -0.14745867252349854, -0.08686787635087967, -0.0006565021467395127, 0.008957608602941036, -0.006993747781962156, -0.06198931857943535, -0.10540718585252762, -0.009815339930355549, 0.10501058399677277, 0.002637607976794243, -0.05447068437933922, -0.15807203948497772, 0.08848961442708969, 0.1437869369983673, -0.058114778250455856, 0.011727558448910713, 0.015312286093831062, 0.11220011115074158, 0.03567105159163475, -0.07829003781080246, 0.06174624711275101, -0.06140070781111717, -0.17994239926338196, -0.05594974383711815, 0.12307451665401459, 0.08260050415992737, 0.049567487090826035, -0.001273868139833212, 0.051153719425201416, 0.0003303121484350413, -0.0961952731013298, 0.03396902605891228, 0.008459734730422497, 0.03600417822599411, 0.016859635710716248, -0.08732306212186813, 0.09828510880470276, -0.03554469719529152, 0.009513042867183685, 0.13077984750270844, 0.2081141471862793, -0.10587961971759796, 0.11271850764751434, 0.08552434295415878, -0.073317751288414, -0.1672377735376358, 0.05991847440600395, 0.1299392729997635, 0.012416231445968151, 0.0836852639913559, -0.21384039521217346, 0.12247665226459503, 0.09969879686832428, -0.01080789789557457, 0.010111457668244839, -0.2791346311569214, -0.1282568871974945, 0.05876632779836655, 0.10932847112417221, 0.042545247822999954, -0.11728201061487198, -0.0360734798014164, -0.004201301373541355, -0.09309133142232895, 0.1122521162033081, -0.0721668154001236, 0.11586446315050125, -0.01628151908516884, 0.11147815734148026, 0.02579965814948082, -0.031005213037133217, 0.10907450318336487, 0.05914188176393509, 0.08028001338243484, -0.03505498170852661, 0.00832764059305191, 0.054612692445516586, -0.05591920018196106, 0.015180973336100578, -0.04440940171480179, 0.0670602023601532, -0.15016525983810425, -0.00026617778348736465, -0.09186552464962006, 0.050547920167446136, -0.04864292964339256, -0.07177093625068665, -0.014665904454886913, 0.05374361574649811, 0.07505688816308975, -0.03985706344246864, 0.027884358540177345, -0.00688947131857276, 0.0982230007648468, 0.09526558965444565, 0.08029252290725708, -0.015441780909895897, -0.0925222784280777, 0.011342592537403107, 0.004293104168027639, 0.054769307374954224, -0.10518768429756165, 0.014103125780820847, 0.13731953501701355, 0.06594116240739822, 0.09565599262714386, 0.047451507300138474, -0.03961751610040665, 0.003520675702020526, 0.013469547964632511, -0.12147213518619537, -0.11257050186395645, 0.024061299860477448, -0.04558897763490677, -0.15441732108592987, 0.020913688465952873, 0.12030354142189026, -0.039907608181238174, -0.016995869576931, -0.007579623721539974, 0.004849303048104048, -0.013695620000362396, 0.1845337301492691, 0.04563838616013527, 0.06268902122974396, -0.08758049458265305, 0.10723206400871277, 0.03553600609302521, -0.05223521590232849, 0.05115048959851265, 0.06307279318571091, -0.10352542996406555, 0.0090431347489357, 0.07597725838422775, 0.12508046627044678, -0.04924225062131882, -0.009820356033742428, -0.08917030692100525, -0.08431876450777054, 0.041533973067998886, 0.13279925286769867, 0.05345606058835983, 0.0000344317959388718, -0.07166706025600433, 0.04152395576238632, -0.11849662661552429, 0.07129715383052826, 0.045149702578783035, 0.06966716796159744, -0.09983368963003159, 0.1313454657793045, -0.0013905916130170226, 0.025096694007515907, -0.02600882388651371, 0.014614979736506939, -0.09603406488895416, -0.024212699383497238, -0.10876376926898956, -0.025276968255639076, -0.009253970347344875, 0.0006230009021237493, -0.022278383374214172, -0.07451418787240982, -0.027113894000649452, 0.03870315104722977, -0.07564548403024673, -0.050133682787418365, 0.01446348987519741, 0.040243424475193024, -0.15144766867160797, 0.0019897068850696087, 0.029059788212180138, -0.09308840334415436, 0.09090939164161682, 0.0630597174167633, 0.014487562701106071, 0.026484746485948563, -0.11385966092348099, -0.027977272868156433, -0.011339538730680943, 0.0057068755850195885, 0.06499752402305603, -0.09737318009138107, -0.02684154361486435, -0.03931591659784317, 0.045608725398778915, 0.017913416028022766, 0.09954124689102173, -0.11759981513023376, -0.004472943022847176, -0.038394372910261154, -0.04114575684070587, -0.06270254403352737, 0.035546910017728806, 0.1030164361000061, 0.05504555255174637, 0.14872358739376068, -0.07407873868942261, 0.05884998291730881, -0.20094987750053406, -0.03535540774464607, 0.011003013700246811, -0.04343282803893089, -0.08352184295654297, -0.05220154672861099, 0.08917184174060822, -0.04463899880647659, 0.10514482855796814, -0.020471204072237015, 0.11004116386175156, 0.04302608221769333, -0.010780155658721924, -0.05931415036320686, -0.0069175646640360355, 0.1893530786037445, 0.05880630016326904, -0.016772959381341934, 0.13018488883972168, -0.00048406890709884465, 0.029686501249670982, 0.0857197567820549, 0.22501538693904877, 0.16162413358688354, 0.0019477496389299631, 0.06353549659252167, 0.060332514345645905, -0.07296038419008255, -0.152186319231987, 0.11706409603357315, -0.019272202625870705, 0.10238984227180481, -0.06768966466188431, 0.19056501984596252, 0.038914408534765244, -0.1830752193927765, 0.06363505870103836, -0.025463176891207695, -0.1108139306306839, -0.12230919301509857, -0.02449517697095871, -0.06886153668165207, -0.11989918351173401, 0.023670174181461334, -0.11690288782119751, 0.06280817836523056, 0.10159517079591751, 0.008880887180566788, 0.0381440743803978, 0.18460707366466522, -0.045952945947647095, 0.00981347355991602, 0.08360444754362106, 0.020214155316352844, 0.005719375796616077, -0.045013535767793655, -0.06697659939527512, 0.035186491906642914, 0.03298734128475189, 0.062791608273983, -0.05124978721141815, -0.000024294380637002178, 0.009220149368047714, -0.007326733786612749, -0.07711749523878098, 0.010441344231367111, 0.010313859209418297, 0.05443735420703888, 0.05233278125524521, 0.046029169112443924, 0.00615824107080698, -0.053577519953250885, 0.29700329899787903, -0.07016897201538086, -0.06981083005666733, -0.12968292832374573, 0.20727872848510742, 0.021912872791290283, -0.022161385044455528, 0.054213304072618484, -0.08395291119813919, -0.015049342066049576, 0.1708548665046692, 0.1320357322692871, -0.09413231164216995, -0.01566404476761818, -0.014174871146678925, -0.009971873834729195, -0.014248362742364407, 0.11649530380964279, 0.07646515220403671, -0.009942775592207909, -0.06854362040758133, -0.018761005252599716, -0.021665286272764206, -0.05611569806933403, -0.0616300068795681, 0.06990204751491547, 0.02511008083820343, -0.007506960071623325, -0.06274428218603134, 0.0688505694270134, -0.002178699942305684, -0.24341483414173126, 0.0435156412422657, -0.17213396728038788, -0.1700136959552765, -0.026129860430955887, 0.07248935848474503, 0.005674028769135475, 0.05702953785657883, 0.0018236830364912748, 0.019870970398187637, 0.12336047738790512, -0.012301299721002579, -0.0032782885245978832, -0.10970382392406464, 0.11779661476612091, -0.0849636048078537, 0.19748853147029877, -0.006880991626530886, 0.05315748229622841, 0.09692715108394623, 0.041605569422245026, -0.13812775909900665, 0.017644127830863, 0.06571134179830551, -0.13042764365673065, -0.002876995364204049, 0.14815998077392578, -0.03332124277949333, 0.063759446144104, 0.026605796068906784, -0.15276379883289337, 0.007393678650259972, 0.015483861789107323, -0.038246020674705505, -0.06722551584243774, -0.008977876044809818, -0.05152153596282005, 0.16757914423942566, 0.21866947412490845, -0.029130278155207634, 0.004676268436014652, -0.08925586938858032, 0.010549803264439106, 0.04569592699408531, 0.06343235820531845, -0.042951442301273346, -0.20465721189975739, 0.010870925150811672, 0.06426047533750534, -0.0047602178528904915, -0.1941950023174286, -0.09940063953399658, 0.0533333458006382, -0.03982504829764366, -0.041618578135967255, 0.0951608344912529, 0.019481031224131584, 0.037176117300987244, -0.011941318400204182, -0.11926557123661041, -0.021329578012228012, 0.13890637457370758, -0.1777951568365097, -0.028934722766280174 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # spanbert-base-cased-few-shot-k-32-finetuned-squad-seed-10 This model is a fine-tuned version of [SpanBERT/spanbert-base-cased](https://huggingface.co/SpanBERT/spanbert-base-cased) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 200 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
{"tags": ["generated_from_trainer"], "datasets": ["squad"], "model-index": [{"name": "spanbert-base-cased-few-shot-k-32-finetuned-squad-seed-10", "results": []}]}
question-answering
anas-awadalla/spanbert-base-cased-few-shot-k-32-finetuned-squad-seed-10
[ "transformers", "pytorch", "bert", "question-answering", "generated_from_trainer", "dataset:squad", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #bert #question-answering #generated_from_trainer #dataset-squad #endpoints_compatible #region-us
# spanbert-base-cased-few-shot-k-32-finetuned-squad-seed-10 This model is a fine-tuned version of SpanBERT/spanbert-base-cased on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 200 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
[ "# spanbert-base-cased-few-shot-k-32-finetuned-squad-seed-10\n\nThis model is a fine-tuned version of SpanBERT/spanbert-base-cased on the squad dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- training_steps: 200", "### Training results", "### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #bert #question-answering #generated_from_trainer #dataset-squad #endpoints_compatible #region-us \n", "# spanbert-base-cased-few-shot-k-32-finetuned-squad-seed-10\n\nThis model is a fine-tuned version of SpanBERT/spanbert-base-cased on the squad dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- training_steps: 200", "### Training results", "### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ 42, 55, 6, 12, 8, 3, 104, 4, 38 ]
[ "passage: TAGS\n#transformers #pytorch #bert #question-answering #generated_from_trainer #dataset-squad #endpoints_compatible #region-us \n# spanbert-base-cased-few-shot-k-32-finetuned-squad-seed-10\n\nThis model is a fine-tuned version of SpanBERT/spanbert-base-cased on the squad dataset.## Model description\n\nMore information needed## Intended uses & limitations\n\nMore information needed## Training and evaluation data\n\nMore information needed## Training procedure### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- training_steps: 200### Training results### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ -0.09936357289552689, 0.09747885167598724, -0.002289424417540431, 0.09123210608959198, 0.12337643653154373, 0.018942054361104965, 0.09370537847280502, 0.12853789329528809, -0.09885383397340775, 0.06783896684646606, 0.08750726282596588, 0.03421362489461899, 0.042067669332027435, 0.14188829064369202, -0.00540816830471158, -0.27846765518188477, -0.0009189741685986519, -0.0027134830597788095, -0.05131833627820015, 0.1200861856341362, 0.08927436918020248, -0.10969793051481247, 0.07370396703481674, 0.0075662825256586075, -0.15150520205497742, 0.016877885907888412, -0.031017791479825974, -0.03453119099140167, 0.12342212349176407, -0.02859857864677906, 0.10687289386987686, 0.028114374727010727, 0.13814273476600647, -0.20997372269630432, 0.007402637042105198, 0.07754290848970413, 0.05513838678598404, 0.09771224111318588, 0.04681209847331047, 0.012482469901442528, 0.10066750645637512, -0.1484249234199524, 0.09575342386960983, 0.029479704797267914, -0.08955425769090652, -0.1535816192626953, -0.08844901621341705, 0.028226008638739586, 0.052151087671518326, 0.07547765970230103, 0.002745124977082014, 0.13412484526634216, -0.07204200327396393, 0.08592662215232849, 0.251868337392807, -0.3133012652397156, -0.06759215146303177, 0.02613353729248047, 0.061789173632860184, 0.06227542832493782, -0.12533040344715118, -0.003234296338632703, 0.017107129096984863, 0.02678525261580944, 0.12442006915807724, -0.012652192264795303, -0.1035037487745285, -0.010913833044469357, -0.12313209474086761, -0.0011667076032608747, 0.06236005946993828, 0.02965322509407997, -0.04941863566637039, -0.10884105414152145, -0.06762491911649704, -0.08097690343856812, -0.023821083828806877, -0.05188333988189697, 0.046271953731775284, -0.051788829267024994, -0.09798158705234528, -0.043257903307676315, -0.05871506407856941, -0.08150286227464676, -0.005645533557981253, 0.16907690465450287, 0.03392452746629715, 0.01897117868065834, -0.030818914994597435, 0.11580748856067657, 0.027650082483887672, -0.13849841058254242, -0.01047028973698616, -0.0040155453607439995, -0.09831739962100983, -0.040945857763290405, -0.05623650178313255, -0.0064124795608222485, 0.0018724693218246102, 0.16639605164527893, -0.07009952515363693, 0.07427787780761719, 0.015872344374656677, -0.02730896696448326, -0.014865617267787457, 0.1532583087682724, -0.04284895956516266, -0.04754113033413887, -0.016153564676642418, 0.08214359730482101, -0.0022594663314521313, -0.02057765983045101, -0.06489022821187973, -0.029213985428214073, 0.09481799602508545, 0.05477322265505791, -0.06019897386431694, 0.037619370967149734, -0.02626483142375946, -0.02478310652077198, 0.017466841265559196, -0.11890188604593277, 0.04034661501646042, 0.0011057078372687101, -0.07777594774961472, -0.004091319628059864, -0.00014645302144344896, -0.009832236915826797, -0.00530972657725215, 0.09922519326210022, -0.08583585917949677, -0.005690590478479862, -0.06763375550508499, -0.07921753823757172, -0.0002572344965301454, -0.14583858847618103, -0.008085131645202637, -0.05728127062320709, -0.1647653877735138, -0.0374334417283535, 0.042286258190870285, -0.07414824515581131, -0.015206866897642612, -0.04463842883706093, -0.06187959015369415, 0.021231038495898247, -0.011705024167895317, 0.20045062899589539, -0.04970023036003113, 0.0830317884683609, -0.010051572695374489, 0.04937930777668953, 0.02912093698978424, 0.03907514736056328, -0.09605203568935394, 0.025837523862719536, -0.1319994330406189, 0.08406201750040054, -0.08504169434309006, -0.0043462589383125305, -0.1360233873128891, -0.09874065965414047, 0.005973580293357372, -0.018851645290851593, 0.08923730254173279, 0.13383720815181732, -0.19658122956752777, -0.0210595540702343, 0.12723998725414276, -0.07350147515535355, -0.043662115931510925, 0.06192668527364731, -0.06502832472324371, 0.039078403264284134, 0.055493131279945374, 0.20565059781074524, 0.06259622424840927, -0.1488521248102188, -0.00619543669745326, 0.013973613269627094, 0.050998885184526443, 0.02813098393380642, 0.043089620769023895, 0.001635246560908854, 0.05543822422623634, 0.013322887010872364, -0.09232497215270996, -0.02111940085887909, -0.09077874571084976, -0.0649239644408226, -0.04949821159243584, -0.07589489966630936, 0.05457393079996109, 0.01085750199854374, 0.03862479701638222, -0.059925422072410583, -0.10615774989128113, 0.11606840044260025, 0.10073491930961609, -0.05599913001060486, 0.03750632703304291, -0.0766761302947998, 0.010070090182125568, -0.005439582746475935, -0.03475680574774742, -0.2127823829650879, -0.12202302366495132, 0.047679487615823746, -0.035891417413949966, 0.021070446819067, 0.015325641259551048, 0.08571495115756989, 0.05642085149884224, -0.05258195474743843, -0.013967222534120083, -0.09887146949768066, 0.002077516634017229, -0.11474188417196274, -0.1904357522726059, -0.08770357072353363, -0.045587897300720215, 0.09746979922056198, -0.17788615822792053, -0.008484098128974438, 0.02178124710917473, 0.1322643905878067, 0.025709662586450577, -0.06848161667585373, -0.0008250556420534849, 0.0428626723587513, 0.012608670629560947, -0.09682145714759827, 0.05465497076511383, 0.011747628450393677, -0.10709444433450699, -0.04666292667388916, -0.12802870571613312, -0.019366048276424408, 0.05074367672204971, 0.06118125095963478, -0.09881076961755753, -0.05931088700890541, -0.07418845593929291, -0.03715168312191963, -0.07788903266191483, 0.01592577062547207, 0.21155284345149994, 0.03956329822540283, 0.10989712923765182, -0.06183910742402077, -0.08276089280843735, -0.008502556011080742, 0.03143705055117607, 0.024872148409485817, 0.0891575738787651, 0.023072224110364914, -0.043542731553316116, 0.0662018433213234, 0.10406754165887833, -0.0217219777405262, 0.1303342580795288, -0.05563168600201607, -0.08530843257904053, -0.030058354139328003, -0.019009489566087723, -0.026767831295728683, 0.12497849017381668, -0.037719838321208954, -0.00002319723535038065, 0.034672435373067856, 0.03954921290278435, 0.011293447576463223, -0.16859805583953857, 0.0017952329944819212, 0.03131190314888954, -0.0553877130150795, -0.045078933238983154, -0.004902105778455734, 0.017852403223514557, 0.08612117916345596, 0.03049519658088684, -0.00276545831002295, 0.006039902102202177, -0.013522044755518436, -0.05632244423031807, 0.19076001644134521, -0.09281764179468155, -0.07498972117900848, -0.07181480526924133, 0.01820189133286476, -0.042484432458877563, -0.036709222942590714, 0.005449129734188318, -0.09248201549053192, -0.028599141165614128, -0.08061614632606506, -0.021306892856955528, -0.0275783222168684, 0.019471989944577217, 0.02487146109342575, -0.018201416358351707, 0.07792533934116364, -0.136537104845047, 0.007810215000063181, -0.049038052558898926, -0.09702398627996445, 0.003040814772248268, 0.07396548241376877, 0.09098968654870987, 0.08514624089002609, -0.014328064396977425, 0.024668652564287186, -0.04006252810359001, 0.2314894050359726, -0.056342918425798416, 0.012538796290755272, 0.11718982458114624, -0.014537773095071316, 0.051819901913404465, 0.09431356191635132, 0.03758623078465462, -0.09146709740161896, 0.02321411482989788, 0.07900440692901611, -0.037154827266931534, -0.22851695120334625, -0.014755421318113804, -0.006184256635606289, -0.08435054123401642, 0.10300703346729279, 0.031314656138420105, -0.048805173486471176, 0.042277831584215164, 0.018402447924017906, -0.008637582883238792, -0.039837706834077835, 0.0685960203409195, 0.0754493772983551, 0.046921100467443466, 0.10855384171009064, -0.00526599632576108, -0.02018672041594982, 0.05403916910290718, 0.015546135604381561, 0.26133283972740173, -0.04026266559958458, 0.10462137311697006, 0.03206140920519829, 0.1492159515619278, -0.021863630041480064, 0.06572001427412033, 0.0011734863510355353, -0.009925499558448792, -0.012121273204684258, -0.062163665890693665, -0.02880127727985382, 0.01383728813380003, -0.04245569556951523, 0.023177649825811386, -0.08082093298435211, 0.025990359485149384, 0.021044736728072166, 0.285076767206192, 0.031051676720380783, -0.25490865111351013, -0.0773174837231636, -0.014111388474702835, -0.051311809569597244, -0.06016945466399193, 0.008159372955560684, 0.13707099854946136, -0.13919506967067719, 0.046197231858968735, -0.07822040468454361, 0.08703894168138504, -0.04984211176633835, 0.011714689433574677, 0.04992048069834709, 0.14925864338874817, -0.017526159062981606, 0.054916150867938995, -0.1948857456445694, 0.25317588448524475, 0.01747012324631214, 0.10472282022237778, -0.06649947911500931, 0.013068901374936104, 0.02285575121641159, 0.017999423667788506, 0.11610587686300278, 0.0020415352191776037, -0.07014025002717972, -0.1456286758184433, -0.0911208763718605, 0.04757460579276085, 0.14195546507835388, -0.04519129917025566, 0.09027576446533203, -0.03621148690581322, 0.012203698046505451, 0.03717842325568199, -0.036326028406620026, -0.14873068034648895, -0.08642824739217758, -0.0010171042522415519, 0.007954725995659828, -0.007085909601300955, -0.06142401322722435, -0.10532663762569427, -0.012046150863170624, 0.10345259308815002, 0.0038455005269497633, -0.054559506475925446, -0.1578812450170517, 0.08990084379911423, 0.14419783651828766, -0.057812899351119995, 0.01242029294371605, 0.01670178771018982, 0.11278636008501053, 0.035122305154800415, -0.07795346528291702, 0.06099862605333328, -0.061463311314582825, -0.17874595522880554, -0.05496794357895851, 0.1242353767156601, 0.08296522498130798, 0.04969821125268936, 0.00019447511294856668, 0.05042169243097305, 0.00017417811613995582, -0.09593909978866577, 0.03348348289728165, 0.00812902394682169, 0.03551968187093735, 0.017067568376660347, -0.08838033676147461, 0.09691168367862701, -0.036127831786870956, 0.011596969328820705, 0.13094598054885864, 0.2051355093717575, -0.10566136986017227, 0.11191894859075546, 0.08540354669094086, -0.07373632490634918, -0.16678482294082642, 0.06052099168300629, 0.12984679639339447, 0.012984278611838818, 0.08411899209022522, -0.21347413957118988, 0.12273503094911575, 0.09931061416864395, -0.010209296829998493, 0.00905698537826538, -0.27911728620529175, -0.1277589648962021, 0.059888459742069244, 0.10959655791521072, 0.04038091376423836, -0.11668988317251205, -0.03592666611075401, -0.0047561535611748695, -0.0930095985531807, 0.1117786094546318, -0.07332811504602432, 0.11503486335277557, -0.015706736594438553, 0.11063634604215622, 0.025716345757246017, -0.031105419620871544, 0.10739251226186752, 0.06100841984152794, 0.08042357861995697, -0.03469022363424301, 0.007268994115293026, 0.05693037062883377, -0.05559268593788147, 0.017021719366312027, -0.04329835623502731, 0.06667009741067886, -0.14998272061347961, -0.0008138256962411106, -0.09129668027162552, 0.050400570034980774, -0.04824690520763397, -0.07197106629610062, -0.014068350195884705, 0.053595151752233505, 0.07463029026985168, -0.03991147503256798, 0.025793805718421936, -0.005500860046595335, 0.09737600386142731, 0.09150661528110504, 0.08134999126195908, -0.014523197896778584, -0.09159030020236969, 0.011266149580478668, 0.004418509546667337, 0.05419273301959038, -0.10575361549854279, 0.013477851636707783, 0.13735370337963104, 0.06639797985553741, 0.09582298994064331, 0.046851545572280884, -0.039749931544065475, 0.0029762398917227983, 0.012836707755923271, -0.11929544061422348, -0.11369987577199936, 0.023836858570575714, -0.046537160873413086, -0.15484978258609772, 0.02240907773375511, 0.11839546263217926, -0.04070684686303139, -0.018027469515800476, -0.008718320168554783, 0.004501460585743189, -0.013274912722408772, 0.18588975071907043, 0.04641936346888542, 0.06283707171678543, -0.08800198882818222, 0.10675417631864548, 0.03578804060816765, -0.05259611830115318, 0.050783175975084305, 0.06298142671585083, -0.10421362519264221, 0.008524390868842602, 0.07708205282688141, 0.12539424002170563, -0.04670603945851326, -0.010084369219839573, -0.08898907899856567, -0.0841803103685379, 0.04176866635680199, 0.1325099617242813, 0.05371540039777756, -0.0014235166599974036, -0.07114121317863464, 0.04193580523133278, -0.1190074011683464, 0.07127045840024948, 0.04523380100727081, 0.0697036013007164, -0.10012631118297577, 0.13161152601242065, -0.0013149961596354842, 0.02570721134543419, -0.025972982868552208, 0.015601984225213528, -0.09528985619544983, -0.02469918131828308, -0.10724616795778275, -0.02664785273373127, -0.010638956911861897, 0.0007056133472360671, -0.022948209196329117, -0.07398837059736252, -0.0268009752035141, 0.03832937404513359, -0.0755058154463768, -0.05036332458257675, 0.013970276340842247, 0.039290718734264374, -0.1505708396434784, 0.0019825673662126064, 0.028219038620591164, -0.09243252873420715, 0.0901758074760437, 0.06238941475749016, 0.015353906899690628, 0.02717563509941101, -0.11328272521495819, -0.027311066165566444, -0.010443251579999924, 0.006003822200000286, 0.06457465887069702, -0.0969260111451149, -0.02636106126010418, -0.03907857462763786, 0.046730153262615204, 0.017054513096809387, 0.0968153178691864, -0.11670607328414917, -0.005471707321703434, -0.03970248997211456, -0.04067232832312584, -0.0631164014339447, 0.035942912101745605, 0.10244642943143845, 0.053554557263851166, 0.14918211102485657, -0.07237908989191055, 0.058809418231248856, -0.2015233188867569, -0.03589644283056259, 0.010200937278568745, -0.04350237548351288, -0.08323213458061218, -0.05282082408666611, 0.08921816945075989, -0.04430292919278145, 0.10612299293279648, -0.020310992375016212, 0.11110328137874603, 0.04212234914302826, -0.007759158033877611, -0.059057269245386124, -0.006332903169095516, 0.18971097469329834, 0.05894704908132553, -0.01726050116121769, 0.12921196222305298, 0.0002469784230925143, 0.030015360563993454, 0.08418957889080048, 0.22241830825805664, 0.16170205175876617, 0.001075885258615017, 0.06351037323474884, 0.061092864722013474, -0.07315662503242493, -0.1511552780866623, 0.11806409806013107, -0.0197418462485075, 0.1005953773856163, -0.0675068125128746, 0.19283203780651093, 0.03847375512123108, -0.18295173346996307, 0.06419219076633453, -0.02458048425614834, -0.11161557585000992, -0.12107770889997482, -0.026038585230708122, -0.06912830471992493, -0.11868146806955338, 0.02390602044761181, -0.11691761761903763, 0.061308931559324265, 0.10177426040172577, 0.008720184676349163, 0.03741523250937462, 0.18591807782649994, -0.046659789979457855, 0.010135093703866005, 0.08365952223539352, 0.01981906034052372, 0.00626253429800272, -0.04506656527519226, -0.06607636064291, 0.03629951551556587, 0.03220634162425995, 0.06344016641378403, -0.05350198969244957, -0.0005407003918662667, 0.009070458821952343, -0.0066018179059028625, -0.07652872055768967, 0.010592763312160969, 0.01007077656686306, 0.054457277059555054, 0.05125746503472328, 0.0462614968419075, 0.0055017550475895405, -0.05401046946644783, 0.29563823342323303, -0.07013764977455139, -0.07062248140573502, -0.12971341609954834, 0.20483005046844482, 0.02307446114718914, -0.022274097427725792, 0.05491180345416069, -0.0843721255660057, -0.012662098743021488, 0.17167586088180542, 0.13214299082756042, -0.0918048769235611, -0.016205361112952232, -0.013871499337255955, -0.010268012061715126, -0.014855424873530865, 0.11597707122564316, 0.07697748392820358, -0.012172083370387554, -0.06832163035869598, -0.018001699820160866, -0.020264852792024612, -0.05714522674679756, -0.06183259189128876, 0.06962276250123978, 0.026063064113259315, -0.00791248120367527, -0.060841143131256104, 0.07045082747936249, -0.0000027220171432418283, -0.24336272478103638, 0.042230598628520966, -0.17104272544384003, -0.17002727091312408, -0.026688961312174797, 0.07233931124210358, 0.007415956351906061, 0.05690542981028557, 0.0020162740256637335, 0.020146219059824944, 0.12267564982175827, -0.011601647362112999, -0.003991955891251564, -0.10973202437162399, 0.11789856106042862, -0.08632592111825943, 0.19642430543899536, -0.007065426558256149, 0.05412943288683891, 0.09681832045316696, 0.0399189293384552, -0.1380169540643692, 0.01820756122469902, 0.06576190143823624, -0.12859243154525757, -0.0012425478780642152, 0.1487300544977188, -0.0330992266535759, 0.06145521253347397, 0.025611866265535355, -0.15303373336791992, 0.007663262076675892, 0.01585240289568901, -0.03767586871981621, -0.06797901540994644, -0.006564506329596043, -0.05084875598549843, 0.1683325171470642, 0.21843235194683075, -0.029566753655672073, 0.00521131232380867, -0.08980946242809296, 0.00992043036967516, 0.04601665213704109, 0.06346386671066284, -0.04282134771347046, -0.20413249731063843, 0.009733149781823158, 0.06194477528333664, -0.0041379136964678764, -0.1932765692472458, -0.0982736349105835, 0.05217117816209793, -0.04111715406179428, -0.04180268570780754, 0.09426815062761307, 0.021232526749372482, 0.037122078239917755, -0.011684118770062923, -0.1197519302368164, -0.02163669466972351, 0.13893137872219086, -0.17875716090202332, -0.02815152145922184 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # spanbert-base-cased-few-shot-k-32-finetuned-squad-seed-2 This model is a fine-tuned version of [SpanBERT/spanbert-base-cased](https://huggingface.co/SpanBERT/spanbert-base-cased) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 200 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
{"tags": ["generated_from_trainer"], "datasets": ["squad"], "model-index": [{"name": "spanbert-base-cased-few-shot-k-32-finetuned-squad-seed-2", "results": []}]}
question-answering
anas-awadalla/spanbert-base-cased-few-shot-k-32-finetuned-squad-seed-2
[ "transformers", "pytorch", "bert", "question-answering", "generated_from_trainer", "dataset:squad", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #bert #question-answering #generated_from_trainer #dataset-squad #endpoints_compatible #region-us
# spanbert-base-cased-few-shot-k-32-finetuned-squad-seed-2 This model is a fine-tuned version of SpanBERT/spanbert-base-cased on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 200 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
[ "# spanbert-base-cased-few-shot-k-32-finetuned-squad-seed-2\n\nThis model is a fine-tuned version of SpanBERT/spanbert-base-cased on the squad dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- training_steps: 200", "### Training results", "### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #bert #question-answering #generated_from_trainer #dataset-squad #endpoints_compatible #region-us \n", "# spanbert-base-cased-few-shot-k-32-finetuned-squad-seed-2\n\nThis model is a fine-tuned version of SpanBERT/spanbert-base-cased on the squad dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- training_steps: 200", "### Training results", "### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ 42, 55, 6, 12, 8, 3, 104, 4, 38 ]
[ "passage: TAGS\n#transformers #pytorch #bert #question-answering #generated_from_trainer #dataset-squad #endpoints_compatible #region-us \n# spanbert-base-cased-few-shot-k-32-finetuned-squad-seed-2\n\nThis model is a fine-tuned version of SpanBERT/spanbert-base-cased on the squad dataset.## Model description\n\nMore information needed## Intended uses & limitations\n\nMore information needed## Training and evaluation data\n\nMore information needed## Training procedure### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- training_steps: 200### Training results### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ -0.09795872867107391, 0.09827897697687149, -0.002397244330495596, 0.09156182408332825, 0.12289761751890182, 0.01940619759261608, 0.09373132884502411, 0.12929759919643402, -0.0994158685207367, 0.0684191957116127, 0.08812866359949112, 0.03271307423710823, 0.04162152484059334, 0.1408972442150116, -0.005587295163422823, -0.27868884801864624, -0.001023312914185226, -0.004353750497102737, -0.05341112241148949, 0.12007037550210953, 0.09006665647029877, -0.10866093635559082, 0.07420029491186142, 0.008038877509534359, -0.15230749547481537, 0.01671528071165085, -0.02998812310397625, -0.03379830718040466, 0.12331430613994598, -0.0277558583766222, 0.10741065442562103, 0.02925604209303856, 0.13790187239646912, -0.21074263751506805, 0.007057345937937498, 0.07683892548084259, 0.055587105453014374, 0.09810815751552582, 0.047518469393253326, 0.012532862834632397, 0.10024131834506989, -0.14768201112747192, 0.09473247826099396, 0.029741477221250534, -0.08961771428585052, -0.15461157262325287, -0.08918095380067825, 0.02835964411497116, 0.05213269218802452, 0.07420995086431503, 0.003684300696477294, 0.13271623849868774, -0.0715143233537674, 0.08549422025680542, 0.25185227394104004, -0.31424108147621155, -0.06788322329521179, 0.02467513084411621, 0.060480207204818726, 0.0631454661488533, -0.12356137484312057, -0.0024565551429986954, 0.0170296560972929, 0.027055827900767326, 0.12330905348062515, -0.012192205525934696, -0.10288706421852112, -0.010850798338651657, -0.12313365191221237, -0.003125190967693925, 0.06253841519355774, 0.02904040552675724, -0.05051944777369499, -0.10678732395172119, -0.0682959109544754, -0.0785926878452301, -0.022239090874791145, -0.052563972771167755, 0.04656754061579704, -0.05033091455698013, -0.09769432991743088, -0.04551626369357109, -0.06014327332377434, -0.08177485316991806, -0.006671293638646603, 0.17082205414772034, 0.03388971835374832, 0.02061878703534603, -0.03049015998840332, 0.1171816736459732, 0.029484407976269722, -0.138270303606987, -0.010942655615508556, -0.0034883564803749323, -0.09744949638843536, -0.040390338748693466, -0.05613487958908081, -0.005749909207224846, 0.0026651560328900814, 0.1652631312608719, -0.07232897728681564, 0.07337479293346405, 0.014123824425041676, -0.026070425286889076, -0.014812457375228405, 0.1532088667154312, -0.040773387998342514, -0.04435234144330025, -0.015814712271094322, 0.08140164613723755, -0.0012630157871171832, -0.020891012623906136, -0.06495265662670135, -0.02992059476673603, 0.09546488523483276, 0.05613870918750763, -0.059764374047517776, 0.03544265031814575, -0.02798403985798359, -0.024880563840270042, 0.0157332606613636, -0.1189892515540123, 0.040157388895750046, 0.0016173359472304583, -0.07618295401334763, -0.004408305510878563, 0.000736517074983567, -0.009498217143118382, -0.004177963361144066, 0.09833578765392303, -0.08453744649887085, -0.004537281114608049, -0.06618639081716537, -0.07717461884021759, -0.0003523191262502223, -0.14262327551841736, -0.009148404002189636, -0.058015305548906326, -0.16213920712471008, -0.03529902175068855, 0.04333130270242691, -0.07587923109531403, -0.01765732280910015, -0.04350388050079346, -0.06091039255261421, 0.022546375170350075, -0.012419384904205799, 0.20003913342952728, -0.04991712421178818, 0.08425305038690567, -0.00984133593738079, 0.049396663904190063, 0.028957456350326538, 0.03801742196083069, -0.09497008472681046, 0.02706230990588665, -0.132969930768013, 0.0845547541975975, -0.08381544798612595, -0.00773730268701911, -0.13735930621623993, -0.09820862114429474, 0.007793168071657419, -0.019808398559689522, 0.08855016529560089, 0.1336262971162796, -0.19527682662010193, -0.0207398422062397, 0.12577609717845917, -0.07524042576551437, -0.043565474450588226, 0.06338007748126984, -0.0649210587143898, 0.0408114492893219, 0.05319608375430107, 0.20582544803619385, 0.06160710006952286, -0.14934416115283966, -0.003773903474211693, 0.015576810576021671, 0.05044802650809288, 0.030216233804821968, 0.04493670165538788, 0.00006200658390298486, 0.052931491285562515, 0.01284894160926342, -0.09474803507328033, -0.021312179043889046, -0.09172383695840836, -0.06571274250745773, -0.04989762604236603, -0.07535475492477417, 0.055830709636211395, 0.008463438600301743, 0.0389939583837986, -0.0592336542904377, -0.10513973236083984, 0.11513659358024597, 0.10106322169303894, -0.05561318248510361, 0.03918375447392464, -0.07714702188968658, 0.010089066810905933, -0.006280544213950634, -0.03551457077264786, -0.21239487826824188, -0.12316923588514328, 0.04851487651467323, -0.03623737022280693, 0.021024372428655624, 0.015607393346726894, 0.08475738763809204, 0.056794486939907074, -0.05280950665473938, -0.013821505010128021, -0.09922326356172562, 0.0016358870780095458, -0.11417388916015625, -0.1914801299571991, -0.08735539019107819, -0.04545692354440689, 0.09783533960580826, -0.17691916227340698, -0.009701299481093884, 0.02317226119339466, 0.13250279426574707, 0.02612287923693657, -0.06786710768938065, -0.0023914913181215525, 0.041793715208768845, 0.011853859759867191, -0.09604508429765701, 0.054730117321014404, 0.013027478009462357, -0.10806136578321457, -0.044470760971307755, -0.1257369965314865, -0.018509039655327797, 0.049433302134275436, 0.06011528521776199, -0.0988273099064827, -0.059652578085660934, -0.07453057169914246, -0.0380413681268692, -0.07912848889827728, 0.01599722169339657, 0.2114982157945633, 0.03931545466184616, 0.1103070080280304, -0.06223167106509209, -0.0820658877491951, -0.008793270215392113, 0.028957687318325043, 0.023687364533543587, 0.08871959894895554, 0.022984690964221954, -0.04529868811368942, 0.06524237245321274, 0.10465235263109207, -0.0219082273542881, 0.12948934733867645, -0.055640652775764465, -0.0849890485405922, -0.031819093972444534, -0.016557062044739723, -0.02597333863377571, 0.12439745664596558, -0.036414243280887604, 0.002192945219576359, 0.03480004519224167, 0.040839191526174545, 0.011097577400505543, -0.16965632140636444, 0.0016886935336515307, 0.03152740001678467, -0.05746287852525711, -0.04237193614244461, -0.004905570298433304, 0.018884940072894096, 0.08669993281364441, 0.03135420382022858, -0.00252960785292089, 0.007879971526563168, -0.013859963975846767, -0.057506028562784195, 0.1896706372499466, -0.0927761048078537, -0.07637238502502441, -0.07372409105300903, 0.017932619899511337, -0.04311142861843109, -0.036299463361501694, 0.0062638153322041035, -0.09132228791713715, -0.028279997408390045, -0.08099975436925888, -0.019894884899258614, -0.02880753017961979, 0.020655062049627304, 0.025747016072273254, -0.018312640488147736, 0.08062851428985596, -0.13579247891902924, 0.007356063462793827, -0.04861420765519142, -0.09836462885141373, 0.0037610915023833513, 0.07481575012207031, 0.09030260890722275, 0.08432573080062866, -0.013371898792684078, 0.024516720324754715, -0.039090950042009354, 0.23254553973674774, -0.055092163383960724, 0.011465638875961304, 0.1178494244813919, -0.01658697985112667, 0.05269565060734749, 0.09400434046983719, 0.0372421033680439, -0.0915001928806305, 0.02359168231487274, 0.07847355306148529, -0.03770344331860542, -0.22828933596611023, -0.015486698597669601, -0.0055609638802707195, -0.08389091491699219, 0.10248751193284988, 0.03139983490109444, -0.05283293128013611, 0.040786102414131165, 0.019122406840324402, -0.009881348349153996, -0.040186841040849686, 0.06871918588876724, 0.07705076783895493, 0.047028057277202606, 0.1081131100654602, -0.004811742343008518, -0.020180607214570045, 0.055844422429800034, 0.016240200027823448, 0.26072198152542114, -0.040398165583610535, 0.10383831709623337, 0.03272252902388573, 0.15078452229499817, -0.021644555032253265, 0.06353617459535599, 0.0013895153533667326, -0.009182280860841274, -0.012844085693359375, -0.062237825244665146, -0.02963740937411785, 0.014735822565853596, -0.04159463196992874, 0.023383213207125664, -0.08191104978322983, 0.028611697256565094, 0.020891061052680016, 0.28672581911087036, 0.030960964038968086, -0.252623587846756, -0.07679799944162369, -0.013210685923695564, -0.05109461024403572, -0.05965953692793846, 0.008180801756680012, 0.13896073400974274, -0.14025293290615082, 0.04468736797571182, -0.07797051966190338, 0.08613384515047073, -0.05058789253234863, 0.011045909486711025, 0.049289945513010025, 0.14811861515045166, -0.016356071457266808, 0.055099014192819595, -0.1929399073123932, 0.2537788450717926, 0.017243461683392525, 0.10282913595438004, -0.06479447335004807, 0.013406097888946533, 0.022070828825235367, 0.018173418939113617, 0.11631528288125992, 0.0029895370826125145, -0.07143205404281616, -0.14522434771060944, -0.09251262247562408, 0.04719840735197067, 0.14271780848503113, -0.04675021767616272, 0.08981708437204361, -0.03716319426894188, 0.013166331686079502, 0.03670274466276169, -0.034255411475896835, -0.14774346351623535, -0.08580923825502396, -0.0006210631690919399, 0.006723176687955856, -0.007651496212929487, -0.06270170211791992, -0.1054895669221878, -0.00833851844072342, 0.10580640286207199, 0.0032400304917246103, -0.054816849529743195, -0.15712831914424896, 0.08933151513338089, 0.14363393187522888, -0.058781594038009644, 0.01140524446964264, 0.016177503392100334, 0.11312270164489746, 0.03539377823472023, -0.07811400294303894, 0.06111154705286026, -0.061136458069086075, -0.1807926744222641, -0.0552452951669693, 0.12505289912223816, 0.0823594406247139, 0.05001861974596977, 0.000050319769798079506, 0.05022701248526573, 0.0015053662937134504, -0.09578320384025574, 0.03488561138510704, 0.00885236170142889, 0.03501546010375023, 0.017147134989500046, -0.08800768107175827, 0.09993697702884674, -0.035854533314704895, 0.00959885586053133, 0.13278332352638245, 0.2097105085849762, -0.10630248486995697, 0.11403478682041168, 0.08482969552278519, -0.07414726912975311, -0.16666100919246674, 0.058357123285532, 0.1315416693687439, 0.011920184828341007, 0.08584465086460114, -0.2136896401643753, 0.12209532409906387, 0.09919652342796326, -0.011635194532573223, 0.007956196554005146, -0.2802911400794983, -0.1279761642217636, 0.058257926255464554, 0.1092551127076149, 0.044048819690942764, -0.116241455078125, -0.03698151931166649, -0.0035220349673181772, -0.09353400766849518, 0.11136005073785782, -0.07123380899429321, 0.11539929360151291, -0.015899192541837692, 0.11159465461969376, 0.025944169610738754, -0.030333872884511948, 0.11009784787893295, 0.05929984897375107, 0.07873080670833588, -0.034507859498262405, 0.007841654121875763, 0.054790180176496506, -0.056399647146463394, 0.0157464686781168, -0.042794931679964066, 0.06721709668636322, -0.1505684107542038, -0.0009026589686982334, -0.0908455103635788, 0.049879010766744614, -0.049147505313158035, -0.07164790481328964, -0.014319936744868755, 0.05307280272245407, 0.07503478974103928, -0.039562977850437164, 0.02565917931497097, -0.0047232117503881454, 0.09574293345212936, 0.09613479673862457, 0.08027508854866028, -0.012866292148828506, -0.09201902896165848, 0.009777621366083622, 0.004020887427031994, 0.0542205274105072, -0.10472539812326431, 0.01496774610131979, 0.13641931116580963, 0.0652616024017334, 0.09603388607501984, 0.046898338943719864, -0.040556151419878006, 0.00426797941327095, 0.012943262234330177, -0.12111470848321915, -0.1147228479385376, 0.023230837658047676, -0.045634377747774124, -0.15528830885887146, 0.02033783122897148, 0.12137524038553238, -0.03951917216181755, -0.017774436622858047, -0.008292139507830143, 0.005475287325680256, -0.014050282537937164, 0.1838875561952591, 0.04519160836935043, 0.0632292702794075, -0.0865606889128685, 0.1068362444639206, 0.03580009937286377, -0.05083988234400749, 0.05041017383337021, 0.06237594038248062, -0.10334429889917374, 0.00944004487246275, 0.07619346678256989, 0.12459532171487808, -0.04947658255696297, -0.009514627046883106, -0.08897417783737183, -0.08439937978982925, 0.0408138781785965, 0.13118454813957214, 0.05445639416575432, -0.0003078613372053951, -0.07109517604112625, 0.04180370271205902, -0.11763659864664078, 0.07159050554037094, 0.045973390340805054, 0.06987439841032028, -0.10113513469696045, 0.13158270716667175, -0.001965027768164873, 0.027423759922385216, -0.02624175138771534, 0.014582933858036995, -0.09508660435676575, -0.024770664051175117, -0.10924425721168518, -0.024446288123726845, -0.00871602725237608, 0.0005489566246978939, -0.02183673158288002, -0.07511506974697113, -0.02678564377129078, 0.0392548106610775, -0.07544931769371033, -0.05036086589097977, 0.01330940704792738, 0.03996938467025757, -0.15057240426540375, 0.0011298882309347391, 0.029695579782128334, -0.09339619427919388, 0.09185141324996948, 0.06309156864881516, 0.015502562746405602, 0.026705825701355934, -0.11182057857513428, -0.027705350890755653, -0.010316191241145134, 0.00588919036090374, 0.06422615796327591, -0.09848611056804657, -0.027652502059936523, -0.0387713648378849, 0.04617379978299141, 0.0174267441034317, 0.10027758032083511, -0.11750767379999161, -0.004890201613306999, -0.03978874161839485, -0.042328886687755585, -0.06285916268825531, 0.034833312034606934, 0.10166174173355103, 0.05596340820193291, 0.14895059168338776, -0.0738777369260788, 0.059208232909440994, -0.20094062387943268, -0.03535367548465729, 0.010230275802314281, -0.041441403329372406, -0.08394894003868103, -0.05282086506485939, 0.0879194512963295, -0.04444318637251854, 0.10496503859758377, -0.02078990451991558, 0.10922610014677048, 0.042521849274635315, -0.010209811851382256, -0.0573512502014637, -0.006696292664855719, 0.1885349601507187, 0.0587911494076252, -0.016589781269431114, 0.12940557301044464, -0.0017059316160157323, 0.030595332384109497, 0.08370135724544525, 0.2246125489473343, 0.1615375131368637, 0.0014750907430425286, 0.06360717862844467, 0.060990385711193085, -0.07232832908630371, -0.15315815806388855, 0.11674173176288605, -0.018996568396687508, 0.10085730999708176, -0.06626313179731369, 0.19089315831661224, 0.03921598941087723, -0.18364301323890686, 0.062402382493019104, -0.02467847242951393, -0.11147603392601013, -0.12281077355146408, -0.0245650764554739, -0.07003810256719589, -0.1193423792719841, 0.023652540519833565, -0.11672830581665039, 0.06259477138519287, 0.1012483611702919, 0.007704087533056736, 0.03828054293990135, 0.18298394978046417, -0.046072885394096375, 0.010177215561270714, 0.08254566043615341, 0.019918598234653473, 0.007098004221916199, -0.04309333115816116, -0.06709811836481094, 0.03557012602686882, 0.034444767981767654, 0.06263312697410583, -0.051823679357767105, 0.0008290193509310484, 0.007967803627252579, -0.007728721480816603, -0.07702518999576569, 0.010286057367920876, 0.010103368200361729, 0.05438641086220741, 0.0501902736723423, 0.04657962918281555, 0.005964227020740509, -0.0534060113132, 0.2970721423625946, -0.06991829723119736, -0.0701148584485054, -0.12952497601509094, 0.20702166855335236, 0.0209639985114336, -0.021349992603063583, 0.05576727166771889, -0.08405634760856628, -0.014777772128582, 0.16962426900863647, 0.1313537210226059, -0.09472738206386566, -0.015917642042040825, -0.014253856614232063, -0.010181643068790436, -0.013815862126648426, 0.11703085154294968, 0.07628930360078812, -0.01049893070012331, -0.06926406174898148, -0.018766416236758232, -0.022042809054255486, -0.05575009807944298, -0.06264946609735489, 0.07022389024496078, 0.024660658091306686, -0.006352285388857126, -0.062393251806497574, 0.06908796727657318, -0.000009816583769861609, -0.24267861247062683, 0.0423167385160923, -0.17077268660068512, -0.1703803688287735, -0.025294935330748558, 0.07332796603441238, 0.005238668993115425, 0.05693725496530533, 0.00046677514910697937, 0.019703468307852745, 0.12360420823097229, -0.012096112594008446, -0.004231972619891167, -0.10796509683132172, 0.11883544921875, -0.08623415231704712, 0.19766367971897125, -0.005801123566925526, 0.05480094999074936, 0.0961320549249649, 0.040793806314468384, -0.1388048678636551, 0.016868488863110542, 0.0657753273844719, -0.12886886298656464, -0.0022919774055480957, 0.1494663655757904, -0.033303771167993546, 0.06305232644081116, 0.027519240975379944, -0.15272730588912964, 0.005835824646055698, 0.016966158524155617, -0.038180116564035416, -0.06705647706985474, -0.009404017589986324, -0.05282484367489815, 0.1670239269733429, 0.21750223636627197, -0.029959937557578087, 0.005756816361099482, -0.08887755870819092, 0.010679415427148342, 0.046025071293115616, 0.06525589525699615, -0.04169795289635658, -0.20446240901947021, 0.009631410241127014, 0.06348646432161331, -0.0038464744575321674, -0.1943059265613556, -0.10060496628284454, 0.05251585692167282, -0.03962205722928047, -0.04187890887260437, 0.09569893777370453, 0.01982884109020233, 0.03640967234969139, -0.011207631789147854, -0.12092480063438416, -0.022269977256655693, 0.1382671743631363, -0.1781710535287857, -0.028459150344133377 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # spanbert-base-cased-few-shot-k-32-finetuned-squad-seed-4 This model is a fine-tuned version of [SpanBERT/spanbert-base-cased](https://huggingface.co/SpanBERT/spanbert-base-cased) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 200 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
{"tags": ["generated_from_trainer"], "datasets": ["squad"], "model-index": [{"name": "spanbert-base-cased-few-shot-k-32-finetuned-squad-seed-4", "results": []}]}
question-answering
anas-awadalla/spanbert-base-cased-few-shot-k-32-finetuned-squad-seed-4
[ "transformers", "pytorch", "bert", "question-answering", "generated_from_trainer", "dataset:squad", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #bert #question-answering #generated_from_trainer #dataset-squad #endpoints_compatible #region-us
# spanbert-base-cased-few-shot-k-32-finetuned-squad-seed-4 This model is a fine-tuned version of SpanBERT/spanbert-base-cased on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 200 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
[ "# spanbert-base-cased-few-shot-k-32-finetuned-squad-seed-4\n\nThis model is a fine-tuned version of SpanBERT/spanbert-base-cased on the squad dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- training_steps: 200", "### Training results", "### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #bert #question-answering #generated_from_trainer #dataset-squad #endpoints_compatible #region-us \n", "# spanbert-base-cased-few-shot-k-32-finetuned-squad-seed-4\n\nThis model is a fine-tuned version of SpanBERT/spanbert-base-cased on the squad dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- training_steps: 200", "### Training results", "### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ 42, 55, 6, 12, 8, 3, 104, 4, 38 ]
[ "passage: TAGS\n#transformers #pytorch #bert #question-answering #generated_from_trainer #dataset-squad #endpoints_compatible #region-us \n# spanbert-base-cased-few-shot-k-32-finetuned-squad-seed-4\n\nThis model is a fine-tuned version of SpanBERT/spanbert-base-cased on the squad dataset.## Model description\n\nMore information needed## Intended uses & limitations\n\nMore information needed## Training and evaluation data\n\nMore information needed## Training procedure### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- training_steps: 200### Training results### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ -0.09856618195772171, 0.09722921252250671, -0.0023534668143838644, 0.0924082100391388, 0.12409114837646484, 0.019835934042930603, 0.09448842704296112, 0.12851624190807343, -0.0996614620089531, 0.0676981657743454, 0.08818597346544266, 0.03241783007979393, 0.04085610434412956, 0.14063866436481476, -0.005322934594005346, -0.2787233293056488, -0.0012044509639963508, -0.0036761516239494085, -0.052534278482198715, 0.12026920914649963, 0.08879533410072327, -0.10928794741630554, 0.0746401846408844, 0.007626797072589397, -0.15306013822555542, 0.017304232344031334, -0.030979394912719727, -0.033785343170166016, 0.12347979843616486, -0.027727171778678894, 0.10755335539579391, 0.029016446322202682, 0.13778690993785858, -0.20938873291015625, 0.007294342387467623, 0.07674791663885117, 0.05484885349869728, 0.09735118597745895, 0.04709124192595482, 0.012199736200273037, 0.0993381142616272, -0.14768928289413452, 0.09487465769052505, 0.02947470173239708, -0.08975382894277573, -0.15522857010364532, -0.08824213594198227, 0.0272148959338665, 0.05160609632730484, 0.07545657455921173, 0.0029107530135661364, 0.13206246495246887, -0.07223804295063019, 0.08580416440963745, 0.2492484152317047, -0.3155210614204407, -0.06830451637506485, 0.024977095425128937, 0.060843952000141144, 0.06320231407880783, -0.12451035529375076, -0.0017611879156902432, 0.017175938934087753, 0.028151478618383408, 0.12371501326560974, -0.012722242623567581, -0.10279542952775955, -0.010266098193824291, -0.12308456748723984, -0.0013832170516252518, 0.06332097947597504, 0.029269680380821228, -0.05033263564109802, -0.10765790194272995, -0.06684164702892303, -0.08002132177352905, -0.022740831598639488, -0.05164754390716553, 0.04653538018465042, -0.05164714902639389, -0.09839251637458801, -0.04325637221336365, -0.06000330671668053, -0.0806889683008194, -0.006228815298527479, 0.1693059802055359, 0.03379173204302788, 0.0202716663479805, -0.02996165119111538, 0.11659948527812958, 0.029141150414943695, -0.13772805035114288, -0.00983436219394207, -0.0043649133294820786, -0.09748619049787521, -0.04037533700466156, -0.05678047612309456, -0.003976102452725172, 0.0028125704266130924, 0.16550609469413757, -0.07258131355047226, 0.07424183189868927, 0.01552243996411562, -0.02704344131052494, -0.014560354873538017, 0.15160441398620605, -0.0425211526453495, -0.04624859616160393, -0.01638564094901085, 0.08194080740213394, -0.002352413022890687, -0.021005891263484955, -0.065036840736866, -0.028475526720285416, 0.09444697946310043, 0.055496279150247574, -0.06098077818751335, 0.03756260126829147, -0.026714639738202095, -0.024577470496296883, 0.016125768423080444, -0.1186445876955986, 0.03990579769015312, 0.001641851500608027, -0.07656221091747284, -0.003720021340996027, -0.00010068763367598876, -0.010543876327574253, -0.004820285364985466, 0.09867843985557556, -0.08545416593551636, -0.005448766052722931, -0.06657540053129196, -0.07846234738826752, -0.000933001923840493, -0.14233587682247162, -0.00806388258934021, -0.05757324770092964, -0.16275274753570557, -0.0370631217956543, 0.04306173324584961, -0.07577802240848541, -0.016367489472031593, -0.043736040592193604, -0.061853449791669846, 0.02200477197766304, -0.01252073235809803, 0.20059457421302795, -0.05039437487721443, 0.0829957127571106, -0.008483062498271465, 0.04919416457414627, 0.028597556054592133, 0.03811107575893402, -0.09482456743717194, 0.026235077530145645, -0.1329731047153473, 0.08385545760393143, -0.08457636088132858, -0.005836042575538158, -0.1359792798757553, -0.09964988380670547, 0.00871208030730486, -0.01852933131158352, 0.0879557728767395, 0.13349199295043945, -0.19493576884269714, -0.021071093156933784, 0.1249728873372078, -0.07413184642791748, -0.04370734095573425, 0.06317742168903351, -0.06502329558134079, 0.03932571038603783, 0.053897976875305176, 0.205850288271904, 0.061897438019514084, -0.14859165251255035, -0.00545237073674798, 0.01438240334391594, 0.05098758265376091, 0.029333898797631264, 0.04336642101407051, 0.0017423885874450207, 0.05343113839626312, 0.013658602721989155, -0.0936029702425003, -0.021443786099553108, -0.09120666235685349, -0.06523628532886505, -0.04881730675697327, -0.0752740278840065, 0.055413950234651566, 0.009381561540067196, 0.038905348628759384, -0.060512397438287735, -0.1059841588139534, 0.11467419564723969, 0.10071088373661041, -0.056275662034749985, 0.03753986209630966, -0.07757384330034256, 0.010789717547595501, -0.006377349141985178, -0.03486878052353859, -0.21189731359481812, -0.12453949451446533, 0.04723614826798439, -0.03338802978396416, 0.021024556830525398, 0.016116227954626083, 0.0856318548321724, 0.057231366634368896, -0.05333486199378967, -0.014598223380744457, -0.09806067496538162, 0.0021270443685352802, -0.11373299360275269, -0.1919436752796173, -0.0880415290594101, -0.04531591013073921, 0.09845733642578125, -0.17849808931350708, -0.009157619439065456, 0.023592745885252953, 0.13143698871135712, 0.0255572572350502, -0.06730823218822479, -0.001188878552056849, 0.04344610869884491, 0.012850461527705193, -0.0957893654704094, 0.055555664002895355, 0.012721247039735317, -0.1068386361002922, -0.045843642204999924, -0.12626715004444122, -0.016810528934001923, 0.050602976232767105, 0.05922115594148636, -0.09928480535745621, -0.0594145692884922, -0.07432777434587479, -0.038054209202528, -0.07728932052850723, 0.015950961038470268, 0.21256110072135925, 0.03894508257508278, 0.10979709774255753, -0.06105656921863556, -0.08162017911672592, -0.008641230873763561, 0.030568033456802368, 0.02479943446815014, 0.08862161636352539, 0.021737579256296158, -0.043045785278081894, 0.0656534731388092, 0.10339909791946411, -0.02236519753932953, 0.13058623671531677, -0.055789705365896225, -0.08440166711807251, -0.031044330447912216, -0.01770041137933731, -0.026549823582172394, 0.1253751665353775, -0.036970894783735275, 0.0006049562944099307, 0.034436777234077454, 0.040007349103689194, 0.011455610394477844, -0.16859246790409088, 0.0016304095042869449, 0.03064795210957527, -0.0562688484787941, -0.043737832456827164, -0.004538868088275194, 0.01814430020749569, 0.08616620302200317, 0.031060978770256042, -0.0040696957148611546, 0.007734157610684633, -0.01363828219473362, -0.05680695176124573, 0.19032660126686096, -0.09283661097288132, -0.07528062909841537, -0.07331263273954391, 0.016333140432834625, -0.04424070939421654, -0.036888062953948975, 0.005973865278065205, -0.09300072491168976, -0.02843460626900196, -0.08078692853450775, -0.021176490932703018, -0.028423134237527847, 0.020424114540219307, 0.0245920792222023, -0.018584420904517174, 0.0799143984913826, -0.13535435497760773, 0.0076689873822033405, -0.04895927757024765, -0.09840530902147293, 0.004617823753505945, 0.07513311505317688, 0.09078311175107956, 0.08422400802373886, -0.01310309674590826, 0.02464439906179905, -0.03950512036681175, 0.23314329981803894, -0.05521978810429573, 0.011651570908725262, 0.11754690855741501, -0.015513194724917412, 0.05135231837630272, 0.09409389644861221, 0.038270607590675354, -0.09191235154867172, 0.023338962346315384, 0.07904940843582153, -0.0371520034968853, -0.22798795998096466, -0.014862652868032455, -0.005950283724814653, -0.08340656012296677, 0.10230616480112076, 0.031340450048446655, -0.052186764776706696, 0.041574422270059586, 0.020132260397076607, -0.008963345550000668, -0.04034031555056572, 0.06819314509630203, 0.07848221063613892, 0.04641924053430557, 0.10927248001098633, -0.00496390787884593, -0.020562371239066124, 0.054892558604478836, 0.01641303487122059, 0.26141828298568726, -0.04082100838422775, 0.1033686101436615, 0.03335022181272507, 0.1499563455581665, -0.021153191104531288, 0.06453517079353333, 0.0008485317230224609, -0.010002410970628262, -0.01248115859925747, -0.06205742061138153, -0.028217727318406105, 0.01385065633803606, -0.042556364089250565, 0.022662699222564697, -0.0822032243013382, 0.026923924684524536, 0.021204277873039246, 0.28627195954322815, 0.031106462702155113, -0.25555214285850525, -0.07788590341806412, -0.014096236787736416, -0.05061859264969826, -0.05911095067858696, 0.00834775622934103, 0.13846081495285034, -0.13949717581272125, 0.04559464752674103, -0.0780915915966034, 0.08564810454845428, -0.050653424113988876, 0.012134920805692673, 0.05153318867087364, 0.149030402302742, -0.017269983887672424, 0.05478023365139961, -0.193323016166687, 0.25256091356277466, 0.017369138076901436, 0.10377106815576553, -0.06510438024997711, 0.013230604119598866, 0.022944459691643715, 0.01961693912744522, 0.11605370789766312, 0.0022559750359505415, -0.07128559052944183, -0.1452927589416504, -0.09137038141489029, 0.04859713464975357, 0.1417204588651657, -0.045530300587415695, 0.09085510671138763, -0.036023568361997604, 0.012667241506278515, 0.03624993935227394, -0.035281017422676086, -0.14810869097709656, -0.08640772849321365, -0.001268095220439136, 0.008179113268852234, -0.007301327306777239, -0.0619383379817009, -0.10608877241611481, -0.009854946285486221, 0.10521494597196579, 0.004740022588521242, -0.0550324022769928, -0.15784889459609985, 0.08878785371780396, 0.1437738537788391, -0.0575019046664238, 0.011226898059248924, 0.017092859372496605, 0.11211799085140228, 0.0364341177046299, -0.07775276154279709, 0.06114675849676132, -0.062047358602285385, -0.17924632132053375, -0.05522890016436577, 0.12400210648775101, 0.08202080428600311, 0.04924866184592247, -0.0002893990313168615, 0.05003349855542183, 0.0007865708903409541, -0.0964808315038681, 0.03533606603741646, 0.006531109102070332, 0.035990092903375626, 0.016766732558608055, -0.08883478492498398, 0.09965910017490387, -0.03513651713728905, 0.010708280839025974, 0.1306837499141693, 0.20661687850952148, -0.10549477487802505, 0.11174798011779785, 0.08539754897356033, -0.07361005246639252, -0.16636359691619873, 0.059477679431438446, 0.13017427921295166, 0.012675588950514793, 0.08419252932071686, -0.21453341841697693, 0.12329817563295364, 0.09844162315130234, -0.010388107970356941, 0.010032459162175655, -0.2772678732872009, -0.1270759403705597, 0.05882444977760315, 0.11007296293973923, 0.04469433054327965, -0.1167004331946373, -0.036217253655195236, -0.0036267489194869995, -0.09279700368642807, 0.110432468354702, -0.07435665279626846, 0.11559256911277771, -0.016222873702645302, 0.11203614622354507, 0.025109317153692245, -0.030452363193035126, 0.10891195386648178, 0.06028275191783905, 0.07987023144960403, -0.034670427441596985, 0.008698984980583191, 0.054884009063243866, -0.05570802465081215, 0.01594417728483677, -0.04402433708310127, 0.06651447713375092, -0.15103496611118317, -0.000842225446831435, -0.09190591424703598, 0.0497063510119915, -0.04884544387459755, -0.07151643186807632, -0.013146888464689255, 0.05355779826641083, 0.07367818802595139, -0.039702340960502625, 0.024029452353715897, -0.0058667296543717384, 0.09625468403100967, 0.09506641328334808, 0.08110488951206207, -0.014226756989955902, -0.09298322349786758, 0.01101037859916687, 0.003580233780667186, 0.05414873734116554, -0.10416576266288757, 0.013409372419118881, 0.13733357191085815, 0.06457929313182831, 0.09579133242368698, 0.04787035286426544, -0.03954463079571724, 0.0036921510472893715, 0.014090600423514843, -0.1213630959391594, -0.11354407668113708, 0.023453976958990097, -0.04946104437112808, -0.15495699644088745, 0.021777860820293427, 0.12132775783538818, -0.03950805589556694, -0.017543701454997063, -0.008287792094051838, 0.00477270083501935, -0.014296581037342548, 0.1855267882347107, 0.04521452262997627, 0.06295880675315857, -0.08774007856845856, 0.10619242489337921, 0.03560502827167511, -0.05167455971240997, 0.050549790263175964, 0.063291996717453, -0.10442926734685898, 0.008167529478669167, 0.07526130229234695, 0.125996395945549, -0.048115868121385574, -0.010626127943396568, -0.09048280119895935, -0.08488566428422928, 0.04088543355464935, 0.1297738403081894, 0.05411530286073685, -0.0012893242528662086, -0.07133440673351288, 0.04123008996248245, -0.11846097558736801, 0.07122943550348282, 0.045095376670360565, 0.07015004754066467, -0.10129448026418686, 0.13093475997447968, -0.002011187607422471, 0.026708420366048813, -0.02625739760696888, 0.015182791277766228, -0.0960269644856453, -0.024717114865779877, -0.10941373556852341, -0.02569805271923542, -0.009141507558524609, 0.0010699565755203366, -0.022155912593007088, -0.07355953752994537, -0.027572106570005417, 0.039287909865379333, -0.07582490891218185, -0.04971650242805481, 0.015276237390935421, 0.04068494588136673, -0.14994904398918152, 0.0015174287836998701, 0.028239110484719276, -0.09327083826065063, 0.09163636714220047, 0.06301958858966827, 0.015145630575716496, 0.027097446843981743, -0.1099843829870224, -0.02837461419403553, -0.01081047859042883, 0.0050344932824373245, 0.06495804339647293, -0.09775607287883759, -0.026988618075847626, -0.03892771899700165, 0.04643333703279495, 0.017806995660066605, 0.09922077506780624, -0.11648905277252197, -0.004629259929060936, -0.03905737027525902, -0.04098382219672203, -0.06332655251026154, 0.03548547998070717, 0.10244432836771011, 0.055187635123729706, 0.14952075481414795, -0.07392486929893494, 0.05838238447904587, -0.201217383146286, -0.03583848476409912, 0.010100643150508404, -0.04286472126841545, -0.08286925405263901, -0.05270306393504143, 0.08881117403507233, -0.045175474137067795, 0.10641200840473175, -0.021067669615149498, 0.1100383922457695, 0.04190356656908989, -0.010114564560353756, -0.0585324652493, -0.005947061348706484, 0.1880689561367035, 0.058276593685150146, -0.017460109665989876, 0.1291009783744812, -0.00025727925822138786, 0.029652530327439308, 0.08541226387023926, 0.22270351648330688, 0.1603516787290573, 0.0023857466876506805, 0.06397581845521927, 0.06179584935307503, -0.07294352352619171, -0.15179675817489624, 0.1176961213350296, -0.018742384389042854, 0.10181429237127304, -0.0674109160900116, 0.1896403282880783, 0.03847783803939819, -0.18262086808681488, 0.0628872960805893, -0.02572452463209629, -0.11175421625375748, -0.12133938819169998, -0.02382618933916092, -0.06918510794639587, -0.12009796500205994, 0.023923907428979874, -0.11726569384336472, 0.0610092394053936, 0.10230638831853867, 0.008797572925686836, 0.037838518619537354, 0.1848052591085434, -0.04477894306182861, 0.01116535346955061, 0.08307985216379166, 0.01920795440673828, 0.006527040619403124, -0.042851127684116364, -0.06596006453037262, 0.03503748029470444, 0.03266120329499245, 0.06212777644395828, -0.05285760015249252, -0.00012224428064655513, 0.00888286717236042, -0.00674837501719594, -0.07661324739456177, 0.010018842294812202, 0.010480538941919804, 0.05420828238129616, 0.05136862024664879, 0.04610539227724075, 0.004871825221925974, -0.05357274413108826, 0.2957582473754883, -0.0700177252292633, -0.06886604428291321, -0.13040795922279358, 0.2068452537059784, 0.020775936543941498, -0.02196904830634594, 0.054717253893613815, -0.08313529938459396, -0.013428906910121441, 0.1709737926721573, 0.1336042582988739, -0.09443926066160202, -0.016318276524543762, -0.013746967539191246, -0.010173513554036617, -0.014179743826389313, 0.11725394427776337, 0.07628676295280457, -0.010923018679022789, -0.06935769319534302, -0.018575219437479973, -0.021318063139915466, -0.055852893739938736, -0.06214861944317818, 0.06972214579582214, 0.026165973395109177, -0.006739525590091944, -0.06159020960330963, 0.0693962424993515, -0.0006781182601116598, -0.24246738851070404, 0.04339165240526199, -0.17012840509414673, -0.1708153635263443, -0.02652624435722828, 0.07264241576194763, 0.006105635315179825, 0.05797558277845383, 0.00045445034629665315, 0.01938806287944317, 0.12413448840379715, -0.012417137622833252, -0.0032855598255991936, -0.10892845690250397, 0.11884798109531403, -0.08588673919439316, 0.19627182185649872, -0.0066946507431566715, 0.05488789454102516, 0.09682553261518478, 0.040277689695358276, -0.1386277675628662, 0.017702026292681694, 0.06496939063072205, -0.12941880524158478, -0.0015490418300032616, 0.14877399802207947, -0.03324778378009796, 0.06231800466775894, 0.02604665420949459, -0.15186646580696106, 0.006826217286288738, 0.017171122133731842, -0.03786275163292885, -0.06702999025583267, -0.00898053776472807, -0.052301984280347824, 0.16769666969776154, 0.2191711664199829, -0.029812825843691826, 0.005560098681598902, -0.08893892168998718, 0.010952712036669254, 0.04657783359289169, 0.06387326121330261, -0.042485252022743225, -0.20438827574253082, 0.009949494153261185, 0.06400616466999054, -0.004350744653493166, -0.19574034214019775, -0.0992458313703537, 0.052768729627132416, -0.03952072188258171, -0.04207904636859894, 0.09566440433263779, 0.02112814225256443, 0.03765639662742615, -0.011963692493736744, -0.11853064596652985, -0.02223835326731205, 0.13805057108402252, -0.178501158952713, -0.029247364029288292 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # spanbert-base-cased-few-shot-k-32-finetuned-squad-seed-6 This model is a fine-tuned version of [SpanBERT/spanbert-base-cased](https://huggingface.co/SpanBERT/spanbert-base-cased) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 200 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
{"tags": ["generated_from_trainer"], "datasets": ["squad"], "model-index": [{"name": "spanbert-base-cased-few-shot-k-32-finetuned-squad-seed-6", "results": []}]}
question-answering
anas-awadalla/spanbert-base-cased-few-shot-k-32-finetuned-squad-seed-6
[ "transformers", "pytorch", "bert", "question-answering", "generated_from_trainer", "dataset:squad", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #bert #question-answering #generated_from_trainer #dataset-squad #endpoints_compatible #region-us
# spanbert-base-cased-few-shot-k-32-finetuned-squad-seed-6 This model is a fine-tuned version of SpanBERT/spanbert-base-cased on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 200 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
[ "# spanbert-base-cased-few-shot-k-32-finetuned-squad-seed-6\n\nThis model is a fine-tuned version of SpanBERT/spanbert-base-cased on the squad dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- training_steps: 200", "### Training results", "### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #bert #question-answering #generated_from_trainer #dataset-squad #endpoints_compatible #region-us \n", "# spanbert-base-cased-few-shot-k-32-finetuned-squad-seed-6\n\nThis model is a fine-tuned version of SpanBERT/spanbert-base-cased on the squad dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- training_steps: 200", "### Training results", "### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ 42, 55, 6, 12, 8, 3, 104, 4, 38 ]
[ "passage: TAGS\n#transformers #pytorch #bert #question-answering #generated_from_trainer #dataset-squad #endpoints_compatible #region-us \n# spanbert-base-cased-few-shot-k-32-finetuned-squad-seed-6\n\nThis model is a fine-tuned version of SpanBERT/spanbert-base-cased on the squad dataset.## Model description\n\nMore information needed## Intended uses & limitations\n\nMore information needed## Training and evaluation data\n\nMore information needed## Training procedure### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- training_steps: 200### Training results### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ -0.0986977368593216, 0.09716949611902237, -0.0023116290103644133, 0.09207946062088013, 0.1242663636803627, 0.01926584355533123, 0.09400489926338196, 0.1290326863527298, -0.09887884557247162, 0.0683203637599945, 0.08735819160938263, 0.033442314714193344, 0.04136065021157265, 0.14060406386852264, -0.005303698126226664, -0.2780936658382416, -0.0010462818900123239, -0.0034778807312250137, -0.052460312843322754, 0.12019984424114227, 0.08880690485239029, -0.10953827202320099, 0.07369787991046906, 0.0070250676944851875, -0.15324610471725464, 0.017516659572720528, -0.03124157153069973, -0.033429794013500214, 0.12332598119974136, -0.02828005515038967, 0.10701756179332733, 0.02911519818007946, 0.1376994550228119, -0.21013259887695312, 0.007351486478000879, 0.07738464325666428, 0.05502588301897049, 0.09756718575954437, 0.04806572571396828, 0.012608363293111324, 0.10114133358001709, -0.14758378267288208, 0.09469737112522125, 0.03007120080292225, -0.08956607431173325, -0.15335892140865326, -0.08887612819671631, 0.026593174785375595, 0.05228765681385994, 0.07609419524669647, 0.0025279794353991747, 0.1330440491437912, -0.07251296937465668, 0.08611247688531876, 0.2512308359146118, -0.31378498673439026, -0.068245068192482, 0.02601276896893978, 0.0608009397983551, 0.062232598662376404, -0.12551836669445038, -0.0027521520387381315, 0.017316851764917374, 0.02768980711698532, 0.12265290319919586, -0.012255944311618805, -0.10433943569660187, -0.010844222269952297, -0.12343057245016098, -0.0015781112015247345, 0.06148137152194977, 0.029413040727376938, -0.04968716576695442, -0.10744228959083557, -0.06755983084440231, -0.07955159991979599, -0.022668087854981422, -0.05153510347008705, 0.04678110405802727, -0.05170676112174988, -0.09761445969343185, -0.04320508614182472, -0.05966291204094887, -0.0818822979927063, -0.005889789201319218, 0.16904638707637787, 0.03380902484059334, 0.019946638494729996, -0.030807092785835266, 0.11630375683307648, 0.029387956485152245, -0.13801456987857819, -0.011012658476829529, -0.003469478338956833, -0.09790125489234924, -0.04069007188081741, -0.056114740669727325, -0.005721575114876032, 0.0025443092454224825, 0.16387756168842316, -0.07268530130386353, 0.07477481663227081, 0.014426002278923988, -0.027094140648841858, -0.01532353088259697, 0.15181122720241547, -0.04142264649271965, -0.044890351593494415, -0.016838766634464264, 0.08191804587841034, -0.0028213663026690483, -0.02058490552008152, -0.06430046260356903, -0.02871669828891754, 0.09508528560400009, 0.055507879704236984, -0.06022977456450462, 0.037020258605480194, -0.026942741125822067, -0.02467700093984604, 0.016404082998633385, -0.11861372739076614, 0.04005352035164833, 0.0011395805049687624, -0.0768456757068634, -0.004851918667554855, 0.000034595010220073164, -0.010865225456655025, -0.005127550568431616, 0.09927020967006683, -0.08573008328676224, -0.005224813707172871, -0.06741565465927124, -0.078215092420578, -0.00031230837339535356, -0.14412415027618408, -0.00844544917345047, -0.05684566870331764, -0.16321289539337158, -0.03731180727481842, 0.04245350882411003, -0.07569587975740433, -0.015836546197533607, -0.04423420876264572, -0.06246667355298996, 0.022328751161694527, -0.012066529132425785, 0.20166566967964172, -0.050100311636924744, 0.08370240032672882, -0.008847318589687347, 0.048889804631471634, 0.029311304911971092, 0.038787174969911575, -0.09573396295309067, 0.025963064283132553, -0.13240239024162292, 0.08398476988077164, -0.08558029681444168, -0.0057861278764903545, -0.13711383938789368, -0.09877575188875198, 0.007460368797183037, -0.019199427217245102, 0.08882082253694534, 0.13428851962089539, -0.195358544588089, -0.020642157644033432, 0.1255474090576172, -0.0749702900648117, -0.04376658797264099, 0.06211799383163452, -0.06470534205436707, 0.03886525705456734, 0.05347545072436333, 0.20611394941806793, 0.06116865575313568, -0.1482594758272171, -0.006386274471879005, 0.013776788488030434, 0.05156060308218002, 0.028839463368058205, 0.0431368350982666, 0.0015425996389240026, 0.05453529208898544, 0.013302839361131191, -0.09347045421600342, -0.02166658826172352, -0.09135176986455917, -0.06458494067192078, -0.04946291446685791, -0.07537328451871872, 0.054595693945884705, 0.010607720352709293, 0.03852401301264763, -0.060025762766599655, -0.10519374907016754, 0.11465928703546524, 0.10071079432964325, -0.05565860867500305, 0.03794766589999199, -0.07680066674947739, 0.009630486369132996, -0.006744957994669676, -0.034735653549432755, -0.21341601014137268, -0.12471567094326019, 0.04778089374303818, -0.03424627706408501, 0.021068386733531952, 0.015482468530535698, 0.08539941906929016, 0.056328509002923965, -0.053350843489170074, -0.014531338587403297, -0.09884702414274216, 0.0016610861057415605, -0.11442398279905319, -0.19206708669662476, -0.08805128186941147, -0.04610442370176315, 0.09596884250640869, -0.17794305086135864, -0.009442637674510479, 0.023442337289452553, 0.1320587545633316, 0.02572542615234852, -0.06794265657663345, -0.0011628023348748684, 0.04311605542898178, 0.012473917566239834, -0.09623707830905914, 0.055301278829574585, 0.01182502694427967, -0.10633287578821182, -0.045951567590236664, -0.12656541168689728, -0.01866566762328148, 0.0502232201397419, 0.06076934561133385, -0.09958414733409882, -0.059495989233255386, -0.07427410781383514, -0.03827454149723053, -0.07870862632989883, 0.016924839466810226, 0.21199484169483185, 0.03928840905427933, 0.10939765721559525, -0.061313752084970474, -0.08194854110479355, -0.00803228560835123, 0.03091179020702839, 0.024471847340464592, 0.0897752046585083, 0.02366858907043934, -0.044976428151130676, 0.0665096864104271, 0.10400468856096268, -0.02159482054412365, 0.1307450234889984, -0.05603479593992233, -0.08484150469303131, -0.02962246723473072, -0.01716057024896145, -0.026415372267365456, 0.1249934583902359, -0.03672210872173309, 0.0010010219411924481, 0.03427145630121231, 0.04043944180011749, 0.011347724124789238, -0.16876772046089172, 0.0016598625807091594, 0.0305044986307621, -0.056153956800699234, -0.04424033313989639, -0.004594410303980112, 0.01816064491868019, 0.0865691751241684, 0.030689191073179245, -0.003627092344686389, 0.007003704085946083, -0.013673017732799053, -0.05688369274139404, 0.1912386119365692, -0.09242814779281616, -0.07417639344930649, -0.07176267355680466, 0.017323412001132965, -0.04368085041642189, -0.03719639778137207, 0.006250767968595028, -0.09389844536781311, -0.02845214307308197, -0.08068429678678513, -0.02096414752304554, -0.028230594471096992, 0.019575685262680054, 0.023991188034415245, -0.018293581902980804, 0.07919798791408539, -0.13622444868087769, 0.007901154458522797, -0.04941317439079285, -0.0986897423863411, 0.004126048646867275, 0.07489531487226486, 0.09063506871461868, 0.08439408242702484, -0.013510128483176231, 0.02456515282392502, -0.03958263620734215, 0.23191678524017334, -0.055789556354284286, 0.01119632925838232, 0.11739075183868408, -0.01432717964053154, 0.05192841589450836, 0.09430710971355438, 0.037506137043237686, -0.09195567667484283, 0.023609885945916176, 0.07974694669246674, -0.037486810237169266, -0.22925402224063873, -0.014959522522985935, -0.006141891703009605, -0.08365152776241302, 0.10246917605400085, 0.03177691996097565, -0.05223754793405533, 0.041391484439373016, 0.019296742975711823, -0.010264054872095585, -0.040335021913051605, 0.06870583444833755, 0.07624876499176025, 0.04725653678178787, 0.108880914747715, -0.004970644600689411, -0.01974673941731453, 0.054231494665145874, 0.016356736421585083, 0.2625410556793213, -0.0410456620156765, 0.10327089577913284, 0.032868482172489166, 0.1496991664171219, -0.021736452355980873, 0.06487269699573517, 0.0007111371960490942, -0.010009394027292728, -0.012285695411264896, -0.06182705610990524, -0.02844899706542492, 0.013829909265041351, -0.043439608067274094, 0.02286297082901001, -0.082034170627594, 0.027209265157580376, 0.02060331404209137, 0.2869991064071655, 0.031101157888770103, -0.2541731297969818, -0.07698088139295578, -0.014387518167495728, -0.05117417499423027, -0.05966813862323761, 0.00821943674236536, 0.1380586475133896, -0.1392732560634613, 0.04531624913215637, -0.0784531682729721, 0.08677312731742859, -0.0493021160364151, 0.011418309062719345, 0.05073627084493637, 0.14914095401763916, -0.01723884418606758, 0.055148687213659286, -0.19450509548187256, 0.2546672523021698, 0.01742849498987198, 0.10372726619243622, -0.06537918746471405, 0.013099892996251583, 0.02245408482849598, 0.017806582152843475, 0.11653142422437668, 0.002250244375318289, -0.07213209569454193, -0.14507801830768585, -0.09079046547412872, 0.048267658799886703, 0.14254681766033173, -0.04575280100107193, 0.0901329293847084, -0.03597624972462654, 0.012685112655162811, 0.03709934651851654, -0.0355391651391983, -0.14854055643081665, -0.08621430397033691, -0.0009407549514435232, 0.0074321129359304905, -0.007957415655255318, -0.061614055186510086, -0.1058604046702385, -0.008858710527420044, 0.1047619879245758, 0.004572833422571421, -0.05438484624028206, -0.15787792205810547, 0.08973678946495056, 0.1439332813024521, -0.058037638664245605, 0.011400829069316387, 0.016720963642001152, 0.11168339848518372, 0.03546442836523056, -0.07824642956256866, 0.062102265655994415, -0.06210973858833313, -0.17988814413547516, -0.055129408836364746, 0.12357719987630844, 0.08260282129049301, 0.04966917261481285, -0.00040064414497464895, 0.05042470991611481, 0.0010630508186295629, -0.09622829407453537, 0.03546219691634178, 0.007021818310022354, 0.03596419095993042, 0.017180219292640686, -0.08832859247922897, 0.09829789400100708, -0.03585689887404442, 0.010038649663329124, 0.1305558830499649, 0.20778919756412506, -0.10545558482408524, 0.11219681799411774, 0.085820771753788, -0.07419341057538986, -0.16698119044303894, 0.06039188429713249, 0.13062144815921783, 0.012009457685053349, 0.08506997674703598, -0.21437968313694, 0.12328255921602249, 0.09845418483018875, -0.010784272104501724, 0.009166683070361614, -0.27824652194976807, -0.12721776962280273, 0.05868542566895485, 0.1100124716758728, 0.042409464716911316, -0.1167992651462555, -0.036159127950668335, -0.003188605885952711, -0.0922379121184349, 0.11110704392194748, -0.07280688732862473, 0.11574111133813858, -0.016558295115828514, 0.11187443882226944, 0.02530510537326336, -0.031011033803224564, 0.10748428106307983, 0.06054132431745529, 0.08008121699094772, -0.03440588712692261, 0.008545706048607826, 0.0548444464802742, -0.055818770080804825, 0.015847815200686455, -0.04399874806404114, 0.06698208302259445, -0.14980871975421906, -0.000413268047850579, -0.09239093214273453, 0.05031393840909004, -0.04884765297174454, -0.0713646337389946, -0.013279806822538376, 0.05392899364233017, 0.07434232532978058, -0.04014575481414795, 0.025550734251737595, -0.005708906799554825, 0.09811169654130936, 0.09506839513778687, 0.08144976198673248, -0.013859527185559273, -0.09203255921602249, 0.010372204706072807, 0.004369921050965786, 0.05421353504061699, -0.10525479912757874, 0.013270213268697262, 0.13742505013942719, 0.065956249833107, 0.09560099244117737, 0.048197146505117416, -0.04006802290678024, 0.0037445530761033297, 0.013073809444904327, -0.12046001106500626, -0.11434996128082275, 0.023812847211956978, -0.04560919106006622, -0.15530557930469513, 0.022191133350133896, 0.11976318061351776, -0.04055274277925491, -0.01765815168619156, -0.0081228232011199, 0.005365766119211912, -0.013472890481352806, 0.18622344732284546, 0.04538007080554962, 0.06364911794662476, -0.0875796526670456, 0.10657127946615219, 0.035124771296978, -0.05287205055356026, 0.05078873038291931, 0.06363870948553085, -0.10365036129951477, 0.00815916620194912, 0.07706254720687866, 0.1249031350016594, -0.04817810654640198, -0.009130607359111309, -0.0892772227525711, -0.08446715027093887, 0.04116535931825638, 0.13179463148117065, 0.05397311970591545, -0.0013800554443150759, -0.07096122205257416, 0.041708238422870636, -0.11900978535413742, 0.07158973813056946, 0.044823676347732544, 0.07042568922042847, -0.10083996504545212, 0.12968780100345612, -0.0017610196955502033, 0.026862820610404015, -0.026146119460463524, 0.015595907345414162, -0.09575311839580536, -0.024729426950216293, -0.10724297910928726, -0.025701679289340973, -0.009313964284956455, 0.0005390124279074371, -0.022745458409190178, -0.07404002547264099, -0.02660762146115303, 0.03937503695487976, -0.07600745558738708, -0.05037873983383179, 0.014504818245768547, 0.040237586945295334, -0.15032511949539185, 0.0016270654741674662, 0.028360718861222267, -0.09273751080036163, 0.0905848890542984, 0.06221059337258339, 0.01526377908885479, 0.02730458602309227, -0.11265084892511368, -0.02792479284107685, -0.010519103147089481, 0.005130521021783352, 0.06474852561950684, -0.09708988666534424, -0.02725270390510559, -0.039185866713523865, 0.04656212776899338, 0.017500869929790497, 0.09837936609983444, -0.11713524907827377, -0.0054887873120605946, -0.04052447900176048, -0.04168161004781723, -0.06271746009588242, 0.03579718992114067, 0.1027824878692627, 0.05530141666531563, 0.14893871545791626, -0.07363106310367584, 0.059222932904958725, -0.20120589435100555, -0.03579162061214447, 0.01028489414602518, -0.04273327440023422, -0.08354853093624115, -0.05188589543104172, 0.08919982612133026, -0.045133233070373535, 0.10411714762449265, -0.020705081522464752, 0.11081884056329727, 0.042350564152002335, -0.00987725704908371, -0.05893867835402489, -0.006139643024653196, 0.18777331709861755, 0.05812094733119011, -0.016833245754241943, 0.13082638382911682, 0.00006657731137238443, 0.029395362362265587, 0.08670996129512787, 0.22483594715595245, 0.16175521910190582, 0.0013438570313155651, 0.06401550769805908, 0.06130263954401016, -0.07364987581968307, -0.15163056552410126, 0.1176610067486763, -0.018352266401052475, 0.10170881450176239, -0.06778533011674881, 0.1902708262205124, 0.03834983706474304, -0.1823710799217224, 0.0635082796216011, -0.026065798476338387, -0.11153407394886017, -0.12150554358959198, -0.02353002317249775, -0.06918095797300339, -0.11976855248212814, 0.02426471933722496, -0.1174858883023262, 0.06190316006541252, 0.10253610461950302, 0.008728046901524067, 0.038016218692064285, 0.18528339266777039, -0.044401392340660095, 0.011011461727321148, 0.08357298374176025, 0.01948610134422779, 0.006273453123867512, -0.0433061458170414, -0.06578768044710159, 0.036219481378793716, 0.03263106569647789, 0.06227320432662964, -0.05264870822429657, -0.0011024253908544779, 0.008787858299911022, -0.0068701403215527534, -0.07681722193956375, 0.010282261297106743, 0.010772976092994213, 0.054403726011514664, 0.05211775377392769, 0.04606860876083374, 0.005472821183502674, -0.05365559086203575, 0.29760321974754333, -0.07029671221971512, -0.06868284195661545, -0.1294003427028656, 0.20750504732131958, 0.02199656516313553, -0.022021273151040077, 0.05468007177114487, -0.08405088633298874, -0.013644689694046974, 0.16945478320121765, 0.13151437044143677, -0.09323886036872864, -0.015986111015081406, -0.01406671479344368, -0.010071593336760998, -0.013948342762887478, 0.11697913706302643, 0.0766688734292984, -0.010359316132962704, -0.06955424696207047, -0.01842193491756916, -0.021313417702913284, -0.05678478255867958, -0.061380743980407715, 0.06976177543401718, 0.026432521641254425, -0.0072057899087667465, -0.06168941780924797, 0.06975621730089188, -0.0008303184295073152, -0.24228064715862274, 0.042565394192934036, -0.17120273411273956, -0.17039676010608673, -0.026463937014341354, 0.07255928963422775, 0.006372199393808842, 0.05740118399262428, 0.000826039060484618, 0.020098136737942696, 0.12210941314697266, -0.012335383333265781, -0.003526065731421113, -0.11029944568872452, 0.11811774969100952, -0.08659633249044418, 0.19682207703590393, -0.006819764152169228, 0.053875964134931564, 0.09678394347429276, 0.040521956980228424, -0.1393292397260666, 0.017362095415592194, 0.0653749480843544, -0.13014306128025055, -0.0015971452230587602, 0.14987480640411377, -0.03321990743279457, 0.06261564791202545, 0.025737185031175613, -0.15349054336547852, 0.007175884209573269, 0.016026854515075684, -0.03733941540122032, -0.06770605593919754, -0.007119782734662294, -0.05202222615480423, 0.16782356798648834, 0.21928487718105316, -0.02958107367157936, 0.0053253937512636185, -0.08943041414022446, 0.010548874735832214, 0.045428402721881866, 0.06473004072904587, -0.04231264442205429, -0.20457394421100616, 0.010392826981842518, 0.06366275250911713, -0.004461780656129122, -0.1948833465576172, -0.09894385188817978, 0.0529630221426487, -0.04055685177445412, -0.04217951372265816, 0.09502807259559631, 0.021055735647678375, 0.036844950169324875, -0.01195201463997364, -0.12097208946943283, -0.02191832661628723, 0.1387224644422531, -0.1786680668592453, -0.028823137283325195 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # spanbert-base-cased-few-shot-k-32-finetuned-squad-seed-8 This model is a fine-tuned version of [SpanBERT/spanbert-base-cased](https://huggingface.co/SpanBERT/spanbert-base-cased) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 200 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
{"tags": ["generated_from_trainer"], "datasets": ["squad"], "model-index": [{"name": "spanbert-base-cased-few-shot-k-32-finetuned-squad-seed-8", "results": []}]}
question-answering
anas-awadalla/spanbert-base-cased-few-shot-k-32-finetuned-squad-seed-8
[ "transformers", "pytorch", "bert", "question-answering", "generated_from_trainer", "dataset:squad", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #bert #question-answering #generated_from_trainer #dataset-squad #endpoints_compatible #region-us
# spanbert-base-cased-few-shot-k-32-finetuned-squad-seed-8 This model is a fine-tuned version of SpanBERT/spanbert-base-cased on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 200 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
[ "# spanbert-base-cased-few-shot-k-32-finetuned-squad-seed-8\n\nThis model is a fine-tuned version of SpanBERT/spanbert-base-cased on the squad dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- training_steps: 200", "### Training results", "### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #bert #question-answering #generated_from_trainer #dataset-squad #endpoints_compatible #region-us \n", "# spanbert-base-cased-few-shot-k-32-finetuned-squad-seed-8\n\nThis model is a fine-tuned version of SpanBERT/spanbert-base-cased on the squad dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- training_steps: 200", "### Training results", "### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ 42, 55, 6, 12, 8, 3, 104, 4, 38 ]
[ "passage: TAGS\n#transformers #pytorch #bert #question-answering #generated_from_trainer #dataset-squad #endpoints_compatible #region-us \n# spanbert-base-cased-few-shot-k-32-finetuned-squad-seed-8\n\nThis model is a fine-tuned version of SpanBERT/spanbert-base-cased on the squad dataset.## Model description\n\nMore information needed## Intended uses & limitations\n\nMore information needed## Training and evaluation data\n\nMore information needed## Training procedure### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- training_steps: 200### Training results### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ -0.09926343709230423, 0.09803375601768494, -0.0023355018347501755, 0.09246624261140823, 0.12422728538513184, 0.019909044727683067, 0.09348292648792267, 0.1289600133895874, -0.0984756350517273, 0.06783876568078995, 0.08768877387046814, 0.032717280089855194, 0.041286688297986984, 0.13975128531455994, -0.00544354971498251, -0.2781513035297394, -0.0015492640668526292, -0.0028630965389311314, -0.05055268853902817, 0.1197071298956871, 0.08887344598770142, -0.10957146435976028, 0.0736064612865448, 0.00679375696927309, -0.15256191790103912, 0.01736271195113659, -0.030724558979272842, -0.03400476276874542, 0.12361639738082886, -0.02756159007549286, 0.10705176740884781, 0.028345391154289246, 0.1377917230129242, -0.21090422570705414, 0.007097307126969099, 0.07763848453760147, 0.05495075508952141, 0.09763973206281662, 0.046752285212278366, 0.013422627002000809, 0.10015816986560822, -0.14810626208782196, 0.09499699622392654, 0.029699556529521942, -0.08931837975978851, -0.15384726226329803, -0.08794067054986954, 0.027826376259326935, 0.051772069185972214, 0.07551656663417816, 0.003563088132068515, 0.13475173711776733, -0.07128344476222992, 0.0865008607506752, 0.25137999653816223, -0.3134840130805969, -0.06745388358831406, 0.02500215545296669, 0.06044599041342735, 0.06351906806230545, -0.1246546134352684, -0.002563095185905695, 0.016985265538096428, 0.02749260514974594, 0.12314444780349731, -0.01303727738559246, -0.1058385893702507, -0.010917415842413902, -0.12288815528154373, -0.0020169690251350403, 0.062309980392456055, 0.029655249789357185, -0.04990458860993385, -0.10744916647672653, -0.06815753877162933, -0.08033624291419983, -0.023103831335902214, -0.051911309361457825, 0.04616463556885719, -0.05130735784769058, -0.09678557515144348, -0.04323834553360939, -0.05912158265709877, -0.08114129304885864, -0.005671611521393061, 0.16911624372005463, 0.03395792469382286, 0.019880300387740135, -0.029962701722979546, 0.11585086584091187, 0.027409590780735016, -0.1381019949913025, -0.010539739392697811, -0.0031912620179355145, -0.09801606088876724, -0.040828339755535126, -0.05644059553742409, -0.006900042295455933, 0.00204021530225873, 0.1653245985507965, -0.07236246764659882, 0.07451476156711578, 0.014995289035141468, -0.026483530178666115, -0.014875844120979309, 0.1527080088853836, -0.0421452522277832, -0.04562118276953697, -0.01596636325120926, 0.08146243542432785, -0.001948941731825471, -0.02150275558233261, -0.06548025459051132, -0.029529446735978127, 0.09568056464195251, 0.054878268390893936, -0.06019465625286102, 0.03645315393805504, -0.02713933028280735, -0.02488700859248638, 0.017208851873874664, -0.1184844970703125, 0.04028394818305969, 0.001058027846738696, -0.07660867273807526, -0.004087965004146099, 0.000889801187440753, -0.010258805006742477, -0.005507303401827812, 0.09816838055849075, -0.08488655835390091, -0.004721370525658131, -0.06708651781082153, -0.07836337387561798, -0.00003171892240061425, -0.14404207468032837, -0.007539673242717981, -0.0580294094979763, -0.16339142620563507, -0.03678203001618385, 0.042780403047800064, -0.07515361160039902, -0.015539252199232578, -0.04323657229542732, -0.06102365627884865, 0.022166814655065536, -0.01268794946372509, 0.1995120644569397, -0.05026286840438843, 0.08335345983505249, -0.008747042156755924, 0.048627693206071854, 0.027985336259007454, 0.03888208791613579, -0.09528813511133194, 0.025828272104263306, -0.13243378698825836, 0.08400779217481613, -0.08489136397838593, -0.0057389624416828156, -0.13574625551700592, -0.09870912879705429, 0.00841568037867546, -0.018571794033050537, 0.08960539847612381, 0.1334824562072754, -0.19517704844474792, -0.02040979638695717, 0.12471303343772888, -0.07452888041734695, -0.043979279696941376, 0.06363382935523987, -0.06487400084733963, 0.03886809200048447, 0.05402583256363869, 0.2061096429824829, 0.06296603381633759, -0.1483597457408905, -0.005682696122676134, 0.015290958806872368, 0.052227918058633804, 0.02770003117620945, 0.04301607981324196, 0.0019807773642241955, 0.05479472875595093, 0.013620484620332718, -0.0923023670911789, -0.020838109776377678, -0.09130105376243591, -0.06505297869443893, -0.04971465468406677, -0.07516548782587051, 0.0543082021176815, 0.011390991508960724, 0.038539908826351166, -0.059761445969343185, -0.10583803057670593, 0.11625438928604126, 0.1004091203212738, -0.05600910261273384, 0.03794921189546585, -0.07644076645374298, 0.0101796118542552, -0.006140409503132105, -0.03465558961033821, -0.21294155716896057, -0.12351595610380173, 0.04794970899820328, -0.033965736627578735, 0.02058158814907074, 0.015744071453809738, 0.08472390472888947, 0.05677873641252518, -0.05279712378978729, -0.013755188323557377, -0.09834739565849304, 0.001912650652229786, -0.11523997038602829, -0.19084139168262482, -0.08820419758558273, -0.04552225396037102, 0.09649118036031723, -0.17869232594966888, -0.008944082073867321, 0.02298351749777794, 0.1313338279724121, 0.025209838524460793, -0.06789133697748184, -0.0011771749705076218, 0.04376176372170448, 0.012271976098418236, -0.09653905034065247, 0.05548252537846565, 0.012468075379729271, -0.1073247566819191, -0.04700207710266113, -0.12691834568977356, -0.017765812575817108, 0.04996737837791443, 0.05983272194862366, -0.09952420741319656, -0.060073330998420715, -0.07371972501277924, -0.038082629442214966, -0.07792865484952927, 0.016165880486369133, 0.2130226343870163, 0.039507877081632614, 0.11030997335910797, -0.061178456991910934, -0.0813475251197815, -0.007902517914772034, 0.030708573758602142, 0.025120310485363007, 0.0888807624578476, 0.02317127399146557, -0.04269816726446152, 0.06573382765054703, 0.1031356230378151, -0.022625315934419632, 0.130062073469162, -0.05570349469780922, -0.0844443142414093, -0.029894577339291573, -0.017464328557252884, -0.026232779026031494, 0.12500542402267456, -0.03829805925488472, 0.0003585406520869583, 0.034517984837293625, 0.03998730331659317, 0.011526827700436115, -0.16873984038829803, 0.0015327517176046968, 0.031489718705415726, -0.05562065169215202, -0.04338363930583, -0.005464727059006691, 0.017686229199171066, 0.08567342907190323, 0.030370695516467094, -0.003966694697737694, 0.00769948773086071, -0.013315990567207336, -0.0571967288851738, 0.19057431817054749, -0.09239900857210159, -0.07559353858232498, -0.07322592288255692, 0.0178266279399395, -0.04376048222184181, -0.03720879927277565, 0.0065116072073578835, -0.09219399839639664, -0.028211094439029694, -0.08102203160524368, -0.02278212457895279, -0.02762029506266117, 0.019542863592505455, 0.02440614253282547, -0.018733995035290718, 0.07974172383546829, -0.1360035240650177, 0.007633812725543976, -0.04873354732990265, -0.09778883308172226, 0.004571565892547369, 0.07454220950603485, 0.09154071658849716, 0.08491799235343933, -0.014399862848222256, 0.024360155686736107, -0.0393020398914814, 0.23160965740680695, -0.05529900640249252, 0.011533095501363277, 0.11768528074026108, -0.015353837981820107, 0.05207790806889534, 0.09366792440414429, 0.0378030464053154, -0.09197868406772614, 0.02314174734055996, 0.07862844318151474, -0.03817174211144447, -0.22835604846477509, -0.014901414513587952, -0.00623167073354125, -0.08337629586458206, 0.10268282890319824, 0.03160896524786949, -0.051676660776138306, 0.04192708432674408, 0.019562631845474243, -0.00862675067037344, -0.041160888969898224, 0.06854420155286789, 0.07679495215415955, 0.04724826291203499, 0.10868638008832932, -0.004651697352528572, -0.019883008673787117, 0.05451061949133873, 0.015699194744229317, 0.26044192910194397, -0.04131641983985901, 0.10416863858699799, 0.0316375307738781, 0.15044298768043518, -0.021776108071208, 0.06510432064533234, 0.0003940443566534668, -0.010344412177801132, -0.012445330619812012, -0.06202547624707222, -0.03008536994457245, 0.014401298947632313, -0.04392479732632637, 0.023281633853912354, -0.08232077211141586, 0.02800697274506092, 0.020269043743610382, 0.28651800751686096, 0.030928559601306915, -0.25459200143814087, -0.0772835910320282, -0.014770781621336937, -0.050941091030836105, -0.06029089167714119, 0.00815594382584095, 0.1389959454536438, -0.13878150284290314, 0.04482736065983772, -0.07758119702339172, 0.08687935769557953, -0.05041588097810745, 0.011721456423401833, 0.0497933067381382, 0.14901098608970642, -0.016878735274076462, 0.05557812750339508, -0.1951000988483429, 0.25295984745025635, 0.017840122804045677, 0.10409659147262573, -0.065742626786232, 0.01362514030188322, 0.021951982751488686, 0.019699109718203545, 0.11580029875040054, 0.002691019792109728, -0.07068829238414764, -0.14660263061523438, -0.09114933013916016, 0.048296041786670685, 0.14129161834716797, -0.04419543966650963, 0.08978275209665298, -0.036076344549655914, 0.012793561443686485, 0.037366028875112534, -0.03485000506043434, -0.14840079843997955, -0.08693540841341019, -0.001524685532785952, 0.008694256655871868, -0.007671569474041462, -0.061327144503593445, -0.10541583597660065, -0.010131504386663437, 0.10500910133123398, 0.0054207053035497665, -0.05464291200041771, -0.1578587293624878, 0.09029972553253174, 0.14306262135505676, -0.0582045279443264, 0.01110503263771534, 0.01669435203075409, 0.11182998865842819, 0.03524256870150566, -0.07741579413414001, 0.062130145728588104, -0.06178595498204231, -0.17873986065387726, -0.05548153817653656, 0.12271704524755478, 0.08215665072202682, 0.049881402403116226, 0.00006488761573564261, 0.05012769252061844, 0.0009344883146695793, -0.09626071900129318, 0.03423244133591652, 0.00757526746019721, 0.03506181389093399, 0.017126135528087616, -0.08836211264133453, 0.09931986778974533, -0.0355682410299778, 0.010303233750164509, 0.13171035051345825, 0.20717328786849976, -0.10581304877996445, 0.11132868379354477, 0.0867212638258934, -0.07408463954925537, -0.16673749685287476, 0.05994101241230965, 0.13001921772956848, 0.012148838490247726, 0.0851266160607338, -0.2138296663761139, 0.12329067289829254, 0.09942955523729324, -0.010317943058907986, 0.008847622200846672, -0.27820971608161926, -0.1273958832025528, 0.0595981739461422, 0.10994471609592438, 0.04455704987049103, -0.11730580031871796, -0.03606439754366875, -0.004028360825031996, -0.09353125840425491, 0.1102006733417511, -0.072503000497818, 0.11553394794464111, -0.016292179003357887, 0.1104108914732933, 0.02549699880182743, -0.031190142035484314, 0.10793350636959076, 0.061151765286922455, 0.08005395531654358, -0.034665293991565704, 0.008984201587736607, 0.054601434618234634, -0.05600022152066231, 0.0169502105563879, -0.043802279978990555, 0.06708955764770508, -0.1516462117433548, -0.0007709331694059074, -0.0910164937376976, 0.050864022225141525, -0.04844692721962929, -0.07178536057472229, -0.013177560642361641, 0.05279207229614258, 0.07415671646595001, -0.04001924768090248, 0.026513902470469475, -0.00531373405829072, 0.09722844511270523, 0.09674122184515, 0.07999762892723083, -0.017144372686743736, -0.09218724071979523, 0.010401892475783825, 0.0041431849822402, 0.05463920533657074, -0.10494855791330338, 0.013769567012786865, 0.13762697577476501, 0.06594453006982803, 0.09584075212478638, 0.04714398831129074, -0.03947184234857559, 0.003768053837120533, 0.012574638240039349, -0.12026602774858475, -0.11350958049297333, 0.02317047119140625, -0.04598565399646759, -0.1547568440437317, 0.021162565797567368, 0.12029165774583817, -0.04141208156943321, -0.016958575695753098, -0.008422449231147766, 0.004056185018271208, -0.013505125418305397, 0.18584948778152466, 0.04603175073862076, 0.06342316418886185, -0.08745048940181732, 0.106195367872715, 0.03567364811897278, -0.05204557254910469, 0.05128731578588486, 0.06306961178779602, -0.10400150716304779, 0.007982708513736725, 0.07713545858860016, 0.12483023852109909, -0.04898742586374283, -0.01029442623257637, -0.089841328561306, -0.08339638262987137, 0.04074441269040108, 0.13053975999355316, 0.05439111962914467, -0.001716137514449656, -0.07117263972759247, 0.0409245491027832, -0.11925824731588364, 0.0710538998246193, 0.044312238693237305, 0.07063081115484238, -0.10111155360937119, 0.1310303658246994, -0.0009873805101960897, 0.026939835399389267, -0.02615530975162983, 0.015090840868651867, -0.09575331956148148, -0.02438288740813732, -0.10867127031087875, -0.02548130415380001, -0.00917030218988657, 0.0010223612189292908, -0.0227594505995512, -0.07379776984453201, -0.026595966890454292, 0.039279185235500336, -0.07528334110975266, -0.05018424615263939, 0.01485705841332674, 0.039833344519138336, -0.1498723328113556, 0.0012485008919611573, 0.02802547998726368, -0.09255437552928925, 0.0908665880560875, 0.061686672270298004, 0.014891421422362328, 0.02696862816810608, -0.11276312172412872, -0.027758928015828133, -0.010479702614247799, 0.0060648429207503796, 0.06473970413208008, -0.09549792855978012, -0.026394633576273918, -0.038700416684150696, 0.04643448442220688, 0.01737915351986885, 0.09885995835065842, -0.11737392097711563, -0.005380831193178892, -0.04041833057999611, -0.04174135997891426, -0.06319449841976166, 0.035873644053936005, 0.10250070691108704, 0.05455784127116203, 0.14881110191345215, -0.07347214221954346, 0.059027206152677536, -0.20151175558567047, -0.036052003502845764, 0.010553311556577682, -0.0423104353249073, -0.08327064663171768, -0.05283114314079285, 0.0889257863163948, -0.044564589858055115, 0.1058555543422699, -0.02055731788277626, 0.11143022775650024, 0.04186518117785454, -0.010520683601498604, -0.058819856494665146, -0.006872687954455614, 0.1887088268995285, 0.05934930220246315, -0.016819758340716362, 0.1300118863582611, 0.0003921398310922086, 0.030505826696753502, 0.08611442893743515, 0.22213056683540344, 0.16160792112350464, 0.0005529632908292115, 0.06407225877046585, 0.06112869828939438, -0.07309403270483017, -0.15177351236343384, 0.11731421202421188, -0.018465396016836166, 0.10198380053043365, -0.06764987111091614, 0.1902623325586319, 0.03844861313700676, -0.18224704265594482, 0.06326964497566223, -0.025303591042757034, -0.11181355267763138, -0.12167225033044815, -0.02303396724164486, -0.06922456622123718, -0.11987947672605515, 0.0238109789788723, -0.11685209721326828, 0.06139471381902695, 0.10290201753377914, 0.00824659038335085, 0.03781485557556152, 0.18475341796875, -0.04445694386959076, 0.011442173272371292, 0.08321110159158707, 0.019295180216431618, 0.00666129169985652, -0.04447546601295471, -0.06659048795700073, 0.03631235659122467, 0.03273800387978554, 0.0629219189286232, -0.052715789526700974, 0.0008350475109182298, 0.00921336468309164, -0.006492447108030319, -0.07726766914129257, 0.010170924477279186, 0.010141984559595585, 0.05405089259147644, 0.050718873739242554, 0.04636791720986366, 0.005581536330282688, -0.05389363318681717, 0.2958619296550751, -0.0696897953748703, -0.06933937221765518, -0.12930428981781006, 0.20656098425388336, 0.0224453154951334, -0.021660950034856796, 0.05465502664446831, -0.08405798673629761, -0.012987415306270123, 0.1696757972240448, 0.13075155019760132, -0.09389356523752213, -0.01600019261240959, -0.013748697005212307, -0.010172701440751553, -0.015107087790966034, 0.11756132543087006, 0.07685165107250214, -0.011455175466835499, -0.06883551180362701, -0.0185954961925745, -0.021550238132476807, -0.05679558217525482, -0.06257553398609161, 0.06895127892494202, 0.0265792328864336, -0.006426288280636072, -0.06128358095884323, 0.0692233145236969, 0.00009735589992487803, -0.24285008013248444, 0.04288073256611824, -0.17143514752388, -0.17018282413482666, -0.026311885565519333, 0.07278940081596375, 0.0064856442622840405, 0.05707075819373131, 0.0008821299998089671, 0.02049754559993744, 0.12285879999399185, -0.012557774782180786, -0.004148528911173344, -0.10897624492645264, 0.11738470941781998, -0.08525194227695465, 0.19652768969535828, -0.006806211080402136, 0.05471091344952583, 0.09670887887477875, 0.040860455483198166, -0.13848525285720825, 0.01778442971408367, 0.06505777686834335, -0.12897038459777832, -0.0018385557923465967, 0.14835071563720703, -0.033294226974248886, 0.06252314895391464, 0.026216620579361916, -0.1531832218170166, 0.006387670058757067, 0.014782514423131943, -0.03730807825922966, -0.0673183724284172, -0.008708355017006397, -0.05138631910085678, 0.16788196563720703, 0.2183661013841629, -0.029319116845726967, 0.0047046123072505, -0.08961118757724762, 0.01037047989666462, 0.04597717523574829, 0.06455966830253601, -0.042471274733543396, -0.20418675243854523, 0.010852782987058163, 0.0635291337966919, -0.0042596496641635895, -0.19470083713531494, -0.09944775700569153, 0.05291980132460594, -0.041059985756874084, -0.04178059473633766, 0.09505394101142883, 0.021166730672121048, 0.03722022473812103, -0.012165398336946964, -0.1211882084608078, -0.02237573079764843, 0.13862189650535583, -0.17861929535865784, -0.029125096276402473 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # spanbert-base-cased-few-shot-k-512-finetuned-squad-seed-0 This model is a fine-tuned version of [SpanBERT/spanbert-base-cased](https://huggingface.co/SpanBERT/spanbert-base-cased) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10.0 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
{"tags": ["generated_from_trainer"], "datasets": ["squad"], "model-index": [{"name": "spanbert-base-cased-few-shot-k-512-finetuned-squad-seed-0", "results": []}]}
question-answering
anas-awadalla/spanbert-base-cased-few-shot-k-512-finetuned-squad-seed-0
[ "transformers", "pytorch", "bert", "question-answering", "generated_from_trainer", "dataset:squad", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #bert #question-answering #generated_from_trainer #dataset-squad #endpoints_compatible #region-us
# spanbert-base-cased-few-shot-k-512-finetuned-squad-seed-0 This model is a fine-tuned version of SpanBERT/spanbert-base-cased on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10.0 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
[ "# spanbert-base-cased-few-shot-k-512-finetuned-squad-seed-0\n\nThis model is a fine-tuned version of SpanBERT/spanbert-base-cased on the squad dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- num_epochs: 10.0", "### Training results", "### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #bert #question-answering #generated_from_trainer #dataset-squad #endpoints_compatible #region-us \n", "# spanbert-base-cased-few-shot-k-512-finetuned-squad-seed-0\n\nThis model is a fine-tuned version of SpanBERT/spanbert-base-cased on the squad dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- num_epochs: 10.0", "### Training results", "### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ 42, 56, 6, 12, 8, 3, 106, 4, 38 ]
[ "passage: TAGS\n#transformers #pytorch #bert #question-answering #generated_from_trainer #dataset-squad #endpoints_compatible #region-us \n# spanbert-base-cased-few-shot-k-512-finetuned-squad-seed-0\n\nThis model is a fine-tuned version of SpanBERT/spanbert-base-cased on the squad dataset.## Model description\n\nMore information needed## Intended uses & limitations\n\nMore information needed## Training and evaluation data\n\nMore information needed## Training procedure### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- num_epochs: 10.0### Training results### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ -0.09619186073541641, 0.11424469202756882, -0.0023460325319319963, 0.09160967171192169, 0.11931473761796951, 0.0222989022731781, 0.10062847286462784, 0.12891706824302673, -0.09665769338607788, 0.08748069405555725, 0.0878918468952179, 0.039508260786533356, 0.047779690474271774, 0.1463567018508911, -0.020621174946427345, -0.259102463722229, 0.010331019759178162, -0.004004384391009808, -0.03417292237281799, 0.11181710660457611, 0.0846916139125824, -0.11070802807807922, 0.08647225797176361, 0.014961148612201214, -0.1533486545085907, 0.019199365749955177, -0.03679472208023071, -0.03508223220705986, 0.11322050541639328, -0.032233331352472305, 0.10896486788988113, 0.025081219151616096, 0.1334080994129181, -0.21045327186584473, 0.005117871332913637, 0.07437635958194733, 0.0454922690987587, 0.10076765716075897, 0.05206679925322533, 0.01448766142129898, 0.0894092470407486, -0.15310493111610413, 0.09271236509084702, 0.030401045456528664, -0.09170734882354736, -0.13117776811122894, -0.09629125148057938, 0.025488832965493202, 0.051327429711818695, 0.06898684054613113, 0.001692401710897684, 0.15219981968402863, -0.059466443955898285, 0.07903765141963959, 0.267377644777298, -0.32606977224349976, -0.06381887197494507, 0.03211598843336105, 0.05971338227391243, 0.05209185183048248, -0.12322580069303513, -0.006130116526037455, 0.0270221009850502, 0.029414743185043335, 0.11783584952354431, -0.016664739698171616, -0.11225339025259018, -0.013319111429154873, -0.12740354239940643, -0.0008079814142547548, 0.07087966799736023, 0.03511830419301987, -0.051906611770391464, -0.09469397366046906, -0.07560622692108154, -0.09402250498533249, -0.024952426552772522, -0.0639747902750969, 0.05660509690642357, -0.054803479462862015, -0.08085417747497559, -0.035656481981277466, -0.05665753409266472, -0.07618462294340134, -0.019526276737451553, 0.157478928565979, 0.039754509925842285, 0.021099666133522987, -0.033816125243902206, 0.10834866762161255, 0.0028346313629299402, -0.14183028042316437, -0.015819285064935684, -0.0014104042202234268, -0.09694512188434601, -0.04671577736735344, -0.04987572878599167, -0.019077427685260773, 0.010794983245432377, 0.1778779923915863, -0.08025147765874863, 0.07574822753667831, 0.00899700541049242, -0.02891162782907486, -0.0065866573713719845, 0.14800970256328583, -0.04361874982714653, -0.0466899648308754, -0.010015858337283134, 0.07322606444358826, 0.002995099173858762, -0.015265284106135368, -0.06446895748376846, -0.027004852890968323, 0.101927749812603, 0.04583033546805382, -0.05848934128880501, 0.0402611680328846, -0.02355027385056019, -0.028529632836580276, 0.016800720244646072, -0.11475755274295807, 0.04455243796110153, -0.0011247835354879498, -0.08443493396043777, -0.0005749976262450218, 0.0008479595999233425, -0.005419112741947174, -0.007729162462055683, 0.1118205264210701, -0.09971515834331512, -0.0024350646417587996, -0.0642186626791954, -0.08359704911708832, 0.009063446894288063, -0.1547849029302597, -0.016726642847061157, -0.05762948840856552, -0.16977302730083466, -0.032238662242889404, 0.03751494362950325, -0.07378493994474411, -0.007376588881015778, -0.04843074083328247, -0.06529387086629868, 0.025596410036087036, -0.01430688239634037, 0.1734120398759842, -0.05409983918070793, 0.07298780232667923, -0.0008298468892462552, 0.0462181381881237, 0.014396118931472301, 0.03584081679582596, -0.10540584474802017, 0.02492368035018444, -0.13772448897361755, 0.06862855702638626, -0.08460333198308945, -0.002697039395570755, -0.13303126394748688, -0.09764165431261063, 0.010056615807116032, -0.022511612623929977, 0.09100847691297531, 0.13833729922771454, -0.19417117536067963, -0.018945571035146713, 0.12678620219230652, -0.07527472823858261, -0.0641639307141304, 0.061803966760635376, -0.06061090901494026, 0.029406895861029625, 0.05168112367391586, 0.21143889427185059, 0.03849511966109276, -0.16785651445388794, -0.03284803777933121, -0.00724639231339097, 0.03998812288045883, 0.02722969651222229, 0.03983620926737785, 0.003954550717025995, 0.06415817141532898, 0.014155492186546326, -0.07575850188732147, -0.032694291323423386, -0.09157669544219971, -0.06477023661136627, -0.05464804172515869, -0.07194286584854126, 0.04057120904326439, 0.0035588389728218317, 0.04229973256587982, -0.0645512044429779, -0.1013663187623024, 0.11935868859291077, 0.09596791863441467, -0.04745170846581459, 0.03720896691083908, -0.07945312559604645, 0.01980036124587059, -0.01938987709581852, -0.0391198992729187, -0.2063767910003662, -0.13026070594787598, 0.05199168622493744, -0.05775579810142517, 0.033630866557359695, 0.0055394358932971954, 0.08142763376235962, 0.06121581792831421, -0.04343240708112717, -0.011632254347205162, -0.09368254244327545, 0.003233879804611206, -0.11717666685581207, -0.1891748011112213, -0.07731674611568451, -0.03973378986120224, 0.09261500835418701, -0.17308592796325684, -0.006887109484523535, 0.01585649698972702, 0.14450620114803314, 0.028097044676542282, -0.0686451718211174, -0.00317175080999732, 0.03825271502137184, 0.0019121242221444845, -0.09514423459768295, 0.044897548854351044, 0.007875144481658936, -0.09310827404260635, -0.06265608966350555, -0.13610562682151794, -0.010584814473986626, 0.060325976461172104, 0.05218540132045746, -0.09685302525758743, -0.04563253000378609, -0.07083559781312943, -0.04030855745077133, -0.07669606059789658, 0.013339054770767689, 0.201598659157753, 0.036005012691020966, 0.11288684606552124, -0.06671249866485596, -0.07771597057580948, -0.003317014081403613, 0.022426892071962357, 0.0124419080093503, 0.07681751251220703, 0.04168710485100746, -0.05292532220482826, 0.07522477954626083, 0.09880527853965759, -0.022387251257896423, 0.1250949651002884, -0.04617089033126831, -0.08372470736503601, -0.03346883878111839, -0.02476789988577366, -0.028039734810590744, 0.1246037632226944, -0.03907759487628937, 0.006133650429546833, 0.03680386021733284, 0.04517799988389015, 0.01699812337756157, -0.16167931258678436, 0.008118926547467709, 0.02166798897087574, -0.05336626619100571, -0.03810938820242882, -0.000434326590038836, 0.02779272012412548, 0.09269742667675018, 0.03158632665872574, -0.01243904884904623, 0.0024411845952272415, -0.012024673633277416, -0.0615462027490139, 0.18478941917419434, -0.09893979132175446, -0.08558402955532074, -0.07526203244924545, 0.005949090700596571, -0.059986114501953125, -0.036210767924785614, 0.01663881354033947, -0.0878937765955925, -0.039561718702316284, -0.08728528022766113, -0.017251938581466675, -0.01707299053668976, 0.020833805203437805, 0.030794432386755943, -0.022674962878227234, 0.0804881826043129, -0.13951241970062256, 0.001092705992050469, -0.051940854638814926, -0.09185586124658585, -0.0003813373332377523, 0.07496082782745361, 0.09811288118362427, 0.07953781634569168, -0.016926415264606476, 0.029906783252954483, -0.034467823803424835, 0.24170050024986267, -0.046041056513786316, 0.010888660326600075, 0.10354969650506973, -0.012676064856350422, 0.05645483732223511, 0.0957883968949318, 0.037929434329271317, -0.09403964132070541, 0.020644567906856537, 0.08352236449718475, -0.02887541987001896, -0.22940510511398315, -0.02573966048657894, -0.005254583898931742, -0.07847007364034653, 0.10558392107486725, 0.0319654680788517, -0.03711985424160957, 0.044593121856451035, 0.020246472209692, 0.0016111737350001931, -0.055412907153367996, 0.08193688839673996, 0.07552821189165115, 0.057326480746269226, 0.09993652254343033, -0.008791168220341206, -0.027332903817296028, 0.062270838767290115, 0.007644591853022575, 0.24653734266757965, -0.02502221241593361, 0.1007436215877533, 0.03255615755915642, 0.15093937516212463, -0.026356147602200508, 0.0641200914978981, 0.0031399994622915983, -0.009516408666968346, -0.014355744235217571, -0.06699754297733307, -0.025594437494874, 0.022777803242206573, -0.046272676438093185, 0.029985958710312843, -0.08145537972450256, 0.02453037165105343, 0.02882813662290573, 0.2794438600540161, 0.03369833901524544, -0.2734116017818451, -0.06662212312221527, -0.013350858353078365, -0.04100620746612549, -0.06392408907413483, 0.006088618654757738, 0.11969815939664841, -0.13309521973133087, 0.06550832092761993, -0.07637372612953186, 0.09016426652669907, -0.03836498036980629, 0.011001801118254662, 0.046851374208927155, 0.1535278558731079, -0.01893579214811325, 0.04929836839437485, -0.18624038994312286, 0.24303379654884338, 0.025215381756424904, 0.10750674456357956, -0.06417720019817352, 0.009801266714930534, 0.019428934901952744, 0.00800356175750494, 0.10805553197860718, 0.0011225570924580097, -0.06751200556755066, -0.13835805654525757, -0.09948893636465073, 0.04685185104608536, 0.1416385918855667, -0.03482412174344063, 0.09886644780635834, -0.028843341395258904, 0.012758365832269192, 0.033525366336107254, -0.030289657413959503, -0.15701408684253693, -0.07260612398386002, 0.010742639191448689, 0.027982166036963463, -0.014748184941709042, -0.05165497213602066, -0.10390570014715195, -0.03858664631843567, 0.11900676786899567, 0.0006511809770017862, -0.04572102054953575, -0.15115362405776978, 0.0835893526673317, 0.1454702913761139, -0.0582464225590229, 0.015483342111110687, 0.013312660157680511, 0.11138994246721268, 0.032444216310977936, -0.0865766853094101, 0.06737996637821198, -0.0534631609916687, -0.1742396503686905, -0.05875902995467186, 0.11838242411613464, 0.0793711319565773, 0.0453827865421772, 0.000012073453035554849, 0.057796988636255264, 0.0010414727730676532, -0.09675030410289764, 0.036751966923475266, 0.005543984472751617, 0.051947157829999924, 0.028712300583720207, -0.08488698303699493, 0.07538945972919464, -0.033974114805459976, 0.017901012673974037, 0.12864172458648682, 0.23409856855869293, -0.0991453230381012, 0.1036028191447258, 0.07955274730920792, -0.07598898559808731, -0.15946532785892487, 0.0616634376347065, 0.1252821683883667, 0.00455169752240181, 0.08336757868528366, -0.19962358474731445, 0.13336943089962006, 0.10763288289308548, -0.013850190676748753, 0.022477690130472183, -0.2716895639896393, -0.1324421614408493, 0.06468367576599121, 0.10929688811302185, 0.04953569918870926, -0.12289167195558548, -0.03516143932938576, -0.010614436119794846, -0.12101023644208908, 0.12943199276924133, -0.07563531398773193, 0.11740424484014511, -0.021933233365416527, 0.12316179275512695, 0.024540681391954422, -0.03722750395536423, 0.11327318102121353, 0.07054434716701508, 0.0862170159816742, -0.03948551416397095, -0.00346121727488935, 0.0646812915802002, -0.06263161450624466, 0.034868910908699036, -0.03743794932961464, 0.06269535422325134, -0.1482759714126587, 0.007390081882476807, -0.07828138768672943, 0.06073397397994995, -0.046366434544324875, -0.06551038473844528, -0.028090165928006172, 0.04740043357014656, 0.07305458933115005, -0.03570307418704033, 0.04753480106592178, 0.007652612403035164, 0.09257252514362335, 0.10064250975847244, 0.07295867055654526, -0.023336270824074745, -0.08324671536684036, 0.014557232148945332, 0.00446806475520134, 0.04763925075531006, -0.08546293526887894, 0.015926167368888855, 0.1468295305967331, 0.06042960658669472, 0.10234645754098892, 0.04599648714065552, -0.04325208440423012, 0.005930156912654638, 0.017465343698859215, -0.14340147376060486, -0.09902460873126984, 0.02872556634247303, -0.05712555721402168, -0.15320105850696564, 0.03357134386897087, 0.12314195930957794, -0.03682403266429901, -0.016289832070469856, -0.006126491818577051, 0.009375265799462795, -0.011290247552096844, 0.18421998620033264, 0.042121149599552155, 0.054280102252960205, -0.09108210355043411, 0.11433450132608414, 0.035539399832487106, -0.041998691856861115, 0.05419333279132843, 0.06794506311416626, -0.0990629717707634, 0.013627412728965282, 0.07318148761987686, 0.15055422484874725, -0.06749893724918365, -0.012533819302916527, -0.09168146550655365, -0.07607265561819077, 0.04485778138041496, 0.14670351147651672, 0.05250377207994461, -0.0046648853458464146, -0.06055436655879021, 0.03580280765891075, -0.11771895736455917, 0.06800747662782669, 0.052116863429546356, 0.08184562623500824, -0.10742872208356857, 0.12492690980434418, -0.007089314516633749, 0.022349106147885323, -0.028177671134471893, 0.01821018010377884, -0.10165401548147202, -0.034130197018384933, -0.10831982642412186, -0.014114723540842533, -0.017720788717269897, -0.003476113546639681, -0.019586989656090736, -0.07584299147129059, -0.04329336807131767, 0.03282928839325905, -0.07707703113555908, -0.04845108091831207, 0.01753004640340805, 0.03992336988449097, -0.16212397813796997, 0.0032643477898091078, 0.026494672521948814, -0.0873534083366394, 0.08757968991994858, 0.06976421177387238, 0.015716230496764183, 0.027714410796761513, -0.1255611628293991, -0.033318739384412766, -0.00030684194643981755, 0.01030963845551014, 0.07770883291959763, -0.093647800385952, -0.02958768419921398, -0.031220193952322006, 0.04834846779704094, 0.015543215908110142, 0.10369674116373062, -0.119207002222538, -0.012637410312891006, -0.045154038816690445, -0.03833571821451187, -0.05686607584357262, 0.02624964714050293, 0.11429909616708755, 0.04518614709377289, 0.157021626830101, -0.07052519172430038, 0.054608747363090515, -0.2041202336549759, -0.0325244665145874, 0.011209671385586262, -0.047381866723299026, -0.0743965283036232, -0.04435279220342636, 0.08416140079498291, -0.05037989094853401, 0.12138772755861282, -0.015301558189094067, 0.09190934896469116, 0.044671639800071716, -0.004723771475255489, -0.0720113143324852, -0.012123584747314453, 0.1835772842168808, 0.05727427452802658, -0.02097560279071331, 0.12073978781700134, 0.004119975958019495, 0.04218287765979767, 0.06758814305067062, 0.23600022494792938, 0.15154831111431122, -0.012149279937148094, 0.07423187047243118, 0.06602797657251358, -0.0755506157875061, -0.1411580890417099, 0.12114766985177994, -0.02109590545296669, 0.10661554336547852, -0.05287281051278114, 0.1897527426481247, 0.038827501237392426, -0.17653848230838776, 0.05450022965669632, -0.025243466719985008, -0.10731296986341476, -0.1259671300649643, -0.01651308685541153, -0.08154504746198654, -0.1165395975112915, 0.027606550604104996, -0.12330912053585052, 0.06949884444475174, 0.09504813700914383, 0.00762645760551095, 0.0358503982424736, 0.1834729015827179, -0.058300625532865524, 0.01071237027645111, 0.07188870757818222, 0.021557465195655823, -0.004731169901788235, -0.04028328135609627, -0.06705498695373535, 0.03649964928627014, 0.043046850711107254, 0.07112697511911392, -0.0500105656683445, 0.009391219355165958, 0.015023408457636833, -0.010254410095512867, -0.07846033573150635, 0.007820549421012402, 0.014371522702276707, 0.04858968406915665, 0.036534227430820465, 0.047088563442230225, 0.009272085502743721, -0.05330520495772362, 0.2759115397930145, -0.06771377474069595, -0.06165669858455658, -0.12333023548126221, 0.19554302096366882, 0.03336431458592415, -0.01876183971762657, 0.05504624545574188, -0.09300592541694641, -0.013392237946391106, 0.16222122311592102, 0.135042205452919, -0.09095106273889542, -0.02097851224243641, -0.02454080618917942, -0.00849419366568327, -0.011935090646147728, 0.10399936139583588, 0.07106059044599533, 0.0020418937783688307, -0.06626754999160767, -0.013301372528076172, -0.02990497462451458, -0.04739980399608612, -0.06202109903097153, 0.059269897639751434, 0.02639712393283844, -0.00695628160610795, -0.05966729298233986, 0.06317722052335739, -0.005218928214162588, -0.23565173149108887, 0.03924039006233215, -0.1740521639585495, -0.1735990047454834, -0.013794326223433018, 0.07103235274553299, 0.000603867752943188, 0.05607287585735321, -0.005973500199615955, 0.009563214145600796, 0.11620095372200012, -0.01676705852150917, -0.013835775665938854, -0.1184966191649437, 0.10868009179830551, -0.1086229458451271, 0.21272911131381989, -0.0015255971811711788, 0.06374379992485046, 0.0991949588060379, 0.03811347484588623, -0.13467341661453247, 0.019020333886146545, 0.0619763508439064, -0.1276823729276657, 0.0004618045350071043, 0.14574481546878815, -0.034819845110177994, 0.06375051289796829, 0.03141941502690315, -0.14964573085308075, -0.0026046643033623695, 0.027147045359015465, -0.03768931329250336, -0.06861033290624619, -0.009650888852775097, -0.05562086030840874, 0.1656474471092224, 0.20687083899974823, -0.028518924489617348, 0.012014019303023815, -0.08461031317710876, 0.021947434172034264, 0.048489153385162354, 0.05822794884443283, -0.040055569261312485, -0.21644027531147003, 0.022532885894179344, 0.07264996320009232, -0.0031036960426717997, -0.194415882229805, -0.09568168222904205, 0.042193688452243805, -0.035804592072963715, -0.04612903669476509, 0.09135933965444565, 0.02373286336660385, 0.03711015731096268, -0.0193007942289114, -0.11547468602657318, -0.02668777108192444, 0.14594659209251404, -0.1753440946340561, -0.042742807418107986 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # spanbert-base-cased-few-shot-k-512-finetuned-squad-seed-10 This model is a fine-tuned version of [SpanBERT/spanbert-base-cased](https://huggingface.co/SpanBERT/spanbert-base-cased) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10.0 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
{"tags": ["generated_from_trainer"], "datasets": ["squad"], "model-index": [{"name": "spanbert-base-cased-few-shot-k-512-finetuned-squad-seed-10", "results": []}]}
question-answering
anas-awadalla/spanbert-base-cased-few-shot-k-512-finetuned-squad-seed-10
[ "transformers", "pytorch", "bert", "question-answering", "generated_from_trainer", "dataset:squad", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #bert #question-answering #generated_from_trainer #dataset-squad #endpoints_compatible #region-us
# spanbert-base-cased-few-shot-k-512-finetuned-squad-seed-10 This model is a fine-tuned version of SpanBERT/spanbert-base-cased on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10.0 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
[ "# spanbert-base-cased-few-shot-k-512-finetuned-squad-seed-10\n\nThis model is a fine-tuned version of SpanBERT/spanbert-base-cased on the squad dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- num_epochs: 10.0", "### Training results", "### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #bert #question-answering #generated_from_trainer #dataset-squad #endpoints_compatible #region-us \n", "# spanbert-base-cased-few-shot-k-512-finetuned-squad-seed-10\n\nThis model is a fine-tuned version of SpanBERT/spanbert-base-cased on the squad dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- num_epochs: 10.0", "### Training results", "### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ 42, 56, 6, 12, 8, 3, 106, 4, 38 ]
[ "passage: TAGS\n#transformers #pytorch #bert #question-answering #generated_from_trainer #dataset-squad #endpoints_compatible #region-us \n# spanbert-base-cased-few-shot-k-512-finetuned-squad-seed-10\n\nThis model is a fine-tuned version of SpanBERT/spanbert-base-cased on the squad dataset.## Model description\n\nMore information needed## Intended uses & limitations\n\nMore information needed## Training and evaluation data\n\nMore information needed## Training procedure### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- num_epochs: 10.0### Training results### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ -0.09701802581548691, 0.11383537203073502, -0.0022766750771552324, 0.09110088646411896, 0.11912036687135696, 0.022329431027173996, 0.10108508169651031, 0.12778528034687042, -0.09577248245477676, 0.08611389249563217, 0.08684318512678146, 0.04014597088098526, 0.048279859125614166, 0.14775799214839935, -0.01965445652604103, -0.26001161336898804, 0.010203367099165916, -0.0032289254013448954, -0.03271442651748657, 0.11168364435434341, 0.08515287935733795, -0.11079072952270508, 0.08566240221261978, 0.014980755746364594, -0.15286840498447418, 0.01955465041100979, -0.037138260900974274, -0.034848056733608246, 0.11315848678350449, -0.03374398872256279, 0.1086292713880539, 0.024884512647986412, 0.13550513982772827, -0.20942309498786926, 0.00512869656085968, 0.07343244552612305, 0.04549374058842659, 0.10046039521694183, 0.051450587809085846, 0.015382049605250359, 0.08877576142549515, -0.15389113128185272, 0.09351978451013565, 0.029453257098793983, -0.09123632311820984, -0.1290239542722702, -0.09618140757083893, 0.02629212476313114, 0.05367782339453697, 0.06842755526304245, 0.0012667491100728512, 0.1521807610988617, -0.060248393565416336, 0.07900897413492203, 0.26677367091178894, -0.3268178701400757, -0.06371834874153137, 0.0339965894818306, 0.06147186458110809, 0.0525456927716732, -0.12347808480262756, -0.007017144933342934, 0.027574097737669945, 0.028710637241601944, 0.11894030123949051, -0.017180927097797394, -0.11199697107076645, -0.013515787199139595, -0.1283177137374878, 0.000027767142455559224, 0.07140809297561646, 0.03595226630568504, -0.05194179341197014, -0.09616955369710922, -0.07531559467315674, -0.09461918473243713, -0.025937408208847046, -0.06521232426166534, 0.056450873613357544, -0.055386126041412354, -0.08041124790906906, -0.03592563793063164, -0.056029755622148514, -0.07674642652273178, -0.017746448516845703, 0.1556023359298706, 0.04007955268025398, 0.02020322158932686, -0.033287838101387024, 0.10819850862026215, 0.0005921275587752461, -0.14143306016921997, -0.014862060546875, -0.0016162422252818942, -0.09851841628551483, -0.04791910946369171, -0.050137441605329514, -0.018409643322229385, 0.009398486465215683, 0.17855997383594513, -0.07720024883747101, 0.07573147118091583, 0.010960468091070652, -0.02967916615307331, -0.006160777527838945, 0.14804291725158691, -0.04443381354212761, -0.0489073321223259, -0.010357716120779514, 0.07428180426359177, 0.0025233018677681684, -0.014000666327774525, -0.06533205509185791, -0.02758776769042015, 0.10224581509828568, 0.04565608873963356, -0.06005227193236351, 0.040413182228803635, -0.022626405581831932, -0.028410498052835464, 0.017992878332734108, -0.11539081484079361, 0.04476960748434067, -0.0019191449973732233, -0.08558745682239532, -0.001781352562829852, -0.0005153703968971968, -0.004347524605691433, -0.007703899405896664, 0.11043468117713928, -0.09942328929901123, -0.002845207927748561, -0.06468645483255386, -0.08419079333543777, 0.009179564192891121, -0.1581045687198639, -0.015392069704830647, -0.05669834464788437, -0.17324158549308777, -0.032992828637361526, 0.0365758016705513, -0.07293061912059784, -0.008132335729897022, -0.04962072893977165, -0.06509232521057129, 0.02387017197906971, -0.013670030049979687, 0.17441439628601074, -0.05310934782028198, 0.07185959070920944, -0.0009348921594209969, 0.047113899141550064, 0.014745855703949928, 0.03618713840842247, -0.1049225926399231, 0.024724818766117096, -0.13666972517967224, 0.06883653253316879, -0.08484695851802826, -0.0008632008684799075, -0.13267582654953003, -0.09781260043382645, 0.008332242257893085, -0.022341188043355942, 0.0907282754778862, 0.13838617503643036, -0.19518108665943146, -0.017945613712072372, 0.12804065644741058, -0.07473035156726837, -0.06342747062444687, 0.06071864441037178, -0.061091259121894836, 0.030827181413769722, 0.05334502458572388, 0.21090398728847504, 0.0410408191382885, -0.16708222031593323, -0.03321126103401184, -0.006960955914109945, 0.03983140364289284, 0.025368979200720787, 0.03990543261170387, 0.005357000976800919, 0.0652921125292778, 0.014277747832238674, -0.07504131644964218, -0.03272572159767151, -0.09092678129673004, -0.06517297774553299, -0.05422947183251381, -0.0728851780295372, 0.04097806289792061, 0.003984123934060335, 0.04266269505023956, -0.06470084190368652, -0.10124953091144562, 0.1200474351644516, 0.09668624401092529, -0.04740916192531586, 0.035741522908210754, -0.07946240901947021, 0.019287681207060814, -0.020254608243703842, -0.039250731468200684, -0.2061840295791626, -0.12844125926494598, 0.05234281346201897, -0.058016687631607056, 0.03343138098716736, 0.007721117697656155, 0.08211733400821686, 0.060837145894765854, -0.04316331446170807, -0.012205288745462894, -0.0936446562409401, 0.0031431957613676786, -0.11816412955522537, -0.18767505884170532, -0.07831492274999619, -0.0402819998562336, 0.09351501613855362, -0.17449192702770233, -0.006022047717124224, 0.014000071212649345, 0.1440434604883194, 0.027354897931218147, -0.06871871650218964, -0.002290382981300354, 0.03732200339436531, 0.0027037246618419886, -0.09555843472480774, 0.044604603201150894, 0.00682598352432251, -0.09286724776029587, -0.0643497183918953, -0.1371707320213318, -0.012178617529571056, 0.0596407875418663, 0.054705556482076645, -0.09658391028642654, -0.0461479052901268, -0.07074414193630219, -0.039702240377664566, -0.07557564228773117, 0.01278223842382431, 0.20075754821300507, 0.0350768081843853, 0.11232133954763412, -0.06678793579339981, -0.07875574380159378, -0.003503350308164954, 0.02391866035759449, 0.01314693782478571, 0.07640170305967331, 0.04144919291138649, -0.052943769842386246, 0.0746125653386116, 0.09975798428058624, -0.021896928548812866, 0.12442947179079056, -0.04641120508313179, -0.08444516360759735, -0.033150359988212585, -0.02514112927019596, -0.029137151315808296, 0.12428659945726395, -0.03945300728082657, 0.004434140399098396, 0.03636851906776428, 0.043896619230508804, 0.016946885734796524, -0.16204339265823364, 0.008401579223573208, 0.021783828735351562, -0.05249115452170372, -0.03947457671165466, -0.0013920639175921679, 0.026624172925949097, 0.09203092753887177, 0.030929360538721085, -0.013099105097353458, 0.0018205660162493587, -0.011793818324804306, -0.06112369894981384, 0.1848343163728714, -0.09776836633682251, -0.08435055613517761, -0.0746181458234787, 0.006690310779958963, -0.05803777277469635, -0.036271676421165466, 0.015421448275446892, -0.08796947449445724, -0.03898521885275841, -0.08684530854225159, -0.01814785972237587, -0.01695442572236061, 0.02012082189321518, 0.032344479113817215, -0.021980248391628265, 0.07870956510305405, -0.13964082300662994, 0.001753970980644226, -0.05245301499962807, -0.09158510714769363, -0.0010022231144830585, 0.07393387705087662, 0.09834460914134979, 0.08006593585014343, -0.017523745074868202, 0.030055904760956764, -0.03508920222520828, 0.24106159806251526, -0.046576615422964096, 0.012331601232290268, 0.10324877500534058, -0.012340093962848186, 0.05605250597000122, 0.0965767577290535, 0.03718312084674835, -0.09374964982271194, 0.020343171432614326, 0.08267120271921158, -0.028355177491903305, -0.23000583052635193, -0.025123760104179382, -0.004517331253737211, -0.07981421798467636, 0.10629867762327194, 0.031453706324100494, -0.035061147063970566, 0.046321261674165726, 0.020037632435560226, 0.003011892084032297, -0.05409251153469086, 0.08148735761642456, 0.07323739677667618, 0.056429922580718994, 0.10021014511585236, -0.00904412567615509, -0.02850104495882988, 0.060757022351026535, 0.008374359458684921, 0.24748502671718597, -0.023957500234246254, 0.10053069144487381, 0.03153910115361214, 0.1503297984600067, -0.02704549767076969, 0.06646022945642471, 0.004095335956662893, -0.009918506257236004, -0.014329012483358383, -0.06669950485229492, -0.024343542754650116, 0.02329356037080288, -0.04553817957639694, 0.02978256344795227, -0.08081842213869095, 0.024251006543636322, 0.028140638023614883, 0.27820825576782227, 0.03523040935397148, -0.27445077896118164, -0.0659874677658081, -0.012978078797459602, -0.04203435778617859, -0.06377560645341873, 0.005752839148044586, 0.11868655681610107, -0.1329948455095291, 0.06623770296573639, -0.07637423276901245, 0.09036371856927872, -0.0376916341483593, 0.011104848235845566, 0.045587942004203796, 0.1532742977142334, -0.01875404082238674, 0.05044617876410484, -0.18641217052936554, 0.24187621474266052, 0.025165865197777748, 0.10881216824054718, -0.0653098002076149, 0.009961440227925777, 0.019432729110121727, 0.007538078352808952, 0.10933203250169754, 0.0007804777123965323, -0.0676531046628952, -0.1388792097568512, -0.09972994774580002, 0.04683365300297737, 0.141724094748497, -0.034466370940208435, 0.09942649304866791, -0.02797507308423519, 0.011802898719906807, 0.03378822281956673, -0.03171870484948158, -0.15830914676189423, -0.07244873046875, 0.010135291144251823, 0.0268408190459013, -0.014846546575427055, -0.05123889818787575, -0.1039411649107933, -0.04066044092178345, 0.11760152876377106, 0.0018615216249600053, -0.04589197039604187, -0.15098997950553894, 0.085231252014637, 0.14582377672195435, -0.05777551606297493, 0.01608869433403015, 0.014704436995089054, 0.11223164945840836, 0.03192651644349098, -0.08610665053129196, 0.06654344499111176, -0.053507041186094284, -0.1729840636253357, -0.057858482003211975, 0.11964801698923111, 0.0798150897026062, 0.045664746314287186, 0.0015027533518150449, 0.057101864367723465, 0.0010688757756724954, -0.09643002599477768, 0.03620709851384163, 0.005288176704198122, 0.051385778933763504, 0.02891489863395691, -0.08586716651916504, 0.07396531850099564, -0.03456532210111618, 0.019884031265974045, 0.1288772076368332, 0.23083259165287018, -0.09897062182426453, 0.10284709185361862, 0.07936853170394897, -0.07643915712833405, -0.15916217863559723, 0.06245391070842743, 0.12537115812301636, 0.005356854293495417, 0.08365661650896072, -0.19926956295967102, 0.13353364169597626, 0.1070304661989212, -0.013255809433758259, 0.02117743156850338, -0.2716525197029114, -0.13194634020328522, 0.06590050458908081, 0.10944140702486038, 0.04726649820804596, -0.1220836490392685, -0.034987643361091614, -0.011183010414242744, -0.12093627452850342, 0.1288571059703827, -0.07667522132396698, 0.1165110319852829, -0.021268120035529137, 0.12210357934236526, 0.02453400194644928, -0.037333112210035324, 0.11164409667253494, 0.0722794383764267, 0.08646518737077713, -0.03921503946185112, -0.00442904606461525, 0.06713326275348663, -0.062326084822416306, 0.03665319085121155, -0.03645529970526695, 0.06237918138504028, -0.14809194207191467, 0.006712295580655336, -0.07775150239467621, 0.06048397347331047, -0.04606272280216217, -0.0657467246055603, -0.027588307857513428, 0.04741428419947624, 0.07269015908241272, -0.0357772558927536, 0.04534502699971199, 0.00893367175012827, 0.0918073058128357, 0.09675964713096619, 0.07419103384017944, -0.022241173312067986, -0.08237680792808533, 0.014461299404501915, 0.004683061968535185, 0.04705186188220978, -0.08615993708372116, 0.015320445410907269, 0.14683645963668823, 0.06086720898747444, 0.10260313749313354, 0.04543743282556534, -0.0433783121407032, 0.00539566483348608, 0.01682276837527752, -0.14093628525733948, -0.10039439052343369, 0.028559353202581406, -0.058144133538007736, -0.15384025871753693, 0.034791912883520126, 0.12116234749555588, -0.0376499705016613, -0.017180336639285088, -0.007238544523715973, 0.008934194222092628, -0.010893060825765133, 0.18555134534835815, 0.0429266095161438, 0.05443131923675537, -0.09155045449733734, 0.11386317014694214, 0.03582952544093132, -0.04229452833533287, 0.0539262555539608, 0.06742458790540695, -0.0998077318072319, 0.01327080000191927, 0.07439279556274414, 0.15093667805194855, -0.06438474357128143, -0.012870639562606812, -0.09147821366786957, -0.07611779868602753, 0.04519877955317497, 0.1461360603570938, 0.052721548825502396, -0.005955343134701252, -0.060162972658872604, 0.036208223551511765, -0.11824918538331985, 0.06801987439393997, 0.05222401022911072, 0.08172135800123215, -0.10772542655467987, 0.12515166401863098, -0.006986947730183601, 0.02289852499961853, -0.028148796409368515, 0.019023990258574486, -0.10080239921808243, -0.034514542669057846, -0.10685495287179947, -0.015530886128544807, -0.019101755693554878, -0.003333761589601636, -0.02022595889866352, -0.07529252022504807, -0.042996007949113846, 0.03246142715215683, -0.07682792097330093, -0.04855259880423546, 0.01709122210741043, 0.03912845999002457, -0.16113221645355225, 0.003251671325415373, 0.025763938203454018, -0.08686971664428711, 0.08691408485174179, 0.0690549910068512, 0.016476595774292946, 0.02836538851261139, -0.12483806908130646, -0.03277609869837761, 0.0006305581191554666, 0.010712041519582272, 0.07728992402553558, -0.09338998794555664, -0.029076432809233665, -0.030992677435278893, 0.04943234100937843, 0.014706145040690899, 0.10087069123983383, -0.11821824312210083, -0.013607270084321499, -0.04634145274758339, -0.037769172340631485, -0.057329390197992325, 0.026909012347459793, 0.11376544088125229, 0.043691299855709076, 0.15761007368564606, -0.06877119839191437, 0.05453219264745712, -0.20489008724689484, -0.03307840973138809, 0.01049004215747118, -0.04735901951789856, -0.07414544373750687, -0.045121412724256516, 0.08431795984506607, -0.049919433891773224, 0.12241184711456299, -0.015315842814743519, 0.09289387613534927, 0.04375402629375458, -0.0016213774215430021, -0.07155350595712662, -0.011406551115214825, 0.1840817779302597, 0.05751248821616173, -0.0215297844260931, 0.11989721655845642, 0.004672515206038952, 0.04254377633333206, 0.06611550599336624, 0.23332759737968445, 0.1516849845647812, -0.01308975089341402, 0.07422996312379837, 0.06686556339263916, -0.07574039697647095, -0.13994182646274567, 0.12243298441171646, -0.021810133010149002, 0.10480066388845444, -0.052624840289354324, 0.19201919436454773, 0.03845350816845894, -0.1765505075454712, 0.05507785826921463, -0.024484137073159218, -0.10819602757692337, -0.12472803890705109, -0.01828979328274727, -0.08183987438678741, -0.11539217084646225, 0.027919737622141838, -0.12334755808115005, 0.06778419017791748, 0.09527573734521866, 0.007608390878885984, 0.03514673933386803, 0.1847342550754547, -0.058865275233983994, 0.011046036146581173, 0.07215776294469833, 0.021114090457558632, -0.004178482107818127, -0.04070371016860008, -0.06612630933523178, 0.03771935775876045, 0.042229361832141876, 0.07180971652269363, -0.052313946187496185, 0.008777616545557976, 0.014930108562111855, -0.009408412501215935, -0.07784626632928848, 0.007963844574987888, 0.013962958008050919, 0.04851960390806198, 0.035425927489995956, 0.04734444618225098, 0.008716740645468235, -0.05372147262096405, 0.2744821012020111, -0.06768449395895004, -0.06261806935071945, -0.12369920313358307, 0.19282501935958862, 0.03438832610845566, -0.01879298873245716, 0.05594943091273308, -0.09332943707704544, -0.011136398650705814, 0.16311459243297577, 0.13524256646633148, -0.08871638029813766, -0.021528199315071106, -0.024139173328876495, -0.008876577019691467, -0.012719869613647461, 0.10350129753351212, 0.07145664840936661, -0.0003708606236614287, -0.0660696029663086, -0.012637191452085972, -0.028342658653855324, -0.0486622229218483, -0.06185729056596756, 0.05911947041749954, 0.027386654168367386, -0.007308262400329113, -0.05780360475182533, 0.06479351967573166, -0.0030132620595395565, -0.2355911284685135, 0.03795027732849121, -0.1729860007762909, -0.17372868955135345, -0.014448394067585468, 0.07077663391828537, 0.0023709714878350496, 0.055966686457395554, -0.005781505722552538, 0.009876882657408714, 0.11558526009321213, -0.01612097956240177, -0.014447974972426891, -0.11855733394622803, 0.1089099645614624, -0.10985484719276428, 0.21160735189914703, -0.00176405836828053, 0.06476353853940964, 0.09905688464641571, 0.03646567091345787, -0.13450093567371368, 0.0194613765925169, 0.06210321560502052, -0.1255643665790558, 0.002036954276263714, 0.1461997777223587, -0.03457355499267578, 0.061456143856048584, 0.030595026910305023, -0.14991839230060577, -0.002259587636217475, 0.027283454313874245, -0.03712068125605583, -0.0695255696773529, -0.007106670178472996, -0.0548626147210598, 0.16635717451572418, 0.2066783457994461, -0.028951648622751236, 0.012545452453196049, -0.0851154625415802, 0.02132675051689148, 0.0488370843231678, 0.05837768316268921, -0.03983912244439125, -0.21613018214702606, 0.021347787231206894, 0.07001469284296036, -0.0025592695455998182, -0.19367146492004395, -0.09468641877174377, 0.041071873158216476, -0.0372159481048584, -0.0461987629532814, 0.0905754491686821, 0.025403259322047234, 0.03713355213403702, -0.019018245860934258, -0.1157686784863472, -0.02698887139558792, 0.1459505707025528, -0.17629772424697876, -0.04187227785587311 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # spanbert-base-cased-few-shot-k-512-finetuned-squad-seed-2 This model is a fine-tuned version of [SpanBERT/spanbert-base-cased](https://huggingface.co/SpanBERT/spanbert-base-cased) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10.0 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
{"tags": ["generated_from_trainer"], "datasets": ["squad"], "model-index": [{"name": "spanbert-base-cased-few-shot-k-512-finetuned-squad-seed-2", "results": []}]}
question-answering
anas-awadalla/spanbert-base-cased-few-shot-k-512-finetuned-squad-seed-2
[ "transformers", "pytorch", "bert", "question-answering", "generated_from_trainer", "dataset:squad", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #bert #question-answering #generated_from_trainer #dataset-squad #endpoints_compatible #region-us
# spanbert-base-cased-few-shot-k-512-finetuned-squad-seed-2 This model is a fine-tuned version of SpanBERT/spanbert-base-cased on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10.0 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
[ "# spanbert-base-cased-few-shot-k-512-finetuned-squad-seed-2\n\nThis model is a fine-tuned version of SpanBERT/spanbert-base-cased on the squad dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- num_epochs: 10.0", "### Training results", "### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #bert #question-answering #generated_from_trainer #dataset-squad #endpoints_compatible #region-us \n", "# spanbert-base-cased-few-shot-k-512-finetuned-squad-seed-2\n\nThis model is a fine-tuned version of SpanBERT/spanbert-base-cased on the squad dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- num_epochs: 10.0", "### Training results", "### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ 42, 56, 6, 12, 8, 3, 106, 4, 38 ]
[ "passage: TAGS\n#transformers #pytorch #bert #question-answering #generated_from_trainer #dataset-squad #endpoints_compatible #region-us \n# spanbert-base-cased-few-shot-k-512-finetuned-squad-seed-2\n\nThis model is a fine-tuned version of SpanBERT/spanbert-base-cased on the squad dataset.## Model description\n\nMore information needed## Intended uses & limitations\n\nMore information needed## Training and evaluation data\n\nMore information needed## Training procedure### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- num_epochs: 10.0### Training results### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ -0.09579430520534515, 0.11478172242641449, -0.002373844152316451, 0.09141865372657776, 0.11867187917232513, 0.02269737794995308, 0.10071933269500732, 0.1285841166973114, -0.09636662155389786, 0.08655231446027756, 0.08752021193504333, 0.03893868252635002, 0.04766376316547394, 0.14678867161273956, -0.019829167053103447, -0.2600948214530945, 0.009911463595926762, -0.004685971420258284, -0.03450951725244522, 0.11164409667253494, 0.0857575535774231, -0.10982316732406616, 0.08600731939077377, 0.015367548912763596, -0.15389181673526764, 0.019543496891856194, -0.036203037947416306, -0.034123439341783524, 0.11300452053546906, -0.032965514808893204, 0.10895974189043045, 0.02587384730577469, 0.13520576059818268, -0.2100490778684616, 0.004798361100256443, 0.07267912477254868, 0.04591664299368858, 0.10080882906913757, 0.052060775458812714, 0.015394861809909344, 0.08822319656610489, -0.15332038700580597, 0.0924358144402504, 0.029785452410578728, -0.09112973511219025, -0.1300676167011261, -0.09658592194318771, 0.026441019028425217, 0.053493432700634, 0.06733841449022293, 0.0021163923665881157, 0.15091198682785034, -0.05954392999410629, 0.07869445532560349, 0.2668158710002899, -0.3275105059146881, -0.06411159038543701, 0.03254278376698494, 0.06007636711001396, 0.05342306196689606, -0.12193991988897324, -0.006263501942157745, 0.027565835043787956, 0.028995456174016, 0.11792141944169998, -0.01702667772769928, -0.11192586272954941, -0.013565157540142536, -0.12835544347763062, -0.001754482858814299, 0.0718558058142662, 0.03532055392861366, -0.05298001319169998, -0.09388123452663422, -0.07596689462661743, -0.09236659854650497, -0.024614036083221436, -0.06562840938568115, 0.056745368987321854, -0.054047439247369766, -0.08007879555225372, -0.03813827782869339, -0.05741528794169426, -0.07704498618841171, -0.01868819259107113, 0.15753135085105896, 0.04006305709481239, 0.0216514952480793, -0.03294060006737709, 0.10938235372304916, 0.002325245412066579, -0.14109301567077637, -0.015518924221396446, -0.000953750975895673, -0.0974632129073143, -0.04727952554821968, -0.05007705092430115, -0.017797304317355156, 0.010176965966820717, 0.17744329571723938, -0.07951266318559647, 0.07496720552444458, 0.009462709538638592, -0.0284718070179224, -0.00615668622776866, 0.1479114294052124, -0.04249773547053337, -0.045748598873615265, -0.009871212765574455, 0.07331844419240952, 0.0033594134729355574, -0.014233261346817017, -0.06539811193943024, -0.028239324688911438, 0.1029568612575531, 0.04690643772482872, -0.059613704681396484, 0.03835996985435486, -0.02428254298865795, -0.028419166803359985, 0.01615932583808899, -0.11542918533086777, 0.04453651234507561, -0.0016373289981856942, -0.08398830890655518, -0.002095672767609358, 0.00041442844667471945, -0.004285983741283417, -0.006675101816654205, 0.10939689725637436, -0.09823817759752274, -0.0016963205998763442, -0.06320653855800629, -0.08208917826414108, 0.009100326336920261, -0.15483926236629486, -0.016241420060396194, -0.05754644423723221, -0.17078189551830292, -0.03105422854423523, 0.037377454340457916, -0.07448877394199371, -0.010389922186732292, -0.04849493131041527, -0.06425539404153824, 0.025114281103014946, -0.014377846382558346, 0.17406709492206573, -0.05321725085377693, 0.0728791132569313, -0.0006273504695855081, 0.046930886805057526, 0.014483424834907055, 0.03525197133421898, -0.10404328256845474, 0.025815851986408234, -0.13776199519634247, 0.06933755427598953, -0.08384741097688675, -0.003997830208390951, -0.13398520648479462, -0.09732749313116074, 0.010081226006150246, -0.023351356387138367, 0.09009906649589539, 0.13827691972255707, -0.19375170767307281, -0.017536696046590805, 0.12671977281570435, -0.07626175135374069, -0.06327594816684723, 0.062134966254234314, -0.06087316945195198, 0.0325440987944603, 0.051164865493774414, 0.21112921833992004, 0.040193960070610046, -0.16727283596992493, -0.030961541458964348, -0.0052517992444336414, 0.03947335481643677, 0.026969389989972115, 0.04158440977334976, 0.003947946708649397, 0.06256907433271408, 0.013960890471935272, -0.07749001681804657, -0.03292708098888397, -0.0918823704123497, -0.06584332883358002, -0.05470629781484604, -0.07245628535747528, 0.04209166765213013, 0.0019313590601086617, 0.04300301522016525, -0.0639885738492012, -0.10016898065805435, 0.11930732429027557, 0.09704777598381042, -0.047002147883176804, 0.03738206997513771, -0.07974077016115189, 0.019412389025092125, -0.02119266800582409, -0.03992631658911705, -0.20600122213363647, -0.12942585349082947, 0.05298718437552452, -0.05825446546077728, 0.033551935106515884, 0.007785916328430176, 0.08108341693878174, 0.061056192964315414, -0.0432722233235836, -0.012112845666706562, -0.09400244057178497, 0.002720574149861932, -0.11766768991947174, -0.1883922815322876, -0.07784554362297058, -0.040112193673849106, 0.09383498132228851, -0.17337125539779663, -0.007129597011953592, 0.015023821033537388, 0.14398394525051117, 0.027534306049346924, -0.06817556917667389, -0.0035639218986034393, 0.03652556613087654, 0.0020329905673861504, -0.09483257681131363, 0.04481348395347595, 0.008064057677984238, -0.09382428973913193, -0.062320172786712646, -0.1347937136888504, -0.011246968992054462, 0.05823764204978943, 0.053379807621240616, -0.0967692956328392, -0.04647046700119972, -0.07097698748111725, -0.040539659559726715, -0.07681945711374283, 0.012957338243722916, 0.20105072855949402, 0.03481580689549446, 0.11264923959970474, -0.06718060374259949, -0.07799083739519119, -0.0037286251317709684, 0.02155200205743313, 0.012197072617709637, 0.07619768381118774, 0.04150266572833061, -0.05473069101572037, 0.073735311627388, 0.10027004778385162, -0.022192982956767082, 0.12366735935211182, -0.04640227183699608, -0.0840810164809227, -0.034784235060214996, -0.022856775671243668, -0.028528500348329544, 0.12361498177051544, -0.03832898288965225, 0.006458928342908621, 0.03646887093782425, 0.044984254986047745, 0.016786886379122734, -0.1628274768590927, 0.008245040662586689, 0.021984698250889778, -0.05437102168798447, -0.03688148036599159, -0.0013336410047486424, 0.02758917585015297, 0.09249075502157211, 0.031599581241607666, -0.012827994301915169, 0.0035286066122353077, -0.011930689215660095, -0.06210670992732048, 0.18402422964572906, -0.0978786051273346, -0.0857355073094368, -0.07629840075969696, 0.006771714426577091, -0.058629103004932404, -0.036003440618515015, 0.016303211450576782, -0.08671513944864273, -0.038577426224946976, -0.08723345398902893, -0.01691088080406189, -0.01828858256340027, 0.021121658384799957, 0.03289109095931053, -0.022218754515051842, 0.08129020780324936, -0.13891544938087463, 0.0013864225475117564, -0.052055954933166504, -0.09299609065055847, -0.00025686449953354895, 0.0748368352651596, 0.09781751036643982, 0.07912095636129379, -0.016805404797196388, 0.029799679294228554, -0.03416941687464714, 0.24203208088874817, -0.0452045276761055, 0.011301006190478802, 0.10392311960458755, -0.013951918110251427, 0.05693044140934944, 0.09608107805252075, 0.03691193088889122, -0.09380123764276505, 0.02068098448216915, 0.08213120698928833, -0.028876155614852905, -0.2297896295785904, -0.02576267346739769, -0.0039816065691411495, -0.07929400354623795, 0.10581254959106445, 0.031589847058057785, -0.03905956447124481, 0.04509864002466202, 0.02086590602993965, 0.0017928702291101217, -0.054798442870378494, 0.0816638320684433, 0.07501517981290817, 0.05659596994519234, 0.09981310367584229, -0.008589807897806168, -0.028421755880117416, 0.06243916228413582, 0.008908904157578945, 0.24683748185634613, -0.024181434884667397, 0.09993551671504974, 0.03220214322209358, 0.1520429104566574, -0.02680416963994503, 0.06433158367872238, 0.004266409669071436, -0.009166840463876724, -0.014987306669354439, -0.06671800464391708, -0.025383105501532555, 0.023995401337742805, -0.04494290426373482, 0.02997821755707264, -0.08188068866729736, 0.026666564866900444, 0.02786186710000038, 0.27983495593070984, 0.03488132730126381, -0.2722266614437103, -0.06565624475479126, -0.012316322885453701, -0.041778940707445145, -0.0633065328001976, 0.005833946168422699, 0.12054918706417084, -0.13397888839244843, 0.06459037214517593, -0.07600131630897522, 0.08954234421253204, -0.03828725963830948, 0.010447698645293713, 0.04488025978207588, 0.1523570865392685, -0.017611132934689522, 0.05071721598505974, -0.1844499111175537, 0.2424861639738083, 0.025009801611304283, 0.10689183324575424, -0.06362046301364899, 0.010197040624916553, 0.018729092553257942, 0.00786596816033125, 0.1095341295003891, 0.0018103467300534248, -0.06888329982757568, -0.1386641412973404, -0.10097158700227737, 0.04655231162905693, 0.14229942858219147, -0.03590868040919304, 0.09880569577217102, -0.028806159272789955, 0.0126761170104146, 0.03331267833709717, -0.029937855899333954, -0.15756383538246155, -0.07175734639167786, 0.010395122691988945, 0.02598702162504196, -0.015337899327278137, -0.05237428843975067, -0.10406992584466934, -0.03695376589894295, 0.11970171332359314, 0.0014230801025405526, -0.046133849769830704, -0.150373175740242, 0.08474363386631012, 0.1453283578157425, -0.058854833245277405, 0.015159251168370247, 0.014072498306632042, 0.11242985725402832, 0.03231602907180786, -0.08632266521453857, 0.06654933094978333, -0.053320448845624924, -0.17470993101596832, -0.05799722671508789, 0.12023398280143738, 0.07924322783946991, 0.04589907452464104, 0.0013411202235147357, 0.05679796263575554, 0.0021711636800318956, -0.09645459800958633, 0.03736645728349686, 0.0057824659161269665, 0.051118265837430954, 0.029027441516518593, -0.08560772240161896, 0.07694485038518906, -0.034222908318042755, 0.017964348196983337, 0.13075491786003113, 0.234883114695549, -0.09963145852088928, 0.10453014075756073, 0.0789095014333725, -0.0769088938832283, -0.1590869277715683, 0.06044163182377815, 0.12691593170166016, 0.0042861029505729675, 0.08528471738100052, -0.19962146878242493, 0.13307087123394012, 0.10702701658010483, -0.014532066881656647, 0.020127173513174057, -0.272757887840271, -0.1321210116147995, 0.06445720791816711, 0.10929969698190689, 0.05069076642394066, -0.1216418668627739, -0.03590517118573189, -0.009896607138216496, -0.12110109627246857, 0.12835371494293213, -0.07460147142410278, 0.11692823469638824, -0.0214754119515419, 0.12326613813638687, 0.02467968873679638, -0.03649280592799187, 0.11405190825462341, 0.0707852691411972, 0.08490326255559921, -0.03895503655076027, -0.003545787651091814, 0.06494259089231491, -0.06298397481441498, 0.03553839772939682, -0.03595864027738571, 0.06308357417583466, -0.14885014295578003, 0.006718717515468597, -0.07743574678897858, 0.0601823665201664, -0.046828776597976685, -0.06543959677219391, -0.027700645849108696, 0.04687413573265076, 0.07290911674499512, -0.035486310720443726, 0.0451008602976799, 0.009602919220924377, 0.090276800096035, 0.10148028284311295, 0.07307682931423187, -0.020850086584687233, -0.08299297839403152, 0.01306266337633133, 0.0043144868686795235, 0.047086238861083984, -0.08521178364753723, 0.01666800118982792, 0.14600352942943573, 0.05999935045838356, 0.10266514867544174, 0.04545105993747711, -0.043896857649087906, 0.006514646578580141, 0.01671544462442398, -0.14266164600849152, -0.10135892778635025, 0.027926340699195862, -0.057159267365932465, -0.15414458513259888, 0.03289274871349335, 0.12389224022626877, -0.03683595731854439, -0.01700529456138611, -0.006929941009730101, 0.009725536219775677, -0.011550490744411945, 0.18377123773097992, 0.041875287890434265, 0.05485478788614273, -0.09023826569318771, 0.11397656798362732, 0.03571471571922302, -0.04058675840497017, 0.05368360877037048, 0.06683404743671417, -0.09888938814401627, 0.01388928759843111, 0.073716901242733, 0.15011455118656158, -0.0672837644815445, -0.012278452515602112, -0.09132981300354004, -0.07613623887300491, 0.04428676888346672, 0.14484675228595734, 0.0534934364259243, -0.005168212112039328, -0.060117870569229126, 0.035869449377059937, -0.11703356355428696, 0.06833949685096741, 0.05288789048790932, 0.08192367851734161, -0.10860386490821838, 0.125105619430542, -0.007547816261649132, 0.024556364864110947, -0.028414888307452202, 0.018014023080468178, -0.10056424140930176, -0.034596603363752365, -0.10867138206958771, -0.013353555463254452, -0.01722397841513157, -0.003512031165882945, -0.01917913556098938, -0.07631610333919525, -0.042985279113054276, 0.03341543301939964, -0.07685564458370209, -0.04863729327917099, 0.01665761135518551, 0.039852242916822433, -0.16107332706451416, 0.002473817439749837, 0.027009200304746628, -0.08760792762041092, 0.08834456652402878, 0.06980155408382416, 0.0166326854377985, 0.027857551351189613, -0.1233827993273735, -0.03310762718319893, 0.0006961298058740795, 0.010589714162051678, 0.07684600353240967, -0.09471230953931808, -0.030272435396909714, -0.030650854110717773, 0.04892286658287048, 0.014975570142269135, 0.10416820645332336, -0.11906784772872925, -0.013130550272762775, -0.046597011387348175, -0.03913405165076256, -0.05710483342409134, 0.02568470872938633, 0.11306064575910568, 0.04597057029604912, 0.15726013481616974, -0.07016714662313461, 0.05493343994021416, -0.20433300733566284, -0.032638486474752426, 0.010490021668374538, -0.045522887259721756, -0.07488688826560974, -0.04518578574061394, 0.08307936042547226, -0.05009860172867775, 0.12118878960609436, -0.01577063463628292, 0.09131952375173569, 0.044123973697423935, -0.00410277396440506, -0.06991184502840042, -0.011918927542865276, 0.18295283615589142, 0.05745582655072212, -0.020863527432084084, 0.12037012726068497, 0.0030861084815114737, 0.04313277080655098, 0.06587384641170502, 0.23530463874340057, 0.15151359140872955, -0.012651698663830757, 0.07431323081254959, 0.06657245010137558, -0.0748758465051651, -0.1419381946325302, 0.12109861522912979, -0.02086622454226017, 0.10512376576662064, -0.05156835913658142, 0.1900835931301117, 0.03908466547727585, -0.17701727151870728, 0.05342958867549896, -0.02451150119304657, -0.10813076794147491, -0.1263124644756317, -0.016770394518971443, -0.08268535137176514, -0.11602013558149338, 0.027611345052719116, -0.12320311367511749, 0.06893337517976761, 0.09479749947786331, 0.0066474927589297295, 0.03592139482498169, 0.18209415674209595, -0.058199603110551834, 0.01098841056227684, 0.07135489583015442, 0.0211209487169981, -0.003358916612342, -0.0389830619096756, -0.06718671321868896, 0.03720833733677864, 0.04437153786420822, 0.07107213884592056, -0.050652164965867996, 0.01005376037210226, 0.013964813202619553, -0.010612204670906067, -0.0783904418349266, 0.007506481371819973, 0.014207634143531322, 0.04846961796283722, 0.034413158893585205, 0.047615569084882736, 0.009083135053515434, -0.0531502328813076, 0.27585262060165405, -0.06742891669273376, -0.0619342178106308, -0.1232747882604599, 0.19502206146717072, 0.032442256808280945, -0.01805809885263443, 0.056686270982027054, -0.09288012981414795, -0.013041583821177483, 0.16118505597114563, 0.13431525230407715, -0.09137705713510513, -0.021217811852693558, -0.02457880601286888, -0.008796240203082561, -0.011809870600700378, 0.10463918745517731, 0.07090283930301666, 0.0009379620896652341, -0.06701567769050598, -0.013362045399844646, -0.03012789599597454, -0.047317396849393845, -0.06292315572500229, 0.059368427842855453, 0.02604948915541172, -0.0058343433775007725, -0.059140581637620926, 0.06343551725149155, -0.0034661253448575735, -0.23495268821716309, 0.037973690778017044, -0.1726563721895218, -0.17402495443820953, -0.013247871771454811, 0.07152704149484634, 0.0004300063301343471, 0.05595802143216133, -0.007319062948226929, 0.009637599810957909, 0.11645487695932388, -0.01666608452796936, -0.01461083348840475, -0.11698472499847412, 0.10971491783857346, -0.10964954644441605, 0.21268072724342346, -0.0006186257814988494, 0.06535909324884415, 0.09846477210521698, 0.037286244332790375, -0.13541638851165771, 0.018291940912604332, 0.06203562021255493, -0.12584218382835388, 0.0012423532316461205, 0.14692743122577667, -0.03473607823252678, 0.06306399405002594, 0.032192256301641464, -0.14967632293701172, -0.00405661016702652, 0.028204862028360367, -0.03728610277175903, -0.0686410665512085, -0.009881678968667984, -0.05677032470703125, 0.1652427464723587, 0.2057962566614151, -0.029385870322585106, 0.012834514491260052, -0.08434412628412247, 0.02205999195575714, 0.04883703216910362, 0.059952884912490845, -0.038807936012744904, -0.2162420153617859, 0.021289603784680367, 0.07184264808893204, -0.002327770460397005, -0.19453869760036469, -0.09671548753976822, 0.041489679366350174, -0.03582504764199257, -0.046142563223838806, 0.09188299626111984, 0.023999173194169998, 0.03646843880414963, -0.01853249780833721, -0.11710601300001144, -0.027671435847878456, 0.1453811377286911, -0.17564968764781952, -0.042156487703323364 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # spanbert-base-cased-few-shot-k-512-finetuned-squad-seed-4 This model is a fine-tuned version of [SpanBERT/spanbert-base-cased](https://huggingface.co/SpanBERT/spanbert-base-cased) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10.0 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
{"tags": ["generated_from_trainer"], "datasets": ["squad"], "model-index": [{"name": "spanbert-base-cased-few-shot-k-512-finetuned-squad-seed-4", "results": []}]}
question-answering
anas-awadalla/spanbert-base-cased-few-shot-k-512-finetuned-squad-seed-4
[ "transformers", "pytorch", "bert", "question-answering", "generated_from_trainer", "dataset:squad", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #bert #question-answering #generated_from_trainer #dataset-squad #endpoints_compatible #region-us
# spanbert-base-cased-few-shot-k-512-finetuned-squad-seed-4 This model is a fine-tuned version of SpanBERT/spanbert-base-cased on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10.0 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
[ "# spanbert-base-cased-few-shot-k-512-finetuned-squad-seed-4\n\nThis model is a fine-tuned version of SpanBERT/spanbert-base-cased on the squad dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- num_epochs: 10.0", "### Training results", "### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #bert #question-answering #generated_from_trainer #dataset-squad #endpoints_compatible #region-us \n", "# spanbert-base-cased-few-shot-k-512-finetuned-squad-seed-4\n\nThis model is a fine-tuned version of SpanBERT/spanbert-base-cased on the squad dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- num_epochs: 10.0", "### Training results", "### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ 42, 56, 6, 12, 8, 3, 106, 4, 38 ]
[ "passage: TAGS\n#transformers #pytorch #bert #question-answering #generated_from_trainer #dataset-squad #endpoints_compatible #region-us \n# spanbert-base-cased-few-shot-k-512-finetuned-squad-seed-4\n\nThis model is a fine-tuned version of SpanBERT/spanbert-base-cased on the squad dataset.## Model description\n\nMore information needed## Intended uses & limitations\n\nMore information needed## Training and evaluation data\n\nMore information needed## Training procedure### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- num_epochs: 10.0### Training results### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ -0.09636647254228592, 0.11389192193746567, -0.0023361151106655598, 0.09222032129764557, 0.11973018944263458, 0.02301490306854248, 0.10135083645582199, 0.12783251702785492, -0.09656552970409393, 0.08606206625699997, 0.08757563680410385, 0.03866757079958916, 0.04701310768723488, 0.14656303822994232, -0.019635280594229698, -0.26008906960487366, 0.00969864521175623, -0.00416589668020606, -0.033847060054540634, 0.11179300397634506, 0.08478758484125137, -0.11040694266557693, 0.08651191741228104, 0.015089966356754303, -0.15457557141780853, 0.01999802701175213, -0.03689328953623772, -0.03403201699256897, 0.1131887286901474, -0.03293192759156227, 0.10922179371118546, 0.02558165043592453, 0.13506823778152466, -0.20866847038269043, 0.005040515214204788, 0.07263773679733276, 0.045343317091464996, 0.10026831179857254, 0.05174073949456215, 0.015167376026511192, 0.08736202120780945, -0.15326544642448425, 0.09254438430070877, 0.029541144147515297, -0.09132153540849686, -0.130467489361763, -0.09594997763633728, 0.025355765596032143, 0.05284778028726578, 0.06832504272460938, 0.0015664368402212858, 0.15019330382347107, -0.06008044630289078, 0.07895202189683914, 0.26447105407714844, -0.32857614755630493, -0.0644669160246849, 0.032847337424755096, 0.06034928187727928, 0.053505707532167435, -0.12275084108114243, -0.005685027688741684, 0.02765846811234951, 0.029911130666732788, 0.1183386966586113, -0.017313621938228607, -0.11171883344650269, -0.01314003486186266, -0.12821520864963531, -0.00019229618192184716, 0.0724218562245369, 0.03554863855242729, -0.052698682993650436, -0.09467010945081711, -0.07491982728242874, -0.09363677352666855, -0.0250538419932127, -0.06482025235891342, 0.056758277118206024, -0.055030666291713715, -0.08064161241054535, -0.036216188222169876, -0.057257793843746185, -0.07604221254587173, -0.01850574091076851, 0.15615339577198029, 0.0399773083627224, 0.02134396694600582, -0.03255024179816246, 0.1088489294052124, 0.0022534988820552826, -0.14085711538791656, -0.01441989652812481, -0.0016351350350305438, -0.09730883687734604, -0.04730205237865448, -0.050737135112285614, -0.016138695180416107, 0.01036752574145794, 0.17762477695941925, -0.07966198772192001, 0.0756688192486763, 0.010573796927928925, -0.029322892427444458, -0.0060268668457865715, 0.1466447412967682, -0.04395686835050583, -0.04741982743144035, -0.01021014153957367, 0.07384289801120758, 0.0025060977786779404, -0.014283482916653156, -0.06537934392690659, -0.027215447276830673, 0.10198287665843964, 0.04625524580478668, -0.060744911432266235, 0.040130309760570526, -0.023311829194426537, -0.02815794013440609, 0.01656976155936718, -0.11525996029376984, 0.04423743858933449, -0.0016196348005905747, -0.08424769341945648, -0.001334928092546761, -0.0003594112058635801, -0.005131897050887346, -0.007084650918841362, 0.10968244820833206, -0.09915333241224289, -0.0025380458682775497, -0.0636177659034729, -0.08312297612428665, 0.008538603782653809, -0.15467268228530884, -0.015280558727681637, -0.057105548679828644, -0.17114540934562683, -0.03258483484387398, 0.03720230236649513, -0.07436522096395493, -0.009367069229483604, -0.04858141019940376, -0.06489178538322449, 0.024667570367455482, -0.014398564584553242, 0.17465412616729736, -0.05364185571670532, 0.0718812569975853, 0.0004932644078508019, 0.04685388132929802, 0.014218688011169434, 0.03532833233475685, -0.10386408120393753, 0.025127239525318146, -0.13767372071743011, 0.06876038759946823, -0.08442537486553192, -0.002299319487065077, -0.13283850252628326, -0.09848304837942123, 0.010825552977621555, -0.02223672904074192, 0.08960723876953125, 0.13805995881557465, -0.19343076646327972, -0.017813561484217644, 0.1261398047208786, -0.07526040822267532, -0.06340213119983673, 0.06186447665095329, -0.06110391765832901, 0.03132098913192749, 0.051862187683582306, 0.21116206049919128, 0.040427688509225845, -0.16670534014701843, -0.032225314527750015, -0.006181784905493259, 0.039856214076280594, 0.026372229680418968, 0.04016066715121269, 0.005289600696414709, 0.0628846064209938, 0.014637176878750324, -0.07649289071559906, -0.03290173038840294, -0.09134134650230408, -0.06543582677841187, -0.05383435636758804, -0.07236839830875397, 0.04164326190948486, 0.0025160950608551502, 0.04300585389137268, -0.06501153111457825, -0.10065112262964249, 0.11880739778280258, 0.09677378088235855, -0.047546789050102234, 0.03595313802361488, -0.08010516315698624, 0.01995123364031315, -0.02117759920656681, -0.039388351142406464, -0.20555974543094635, -0.1305827796459198, 0.051939450204372406, -0.05583524703979492, 0.03344739228487015, 0.008165544830262661, 0.0818607360124588, 0.06136833503842354, -0.04367561265826225, -0.012585713528096676, -0.09290478378534317, 0.0030641949269920588, -0.11739740520715714, -0.18884781002998352, -0.07830183953046799, -0.03996086120605469, 0.0942518338561058, -0.17454028129577637, -0.006731708999723196, 0.015375521965324879, 0.14319108426570892, 0.027105143293738365, -0.06774485111236572, -0.0026554756332188845, 0.03780398890376091, 0.0029440121725201607, -0.09466811269521713, 0.045415934175252914, 0.007929409854114056, -0.09272261708974838, -0.06335967034101486, -0.13522207736968994, -0.00961508322507143, 0.0593392439186573, 0.05266181379556656, -0.09714744985103607, -0.04644017666578293, -0.07073188573122025, -0.04055042564868927, -0.07519199699163437, 0.012943761423230171, 0.20200327038764954, 0.034413211047649384, 0.11237095296382904, -0.06633469462394714, -0.07760497182607651, -0.003628031350672245, 0.022959891706705093, 0.013241161592304707, 0.07607674598693848, 0.04037747532129288, -0.05263064429163933, 0.0740610808134079, 0.09933816641569138, -0.02251007966697216, 0.12447723746299744, -0.04664275050163269, -0.08356861025094986, -0.034130435436964035, -0.023848731070756912, -0.02902797982096672, 0.12435095757246017, -0.03877097740769386, 0.0051711443811655045, 0.0361422561109066, 0.04431688413023949, 0.017106343060731888, -0.16197223961353302, 0.008227293379604816, 0.02125246450304985, -0.05337049439549446, -0.03799238055944443, -0.0009477607090957463, 0.026970231905579567, 0.09208817780017853, 0.03140145540237427, -0.014100944623351097, 0.0033738131169229746, -0.011781699024140835, -0.061489287763834, 0.18453668057918549, -0.09799674153327942, -0.08462966233491898, -0.07606099545955658, 0.005109516438096762, -0.0596076063811779, -0.036426007747650146, 0.015874361619353294, -0.08816348761320114, -0.03875686973333359, -0.08691509068012238, -0.017896423116326332, -0.01796109415590763, 0.02095247246325016, 0.03205423802137375, -0.022537311539053917, 0.08075820654630661, -0.1386203020811081, 0.0016285841120406985, -0.05229029059410095, -0.09300516545772552, 0.0003278481017332524, 0.07514499872922897, 0.09812919050455093, 0.07895917445421219, -0.016554003581404686, 0.029825584962964058, -0.03435191884636879, 0.24275611340999603, -0.04538355767726898, 0.011429265141487122, 0.10376542061567307, -0.01312102098017931, 0.055798955261707306, 0.09613066911697388, 0.0378354974091053, -0.09420536458492279, 0.02050076797604561, 0.08259960263967514, -0.02840321697294712, -0.22956213355064392, -0.02517562173306942, -0.0043410989455878735, -0.07929353415966034, 0.10574524849653244, 0.03155447915196419, -0.03852761909365654, 0.045845530927181244, 0.021665913984179497, 0.0026906842831522226, -0.05503368750214577, 0.08120110630989075, 0.07638117671012878, 0.056075453758239746, 0.10080127418041229, -0.008681890554726124, -0.02869376167654991, 0.06164753809571266, 0.00911522563546896, 0.24743041396141052, -0.024484850466251373, 0.09964904189109802, 0.03274295851588249, 0.1514597088098526, -0.026316456496715546, 0.06512860208749771, 0.003748528426513076, -0.009806099347770214, -0.014726940542459488, -0.06654110550880432, -0.024184972047805786, 0.023096969351172447, -0.04599223658442497, 0.029381541535258293, -0.08195248991250992, 0.02512384206056595, 0.028034035116434097, 0.2794007360935211, 0.03483222797513008, -0.27470824122428894, -0.06646589189767838, -0.01308794692158699, -0.041440531611442566, -0.06284578889608383, 0.006023978348821402, 0.12001912295818329, -0.1333668977022171, 0.06533237546682358, -0.07606633007526398, 0.0892045870423317, -0.0383809469640255, 0.011395707726478577, 0.04688572883605957, 0.1533481627702713, -0.018484320491552353, 0.05029628425836563, -0.18489649891853333, 0.24132156372070312, 0.025116832926869392, 0.10761623829603195, -0.06381233036518097, 0.01008464116603136, 0.019623301923274994, 0.009082739241421223, 0.10917555540800095, 0.0011781378416344523, -0.06850776076316833, -0.1385248601436615, -0.10009738802909851, 0.04774917662143707, 0.14141042530536652, -0.0350019708275795, 0.09960996359586716, -0.027916021645069122, 0.01228269748389721, 0.03298942372202873, -0.0309952050447464, -0.1577037125825882, -0.07234734296798706, 0.009689852595329285, 0.027154404670000076, -0.014883394353091717, -0.05169888958334923, -0.10456822067499161, -0.038398802280426025, 0.11898189038038254, 0.002707442967221141, -0.046357255429029465, -0.15090475976467133, 0.0840822383761406, 0.14549008011817932, -0.05776262283325195, 0.01511793676763773, 0.014834502711892128, 0.11156073212623596, 0.03328206390142441, -0.08600354194641113, 0.06660539656877518, -0.05399399623274803, -0.17350977659225464, -0.057980842888355255, 0.11937963962554932, 0.07896528393030167, 0.04517342150211334, 0.0011020867386832833, 0.05670300871133804, 0.0013495555613189936, -0.09704636037349701, 0.03768577054142952, 0.0038838479667901993, 0.05202065035700798, 0.02861243300139904, -0.08639291673898697, 0.07674823701381683, -0.03363504260778427, 0.01890716515481472, 0.12891241908073425, 0.23211154341697693, -0.0988755002617836, 0.10263542085886002, 0.07934939861297607, -0.07649710029363632, -0.15868531167507172, 0.06140763312578201, 0.12580466270446777, 0.005019594915211201, 0.08387643098831177, -0.2004532366991043, 0.1341915726661682, 0.10648079961538315, -0.013535960577428341, 0.021963132545351982, -0.2701011896133423, -0.13141898810863495, 0.06480718404054642, 0.11002248525619507, 0.051438722759485245, -0.1220540702342987, -0.03530125692486763, -0.00998794473707676, -0.12051299214363098, 0.12757544219493866, -0.07717025279998779, 0.11699137091636658, -0.02181112766265869, 0.12362458556890488, 0.023960905149579048, -0.03655809164047241, 0.11315961927175522, 0.07165674865245819, 0.08590475469827652, -0.03909866139292717, -0.0028153148014098406, 0.06487762928009033, -0.062291525304317474, 0.03545406833291054, -0.03702815622091293, 0.062498971819877625, -0.14923739433288574, 0.006717330310493708, -0.07827671617269516, 0.059928588569164276, -0.04663076251745224, -0.06522249430418015, -0.026785705238580704, 0.04719770699739456, 0.0718841478228569, -0.035610586404800415, 0.04377424716949463, 0.0086557911708951, 0.09068798273801804, 0.10023418813943863, 0.07373519986867905, -0.022021815180778503, -0.0838383138179779, 0.014216083101928234, 0.003943488467484713, 0.04704831913113594, -0.08482038974761963, 0.015388943254947662, 0.14671377837657928, 0.05931031331419945, 0.10236909985542297, 0.04625982418656349, -0.04294029623270035, 0.006018566899001598, 0.017771324142813683, -0.14279092848300934, -0.1001889705657959, 0.02812776528298855, -0.06055419147014618, -0.1539086252450943, 0.03393898904323578, 0.12375432252883911, -0.03668975457549095, -0.01679457537829876, -0.0069040837697684765, 0.009097050875425339, -0.011672930791974068, 0.18496261537075043, 0.042017608880996704, 0.05444536730647087, -0.09132885187864304, 0.11337512731552124, 0.03562378138303757, -0.04122580960392952, 0.05362242832779884, 0.06758026033639908, -0.09986765682697296, 0.012931491248309612, 0.07291305065155029, 0.15143190324306488, -0.06617303937673569, -0.013133461587131023, -0.09255807846784592, -0.07661091536283493, 0.04431324824690819, 0.1437211036682129, 0.053241048008203506, -0.0058891004882752895, -0.06044284999370575, 0.03537994623184204, -0.11765825748443604, 0.06794927269220352, 0.05211399868130684, 0.08217759430408478, -0.1086520329117775, 0.12443113327026367, -0.0076184640638530254, 0.0237674992531538, -0.028420547023415565, 0.018542518839240074, -0.10126270353794098, -0.03466380015015602, -0.10873495787382126, -0.014266574755311012, -0.017622698098421097, -0.0029984579887241125, -0.019495569169521332, -0.07504408806562424, -0.04361603409051895, 0.03342796489596367, -0.07714197784662247, -0.048052966594696045, 0.018272358924150467, 0.04045674577355385, -0.16046451032161713, 0.0028573856689035892, 0.025865742936730385, -0.08755304664373398, 0.08816517889499664, 0.06972607225179672, 0.016406426206231117, 0.028242751955986023, -0.12181217968463898, -0.03363807126879692, 0.00022128266573417932, 0.009886031970381737, 0.07737720757722855, -0.0939892902970314, -0.029636375606060028, -0.03085690177977085, 0.04917563498020172, 0.01520751416683197, 0.10332448035478592, -0.11830739676952362, -0.012767148204147816, -0.04580902308225632, -0.03788832947611809, -0.05757354199886322, 0.026163341477513313, 0.11377429962158203, 0.04538292437791824, 0.15769895911216736, -0.07017457485198975, 0.05409333482384682, -0.2046044021844864, -0.03299839422106743, 0.010350736789405346, -0.04683378338813782, -0.07418330758810043, -0.045167434960603714, 0.08381333947181702, -0.05062993988394737, 0.1227082833647728, -0.01600630208849907, 0.09173721820116043, 0.04360831156373024, -0.0038537480868399143, -0.07098953425884247, -0.011335829272866249, 0.18271049857139587, 0.05701731517910957, -0.021529970690608025, 0.12012320756912231, 0.004279577173292637, 0.04229928180575371, 0.06710321456193924, 0.23353266716003418, 0.15069998800754547, -0.01194670982658863, 0.07449742406606674, 0.0672612264752388, -0.075349360704422, -0.1407022327184677, 0.122002013027668, -0.020847134292125702, 0.10574648529291153, -0.05245376378297806, 0.1889537274837494, 0.0383225679397583, -0.17619235813617706, 0.05384599789977074, -0.02535737119615078, -0.1082797423005104, -0.12511177361011505, -0.01588360220193863, -0.08202698081731796, -0.11660642921924591, 0.027751736342906952, -0.12371360510587692, 0.06759736686944962, 0.0959123820066452, 0.007444146554917097, 0.035440701991319656, 0.18360589444637299, -0.05710562318563461, 0.01162729226052761, 0.07168944180011749, 0.020603463053703308, -0.0036964186001569033, -0.038784053176641464, -0.06639973819255829, 0.03663387894630432, 0.04288534075021744, 0.07061787694692612, -0.05155215784907341, 0.009379005990922451, 0.014637153595685959, -0.009830690920352936, -0.07797420769929886, 0.007310560904443264, 0.014442160725593567, 0.04817245528101921, 0.03540467098355293, 0.04715682566165924, 0.008264635689556599, -0.0533100850880146, 0.2747902572154999, -0.0674225389957428, -0.06069957837462425, -0.12409050762653351, 0.19468559324741364, 0.03231482580304146, -0.01864861138164997, 0.05579182505607605, -0.0920141413807869, -0.011940686032176018, 0.16243581473827362, 0.13616971671581268, -0.09137700498104095, -0.021556351333856583, -0.02409820817410946, -0.008786432445049286, -0.011965488083660603, 0.10498786717653275, 0.07089193910360336, 0.0004747453494928777, -0.06703300774097443, -0.013248683884739876, -0.02952105738222599, -0.04730212315917015, -0.06254316121339798, 0.05884716287255287, 0.02719961106777191, -0.006208570208400488, -0.05848436430096626, 0.06364821642637253, -0.0038012682925909758, -0.23481181263923645, 0.03887913376092911, -0.17212152481079102, -0.17446637153625488, -0.014355337247252464, 0.07080388069152832, 0.0012158745666965842, 0.056707751005887985, -0.007174353115260601, 0.009459855034947395, 0.11701134592294693, -0.016912294551730156, -0.013750853948295116, -0.11778565496206284, 0.10984992235898972, -0.10938248783349991, 0.21146337687969208, -0.0013090487336739898, 0.06531909108161926, 0.09891043603420258, 0.03692229092121124, -0.13516055047512054, 0.018948007375001907, 0.06127805635333061, -0.12637865543365479, 0.0018172813579440117, 0.14607609808444977, -0.03456898033618927, 0.062265098094940186, 0.031030280515551567, -0.1487579643726349, -0.0032235595863312483, 0.028402017429471016, -0.03709486126899719, -0.06869477033615112, -0.009548110887408257, -0.05635152757167816, 0.16576586663722992, 0.20733506977558136, -0.029212726280093193, 0.012708340771496296, -0.08425500988960266, 0.02225920557975769, 0.04934092238545418, 0.058709729462862015, -0.03962881118059158, -0.21623627841472626, 0.02142135426402092, 0.07233966141939163, -0.0028608727734535933, -0.19559212028980255, -0.09555477648973465, 0.04154803231358528, -0.0356936939060688, -0.04636048525571823, 0.09182127565145493, 0.02490277774631977, 0.037511635571718216, -0.01901240460574627, -0.1147991344332695, -0.027601495385169983, 0.14510421454906464, -0.17597483098506927, -0.04284917563199997 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # spanbert-base-cased-few-shot-k-512-finetuned-squad-seed-6 This model is a fine-tuned version of [SpanBERT/spanbert-base-cased](https://huggingface.co/SpanBERT/spanbert-base-cased) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10.0 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
{"tags": ["generated_from_trainer"], "datasets": ["squad"], "model-index": [{"name": "spanbert-base-cased-few-shot-k-512-finetuned-squad-seed-6", "results": []}]}
question-answering
anas-awadalla/spanbert-base-cased-few-shot-k-512-finetuned-squad-seed-6
[ "transformers", "pytorch", "bert", "question-answering", "generated_from_trainer", "dataset:squad", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #bert #question-answering #generated_from_trainer #dataset-squad #endpoints_compatible #region-us
# spanbert-base-cased-few-shot-k-512-finetuned-squad-seed-6 This model is a fine-tuned version of SpanBERT/spanbert-base-cased on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10.0 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
[ "# spanbert-base-cased-few-shot-k-512-finetuned-squad-seed-6\n\nThis model is a fine-tuned version of SpanBERT/spanbert-base-cased on the squad dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- num_epochs: 10.0", "### Training results", "### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #bert #question-answering #generated_from_trainer #dataset-squad #endpoints_compatible #region-us \n", "# spanbert-base-cased-few-shot-k-512-finetuned-squad-seed-6\n\nThis model is a fine-tuned version of SpanBERT/spanbert-base-cased on the squad dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- num_epochs: 10.0", "### Training results", "### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ 42, 56, 6, 12, 8, 3, 106, 4, 38 ]
[ "passage: TAGS\n#transformers #pytorch #bert #question-answering #generated_from_trainer #dataset-squad #endpoints_compatible #region-us \n# spanbert-base-cased-few-shot-k-512-finetuned-squad-seed-6\n\nThis model is a fine-tuned version of SpanBERT/spanbert-base-cased on the squad dataset.## Model description\n\nMore information needed## Intended uses & limitations\n\nMore information needed## Training and evaluation data\n\nMore information needed## Training procedure### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- num_epochs: 10.0### Training results### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ -0.09642046689987183, 0.11360721290111542, -0.002294799778610468, 0.09194186329841614, 0.11989547312259674, 0.02256525680422783, 0.10098964720964432, 0.12825758755207062, -0.09586231410503387, 0.0864546075463295, 0.08679883927106857, 0.0394660122692585, 0.04748095944523811, 0.14642339944839478, -0.019612878561019897, -0.2596695125102997, 0.009991263039410114, -0.003865421749651432, -0.03376559913158417, 0.11179567873477936, 0.084788978099823, -0.11062474548816681, 0.0857725590467453, 0.014583570882678032, -0.15475311875343323, 0.020253999158740044, -0.03716207668185234, -0.033696312457323074, 0.11303438246250153, -0.03339816629886627, 0.10883768647909164, 0.025709308683872223, 0.13499967753887177, -0.20930980145931244, 0.005069805774837732, 0.07321576029062271, 0.04548269137740135, 0.10044515877962112, 0.052541159093379974, 0.015335045754909515, 0.08912965655326843, -0.15300370752811432, 0.09240961074829102, 0.030106911435723305, -0.09119559079408646, -0.1287587583065033, -0.09641487151384354, 0.024665968492627144, 0.05348048731684685, 0.06901250034570694, 0.0011287516681477427, 0.1511327028274536, -0.060583215206861496, 0.07916630059480667, 0.2661176323890686, -0.3271316587924957, -0.06442460417747498, 0.033873915672302246, 0.06020798534154892, 0.05256075784564018, -0.12362100183963776, -0.006582872476428747, 0.027679763734340668, 0.0295905489474535, 0.11738349497318268, -0.01687634550035, -0.11317881941795349, -0.013506334275007248, -0.12852726876735687, -0.0002670397807378322, 0.07085280120372772, 0.035610273480415344, -0.05215342342853546, -0.09445640444755554, -0.07539073377847672, -0.09307487308979034, -0.024871325120329857, -0.06476088613271713, 0.05695845186710358, -0.05508987233042717, -0.08011168241500854, -0.03606618195772171, -0.05700657516717911, -0.07715148478746414, -0.018265314400196075, 0.15586380660533905, 0.03996129706501961, 0.021180221810936928, -0.033275309950113297, 0.10867337882518768, 0.00226855231449008, -0.14102546870708466, -0.015418772585690022, -0.0009728699806146324, -0.09766360372304916, -0.04751253500580788, -0.05021566152572632, -0.017854416742920876, 0.009927001781761646, 0.1758861392736435, -0.07988618314266205, 0.07610364258289337, 0.009653570130467415, -0.029421629384160042, -0.0066565158776938915, 0.14680734276771545, -0.04305073991417885, -0.045957665890455246, -0.01087644137442112, 0.07381787151098251, 0.0020132227800786495, -0.013946975581347942, -0.06479504704475403, -0.027333201840519905, 0.10241540521383286, 0.04611097648739815, -0.06024572625756264, 0.03979267552495003, -0.023540038615465164, -0.028294259682297707, 0.01689610257744789, -0.11513155698776245, 0.04441584646701813, -0.0020599630661308765, -0.08464944362640381, -0.0024009409826248884, -0.0001558464573463425, -0.005425706971436739, -0.007433285936713219, 0.11036641150712967, -0.0995054617524147, -0.0023176188115030527, -0.06459855288267136, -0.08296104520559311, 0.008988240733742714, -0.15629012882709503, -0.015666713938117027, -0.056344956159591675, -0.1715591847896576, -0.03269573673605919, 0.03685836121439934, -0.07439681142568588, -0.008758557960391045, -0.0491693913936615, -0.06547694653272629, 0.024962401017546654, -0.014014746993780136, 0.17561893165111542, -0.053365133702754974, 0.07253816723823547, 0.0002464493445586413, 0.04660837724804878, 0.014695907011628151, 0.03594253584742546, -0.10475919395685196, 0.024879414588212967, -0.13716816902160645, 0.06882194429636002, -0.08536018431186676, -0.002465201308950782, -0.1337529718875885, -0.09779925644397736, 0.009655552916228771, -0.02274318039417267, 0.0903489962220192, 0.1387631744146347, -0.193728506565094, -0.01747463457286358, 0.12661759555339813, -0.07604467868804932, -0.0634380504488945, 0.06091257557272911, -0.06080053746700287, 0.030923519283533096, 0.051436230540275574, 0.2114666849374771, 0.03976069763302803, -0.1664963960647583, -0.03330899775028229, -0.006773252040147781, 0.040336061269044876, 0.025829145684838295, 0.039945974946022034, 0.005198841914534569, 0.06395743042230606, 0.014360986649990082, -0.07632821053266525, -0.03318501263856888, -0.0915123000741005, -0.06483383476734161, -0.0543450303375721, -0.0724785104393959, 0.04108769819140434, 0.00374047108925879, 0.0426696352660656, -0.06458279490470886, -0.10020020604133606, 0.11881407350301743, 0.09675147384405136, -0.046947017312049866, 0.03621349483728409, -0.07966773211956024, 0.018864639103412628, -0.021655183285474777, -0.0393175333738327, -0.2068847268819809, -0.13086332380771637, 0.05236292630434036, -0.056409258395433426, 0.033584896475076675, 0.007636439986526966, 0.08176777511835098, 0.06054115295410156, -0.04382071644067764, -0.012582877650856972, -0.09364153444766998, 0.0026347984094172716, -0.11788808554410934, -0.18896009027957916, -0.07838854193687439, -0.04062023386359215, 0.09209877252578735, -0.17402639985084534, -0.007032996509224176, 0.015411938540637493, 0.14378857612609863, 0.02735006809234619, -0.06822661310434341, -0.0026511179748922586, 0.0375528410077095, 0.0026466655544936657, -0.09493044763803482, 0.04523202404379845, 0.007079083938151598, -0.09227553009986877, -0.06345705687999725, -0.13555002212524414, -0.011272178962826729, 0.05904361978173256, 0.05404407158493996, -0.09733153134584427, -0.046420030295848846, -0.07067999988794327, -0.040723104029893875, -0.07633364200592041, 0.01391527894884348, 0.20144018530845642, 0.034697871655225754, 0.11191035062074661, -0.06649724394083023, -0.07780495285987854, -0.0030975572299212217, 0.023234853520989418, 0.01279633678495884, 0.07705644518136978, 0.042102713137865067, -0.05439648777246475, 0.07481075078248978, 0.09983278065919876, -0.021930767223238945, 0.12480384111404419, -0.04678472876548767, -0.08399098366498947, -0.032834794372320175, -0.023526882752776146, -0.028901778161525726, 0.12416382879018784, -0.03849567100405693, 0.005551429931074381, 0.03597494587302208, 0.04477860778570175, 0.017133772373199463, -0.16210904717445374, 0.008252634666860104, 0.021066397428512573, -0.053229790180921555, -0.038698937743902206, -0.000988768064416945, 0.026916971430182457, 0.09241397678852081, 0.031112058088183403, -0.013772035017609596, 0.0027358634397387505, -0.011811234056949615, -0.06152019649744034, 0.18535590171813965, -0.09762219339609146, -0.08355285972356796, -0.07479128986597061, 0.005853038281202316, -0.059190232306718826, -0.03670111671090126, 0.01604977808892727, -0.08918260037899017, -0.03879266977310181, -0.08688816428184509, -0.017685189843177795, -0.017780061811208725, 0.020158762112259865, 0.03139534592628479, -0.022222518920898438, 0.08001235872507095, -0.13934551179409027, 0.0018297981005162, -0.05275607109069824, -0.09321986883878708, 0.00002007995317399036, 0.07476724684238434, 0.09803158789873123, 0.07920093834400177, -0.016925623640418053, 0.029884329065680504, -0.03445564582943916, 0.2415635585784912, -0.04587766155600548, 0.010994805954396725, 0.10363160073757172, -0.012065021321177483, 0.05621069669723511, 0.0963793471455574, 0.03716617822647095, -0.0942336767911911, 0.020801758393645287, 0.08329347521066666, -0.028714817017316818, -0.23061025142669678, -0.025363657623529434, -0.004508309997618198, -0.07943837344646454, 0.10574615001678467, 0.03186497092247009, -0.03853659704327583, 0.04567969962954521, 0.021029168739914894, 0.0013920770725235343, -0.054975152015686035, 0.08152499049901962, 0.07430751621723175, 0.05679268762469292, 0.10048335790634155, -0.008721034973859787, -0.0280764102935791, 0.061001259833574295, 0.009112785570323467, 0.24854376912117004, -0.024763545021414757, 0.09938880056142807, 0.032310426235198975, 0.15114878118038177, -0.026845578104257584, 0.0655936598777771, 0.003514631651341915, -0.009914970956742764, -0.014549742452800274, -0.06636171787977219, -0.024318426847457886, 0.02306700125336647, -0.04666392132639885, 0.029510682448744774, -0.08181749284267426, 0.025477157905697823, 0.027501311153173447, 0.2800476551055908, 0.034933630377054214, -0.27372851967811584, -0.06574980914592743, -0.013329146429896355, -0.04174301028251648, -0.06345582008361816, 0.00584045983850956, 0.11961808800697327, -0.1329651027917862, 0.06514129042625427, -0.07648135721683502, 0.09010004997253418, -0.03710673376917839, 0.010742129758000374, 0.0462329238653183, 0.15349777042865753, -0.018446380272507668, 0.05070953071117401, -0.18592411279678345, 0.24331586062908173, 0.02523416467010975, 0.10775291174650192, -0.06408713757991791, 0.0098970802500844, 0.019019443541765213, 0.007561637554317713, 0.10966593772172928, 0.0011391532607376575, -0.0691586285829544, -0.13829784095287323, -0.0994124785065651, 0.047525323927402496, 0.14227335155010223, -0.035053689032793045, 0.09906353801488876, -0.027891209349036217, 0.01235394086688757, 0.033753763884305954, -0.0310931745916605, -0.15805256366729736, -0.07227113097906113, 0.00997029710561037, 0.026584269478917122, -0.01562468335032463, -0.0513777919113636, -0.1043272316455841, -0.03726213797926903, 0.1186324805021286, 0.0026785864029079676, -0.04575787112116814, -0.1509196162223816, 0.08486225455999374, 0.14555475115776062, -0.05812809243798256, 0.015035355463624, 0.01454128697514534, 0.1111704558134079, 0.03241078928112984, -0.08649042248725891, 0.067536361515522, -0.05401330441236496, -0.17382720112800598, -0.05790426954627037, 0.11891162395477295, 0.07957867532968521, 0.04556893929839134, 0.0009130560792982578, 0.05710512027144432, 0.0016070660203695297, -0.09676431119441986, 0.037965767085552216, 0.004148500971496105, 0.051958102732896805, 0.029097532853484154, -0.08594424277544022, 0.0754704475402832, -0.03422268107533455, 0.0183577723801136, 0.1285337656736374, 0.23304051160812378, -0.0987737700343132, 0.10299580544233322, 0.07982639968395233, -0.07686470448970795, -0.15936064720153809, 0.06227599456906319, 0.12610390782356262, 0.0044982717372477055, 0.08459094911813736, -0.2003256231546402, 0.13414838910102844, 0.10631150007247925, -0.01387124601751566, 0.02118772454559803, -0.27086204290390015, -0.13143973052501678, 0.06474652141332626, 0.1098850890994072, 0.04939214512705803, -0.12197753041982651, -0.03511510416865349, -0.009707598015666008, -0.12014244496822357, 0.12830041348934174, -0.07602944225072861, 0.1171974316239357, -0.02213590405881405, 0.12371845543384552, 0.024121426045894623, -0.03708484023809433, 0.11180223524570465, 0.07176734507083893, 0.08616801351308823, -0.03887159004807472, -0.003039828035980463, 0.0649431124329567, -0.06243182718753815, 0.0356200709939003, -0.037115056067705154, 0.06289707124233246, -0.14808626472949982, 0.007082692813128233, -0.07877844572067261, 0.060413699597120285, -0.046559013426303864, -0.06522748619318008, -0.026907240971922874, 0.04763583838939667, 0.07229950278997421, -0.03604019433259964, 0.04508155211806297, 0.008690237998962402, 0.0923452079296112, 0.10040424019098282, 0.07422662526369095, -0.02180386148393154, -0.08277968317270279, 0.013681459240615368, 0.004654655233025551, 0.04720257967710495, -0.0857764333486557, 0.01519719511270523, 0.1468157321214676, 0.06039465591311455, 0.10225096344947815, 0.04665375128388405, -0.04356441646814346, 0.006061484105885029, 0.01696857437491417, -0.14209714531898499, -0.10107149928808212, 0.028453705832362175, -0.05710305646061897, -0.15428423881530762, 0.03446044400334358, 0.12239217758178711, -0.03760850802063942, -0.016830159351229668, -0.006696566008031368, 0.00965464673936367, -0.011107091791927814, 0.1855962723493576, 0.04206862673163414, 0.05502390116453171, -0.09118866920471191, 0.11377735435962677, 0.03519183769822121, -0.042407263070344925, 0.053815122693777084, 0.06783320754766464, -0.09927279502153397, 0.012908858247101307, 0.07442646473646164, 0.150536447763443, -0.06620966643095016, -0.011892172507941723, -0.09154563397169113, -0.07634437084197998, 0.04461401700973511, 0.14540621638298035, 0.053077369928359985, -0.0059877256862819195, -0.060104139149188995, 0.03583851829171181, -0.11820579320192337, 0.06821248680353165, 0.05168147012591362, 0.08237290382385254, -0.10829269140958786, 0.12316182255744934, -0.0074384487234056, 0.023974033072590828, -0.028344256803393364, 0.01894528418779373, -0.10105025768280029, -0.03461163491010666, -0.1067834198474884, -0.014464996755123138, -0.017687171697616577, -0.0034650955349206924, -0.019968615844845772, -0.075442835688591, -0.04283902049064636, 0.033490173518657684, -0.07737518846988678, -0.048549551516771317, 0.0176447331905365, 0.0399993434548378, -0.16089531779289246, 0.002998596988618374, 0.02601815201342106, -0.08698096871376038, 0.08720434457063675, 0.06905282288789749, 0.016475515440106392, 0.028568854555487633, -0.124242402613163, -0.03328406438231468, 0.00045815121848136187, 0.00992994848638773, 0.07735676318407059, -0.09336908906698227, -0.02995801903307438, -0.031056959182024002, 0.049300793558359146, 0.015032989904284477, 0.10260935872793198, -0.11878025531768799, -0.013482395559549332, -0.047120943665504456, -0.03856493532657623, -0.05698820576071739, 0.02669767662882805, 0.1141221672296524, 0.04549606889486313, 0.15735024213790894, -0.06996087729930878, 0.05476323142647743, -0.20459839701652527, -0.03289756923913956, 0.010638011619448662, -0.046639516949653625, -0.07462745904922485, -0.04443458467721939, 0.08418264985084534, -0.0506848469376564, 0.12043973058462143, -0.015457704663276672, 0.09239137917757034, 0.04398559406399727, -0.0037386808544397354, -0.07141722738742828, -0.011460854671895504, 0.18228094279766083, 0.05679601803421974, -0.021023355424404144, 0.12171448022127151, 0.0045236810110509396, 0.04194312542676926, 0.06853294372558594, 0.23553210496902466, 0.1518261730670929, -0.01290070079267025, 0.07460445165634155, 0.06702842563390732, -0.07594318687915802, -0.14057372510433197, 0.121913842856884, -0.020517945289611816, 0.10563791543245316, -0.052785828709602356, 0.1896078884601593, 0.03827821463346481, -0.1758984923362732, 0.05444847047328949, -0.025782618671655655, -0.10810411721467972, -0.12519125640392303, -0.015783822163939476, -0.08196881413459778, -0.11645987629890442, 0.028113385662436485, -0.12392506003379822, 0.06832844763994217, 0.096228688955307, 0.007465093396604061, 0.03565327078104019, 0.18429210782051086, -0.056844644248485565, 0.011682278476655483, 0.07203424721956253, 0.020751310512423515, -0.0040816948749125, -0.03906438499689102, -0.06601332873106003, 0.03773276507854462, 0.04278077185153961, 0.07073958218097687, -0.05142039433121681, 0.008328328840434551, 0.014491496607661247, -0.009799035266041756, -0.07809648662805557, 0.007533466909080744, 0.014770337380468845, 0.048354875296354294, 0.03606657683849335, 0.04706699401140213, 0.008744337595999241, -0.05340222269296646, 0.27646300196647644, -0.0677923932671547, -0.060507405549287796, -0.12322978675365448, 0.19548408687114716, 0.03334607928991318, -0.018591852858662605, 0.055689048022031784, -0.09284066408872604, -0.012194015085697174, 0.16100488603115082, 0.1344861388206482, -0.09034498780965805, -0.02133149467408657, -0.024460548534989357, -0.008657816797494888, -0.011805707588791847, 0.10466457903385162, 0.07121682167053223, 0.0012196199968457222, -0.06729638576507568, -0.013019097037613392, -0.02950848452746868, -0.04808833450078964, -0.06159035861492157, 0.05899001657962799, 0.02758033573627472, -0.006669904571026564, -0.058670297265052795, 0.0639258399605751, -0.003959985915571451, -0.23441798985004425, 0.03819877654314041, -0.17314934730529785, -0.17401118576526642, -0.014302724041044712, 0.07073872536420822, 0.0013147869613021612, 0.05645569786429405, -0.007008813321590424, 0.009944230318069458, 0.11502749472856522, -0.016776567324995995, -0.014040675014257431, -0.11902020126581192, 0.10919231921434402, -0.10996362566947937, 0.21200910210609436, -0.001427471055649221, 0.06447609513998032, 0.09891625493764877, 0.03703764081001282, -0.1356925666332245, 0.018713725730776787, 0.06156587600708008, -0.12699171900749207, 0.001671388978138566, 0.14709952473640442, -0.034623220562934875, 0.06257328391075134, 0.03067830577492714, -0.1503181755542755, -0.0028129236306995153, 0.027361368760466576, -0.03668814152479172, -0.06925930082798004, -0.007870296016335487, -0.05613664537668228, 0.16584105789661407, 0.20753943920135498, -0.028935248032212257, 0.012500807642936707, -0.08475927263498306, 0.021995821967720985, 0.048327285796403885, 0.059514183551073074, -0.0394366979598999, -0.21629206836223602, 0.021805595606565475, 0.07217446714639664, -0.0030467906035482883, -0.19530805945396423, -0.09515783935785294, 0.04175853356719017, -0.03662335127592087, -0.04640722647309303, 0.09120611846446991, 0.025058921426534653, 0.0369698591530323, -0.01913807913661003, -0.11687704920768738, -0.02724407985806465, 0.145633265376091, -0.17607171833515167, -0.04249197244644165 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # spanbert-base-cased-few-shot-k-512-finetuned-squad-seed-8 This model is a fine-tuned version of [SpanBERT/spanbert-base-cased](https://huggingface.co/SpanBERT/spanbert-base-cased) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10.0 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
{"tags": ["generated_from_trainer"], "datasets": ["squad"], "model-index": [{"name": "spanbert-base-cased-few-shot-k-512-finetuned-squad-seed-8", "results": []}]}
question-answering
anas-awadalla/spanbert-base-cased-few-shot-k-512-finetuned-squad-seed-8
[ "transformers", "pytorch", "bert", "question-answering", "generated_from_trainer", "dataset:squad", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #bert #question-answering #generated_from_trainer #dataset-squad #endpoints_compatible #region-us
# spanbert-base-cased-few-shot-k-512-finetuned-squad-seed-8 This model is a fine-tuned version of SpanBERT/spanbert-base-cased on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10.0 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
[ "# spanbert-base-cased-few-shot-k-512-finetuned-squad-seed-8\n\nThis model is a fine-tuned version of SpanBERT/spanbert-base-cased on the squad dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- num_epochs: 10.0", "### Training results", "### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #bert #question-answering #generated_from_trainer #dataset-squad #endpoints_compatible #region-us \n", "# spanbert-base-cased-few-shot-k-512-finetuned-squad-seed-8\n\nThis model is a fine-tuned version of SpanBERT/spanbert-base-cased on the squad dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- num_epochs: 10.0", "### Training results", "### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ 42, 56, 6, 12, 8, 3, 106, 4, 38 ]
[ "passage: TAGS\n#transformers #pytorch #bert #question-answering #generated_from_trainer #dataset-squad #endpoints_compatible #region-us \n# spanbert-base-cased-few-shot-k-512-finetuned-squad-seed-8\n\nThis model is a fine-tuned version of SpanBERT/spanbert-base-cased on the squad dataset.## Model description\n\nMore information needed## Intended uses & limitations\n\nMore information needed## Training and evaluation data\n\nMore information needed## Training procedure### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- num_epochs: 10.0### Training results### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ -0.09692684561014175, 0.11446870863437653, -0.002318326383829117, 0.09235680848360062, 0.11996675282716751, 0.023216156288981438, 0.10062595456838608, 0.12818671762943268, -0.09549134224653244, 0.08604642003774643, 0.08706024289131165, 0.038765717297792435, 0.047408830374479294, 0.14574600756168365, -0.019753625616431236, -0.25976550579071045, 0.009522806853055954, -0.003348028054460883, -0.031922709196805954, 0.11133016645908356, 0.08483558148145676, -0.11068841069936752, 0.08570443093776703, 0.014409852214157581, -0.1540999561548233, 0.020097265020012856, -0.036637287586927414, -0.034199126064777374, 0.1133672371506691, -0.03279668092727661, 0.10887372493743896, 0.02497907727956772, 0.13506853580474854, -0.2099633365869522, 0.004873128142207861, 0.07346853613853455, 0.04535544663667679, 0.10051597654819489, 0.05137670412659645, 0.0162298996001482, 0.08815287053585052, -0.15351499617099762, 0.09261339902877808, 0.029726451262831688, -0.0910201147198677, -0.12910126149654388, -0.09561518579721451, 0.025799501687288284, 0.05291115120053291, 0.06838304549455643, 0.0021001610439270735, 0.15271107852458954, -0.0593637190759182, 0.07955213636159897, 0.26637253165245056, -0.3269422650337219, -0.06365898251533508, 0.032869912683963776, 0.06005106493830681, 0.05377212166786194, -0.1228020116686821, -0.006413757801055908, 0.027335958555340767, 0.029457079246640205, 0.11790210008621216, -0.01763787679374218, -0.11462865769863129, -0.01365263108164072, -0.12802790105342865, -0.0006951794493943453, 0.07134053856134415, 0.03579716384410858, -0.05237060412764549, -0.09450096637010574, -0.07609216123819351, -0.09387565404176712, -0.025349341332912445, -0.06513546407222748, 0.056409187614917755, -0.054738715291023254, -0.07926109433174133, -0.03618976101279259, -0.056511055678129196, -0.076368048787117, -0.01796838827431202, 0.15583522617816925, 0.040090952068567276, 0.021108442917466164, -0.032516948878765106, 0.10831805318593979, 0.0003400622808840126, -0.14107446372509003, -0.014998945407569408, -0.0007133971084840596, -0.097781240940094, -0.04771988093852997, -0.0504496768116951, -0.01889202743768692, 0.009520307183265686, 0.17732374370098114, -0.07951730489730835, 0.07584933191537857, 0.010105871595442295, -0.028865180909633636, -0.006260774563997984, 0.14757922291755676, -0.04372752457857132, -0.0468410961329937, -0.00993757788091898, 0.07349439710378647, 0.002892149845138192, -0.014835596084594727, -0.06582048535346985, -0.02809528075158596, 0.10311184823513031, 0.045594722032547, -0.06023484095931053, 0.03927934914827347, -0.023661477491259575, -0.028492102399468422, 0.017733586952090263, -0.1149742379784584, 0.04461154714226723, -0.002119308803230524, -0.08435339480638504, -0.0016476032324135303, 0.0005550001515075564, -0.004728185478597879, -0.007722282316535711, 0.10947395116090775, -0.09869015216827393, -0.0018566915532574058, -0.06423617899417877, -0.08315188437700272, 0.009318622760474682, -0.1562443971633911, -0.014905725605785847, -0.057523347437381744, -0.17184396088123322, -0.032216958701610565, 0.03701567277312279, -0.07384076714515686, -0.008477979339659214, -0.04811999574303627, -0.06420575827360153, 0.024798959493637085, -0.014602022245526314, 0.173637256026268, -0.05357670783996582, 0.07214950770139694, 0.0002988309133797884, 0.04623569920659065, 0.013421732932329178, 0.0360175259411335, -0.10433146357536316, 0.024725178256630898, -0.13725613057613373, 0.06872888654470444, -0.08471179008483887, -0.002350699156522751, -0.13248766958713531, -0.09773652255535126, 0.010683565400540829, -0.022124554961919785, 0.09101573377847672, 0.13807769119739532, -0.1937568187713623, -0.017259709537029266, 0.12577414512634277, -0.07573904097080231, -0.06361258029937744, 0.06238589435815811, -0.060972459614276886, 0.030857127159833908, 0.05198715627193451, 0.21132883429527283, 0.041342027485370636, -0.16651003062725067, -0.0326043926179409, -0.005564031656831503, 0.040958471596241, 0.024751530960202217, 0.03980891406536102, 0.005584953352808952, 0.06440157443284988, 0.014667108654975891, -0.07526416331529617, -0.03239240124821663, -0.09140530973672867, -0.06521880626678467, -0.05458793044090271, -0.07221460342407227, 0.040759842842817307, 0.004354613367468119, 0.04269721359014511, -0.06439119577407837, -0.10071230679750443, 0.12029105424880981, 0.09642884880304337, -0.04729333147406578, 0.036256566643714905, -0.07927890866994858, 0.019399357959628105, -0.020928917452692986, -0.03923691809177399, -0.20644831657409668, -0.12970498204231262, 0.0525527149438858, -0.056253451853990555, 0.03308623656630516, 0.008039834909141064, 0.081119604408741, 0.06098049879074097, -0.04329323023557663, -0.011831110343337059, -0.09308885782957077, 0.002904461929574609, -0.11868253350257874, -0.1878434121608734, -0.07857351750135422, -0.04012355953454971, 0.09251812845468521, -0.17485912144184113, -0.006503239739686251, 0.015040401369333267, 0.143169566988945, 0.026955217123031616, -0.06813880801200867, -0.0026294463314116, 0.038212891668081284, 0.0024582939222455025, -0.09521417319774628, 0.04540465399622917, 0.00767139857634902, -0.09307684004306793, -0.0645001083612442, -0.13589175045490265, -0.010337959043681622, 0.05876537039875984, 0.05320171266794205, -0.09722408652305603, -0.04701390862464905, -0.07015910744667053, -0.040544938296079636, -0.07562831789255142, 0.013021472841501236, 0.2023203819990158, 0.0349934846162796, 0.11289456486701965, -0.06635591387748718, -0.0772177055478096, -0.00302712619304657, 0.023166866973042488, 0.013433611020445824, 0.07612469047307968, 0.04159826040267944, -0.05228757858276367, 0.07404438406229019, 0.09904533624649048, -0.02291479893028736, 0.12416090071201324, -0.04645814374089241, -0.08356567472219467, -0.033023182302713394, -0.02378794550895691, -0.028714487329125404, 0.12417541444301605, -0.03999219462275505, 0.004932887852191925, 0.03623047098517418, 0.044357385486364365, 0.017256030812859535, -0.16208267211914062, 0.008139523677527905, 0.02189394272863865, -0.05277445539832115, -0.037784021347761154, -0.0016346204793080688, 0.02657049521803856, 0.09165705740451813, 0.030757205560803413, -0.014138021506369114, 0.003425084287300706, -0.011526043526828289, -0.061806850135326385, 0.1846977174282074, -0.09760076552629471, -0.08488103002309799, -0.07609495520591736, 0.006251031998544931, -0.059288281947374344, -0.036745890974998474, 0.016383875161409378, -0.08748913556337357, -0.03861500322818756, -0.08726925402879715, -0.019474420696496964, -0.017171287909150124, 0.020121047273278236, 0.03168712928891182, -0.022716538980603218, 0.08059234917163849, -0.13915763795375824, 0.001617049565538764, -0.05216319113969803, -0.09239032864570618, 0.0004375594144221395, 0.07468759268522263, 0.09885361045598984, 0.0796700045466423, -0.017665307968854904, 0.029575852677226067, -0.03422049805521965, 0.24136891961097717, -0.04536760598421097, 0.01136009581387043, 0.10398496687412262, -0.013051144778728485, 0.05643637478351593, 0.09585798531770706, 0.03746681660413742, -0.09418830275535583, 0.020322073251008987, 0.08221662789583206, -0.029265806078910828, -0.2297704666852951, -0.025261282920837402, -0.004636935889720917, -0.07924681156873703, 0.1060129851102829, 0.03178096562623978, -0.03803587332367897, 0.04614311829209328, 0.021160705015063286, 0.002939085476100445, -0.05577225610613823, 0.08142802119255066, 0.07495961338281631, 0.05671696364879608, 0.10033351927995682, -0.008341474458575249, -0.028129225596785545, 0.06126375123858452, 0.008538056164979935, 0.24655216932296753, -0.02497931197285652, 0.10025274753570557, 0.03125282749533653, 0.15176072716712952, -0.026790495961904526, 0.0657409131526947, 0.0032567365560680628, -0.010210669599473476, -0.014776840806007385, -0.06654147058725357, -0.02574160508811474, 0.023626605048775673, -0.047287922352552414, 0.0299029853194952, -0.08207176625728607, 0.026187580078840256, 0.027240479364991188, 0.27959612011909485, 0.034753575921058655, -0.27394378185272217, -0.06602839380502701, -0.013612670823931694, -0.04160982370376587, -0.06394868344068527, 0.005738294683396816, 0.12047690153121948, -0.13263067603111267, 0.06467930972576141, -0.07587173581123352, 0.09018804877996445, -0.03816584497690201, 0.011100281961262226, 0.045454639941453934, 0.153542622923851, -0.018147088587284088, 0.050977353006601334, -0.18658243119716644, 0.24177567660808563, 0.02557569555938244, 0.1080445796251297, -0.06444401293992996, 0.010441495105624199, 0.01868753507733345, 0.00923879537731409, 0.10884232819080353, 0.001497123041190207, -0.06804420799016953, -0.13965271413326263, -0.09978107362985611, 0.047552354633808136, 0.1410234421491623, -0.033548906445503235, 0.09866301715373993, -0.028003865852952003, 0.01243840716779232, 0.03401309251785278, -0.030369693413376808, -0.15806633234024048, -0.07290157675743103, 0.009574851021170616, 0.027809668332338333, -0.015328681096434593, -0.0511692576110363, -0.10401090979576111, -0.03866889700293541, 0.11881433427333832, 0.0034675763454288244, -0.04597272723913193, -0.1508931815624237, 0.08541437983512878, 0.14479690790176392, -0.05834105983376503, 0.014941416680812836, 0.014526542276144028, 0.1113273873925209, 0.03217144310474396, -0.08564183861017227, 0.06754380464553833, -0.05377993360161781, -0.17299893498420715, -0.05825135484337807, 0.11808809638023376, 0.07911083847284317, 0.04570819437503815, 0.0013837125152349472, 0.05681535229086876, 0.0015179982874542475, -0.09680584818124771, 0.03673326596617699, 0.004800628870725632, 0.0510665625333786, 0.02900330349802971, -0.08602114021778107, 0.07637257128953934, -0.03388914093375206, 0.018585817888379097, 0.12970149517059326, 0.23262277245521545, -0.09914929419755936, 0.10217960178852081, 0.0806073471903801, -0.07676044851541519, -0.1590011864900589, 0.061868369579315186, 0.12552669644355774, 0.004549079108983278, 0.08479461818933487, -0.1997368186712265, 0.13413086533546448, 0.1073162779211998, -0.013444878160953522, 0.020941469818353653, -0.27083131670951843, -0.1316552460193634, 0.0655168741941452, 0.10993096232414246, 0.0515303760766983, -0.12257114052772522, -0.03506682440638542, -0.010409261099994183, -0.12130159884691238, 0.12740494310855865, -0.07571542263031006, 0.11699995398521423, -0.0219722893089056, 0.1223365068435669, 0.024241751059889793, -0.037286024540662766, 0.1121298223733902, 0.07242126017808914, 0.08609972149133682, -0.03912375867366791, -0.0026988410390913486, 0.06473337113857269, -0.06263574212789536, 0.03638399764895439, -0.03698943927884102, 0.06292138248682022, -0.1498146653175354, 0.006911186501383781, -0.07752919942140579, 0.06095157936215401, -0.0462346225976944, -0.06551803648471832, -0.026768933981657028, 0.04658379778265953, 0.07217665761709213, -0.035898152738809586, 0.046046145260334015, 0.009029436856508255, 0.0915888249874115, 0.10187605768442154, 0.07284074276685715, -0.024997297674417496, -0.08292215317487717, 0.013702855445444584, 0.00442676804959774, 0.0475090853869915, -0.08540920913219452, 0.01570807956159115, 0.1469438523054123, 0.06044944375753403, 0.10254546254873276, 0.04563179239630699, -0.043005380779504776, 0.006184370722621679, 0.01647602580487728, -0.1419554203748703, -0.10019621253013611, 0.027898618951439857, -0.05739384889602661, -0.15386275947093964, 0.03355895355343819, 0.12294113636016846, -0.03834133595228195, -0.016215620562434196, -0.006969878915697336, 0.008395341224968433, -0.011004464700818062, 0.18520113825798035, 0.04266906529664993, 0.0548446886241436, -0.09109277278184891, 0.11334025114774704, 0.03562094643712044, -0.04147038608789444, 0.05416732653975487, 0.06740206480026245, -0.09957746416330338, 0.012726934626698494, 0.0744127705693245, 0.15045271813869476, -0.06697896122932434, -0.01292275357991457, -0.09209269285202026, -0.07528547197580338, 0.04415160417556763, 0.14437544345855713, 0.053456924855709076, -0.006306807044893503, -0.060414765030145645, 0.03510555997490883, -0.11836068332195282, 0.06768743693828583, 0.05135391280055046, 0.08267398923635483, -0.10859228670597076, 0.12455004453659058, -0.006776965688914061, 0.023948121815919876, -0.02829163335263729, 0.018561694771051407, -0.10103991627693176, -0.03439481928944588, -0.10813787579536438, -0.014224949292838573, -0.017600782215595245, -0.003038358176127076, -0.020062634721398354, -0.07521107792854309, -0.042847707867622375, 0.03338165581226349, -0.07666242122650146, -0.04836468771100044, 0.0180125143378973, 0.03961856663227081, -0.1604107767343521, 0.0026630896609276533, 0.025632763281464577, -0.08685020357370377, 0.08751512318849564, 0.06844564527273178, 0.01605999656021595, 0.028192520141601562, -0.12448526173830032, -0.03325732797384262, 0.0005280552431941032, 0.010782970115542412, 0.07738562673330307, -0.09175877273082733, -0.02913222648203373, -0.030637411400675774, 0.04923216998577118, 0.01491820439696312, 0.10299921035766602, -0.1189546287059784, -0.013381811790168285, -0.04690585657954216, -0.03855374455451965, -0.05742012336850166, 0.026659877970814705, 0.11393603682518005, 0.04473348334431648, 0.15730495750904083, -0.06984909623861313, 0.054615892469882965, -0.20485100150108337, -0.03312087804079056, 0.010834281332790852, -0.04641278088092804, -0.07453072816133499, -0.04528540372848511, 0.08387388288974762, -0.05011850595474243, 0.12219829857349396, -0.015460588037967682, 0.09302221983671188, 0.04356685280799866, -0.004310264252126217, -0.0713535025715828, -0.012132410891354084, 0.18313463032245636, 0.05791594088077545, -0.021025869995355606, 0.12091057747602463, 0.004829295910894871, 0.0430389940738678, 0.0679132267832756, 0.23318251967430115, 0.15177497267723083, -0.013677138835191727, 0.07466281950473785, 0.06685930490493774, -0.07546086609363556, -0.14059916138648987, 0.12156210094690323, -0.020606333389878273, 0.10603213310241699, -0.05276155844330788, 0.18962474167346954, 0.038229767233133316, -0.17575162649154663, 0.05411086603999138, -0.025095215067267418, -0.1083156168460846, -0.12531886994838715, -0.01521212700754404, -0.08205225318670273, -0.11650273203849792, 0.027658162638545036, -0.12336204946041107, 0.06792085617780685, 0.09653612971305847, 0.00696494709700346, 0.035439424216747284, 0.1836092323064804, -0.05684370920062065, 0.012032145634293556, 0.07176849991083145, 0.020613588392734528, -0.00372514221817255, -0.04012034460902214, -0.06683852523565292, 0.037664905190467834, 0.04292444884777069, 0.07127048820257187, -0.05150270089507103, 0.010236538015305996, 0.014875391498208046, -0.009522615000605583, -0.07856758683919907, 0.00747669255360961, 0.014184756204485893, 0.04809097945690155, 0.03487721085548401, 0.04735472798347473, 0.008862129412591457, -0.05357316508889198, 0.27491363883018494, -0.06712361425161362, -0.06107412651181221, -0.12313759326934814, 0.19444145262241364, 0.033731721341609955, -0.01834189146757126, 0.05564689263701439, -0.09284093230962753, -0.011470462195575237, 0.16125470399856567, 0.1338384598493576, -0.09103905409574509, -0.021290604025125504, -0.024175509810447693, -0.00880078412592411, -0.012839743867516518, 0.10520507395267487, 0.07133091241121292, 0.00006159586337162182, -0.0665326789021492, -0.013156969100236893, -0.029617737978696823, -0.04809004068374634, -0.06278903037309647, 0.05825610086321831, 0.02770727314054966, -0.0059458171017467976, -0.05824565142393112, 0.06344512104988098, -0.0030671812128275633, -0.23497357964515686, 0.03833966702222824, -0.17342080175876617, -0.17388004064559937, -0.014132756739854813, 0.07102029025554657, 0.0015504775801673532, 0.05606011673808098, -0.006945403292775154, 0.010356598533689976, 0.11575067043304443, -0.017065495252609253, -0.014453423209488392, -0.1179061233997345, 0.10851918905973434, -0.10878867655992508, 0.21169880032539368, -0.001372978207655251, 0.06514137983322144, 0.0988847017288208, 0.03740041330456734, -0.13496458530426025, 0.018986372277140617, 0.061247169971466064, -0.12605823576450348, 0.0014203672762960196, 0.14567425847053528, -0.03462837263941765, 0.06241241842508316, 0.031106336042284966, -0.15001381933689117, -0.003512949449941516, 0.02625245228409767, -0.03669865429401398, -0.06888311356306076, -0.009320900775492191, -0.05552857369184494, 0.1658998280763626, 0.20666764676570892, -0.02868916280567646, 0.011928028427064419, -0.08486800640821457, 0.021797550842165947, 0.0488215796649456, 0.0593683160841465, -0.039645273238420486, -0.21607691049575806, 0.022298242896795273, 0.07206716388463974, -0.0028264534194022417, -0.194989413022995, -0.09570536762475967, 0.04169750586152077, -0.037030987441539764, -0.04615339636802673, 0.09126842021942139, 0.02512887679040432, 0.03726144880056381, -0.019219564273953438, -0.11706450581550598, -0.027728958055377007, 0.1456427276134491, -0.17611831426620483, -0.04271331802010536 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # spanbert-base-cased-few-shot-k-64-finetuned-squad-seed-0 This model is a fine-tuned version of [SpanBERT/spanbert-base-cased](https://huggingface.co/SpanBERT/spanbert-base-cased) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 200 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
{"tags": ["generated_from_trainer"], "datasets": ["squad"], "model-index": [{"name": "spanbert-base-cased-few-shot-k-64-finetuned-squad-seed-0", "results": []}]}
question-answering
anas-awadalla/spanbert-base-cased-few-shot-k-64-finetuned-squad-seed-0
[ "transformers", "pytorch", "bert", "question-answering", "generated_from_trainer", "dataset:squad", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #bert #question-answering #generated_from_trainer #dataset-squad #endpoints_compatible #region-us
# spanbert-base-cased-few-shot-k-64-finetuned-squad-seed-0 This model is a fine-tuned version of SpanBERT/spanbert-base-cased on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 200 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
[ "# spanbert-base-cased-few-shot-k-64-finetuned-squad-seed-0\n\nThis model is a fine-tuned version of SpanBERT/spanbert-base-cased on the squad dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- training_steps: 200", "### Training results", "### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #bert #question-answering #generated_from_trainer #dataset-squad #endpoints_compatible #region-us \n", "# spanbert-base-cased-few-shot-k-64-finetuned-squad-seed-0\n\nThis model is a fine-tuned version of SpanBERT/spanbert-base-cased on the squad dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- training_steps: 200", "### Training results", "### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ 42, 56, 6, 12, 8, 3, 104, 4, 38 ]
[ "passage: TAGS\n#transformers #pytorch #bert #question-answering #generated_from_trainer #dataset-squad #endpoints_compatible #region-us \n# spanbert-base-cased-few-shot-k-64-finetuned-squad-seed-0\n\nThis model is a fine-tuned version of SpanBERT/spanbert-base-cased on the squad dataset.## Model description\n\nMore information needed## Intended uses & limitations\n\nMore information needed## Training and evaluation data\n\nMore information needed## Training procedure### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- training_steps: 200### Training results### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ -0.09762564301490784, 0.10809286683797836, -0.002378305420279503, 0.09533600509166718, 0.1207759752869606, 0.015796002000570297, 0.09843666851520538, 0.1312742531299591, -0.10521803796291351, 0.06905101984739304, 0.088321253657341, 0.03505740687251091, 0.04359634220600128, 0.14999158680438995, -0.007701677270233631, -0.27226921916007996, -0.00016606197459623218, -0.000151259548147209, -0.04284622520208359, 0.12082558125257492, 0.08781033754348755, -0.11040080338716507, 0.07767559587955475, 0.010281083174049854, -0.15440315008163452, 0.01900395005941391, -0.03172634169459343, -0.03714746981859207, 0.12207570672035217, -0.036052968353033066, 0.10712718218564987, 0.029726693406701088, 0.13518109917640686, -0.20757320523262024, 0.006566893775016069, 0.07754557579755783, 0.052471090108156204, 0.10034000128507614, 0.04668140411376953, 0.009513834491372108, 0.08899269998073578, -0.1488652527332306, 0.09257540851831436, 0.030366815626621246, -0.0914350375533104, -0.15517693758010864, -0.09210411459207535, 0.030676010996103287, 0.04820083826780319, 0.0715680718421936, 0.0028594862669706345, 0.14833666384220123, -0.06289025396108627, 0.0841362327337265, 0.2631259858608246, -0.3214332163333893, -0.06716787815093994, 0.028909752145409584, 0.05599837750196457, 0.05972316116094589, -0.1197274699807167, -0.002691423986107111, 0.019560053944587708, 0.027688153088092804, 0.12741628289222717, -0.015827735885977745, -0.1073940247297287, -0.00958931166678667, -0.1237616240978241, -0.0018759138183668256, 0.059888385236263275, 0.024938838556408882, -0.05275880917906761, -0.10639020055532455, -0.06840914487838745, -0.08471028506755829, -0.02220076695084572, -0.054159048944711685, 0.051584064960479736, -0.05449014529585838, -0.0981256514787674, -0.039765067398548126, -0.057383328676223755, -0.0800454318523407, -0.00989798828959465, 0.16811197996139526, 0.035437390208244324, 0.020650183781981468, -0.03070790134370327, 0.11810633540153503, 0.021347815170884132, -0.14028801023960114, -0.00962501298636198, -0.004656471777707338, -0.09280829131603241, -0.04023192077875137, -0.05329243838787079, -0.012069174088537693, 0.006029845215380192, 0.168827623128891, -0.08162076771259308, 0.07422562688589096, 0.012355897575616837, -0.023583553731441498, -0.013150940649211407, 0.15282797813415527, -0.03987162560224533, -0.038298819214105606, -0.015609154477715492, 0.07916638255119324, 0.004599911160767078, -0.019568881019949913, -0.0663411095738411, -0.027623672038316727, 0.09464085847139359, 0.055112097412347794, -0.061937179416418076, 0.03958037495613098, -0.02974877879023552, -0.026415618136525154, 0.017695685848593712, -0.11894597858190536, 0.04157232865691185, -0.003264777362346649, -0.08153427392244339, -0.0069783455692231655, -0.0012852440122514963, -0.009509623050689697, -0.010362706147134304, 0.09982578456401825, -0.087652787566185, -0.0006200483185239136, -0.0701369121670723, -0.08086137473583221, -0.0010164609411731362, -0.1545376181602478, -0.015131017193198204, -0.05965275317430496, -0.16567817330360413, -0.033166851848363876, 0.04437042772769928, -0.07554774731397629, -0.01088760606944561, -0.04286440089344978, -0.062148161232471466, 0.017918292433023453, -0.013110451400279999, 0.1917368322610855, -0.05310139060020447, 0.08203266561031342, -0.007121166680008173, 0.05038304999470711, 0.02604903280735016, 0.03596234321594238, -0.10394541919231415, 0.028187597170472145, -0.14043688774108887, 0.07748814672231674, -0.08505922555923462, -0.005441642366349697, -0.13644100725650787, -0.10214116424322128, 0.014992051757872105, -0.02069890685379505, 0.09438085556030273, 0.13329912722110748, -0.19880379736423492, -0.02009275183081627, 0.12556472420692444, -0.07573694735765457, -0.051652565598487854, 0.06044459342956543, -0.06154930964112282, 0.03936462104320526, 0.050992731004953384, 0.21299561858177185, 0.053396888077259064, -0.15722982585430145, -0.010462114587426186, 0.0055589075200259686, 0.04487115144729614, 0.027255956083536148, 0.03781335428357124, 0.002707255305722356, 0.05738481506705284, 0.015929441899061203, -0.0905783399939537, -0.024681255221366882, -0.09019775688648224, -0.06597421318292618, -0.05114147812128067, -0.07518940418958664, 0.05443323776125908, 0.007831133902072906, 0.041338372975587845, -0.06517764180898666, -0.1040172278881073, 0.1139654591679573, 0.09517072886228561, -0.051744844764471054, 0.038697805255651474, -0.08063210546970367, 0.013707563281059265, -0.0036602106411010027, -0.03554164618253708, -0.21137583255767822, -0.11618813127279282, 0.05109574645757675, -0.044763196259737015, 0.025682633742690086, 0.001053264015354216, 0.08397838473320007, 0.05669647082686424, -0.05110299214720726, -0.01468528900295496, -0.09689163416624069, 0.001488701906055212, -0.11360172182321548, -0.19068372249603271, -0.08451950550079346, -0.0424187108874321, 0.09329717606306076, -0.1664063036441803, -0.005378169473260641, 0.022243550047278404, 0.13880205154418945, 0.028240816667675972, -0.06765507161617279, 0.0009701682720333338, 0.04716034233570099, 0.012779509648680687, -0.0970369204878807, 0.054961469024419785, 0.013205550611019135, -0.10400553047657013, -0.047374650835990906, -0.13218416273593903, -0.01667674630880356, 0.0548989437520504, 0.059358444064855576, -0.10313872247934341, -0.059491924941539764, -0.07303356379270554, -0.03767736628651619, -0.07809890806674957, 0.02261248789727688, 0.212728813290596, 0.039475444704294205, 0.11403729021549225, -0.06542904675006866, -0.08432521671056747, -0.00780025590211153, 0.026042012497782707, 0.022329790517687798, 0.08497390151023865, 0.023332629352808, -0.03853892907500267, 0.06917521357536316, 0.10164080560207367, -0.027287624776363373, 0.13349099457263947, -0.055405423045158386, -0.08068733662366867, -0.03132631629705429, -0.022211844101548195, -0.024843603372573853, 0.12961061298847198, -0.028056329116225243, 0.0009602533536963165, 0.03536806255578995, 0.038225531578063965, 0.011197023093700409, -0.16877615451812744, 0.0028259127866476774, 0.02751392498612404, -0.055555399507284164, -0.040045976638793945, -0.0052823410369455814, 0.021983109414577484, 0.089102603495121, 0.03036130592226982, -0.006478483788669109, 0.00845846626907587, -0.011106571182608604, -0.057702790945768356, 0.18770618736743927, -0.09757649153470993, -0.08117671310901642, -0.07216598093509674, 0.020418675616383553, -0.05174790695309639, -0.03821669891476631, 0.008447466418147087, -0.09263081848621368, -0.030497876927256584, -0.08802918344736099, -0.026218146085739136, -0.01935204491019249, 0.020385708659887314, 0.023881569504737854, -0.01718606799840927, 0.08576007187366486, -0.13850389420986176, 0.004914340563118458, -0.0484713651239872, -0.09459629654884338, 0.008848314173519611, 0.07637645304203033, 0.09143004566431046, 0.08098288625478745, -0.01905244030058384, 0.02816115692257881, -0.03884173929691315, 0.23221233487129211, -0.053320907056331635, 0.012298720888793468, 0.11489098519086838, -0.010806653648614883, 0.05504702776670456, 0.09166225045919418, 0.038910411298274994, -0.0909116193652153, 0.023940568789839745, 0.07771944254636765, -0.0379677377641201, -0.22508862614631653, -0.019033538177609444, -0.0017602224834263325, -0.07685601711273193, 0.1071448028087616, 0.03224765136837959, -0.048881400376558304, 0.043324511498212814, 0.022401170805096626, -0.008706173859536648, -0.046876464039087296, 0.07498641312122345, 0.07259108126163483, 0.05204001069068909, 0.10640624910593033, -0.0052779908291995525, -0.025644300505518913, 0.05663921684026718, 0.016289440914988518, 0.25304433703422546, -0.044414326548576355, 0.10223758965730667, 0.03196925297379494, 0.15397457778453827, -0.019475819543004036, 0.06598571687936783, 0.0001786745706340298, -0.009443964809179306, -0.010799984447658062, -0.0663142129778862, -0.025748884305357933, 0.017022935673594475, -0.04712839424610138, 0.02445855177938938, -0.07552110403776169, 0.02332150749862194, 0.02759573422372341, 0.2920893132686615, 0.0266736913472414, -0.2602766752243042, -0.07400362193584442, -0.016064319759607315, -0.0443887934088707, -0.06201338768005371, 0.00736504141241312, 0.1342717558145523, -0.13906903564929962, 0.0538390688598156, -0.07879109680652618, 0.08861140161752701, -0.045620210468769073, 0.012429362162947655, 0.04771505668759346, 0.15153868496418, -0.018642423674464226, 0.05084395408630371, -0.19879579544067383, 0.25200462341308594, 0.02089935727417469, 0.10653362423181534, -0.06491126865148544, 0.011118059977889061, 0.020443113520741463, 0.010798638686537743, 0.11021237075328827, 0.003031220054253936, -0.06439154595136642, -0.14631688594818115, -0.09071312844753265, 0.04516947269439697, 0.14104925096035004, -0.039077162742614746, 0.089341901242733, -0.029658952727913857, 0.011817601509392262, 0.02988245151937008, -0.04119284823536873, -0.1511005014181137, -0.07809886336326599, 0.0013174356427043676, 0.015748169273138046, -0.006017369218170643, -0.06161554530262947, -0.10504335165023804, -0.018373001366853714, 0.11263588815927505, -0.0028582043014466763, -0.05784870311617851, -0.15480771660804749, 0.08279680460691452, 0.1418585479259491, -0.05420595780014992, 0.012338535860180855, 0.015750302001833916, 0.114912249147892, 0.029880201444029808, -0.08123964816331863, 0.06480273604393005, -0.0570412315428257, -0.1817626804113388, -0.05632777512073517, 0.12148824334144592, 0.08192400634288788, 0.04928480088710785, -0.0016178677324205637, 0.054831430315971375, 0.0014234472764655948, -0.09514164924621582, 0.03932071849703789, 0.0027720583602786064, 0.043738871812820435, 0.017672099173069, -0.0839015319943428, 0.09477467834949493, -0.03677353635430336, 0.00942482054233551, 0.12795127928256989, 0.21290038526058197, -0.1075783297419548, 0.11528926342725754, 0.08553856611251831, -0.072964608669281, -0.1664058417081833, 0.06111229583621025, 0.1304948776960373, 0.008981783874332905, 0.08396515995264053, -0.2130977064371109, 0.12349054962396622, 0.1040550172328949, -0.013080072589218616, 0.008952864445745945, -0.27590233087539673, -0.13175539672374725, 0.05834275484085083, 0.11138936877250671, 0.0420059971511364, -0.11535021662712097, -0.0333268828690052, -0.007389693055301905, -0.0993357002735138, 0.11574801802635193, -0.07317674160003662, 0.11469293385744095, -0.020317623391747475, 0.11726806312799454, 0.025994103401899338, -0.03424953296780586, 0.10943743586540222, 0.06048273295164108, 0.08790028095245361, -0.03712322935461998, 0.008259158581495285, 0.06059164181351662, -0.059234295040369034, 0.026423323899507523, -0.043216634541749954, 0.06742463260889053, -0.14745710790157318, 0.0065062204375863075, -0.08732675015926361, 0.05423221364617348, -0.04579941928386688, -0.07223336398601532, -0.01795337162911892, 0.053012456744909286, 0.06964534521102905, -0.04127003625035286, 0.030861161649227142, -0.002376405056566, 0.09981920570135117, 0.10565074533224106, 0.08030261844396591, -0.025389650836586952, -0.08720266073942184, 0.01415893156081438, 0.0031831583473831415, 0.05577656999230385, -0.09567060321569443, 0.014159762300550938, 0.1413513720035553, 0.06523190438747406, 0.09546773135662079, 0.0460662916302681, -0.04233131930232048, 0.004821361508220434, 0.014654245227575302, -0.133844792842865, -0.10268548876047134, 0.02568371221423149, -0.041068486869335175, -0.15037639439105988, 0.027097336947917938, 0.12055008858442307, -0.0392889641225338, -0.02074122428894043, -0.004634348209947348, 0.003716146806254983, -0.01226640585809946, 0.18328484892845154, 0.04437996447086334, 0.06243583559989929, -0.09083161503076553, 0.11129098385572433, 0.03422949090600014, -0.04942355304956436, 0.05416560173034668, 0.06701748073101044, -0.10416115075349808, 0.011120311915874481, 0.08049605041742325, 0.13248786330223083, -0.056069791316986084, -0.011959875002503395, -0.09570622444152832, -0.08380549401044846, 0.04160841926932335, 0.13716650009155273, 0.05521804466843605, -0.0010385125642642379, -0.06555408984422684, 0.03600447624921799, -0.11913862079381943, 0.0685519129037857, 0.04813922569155693, 0.07570886611938477, -0.09963081777095795, 0.1340518444776535, -0.0020183371379971504, 0.025125687941908836, -0.02712094783782959, 0.013190007768571377, -0.09961700439453125, -0.024043813347816467, -0.10735741257667542, -0.023119688034057617, -0.01100568100810051, -0.0013214654754847288, -0.022303706035017967, -0.06982413679361343, -0.02919902466237545, 0.03913646936416626, -0.07880111783742905, -0.047982677817344666, 0.01664140820503235, 0.03589799255132675, -0.1550179272890091, 0.0032390097621828318, 0.025704462081193924, -0.08988461643457413, 0.0902017280459404, 0.06352188438177109, 0.011605954729020596, 0.023977763950824738, -0.1201145276427269, -0.030904628336429596, -0.010196537710726261, 0.0047999355010688305, 0.06893302500247955, -0.09474349021911621, -0.027994463220238686, -0.035812728106975555, 0.04052038490772247, 0.020030442625284195, 0.10504121333360672, -0.12063763290643692, -0.003271755063906312, -0.036207061260938644, -0.03918883949518204, -0.06501814723014832, 0.036335837095975876, 0.10712879151105881, 0.05349376052618027, 0.15109112858772278, -0.07744812220335007, 0.0544007383286953, -0.19860713183879852, -0.037575531750917435, 0.012596916407346725, -0.047863878309726715, -0.08155286312103271, -0.04698476567864418, 0.08828378468751907, -0.047041673213243484, 0.11453381925821304, -0.012670954689383507, 0.1009836420416832, 0.04448496177792549, -0.011445147916674614, -0.06486112624406815, -0.007154472172260284, 0.18379035592079163, 0.05278431251645088, -0.01732206903398037, 0.1267349123954773, 0.0035432290751487017, 0.029084259644150734, 0.08617763221263885, 0.22071325778961182, 0.15386900305747986, 0.0010713129304349422, 0.06211231276392937, 0.05983708053827286, -0.06851769983768463, -0.1497124880552292, 0.1205420196056366, -0.019504588097333908, 0.10687620937824249, -0.06643299013376236, 0.18971066176891327, 0.03833605349063873, -0.1804887056350708, 0.06450440734624863, -0.024522345513105392, -0.10818112641572952, -0.11924739181995392, -0.026721017435193062, -0.07098279893398285, -0.12258516252040863, 0.024788610637187958, -0.11702892929315567, 0.0625554770231247, 0.10301095992326736, 0.008153287693858147, 0.0386604443192482, 0.1825466752052307, -0.04833272472023964, 0.01187886856496334, 0.08369431644678116, 0.019356828182935715, 0.002054064068943262, -0.04048459604382515, -0.06615646183490753, 0.03527562692761421, 0.03451630100607872, 0.0643526241183281, -0.04720855876803398, 0.005901988595724106, 0.004562269896268845, -0.008935944177210331, -0.0764593705534935, 0.011396875604987144, 0.009376085363328457, 0.05146663263440132, 0.046736765652894974, 0.04743443801999092, 0.006460031494498253, -0.05534471943974495, 0.2926419675350189, -0.06957811117172241, -0.06970441341400146, -0.1287553459405899, 0.21777445077896118, 0.023850949481129646, -0.025859495624899864, 0.055233556777238846, -0.0865856483578682, -0.015506250783801079, 0.16359837353229523, 0.138380765914917, -0.08963792026042938, -0.015613386407494545, -0.023999402299523354, -0.010954580269753933, -0.014421173371374607, 0.11500460654497147, 0.07522769272327423, -0.01120342779904604, -0.06973166018724442, -0.012643206864595413, -0.028050072491168976, -0.055441971868276596, -0.06861178576946259, 0.06885810196399689, 0.02709442749619484, -0.009725887328386307, -0.06549370288848877, 0.0659429207444191, -0.001290846848860383, -0.2339053601026535, 0.043847840279340744, -0.1744237244129181, -0.17004388570785522, -0.018911734223365784, 0.07140786945819855, 0.0034674417693167925, 0.05606399103999138, 0.001973668811842799, 0.023880546912550926, 0.11412900686264038, -0.014255376532673836, -0.002986237406730652, -0.11503637582063675, 0.11480333656072617, -0.10100817680358887, 0.2000560611486435, -0.007049274165183306, 0.05753818526864052, 0.09667383879423141, 0.03849909454584122, -0.13660992681980133, 0.022933077067136765, 0.06329406052827835, -0.12853211164474487, -0.005061878357082605, 0.1489018201828003, -0.030818816274404526, 0.0642775148153305, 0.026859257370233536, -0.1460643708705902, 0.0021568278316408396, 0.017688224092125893, -0.03626276180148125, -0.06908966600894928, -0.008895027451217175, -0.050541456788778305, 0.16473518311977386, 0.2158004492521286, -0.028890438377857208, 0.007570815738290548, -0.09148211032152176, 0.012782683596014977, 0.04706805571913719, 0.05022786557674408, -0.04154186695814133, -0.2059042900800705, 0.01571732386946678, 0.07379934191703796, -0.006132220849394798, -0.19572868943214417, -0.09635964781045914, 0.04648562893271446, -0.03924676403403282, -0.04276080057024956, 0.09257791191339493, 0.020050639286637306, 0.041048359125852585, -0.013267560862004757, -0.11511249840259552, -0.021074393764138222, 0.1388065218925476, -0.17533326148986816, -0.03273987025022507 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # spanbert-base-cased-few-shot-k-64-finetuned-squad-seed-10 This model is a fine-tuned version of [SpanBERT/spanbert-base-cased](https://huggingface.co/SpanBERT/spanbert-base-cased) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 200 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
{"tags": ["generated_from_trainer"], "datasets": ["squad"], "model-index": [{"name": "spanbert-base-cased-few-shot-k-64-finetuned-squad-seed-10", "results": []}]}
question-answering
anas-awadalla/spanbert-base-cased-few-shot-k-64-finetuned-squad-seed-10
[ "transformers", "pytorch", "bert", "question-answering", "generated_from_trainer", "dataset:squad", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #bert #question-answering #generated_from_trainer #dataset-squad #endpoints_compatible #region-us
# spanbert-base-cased-few-shot-k-64-finetuned-squad-seed-10 This model is a fine-tuned version of SpanBERT/spanbert-base-cased on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 200 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
[ "# spanbert-base-cased-few-shot-k-64-finetuned-squad-seed-10\n\nThis model is a fine-tuned version of SpanBERT/spanbert-base-cased on the squad dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- training_steps: 200", "### Training results", "### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #bert #question-answering #generated_from_trainer #dataset-squad #endpoints_compatible #region-us \n", "# spanbert-base-cased-few-shot-k-64-finetuned-squad-seed-10\n\nThis model is a fine-tuned version of SpanBERT/spanbert-base-cased on the squad dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- training_steps: 200", "### Training results", "### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ 42, 56, 6, 12, 8, 3, 104, 4, 38 ]
[ "passage: TAGS\n#transformers #pytorch #bert #question-answering #generated_from_trainer #dataset-squad #endpoints_compatible #region-us \n# spanbert-base-cased-few-shot-k-64-finetuned-squad-seed-10\n\nThis model is a fine-tuned version of SpanBERT/spanbert-base-cased on the squad dataset.## Model description\n\nMore information needed## Intended uses & limitations\n\nMore information needed## Training and evaluation data\n\nMore information needed## Training procedure### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- training_steps: 200### Training results### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ -0.09842012077569962, 0.10779953002929688, -0.0023048182483762503, 0.09483485668897629, 0.1206069067120552, 0.01582573540508747, 0.09887749701738358, 0.1301700919866562, -0.10436957329511642, 0.06771063804626465, 0.08713673055171967, 0.035852398723363876, 0.044089965522289276, 0.15142996609210968, -0.0067156776785850525, -0.2732408046722412, -0.0003459287981968373, 0.0006532512488774955, -0.04120606929063797, 0.12060233950614929, 0.0882684662938118, -0.1105198785662651, 0.07686443626880646, 0.010285839438438416, -0.15380951762199402, 0.019465679302811623, -0.032093342393636703, -0.03686324879527092, 0.12189912050962448, -0.03768620267510414, 0.10666461288928986, 0.02945377491414547, 0.13737285137176514, -0.20652969181537628, 0.0065458170138299465, 0.07655643671751022, 0.052366890013217926, 0.09998112171888351, 0.04617675766348839, 0.010446637868881226, 0.08846108615398407, -0.1497737616300583, 0.09338480234146118, 0.029421480372548103, -0.0909409299492836, -0.15295609831809998, -0.09200585633516312, 0.03148424252867699, 0.05062675103545189, 0.07100756466388702, 0.0024082560557872057, 0.14836353063583374, -0.06367899477481842, 0.08409810811281204, 0.26265156269073486, -0.3222024142742157, -0.06703683733940125, 0.030859870836138725, 0.057860080152750015, 0.06016886234283447, -0.1200583204627037, -0.003610681276768446, 0.020133981481194496, 0.026962516829371452, 0.12853311002254486, -0.016424985602498055, -0.10710641741752625, -0.009791962802410126, -0.1247742772102356, -0.000903693784493953, 0.06028973311185837, 0.02584557980298996, -0.05274653062224388, -0.10777341574430466, -0.06819263845682144, -0.0853513777256012, -0.023338094353675842, -0.055450860410928726, 0.05152400583028793, -0.05512714013457298, -0.0974840521812439, -0.03997865691781044, -0.05673981457948685, -0.0805731862783432, -0.008051443845033646, 0.16620482504367828, 0.03582647815346718, 0.019705088809132576, -0.03019777126610279, 0.1177775040268898, 0.01885901764035225, -0.13988451659679413, -0.00863755214959383, -0.0047853728756308556, -0.09439413994550705, -0.04144613444805145, -0.05353594198822975, -0.011509260162711143, 0.004607250913977623, 0.1694687455892563, -0.07859814167022705, 0.07424063235521317, 0.014350992627441883, -0.024483539164066315, -0.012689664028584957, 0.1528286188840866, -0.0407787449657917, -0.0407210998237133, -0.015941914170980453, 0.08017048239707947, 0.004160038661211729, -0.01819082535803318, -0.06722904741764069, -0.0281855259090662, 0.09492071717977524, 0.05484805628657341, -0.06350506842136383, 0.03963836655020714, -0.02870772033929825, -0.026309378445148468, 0.01904846355319023, -0.11959457397460938, 0.04188241809606552, -0.004147121217101812, -0.08276621252298355, -0.008126291446387768, -0.0026636351831257343, -0.008399390615522861, -0.010415921919047832, 0.09848307073116302, -0.08743471652269363, -0.0009650950669310987, -0.07060796022415161, -0.08149441331624985, -0.0008268304518423975, -0.15796396136283875, -0.01377484668046236, -0.058574024587869644, -0.16936138272285461, -0.03394794836640358, 0.0433136485517025, -0.07470746338367462, -0.011603666469454765, -0.04407187178730965, -0.06188633292913437, 0.016106292605400085, -0.012397713027894497, 0.19265657663345337, -0.05206257104873657, 0.08082497864961624, -0.007174127735197544, 0.05129053816199303, 0.026313409209251404, 0.036323562264442444, -0.10350356251001358, 0.027924969792366028, -0.13950897753238678, 0.07759299129247665, -0.0853506550192833, -0.0035529425367712975, -0.13606594502925873, -0.10235365480184555, 0.013170727528631687, -0.02056083083152771, 0.09403581917285919, 0.133359894156456, -0.19979926943778992, -0.019098835065960884, 0.1268545389175415, -0.07522276788949966, -0.050910189747810364, 0.05927839130163193, -0.061954669654369354, 0.04072637856006622, 0.05277837812900543, 0.21245908737182617, 0.05595523118972778, -0.15640155971050262, -0.01102759875357151, 0.0057190172374248505, 0.04471702501177788, 0.02525879070162773, 0.0378996878862381, 0.0041998825035989285, 0.058659449219703674, 0.016097640618681908, -0.08978366106748581, -0.024793490767478943, -0.08948507159948349, -0.06637163460254669, -0.050708189606666565, -0.07618270814418793, 0.05481906607747078, 0.008325786329805851, 0.04173233360052109, -0.06530291587114334, -0.10383916646242142, 0.11484947055578232, 0.09590107947587967, -0.05162114277482033, 0.037237901240587234, -0.0805596113204956, 0.013171355240046978, -0.004657482262700796, -0.03566771373152733, -0.2111843228340149, -0.11430831998586655, 0.0514269657433033, -0.04517657309770584, 0.02561682090163231, 0.00322577147744596, 0.08469952642917633, 0.05630403012037277, -0.05084759369492531, -0.01516254898160696, -0.09686300903558731, 0.0014194438699632883, -0.11465569585561752, -0.18915873765945435, -0.08550754189491272, -0.042944155633449554, 0.09408106654882431, -0.1678541600704193, -0.004463833756744862, 0.020155226811766624, 0.13835883140563965, 0.02738136425614357, -0.06779195368289948, 0.001939789392054081, 0.04620439186692238, 0.01362051721662283, -0.09741302579641342, 0.05464702099561691, 0.012028224766254425, -0.1035991832613945, -0.049201130867004395, -0.13330397009849548, -0.018278414383530617, 0.054178740829229355, 0.061849381774663925, -0.10278012603521347, -0.059893976897001266, -0.07289671152830124, -0.037095557898283005, -0.07696985453367233, 0.022020447999238968, 0.21173447370529175, 0.038447778671979904, 0.11341740936040878, -0.06551086902618408, -0.08541042357683182, -0.007907304912805557, 0.027625208720564842, 0.023008128628134727, 0.08458549529314041, 0.02326849102973938, -0.03865543752908707, 0.06856797635555267, 0.1026126965880394, -0.026719676330685616, 0.1327870786190033, -0.055600304156541824, -0.08149849623441696, -0.030990373343229294, -0.02271624095737934, -0.026063349097967148, 0.1292942464351654, -0.028477396816015244, -0.0007605213904753327, 0.03490298613905907, 0.036898206919431686, 0.011230017058551311, -0.16903220117092133, 0.0031283062417060137, 0.02758299559354782, -0.05461029335856438, -0.04154370725154877, -0.006330464966595173, 0.02078365534543991, 0.08845880627632141, 0.029683226719498634, -0.007143731229007244, 0.007697634398937225, -0.010803026147186756, -0.057289618998765945, 0.18773837387561798, -0.09638551622629166, -0.07990230619907379, -0.0714573785662651, 0.02111310325562954, -0.04975515976548195, -0.038329869508743286, 0.0072648790664970875, -0.09272338449954987, -0.029982196167111397, -0.0875643789768219, -0.027132853865623474, -0.01930086500942707, 0.01972927898168564, 0.02555437944829464, -0.016538359224796295, 0.08390961587429047, -0.13865861296653748, 0.005611272528767586, -0.049036622047424316, -0.09420862793922424, 0.00807857234030962, 0.07534842938184738, 0.0917012020945549, 0.0815013125538826, -0.01976982317864895, 0.028335321694612503, -0.03948213532567024, 0.23153337836265564, -0.05380450561642647, 0.013794693164527416, 0.11453815549612045, -0.01033113058656454, 0.054696377366781235, 0.09236489236354828, 0.03816622495651245, -0.0905630812048912, 0.0235239639878273, 0.07698024809360504, -0.03736645355820656, -0.2257813960313797, -0.018425598740577698, -0.0009717951179482043, -0.07823261618614197, 0.10786008834838867, 0.03177151829004288, -0.04667774960398674, 0.0450768768787384, 0.022233428433537483, -0.007193712051957846, -0.045578498393297195, 0.07455930858850479, 0.07026980817317963, 0.05122976750135422, 0.1066344752907753, -0.0055772000923752785, -0.026793932542204857, 0.055120475590229034, 0.01692277565598488, 0.2538515031337738, -0.043239347636699677, 0.10195433348417282, 0.030909661203622818, 0.15324613451957703, -0.020326625555753708, 0.06842971593141556, 0.0011219038860872388, -0.009836474433541298, -0.01074647530913353, -0.0660456046462059, -0.02431255578994751, 0.017569372430443764, -0.04648709297180176, 0.024206984788179398, -0.07483035326004028, 0.02293427474796772, 0.02691006287932396, 0.29063481092453003, 0.028261493891477585, -0.2613110840320587, -0.0733131468296051, -0.015703732147812843, -0.04546124115586281, -0.061786625534296036, 0.006988589186221361, 0.13303297758102417, -0.13883164525032043, 0.0548064187169075, -0.07881472259759903, 0.08880966156721115, -0.04471874237060547, 0.01250741071999073, 0.046455834060907364, 0.15135011076927185, -0.018433989956974983, 0.05207069218158722, -0.19885873794555664, 0.2507048547267914, 0.020903440192341805, 0.1078418642282486, -0.06607398390769958, 0.011245624162256718, 0.0204406026750803, 0.010296441614627838, 0.11147591471672058, 0.0026805875822901726, -0.06446678191423416, -0.1468087136745453, -0.09098789840936661, 0.04514219984412193, 0.14112907648086548, -0.038655396550893784, 0.08994823694229126, -0.028690380975604057, 0.010768162086606026, 0.030179154127836227, -0.04271805286407471, -0.1524878889322281, -0.07779248803853989, 0.0008046259172260761, 0.014606312848627567, -0.00623394176363945, -0.061056382954120636, -0.10513871163129807, -0.020760921761393547, 0.11116324365139008, -0.0014326788950711489, -0.05797019973397255, -0.15461714565753937, 0.08455021679401398, 0.14227166771888733, -0.053790245205163956, 0.013059651479125023, 0.01725573092699051, 0.1157134473323822, 0.029408011585474014, -0.08085855096578598, 0.06396391242742538, -0.05703228712081909, -0.18040217459201813, -0.05532034486532211, 0.12272575497627258, 0.08243365585803986, 0.04954129084944725, -0.00013353249232750386, 0.05413208156824112, 0.0014078589156270027, -0.09486669301986694, 0.03877156227827072, 0.0025208485312759876, 0.04330338165163994, 0.0179301630705595, -0.08489545434713364, 0.09321177005767822, -0.0373515821993351, 0.011581901460886002, 0.12808889150619507, 0.2096073031425476, -0.10741006582975388, 0.11445660144090652, 0.08527872711420059, -0.07341711223125458, -0.16598708927631378, 0.061862457543611526, 0.130519300699234, 0.009706081822514534, 0.08447116613388062, -0.2126806676387787, 0.12376612424850464, 0.10348781198263168, -0.012435097247362137, 0.007579589728266001, -0.27582719922065735, -0.13123105466365814, 0.05960721895098686, 0.11156173795461655, 0.03956804797053337, -0.11459213495254517, -0.033179186284542084, -0.00798418466001749, -0.0993589386343956, 0.11526807397603989, -0.07429991662502289, 0.1137542724609375, -0.01966194063425064, 0.11621884256601334, 0.025945376604795456, -0.03432624787092209, 0.1077193021774292, 0.06230453774333, 0.08807440847158432, -0.036843642592430115, 0.007206878159195185, 0.06314808875322342, -0.0589008592069149, 0.028385018929839134, -0.04214610159397125, 0.06706503033638, -0.1473459005355835, 0.005837662611156702, -0.08682186156511307, 0.053957607597112656, -0.04545244202017784, -0.07245095074176788, -0.017464540898799896, 0.052913978695869446, 0.06931357830762863, -0.041377171874046326, 0.02869749255478382, -0.0009661180665716529, 0.09907335788011551, 0.1015838086605072, 0.08158125728368759, -0.02426796592772007, -0.08633661270141602, 0.01402540784329176, 0.003391345962882042, 0.055076826363801956, -0.09645005315542221, 0.013504672795534134, 0.14139987528324127, 0.06573754549026489, 0.09571440517902374, 0.0454336442053318, -0.04242292419075966, 0.004183652810752392, 0.014021330513060093, -0.1313180923461914, -0.10407613962888718, 0.025479761883616447, -0.04219075292348862, -0.15108256042003632, 0.028492052108049393, 0.11838745325803757, -0.04018750414252281, -0.02172469161450863, -0.005784564185887575, 0.0033640905749052763, -0.01187497191131115, 0.18475152552127838, 0.045231640338897705, 0.06257052719593048, -0.09132492542266846, 0.11087577790021896, 0.03454188257455826, -0.049705032259225845, 0.05384720861911774, 0.06672383099794388, -0.10481670498847961, 0.010734735056757927, 0.08181571960449219, 0.13298924267292023, -0.05299790948629379, -0.012309537269175053, -0.09554368257522583, -0.08373268693685532, 0.04202233627438545, 0.13671176135540009, 0.055454086512327194, -0.0024475776590406895, -0.06513751298189163, 0.036438796669244766, -0.1196916401386261, 0.06857453286647797, 0.04832630977034569, 0.07559457421302795, -0.09999179095029831, 0.13425643742084503, -0.0019004675559699535, 0.025743521749973297, -0.02709653414785862, 0.014141295105218887, -0.09870368987321854, -0.024508235976099968, -0.10581478476524353, -0.02457578480243683, -0.012561174109578133, -0.0011799505446106195, -0.023000624030828476, -0.06933552026748657, -0.028966132551431656, 0.038722120225429535, -0.07856796681880951, -0.04814571514725685, 0.016182512044906616, 0.03505663573741913, -0.15406756103038788, 0.0032797600142657757, 0.024895375594496727, -0.08924850821495056, 0.08941420167684555, 0.06279706954956055, 0.012501230463385582, 0.024687262251973152, -0.11934052407741547, -0.030319221317768097, -0.009135921485722065, 0.00513418996706605, 0.06848020106554031, -0.09443064033985138, -0.02749166637659073, -0.03553413599729538, 0.04168059676885605, 0.01912565343081951, 0.10207457840442657, -0.11961889266967773, -0.0043131145648658276, -0.03754206374287605, -0.03863116726279259, -0.06537605077028275, 0.036910735070705414, 0.10660749673843384, 0.05184689909219742, 0.1516052931547165, -0.07562792301177979, 0.05437014624476433, -0.19951048493385315, -0.03814050182700157, 0.0117730051279068, -0.047874920070171356, -0.0813041552901268, -0.04769628494977951, 0.08838589489459991, -0.046557795256376266, 0.11560574173927307, -0.012561149895191193, 0.1020079031586647, 0.04356784373521805, -0.008136785589158535, -0.06440971046686172, -0.006486525759100914, 0.18429093062877655, 0.052973438054323196, -0.017927957698702812, 0.1258840560913086, 0.004195608664304018, 0.029459768906235695, 0.08461350202560425, 0.2179962545633316, 0.1539931297302246, 0.00007847254164516926, 0.06209445372223854, 0.06071843206882477, -0.06880476325750351, -0.148594468832016, 0.12183981388807297, -0.020206201821565628, 0.10496146231889725, -0.06614196300506592, 0.19202883541584015, 0.037941671907901764, -0.18046317994594574, 0.06513246148824692, -0.02369789034128189, -0.10908687114715576, -0.11795904487371445, -0.028474045917391777, -0.0712895542383194, -0.12142535299062729, 0.025073878467082977, -0.11711540818214417, 0.06091809272766113, 0.1032148152589798, 0.008082536049187183, 0.03787892684340477, 0.18389812111854553, -0.04897491633892059, 0.012159832753241062, 0.08382699638605118, 0.018949419260025024, 0.00265565887093544, -0.040871862322092056, -0.06511935591697693, 0.03652126342058182, 0.03373919054865837, 0.06511302292346954, -0.049626514315605164, 0.005282875616103411, 0.004529720637947321, -0.008070566691458225, -0.07585947960615158, 0.011551794596016407, 0.009015066549181938, 0.051463156938552856, 0.0455789789557457, 0.047627102583646774, 0.0058782948181033134, -0.055755406618118286, 0.2911308705806732, -0.06955232471227646, -0.0706072598695755, -0.12901166081428528, 0.21499423682689667, 0.025028705596923828, -0.025932051241397858, 0.05610010400414467, -0.08700302243232727, -0.013150090351700783, 0.16453571617603302, 0.1385190337896347, -0.0871708020567894, -0.016204657033085823, -0.023628955706954002, -0.011304994113743305, -0.015106997452676296, 0.11434074491262436, 0.07562373578548431, -0.013630512170493603, -0.06951908767223358, -0.011937742121517658, -0.02646886743605137, -0.05666043981909752, -0.06846732646226883, 0.06861032545566559, 0.028128810226917267, -0.010131942108273506, -0.06351657956838608, 0.06766167283058167, 0.0010785224149003625, -0.23382247984409332, 0.04245956987142563, -0.17337238788604736, -0.17018313705921173, -0.019522525370121002, 0.07122073322534561, 0.0053143189288675785, 0.055876847356557846, 0.002224997617304325, 0.024234943091869354, 0.11345137655735016, -0.013551567681133747, -0.003740439424291253, -0.11520285904407501, 0.11497467011213303, -0.10235698521137238, 0.19894583523273468, -0.007252226583659649, 0.05853642523288727, 0.0965101420879364, 0.03682546317577362, -0.1364825814962387, 0.023372134193778038, 0.06336463242769241, -0.12639769911766052, -0.003403523936867714, 0.14941872656345367, -0.030601603910326958, 0.06184450164437294, 0.02590193599462509, -0.1463695913553238, 0.0024984506890177727, 0.01795084960758686, -0.03569822385907173, -0.06992244720458984, -0.006273836828768253, -0.049782298505306244, 0.16547228395938873, 0.21553371846675873, -0.029316922649741173, 0.008112622424960136, -0.09198901802301407, 0.012149044312536716, 0.04735271632671356, 0.05039886385202408, -0.04134494811296463, -0.20566324889659882, 0.014529981650412083, 0.0711372122168541, -0.00553223118185997, -0.19480274617671967, -0.09526962041854858, 0.045424625277519226, -0.04071854054927826, -0.042923372238874435, 0.0917230024933815, 0.021810214966535568, 0.04099969193339348, -0.012982213869690895, -0.11559553444385529, -0.021348673850297928, 0.1388711780309677, -0.17638124525547028, -0.0318634994328022 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # spanbert-base-cased-few-shot-k-64-finetuned-squad-seed-2 This model is a fine-tuned version of [SpanBERT/spanbert-base-cased](https://huggingface.co/SpanBERT/spanbert-base-cased) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 200 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
{"tags": ["generated_from_trainer"], "datasets": ["squad"], "model-index": [{"name": "spanbert-base-cased-few-shot-k-64-finetuned-squad-seed-2", "results": []}]}
question-answering
anas-awadalla/spanbert-base-cased-few-shot-k-64-finetuned-squad-seed-2
[ "transformers", "pytorch", "bert", "question-answering", "generated_from_trainer", "dataset:squad", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #bert #question-answering #generated_from_trainer #dataset-squad #endpoints_compatible #region-us
# spanbert-base-cased-few-shot-k-64-finetuned-squad-seed-2 This model is a fine-tuned version of SpanBERT/spanbert-base-cased on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 200 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
[ "# spanbert-base-cased-few-shot-k-64-finetuned-squad-seed-2\n\nThis model is a fine-tuned version of SpanBERT/spanbert-base-cased on the squad dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- training_steps: 200", "### Training results", "### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #bert #question-answering #generated_from_trainer #dataset-squad #endpoints_compatible #region-us \n", "# spanbert-base-cased-few-shot-k-64-finetuned-squad-seed-2\n\nThis model is a fine-tuned version of SpanBERT/spanbert-base-cased on the squad dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- training_steps: 200", "### Training results", "### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ 42, 56, 6, 12, 8, 3, 104, 4, 38 ]
[ "passage: TAGS\n#transformers #pytorch #bert #question-answering #generated_from_trainer #dataset-squad #endpoints_compatible #region-us \n# spanbert-base-cased-few-shot-k-64-finetuned-squad-seed-2\n\nThis model is a fine-tuned version of SpanBERT/spanbert-base-cased on the squad dataset.## Model description\n\nMore information needed## Intended uses & limitations\n\nMore information needed## Training and evaluation data\n\nMore information needed## Training procedure### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- training_steps: 200### Training results### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ -0.09707863628864288, 0.10870766639709473, -0.0024108830839395523, 0.09516728669404984, 0.12005501240491867, 0.016284910961985588, 0.09861568361520767, 0.13093328475952148, -0.10488006472587585, 0.06816889345645905, 0.08780702948570251, 0.03434590995311737, 0.043502144515514374, 0.1503830999135971, -0.006851539947092533, -0.2733902335166931, -0.0005533320363610983, -0.000960816687438637, -0.04312215745449066, 0.12054871767759323, 0.0889689177274704, -0.10941648483276367, 0.07728185504674911, 0.010753287002444267, -0.15475237369537354, 0.01934470422565937, -0.03108428418636322, -0.03606957942247391, 0.12180734425783157, -0.036851465702056885, 0.10715480893850327, 0.03057374246418476, 0.13707134127616882, -0.20715714991092682, 0.006231564097106457, 0.0758201852440834, 0.05281204730272293, 0.10037019848823547, 0.04675960913300514, 0.01046296302229166, 0.08793529123067856, -0.14910835027694702, 0.09232403337955475, 0.02970975451171398, -0.09086517244577408, -0.1539522111415863, -0.09255113452672958, 0.03169844672083855, 0.05054781213402748, 0.0697208121418953, 0.0033388277515769005, 0.14691345393657684, -0.06302934139966965, 0.08368893712759018, 0.26251107454299927, -0.3231040835380554, -0.0673830434679985, 0.02932424284517765, 0.056489866226911545, 0.06103070452809334, -0.11828326433897018, -0.002815582789480686, 0.02005940116941929, 0.027292396873235703, 0.12739288806915283, -0.01619032584130764, -0.10689835995435715, -0.009808730334043503, -0.12478026747703552, -0.0027907455805689096, 0.06060459464788437, 0.02514057792723179, -0.05390743538737297, -0.10549397021532059, -0.0688498243689537, -0.08290623873472214, -0.021807663142681122, -0.05595896765589714, 0.051754895597696304, -0.05363571271300316, -0.0972055047750473, -0.04244179651141167, -0.05819861963391304, -0.080929696559906, -0.009131098166108131, 0.1681416928768158, 0.03577738627791405, 0.021303169429302216, -0.029772590845823288, 0.11916392296552658, 0.0206303708255291, -0.13945774734020233, -0.009266320616006851, -0.00422052014619112, -0.09343904256820679, -0.04081207513809204, -0.053540538996458054, -0.010874012485146523, 0.005364574491977692, 0.16831907629966736, -0.08088159561157227, 0.07332108169794083, 0.012720027007162571, -0.02316012606024742, -0.012687725014984608, 0.1526699811220169, -0.03872344642877579, -0.037397101521492004, -0.015455449931323528, 0.07928797602653503, 0.005155824590474367, -0.0184729415923357, -0.06733326613903046, -0.028959164395928383, 0.09558677673339844, 0.05620117485523224, -0.06308984011411667, 0.03750041499733925, -0.030480988323688507, -0.026329364627599716, 0.017152369022369385, -0.11962016671895981, 0.04166441038250923, -0.0037723882123827934, -0.08108925819396973, -0.00851630698889494, -0.0016728929476812482, -0.008188833482563496, -0.009307555854320526, 0.09745923429727554, -0.08608254045248032, 0.00019645677821245044, -0.0691167414188385, -0.07930512726306915, -0.0009022161830216646, -0.15462130308151245, -0.014735410921275616, -0.05949551239609718, -0.1667672097682953, -0.03179575875401497, 0.044283173978328705, -0.07634144276380539, -0.014042296446859837, -0.04289242997765541, -0.060989703983068466, 0.01740112528204918, -0.013143445365130901, 0.19226224720478058, -0.05220161750912666, 0.08192078769207001, -0.006964354310184717, 0.05114556849002838, 0.026005635038018227, 0.03527792543172836, -0.10249299556016922, 0.029152071103453636, -0.14053764939308167, 0.07813551276922226, -0.08415929973125458, -0.007011221256107092, -0.13741327822208405, -0.10182632505893707, 0.015009205788373947, -0.021511755883693695, 0.09334984421730042, 0.13318322598934174, -0.19842158257961273, -0.018639327958226204, 0.12545591592788696, -0.07688532769680023, -0.05076046288013458, 0.06084024906158447, -0.06178762763738632, 0.042555518448352814, 0.05048409476876259, 0.2126055806875229, 0.05508238449692726, -0.15681777894496918, -0.008630407974123955, 0.007486927323043346, 0.04420776292681694, 0.027092568576335907, 0.039710406213998795, 0.002733493223786354, 0.05588440224528313, 0.015682494267821312, -0.09234286844730377, -0.024973629042506218, -0.09040071070194244, -0.0671091303229332, -0.05115269124507904, -0.07572359591722488, 0.05608081445097923, 0.005995669402182102, 0.04207754507660866, -0.0645609050989151, -0.10276695340871811, 0.11394833028316498, 0.09625673294067383, -0.051184944808483124, 0.03896313160657883, -0.08099276572465897, 0.013199816457927227, -0.005513609386980534, -0.036401063203811646, -0.21087466180324554, -0.11542998254299164, 0.052180755883455276, -0.04542353004217148, 0.025694124400615692, 0.0034141221549361944, 0.08366159349679947, 0.056638237088918686, -0.050968945026397705, -0.015139113180339336, -0.09726431220769882, 0.0009381487034261227, -0.11405499279499054, -0.18990826606750488, -0.08509980142116547, -0.04279957711696625, 0.09456991404294968, -0.16673460602760315, -0.0056273615919053555, 0.021381663158535957, 0.1384178102016449, 0.02771526202559471, -0.06715860962867737, 0.0004962055245414376, 0.04528981074690819, 0.012888981960713863, -0.09661051630973816, 0.05481693521142006, 0.013369680382311344, -0.10468921810388565, -0.04695191606879234, -0.1308760643005371, -0.017433203756809235, 0.05273013934493065, 0.06063469499349594, -0.102913036942482, -0.060306891798973083, -0.07318486273288727, -0.03792243450880051, -0.07824303954839706, 0.0221063494682312, 0.21195171773433685, 0.03822299465537071, 0.11379366368055344, -0.06586966663599014, -0.08461544662714005, -0.008203343488276005, 0.025099486112594604, 0.021929988637566566, 0.08415407687425613, 0.023204823955893517, -0.04047452285885811, 0.0675526112318039, 0.10315771400928497, -0.02710745856165886, 0.13194352388381958, -0.05553547292947769, -0.08110757917165756, -0.03275030106306076, -0.020244350656867027, -0.025326846167445183, 0.12859897315502167, -0.027142802253365517, 0.001387579832226038, 0.03500857204198837, 0.03810708224773407, 0.011043894104659557, -0.1699868142604828, 0.0029743914492428303, 0.027745362371206284, -0.056638579815626144, -0.03886386752128601, -0.006264947354793549, 0.021801399067044258, 0.0889393761754036, 0.030440865084528923, -0.006864908151328564, 0.009577730670571327, -0.011023801751434803, -0.05835214629769325, 0.18674936890602112, -0.09644006937742233, -0.08131692558526993, -0.07339934259653091, 0.021048307418823242, -0.0503624826669693, -0.03793476149439812, 0.008131919428706169, -0.09134262055158615, -0.02955036796629429, -0.08801117539405823, -0.02578834630548954, -0.02063000574707985, 0.02080002799630165, 0.026105929166078568, -0.016681157052516937, 0.08662368357181549, -0.1378379464149475, 0.005204836837947369, -0.0485963337123394, -0.09571980684995651, 0.008877716027200222, 0.07627213001251221, 0.09108626842498779, 0.08054452389478683, -0.01889839768409729, 0.028053972870111465, -0.038510385900735855, 0.23247209191322327, -0.052408356219530106, 0.012744070962071419, 0.11527860164642334, -0.012254355475306511, 0.05562463402748108, 0.09195228666067123, 0.03781476989388466, -0.09057552367448807, 0.023951325565576553, 0.07638601958751678, -0.037939462810754776, -0.2254825383424759, -0.019119367003440857, -0.0003688695724122226, -0.07772071659564972, 0.1073688417673111, 0.031892772763967514, -0.050910502672195435, 0.043736379593610764, 0.02300131693482399, -0.008452647365629673, -0.046100303530693054, 0.07468296587467194, 0.07201990485191345, 0.051313839852809906, 0.1061757355928421, -0.005068876780569553, -0.026788262650370598, 0.056887250393629074, 0.017652617767453194, 0.25315359234809875, -0.043519023805856705, 0.10125954449176788, 0.031579334288835526, 0.15495170652866364, -0.020010417327284813, 0.06624389439821243, 0.0013353396207094193, -0.009010041132569313, -0.011481606401503086, -0.0660218670964241, -0.025366419926285744, 0.018411429598927498, -0.04569872096180916, 0.0244281068444252, -0.07598348706960678, 0.025620197877287865, 0.026649540290236473, 0.29239413142204285, 0.027972958981990814, -0.259025514125824, -0.07295612245798111, -0.01490265503525734, -0.0451681911945343, -0.0613265223801136, 0.007055206224322319, 0.135086327791214, -0.13988979160785675, 0.053089775145053864, -0.07843472063541412, 0.08788087218999863, -0.045431289821863174, 0.01184807624667883, 0.04571101814508438, 0.15033024549484253, -0.017196420580148697, 0.05230459198355675, -0.1968189775943756, 0.2512758672237396, 0.020716188475489616, 0.10594857484102249, -0.0642583891749382, 0.011539781466126442, 0.019696291536092758, 0.010604935698211193, 0.11170510202646255, 0.0037261084653437138, -0.06579132378101349, -0.14651380479335785, -0.09236379712820053, 0.04483751952648163, 0.1418026089668274, -0.04019032418727875, 0.08937641978263855, -0.02963816002011299, 0.011723036877810955, 0.029653504490852356, -0.040805790573358536, -0.15159529447555542, -0.07715137302875519, 0.0010906619718298316, 0.013572490774095058, -0.006708435248583555, -0.0623142309486866, -0.10520103573799133, -0.01678086817264557, 0.11342291533946991, -0.0020832957234233618, -0.05822513625025749, -0.15392035245895386, 0.08391518890857697, 0.14167441427707672, -0.05487746000289917, 0.011977954767644405, 0.016628630459308624, 0.11602916568517685, 0.029712889343500137, -0.08104289323091507, 0.06398171186447144, -0.05680757015943527, -0.1823003888130188, -0.0555579774081707, 0.12340781837701797, 0.08179005980491638, 0.04981285333633423, -0.0002006951253861189, 0.053820375353097916, 0.0026684345211833715, -0.09476341307163239, 0.040096476674079895, 0.003146240720525384, 0.04283374547958374, 0.018016083166003227, -0.08468440175056458, 0.09639645367860794, -0.03697764873504639, 0.009588196873664856, 0.1300828903913498, 0.21392805874347687, -0.10804878175258636, 0.11645252257585526, 0.08484518527984619, -0.07387989014387131, -0.16597776114940643, 0.05962786823511124, 0.13215836882591248, 0.008655752055346966, 0.08612604439258575, -0.2130197435617447, 0.1231963187456131, 0.10347115248441696, -0.013823317363858223, 0.0064440215937793255, -0.27692732214927673, -0.13141077756881714, 0.05802024155855179, 0.11134087294340134, 0.04319867491722107, -0.1141105592250824, -0.034135300666093826, -0.006640581879764795, -0.09961085766553879, 0.11480233818292618, -0.0722905695438385, 0.1141539141535759, -0.019800525158643723, 0.11736894398927689, 0.026124553754925728, -0.033467549830675125, 0.1103205680847168, 0.06065782904624939, 0.08635444939136505, -0.036599330604076385, 0.007995683699846268, 0.06090322509407997, -0.059636782854795456, 0.027148712426424026, -0.041627369821071625, 0.06770681589841843, -0.14801500737667084, 0.0058177621103823185, -0.08638380467891693, 0.053602371364831924, -0.04627460241317749, -0.07216878980398178, -0.01755034364759922, 0.05243009328842163, 0.06959445774555206, -0.04102731868624687, 0.028368430212140083, -0.0002452954649925232, 0.09739425033330917, 0.10645965486764908, 0.08045565336942673, -0.022741517052054405, -0.08683104813098907, 0.012597962282598019, 0.0029576795641332865, 0.0551602765917778, -0.0953131690621376, 0.014982456341385841, 0.140447735786438, 0.06466870754957199, 0.0958424061536789, 0.0454716756939888, -0.0431499183177948, 0.005542940925806761, 0.013989065773785114, -0.13311626017093658, -0.10511980950832367, 0.024864301085472107, -0.04112745821475983, -0.15139292180538177, 0.026424098759889603, 0.12143490463495255, -0.039176058024168015, -0.021517911925911903, -0.005411508493125439, 0.004232712090015411, -0.012637095525860786, 0.18272268772125244, 0.04398160055279732, 0.06298530101776123, -0.0898783877491951, 0.11096026748418808, 0.03443914279341698, -0.04797552153468132, 0.0535549633204937, 0.06600765138864517, -0.10394938290119171, 0.011465661227703094, 0.08089976012706757, 0.13205069303512573, -0.05591180920600891, -0.011747573502361774, -0.0953875184059143, -0.08386549353599548, 0.04101414978504181, 0.135215163230896, 0.05620509013533592, -0.0014985550660640001, -0.06507161259651184, 0.03618820384144783, -0.11832111328840256, 0.06884847581386566, 0.04900478944182396, 0.07579245418310165, -0.10091274976730347, 0.13429011404514313, -0.002567801158875227, 0.02749892883002758, -0.027370097115635872, 0.013096174225211143, -0.09847521036863327, -0.02457686886191368, -0.10784357041120529, -0.022289885208010674, -0.01056064572185278, -0.0013278715778142214, -0.021888015791773796, -0.0703732892870903, -0.02896263636648655, 0.03966685011982918, -0.07856491953134537, -0.0481819212436676, 0.015593770891427994, 0.03575770929455757, -0.15401987731456757, 0.002414410002529621, 0.02629055827856064, -0.09012419730424881, 0.09101741015911102, 0.06358721852302551, 0.012650853022933006, 0.024197040125727654, -0.11782791465520859, -0.030702166259288788, -0.009110260754823685, 0.005033021792769432, 0.06805476546287537, -0.09582044184207916, -0.028739027678966522, -0.035210371017456055, 0.04107498750090599, 0.01945311203598976, 0.105613112449646, -0.1204034835100174, -0.003764713415876031, -0.037691861391067505, -0.04010135307908058, -0.06522372364997864, 0.03571125119924545, 0.1058112233877182, 0.0543673112988472, 0.15136244893074036, -0.07712054252624512, 0.0546964593231678, -0.19882380962371826, -0.03763028606772423, 0.0118137551471591, -0.04580629989504814, -0.0820106491446495, -0.04776294156908989, 0.0870659127831459, -0.04668837785720825, 0.11437160521745682, -0.013088881969451904, 0.10024785250425339, 0.043926939368247986, -0.01075845118612051, -0.06273317337036133, -0.006910789757966995, 0.182992085814476, 0.05288316309452057, -0.01723420061171055, 0.12618118524551392, 0.0023233420215547085, 0.03006833605468273, 0.08425603061914444, 0.22011204063892365, 0.15374402701854706, 0.0006183413788676262, 0.06221862509846687, 0.06052181124687195, -0.06782606989145279, -0.1506248414516449, 0.12046388536691666, -0.01929355226457119, 0.1052207499742508, -0.065007284283638, 0.19010399281978607, 0.03865274786949158, -0.18103213608264923, 0.06332503259181976, -0.023746326565742493, -0.10896051675081253, -0.11964745819568634, -0.026971329003572464, -0.07219918817281723, -0.12199695408344269, 0.02475670911371708, -0.11689773201942444, 0.06205989792943001, 0.102674700319767, 0.007034665439277887, 0.03875013440847397, 0.18098250031471252, -0.048375967890024185, 0.01221354492008686, 0.08287887275218964, 0.018935101106762886, 0.003508656984195113, -0.03885019198060036, -0.0662916824221611, 0.035917624831199646, 0.03600703552365303, 0.06433422863483429, -0.047877464443445206, 0.006708031054586172, 0.0034537087194621563, -0.009328332729637623, -0.0763714611530304, 0.01110912673175335, 0.009185302071273327, 0.051386963576078415, 0.04446239769458771, 0.04800622537732124, 0.006251661106944084, -0.05514312908053398, 0.292617529630661, -0.06929411739110947, -0.07000100612640381, -0.12874948978424072, 0.21726636588573456, 0.022875996306538582, -0.025055568665266037, 0.05693582817912102, -0.08657446503639221, -0.01522909477353096, 0.1624649167060852, 0.13769251108169556, -0.09012342244386673, -0.015878966078162193, -0.024049239233136177, -0.01121521182358265, -0.014195716939866543, 0.1155790314078331, 0.07502032816410065, -0.0121165094897151, -0.07048778980970383, -0.01265262346714735, -0.028295215219259262, -0.05522480979561806, -0.06952511519193649, 0.0690508559346199, 0.026632940396666527, -0.008525398559868336, -0.06499366462230682, 0.06622350215911865, 0.0006793720531277359, -0.23319873213768005, 0.04243546724319458, -0.17300505936145782, -0.17048408091068268, -0.01822224073112011, 0.07207047194242477, 0.003182373009622097, 0.05601878464221954, 0.0005776412435807288, 0.02383328601717949, 0.1143881231546402, -0.014108267612755299, -0.0038939749356359243, -0.11338520795106888, 0.11587905883789062, -0.10202524811029434, 0.20015496015548706, -0.006017846986651421, 0.05918010324239731, 0.09587953239679337, 0.03764069825410843, -0.1373787820339203, 0.022107699885964394, 0.0633482038974762, -0.12668956816196442, -0.004328800365328789, 0.15020233392715454, -0.030841579660773277, 0.0635099783539772, 0.027734043076634407, -0.14608480036258698, 0.0006374241784214973, 0.01892741210758686, -0.036037854850292206, -0.06904689222574234, -0.009145542979240417, -0.051791053265333176, 0.16426241397857666, 0.21457591652870178, -0.0297471322119236, 0.008507602848112583, -0.09114618599414825, 0.012916374951601028, 0.047384195029735565, 0.05209491774439812, -0.0401853509247303, -0.20571456849575043, 0.014403294771909714, 0.07291506975889206, -0.00525568937882781, -0.19590938091278076, -0.09748135507106781, 0.04575662687420845, -0.03919162601232529, -0.042863473296165466, 0.09316077828407288, 0.02038874290883541, 0.04027901962399483, -0.0124673992395401, -0.11689083278179169, -0.022046659141778946, 0.13818368315696716, -0.17566721141338348, -0.03219081833958626 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # spanbert-base-cased-few-shot-k-64-finetuned-squad-seed-4 This model is a fine-tuned version of [SpanBERT/spanbert-base-cased](https://huggingface.co/SpanBERT/spanbert-base-cased) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 200 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
{"tags": ["generated_from_trainer"], "datasets": ["squad"], "model-index": [{"name": "spanbert-base-cased-few-shot-k-64-finetuned-squad-seed-4", "results": []}]}
question-answering
anas-awadalla/spanbert-base-cased-few-shot-k-64-finetuned-squad-seed-4
[ "transformers", "pytorch", "bert", "question-answering", "generated_from_trainer", "dataset:squad", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #bert #question-answering #generated_from_trainer #dataset-squad #endpoints_compatible #region-us
# spanbert-base-cased-few-shot-k-64-finetuned-squad-seed-4 This model is a fine-tuned version of SpanBERT/spanbert-base-cased on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 200 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
[ "# spanbert-base-cased-few-shot-k-64-finetuned-squad-seed-4\n\nThis model is a fine-tuned version of SpanBERT/spanbert-base-cased on the squad dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- training_steps: 200", "### Training results", "### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #bert #question-answering #generated_from_trainer #dataset-squad #endpoints_compatible #region-us \n", "# spanbert-base-cased-few-shot-k-64-finetuned-squad-seed-4\n\nThis model is a fine-tuned version of SpanBERT/spanbert-base-cased on the squad dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- training_steps: 200", "### Training results", "### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ 42, 56, 6, 12, 8, 3, 104, 4, 38 ]
[ "passage: TAGS\n#transformers #pytorch #bert #question-answering #generated_from_trainer #dataset-squad #endpoints_compatible #region-us \n# spanbert-base-cased-few-shot-k-64-finetuned-squad-seed-4\n\nThis model is a fine-tuned version of SpanBERT/spanbert-base-cased on the squad dataset.## Model description\n\nMore information needed## Intended uses & limitations\n\nMore information needed## Training and evaluation data\n\nMore information needed## Training procedure### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- training_steps: 200### Training results### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ -0.09767802059650421, 0.1077912300825119, -0.002368568442761898, 0.09604807198047638, 0.1212543398141861, 0.016602901741862297, 0.09927284717559814, 0.13008186221122742, -0.105131134390831, 0.06756774336099625, 0.08794160932302475, 0.03415761888027191, 0.04270967096090317, 0.15017397701740265, -0.006577004212886095, -0.2733900845050812, -0.0007922647055238485, -0.00037023864570073783, -0.04235648736357689, 0.12071692943572998, 0.0878448560833931, -0.11010075360536575, 0.07780495285987854, 0.01034170389175415, -0.15560679137706757, 0.01996534690260887, -0.031970854848623276, -0.03601132705807686, 0.12196534126996994, -0.03685707598924637, 0.10724995285272598, 0.03031492605805397, 0.1369011402130127, -0.20569533109664917, 0.00647837994620204, 0.07566317915916443, 0.05214780941605568, 0.09970390051603317, 0.04648442938923836, 0.010230342857539654, 0.08698880672454834, -0.14902625977993011, 0.09236755967140198, 0.029493071138858795, -0.09105754643678665, -0.15463869273662567, -0.09176619350910187, 0.030514994636178017, 0.049958620220422745, 0.07088790088891983, 0.0026564327999949455, 0.14608067274093628, -0.06357911974191666, 0.08404020220041275, 0.2600495219230652, -0.32427433133125305, -0.06779828667640686, 0.029638413339853287, 0.05687713623046875, 0.06127187982201576, -0.11921359598636627, -0.0021436037495732307, 0.02022949792444706, 0.02829587645828724, 0.1278732419013977, -0.016629043966531754, -0.10663383454084396, -0.009344963356852531, -0.12472017109394073, -0.0011250965762883425, 0.061498016119003296, 0.025491364300251007, -0.05366664007306099, -0.1063152477145195, -0.067556232213974, -0.08425722271203995, -0.022326840087771416, -0.05511823669075966, 0.051817312836647034, -0.054787635803222656, -0.09782526642084122, -0.04028351604938507, -0.058094244450330734, -0.07973149418830872, -0.008697515353560448, 0.1666794717311859, 0.035748548805713654, 0.020934663712978363, -0.02925322949886322, 0.1185087189078331, 0.020579008385539055, -0.1391199231147766, -0.008069452829658985, -0.00495053268969059, -0.09322366118431091, -0.040809571743011475, -0.054233744740486145, -0.008884682320058346, 0.005730013363063335, 0.16853854060173035, -0.08116566389799118, 0.07419484853744507, 0.014070353470742702, -0.024126600474119186, -0.012507949955761433, 0.1511552482843399, -0.04023001715540886, -0.03926096856594086, -0.015872599557042122, 0.07977558672428131, 0.004124770872294903, -0.018472647294402122, -0.06736918538808823, -0.027614755555987358, 0.09458965063095093, 0.05559859424829483, -0.06428635865449905, 0.03939229995012283, -0.029378825798630714, -0.026052085682749748, 0.017599809914827347, -0.11944110691547394, 0.041307296603918076, -0.003776340978220105, -0.08130481094121933, -0.007765403017401695, -0.0025892218109220266, -0.009165594354271889, -0.009788203984498978, 0.09752338379621506, -0.087046317756176, -0.0006775257643312216, -0.06945017725229263, -0.0803927406668663, -0.0015052700182422996, -0.1543872207403183, -0.013605070300400257, -0.059022657573223114, -0.16713793575763702, -0.03348546847701073, 0.0440346896648407, -0.07625128328800201, -0.013041481375694275, -0.04295972362160683, -0.061733342707157135, 0.016865719109773636, -0.013196990825235844, 0.19295567274093628, -0.052655577659606934, 0.08074185252189636, -0.0055437772534787655, 0.05106698349118233, 0.025829147547483444, 0.035373203456401825, -0.10223405808210373, 0.028390156105160713, -0.14051032066345215, 0.07744628936052322, -0.08487488329410553, -0.004972080700099468, -0.13624241948127747, -0.10313212126493454, 0.015946319326758385, -0.020341739058494568, 0.09269467741250992, 0.13301117718219757, -0.19791212677955627, -0.01894865743815899, 0.12472613900899887, -0.07575888931751251, -0.05094582214951515, 0.06056017801165581, -0.06191982328891754, 0.04120257496833801, 0.051227495074272156, 0.2126815766096115, 0.055324628949165344, -0.15606239438056946, -0.009996285662055016, 0.006495344452559948, 0.04471796378493309, 0.02633163332939148, 0.0382080078125, 0.004143895115703344, 0.056131862103939056, 0.016537271440029144, -0.09129292517900467, -0.025054490193724632, -0.08988397568464279, -0.06665241718292236, -0.050170671194791794, -0.07562156021595001, 0.05562303587794304, 0.006661824882030487, 0.04205786809325218, -0.06575463712215424, -0.1033157929778099, 0.11331997811794281, 0.0959511250257492, -0.05183582752943039, 0.03741680830717087, -0.08126609772443771, 0.013883676379919052, -0.005649884697049856, -0.03581593185663223, -0.21040070056915283, -0.11670272052288055, 0.05103486403822899, -0.04276594519615173, 0.0255820844322443, 0.003891585161909461, 0.08443333953619003, 0.05698852241039276, -0.0514211505651474, -0.015738561749458313, -0.0960327535867691, 0.0013750967336818576, -0.11372188478708267, -0.19047199189662933, -0.08563262969255447, -0.04264609143137932, 0.09508421272039413, -0.16817398369312286, -0.005204774439334869, 0.02174539305269718, 0.13740472495555878, 0.027097493410110474, -0.0666857585310936, 0.001540879369713366, 0.04666053131222725, 0.013898398727178574, -0.0964222401380539, 0.05556803196668625, 0.013180695474147797, -0.10346806794404984, -0.04815828427672386, -0.1312953680753708, -0.015566932037472725, 0.053866609930992126, 0.05971341207623482, -0.10334073007106781, -0.0601225309073925, -0.07295636832714081, -0.03798777237534523, -0.07642661780118942, 0.022103916853666306, 0.21292008459568024, 0.03765891119837761, 0.1134277731180191, -0.06491837650537491, -0.08421137183904648, -0.008047920651733875, 0.026605837047100067, 0.02302713505923748, 0.08411123603582382, 0.021913252770900726, -0.03824146091938019, 0.06790273636579514, 0.10220573097467422, -0.027342217043042183, 0.13281266391277313, -0.0558154433965683, -0.08052179962396622, -0.032095059752464294, -0.021294213831424713, -0.025966322049498558, 0.12940311431884766, -0.02774692513048649, -0.00006318746454780921, 0.034650884568691254, 0.037341222167015076, 0.011397991329431534, -0.16896957159042358, 0.002974457573145628, 0.02692863717675209, -0.055565569549798965, -0.03989504277706146, -0.005902041215449572, 0.02100284770131111, 0.08844852447509766, 0.030180681496858597, -0.00830103550106287, 0.009474639780819416, -0.010792877525091171, -0.05772628262639046, 0.18739701807498932, -0.09657604247331619, -0.08022217452526093, -0.07301854342222214, 0.019240569323301315, -0.051460038870573044, -0.03846587613224983, 0.007848518900573254, -0.0929945856332779, -0.029770655557513237, -0.08768986910581589, -0.026971638202667236, -0.020454488694667816, 0.020645178854465485, 0.025263864547014236, -0.017039049416780472, 0.08608206361532211, -0.13748139142990112, 0.005459759384393692, -0.048878949135541916, -0.0957372784614563, 0.009596028365194798, 0.07663530111312866, 0.0914374515414238, 0.0802718847990036, -0.01850653812289238, 0.028114350512623787, -0.038769371807575226, 0.2333322912454605, -0.05254644155502319, 0.012942027300596237, 0.115077905356884, -0.011248663999140263, 0.054376859217882156, 0.09196429699659348, 0.03883398696780205, -0.09104768186807632, 0.023737594485282898, 0.07689069956541061, -0.037406932562589645, -0.22530491650104523, -0.018454276025295258, -0.0007095924811437726, -0.07759147882461548, 0.10728996247053146, 0.031877271831035614, -0.05028166249394417, 0.04455368220806122, 0.02397538349032402, -0.007502858527004719, -0.04639020189642906, 0.07418595254421234, 0.07365478575229645, 0.0506906732916832, 0.10730884969234467, -0.005229239817708731, -0.027065420523285866, 0.056023478507995605, 0.017822977155447006, 0.25400012731552124, -0.043649572879076004, 0.10102970153093338, 0.03229088336229324, 0.15432670712471008, -0.01955333724617958, 0.06705895066261292, 0.0008693868876434863, -0.009786226786673069, -0.011159210465848446, -0.06584183871746063, -0.02385214902460575, 0.01742158830165863, -0.04677440598607063, 0.023693745955824852, -0.07616443932056427, 0.023917758837342262, 0.02683698758482933, 0.2918229401111603, 0.02797439508140087, -0.2617294490337372, -0.07384612411260605, -0.015762703493237495, -0.0448634959757328, -0.060725726187229156, 0.007246397435665131, 0.1344376504421234, -0.1392526626586914, 0.05392108112573624, -0.07849874347448349, 0.0874491035938263, -0.04550398141145706, 0.012879087589681149, 0.04784148558974266, 0.15129263699054718, -0.018088871613144875, 0.05195019021630287, -0.19722384214401245, 0.25008606910705566, 0.020796962082386017, 0.1066824272274971, -0.06443215906620026, 0.011437192559242249, 0.02058592438697815, 0.011939025484025478, 0.11139953136444092, 0.0030768555589020252, -0.06561066210269928, -0.1463802456855774, -0.09135660529136658, 0.04614930972456932, 0.14084143936634064, -0.039197858422994614, 0.09029500931501389, -0.0285783763974905, 0.011264335364103317, 0.0292341411113739, -0.04179411381483078, -0.151957169175148, -0.07775390148162842, 0.0003918722504749894, 0.014846513979136944, -0.006297634448856115, -0.061586592346429825, -0.10578860342502594, -0.018475214019417763, 0.11268763244152069, -0.0005763702793046832, -0.0585327073931694, -0.15456782281398773, 0.08332972228527069, 0.14186911284923553, -0.05370418727397919, 0.01197032630443573, 0.01744549348950386, 0.11503934860229492, 0.03084450028836727, -0.08066622167825699, 0.06402748823165894, -0.05763901770114899, -0.18094362318515778, -0.055475544184446335, 0.12253566086292267, 0.08147508651018143, 0.04898454621434212, -0.0004887543618679047, 0.0537031814455986, 0.001786737353540957, -0.0954861268401146, 0.04056167975068092, 0.0009023535531014204, 0.043940845876932144, 0.017522228881716728, -0.08552086353302002, 0.09627527743577957, -0.03637031838297844, 0.01051370333880186, 0.12811727821826935, 0.2110086977481842, -0.10723378509283066, 0.1143057644367218, 0.08531520515680313, -0.07350331544876099, -0.16548708081245422, 0.06063121184706688, 0.13099060952663422, 0.009316104464232922, 0.08469186723232269, -0.21396814286708832, 0.12455521523952484, 0.10282576829195023, -0.012678384780883789, 0.00848972238600254, -0.27402180433273315, -0.13062521815299988, 0.05848512053489685, 0.1121625080704689, 0.043960023671388626, -0.11461013555526733, -0.033475637435913086, -0.006719536148011684, -0.09895649552345276, 0.1137913390994072, -0.07508208602666855, 0.11427631229162216, -0.020184004679322243, 0.11770313233137131, 0.025259701535105705, -0.0335126556456089, 0.10937269777059555, 0.06170617789030075, 0.08742006123065948, -0.036741625517606735, 0.008856688626110554, 0.06086166948080063, -0.058908216655254364, 0.027171388268470764, -0.0428314208984375, 0.06706064939498901, -0.14850910007953644, 0.005833533126860857, -0.08733398467302322, 0.05333036184310913, -0.04609375447034836, -0.07186643034219742, -0.01646995358169079, 0.052712902426719666, 0.06844339519739151, -0.04113657772541046, 0.0268253181129694, -0.0012364555150270462, 0.09777891635894775, 0.10527270287275314, 0.08109100908041, -0.024033470079302788, -0.08796536922454834, 0.01369580440223217, 0.0025488927494734526, 0.05499745532870293, -0.09487728774547577, 0.013527669943869114, 0.14121662080287933, 0.06391425430774689, 0.095543272793293, 0.04635542631149292, -0.042050063610076904, 0.004946134053170681, 0.015100089833140373, -0.13327035307884216, -0.10396593809127808, 0.02502612955868244, -0.045051660388708115, -0.1511855572462082, 0.027663936838507652, 0.12130282074213028, -0.03902116045355797, -0.02133387140929699, -0.005501679610460997, 0.0035826663952320814, -0.0128035182133317, 0.18419696390628815, 0.0441509373486042, 0.06264317780733109, -0.09107816964387894, 0.1103520542383194, 0.03432897850871086, -0.04867585003376007, 0.05351480096578598, 0.06691547483205795, -0.10500495135784149, 0.010282736271619797, 0.08009639382362366, 0.13350921869277954, -0.05464737117290497, -0.012710495851933956, -0.09682154655456543, -0.08436983078718185, 0.04109292849898338, 0.13383424282073975, 0.05597848817706108, -0.002400052733719349, -0.0653245598077774, 0.03562217950820923, -0.11905427277088165, 0.06853167712688446, 0.04819035902619362, 0.07610131800174713, -0.10106854140758514, 0.13345110416412354, -0.0025493649300187826, 0.02675532177090645, -0.027364090085029602, 0.013619380071759224, -0.09928349405527115, -0.024670051410794258, -0.10796590894460678, -0.02335307002067566, -0.0110058868303895, -0.0007843587663955986, -0.02221691980957985, -0.0689479187130928, -0.029633227735757828, 0.039786871522665024, -0.07890182733535767, -0.047603681683540344, 0.017458729445934296, 0.0365375354886055, -0.1532895416021347, 0.0028148172423243523, 0.02495882660150528, -0.09004728496074677, 0.09085147827863693, 0.06351830810308456, 0.012397369369864464, 0.024548744782805443, -0.11587657779455185, -0.031234806403517723, -0.009555336087942123, 0.004195435903966427, 0.06860902160406113, -0.09524181485176086, -0.028160082176327705, -0.03535078093409538, 0.04142919182777405, 0.019707772880792618, 0.1046401783823967, -0.11959672719240189, -0.0034983092918992043, -0.03696676343679428, -0.03879385441541672, -0.06565887480974197, 0.03617456182837486, 0.10648573189973831, 0.05359923839569092, 0.15187081694602966, -0.07715766131877899, 0.053845759481191635, -0.1991513967514038, -0.03806755691766739, 0.011615961790084839, -0.04728643223643303, -0.0811939686536789, -0.0477350652217865, 0.08785761892795563, -0.047319043427705765, 0.11599503457546234, -0.0133846839889884, 0.1008639857172966, 0.043331682682037354, -0.010456779040396214, -0.06377851963043213, -0.006253871601074934, 0.18275651335716248, 0.05232932046055794, -0.017999447882175446, 0.12597399950027466, 0.0037211275193840265, 0.029241269454360008, 0.08560924977064133, 0.21806277334690094, 0.15283000469207764, 0.00131309125572443, 0.06241951510310173, 0.061187174171209335, -0.06838627904653549, -0.14935708045959473, 0.12144918739795685, -0.019161028787493706, 0.10611361265182495, -0.06593725830316544, 0.1886863112449646, 0.037859782576560974, -0.1801358163356781, 0.06373970955610275, -0.024643873795866966, -0.10918164253234863, -0.11826866120100021, -0.026067910715937614, -0.07149738073348999, -0.12278652936220169, 0.024950558319687843, -0.1175098717212677, 0.06056869402527809, 0.10387445241212845, 0.007963588461279869, 0.038231320679187775, 0.18269513547420502, -0.04694744944572449, 0.012897390872240067, 0.08327971398830414, 0.01827186904847622, 0.0030496090184897184, -0.03862486407160759, -0.06522833555936813, 0.03528681769967079, 0.03433872014284134, 0.06378044933080673, -0.04889633134007454, 0.005804595537483692, 0.004266119562089443, -0.008494891226291656, -0.07595419883728027, 0.010895689949393272, 0.009513027966022491, 0.051105353981256485, 0.04553418979048729, 0.047450367361307144, 0.005240621976554394, -0.05529490113258362, 0.2913624942302704, -0.069244883954525, -0.06866278499364853, -0.12950804829597473, 0.21688973903656006, 0.022781506180763245, -0.02575604058802128, 0.05599318444728851, -0.08558771014213562, -0.013890998438000679, 0.1639009714126587, 0.13971130549907684, -0.08989841490983963, -0.01626049354672432, -0.02351602353155613, -0.011244887486100197, -0.014322895556688309, 0.11592583358287811, 0.07504843920469284, -0.012706231325864792, -0.07057447731494904, -0.012544880621135235, -0.027641385793685913, -0.05526737868785858, -0.0692572221159935, 0.06846778094768524, 0.02803046815097332, -0.008933552540838718, -0.06417547166347504, 0.06650817394256592, 0.0003574518486857414, -0.23293434083461761, 0.04347586631774902, -0.17226643860340118, -0.17094571888446808, -0.019453812390565872, 0.07140997797250748, 0.004100894555449486, 0.05680171400308609, 0.0006715530762448907, 0.023608990013599396, 0.11507076770067215, -0.01438390463590622, -0.0030248684342950583, -0.11430350691080093, 0.11601521074771881, -0.10188629478216171, 0.1987621784210205, -0.006807422265410423, 0.05927411839365959, 0.09640948474407196, 0.03718072921037674, -0.1372341364622116, 0.022841449826955795, 0.06252061575651169, -0.12718957662582397, -0.0035632899962365627, 0.14930294454097748, -0.030632810667157173, 0.06258615851402283, 0.026355987414717674, -0.14505866169929504, 0.0014935298822820187, 0.01932535693049431, -0.035731200128793716, -0.06898404657840729, -0.008793883956968784, -0.051411259919404984, 0.1648467779159546, 0.21618948876857758, -0.029685774818062782, 0.008305174298584461, -0.09106981009244919, 0.01317670289427042, 0.04798934981226921, 0.05075560510158539, -0.04104231297969818, -0.20582328736782074, 0.014592139981687069, 0.07348296046257019, -0.005820111371576786, -0.19708524644374847, -0.09623254835605621, 0.04589085280895233, -0.03905361890792847, -0.04316813126206398, 0.09308017790317535, 0.021488353610038757, 0.041379474103450775, -0.013068431988358498, -0.11438921093940735, -0.022077666595578194, 0.1379465013742447, -0.17606361210346222, -0.032939840108156204 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # spanbert-base-cased-few-shot-k-64-finetuned-squad-seed-6 This model is a fine-tuned version of [SpanBERT/spanbert-base-cased](https://huggingface.co/SpanBERT/spanbert-base-cased) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 200 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
{"tags": ["generated_from_trainer"], "datasets": ["squad"], "model-index": [{"name": "spanbert-base-cased-few-shot-k-64-finetuned-squad-seed-6", "results": []}]}
question-answering
anas-awadalla/spanbert-base-cased-few-shot-k-64-finetuned-squad-seed-6
[ "transformers", "pytorch", "bert", "question-answering", "generated_from_trainer", "dataset:squad", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #bert #question-answering #generated_from_trainer #dataset-squad #endpoints_compatible #region-us
# spanbert-base-cased-few-shot-k-64-finetuned-squad-seed-6 This model is a fine-tuned version of SpanBERT/spanbert-base-cased on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 200 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
[ "# spanbert-base-cased-few-shot-k-64-finetuned-squad-seed-6\n\nThis model is a fine-tuned version of SpanBERT/spanbert-base-cased on the squad dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- training_steps: 200", "### Training results", "### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #bert #question-answering #generated_from_trainer #dataset-squad #endpoints_compatible #region-us \n", "# spanbert-base-cased-few-shot-k-64-finetuned-squad-seed-6\n\nThis model is a fine-tuned version of SpanBERT/spanbert-base-cased on the squad dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- training_steps: 200", "### Training results", "### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ 42, 56, 6, 12, 8, 3, 104, 4, 38 ]
[ "passage: TAGS\n#transformers #pytorch #bert #question-answering #generated_from_trainer #dataset-squad #endpoints_compatible #region-us \n# spanbert-base-cased-few-shot-k-64-finetuned-squad-seed-6\n\nThis model is a fine-tuned version of SpanBERT/spanbert-base-cased on the squad dataset.## Model description\n\nMore information needed## Intended uses & limitations\n\nMore information needed## Training and evaluation data\n\nMore information needed## Training procedure### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- training_steps: 200### Training results### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ -0.09777898341417313, 0.107546865940094, -0.0023258288856595755, 0.09569839388132095, 0.12140414118766785, 0.01608388125896454, 0.09882712364196777, 0.1306215226650238, -0.1043536514043808, 0.06813018769025803, 0.08706463873386383, 0.035100165754556656, 0.04328155890107155, 0.14996610581874847, -0.00663397554308176, -0.27285388112068176, -0.0005295031005516648, -0.0000883662432897836, -0.04228359833359718, 0.12072888016700745, 0.08783917129039764, -0.11031193286180496, 0.07693285495042801, 0.00981320533901453, -0.15572799742221832, 0.020151928067207336, -0.03220953419804573, -0.03563927486538887, 0.12176290154457092, -0.037356533110141754, 0.10682477802038193, 0.03041241690516472, 0.13680411875247955, -0.2064426839351654, 0.006496849004179239, 0.07634976506233215, 0.052289701998233795, 0.09990031272172928, 0.04735320061445236, 0.010453016497194767, 0.08889801800251007, -0.14883308112621307, 0.09221987426280975, 0.030116280540823936, -0.09091341495513916, -0.152669295668602, -0.09233477711677551, 0.029786696657538414, 0.05057786405086517, 0.07161691039800644, 0.002222685841843486, 0.14721570909023285, -0.06408757716417313, 0.08428174257278442, 0.26194196939468384, -0.3226184546947479, -0.06774245202541351, 0.030704110860824585, 0.05668703839182854, 0.06016622111201286, -0.12019983679056168, -0.0031408127397298813, 0.020306501537561417, 0.02792207896709442, 0.1267264038324356, -0.01608944684267044, -0.10818953812122345, -0.009821366518735886, -0.12506747245788574, -0.001263801590539515, 0.0596500039100647, 0.0255765151232481, -0.053045693784952164, -0.106071338057518, -0.06821498274803162, -0.08375895023345947, -0.02214215137064457, -0.055017389357089996, 0.052032217383384705, -0.05486934632062912, -0.0971289798617363, -0.040094196796417236, -0.05778472498059273, -0.08098185062408447, -0.00849564466625452, 0.16645920276641846, 0.03571672737598419, 0.020707029849290848, -0.030136091634631157, 0.1182703971862793, 0.020655406638979912, -0.13940857350826263, -0.009230867959558964, -0.004154473077505827, -0.09362461417913437, -0.0410405658185482, -0.05358048900961876, -0.010897299274802208, 0.005236864555627108, 0.16666316986083984, -0.08132319152355194, 0.07467205077409744, 0.012982841581106186, -0.02420063689351082, -0.013228108175098896, 0.15143926441669464, -0.039270542562007904, -0.03765469044446945, -0.01654095947742462, 0.07978955656290054, 0.0036182475741952658, -0.018129991367459297, -0.06664303690195084, -0.02787727676331997, 0.09513041377067566, 0.05545537918806076, -0.06366387009620667, 0.038987983018159866, -0.029597612097859383, -0.02618587017059326, 0.017929449677467346, -0.1193147823214531, 0.041481487452983856, -0.004218959249556065, -0.08176753669977188, -0.008845602162182331, -0.002367812441661954, -0.009495602920651436, -0.010163776576519012, 0.0983736589550972, -0.08742527663707733, -0.00045321404468268156, -0.07045796513557434, -0.0802326425909996, -0.0009717930806800723, -0.15613113343715668, -0.0140887051820755, -0.058196280151605606, -0.16760039329528809, -0.03366679698228836, 0.04356779530644417, -0.07623573392629623, -0.012303952127695084, -0.04363042116165161, -0.06237848475575447, 0.017236366868019104, -0.01272959727793932, 0.1939471960067749, -0.05237434804439545, 0.08152440190315247, -0.0059139421209692955, 0.050777535885572433, 0.02638520859181881, 0.03604734316468239, -0.10325292497873306, 0.028105996549129486, -0.13993452489376068, 0.07756082713603973, -0.08586592227220535, -0.005165427923202515, -0.1372445523738861, -0.10234592109918594, 0.014613059349358082, -0.020961740985512733, 0.09357590973377228, 0.1337982565164566, -0.19831421971321106, -0.01858336664736271, 0.12530627846717834, -0.07662627846002579, -0.05098449066281319, 0.059499382972717285, -0.061586689203977585, 0.04068760946393013, 0.05073539912700653, 0.2129608392715454, 0.054630909115076065, -0.15582163631916046, -0.011169971898198128, 0.005827017594128847, 0.04526890441775322, 0.025812363252043724, 0.0379629023373127, 0.003991940524429083, 0.05732925981283188, 0.016160333529114723, -0.09108322113752365, -0.02531842514872551, -0.09007782489061356, -0.06599440425634384, -0.05077654868364334, -0.07571133971214294, 0.05495802313089371, 0.00800997857004404, 0.041659533977508545, -0.06524792313575745, -0.10277613997459412, 0.11327964812517166, 0.09594698995351791, -0.05116187781095505, 0.03771338611841202, -0.08070321381092072, 0.012718310579657555, -0.006116610486060381, -0.035719551146030426, -0.21188409626483917, -0.11694890260696411, 0.05152994394302368, -0.04351473227143288, 0.02571663074195385, 0.003256110241636634, 0.08432339876890182, 0.05607263743877411, -0.05153505876660347, -0.015702135860919952, -0.09685834497213364, 0.000868123141117394, -0.1143113449215889, -0.19057804346084595, -0.08566402643918991, -0.043358154594898224, 0.092580147087574, -0.1675075888633728, -0.005509964190423489, 0.021743498742580414, 0.1381046622991562, 0.02736913599073887, -0.0672382265329361, 0.0015690759755671024, 0.046404674649238586, 0.013558303005993366, -0.09673131257295609, 0.05531326308846474, 0.012249194085597992, -0.10295172780752182, -0.04826725274324417, -0.13163352012634277, -0.017502617090940475, 0.05353470519185066, 0.06135016307234764, -0.10355447977781296, -0.06020871177315712, -0.07289407402276993, -0.038172245025634766, -0.0777106061577797, 0.02316858060657978, 0.2124014049768448, 0.0380806066095829, 0.11293923854827881, -0.06516076624393463, -0.08448019623756409, -0.007451930548995733, 0.026937277987599373, 0.022588670253753662, 0.08524464815855026, 0.0238955095410347, -0.04024727642536163, 0.06878522038459778, 0.10269921272993088, -0.026707075536251068, 0.13314838707447052, -0.05597805604338646, -0.08100332319736481, -0.03064119629561901, -0.020851124078035355, -0.025785619392991066, 0.12916426360607147, -0.027450725436210632, 0.0003908916551154107, 0.0344776026904583, 0.03782254457473755, 0.011359396390616894, -0.1691378355026245, 0.0029824578668922186, 0.02676771767437458, -0.05540746822953224, -0.04065496101975441, -0.0058968341909348965, 0.021050453186035156, 0.08887124806642532, 0.029852688312530518, -0.00790190789848566, 0.008716423064470291, -0.010875233449041843, -0.057746488600969315, 0.18829548358917236, -0.09614212065935135, -0.07904542237520218, -0.0715818926692009, 0.020240111276507378, -0.051019489765167236, -0.03878413513302803, 0.008004573173820972, -0.09404858946800232, -0.029785001650452614, -0.08760460466146469, -0.026698263362050056, -0.020181335508823395, 0.01980604976415634, 0.02452309988439083, -0.01671764999628067, 0.08529528975486755, -0.13832439482212067, 0.005684251897037029, -0.04938662424683571, -0.09599118679761887, 0.009161816909909248, 0.07626698911190033, 0.09132691472768784, 0.08058759570121765, -0.019001968204975128, 0.02816920541226864, -0.03885268792510033, 0.23200859129428864, -0.05310504138469696, 0.012385918758809566, 0.11491032689809799, -0.010054262354969978, 0.05488269031047821, 0.09225538372993469, 0.03808412700891495, -0.09105651080608368, 0.02403908409178257, 0.07764088362455368, -0.03769661858677864, -0.2264568954706192, -0.018684906885027885, -0.0009347833693027496, -0.07777862250804901, 0.10730457305908203, 0.03224179893732071, -0.05028706416487694, 0.044345010071992874, 0.02316088043153286, -0.00894606951624155, -0.04640530049800873, 0.07460442930459976, 0.07132231444120407, 0.05154747515916824, 0.10690125823020935, -0.0052426946349442005, -0.02634275145828724, 0.055321499705314636, 0.017757248133420944, 0.25509756803512573, -0.044042542576789856, 0.10073726624250412, 0.03175009787082672, 0.15400364995002747, -0.02011219970881939, 0.06752200424671173, 0.0006195006426423788, -0.009866730310022831, -0.010952728800475597, -0.06567295640707016, -0.02417064644396305, 0.017420930787920952, -0.04753734543919563, 0.023944763466715813, -0.0759989470243454, 0.0242436733096838, 0.026272002607584, 0.29261600971221924, 0.028057442978024483, -0.26054683327674866, -0.07304086536169052, -0.016068274155259132, -0.04523468390107155, -0.061390191316604614, 0.00706939771771431, 0.1340191662311554, -0.13883593678474426, 0.05369164049625397, -0.07893987745046616, 0.08846879005432129, -0.04412275552749634, 0.012149286456406116, 0.04713333025574684, 0.1514817327260971, -0.01808297261595726, 0.05236982926726341, -0.19837097823619843, 0.2522664964199066, 0.020907405763864517, 0.10675522685050964, -0.06476714462041855, 0.011219415813684464, 0.019976885989308357, 0.010203847661614418, 0.1119227483868599, 0.0029995590448379517, -0.066181480884552, -0.1461319476366043, -0.09068308025598526, 0.04587026685476303, 0.14178769290447235, -0.03931110352277756, 0.08964759856462479, -0.02856704406440258, 0.011314088478684425, 0.030101658776402473, -0.04204469919204712, -0.15224750339984894, -0.0775725245475769, 0.000732355925720185, 0.014192217029631138, -0.007075628265738487, -0.06123463064432144, -0.10555071383714676, -0.01724897511303425, 0.11229363083839417, -0.0007163331029005349, -0.057825226336717606, -0.15453487634658813, 0.0841473937034607, 0.14197410643100739, -0.05415697395801544, 0.011967675760388374, 0.017060237005352974, 0.11459562927484512, 0.029856428503990173, -0.08119074255228043, 0.06502187252044678, -0.05760942026972771, -0.18140770494937897, -0.05541788041591644, 0.12207238376140594, 0.08213692158460617, 0.049432422965765, -0.0007148728473111987, 0.05412708967924118, 0.0021017498802393675, -0.09515831619501114, 0.04073132202029228, 0.0013334270333871245, 0.04387892410159111, 0.018074313178658485, -0.08499373495578766, 0.09480664879083633, -0.03704362362623215, 0.009954683482646942, 0.12775695323944092, 0.21208840608596802, -0.10715193301439285, 0.11466509103775024, 0.08578082919120789, -0.07387382537126541, -0.16617831587791443, 0.06162098050117493, 0.1313498169183731, 0.008750137872993946, 0.08540293574333191, -0.21373164653778076, 0.12438883632421494, 0.10269587486982346, -0.013068568892776966, 0.007682406809180975, -0.27496957778930664, -0.13067540526390076, 0.05836181342601776, 0.11202295124530792, 0.041756853461265564, -0.11456963419914246, -0.03333786129951477, -0.006369804963469505, -0.0984833687543869, 0.11458727717399597, -0.0736134797334671, 0.11448710411787033, -0.020561998710036278, 0.11776848882436752, 0.025505773723125458, -0.03412001579999924, 0.10787849873304367, 0.06180274859070778, 0.0877143070101738, -0.036530278623104095, 0.008586300536990166, 0.06081994250416756, -0.05904517322778702, 0.02727908454835415, -0.042897678911685944, 0.06753870844841003, -0.14722996950149536, 0.006247975397855043, -0.08792583644390106, 0.053901296108961105, -0.046011775732040405, -0.07184511423110962, -0.016666250303387642, 0.05318548530340195, 0.06894933432340622, -0.0416107252240181, 0.028367450460791588, -0.0012177537428215146, 0.09966447204351425, 0.10536479204893112, 0.08163916319608688, -0.023724107071757317, -0.08685392886400223, 0.013149193488061428, 0.0033451991621404886, 0.055180612951517105, -0.09597016125917435, 0.013311734423041344, 0.14137190580368042, 0.06524745374917984, 0.09539393335580826, 0.046735115349292755, -0.04271213710308075, 0.004963931627571583, 0.014198850840330124, -0.13253247737884521, -0.10484681278467178, 0.025378772988915443, -0.041104044765233994, -0.15158508718013763, 0.02821214497089386, 0.11972327530384064, -0.040085319429636, -0.021361131221055984, -0.005251175258308649, 0.004172706510871649, -0.012089984491467476, 0.18481560051441193, 0.04424356669187546, 0.06328018754720688, -0.09089699387550354, 0.11079259216785431, 0.03384515643119812, -0.049938954412937164, 0.05375044792890549, 0.0672120675444603, -0.10425771027803421, 0.010308816097676754, 0.08180484175682068, 0.13243722915649414, -0.054718680679798126, -0.011272256262600422, -0.09564775973558426, -0.08399150520563126, 0.04139869660139084, 0.13593369722366333, 0.055802322924137115, -0.002450663363561034, -0.06498724222183228, 0.03611820563673973, -0.11962618678808212, 0.0688074380159378, 0.047767430543899536, 0.07630105316638947, -0.10063287615776062, 0.13214097917079926, -0.002365939551964402, 0.026903195306658745, -0.027266882359981537, 0.014071032404899597, -0.09899573773145676, -0.024605540558695793, -0.1057400107383728, -0.02349870093166828, -0.011067749001085758, -0.0013115585315972567, -0.022753115743398666, -0.06947484612464905, -0.028754280880093575, 0.039821743965148926, -0.07912629842758179, -0.04815105348825455, 0.016727015376091003, 0.036003973335027695, -0.1537998765707016, 0.0029626504983752966, 0.02511964552104473, -0.08943955600261688, 0.08974587917327881, 0.06274019926786423, 0.012473040260374546, 0.024894189089536667, -0.11868146061897278, -0.030846688896417618, -0.009278900921344757, 0.004288539756089449, 0.06855522841215134, -0.09448988735675812, -0.028429968282580376, -0.03560382127761841, 0.041511036455631256, 0.019497448578476906, 0.10383350402116776, -0.1201653778553009, -0.004270133562386036, -0.03833237662911415, -0.03952817991375923, -0.06503944098949432, 0.03668677434325218, 0.10692715644836426, 0.053742170333862305, 0.15137244760990143, -0.0768810510635376, 0.054651644080877304, -0.19913434982299805, -0.03796691074967384, 0.011913408525288105, -0.04710284620523453, -0.08174987137317657, -0.04688010737299919, 0.08826284110546112, -0.047362618148326874, 0.11342622339725494, -0.012852787040174007, 0.10159250348806381, 0.04380470886826515, -0.010301466099917889, -0.06426651775836945, -0.0064306557178497314, 0.18229499459266663, 0.05214657261967659, -0.017408357933163643, 0.12769414484500885, 0.003978712018579245, 0.028839057311415672, 0.08705747127532959, 0.22032396495342255, 0.15407609939575195, 0.00029535958310589194, 0.06251338869333267, 0.06089470535516739, -0.06908982992172241, -0.1491972804069519, 0.12134160846471786, -0.01881040446460247, 0.10594362020492554, -0.06631682813167572, 0.18951573967933655, 0.037799082696437836, -0.1797926276922226, 0.0644197016954422, -0.025089673697948456, -0.10897386819124222, -0.11840883642435074, -0.025938980281352997, -0.07143149524927139, -0.12250592559576035, 0.02533828653395176, -0.11768448352813721, 0.0614873431622982, 0.10415042191743851, 0.007960663177073002, 0.038435839116573334, 0.18336373567581177, -0.04673207923769951, 0.012882581911981106, 0.08376779407262802, 0.01854723133146763, 0.0026918656658381224, -0.03904644027352333, -0.06491760909557343, 0.036521513015031815, 0.03426232933998108, 0.06394224613904953, -0.04868558049201965, 0.004736601375043392, 0.0040967767126858234, -0.008475039154291153, -0.0761314183473587, 0.011147082783281803, 0.009842014871537685, 0.05130956321954727, 0.04630271717905998, 0.047403983771800995, 0.005866611376404762, -0.05540059879422188, 0.2931637167930603, -0.06966686248779297, -0.06844969838857651, -0.12854275107383728, 0.21778573095798492, 0.023923873901367188, -0.025698857381939888, 0.05588128790259361, -0.08655089884996414, -0.014190280809998512, 0.1622716188430786, 0.1377304196357727, -0.08878596127033234, -0.015958502888679504, -0.0239175483584404, -0.01109298411756754, -0.01416196022182703, 0.11551601439714432, 0.07540316134691238, -0.0119058508425951, -0.07083387672901154, -0.01230524480342865, -0.02765977941453457, -0.056115735322237015, -0.06816904991865158, 0.06856173276901245, 0.028347669169306755, -0.009432111866772175, -0.06441693007946014, 0.06682045757770538, 0.0001346346689388156, -0.23259499669075012, 0.04269114136695862, -0.17346207797527313, -0.17046815156936646, -0.019375305622816086, 0.07128400355577469, 0.004258084576576948, 0.056448958814144135, 0.0009218797204084694, 0.02420460432767868, 0.11288271099328995, -0.014272745698690414, -0.0033166927751153708, -0.11569610238075256, 0.11524412035942078, -0.10248223692178726, 0.19934697449207306, -0.006908203475177288, 0.058288026601076126, 0.09638956934213638, 0.037390872836112976, -0.13777801394462585, 0.022577382624149323, 0.06287883967161179, -0.1279369741678238, -0.0037347038742154837, 0.1504690796136856, -0.030674539506435394, 0.06299509853124619, 0.026020921766757965, -0.14674945175647736, 0.0019539655186235905, 0.018081901594996452, -0.03527475893497467, -0.06964217871427536, -0.0069008637219667435, -0.05110898241400719, 0.16495679318904877, 0.2164195328950882, -0.02933463081717491, 0.0080825574696064, -0.09162671864032745, 0.012818926945328712, 0.04682813212275505, 0.05161470174789429, -0.040845468640327454, -0.2058800309896469, 0.01506477314978838, 0.07320583611726761, -0.005972175393253565, -0.19658009707927704, -0.09583037346601486, 0.04614808037877083, -0.040088869631290436, -0.04320066049695015, 0.09241282194852829, 0.02148953452706337, 0.04074576124548912, -0.013155779801309109, -0.11672773212194443, -0.021647417917847633, 0.1385541409254074, -0.17617419362068176, -0.032539937645196915 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # spanbert-base-cased-few-shot-k-64-finetuned-squad-seed-8 This model is a fine-tuned version of [SpanBERT/spanbert-base-cased](https://huggingface.co/SpanBERT/spanbert-base-cased) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 200 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
{"tags": ["generated_from_trainer"], "datasets": ["squad"], "model-index": [{"name": "spanbert-base-cased-few-shot-k-64-finetuned-squad-seed-8", "results": []}]}
question-answering
anas-awadalla/spanbert-base-cased-few-shot-k-64-finetuned-squad-seed-8
[ "transformers", "pytorch", "bert", "question-answering", "generated_from_trainer", "dataset:squad", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #bert #question-answering #generated_from_trainer #dataset-squad #endpoints_compatible #region-us
# spanbert-base-cased-few-shot-k-64-finetuned-squad-seed-8 This model is a fine-tuned version of SpanBERT/spanbert-base-cased on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 200 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
[ "# spanbert-base-cased-few-shot-k-64-finetuned-squad-seed-8\n\nThis model is a fine-tuned version of SpanBERT/spanbert-base-cased on the squad dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- training_steps: 200", "### Training results", "### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #bert #question-answering #generated_from_trainer #dataset-squad #endpoints_compatible #region-us \n", "# spanbert-base-cased-few-shot-k-64-finetuned-squad-seed-8\n\nThis model is a fine-tuned version of SpanBERT/spanbert-base-cased on the squad dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- training_steps: 200", "### Training results", "### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ 42, 56, 6, 12, 8, 3, 104, 4, 38 ]
[ "passage: TAGS\n#transformers #pytorch #bert #question-answering #generated_from_trainer #dataset-squad #endpoints_compatible #region-us \n# spanbert-base-cased-few-shot-k-64-finetuned-squad-seed-8\n\nThis model is a fine-tuned version of SpanBERT/spanbert-base-cased on the squad dataset.## Model description\n\nMore information needed## Intended uses & limitations\n\nMore information needed## Training and evaluation data\n\nMore information needed## Training procedure### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 24\n- eval_batch_size: 24\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- training_steps: 200### Training results### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ -0.09828430414199829, 0.10841035842895508, -0.002351732226088643, 0.09611917287111282, 0.12141726166009903, 0.016754688695073128, 0.09844475239515305, 0.13051797449588776, -0.10399731993675232, 0.06768608838319778, 0.08740446716547012, 0.03439464420080185, 0.043160196393728256, 0.14920392632484436, -0.006781809497624636, -0.2729329466819763, -0.0010383655317127705, 0.0005562950973398983, -0.040428679436445236, 0.1202133372426033, 0.0879170224070549, -0.11038452386856079, 0.076813243329525, 0.009662116877734661, -0.15504592657089233, 0.01999465934932232, -0.031711094081401825, -0.036174360662698746, 0.1221359595656395, -0.03664083406329155, 0.10689456760883331, 0.029632722958922386, 0.13685467839241028, -0.20718054473400116, 0.006291546393185854, 0.07659147679805756, 0.052187480032444, 0.09996909648180008, 0.04607250168919563, 0.011400271207094193, 0.08788478374481201, -0.14931271970272064, 0.09247418493032455, 0.02968958579003811, -0.09070193767547607, -0.153184711933136, -0.09140068292617798, 0.031046215444803238, 0.04996049776673317, 0.07100442051887512, 0.00325956498272717, 0.14895184338092804, -0.06281698495149612, 0.08471720665693283, 0.26218700408935547, -0.3223406672477722, -0.0669490173459053, 0.02969234809279442, 0.05641356110572815, 0.06145823746919632, -0.11930844187736511, -0.0029703250620514154, 0.01995467022061348, 0.02773340977728367, 0.12726011872291565, -0.016857611015439034, -0.10967116057872772, -0.009923674166202545, -0.12450223416090012, -0.0017262265319004655, 0.06032304838299751, 0.025773216038942337, -0.053235974162817, -0.10611815750598907, -0.06894466280937195, -0.08459898829460144, -0.022649679332971573, -0.055388160049915314, 0.05143413692712784, -0.0544426366686821, -0.09625962376594543, -0.04014580696821213, -0.057242028415203094, -0.08010131120681763, -0.00825288612395525, 0.16645826399326324, 0.03587803244590759, 0.020630016922950745, -0.029322881251573563, 0.11786764115095139, 0.018658366054296494, -0.13947485387325287, -0.00877363234758377, -0.003837631782516837, -0.09365863353013992, -0.04123410955071449, -0.05388810113072395, -0.01200917549431324, 0.004837534390389919, 0.16829811036586761, -0.08099097013473511, 0.07441195845603943, 0.013507670722901821, -0.023590700700879097, -0.012802604585886002, 0.15228933095932007, -0.039916884154081345, -0.03852321580052376, -0.01557155605405569, 0.07937747240066528, 0.00453455513343215, -0.019079608842730522, -0.06774254143238068, -0.02857852727174759, 0.0958133414387703, 0.05482696369290352, -0.06361938267946243, 0.038442742079496384, -0.029785465449094772, -0.02639657072722912, 0.018744153901934624, -0.11913847178220749, 0.041677799075841904, -0.004290567245334387, -0.08143000304698944, -0.008030216209590435, -0.001550187123939395, -0.008803172037005424, -0.01050045806914568, 0.09738708287477493, -0.0865759328007698, 0.000030605297069996595, -0.07007783651351929, -0.080417700111866, -0.0006662480300292373, -0.1560567170381546, -0.013244467787444592, -0.05947289988398552, -0.16776780784130096, -0.0331944040954113, 0.043823275715112686, -0.075621098279953, -0.012050917372107506, -0.04253442585468292, -0.060951974242925644, 0.01707754284143448, -0.0133591890335083, 0.1917768269777298, -0.05255793035030365, 0.08110345900058746, -0.005856906995177269, 0.050431374460458755, 0.025045890361070633, 0.03614131361246109, -0.10280460864305496, 0.027963686734437943, -0.13994769752025604, 0.07747790962457657, -0.08517186343669891, -0.005032880697399378, -0.13587446510791779, -0.10224130749702454, 0.015670007094740868, -0.020276488736271858, 0.09432082623243332, 0.13302212953567505, -0.19823475182056427, -0.01841038651764393, 0.12443044036626816, -0.0762171521782875, -0.05117601901292801, 0.0610857829451561, -0.06178754195570946, 0.04065893590450287, 0.0513019785284996, 0.2129088193178177, 0.05628785118460655, -0.15582585334777832, -0.010363646782934666, 0.007240366656333208, 0.04597732052206993, 0.02469959855079651, 0.03780665621161461, 0.004389192909002304, 0.05771278217434883, 0.016480213031172752, -0.08990197628736496, -0.024491365998983383, -0.09002158045768738, -0.06643863022327423, -0.0510205514729023, -0.07546044886112213, 0.054580312222242355, 0.008734210394322872, 0.04172825813293457, -0.0650351494550705, -0.10333267599344254, 0.11490166932344437, 0.09561257064342499, -0.0515662282705307, 0.037775956094264984, -0.08031714707612991, 0.013285871595144272, -0.00532962242141366, -0.03563370555639267, -0.21138866245746613, -0.11572366952896118, 0.05169852450489998, -0.043330561369657516, 0.02520778961479664, 0.0036423103883862495, 0.0836176723241806, 0.056554894894361496, -0.05097232013940811, -0.014899620786309242, -0.09626756608486176, 0.0011722816852852702, -0.11517778784036636, -0.18940727412700653, -0.08583047240972519, -0.04279247298836708, 0.09309540688991547, -0.16834545135498047, -0.0049539972096681595, 0.021251613274216652, 0.13741351664066315, 0.026913123205304146, -0.06718098372220993, 0.00151330407243222, 0.04713863879442215, 0.013307503424584866, -0.09702989459037781, 0.05550611764192581, 0.012897665612399578, -0.10389342904090881, -0.04938644543290138, -0.13205640017986298, -0.016464248299598694, 0.053290415555238724, 0.060325197875499725, -0.10346515476703644, -0.060770027339458466, -0.07233819365501404, -0.03797828033566475, -0.07696357369422913, 0.02230307087302208, 0.2133350670337677, 0.03833233565092087, 0.11397142708301544, -0.06499205529689789, -0.08385670930147171, -0.007402643095701933, 0.026765016838908195, 0.02325575239956379, 0.0843387022614479, 0.0233466736972332, -0.03792194277048111, 0.06800660490989685, 0.10179460793733597, -0.027789097279310226, 0.13250192999839783, -0.05566883459687233, -0.0805373266339302, -0.030884958803653717, -0.02118055708706379, -0.02555488422513008, 0.12912443280220032, -0.0291574839502573, -0.0002494690124876797, 0.034749314188957214, 0.03736772760748863, 0.011515042744576931, -0.1691274642944336, 0.002854169812053442, 0.027728481218218803, -0.05487940087914467, -0.03968791663646698, -0.006666919682174921, 0.02062036283314228, 0.08800844103097916, 0.02947733923792839, -0.008255133405327797, 0.009423783980309963, -0.01053114328533411, -0.05804218351840973, 0.18761637806892395, -0.0961475819349289, -0.08046934008598328, -0.07294828444719315, 0.020643703639507294, -0.051125459372997284, -0.03881176933646202, 0.008385399356484413, -0.0922774001955986, -0.029604393988847733, -0.0880034863948822, -0.028563346713781357, -0.019546927884221077, 0.019769733771681786, 0.024975381791591644, -0.017250292003154755, 0.08587636798620224, -0.13815489411354065, 0.005426865536719561, -0.04871071130037308, -0.09504835307598114, 0.009675012901425362, 0.07605395466089249, 0.0922311320900917, 0.0810953676700592, -0.01979556865990162, 0.027864588424563408, -0.03853999450802803, 0.23184648156166077, -0.0525873564183712, 0.012765951454639435, 0.11526253074407578, -0.01111164502799511, 0.05508079007267952, 0.09161880612373352, 0.03844209015369415, -0.09107261151075363, 0.02353859134018421, 0.07653538882732391, -0.038354791700839996, -0.22553132474422455, -0.018589546903967857, -0.0010820399038493633, -0.07753899693489075, 0.10757429152727127, 0.032124318182468414, -0.04973535239696503, 0.0448228120803833, 0.02335026115179062, -0.00724813062697649, -0.0472353957593441, 0.07449445873498917, 0.07202918827533722, 0.05151434242725372, 0.10676993429660797, -0.0048909434117376804, -0.02644968591630459, 0.055617984384298325, 0.01707085408270359, 0.2529353201389313, -0.0442495159804821, 0.1017046719789505, 0.030643058940768242, 0.15471912920475006, -0.02006690390408039, 0.06769653409719467, 0.0002855632919818163, -0.010219087824225426, -0.011161848902702332, -0.06583477556705475, -0.02572384662926197, 0.017954658716917038, -0.04812829941511154, 0.024313772097229958, -0.07622917741537094, 0.025013402104377747, 0.0259782113134861, 0.2921144664287567, 0.027834508568048477, -0.2608294188976288, -0.07334993779659271, -0.016402162611484528, -0.04505472630262375, -0.061960138380527496, 0.007019816432148218, 0.13487687706947327, -0.13843917846679688, 0.05319537594914436, -0.07819470018148422, 0.08862658590078354, -0.045271504670381546, 0.012549792416393757, 0.04628291726112366, 0.151418998837471, -0.01777486316859722, 0.05267045646905899, -0.19907492399215698, 0.25058451294898987, 0.021263444796204567, 0.10706401616334915, -0.06517742574214935, 0.011769939213991165, 0.019567295908927917, 0.012025394476950169, 0.1110101267695427, 0.0034379353746771812, -0.06490780413150787, -0.14765772223472595, -0.09098272770643234, 0.045880917459726334, 0.14045944809913635, -0.03771696239709854, 0.08925977349281311, -0.028666289523243904, 0.011446681804955006, 0.03040451928973198, -0.04122775048017502, -0.15217307209968567, -0.07834047824144363, 0.00023873911413829774, 0.015532289631664753, -0.0067454744130373, -0.06100030988454819, -0.10516443848609924, -0.01871737465262413, 0.1124952882528305, 0.00014084384019952267, -0.05808103084564209, -0.15453651547431946, 0.08473041653633118, 0.1410956233739853, -0.054351046681404114, 0.011789528653025627, 0.017042890191078186, 0.11473080515861511, 0.029594730585813522, -0.08030666410923004, 0.06505001336336136, -0.05738508701324463, -0.18043698370456696, -0.055778197944164276, 0.12114258855581284, 0.08167380839586258, 0.04959728568792343, -0.00026878868811763823, 0.05382303521037102, 0.0019365883199498057, -0.09520303457975388, 0.03942514955997467, 0.0019450954860076308, 0.04291410744190216, 0.017943089827895164, -0.08502141386270523, 0.09583113342523575, -0.036685045808553696, 0.010150542482733727, 0.1289702206850052, 0.2116280198097229, -0.10752428323030472, 0.1137981191277504, 0.08661101013422012, -0.07377360761165619, -0.16583366692066193, 0.0611281618475914, 0.13075114786624908, 0.008822551928460598, 0.08554256707429886, -0.2131592035293579, 0.12444280833005905, 0.10376270115375519, -0.012586156837642193, 0.007359504699707031, -0.2749796211719513, -0.1309305876493454, 0.059261664748191833, 0.11199534684419632, 0.044058118015527725, -0.1151835098862648, -0.03324471414089203, -0.007185773458331823, -0.0997919887304306, 0.11365395039319992, -0.07325796782970428, 0.11428235471248627, -0.020374804735183716, 0.1162644550204277, 0.025647949427366257, -0.03431636095046997, 0.10830026865005493, 0.06247171759605408, 0.08767640590667725, -0.036776576191186905, 0.009006732143461704, 0.06063035875558853, -0.0591939352452755, 0.028139228001236916, -0.042759090662002563, 0.06757295876741409, -0.1490938514471054, 0.005968168377876282, -0.08655378222465515, 0.05443302541971207, -0.04568518325686455, -0.07220885157585144, -0.016534211114048958, 0.05203410983085632, 0.06883103400468826, -0.041458502411842346, 0.02944866009056568, -0.0008296617888845503, 0.09887432307004929, 0.10697872191667557, 0.08007731288671494, -0.027124058455228806, -0.08704374730587006, 0.01315640565007925, 0.0031304776202887297, 0.055555377155542374, -0.09554024785757065, 0.013863716274499893, 0.14154022932052612, 0.06525864452123642, 0.09567548334598541, 0.04569695517420769, -0.04208783805370331, 0.005031772423535585, 0.013649989850819111, -0.13233838975429535, -0.1039593517780304, 0.024785717949271202, -0.0414733961224556, -0.15103429555892944, 0.02717968076467514, 0.12030453234910965, -0.04085931181907654, -0.020689455792307854, -0.005536484997719526, 0.0028195464983582497, -0.012040994130074978, 0.18442845344543457, 0.04489691182971001, 0.06307321786880493, -0.09080052375793457, 0.11030558496713638, 0.03434896096587181, -0.04900038242340088, 0.05416366457939148, 0.06671885401010513, -0.10458045452833176, 0.010125440545380116, 0.08188635855913162, 0.13241109251976013, -0.055600665509700775, -0.012388939969241619, -0.09625215828418732, -0.08294300734996796, 0.04097997397184372, 0.13468606770038605, 0.0562070831656456, -0.002808312186971307, -0.06532072275876999, 0.035335127264261246, -0.11982175707817078, 0.0682583823800087, 0.04741012305021286, 0.07659752666950226, -0.10087043046951294, 0.13359355926513672, -0.0016360072186216712, 0.026847073808312416, -0.027219869196414948, 0.013603096827864647, -0.09903702884912491, -0.02431718073785305, -0.10723591595888138, -0.023285899311304092, -0.01095852442085743, -0.0008515712106600404, -0.02279934659600258, -0.06917057186365128, -0.028741834685206413, 0.039718419313430786, -0.07838386297225952, -0.04796460270881653, 0.01711852289736271, 0.035612259060144424, -0.15329013764858246, 0.0026266940403729677, 0.024756431579589844, -0.0893077403306961, 0.0900755524635315, 0.06215127930045128, 0.012007658369839191, 0.024469954892992973, -0.11888349056243896, -0.030763613060116768, -0.009261266328394413, 0.005235457327216864, 0.06858404725790024, -0.09280727803707123, -0.027576392516493797, -0.03513962775468826, 0.04141608253121376, 0.019369447603821754, 0.1043037697672844, -0.12037117034196854, -0.004157292656600475, -0.038137152791023254, -0.03957687318325043, -0.06551678478717804, 0.036642368882894516, 0.10662158578634262, 0.052950240671634674, 0.151315838098526, -0.0767727643251419, 0.05446501076221466, -0.1994047313928604, -0.03822407126426697, 0.012191234156489372, -0.04682037606835365, -0.08157768845558167, -0.04783445969223976, 0.08797347545623779, -0.04675787687301636, 0.11529158055782318, -0.012791311368346214, 0.10215268284082413, 0.04333064705133438, -0.010968739166855812, -0.06413295120000839, -0.007197785656899214, 0.18332761526107788, 0.05334113538265228, -0.01738101802766323, 0.12682890892028809, 0.004322560504078865, 0.02999279648065567, 0.08642961829900742, 0.21776100993156433, 0.1540316641330719, -0.00048689061077311635, 0.06254785507917404, 0.060619648545980453, -0.06854818761348724, -0.1493275910615921, 0.12098375707864761, -0.018951179459691048, 0.10636457055807114, -0.0662522092461586, 0.18942497670650482, 0.037817683070898056, -0.1796664297580719, 0.06411474198102951, -0.024381259456276894, -0.10921035706996918, -0.11856599152088165, -0.02540953829884529, -0.07150031626224518, -0.12262171506881714, 0.024867383763194084, -0.1171097382903099, 0.06102396547794342, 0.10450723022222519, 0.007471360731869936, 0.03824860230088234, 0.18270693719387054, -0.04675915092229843, 0.013275792822241783, 0.08338561654090881, 0.01837637461721897, 0.0030452904757112265, -0.04023201763629913, -0.06580568104982376, 0.036464061588048935, 0.0343472994863987, 0.06451047956943512, -0.04876529425382614, 0.0067152478732168674, 0.004524510819464922, -0.008151200599968433, -0.07661917060613632, 0.011082977056503296, 0.00917788501828909, 0.0510258674621582, 0.045024048537015915, 0.047664251178503036, 0.005997122265398502, -0.05560895428061485, 0.2914558947086334, -0.06896056979894638, -0.06914307922124863, -0.12843672931194305, 0.21670666337013245, 0.02436533011496067, -0.025417398661375046, 0.05585230514407158, -0.08649427443742752, -0.013496289029717445, 0.1625296175479889, 0.13705874979496002, -0.08952663838863373, -0.015938755124807358, -0.023566873744130135, -0.011225437745451927, -0.015279085375368595, 0.11613790690898895, 0.07560092210769653, -0.013073093257844448, -0.07001796364784241, -0.012506418861448765, -0.027834253385663033, -0.05610887333750725, -0.06948506832122803, 0.06776240468025208, 0.02855149284005165, -0.008686299435794353, -0.06396348029375076, 0.06625358760356903, 0.0010501667857170105, -0.23313027620315552, 0.04297913610935211, -0.1737307757139206, -0.17031879723072052, -0.019202323630452156, 0.0715717002749443, 0.004459436517208815, 0.056021105498075485, 0.0010102103697136045, 0.02463231422007084, 0.11367674171924591, -0.014547574333846569, -0.003793677082285285, -0.11444143950939178, 0.11453922837972641, -0.10121726244688034, 0.1990378051996231, -0.006873325444757938, 0.05902962014079094, 0.09636402875185013, 0.03779313713312149, -0.13692373037338257, 0.0229229424148798, 0.06255415081977844, -0.12689101696014404, -0.0040198685601353645, 0.14884035289287567, -0.030675075948238373, 0.0628877580165863, 0.026497410610318184, -0.14650245010852814, 0.0011825242545455694, 0.016937725245952606, -0.03527334704995155, -0.06925068795681, -0.008499392308294773, -0.05048159882426262, 0.16499759256839752, 0.21552015841007233, -0.02908594161272049, 0.007433941122144461, -0.09170860052108765, 0.012647365219891071, 0.047404300421476364, 0.051468029618263245, -0.04107625037431717, -0.20562857389450073, 0.015571820549666882, 0.07305392622947693, -0.00576857291162014, -0.19624847173690796, -0.09639862924814224, 0.046031445264816284, -0.040569864213466644, -0.04290955513715744, 0.0924375131726265, 0.02160651609301567, 0.0410766527056694, -0.013287484645843506, -0.11693703383207321, -0.02217494510114193, 0.13854853808879852, -0.17615969479084015, -0.03279801458120346 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-squad This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 1.18.4 - Tokenizers 0.11.6
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["squad"], "model-index": [{"name": "distilbert-base-uncased-finetuned-squad", "results": []}]}
question-answering
anasaqsme/distilbert-base-uncased-finetuned-squad
[ "transformers", "pytorch", "tensorboard", "distilbert", "question-answering", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #distilbert #question-answering #generated_from_trainer #dataset-squad #license-apache-2.0 #endpoints_compatible #region-us
# distilbert-base-uncased-finetuned-squad This model is a fine-tuned version of distilbert-base-uncased on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 1.18.4 - Tokenizers 0.11.6
[ "# distilbert-base-uncased-finetuned-squad\n\nThis model is a fine-tuned version of distilbert-base-uncased on the squad dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 2e-05\n- train_batch_size: 16\n- eval_batch_size: 16\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 3", "### Framework versions\n\n- Transformers 4.17.0\n- Pytorch 1.10.0+cu111\n- Datasets 1.18.4\n- Tokenizers 0.11.6" ]
[ "TAGS\n#transformers #pytorch #tensorboard #distilbert #question-answering #generated_from_trainer #dataset-squad #license-apache-2.0 #endpoints_compatible #region-us \n", "# distilbert-base-uncased-finetuned-squad\n\nThis model is a fine-tuned version of distilbert-base-uncased on the squad dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 2e-05\n- train_batch_size: 16\n- eval_batch_size: 16\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 3", "### Framework versions\n\n- Transformers 4.17.0\n- Pytorch 1.10.0+cu111\n- Datasets 1.18.4\n- Tokenizers 0.11.6" ]
[ 56, 43, 6, 12, 8, 3, 90, 33 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #question-answering #generated_from_trainer #dataset-squad #license-apache-2.0 #endpoints_compatible #region-us \n# distilbert-base-uncased-finetuned-squad\n\nThis model is a fine-tuned version of distilbert-base-uncased on the squad dataset.## Model description\n\nMore information needed## Intended uses & limitations\n\nMore information needed## Training and evaluation data\n\nMore information needed## Training procedure### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 2e-05\n- train_batch_size: 16\n- eval_batch_size: 16\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 3### Framework versions\n\n- Transformers 4.17.0\n- Pytorch 1.10.0+cu111\n- Datasets 1.18.4\n- Tokenizers 0.11.6" ]
[ -0.07956094294786453, 0.07565832138061523, -0.002049687784165144, 0.07811261713504791, 0.16935135424137115, 0.032394446432590485, 0.14314541220664978, 0.08737340569496155, -0.10581380128860474, 0.04573038965463638, 0.07196767628192902, 0.09371573477983475, 0.01692243292927742, 0.08578015118837357, -0.03747858107089996, -0.24850711226463318, 0.011834061704576015, 0.03176911175251007, -0.11484844982624054, 0.09492959827184677, 0.10360485315322876, -0.11621373891830444, 0.06629014015197754, 0.02048727311193943, -0.1928252875804901, 0.03707636520266533, -0.02163739688694477, -0.043038442730903625, 0.10310681909322739, 0.020365022122859955, 0.12509068846702576, 0.003539963159710169, 0.12612715363502502, -0.19616658985614777, 0.00255411583930254, 0.08264464884996414, 0.03270382434129715, 0.07171010226011276, 0.015415409579873085, 0.026649869978427887, 0.09531762450933456, -0.10755489766597748, 0.09261782467365265, 0.02356511913239956, -0.07250165939331055, -0.183389350771904, -0.09016814827919006, 0.058151815086603165, 0.08317108452320099, 0.1023942157626152, 0.009326936677098274, 0.13870905339717865, -0.08597627282142639, 0.07354284077882767, 0.20646236836910248, -0.28165480494499207, -0.08921345323324203, 0.0652402713894844, 0.04822944849729538, 0.05311136320233345, -0.08691255003213882, -0.022983526811003685, 0.05260440707206726, 0.05732424557209015, 0.10179895162582397, -0.03488140553236008, -0.09065038710832596, -0.012079432606697083, -0.14564856886863708, 0.00900491327047348, 0.18703657388687134, 0.031932130455970764, -0.04600522667169571, -0.05707505717873573, -0.07784099131822586, -0.05787324905395508, -0.017953356727957726, -0.07794030010700226, 0.0486963726580143, -0.039259541779756546, -0.07727315276861191, -0.06626596301794052, -0.08072756975889206, -0.055241841822862625, -0.025379156693816185, 0.13243871927261353, 0.046995777636766434, 0.024062978103756905, -0.056967463344335556, 0.08816520124673843, -0.02672540210187435, -0.11504462361335754, 0.003176153404638171, -0.013731158338487148, -0.03960571065545082, -0.0555729940533638, -0.06852967292070389, -0.020587457343935966, 0.008776555769145489, 0.2050991803407669, -0.08029735088348389, 0.05857892334461212, 0.038009997457265854, 0.008673373609781265, -0.02490781992673874, 0.13470374047756195, -0.0533900149166584, -0.04024988040328026, -0.00024869447224773467, 0.07091563940048218, 0.013015702366828918, -0.004331254865974188, -0.09481498599052429, -0.0027989959344267845, 0.06995806843042374, 0.019194968044757843, -0.05295779928565025, 0.04038017988204956, -0.009062616154551506, -0.04876897856593132, -0.0025663478299975395, -0.10936777293682098, 0.03530150651931763, -0.02508505992591381, -0.07246560603380203, 0.03623360022902489, 0.015341617166996002, 0.015200859867036343, -0.01781221106648445, 0.10776376724243164, -0.10081794112920761, 0.012860726565122604, -0.10818419605493546, -0.08726257085800171, 0.003969072364270687, -0.09243640303611755, 0.009645971469581127, -0.08149947226047516, -0.19083747267723083, -0.027719199657440186, 0.0700116902589798, -0.03381514921784401, -0.029172493144869804, -0.02308962121605873, -0.0654992014169693, 0.00816608127206564, -0.014125747606158257, 0.09512817859649658, -0.04049016162753105, 0.061216868460178375, 0.030688609927892685, 0.034434251487255096, -0.04609283432364464, 0.04209193214774132, -0.09857737272977829, 0.022002577781677246, -0.15828649699687958, 0.04698118194937706, -0.08286799490451813, 0.036495476961135864, -0.08852030336856842, -0.1173890084028244, -0.010027342475950718, -0.0031807466875761747, 0.06799418479204178, 0.0803903192281723, -0.1786995828151703, -0.04073544591665268, 0.12245186418294907, -0.08084967732429504, -0.09100216627120972, 0.0939997062087059, -0.051568109542131424, 0.05757220461964607, 0.05529472976922989, 0.12807010114192963, 0.09085242450237274, -0.12390775978565216, -0.03537836670875549, 0.0005600904696621001, 0.06196843832731247, -0.0003048342186957598, 0.04250892251729965, -0.0002162072923965752, 0.042402446269989014, 0.015209812670946121, -0.07327049225568771, -0.013706491328775883, -0.09193601459264755, -0.08042968809604645, -0.0611594021320343, -0.08665037900209427, 0.03925296664237976, 0.04107310622930527, 0.0548122301697731, -0.0709192082285881, -0.09459205716848373, 0.17812125384807587, 0.11019866913557053, -0.06684749573469162, 0.021311931312084198, -0.07372191548347473, 0.04062234237790108, -0.025141308084130287, -0.021087484434247017, -0.21089260280132294, -0.11125530302524567, 0.017408806830644608, -0.02067943848669529, 0.05138205736875534, 0.050521861761808395, 0.05513014271855354, 0.06105688959360123, -0.04850892350077629, 0.003960004076361656, -0.09633664041757584, -0.0037187044508755207, -0.09968142956495285, -0.1763273924589157, -0.06528225541114807, -0.022475039586424828, 0.14061109721660614, -0.20516017079353333, 0.032996486872434616, -0.04715000092983246, 0.13158242404460907, 0.006387566216289997, -0.030132390558719635, -0.06176244094967842, 0.07032568007707596, -0.025614749640226364, -0.08241084218025208, 0.051627565175294876, 0.01469460129737854, -0.05588926002383232, -0.12863898277282715, -0.12593398988246918, 0.07171987742185593, 0.10278143733739853, -0.03272605314850807, -0.06837180256843567, -0.0010575182968750596, -0.06612422317266464, -0.040373794734478, -0.06392206251621246, -0.0014975892845541239, 0.16398616135120392, -0.01558323297649622, 0.12044289708137512, -0.0643109679222107, -0.047054801136255264, 0.0022425863426178694, -0.01814493164420128, 0.0001849926629802212, 0.03976568207144737, 0.12213492393493652, -0.08628235012292862, 0.10842252522706985, 0.13025417923927307, -0.09236040711402893, 0.13748422265052795, -0.03588304668664932, -0.06718143820762634, -0.023913031443953514, -0.025437375530600548, -0.023760678246617317, 0.1134243980050087, -0.1246948093175888, 0.007847211323678493, 0.024923069402575493, 0.02389387972652912, 0.05283832177519798, -0.180781751871109, 0.004530312959104776, 0.016374532133340836, -0.0171793382614851, -0.015057643875479698, -0.019912956282496452, 0.021440444514155388, 0.07809212803840637, 0.018417872488498688, -0.025115948170423508, 0.032843027263879776, 0.010806383565068245, -0.06988078355789185, 0.19263841211795807, -0.125325009226799, -0.1292896270751953, -0.11205054819583893, 0.004096580669283867, -0.08006005734205246, -0.014626994729042053, 0.03789946809411049, -0.08676093071699142, -0.05512140691280365, -0.052584875375032425, 0.0172105859965086, -0.021916091442108154, -0.005804636050015688, 0.08146274089813232, 0.0025111616123467684, 0.0842180848121643, -0.140372171998024, 0.0015804078429937363, -0.03458132967352867, -0.10445541888475418, -0.001092261984013021, 0.059484176337718964, 0.1014636978507042, 0.12418471276760101, -0.01785559579730034, 0.010651341639459133, -0.017762988805770874, 0.26838064193725586, -0.056626174598932266, -0.010379955172538757, 0.15153396129608154, 0.017648138105869293, 0.047958746552467346, 0.09735226631164551, 0.06118107587099075, -0.1050882637500763, 0.02851833589375019, 0.09251904487609863, -0.030694054439663887, -0.2220306545495987, -0.04388050362467766, -0.033719275146722794, -0.08144818246364594, 0.09040733426809311, 0.03176137059926987, 0.04078537970781326, 0.07353884726762772, -0.0023824211675673723, 0.08951966464519501, -0.035644304007291794, 0.08549191802740097, 0.1441689133644104, 0.04063209146261215, 0.12157517671585083, -0.02637030929327011, -0.044875338673591614, 0.05683290213346481, -0.004751648288220167, 0.27990686893463135, 0.011259329505264759, 0.054844919592142105, 0.07187086343765259, 0.14140279591083527, -0.031055008992552757, 0.06501343101263046, -0.004665217828005552, -0.025920655578374863, -0.000953818904235959, -0.05122408643364906, -0.021157333627343178, 0.013953625224530697, -0.05344333127140999, 0.05534355342388153, -0.07957776635885239, 0.061012450605630875, 0.045346345752477646, 0.27630284428596497, 0.008856742642819881, -0.2858753502368927, -0.09682097285985947, 0.00196057022549212, -0.02091345191001892, -0.04919067770242691, 0.023992912843823433, 0.10227543860673904, -0.10598651319742203, 0.051842231303453445, -0.06871019303798676, 0.09332368522882462, 0.006216808222234249, 0.028113115578889847, 0.0962923988699913, 0.1508220136165619, 0.015777571126818657, 0.07082033902406693, -0.23744715750217438, 0.1893463283777237, 0.019983744248747826, 0.12643694877624512, -0.05632011964917183, 0.030368460342288017, 0.014925088733434677, 0.08808916807174683, 0.0626353770494461, -0.003512768307700753, -0.01995234377682209, -0.13961376249790192, -0.0290103517472744, 0.04295087605714798, 0.12623140215873718, -0.016439009457826614, 0.10050556063652039, -0.04740498214960098, 0.022082580253481865, 0.060869526118040085, -0.03576861321926117, -0.17706066370010376, -0.1319575011730194, 0.011151047423481941, 0.01988043636083603, -0.06920737028121948, -0.07285120338201523, -0.10131803154945374, -0.057112812995910645, 0.17253421247005463, -0.013488934375345707, -0.03936292231082916, -0.12531721591949463, 0.09253479540348053, 0.11991818994283676, -0.05555281043052673, 0.03494876250624657, 0.016099072992801666, 0.09790413081645966, 0.028576165437698364, -0.10939028859138489, 0.05407090485095978, -0.0917186513543129, -0.1504073292016983, -0.03732040151953697, 0.09254332631826401, 0.05450546741485596, 0.03258951008319855, -0.0006003400776535273, 0.022444287315011024, 0.0022740012500435114, -0.10263857990503311, -0.014631528407335281, 0.04292833060026169, 0.08338098973035812, 0.0457388311624527, -0.0934009850025177, 0.031169624999165535, -0.03338741883635521, 0.008412003517150879, 0.11330509185791016, 0.18069277703762054, -0.08598203957080841, 0.013531491160392761, 0.07935323566198349, -0.08311626315116882, -0.16984044015407562, 0.0706067755818367, 0.10029692947864532, -0.010671177878975868, 0.044510725885629654, -0.21489326655864716, 0.17386938631534576, 0.14657725393772125, -0.011038161814212799, 0.0733911544084549, -0.31237339973449707, -0.13108336925506592, 0.08585958182811737, 0.10827143490314484, 0.06835848838090897, -0.15050986409187317, -0.0250973142683506, -0.04676723852753639, -0.17928387224674225, 0.1447104960680008, -0.14802095293998718, 0.1027131900191307, -0.0033694917801767588, 0.09045290946960449, 0.0026545843575149775, -0.040860746055841446, 0.1343722641468048, 0.050634562969207764, 0.10248341411352158, -0.05046067759394646, 0.005110458470880985, 0.11099252849817276, -0.04578722268342972, 0.03987046703696251, -0.010205895639955997, 0.05695676803588867, -0.08621431142091751, -0.024380063638091087, -0.07192382961511612, 0.05964980646967888, -0.05733572691679001, -0.07235337048768997, -0.05429820716381073, 0.03937402740120888, 0.03640658035874367, -0.029927335679531097, 0.10343281924724579, 0.038253333419561386, 0.12935477495193481, 0.08079414814710617, 0.09448327869176865, -0.0768168494105339, -0.10014388710260391, -0.004446136765182018, -0.012185723520815372, 0.07673649489879608, -0.09716399013996124, 0.028523370623588562, 0.13573622703552246, 0.04558201879262924, 0.1306448131799698, 0.06801604479551315, -0.033025987446308136, 0.0087288161739707, 0.043885402381420135, -0.12629105150699615, -0.1718844473361969, 0.0036807137075811625, -0.057848114520311356, -0.12420225143432617, 0.0775413066148758, 0.11840477585792542, -0.04913102462887764, -0.007574379909783602, -0.00945531390607357, -0.002239964436739683, -0.04397078976035118, 0.1895928829908371, 0.038165267556905746, 0.04801735281944275, -0.09172486513853073, 0.11369717121124268, 0.054808542132377625, -0.0656997412443161, 0.02756466157734394, 0.054838377982378006, -0.08532784879207611, -0.020621825009584427, 0.040085263550281525, 0.1358214020729065, -0.09745071828365326, -0.045896656811237335, -0.11293164640665054, -0.09584376960992813, 0.04270830750465393, 0.12625613808631897, 0.0739825889468193, -0.02866196632385254, -0.05850578844547272, 0.058105796575546265, -0.14290963113307953, 0.06719226390123367, 0.026658710092306137, 0.08583974838256836, -0.15814585983753204, 0.11064516007900238, 0.02134859934449196, 0.03598076105117798, -0.022234158590435982, 0.0184892900288105, -0.10009028762578964, -0.021742697805166245, -0.1514139175415039, -0.04524412378668785, -0.04345840960741043, 0.001135434489697218, 0.000477567664347589, -0.039099518209695816, -0.07258333265781403, 0.05053583160042763, -0.07107238471508026, -0.04360709711909294, 0.032651979476213455, 0.03268321603536606, -0.1464887261390686, 0.01528663095086813, 0.016552863642573357, -0.086356982588768, 0.06604548543691635, 0.07127850502729416, 0.024165110662579536, 0.04873039200901985, -0.11129912734031677, -0.03268137574195862, 0.03983763977885246, 0.04239555075764656, 0.08623156696557999, -0.06398377567529678, -0.021201424300670624, -0.0021014453377574682, 0.08765926957130432, 0.011669673025608063, 0.06331561505794525, -0.12254253774881363, -0.008729908615350723, -0.0554252490401268, -0.05653060972690582, -0.06401528418064117, 0.01959007978439331, 0.1216728612780571, 0.04850788414478302, 0.19846108555793762, -0.07603351771831512, 0.023544836789369583, -0.1929795891046524, -0.0257957112044096, 0.0005485390429385006, -0.04345777630805969, -0.03399834781885147, -0.03614586219191551, 0.05647612735629082, -0.05775698274374008, 0.13618874549865723, -0.0246012844145298, 0.09889882057905197, 0.03674127906560898, -0.03120577521622181, -0.03877990320324898, -0.001859559677541256, 0.20035450160503387, 0.06005493178963661, -0.012615453451871872, 0.048834383487701416, 0.02711118571460247, 0.07388827204704285, 0.06861784309148788, 0.21522939205169678, 0.1422039121389389, -0.058321405202150345, 0.0666990876197815, 0.07228773832321167, -0.0849510058760643, -0.1544213742017746, 0.08794435113668442, -0.015965072438120842, 0.10606437176465988, -0.04151974245905876, 0.1588960886001587, 0.10891617089509964, -0.16167345643043518, 0.04678675904870033, -0.06797464191913605, -0.10411202162504196, -0.12084983289241791, -0.024175597354769707, -0.07339373975992203, -0.14868921041488647, 0.016840990632772446, -0.14801865816116333, 0.0215312447398901, 0.10869129747152328, 0.009243017062544823, -0.0030858267564326525, 0.1745208203792572, -0.04687343165278435, 0.014630230143666267, 0.028684906661510468, 0.0010542634408921003, -0.022382792085409164, -0.06729723513126373, -0.05933135747909546, 0.01745006814599037, 0.006238109897822142, 0.07611311972141266, -0.055910930037498474, -0.02514897845685482, 0.023064037784934044, -0.013938791118562222, -0.047298163175582886, 0.014912854880094528, 0.02972758747637272, 0.025458266958594322, 0.03827293962240219, 0.020247312262654305, -0.008391499519348145, -0.037684522569179535, 0.25159063935279846, -0.0844125747680664, -0.11556795984506607, -0.14820189774036407, 0.1991211473941803, 0.042088426649570465, -0.005539631005376577, 0.057607490569353104, -0.0968957245349884, -0.02472645975649357, 0.18389849364757538, 0.16675332188606262, -0.07578101754188538, -0.025335801765322685, 0.006913683842867613, -0.015168150886893272, -0.08131328225135803, 0.11903678625822067, 0.1325710415840149, 0.07487353682518005, -0.04703247547149658, -0.03996971994638443, -0.029744386672973633, -0.019302185624837875, -0.09441645443439484, 0.04134739935398102, 0.033679451793432236, 0.006548155564814806, -0.021575376391410828, 0.059905242174863815, -0.0019254429498687387, -0.15872061252593994, 0.05305268242955208, -0.1342078000307083, -0.16335709393024445, -0.022660672664642334, 0.08225154876708984, -0.04291442781686783, 0.06476952880620956, -0.024377895519137383, -0.025370262563228607, 0.14018692076206207, -0.02212369069457054, -0.05251980200409889, -0.1016155257821083, 0.11418446898460388, -0.07834528386592865, 0.20798781514167786, -0.021218402311205864, 0.08121469616889954, 0.11962294578552246, 0.043854422867298126, -0.09995348751544952, 0.0402316115796566, 0.05978715047240257, -0.07924099266529083, 0.011632664129137993, 0.10196766257286072, -0.042517680674791336, 0.08677350729703903, 0.04047604650259018, -0.1636388748884201, -0.00889796856790781, 0.015339503064751625, -0.034546349197626114, -0.07517961412668228, -0.007840554229915142, -0.09118738025426865, 0.13599300384521484, 0.20957212150096893, -0.026845276355743408, 0.006591746583580971, -0.07262121140956879, 0.0468372143805027, 0.06370067596435547, 0.09939389675855637, -0.05498907342553139, -0.23638056218624115, 0.03024020418524742, 0.011545768938958645, -0.0111926244571805, -0.2157316505908966, -0.08785829693078995, 0.05472338944673538, -0.05112982541322708, -0.050989001989364624, 0.0818411335349083, 0.07571344077587128, 0.051135316491127014, -0.0497271753847599, -0.11693914979696274, -0.09123611450195312, 0.15344414114952087, -0.15844281017780304, -0.06194758415222168 ]
null
null
transformers
# XLM-RoBERTa large for QA on Vietnamese languages (also support various languages) ## Overview - Language model: xlm-roberta-large - Fine-tune: [deepset/xlm-roberta-large-squad2](https://huggingface.co/deepset/xlm-roberta-large-squad2) - Language: Vietnamese - Downstream-task: Extractive QA - Dataset: [mailong25/bert-vietnamese-question-answering](https://github.com/mailong25/bert-vietnamese-question-answering/tree/master/dataset) - Training data: train-v2.0.json (SQuAD 2.0 format) - Eval data: dev-v2.0.json (SQuAD 2.0 format) - Infrastructure: 1x Tesla P100 (Google Colab) ## Performance Evaluated on dev-v2.0.json ``` exact: 136 / 141 f1: 0.9692671394799054 ``` Evaluated on Vietnamese XQuAD: [xquad.vi.json](https://github.com/deepmind/xquad/blob/master/xquad.vi.json) ``` exact: 604 / 1190 f1: 0.7224454217571596 ``` ## Author An Pham (ancs21.ps [at] gmail.com) ## License MIT
{"language": "vi", "license": "mit", "tags": ["vi", "xlm-roberta"], "metrics": ["f1", "em"], "widget": [{"text": "To\u00e0 nh\u00e0 n\u00e0o cao nh\u1ea5t Vi\u1ec7t Nam?", "context": "Landmark 81 l\u00e0 m\u1ed9t to\u00e0 nh\u00e0 ch\u1ecdc tr\u1eddi trong t\u1ed5 h\u1ee3p d\u1ef1 \u00e1n Vinhomes T\u00e2n C\u1ea3ng, m\u1ed9t d\u1ef1 \u00e1n c\u00f3 t\u1ed5ng m\u1ee9c \u0111\u1ea7u t\u01b0 40.000 t\u1ef7 \u0111\u1ed3ng, do C\u00f4ng ty C\u1ed5 ph\u1ea7n \u0110\u1ea7u t\u01b0 x\u00e2y d\u1ef1ng T\u00e2n Li\u00ean Ph\u00e1t thu\u1ed9c Vingroup l\u00e0m ch\u1ee7 \u0111\u1ea7u t\u01b0. To\u00e0 th\u00e1p cao 81 t\u1ea7ng, hi\u1ec7n t\u1ea1i l\u00e0 to\u00e0 nh\u00e0 cao nh\u1ea5t Vi\u1ec7t Nam v\u00e0 l\u00e0 to\u00e0 nh\u00e0 cao nh\u1ea5t \u0110\u00f4ng Nam \u00c1 t\u1eeb th\u00e1ng 3 n\u0103m 2018."}]}
question-answering
ancs21/xlm-roberta-large-vi-qa
[ "transformers", "pytorch", "xlm-roberta", "question-answering", "vi", "license:mit", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "vi" ]
TAGS #transformers #pytorch #xlm-roberta #question-answering #vi #license-mit #endpoints_compatible #region-us
# XLM-RoBERTa large for QA on Vietnamese languages (also support various languages) ## Overview - Language model: xlm-roberta-large - Fine-tune: deepset/xlm-roberta-large-squad2 - Language: Vietnamese - Downstream-task: Extractive QA - Dataset: mailong25/bert-vietnamese-question-answering - Training data: train-v2.0.json (SQuAD 2.0 format) - Eval data: dev-v2.0.json (SQuAD 2.0 format) - Infrastructure: 1x Tesla P100 (Google Colab) ## Performance Evaluated on dev-v2.0.json Evaluated on Vietnamese XQuAD: URL ## Author An Pham (URL [at] URL) ## License MIT
[ "# XLM-RoBERTa large for QA on Vietnamese languages (also support various languages)", "## Overview\n\n- Language model: xlm-roberta-large\n- Fine-tune: deepset/xlm-roberta-large-squad2\n- Language: Vietnamese\n- Downstream-task: Extractive QA\n- Dataset: mailong25/bert-vietnamese-question-answering\n- Training data: train-v2.0.json (SQuAD 2.0 format)\n- Eval data: dev-v2.0.json (SQuAD 2.0 format)\n- Infrastructure: 1x Tesla P100 (Google Colab)", "## Performance\n\nEvaluated on dev-v2.0.json\n\n\nEvaluated on Vietnamese XQuAD: URL", "## Author\n\nAn Pham (URL [at] URL)", "## License\n\nMIT" ]
[ "TAGS\n#transformers #pytorch #xlm-roberta #question-answering #vi #license-mit #endpoints_compatible #region-us \n", "# XLM-RoBERTa large for QA on Vietnamese languages (also support various languages)", "## Overview\n\n- Language model: xlm-roberta-large\n- Fine-tune: deepset/xlm-roberta-large-squad2\n- Language: Vietnamese\n- Downstream-task: Extractive QA\n- Dataset: mailong25/bert-vietnamese-question-answering\n- Training data: train-v2.0.json (SQuAD 2.0 format)\n- Eval data: dev-v2.0.json (SQuAD 2.0 format)\n- Infrastructure: 1x Tesla P100 (Google Colab)", "## Performance\n\nEvaluated on dev-v2.0.json\n\n\nEvaluated on Vietnamese XQuAD: URL", "## Author\n\nAn Pham (URL [at] URL)", "## License\n\nMIT" ]
[ 40, 24, 122, 22, 12, 3 ]
[ "passage: TAGS\n#transformers #pytorch #xlm-roberta #question-answering #vi #license-mit #endpoints_compatible #region-us \n# XLM-RoBERTa large for QA on Vietnamese languages (also support various languages)## Overview\n\n- Language model: xlm-roberta-large\n- Fine-tune: deepset/xlm-roberta-large-squad2\n- Language: Vietnamese\n- Downstream-task: Extractive QA\n- Dataset: mailong25/bert-vietnamese-question-answering\n- Training data: train-v2.0.json (SQuAD 2.0 format)\n- Eval data: dev-v2.0.json (SQuAD 2.0 format)\n- Infrastructure: 1x Tesla P100 (Google Colab)## Performance\n\nEvaluated on dev-v2.0.json\n\n\nEvaluated on Vietnamese XQuAD: URL## Author\n\nAn Pham (URL [at] URL)## License\n\nMIT" ]
[ -0.08989952504634857, 0.18837641179561615, -0.0033161186147481203, 0.05788253992795944, 0.08367085456848145, -0.06694314628839493, 0.06643754243850708, 0.13882870972156525, -0.0033959404099732637, 0.001243707723915577, 0.05349394306540489, 0.05788441002368927, 0.07322078198194504, 0.07397552579641342, -0.012625010684132576, -0.18490740656852722, 0.0016256539383903146, 0.042759668081998825, -0.10824836790561676, 0.08018641173839569, 0.12192446738481522, -0.07202886044979095, 0.1431141346693039, 0.030957205221056938, 0.04674481227993965, 0.04714294523000717, -0.036274440586566925, -0.11220809817314148, 0.08189578354358673, 0.009664790704846382, -0.005697933956980705, 0.04177560284733772, 0.032478272914886475, -0.15967527031898499, 0.01812690682709217, 0.013802370056509972, -0.01768593117594719, 0.03529695048928261, 0.08137623965740204, 0.030053889378905296, 0.1389094740152359, -0.05506192892789841, -0.018573641777038574, 0.06126575171947479, -0.000345122127328068, -0.23884093761444092, -0.11064646393060684, 0.03764956071972847, 0.0928582176566124, 0.10366351157426834, -0.005446399096399546, 0.1652139127254486, -0.22175171971321106, 0.05281250551342964, 0.0032591870985925198, -0.2747602164745331, -0.031616464257240295, 0.04659327119588852, 0.11001121252775192, 0.07610854506492615, -0.09273792803287506, -0.009280053898692131, 0.08816556632518768, 0.00952790305018425, -0.06265920400619507, -0.10736542195081711, -0.057834524661302567, 0.0783037543296814, -0.07240313291549683, 0.051218003034591675, 0.23527838289737701, 0.05775832012295723, -0.04601601883769035, -0.047611020505428314, -0.015899451449513435, -0.019222578033804893, -0.009982314892113209, -0.07502125948667526, 0.07024174928665161, 0.006352215074002743, 0.07164214551448822, -0.04466498643159866, -0.09090230613946915, -0.04966457933187485, -0.057620517909526825, -0.16648489236831665, 0.06356777995824814, 0.028250737115740776, -0.09883541613817215, 0.024335287511348724, -0.022141562774777412, -0.09030278027057648, -0.06197596713900566, -0.10249348729848862, 0.01461565401405096, 0.04587479680776596, 0.10618904232978821, -0.01439733523875475, 0.11775098741054535, 0.031008757650852203, -0.05884026736021042, 0.02594750002026558, -0.08263419568538666, 0.010984373278915882, -0.03149374574422836, 0.24185222387313843, -0.12725530564785004, -0.06232375651597977, 0.04729319363832474, 0.0366998128592968, -0.03936947509646416, 0.06655726581811905, -0.09373336285352707, -0.02772510051727295, -0.03993004932999611, 0.045064084231853485, -0.041001204401254654, 0.012769599445164204, -0.021428896114230156, -0.05072353407740593, 0.09897544980049133, -0.0537630096077919, 0.0013670151820406318, 0.019981948658823967, -0.06808524578809738, 0.15056787431240082, 0.025718819350004196, 0.07974586635828018, -0.07601438462734222, -0.037686605006456375, -0.006113619077950716, -0.004507340490818024, -0.04382677748799324, -0.09513945877552032, 0.027524756267666817, 0.003732029814273119, -0.00781344249844551, -0.07685142755508423, -0.13545800745487213, -0.006973064970225096, 0.030733222141861916, -0.0514640286564827, -0.04870139807462692, -0.03442344069480896, -0.10198348015546799, -0.03984291851520538, 0.019484810531139374, 0.058429744094610214, -0.07326915115118027, 0.06325526535511017, -0.027172695845365524, 0.04947548359632492, -0.060368552803993225, 0.07783093303442001, -0.06609386205673218, -0.00239856936968863, -0.05481669306755066, 0.1030493751168251, -0.13423557579517365, 0.036358434706926346, -0.10088933259248734, -0.10944012552499771, 0.07176847755908966, -0.004399701952934265, -0.02235882356762886, 0.07416711002588272, -0.16228312253952026, -0.026506902649998665, 0.1419607698917389, -0.04666982218623161, -0.13830873370170593, 0.154027059674263, 0.0005969994817860425, 0.0334632433950901, 0.04591986536979675, 0.11698424816131592, 0.17078736424446106, -0.18576572835445404, -0.019942566752433777, 0.0795358195900917, -0.015129524283111095, -0.11538544297218323, 0.15615519881248474, 0.03896620124578476, -0.014986122027039528, 0.029715271666646004, -0.0847734659910202, 0.018246062099933624, -0.018703773617744446, -0.10047366470098495, 0.0015137853333726525, -0.06985209882259369, 0.04846334084868431, 0.02866223081946373, 0.08360429853200912, -0.029024245217442513, -0.06330366432666779, -0.06668959558010101, 0.09586529433727264, 0.03274042159318924, -0.05245807766914368, -0.11866989731788635, 0.06879882514476776, -0.01241571456193924, 0.013628511689603329, -0.039880815893411636, 0.10079292207956314, 0.08379668742418289, 0.023863328620791435, 0.007663180585950613, 0.142259418964386, 0.004872986581176519, 0.045531198382377625, -0.0076417624950408936, -0.01654353365302086, -0.054993998259305954, -0.02457614615559578, -0.03373267874121666, -0.08035971224308014, 0.11676400154829025, -0.04226098582148552, -0.0012575160944834352, -0.1398858278989792, -0.050377171486616135, 0.08039085566997528, 0.025063948705792427, 0.050649989396333694, 0.12103249132633209, 0.02377692423760891, 0.05000120401382446, -0.022196408361196518, 0.018759436905384064, 0.027372634038329124, -0.030765146017074585, -0.011624141596257687, 0.1528683751821518, 0.09639015793800354, 0.14254271984100342, 0.10625883936882019, 0.07103487849235535, 0.03594948723912239, -0.00777056161314249, -0.050530172884464264, -0.023501290008425713, -0.026961686089634895, 0.05919468030333519, 0.11265600472688675, 0.005408333148807287, 0.1683516502380371, -0.127651184797287, 0.011770816519856453, -0.012694409117102623, 0.0005442594992928207, 0.035606272518634796, 0.2096916288137436, 0.14368413388729095, -0.049622584134340286, 0.09372305124998093, 0.11056952178478241, 0.0038257786072790623, 0.158776193857193, -0.05852016061544418, -0.05769490450620651, -0.016713010147213936, 0.10393594205379486, -0.026597099378705025, 0.09425348043441772, -0.10115532577037811, 0.0570923276245594, 0.06776846945285797, 0.048025161027908325, 0.0013139358488842845, -0.14357160031795502, -0.04936951398849487, -0.0740562379360199, -0.09511493146419525, -0.10145691782236099, 0.10453126579523087, 0.07751672714948654, 0.07220294326543808, -0.009814958088099957, 0.008559753187000751, -0.01999017409980297, -0.0253727026283741, -0.06966015696525574, 0.1630924940109253, -0.11131434142589569, -0.23896940052509308, -0.06834203004837036, -0.005768221337348223, -0.05762326717376709, -0.05858824774622917, 0.05759255960583687, -0.21713431179523468, -0.08088408410549164, -0.026331786066293716, -0.0042889355681836605, 0.014585085213184357, -0.07509122788906097, -0.045745376497507095, 0.11935865134000778, -0.02379142865538597, -0.12720468640327454, -0.004559606313705444, -0.04683571308851242, -0.08159055560827255, 0.033292386680841446, -0.048544708639383316, 0.005164504051208496, 0.03947998583316803, -0.025217849761247635, 0.02586524933576584, -0.044191308319568634, 0.1496819108724594, -0.07924660295248032, 0.038149621337652206, 0.20644427835941315, 0.14349442720413208, 0.050353631377220154, 0.15862227976322174, -0.014904500916600227, -0.037080053240060806, 0.06453148275613785, 0.03949231654405594, 0.010119205340743065, -0.31419751048088074, -0.058860328048467636, -0.08845388144254684, 0.11141342669725418, -0.04676742106676102, 0.052769020199775696, -0.05540032312273979, 0.046426039189100266, 0.018863456323742867, 0.1377415657043457, -0.0361199788749218, 0.0007375759887509048, 0.13710446655750275, -0.004031449556350708, 0.05462133139371872, -0.11218968033790588, -0.012752746231853962, 0.14658762514591217, 0.15358908474445343, 0.17361871898174286, -0.05635380744934082, 0.0538724847137928, 0.11675689369440079, 0.27805429697036743, 0.030682628974318504, -0.034973688423633575, -0.061154529452323914, 0.005372239276766777, -0.029019158333539963, -0.07769285142421722, 0.05007413029670715, 0.09374520927667618, 0.052026454359292984, 0.011114112101495266, -0.0100737065076828, 0.1809108853340149, 0.03653119131922722, 0.2220364809036255, 0.010631809942424297, -0.09368637949228287, 0.002025234280154109, 0.04416979104280472, 0.009992759674787521, 0.012255133129656315, 0.1236797571182251, 0.1411677598953247, -0.16785748302936554, 0.03733561560511589, -0.013653972186148167, 0.10941758006811142, 0.011235885322093964, 0.018615106120705605, 0.05738134682178497, -0.011051228269934654, 0.07583259791135788, 0.1120910793542862, -0.26574987173080444, 0.20376327633857727, -0.008084370754659176, 0.034845080226659775, -0.05460617318749428, 0.04225670546293259, 0.04303816333413124, 0.04861178249120712, 0.14389851689338684, -0.015107020735740662, 0.08806160092353821, -0.04222415015101433, -0.13282105326652527, 0.07853724807500839, -0.048770155757665634, 0.07580786943435669, -0.023863552138209343, -0.02188211865723133, -0.03801846504211426, -0.05851500481367111, 0.004138389602303505, -0.13565309345722198, -0.05696609988808632, 0.00919271633028984, -0.018310701474547386, -0.009265066124498844, -0.06741879135370255, -0.06950302422046661, -0.07293286919593811, 0.1183803454041481, -0.11580198258161545, -0.05884522199630737, -0.03596912696957588, -0.04024864360690117, 0.061398234218358994, -0.09280712902545929, -0.02314218133687973, -0.057190362364053726, -0.00565917557105422, 0.030780527740716934, -0.030515149235725403, 0.06505205482244492, -0.06150967255234718, -0.09193389117717743, -0.017669174820184708, 0.11501261591911316, -0.06542326509952545, 0.029337218031287193, 0.024180712178349495, -0.06425698101520538, -0.08022168278694153, -0.16421663761138916, -0.07371010631322861, 0.06399034708738327, 0.06740177422761917, 0.05854979157447815, -0.12513577938079834, -0.16718429327011108, -0.02917524427175522, -0.08805610984563828, 0.13758867979049683, 0.12330134212970734, -0.08738413453102112, 0.17854996025562286, 0.09706389158964157, -0.04632025212049484, -0.21859616041183472, -0.00457467045634985, 0.05420023947954178, 0.04557260870933533, 0.007882347330451012, -0.10383851826190948, 0.09579748660326004, 0.03801603615283966, -0.01764874905347824, -0.01210697926580906, -0.2232857644557953, -0.1284869909286499, 0.032151609659194946, 0.02638668566942215, 0.015985088422894478, -0.09237994253635406, -0.05187632143497467, -0.029985889792442322, -0.2636169195175171, 0.0836576521396637, -0.11356183886528015, 0.044859956949949265, -0.032734520733356476, 0.05524514243006706, -0.02509741671383381, -0.02377302199602127, 0.10435255616903305, -0.0397004634141922, 0.01340692862868309, -0.03889402002096176, -0.06461750715970993, 0.05474954843521118, 0.0300492811948061, 0.1524328589439392, -0.04938359186053276, 0.08611158281564713, -0.1912832409143448, -0.020289618521928787, -0.07247033715248108, -0.026516882702708244, -0.029245629906654358, -0.056185923516750336, -0.11658737063407898, 0.11397571116685867, 0.010976923629641533, -0.012797350063920021, 0.04684058576822281, 0.04211754351854324, -0.05345800146460533, 0.07945816218852997, 0.16833694279193878, -0.0594140850007534, 0.02177940122783184, -0.05818069353699684, 0.006181662902235985, 0.10305541753768921, -0.21333028376102448, 0.06107807904481888, 0.1561795473098755, -0.036951497197151184, 0.12306792289018631, -0.027294505387544632, -0.022774355486035347, 0.10135980695486069, 0.0461563766002655, -0.013478806242346764, -0.2327168881893158, -0.05390944331884384, 0.03331688046455383, 0.014881103299558163, 0.013733678497374058, 0.06870764493942261, -0.08027055114507675, -0.04312999173998833, 0.016261661425232887, 0.041993141174316406, -0.018232764676213264, 0.05009021982550621, 0.02807547152042389, 0.048907727003097534, -0.08854620903730392, 0.08831498771905899, 0.10355177521705627, -0.08425500988960266, -0.008850856684148312, 0.13914526998996735, -0.08842851221561432, -0.058991916477680206, 0.05360996723175049, 0.18128447234630585, 0.03521295264363289, -0.06140977144241333, -0.08058027923107147, -0.1101548969745636, 0.06049643084406853, 0.009353341534733772, 0.03255908191204071, -0.008870216086506844, -0.022068973630666733, -0.10531137883663177, -0.013901536352932453, 0.1438671201467514, 0.04516914114356041, -0.0616832971572876, -0.11357752233743668, -0.1205044835805893, 0.019668733701109886, 0.19689197838306427, -0.011190976947546005, -0.026338784024119377, -0.09640046954154968, 0.011541023850440979, -0.34082600474357605, 0.10078504681587219, -0.014987041242420673, 0.032686393707990646, -0.0689355731010437, -0.12225639820098877, -0.09052541106939316, 0.05072176456451416, -0.10230009257793427, 0.022291235625743866, -0.008417535573244095, 0.15413302183151245, -0.11496417224407196, -0.029124148190021515, 0.0703505277633667, 0.034299466758966446, 0.0909038707613945, -0.06432048231363297, -0.07140094041824341, 0.035718586295843124, -0.05737604573369026, -0.05043278634548187, 0.028157323598861694, 0.09039624780416489, 0.09037069231271744, -0.06056061014533043, 0.043138571083545685, 0.06335709244012833, 0.039443690329790115, -0.0011119104456156492, 0.04552663490176201, -0.09734423458576202, -0.07372315227985382, -0.12185411900281906, -0.07441020011901855, -0.059765662997961044, 0.07882926613092422, 0.04143669456243515, 0.048349373042583466, 0.1068854033946991, -0.0908099114894867, 0.03900356963276863, -0.12022164463996887, -0.04066095128655434, -0.01913243718445301, -0.034062471240758896, -0.1542777717113495, -0.024661829695105553, 0.05041442811489105, -0.013134058564901352, 0.14636771380901337, 0.029356781393289566, 0.005007976200431585, 0.025586670264601707, -0.05532437562942505, -0.012397192418575287, 0.012818253599107265, 0.11121949553489685, 0.02136591449379921, 0.06810908019542694, -0.019501332193613052, -0.0186447873711586, -0.004989929497241974, 0.09583836048841476, 0.06098426133394241, 0.2300427407026291, 0.16888615489006042, 0.0367550365626812, 0.05958066135644913, 0.021027106791734695, -0.0954073965549469, 0.0884549468755722, -0.07028986513614655, 0.07006479054689407, -0.11868095397949219, 0.059634286910295486, 0.11260222643613815, -0.13592444360256195, 0.05935077369213104, -0.07332846522331238, -0.068851999938488, -0.11583025753498077, -0.08765838295221329, -0.10405442863702774, -0.18337960541248322, 0.030511705204844475, -0.09814972430467606, 0.019295966252684593, -0.057034049183130264, 0.1435755342245102, -0.09990499913692474, 0.007575918920338154, -0.07904504984617233, -0.06642672419548035, 0.07795356959104538, -0.0067808483727276325, 0.05166597664356232, 0.0030315108597278595, 0.07759389281272888, 0.02486041560769081, -0.01962817646563053, 0.0044425856322050095, 0.04457749426364899, -0.09260396659374237, 0.0022690314799547195, -0.0712369978427887, 0.016403555870056152, -0.01642906665802002, 0.019840072840452194, 0.027805881574749947, 0.1632116138935089, 0.07674074918031693, -0.017524277791380882, 0.053905896842479706, 0.17400506138801575, -0.014318355359137058, -0.10669649392366409, -0.18005573749542236, 0.01870470866560936, -0.026682056486606598, 0.019064538180828094, 0.035027459263801575, -0.011947551742196083, -0.0820077583193779, 0.23953156173229218, 0.16233204305171967, -0.09478738158941269, -0.05108021944761276, -0.010500391013920307, 0.0019311901414766908, -0.07182158529758453, 0.05668587610125542, 0.17180249094963074, 0.2092389315366745, -0.06419691443443298, -0.07845177501440048, -0.041424814611673355, -0.017255930230021477, -0.09845726937055588, 0.038782358169555664, 0.010528870858252048, -0.05172333866357803, -0.014539309777319431, 0.08247487992048264, -0.05857391655445099, 0.033392298966646194, -0.04334262013435364, -0.14181411266326904, -0.17323046922683716, -0.018788378685712814, 0.0997379943728447, 0.09168713539838791, -0.06511643528938293, -0.008741877973079681, 0.014858894981443882, 0.12172739952802658, -0.030296554788947105, -0.06233461946249008, -0.02137676253914833, 0.1125153973698616, -0.0191962793469429, 0.12178895622491837, 0.018748773261904716, 0.03544878587126732, 0.07815568149089813, 0.022031012922525406, -0.06705844402313232, 0.06635315716266632, 0.057200100272893906, -0.09947652369737625, -0.001610613544471562, -0.040359292179346085, -0.012913435697555542, 0.10988850891590118, 0.051071640104055405, 0.08211375027894974, 0.019979508593678474, -0.05916845053434372, -0.04800677299499512, -0.14431804418563843, 0.1406610757112503, -0.12620218098163605, 0.07810881733894348, 0.14227797091007233, -0.04758385568857193, 0.029943937435746193, -0.07749053835868835, 0.09824013710021973, -0.06938262283802032, -0.09042497724294662, 0.0026509270537644625, -0.0810990035533905, 0.04209659993648529, 0.03548668697476387, 0.08754590898752213, -0.1607319861650467, -0.01878754235804081, -0.0666535496711731, 0.02073119394481182, -0.07855545729398727, 0.1084858626127243, 0.05252464488148689, 0.03052695095539093, -0.008666591718792915, -0.26829805970191956, -0.047321707010269165, 0.04713156074285507, -0.05573643743991852, -0.07146703451871872 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-cased-ner This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0620 - Precision: 0.9406 - Recall: 0.9463 - F1: 0.9434 - Accuracy: 0.9861 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.5855 | 1.0 | 878 | 0.0848 | 0.8965 | 0.8980 | 0.8973 | 0.9760 | | 0.058 | 2.0 | 1756 | 0.0607 | 0.9357 | 0.9379 | 0.9368 | 0.9840 | | 0.0282 | 3.0 | 2634 | 0.0604 | 0.9354 | 0.9420 | 0.9387 | 0.9852 | | 0.0148 | 4.0 | 3512 | 0.0606 | 0.9386 | 0.9485 | 0.9435 | 0.9861 | | 0.0101 | 5.0 | 4390 | 0.0620 | 0.9406 | 0.9463 | 0.9434 | 0.9861 | ### Framework versions - Transformers 4.8.2 - Pytorch 1.8.1+cu111 - Datasets 1.8.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["conll2003"], "metrics": ["precision", "recall", "f1", "accuracy"], "model_index": [{"name": "bert-base-cased-ner", "results": [{"task": {"name": "Token Classification", "type": "token-classification"}, "dataset": {"name": "conll2003", "type": "conll2003", "args": "conll2003"}, "metric": {"name": "Accuracy", "type": "accuracy", "value": 0.9860628716077}}]}]}
token-classification
andi611/bert-base-cased-ner-conll2003
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "dataset:conll2003", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #bert #token-classification #generated_from_trainer #dataset-conll2003 #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
bert-base-cased-ner =================== This model is a fine-tuned version of bert-base-cased on the conll2003 dataset. It achieves the following results on the evaluation set: * Loss: 0.0620 * Precision: 0.9406 * Recall: 0.9463 * F1: 0.9434 * Accuracy: 0.9861 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 16 * eval\_batch\_size: 32 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * lr\_scheduler\_warmup\_steps: 500 * num\_epochs: 5 ### Training results ### Framework versions * Transformers 4.8.2 * Pytorch 1.8.1+cu111 * Datasets 1.8.0 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 500\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.8.2\n* Pytorch 1.8.1+cu111\n* Datasets 1.8.0\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #bert #token-classification #generated_from_trainer #dataset-conll2003 #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 500\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.8.2\n* Pytorch 1.8.1+cu111\n* Datasets 1.8.0\n* Tokenizers 0.10.3" ]
[ 63, 116, 4, 34 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #bert #token-classification #generated_from_trainer #dataset-conll2003 #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 500\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.8.2\n* Pytorch 1.8.1+cu111\n* Datasets 1.8.0\n* Tokenizers 0.10.3" ]
[ -0.10684671252965927, 0.12163993716239929, -0.0030159379821270704, 0.12252704054117203, 0.14122141897678375, 0.020981865003705025, 0.11480814218521118, 0.14673390984535217, -0.09154226630926132, 0.0340488962829113, 0.12447600066661835, 0.16301530599594116, 0.019621621817350388, 0.12087827175855637, -0.051374003291130066, -0.2789058983325958, -0.005799348931759596, 0.03091929294168949, -0.1041601151227951, 0.1239766851067543, 0.08474834263324738, -0.12680046260356903, 0.09443235397338867, -0.00009708118159323931, -0.1549399346113205, 0.0136216776445508, 0.010816016234457493, -0.057701025158166885, 0.1401607245206833, 0.02820136956870556, 0.1042487844824791, 0.015545900911092758, 0.1061839759349823, -0.1849210560321808, 0.005024987738579512, 0.061859775334596634, 0.01124685350805521, 0.10177682340145111, 0.07014184445142746, 0.009123546071350574, 0.1138138696551323, -0.09201453626155853, 0.05997243523597717, 0.019079895690083504, -0.11402378231287003, -0.22473160922527313, -0.09126577526330948, 0.03350788354873657, 0.08037477731704712, 0.08518347144126892, 0.0023241122253239155, 0.12475313246250153, -0.0660930797457695, 0.1076764464378357, 0.24987587332725525, -0.3052060306072235, -0.06587057560682297, 0.04803990200161934, 0.029389280825853348, 0.0588088221848011, -0.10806898772716522, -0.019215011969208717, 0.034008365124464035, 0.03953789547085762, 0.14096081256866455, -0.040045227855443954, -0.09523690491914749, 0.018213558942079544, -0.14157159626483917, -0.021825823932886124, 0.12131254374980927, 0.03383283317089081, -0.029405172914266586, -0.046188514679670334, -0.07162638753652573, -0.16810837388038635, -0.03461674973368645, -0.019120104610919952, 0.05618971586227417, -0.03644653037190437, -0.0741233304142952, -0.01891818828880787, -0.09121508151292801, -0.07131660729646683, -0.05587216839194298, 0.13045494258403778, 0.046605125069618225, 0.010845904238522053, -0.015635723248124123, 0.11017727106809616, 0.015402804128825665, -0.13563278317451477, 0.008659636601805687, 0.03554914891719818, -0.03372254967689514, -0.0443698987364769, -0.04293541982769966, -0.02670026570558548, 0.011545024812221527, 0.15187405049800873, -0.055314093828201294, 0.05767460912466049, 0.03783411532640457, 0.026452088728547096, -0.09775462746620178, 0.18069367110729218, -0.06387098878622055, -0.046158578246831894, 0.001392737147398293, 0.06384126842021942, 0.02081451378762722, -0.01262674666941166, -0.10947536677122116, 0.007872220128774643, 0.09966804832220078, 0.02866414003074169, -0.05471939966082573, 0.07178618013858795, -0.047938503324985504, -0.024073965847492218, 0.017273321747779846, -0.10598865151405334, 0.038757599890232086, 0.002231946447864175, -0.09646914899349213, -0.04176066070795059, 0.026462743058800697, 0.0026879380457103252, -0.015624946914613247, 0.12029802054166794, -0.08780473470687866, 0.018494850024580956, -0.08647222816944122, -0.11931363493204117, 0.020684871822595596, -0.09465201199054718, 0.011911336332559586, -0.08063677698373795, -0.17159056663513184, -0.014404232613742352, 0.06969103962182999, -0.044349972158670425, -0.04689040780067444, -0.04424343258142471, -0.08666113764047623, 0.01638266071677208, -0.019677093252539635, 0.13786335289478302, -0.06491151452064514, 0.09499582648277283, 0.020401790738105774, 0.06724202632904053, -0.025406550616025925, 0.05660485103726387, -0.09653082489967346, 0.023783965036273003, -0.1586836576461792, 0.03382008895277977, -0.06848403811454773, 0.04538260027766228, -0.11383070051670074, -0.100408174097538, 0.03546658903360367, -0.001766860019415617, 0.077501080930233, 0.0910506471991539, -0.1847292184829712, -0.06752041727304459, 0.13996051251888275, -0.06388869136571884, -0.1081438809633255, 0.10473968088626862, -0.05693817883729935, 0.03302650526165962, 0.05714396387338638, 0.16166572272777557, 0.07819382846355438, -0.08948104828596115, 0.001645195297896862, 0.011320739984512329, 0.05766618996858597, -0.04734354838728905, 0.06797166168689728, 0.006961209233850241, 0.03952069580554962, 0.018872801214456558, -0.04845571145415306, 0.040133558213710785, -0.09014206379652023, -0.09335753321647644, -0.03128201514482498, -0.08846396207809448, 0.0346142053604126, 0.06890825182199478, 0.06061059609055519, -0.09052013605833054, -0.09747865796089172, 0.07237070053815842, 0.09664777666330338, -0.06693583726882935, 0.030953502282500267, -0.06995168328285217, 0.05646064132452011, -0.036892764270305634, -0.019726885482668877, -0.18065960705280304, -0.046828743070364, 0.01665511168539524, -0.023236047476530075, 0.023358270525932312, 0.03470715135335922, 0.07877469807863235, 0.06629019230604172, -0.06091306731104851, -0.02773333713412285, -0.012993193231523037, 0.003005493897944689, -0.13026481866836548, -0.22357392311096191, -0.05165664479136467, -0.02501535788178444, 0.09839381277561188, -0.20577718317508698, 0.030479148030281067, 0.006778940558433533, 0.09032891690731049, 0.030242575332522392, -0.009019127115607262, -0.030947178602218628, 0.06316783279180527, -0.04823730140924454, -0.06958412379026413, 0.06756068021059036, -0.004744467791169882, -0.0923672690987587, -0.038478750735521317, -0.11605420708656311, 0.1474997103214264, 0.11710864305496216, -0.07338345050811768, -0.0851215124130249, 0.006198924966156483, -0.05945242568850517, -0.04157179966568947, -0.04053590074181557, 0.03501983359456062, 0.15345998108386993, 0.00256506004370749, 0.15136294066905975, -0.06863701343536377, -0.056920453906059265, 0.022115977481007576, -0.019952846691012383, 0.017465073615312576, 0.13036265969276428, 0.11821846663951874, -0.08023740351200104, 0.14273671805858612, 0.14425207674503326, -0.08641543239355087, 0.12406820058822632, -0.04050104320049286, -0.07420984655618668, -0.030666081234812737, -0.009233186021447182, 0.006404480431228876, 0.1096319630742073, -0.09578991681337357, -0.004575315862894058, 0.02216535434126854, 0.02367323637008667, 0.005023385398089886, -0.2169017195701599, -0.0223903376609087, 0.02872599847614765, -0.061571259051561356, 0.003341584000736475, -0.012374013662338257, -0.003878332208842039, 0.10902086645364761, 0.004942171275615692, -0.10478463768959045, 0.030424945056438446, -0.002957821125164628, -0.06313399970531464, 0.20523415505886078, -0.09033693373203278, -0.14683133363723755, -0.11279068142175674, -0.0703674778342247, -0.05583933740854263, 0.004497178830206394, 0.049815092235803604, -0.07667763531208038, -0.04000324010848999, -0.0759553462266922, 0.003268056781962514, -0.004429869819432497, 0.03680512681603432, -0.013725115917623043, -0.0007048079860396683, 0.07837861776351929, -0.11561417579650879, -0.004506116267293692, -0.050633884966373444, -0.07255095988512039, 0.031235652044415474, 0.055167246609926224, 0.10371094197034836, 0.1369403749704361, -0.011665038764476776, 0.01116883009672165, -0.030672596767544746, 0.2121092528104782, -0.06552505493164062, 0.0021287575364112854, 0.12247573584318161, -0.015043350867927074, 0.050221119076013565, 0.13375185430049896, 0.06782331317663193, -0.09245191514492035, 0.0031678027007728815, 0.054895829409360886, -0.03183101490139961, -0.22687093913555145, -0.03520457074046135, -0.04821009188890457, 0.014144638553261757, 0.10775426030158997, 0.04112214222550392, 0.02722112275660038, 0.05121591314673424, 0.0357658714056015, 0.06067069619894028, -0.027154533192515373, 0.0632658451795578, 0.11189085990190506, 0.0436149463057518, 0.13108311593532562, -0.03647294640541077, -0.050093334168195724, 0.048546046018600464, 0.012439358048141003, 0.22327975928783417, -0.007499504368752241, 0.15080636739730835, 0.04415097460150719, 0.17408069968223572, -0.016460442915558815, 0.0694180503487587, -0.004133394919335842, -0.02672535367310047, -0.016295360401272774, -0.04446615278720856, -0.019892726093530655, 0.03087259829044342, -0.04673241451382637, 0.04594011977314949, -0.1035996600985527, 0.018795551732182503, 0.04843657836318016, 0.27561962604522705, 0.04971963167190552, -0.318155437707901, -0.0881633311510086, 0.0007291475776582956, -0.05148302763700485, -0.018542444333434105, 0.030609501525759697, 0.1139673963189125, -0.0752941370010376, 0.044801976531744, -0.08261210471391678, 0.08540406823158264, -0.06233818456530571, 0.038188204169273376, 0.1075420081615448, 0.1118694543838501, 0.007050806190818548, 0.07257919013500214, -0.28649458289146423, 0.2797132730484009, 0.014528442174196243, 0.06273042410612106, -0.07001378387212753, 0.016986064612865448, 0.0399700365960598, 0.051855187863111496, 0.08433029055595398, -0.01716773398220539, -0.07031261920928955, -0.19120720028877258, -0.0743778795003891, 0.021034669131040573, 0.09430211037397385, -0.037822309881448746, 0.10131960362195969, -0.04668797552585602, -0.013316940516233444, 0.07477427273988724, -0.04966435953974724, -0.04901330918073654, -0.08890576660633087, 0.009970009326934814, 0.0250004343688488, -0.04767593741416931, -0.059672918170690536, -0.11154244840145111, -0.10638604313135147, 0.17205247282981873, -0.04979659616947174, -0.03282998129725456, -0.12408816814422607, 0.0868641585111618, 0.10552560538053513, -0.09105083346366882, 0.03829187899827957, 0.007779906503856182, 0.06442045420408249, 0.04673810675740242, -0.0742318332195282, 0.12333513051271439, -0.0736493244767189, -0.19000622630119324, -0.05698191747069359, 0.10891924053430557, 0.03319238871335983, 0.06451495736837387, -0.019435204565525055, 0.028698716312646866, -0.023614713922142982, -0.0828472152352333, 0.026012899354100227, -0.00422708922997117, 0.06444716453552246, 0.004930790513753891, -0.0689101442694664, 0.024340998381376266, -0.046962328255176544, -0.02649744413793087, 0.15849027037620544, 0.2595628798007965, -0.10476633161306381, 0.03894803300499916, 0.04295806959271431, -0.07351946085691452, -0.2027466595172882, 0.030944878235459328, 0.05702855437994003, -0.002999547403305769, 0.0545443519949913, -0.19147159159183502, 0.12113181501626968, 0.10616900771856308, -0.01929657720029354, 0.10158565640449524, -0.32318833470344543, -0.13135206699371338, 0.11458948254585266, 0.13273386657238007, 0.07587216794490814, -0.14975541830062866, -0.027094606310129166, 0.000994518748484552, -0.0903833732008934, 0.11632131040096283, -0.07547122240066528, 0.12762925028800964, -0.020732592791318893, 0.06963960826396942, 0.007908727042376995, -0.05361757054924965, 0.11151406913995743, 0.018319571390748024, 0.10032662749290466, -0.049703486263751984, -0.032065026462078094, 0.03718361631035805, -0.05010288581252098, 0.02836446277797222, -0.09117540717124939, 0.0333721749484539, -0.07739143073558807, -0.016476212069392204, -0.07780282944440842, 0.04278353601694107, -0.03858872503042221, -0.07023753225803375, -0.04075117036700249, 0.04462161287665367, 0.05823737755417824, -0.019420357421040535, 0.16578324139118195, 0.02186906524002552, 0.1249682754278183, 0.12788821756839752, 0.07644063979387283, -0.04731198400259018, -0.06910384446382523, -0.008705748245120049, -0.011892488226294518, 0.06084604561328888, -0.13886094093322754, 0.039100002497434616, 0.15088698267936707, 0.018539683893322945, 0.1298917979001999, 0.0722663626074791, -0.025620201602578163, -0.008541364222764969, 0.05522831529378891, -0.1602872908115387, -0.08661115914583206, 0.008696682751178741, -0.06464658677577972, -0.11288691312074661, 0.06279227137565613, 0.1167125403881073, -0.06879466027021408, -0.004718456417322159, 0.01386629045009613, 0.02283211424946785, -0.03662782534956932, 0.21738183498382568, 0.05392024666070938, 0.046925704926252365, -0.10364688187837601, 0.08632487803697586, 0.04536363109946251, -0.08375802636146545, 0.014377511106431484, 0.09026583284139633, -0.08292114734649658, -0.039055969566106796, 0.06807053089141846, 0.14935682713985443, -0.05931248515844345, -0.03964762017130852, -0.14403122663497925, -0.101837657392025, 0.08381453156471252, 0.1571367383003235, 0.09730564057826996, 0.02071533538401127, -0.05611838027834892, 0.022346660494804382, -0.11277927458286285, 0.11312530189752579, 0.048750102519989014, 0.0753997415304184, -0.1530901938676834, 0.15574006736278534, 0.0050461627542972565, 0.03887612745165825, -0.021520858630537987, 0.035265274345874786, -0.11010020971298218, -0.0016304051969200373, -0.1200907826423645, -0.024437185376882553, -0.03829478472471237, 0.006005586590617895, 0.0007418150780722499, -0.06242266669869423, -0.06039922684431076, 0.01629435271024704, -0.11393138766288757, -0.02912972867488861, 0.02293544076383114, 0.05454938858747482, -0.12833169102668762, -0.04364260286092758, 0.01520838774740696, -0.06895679235458374, 0.07842320203781128, 0.019379356876015663, 0.016407139599323273, 0.050356049090623856, -0.11320262402296066, 0.00550078833475709, 0.05646674335002899, 0.015095776878297329, 0.07415664196014404, -0.1004885658621788, -0.012257127091288567, -0.012727479450404644, 0.05136367678642273, 0.00788186490535736, 0.08000394701957703, -0.13302867114543915, 0.007186888717114925, -0.040644340217113495, -0.06927406787872314, -0.0653480663895607, 0.04149793088436127, 0.08400918543338776, 0.021585121750831604, 0.1993909627199173, -0.08194614946842194, 0.03375108540058136, -0.21188296377658844, 0.0021872662473469973, -0.009441465139389038, -0.12415162473917007, -0.11838370561599731, -0.05567358061671257, 0.07367000728845596, -0.06856060773134232, 0.1180567666888237, 0.023727145045995712, 0.051207173615694046, 0.03423192724585533, -0.04085296764969826, 0.004185989964753389, 0.027101770043373108, 0.1766303926706314, 0.0292072631418705, -0.03130181506276131, 0.062001585960388184, 0.045000847429037094, 0.09388945996761322, 0.10139118880033493, 0.21044939756393433, 0.13211221992969513, 0.0005032142507843673, 0.0938720703125, 0.04406271129846573, -0.0986618846654892, -0.17956408858299255, 0.06165052577853203, -0.05352064594626427, 0.1272374391555786, -0.027457062155008316, 0.21697324514389038, 0.0627751350402832, -0.17336171865463257, 0.04690355807542801, -0.0493035651743412, -0.08717738091945648, -0.12682290375232697, -0.06049109250307083, -0.08385873585939407, -0.13093635439872742, -0.007763555273413658, -0.11026014387607574, 0.038087792694568634, 0.1047615185379982, 0.021934043616056442, -0.0070207081735134125, 0.14470086991786957, 0.004094862379133701, 0.02770751155912876, 0.04503393918275833, 0.025088248774409294, -0.025167981162667274, -0.08664560317993164, -0.07738529145717621, -0.02395041286945343, -0.005747572984546423, 0.022827809676527977, -0.062420133501291275, -0.04458185285329819, 0.04474911466240883, -0.019348958507180214, -0.09506871551275253, 0.012279581278562546, 0.017075182870030403, 0.06245410442352295, 0.04430336877703667, 0.014032488688826561, 0.008132492192089558, -0.008761237375438213, 0.2312925010919571, -0.09637078642845154, -0.05708303302526474, -0.10595310479402542, 0.2637002468109131, 0.02839106321334839, -0.011283003725111485, 0.032233599573373795, -0.06626884639263153, -0.00918584130704403, 0.23189039528369904, 0.207015722990036, -0.08564604818820953, -0.01210513524711132, 0.007757560350000858, -0.008923985995352268, -0.029797352850437164, 0.10556532442569733, 0.11705698817968369, 0.0664895698428154, -0.08661011606454849, -0.05479961633682251, -0.03728845715522766, -0.02084336429834366, -0.04589574784040451, 0.07012403756380081, 0.033529382199048996, 0.009453291073441505, -0.032794591039419174, 0.04579613357782364, -0.04796972498297691, -0.1448466181755066, 0.06580892950296402, -0.20440174639225006, -0.17285288870334625, -0.019184039905667305, 0.10660183429718018, 0.00764403585344553, 0.054765988141298294, -0.020997099578380585, -0.0004655742668546736, 0.08209846168756485, -0.016328411176800728, -0.08785679936408997, -0.08704240620136261, 0.10241628438234329, -0.10741083323955536, 0.21872290968894958, -0.04281768947839737, 0.04230158030986786, 0.12536382675170898, 0.048152856528759, -0.0920872911810875, 0.04921920597553253, 0.06136615201830864, -0.10060154646635056, 0.028775854036211967, 0.09669464081525803, -0.04094354808330536, 0.10032645612955093, 0.04066856577992439, -0.1172420084476471, 0.0076019312255084515, -0.06513344496488571, -0.07069529592990875, -0.042617250233888626, -0.041309624910354614, -0.04546051099896431, 0.1380748599767685, 0.22099417448043823, -0.0316789336502552, 0.004434193018823862, -0.07848232984542847, 0.011192484758794308, 0.05449604243040085, 0.02916116639971733, -0.05526284500956535, -0.22443141043186188, 0.026043571531772614, 0.035675082355737686, -0.004493676591664553, -0.19841806590557098, -0.09617773443460464, 0.01654965803027153, -0.06325005739927292, -0.108017697930336, 0.08873183280229568, 0.07317037135362625, 0.04880779609084129, -0.05118012800812721, -0.044857703149318695, -0.0718294233083725, 0.14710843563079834, -0.16818344593048096, -0.07864486426115036 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-ner This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 2.1258 - Precision: 0.0269 - Recall: 0.1379 - F1: 0.0451 - Accuracy: 0.1988 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 4 | 2.1296 | 0.0270 | 0.1389 | 0.0452 | 0.1942 | | No log | 2.0 | 8 | 2.1258 | 0.0269 | 0.1379 | 0.0451 | 0.1988 | ### Framework versions - Transformers 4.8.2 - Pytorch 1.8.1+cu111 - Datasets 1.8.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["conll2003"], "metrics": ["precision", "recall", "f1", "accuracy"], "model_index": [{"name": "bert-base-uncased-ner", "results": [{"task": {"name": "Token Classification", "type": "token-classification"}, "dataset": {"name": "conll2003", "type": "conll2003", "args": "conll2003"}, "metric": {"name": "Accuracy", "type": "accuracy", "value": 0.19881805328292054}}]}]}
token-classification
andi611/bert-base-uncased-ner-conll2003
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "dataset:conll2003", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #bert #token-classification #generated_from_trainer #dataset-conll2003 #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
bert-base-uncased-ner ===================== This model is a fine-tuned version of bert-base-uncased on the conll2003 dataset. It achieves the following results on the evaluation set: * Loss: 2.1258 * Precision: 0.0269 * Recall: 0.1379 * F1: 0.0451 * Accuracy: 0.1988 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 16 * eval\_batch\_size: 32 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 2 ### Training results ### Framework versions * Transformers 4.8.2 * Pytorch 1.8.1+cu111 * Datasets 1.8.0 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 2", "### Training results", "### Framework versions\n\n\n* Transformers 4.8.2\n* Pytorch 1.8.1+cu111\n* Datasets 1.8.0\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #bert #token-classification #generated_from_trainer #dataset-conll2003 #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 2", "### Training results", "### Framework versions\n\n\n* Transformers 4.8.2\n* Pytorch 1.8.1+cu111\n* Datasets 1.8.0\n* Tokenizers 0.10.3" ]
[ 63, 98, 4, 34 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #bert #token-classification #generated_from_trainer #dataset-conll2003 #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 2### Training results### Framework versions\n\n\n* Transformers 4.8.2\n* Pytorch 1.8.1+cu111\n* Datasets 1.8.0\n* Tokenizers 0.10.3" ]
[ -0.10909858345985413, 0.10547416657209396, -0.0018119445303454995, 0.12297603487968445, 0.1679358184337616, 0.035931725054979324, 0.12001754343509674, 0.11613373458385468, -0.10717010498046875, 0.02439703606069088, 0.12795861065387726, 0.1678411215543747, 0.00792995747178793, 0.10627112537622452, -0.054348476231098175, -0.2464005947113037, -0.002987428568303585, 0.0475882813334465, -0.09248116612434387, 0.1269427239894867, 0.0958186686038971, -0.13499830663204193, 0.09417884796857834, 0.0017378629418089986, -0.22286520898342133, 0.011748525314033031, 0.025641893967986107, -0.05587988346815109, 0.1440795511007309, 0.035262782126665115, 0.1332864761352539, -0.0018437056569382548, 0.0949646607041359, -0.17838039994239807, 0.006789271719753742, 0.05662422627210617, -0.0002041700790869072, 0.09400812536478043, 0.0540035218000412, 0.009945042431354523, 0.11827317625284195, -0.08126769959926605, 0.050513576716184616, 0.01917032152414322, -0.11816280335187912, -0.21621449291706085, -0.08997879922389984, 0.02949027344584465, 0.06919457763433456, 0.09517935663461685, 0.006271079182624817, 0.15284816920757294, -0.08401747047901154, 0.09098813682794571, 0.22006762027740479, -0.30675607919692993, -0.06724698841571808, 0.05496193841099739, 0.010036405175924301, 0.056124184280633926, -0.10499193519353867, -0.027967777103185654, 0.06140587478876114, 0.04356073960661888, 0.12678180634975433, -0.04095381125807762, -0.12662437558174133, 0.023180682212114334, -0.1434372067451477, -0.01643308624625206, 0.15229199826717377, 0.04204745218157768, -0.030511684715747833, -0.019895387813448906, -0.06133802980184555, -0.15253114700317383, -0.023561298847198486, -0.012025580741465092, 0.05013848468661308, -0.032723039388656616, -0.08286435157060623, 0.002277409890666604, -0.10687842220067978, -0.07047515362501144, -0.08705475181341171, 0.14267726242542267, 0.03622736036777496, 0.022595888003706932, -0.024104023352265358, 0.09961149841547012, -0.0000754722350393422, -0.11827308684587479, 0.01877029798924923, 0.03631308674812317, -0.015668224543333054, -0.05954990163445473, -0.065679632127285, -0.04509381949901581, 0.016182055696845055, 0.13071206212043762, -0.04633624479174614, 0.041207075119018555, 0.04720387980341911, 0.0411650724709034, -0.0883694738149643, 0.18685248494148254, -0.05438840761780739, -0.021763116121292114, 0.008853876031935215, 0.036213040351867676, 0.018300725147128105, -0.004781140014529228, -0.12383481115102768, 0.002072082832455635, 0.10551651567220688, 0.006900979671627283, -0.07311931997537613, 0.0699697732925415, -0.05867324024438858, -0.022376587614417076, 0.009806462563574314, -0.08899306505918503, 0.03827179595828056, -0.0035808440297842026, -0.08744475245475769, -0.022928522899746895, 0.01611950248479843, 0.01579391211271286, -0.0026957045774906874, 0.1067754253745079, -0.09722351282835007, 0.02754284255206585, -0.09448361396789551, -0.11302327364683151, 0.025172293186187744, -0.08129947632551193, 0.031659409403800964, -0.09922247380018234, -0.1604534387588501, -0.009282956831157207, 0.06274372339248657, -0.023945428431034088, -0.05437932163476944, -0.043382491916418076, -0.07894254475831985, 0.008022566325962543, -0.017578357830643654, 0.12824073433876038, -0.06481204181909561, 0.09350013732910156, 0.03328974172472954, 0.06413920223712921, -0.07104026526212692, 0.050236962735652924, -0.09704361110925674, 0.011232509277760983, -0.15759854018688202, 0.02313351444900036, -0.055219098925590515, 0.06316210329532623, -0.09332390129566193, -0.09936890006065369, 0.03519896790385246, -0.0002785641117952764, 0.06820189207792282, 0.07358565181493759, -0.1822279989719391, -0.07183773070573807, 0.13927523791790009, -0.0658981204032898, -0.12337014079093933, 0.11050065606832504, -0.06558419018983841, 0.041111379861831665, 0.06919814646244049, 0.1451391726732254, 0.06904485076665878, -0.07721905410289764, -0.0015170590486377478, 0.016862498596310616, 0.05074930563569069, -0.0847182422876358, 0.06917781382799149, 0.012520468793809414, 0.013863902539014816, 0.024081019684672356, -0.038115907460451126, 0.05591341853141785, -0.09800522029399872, -0.09212274849414825, -0.03839883208274841, -0.10442838072776794, 0.031585779041051865, 0.07050753384828568, 0.0738958790898323, -0.09605219960212708, -0.07833192497491837, 0.09401890635490417, 0.0923089012503624, -0.05710851401090622, 0.026227932423353195, -0.0678141713142395, 0.06155483424663544, -0.04878917708992958, -0.032372817397117615, -0.1779627501964569, -0.04396611452102661, 0.00912321824580431, 0.004612626042217016, 0.02374286763370037, 0.041162338107824326, 0.06643414497375488, 0.06277447938919067, -0.05442088097333908, -0.010830906219780445, -0.017301976680755615, 0.0036747462581843138, -0.13431429862976074, -0.21052680909633636, -0.04086076468229294, -0.018758051097393036, 0.1385951191186905, -0.21945105493068695, 0.02912295237183571, 0.0013541535008698702, 0.08115095645189285, 0.016616204753518105, -0.005511585157364607, -0.0505557544529438, 0.0800098180770874, -0.05046030879020691, -0.05626825988292694, 0.0643467828631401, 0.007677561137825251, -0.0953545942902565, -0.06031324341893196, -0.10040897130966187, 0.17297497391700745, 0.137332022190094, -0.12821021676063538, -0.07983977347612381, 0.0024052783846855164, -0.05429501459002495, -0.03204770386219025, -0.04428546875715256, 0.03815562650561333, 0.1563681960105896, -0.01569928601384163, 0.149240180850029, -0.06486517190933228, -0.045610737055540085, 0.01900593936443329, -0.0340820774435997, 0.021703757345676422, 0.11148209869861603, 0.13438475131988525, -0.08935186266899109, 0.15089116990566254, 0.1519785225391388, -0.10762390494346619, 0.10981334000825882, -0.04236331209540367, -0.07004708796739578, -0.025164779275655746, -0.024961939081549644, 0.0018154910067096353, 0.11074694991111755, -0.11760441213846207, -0.004639383405447006, 0.020502595230937004, 0.02237643115222454, 0.019459648057818413, -0.23169951140880585, -0.037034254521131516, 0.029439430683851242, -0.03621790185570717, -0.002684907289221883, -0.02758593112230301, -0.0021183451171964407, 0.10365468263626099, 0.00491373473778367, -0.10279887914657593, 0.048187777400016785, 0.004121769685298204, -0.07649847120046616, 0.21451526880264282, -0.09360256791114807, -0.12601596117019653, -0.1246097981929779, -0.0860978439450264, -0.05031801015138626, 0.01226833462715149, 0.048271600157022476, -0.08064505457878113, -0.037491727620363235, -0.061507467180490494, 0.005801449529826641, -0.008561479859054089, 0.040449123829603195, 0.00829384010285139, 0.0001938382483785972, 0.07656078040599823, -0.1125379130244255, -0.004313433542847633, -0.05430261418223381, -0.0807710811495781, 0.04275636374950409, 0.03767097368836403, 0.11283230036497116, 0.1568669080734253, -0.0193543191999197, 0.004930899944156408, -0.03000623546540737, 0.23520806431770325, -0.058231718838214874, -0.0280222836881876, 0.11691047251224518, -0.016025401651859283, 0.04167114570736885, 0.11347288638353348, 0.07636485993862152, -0.09397869557142258, 0.004543949384242296, 0.03715891018509865, -0.03457300737500191, -0.22447188198566437, -0.04467463493347168, -0.05199765786528587, -0.01604725793004036, 0.09300883859395981, 0.030425652861595154, 0.042050015181303024, 0.06832975149154663, 0.04712888225913048, 0.0997152179479599, -0.04900568723678589, 0.05626033991575241, 0.11316933482885361, 0.0520709827542305, 0.1223457083106041, -0.044061318039894104, -0.05099990591406822, 0.04642273858189583, -0.001582156983204186, 0.2246587574481964, 0.009687424637377262, 0.14193153381347656, 0.053676437586545944, 0.18222862482070923, -0.011533382348716259, 0.07296290993690491, -0.004362466279417276, -0.03995177522301674, -0.01341270562261343, -0.03885624557733536, -0.030862901359796524, 0.028284547850489616, -0.06412709504365921, 0.059567973017692566, -0.10940450429916382, 0.006270211189985275, 0.053911395370960236, 0.2409835308790207, 0.04936473071575165, -0.3347453474998474, -0.09260307252407074, 0.0008549905032850802, -0.030357083305716515, -0.016448110342025757, 0.02764669433236122, 0.10199634730815887, -0.07446461915969849, 0.032771363854408264, -0.06351441890001297, 0.0895993784070015, -0.051659006625413895, 0.04211157560348511, 0.09209524095058441, 0.10736402124166489, 0.011756159365177155, 0.08100524544715881, -0.295752614736557, 0.27245432138442993, 0.011770316399633884, 0.0669448971748352, -0.07095900923013687, 0.0009577158489264548, 0.028851330280303955, 0.07063912600278854, 0.05029008910059929, -0.009693341329693794, -0.045110732316970825, -0.2017836570739746, -0.04619096964597702, 0.03133996203541756, 0.08134137839078903, -0.015996556729078293, 0.09194726496934891, -0.03554830327630043, 0.0024318797513842583, 0.08612504601478577, -0.013313362374901772, -0.04631362110376358, -0.09422153234481812, -0.012098991312086582, 0.041164468973875046, -0.046671848744153976, -0.06435327976942062, -0.10823273658752441, -0.13041743636131287, 0.16553014516830444, -0.032856088131666183, -0.019723957404494286, -0.10837908834218979, 0.09942068159580231, 0.0798133909702301, -0.08633769303560257, 0.044759321957826614, 0.009348783642053604, 0.06492535769939423, 0.04814297705888748, -0.07107188552618027, 0.11571135371923447, -0.06605902314186096, -0.15941309928894043, -0.06312020123004913, 0.08759930729866028, 0.03819728642702103, 0.0649406909942627, -0.007825211621820927, 0.017871687188744545, -0.03466162458062172, -0.08578332513570786, 0.017175188288092613, -0.006479139905422926, 0.07298905402421951, 0.01780020445585251, -0.052805930376052856, 0.01486605778336525, -0.04875309020280838, -0.03273569419980049, 0.18334197998046875, 0.24098144471645355, -0.10225995630025864, -0.00019347851048223674, 0.03242424130439758, -0.06966043263673782, -0.1954115480184555, 0.0577823780477047, 0.05198659375309944, 0.0013229796895757318, 0.03417346626520157, -0.17618754506111145, 0.15298554301261902, 0.12066653370857239, -0.01150561310350895, 0.10538530349731445, -0.3134491741657257, -0.12343229353427887, 0.12103642523288727, 0.1412350833415985, 0.12518452107906342, -0.14384983479976654, -0.020024560391902924, -0.026401665061712265, -0.13309279084205627, 0.12625420093536377, -0.10175486654043198, 0.11582014709711075, -0.02054060436785221, 0.07808545231819153, -0.001893708948045969, -0.05664126202464104, 0.12291810661554337, 0.0347423329949379, 0.10570935904979706, -0.051949985325336456, -0.04614504426717758, 0.04753964766860008, -0.03518716245889664, 0.006822499446570873, -0.07721405476331711, 0.02840799279510975, -0.08592529594898224, -0.01732509396970272, -0.0699511244893074, 0.04421662911772728, -0.031964950263500214, -0.06254465132951736, -0.044674716889858246, 0.02746538072824478, 0.04518526419997215, -0.01752452366054058, 0.14643694460391998, 0.0386141873896122, 0.13749904930591583, 0.10484424978494644, 0.06722481548786163, -0.07580152899026871, -0.05967193469405174, -0.013146713376045227, -0.019497208297252655, 0.06672791391611099, -0.13876216113567352, 0.03275148570537567, 0.14551056921482086, 0.020506685599684715, 0.1345527023077011, 0.08421382308006287, -0.022791102528572083, 0.00638954434543848, 0.06263887882232666, -0.15486212074756622, -0.07062888145446777, 0.00893971137702465, -0.05281680449843407, -0.10905542969703674, 0.06676509976387024, 0.10108087211847305, -0.07013718783855438, -0.005899602547287941, -0.00013532170851249248, -0.001251302077434957, -0.06601271778345108, 0.20095212757587433, 0.06930000334978104, 0.04091949388384819, -0.10476028174161911, 0.07337883114814758, 0.05111077427864075, -0.06330949068069458, -0.00018613356223795563, 0.054364852607250214, -0.08397570252418518, -0.04107973352074623, 0.0889936164021492, 0.1682586520910263, -0.08112195879220963, -0.05390221253037453, -0.13212928175926208, -0.11158676445484161, 0.07290187478065491, 0.17030343413352966, 0.1221141442656517, 0.024076297879219055, -0.05042440816760063, 0.013773700222373009, -0.12078267335891724, 0.07655538618564606, 0.03534853085875511, 0.07899749279022217, -0.155242457985878, 0.16875681281089783, 0.006143348757177591, 0.039788682013750076, -0.022326108068227768, 0.03443007916212082, -0.11194916814565659, 0.007169951219111681, -0.1315043717622757, -0.021518388763070107, -0.0331648625433445, 0.010425065644085407, 0.01085478626191616, -0.0659133717417717, -0.06601950526237488, 0.015279054641723633, -0.11730898171663284, -0.020313305780291557, 0.03984770178794861, 0.054952412843704224, -0.12135176360607147, -0.04123536869883537, 0.019490377977490425, -0.058615490794181824, 0.06595499813556671, 0.04014794901013374, 0.026666736230254173, 0.06685113161802292, -0.14212003350257874, -0.0012877159751951694, 0.07461536675691605, 0.021705742925405502, 0.08524840325117111, -0.07922150939702988, -0.010359072126448154, 0.005852946080267429, 0.06529439985752106, 0.014465631917119026, 0.07804476469755173, -0.12790049612522125, -0.01223995815962553, -0.03682886064052582, -0.07952564209699631, -0.06363380700349808, 0.028107328340411186, 0.10294515639543533, 0.011514954268932343, 0.20921510457992554, -0.07460173964500427, 0.02308657206594944, -0.2041468322277069, 0.005004726815968752, -0.019553694874048233, -0.1138690859079361, -0.13935528695583344, -0.05796818062663078, 0.06285815685987473, -0.05855056270956993, 0.14155010879039764, 0.014343592338263988, 0.0414494052529335, 0.027260150760412216, -0.012646886520087719, 0.00880691409111023, 0.027126288041472435, 0.2160845696926117, 0.04278518259525299, -0.028723441064357758, 0.05682956799864769, 0.05278225615620613, 0.11078575253486633, 0.10041790455579758, 0.19576521217823029, 0.13739432394504547, -0.02354806289076805, 0.09785446524620056, 0.039597153663635254, -0.07677469402551651, -0.14878302812576294, 0.04638800397515297, -0.05880903825163841, 0.10244037210941315, -0.020901119336485863, 0.2171119898557663, 0.056533001363277435, -0.16667021811008453, 0.026902174577116966, -0.06317676603794098, -0.08800452202558517, -0.11235053092241287, -0.03423750400543213, -0.08793626725673676, -0.13967688381671906, -0.0030674664303660393, -0.1118570864200592, 0.011620382778346539, 0.1304549127817154, 0.009692220948636532, -0.01682460308074951, 0.1471324861049652, 0.011232762597501278, 0.03499092906713486, 0.03642614185810089, 0.010920515283942223, -0.03352557122707367, -0.1060585156083107, -0.0705675259232521, -0.024992238730192184, -0.014909205958247185, 0.03408665582537651, -0.06479837000370026, -0.03878683224320412, 0.04418225586414337, -0.021368278190493584, -0.09640517085790634, 0.013081040233373642, 0.016746344044804573, 0.05434136465191841, 0.02238479070365429, 0.009089512750506401, 0.022526228800415993, -0.006750399712473154, 0.20894227921962738, -0.08519155532121658, -0.07299493998289108, -0.10506164282560349, 0.26041024923324585, 0.0323081836104393, -0.004160471726208925, 0.03280150890350342, -0.0717087984085083, 0.0018761266255751252, 0.23997145891189575, 0.20532968640327454, -0.09920685738325119, -0.011637787334620953, 0.007178818807005882, -0.011495918035507202, -0.038231488317251205, 0.11398962885141373, 0.12572713196277618, 0.04431365057826042, -0.09218312054872513, -0.06017213687300682, -0.05231416970491409, -0.0035586063750088215, -0.034377750009298325, 0.045762185007333755, 0.041459642350673676, 0.00654883636161685, -0.04186185076832771, 0.0453345887362957, -0.05525178462266922, -0.11342426389455795, 0.0759604275226593, -0.19820290803909302, -0.1651686131954193, -0.012040015310049057, 0.11301717907190323, 0.0012872477527707815, 0.0631728246808052, -0.03606175631284714, 0.002891720272600651, 0.07391440123319626, -0.019138431176543236, -0.10750740021467209, -0.08265088498592377, 0.10456087440252304, -0.09740858525037766, 0.2092922478914261, -0.04766298085451126, 0.08167978376150131, 0.1310504972934723, 0.06238691508769989, -0.07748984545469284, 0.05519040301442146, 0.04702913388609886, -0.08475689589977264, 0.022645050659775734, 0.0626312717795372, -0.04078920930624008, 0.08758337050676346, 0.04300964996218681, -0.12791898846626282, 0.015534044243395329, -0.059760406613349915, -0.057023484259843826, -0.04611048102378845, -0.05343449115753174, -0.05706407129764557, 0.1308421939611435, 0.2115286886692047, -0.03177746757864952, 0.002705509075894952, -0.07024826854467392, 0.014655858278274536, 0.06330719590187073, 0.027338026091456413, -0.07128245383501053, -0.22391752898693085, 0.019995812326669693, 0.03686370328068733, -0.017581172287464142, -0.20562438666820526, -0.08662677556276321, 0.0018912868108600378, -0.07484220713376999, -0.09483546763658524, 0.08256039023399353, 0.08196866512298584, 0.05105395242571831, -0.06332121789455414, -0.051575250923633575, -0.08346235752105713, 0.14358577132225037, -0.14595870673656464, -0.10018817335367203 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-large-uncased-ner This model is a fine-tuned version of [bert-large-uncased](https://huggingface.co/bert-large-uncased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0591 - Precision: 0.9465 - Recall: 0.9568 - F1: 0.9517 - Accuracy: 0.9877 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.1702 | 1.0 | 878 | 0.0578 | 0.9202 | 0.9347 | 0.9274 | 0.9836 | | 0.0392 | 2.0 | 1756 | 0.0601 | 0.9306 | 0.9448 | 0.9377 | 0.9851 | | 0.0157 | 3.0 | 2634 | 0.0517 | 0.9405 | 0.9544 | 0.9474 | 0.9875 | | 0.0057 | 4.0 | 3512 | 0.0591 | 0.9465 | 0.9568 | 0.9517 | 0.9877 | ### Framework versions - Transformers 4.8.2 - Pytorch 1.8.1+cu111 - Datasets 1.8.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["conll2003"], "metrics": ["precision", "recall", "f1", "accuracy"], "model_index": [{"name": "bert-large-uncased-ner", "results": [{"task": {"name": "Token Classification", "type": "token-classification"}, "dataset": {"name": "conll2003", "type": "conll2003", "args": "conll2003"}, "metric": {"name": "Accuracy", "type": "accuracy", "value": 0.9877039414110284}}]}]}
token-classification
andi611/bert-large-uncased-ner-conll2003
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "dataset:conll2003", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #bert #token-classification #generated_from_trainer #dataset-conll2003 #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
bert-large-uncased-ner ====================== This model is a fine-tuned version of bert-large-uncased on the conll2003 dataset. It achieves the following results on the evaluation set: * Loss: 0.0591 * Precision: 0.9465 * Recall: 0.9568 * F1: 0.9517 * Accuracy: 0.9877 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 5e-05 * train\_batch\_size: 16 * eval\_batch\_size: 32 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 4 ### Training results ### Framework versions * Transformers 4.8.2 * Pytorch 1.8.1+cu111 * Datasets 1.8.0 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 4", "### Training results", "### Framework versions\n\n\n* Transformers 4.8.2\n* Pytorch 1.8.1+cu111\n* Datasets 1.8.0\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #bert #token-classification #generated_from_trainer #dataset-conll2003 #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 4", "### Training results", "### Framework versions\n\n\n* Transformers 4.8.2\n* Pytorch 1.8.1+cu111\n* Datasets 1.8.0\n* Tokenizers 0.10.3" ]
[ 63, 98, 4, 34 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #bert #token-classification #generated_from_trainer #dataset-conll2003 #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 4### Training results### Framework versions\n\n\n* Transformers 4.8.2\n* Pytorch 1.8.1+cu111\n* Datasets 1.8.0\n* Tokenizers 0.10.3" ]
[ -0.11068462580442429, 0.10301382839679718, -0.0017267689108848572, 0.12361399084329605, 0.16973860561847687, 0.03632475435733795, 0.11908187717199326, 0.11458680033683777, -0.10862753540277481, 0.02475389465689659, 0.12799055874347687, 0.1681796759366989, 0.007694697473198175, 0.10657139867544174, -0.05418211966753006, -0.24464693665504456, -0.003387411357834935, 0.04836477339267731, -0.09088367223739624, 0.12667255103588104, 0.09516332298517227, -0.13681261241436005, 0.09492246806621552, 0.0010476489551365376, -0.22413168847560883, 0.012888994999229908, 0.0244833342730999, -0.05592229589819908, 0.14349272847175598, 0.035098250955343246, 0.1331191509962082, -0.0028941894415766, 0.09359811246395111, -0.17608511447906494, 0.007148897275328636, 0.056991953402757645, -0.0002538793778512627, 0.09378271549940109, 0.054275836795568466, 0.010223201476037502, 0.11681161820888519, -0.08245661854743958, 0.05086122080683708, 0.01924777217209339, -0.11820302903652191, -0.21763379871845245, -0.08966095000505447, 0.028125643730163574, 0.06881927698850632, 0.096869096159935, 0.005313749425113201, 0.15218369662761688, -0.08469217270612717, 0.0923420861363411, 0.21881073713302612, -0.3081938922405243, -0.06775641441345215, 0.05686924234032631, 0.01087278500199318, 0.05662241950631142, -0.10600253939628601, -0.027258604764938354, 0.06224606931209564, 0.04401734098792076, 0.12812189757823944, -0.04062916338443756, -0.12589290738105774, 0.024172453209757805, -0.1439700871706009, -0.015369714237749577, 0.15502266585826874, 0.04279924929141998, -0.02954586036503315, -0.021671822294592857, -0.05954369902610779, -0.1551409810781479, -0.02430909126996994, -0.011493834666907787, 0.05046941712498665, -0.03453122451901436, -0.08237028121948242, 0.004649786278605461, -0.10655799508094788, -0.06916757673025131, -0.08648111671209335, 0.14008399844169617, 0.03651181980967522, 0.021580860018730164, -0.024553759023547173, 0.09911154955625534, -0.0009178505861200392, -0.11743449419736862, 0.019919387996196747, 0.035203807055950165, -0.015341304242610931, -0.060124851763248444, -0.0663645938038826, -0.04496428743004799, 0.016839412972331047, 0.13033527135849, -0.04515806958079338, 0.04190560802817345, 0.04846278578042984, 0.039393067359924316, -0.08801707625389099, 0.18615861237049103, -0.05548306182026863, -0.023825211450457573, 0.00915203895419836, 0.03707265481352806, 0.016401030123233795, -0.004079556558281183, -0.12248348444700241, 0.0027966138441115618, 0.10510514676570892, 0.006772488355636597, -0.07420537620782852, 0.07199005782604218, -0.05764767527580261, -0.021605234593153, 0.009537429548799992, -0.0892852321267128, 0.037421341985464096, -0.0037322731222957373, -0.08718635886907578, -0.02210838347673416, 0.015514276921749115, 0.013996608555316925, -0.0038168560713529587, 0.10725752264261246, -0.09838133305311203, 0.026346411556005478, -0.09542343765497208, -0.11430010944604874, 0.023658862337470055, -0.08161678910255432, 0.03288741409778595, -0.09886298328638077, -0.15996329486370087, -0.011380041018128395, 0.06187820807099342, -0.023629117757081985, -0.05390924960374832, -0.04350734502077103, -0.07968014478683472, 0.00745046604424715, -0.017207881435751915, 0.13104130327701569, -0.06477335840463638, 0.09308215975761414, 0.035720985382795334, 0.0640452429652214, -0.06963680684566498, 0.05108654871582985, -0.09637638181447983, 0.009683783166110516, -0.15824824571609497, 0.022183213382959366, -0.05657774582505226, 0.06616663932800293, -0.09249066561460495, -0.10049125552177429, 0.0366351380944252, 0.00038971903268247843, 0.0683148205280304, 0.0739067867398262, -0.17999796569347382, -0.07175200432538986, 0.1383303850889206, -0.06429002434015274, -0.12431800365447998, 0.1098373532295227, -0.06555428355932236, 0.039280518889427185, 0.07042793184518814, 0.14509454369544983, 0.0684729740023613, -0.07895850390195847, -0.0025090165436267853, 0.01614466682076454, 0.051312413066625595, -0.08472960442304611, 0.0668894499540329, 0.013433746993541718, 0.012132263742387295, 0.02555510587990284, -0.03736257553100586, 0.05608697980642319, -0.0978095605969429, -0.09191099554300308, -0.03907744958996773, -0.10500103235244751, 0.03027886338531971, 0.07154019176959991, 0.0741688534617424, -0.09705284237861633, -0.07732376456260681, 0.09127016365528107, 0.09201527386903763, -0.05698143318295479, 0.024210689589381218, -0.0674094632267952, 0.0629919171333313, -0.04962409287691116, -0.031664419919252396, -0.17819160223007202, -0.04423306882381439, 0.008477830328047276, 0.005475493613630533, 0.022690443322062492, 0.04072817042469978, 0.0670095682144165, 0.06256872415542603, -0.05435338243842125, -0.011391599662601948, -0.01581558957695961, 0.003897658083587885, -0.1348932981491089, -0.21138113737106323, -0.04109704867005348, -0.018484903499484062, 0.13717088103294373, -0.22101861238479614, 0.02918202430009842, 0.0005986356409266591, 0.08061643689870834, 0.015932049602270126, -0.0049888030625879765, -0.049114227294921875, 0.08147583901882172, -0.04900060221552849, -0.05575931444764137, 0.06448137760162354, 0.007390524726361036, -0.09310874342918396, -0.06283488869667053, -0.10048016905784607, 0.1756993979215622, 0.13820235431194305, -0.12911304831504822, -0.0808810442686081, 0.0019171361345797777, -0.05408531427383423, -0.032234784215688705, -0.04311135411262512, 0.03849950432777405, 0.1554471105337143, -0.017258694395422935, 0.14923502504825592, -0.06420502066612244, -0.04557602480053902, 0.019789734855294228, -0.03199540823698044, 0.02245854213833809, 0.1130327433347702, 0.1333034634590149, -0.08636125177145004, 0.15133604407310486, 0.15080024302005768, -0.10726900398731232, 0.11072143912315369, -0.043515220284461975, -0.07013668119907379, -0.024230672046542168, -0.025407182052731514, 0.0008313285652548075, 0.11197340488433838, -0.1195647269487381, -0.006489150691777468, 0.020465176552534103, 0.020836034789681435, 0.019366972148418427, -0.22982914745807648, -0.03664770722389221, 0.02897464670240879, -0.034811101853847504, -0.002878938801586628, -0.026166439056396484, -0.002699202159419656, 0.10297191888093948, 0.0044105867855250835, -0.10297685116529465, 0.04757806658744812, 0.004515568260103464, -0.07500479370355606, 0.2149248719215393, -0.09361431002616882, -0.12488816678524017, -0.12289195507764816, -0.08750052750110626, -0.051571499556303024, 0.01039567869156599, 0.04867935553193092, -0.0829840898513794, -0.038510601967573166, -0.06070498004555702, 0.004387092776596546, -0.008378108963370323, 0.04033101350069046, 0.007395036984235048, -0.000947698310483247, 0.0757170096039772, -0.1123160570859909, -0.003627204103395343, -0.05505536124110222, -0.08012551814317703, 0.042487733066082, 0.03854821249842644, 0.11408870667219162, 0.15499980747699738, -0.018121348693966866, 0.004915204830467701, -0.0307539664208889, 0.23855042457580566, -0.05899955332279205, -0.02887560799717903, 0.11635184288024902, -0.01397525705397129, 0.0402308851480484, 0.11271902173757553, 0.07723133265972137, -0.09450684487819672, 0.004474742338061333, 0.03746933117508888, -0.03328109532594681, -0.2249659299850464, -0.04405194893479347, -0.0530007928609848, -0.016583653166890144, 0.09277471154928207, 0.030131351202726364, 0.04421447217464447, 0.06860223412513733, 0.04800310358405113, 0.10055331140756607, -0.050077468156814575, 0.05565723404288292, 0.11562114208936691, 0.05105220153927803, 0.12302336096763611, -0.04495102912187576, -0.051252592355012894, 0.04503759741783142, -0.002120518358424306, 0.22644482553005219, 0.009638707153499126, 0.14190730452537537, 0.05391279235482216, 0.18340565264225006, -0.011559901759028435, 0.07430334389209747, -0.0055211130529642105, -0.04120676964521408, -0.012166192755103111, -0.038998641073703766, -0.02854061871767044, 0.026439525187015533, -0.0649506226181984, 0.05984283983707428, -0.11026687175035477, 0.0030220241751521826, 0.053705666214227676, 0.241355761885643, 0.04738875851035118, -0.33579328656196594, -0.09276358783245087, -0.0013548106653615832, -0.029669590294361115, -0.016917863860726357, 0.027821609750390053, 0.09984540939331055, -0.07391209155321121, 0.032788991928100586, -0.06342639774084091, 0.08968621492385864, -0.05094178393483162, 0.04309684783220291, 0.09365496784448624, 0.10965462774038315, 0.010354731231927872, 0.07998397946357727, -0.29916954040527344, 0.27151501178741455, 0.012261676602065563, 0.06872420758008957, -0.07077717781066895, 0.0009845875902101398, 0.02892007865011692, 0.07162213325500488, 0.05056232213973999, -0.010802186094224453, -0.04402999207377434, -0.20167602598667145, -0.045123547315597534, 0.03232307359576225, 0.08052655309438705, -0.015201876871287823, 0.0917133316397667, -0.0345524437725544, 0.0013467378448694944, 0.08568631112575531, -0.014833447523415089, -0.04797515273094177, -0.09484458714723587, -0.012209081090986729, 0.042638685554265976, -0.045855987817049026, -0.06309440732002258, -0.10874991863965988, -0.13382011651992798, 0.16220271587371826, -0.03331026807427406, -0.019582858309149742, -0.10892771929502487, 0.09857967495918274, 0.08003824204206467, -0.08483404666185379, 0.046145565807819366, 0.009362922050058842, 0.062292806804180145, 0.0491083487868309, -0.07131936401128769, 0.11606968939304352, -0.06686697900295258, -0.15789905190467834, -0.06250183284282684, 0.08652409166097641, 0.037804555147886276, 0.06348294764757156, -0.008748560212552547, 0.01798548363149166, -0.03639120236039162, -0.08606039732694626, 0.017634715884923935, -0.008388807997107506, 0.07388456910848618, 0.017728587612509727, -0.05383734405040741, 0.011738973669707775, -0.04866338521242142, -0.03302576765418053, 0.18111279606819153, 0.23813794553279877, -0.10126227885484695, -0.002258410444483161, 0.03288348391652107, -0.06980358064174652, -0.1934918761253357, 0.05945713445544243, 0.05081642046570778, 0.0020798237528651953, 0.0326259583234787, -0.17715629935264587, 0.15480351448059082, 0.11977881193161011, -0.010435931384563446, 0.10854217410087585, -0.310834676027298, -0.12305592745542526, 0.12226898223161697, 0.1425883024930954, 0.12711884081363678, -0.14490140974521637, -0.019341349601745605, -0.025093961507081985, -0.13272565603256226, 0.12356175482273102, -0.10294985771179199, 0.11613926291465759, -0.021223846822977066, 0.07690686732530594, -0.002387840300798416, -0.05736245587468147, 0.12155447155237198, 0.034871749579906464, 0.10783451050519943, -0.05209323391318321, -0.04464641958475113, 0.04674021527171135, -0.03449273109436035, 0.00773633411154151, -0.07839208841323853, 0.02811797522008419, -0.08627083897590637, -0.016732508316636086, -0.07120015472173691, 0.04443511739373207, -0.03268476203083992, -0.0616292767226696, -0.04369921237230301, 0.027677396312355995, 0.043936822563409805, -0.017684780061244965, 0.14472584426403046, 0.037898216396570206, 0.13917741179466248, 0.10210171341896057, 0.0671181008219719, -0.07585148513317108, -0.06272096931934357, -0.011952695436775684, -0.019863687455654144, 0.06740207225084305, -0.13830964267253876, 0.03034471720457077, 0.14639519155025482, 0.01976567506790161, 0.13410013914108276, 0.08437195420265198, -0.021750226616859436, 0.004850402008742094, 0.06317532807588577, -0.15606354176998138, -0.06889253854751587, 0.008527526631951332, -0.056525539606809616, -0.10858277976512909, 0.06787896156311035, 0.10018552094697952, -0.07049210369586945, -0.005950533784925938, -0.0007959029753692448, -0.001971712801605463, -0.06499423086643219, 0.20294015109539032, 0.06935474276542664, 0.040993183851242065, -0.1063472181558609, 0.0730973556637764, 0.05127972364425659, -0.06629389524459839, -0.0003834698291029781, 0.05493302270770073, -0.08542372286319733, -0.042074356228113174, 0.08877337723970413, 0.1709810197353363, -0.07892563194036484, -0.05414261668920517, -0.13309471309185028, -0.11190365254878998, 0.07355304062366486, 0.17094005644321442, 0.12164830416440964, 0.022842101752758026, -0.04980316013097763, 0.014027589932084084, -0.12187656760215759, 0.07762642949819565, 0.03441714867949486, 0.07958926260471344, -0.15508471429347992, 0.16698184609413147, 0.006431987509131432, 0.03822002187371254, -0.022193865850567818, 0.034804876893758774, -0.11315381526947021, 0.00662217428907752, -0.1294611394405365, -0.023106347769498825, -0.032584112137556076, 0.011074723675847054, 0.01009680051356554, -0.06460115313529968, -0.06554240733385086, 0.016309818252921104, -0.11737474054098129, -0.01967405341565609, 0.0425274558365345, 0.056309543550014496, -0.12030480802059174, -0.040509555488824844, 0.017972039058804512, -0.05822159722447395, 0.06532997637987137, 0.04019554704427719, 0.02624855935573578, 0.06665865331888199, -0.14169760048389435, -0.0006452247034758329, 0.07304209470748901, 0.020559607073664665, 0.08564586192369461, -0.07845544815063477, -0.009663110598921776, 0.005570156499743462, 0.06579922139644623, 0.014802655205130577, 0.07598131895065308, -0.12802861630916595, -0.012879610992968082, -0.03492014855146408, -0.07663201540708542, -0.06433238834142685, 0.02827191725373268, 0.10375984758138657, 0.010178939439356327, 0.20847418904304504, -0.07508847117424011, 0.02211684174835682, -0.20405104756355286, 0.0047548431903123856, -0.02029257081449032, -0.11667507141828537, -0.13929662108421326, -0.05797114595770836, 0.06440716981887817, -0.05937216058373451, 0.14376914501190186, 0.014984313398599625, 0.04200584813952446, 0.026921352371573448, -0.01167474128305912, 0.007150810677558184, 0.02776760794222355, 0.2157951146364212, 0.04201569780707359, -0.02886234037578106, 0.057228934019804, 0.05535680428147316, 0.10963723063468933, 0.10323577374219894, 0.1935814470052719, 0.13754118978977203, -0.02330346591770649, 0.09811384975910187, 0.03950092941522598, -0.07766275852918625, -0.14649416506290436, 0.047145742923021317, -0.0588340237736702, 0.10560812056064606, -0.022751137614250183, 0.2145397663116455, 0.05552418529987335, -0.16500884294509888, 0.02788231521844864, -0.06459366530179977, -0.08802162110805511, -0.11064722388982773, -0.03257327899336815, -0.08680722862482071, -0.14067792892456055, -0.002801859052851796, -0.1125575453042984, 0.011055226437747478, 0.13076554238796234, 0.010371829383075237, -0.0180977750569582, 0.15026909112930298, 0.014726992696523666, 0.0360974483191967, 0.0388338640332222, 0.010084599256515503, -0.0351540707051754, -0.10714858025312424, -0.06931158900260925, -0.025883935391902924, -0.0175209678709507, 0.033014941960573196, -0.06608741730451584, -0.04086142033338547, 0.04522838443517685, -0.019943593069911003, -0.09599251300096512, 0.013377743773162365, 0.01721283048391342, 0.05378095433115959, 0.02457689680159092, 0.008147052489221096, 0.021912598982453346, -0.007385289296507835, 0.2087516188621521, -0.0848378837108612, -0.07078955322504044, -0.10511314868927002, 0.25764772295951843, 0.0331428237259388, -0.005546145141124725, 0.031787704676389694, -0.07060899585485458, 0.003923140466213226, 0.2422688752412796, 0.20555251836776733, -0.09674855321645737, -0.011858795769512653, 0.007382330484688282, -0.01153191365301609, -0.03879667446017265, 0.11420461535453796, 0.1267974078655243, 0.04311187192797661, -0.09238563477993011, -0.05849878489971161, -0.05231386050581932, -0.00426795007660985, -0.03391709551215172, 0.0438355877995491, 0.04375245049595833, 0.005665211472660303, -0.040143050253391266, 0.04581458866596222, -0.05516925826668739, -0.11203218996524811, 0.07652445137500763, -0.19699913263320923, -0.16539321839809418, -0.014001240953803062, 0.11310721933841705, 0.0025809365324676037, 0.06255871802568436, -0.035301461815834045, 0.0029852669686079025, 0.07492106407880783, -0.019685596227645874, -0.10561972111463547, -0.08641495555639267, 0.10494919121265411, -0.09878258407115936, 0.2080308496952057, -0.04764431715011597, 0.08082011342048645, 0.13163194060325623, 0.06171361356973648, -0.07792674750089645, 0.05546736717224121, 0.046208642423152924, -0.08617596328258514, 0.023688608780503273, 0.062452975660562515, -0.03991987556219101, 0.08779530227184296, 0.040466416627168655, -0.1253318339586258, 0.016839031130075455, -0.06032399460673332, -0.05585119128227234, -0.04642823338508606, -0.05153457820415497, -0.05665866285562515, 0.13139477372169495, 0.2133215367794037, -0.031571898609399796, 0.0024720521178096533, -0.07086780667304993, 0.015202036127448082, 0.06361646205186844, 0.026404738426208496, -0.07216431200504303, -0.2240443378686905, 0.020994609221816063, 0.038018934428691864, -0.018097441643476486, -0.20608720183372498, -0.08532199263572693, 0.00163992156740278, -0.07467888295650482, -0.09555074572563171, 0.08136676251888275, 0.08450563997030258, 0.05208488181233406, -0.06333828717470169, -0.04981011524796486, -0.08341134339570999, 0.14359278976917267, -0.1465044915676117, -0.10043717175722122 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-large-uncased-whole-word-masking-ner-conll2003 This model is a fine-tuned version of [bert-large-uncased-whole-word-masking](https://huggingface.co/bert-large-uncased-whole-word-masking) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0592 - Precision: 0.9527 - Recall: 0.9569 - F1: 0.9548 - Accuracy: 0.9887 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.4071 | 1.0 | 877 | 0.0584 | 0.9306 | 0.9418 | 0.9362 | 0.9851 | | 0.0482 | 2.0 | 1754 | 0.0594 | 0.9362 | 0.9491 | 0.9426 | 0.9863 | | 0.0217 | 3.0 | 2631 | 0.0550 | 0.9479 | 0.9584 | 0.9531 | 0.9885 | | 0.0103 | 4.0 | 3508 | 0.0592 | 0.9527 | 0.9569 | 0.9548 | 0.9887 | ### Framework versions - Transformers 4.8.2 - Pytorch 1.8.1+cu111 - Datasets 1.8.0 - Tokenizers 0.10.3
{"language": ["en"], "license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["conll2003"], "metrics": ["precision", "recall", "f1", "accuracy"], "model_index": [{"name": "bert-large-uncased-whole-word-masking-ner-conll2003", "results": [{"task": {"name": "Token Classification", "type": "token-classification"}, "dataset": {"name": "conll2003", "type": "conll2003", "args": "conll2003"}, "metric": {"name": "Accuracy", "type": "accuracy", "value": 0.9886888970085945}}]}]}
token-classification
andi611/bert-large-uncased-whole-word-masking-ner-conll2003
[ "transformers", "pytorch", "bert", "token-classification", "generated_from_trainer", "en", "dataset:conll2003", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #bert #token-classification #generated_from_trainer #en #dataset-conll2003 #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
bert-large-uncased-whole-word-masking-ner-conll2003 =================================================== This model is a fine-tuned version of bert-large-uncased-whole-word-masking on the conll2003 dataset. It achieves the following results on the evaluation set: * Loss: 0.0592 * Precision: 0.9527 * Recall: 0.9569 * F1: 0.9548 * Accuracy: 0.9887 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 4 * eval\_batch\_size: 1 * seed: 42 * gradient\_accumulation\_steps: 4 * total\_train\_batch\_size: 16 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * lr\_scheduler\_warmup\_steps: 500 * num\_epochs: 4 ### Training results ### Framework versions * Transformers 4.8.2 * Pytorch 1.8.1+cu111 * Datasets 1.8.0 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 1\n* seed: 42\n* gradient\\_accumulation\\_steps: 4\n* total\\_train\\_batch\\_size: 16\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 500\n* num\\_epochs: 4", "### Training results", "### Framework versions\n\n\n* Transformers 4.8.2\n* Pytorch 1.8.1+cu111\n* Datasets 1.8.0\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #bert #token-classification #generated_from_trainer #en #dataset-conll2003 #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 1\n* seed: 42\n* gradient\\_accumulation\\_steps: 4\n* total\\_train\\_batch\\_size: 16\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 500\n* num\\_epochs: 4", "### Training results", "### Framework versions\n\n\n* Transformers 4.8.2\n* Pytorch 1.8.1+cu111\n* Datasets 1.8.0\n* Tokenizers 0.10.3" ]
[ 61, 144, 4, 34 ]
[ "passage: TAGS\n#transformers #pytorch #bert #token-classification #generated_from_trainer #en #dataset-conll2003 #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 1\n* seed: 42\n* gradient\\_accumulation\\_steps: 4\n* total\\_train\\_batch\\_size: 16\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 500\n* num\\_epochs: 4### Training results### Framework versions\n\n\n* Transformers 4.8.2\n* Pytorch 1.8.1+cu111\n* Datasets 1.8.0\n* Tokenizers 0.10.3" ]
[ -0.13086137175559998, 0.12758231163024902, -0.003223198000341654, 0.10877197980880737, 0.16075709462165833, 0.026853308081626892, 0.132377490401268, 0.11807205528020859, -0.09700378775596619, 0.061506275087594986, 0.11960465461015701, 0.11477649211883545, 0.03192802891135216, 0.13325561583042145, -0.029190029948949814, -0.2831364870071411, 0.00032414039014838636, 0.022182712331414223, -0.1470089554786682, 0.14213122427463531, 0.07633117586374283, -0.13276349008083344, 0.06548850983381271, 0.010201343335211277, -0.17624051868915558, -0.023117853328585625, -0.009477581828832626, -0.05502614751458168, 0.14943857491016388, 0.015480543486773968, 0.1372818648815155, 0.037178706377744675, 0.121534563601017, -0.16719122231006622, -0.0018795270007103682, 0.06178533658385277, 0.016966484487056732, 0.10465181618928909, 0.07689473778009415, 0.02213110215961933, 0.09591421484947205, -0.0833420604467392, 0.06372537463903427, 0.013402346521615982, -0.11770595610141754, -0.24509096145629883, -0.09557090699672699, 0.06012039631605148, 0.09589768946170807, 0.08056923747062683, 0.00023903932014945894, 0.11515229195356369, -0.10379913449287415, 0.08633562922477722, 0.25603872537612915, -0.2937174439430237, -0.0762997642159462, 0.00034506418160162866, 0.019139930605888367, 0.033633459359407425, -0.1111149862408638, -0.03875943273305893, 0.037371374666690826, 0.038112346082925797, 0.1386760175228119, -0.008180846460163593, -0.03673022985458374, 0.010000207461416721, -0.15340061485767365, -0.04990508034825325, 0.0914127379655838, 0.03908054903149605, -0.030731437727808952, -0.03971480950713158, -0.07118509709835052, -0.22406312823295593, -0.01696905493736267, 0.011027081869542599, 0.03966672718524933, -0.06708663702011108, -0.10344333201646805, 0.04008660838007927, -0.084748275578022, -0.07033834606409073, -0.015687037259340286, 0.1474992334842682, 0.053915198892354965, 0.008965501561760902, 0.010314044542610645, 0.13705205917358398, 0.07065293192863464, -0.16497214138507843, 0.032097987830638885, 0.03397750109434128, -0.0609767809510231, -0.028141383081674576, -0.041289642453193665, 0.03783440217375755, -0.00029659015126526356, 0.1549774408340454, -0.045906729996204376, 0.025613542646169662, 0.06643570214509964, 0.021468279883265495, -0.09990029036998749, 0.20028598606586456, -0.09019370377063751, -0.04023288935422897, -0.016311852261424065, 0.11136560142040253, 0.007089615799486637, -0.014410685747861862, -0.09255272895097733, 0.0010902642970904708, 0.12233668565750122, 0.044098805636167526, -0.04033353552222252, 0.04154204577207565, -0.042048629373311996, -0.025536473840475082, 0.06273015588521957, -0.099820077419281, 0.03059195540845394, 0.016123134642839432, -0.0999373272061348, -0.012810131534934044, -0.0008829034049995244, -0.0076839504763484, -0.015653669834136963, 0.15125098824501038, -0.09281820803880692, 0.007191911339759827, -0.08667564392089844, -0.11267713457345963, 0.01604335755109787, -0.08480020612478256, 0.0037813959643244743, -0.07518823444843292, -0.12350068241357803, -0.03338078036904335, 0.04236835241317749, -0.04646700993180275, -0.07847090810537338, -0.03247355669736862, -0.09925222396850586, 0.022721463814377785, -0.027805695310235023, 0.1467849463224411, -0.0504358671605587, 0.12415222823619843, 0.03298813849687576, 0.06496748328208923, 0.019375352188944817, 0.05339168757200241, -0.08788882195949554, 0.03567919135093689, -0.16049903631210327, 0.03202064707875252, -0.05000188574194908, 0.046598318964242935, -0.10437016934156418, -0.14113622903823853, 0.06398055702447891, -0.025641581043601036, 0.10262025892734528, 0.09971476346254349, -0.16162817180156708, -0.082860067486763, 0.14048852026462555, -0.07304634898900986, -0.10634282231330872, 0.12297660857439041, -0.029743004590272903, -0.029325788840651512, 0.03649301081895828, 0.10782834887504578, 0.0744946151971817, -0.07005305588245392, -0.015240042470395565, -0.0272978488355875, 0.0995822623372078, -0.03392275422811508, 0.09656232595443726, 0.016795305535197258, 0.05487842485308647, 0.00889301672577858, -0.07445861399173737, 0.06000206992030144, -0.11546313017606735, -0.09267689287662506, -0.016674233600497246, -0.08136676251888275, 0.06874454766511917, 0.07108443975448608, 0.054979629814624786, -0.07695713639259338, -0.10730747878551483, 0.05912109464406967, 0.09879684448242188, -0.07584034651517868, 0.016295751556754112, -0.05212755128741264, 0.0793527364730835, -0.04751419648528099, -0.023549262434244156, -0.19287385046482086, -0.06138232350349426, 0.023431194946169853, -0.02216159552335739, 0.0005113647785037756, 0.009185673668980598, 0.0647844597697258, 0.09324541687965393, -0.053145669400691986, -0.05160227045416832, -0.06808609515428543, -0.011248236522078514, -0.11779411882162094, -0.2220432013273239, -0.1000971645116806, -0.009159100241959095, 0.12873560190200806, -0.20231112837791443, 0.027081547304987907, -0.0007308508502319455, 0.11291114240884781, 0.008908359333872795, -0.015476181171834469, -0.039468131959438324, 0.09051408618688583, -0.03251963108778, -0.06846760213375092, 0.060089319944381714, -0.009396348148584366, -0.08650219440460205, -0.03230011835694313, -0.0967894047498703, 0.17207196354866028, 0.111414335668087, -0.032090310007333755, -0.09837299585342407, -0.008787554688751698, -0.08247056603431702, -0.04744845628738403, -0.038005296140909195, 0.023836597800254822, 0.16039985418319702, 0.029770109802484512, 0.14332912862300873, -0.06818811595439911, -0.058442309498786926, 0.03200751170516014, 0.004406333900988102, 0.03330940380692482, 0.13194163143634796, 0.11236974596977234, -0.06401892006397247, 0.13628464937210083, 0.13462090492248535, -0.09027255326509476, 0.0995921790599823, -0.062299810349941254, -0.08785224705934525, -0.037123795598745346, -0.020828453823924065, 0.0157247856259346, 0.12486545741558075, -0.0864831954240799, -0.015578744933009148, 0.02742302231490612, 0.014880782924592495, -0.0006043529137969017, -0.2275277078151703, -0.02901996113359928, 0.03356908634305, -0.04209114611148834, -0.034561511129140854, -0.030530868098139763, 0.01251173298805952, 0.11566559970378876, 0.006698284763842821, -0.10500578582286835, 0.005598769057542086, 0.0015252677258104086, -0.06259845942258835, 0.21001586318016052, -0.06492839008569717, -0.1203097328543663, -0.12362683564424515, -0.027735404670238495, -0.04065953195095062, -0.010878757573664188, 0.03342917934060097, -0.08523770421743393, -0.025277117267251015, -0.04082631692290306, 0.017027193680405617, -0.0025117897894233465, 0.04782038554549217, 0.003079197136685252, -0.0018449152121320367, 0.06105490401387215, -0.10020236670970917, 0.014321926981210709, -0.04128677397966385, -0.06227581202983856, 0.04730284586548805, 0.06112552806735039, 0.10299631208181381, 0.15216103196144104, -0.011669549159705639, 0.0034807054325938225, -0.028566090390086174, 0.20525366067886353, -0.08234965056180954, -0.02172439731657505, 0.127719447016716, -0.01251975167542696, 0.060484688729047775, 0.14107200503349304, 0.07513486593961716, -0.07407249510288239, -0.0017973955255001783, 0.024090342223644257, -0.03020578809082508, -0.2208320051431656, -0.03291179612278938, -0.04703453183174133, -0.0018083045724779367, 0.12791143357753754, 0.015816915780305862, -0.010503063909709454, 0.04424092546105385, -0.0009906962513923645, 0.059686169028282166, -0.03990809619426727, 0.05712781101465225, 0.09291185438632965, 0.052876006811857224, 0.13485169410705566, -0.01624072529375553, -0.0636749342083931, 0.02146155573427677, -0.022241737693548203, 0.23978178203105927, -0.05203676596283913, 0.14225642383098602, 0.03519663214683533, 0.17819051444530487, 0.00992607045918703, 0.10978960990905762, 0.008426163345575333, -0.018938589841127396, 0.0016271580243483186, -0.04429122805595398, -0.02987690269947052, 0.004142237361520529, -0.004636471159756184, 0.053894370794296265, -0.13926316797733307, -0.00021682905207853764, 0.03329971432685852, 0.30926331877708435, 0.07446588575839996, -0.33388057351112366, -0.10581836104393005, -0.02575162798166275, -0.036472439765930176, -0.013735915534198284, 0.009272419847548008, 0.13027586042881012, -0.10392757505178452, 0.028852423653006554, -0.07813407480716705, 0.08164714276790619, -0.0638367235660553, 0.026038477197289467, 0.12740890681743622, 0.09182725846767426, 0.006350736133754253, 0.06579441577196121, -0.2511981129646301, 0.2975043058395386, -0.00643105199560523, 0.05250416696071625, -0.056295305490493774, 0.015423661097884178, 0.02484925650060177, 0.029574736952781677, 0.0398251973092556, -0.010036949999630451, -0.02472541853785515, -0.22453227639198303, -0.1077534407377243, 0.026011671870946884, 0.09936999529600143, -0.0717383325099945, 0.1236022487282753, -0.030431384220719337, -0.02566649205982685, 0.0496714785695076, -0.03990743309259415, -0.02473169006407261, -0.08574005216360092, 0.021392805501818657, -0.023771237581968307, 0.0051732417196035385, -0.0769306868314743, -0.14265301823616028, -0.08627667278051376, 0.1531534045934677, -0.06129780039191246, -0.04857486113905907, -0.13028764724731445, 0.11473532021045685, 0.15444965660572052, -0.08848796039819717, 0.03642354905605316, 0.011817209422588348, 0.08076883107423782, 0.031644273549318314, -0.042046885937452316, 0.10066771507263184, -0.06837015599012375, -0.2423340529203415, -0.0621693916618824, 0.13234171271324158, 0.03042224608361721, 0.07910323143005371, -0.03130408748984337, 0.02980968728661537, -0.016604050993919373, -0.09003864973783493, 0.019296374171972275, -0.014587176963686943, 0.0728735402226448, 0.01549119595438242, -0.03453307971358299, 0.042107999324798584, -0.06335590779781342, -0.02485049143433571, 0.14096224308013916, 0.2766227424144745, -0.1067032665014267, 0.006090708542615175, 0.05179422348737717, -0.03712186589837074, -0.1677529662847519, -0.000557681021746248, 0.11523867398500443, 0.024309560656547546, 0.009765357710421085, -0.18194511532783508, 0.09151018410921097, 0.1150408685207367, -0.017862936481833458, 0.0982343927025795, -0.3279707133769989, -0.12933790683746338, 0.07545699924230576, 0.11695929616689682, 0.0479874350130558, -0.15232209861278534, -0.029979176819324493, 0.011891837231814861, -0.12152289599180222, 0.10629608482122421, -0.01663324236869812, 0.1159534826874733, -0.034592967480421066, 0.04728785902261734, 0.011510324664413929, -0.06400108337402344, 0.12594613432884216, 0.01737283729016781, 0.07995440065860748, -0.01724465936422348, -0.03897339105606079, 0.039162181317806244, -0.05413748323917389, -0.007035848684608936, -0.06238776445388794, 0.032537903636693954, -0.08358125388622284, -0.007121722213923931, -0.10843154042959213, 0.021737853065133095, -0.05759778246283531, -0.05261063948273659, -0.018032710999250412, 0.03796660527586937, 0.04808548465371132, -0.02356172353029251, 0.12510308623313904, 0.0382123664021492, 0.14690148830413818, 0.10179365426301956, 0.0462469719350338, -0.032988015562295914, -0.09376071393489838, -0.023364447057247162, -0.0013744481839239597, 0.06042021885514259, -0.119642473757267, 0.01668158918619156, 0.17547865211963654, 0.05906333029270172, 0.11983213573694229, 0.07683596014976501, -0.026401283219456673, -0.00425813440233469, 0.05723775923252106, -0.13416916131973267, -0.05599505081772804, 0.002981371246278286, -0.03880425542593002, -0.14549659192562103, 0.04099631682038307, 0.10591783374547958, -0.07759542018175125, -0.02263695001602173, 0.010589845478534698, 0.007326159626245499, -0.028534788638353348, 0.25050923228263855, 0.05079340189695358, 0.08993678539991379, -0.11454179137945175, 0.05395171046257019, 0.06701802462339401, -0.11022696644067764, -0.008471623994410038, 0.07855899631977081, -0.08848802000284195, -0.013518826104700565, 0.06113484501838684, 0.08347813040018082, -0.05915674567222595, -0.026014577597379684, -0.15337000787258148, -0.1272629052400589, 0.08262896537780762, 0.13772441446781158, 0.09160108119249344, 0.041849274188280106, -0.036958176642656326, 0.01888927072286606, -0.12565739452838898, 0.10340459644794464, 0.06572828441858292, 0.08968115597963333, -0.14479400217533112, 0.19156311452388763, 0.007576257921755314, 0.04965025559067726, -0.010775853879749775, 0.03165025636553764, -0.11363466084003448, 0.0019399344455450773, -0.09938511252403259, -0.03695519268512726, -0.035321999341249466, -0.005075239576399326, -0.010452882386744022, -0.05924508348107338, -0.045473869889974594, 0.012879735790193081, -0.10976839065551758, -0.038221463561058044, 0.008940733037889004, 0.03325049579143524, -0.12724050879478455, -0.026138078421354294, 0.033209968358278275, -0.10697505623102188, 0.09589886665344238, 0.0384289026260376, 0.0411255843937397, 0.03799678757786751, -0.05839292332530022, -0.009313645772635937, 0.041547052562236786, 0.009679276496171951, 0.08294909447431564, -0.1154734343290329, 0.001913006417453289, -0.03592297062277794, 0.03344763070344925, 0.011153427883982658, 0.05378078296780586, -0.13997508585453033, 0.001006767968647182, -0.011331585235893726, -0.054986581206321716, -0.059184737503528595, 0.032921623438596725, 0.0756203681230545, 0.01941845938563347, 0.1786886602640152, -0.07111680507659912, 0.06315258890390396, -0.2330135703086853, -0.017880726605653763, -0.02549012191593647, -0.09674141556024551, -0.09889725595712662, -0.0376080758869648, 0.08656726032495499, -0.05973995476961136, 0.08606286346912384, -0.00871890690177679, 0.10018746554851532, 0.02717006951570511, -0.03647265210747719, -0.00013766787014901638, 0.05016889423131943, 0.15245544910430908, 0.044183529913425446, -0.031408458948135376, 0.05910961329936981, 0.03479597344994545, 0.06893709301948547, 0.10561536252498627, 0.20290634036064148, 0.10494104027748108, 0.0305769219994545, 0.07097182422876358, 0.053150564432144165, -0.10891397297382355, -0.19730471074581146, 0.025069275870919228, -0.04902008920907974, 0.12341377884149551, -0.01942841149866581, 0.20265768468379974, 0.05936870351433754, -0.18297438323497772, 0.03609949350357056, -0.045257192105054855, -0.08595649898052216, -0.09253261983394623, -0.006032410077750683, -0.05907576158642769, -0.13036786019802094, 0.0006496115238405764, -0.10703299194574356, 0.01772329956293106, 0.1280590146780014, 0.022490108385682106, 0.010644677095115185, 0.11978116631507874, 0.06819386035203934, 0.037315599620342255, 0.059781841933727264, 0.04333550110459328, -0.0040489803068339825, -0.048359859734773636, -0.06713040173053741, -0.014589796774089336, -0.020970603451132774, 0.045106299221515656, -0.0703667476773262, -0.07742787897586823, 0.05640881508588791, 0.01203037891536951, -0.10433872044086456, 0.02769334614276886, -0.008471556939184666, 0.07974351197481155, 0.0505690760910511, 0.0034206921700388193, 0.027308795601129532, -0.03542611747980118, 0.2254183441400528, -0.09448400884866714, -0.06349202245473862, -0.12029321491718292, 0.2978479862213135, 0.02010149136185646, -0.04015207663178444, 0.05208372697234154, -0.06570378690958023, -0.027584604918956757, 0.18388842046260834, 0.17635320127010345, -0.069898821413517, -0.020001964643597603, 0.029128938913345337, -0.01724705472588539, -0.03296085447072983, 0.1140410304069519, 0.1293696016073227, 0.09281585365533829, -0.09788930416107178, -0.0476655475795269, -0.06369034200906754, -0.032928746193647385, -0.024490490555763245, 0.053372371941804886, 0.033511705696582794, 0.0036914460361003876, -0.04671214520931244, 0.05433107540011406, -0.038604214787483215, -0.14174702763557434, 0.0864841490983963, -0.2258460819721222, -0.2005012184381485, -0.017167773097753525, 0.08676864951848984, 0.019753802567720413, 0.07447110861539841, -0.007569951005280018, -0.020087655633687973, 0.10113400965929031, -0.01697939820587635, -0.05902287736535072, -0.08769740909337997, 0.10491789132356644, -0.07693088054656982, 0.18835851550102234, -0.04924768581986427, 0.07011386752128601, 0.12208525836467743, 0.06618648022413254, -0.10161244124174118, 0.01645801030099392, 0.08181536942720413, -0.11804841458797455, 0.024252742528915405, 0.12684005498886108, -0.027726903557777405, 0.0663517490029335, 0.030188968405127525, -0.12809568643569946, 0.004649425856769085, -0.05625930055975914, -0.03278783708810806, -0.04305766150355339, -0.035910461097955704, -0.01618948206305504, 0.13701020181179047, 0.2515277862548828, -0.049698129296302795, -0.001725926878862083, -0.061944372951984406, -0.004152909852564335, 0.05707891657948494, 0.07610752433538437, -0.054677899926900864, -0.24958793818950653, 0.02246621623635292, 0.0115961330011487, -0.003137777792289853, -0.19468954205513, -0.08382895588874817, 0.037122439593076706, -0.08234450966119766, -0.10400180518627167, 0.09667276591062546, 0.017254572361707687, 0.06735926121473312, -0.04423590749502182, -0.035289913415908813, -0.0825853943824768, 0.15560074150562286, -0.18784530460834503, -0.08526969701051712 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-large-uncased-whole-word-masking-squad2-with-ner-Pistherea-conll2003-with-neg-with-repeat This model is a fine-tuned version of [deepset/bert-large-uncased-whole-word-masking-squad2](https://huggingface.co/deepset/bert-large-uncased-whole-word-masking-squad2) on the squad_v2 and the conll2003 datasets. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results ### Framework versions - Transformers 4.8.2 - Pytorch 1.8.1+cu111 - Datasets 1.8.0 - Tokenizers 0.10.3
{"language": ["en"], "license": "cc-by-4.0", "tags": ["generated_from_trainer"], "datasets": ["squad_v2", "conll2003"], "model_index": [{"name": "bert-large-uncased-whole-word-masking-squad2-with-ner-Pistherea-conll2003-with-neg-with-repeat", "results": [{"task": {"name": "Token Classification", "type": "token-classification"}, "dataset": {"name": "squad_v2", "type": "squad_v2", "args": "conll2003"}}, {"task": {"name": "Token Classification", "type": "token-classification"}, "dataset": {"name": "conll2003", "type": "conll2003"}}]}]}
question-answering
andi611/bert-large-uncased-whole-word-masking-squad2-with-ner-Pistherea-conll2003-with-neg-with-repeat
[ "transformers", "pytorch", "bert", "question-answering", "generated_from_trainer", "en", "dataset:squad_v2", "dataset:conll2003", "license:cc-by-4.0", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #bert #question-answering #generated_from_trainer #en #dataset-squad_v2 #dataset-conll2003 #license-cc-by-4.0 #endpoints_compatible #region-us
# bert-large-uncased-whole-word-masking-squad2-with-ner-Pistherea-conll2003-with-neg-with-repeat This model is a fine-tuned version of deepset/bert-large-uncased-whole-word-masking-squad2 on the squad_v2 and the conll2003 datasets. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results ### Framework versions - Transformers 4.8.2 - Pytorch 1.8.1+cu111 - Datasets 1.8.0 - Tokenizers 0.10.3
[ "# bert-large-uncased-whole-word-masking-squad2-with-ner-Pistherea-conll2003-with-neg-with-repeat\n\nThis model is a fine-tuned version of deepset/bert-large-uncased-whole-word-masking-squad2 on the squad_v2 and the conll2003 datasets.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 2e-05\n- train_batch_size: 4\n- eval_batch_size: 1\n- seed: 42\n- gradient_accumulation_steps: 4\n- total_train_batch_size: 16\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 5", "### Training results", "### Framework versions\n\n- Transformers 4.8.2\n- Pytorch 1.8.1+cu111\n- Datasets 1.8.0\n- Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #bert #question-answering #generated_from_trainer #en #dataset-squad_v2 #dataset-conll2003 #license-cc-by-4.0 #endpoints_compatible #region-us \n", "# bert-large-uncased-whole-word-masking-squad2-with-ner-Pistherea-conll2003-with-neg-with-repeat\n\nThis model is a fine-tuned version of deepset/bert-large-uncased-whole-word-masking-squad2 on the squad_v2 and the conll2003 datasets.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 2e-05\n- train_batch_size: 4\n- eval_batch_size: 1\n- seed: 42\n- gradient_accumulation_steps: 4\n- total_train_batch_size: 16\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 5", "### Training results", "### Framework versions\n\n- Transformers 4.8.2\n- Pytorch 1.8.1+cu111\n- Datasets 1.8.0\n- Tokenizers 0.10.3" ]
[ 63, 94, 6, 12, 8, 3, 113, 4, 34 ]
[ "passage: TAGS\n#transformers #pytorch #bert #question-answering #generated_from_trainer #en #dataset-squad_v2 #dataset-conll2003 #license-cc-by-4.0 #endpoints_compatible #region-us \n# bert-large-uncased-whole-word-masking-squad2-with-ner-Pistherea-conll2003-with-neg-with-repeat\n\nThis model is a fine-tuned version of deepset/bert-large-uncased-whole-word-masking-squad2 on the squad_v2 and the conll2003 datasets.## Model description\n\nMore information needed## Intended uses & limitations\n\nMore information needed## Training and evaluation data\n\nMore information needed## Training procedure### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 2e-05\n- train_batch_size: 4\n- eval_batch_size: 1\n- seed: 42\n- gradient_accumulation_steps: 4\n- total_train_batch_size: 16\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 5### Training results### Framework versions\n\n- Transformers 4.8.2\n- Pytorch 1.8.1+cu111\n- Datasets 1.8.0\n- Tokenizers 0.10.3" ]
[ -0.08382361382246017, 0.16701960563659668, -0.004730961285531521, 0.08389342576265335, 0.09339051693677902, 0.028627080842852592, 0.09868642687797546, 0.14797408878803253, -0.06956807523965836, 0.13014066219329834, 0.0761680155992508, 0.02055191621184349, 0.07977265119552612, 0.11338075250387192, -0.016616130247712135, -0.22543011605739594, 0.017314746975898743, -0.038028616458177567, -0.07717114686965942, 0.09908067435026169, 0.11016077548265457, -0.1136094331741333, 0.0428207702934742, -0.004908315371721983, -0.11174914985895157, 0.010890097357332706, -0.04302696883678436, -0.04565005376935005, 0.05999671667814255, 0.0277227945625782, 0.08507326245307922, 0.013719172216951847, 0.0960039421916008, -0.20702703297138214, 0.0005321431090123951, 0.06889989227056503, 0.014131838455796242, 0.08339796960353851, 0.08006337285041809, 0.02204078435897827, 0.0064668357372283936, -0.16859407722949982, 0.08333807438611984, 0.03262710943818092, -0.10104042291641235, -0.17746351659297943, -0.09093139320611954, 0.07395777851343155, 0.1032794937491417, 0.08226925879716873, -0.026754992082715034, 0.1317594349384308, -0.08990310877561569, 0.05086486041545868, 0.16951517760753632, -0.30995455384254456, -0.06345276534557343, 0.0430026613175869, 0.028167959302663803, 0.03153378888964653, -0.1148453950881958, -0.006465986371040344, 0.017846716567873955, 0.010014624334871769, 0.06929201632738113, -0.0003667984565254301, -0.024297097697854042, 0.006720595061779022, -0.1196947917342186, -0.047434091567993164, 0.11810632795095444, 0.060847021639347076, -0.024483568966388702, -0.15838073194026947, -0.03362349048256874, -0.07430164515972137, -0.030910490080714226, -0.01830037496984005, 0.031848590821027756, -0.05628595128655434, -0.06051301211118698, -0.01899830996990204, -0.06939244270324707, -0.030548084527254105, 0.012114440090954304, 0.06918448209762573, 0.04243720695376396, 0.009156309068202972, -0.021949592977762222, 0.07986710965633392, -0.015699489042162895, -0.16042689979076385, -0.02213374339044094, -0.01514999195933342, -0.13323761522769928, -0.04815071448683739, -0.03768380358815193, -0.022412564605474472, 0.02604963257908821, 0.16888082027435303, 0.005684494506567717, 0.06130162253975868, 0.018980171531438828, -0.0040246304124593735, 0.0038141028489917517, 0.17664964497089386, -0.05506720766425133, -0.07527181506156921, -0.0131431445479393, 0.11287655681371689, 0.0191364623606205, -0.01879473775625229, -0.09085060656070709, -0.024974310770630836, 0.04060874134302139, 0.05821023881435394, 0.004154276568442583, 0.0232858769595623, -0.06033443287014961, -0.05470931902527809, 0.03804141283035278, -0.1373666524887085, 0.06175229698419571, 0.0232833344489336, -0.050499994307756424, -0.0031757389660924673, -0.019705474376678467, 0.0035479553043842316, -0.05177481845021248, 0.0802253782749176, -0.06145799532532692, -0.02938263863325119, -0.05837244167923927, -0.07459988445043564, 0.025996167212724686, -0.052655622363090515, -0.030712513253092766, -0.05583011358976364, -0.12291574478149414, -0.046988341957330704, 0.030355319380760193, -0.07802955061197281, -0.06789587438106537, -0.0351809486746788, -0.04415666311979294, 0.026933614164590836, 0.005704643204808235, 0.10536704957485199, -0.02402595616877079, 0.05149006471037865, 0.009246240369975567, 0.048212990164756775, 0.07150322198867798, 0.04046661779284477, -0.07305477559566498, 0.0447135791182518, -0.12383351475000381, 0.0946444496512413, -0.08689474314451218, 0.03781089186668396, -0.14194397628307343, -0.10525445640087128, 0.012860003858804703, -0.03007081151008606, 0.06188954785466194, 0.11273842304944992, -0.1641770899295807, -0.0401708222925663, 0.18143245577812195, -0.035331498831510544, -0.09221550077199936, 0.1124785766005516, -0.041648704558610916, -0.026322610676288605, 0.04356585070490837, 0.1351703405380249, 0.15581493079662323, -0.1129373162984848, -0.02600572630763054, 0.0022967136465013027, 0.08817701786756516, 0.07428709417581558, 0.09260240197181702, -0.04487938433885574, 0.05540718510746956, 0.009868894703686237, -0.05850651487708092, -0.025518188253045082, -0.0434797927737236, -0.0987318828701973, -0.02406957931816578, -0.06227245554327965, 0.07892824709415436, 0.00445389561355114, 0.022258365526795387, -0.06443304568529129, -0.12814386188983917, 0.005568202119320631, 0.10438192635774612, -0.050723493099212646, 0.011345487087965012, -0.09152047336101532, 0.06650621443986893, -0.027076495811343193, -0.005487477406859398, -0.17078426480293274, -0.12735946476459503, 0.06881753355264664, -0.06925375759601593, 0.03064158372581005, 0.0066145178861916065, 0.056620001792907715, 0.043139323592185974, -0.039513085037469864, -0.024326825514435768, -0.05527689307928085, -0.03178209438920021, -0.08297531306743622, -0.1551150232553482, -0.08090288192033768, -0.02990199439227581, 0.14542730152606964, -0.176949143409729, 0.0027188018430024385, 0.012096595019102097, 0.12313386797904968, 0.013802132569253445, -0.05478380620479584, 0.020087705925107002, 0.0191364623606205, 0.010454545728862286, -0.07584448903799057, 0.03395690396428108, -0.011018021032214165, -0.10343096405267715, -0.05791907384991646, -0.12023117393255234, 0.014572493731975555, 0.060110896825790405, 0.060550790280103683, -0.07287417352199554, -0.048483431339263916, -0.053518038243055344, -0.02258232608437538, -0.06488072872161865, -0.029832160100340843, 0.20306332409381866, 0.0264134481549263, 0.10159839689731598, -0.07698676735162735, -0.0871187150478363, -0.0028080169577151537, 0.033571403473615646, -0.0165372584015131, 0.0966813862323761, 0.02757960371673107, -0.12816208600997925, 0.07745049148797989, 0.1353069245815277, -0.005592626985162497, 0.09064852446317673, -0.05505356192588806, -0.09374129772186279, -0.05576653406023979, 0.02720694988965988, 0.016987264156341553, 0.07046803086996078, -0.07922035455703735, 0.004101067781448364, 0.06363363564014435, 0.010622150264680386, -0.00039860763354226947, -0.12750975787639618, -0.0025269135367125273, 0.03776967152953148, -0.04211398586630821, -0.006747255567461252, -0.017629921436309814, 0.041982535272836685, 0.08315365016460419, 0.052516769617795944, -0.0029606365133076906, 0.006207540165632963, -0.05249224603176117, -0.07380998879671097, 0.17079000174999237, -0.10034219920635223, -0.19250117242336273, -0.13630016148090363, -0.012551571242511272, -0.05671726539731026, -0.020671142265200615, 0.0035346003714948893, -0.0807705745100975, -0.07388928532600403, -0.08542974293231964, -0.00915546715259552, -0.036200761795043945, 0.007982509210705757, 0.060584064573049545, 0.016547566279768944, 0.08692964911460876, -0.12479612231254578, 0.016190651804208755, 0.0006054967525415123, -0.07796366512775421, -0.002069022273644805, 0.06829742342233658, 0.08192914724349976, 0.11105476319789886, 0.01242773700505495, 0.020312415435910225, -0.03822573274374008, 0.23527652025222778, -0.09984923154115677, 0.010519578121602535, 0.10843458026647568, -0.021031975746154785, 0.06894276291131973, 0.15481117367744446, 0.0348837710916996, -0.07422146946191788, 0.019755909219384193, 0.04753762111067772, -0.007841857150197029, -0.24006947875022888, -0.03630421310663223, -0.054527461528778076, -0.03707582876086235, 0.13576345145702362, 0.038868553936481476, -0.01959853619337082, 0.041435956954956055, -0.04134887456893921, 0.025522544980049133, 0.009871250949800014, 0.0797174945473671, 0.08781496435403824, 0.04379028081893921, 0.10383019596338272, -0.02158556692302227, -0.03059050440788269, 0.057479534298181534, 0.014146318659186363, 0.2136339396238327, -0.017748957499861717, 0.17462244629859924, 0.023673180490732193, 0.14655235409736633, -0.013277017511427402, 0.028388692066073418, 0.00810828898102045, -0.0034110511187464, 0.011149498634040356, -0.07459040731191635, 0.007791052106767893, 0.0339217372238636, 0.07088743895292282, 0.034456778317689896, -0.07478035986423492, 0.0037801614962518215, 0.040707238018512726, 0.2468530237674713, 0.11160722374916077, -0.25105124711990356, -0.05775338411331177, 0.03464610502123833, -0.027338435873389244, -0.05513631924986839, 0.010456645861268044, 0.10801532864570618, -0.13432297110557556, 0.07103944569826126, -0.05463121086359024, 0.08590345829725266, -0.04055396467447281, 0.011601259000599384, 0.07649500668048859, 0.0972234234213829, 0.012406555935740471, 0.09688079357147217, -0.15137234330177307, 0.18224841356277466, 0.019128138199448586, 0.05621388182044029, -0.0681556686758995, 0.05721645429730415, -0.012843440286815166, -0.009828601032495499, 0.1374296396970749, 0.0009774016216397285, -0.02687671221792698, -0.1339506208896637, -0.11933181434869766, 0.015045171603560448, 0.12832526862621307, -0.08649888634681702, 0.0980919748544693, -0.0382893942296505, -0.03106558881700039, 0.018473466858267784, 0.021049924194812775, -0.0806753933429718, -0.16100694239139557, 0.0497257225215435, -0.0067079514265060425, -0.04098521173000336, -0.07606819272041321, -0.0728951245546341, -0.12694789469242096, 0.21850427985191345, -0.043473981320858, -0.0486564077436924, -0.13160260021686554, 0.0973014384508133, 0.14868943393230438, -0.07249375432729721, 0.028544051572680473, -0.0019113916205242276, 0.1495879739522934, 0.017876271158456802, -0.07693206518888474, 0.06513195484876633, -0.04409684240818024, -0.1658228039741516, -0.06191543489694595, 0.1820092499256134, 0.00568276597186923, 0.06006007269024849, 0.0062446254305541515, 0.03240557014942169, 0.018982309848070145, -0.08068285882472992, 0.05082361400127411, 0.07876145839691162, 0.07373784482479095, 0.06126052513718605, -0.056670255959033966, 0.013829323463141918, -0.05653126910328865, 0.030557069927453995, 0.1749054193496704, 0.2494068741798401, -0.09923946112394333, 0.10126814246177673, 0.03990732878446579, -0.055282603949308395, -0.1907043606042862, 0.024777058511972427, 0.11270825564861298, 0.04708492383360863, 0.04796666279435158, -0.16980427503585815, 0.09485284984111786, 0.08589395880699158, -0.012527015060186386, 0.02114553563296795, -0.31961292028427124, -0.1266287863254547, 0.055395644158124924, 0.03152154013514519, -0.03216782584786415, -0.1340569108724594, -0.07003014534711838, -0.0358339287340641, -0.11282101273536682, 0.07314327359199524, -0.035305436700582504, 0.0964503288269043, 0.0013207000447437167, 0.05148915946483612, 0.0404813326895237, -0.03902853652834892, 0.15109902620315552, 0.0349728986620903, 0.047485146671533585, -0.04710642620921135, -0.010900221765041351, 0.08762438595294952, -0.07136379182338715, 0.03282932564616203, -0.037261828780174255, 0.06287059187889099, -0.1491014063358307, -0.024007383733987808, -0.06390564143657684, 0.01762213557958603, -0.06861107051372528, -0.04005306586623192, -0.04588496312499046, 0.05793285742402077, 0.1016669049859047, -0.012268594466149807, 0.06746060401201248, 0.017047086730599403, 0.06305143237113953, 0.08407590538263321, 0.10353629291057587, 0.06479999423027039, -0.17463469505310059, -0.012742482125759125, -0.010840452276170254, 0.047837842255830765, -0.11102848500013351, 0.04582991451025009, 0.1285569667816162, 0.044943153858184814, 0.12626995146274567, 0.027243562042713165, -0.06206154450774193, -0.029977833852171898, 0.04122738912701607, -0.089301697909832, -0.1701001673936844, -0.009994574822485447, 0.014170329086482525, -0.2092338502407074, -0.030120985582470894, 0.1013718992471695, 0.00798726174980402, -0.0315009169280529, 0.016562849283218384, 0.0301834549754858, -0.003407564479857683, 0.15069036185741425, 0.019198037683963776, 0.08739439398050308, -0.0915001630783081, 0.10284419357776642, 0.11039657890796661, -0.06349825859069824, 0.0382765494287014, 0.08154646307229996, -0.06687147170305252, -0.021104907616972923, 0.04630311578512192, 0.08974023908376694, 0.047232143580913544, 0.008203885518014431, -0.039108503609895706, -0.11128349602222443, 0.06177926063537598, 0.04379228502511978, 0.039442028850317, -0.017752310261130333, -0.02240746095776558, -0.006120382808148861, -0.09213050454854965, 0.11743227392435074, 0.04622683674097061, 0.05660529062151909, -0.10559214651584625, 0.08500484377145767, -0.031200241297483444, 0.02742147631943226, -0.004313570912927389, 0.007852849550545216, -0.10087740421295166, -0.020122796297073364, -0.12334807962179184, 0.01078328862786293, -0.016742948442697525, -0.0009726047283038497, -0.016934288665652275, -0.02327827550470829, -0.02115923911333084, 0.01034946646541357, -0.07383321225643158, -0.07802752405405045, -0.008271260187029839, 0.0644061490893364, -0.13541218638420105, -0.01695692352950573, 0.0315159410238266, -0.11258820444345474, 0.10956232249736786, 0.02356298826634884, 0.023830970749258995, -0.002365032909438014, -0.08232978731393814, -0.05105726420879364, 0.010139606893062592, 0.04958765208721161, 0.07051415741443634, -0.11789336055517197, -0.002486696233972907, -0.0434979610145092, -0.019678302109241486, 0.021526329219341278, 0.0006236730259843171, -0.12504851818084717, 0.0036061378195881844, -0.04096541553735733, -0.04699602350592613, -0.05835770070552826, 0.03009607084095478, 0.04688410088419914, 0.013082063756883144, 0.15090052783489227, -0.0729135051369667, 0.09059220552444458, -0.2146083116531372, -0.028193984180688858, -0.004327031318098307, -0.015242553316056728, -0.04834528639912605, -0.035055164247751236, 0.08913570642471313, -0.05510846525430679, 0.0913676917552948, -0.031075064092874527, 0.06457468122243881, 0.0352398119866848, -0.013765191659331322, 0.022239146754145622, 0.037080004811286926, 0.15152618288993835, 0.07234658300876617, -0.043852515518665314, 0.08721870183944702, -0.03593398630619049, 0.04931056872010231, 0.07670585811138153, 0.15198472142219543, 0.17450827360153198, 0.055808551609516144, 0.03468630090355873, 0.07662907242774963, -0.09802348911762238, -0.1284894049167633, 0.12535513937473297, -0.0500028058886528, 0.12006748467683792, -0.05314765125513077, 0.11798391491174698, 0.05900159850716591, -0.1921883225440979, 0.06252540647983551, -0.06201505288481712, -0.10859473049640656, -0.09762789309024811, -0.1259530484676361, -0.09483799338340759, -0.06493274867534637, 0.029259704053401947, -0.12044945359230042, 0.02858785353600979, 0.056779615581035614, 0.020531052723526955, 0.0015921501908451319, 0.13562607765197754, -0.056873004883527756, 0.012252163141965866, 0.09766567498445511, 0.03006802313029766, 0.014398905448615551, 0.012623691000044346, -0.026454340666532516, 0.04356788098812103, 0.029814787209033966, 0.08704408258199692, -0.02497219666838646, 0.024789951741695404, 0.03071259707212448, -0.024829505011439323, -0.09870611876249313, 0.01020668726414442, -0.0036235274747014046, 0.02696932666003704, 0.06324701756238937, 0.057493679225444794, 0.014078271575272083, -0.05697404220700264, 0.20024608075618744, -0.07046596705913544, -0.0744544118642807, -0.1429322510957718, 0.12463994324207306, 0.0011752963764593005, 0.0008987821056507528, 0.055925022810697556, -0.1132129430770874, -0.0230952650308609, 0.1677791327238083, 0.19420088827610016, -0.07196831703186035, -0.010098411701619625, 0.020947478711605072, -0.0033623238559812307, -0.031071649864315987, 0.09049709141254425, 0.08146768063306808, 0.05687352269887924, -0.04690088331699371, 0.009941293857991695, 0.02158992365002632, -0.043897103518247604, -0.07632943987846375, 0.07655838876962662, 0.025694595649838448, 0.01591521129012108, -0.03274717554450035, 0.07733027637004852, -0.009925796650350094, -0.15673035383224487, 0.049039751291275024, -0.18153025209903717, -0.1955389529466629, -0.023305807262659073, 0.06665756553411484, 0.014489945955574512, 0.07278808951377869, -0.005193981342017651, -0.01987791433930397, 0.12650784850120544, -0.01601080223917961, -0.033549822866916656, -0.07042476534843445, 0.09877529740333557, -0.10106482356786728, 0.20868530869483948, 0.01492700632661581, 0.08069651573896408, 0.1131771132349968, 0.012557986192405224, -0.12523560225963593, -0.0050506917759776115, 0.09823722392320633, -0.08408451825380325, 0.030397959053516388, 0.1623843014240265, -0.033890850841999054, 0.10599423944950104, 0.07360553741455078, -0.07803338021039963, -0.008439007215201855, -0.04983356595039368, 0.0036625966895371675, -0.0993524044752121, 0.020861830562353134, -0.05995779484510422, 0.15316584706306458, 0.2321539968252182, -0.055721674114465714, -0.02303030528128147, -0.030779266729950905, 0.008311798796057701, 0.030362077057361603, 0.1076221764087677, -0.03784291446208954, -0.16890080273151398, 0.02809622697532177, -0.00722943851724267, 0.06328369677066803, -0.2298295497894287, -0.09600318223237991, 0.05647728592157364, -0.02208806946873665, -0.0663573294878006, 0.13440975546836853, 0.04830644279718399, 0.019543703645467758, -0.03471202403306961, -0.1177414208650589, -0.03482211381196976, 0.11746986210346222, -0.14899122714996338, -0.0520961731672287 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-large-uncased-whole-word-masking-squad2-with-ner-Pwhatisthe-conll2003-with-neg-with-repeat This model is a fine-tuned version of [deepset/bert-large-uncased-whole-word-masking-squad2](https://huggingface.co/deepset/bert-large-uncased-whole-word-masking-squad2) on the squad_v2 and the conll2003 datasets. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results ### Framework versions - Transformers 4.8.2 - Pytorch 1.8.1+cu111 - Datasets 1.8.0 - Tokenizers 0.10.3
{"language": ["en"], "license": "cc-by-4.0", "tags": ["generated_from_trainer"], "datasets": ["squad_v2", "conll2003"], "model_index": [{"name": "bert-large-uncased-whole-word-masking-squad2-with-ner-Pwhatisthe-conll2003-with-neg-with-repeat", "results": [{"task": {"name": "Token Classification", "type": "token-classification"}, "dataset": {"name": "squad_v2", "type": "squad_v2", "args": "conll2003"}}, {"task": {"name": "Token Classification", "type": "token-classification"}, "dataset": {"name": "conll2003", "type": "conll2003"}}]}]}
question-answering
andi611/bert-large-uncased-whole-word-masking-squad2-with-ner-Pwhatisthe-conll2003-with-neg-with-repeat
[ "transformers", "pytorch", "bert", "question-answering", "generated_from_trainer", "en", "dataset:squad_v2", "dataset:conll2003", "license:cc-by-4.0", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #bert #question-answering #generated_from_trainer #en #dataset-squad_v2 #dataset-conll2003 #license-cc-by-4.0 #endpoints_compatible #region-us
# bert-large-uncased-whole-word-masking-squad2-with-ner-Pwhatisthe-conll2003-with-neg-with-repeat This model is a fine-tuned version of deepset/bert-large-uncased-whole-word-masking-squad2 on the squad_v2 and the conll2003 datasets. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results ### Framework versions - Transformers 4.8.2 - Pytorch 1.8.1+cu111 - Datasets 1.8.0 - Tokenizers 0.10.3
[ "# bert-large-uncased-whole-word-masking-squad2-with-ner-Pwhatisthe-conll2003-with-neg-with-repeat\n\nThis model is a fine-tuned version of deepset/bert-large-uncased-whole-word-masking-squad2 on the squad_v2 and the conll2003 datasets.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 2e-05\n- train_batch_size: 4\n- eval_batch_size: 1\n- seed: 42\n- gradient_accumulation_steps: 4\n- total_train_batch_size: 16\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 5", "### Training results", "### Framework versions\n\n- Transformers 4.8.2\n- Pytorch 1.8.1+cu111\n- Datasets 1.8.0\n- Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #bert #question-answering #generated_from_trainer #en #dataset-squad_v2 #dataset-conll2003 #license-cc-by-4.0 #endpoints_compatible #region-us \n", "# bert-large-uncased-whole-word-masking-squad2-with-ner-Pwhatisthe-conll2003-with-neg-with-repeat\n\nThis model is a fine-tuned version of deepset/bert-large-uncased-whole-word-masking-squad2 on the squad_v2 and the conll2003 datasets.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 2e-05\n- train_batch_size: 4\n- eval_batch_size: 1\n- seed: 42\n- gradient_accumulation_steps: 4\n- total_train_batch_size: 16\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 5", "### Training results", "### Framework versions\n\n- Transformers 4.8.2\n- Pytorch 1.8.1+cu111\n- Datasets 1.8.0\n- Tokenizers 0.10.3" ]
[ 63, 94, 6, 12, 8, 3, 113, 4, 34 ]
[ "passage: TAGS\n#transformers #pytorch #bert #question-answering #generated_from_trainer #en #dataset-squad_v2 #dataset-conll2003 #license-cc-by-4.0 #endpoints_compatible #region-us \n# bert-large-uncased-whole-word-masking-squad2-with-ner-Pwhatisthe-conll2003-with-neg-with-repeat\n\nThis model is a fine-tuned version of deepset/bert-large-uncased-whole-word-masking-squad2 on the squad_v2 and the conll2003 datasets.## Model description\n\nMore information needed## Intended uses & limitations\n\nMore information needed## Training and evaluation data\n\nMore information needed## Training procedure### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 2e-05\n- train_batch_size: 4\n- eval_batch_size: 1\n- seed: 42\n- gradient_accumulation_steps: 4\n- total_train_batch_size: 16\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 5### Training results### Framework versions\n\n- Transformers 4.8.2\n- Pytorch 1.8.1+cu111\n- Datasets 1.8.0\n- Tokenizers 0.10.3" ]
[ -0.08392086625099182, 0.16476665437221527, -0.0047838096506893635, 0.08378773927688599, 0.09389138966798782, 0.02902323380112648, 0.09609395265579224, 0.1493975818157196, -0.06745526194572449, 0.12951746582984924, 0.07545721530914307, 0.021021494641900063, 0.0800667554140091, 0.1115594357252121, -0.014923932030797005, -0.22572609782218933, 0.017265981063246727, -0.037917885929346085, -0.07899647951126099, 0.09949525445699692, 0.10923869907855988, -0.11405451595783234, 0.04299692437052727, -0.005426784511655569, -0.1107376366853714, 0.009747914969921112, -0.045428548008203506, -0.04574453458189964, 0.05942253768444061, 0.02777741849422455, 0.08421570807695389, 0.012293347157537937, 0.09559745341539383, -0.20938877761363983, 0.0003630137362051755, 0.0693182498216629, 0.012998659163713455, 0.08361692726612091, 0.08198875188827515, 0.020403092727065086, 0.006800874602049589, -0.16786669194698334, 0.08159520477056503, 0.03260861709713936, -0.10128364711999893, -0.17810793220996857, -0.08995475620031357, 0.0768946036696434, 0.1023813858628273, 0.08264783769845963, -0.02699834480881691, 0.13355138897895813, -0.09153713285923004, 0.0525721050798893, 0.172189861536026, -0.31066372990608215, -0.06286168843507767, 0.04485069587826729, 0.030532103031873703, 0.029463710263371468, -0.11616706103086472, -0.007657675538212061, 0.018476493656635284, 0.010872776620090008, 0.06792894750833511, -0.001234453171491623, -0.0224847923964262, 0.007641775067895651, -0.11988954246044159, -0.04946482181549072, 0.11892625689506531, 0.06110841780900955, -0.02373475953936577, -0.1565927267074585, -0.03285377472639084, -0.07533228397369385, -0.03044574335217476, -0.016862601041793823, 0.031717438250780106, -0.05640815570950508, -0.06080207973718643, -0.016940845176577568, -0.07059280574321747, -0.030876711010932922, 0.012277538888156414, 0.07007637619972229, 0.04204152897000313, 0.009146108292043209, -0.022794270887970924, 0.0805150642991066, -0.014700855128467083, -0.15958023071289062, -0.02297714352607727, -0.01495005190372467, -0.1334076076745987, -0.04816390946507454, -0.036815542727708817, -0.019591933116316795, 0.02655092254281044, 0.167746901512146, 0.0006578990141861141, 0.06089756637811661, 0.02093561552464962, -0.002259503584355116, 0.005953394807875156, 0.17705444991588593, -0.05482979118824005, -0.07482223957777023, -0.015608790330588818, 0.11278475821018219, 0.01666538044810295, -0.018620122224092484, -0.09038287401199341, -0.024594362825155258, 0.04295153543353081, 0.05845927074551582, 0.005309798754751682, 0.025004487484693527, -0.06049228087067604, -0.05524508282542229, 0.03972728177905083, -0.1372368335723877, 0.06185513734817505, 0.024229010567069054, -0.05041743814945221, -0.00506877014413476, -0.01847807504236698, 0.002389735309407115, -0.05365126207470894, 0.08136603236198425, -0.06033647060394287, -0.029162652790546417, -0.05912120267748833, -0.075718954205513, 0.02587568201124668, -0.050961777567863464, -0.031095702201128006, -0.05737287923693657, -0.12521612644195557, -0.04800170660018921, 0.029574787244200706, -0.07585059106349945, -0.06703374534845352, -0.034945063292980194, -0.046125851571559906, 0.024516835808753967, 0.005793862976133823, 0.10643056780099869, -0.024808648973703384, 0.052176229655742645, 0.008127427659928799, 0.04825187847018242, 0.0723198875784874, 0.040696751326322556, -0.07455721497535706, 0.04546103999018669, -0.12115801870822906, 0.09504729509353638, -0.08740374445915222, 0.038805510848760605, -0.1416768580675125, -0.10633745044469833, 0.010882650502026081, -0.02914852648973465, 0.06111591309309006, 0.11218138039112091, -0.16420678794384003, -0.04069045931100845, 0.18313831090927124, -0.03538275510072708, -0.09325990825891495, 0.11059045046567917, -0.04060499370098114, -0.023781009018421173, 0.04340382665395737, 0.13753755390644073, 0.15709728002548218, -0.11275812238454819, -0.027741853147745132, 0.0034498570021241903, 0.0870935395359993, 0.07523559033870697, 0.0910855233669281, -0.0457226000726223, 0.054179541766643524, 0.010545765049755573, -0.0595126673579216, -0.025650519877672195, -0.04409640282392502, -0.09860162436962128, -0.02372354082763195, -0.06261363625526428, 0.07930529862642288, 0.005589788779616356, 0.02138238027691841, -0.0639461949467659, -0.12756145000457764, 0.0066102915443480015, 0.10436899960041046, -0.05086445435881615, 0.010882209986448288, -0.09171073138713837, 0.06712660193443298, -0.0258083064109087, -0.003403108799830079, -0.17279452085494995, -0.12609903514385223, 0.06830132007598877, -0.0676363930106163, 0.029240187257528305, 0.006328579504042864, 0.057563625276088715, 0.04231050983071327, -0.038493815809488297, -0.026182791218161583, -0.056496936827898026, -0.03224750608205795, -0.08333062380552292, -0.15327811241149902, -0.08163854479789734, -0.03031274676322937, 0.14381526410579681, -0.1771162897348404, 0.003072531195357442, 0.01250454131513834, 0.12298540771007538, 0.013642193749547005, -0.05465959757566452, 0.02109972946345806, 0.019987422972917557, 0.011062903329730034, -0.07549896091222763, 0.03469275310635567, -0.010316061787307262, -0.10183576494455338, -0.05698220059275627, -0.1201435774564743, 0.013007020577788353, 0.060577549040317535, 0.05938237905502319, -0.07297592610120773, -0.049485813826322556, -0.0546722412109375, -0.022846948355436325, -0.06343872100114822, -0.030695151537656784, 0.2024984359741211, 0.026444032788276672, 0.10135260224342346, -0.07664554566144943, -0.08741056174039841, -0.0028173571918159723, 0.03377082943916321, -0.015256603248417377, 0.09829366207122803, 0.025776969268918037, -0.12329099327325821, 0.0773712545633316, 0.13511347770690918, -0.0046914564445614815, 0.09157777577638626, -0.05589580908417702, -0.0939437597990036, -0.05507143586874008, 0.02877841889858246, 0.01672687567770481, 0.06994612514972687, -0.08090358972549438, 0.0040252250619232655, 0.06418786197900772, 0.010511249303817749, -0.0003152831341139972, -0.12798941135406494, -0.002444497775286436, 0.03757858648896217, -0.041836172342300415, -0.009017427451908588, -0.01840033195912838, 0.0422603115439415, 0.08312929421663284, 0.052044086158275604, -0.0007927314727567136, 0.005421189125627279, -0.052996646612882614, -0.0751500129699707, 0.1724521964788437, -0.09983125329017639, -0.1951417475938797, -0.1347304731607437, -0.012007426470518112, -0.05499880388379097, -0.021455971524119377, 0.004280693829059601, -0.08104966580867767, -0.07361150532960892, -0.0853990837931633, -0.00876986887305975, -0.03687857836484909, 0.007014873903244734, 0.06061346083879471, 0.016703380271792412, 0.08636137843132019, -0.12477035820484161, 0.01637374609708786, 0.0012818514369428158, -0.07876674085855484, -0.00013766791380476207, 0.06795059889554977, 0.08303886651992798, 0.1113462820649147, 0.012169091030955315, 0.020816955715417862, -0.038900867104530334, 0.23616327345371246, -0.10049320012331009, 0.009607002139091492, 0.10528209805488586, -0.02050386369228363, 0.06869597733020782, 0.15327121317386627, 0.03447164595127106, -0.07310578972101212, 0.01994924433529377, 0.04698820412158966, -0.007024446967989206, -0.24093545973300934, -0.03662051260471344, -0.054362062364816666, -0.034171659499406815, 0.13665959239006042, 0.039636868983507156, -0.018229486420750618, 0.040971510112285614, -0.04144899547100067, 0.026309147477149963, 0.008171365596354008, 0.0795837789773941, 0.08384397625923157, 0.043704237788915634, 0.10227066278457642, -0.0215153805911541, -0.029495729133486748, 0.05699790641665459, 0.014530980959534645, 0.21324113011360168, -0.01987055130302906, 0.17301654815673828, 0.02419336512684822, 0.14784957468509674, -0.01397672202438116, 0.02917860634624958, 0.008338119834661484, -0.002783706644549966, 0.012356667779386044, -0.07467765361070633, 0.0077242921106517315, 0.033421244472265244, 0.07152432203292847, 0.03457896411418915, -0.0755513608455658, 0.0021953911054879427, 0.041969891637563705, 0.24931657314300537, 0.10910551995038986, -0.2495512068271637, -0.05926031991839409, 0.03369869291782379, -0.02578585408627987, -0.055044759064912796, 0.010909752920269966, 0.10928492248058319, -0.13644219934940338, 0.0700596272945404, -0.05285205692052841, 0.08619418740272522, -0.04015365615487099, 0.011779041960835457, 0.0774650052189827, 0.0960279181599617, 0.012682687491178513, 0.09813791513442993, -0.15251831710338593, 0.1808435618877411, 0.01940106973052025, 0.056903593242168427, -0.06858789175748825, 0.05688709765672684, -0.013076666742563248, -0.010037931613624096, 0.1382584422826767, 0.0024767164140939713, -0.02495286613702774, -0.13336625695228577, -0.11662618070840836, 0.014222811907529831, 0.12817740440368652, -0.08643513917922974, 0.09802339971065521, -0.03741496801376343, -0.031554095447063446, 0.01722264103591442, 0.019579874351620674, -0.0804973840713501, -0.15843318402767181, 0.04952835664153099, -0.0070677632465958595, -0.0391460619866848, -0.07673242688179016, -0.07224602997303009, -0.1288662850856781, 0.21975725889205933, -0.04193217679858208, -0.04903511703014374, -0.12999564409255981, 0.09730691462755203, 0.1474074274301529, -0.07257653772830963, 0.027191825211048126, -0.0012490164954215288, 0.14923542737960815, 0.018724925816059113, -0.07680468261241913, 0.06445561349391937, -0.04532525688409805, -0.16713930666446686, -0.06110053136944771, 0.18278658390045166, 0.005051890853792429, 0.06036404147744179, 0.0065629384480416775, 0.031839560717344284, 0.017619984224438667, -0.0815853700041771, 0.05156424269080162, 0.07961466163396835, 0.07344217598438263, 0.06314798444509506, -0.057762179523706436, 0.01194173377007246, -0.05708365514874458, 0.030835846439003944, 0.1756202131509781, 0.24822667241096497, -0.0996706411242485, 0.10066124051809311, 0.04158918932080269, -0.05564696341753006, -0.19357483088970184, 0.024907050654292107, 0.1141439825296402, 0.04633817449212074, 0.04818475618958473, -0.16905540227890015, 0.09482915699481964, 0.08554942905902863, -0.012352660298347473, 0.02339489758014679, -0.32092374563217163, -0.12627245485782623, 0.05511407554149628, 0.031284149736166, -0.03671058267354965, -0.13562585413455963, -0.07105114310979843, -0.035563625395298004, -0.11512848734855652, 0.07386644184589386, -0.03452930599451065, 0.09549961984157562, -0.0003118961176369339, 0.05199694633483887, 0.04070820286870003, -0.03986719623208046, 0.1505967676639557, 0.03589324653148651, 0.04658167064189911, -0.048079535365104675, -0.010712673887610435, 0.08824198693037033, -0.07085306197404861, 0.03332282230257988, -0.03767336159944534, 0.06368394196033478, -0.1494937390089035, -0.022724002599716187, -0.06687626987695694, 0.018515128642320633, -0.0687391459941864, -0.04032185673713684, -0.04566097632050514, 0.05823924019932747, 0.10182174295186996, -0.010847102850675583, 0.06415858119726181, 0.016741234809160233, 0.06423820555210114, 0.08547305315732956, 0.10270677506923676, 0.06416758894920349, -0.17718736827373505, -0.013162433169782162, -0.011114162392914295, 0.04811733588576317, -0.11152401566505432, 0.04459809884428978, 0.12896513938903809, 0.04676579311490059, 0.1269715577363968, 0.02778487093746662, -0.06412941217422485, -0.03135315701365471, 0.04172665998339653, -0.09007344394922256, -0.16976484656333923, -0.010639090090990067, 0.01574619859457016, -0.20985251665115356, -0.03037312626838684, 0.09908700734376907, 0.00823144055902958, -0.031381260603666306, 0.016357824206352234, 0.03001408278942108, -0.004036851227283478, 0.15121065080165863, 0.020493797957897186, 0.08852788060903549, -0.09165515005588531, 0.10326578468084335, 0.10999549180269241, -0.06321893632411957, 0.037744466215372086, 0.08270356059074402, -0.06711598485708237, -0.02250785380601883, 0.04604349285364151, 0.08849851042032242, 0.05019406974315643, 0.006953543517738581, -0.0364539660513401, -0.11049344390630722, 0.06120377406477928, 0.042397383600473404, 0.03977551311254501, -0.018416989594697952, -0.02093719132244587, -0.005949529819190502, -0.09266120195388794, 0.11740089952945709, 0.04586830362677574, 0.05652003362774849, -0.10368142277002335, 0.08641665428876877, -0.03121718391776085, 0.029822204262018204, -0.0033740848302841187, 0.006463115569204092, -0.10176122188568115, -0.018985051661729813, -0.12172628939151764, 0.01131315715610981, -0.01819225586950779, -0.0018454005476087332, -0.017108669504523277, -0.022778062149882317, -0.02037697099149227, 0.010493692941963673, -0.07430464029312134, -0.0792517215013504, -0.008184969425201416, 0.06460704654455185, -0.13625790178775787, -0.017927948385477066, 0.03146781772375107, -0.1119338795542717, 0.10874705016613007, 0.02438502013683319, 0.023344798013567924, -0.0009658104972913861, -0.08187498897314072, -0.05101398006081581, 0.011187740601599216, 0.04931741952896118, 0.07087069749832153, -0.11491277813911438, -0.002627386013045907, -0.0436708889901638, -0.021184075623750687, 0.021724462509155273, 0.001399795524775982, -0.12603983283042908, 0.003754605771973729, -0.04072842001914978, -0.04612201452255249, -0.059509772807359695, 0.03040768764913082, 0.04449747875332832, 0.01323345210403204, 0.15042535960674286, -0.07304558157920837, 0.09068986773490906, -0.21505072712898254, -0.028558718040585518, -0.004209835547953844, -0.014578024856746197, -0.046749331057071686, -0.03354620933532715, 0.08949942141771317, -0.056226618587970734, 0.09123051911592484, -0.031132129952311516, 0.0635971799492836, 0.03375120460987091, -0.014692457392811775, 0.021364042535424232, 0.03475029021501541, 0.15136152505874634, 0.07147962599992752, -0.044349655508995056, 0.08635374158620834, -0.03438606485724449, 0.04819197952747345, 0.07605711370706558, 0.15202732384204865, 0.1734887808561325, 0.05658959969878197, 0.03481091186404228, 0.07630275189876556, -0.09833703190088272, -0.12739752233028412, 0.12298385798931122, -0.050026826560497284, 0.12156324833631516, -0.05373984947800636, 0.11905618011951447, 0.05916118994355202, -0.19207781553268433, 0.06313812732696533, -0.06276766210794449, -0.1080419048666954, -0.09604352712631226, -0.12559178471565247, -0.09359316527843475, -0.06432569772005081, 0.02959495596587658, -0.12131854891777039, 0.027616219595074654, 0.05614764615893364, 0.019713889807462692, 0.002202570205554366, 0.13683457672595978, -0.05710810422897339, 0.011425203643739223, 0.0975906103849411, 0.028718192130327225, 0.014665813185274601, 0.01199840847402811, -0.024634813889861107, 0.04334995895624161, 0.02961854450404644, 0.08770830184221268, -0.024259651079773903, 0.022710995748639107, 0.03166034817695618, -0.02444012090563774, -0.09865561127662659, 0.010303611867129803, -0.0026865017134696245, 0.02467469498515129, 0.06261858344078064, 0.05894418805837631, 0.014568326063454151, -0.056758731603622437, 0.20037400722503662, -0.07089719921350479, -0.07581422477960587, -0.1424480527639389, 0.1258154958486557, 0.0014693039702251554, -0.0009388219332322478, 0.05661553889513016, -0.11460346728563309, -0.022580118849873543, 0.17024704813957214, 0.1956709921360016, -0.07072935998439789, -0.009221983142197132, 0.021832868456840515, -0.0028610925655812025, -0.03050798363983631, 0.09054016321897507, 0.08315607160329819, 0.057970114052295685, -0.047684088349342346, 0.010781259275972843, 0.020564652979373932, -0.04412335902452469, -0.07587072253227234, 0.07493432611227036, 0.0253252312541008, 0.014693801291286945, -0.03282329812645912, 0.07698055356740952, -0.011539693921804428, -0.15798979997634888, 0.04918152093887329, -0.18165308237075806, -0.19431130588054657, -0.02348574437201023, 0.06625114381313324, 0.01579209230840206, 0.07377693802118301, -0.005485639441758394, -0.01962212845683098, 0.1268387883901596, -0.016346396878361702, -0.03374963998794556, -0.0702206939458847, 0.09781801700592041, -0.10001227259635925, 0.20785562694072723, 0.014759625308215618, 0.08154677599668503, 0.11228720098733902, 0.01361896563321352, -0.12487788498401642, -0.004619354382157326, 0.09872216731309891, -0.08340168744325638, 0.029103847220540047, 0.16166722774505615, -0.03391394019126892, 0.10332215577363968, 0.07366202771663666, -0.07774155586957932, -0.008745426312088966, -0.047681402415037155, 0.005564715247601271, -0.10099884867668152, 0.02015293762087822, -0.05891245976090431, 0.15247933566570282, 0.23259560763835907, -0.054932188242673874, -0.02398047223687172, -0.03118138574063778, 0.008062656968832016, 0.0293397456407547, 0.1050477921962738, -0.03951341658830643, -0.16606321930885315, 0.02876204438507557, -0.006805299315601587, 0.06433415412902832, -0.22821703553199768, -0.09503006190061569, 0.05808800086379051, -0.02303064428269863, -0.065370112657547, 0.13458490371704102, 0.046868640929460526, 0.020125269889831543, -0.034754157066345215, -0.11497049033641815, -0.034105848520994186, 0.11859820038080215, -0.1495378017425537, -0.05393027141690254 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-large-uncased-whole-word-masking-squad2-with-ner-conll2003-with-neg-with-repeat This model is a fine-tuned version of [deepset/bert-large-uncased-whole-word-masking-squad2](https://huggingface.co/deepset/bert-large-uncased-whole-word-masking-squad2) on the squad_v2 and the conll2003 datasets. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results ### Framework versions - Transformers 4.8.2 - Pytorch 1.8.1+cu111 - Datasets 1.8.0 - Tokenizers 0.10.3
{"language": ["en"], "license": "cc-by-4.0", "tags": ["generated_from_trainer"], "datasets": ["squad_v2", "conll2003"], "model_index": [{"name": "bert-large-uncased-whole-word-masking-squad2-with-ner-conll2003-with-neg-with-repeat", "results": [{"task": {"name": "Token Classification", "type": "token-classification"}, "dataset": {"name": "squad_v2", "type": "squad_v2", "args": "conll2003"}}, {"task": {"name": "Token Classification", "type": "token-classification"}, "dataset": {"name": "conll2003", "type": "conll2003"}}]}]}
question-answering
andi611/bert-large-uncased-whole-word-masking-squad2-with-ner-conll2003-with-neg-with-repeat
[ "transformers", "pytorch", "bert", "question-answering", "generated_from_trainer", "en", "dataset:squad_v2", "dataset:conll2003", "license:cc-by-4.0", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #bert #question-answering #generated_from_trainer #en #dataset-squad_v2 #dataset-conll2003 #license-cc-by-4.0 #endpoints_compatible #region-us
# bert-large-uncased-whole-word-masking-squad2-with-ner-conll2003-with-neg-with-repeat This model is a fine-tuned version of deepset/bert-large-uncased-whole-word-masking-squad2 on the squad_v2 and the conll2003 datasets. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results ### Framework versions - Transformers 4.8.2 - Pytorch 1.8.1+cu111 - Datasets 1.8.0 - Tokenizers 0.10.3
[ "# bert-large-uncased-whole-word-masking-squad2-with-ner-conll2003-with-neg-with-repeat\n\nThis model is a fine-tuned version of deepset/bert-large-uncased-whole-word-masking-squad2 on the squad_v2 and the conll2003 datasets.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 2e-05\n- train_batch_size: 4\n- eval_batch_size: 1\n- seed: 42\n- gradient_accumulation_steps: 4\n- total_train_batch_size: 16\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 5", "### Training results", "### Framework versions\n\n- Transformers 4.8.2\n- Pytorch 1.8.1+cu111\n- Datasets 1.8.0\n- Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #bert #question-answering #generated_from_trainer #en #dataset-squad_v2 #dataset-conll2003 #license-cc-by-4.0 #endpoints_compatible #region-us \n", "# bert-large-uncased-whole-word-masking-squad2-with-ner-conll2003-with-neg-with-repeat\n\nThis model is a fine-tuned version of deepset/bert-large-uncased-whole-word-masking-squad2 on the squad_v2 and the conll2003 datasets.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 2e-05\n- train_batch_size: 4\n- eval_batch_size: 1\n- seed: 42\n- gradient_accumulation_steps: 4\n- total_train_batch_size: 16\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 5", "### Training results", "### Framework versions\n\n- Transformers 4.8.2\n- Pytorch 1.8.1+cu111\n- Datasets 1.8.0\n- Tokenizers 0.10.3" ]
[ 63, 89, 6, 12, 8, 3, 113, 4, 34 ]
[ "passage: TAGS\n#transformers #pytorch #bert #question-answering #generated_from_trainer #en #dataset-squad_v2 #dataset-conll2003 #license-cc-by-4.0 #endpoints_compatible #region-us \n# bert-large-uncased-whole-word-masking-squad2-with-ner-conll2003-with-neg-with-repeat\n\nThis model is a fine-tuned version of deepset/bert-large-uncased-whole-word-masking-squad2 on the squad_v2 and the conll2003 datasets.## Model description\n\nMore information needed## Intended uses & limitations\n\nMore information needed## Training and evaluation data\n\nMore information needed## Training procedure### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 2e-05\n- train_batch_size: 4\n- eval_batch_size: 1\n- seed: 42\n- gradient_accumulation_steps: 4\n- total_train_batch_size: 16\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 5### Training results### Framework versions\n\n- Transformers 4.8.2\n- Pytorch 1.8.1+cu111\n- Datasets 1.8.0\n- Tokenizers 0.10.3" ]
[ -0.07409392297267914, 0.1541951298713684, -0.004865502938628197, 0.06811883300542831, 0.08745847642421722, 0.04251257702708244, 0.09068093448877335, 0.1479615420103073, -0.08567247539758682, 0.13084837794303894, 0.06266805529594421, 0.025621922686696053, 0.0870855450630188, 0.10209289193153381, -0.011484388262033463, -0.22694559395313263, 0.011150501668453217, -0.03395001217722893, -0.08260097354650497, 0.09275900572538376, 0.10763560980558395, -0.1083013266324997, 0.03757748007774353, -0.008597290143370628, -0.0885661169886589, 0.016317181289196014, -0.06156634911894798, -0.03646581992506981, 0.056904375553131104, 0.023756524547934532, 0.07514549791812897, 0.010204901918768883, 0.11225298792123795, -0.2433425486087799, 0.0011963070137426257, 0.0705975741147995, 0.018719738349318504, 0.07900350540876389, 0.0761948674917221, 0.028019823133945465, 0.03952682763338089, -0.17593388259410858, 0.09292693436145782, 0.028177578002214432, -0.08468452841043472, -0.15315186977386475, -0.08699755370616913, 0.06697297841310501, 0.1207340806722641, 0.0750410333275795, -0.022009164094924927, 0.12081450968980789, -0.10281986743211746, 0.036078423261642456, 0.1712692826986313, -0.31159543991088867, -0.0639386922121048, 0.058023128658533096, 0.02866826020181179, 0.03320188447833061, -0.11414410918951035, -0.011149088852107525, 0.023460596799850464, 0.004712154157459736, 0.06600804626941681, 0.0073311822488904, -0.012616250663995743, 0.013269606977701187, -0.12460170686244965, -0.04019869863986969, 0.12663982808589935, 0.06750094145536423, -0.009477760642766953, -0.16343992948532104, -0.025966960936784744, -0.08678160607814789, -0.034431636333465576, -0.032321229577064514, 0.028737353160977364, -0.053380291908979416, -0.05901361629366875, -0.013554595410823822, -0.06570655107498169, -0.03312567621469498, 0.012982496991753578, 0.06379639357328415, 0.05839689075946808, -0.0008971458300948143, -0.011469509452581406, 0.08854909241199493, 0.013418987393379211, -0.1515112817287445, -0.027850832790136337, -0.008801273070275784, -0.15478946268558502, -0.05459810793399811, -0.029754146933555603, 0.014314823783934116, 0.026914382353425026, 0.1706041693687439, 0.01628837175667286, 0.059930428862571716, 0.04411023482680321, -0.011359812691807747, 0.011949632316827774, 0.14807730913162231, -0.05175723135471344, -0.08958615362644196, -0.022433985024690628, 0.10568930953741074, 0.007820905186235905, -0.012708908878266811, -0.08058105409145355, -0.026289453729987144, 0.04366171360015869, 0.06779469549655914, -0.00478431535884738, 0.017682315781712532, -0.05836499109864235, -0.05524437129497528, 0.022304942831397057, -0.13956891000270844, 0.06340144574642181, 0.028607847169041634, -0.061126913875341415, -0.005633939057588577, -0.03434862941503525, 0.004258232191205025, -0.05434010177850723, 0.07811418920755386, -0.052882399410009384, -0.0309340488165617, -0.056292176246643066, -0.05570386350154877, 0.030004151165485382, -0.05391015484929085, -0.026890171691775322, -0.048104170709848404, -0.13574552536010742, -0.045969158411026, 0.03218108043074608, -0.08498771488666534, -0.06857595592737198, -0.04427875205874443, -0.028825711458921432, 0.011977610178291798, -0.0041923727840185165, 0.09810982644557953, -0.03363213315606117, 0.04316973686218262, -0.0025169304572045803, 0.04594305157661438, 0.08999942243099213, 0.0411088652908802, -0.06945780664682388, 0.03848779946565628, -0.08525336533784866, 0.09111155569553375, -0.08823179453611374, 0.023802723735570908, -0.1458192765712738, -0.10434535145759583, -0.00668403459712863, -0.032997164875268936, 0.05224526673555374, 0.10765881836414337, -0.17681899666786194, -0.041203293949365616, 0.1636434942483902, -0.03500819951295853, -0.09763550013303757, 0.10320691764354706, -0.04211762174963951, -0.020168090239167213, 0.042007800191640854, 0.11886759847402573, 0.1635238081216812, -0.12435684353113174, -0.030469903722405434, -0.0003220336511731148, 0.08817996829748154, 0.07639193534851074, 0.08852863311767578, -0.027357233688235283, 0.07013066858053207, 0.01402272004634142, -0.06379697471857071, -0.027594365179538727, -0.050932876765728, -0.10807255655527115, -0.018035413697361946, -0.06008263677358627, 0.060031626373529434, 0.009818587452173233, 0.02039424143731594, -0.060406822711229324, -0.11968948692083359, 0.02101854421198368, 0.12071165442466736, -0.05154314637184143, 0.005459178239107132, -0.08719801157712936, 0.0607762336730957, -0.019240502268075943, -0.00425797188654542, -0.15573136508464813, -0.14017602801322937, 0.0664266049861908, -0.07241565734148026, 0.04556037113070488, 0.04024847596883774, 0.053056519478559494, 0.0424504280090332, -0.03758537769317627, -0.019741248339414597, -0.061271097511053085, -0.032593984156847, -0.06671294569969177, -0.16578000783920288, -0.0768449679017067, -0.02493678592145443, 0.15099386870861053, -0.1905106008052826, 0.0003877172421198338, -0.008852193132042885, 0.13368652760982513, 0.00341892521828413, -0.056253980845212936, 0.00911691039800644, 0.022770525887608528, 0.0056620147079229355, -0.07515183836221695, 0.036600738763809204, -0.017846081405878067, -0.1082788035273552, -0.07456962019205093, -0.11244586855173111, 0.01388547383248806, 0.05804380029439926, 0.07360897958278656, -0.07248754799365997, -0.06839172542095184, -0.06409204006195068, -0.02746409736573696, -0.07306739687919617, -0.01238254550844431, 0.21511723101139069, 0.024092402309179306, 0.09378200024366379, -0.07514356821775436, -0.10070707648992538, -0.009248042479157448, 0.037486378103494644, -0.020022183656692505, 0.09308918565511703, 0.06618142873048782, -0.1083940714597702, 0.0701357051730156, 0.12367065250873566, 0.00012500208686105907, 0.10329243540763855, -0.0622529610991478, -0.09910540282726288, -0.053441617637872696, 0.03236374258995056, 0.00864420272409916, 0.07993482053279877, -0.08354877680540085, 0.006741639692336321, 0.05413609370589256, 0.011590820737183094, 0.014286746270954609, -0.12757857143878937, -0.007817517034709454, 0.04019583761692047, -0.04556785896420479, 0.009762303903698921, -0.025508427992463112, 0.04526883363723755, 0.08486589789390564, 0.04442805424332619, -0.007152214180678129, -0.010218971408903599, -0.051025282591581345, -0.0770428404211998, 0.16278176009655, -0.09801023453474045, -0.1736954301595688, -0.11953120678663254, 0.008187184110283852, -0.06212949380278587, -0.032452549785375595, -0.0029526937287300825, -0.09228027611970901, -0.06824605911970139, -0.08728273957967758, 0.004587183240801096, -0.04065795615315437, 0.006982127204537392, 0.07457383722066879, 0.03793032467365265, 0.07451659440994263, -0.1271895468235016, 0.025642968714237213, -0.009785369038581848, -0.09324709326028824, -0.013531523756682873, 0.06449269503355026, 0.08420421928167343, 0.12188352644443512, 0.012358716689050198, 0.023264769464731216, -0.04366203024983406, 0.21106624603271484, -0.09718705713748932, 0.003365900134667754, 0.09924568980932236, -0.007688004523515701, 0.05336526408791542, 0.15270599722862244, 0.03561161458492279, -0.0818173885345459, 0.01783190295100212, 0.058399394154548645, -0.003249793080613017, -0.2432658076286316, -0.04957572743296623, -0.05493411794304848, -0.04591624066233635, 0.14349259436130524, 0.044853463768959045, -0.03524570167064667, 0.04078296199440956, -0.04474546015262604, 0.01994573511183262, 0.019876010715961456, 0.0800933688879013, 0.08686676621437073, 0.04462185502052307, 0.09385266900062561, -0.021873824298381805, -0.037325117737054825, 0.06226613372564316, 0.03152488172054291, 0.22474305331707, -0.016913706436753273, 0.15903733670711517, 0.02603810466825962, 0.14477157592773438, -0.028166143223643303, 0.024951057508587837, 0.007416142150759697, -0.0047153267078101635, 0.01352942269295454, -0.07236792892217636, 0.002500408561900258, 0.04285139590501785, 0.07388115674257278, 0.02346525341272354, -0.06812489032745361, 0.021345095708966255, 0.045880239456892014, 0.21616342663764954, 0.1029760092496872, -0.23865121603012085, -0.050579983741045, 0.03778396546840668, -0.03085619956254959, -0.04100969433784485, 0.01857437752187252, 0.09660293906927109, -0.11473467200994492, 0.07477455586194992, -0.04729845002293587, 0.08584664016962051, -0.0555306039750576, 0.0004838471650145948, 0.07735700160264969, 0.10813874006271362, 0.024235377088189125, 0.1034124568104744, -0.1308770328760147, 0.17135721445083618, 0.013705874793231487, 0.07030748575925827, -0.073569156229496, 0.05944744870066643, -0.024928206577897072, -0.01966332085430622, 0.1307077556848526, -0.0031131200958043337, -0.03819741681218147, -0.13475097715854645, -0.11376859992742538, 0.03110305778682232, 0.13004164397716522, -0.08743475377559662, 0.10164463520050049, -0.042564064264297485, -0.021643487736582756, 0.021419575437903404, -0.010205590166151524, -0.10246508568525314, -0.17559932172298431, 0.0495171993970871, -0.023332888260483742, -0.04595018923282623, -0.07366864383220673, -0.07833503186702728, -0.13028466701507568, 0.23621384799480438, -0.039474911987781525, -0.03653651475906372, -0.1269715577363968, 0.09968113899230957, 0.15567076206207275, -0.06828427314758301, 0.018455643206834793, 0.010853578336536884, 0.15075373649597168, 0.01626206375658512, -0.07941219210624695, 0.04672326147556305, -0.047473035752773285, -0.15810222923755646, -0.06448490172624588, 0.1825326681137085, 0.014773556962609291, 0.061000291258096695, 0.014871963299810886, 0.020658079534769058, 0.02103826403617859, -0.0900280624628067, 0.04207969829440117, 0.09103991836309433, 0.06881486624479294, 0.0528264045715332, -0.07364066690206528, 0.02126466855406761, -0.051158733665943146, 0.018654320389032364, 0.16357427835464478, 0.24215824902057648, -0.09820299595594406, 0.10393892973661423, 0.033419545739889145, -0.06268078833818436, -0.17597843706607819, 0.013731878250837326, 0.1168917864561081, 0.03858450427651405, 0.04350657016038895, -0.17916104197502136, 0.10288559645414352, 0.09488760679960251, -0.0046270135790109634, 0.017888102680444717, -0.3317503333091736, -0.12319834530353546, 0.05337287113070488, 0.036728404462337494, -0.04556214436888695, -0.1292508840560913, -0.06355428695678711, -0.027571165934205055, -0.11930426210165024, 0.0797622799873352, -0.029857901856303215, 0.09705023467540741, 0.001644919509999454, 0.04545612260699272, 0.0336151048541069, -0.03541668877005577, 0.15047231316566467, 0.046702269464731216, 0.04576808586716652, -0.04470113292336464, 0.00870673917233944, 0.07539810985326767, -0.07003210484981537, 0.038636840879917145, -0.03995233774185181, 0.060336001217365265, -0.15627582371234894, -0.03144460916519165, -0.04668070375919342, 0.026764966547489166, -0.06784101575613022, -0.04503889009356499, -0.058596715331077576, 0.06559823453426361, 0.10798608511686325, -0.017329351976513863, 0.07272002846002579, 0.031257595866918564, 0.06705430895090103, 0.04995156079530716, 0.10693852603435516, 0.05587012320756912, -0.16487576067447662, -0.018007619306445122, -0.0027645898517221212, 0.04078541323542595, -0.10099190473556519, 0.04141996428370476, 0.13792623579502106, 0.043779145926237106, 0.1275443583726883, 0.027335025370121002, -0.05716471001505852, -0.027551209554076195, 0.04878140985965729, -0.07756668329238892, -0.17530657351016998, 0.000146872567711398, -0.0012279261136427522, -0.19265669584274292, -0.014056045562028885, 0.09237858653068542, 0.0018670944264158607, -0.028052810579538345, 0.014610846526920795, 0.033276986330747604, 0.0010727948974817991, 0.15874361991882324, 0.008762664161622524, 0.08106369525194168, -0.08443225920200348, 0.10590022802352905, 0.10143406689167023, -0.06057608127593994, 0.03715907782316208, 0.07142089307308197, -0.0651673674583435, -0.019190827384591103, 0.04855840280652046, 0.09500940144062042, 0.04821949452161789, 0.0024870894849300385, -0.0412633903324604, -0.10494466125965118, 0.06796730309724808, 0.018357474356889725, 0.03471202403306961, -0.017340783029794693, -0.022022852674126625, 0.010286211967468262, -0.09417195618152618, 0.1106492429971695, 0.053091492503881454, 0.055400848388671875, -0.10627467930316925, 0.07246437668800354, -0.018176427111029625, 0.02274620160460472, -0.004991211928427219, 0.00761167798191309, -0.0941057875752449, -0.02336440421640873, -0.11177078634500504, -0.005101276561617851, -0.04362831264734268, 0.007298656273633242, -0.011604891158640385, -0.02091154083609581, -0.03075389191508293, 0.01346976961940527, -0.06408370286226273, -0.07492256164550781, -0.018372371792793274, 0.08115962147712708, -0.14217258989810944, -0.003115977393463254, 0.030804548412561417, -0.11747356504201889, 0.10366123914718628, 0.015043864026665688, 0.037744224071502686, 0.0021462782751768827, -0.081902876496315, -0.04450897499918938, 0.01662350259721279, 0.061076704412698746, 0.06774187833070755, -0.12858423590660095, 0.0044280909933149815, -0.0342550165951252, -0.01785746030509472, 0.017947912216186523, -0.014024301432073116, -0.12527944147586823, -0.00470989802852273, -0.06397627294063568, -0.05279592424631119, -0.049627818167209625, 0.02877074107527733, 0.053686559200286865, 0.00965348444879055, 0.14419780671596527, -0.06375978887081146, 0.08796379715204239, -0.2254253625869751, -0.033704668283462524, 0.0014533810317516327, 0.0012987651862204075, -0.04049791395664215, -0.03635329380631447, 0.08631400763988495, -0.04896955564618111, 0.11242236942052841, -0.030449453741312027, 0.054707061499357224, 0.03254859149456024, -0.013717942871153355, 0.024954121559858322, 0.03512394800782204, 0.16570012271404266, 0.08924026787281036, -0.03441215306520462, 0.0727229192852974, -0.04203658178448677, 0.04613586142659187, 0.044196922332048416, 0.14854633808135986, 0.16559094190597534, 0.03970131278038025, 0.02692262828350067, 0.08622092753648758, -0.12316744774580002, -0.12241984158754349, 0.15358930826187134, -0.04593899846076965, 0.10657210648059845, -0.042396385222673416, 0.12146007269620895, 0.07946901023387909, -0.20092537999153137, 0.05673595145344734, -0.05483992397785187, -0.10750780254602432, -0.10010666400194168, -0.12281964719295502, -0.09341920912265778, -0.08777696639299393, 0.042210038751363754, -0.12480541318655014, 0.012934853322803974, 0.046577975153923035, 0.03378401696681976, 0.014144191518425941, 0.12263107299804688, -0.037681397050619125, 0.011867892928421497, 0.08286377042531967, 0.035075005143880844, 0.012730232439935207, -0.005264212843030691, -0.024744395166635513, 0.036914706230163574, 0.014119486324489117, 0.0934833362698555, -0.03258046507835388, 0.024835243821144104, 0.03286164999008179, -0.01631634309887886, -0.08404890447854996, 0.007967507466673851, -0.01726892776787281, 0.01961859129369259, 0.07139621675014496, 0.05671892315149307, 0.012056690640747547, -0.05799271538853645, 0.20421357452869415, -0.057496327906847, -0.07853686809539795, -0.14755330979824066, 0.11408458650112152, 0.013467183336615562, 0.007949317805469036, 0.06490729749202728, -0.10459345579147339, -0.025040199980139732, 0.16737188398838043, 0.18974971771240234, -0.060514047741889954, -0.011883093044161797, 0.026448959484696388, -0.0037165884859859943, -0.04103650152683258, 0.0828389897942543, 0.08488880097866058, 0.06437541544437408, -0.04187878966331482, -0.011662494391202927, 0.013940547592937946, -0.04296622425317764, -0.06922441720962524, 0.075626440346241, 0.031972579658031464, 0.025841156020760536, -0.02813662961125374, 0.08072654902935028, -0.008936706930398941, -0.16258515417575836, 0.05232377350330353, -0.17282964289188385, -0.20000247657299042, -0.025907566770911217, 0.08466627448797226, -0.0024051570799201727, 0.06479749828577042, -0.0021449660416692495, -0.027952663600444794, 0.13217048346996307, -0.01119296159595251, -0.04739179462194443, -0.07080885022878647, 0.09700280427932739, -0.07017570734024048, 0.20531682670116425, 0.009250517003238201, 0.07958552986383438, 0.10532983392477036, 0.012293711304664612, -0.1283527910709381, 0.004713371861726046, 0.1045674979686737, -0.07213147729635239, 0.03193537890911102, 0.15308982133865356, -0.03769105300307274, 0.11584389209747314, 0.08794897794723511, -0.07240365445613861, -0.010209600441157818, -0.04604924097657204, -0.0033181270118802786, -0.10055836290121078, 0.039564549922943115, -0.05091727897524834, 0.15419046580791473, 0.21942460536956787, -0.053171541541814804, -0.021843502297997475, -0.039896417409181595, 0.019835680723190308, 0.0263515692204237, 0.12939733266830444, -0.02536938339471817, -0.16862408816814423, 0.019930856302380562, -0.005360858514904976, 0.06295019388198853, -0.20214852690696716, -0.10362869501113892, 0.07747408747673035, -0.03150463104248047, -0.061331991106271744, 0.14181959629058838, 0.057228609919548035, 0.020628010854125023, -0.03900686278939247, -0.1517868936061859, -0.02970067597925663, 0.10632959008216858, -0.15187405049800873, -0.042919907718896866 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-large-uncased-whole-word-masking-squad2-with-ner-mit-movie-with-neg-with-repeat This model is a fine-tuned version of [deepset/bert-large-uncased-whole-word-masking-squad2](https://huggingface.co/deepset/bert-large-uncased-whole-word-masking-squad2) on the squad_v2 and the mit_movie datasets. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results ### Framework versions - Transformers 4.8.2 - Pytorch 1.8.1+cu111 - Datasets 1.8.0 - Tokenizers 0.10.3
{"language": ["en"], "license": "cc-by-4.0", "tags": ["generated_from_trainer"], "datasets": ["squad_v2", "mit_movie"], "model_index": [{"name": "bert-large-uncased-whole-word-masking-squad2-with-ner-mit-movie-with-neg-with-repeat", "results": [{"task": {"name": "Token Classification", "type": "token-classification"}, "dataset": {"name": "squad_v2", "type": "squad_v2"}}, {"task": {"name": "Token Classification", "type": "token-classification"}, "dataset": {"name": "mit_movie", "type": "mit_movie"}}]}]}
question-answering
andi611/bert-large-uncased-whole-word-masking-squad2-with-ner-mit-movie-with-neg-with-repeat
[ "transformers", "pytorch", "bert", "question-answering", "generated_from_trainer", "en", "dataset:squad_v2", "dataset:mit_movie", "license:cc-by-4.0", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #bert #question-answering #generated_from_trainer #en #dataset-squad_v2 #dataset-mit_movie #license-cc-by-4.0 #endpoints_compatible #region-us
# bert-large-uncased-whole-word-masking-squad2-with-ner-mit-movie-with-neg-with-repeat This model is a fine-tuned version of deepset/bert-large-uncased-whole-word-masking-squad2 on the squad_v2 and the mit_movie datasets. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results ### Framework versions - Transformers 4.8.2 - Pytorch 1.8.1+cu111 - Datasets 1.8.0 - Tokenizers 0.10.3
[ "# bert-large-uncased-whole-word-masking-squad2-with-ner-mit-movie-with-neg-with-repeat\n\nThis model is a fine-tuned version of deepset/bert-large-uncased-whole-word-masking-squad2 on the squad_v2 and the mit_movie datasets.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 2e-05\n- train_batch_size: 4\n- eval_batch_size: 1\n- seed: 42\n- gradient_accumulation_steps: 4\n- total_train_batch_size: 16\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 5", "### Training results", "### Framework versions\n\n- Transformers 4.8.2\n- Pytorch 1.8.1+cu111\n- Datasets 1.8.0\n- Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #bert #question-answering #generated_from_trainer #en #dataset-squad_v2 #dataset-mit_movie #license-cc-by-4.0 #endpoints_compatible #region-us \n", "# bert-large-uncased-whole-word-masking-squad2-with-ner-mit-movie-with-neg-with-repeat\n\nThis model is a fine-tuned version of deepset/bert-large-uncased-whole-word-masking-squad2 on the squad_v2 and the mit_movie datasets.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 2e-05\n- train_batch_size: 4\n- eval_batch_size: 1\n- seed: 42\n- gradient_accumulation_steps: 4\n- total_train_batch_size: 16\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 5", "### Training results", "### Framework versions\n\n- Transformers 4.8.2\n- Pytorch 1.8.1+cu111\n- Datasets 1.8.0\n- Tokenizers 0.10.3" ]
[ 63, 89, 6, 12, 8, 3, 113, 4, 34 ]
[ "passage: TAGS\n#transformers #pytorch #bert #question-answering #generated_from_trainer #en #dataset-squad_v2 #dataset-mit_movie #license-cc-by-4.0 #endpoints_compatible #region-us \n# bert-large-uncased-whole-word-masking-squad2-with-ner-mit-movie-with-neg-with-repeat\n\nThis model is a fine-tuned version of deepset/bert-large-uncased-whole-word-masking-squad2 on the squad_v2 and the mit_movie datasets.## Model description\n\nMore information needed## Intended uses & limitations\n\nMore information needed## Training and evaluation data\n\nMore information needed## Training procedure### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 2e-05\n- train_batch_size: 4\n- eval_batch_size: 1\n- seed: 42\n- gradient_accumulation_steps: 4\n- total_train_batch_size: 16\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 5### Training results### Framework versions\n\n- Transformers 4.8.2\n- Pytorch 1.8.1+cu111\n- Datasets 1.8.0\n- Tokenizers 0.10.3" ]
[ -0.08856895565986633, 0.15482348203659058, -0.004202490672469139, 0.06460810452699661, 0.10622350871562958, 0.04760512337088585, 0.11063801497220993, 0.17398785054683685, -0.05831211432814598, 0.1182786151766777, 0.03282558172941208, 0.020227178931236267, 0.09116993844509125, 0.12143826484680176, 0.008984020911157131, -0.24633513391017914, -0.012737799435853958, -0.04360702261328697, -0.0693482905626297, 0.09423508495092392, 0.11318302154541016, -0.10517799854278564, 0.040861908346414566, -0.025327524170279503, -0.11353884637355804, 0.02060570754110813, -0.038277704268693924, -0.03927076235413551, 0.07839228957891464, 0.02322009764611721, 0.04763331636786461, 0.00515914149582386, 0.13430887460708618, -0.22686807811260223, 0.005511677823960781, 0.06372273713350296, 0.027346044778823853, 0.052139028906822205, 0.09992887824773788, 0.04948849603533745, 0.04942924529314041, -0.15587644279003143, 0.09622063487768173, 0.024358581751585007, -0.06644106656312943, -0.16736528277397156, -0.05875032767653465, 0.019031833857297897, 0.0827205702662468, 0.07837161421775818, -0.036223337054252625, 0.1107601746916771, -0.10857882350683212, 0.04104926809668541, 0.18830308318138123, -0.2660963833332062, -0.06769238412380219, 0.046743884682655334, 0.08142019063234329, 0.04847972095012665, -0.1460689753293991, -0.0029797942843288183, 0.025447871536016464, -0.0016620270907878876, 0.06677253544330597, 0.005601358599960804, 0.01419992744922638, -0.01991395838558674, -0.11732024699449539, -0.03402768820524216, 0.12160161137580872, 0.06632289290428162, -0.02975171059370041, -0.16630302369594574, -0.0072689177468419075, -0.07022736221551895, -0.05768612399697304, -0.0024339775554835796, 0.029339751228690147, -0.0674360916018486, -0.07638482749462128, 0.012370030395686626, -0.051165588200092316, -0.0335208959877491, 0.06920569390058517, 0.05393613502383232, 0.06290491670370102, 0.0075658224523067474, -0.05604073777794838, 0.08642652630805969, 0.02016034722328186, -0.16181498765945435, -0.01641407422721386, -0.005174245219677687, -0.1192048192024231, -0.047426845878362656, -0.014706766232848167, 0.028260422870516777, 0.005105588585138321, 0.1671856790781021, 0.02238008938729763, 0.06578485667705536, 0.022924652323126793, 0.006763183977454901, 0.01907900534570217, 0.1542501449584961, -0.06719522178173065, -0.11748199909925461, -0.010477826930582523, 0.13087192177772522, 0.00463272538036108, -0.01282393280416727, -0.08121660351753235, -0.006594995968043804, 0.04842374846339226, 0.07266978919506073, 0.015107565559446812, 0.014343790709972382, -0.06492036581039429, -0.05771356076002121, 0.01705951802432537, -0.14034810662269592, 0.0639282837510109, 0.029140086844563484, -0.0769568532705307, 0.01917164772748947, -0.05123947188258171, -0.009702636860311031, -0.054425496608018875, 0.09794634580612183, -0.056930214166641235, -0.00599243026226759, -0.06422114372253418, -0.05861382558941841, 0.04903591796755791, -0.04106185957789421, -0.027706008404493332, -0.03819214180111885, -0.0929795503616333, -0.03320441395044327, 0.03451315686106682, -0.09228498488664627, -0.06289688497781754, -0.04084618389606476, 0.001409038552083075, 0.030330821871757507, -0.0017856761114671826, 0.08642205595970154, -0.035628534853458405, 0.038634542375802994, 0.00035588411265052855, 0.058061935007572174, 0.11536022275686264, 0.053273238241672516, -0.0593169741332531, 0.0335814505815506, -0.14367666840553284, 0.08693251013755798, -0.08572547137737274, 0.016880253329873085, -0.12095635384321213, -0.11460445076227188, 0.025195354595780373, -0.024408243596553802, 0.022083468735218048, 0.130250945687294, -0.18071559071540833, -0.05777733027935028, 0.1577984094619751, -0.03717612475156784, -0.10177483409643173, 0.11302217096090317, -0.03700687736272812, -0.040068842470645905, 0.01656181551516056, 0.14234766364097595, 0.1411619335412979, -0.14372125267982483, -0.02228730358183384, 0.03340410441160202, 0.08915548026561737, 0.09262117743492126, 0.11461132019758224, 0.0029327524825930595, 0.07979059964418411, 0.003884068690240383, -0.09632263332605362, -0.014826485887169838, -0.06089067459106445, -0.09877907484769821, 0.0007274751551449299, -0.04631159082055092, 0.06452076882123947, 0.009896290488541126, 0.0317503921687603, -0.05831924453377724, -0.12106416374444962, 0.0033843449782580137, 0.12586069107055664, -0.04317522421479225, 0.029273977503180504, -0.08369001001119614, 0.05912293493747711, -0.00252407300285995, -0.0056987968273460865, -0.15036094188690186, -0.12900012731552124, 0.06846719235181808, -0.0999494269490242, 0.027454856783151627, 0.0369584783911705, 0.028296908363699913, 0.08340302109718323, -0.04894252493977547, -0.012614810839295387, -0.06566288322210312, -0.034228842705488205, -0.023242469877004623, -0.1905035376548767, -0.09218141436576843, -0.04111740365624428, 0.15332886576652527, -0.17423571646213531, -0.010998823679983616, -0.022220894694328308, 0.1321827620267868, 0.003579025389626622, -0.07955757528543472, 0.024946393445134163, 0.011464463546872139, 0.014513634145259857, -0.09671011567115784, 0.03921676427125931, -0.011823410168290138, -0.0801980197429657, -0.051678869873285294, -0.10764432698488235, 0.03359627723693848, 0.06057542935013771, 0.03301437199115753, -0.06957875937223434, -0.01907876692712307, -0.06466101109981537, -0.023854706436395645, -0.081453338265419, -0.010404831729829311, 0.18019452691078186, 0.03195704519748688, 0.10064924508333206, -0.06846900284290314, -0.07778019458055496, 0.0017782392678782344, 0.020980937406420708, -0.03467043489217758, 0.07497630268335342, 0.07909858226776123, -0.09312313050031662, 0.07072725147008896, 0.11853611469268799, 0.017538556829094887, 0.1481761634349823, -0.05042946711182594, -0.0970623791217804, -0.04114992171525955, 0.0244572926312685, 0.01181484293192625, 0.08593985438346863, -0.11856620013713837, -0.016054553911089897, 0.05147599056363106, -0.014417160302400589, -0.005526776425540447, -0.1254110038280487, -0.03844152390956879, 0.034403640776872635, -0.03280751034617424, -0.005838864482939243, -0.021905839443206787, 0.02899906225502491, 0.09841875731945038, 0.055360760539770126, -0.021750299260020256, -0.003094686195254326, -0.05889885872602463, -0.08864758908748627, 0.1500140279531479, -0.0884408950805664, -0.1972360610961914, -0.11073785275220871, -0.00953826867043972, -0.03990752249956131, -0.03230133280158043, -0.0053982860408723354, -0.09453605115413666, -0.052626047283411026, -0.06754464656114578, 0.007768665440380573, -0.07169105857610703, -0.009528426453471184, 0.06564071774482727, 0.04239460825920105, 0.07436216622591019, -0.10857505351305008, 0.020800229161977768, 0.015199806541204453, -0.11537979543209076, -0.0019447017693892121, 0.059929680079221725, 0.08204132318496704, 0.10924242436885834, -0.007810413837432861, 0.022882046177983284, -0.051298193633556366, 0.21415147185325623, -0.12476015090942383, 0.00575281260535121, 0.11462952196598053, -0.005115531384944916, 0.060221098363399506, 0.1659761667251587, 0.037858836352825165, -0.06860232353210449, 0.013314088806509972, 0.034101702272892, -0.009157244116067886, -0.22613778710365295, -0.016060413792729378, -0.05556530877947807, -0.02089902199804783, 0.144290953874588, 0.03663480281829834, -0.03495113179087639, 0.03215593844652176, -0.057483021169900894, 0.011481030844151974, 0.03327345848083496, 0.09101438522338867, 0.05283825471997261, 0.057119980454444885, 0.08460520952939987, -0.008466878905892372, -0.030774880200624466, 0.0600019171833992, 0.021095743402838707, 0.22178693115711212, -0.007913081906735897, 0.14512713253498077, 0.01236689742654562, 0.13463497161865234, -0.0097757987678051, 0.003919031471014023, 0.031729716807603836, -0.006921761203557253, 0.006925332359969616, -0.06618395447731018, 0.006577720865607262, 0.041203469038009644, 0.07106710225343704, -0.01473117247223854, -0.05918818712234497, 0.05374300107359886, 0.044430267065763474, 0.19768689572811127, 0.0969097837805748, -0.23065268993377686, -0.027013368904590607, 0.028992602601647377, -0.00876013282686472, -0.026744084432721138, 0.016856472939252853, 0.10704521834850311, -0.14749440550804138, 0.1066231057047844, -0.05036154389381409, 0.06987296044826508, -0.054888296872377396, 0.0022697646636515856, 0.09064289182424545, 0.07990846782922745, 0.025592418387532234, 0.10802880674600601, -0.15172821283340454, 0.14209821820259094, -0.01083935797214508, 0.07246030122041702, -0.06587176024913788, 0.03860959783196449, -0.0029096913058310747, -0.012871747836470604, 0.17433978617191315, 0.009818831458687782, -0.03296173736453056, -0.132075697183609, -0.0883246660232544, 0.031052909791469574, 0.14159564673900604, -0.08755972981452942, 0.09059568494558334, -0.04640757665038109, -0.033617183566093445, 0.002032242715358734, -0.008417431265115738, -0.08695175498723984, -0.15305368602275848, 0.05479675531387329, -0.060606058686971664, -0.0645379051566124, -0.0813981145620346, -0.08778108656406403, -0.09118600934743881, 0.2112272083759308, -0.044271618127822876, -0.027342917397618294, -0.1237989142537117, 0.10399407893419266, 0.12514686584472656, -0.06795641779899597, 0.039259083569049835, 0.011046729050576687, 0.17715394496917725, -0.010713011026382446, -0.09023874998092651, 0.061178360134363174, -0.055198363959789276, -0.1477183699607849, -0.07130204141139984, 0.17224016785621643, -0.013490518555045128, 0.0743289366364479, -0.006905889604240656, 0.0132325803861022, 0.03773504123091698, -0.07915618270635605, 0.024467037990689278, 0.061037827283144, 0.05836199223995209, 0.021106339991092682, -0.07523330301046371, 0.011262253858149052, -0.06502175331115723, 0.003640288021415472, 0.16060279309749603, 0.2541928291320801, -0.10129982978105545, 0.06375817209482193, 0.039683811366558075, -0.05759721249341965, -0.1916740983724594, 0.013537026010453701, 0.12501265108585358, 0.001366152660921216, 0.058920811861753464, -0.189969003200531, 0.09934782236814499, 0.0762631744146347, -0.007556010503321886, 0.03405117616057396, -0.3330177366733551, -0.13628192245960236, 0.038775838911533356, 0.06197056174278259, -0.027936803176999092, -0.11611612141132355, -0.03881099075078964, -0.02086501754820347, -0.09977513551712036, 0.046246208250522614, -0.020583385601639748, 0.10551868379116058, -0.0032243053428828716, 0.03321443125605583, 0.015390630811452866, -0.04214368015527725, 0.13318918645381927, 0.04760583117604256, 0.04550126940011978, -0.04385244846343994, -0.04150007665157318, 0.08217412978410721, -0.0676693469285965, 0.05357846990227699, -0.06279902160167694, 0.03134967014193535, -0.1473664790391922, -0.02237726002931595, -0.05316495895385742, 0.017785746604204178, -0.06458667665719986, -0.04791806638240814, -0.0637512058019638, 0.0854300856590271, 0.07347816973924637, -0.01556089986115694, 0.059175968170166016, 0.015431475825607777, 0.046380627900362015, 0.05784836784005165, 0.08180978149175644, 0.0628650039434433, -0.1870768517255783, -0.019524993374943733, 0.005818346980959177, 0.0541551411151886, -0.07686468213796616, 0.024864353239536285, 0.1357387751340866, 0.04806593433022499, 0.15558698773384094, 0.02148795686662197, -0.048472803086042404, -0.013047240674495697, 0.07204359024763107, -0.047322310507297516, -0.2075010985136032, -0.01682763174176216, 0.02615147829055786, -0.18367670476436615, -0.05837390571832657, 0.060070887207984924, -0.02973993681371212, -0.024541474878787994, -0.008175062946975231, 0.034823328256607056, -0.003859816351905465, 0.15379349887371063, 0.020790059119462967, 0.09191884100437164, -0.09779105335474014, 0.14017802476882935, 0.08685381710529327, -0.05643424019217491, 0.02855171635746956, 0.11302134394645691, -0.0677255243062973, -0.015686867758631706, 0.05330632999539375, 0.10336349904537201, 0.04783083498477936, 0.008507534861564636, -0.04033425450325012, -0.09940235316753387, 0.06503774970769882, -0.02211572602391243, 0.01797737553715706, -0.017332056537270546, -0.03595184162259102, 0.013506049290299416, -0.09179971367120743, 0.11175358295440674, 0.06267218291759491, 0.05469999834895134, -0.10805616527795792, 0.06693855673074722, 0.004955576732754707, 0.0382210835814476, -0.01586986519396305, 0.0002219029702246189, -0.06309824436903, -0.01704753190279007, -0.08935340493917465, 0.004410652909427881, -0.045117538422346115, 0.011244152672588825, -0.03624175488948822, -0.014041104353964329, -0.023355336859822273, 0.016754738986492157, -0.06455939263105392, -0.0919843539595604, -0.03869384154677391, 0.0575173981487751, -0.14862552285194397, -0.00554739311337471, 0.03579488396644592, -0.12881700694561005, 0.08385974913835526, 0.03116733953356743, 0.034874025732278824, -0.0030688587576150894, -0.06325077265501022, -0.09720796346664429, 0.00564703019335866, 0.0513603538274765, 0.05109873041510582, -0.09614499658346176, -0.0006330800242722034, -0.0398075208067894, -0.013707924634218216, 0.007684431504458189, -0.03429262712597847, -0.13466815650463104, -0.00022845204512123019, -0.049246225506067276, -0.06033135578036308, -0.04200391843914986, 0.0549749881029129, 0.056071121245622635, -0.005014065187424421, 0.11970467120409012, -0.07396265864372253, 0.08647620677947998, -0.2442973405122757, -0.042253606021404266, 0.004160999786108732, -0.005123922135680914, -0.034122250974178314, -0.03631645813584328, 0.08328135311603546, -0.03821215033531189, 0.09463755786418915, -0.008771906606853008, 0.050949033349752426, 0.041193824261426926, -0.0040166666731238365, 0.021879052743315697, 0.029250968247652054, 0.13567940890789032, 0.08569253981113434, -0.0368536151945591, 0.04298676922917366, -0.04706713929772377, 0.048354893922805786, 0.07353663444519043, 0.12940585613250732, 0.18876494467258453, 0.030108654871582985, 0.006009330507367849, 0.08064772188663483, -0.11142434924840927, -0.1561744213104248, 0.16707833111286163, -0.0463106669485569, 0.12236650288105011, -0.04439828172326088, 0.1110733225941658, 0.1146375983953476, -0.18594007194042206, 0.06813962012529373, -0.05605930835008621, -0.10872194916009903, -0.08758725225925446, -0.11861494183540344, -0.08524716645479202, -0.10627494007349014, 0.058500245213508606, -0.1266147941350937, 0.04672420024871826, 0.06002449989318848, 0.06521660834550858, -0.006131973583251238, 0.16692538559436798, -0.029740752652287483, -0.018666794523596764, 0.12405598908662796, 0.04874206334352493, 0.013167569413781166, 0.012296263128519058, -0.01222930382937193, 0.050675492733716965, 0.00017113539797719568, 0.10245709866285324, -0.02493450790643692, -0.0048585254698991776, 0.05774974077939987, -0.004181650001555681, -0.09949838370084763, 0.02794811874628067, -0.02309819869697094, 0.007776795420795679, 0.08916185051202774, 0.035125065594911575, 0.03392064571380615, -0.04678570106625557, 0.19985376298427582, -0.06357305496931076, -0.07572630047798157, -0.1276557296514511, 0.11209604144096375, 0.009531588293612003, 0.01265567447990179, 0.045437924563884735, -0.0967402383685112, -0.03846835345029831, 0.1302981972694397, 0.20613537728786469, -0.07780821621417999, -0.035409025847911835, 0.019491320475935936, -0.0008749224944040179, -0.048046424984931946, 0.09580978006124496, 0.0762370303273201, 0.03838612884283066, -0.056759972125291824, 0.02026292122900486, 0.014200231991708279, -0.051547374576330185, -0.044218309223651886, 0.05165541172027588, 0.04334118217229843, 0.0412549190223217, -0.06780564039945602, 0.07528609037399292, 0.0054901037365198135, -0.17371828854084015, 0.05072355270385742, -0.1645526885986328, -0.18589572608470917, -0.021497339010238647, 0.07607491314411163, 0.014658206142485142, 0.07068821042776108, 0.01369224488735199, -0.019003579393029213, 0.10209821164608002, 0.005579956341534853, -0.047608207911252975, -0.09809775650501251, 0.11112572997808456, -0.08441796898841858, 0.2020510882139206, -0.008851551450788975, 0.08033689856529236, 0.07695753127336502, 0.014291767962276936, -0.12105771899223328, -0.0005435370840132236, 0.09607312828302383, -0.05106939375400543, 0.004993849899619818, 0.1983303427696228, -0.0538848415017128, 0.1115822046995163, 0.07550578564405441, -0.04980119690299034, -0.012695173732936382, -0.06324594467878342, -0.005430223420262337, -0.10446643829345703, 0.03127168118953705, -0.052164189517498016, 0.160514235496521, 0.21621626615524292, -0.05283751338720322, -0.014816281385719776, -0.05286366865038872, 0.003100936533883214, 0.06522101163864136, 0.12731410562992096, -0.011303952895104885, -0.17456719279289246, 0.01230405829846859, -0.034425683319568634, 0.07102981209754944, -0.19077058136463165, -0.08952691406011581, 0.0597543865442276, -0.025359295308589935, -0.054733503609895706, 0.12664230167865753, 0.03372721001505852, 0.027097506448626518, -0.04829021915793419, -0.18473917245864868, -0.010344121605157852, 0.11068013310432434, -0.15248969197273254, -0.024127699434757233 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-large-uncased-whole-word-masking-squad2-with-ner-mit-restaurant-with-neg-with-repeat This model is a fine-tuned version of [deepset/bert-large-uncased-whole-word-masking-squad2](https://huggingface.co/deepset/bert-large-uncased-whole-word-masking-squad2) on the squad_v2 and the mit_restaurant datasets. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results ### Framework versions - Transformers 4.8.2 - Pytorch 1.8.1+cu111 - Datasets 1.8.0 - Tokenizers 0.10.3
{"language": ["en"], "license": "cc-by-4.0", "tags": ["generated_from_trainer"], "datasets": ["squad_v2", "mit_restaurant"], "model_index": [{"name": "bert-large-uncased-whole-word-masking-squad2-with-ner-mit-restaurant-with-neg-with-repeat", "results": [{"task": {"name": "Token Classification", "type": "token-classification"}, "dataset": {"name": "squad_v2", "type": "squad_v2"}}, {"task": {"name": "Token Classification", "type": "token-classification"}, "dataset": {"name": "mit_restaurant", "type": "mit_restaurant"}}]}]}
question-answering
andi611/bert-large-uncased-whole-word-masking-squad2-with-ner-mit-restaurant-with-neg-with-repeat
[ "transformers", "pytorch", "bert", "question-answering", "generated_from_trainer", "en", "dataset:squad_v2", "dataset:mit_restaurant", "license:cc-by-4.0", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #bert #question-answering #generated_from_trainer #en #dataset-squad_v2 #dataset-mit_restaurant #license-cc-by-4.0 #endpoints_compatible #region-us
# bert-large-uncased-whole-word-masking-squad2-with-ner-mit-restaurant-with-neg-with-repeat This model is a fine-tuned version of deepset/bert-large-uncased-whole-word-masking-squad2 on the squad_v2 and the mit_restaurant datasets. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results ### Framework versions - Transformers 4.8.2 - Pytorch 1.8.1+cu111 - Datasets 1.8.0 - Tokenizers 0.10.3
[ "# bert-large-uncased-whole-word-masking-squad2-with-ner-mit-restaurant-with-neg-with-repeat\n\nThis model is a fine-tuned version of deepset/bert-large-uncased-whole-word-masking-squad2 on the squad_v2 and the mit_restaurant datasets.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 2e-05\n- train_batch_size: 1\n- eval_batch_size: 1\n- seed: 42\n- gradient_accumulation_steps: 16\n- total_train_batch_size: 16\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 5", "### Training results", "### Framework versions\n\n- Transformers 4.8.2\n- Pytorch 1.8.1+cu111\n- Datasets 1.8.0\n- Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #bert #question-answering #generated_from_trainer #en #dataset-squad_v2 #dataset-mit_restaurant #license-cc-by-4.0 #endpoints_compatible #region-us \n", "# bert-large-uncased-whole-word-masking-squad2-with-ner-mit-restaurant-with-neg-with-repeat\n\nThis model is a fine-tuned version of deepset/bert-large-uncased-whole-word-masking-squad2 on the squad_v2 and the mit_restaurant datasets.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 2e-05\n- train_batch_size: 1\n- eval_batch_size: 1\n- seed: 42\n- gradient_accumulation_steps: 16\n- total_train_batch_size: 16\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 5", "### Training results", "### Framework versions\n\n- Transformers 4.8.2\n- Pytorch 1.8.1+cu111\n- Datasets 1.8.0\n- Tokenizers 0.10.3" ]
[ 63, 89, 6, 12, 8, 3, 113, 4, 34 ]
[ "passage: TAGS\n#transformers #pytorch #bert #question-answering #generated_from_trainer #en #dataset-squad_v2 #dataset-mit_restaurant #license-cc-by-4.0 #endpoints_compatible #region-us \n# bert-large-uncased-whole-word-masking-squad2-with-ner-mit-restaurant-with-neg-with-repeat\n\nThis model is a fine-tuned version of deepset/bert-large-uncased-whole-word-masking-squad2 on the squad_v2 and the mit_restaurant datasets.## Model description\n\nMore information needed## Intended uses & limitations\n\nMore information needed## Training and evaluation data\n\nMore information needed## Training procedure### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 2e-05\n- train_batch_size: 1\n- eval_batch_size: 1\n- seed: 42\n- gradient_accumulation_steps: 16\n- total_train_batch_size: 16\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 5### Training results### Framework versions\n\n- Transformers 4.8.2\n- Pytorch 1.8.1+cu111\n- Datasets 1.8.0\n- Tokenizers 0.10.3" ]
[ -0.08050256967544556, 0.16289767622947693, -0.003942172508686781, 0.05541098490357399, 0.09142646193504333, 0.04232155904173851, 0.07957147061824799, 0.16862936317920685, -0.04881356656551361, 0.1271510124206543, 0.03958143666386604, 0.03481750190258026, 0.08692291378974915, 0.11974336951971054, 0.007793438620865345, -0.2043645828962326, 0.005429116543382406, -0.019719071686267853, -0.08922240883111954, 0.10806586593389511, 0.10327175259590149, -0.10363250970840454, 0.04086330160498619, -0.004596997983753681, -0.09293261170387268, 0.01562024001032114, -0.05736176297068596, -0.04137427359819412, 0.06985872983932495, 0.012030720710754395, 0.0712529867887497, 0.008816265501081944, 0.10234794020652771, -0.23628449440002441, 0.0016225834842771292, 0.07492198050022125, 0.018432093784213066, 0.07168274372816086, 0.0809795930981636, 0.03692595660686493, 0.022096771746873856, -0.16956458985805511, 0.0914895161986351, 0.04558545723557472, -0.07815449684858322, -0.1697007268667221, -0.08884056657552719, 0.06232493743300438, 0.09662236273288727, 0.0661369040608406, -0.02572675608098507, 0.0982043668627739, -0.12720079720020294, 0.03565595671534538, 0.1583985835313797, -0.2917262017726898, -0.06158291548490524, 0.028257522732019424, 0.019106201827526093, 0.04001353681087494, -0.10545282065868378, -0.008118248544633389, 0.03504014015197754, 0.008784507401287556, 0.040934838354587555, 0.014188447967171669, 0.028694773092865944, 0.0071032606065273285, -0.10291095823049545, -0.04686669632792473, 0.12469638884067535, 0.05539379641413689, -0.019737547263503075, -0.1663554310798645, -0.02915969304740429, -0.06893114745616913, -0.04467850923538208, -0.04701623693108559, 0.030779080465435982, -0.049201276153326035, -0.062046222388744354, -0.003452684497460723, -0.05583206191658974, -0.038170453161001205, 0.03325209766626358, 0.06371406465768814, 0.06636010855436325, -0.01897505857050419, -0.020290808752179146, 0.08042819052934647, 0.016193509101867676, -0.1499655693769455, -0.02504107728600502, 0.00022774811077397317, -0.1511881798505783, -0.05022570118308067, -0.004746627062559128, 0.021507002413272858, 0.04388480260968208, 0.15431992709636688, 0.010796592570841312, 0.06098512187600136, 0.03247452527284622, -0.031211938709020615, 0.008655340410768986, 0.14086265861988068, -0.03911859542131424, -0.11361617594957352, -0.051112476736307144, 0.0991881713271141, -0.007800735533237457, -0.0049325586296617985, -0.06026449799537659, -0.01822088658809662, 0.047668639570474625, 0.06164036691188812, 0.02168254926800728, 0.010310904122889042, -0.05199284106492996, -0.05662841722369194, 0.035940054804086685, -0.125856414437294, 0.06293601542711258, 0.04584796354174614, -0.06647077947854996, -0.006199055816978216, -0.0629984438419342, 0.003000350669026375, -0.05918032303452492, 0.089051753282547, -0.05906403809785843, -0.03820629417896271, -0.05353603884577751, -0.03876861184835434, 0.03427709639072418, -0.043746013194322586, -0.038097307085990906, -0.039631523191928864, -0.11990489810705185, -0.05197243019938469, 0.035119976848363876, -0.09469092637300491, -0.07415558397769928, -0.042277321219444275, -0.0013952956069260836, 0.018478915095329285, -0.00029872593586333096, 0.09860854595899582, -0.026694869622588158, 0.05447082221508026, -0.010113181546330452, 0.031882159411907196, 0.12374093383550644, 0.06378879398107529, -0.07471689581871033, 0.04145285487174988, -0.12239419668912888, 0.09511838853359222, -0.08874483406543732, 0.023166067898273468, -0.16220895946025848, -0.09778250008821487, -0.003698105691000819, -0.03440335765480995, 0.04177567735314369, 0.13548213243484497, -0.1722857803106308, -0.04368970915675163, 0.16012708842754364, -0.03992261737585068, -0.09657657891511917, 0.12214592844247818, -0.02734353207051754, -0.011319411918520927, 0.06444182246923447, 0.14848114550113678, 0.1584503948688507, -0.09923896193504333, -0.03227052465081215, 0.013865587301552296, 0.09625475108623505, 0.07498276233673096, 0.08989942073822021, -0.032541703432798386, 0.04024920612573624, 0.013587698340415955, -0.06562758982181549, -0.02184627577662468, -0.04742958024144173, -0.10254113376140594, -0.014733023010194302, -0.052336957305669785, 0.09507544338703156, 0.007489514071494341, 0.029379654675722122, -0.054828424006700516, -0.11522486805915833, 0.012783330865204334, 0.11737149953842163, -0.0439932718873024, 0.0024852317292243242, -0.06635767966508865, 0.0719204992055893, 0.0032098533120006323, -0.0077646947465837, -0.14812928438186646, -0.10965637117624283, 0.07213850319385529, -0.1202491968870163, 0.03596797585487366, 0.055284228175878525, 0.03830580785870552, 0.03891121223568916, -0.024992292746901512, -0.021731026470661163, -0.05117867887020111, -0.020218681544065475, -0.06261849403381348, -0.16205430030822754, -0.06003805622458458, -0.025915706530213356, 0.15698663890361786, -0.18975551426410675, -0.003154468024149537, -0.005324546713382006, 0.12027604877948761, 0.0020922243129462004, -0.05062055587768555, 0.00246487557888031, 0.01781962625682354, 0.017313441261649132, -0.06716067343950272, 0.03132602944970131, -0.010664176195859909, -0.10099268704652786, -0.05153129622340202, -0.08765576779842377, 0.01497652381658554, 0.05340242758393288, 0.08995275944471359, -0.07318846881389618, -0.0695258229970932, -0.0564596988260746, -0.03199565038084984, -0.08162396401166916, -0.001143930945545435, 0.20446451008319855, 0.027602652087807655, 0.08791130781173706, -0.06568128615617752, -0.08601538091897964, -0.0030643062200397253, 0.04240530729293823, -0.02757946029305458, 0.1042339876294136, 0.05538833886384964, -0.12571971118450165, 0.07876896858215332, 0.13567779958248138, 0.041543636471033096, 0.10246729850769043, -0.05446937680244446, -0.0856378823518753, -0.04996791109442711, 0.05483067035675049, -0.01437793392688036, 0.08258076757192612, -0.13077083230018616, 0.011310778558254242, 0.048192914575338364, 0.009364409372210503, 0.017340615391731262, -0.1215878501534462, -0.00742372265085578, 0.04231946915388107, -0.050463635474443436, 0.005428905598819256, -0.049501579254865646, 0.041119158267974854, 0.08072004467248917, 0.05453675612807274, -0.014446462504565716, -0.006127756554633379, -0.0405460000038147, -0.07688509672880173, 0.15686386823654175, -0.10587000846862793, -0.20029474794864655, -0.09263236075639725, -0.009553439915180206, -0.04750348627567291, -0.036652617156505585, 0.01218942366540432, -0.11422424763441086, -0.061459001153707504, -0.0614832304418087, 0.012825872749090195, -0.03896264731884003, -0.005406433250755072, 0.0540158711373806, 0.04117182269692421, 0.05548786371946335, -0.12571516633033752, 0.026105405762791634, -0.012317820452153683, -0.08831651508808136, -0.02105671353638172, 0.04198039695620537, 0.07999369502067566, 0.11727643758058548, 0.013335258699953556, 0.008914275094866753, -0.049291208386421204, 0.1954936534166336, -0.114176444709301, 0.003182688495144248, 0.08882486075162888, 0.029266484081745148, 0.06137882545590401, 0.17077644169330597, 0.041964273899793625, -0.06802676618099213, 0.00861305370926857, 0.046221327036619186, 0.010084380395710468, -0.24134278297424316, -0.05353354662656784, -0.0528191477060318, -0.04130074381828308, 0.14958485960960388, 0.0573778934776783, -0.027217112481594086, 0.035413991659879684, -0.05815671384334564, 0.02511250041425228, 0.012094898149371147, 0.06624133139848709, 0.09526412934064865, 0.03686531260609627, 0.07741988450288773, -0.014230960048735142, -0.036778468638658524, 0.0733788013458252, 0.04602592810988426, 0.2306368201971054, -0.007088099606335163, 0.1821717619895935, 0.03324633464217186, 0.13459521532058716, -0.024875890463590622, 0.00937596894800663, 0.006449626758694649, -0.001196858356706798, 0.0020453883334994316, -0.07670649886131287, -0.004221306648105383, 0.03324897959828377, 0.0827925056219101, 0.0016909680562093854, -0.04567157104611397, 0.020038291811943054, 0.050390519201755524, 0.20655612647533417, 0.09457504004240036, -0.20780456066131592, -0.03478134423494339, 0.034483589231967926, -0.0402621366083622, -0.04398879036307335, 0.023959476500749588, 0.09047875553369522, -0.12453079223632812, 0.06689939647912979, -0.048158492892980576, 0.08999297767877579, -0.04786711558699608, 0.007951599545776844, 0.09559986740350723, 0.08323296904563904, 0.02189631760120392, 0.11083047091960907, -0.16333073377609253, 0.17862267792224884, 0.0069584972225129604, 0.06480467319488525, -0.09526573866605759, 0.05523013323545456, -0.030411023646593094, -0.008880378678441048, 0.14149191975593567, 0.005866951774805784, -0.05498433858156204, -0.130057230591774, -0.11377041786909103, 0.03738345205783844, 0.11536133289337158, -0.07573816180229187, 0.07459045201539993, -0.04121293127536774, -0.022433176636695862, 0.013473921455442905, -0.009844515472650528, -0.11106988787651062, -0.16919346153736115, 0.041645266115665436, -0.06439927220344543, -0.06148838251829147, -0.0708107054233551, -0.07416905462741852, -0.0863867923617363, 0.20602066814899445, -0.042597681283950806, -0.03354978561401367, -0.13693992793560028, 0.0806439071893692, 0.13312797248363495, -0.07660616934299469, 0.02371468022465706, 0.010665185749530792, 0.1366541087627411, 0.005102297756820917, -0.06744315475225449, 0.053452182561159134, -0.043929729610681534, -0.14660364389419556, -0.06374439597129822, 0.15790624916553497, 0.02660500817000866, 0.07128864526748657, 0.02402978017926216, 0.020298972725868225, 0.01927533559501171, -0.0911412462592125, -0.0031685992144048214, 0.05930083990097046, 0.06921619921922684, 0.05936048552393913, -0.06577568501234055, -0.010403590276837349, -0.06340344995260239, 0.017085619270801544, 0.13858580589294434, 0.23268458247184753, -0.09234069287776947, 0.1374373435974121, 0.053920574486255646, -0.058677010238170624, -0.15823964774608612, -0.0035350648686289787, 0.09328862279653549, 0.02133043110370636, 0.03453277796506882, -0.19065359234809875, 0.12399604171514511, 0.09474862366914749, -0.016040002927184105, 0.027913497760891914, -0.3392232656478882, -0.12091618776321411, 0.048905663192272186, 0.05379810929298401, -0.04041927307844162, -0.11316943168640137, -0.07188288867473602, -0.025302525609731674, -0.10727930814027786, 0.05362631380558014, -0.02671121247112751, 0.10111822932958603, -0.0023485722485929728, 0.03505808487534523, 0.025749191641807556, -0.03432426601648331, 0.1428874433040619, 0.06453786045312881, 0.03730503469705582, -0.04126447066664696, 0.0013914582086727023, 0.06430128216743469, -0.049772925674915314, 0.03349537402391434, -0.0647430270910263, 0.04567659646272659, -0.1778302639722824, -0.0296216681599617, -0.05194753035902977, 0.026166316121816635, -0.08787813782691956, -0.05112272873520851, -0.06494290381669998, 0.08641496300697327, 0.11302898079156876, -0.01926993764936924, 0.03878328576683998, 0.03437104448676109, 0.07674937695264816, 0.04649290069937706, 0.08595620840787888, 0.04549987614154816, -0.19013544917106628, -0.02397647686302662, 0.0031798069830983877, 0.042856328189373016, -0.09601894021034241, 0.04155821353197098, 0.12493277341127396, 0.056019436568021774, 0.13211175799369812, 0.011639469303190708, -0.05931529775261879, -0.03197688236832619, 0.04673893377184868, -0.05925861746072769, -0.2005452662706375, 0.0015286157140508294, -0.009208211675286293, -0.18598733842372894, -0.03811786323785782, 0.08867521584033966, -0.0019059183541685343, -0.034495916217565536, -0.00023292026889976114, 0.04082107916474342, 0.001998740015551448, 0.18111594021320343, 0.024361616000533104, 0.08497918397188187, -0.08710895478725433, 0.09135232865810394, 0.11855261027812958, -0.06502419710159302, 0.026210300624370575, 0.08289119601249695, -0.06267305463552475, -0.01971537619829178, 0.07587824761867523, 0.10701464116573334, 0.057457372546195984, 0.0008335782331414521, -0.05514105409383774, -0.10037943720817566, 0.08312950283288956, -0.01744256727397442, 0.04570453613996506, -0.007086384575814009, -0.03145299851894379, -0.003049330785870552, -0.07480650395154953, 0.1134638786315918, 0.05521713197231293, 0.05107880383729935, -0.09032125771045685, 0.05130579322576523, -0.009394858963787556, 0.03542570397257805, -0.01074265781790018, 0.0036303065717220306, -0.09347054362297058, -0.025522718206048012, -0.1159859299659729, 0.01687740348279476, -0.0477832667529583, 0.01454770565032959, -0.030192242935299873, -0.017329588532447815, -0.03124331869184971, 0.007667661644518375, -0.06371349096298218, -0.06927451491355896, -0.019743913784623146, 0.08663970977067947, -0.17163929343223572, 0.014908190816640854, 0.03738106042146683, -0.11444550007581711, 0.0928693488240242, 0.0025027648080140352, 0.025087809190154076, -0.01306566596031189, -0.06801047921180725, -0.06952573359012604, -0.011204221285879612, 0.06025504320859909, 0.0707300677895546, -0.14864854514598846, -0.0008995431126095355, -0.0329466238617897, -0.0041221557185053825, 0.018941769376397133, -0.014931906946003437, -0.12738382816314697, -0.0028736209496855736, -0.07359902560710907, -0.06346782296895981, -0.04854623228311539, 0.0420699417591095, 0.06444978713989258, -0.017409009858965874, 0.1347673088312149, -0.0572812557220459, 0.08292839676141739, -0.222071573138237, -0.043089210987091064, 0.006815837696194649, -0.00028187409043312073, -0.03063255175948143, -0.03232697397470474, 0.07590870559215546, -0.016986899077892303, 0.10633917897939682, -0.0042627062648534775, 0.054111555218696594, 0.04601685330271721, -0.019920064136385918, 0.0108706159517169, 0.02097110077738762, 0.16496536135673523, 0.07204197347164154, -0.02249639481306076, 0.07216352224349976, -0.04032472148537636, 0.021180108189582825, 0.06479208171367645, 0.14572221040725708, 0.21340054273605347, 0.04661224037408829, 0.0024284289684146643, 0.08837129175662994, -0.11421855539083481, -0.17550091445446014, 0.15698547661304474, -0.0668809562921524, 0.1204972118139267, -0.040589120239019394, 0.10767992585897446, 0.07277035713195801, -0.21818678081035614, 0.061489004641771317, -0.06103358417749405, -0.11254113912582397, -0.0901891365647316, -0.13807938992977142, -0.0908263772726059, -0.1121920794248581, 0.03894958645105362, -0.1114019975066185, 0.02066759578883648, 0.059720415621995926, 0.039562925696372986, 0.018844813108444214, 0.12354866415262222, -0.035930320620536804, 0.014782595448195934, 0.09393763542175293, 0.03917974978685379, 0.024964315816760063, -0.025980757549405098, -0.022666068747639656, 0.03035673312842846, 0.0307158175855875, 0.09384015947580338, -0.032214075326919556, 0.005073057021945715, 0.03811532258987427, -0.0030778225045651197, -0.07443469017744064, 0.014550200663506985, -0.02783726342022419, 0.027931857854127884, 0.08531375974416733, 0.05449649319052696, 0.015535365790128708, -0.04967309907078743, 0.22643928229808807, -0.046826109290122986, -0.08816222846508026, -0.14398348331451416, 0.12705132365226746, 0.023909350857138634, 0.003721268381923437, 0.07551722228527069, -0.09767995029687881, -0.02160334587097168, 0.13911356031894684, 0.19672994315624237, -0.05425279587507248, -0.021781431511044502, 0.019546417519450188, -0.0002798762288875878, -0.026365019381046295, 0.09641854465007782, 0.08349969238042831, 0.04749675095081329, -0.05175478383898735, 0.0021425297018140554, 0.024144724011421204, -0.06836839020252228, -0.08392375707626343, 0.07891219109296799, 0.04360084980726242, 0.017862221226096153, -0.03983605280518532, 0.11466674506664276, 0.020579447969794273, -0.17561057209968567, 0.03797674551606178, -0.1540263593196869, -0.2079005092382431, -0.030001426115632057, 0.10509176552295685, 0.00861271470785141, 0.06790386140346527, 0.01192160788923502, -0.019155263900756836, 0.12222834676504135, -0.0019408856751397252, -0.06573671102523804, -0.07249688357114792, 0.11222951114177704, -0.08427814394235611, 0.23465022444725037, 0.018788957968354225, 0.04699983820319176, 0.10129010677337646, 0.010319402441382408, -0.12887226045131683, -0.014482271857559681, 0.1055699959397316, -0.06111312657594681, 0.04049127176403999, 0.14821584522724152, -0.03657873347401619, 0.08392085880041122, 0.08715108036994934, -0.08791044354438782, 0.0030647865496575832, -0.004974877927452326, 0.007471160497516394, -0.11355917155742645, 0.0439179427921772, -0.05243518576025963, 0.1617204248905182, 0.21808885037899017, -0.047630079090595245, -0.010239088907837868, -0.03861911967396736, 0.01563073694705963, 0.02606814354658127, 0.12481999397277832, -0.024051394313573837, -0.17727969586849213, 0.004637506790459156, -0.02364436164498329, 0.056700997054576874, -0.19339995086193085, -0.11321264505386353, 0.06433417648077011, -0.029031073674559593, -0.06236148625612259, 0.14189791679382324, 0.0472661629319191, 0.013139544986188412, -0.04081234708428383, -0.19963768124580383, -0.048293884843587875, 0.1079871878027916, -0.1411956548690796, -0.03172323852777481 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-agnews This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the ag_news dataset. It achieves the following results on the evaluation set: - Loss: 0.1652 - Accuracy: 0.9474 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 2.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.1916 | 1.0 | 3375 | 0.1741 | 0.9412 | | 0.123 | 2.0 | 6750 | 0.1631 | 0.9483 | ### Framework versions - Transformers 4.8.2 - Pytorch 1.8.1+cu111 - Datasets 1.8.0 - Tokenizers 0.10.3
{"language": ["en"], "license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["ag_news"], "metrics": ["accuracy"], "model_index": [{"name": "distilbert-base-uncased-agnews", "results": [{"dataset": {"name": "ag_news", "type": "ag_news", "args": "default"}, "metric": {"name": "Accuracy", "type": "accuracy", "value": 0.9473684210526315}}]}]}
text-classification
andi611/distilbert-base-uncased-ner-agnews
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "en", "dataset:ag_news", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #distilbert #text-classification #generated_from_trainer #en #dataset-ag_news #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
distilbert-base-uncased-agnews ============================== This model is a fine-tuned version of distilbert-base-uncased on the ag\_news dataset. It achieves the following results on the evaluation set: * Loss: 0.1652 * Accuracy: 0.9474 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 3e-05 * train\_batch\_size: 32 * eval\_batch\_size: 8 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * lr\_scheduler\_warmup\_steps: 1000 * num\_epochs: 2.0 ### Training results ### Framework versions * Transformers 4.8.2 * Pytorch 1.8.1+cu111 * Datasets 1.8.0 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 3e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 1000\n* num\\_epochs: 2.0", "### Training results", "### Framework versions\n\n\n* Transformers 4.8.2\n* Pytorch 1.8.1+cu111\n* Datasets 1.8.0\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #distilbert #text-classification #generated_from_trainer #en #dataset-ag_news #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 3e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 1000\n* num\\_epochs: 2.0", "### Training results", "### Framework versions\n\n\n* Transformers 4.8.2\n* Pytorch 1.8.1+cu111\n* Datasets 1.8.0\n* Tokenizers 0.10.3" ]
[ 62, 116, 4, 34 ]
[ "passage: TAGS\n#transformers #pytorch #distilbert #text-classification #generated_from_trainer #en #dataset-ag_news #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 3e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 1000\n* num\\_epochs: 2.0### Training results### Framework versions\n\n\n* Transformers 4.8.2\n* Pytorch 1.8.1+cu111\n* Datasets 1.8.0\n* Tokenizers 0.10.3" ]
[ -0.09304375946521759, 0.09620014578104019, -0.0029356940649449825, 0.12128165364265442, 0.16041199862957, 0.024828525260090828, 0.10672727972269058, 0.13477472960948944, -0.10227645188570023, 0.014363955706357956, 0.12663090229034424, 0.16197285056114197, 0.010059846565127373, 0.14191508293151855, -0.053239937871694565, -0.2935856580734253, 0.0018364095594733953, 0.014509083703160286, -0.05081219971179962, 0.1412666141986847, 0.09285223484039307, -0.12129712104797363, 0.08782388269901276, -0.013141931965947151, -0.15069027245044708, 0.01184981781989336, -0.006819065660238266, -0.060559626668691635, 0.14197072386741638, 0.025446515530347824, 0.0800529271364212, 0.017592983320355415, 0.10002561658620834, -0.20026502013206482, 0.008161869831383228, 0.05081147328019142, 0.006146619096398354, 0.084788978099823, 0.053409673273563385, -0.006344460882246494, 0.139922097325325, -0.10482703894376755, 0.052695222198963165, 0.019936110824346542, -0.1318974494934082, -0.22737278044223785, -0.0885954350233078, 0.04007218778133392, 0.08518759906291962, 0.11996716260910034, -0.006261890754103661, 0.09914570301771164, -0.10079102963209152, 0.10421401262283325, 0.24027077853679657, -0.2784375846385956, -0.05667869746685028, 0.01764542981982231, 0.0058356355875730515, 0.06773929297924042, -0.1000734269618988, -0.02571103535592556, 0.03349652141332626, 0.04620920121669769, 0.11432468146085739, -0.02200865000486374, -0.1143449991941452, 0.014763636514544487, -0.13877107203006744, -0.040977347642183304, 0.14063863456249237, 0.03230739384889603, -0.02703862637281418, -0.05701809376478195, -0.060400430113077164, -0.15662376582622528, -0.04270324856042862, 0.009004195220768452, 0.04465939849615097, -0.029048489406704903, -0.04653025045990944, -0.00890776515007019, -0.08877123147249222, -0.0682494193315506, -0.0645180344581604, 0.15578238666057587, 0.04247032850980759, 0.008188901469111443, -0.01722905784845352, 0.1255541443824768, 0.034161169081926346, -0.14912185072898865, 0.0034011558163911104, 0.02406858652830124, -0.0026222807355225086, -0.026906277984380722, -0.05260951817035675, 0.007144564762711525, 0.0036108018830418587, 0.14362512528896332, -0.07484577596187592, 0.04667652025818825, 0.041080277413129807, 0.027972029522061348, -0.09008422493934631, 0.17364974319934845, -0.04909047856926918, -0.038273219019174576, -0.002750605344772339, 0.07471142709255219, 0.024692097678780556, -0.01975218765437603, -0.1106804758310318, 0.008504113182425499, 0.07713580131530762, 0.030196789652109146, -0.05063282698392868, 0.08162157982587814, -0.05631410703063011, -0.02076788991689682, 0.027288319543004036, -0.11173115670681, 0.02560221031308174, 0.006823495961725712, -0.09483011066913605, -0.02639147825539112, 0.02728637121617794, 0.011311610229313374, -0.02414284273982048, 0.13011033833026886, -0.07984288036823273, 0.027202485129237175, -0.08076369762420654, -0.10382670909166336, 0.010769697837531567, -0.08599542081356049, 0.0076627470552921295, -0.08748263865709305, -0.21007172763347626, -0.01909853331744671, 0.046727247536182404, -0.04014938324689865, -0.06961049884557724, -0.06955385953187943, -0.0835360437631607, 0.027159428223967552, -0.021323073655366898, 0.12893351912498474, -0.08395511656999588, 0.11104843765497208, 0.01774025894701481, 0.05788698419928551, -0.031186213716864586, 0.06459437310695648, -0.11004582792520523, 0.006440747994929552, -0.15297728776931763, 0.07423743605613708, -0.060455575585365295, 0.06005608290433884, -0.09050916135311127, -0.10834786295890808, 0.02982953190803528, 0.0045703924261033535, 0.06440000236034393, 0.11842235922813416, -0.18754811584949493, -0.0734502300620079, 0.12925240397453308, -0.06333116441965103, -0.09445462375879288, 0.10706540197134018, -0.06171907112002373, 0.037315309047698975, 0.07780932635068893, 0.16475434601306915, 0.07861839234828949, -0.06579409539699554, 0.015997357666492462, 0.008876802399754524, 0.052145931869745255, -0.02390705794095993, 0.07147536426782608, 0.007620620541274548, 0.0038367165252566338, 0.032775167375802994, -0.04752260446548462, 0.05851665884256363, -0.09461914747953415, -0.09209436178207397, -0.027468794956803322, -0.07573463767766953, 0.04888618364930153, 0.06530959904193878, 0.054921429604291916, -0.09235547482967377, -0.09294842183589935, 0.04810696467757225, 0.09730982780456543, -0.04632546380162239, 0.031973931938409805, -0.059226393699645996, 0.051862381398677826, 0.009635386988520622, -0.004493179731070995, -0.18539446592330933, -0.021456148475408554, 0.00954070407897234, 0.017123086377978325, 0.020320482552051544, 0.011561146937310696, 0.05806531757116318, 0.05564777925610542, -0.06011062487959862, -0.03467492759227753, -0.03978896513581276, 0.0010630569886416197, -0.1195698082447052, -0.2091377079486847, -0.02156534604728222, -0.019054947420954704, 0.11975281685590744, -0.20615388453006744, 0.033893246203660965, -0.005411003716289997, 0.06852928549051285, 0.01503942534327507, -0.0013657076051458716, -0.03245620056986809, 0.07266071438789368, -0.04356828331947327, -0.050644394010305405, 0.07083238661289215, 0.0017066659638658166, -0.08441106230020523, -0.024708416312932968, -0.0975821241736412, 0.15049195289611816, 0.11403798311948776, -0.08931748569011688, -0.07409656047821045, 0.013027248904109001, -0.06536134332418442, -0.033918287605047226, -0.05394705757498741, 0.0337117463350296, 0.1742681860923767, 0.0004998202784918249, 0.15163785219192505, -0.06879961490631104, -0.04595618695020676, 0.011945361271500587, -0.016863899305462837, 0.030330907553434372, 0.13684320449829102, 0.10597702860832214, -0.06911767274141312, 0.14097626507282257, 0.14680597186088562, -0.06612197309732437, 0.13471545279026031, -0.03655075654387474, -0.0664520338177681, -0.008385390974581242, -0.03101762942969799, -0.021512173116207123, 0.07681774348020554, -0.10607334226369858, 0.012885188683867455, 0.027304647490382195, 0.031894225627183914, 0.012428516522049904, -0.20741809904575348, -0.04069263115525246, 0.023684561252593994, -0.06953981518745422, -0.03584778308868408, -0.0070330919697880745, 0.009760532528162003, 0.11615827679634094, 0.013449206948280334, -0.09818156808614731, 0.035380296409130096, 0.00032533015473745763, -0.06869254261255264, 0.20768414437770844, -0.09812953323125839, -0.18789535760879517, -0.11972875148057938, -0.08373663574457169, -0.0572274848818779, 0.004424803424626589, 0.07085686922073364, -0.09051618725061417, -0.036620840430259705, -0.08070702850818634, 0.022164005786180496, 0.010139248333871365, 0.023824365809559822, 0.00562083488330245, 0.0010336507111787796, 0.061844103038311005, -0.10843398422002792, -0.012833532877266407, -0.05460793524980545, -0.05565179884433746, 0.040914010256528854, 0.041607774794101715, 0.09927842020988464, 0.13664476573467255, 0.005856007803231478, 0.016890116035938263, -0.03343404084444046, 0.23688775300979614, -0.07384392619132996, -0.01122202631086111, 0.1391211748123169, -0.005289889872074127, 0.05740305781364441, 0.1460125893354416, 0.06282637268304825, -0.09609301388263702, 0.017882216721773148, 0.044834062457084656, -0.027758488431572914, -0.22318391501903534, -0.05818414315581322, -0.04819286987185478, 0.0032264403998851776, 0.09497928619384766, 0.04202505946159363, 0.01390439085662365, 0.0423554852604866, 0.018735604360699654, 0.04776791110634804, -0.007059517782181501, 0.05390118062496185, 0.13518476486206055, 0.04148389771580696, 0.13061204552650452, -0.04259749501943588, -0.05821669474244118, 0.05470576137304306, -0.02513025514781475, 0.20699191093444824, -0.014361931011080742, 0.11245480179786682, 0.049477145075798035, 0.14582882821559906, -0.0019790446385741234, 0.070774145424366, 0.006923025008291006, -0.028213953599333763, -0.021539773792028427, -0.039465080946683884, -0.031156616285443306, 0.020327698439359665, -0.05673275887966156, 0.04798572137951851, -0.11882109940052032, 0.006636021658778191, 0.056421782821416855, 0.28855907917022705, 0.04328383132815361, -0.32222849130630493, -0.08991760015487671, 0.0023686771746724844, -0.05040239915251732, -0.020433146506547928, 0.03595375642180443, 0.08314269781112671, -0.09416136890649796, 0.05995320901274681, -0.04859716072678566, 0.09670396149158478, -0.053605105727910995, 0.05268825590610504, 0.08942542225122452, 0.0784498006105423, 0.0005466343136504292, 0.08974827826023102, -0.3083435297012329, 0.27282994985580444, -0.0014519041869789362, 0.061287350952625275, -0.06829816848039627, 0.002997164148837328, 0.04586651176214218, 0.08549149334430695, 0.07746932655572891, -0.01513440441340208, -0.021215025335550308, -0.1954498440027237, -0.08436164259910583, 0.020659267902374268, 0.0835474506020546, -0.056183282285928726, 0.09914517402648926, -0.04492644593119621, -0.0033520914148539305, 0.06179017573595047, -0.04891762137413025, -0.06445353478193283, -0.10044695436954498, 0.004949296824634075, 0.023198934271931648, -0.0030609669629484415, -0.060666557401418686, -0.12139218300580978, -0.09524907171726227, 0.1404019594192505, -0.03946879878640175, -0.04816878214478493, -0.11775809526443481, 0.07762610912322998, 0.08436807245016098, -0.08960853517055511, 0.02790946699678898, 0.01552615687251091, 0.05993396416306496, 0.043738268315792084, -0.07480939477682114, 0.10892438143491745, -0.07135085016489029, -0.21143698692321777, -0.04320032149553299, 0.11746836453676224, 0.046525727957487106, 0.0633394718170166, -0.020477348938584328, 0.02948160655796528, -0.0399242527782917, -0.09023045748472214, 0.010932980105280876, 0.016879484057426453, 0.07334919273853302, 0.04663066193461418, -0.06290629506111145, -0.0016919458284974098, -0.06853500008583069, -0.0349527969956398, 0.1780133843421936, 0.25949397683143616, -0.09962738305330276, 0.06380404531955719, 0.04757758975028992, -0.06536484509706497, -0.21630556881427765, 0.005061350297182798, 0.061940502375364304, -0.007153760176151991, 0.04814966395497322, -0.19791409373283386, 0.10802061855792999, 0.10847712308168411, -0.012909363955259323, 0.09715858101844788, -0.34106749296188354, -0.12564215064048767, 0.1149054542183876, 0.09814609587192535, 0.11587465554475784, -0.1341918259859085, -0.019581787288188934, -0.02048957720398903, -0.08835356682538986, 0.12482938915491104, -0.056770533323287964, 0.12943042814731598, -0.035701535642147064, 0.07112782448530197, 0.009206142276525497, -0.04193572327494621, 0.11805569380521774, 0.03238226845860481, 0.09470514953136444, -0.07075773924589157, -0.027884934097528458, 0.023056184872984886, -0.048222851008176804, 0.03412288427352905, -0.1003323569893837, 0.041811827570199966, -0.11616313457489014, -0.021764567121863365, -0.08933409303426743, 0.03208053484559059, -0.0376385897397995, -0.05866633728146553, -0.03800616413354874, 0.03233632072806358, 0.06476499140262604, -0.01215091347694397, 0.1641705483198166, 0.007743700873106718, 0.12287954986095428, 0.08561353385448456, 0.07771724462509155, -0.059384819120168686, -0.05986449494957924, -0.02614278718829155, -0.009929199703037739, 0.050997234880924225, -0.14570659399032593, 0.03194180503487587, 0.14512166380882263, 0.017762567847967148, 0.13843309879302979, 0.08158053457736969, -0.015318149700760841, -0.0005103519069962204, 0.06442739069461823, -0.17735512554645538, -0.07308335602283478, -0.01301504485309124, -0.05958404764533043, -0.10300096124410629, 0.04131104797124863, 0.10566125065088272, -0.062074609100818634, -0.006456418894231319, 0.006775288842618465, 0.03784332796931267, -0.03680609166622162, 0.2012059986591339, 0.049246493726968765, 0.05084298923611641, -0.11833256483078003, 0.0951104462146759, 0.055079542100429535, -0.07730397582054138, 0.009587360545992851, 0.1167670264840126, -0.09786129742860794, -0.04967300221323967, 0.058507196605205536, 0.14490899443626404, -0.05419238656759262, -0.04415317252278328, -0.1385582685470581, -0.12444993853569031, 0.10533040761947632, 0.13536575436592102, 0.10392849892377853, 0.020100882276892662, -0.0670023262500763, 0.006453210487961769, -0.09571701288223267, 0.1060243472456932, 0.056564196944236755, 0.05839190259575844, -0.13912338018417358, 0.13312087953090668, 0.01129111461341381, 0.06221367418766022, -0.025003761053085327, 0.01619582250714302, -0.09783780574798584, 0.017586661502718925, -0.12129666656255722, -0.018068283796310425, -0.03116449899971485, 0.01621393673121929, -0.016299603506922722, -0.060485824942588806, -0.0529521144926548, 0.00885004922747612, -0.11358160525560379, -0.02869308926165104, 0.016799651086330414, 0.062166616320610046, -0.1247488409280777, -0.04600972309708595, 0.018808165565133095, -0.07310094684362411, 0.09277989715337753, 0.0459553487598896, 0.0025514932349324226, 0.052564822137355804, -0.11077852547168732, -0.00727061927318573, 0.06228511407971382, 0.018891341984272003, 0.0606655515730381, -0.08388613909482956, -0.003687905613332987, -0.00970155093818903, 0.04325396567583084, 0.023066028952598572, 0.0776350200176239, -0.14114613831043243, 0.02718339115381241, -0.01936212182044983, -0.07857812941074371, -0.06541771441698074, 0.03024759702384472, 0.08048564195632935, 0.028498616069555283, 0.21920040249824524, -0.08828262984752655, 0.03903079777956009, -0.1972806453704834, 0.0010018943576142192, -0.015986520797014236, -0.12482620030641556, -0.13158154487609863, -0.06699343025684357, 0.07922818511724472, -0.056421227753162384, 0.1302114576101303, 0.032445624470710754, 0.04351352900266647, 0.02991766482591629, -0.021433105692267418, 0.00839054211974144, 0.01808553747832775, 0.17736123502254486, 0.0445675365626812, -0.036621689796447754, 0.06595399230718613, 0.02780519798398018, 0.10027021169662476, 0.10584163665771484, 0.22005972266197205, 0.13828721642494202, 0.03556032106280327, 0.08935406804084778, 0.036587465554475784, -0.09169379621744156, -0.16152530908584595, 0.03327496349811554, -0.055170945823192596, 0.11263271421194077, -0.03230105713009834, 0.20382489264011383, 0.05389487370848656, -0.16097359359264374, 0.04850563779473305, -0.04743834584951401, -0.077738456428051, -0.11703794449567795, -0.04184100031852722, -0.08225864171981812, -0.1496899425983429, -0.0032309654634445906, -0.11738613247871399, 0.04146653413772583, 0.11859798431396484, 0.011069485917687416, -0.016624020412564278, 0.12960472702980042, 0.008653546683490276, 0.005688495468348265, 0.07222598046064377, 0.002026789588853717, -0.027530740946531296, -0.09518201649188995, -0.07461987435817719, -0.008936089463531971, 0.0020077198278158903, 0.024525830522179604, -0.045106761157512665, -0.06389382481575012, 0.03950436785817146, -0.039511412382125854, -0.0957624688744545, 0.01930663175880909, 0.022846154868602753, 0.06768862903118134, 0.05024021491408348, 0.02308797836303711, 0.009200540371239185, 0.00649327551946044, 0.24609850347042084, -0.08123745769262314, -0.09457102417945862, -0.09264760464429855, 0.2692146301269531, 0.0544854961335659, -0.004913522396236658, 0.031184948980808258, -0.06925829499959946, -0.026005607098340988, 0.22552382946014404, 0.21037155389785767, -0.09574777632951736, -0.008250987157225609, -0.0044027152471244335, -0.000005739032076235162, -0.004022403620183468, 0.11691966652870178, 0.1421191394329071, 0.07113001495599747, -0.08421652764081955, -0.04592859372496605, -0.052685610949993134, -0.018193185329437256, -0.04589454084634781, 0.07432396709918976, 0.02908828854560852, -0.00138613092713058, -0.04025131091475487, 0.06771959364414215, -0.07939858734607697, -0.0995761826634407, 0.03051609732210636, -0.20389343798160553, -0.16967451572418213, -0.024830279871821404, 0.09670645743608475, 0.01583838276565075, 0.052089542150497437, -0.010508229956030846, -0.004842934664338827, 0.08079080283641815, -0.019669825211167336, -0.07906021177768707, -0.0901455208659172, 0.10217557102441788, -0.10362870991230011, 0.205000102519989, -0.04385513439774513, 0.04882242903113365, 0.1120545044541359, 0.05669834092259407, -0.0871119573712349, 0.08042874187231064, 0.044351786375045776, -0.061959948390722275, 0.036527518182992935, 0.08052059262990952, -0.033160250633955, 0.06091141328215599, 0.05591949447989464, -0.12451163679361343, 0.015713131055235863, -0.05440833419561386, -0.07676967978477478, -0.03994416445493698, -0.03870091587305069, -0.03903334215283394, 0.12979599833488464, 0.22061756253242493, -0.03993972763419151, 0.009256713092327118, -0.07536937296390533, 0.008049887605011463, 0.03563191741704941, 0.02269732765853405, -0.052810803055763245, -0.22973395884037018, 0.01045290194451809, 0.04942389205098152, 0.005311143584549427, -0.21100766956806183, -0.08661364018917084, 0.005995279178023338, -0.05699320510029793, -0.0984952375292778, 0.0967397689819336, 0.0548073835670948, 0.03230090066790581, -0.04600255936384201, -0.06765136122703552, -0.06697617471218109, 0.16541291773319244, -0.16931584477424622, -0.07995930314064026 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-ner This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0664 - Precision: 0.9332 - Recall: 0.9423 - F1: 0.9377 - Accuracy: 0.9852 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.2042 | 1.0 | 878 | 0.0636 | 0.9230 | 0.9253 | 0.9241 | 0.9822 | | 0.0428 | 2.0 | 1756 | 0.0577 | 0.9286 | 0.9370 | 0.9328 | 0.9841 | | 0.0199 | 3.0 | 2634 | 0.0606 | 0.9364 | 0.9401 | 0.9383 | 0.9851 | | 0.0121 | 4.0 | 3512 | 0.0641 | 0.9339 | 0.9380 | 0.9360 | 0.9847 | | 0.0079 | 5.0 | 4390 | 0.0664 | 0.9332 | 0.9423 | 0.9377 | 0.9852 | ### Framework versions - Transformers 4.8.2 - Pytorch 1.8.1+cu111 - Datasets 1.8.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["conll2003"], "metrics": ["precision", "recall", "f1", "accuracy"], "model_index": [{"name": "distilbert-base-uncased-ner", "results": [{"task": {"name": "Token Classification", "type": "token-classification"}, "dataset": {"name": "conll2003", "type": "conll2003", "args": "conll2003"}, "metric": {"name": "Accuracy", "type": "accuracy", "value": 0.985193893275295}}]}]}
token-classification
andi611/distilbert-base-uncased-ner-conll2003
[ "transformers", "pytorch", "tensorboard", "distilbert", "token-classification", "generated_from_trainer", "dataset:conll2003", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #dataset-conll2003 #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
distilbert-base-uncased-ner =========================== This model is a fine-tuned version of distilbert-base-uncased on the conll2003 dataset. It achieves the following results on the evaluation set: * Loss: 0.0664 * Precision: 0.9332 * Recall: 0.9423 * F1: 0.9377 * Accuracy: 0.9852 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 3e-05 * train\_batch\_size: 16 * eval\_batch\_size: 32 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 5 ### Training results ### Framework versions * Transformers 4.8.2 * Pytorch 1.8.1+cu111 * Datasets 1.8.0 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 3e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.8.2\n* Pytorch 1.8.1+cu111\n* Datasets 1.8.0\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #dataset-conll2003 #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 3e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.8.2\n* Pytorch 1.8.1+cu111\n* Datasets 1.8.0\n* Tokenizers 0.10.3" ]
[ 65, 98, 4, 34 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #dataset-conll2003 #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 3e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.8.2\n* Pytorch 1.8.1+cu111\n* Datasets 1.8.0\n* Tokenizers 0.10.3" ]
[ -0.1076073870062828, 0.10513663291931152, -0.002198984147980809, 0.11938350647687912, 0.1612469106912613, 0.03563809394836426, 0.11242253333330154, 0.11787554621696472, -0.11206692457199097, 0.031097255647182465, 0.12465070933103561, 0.16895097494125366, 0.011764971539378166, 0.1181146651506424, -0.055588092654943466, -0.24734260141849518, -0.004848663229495287, 0.05362362042069435, -0.07395922392606735, 0.12722736597061157, 0.09592223167419434, -0.138313427567482, 0.0890091136097908, 0.007542874198406935, -0.21967755258083344, 0.00594168808311224, 0.010875247418880463, -0.05600154027342796, 0.13196563720703125, 0.030218428000807762, 0.13743732869625092, -0.0027231976855546236, 0.09000472724437714, -0.1753266304731369, 0.006341206841170788, 0.05195651948451996, 0.003020689357072115, 0.09048646688461304, 0.04959925636649132, 0.012804215773940086, 0.12239964306354523, -0.07412251085042953, 0.05553184077143669, 0.019116045907139778, -0.11375485360622406, -0.21716178953647614, -0.0922015830874443, 0.04420822113752365, 0.07545895129442215, 0.09799593687057495, 0.005002251360565424, 0.14178387820720673, -0.09012165665626526, 0.09143839031457901, 0.21518105268478394, -0.30111774802207947, -0.06766077131032944, 0.04930804297327995, 0.008314761333167553, 0.03638077154755592, -0.10650372505187988, -0.041916634887456894, 0.05576767027378082, 0.04716026782989502, 0.12713073194026947, -0.035139698535203934, -0.12242778390645981, 0.014530899934470654, -0.1434623897075653, -0.024591051042079926, 0.16128134727478027, 0.03939983248710632, -0.03143124654889107, -0.03972930088639259, -0.057301707565784454, -0.16961769759655, -0.026889771223068237, -0.009194016456604004, 0.045290861278772354, -0.03700029477477074, -0.06484095752239227, 0.010688294656574726, -0.10694543272256851, -0.06928358227014542, -0.08828943222761154, 0.14211688935756683, 0.03859066963195801, 0.017247699201107025, -0.020721416920423508, 0.10686831921339035, 0.005272739566862583, -0.11999869346618652, 0.01755138859152794, 0.026397354900836945, -0.010128836147487164, -0.05522899329662323, -0.05797212943434715, -0.04886199161410332, 0.010077579878270626, 0.13924521207809448, -0.05526990815997124, 0.041509371250867844, 0.050863925367593765, 0.041902486234903336, -0.08500851690769196, 0.1805059313774109, -0.048915937542915344, -0.019272571429610252, 0.003873433917760849, 0.04066985100507736, 0.019273286685347557, -0.0015730691375210881, -0.11869989335536957, 0.0033236858434975147, 0.0979384183883667, 0.0033092934172600508, -0.0683649480342865, 0.069512739777565, -0.0634038895368576, -0.022378316149115562, 0.021969756111502647, -0.08789990097284317, 0.033683471381664276, -0.0027671423740684986, -0.08308728039264679, -0.019124343991279602, 0.019254568964242935, 0.01608639769256115, -0.008631453849375248, 0.12029533088207245, -0.0946977362036705, 0.02056374028325081, -0.09746742248535156, -0.10941711068153381, 0.026491057127714157, -0.09583111107349396, 0.03093912824988365, -0.099617138504982, -0.16677825152873993, -0.013064525090157986, 0.058841772377491, -0.02399609424173832, -0.05999923124909401, -0.042178861796855927, -0.079273521900177, 0.012289567850530148, -0.015569733455777168, 0.12468989938497543, -0.06444535404443741, 0.09785138815641403, 0.033289920538663864, 0.06341839581727982, -0.05969324707984924, 0.05379883199930191, -0.09598755836486816, 0.013327586464583874, -0.15332205593585968, 0.020791025832295418, -0.05782254785299301, 0.06714814156293869, -0.08710399270057678, -0.1057487353682518, 0.01722114160656929, -0.004660223610699177, 0.06899739056825638, 0.07550425827503204, -0.17102397978305817, -0.07026377320289612, 0.13667286932468414, -0.07122193276882172, -0.12201110273599625, 0.1113618016242981, -0.05601189658045769, 0.033961012959480286, 0.05784005671739578, 0.14860473573207855, 0.08345253765583038, -0.08566517382860184, -0.013237923383712769, 0.01519695669412613, 0.04839423671364784, -0.08615140616893768, 0.0694858506321907, 0.009787951596081257, 0.027247179299592972, 0.028364868834614754, -0.0269267950206995, 0.05479460582137108, -0.09419265389442444, -0.09217438846826553, -0.037932995706796646, -0.09938852488994598, 0.03452424705028534, 0.079277902841568, 0.07117821276187897, -0.09231209754943848, -0.08002957701683044, 0.07848982512950897, 0.09352562576532364, -0.05412560701370239, 0.024595648050308228, -0.06708186119794846, 0.07588386535644531, -0.04389036074280739, -0.03295448049902916, -0.18351975083351135, -0.03943654149770737, 0.010161043144762516, 0.006816448178142309, 0.014031711034476757, 0.03128878027200699, 0.06336448341608047, 0.06478404998779297, -0.053382452577352524, -0.02281554415822029, -0.02759203128516674, 0.0010844708885997534, -0.13118596374988556, -0.1999122053384781, -0.043353237211704254, -0.022343996912240982, 0.1327085793018341, -0.20355287194252014, 0.03229957073926926, 0.005411786027252674, 0.0877397209405899, 0.020335905253887177, -0.009532843716442585, -0.04357614368200302, 0.08556750416755676, -0.04855324700474739, -0.05199933797121048, 0.06643614917993546, 0.011306684464216232, -0.08663387596607208, -0.06299934536218643, -0.09501966834068298, 0.1713522970676422, 0.13490022718906403, -0.11440056562423706, -0.08005697280168533, -0.014047321863472462, -0.06534023582935333, -0.03579240292310715, -0.0397597998380661, 0.03365975618362427, 0.15459010004997253, -0.016101785004138947, 0.14628881216049194, -0.06603416055440903, -0.051174454391002655, 0.02097051776945591, -0.027250206097960472, 0.013241143897175789, 0.11228148639202118, 0.13831232488155365, -0.07260540127754211, 0.15550021827220917, 0.14654305577278137, -0.10409477353096008, 0.1245267391204834, -0.0473686121404171, -0.07318548113107681, -0.021463172510266304, -0.0209116879850626, -0.0003847929765470326, 0.10893765091896057, -0.1288032978773117, 0.0008595709223300219, 0.027947822585701942, 0.01856303960084915, 0.022304123267531395, -0.2254379391670227, -0.03289319574832916, 0.027972618117928505, -0.033183686435222626, -0.0002915832737926394, -0.013878337107598782, 0.001768632442690432, 0.10239053517580032, 0.0043759653344750404, -0.09393318742513657, 0.04668498784303665, 0.0047585503198206425, -0.07225003093481064, 0.21192607283592224, -0.09443992376327515, -0.1361413598060608, -0.12580442428588867, -0.0797615498304367, -0.047133877873420715, 0.009648756124079227, 0.054429374635219574, -0.07827164977788925, -0.03769773244857788, -0.06261102110147476, 0.00028135417960584164, -0.002811729209497571, 0.03967275843024254, 0.011393156833946705, 0.004439393058419228, 0.06587400287389755, -0.10977514088153839, -0.0066919997334480286, -0.05626662075519562, -0.06020158529281616, 0.04615163058042526, 0.03869457542896271, 0.11615059524774551, 0.15702944993972778, -0.015806660056114197, 0.008102092891931534, -0.032823529094457626, 0.23073172569274902, -0.0630875751376152, -0.029108993709087372, 0.12762047350406647, -0.010333388112485409, 0.044983409345149994, 0.1185576319694519, 0.07289332896471024, -0.08696767687797546, 0.005688404198735952, 0.03767053037881851, -0.030900143086910248, -0.2219444364309311, -0.05262552946805954, -0.05667540058493614, -0.007401083130389452, 0.08993732929229736, 0.02881161868572235, 0.04070110619068146, 0.0698264092206955, 0.040084633976221085, 0.09194222092628479, -0.04679902642965317, 0.059020884335041046, 0.11880846321582794, 0.047954682260751724, 0.12462294846773148, -0.045579489320516586, -0.05193481594324112, 0.043646566569805145, 0.0014209445798769593, 0.22964885830879211, -0.0005110073834657669, 0.13128761947155, 0.05933918431401253, 0.17934919893741608, -0.008657144382596016, 0.07512476295232773, -0.006802459247410297, -0.03990505635738373, -0.009401495568454266, -0.03720758855342865, -0.03346845135092735, 0.025232834741473198, -0.054554421454668045, 0.06624618917703629, -0.11579775810241699, 0.01030728593468666, 0.05299283191561699, 0.249282106757164, 0.04521128535270691, -0.3302909731864929, -0.09601487964391708, 0.00003525306601659395, -0.03025868348777294, -0.022846153005957603, 0.028701232746243477, 0.09686454385519028, -0.08039477467536926, 0.03064670041203499, -0.06491164118051529, 0.08572512865066528, -0.051187556236982346, 0.0374395027756691, 0.0955391526222229, 0.09682763367891312, 0.012832601554691792, 0.07991021126508713, -0.2923164665699005, 0.26806753873825073, 0.008694425225257874, 0.07135801017284393, -0.07323331385850906, 0.009760202839970589, 0.024949723854660988, 0.06730460375547409, 0.0645306333899498, -0.016186589375138283, -0.039956290274858475, -0.1974363625049591, -0.048683296889066696, 0.021986935287714005, 0.07755471020936966, -0.015944892540574074, 0.09214916080236435, -0.03110036440193653, 0.005000619683414698, 0.07664600759744644, -0.01727386564016342, -0.04386385902762413, -0.10033489018678665, -0.005092066712677479, 0.03699468821287155, -0.051518764346838, -0.06591551750898361, -0.11178892105817795, -0.12304237484931946, 0.16076022386550903, -0.05534893646836281, -0.031749941408634186, -0.11110914498567581, 0.09153956919908524, 0.08018918335437775, -0.08376748859882355, 0.05132223665714264, 0.005018382333219051, 0.06862886250019073, 0.04063551127910614, -0.06763971596956253, 0.10569702088832855, -0.07259467244148254, -0.16437004506587982, -0.06489422917366028, 0.09622326493263245, 0.031733714044094086, 0.06495131552219391, -0.014171576127409935, 0.015284893102943897, -0.03807907924056053, -0.08719412982463837, 0.01875888928771019, 0.0004987449501641095, 0.09201269596815109, 0.021595189347863197, -0.0610826350748539, 0.00712607940658927, -0.04136079549789429, -0.029505610466003418, 0.18300846219062805, 0.23428308963775635, -0.10049451887607574, 0.008862261660397053, 0.025829745456576347, -0.06838201731443405, -0.20117758214473724, 0.04477375000715256, 0.0597800649702549, 0.007067815400660038, 0.027329707518219948, -0.17403896152973175, 0.14552798867225647, 0.11773774027824402, -0.01325774472206831, 0.10570386797189713, -0.31797847151756287, -0.11987729370594025, 0.12254009395837784, 0.13839900493621826, 0.10827513039112091, -0.1413266807794571, -0.020460473373532295, -0.017596730962395668, -0.1468520164489746, 0.11765188723802567, -0.0857839286327362, 0.11668470501899719, -0.030764076858758926, 0.07137646526098251, 0.0005678002489730716, -0.06288914382457733, 0.11513124406337738, 0.03002362698316574, 0.10120277106761932, -0.05444519221782684, -0.04095597192645073, 0.04474782571196556, -0.035227902233600616, 0.017136355862021446, -0.07007727026939392, 0.028946049511432648, -0.09863274544477463, -0.020405840128660202, -0.07310023158788681, 0.046056777238845825, -0.03519085422158241, -0.06451907753944397, -0.045564111322164536, 0.032532598823308945, 0.04390597715973854, -0.016117092221975327, 0.14353710412979126, 0.0375022254884243, 0.14037056267261505, 0.10261031240224838, 0.07294642925262451, -0.07114697247743607, -0.07132519781589508, -0.019167345017194748, -0.01889003999531269, 0.06173458322882652, -0.13308332860469818, 0.025541890412569046, 0.15206046402454376, 0.022239362820982933, 0.13187378644943237, 0.08638618886470795, -0.021033883094787598, 0.0058138407766819, 0.0670572817325592, -0.15903478860855103, -0.06361298263072968, 0.0024999005254358053, -0.05242021754384041, -0.11409051716327667, 0.0631243959069252, 0.09146551042795181, -0.06584148854017258, -0.005897151306271553, 0.00020780858176294714, 0.0023847478441894054, -0.05690974369645119, 0.20092368125915527, 0.06393599510192871, 0.04321441426873207, -0.1024925634264946, 0.07627405226230621, 0.050095219165086746, -0.07408455014228821, 0.0003610361891333014, 0.055590905249118805, -0.08640364557504654, -0.044707417488098145, 0.07537467032670975, 0.15484470129013062, -0.06019914895296097, -0.05420789495110512, -0.13284794986248016, -0.11693155020475388, 0.08165765553712845, 0.15960997343063354, 0.119594044983387, 0.02531096339225769, -0.053055815398693085, 0.013325943611562252, -0.12418671697378159, 0.08743160218000412, 0.035285741090774536, 0.07795166969299316, -0.1580650806427002, 0.1604331135749817, 0.003312465036287904, 0.0404709093272686, -0.01882511004805565, 0.03602766990661621, -0.10866308212280273, 0.006106832530349493, -0.10814034193754196, -0.026382356882095337, -0.038533568382263184, 0.00889658834785223, 0.00634733634069562, -0.05559166893362999, -0.06189225986599922, 0.0181900504976511, -0.1095781996846199, -0.01697133667767048, 0.03900127857923508, 0.05949300527572632, -0.11618325859308243, -0.03906461223959923, 0.01810373179614544, -0.05881402641534805, 0.06825470924377441, 0.03987310454249382, 0.03165002539753914, 0.05455288663506508, -0.12807106971740723, 0.00524490512907505, 0.07691537588834763, 0.021141598001122475, 0.07743103802204132, -0.08579732477664948, -0.008330726996064186, 0.0050088465213775635, 0.04863749444484711, 0.015080061741173267, 0.07400210946798325, -0.13535155355930328, -0.008367255330085754, -0.03347816690802574, -0.0788029208779335, -0.07073642313480377, 0.02812747284770012, 0.10869055241346359, 0.01014740951359272, 0.20828838646411896, -0.07000979036092758, 0.026251889765262604, -0.19943229854106903, 0.005642743315547705, -0.013958584517240524, -0.10782438516616821, -0.13039298355579376, -0.05401451140642166, 0.0606338195502758, -0.05505683645606041, 0.1366691291332245, 0.017976101487874985, 0.03283514454960823, 0.02825980819761753, -0.017562348395586014, 0.014394653029739857, 0.024737432599067688, 0.20589514076709747, 0.03586859256029129, -0.03398741036653519, 0.059271350502967834, 0.04859277233481407, 0.10362850874662399, 0.1074921265244484, 0.19402384757995605, 0.13896389305591583, -0.018646936863660812, 0.09636865556240082, 0.03770878165960312, -0.07496269047260284, -0.15884451568126678, 0.04626081511378288, -0.05561337247490883, 0.1032300516963005, -0.021349221467971802, 0.21768906712532043, 0.058014847338199615, -0.16635145246982574, 0.03043595515191555, -0.05643855780363083, -0.08757201582193375, -0.10523062944412231, -0.042806051671504974, -0.08219410479068756, -0.13157591223716736, 0.0035863465163856745, -0.11756861209869385, 0.007027503103017807, 0.1198902428150177, 0.008179628290235996, -0.019413108006119728, 0.156028613448143, 0.008553615771234035, 0.03843332827091217, 0.04382907226681709, 0.01368470024317503, -0.0346563495695591, -0.11066200584173203, -0.06676571816205978, -0.02588251605629921, -0.02035604417324066, 0.036015480756759644, -0.06315228343009949, -0.047107137739658356, 0.03940960019826889, -0.011299668811261654, -0.09134268760681152, 0.010107416659593582, 0.016515564173460007, 0.05728939175605774, 0.03584010526537895, 0.005982487462460995, 0.024028312414884567, -0.010417236015200615, 0.19815343618392944, -0.08169329166412354, -0.06646012514829636, -0.10989249497652054, 0.24216103553771973, 0.04222467169165611, -0.008581580594182014, 0.03859928995370865, -0.07080496102571487, -0.000011368631930963602, 0.23837029933929443, 0.19439274072647095, -0.08108504861593246, -0.01156459841877222, 0.018373429775238037, -0.011035578325390816, -0.03819417580962181, 0.10738808661699295, 0.13674227893352509, 0.061294879764318466, -0.08846057206392288, -0.059125401079654694, -0.05591624975204468, -0.0066296691074967384, -0.034781575202941895, 0.04781313240528107, 0.042121946811676025, 0.002453041961416602, -0.038026921451091766, 0.04360378533601761, -0.06083684042096138, -0.09507039934396744, 0.08363980054855347, -0.20202091336250305, -0.16307908296585083, -0.009928598999977112, 0.10735698789358139, -0.0010914831655099988, 0.06032969057559967, -0.03488588705658913, -0.00293950317427516, 0.08477321267127991, -0.020107055082917213, -0.10389745980501175, -0.07580144703388214, 0.09531654417514801, -0.09158367663621902, 0.21323344111442566, -0.047048263251781464, 0.08128208667039871, 0.13047008216381073, 0.0641089603304863, -0.08086171001195908, 0.05735881254076958, 0.04762261360883713, -0.0814509391784668, 0.02551138959825039, 0.07037127017974854, -0.03555307164788246, 0.08633238822221756, 0.040000658482313156, -0.13251648843288422, 0.016538256779313087, -0.0611925832927227, -0.05308819189667702, -0.047737594693899155, -0.033292099833488464, -0.058221474289894104, 0.13523294031620026, 0.21314223110675812, -0.02809472195804119, -0.0063493927009403706, -0.06802180409431458, 0.019221622496843338, 0.057636331766843796, 0.032789431512355804, -0.06263890117406845, -0.22152477502822876, 0.024024588987231255, 0.03306620195508003, -0.020183339715003967, -0.20841239392757416, -0.09204568713903427, 0.0024311039596796036, -0.0755922719836235, -0.10170083492994308, 0.07628828287124634, 0.08091872185468674, 0.0480458065867424, -0.06336529552936554, -0.04137992858886719, -0.0825699120759964, 0.1415712833404541, -0.14768193662166595, -0.09798780828714371 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-ner-mit-restaurant This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the mit_restaurant dataset. It achieves the following results on the evaluation set: - Loss: 0.3097 - Precision: 0.7874 - Recall: 0.8104 - F1: 0.7988 - Accuracy: 0.9119 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 431 | 0.4575 | 0.6220 | 0.6856 | 0.6523 | 0.8650 | | 1.1705 | 2.0 | 862 | 0.3183 | 0.7747 | 0.7953 | 0.7848 | 0.9071 | | 0.3254 | 3.0 | 1293 | 0.3163 | 0.7668 | 0.8021 | 0.7841 | 0.9058 | | 0.2287 | 4.0 | 1724 | 0.3097 | 0.7874 | 0.8104 | 0.7988 | 0.9119 | ### Framework versions - Transformers 4.8.2 - Pytorch 1.8.1+cu111 - Datasets 1.8.0 - Tokenizers 0.10.3
{"language": ["en"], "license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["mit_restaurant"], "metrics": ["precision", "recall", "f1", "accuracy"], "model_index": [{"name": "distilbert-base-uncased-ner-mit-restaurant", "results": [{"task": {"name": "Token Classification", "type": "token-classification"}, "dataset": {"name": "mit_restaurant", "type": "mit_restaurant"}, "metric": {"name": "Accuracy", "type": "accuracy", "value": 0.9118988661540467}}]}]}
token-classification
andi611/distilbert-base-uncased-ner-mit-restaurant
[ "transformers", "pytorch", "distilbert", "token-classification", "generated_from_trainer", "en", "dataset:mit_restaurant", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #distilbert #token-classification #generated_from_trainer #en #dataset-mit_restaurant #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
distilbert-base-uncased-ner-mit-restaurant ========================================== This model is a fine-tuned version of distilbert-base-uncased on the mit\_restaurant dataset. It achieves the following results on the evaluation set: * Loss: 0.3097 * Precision: 0.7874 * Recall: 0.8104 * F1: 0.7988 * Accuracy: 0.9119 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 16 * eval\_batch\_size: 32 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * lr\_scheduler\_warmup\_steps: 500 * num\_epochs: 4 ### Training results ### Framework versions * Transformers 4.8.2 * Pytorch 1.8.1+cu111 * Datasets 1.8.0 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 500\n* num\\_epochs: 4", "### Training results", "### Framework versions\n\n\n* Transformers 4.8.2\n* Pytorch 1.8.1+cu111\n* Datasets 1.8.0\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #distilbert #token-classification #generated_from_trainer #en #dataset-mit_restaurant #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 500\n* num\\_epochs: 4", "### Training results", "### Framework versions\n\n\n* Transformers 4.8.2\n* Pytorch 1.8.1+cu111\n* Datasets 1.8.0\n* Tokenizers 0.10.3" ]
[ 63, 116, 4, 34 ]
[ "passage: TAGS\n#transformers #pytorch #distilbert #token-classification #generated_from_trainer #en #dataset-mit_restaurant #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 500\n* num\\_epochs: 4### Training results### Framework versions\n\n\n* Transformers 4.8.2\n* Pytorch 1.8.1+cu111\n* Datasets 1.8.0\n* Tokenizers 0.10.3" ]
[ -0.10181722790002823, 0.12177235633134842, -0.002629888476803899, 0.1251061111688614, 0.15225067734718323, 0.023133570328354836, 0.09132829308509827, 0.1513907015323639, -0.09386350959539413, 0.023969950154423714, 0.11697497963905334, 0.17440630495548248, 0.01058671809732914, 0.14962489902973175, -0.0457165464758873, -0.271986186504364, -0.000782923074439168, 0.02704126574099064, -0.09166022390127182, 0.13729339838027954, 0.08599930256605148, -0.12201137095689774, 0.10224752873182297, -0.0024761392269283533, -0.16432558000087738, 0.011197204701602459, 0.005257849115878344, -0.05598961561918259, 0.14598827064037323, 0.017553746700286865, 0.10213784873485565, 0.01403120532631874, 0.11100607365369797, -0.1873047649860382, -0.00020992422651033849, 0.05389033257961273, 0.01745704375207424, 0.08375432342290878, 0.05386795476078987, 0.006855651270598173, 0.11130683124065399, -0.0914265587925911, 0.06576593965291977, 0.0280850138515234, -0.123501718044281, -0.24197235703468323, -0.09538387507200241, 0.0328797847032547, 0.07550521194934845, 0.0888882577419281, 0.0026141032576560974, 0.09015354514122009, -0.10010212659835815, 0.10767369717359543, 0.23222163319587708, -0.2785135805606842, -0.06314734369516373, 0.023732738569378853, 0.01496485061943531, 0.051869362592697144, -0.10054805129766464, -0.02943762019276619, 0.038370490074157715, 0.049144335091114044, 0.1220092847943306, -0.036982737481594086, -0.0971299335360527, 0.012547989375889301, -0.12639310956001282, -0.028838103637099266, 0.13715018332004547, 0.02849535457789898, -0.04132474586367607, -0.040611352771520615, -0.07206525653600693, -0.16643111407756805, -0.04282819479703903, -0.023098701611161232, 0.057129062712192535, -0.03184490278363228, -0.06802129745483398, -0.004038466140627861, -0.07743756473064423, -0.0777493491768837, -0.04512237757444382, 0.1505207121372223, 0.046371426433324814, -0.0023786844685673714, -0.00763054471462965, 0.11344239860773087, 0.018773609772324562, -0.13578765094280243, -0.0029400684870779514, 0.03064117021858692, -0.02792595885694027, -0.04612822085618973, -0.03186549246311188, 0.019326984882354736, 0.013322204351425171, 0.16977547109127045, -0.061828065663576126, 0.058663032948970795, 0.042140062898397446, 0.005597410723567009, -0.10220406949520111, 0.18567988276481628, -0.04365154728293419, -0.05909494683146477, -0.013513087294995785, 0.06191712245345116, 0.010846292600035667, -0.007704973220825195, -0.09884583204984665, 0.0004981013480573893, 0.0923500582575798, 0.028868118301033974, -0.052718114107847214, 0.06946495175361633, -0.04935450106859207, -0.01964702643454075, 0.03824459761381149, -0.10225658863782883, 0.03613422438502312, 0.006826553028076887, -0.09568940103054047, -0.030855366960167885, 0.012737519107758999, 0.007212227210402489, -0.009239770472049713, 0.13004109263420105, -0.0887894555926323, 0.017456810921430588, -0.08198654651641846, -0.10270469635725021, 0.010946564376354218, -0.07837781310081482, 0.011310459114611149, -0.08197592198848724, -0.18539874255657196, -0.02432692050933838, 0.06960923969745636, -0.04680031165480614, -0.05238565430045128, -0.05609025061130524, -0.07430567592382431, 0.020673485472798347, -0.015859464183449745, 0.12426509708166122, -0.06984497606754303, 0.10592415183782578, 0.027905385941267014, 0.058692365884780884, -0.019531145691871643, 0.0694471001625061, -0.10858976095914841, 0.027268458157777786, -0.18210141360759735, 0.04720906913280487, -0.05897212773561478, 0.05617620050907135, -0.11279837042093277, -0.1112205758690834, 0.03793270140886307, -0.006417635828256607, 0.06822992116212845, 0.11580155789852142, -0.18702678382396698, -0.06247808039188385, 0.13381820917129517, -0.06778156012296677, -0.10621833056211472, 0.11360079050064087, -0.05111626908183098, 0.04739631712436676, 0.07190759479999542, 0.16707341372966766, 0.08595050871372223, -0.07345585525035858, 0.0051195924170315266, 0.013799655251204967, 0.049940332770347595, -0.029744137078523636, 0.06769628077745438, 0.006555686239153147, 0.013948258012533188, 0.025737158954143524, -0.04068716615438461, 0.049080878496170044, -0.08813664317131042, -0.09097399562597275, -0.0331876315176487, -0.08182047307491302, 0.0572873093187809, 0.05878105387091637, 0.05775752663612366, -0.09092440456151962, -0.0898001417517662, 0.058317191898822784, 0.1022050529718399, -0.05495878681540489, 0.030166789889335632, -0.0580977126955986, 0.057333480566740036, 0.00038600267725996673, -0.023613659664988518, -0.17544758319854736, -0.02766602486371994, 0.01619395799934864, -0.016754066571593285, 0.015470276586711407, 0.02586670033633709, 0.06754294782876968, 0.06706346571445465, -0.05325727537274361, -0.037939902395009995, -0.017684899270534515, 0.013494963757693768, -0.12317857891321182, -0.2042473703622818, -0.0384320504963398, -0.02038734219968319, 0.11729767918586731, -0.20239794254302979, 0.025925051420927048, 0.0016153439646586776, 0.08215075731277466, 0.024743404239416122, -0.0072026001289486885, -0.03989803045988083, 0.06655241549015045, -0.03986096754670143, -0.06741488724946976, 0.06115792319178581, -0.0025598632637411356, -0.08130289614200592, -0.04163428023457527, -0.09384877234697342, 0.1502622663974762, 0.10938612371683121, -0.06579410284757614, -0.09374287724494934, -0.0006477161077782512, -0.06007468327879906, -0.03909413143992424, -0.04166886955499649, 0.039418332278728485, 0.15205560624599457, 0.0036865798756480217, 0.14701588451862335, -0.055588092654943466, -0.03932317718863487, 0.01799878478050232, -0.01710176281630993, 0.023829594254493713, 0.12799042463302612, 0.10500292479991913, -0.08257482945919037, 0.1410731077194214, 0.15679767727851868, -0.06093674153089523, 0.1138809323310852, -0.034057240933179855, -0.056656766682863235, -0.02843649499118328, -0.004433324560523033, -0.01462448202073574, 0.09547176957130432, -0.10714489966630936, 0.007416325155645609, 0.017046093940734863, 0.03169059380888939, 0.0015807755989953876, -0.21066440641880035, -0.024638520553708076, 0.03693949058651924, -0.06590636074542999, -0.013981443829834461, -0.01834266260266304, -0.0026267985813319683, 0.09860163927078247, 0.021402573212981224, -0.1176464632153511, 0.03672586753964424, 0.0055872369557619095, -0.0583505854010582, 0.19993388652801514, -0.10710611939430237, -0.15961742401123047, -0.10391677916049957, -0.09446573257446289, -0.046498458832502365, 0.007287344429641962, 0.06641688197851181, -0.09546041488647461, -0.041310351341962814, -0.05793525278568268, 0.01220650877803564, -0.005033330991864204, 0.027664845809340477, -0.02150125615298748, 0.0035955694038420916, 0.06000461056828499, -0.10709888488054276, -0.012176385149359703, -0.044936057180166245, -0.06305871158838272, 0.03488018363714218, 0.033902961760759354, 0.1014745905995369, 0.13407638669013977, -0.005793527700006962, 0.006270915735512972, -0.03239206224679947, 0.23123130202293396, -0.07133583724498749, -0.004847121424973011, 0.1347416788339615, 0.015885934233665466, 0.05719447508454323, 0.1515340358018875, 0.0689205676317215, -0.098207488656044, 0.006855227518826723, 0.04329584538936615, -0.023280953988432884, -0.2053815722465515, -0.0462346188724041, -0.05071301758289337, 0.0033392508048564196, 0.1142847090959549, 0.037624381482601166, 0.018215054646134377, 0.04704464226961136, 0.02622862160205841, 0.07086356729269028, -0.026844989508390427, 0.059546031057834625, 0.14060616493225098, 0.03821208328008652, 0.12039490044116974, -0.02846253104507923, -0.05450315773487091, 0.053440336138010025, 0.007954095490276814, 0.2171146720647812, 0.0009247413254342973, 0.13365355134010315, 0.04784739762544632, 0.16279423236846924, -0.01762661710381508, 0.06438013911247253, 0.006313438061624765, -0.02442861534655094, -0.02454007789492607, -0.04631120339035988, -0.043722737580537796, 0.027084974572062492, -0.04265061020851135, 0.036055900156497955, -0.10718575865030289, 0.024591848254203796, 0.05033354461193085, 0.26987534761428833, 0.04502866044640541, -0.31575408577919006, -0.08420289307832718, 0.00023896821949165314, -0.05194908753037453, -0.026847440749406815, 0.03608765825629234, 0.08806382119655609, -0.09146872162818909, 0.04324111342430115, -0.06812933832406998, 0.08939357101917267, -0.05199380964040756, 0.04846826195716858, 0.11097769439220428, 0.09412192553281784, 0.008792934007942677, 0.0758914053440094, -0.3050517141819, 0.27390891313552856, 0.007924884557723999, 0.06159967929124832, -0.07242871820926666, 0.016489000990986824, 0.03817654401063919, 0.08364678919315338, 0.08792464435100555, -0.011797448620200157, -0.0825042799115181, -0.20946884155273438, -0.06907785683870316, 0.027634968981146812, 0.0899350568652153, -0.031481094658374786, 0.09074003994464874, -0.05292949080467224, -0.009187278337776661, 0.06555911153554916, -0.05002477392554283, -0.06306566298007965, -0.08657685667276382, -0.0008355265017598867, 0.009342891164124012, -0.01799856685101986, -0.05517838895320892, -0.10134866088628769, -0.07206320017576218, 0.15351013839244843, -0.03989313170313835, -0.03774470090866089, -0.13636909425258636, 0.06263057887554169, 0.09912917762994766, -0.09178026020526886, 0.04463937506079674, 0.008185895159840584, 0.04833919554948807, 0.04619327187538147, -0.062438685446977615, 0.11986168473958969, -0.07101644575595856, -0.18933652341365814, -0.05551805719733238, 0.09923873096704483, 0.03326652571558952, 0.070563405752182, -0.014291920699179173, 0.034538738429546356, -0.03030240908265114, -0.08972761034965515, -0.00797269120812416, -0.010917723178863525, 0.06642686575651169, 0.03190447390079498, -0.06655587255954742, 0.027453172951936722, -0.05299341678619385, -0.020546535030007362, 0.1454668641090393, 0.26187238097190857, -0.1005372405052185, 0.057769689708948135, 0.03513359650969505, -0.06033559516072273, -0.18900291621685028, 0.006265787873417139, 0.044584207236766815, -0.010894231498241425, 0.0390670970082283, -0.20192402601242065, 0.12812945246696472, 0.11227273941040039, -0.019601156935095787, 0.09971388429403305, -0.32413774728775024, -0.12593460083007812, 0.1085047796368599, 0.13001567125320435, 0.0905771479010582, -0.12285643815994263, -0.022872863337397575, -0.01223661843687296, -0.10361973941326141, 0.09418173134326935, -0.053248077630996704, 0.13157474994659424, -0.03231697902083397, 0.070499949157238, 0.005477479659020901, -0.044910382479429245, 0.11278297007083893, 0.040285367518663406, 0.10183477401733398, -0.04963561147451401, -0.03181876242160797, 0.012923567555844784, -0.044831033796072006, 0.03051474690437317, -0.09699168801307678, 0.03690820559859276, -0.09605934470891953, -0.012275204062461853, -0.08132130652666092, 0.04032529518008232, -0.04818572849035263, -0.07307227700948715, -0.04437992349267006, 0.050249647349119186, 0.06712350994348526, -0.01993754133582115, 0.13932287693023682, 0.022195259109139442, 0.11903714388608932, 0.10162749141454697, 0.05759214237332344, -0.06156817823648453, -0.07713840156793594, -0.010432791896164417, -0.0071978215128183365, 0.05332155153155327, -0.13464954495429993, 0.04287850111722946, 0.14626716077327728, 0.023720307275652885, 0.13740552961826324, 0.07229889184236526, -0.008045949973165989, -0.011491612531244755, 0.05677010864019394, -0.15460485219955444, -0.07252411544322968, 0.0062185549177229404, -0.08371057361364365, -0.108035147190094, 0.03652309998869896, 0.11401593685150146, -0.0664864033460617, -0.003916048910468817, 0.00032733738771639764, 0.03077121265232563, -0.044926635921001434, 0.22441276907920837, 0.058692313730716705, 0.050055600702762604, -0.11209253966808319, 0.07226622849702835, 0.055450234562158585, -0.0700574740767479, 0.0035355230793356895, 0.09583895653486252, -0.09192164242267609, -0.03720709681510925, 0.07941135764122009, 0.14393649995326996, -0.0679764449596405, -0.03905767947435379, -0.14801986515522003, -0.10592227429151535, 0.0943308100104332, 0.12369388341903687, 0.11067884415388107, 0.03650008514523506, -0.06441207975149155, 0.008501442149281502, -0.10248877108097076, 0.10345102101564407, 0.04418657720088959, 0.07213018089532852, -0.15100646018981934, 0.151418074965477, 0.004166224040091038, 0.05135105922818184, -0.023485418409109116, 0.028821364045143127, -0.10878913849592209, 0.0029046405106782913, -0.11364457756280899, -0.019130360335111618, -0.0410974845290184, 0.01799076236784458, -0.008219605311751366, -0.05344841256737709, -0.05628383159637451, 0.012867288663983345, -0.11187811940908432, -0.030310891568660736, 0.020720530301332474, 0.06180952489376068, -0.14107629656791687, -0.03844134882092476, 0.02406063675880432, -0.07395031303167343, 0.07270447164773941, 0.024757925420999527, 0.00934139359742403, 0.04377789422869682, -0.1022205799818039, -0.017848966643214226, 0.05262333154678345, 0.018016939982771873, 0.07737576216459274, -0.11365340650081635, -0.015718387439846992, -0.013679614290595055, 0.0568675734102726, 0.01535965409129858, 0.08030907809734344, -0.13928040862083435, 0.005886643659323454, -0.04006022587418556, -0.08175528794527054, -0.06174466013908386, 0.04115486890077591, 0.09440657496452332, 0.005197713151574135, 0.20262062549591064, -0.077694833278656, 0.03186802193522453, -0.19873207807540894, -0.009707117453217506, -0.01319949235767126, -0.12171507626771927, -0.1228509396314621, -0.06440260261297226, 0.06879942119121552, -0.042584292590618134, 0.11576130986213684, 0.034953903406858444, 0.06271681189537048, 0.03926277533173561, -0.04458673298358917, -0.00048351078294217587, 0.014055930078029633, 0.17440751194953918, 0.03529391065239906, -0.031061477959156036, 0.07455015182495117, 0.04312463849782944, 0.08820250630378723, 0.10588755458593369, 0.21022917330265045, 0.1526683270931244, 0.008496946655213833, 0.0797777771949768, 0.03624172881245613, -0.09680625051259995, -0.20847992599010468, 0.04397161304950714, -0.05773332715034485, 0.12127763777971268, -0.02926853857934475, 0.19067096710205078, 0.04055701941251755, -0.18131567537784576, 0.04937287047505379, -0.050730012357234955, -0.08825846761465073, -0.12201420962810516, -0.03898301348090172, -0.0851845070719719, -0.15423890948295593, -0.008392720483243465, -0.10479230433702469, 0.04488343372941017, 0.10673248022794724, 0.01326453872025013, 0.00047811036347411573, 0.1433461457490921, -0.0048312838189303875, 0.030024658888578415, 0.04180561751127243, 0.01636274717748165, -0.02211732603609562, -0.0933784693479538, -0.0787702351808548, -0.025002459064126015, -0.0062232655473053455, 0.027797255665063858, -0.05968514457345009, -0.0625602975487709, 0.04079832136631012, -0.017297370359301567, -0.08438843488693237, 0.014005376026034355, 0.019011354073882103, 0.06551848351955414, 0.047470301389694214, 0.018970632925629616, 0.010603699833154678, -0.00000982564870355418, 0.24585427343845367, -0.09191372245550156, -0.07697495073080063, -0.1092909649014473, 0.29653459787368774, 0.05192390829324722, -0.007858490571379662, 0.03587633743882179, -0.06043117120862007, -0.013169586658477783, 0.2120385766029358, 0.19250640273094177, -0.0911845713853836, -0.016158994287252426, -0.006151366047561169, -0.007152572274208069, -0.01850944198668003, 0.11482930183410645, 0.12313073128461838, 0.042159080505371094, -0.08429531008005142, -0.04969033971428871, -0.038603734225034714, -0.037291985005140305, -0.05676255747675896, 0.060678593814373016, 0.032216865569353104, 0.004914567340165377, -0.03747829049825668, 0.06733982264995575, -0.04151498153805733, -0.12172221392393112, 0.06432345509529114, -0.19182641804218292, -0.17244121432304382, -0.023086123168468475, 0.1004405990242958, 0.021592089906334877, 0.060921210795640945, -0.018590491265058517, -0.00993921048939228, 0.09335004538297653, -0.015187734737992287, -0.092563197016716, -0.09257441759109497, 0.11265069991350174, -0.10004175454378128, 0.2324138581752777, -0.03552505373954773, 0.03112824261188507, 0.12150689214468002, 0.05476047843694687, -0.0930866077542305, 0.054933685809373856, 0.05662081018090248, -0.08393172919750214, 0.035435814410448074, 0.09004133194684982, -0.04212656244635582, 0.08384162932634354, 0.03994379937648773, -0.13918203115463257, 0.014952040277421474, -0.015792876482009888, -0.0639125406742096, -0.05127827078104019, -0.04701989144086838, -0.04478137940168381, 0.1413038969039917, 0.23205721378326416, -0.030398763716220856, 0.015205995179712772, -0.07435452938079834, 0.015479658730328083, 0.05357103794813156, 0.022505640983581543, -0.06551160663366318, -0.2252892106771469, 0.011660783551633358, 0.04019005969166756, -0.01611902564764023, -0.17932751774787903, -0.10667135566473007, 0.004140018485486507, -0.05901787057518959, -0.10002245008945465, 0.10210227966308594, 0.04641449451446533, 0.04287358745932579, -0.047792594879865646, -0.07438290119171143, -0.08301979303359985, 0.15628063678741455, -0.16355927288532257, -0.08044788986444473 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-boolq This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the boolq dataset. It achieves the following results on the evaluation set: - Loss: 1.2071 - Accuracy: 0.7315 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6506 | 1.0 | 531 | 0.6075 | 0.6681 | | 0.575 | 2.0 | 1062 | 0.5816 | 0.6978 | | 0.4397 | 3.0 | 1593 | 0.6137 | 0.7253 | | 0.2524 | 4.0 | 2124 | 0.8124 | 0.7466 | | 0.126 | 5.0 | 2655 | 1.1437 | 0.7370 | ### Framework versions - Transformers 4.8.2 - Pytorch 1.8.1+cu111 - Datasets 1.8.0 - Tokenizers 0.10.3
{"language": ["en"], "license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["boolq"], "metrics": ["accuracy"], "model_index": [{"name": "distilbert-base-uncased-boolq", "results": [{"task": {"name": "Question Answering", "type": "question-answering"}, "dataset": {"name": "boolq", "type": "boolq", "args": "default"}, "metric": {"name": "Accuracy", "type": "accuracy", "value": 0.7314984709480122}}]}]}
text-classification
andi611/distilbert-base-uncased-qa-boolq
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "en", "dataset:boolq", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #distilbert #text-classification #generated_from_trainer #en #dataset-boolq #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
distilbert-base-uncased-boolq ============================= This model is a fine-tuned version of distilbert-base-uncased on the boolq dataset. It achieves the following results on the evaluation set: * Loss: 1.2071 * Accuracy: 0.7315 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 5e-05 * train\_batch\_size: 16 * eval\_batch\_size: 32 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * lr\_scheduler\_warmup\_steps: 1000 * num\_epochs: 5 ### Training results ### Framework versions * Transformers 4.8.2 * Pytorch 1.8.1+cu111 * Datasets 1.8.0 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 1000\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.8.2\n* Pytorch 1.8.1+cu111\n* Datasets 1.8.0\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #distilbert #text-classification #generated_from_trainer #en #dataset-boolq #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 1000\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.8.2\n* Pytorch 1.8.1+cu111\n* Datasets 1.8.0\n* Tokenizers 0.10.3" ]
[ 61, 116, 4, 34 ]
[ "passage: TAGS\n#transformers #pytorch #distilbert #text-classification #generated_from_trainer #en #dataset-boolq #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 1000\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.8.2\n* Pytorch 1.8.1+cu111\n* Datasets 1.8.0\n* Tokenizers 0.10.3" ]
[ -0.10042570531368256, 0.08829322457313538, -0.003070604521781206, 0.13538631796836853, 0.16683033108711243, 0.026101969182491302, 0.11089257895946503, 0.12985548377037048, -0.09479644894599915, 0.013659849762916565, 0.12149586528539658, 0.17460936307907104, 0.010477909818291664, 0.12575513124465942, -0.05521492287516594, -0.2861056625843048, -0.0108097018674016, 0.01747419312596321, -0.06873250752687454, 0.14129170775413513, 0.0884840115904808, -0.1273217648267746, 0.08984839171171188, -0.006277976091951132, -0.15991750359535217, 0.007488840259611607, -0.006449763663113117, -0.055015239864587784, 0.15248332917690277, 0.017279714345932007, 0.0989684984087944, 0.01202397421002388, 0.1042972132563591, -0.19573268294334412, 0.005842694081366062, 0.04925251379609108, 0.013806699775159359, 0.08414213359355927, 0.05432559922337532, -0.01308626588433981, 0.14381785690784454, -0.09289257973432541, 0.06345908343791962, 0.022222571074962616, -0.12454789876937866, -0.22316280007362366, -0.08079832792282104, 0.018408963456749916, 0.07987653464078903, 0.10306835919618607, -0.0006788243190385401, 0.104586660861969, -0.10320962220430374, 0.11300421506166458, 0.24157877266407013, -0.2762509286403656, -0.06243458390235901, 0.01251326035708189, 0.01655055209994316, 0.07418778538703918, -0.10222812741994858, -0.034683093428611755, 0.02522682212293148, 0.04876118153333664, 0.1369674652814865, -0.034049857407808304, -0.12446465343236923, 0.018430162221193314, -0.14117853343486786, -0.03666084632277489, 0.13293233513832092, 0.027420878410339355, -0.03352674841880798, -0.04227815940976143, -0.0734235942363739, -0.15400567650794983, -0.04236537590622902, 0.001737012411467731, 0.04767240211367607, -0.032247405499219894, -0.05932847782969475, -0.00947954598814249, -0.08294379711151123, -0.07088010013103485, -0.05695720016956329, 0.1452055424451828, 0.04257899150252342, 0.007867362350225449, -0.022341381758451462, 0.11522133648395538, 0.029657352715730667, -0.13807573914527893, 0.008024921640753746, 0.02134276181459427, -0.013220456428825855, -0.034827958792448044, -0.05242127552628517, 0.004887272138148546, 0.011998024769127369, 0.1482498049736023, -0.05050359293818474, 0.054833054542541504, 0.03972535580396652, 0.021219659596681595, -0.10085892677307129, 0.19498345255851746, -0.03363952413201332, -0.044574838131666183, 0.003434954211115837, 0.06233753263950348, 0.021175222471356392, -0.020957596600055695, -0.11559660732746124, -0.0005216153804212809, 0.08910957723855972, 0.03197499364614487, -0.06806966662406921, 0.0735284835100174, -0.048030123114585876, -0.02063068002462387, 0.02040884830057621, -0.10555922240018845, 0.035573866218328476, 0.010044694878160954, -0.09352067857980728, -0.045680053532123566, 0.026083361357450485, 0.006201098207384348, -0.02432025969028473, 0.1203465610742569, -0.07591826468706131, 0.036400169134140015, -0.08481906354427338, -0.12138556689023972, 0.0043991925194859505, -0.10372123122215271, 0.020213309675455093, -0.0893319621682167, -0.19738495349884033, -0.008895755745470524, 0.05274184048175812, -0.03163619711995125, -0.05299342796206474, -0.06908738613128662, -0.0793309360742569, 0.01923132687807083, -0.014971848577260971, 0.13226838409900665, -0.07497905939817429, 0.10988300293684006, 0.028803352266550064, 0.06085953488945961, -0.0342426560819149, 0.06144198775291443, -0.10908761620521545, 0.011737063527107239, -0.16744858026504517, 0.06644830107688904, -0.05280664935708046, 0.057861775159835815, -0.0905952900648117, -0.11333155632019043, 0.043641019612550735, -0.005556141957640648, 0.07707865536212921, 0.10787797719240189, -0.1937810629606247, -0.06933286786079407, 0.13880981504917145, -0.057596445083618164, -0.10649261623620987, 0.11783740669488907, -0.06622222065925598, 0.034158606082201004, 0.06791672855615616, 0.16925722360610962, 0.09016861766576767, -0.06676330417394638, 0.022766366600990295, 0.0166002344340086, 0.05335564166307449, -0.03931596502661705, 0.06443136930465698, 0.006832206156104803, 0.0059731523506343365, 0.030170602723956108, -0.03160982206463814, 0.06092483922839165, -0.09326158463954926, -0.09721764177083969, -0.03754248470067978, -0.08643119782209396, 0.053264424204826355, 0.06495800614356995, 0.051032472401857376, -0.1005207747220993, -0.08130475133657455, 0.04715968668460846, 0.09244741499423981, -0.05494413897395134, 0.02897556498646736, -0.059319138526916504, 0.0482841432094574, 0.00008594069367973134, -0.01203866582363844, -0.19201816618442535, -0.01335589773952961, 0.012399867177009583, 0.01072659995406866, 0.019132493063807487, 0.0012383123394101858, 0.07038971036672592, 0.07214972376823425, -0.049500007182359695, -0.03190023824572563, -0.026786990463733673, -0.0002576745464466512, -0.12803618609905243, -0.20423108339309692, -0.03697687014937401, -0.019025254994630814, 0.11731816828250885, -0.1944635659456253, 0.03563284873962402, -0.016432765871286392, 0.05665979161858559, 0.008002830669283867, -0.0034205708652734756, -0.036456551402807236, 0.08092096447944641, -0.04292053356766701, -0.0568864569067955, 0.07434965670108795, 0.0001170081741292961, -0.09053365886211395, -0.048598356544971466, -0.10329505801200867, 0.14285226166248322, 0.11710895597934723, -0.08405745774507523, -0.07172118127346039, 0.0014606958720833063, -0.059033799916505814, -0.02907843515276909, -0.0409805104136467, 0.047638583928346634, 0.177193745970726, 0.0004585504357237369, 0.15190933644771576, -0.06824253499507904, -0.04361317306756973, 0.017580239102244377, -0.020314021036028862, 0.0406133271753788, 0.14416547119617462, 0.1168818399310112, -0.06863971799612045, 0.12898749113082886, 0.14926129579544067, -0.08090082556009293, 0.12275328487157822, -0.040215712040662766, -0.058364901691675186, -0.014572378247976303, -0.02216840535402298, -0.011834516189992428, 0.08754377067089081, -0.13048075139522552, 0.003381149610504508, 0.021772772073745728, 0.02455597184598446, 0.0008318829350173473, -0.21560049057006836, -0.033955540508031845, 0.03211408108472824, -0.06107652559876442, -0.048917606472969055, -0.01446465216577053, 0.014278517104685307, 0.10909087210893631, 0.004592329729348421, -0.10727622359991074, 0.030071832239627838, 0.002210058504715562, -0.0654720887541771, 0.2119348794221878, -0.10501258075237274, -0.15819025039672852, -0.10450484603643417, -0.09581881761550903, -0.06354866921901703, 0.00901910848915577, 0.07399383932352066, -0.09329742193222046, -0.02916816435754299, -0.07055651396512985, 0.025592157617211342, -0.00046916937571950257, 0.030230293050408363, -0.011186275631189346, -0.004852196667343378, 0.06325769424438477, -0.11538367718458176, -0.011664774268865585, -0.051771555095911026, -0.06416378915309906, 0.05106009542942047, 0.04849352315068245, 0.11135683208703995, 0.13604851067066193, -0.009728983975946903, 0.01278348546475172, -0.031557515263557434, 0.2468695044517517, -0.061938442289829254, -0.011307002045214176, 0.1416674554347992, -0.003233194351196289, 0.058980345726013184, 0.13176435232162476, 0.06558588147163391, -0.09495842456817627, 0.011093378998339176, 0.03980064019560814, -0.0369902066886425, -0.2114402949810028, -0.050446316599845886, -0.056501422077417374, 0.004435248207300901, 0.10152498632669449, 0.03236357122659683, 0.004748173989355564, 0.05337951332330704, 0.03281080722808838, 0.05661886930465698, -0.013156098313629627, 0.05534382537007332, 0.12244408577680588, 0.043902914971113205, 0.12990786135196686, -0.03504638001322746, -0.06315039098262787, 0.043041959404945374, -0.015570923686027527, 0.21577072143554688, -0.017266588285565376, 0.12099564075469971, 0.04556875303387642, 0.16902701556682587, -0.014152772724628448, 0.08582364767789841, 0.006359385792165995, -0.022193143144249916, -0.02106364071369171, -0.037034034729003906, -0.043905556201934814, 0.014042261987924576, -0.05773874744772911, 0.05796188488602638, -0.1248636394739151, 0.02438967302441597, 0.05755974352359772, 0.2821565270423889, 0.03197836875915527, -0.3213941156864166, -0.0912114828824997, 0.000927834480535239, -0.04438742250204086, -0.02567586675286293, 0.03269535303115845, 0.08915580064058304, -0.0965321734547615, 0.04284593090415001, -0.060490019619464874, 0.09764263778924942, -0.04528811573982239, 0.052206892520189285, 0.0778178796172142, 0.10822296142578125, 0.00514005683362484, 0.08126380294561386, -0.32207629084587097, 0.2628813087940216, 0.004376648925244808, 0.0693279281258583, -0.07431869953870773, 0.008893675170838833, 0.04964495822787285, 0.07077238708734512, 0.0698080062866211, -0.013702131807804108, -0.021111853420734406, -0.20362000167369843, -0.06517443805932999, 0.03217345103621483, 0.09279871731996536, -0.04004792869091034, 0.09800279140472412, -0.042580608278512955, -0.0012712860479950905, 0.06553813815116882, -0.04360188543796539, -0.05161628499627113, -0.10026624798774719, -0.014101455919444561, 0.019503753632307053, -0.029053328558802605, -0.0501769557595253, -0.10557360202074051, -0.09635549783706665, 0.1301037073135376, -0.03138718008995056, -0.04601549357175827, -0.1172538623213768, 0.06118776276707649, 0.0915011316537857, -0.09313778579235077, 0.0373593308031559, 0.007339800707995892, 0.053249791264534, 0.035880427807569504, -0.07505710422992706, 0.11155327409505844, -0.0760636031627655, -0.18677355349063873, -0.04740637168288231, 0.10880737751722336, 0.04120166599750519, 0.06610754132270813, -0.020766785368323326, 0.023180268704891205, -0.05092623457312584, -0.09410034865140915, 0.0130557119846344, -0.0004071999865118414, 0.06561257690191269, 0.037893615663051605, -0.06348860263824463, 0.028720345348119736, -0.06564708799123764, -0.021362779662013054, 0.17691926658153534, 0.24500322341918945, -0.09974445402622223, 0.05202268436551094, 0.03372479975223541, -0.06377382576465607, -0.1968432366847992, 0.011532756499946117, 0.058948367834091187, -0.004943398758769035, 0.04340945556759834, -0.19976797699928284, 0.11293163895606995, 0.0986240953207016, -0.0070526436902582645, 0.09712830185890198, -0.3375553488731384, -0.12488669157028198, 0.12677474319934845, 0.12693198025226593, 0.0988016203045845, -0.1295420378446579, -0.011384385637938976, -0.022445805370807648, -0.09605232626199722, 0.10770446807146072, -0.06736888736486435, 0.1282462477684021, -0.03473936393857002, 0.08262968063354492, 0.007671239320188761, -0.0447370782494545, 0.1106385588645935, 0.029911408200860023, 0.10452160984277725, -0.058028656989336014, -0.019526826217770576, 0.014819586649537086, -0.04746921360492706, 0.02455810457468033, -0.11067452281713486, 0.043638043105602264, -0.09927524626255035, -0.014762727543711662, -0.0848042443394661, 0.03919734060764313, -0.037216994911432266, -0.06580957770347595, -0.03169599175453186, 0.021723942831158638, 0.06477266550064087, -0.013590439222753048, 0.13716766238212585, 0.018804682418704033, 0.11890217661857605, 0.09221003204584122, 0.07724545896053314, -0.06355315446853638, -0.05477699637413025, -0.012581008486449718, -0.004512421321123838, 0.05158260464668274, -0.13375622034072876, 0.037907350808382034, 0.14437055587768555, 0.023164013400673866, 0.1343163698911667, 0.08489786833524704, -0.0006251682061702013, 0.0000919875456020236, 0.05083012208342552, -0.16572368144989014, -0.0852072611451149, -0.0038595523219555616, -0.07421059161424637, -0.10416163504123688, 0.048219289630651474, 0.09608939290046692, -0.060827936977148056, -0.009697962552309036, -0.004241861868649721, 0.02701704017817974, -0.03904545679688454, 0.20441877841949463, 0.04999846965074539, 0.05484466627240181, -0.12161877006292343, 0.08367069065570831, 0.04761511832475662, -0.06275476515293121, 0.010485819540917873, 0.1041632816195488, -0.09709817916154861, -0.043481361120939255, 0.07941402494907379, 0.16647496819496155, -0.05719920992851257, -0.033872924745082855, -0.13963311910629272, -0.12382672727108002, 0.09184779971837997, 0.15338748693466187, 0.10577290505170822, 0.014231933280825615, -0.07505911588668823, 0.013860701583325863, -0.11535225808620453, 0.10544496774673462, 0.048871733248233795, 0.06431657075881958, -0.13555780053138733, 0.1516464650630951, 0.004828221630305052, 0.054074015468358994, -0.017032258212566376, 0.01827801764011383, -0.10091038048267365, 0.014662881381809711, -0.13220661878585815, -0.0232127346098423, -0.03473958745598793, 0.024787474423646927, -0.013441120274364948, -0.05219665914773941, -0.04638903588056564, 0.011423190124332905, -0.11178242415189743, -0.0310920812189579, 0.022081878036260605, 0.0593608133494854, -0.12920191884040833, -0.04675625264644623, 0.019877832382917404, -0.07458556443452835, 0.08609730750322342, 0.05419919639825821, 0.001248556305654347, 0.05307785049080849, -0.11621755361557007, -0.007040712051093578, 0.06171872466802597, 0.02124190703034401, 0.07071112841367722, -0.08948983252048492, -0.004203661344945431, -0.011066339910030365, 0.04515308886766434, 0.015061767771840096, 0.09030506759881973, -0.13562269508838654, 0.021966630592942238, -0.025087734684348106, -0.08302278071641922, -0.06774438917636871, 0.03843942657113075, 0.08421406894922256, 0.024283070117235184, 0.20685526728630066, -0.0835314691066742, 0.04331773892045021, -0.20454858243465424, -0.009411925449967384, -0.011078075505793095, -0.12733854353427887, -0.14622481167316437, -0.07532059401273727, 0.07728758454322815, -0.06002482399344444, 0.11811275035142899, 0.03741546347737312, 0.062275223433971405, 0.0182692538946867, -0.016893485561013222, 0.005785814020782709, 0.013087958097457886, 0.18471260368824005, 0.037168070673942566, -0.04338657483458519, 0.08293434977531433, 0.04334820806980133, 0.10348743945360184, 0.12485811859369278, 0.20928172767162323, 0.1366647332906723, 0.021386295557022095, 0.08341138064861298, 0.03520805761218071, -0.08519187569618225, -0.17271709442138672, 0.0271554347127676, -0.03219546750187874, 0.1117081567645073, -0.032054103910923004, 0.2147694230079651, 0.04470248147845268, -0.16620466113090515, 0.05540676414966583, -0.04910147190093994, -0.09076441079378128, -0.12286786735057831, -0.03007522225379944, -0.08173014223575592, -0.13920480012893677, -0.00685109943151474, -0.11374858766794205, 0.03496869280934334, 0.10420972108840942, 0.007270267698913813, -0.014061512425541878, 0.1331171989440918, 0.018623145297169685, 0.022702926769852638, 0.052194882184267044, 0.00566009571775794, -0.026605181396007538, -0.08103381097316742, -0.08011750131845474, -0.011687246151268482, -0.020573778077960014, 0.030576955527067184, -0.05465559661388397, -0.06761351972818375, 0.0399683378636837, -0.04189472272992134, -0.09469277411699295, 0.0205787755548954, 0.021491030231118202, 0.06488718092441559, 0.06226317584514618, 0.023517288267612457, 0.002039717510342598, -0.0005489964969456196, 0.2443861961364746, -0.08767733722925186, -0.08783994615077972, -0.0938764214515686, 0.28669601678848267, 0.0488559827208519, -0.012208596803247929, 0.036117035895586014, -0.05949166417121887, -0.01787673868238926, 0.22579151391983032, 0.2042403668165207, -0.0990406721830368, -0.009211569093167782, -0.0095356535166502, -0.007349525112658739, -0.010607247240841389, 0.11862505227327347, 0.14716671407222748, 0.052274759858846664, -0.08887570351362228, -0.036588963121175766, -0.05176278576254845, -0.020745815709233284, -0.04903433471918106, 0.08224855363368988, 0.03310590237379074, -0.0021638928446918726, -0.031927626579999924, 0.0546642541885376, -0.07638311386108398, -0.09758196771144867, 0.04468484967947006, -0.19752970337867737, -0.1648245006799698, -0.02359660156071186, 0.09154585748910904, 0.02226129360496998, 0.05794632434844971, -0.018454331904649734, -0.006302374880760908, 0.08047284185886383, -0.020235512405633926, -0.08368033915758133, -0.08680910617113113, 0.10193166136741638, -0.11000428348779678, 0.19898313283920288, -0.04128385707736015, 0.04323089122772217, 0.12069834023714066, 0.0712035596370697, -0.08090908825397491, 0.07536090910434723, 0.04864748939871788, -0.06759776920080185, 0.03467009961605072, 0.08215057104825974, -0.03928188979625702, 0.06299863755702972, 0.044782351702451706, -0.1145930290222168, 0.019571460783481598, -0.04935045540332794, -0.06817349046468735, -0.037355076521635056, -0.043912824243307114, -0.04448692873120308, 0.12459743767976761, 0.22347943484783173, -0.030494477599859238, 0.01733223721385002, -0.08248230069875717, 0.004506018478423357, 0.04341118782758713, 0.02227293699979782, -0.06883995980024338, -0.21910180151462555, 0.008414557203650475, 0.0667489543557167, -0.009777101688086987, -0.21125715970993042, -0.09273532032966614, 0.003324436489492655, -0.06236953288316727, -0.09898421913385391, 0.09184330701828003, 0.05655656009912491, 0.04528789222240448, -0.048904262483119965, -0.05143677443265915, -0.07927731424570084, 0.16899926960468292, -0.16247977316379547, -0.07975635677576065 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-qa-with-ner This model is a fine-tuned version of [andi611/distilbert-base-uncased-qa](https://huggingface.co/andi611/distilbert-base-uncased-qa) on the conll2003 dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results ### Framework versions - Transformers 4.8.2 - Pytorch 1.8.1+cu111 - Datasets 1.8.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["conll2003"], "model_index": [{"name": "distilbert-base-uncased-qa-with-ner", "results": [{"task": {"name": "Question Answering", "type": "question-answering"}, "dataset": {"name": "conll2003", "type": "conll2003", "args": "conll2003"}}]}]}
question-answering
andi611/distilbert-base-uncased-qa-with-ner
[ "transformers", "pytorch", "distilbert", "question-answering", "generated_from_trainer", "dataset:conll2003", "license:apache-2.0", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #distilbert #question-answering #generated_from_trainer #dataset-conll2003 #license-apache-2.0 #endpoints_compatible #region-us
# distilbert-base-uncased-qa-with-ner This model is a fine-tuned version of andi611/distilbert-base-uncased-qa on the conll2003 dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results ### Framework versions - Transformers 4.8.2 - Pytorch 1.8.1+cu111 - Datasets 1.8.0 - Tokenizers 0.10.3
[ "# distilbert-base-uncased-qa-with-ner\n\nThis model is a fine-tuned version of andi611/distilbert-base-uncased-qa on the conll2003 dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 16\n- eval_batch_size: 8\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 3.0", "### Training results", "### Framework versions\n\n- Transformers 4.8.2\n- Pytorch 1.8.1+cu111\n- Datasets 1.8.0\n- Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #distilbert #question-answering #generated_from_trainer #dataset-conll2003 #license-apache-2.0 #endpoints_compatible #region-us \n", "# distilbert-base-uncased-qa-with-ner\n\nThis model is a fine-tuned version of andi611/distilbert-base-uncased-qa on the conll2003 dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 16\n- eval_batch_size: 8\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 3.0", "### Training results", "### Framework versions\n\n- Transformers 4.8.2\n- Pytorch 1.8.1+cu111\n- Datasets 1.8.0\n- Tokenizers 0.10.3" ]
[ 53, 49, 6, 12, 8, 3, 90, 4, 34 ]
[ "passage: TAGS\n#transformers #pytorch #distilbert #question-answering #generated_from_trainer #dataset-conll2003 #license-apache-2.0 #endpoints_compatible #region-us \n# distilbert-base-uncased-qa-with-ner\n\nThis model is a fine-tuned version of andi611/distilbert-base-uncased-qa on the conll2003 dataset.## Model description\n\nMore information needed## Intended uses & limitations\n\nMore information needed## Training and evaluation data\n\nMore information needed## Training procedure### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 16\n- eval_batch_size: 8\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 3.0### Training results### Framework versions\n\n- Transformers 4.8.2\n- Pytorch 1.8.1+cu111\n- Datasets 1.8.0\n- Tokenizers 0.10.3" ]
[ -0.09433707594871521, 0.1258833408355713, -0.0016772758681327105, 0.09201648831367493, 0.15141506493091583, 0.03206643462181091, 0.08466017246246338, 0.12123577296733856, -0.12087543308734894, 0.03974694758653641, 0.0761139839887619, 0.08066491037607193, 0.0350324921309948, 0.08044939488172531, -0.026119204238057137, -0.24064496159553528, 0.007365181110799313, 0.016892749816179276, -0.08944078534841537, 0.11528459191322327, 0.09953659772872925, -0.1148003563284874, 0.05517548322677612, 0.016464337706565857, -0.1756826788187027, 0.020240897312760353, -0.04326823726296425, -0.03720821440219879, 0.09985991567373276, 0.00709439255297184, 0.109153613448143, 0.010507814586162567, 0.127557635307312, -0.24248144030570984, 0.0033234497532248497, 0.06167558580636978, 0.024185528978705406, 0.06538999080657959, 0.03087528981268406, 0.012880341149866581, 0.0961897224187851, -0.1145210936665535, 0.08730163425207138, 0.029857216402888298, -0.06920468807220459, -0.14275850355625153, -0.09026502072811127, 0.09133467078208923, 0.09851451963186264, 0.12067695707082748, -0.0008894266211427748, 0.12344960123300552, -0.14029163122177124, 0.07497648894786835, 0.15422454476356506, -0.2832260727882385, -0.07635226845741272, 0.060644857585430145, 0.03307013958692551, 0.05597568675875664, -0.11048365384340286, -0.04043972119688988, 0.0499727725982666, 0.03727053478360176, 0.07957744598388672, -0.014108158648014069, -0.09002269804477692, 0.006622293498367071, -0.14906902611255646, -0.01766970381140709, 0.1564023494720459, 0.06734336167573929, -0.0445755235850811, -0.0650923028588295, -0.03210185468196869, -0.10283685475587845, -0.007970265112817287, -0.04408060759305954, 0.03324516862630844, -0.04623907431960106, -0.07389959692955017, -0.03547397255897522, -0.0775240808725357, -0.06403880566358566, -0.005369925405830145, 0.08524391055107117, 0.0651896595954895, 0.002060227794572711, -0.029376298189163208, 0.1167866662144661, 0.02070792391896248, -0.12048844248056412, -0.02477250248193741, -0.00983111746609211, -0.06509014219045639, -0.057412855327129364, -0.0568440817296505, 0.011518548242747784, 0.0036537249106913805, 0.15278756618499756, -0.05481913685798645, 0.056772373616695404, 0.033679015934467316, 0.009890392422676086, -0.039845049381256104, 0.15556704998016357, -0.04715634137392044, -0.031971678137779236, -0.008016851730644703, 0.10457819700241089, -0.025798460468649864, 0.0008004952687770128, -0.08631382882595062, -0.017501354217529297, 0.07942086458206177, 0.05471555143594742, -0.06308098137378693, 0.03848804533481598, -0.028445685282349586, -0.04137520119547844, -0.010886180214583874, -0.11285246908664703, 0.027823373675346375, 0.005804997403174639, -0.0912257507443428, 0.000049442813178757206, 0.01724158599972725, 0.02834797278046608, -0.025754988193511963, 0.08864409476518631, -0.08285772800445557, 0.006266670301556587, -0.09504107385873795, -0.05710989236831665, 0.011079434305429459, -0.06816836446523666, 0.0007511216681450605, -0.08657612651586533, -0.1823163479566574, -0.036656349897384644, 0.046532515436410904, -0.028742559254169464, -0.047964464873075485, -0.0645855963230133, -0.06113352254033089, -0.014708264730870724, -0.0029538122471421957, 0.11773316562175751, -0.048558272421360016, 0.08876244723796844, 0.010077507235109806, 0.024391863495111465, 0.011891860514879227, 0.05207663029432297, -0.08902701735496521, 0.01869143173098564, -0.06367535889148712, 0.07014806568622589, -0.08570747822523117, 0.03467991575598717, -0.09504437446594238, -0.1370362788438797, 0.007272681221365929, -0.020462429150938988, 0.06065727770328522, 0.10744660347700119, -0.17120850086212158, -0.03130170330405235, 0.14768821001052856, -0.0511573888361454, -0.10743220150470734, 0.10209202766418457, -0.05860232934355736, 0.03817762807011604, 0.047793544828891754, 0.1467011272907257, 0.1251334697008133, -0.10437749326229095, -0.018788045272231102, -0.004599434323608875, 0.08646260201931, -0.0018833947833627462, 0.0568678043782711, 0.005685100331902504, 0.021717693656682968, 0.017474181950092316, -0.09072381258010864, 0.00860241986811161, -0.09355242550373077, -0.11418437212705612, -0.05160560458898544, -0.1091010570526123, 0.0448814257979393, 0.04727071151137352, 0.05732695385813713, -0.05042190104722977, -0.09919719398021698, 0.10068175196647644, 0.1277817338705063, -0.06248888000845909, 0.01763489842414856, -0.0762428566813469, 0.054583095014095306, -0.017671527341008186, -0.03235974907875061, -0.189421147108078, -0.09282641112804413, 0.022921770811080933, -0.03629749268293381, 0.03383228927850723, 0.038276512175798416, 0.05068844556808472, 0.07071220874786377, -0.053369540721178055, -0.03316197916865349, -0.11293487995862961, 0.0030139260925352573, -0.09094017744064331, -0.17681454122066498, -0.04944968968629837, -0.02451896481215954, 0.1828855276107788, -0.21172749996185303, 0.024745820090174675, -0.041058193892240524, 0.110504649579525, -0.008133740164339542, -0.038614317774772644, -0.023948924615979195, 0.07511274516582489, -0.0066324821673333645, -0.06419245898723602, 0.06021798029541969, 0.0002849710581358522, -0.09761886298656464, -0.11006070673465729, -0.08538439869880676, 0.06363489478826523, 0.081990085542202, 0.014483096078038216, -0.07641196250915527, -0.028372744098305702, -0.08654395490884781, -0.046702876687049866, -0.05501662567257881, 0.024796482175588608, 0.21646423637866974, -0.002646815264597535, 0.12242574244737625, -0.05984332039952278, -0.06564508378505707, -0.015298393554985523, 0.005437132902443409, 0.002814272651448846, 0.08611360937356949, 0.11291737109422684, -0.08665111660957336, 0.09620745480060577, 0.11061600595712662, -0.08373492956161499, 0.14125852286815643, -0.06307516992092133, -0.08436065912246704, -0.013248187489807606, 0.012149788439273834, -0.018431873992085457, 0.1165744885802269, -0.11087583005428314, 0.00992937944829464, 0.02482587844133377, 0.02718828059732914, 0.04390746355056763, -0.18916630744934082, -0.032783906906843185, 0.023486975580453873, -0.041408881545066833, -0.056001927703619, -0.017504235729575157, 0.02222450263798237, 0.08531035482883453, 0.02762158028781414, -0.030346639454364777, 0.024286912754178047, -0.011430462822318077, -0.08838647603988647, 0.19504043459892273, -0.1217549666762352, -0.11564356833696365, -0.09632838517427444, 0.021674709394574165, -0.06609896570444107, -0.04001409560441971, 0.03241724520921707, -0.11686315387487411, -0.028028827160596848, -0.0635359063744545, -0.019261928275227547, -0.03766106069087982, -0.01021351758390665, 0.05715954676270485, 0.006801150273531675, 0.0821908488869667, -0.13355375826358795, 0.01234257873147726, -0.035413313657045364, -0.11209562420845032, 0.008724447339773178, 0.03561177849769592, 0.12806475162506104, 0.14184130728244781, -0.006572892889380455, 0.022470271214842796, -0.02904031053185463, 0.252521812915802, -0.06778868287801743, -0.025740712881088257, 0.11020658165216446, 0.004533759783953428, 0.04891861230134964, 0.10735984891653061, 0.046204566955566406, -0.09899578243494034, 0.029421718791127205, 0.07440198212862015, -0.01174637209624052, -0.23853865265846252, -0.04498593881726265, -0.04077969864010811, -0.07924310117959976, 0.07992526143789291, 0.03497076779603958, 0.036116745322942734, 0.05199187994003296, -0.00037382938899099827, 0.027150245383381844, -0.03787821903824806, 0.07126322388648987, 0.092072032392025, 0.039542462676763535, 0.10745864361524582, -0.02488526701927185, -0.026557737961411476, 0.04822617769241333, 0.013035200536251068, 0.2853182256221771, -0.023161502555012703, 0.05186215415596962, 0.08083248883485794, 0.19184404611587524, -0.03301745653152466, 0.032583896070718765, -0.008815093897283077, -0.018918531015515327, 0.011403566226363182, -0.05043499171733856, -0.03241969645023346, 0.023044338449835777, -0.009239614941179752, 0.07405231148004532, -0.1161462813615799, 0.033879879862070084, 0.045232534408569336, 0.25807613134384155, 0.022282510995864868, -0.25631052255630493, -0.10113473981618881, 0.003732919692993164, -0.030780892819166183, -0.026731427758932114, 0.024723460897803307, 0.09448154270648956, -0.13465848565101624, 0.02151642180979252, -0.05448765307664871, 0.096007339656353, -0.012677336111664772, 0.015156463719904423, 0.08558528870344162, 0.10698683559894562, 0.015999820083379745, 0.09570572525262833, -0.25596126914024353, 0.22614717483520508, 0.0015657237963750958, 0.12608632445335388, -0.051024530082941055, 0.01957685314118862, 0.020337579771876335, 0.08414699137210846, 0.09119634330272675, 0.0005622446187771857, 0.013500788249075413, -0.17675107717514038, -0.04093330353498459, 0.05613081902265549, 0.10204335302114487, -0.028376873582601547, 0.08657174557447433, -0.03717435896396637, 0.017519919201731682, 0.05744323134422302, -0.018423888832330704, -0.16294069588184357, -0.13141889870166779, 0.010570275597274303, -0.012962764129042625, -0.01395778451114893, -0.08241528272628784, -0.10391724109649658, -0.07688389718532562, 0.16296271979808807, -0.021435845643281937, -0.03905352205038071, -0.11634056270122528, 0.08332783728837967, 0.10045318305492401, -0.065400630235672, 0.01650303415954113, 0.025783797726035118, 0.08598342537879944, 0.037746258080005646, -0.07560079544782639, 0.02705804631114006, -0.08354859799146652, -0.1560395061969757, -0.04551088437438011, 0.11761105060577393, 0.06810557097196579, 0.06625603884458542, 0.005900253541767597, 0.0015925501938909292, -0.006568034645169973, -0.10508754104375839, -0.005270631052553654, 0.07375980168581009, 0.10885841399431229, 0.03937751427292824, -0.11892157793045044, 0.05036647617816925, -0.07158789783716202, -0.013757879845798016, 0.1567823886871338, 0.18381349742412567, -0.09014102071523666, 0.049227114766836166, 0.0503196120262146, -0.07989007234573364, -0.15039469301700592, 0.06881286948919296, 0.1168905720114708, 0.015337430872023106, 0.03119717538356781, -0.1965559422969818, 0.11937661468982697, 0.12808336317539215, -0.00265951338224113, 0.030920732766389847, -0.3638768196105957, -0.11067306995391846, 0.07011149078607559, 0.128363236784935, 0.02584751322865486, -0.12971605360507965, -0.016051368787884712, 0.0011254671262577176, -0.1699378937482834, 0.09573649615049362, -0.07488081604242325, 0.09998585283756256, -0.01868410035967827, 0.09848813712596893, 0.011020202189683914, -0.040584031492471695, 0.14177942276000977, 0.051854103803634644, 0.07156246900558472, -0.04612914100289345, 0.002490211511030793, 0.053491368889808655, -0.05698881670832634, 0.024317864328622818, -0.027024084702134132, 0.0783277228474617, -0.14914092421531677, -0.01986723393201828, -0.09024418145418167, 0.04150829464197159, -0.06837276369333267, -0.07602797448635101, -0.03871263563632965, 0.07014785706996918, 0.0940532386302948, -0.022507110610604286, 0.043843742460012436, 0.01829618774354458, 0.12480251491069794, 0.032386232167482376, 0.10099437087774277, -0.015038464218378067, -0.11356398463249207, -0.027168812230229378, -0.008740493096411228, 0.0648367628455162, -0.12028416246175766, 0.01972617208957672, 0.1558448225259781, 0.047007910907268524, 0.14639273285865784, 0.05883440002799034, -0.03125881031155586, 0.00463233282789588, 0.036752499639987946, -0.10218358784914017, -0.13443975150585175, -0.0046408167108893394, -0.0632544457912445, -0.13895276188850403, 0.018763285130262375, 0.06596023589372635, -0.05965671315789223, -0.011604593135416508, -0.0037444964982569218, 0.007494669407606125, -0.045962605625391006, 0.18070951104164124, 0.05472315847873688, 0.06378278136253357, -0.08120497316122055, 0.10181240737438202, 0.05099468678236008, -0.07184164226055145, 0.028399398550391197, 0.04497839882969856, -0.10000482946634293, -0.03430555388331413, 0.047445084899663925, 0.14181305468082428, -0.053335804492235184, -0.04254327341914177, -0.09214647859334946, -0.08993848413228989, 0.05736379325389862, 0.09366564452648163, 0.0645444318652153, -0.01974092423915863, -0.05474335327744484, 0.03855893760919571, -0.14952844381332397, 0.08821644634008408, 0.03426600992679596, 0.05823865160346031, -0.14750179648399353, 0.1195506677031517, 0.011644656769931316, 0.06154259666800499, -0.006531962193548679, 0.017029685899615288, -0.09122371673583984, -0.00035788401146419346, -0.16116997599601746, -0.04210871830582619, -0.034528475254774094, 0.012815737165510654, -0.020264344289898872, -0.05545533820986748, -0.050505105406045914, 0.052495479583740234, -0.07928206771612167, -0.05021369084715843, 0.02687099575996399, 0.056376803666353226, -0.13177311420440674, -0.005701773334294558, 0.025430670008063316, -0.08486063033342361, 0.07228559255599976, 0.05766622722148895, 0.019536159932613373, 0.05416545644402504, -0.10107298940420151, -0.010472658090293407, 0.02580881677567959, 0.04539884254336357, 0.07228753715753555, -0.0808045044541359, -0.0036123667377978563, -0.01930859684944153, 0.03468786180019379, 0.024966225028038025, 0.05955671891570091, -0.12010239064693451, -0.021153010427951813, -0.049417030066251755, -0.045278966426849365, -0.06747326254844666, 0.03843463212251663, 0.09746582806110382, 0.04122072085738182, 0.1811121702194214, -0.07834301888942719, 0.06675133854150772, -0.18945002555847168, -0.03742314130067825, 0.006185952574014664, -0.018116861581802368, -0.07725530117750168, -0.051191166043281555, 0.06231158599257469, -0.06888189911842346, 0.10354170203208923, -0.04944077506661415, 0.0945499986410141, 0.03627553954720497, -0.052187371999025345, 0.0004279880376998335, -0.002332843141630292, 0.22010935842990875, 0.061281949281692505, -0.01335294172167778, 0.08992283046245575, 0.0032990274485200644, 0.04133985936641693, 0.055062443017959595, 0.20186862349510193, 0.159558966755867, -0.023565853014588356, 0.0504235178232193, 0.06733383238315582, -0.09524892270565033, -0.1348371058702469, 0.08594081550836563, -0.022931579500436783, 0.08824219554662704, -0.044921234250068665, 0.17227905988693237, 0.09424673765897751, -0.18254467844963074, 0.05184752866625786, -0.05755504593253136, -0.11347677558660507, -0.09868437796831131, -0.02034841664135456, -0.06477595120668411, -0.12602803111076355, 0.03804738074541092, -0.1380731761455536, 0.013529774732887745, 0.0796278789639473, 0.024324942380189896, -0.007872706279158592, 0.17384962737560272, -0.023827137425541878, 0.02312646247446537, 0.05668151006102562, -0.0012477516429498792, -0.012965825386345387, -0.07835546880960464, -0.03885848447680473, 0.03075464256107807, -0.022157413884997368, 0.07598086446523666, -0.054354555904865265, -0.03351413086056709, 0.01696210354566574, -0.02027120627462864, -0.05212102457880974, 0.025126662105321884, 0.024272294715046883, 0.05286406725645065, 0.06704152375459671, 0.04478909447789192, 0.001046779565513134, -0.03364372253417969, 0.2630433142185211, -0.0680806040763855, -0.09338140487670898, -0.1460730880498886, 0.2023874670267105, 0.05700143799185753, -0.027326589450240135, 0.07562559843063354, -0.10796625912189484, -0.0010265440214425325, 0.20947232842445374, 0.16210629045963287, -0.08964288234710693, -0.016434594988822937, 0.010587873868644238, -0.011464055627584457, -0.059804659336805344, 0.10817406326532364, 0.1403564065694809, 0.042562905699014664, -0.06147635355591774, -0.043900277465581894, -0.027758050709962845, -0.028308097273111343, -0.058855872601270676, 0.07402903586626053, 0.03882259503006935, -0.01015161070972681, -0.036693036556243896, 0.06909631937742233, -0.03984961286187172, -0.13661494851112366, 0.05145386978983879, -0.15807399153709412, -0.1842789351940155, -0.032818350940942764, 0.08328522741794586, -0.012584459036588669, 0.05179779604077339, -0.018463358283042908, -0.02149994671344757, 0.14782898128032684, -0.015218119136989117, -0.03770527243614197, -0.09598147869110107, 0.10595419257879257, -0.03044046461582184, 0.2071610391139984, -0.006461804732680321, 0.08235248178243637, 0.11004684120416641, 0.049238283187150955, -0.09483221918344498, 0.050877176225185394, 0.08681455254554749, -0.08111730217933655, 0.007441497873514891, 0.12204369902610779, -0.035768598318099976, 0.08699864894151688, 0.048400722444057465, -0.13675352931022644, 0.005072943866252899, -0.04306665062904358, -0.033558666706085205, -0.08059106767177582, 0.026030410081148148, -0.06151232495903969, 0.15704716742038727, 0.23414230346679688, -0.039006300270557404, 0.006558314431458712, -0.07450856268405914, 0.04227214306592941, 0.04589500278234482, 0.09984473884105682, -0.044194724410772324, -0.20064960420131683, 0.016806619241833687, -0.027110343798995018, 0.0032211823854595423, -0.22341270744800568, -0.10472851991653442, 0.06944173574447632, -0.06138349324464798, -0.05939844623208046, 0.1154114305973053, 0.07956157624721527, 0.04094082489609718, -0.040022511035203934, -0.10599823296070099, -0.06854353100061417, 0.13919124007225037, -0.1528342068195343, -0.05313125625252724 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-qa This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the squad dataset. It achieves the following results on the evaluation set: - Loss: 1.1925 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 3.0 ### Training results ### Framework versions - Transformers 4.8.2 - Pytorch 1.8.1+cu111 - Datasets 1.8.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["squad"], "model_index": [{"name": "distilbert-base-uncased-qa", "results": [{"task": {"name": "Question Answering", "type": "question-answering"}, "dataset": {"name": "squad", "type": "squad", "args": "plain_text"}}]}]}
question-answering
andi611/distilbert-base-uncased-squad
[ "transformers", "pytorch", "distilbert", "question-answering", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #distilbert #question-answering #generated_from_trainer #dataset-squad #license-apache-2.0 #endpoints_compatible #region-us
# distilbert-base-uncased-qa This model is a fine-tuned version of distilbert-base-uncased on the squad dataset. It achieves the following results on the evaluation set: - Loss: 1.1925 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 3.0 ### Training results ### Framework versions - Transformers 4.8.2 - Pytorch 1.8.1+cu111 - Datasets 1.8.0 - Tokenizers 0.10.3
[ "# distilbert-base-uncased-qa\n\nThis model is a fine-tuned version of distilbert-base-uncased on the squad dataset.\nIt achieves the following results on the evaluation set:\n- Loss: 1.1925", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 5e-05\n- train_batch_size: 32\n- eval_batch_size: 8\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_steps: 1000\n- num_epochs: 3.0", "### Training results", "### Framework versions\n\n- Transformers 4.8.2\n- Pytorch 1.8.1+cu111\n- Datasets 1.8.0\n- Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #distilbert #question-answering #generated_from_trainer #dataset-squad #license-apache-2.0 #endpoints_compatible #region-us \n", "# distilbert-base-uncased-qa\n\nThis model is a fine-tuned version of distilbert-base-uncased on the squad dataset.\nIt achieves the following results on the evaluation set:\n- Loss: 1.1925", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 5e-05\n- train_batch_size: 32\n- eval_batch_size: 8\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_steps: 1000\n- num_epochs: 3.0", "### Training results", "### Framework versions\n\n- Transformers 4.8.2\n- Pytorch 1.8.1+cu111\n- Datasets 1.8.0\n- Tokenizers 0.10.3" ]
[ 52, 56, 6, 12, 8, 3, 105, 4, 34 ]
[ "passage: TAGS\n#transformers #pytorch #distilbert #question-answering #generated_from_trainer #dataset-squad #license-apache-2.0 #endpoints_compatible #region-us \n# distilbert-base-uncased-qa\n\nThis model is a fine-tuned version of distilbert-base-uncased on the squad dataset.\nIt achieves the following results on the evaluation set:\n- Loss: 1.1925## Model description\n\nMore information needed## Intended uses & limitations\n\nMore information needed## Training and evaluation data\n\nMore information needed## Training procedure### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 5e-05\n- train_batch_size: 32\n- eval_batch_size: 8\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_steps: 1000\n- num_epochs: 3.0### Training results### Framework versions\n\n- Transformers 4.8.2\n- Pytorch 1.8.1+cu111\n- Datasets 1.8.0\n- Tokenizers 0.10.3" ]
[ -0.10978585481643677, 0.15697795152664185, -0.002723450306802988, 0.11620127409696579, 0.1394302099943161, 0.04254036024212837, 0.07407311350107193, 0.16795817017555237, -0.04368206486105919, 0.06897994130849838, 0.0698416456580162, 0.07807139307260513, 0.04805368185043335, 0.12392843514680862, -0.040313128381967545, -0.22163721919059753, 0.008516478352248669, -0.036955371499061584, -0.0647139772772789, 0.09862080961465836, 0.08348526805639267, -0.09339907020330429, 0.07219716906547546, -0.031863972544670105, -0.11474579572677612, 0.012225329875946045, -0.027162989601492882, -0.02255047671496868, 0.09924159944057465, -0.012029103003442287, 0.0670255720615387, 0.01219444815069437, 0.128321573138237, -0.23151904344558716, -0.005509914364665747, 0.07400167733430862, 0.03845871239900589, 0.07271479070186615, 0.03447062149643898, -0.002164536854252219, 0.08587827533483505, -0.16499511897563934, 0.08147498220205307, 0.030335593968629837, -0.07929500937461853, -0.13626889884471893, -0.09365362673997879, 0.04980757087469101, 0.08806885033845901, 0.09920458495616913, 0.007872242480516434, 0.1176425963640213, -0.0979931578040123, 0.09145739674568176, 0.21175400912761688, -0.26438891887664795, -0.043944068253040314, 0.03839189186692238, 0.037870410829782486, 0.06475254148244858, -0.10669606178998947, -0.02280403859913349, 0.015173924155533314, 0.030358746647834778, 0.07632957398891449, -0.03629722446203232, -0.1353149116039276, 0.014126193709671497, -0.115714892745018, -0.024951353669166565, 0.15694871544837952, 0.033013273030519485, -0.04147791862487793, -0.08804747462272644, -0.06488362699747086, -0.09845472872257233, 0.00016034157306421548, -0.021856172010302544, 0.04128195717930794, -0.05315183848142624, -0.03468700870871544, -0.03481004387140274, -0.0602792426943779, -0.07298801839351654, 0.002211513463407755, 0.0739450454711914, 0.047898393124341965, 0.02923552505671978, -0.016745056957006454, 0.11906901746988297, -0.00401142705231905, -0.1377677470445633, -0.029858144000172615, -0.012994598597288132, -0.1186618059873581, -0.029146920889616013, -0.027537155896425247, 0.01211147103458643, 0.009429561905562878, 0.1537317931652069, -0.0439145490527153, 0.07181607186794281, 0.043587423861026764, -0.015815310180187225, -0.007743991911411285, 0.13938412070274353, -0.04218010976910591, -0.06614269316196442, -0.011187910102307796, 0.09999547153711319, 0.0002782527881208807, -0.015797801315784454, -0.06038019806146622, -0.020643260329961777, 0.07772020250558853, 0.08139865845441818, -0.02315763756632805, 0.033770106732845306, -0.04143436625599861, -0.026433903723955154, 0.012047898955643177, -0.13908876478672028, 0.04567641392350197, 0.008072014898061752, -0.1037035882472992, -0.019857801496982574, 0.03715356066823006, -0.01905481331050396, -0.052365973591804504, 0.09684539586305618, -0.06980681419372559, -0.0017258807783946395, -0.07075215131044388, -0.06994029134511948, 0.011227920651435852, -0.11656718701124191, -0.021413523703813553, -0.047334637492895126, -0.23162458837032318, -0.05254027992486954, 0.05103761702775955, -0.06808407604694366, -0.030580677092075348, -0.05490041896700859, -0.06933087110519409, 0.015515216626226902, -0.01148685161024332, 0.10843811184167862, -0.05863606557250023, 0.08994043618440628, -0.017025373876094818, 0.04685874283313751, 0.03245536610484123, 0.05468665808439255, -0.09351608902215958, 0.02624109573662281, -0.11330546438694, 0.0836276188492775, -0.09926910698413849, 0.01845012977719307, -0.11172502487897873, -0.10337793081998825, 0.04698290303349495, -0.022899258881807327, 0.06213168054819107, 0.1514655351638794, -0.21937772631645203, -0.0016306849429383874, 0.11816494911909103, -0.06539617478847504, -0.0633830577135086, 0.0775136724114418, -0.04856004938483238, 0.027789117768406868, 0.056273315101861954, 0.18019185960292816, 0.11746428906917572, -0.13299039006233215, -0.04119071736931801, 0.021548228338360786, 0.0456160269677639, 0.01145939901471138, 0.03952588140964508, 0.001125949900597334, 0.061116717755794525, 0.02142505533993244, -0.09596408903598785, -0.01974390633404255, -0.07849787175655365, -0.09303655475378036, -0.06428509950637817, -0.08455503731966019, 0.02914297580718994, 0.039713941514492035, 0.022984227165579796, -0.04303043708205223, -0.09405536204576492, 0.09073566645383835, 0.1369021087884903, -0.052089136093854904, 0.011809730902314186, -0.057971417903900146, 0.03950544819235802, 0.013896851800382137, -0.022572927176952362, -0.20356746017932892, -0.12330573797225952, 0.044003404676914215, -0.07890217751264572, 0.021869158372282982, 0.0229856725782156, 0.05600595474243164, 0.04744346812367439, -0.03978684917092323, -0.0313323549926281, -0.0642896220088005, -0.0063717905431985855, -0.09052491933107376, -0.19358129799365997, -0.050608616322278976, -0.024050895124673843, 0.12564268708229065, -0.1951645165681839, 0.007441873662173748, -0.03538838401436806, 0.1190686970949173, 0.019368771463632584, -0.05380666255950928, 0.011415843851864338, 0.0343981608748436, 0.002855486935004592, -0.09456739574670792, 0.04271111264824867, -0.008901032619178295, -0.07380633056163788, -0.06917529553174973, -0.10781966149806976, -0.014417803846299648, 0.054149795323610306, 0.0825670138001442, -0.09868836402893066, -0.001328971702605486, -0.059780724346637726, -0.054364342242479324, -0.08510817587375641, -0.0012195713352411985, 0.1650933474302292, 0.03371358662843704, 0.10617726296186447, -0.04932595044374466, -0.0709446594119072, -0.00882794614881277, 0.01886313036084175, 0.017447402700781822, 0.09686299413442612, 0.09912268817424774, -0.06385543197393417, 0.08406295627355576, 0.07357760518789291, -0.04176364466547966, 0.12471804767847061, -0.05740983039140701, -0.08346811681985855, -0.025371281430125237, 0.022459544241428375, -0.019626403227448463, 0.1434049904346466, -0.06836759299039841, 0.009933949448168278, 0.04341290146112442, 0.03481360152363777, 0.014136852696537971, -0.16371658444404602, -0.013515789061784744, 0.004193851258605719, -0.061564695090055466, -0.054391857236623764, -0.009127398021519184, 0.03611740469932556, 0.09326629340648651, 0.01191560085862875, -0.028982464224100113, 0.011711575090885162, -0.023998286575078964, -0.07844308763742447, 0.18329572677612305, -0.13254618644714355, -0.13190537691116333, -0.09705211222171783, 0.0611288920044899, -0.0646296963095665, -0.042554207146167755, 0.02596324123442173, -0.07124540954828262, -0.05537937209010124, -0.0882132425904274, -0.018150407820940018, -0.011289936490356922, -0.006121004465967417, 0.004846971016377211, 0.006833527237176895, 0.07050130516290665, -0.13928242027759552, 0.0036774936597794294, -0.026811450719833374, -0.0843002200126648, 0.011096128262579441, 0.059698741883039474, 0.09329620748758316, 0.10414087772369385, 0.008752112276852131, 0.01906684786081314, -0.021410111337900162, 0.22993133962154388, -0.06931310147047043, 0.027914050966501236, 0.1072731465101242, 0.017179204151034355, 0.0640057846903801, 0.1478249579668045, 0.02556794136762619, -0.10019897669553757, 0.02355412021279335, 0.08042032271623611, -0.01445969007909298, -0.2488812953233719, -0.03826363757252693, -0.03925962373614311, -0.0329679436981678, 0.0780278742313385, 0.05882367491722107, -0.024706291034817696, 0.0309157557785511, 0.008221447467803955, -0.005251898895949125, -0.03225397691130638, 0.0655435174703598, 0.09370787441730499, 0.0364755280315876, 0.08993388712406158, -0.027964793145656586, -0.0006501057650893927, 0.07507628202438354, 0.02180624194443226, 0.3032052218914032, -0.05818868428468704, 0.10189826041460037, 0.04224341735243797, 0.15321072936058044, -0.0518091581761837, 0.05822765454649925, 0.0029701509047299623, 0.010815606452524662, 0.006692366674542427, -0.055373046547174454, -0.020455140620470047, 0.022591961547732353, -0.020251577720046043, 0.03915201872587204, -0.0851924866437912, 0.05311312526464462, 0.043526168912649155, 0.2893036901950836, 0.05174875259399414, -0.23942576348781586, -0.06509321928024292, 0.012096450664103031, -0.040540292859077454, -0.061960794031620026, 0.008505183272063732, 0.13421021401882172, -0.1371179074048996, 0.04740285500884056, -0.05113464221358299, 0.0839063748717308, -0.04751700535416603, 0.0029340991750359535, 0.07336930185556412, 0.0948772057890892, 0.0006936685531400144, 0.08253355324268341, -0.223690927028656, 0.21039022505283356, 0.021047750487923622, 0.10447734594345093, -0.06229676306247711, 0.027966950088739395, 0.014806046150624752, 0.05062783136963844, 0.13589997589588165, 0.013859973289072514, -0.035928208380937576, -0.15731598436832428, -0.09344466030597687, 0.04587215185165405, 0.11362174898386002, -0.02350698597729206, 0.08311090618371964, -0.0468834824860096, -0.0019173381151631474, 0.0291205495595932, -0.07026606798171997, -0.12766045331954956, -0.11275137960910797, 0.027875185012817383, 0.0011526258895173669, -0.04489394649863243, -0.04739626869559288, -0.08693423867225647, -0.0068093566223979, 0.1472870111465454, -0.0360717698931694, -0.07040993869304657, -0.13930776715278625, 0.03250344470143318, 0.15427246689796448, -0.0667041540145874, 0.010960793122649193, 0.02116304449737072, 0.061094071716070175, 0.056743521243333817, -0.08560345321893692, 0.04777972400188446, -0.06975292414426804, -0.17925085127353668, -0.05622263625264168, 0.1199173629283905, 0.06635293364524841, 0.05278845503926277, -0.01733590103685856, 0.028601422905921936, -0.013903231360018253, -0.10707491636276245, 0.0022013592533767223, 0.08738253265619278, 0.07945433259010315, 0.07032632827758789, -0.10368996113538742, 0.043145425617694855, -0.03592536598443985, -0.01548322569578886, 0.11134227365255356, 0.20671215653419495, -0.09788889437913895, 0.11928395181894302, 0.05376717075705528, -0.07933463901281357, -0.17535091936588287, 0.03623080626130104, 0.10375025868415833, 0.014277618378400803, 0.06594907492399216, -0.18479807674884796, 0.12280229479074478, 0.11030790209770203, -0.015044399537146091, 0.07352711260318756, -0.3451770842075348, -0.11986549943685532, 0.05764725059270859, 0.09357945621013641, 0.044881585985422134, -0.1481836587190628, -0.03064621053636074, -0.005426047835499048, -0.14778433740139008, 0.11316833645105362, -0.05739229544997215, 0.11958840489387512, -0.027771420776844025, 0.11231681704521179, 0.029195213690400124, -0.038571931421756744, 0.143147811293602, 0.09696966409683228, 0.07960715889930725, -0.04601693153381348, -0.006783219985663891, 0.03742172569036484, -0.0775819793343544, 0.07824066281318665, -0.05628766492009163, 0.0816970095038414, -0.1892007291316986, 0.002993704052641988, -0.08067524433135986, 0.05923519283533096, -0.06116725131869316, -0.06232475861907005, -0.0378720685839653, 0.06864214688539505, 0.08837103843688965, -0.033795252442359924, 0.033600375056266785, 0.014849057421088219, 0.059260960668325424, 0.08714815974235535, 0.07231544703245163, 0.0063869161531329155, -0.1281830221414566, 0.004518372472375631, 0.0008220873423852026, 0.04731351137161255, -0.11641091853380203, 0.03177136182785034, 0.15552778542041779, 0.05715421214699745, 0.13121435046195984, 0.028247086331248283, -0.029700178653001785, -0.01186858769506216, 0.030004791915416718, -0.12988430261611938, -0.11929793655872345, 0.025617675855755806, -0.09092574566602707, -0.13584275543689728, 0.01826408877968788, 0.09405367821455002, -0.029889775440096855, -0.008850050158798695, -0.006860097870230675, 0.03724895417690277, -0.006690148264169693, 0.20636741816997528, 0.04110006242990494, 0.06467055529356003, -0.0975659042596817, 0.13360922038555145, 0.05367659404873848, -0.05635659024119377, 0.042580705136060715, 0.09512939304113388, -0.10626111924648285, -0.02409886009991169, 0.06077592447400093, 0.13169386982917786, -0.05103502795100212, -0.0268865954130888, -0.08931569755077362, -0.07229010760784149, 0.05454348772764206, 0.10032670944929123, 0.04140461981296539, 0.005014955066144466, -0.04699815809726715, 0.008829121477901936, -0.12776590883731842, 0.09466792643070221, 0.06753041595220566, 0.05219124257564545, -0.1284913718700409, 0.09133729338645935, 0.0020710937678813934, 0.06411601603031158, -0.011473487131297588, 0.022899745032191277, -0.10259882360696793, -0.015218072570860386, -0.11333668977022171, -0.0085771968588233, -0.03055313229560852, 0.007046959828585386, -0.012229898944497108, -0.05628449469804764, -0.033566512167453766, 0.044498905539512634, -0.0756044015288353, -0.0642329677939415, 0.008527415804564953, 0.05281555652618408, -0.1638156622648239, -0.02739928662776947, 0.016378993168473244, -0.08890742808580399, 0.09220948070287704, 0.06623868644237518, 0.00805373303592205, 0.028682103380560875, -0.09197225421667099, -0.022987334057688713, 0.00266600982286036, 0.037323713302612305, 0.07257025688886642, -0.09105727076530457, -0.010588167235255241, -0.03449887037277222, 0.03420308232307434, 0.02480022981762886, 0.051519837230443954, -0.12916263937950134, 0.015846315771341324, -0.06771118193864822, -0.034829940646886826, -0.07218879461288452, 0.03986406698822975, 0.107783243060112, 0.041915617883205414, 0.16616258025169373, -0.06976623088121414, 0.057565268129110336, -0.19124597311019897, -0.03975316509604454, 0.013959653675556183, -0.03105119802057743, -0.06800741702318192, -0.033060476183891296, 0.09323753416538239, -0.05732814222574234, 0.10274426639080048, -0.014039919711649418, 0.10049712657928467, 0.026698175817728043, -0.028173841536045074, -0.04029642418026924, -0.011271584779024124, 0.13258956372737885, 0.037786614149808884, -0.01624460145831108, 0.09302971512079239, -0.010471919551491737, 0.02063138037919998, 0.054879192262887955, 0.22387850284576416, 0.1458054929971695, -0.0007655407534912229, 0.04509229212999344, 0.056101541966199875, -0.1264875829219818, -0.14736729860305786, 0.09192080795764923, -0.04420659691095352, 0.12044630944728851, -0.06352777779102325, 0.1937357485294342, 0.04001373425126076, -0.18411456048488617, 0.0823969691991806, -0.05420771986246109, -0.12583142518997192, -0.1200433000922203, -0.03566497191786766, -0.06062363088130951, -0.11355550587177277, 0.02044181153178215, -0.1232154592871666, 0.06499530375003815, 0.09623928368091583, 0.016793183982372284, 0.00520485220476985, 0.1336447149515152, -0.05092114582657814, 0.02112651616334915, 0.05749187245965004, 0.024895528331398964, -0.0050494857132434845, -0.036707814782857895, -0.03603528439998627, 0.02639198489487171, 0.007385154254734516, 0.06903774291276932, -0.029198700562119484, 0.005285837687551975, 0.0163229051977396, -0.03263043239712715, -0.05650701746344566, 0.010965843684971333, 0.022210003808140755, 0.025279482826590538, 0.08368639647960663, 0.0697738379240036, -0.0008194411639124155, -0.03647240251302719, 0.2986714839935303, -0.08162151277065277, -0.09107496589422226, -0.14119619131088257, 0.20434479415416718, 0.041491784155368805, -0.031091412529349327, 0.07141956686973572, -0.12647050619125366, -0.030046606436371803, 0.16278086602687836, 0.14297553896903992, -0.08186127245426178, -0.017510931938886642, -0.01772494986653328, -0.003914618398994207, -0.03705122321844101, 0.10462221503257751, 0.10388155281543732, 0.08744306117296219, -0.058559268712997437, -0.004869963973760605, -0.01768924482166767, -0.04018709808588028, -0.09119603782892227, 0.08048181235790253, 0.01908174157142639, 0.0026322773192077875, -0.03744533658027649, 0.06410231441259384, -0.02153763920068741, -0.2003650665283203, 0.049430105835199356, -0.17402353882789612, -0.17638030648231506, -0.033694107085466385, 0.06897787004709244, -0.009407421573996544, 0.03595186397433281, -0.012388849630951881, -0.0022575482726097107, 0.16458213329315186, -0.0224473774433136, -0.06862773001194, -0.10925395041704178, 0.0855826810002327, -0.08794045448303223, 0.1988396793603897, 0.0063232057727873325, 0.06758587807416916, 0.09560475498437881, 0.022938741371035576, -0.1355457901954651, 0.04729798063635826, 0.08404779434204102, -0.10189797729253769, 0.015259940177202225, 0.15980926156044006, -0.043011266738176346, 0.08141712844371796, 0.03766495734453201, -0.08036230504512787, -0.020195672288537025, -0.004543384071439505, -0.02040310949087143, -0.09500950574874878, -0.008597108535468578, -0.050760816782712936, 0.15830042958259583, 0.21966831386089325, -0.026376141235232353, 0.020490722730755806, -0.08990523219108582, 0.02203851006925106, 0.034933239221572876, 0.0636613667011261, -0.0349639430642128, -0.18140822649002075, 0.04381444677710533, 0.0238150954246521, 0.03928397595882416, -0.18307045102119446, -0.10290191322565079, 0.04524023085832596, -0.0543728731572628, -0.051407188177108765, 0.11371041089296341, 0.027181880548596382, 0.03546065464615822, -0.030286846682429314, -0.10773470997810364, -0.03936576843261719, 0.15159322321414948, -0.16147595643997192, -0.05660416558384895 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-squad2-with-ner-mit-restaurant-with-neg-with-repeat This model is a fine-tuned version of [twmkn9/distilbert-base-uncased-squad2](https://huggingface.co/twmkn9/distilbert-base-uncased-squad2) on the squad_v2 and the mit_restaurant datasets. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results ### Framework versions - Transformers 4.8.2 - Pytorch 1.8.1+cu111 - Datasets 1.8.0 - Tokenizers 0.10.3
{"language": ["en"], "tags": ["generated_from_trainer"], "datasets": ["squad_v2", "mit_restaurant"], "model_index": [{"name": "distilbert-base-uncased-squad2-with-ner-mit-restaurant-with-neg-with-repeat", "results": [{"task": {"name": "Token Classification", "type": "token-classification"}, "dataset": {"name": "squad_v2", "type": "squad_v2"}}, {"task": {"name": "Token Classification", "type": "token-classification"}, "dataset": {"name": "mit_restaurant", "type": "mit_restaurant"}}]}]}
question-answering
andi611/distilbert-base-uncased-squad2-with-ner-mit-restaurant-with-neg-with-repeat
[ "transformers", "pytorch", "distilbert", "question-answering", "generated_from_trainer", "en", "dataset:squad_v2", "dataset:mit_restaurant", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #distilbert #question-answering #generated_from_trainer #en #dataset-squad_v2 #dataset-mit_restaurant #endpoints_compatible #region-us
# distilbert-base-uncased-squad2-with-ner-mit-restaurant-with-neg-with-repeat This model is a fine-tuned version of twmkn9/distilbert-base-uncased-squad2 on the squad_v2 and the mit_restaurant datasets. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results ### Framework versions - Transformers 4.8.2 - Pytorch 1.8.1+cu111 - Datasets 1.8.0 - Tokenizers 0.10.3
[ "# distilbert-base-uncased-squad2-with-ner-mit-restaurant-with-neg-with-repeat\n\nThis model is a fine-tuned version of twmkn9/distilbert-base-uncased-squad2 on the squad_v2 and the mit_restaurant datasets.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 2e-05\n- train_batch_size: 16\n- eval_batch_size: 16\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 5", "### Training results", "### Framework versions\n\n- Transformers 4.8.2\n- Pytorch 1.8.1+cu111\n- Datasets 1.8.0\n- Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #distilbert #question-answering #generated_from_trainer #en #dataset-squad_v2 #dataset-mit_restaurant #endpoints_compatible #region-us \n", "# distilbert-base-uncased-squad2-with-ner-mit-restaurant-with-neg-with-repeat\n\nThis model is a fine-tuned version of twmkn9/distilbert-base-uncased-squad2 on the squad_v2 and the mit_restaurant datasets.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 2e-05\n- train_batch_size: 16\n- eval_batch_size: 16\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 5", "### Training results", "### Framework versions\n\n- Transformers 4.8.2\n- Pytorch 1.8.1+cu111\n- Datasets 1.8.0\n- Tokenizers 0.10.3" ]
[ 56, 75, 6, 12, 8, 3, 90, 4, 34 ]
[ "passage: TAGS\n#transformers #pytorch #distilbert #question-answering #generated_from_trainer #en #dataset-squad_v2 #dataset-mit_restaurant #endpoints_compatible #region-us \n# distilbert-base-uncased-squad2-with-ner-mit-restaurant-with-neg-with-repeat\n\nThis model is a fine-tuned version of twmkn9/distilbert-base-uncased-squad2 on the squad_v2 and the mit_restaurant datasets.## Model description\n\nMore information needed## Intended uses & limitations\n\nMore information needed## Training and evaluation data\n\nMore information needed## Training procedure### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 2e-05\n- train_batch_size: 16\n- eval_batch_size: 16\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 5### Training results### Framework versions\n\n- Transformers 4.8.2\n- Pytorch 1.8.1+cu111\n- Datasets 1.8.0\n- Tokenizers 0.10.3" ]
[ -0.10736114531755447, 0.22061698138713837, -0.0021042730659246445, 0.07081130892038345, 0.11480206251144409, 0.029228180646896362, 0.06804236024618149, 0.16537511348724365, -0.04765252396464348, 0.07912977784872055, 0.07595542818307877, 0.06399242579936981, 0.05728776380419731, 0.13082513213157654, -0.02314796857535839, -0.1680869609117508, 0.007032749243080616, 0.023427940905094147, -0.012756217271089554, 0.13458703458309174, 0.10057380050420761, -0.09178154170513153, 0.06890425086021423, 0.006671129260212183, -0.12489128857851028, 0.0056547136045992374, -0.028056558221578598, -0.036099571734666824, 0.09621332585811615, 0.0005316960741765797, 0.09343216568231583, 0.01888740062713623, 0.09044180810451508, -0.20472460985183716, -0.004813592415302992, 0.06275428086519241, 0.01628207601606846, 0.07222458720207214, 0.01831178553402424, 0.030134161934256554, 0.04063839092850685, -0.1357422024011612, 0.0954776257276535, 0.03415175527334213, -0.09283361583948135, -0.1364220678806305, -0.10805141180753708, 0.07168462127447128, 0.04994085058569908, 0.09578528255224228, -0.009297181852161884, 0.15688456594944, -0.09190548211336136, 0.06359723210334778, 0.13247212767601013, -0.2642923891544342, -0.05858776718378067, 0.0022070298437029123, 0.030009962618350983, 0.049601078033447266, -0.09305638074874878, -0.017737161368131638, 0.04198390990495682, 0.0404328927397728, 0.036021966487169266, -0.004002667497843504, -0.02913545072078705, -0.01123251486569643, -0.08877839148044586, -0.06926339119672775, 0.19395442306995392, 0.04367593303322792, -0.057866841554641724, -0.11333335191011429, -0.053071774542331696, -0.06148356571793556, -0.006239334587007761, -0.07315045595169067, 0.014375397004187107, -0.053013917058706284, -0.07728416472673416, -0.047906145453453064, -0.07499472051858902, -0.03726968541741371, 0.023228071630001068, 0.07763933390378952, 0.03776297718286514, -0.004762799479067326, -0.02856745384633541, 0.08883851021528244, -0.03697417303919792, -0.1426810473203659, -0.022077463567256927, -0.010726029053330421, -0.09250480681657791, -0.0599115788936615, -0.009682332165539265, -0.037629760801792145, 0.000613320036791265, 0.16263347864151, -0.02444264106452465, 0.04323991760611534, 0.0076065706089138985, -0.03927743807435036, 0.004423638340085745, 0.1356665939092636, -0.03754657506942749, -0.09829212725162506, -0.03583523631095886, 0.1242046132683754, -0.005939997732639313, -0.02048877626657486, -0.059095192700624466, -0.0323634073138237, 0.1063031256198883, 0.036422308534383774, 0.03463888168334961, 0.023645423352718353, -0.0427483506500721, -0.05852403864264488, 0.09901322424411774, -0.11166871339082718, 0.03368406742811203, 0.004988210741430521, -0.07934458553791046, -0.045266035944223404, -0.020088190212845802, 0.011500949040055275, -0.04970547929406166, 0.07440707832574844, -0.08795934915542603, -0.040883228182792664, -0.053287241607904434, -0.049605149775743484, 0.019796350970864296, -0.05322447791695595, -0.01802786998450756, -0.06862592697143555, -0.160569429397583, -0.05144191160798073, 0.051971063017845154, -0.07572635263204575, -0.06515012681484222, -0.041867583990097046, -0.0254278015345335, 0.0162818506360054, -0.010790708474814892, 0.08076751232147217, -0.02923731692135334, 0.08570065349340439, 0.016691071912646294, -0.006156804971396923, 0.02717786468565464, 0.06332031637430191, -0.09919866919517517, 0.04299993813037872, -0.07900683581829071, 0.07567013800144196, -0.07987870275974274, 0.013813012279570103, -0.14188042283058167, -0.10847057402133942, 0.0059760757721960545, -0.052472058683633804, 0.07271923869848251, 0.1457301527261734, -0.1705399453639984, -0.0065126726403832436, 0.12131435424089432, -0.05759771168231964, -0.1201447919011116, 0.1253337860107422, -0.034450285136699677, 0.03675695136189461, 0.0757855772972107, 0.17348970472812653, 0.15751631557941437, -0.1184905394911766, -0.054209694266319275, 0.01586765982210636, 0.08327425271272659, 0.02626636065542698, 0.0716235339641571, -0.0037279885727912188, 0.038510508835315704, 0.00943570677191019, -0.07398175448179245, -0.01988133229315281, -0.056221313774585724, -0.09806719422340393, -0.032260287553071976, -0.0801413357257843, 0.12173748016357422, 0.044470321387052536, 0.023467527702450752, -0.056376419961452484, -0.11616936326026917, 0.05744768679141998, 0.11159588396549225, -0.03859705477952957, -0.0003423251328058541, -0.06836878508329391, 0.09242341667413712, -0.02795618772506714, -0.03762910142540932, -0.18320511281490326, -0.10618267953395844, 0.04983404651284218, -0.050140805542469025, 0.0247312281280756, 0.05407222732901573, 0.05593249574303627, 0.05025982856750488, -0.03927433863282204, -0.03208702802658081, -0.08574690669775009, 0.020177530124783516, -0.09300793707370758, -0.11231015622615814, -0.057153891772031784, -0.038774631917476654, 0.20081213116645813, -0.20776835083961487, -0.002624640241265297, 0.022581716999411583, 0.11714515089988708, 0.01323781255632639, -0.06747622042894363, 0.0002603679895401001, 0.02603430114686489, 0.0008607867057435215, -0.0728607177734375, 0.03055517189204693, 0.015809915959835052, -0.09609616547822952, -0.0621316023170948, -0.1146109402179718, 0.024269482120871544, 0.07236611843109131, 0.09683343768119812, -0.08341116458177567, -0.03122805990278721, -0.06027527526021004, -0.033616915345191956, -0.06181641295552254, -0.01716815121471882, 0.18750976026058197, 0.03904423117637634, 0.10374009609222412, -0.045933373272418976, -0.058502502739429474, 0.010803943499922752, 0.02892284281551838, -0.04719436168670654, 0.07357116788625717, 0.012441718019545078, -0.1831163614988327, 0.09573634713888168, 0.11708192527294159, 0.027104074135422707, 0.10088051855564117, -0.026668483391404152, -0.073483407497406, -0.04602229967713356, 0.045395296066999435, -0.02237103134393692, 0.12644970417022705, -0.122380331158638, 0.018936794251203537, 0.05172617733478546, 0.008387700654566288, 0.01339135505259037, -0.1490909308195114, -0.014607451856136322, 0.05262492969632149, -0.03779178857803345, -0.044080767780542374, -0.042413778603076935, 0.012622716836631298, 0.07024028897285461, 0.05542540177702904, -0.03132009878754616, 0.024307716637849808, -0.01819448731839657, -0.07266578823328018, 0.14913904666900635, -0.10648450255393982, -0.20358799397945404, -0.08020056039094925, -0.0017729360843077302, -0.05374506860971451, -0.02287857048213482, 0.023970704525709152, -0.07777907699346542, -0.045838989317417145, -0.06276634335517883, -0.06694625318050385, -0.049662698060274124, -0.0349714569747448, 0.029239505529403687, 0.007689944934099913, 0.05909108743071556, -0.1213105246424675, 0.009417416527867317, -0.00843288004398346, -0.05423580855131149, -0.013848028145730495, 0.01403828151524067, 0.11631891131401062, 0.0944913923740387, -0.02166527323424816, 0.015214405953884125, -0.03991715982556343, 0.2581406831741333, -0.09879842400550842, -0.007055726833641529, 0.1147441416978836, 0.02665547840297222, 0.07061497122049332, 0.15558838844299316, 0.03134346753358841, -0.07374249398708344, 0.010974908247590065, 0.03329278901219368, -0.0020527923479676247, -0.22235842049121857, -0.04899891838431358, -0.05176512151956558, -0.0730729028582573, 0.1410466879606247, 0.03954267129302025, 0.037287645041942596, 0.05580167844891548, -0.0402635894715786, 0.051208846271038055, -0.02027248777449131, 0.0720207467675209, 0.11673320084810257, 0.0320746935904026, 0.07454481720924377, -0.012716980651021004, -0.024896616116166115, 0.07484529167413712, 0.05330228805541992, 0.21558603644371033, -0.035166289657354355, 0.1682482659816742, 0.03456789627671242, 0.15849560499191284, -0.04927457123994827, 0.0229886956512928, -0.014060268178582191, 0.0136942770332098, -0.011898872442543507, -0.07408569753170013, -0.07274145632982254, 0.02633672207593918, 0.06194034591317177, 0.004789974074810743, -0.04689820110797882, 0.00649389298632741, 0.017082884907722473, 0.16935011744499207, 0.08616851270198822, -0.26719868183135986, -0.0706486701965332, 0.015592332929372787, -0.012093842029571533, -0.06442002952098846, -0.00013256713282316923, 0.11307154595851898, -0.13082949817180634, 0.061769191175699234, -0.0553341768682003, 0.09352613985538483, -0.04209486395120621, 0.013171497732400894, 0.07505089044570923, 0.0392274484038353, 0.009623976424336433, 0.10960215330123901, -0.19720974564552307, 0.2086496651172638, 0.02228729799389839, 0.08830016106367111, -0.1097865030169487, 0.0248708538711071, -0.02576792798936367, 0.05434301123023033, 0.13765500485897064, 0.014458120800554752, -0.02243203856050968, -0.13253332674503326, -0.09340608865022659, 0.025651924312114716, 0.06999627500772476, -0.025670522823929787, 0.07076743990182877, -0.047233060002326965, -0.00654917536303401, 0.028837470337748528, 0.010618055239319801, -0.1338084638118744, -0.16489580273628235, 0.05276450142264366, -0.03812579810619354, -0.051497481763362885, -0.05834075063467026, -0.0837797075510025, 0.01926431804895401, 0.1876792162656784, 0.03409496322274208, -0.051590293645858765, -0.15003791451454163, 0.06497903168201447, 0.12520574033260345, -0.0781785324215889, 0.005513888783752918, 0.017190653830766678, 0.10405183583498001, 0.003209321526810527, -0.05894678458571434, 0.03852730244398117, -0.039698127657175064, -0.13245384395122528, -0.04925760626792908, 0.1321968138217926, 0.031668566167354584, 0.07973317801952362, 0.03092498891055584, 0.04108889028429985, -0.002851777011528611, -0.07971269637346268, -0.024108977988362312, 0.011375855654478073, 0.10653630644083023, 0.03650084510445595, -0.02991431951522827, 0.005815782584249973, -0.07439898699522018, 0.020380765199661255, 0.12897734344005585, 0.22052811086177826, -0.07677971571683884, 0.10844991356134415, 0.06836998462677002, -0.05101707577705383, -0.13478000462055206, -0.01332867331802845, 0.06674579530954361, 0.0015460584545508027, 0.05148867890238762, -0.15674234926700592, 0.06633259356021881, 0.08462611585855484, -0.022063465788960457, 0.04424137994647026, -0.3177047371864319, -0.11742153763771057, 0.04569302499294281, 0.11692235618829727, 0.026242852210998535, -0.09658512473106384, -0.06259489804506302, -0.016449514776468277, -0.18615399301052094, 0.08824263513088226, -0.034962985664606094, 0.09238849580287933, 0.0012227381812408566, 0.08613573014736176, 0.03462217003107071, -0.05304774269461632, 0.1486952006816864, 0.059686433523893356, 0.02511146292090416, -0.06661410629749298, -0.03286481648683548, 0.10717920958995819, -0.050862688571214676, 0.0670970231294632, -0.0351606123149395, 0.06358327716588974, -0.20946133136749268, -0.01941436156630516, -0.08271227031946182, 0.026360459625720978, -0.08153911679983139, -0.07493455708026886, -0.04121759906411171, 0.09570591896772385, 0.10581571608781815, -0.02817809395492077, 0.04125162586569786, 0.035551488399505615, 0.10190096497535706, 0.0998801663517952, 0.0908060073852539, 0.009936484508216381, -0.1577848196029663, -0.02141927182674408, -0.010335290804505348, 0.03917164355516434, -0.07387365400791168, 0.02909959852695465, 0.13444389402866364, 0.07481051981449127, 0.14259935915470123, 0.006667873356491327, -0.06057824566960335, -0.008250180631875992, 0.025003479793667793, -0.11378151923418045, -0.17354723811149597, -0.012085392139852047, -0.027324628084897995, -0.18197664618492126, -0.047573741525411606, 0.11887338757514954, -0.037900298833847046, -0.026251064613461494, -0.02001100592315197, 0.027777545154094696, -0.005312792025506496, 0.19826120138168335, 0.0676894411444664, 0.06755885481834412, -0.0751618817448616, 0.06193481385707855, 0.12449201941490173, -0.07676959782838821, 0.03771153837442398, 0.03418334573507309, -0.09227809309959412, -0.03275643289089203, 0.05276750400662422, 0.0845104530453682, -0.014249823987483978, -0.01814742386341095, -0.0802292749285698, -0.03469400107860565, 0.05654517188668251, 0.003737394232302904, 0.05332101881504059, 0.016167042776942253, -0.050372444093227386, -0.015082001686096191, -0.109123095870018, 0.10894990712404251, 0.03458623215556145, 0.06615608185529709, -0.11794284731149673, 0.04828699678182602, -0.007847034372389317, 0.059429142624139786, -0.01920381188392639, 0.007195539306849241, -0.06929786503314972, -0.014442779123783112, -0.12092684209346771, 0.015649186447262764, -0.03952918201684952, 0.01521338988095522, -0.04377063363790512, -0.06465929746627808, -0.044496603310108185, 0.026518402621150017, -0.0643252432346344, -0.06225500628352165, 0.018797997385263443, 0.03692317008972168, -0.19090604782104492, -0.004181358031928539, 0.040441855788230896, -0.09526710212230682, 0.0711279958486557, 0.023427357897162437, 0.0003076006832998246, -0.004776478745043278, -0.026244858279824257, -0.06352932751178741, -0.033247388899326324, 0.0599842444062233, 0.09186738729476929, -0.11999804526567459, -0.014087975025177002, -0.009164828807115555, 0.02461402676999569, 0.03431214392185211, 0.07884158939123154, -0.11730904877185822, -0.03696572035551071, -0.0364329032599926, -0.06479988992214203, -0.0658123642206192, 0.0736284926533699, 0.09546095132827759, -0.00035676470724865794, 0.1590755730867386, -0.046121470630168915, 0.05930182710289955, -0.19403019547462463, -0.05170348286628723, 0.012638294138014317, -0.03228000923991203, -0.01380818709731102, -0.03139650449156761, 0.07151348888874054, -0.023666908964514732, 0.07826732099056244, -0.016905784606933594, 0.12367959320545197, 0.053946446627378464, -0.023287316784262657, -0.006929532624781132, -0.02611912041902542, 0.1648578941822052, 0.04443533718585968, -0.021392740309238434, 0.07491718232631683, -0.025747789070010185, 0.0025002441834658384, 0.060867343097925186, 0.16498272120952606, 0.17633862793445587, 0.03479459509253502, 0.00999605655670166, 0.06428173184394836, -0.07400792092084885, -0.21413670480251312, 0.059750840067863464, -0.05154520645737648, 0.12330980598926544, -0.0359952449798584, 0.126267209649086, 0.06110900267958641, -0.20035411417484283, 0.06719301640987396, -0.08096110075712204, -0.11997479200363159, -0.06283092498779297, -0.11866269260644913, -0.07442895323038101, -0.09591709822416306, 0.026788849383592606, -0.11343451589345932, 0.03572941944003105, 0.085904560983181, 0.013023714534938335, 0.0012811539927497506, 0.1541445404291153, -0.028863398358225822, 0.012225814163684845, 0.052648454904556274, 0.017793983221054077, 0.015774782747030258, -0.059990495443344116, -0.01454625092446804, 0.04343411698937416, 0.04979377239942551, 0.10496171563863754, -0.03845403715968132, 0.01070988830178976, 0.01837329752743244, 0.027091223746538162, -0.07495374232530594, 0.0002556617255322635, 0.013379438780248165, 0.05437162518501282, 0.06736718863248825, 0.05055881291627884, 0.03547336533665657, -0.037597186863422394, 0.2536960244178772, -0.041740044951438904, -0.09879244863986969, -0.14420560002326965, 0.17450696229934692, 0.045663733035326004, -0.02226695790886879, 0.09437102824449539, -0.11668539047241211, 0.02396034076809883, 0.12543603777885437, 0.16301174461841583, -0.07696984708309174, -0.025087157264351845, 0.005698798689991236, 0.005762245040386915, -0.016357168555259705, 0.09729049354791641, 0.07671086490154266, 0.027758654206991196, -0.06914402544498444, -0.009266607463359833, -0.0010734873358160257, -0.056411657482385635, -0.06334389746189117, 0.08367061614990234, 0.03371693193912506, 0.011485296301543713, -0.057445596903562546, 0.10914258658885956, 0.05138953775167465, -0.1935967355966568, 0.011527053080499172, -0.17474527657032013, -0.20474380254745483, -0.023985616862773895, 0.1187414899468422, 0.0010011923732236028, 0.06996921449899673, 0.0036910169292241335, 0.008749822154641151, 0.11660224944353104, 0.0001302371674682945, -0.0771997720003128, -0.0634361058473587, 0.13041925430297852, -0.06852802634239197, 0.2606651782989502, 0.008121434599161148, 0.0536004938185215, 0.10657814890146255, 0.006237613968551159, -0.12660782039165497, 0.009971477091312408, 0.11366019397974014, -0.02297799289226532, 0.04631780833005905, 0.15175586938858032, -0.031872570514678955, 0.07001899927854538, 0.05979296937584877, -0.13674448430538177, -0.010270042344927788, 0.04119471460580826, 0.030072951689362526, -0.09766703844070435, 0.01717955246567726, -0.05966085568070412, 0.18309850990772247, 0.19332106411457062, -0.047888852655887604, 0.012290127575397491, -0.06605011224746704, 0.0234098881483078, 0.04975145682692528, 0.09945768862962723, -0.04187319800257683, -0.1761123538017273, -0.016927657648921013, -0.021466068923473358, 0.03214038535952568, -0.22648635506629944, -0.10129924863576889, 0.05443626269698143, -0.043688736855983734, -0.03754924237728119, 0.1260896772146225, 0.02449745126068592, 0.016455605626106262, -0.04451175406575203, -0.10630597174167633, -0.08175157010555267, 0.11311762034893036, -0.13283206522464752, -0.03464566543698311 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-squad2-with-ner-with-neg-with-multi-with-repeat This model is a fine-tuned version of [twmkn9/distilbert-base-uncased-squad2](https://huggingface.co/twmkn9/distilbert-base-uncased-squad2) on the conll2003 dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results ### Framework versions - Transformers 4.8.2 - Pytorch 1.8.1+cu111 - Datasets 1.8.0 - Tokenizers 0.10.3
{"tags": ["generated_from_trainer"], "datasets": ["conll2003"], "model_index": [{"name": "distilbert-base-uncased-squad2-with-ner-with-neg-with-multi-with-repeat", "results": [{"task": {"name": "Question Answering", "type": "question-answering"}, "dataset": {"name": "conll2003", "type": "conll2003", "args": "conll2003"}}]}]}
question-answering
andi611/distilbert-base-uncased-squad2-with-ner-with-neg-with-multi-with-repeat
[ "transformers", "pytorch", "distilbert", "question-answering", "generated_from_trainer", "dataset:conll2003", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #distilbert #question-answering #generated_from_trainer #dataset-conll2003 #endpoints_compatible #region-us
# distilbert-base-uncased-squad2-with-ner-with-neg-with-multi-with-repeat This model is a fine-tuned version of twmkn9/distilbert-base-uncased-squad2 on the conll2003 dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results ### Framework versions - Transformers 4.8.2 - Pytorch 1.8.1+cu111 - Datasets 1.8.0 - Tokenizers 0.10.3
[ "# distilbert-base-uncased-squad2-with-ner-with-neg-with-multi-with-repeat\n\nThis model is a fine-tuned version of twmkn9/distilbert-base-uncased-squad2 on the conll2003 dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 2e-05\n- train_batch_size: 16\n- eval_batch_size: 16\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 5", "### Training results", "### Framework versions\n\n- Transformers 4.8.2\n- Pytorch 1.8.1+cu111\n- Datasets 1.8.0\n- Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #distilbert #question-answering #generated_from_trainer #dataset-conll2003 #endpoints_compatible #region-us \n", "# distilbert-base-uncased-squad2-with-ner-with-neg-with-multi-with-repeat\n\nThis model is a fine-tuned version of twmkn9/distilbert-base-uncased-squad2 on the conll2003 dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 2e-05\n- train_batch_size: 16\n- eval_batch_size: 16\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 5", "### Training results", "### Framework versions\n\n- Transformers 4.8.2\n- Pytorch 1.8.1+cu111\n- Datasets 1.8.0\n- Tokenizers 0.10.3" ]
[ 45, 67, 6, 12, 8, 3, 90, 4, 34 ]
[ "passage: TAGS\n#transformers #pytorch #distilbert #question-answering #generated_from_trainer #dataset-conll2003 #endpoints_compatible #region-us \n# distilbert-base-uncased-squad2-with-ner-with-neg-with-multi-with-repeat\n\nThis model is a fine-tuned version of twmkn9/distilbert-base-uncased-squad2 on the conll2003 dataset.## Model description\n\nMore information needed## Intended uses & limitations\n\nMore information needed## Training and evaluation data\n\nMore information needed## Training procedure### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 2e-05\n- train_batch_size: 16\n- eval_batch_size: 16\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 5### Training results### Framework versions\n\n- Transformers 4.8.2\n- Pytorch 1.8.1+cu111\n- Datasets 1.8.0\n- Tokenizers 0.10.3" ]
[ -0.0936797708272934, 0.1558576375246048, -0.0022049895487725735, 0.10963279008865356, 0.12776020169258118, 0.033177100121974945, 0.08204490691423416, 0.15214477479457855, -0.11274250596761703, 0.05445998162031174, 0.0752950981259346, 0.05464876815676689, 0.021484944969415665, 0.10035602748394012, -0.03429994732141495, -0.2351084202528, -0.004170737694948912, 0.00555950915440917, -0.03644676133990288, 0.11082634329795837, 0.0906350389122963, -0.09373944252729416, 0.07476499676704407, -0.016785213723778725, -0.15778742730617523, 0.031373508274555206, -0.03839004784822464, -0.027213232591748238, 0.08899655193090439, 0.011090642772614956, 0.09746678173542023, 0.009400768205523491, 0.1221674457192421, -0.20812317728996277, -0.0008702778723090887, 0.0709543228149414, 0.028452463448047638, 0.07009486854076385, 0.017763102427124977, 0.0012355041690170765, 0.0978558361530304, -0.1600927710533142, 0.0947103500366211, 0.024508655071258545, -0.08603311330080032, -0.11403603106737137, -0.08466997742652893, 0.07340017706155777, 0.08400276303291321, 0.09913196414709091, 0.007613977417349815, 0.16704246401786804, -0.0946422889828682, 0.1016269251704216, 0.17657743394374847, -0.25859203934669495, -0.06855523586273193, 0.06887006759643555, 0.045684684067964554, 0.06738577783107758, -0.12548527121543884, -0.0276230089366436, 0.052085377275943756, 0.028076183050870895, 0.06374615430831909, -0.037389449775218964, -0.14391040802001953, 0.014834391884505749, -0.14162731170654297, -0.021905817091464996, 0.2003604620695114, 0.05334843322634697, -0.0400206632912159, -0.06834766268730164, -0.058268580585718155, -0.09052888303995132, -0.0024788561277091503, -0.061927083879709244, 0.032017774879932404, -0.06304815411567688, -0.08133098483085632, -0.0712808296084404, -0.07189729064702988, -0.07882275432348251, -0.013836998492479324, 0.10149849951267242, 0.051806870847940445, 0.010671847499907017, -0.0360938124358654, 0.1187531128525734, -0.007177362684160471, -0.11959975212812424, -0.04418410360813141, -0.0012157884193584323, -0.11424694955348969, -0.07612613588571548, -0.0365612767636776, -0.018007269129157066, -0.010861414484679699, 0.17731603980064392, -0.03720300272107124, 0.047100283205509186, 0.007007155101746321, -0.011742085218429565, -0.0025886795483529568, 0.1347898244857788, -0.06383736431598663, -0.0337129570543766, -0.009989762678742409, 0.09111381322145462, -0.0196137186139822, -0.0001795359858078882, -0.07936916500329971, -0.04652620851993561, 0.10103845596313477, 0.06546009331941605, -0.033305417746305466, 0.059402674436569214, -0.018890727311372757, -0.04878129065036774, 0.014587156474590302, -0.13439863920211792, 0.035097572952508926, -0.015475664287805557, -0.09902061522006989, -0.013448386453092098, 0.03573811799287796, -0.011983334086835384, -0.01980391889810562, 0.05547924339771271, -0.0936957597732544, -0.005484012421220541, -0.06545672565698624, -0.07379406690597534, 0.02156108245253563, -0.0678924098610878, -0.007622497156262398, -0.07466941326856613, -0.2246389389038086, -0.04399775341153145, 0.02396652102470398, -0.04665025323629379, -0.019988134503364563, -0.06931205838918686, -0.06738391518592834, -0.00977944303303957, -0.004987826105207205, 0.08064799755811691, -0.04433959349989891, 0.0850600078701973, 0.008722075261175632, 0.029622334986925125, 0.014931196346879005, 0.04468879476189613, -0.1084139347076416, 0.014566282741725445, -0.07980893552303314, 0.08049692958593369, -0.09044238924980164, 0.027157645672559738, -0.116459421813488, -0.12010813504457474, -0.0059129102155566216, -0.028767652809619904, 0.04655628651380539, 0.13306453824043274, -0.1784369796514511, -0.013755339197814465, 0.14622142910957336, -0.05477825179696083, -0.08449370414018631, 0.10323645919561386, -0.0661768764257431, 0.07302583009004593, 0.07350528985261917, 0.16134600341320038, 0.1606297343969345, -0.1354302018880844, -0.02249070443212986, 0.010080775246024132, 0.03539052978157997, 0.040434010326862335, 0.04567277804017067, 0.01683090068399906, 0.0275275781750679, 0.010790486820042133, -0.08177363127470016, -0.02109411731362343, -0.08829274028539658, -0.09805746376514435, -0.04995037987828255, -0.09037687629461288, 0.07668235898017883, 0.04386916384100914, 0.03420119360089302, -0.06614235043525696, -0.10165504366159439, 0.13932926952838898, 0.14890000224113464, -0.052827563136816025, 0.014283334836363792, -0.08132556080818176, 0.021456386893987656, -0.03795532509684563, -0.03366820141673088, -0.19196514785289764, -0.14628992974758148, 0.04057758301496506, -0.01998954266309738, 0.0511227585375309, 0.07096019387245178, 0.073954276740551, 0.05568055808544159, -0.06108921766281128, -0.027761848643422127, -0.09116028994321823, -0.0012912460369989276, -0.08556818217039108, -0.16165117919445038, -0.05102994292974472, -0.03579878807067871, 0.1334923803806305, -0.22877244651317596, 0.02187179960310459, -0.0036381848622113466, 0.1145668476819992, 0.025271037593483925, -0.05562504008412361, 0.02115754224359989, 0.0433414950966835, -0.011190487071871758, -0.09020529687404633, 0.03735062852501869, -0.012201204895973206, -0.08504816144704819, -0.09726462513208389, -0.11164739727973938, 0.029381901025772095, 0.054552461951971054, 0.05931243672966957, -0.11527290940284729, -0.011845048516988754, -0.06797458231449127, -0.0544513501226902, -0.06280936300754547, -0.01631447859108448, 0.19492773711681366, 0.006476975046098232, 0.10855584591627121, -0.055227190256118774, -0.07229895144701004, -0.019381485879421234, 0.01029012631624937, -0.00657914811745286, 0.07914631068706512, 0.0518316775560379, -0.13342639803886414, 0.0868125930428505, 0.07489161193370819, -0.05596813187003136, 0.15113826096057892, -0.04582333564758301, -0.09309271723031998, -0.041003286838531494, 0.037499237805604935, -0.019373977556824684, 0.1054813340306282, -0.09977403283119202, -0.0006613809382542968, 0.028547445312142372, 0.024395884945988655, 0.027453070506453514, -0.16368897259235382, -0.02154652029275894, 0.034009747207164764, -0.05554422736167908, -0.028181729838252068, 0.0053305733017623425, 0.028041759505867958, 0.0869147926568985, 0.01333528757095337, -0.03211342543363571, 0.01764257624745369, -0.008624124340713024, -0.08339057862758636, 0.1807437539100647, -0.10529245436191559, -0.14088577032089233, -0.11564213782548904, 0.03471312299370766, -0.0772814005613327, -0.03215760737657547, 0.02039456181228161, -0.06983713805675507, -0.02906661294400692, -0.08906730264425278, -0.012232457287609577, -0.04925677552819252, -0.021600276231765747, 0.017756430432200432, 0.009296354837715626, 0.0708865076303482, -0.14734108746051788, 0.025217443704605103, -0.013779859989881516, -0.13443385064601898, -0.003215731354430318, 0.020236346870660782, 0.14009471237659454, 0.12048843502998352, -0.02210761420428753, 0.022337011992931366, -0.04038817435503006, 0.2222174108028412, -0.0707215666770935, 0.0010205392027273774, 0.09533270448446274, 0.004812290426343679, 0.049206677824258804, 0.11873438954353333, 0.026414508000016212, -0.09859777987003326, 0.03775686025619507, 0.0805734246969223, -0.011646092869341373, -0.2400171309709549, -0.03408670425415039, -0.032730311155319214, -0.03989603742957115, 0.0967455506324768, 0.04868641123175621, 0.05187363922595978, 0.038196761161088943, -0.008566569536924362, 0.02785070613026619, -0.027168279513716698, 0.08319316059350967, 0.096263088285923, 0.023316746577620506, 0.09267660975456238, -0.02857079543173313, -0.03907281160354614, 0.06305365264415741, 0.026020178571343422, 0.2705204486846924, -0.03405598923563957, 0.11201309412717819, 0.04871316999197006, 0.14395567774772644, -0.05115512013435364, 0.03599221259355545, 0.014902383089065552, 0.0036445308942347765, 0.008707853965461254, -0.05869192257523537, -0.017411259934306145, 0.03192387893795967, 0.004659540485590696, 0.051960647106170654, -0.09438756853342056, 0.02039833925664425, 0.039292726665735245, 0.23083817958831787, 0.05701874941587448, -0.280874103307724, -0.08853165805339813, 0.00230906018987298, -0.03283340111374855, -0.04717204347252846, 0.014364046044647694, 0.14077261090278625, -0.1244824007153511, 0.04107467457652092, -0.04826738312840462, 0.08723582327365875, -0.052449822425842285, 0.002938752295449376, 0.04810672998428345, 0.09591613709926605, -0.00796128623187542, 0.10236307233572006, -0.20306189358234406, 0.21293507516384125, 0.027091603726148605, 0.10118954628705978, -0.053099628537893295, 0.010734736919403076, 0.0074492874555289745, 0.09939126670360565, 0.12456244975328445, -0.0018363932613283396, -0.004384793806821108, -0.1704183965921402, -0.06886108964681625, 0.03615977615118027, 0.11275925487279892, -0.031419530510902405, 0.0939885824918747, -0.04131198301911354, 0.0041406466625630856, 0.055393703281879425, -0.06583409011363983, -0.1609538346529007, -0.105197474360466, 0.03350658714771271, 0.0019595506601035595, -0.03554689511656761, -0.05918937176465988, -0.10033577680587769, -0.018690474331378937, 0.18051184713840485, 0.017504863440990448, -0.037469420582056046, -0.1304449737071991, 0.0823691114783287, 0.13303586840629578, -0.07565349340438843, -0.007579749450087547, 0.036646243184804916, 0.08377186208963394, 0.05165715888142586, -0.07998625189065933, 0.035707026720047, -0.048558153212070465, -0.13816417753696442, -0.043892670422792435, 0.120078444480896, 0.05958534777164459, 0.05821777507662773, -0.00332492939196527, 0.008433565497398376, 0.01790166273713112, -0.09026628732681274, -0.0020044029224663973, 0.08496097475290298, 0.0820862427353859, 0.06985727697610855, -0.10803034901618958, 0.058383483439683914, -0.06119827553629875, 0.018458174541592598, 0.15027861297130585, 0.19480693340301514, -0.0886356309056282, 0.06141069531440735, 0.058744918555021286, -0.09186507016420364, -0.17782729864120483, 0.0771806463599205, 0.08706532418727875, 0.007302515674382448, 0.054355647414922714, -0.18544861674308777, 0.08354893326759338, 0.12044724076986313, 0.004032164812088013, 0.06160688027739525, -0.356411874294281, -0.11502712219953537, 0.06625118851661682, 0.09528017789125443, 0.009306749328970909, -0.1339748203754425, -0.02833487093448639, 0.013121514581143856, -0.14663711190223694, 0.08239219337701797, -0.06193428486585617, 0.11416678875684738, -0.010235518217086792, 0.11792133003473282, 0.03284196928143501, -0.03142205625772476, 0.12894898653030396, 0.08625709265470505, 0.09537740796804428, -0.05826756730675697, -0.02069699950516224, 0.10776516050100327, -0.07424124330282211, 0.08824630826711655, 0.0021981969475746155, 0.09118053317070007, -0.16928507387638092, -0.017083216458559036, -0.08568732440471649, 0.06589353829622269, -0.05483927205204964, -0.07589874416589737, -0.05595790594816208, 0.07424773275852203, 0.07274853438138962, -0.03306501731276512, 0.05110854655504227, 0.021687472239136696, 0.08173591643571854, 0.05971584841609001, 0.10103030502796173, 0.012839196249842644, -0.12441476434469223, -0.01136734802275896, -0.0055868919007480145, 0.05401153862476349, -0.1288166642189026, 0.029896171763539314, 0.15012526512145996, 0.06982045620679855, 0.15205205976963043, 0.032439298927783966, -0.03631158918142319, -0.010819299146533012, 0.023556537926197052, -0.12089326977729797, -0.1451321393251419, -0.014649923890829086, -0.10199461132287979, -0.1573459506034851, 0.03164786845445633, 0.10281910002231598, -0.061087001115083694, -0.0020435440819710493, -0.0056172641925513744, 0.012809502892196178, -0.022860433906316757, 0.1875590980052948, 0.055848732590675354, 0.053279370069503784, -0.07183634489774704, 0.10860643535852432, 0.07111188769340515, -0.052665386348962784, 0.04292850196361542, 0.039710234850645065, -0.08329950273036957, -0.03665090352296829, 0.03871936351060867, 0.140919491648674, -0.04721890389919281, -0.01560293696820736, -0.07759525626897812, -0.02567264623939991, 0.04008680582046509, 0.1292557567358017, 0.05266395956277847, 0.0085499482229352, -0.04644513130187988, 0.02766392007470131, -0.1462705135345459, 0.10367158055305481, 0.04661504179239273, 0.07390798628330231, -0.15065661072731018, 0.13624393939971924, -0.00978178158402443, 0.05919511988759041, -0.0196247361600399, 0.006645240355283022, -0.08554597944021225, -0.011274542659521103, -0.12292900681495667, -0.031000085175037384, -0.027248157188296318, 0.020568089559674263, -0.007947302423417568, -0.06592265516519547, -0.048164743930101395, 0.0433957502245903, -0.07116713374853134, -0.05735240876674652, 0.03842000290751457, 0.06613216549158096, -0.15045176446437836, -0.02795075997710228, 0.02800077199935913, -0.08448322862386703, 0.07113368809223175, 0.055417709052562714, 0.012714657932519913, 0.0354405976831913, -0.07390586286783218, -0.021677713841199875, 0.023115379735827446, 0.04512143135070801, 0.06763028353452682, -0.08052650839090347, -0.00796305201947689, -0.03338475152850151, 0.05590968579053879, 0.03160823509097099, 0.04611619561910629, -0.11494144052267075, -0.020057139918208122, -0.07374757528305054, -0.04573024436831474, -0.07032541930675507, 0.043249499052762985, 0.09790880233049393, 0.04386154189705849, 0.16187036037445068, -0.06481503695249557, 0.06255258619785309, -0.20201070606708527, -0.046278152614831924, 0.011212076991796494, -0.0341801680624485, -0.04172145575284958, -0.04172052443027496, 0.07738780230283737, -0.0666443407535553, 0.08882024139165878, -0.04033287242054939, 0.10267136991024017, 0.02527306228876114, -0.047287601977586746, -0.012643096037209034, -0.01784854382276535, 0.17103274166584015, 0.05818182975053787, -0.031542953103780746, 0.08722484111785889, -0.006766168866306543, 0.05163514241576195, 0.034286390990018845, 0.18617607653141022, 0.14142519235610962, -0.05615759268403053, 0.04746270924806595, 0.08037304133176804, -0.10061360150575638, -0.13379083573818207, 0.07146485894918442, 0.003184284083545208, 0.09439445286989212, -0.047295019030570984, 0.14764931797981262, 0.09116818755865097, -0.1615091860294342, 0.05986301228404045, -0.036510542035102844, -0.1297408491373062, -0.10333249717950821, -0.042090803384780884, -0.08136920630931854, -0.11064599454402924, 0.030137354508042336, -0.13714058697223663, 0.03241372108459473, 0.05798095837235451, 0.021128756925463676, -0.002468815306201577, 0.1863657832145691, -0.052914056926965714, 0.0120618287473917, 0.05610935017466545, -0.0057271672412753105, -0.0021841127891093493, -0.06926091760396957, -0.034982919692993164, 0.057389069348573685, 0.01785425655543804, 0.07583096623420715, -0.0543086938560009, 0.031941503286361694, 0.01756211370229721, -0.04102940484881401, -0.06739315390586853, -0.0025759530253708363, 0.04353508725762367, 0.03054226189851761, 0.032405417412519455, 0.0718672126531601, -0.012446478009223938, -0.035495590418577194, 0.26626384258270264, -0.07048352062702179, -0.08542486280202866, -0.14713987708091736, 0.20367400348186493, 0.05040423944592476, -0.012124688364565372, 0.06909912079572678, -0.12317673861980438, 0.011791283264756203, 0.17472577095031738, 0.1467847228050232, -0.049949511885643005, -0.01006540097296238, -0.004701677709817886, -0.0044451383873820305, -0.040123216807842255, 0.08573959767818451, 0.08520745486021042, 0.013125370256602764, -0.039743244647979736, -0.051855139434337616, -0.005526817869395018, -0.029508566483855247, -0.05373920127749443, 0.058867692947387695, 0.02835293859243393, 0.018107132986187935, -0.04394892230629921, 0.08581068366765976, -0.011060712859034538, -0.18385685980319977, 0.04301327094435692, -0.15769784152507782, -0.16850458085536957, -0.024469472467899323, 0.07245940715074539, -0.016527695581316948, 0.052616752684116364, -0.027578080072999, -0.0068796235136687756, 0.1427699476480484, -0.010557947680354118, -0.08477587252855301, -0.11013021320104599, 0.09958361089229584, -0.04713853821158409, 0.2028806060552597, -0.004012823570519686, 0.07694704085588455, 0.09923572093248367, 0.00338123831897974, -0.12879447638988495, 0.05245096981525421, 0.08088873326778412, -0.054503004997968674, 0.0217300895601511, 0.16358113288879395, -0.04277164489030838, 0.12513695657253265, 0.0488121472299099, -0.12740637362003326, -0.019062863662838936, -0.010783673264086246, -0.004942445084452629, -0.110896036028862, 0.006111595779657364, -0.052943307906389236, 0.1604195237159729, 0.23216642439365387, -0.031081968918442726, 0.0214610006660223, -0.08292635530233383, 0.02247638814151287, 0.06237802654504776, 0.07566479593515396, -0.03561599180102348, -0.1766723394393921, 0.011074485257267952, -0.025905568152666092, 0.029859233647584915, -0.2158776819705963, -0.10210727900266647, 0.08609896153211594, -0.05152461305260658, -0.030103402212262154, 0.12874647974967957, 0.05162128806114197, 0.03982663154602051, -0.02316376566886902, -0.12254847586154938, -0.0465647391974926, 0.13581393659114838, -0.17713633179664612, -0.04967159405350685 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-squad2-with-ner-with-neg-with-multi This model is a fine-tuned version of [twmkn9/distilbert-base-uncased-squad2](https://huggingface.co/twmkn9/distilbert-base-uncased-squad2) on the conll2003 dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5.0 ### Training results ### Framework versions - Transformers 4.8.2 - Pytorch 1.8.1+cu111 - Datasets 1.8.0 - Tokenizers 0.10.3
{"tags": ["generated_from_trainer"], "datasets": ["conll2003"], "model_index": [{"name": "distilbert-base-uncased-squad2-with-ner-with-neg-with-multi", "results": [{"task": {"name": "Question Answering", "type": "question-answering"}, "dataset": {"name": "conll2003", "type": "conll2003", "args": "conll2003"}}]}]}
question-answering
andi611/distilbert-base-uncased-squad2-with-ner-with-neg-with-multi
[ "transformers", "pytorch", "distilbert", "question-answering", "generated_from_trainer", "dataset:conll2003", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #distilbert #question-answering #generated_from_trainer #dataset-conll2003 #endpoints_compatible #region-us
# distilbert-base-uncased-squad2-with-ner-with-neg-with-multi This model is a fine-tuned version of twmkn9/distilbert-base-uncased-squad2 on the conll2003 dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5.0 ### Training results ### Framework versions - Transformers 4.8.2 - Pytorch 1.8.1+cu111 - Datasets 1.8.0 - Tokenizers 0.10.3
[ "# distilbert-base-uncased-squad2-with-ner-with-neg-with-multi\n\nThis model is a fine-tuned version of twmkn9/distilbert-base-uncased-squad2 on the conll2003 dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 2e-05\n- train_batch_size: 16\n- eval_batch_size: 8\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 5.0", "### Training results", "### Framework versions\n\n- Transformers 4.8.2\n- Pytorch 1.8.1+cu111\n- Datasets 1.8.0\n- Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #distilbert #question-answering #generated_from_trainer #dataset-conll2003 #endpoints_compatible #region-us \n", "# distilbert-base-uncased-squad2-with-ner-with-neg-with-multi\n\nThis model is a fine-tuned version of twmkn9/distilbert-base-uncased-squad2 on the conll2003 dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 2e-05\n- train_batch_size: 16\n- eval_batch_size: 8\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 5.0", "### Training results", "### Framework versions\n\n- Transformers 4.8.2\n- Pytorch 1.8.1+cu111\n- Datasets 1.8.0\n- Tokenizers 0.10.3" ]
[ 45, 61, 6, 12, 8, 3, 90, 4, 34 ]
[ "passage: TAGS\n#transformers #pytorch #distilbert #question-answering #generated_from_trainer #dataset-conll2003 #endpoints_compatible #region-us \n# distilbert-base-uncased-squad2-with-ner-with-neg-with-multi\n\nThis model is a fine-tuned version of twmkn9/distilbert-base-uncased-squad2 on the conll2003 dataset.## Model description\n\nMore information needed## Intended uses & limitations\n\nMore information needed## Training and evaluation data\n\nMore information needed## Training procedure### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 2e-05\n- train_batch_size: 16\n- eval_batch_size: 8\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 5.0### Training results### Framework versions\n\n- Transformers 4.8.2\n- Pytorch 1.8.1+cu111\n- Datasets 1.8.0\n- Tokenizers 0.10.3" ]
[ -0.08377667516469955, 0.12624859809875488, -0.0021613389253616333, 0.09186580777168274, 0.1449122577905655, 0.040838029235601425, 0.09639338403940201, 0.10942788422107697, -0.1271301507949829, 0.061844222247600555, 0.07529900223016739, 0.07232343405485153, 0.022225704044103622, 0.09373793005943298, -0.03053124248981476, -0.2554844319820404, 0.007175937760621309, 0.010372807271778584, -0.0722125768661499, 0.11133471131324768, 0.09282150864601135, -0.10498446226119995, 0.0618441216647625, 0.004670311696827412, -0.18565034866333008, 0.026826277375221252, -0.03275768831372261, -0.03223852068185806, 0.08990702033042908, 0.010172669775784016, 0.10860294848680496, 0.004330153577029705, 0.1181945651769638, -0.2157648652791977, 0.0015717742498964071, 0.07568271458148956, 0.023452023044228554, 0.06237158179283142, 0.046730462461709976, 0.006044123321771622, 0.12920604646205902, -0.13558056950569153, 0.09809619188308716, 0.0326494462788105, -0.08050595223903656, -0.11301612108945847, -0.07736490666866302, 0.09475117921829224, 0.0954323261976242, 0.10757695883512497, -0.0028026667423546314, 0.14621424674987793, -0.13478751480579376, 0.0911637470126152, 0.1631198674440384, -0.2573602795600891, -0.08282943814992905, 0.06019771099090576, 0.029367320239543915, 0.06317082792520523, -0.10898672789335251, -0.035240538418293, 0.04664184898138046, 0.03492534160614014, 0.06382229924201965, -0.021329794079065323, -0.10119985044002533, 0.014609803445637226, -0.15821205079555511, -0.02061784267425537, 0.20203940570354462, 0.06217571347951889, -0.03835582360625267, -0.052264172583818436, -0.05959264934062958, -0.0721736028790474, 0.00384121248498559, -0.05815475806593895, 0.02154475823044777, -0.05471031740307808, -0.09384952485561371, -0.04210931435227394, -0.07101068645715714, -0.0571773424744606, -0.020689766854047775, 0.11504604667425156, 0.06536809355020523, 0.004465870559215546, -0.040989264845848083, 0.11639092862606049, 0.017784785479307175, -0.10730978101491928, -0.02368597500026226, -0.009808950126171112, -0.09923869371414185, -0.06679881364107132, -0.0520271360874176, -0.008934248238801956, -0.004620331339538097, 0.17212042212486267, -0.031970541924238205, 0.05571991577744484, 0.020821163430809975, -0.004064141307026148, -0.01677756942808628, 0.13164804875850677, -0.05941001698374748, -0.028805721551179886, -0.019472181797027588, 0.07851308584213257, -0.021060572937130928, -0.0007325918995775282, -0.0793260782957077, -0.01960020512342453, 0.09291069209575653, 0.05155570060014725, -0.050099730491638184, 0.05137626826763153, -0.02746344357728958, -0.05956471338868141, -0.02607775665819645, -0.1221759021282196, 0.03365917131304741, -0.0008886920986697078, -0.07891757041215897, 0.029600616544485092, 0.016584495082497597, -0.006215689238160849, -0.03822212293744087, 0.09082042425870895, -0.10512220859527588, -0.0002136374096153304, -0.07986310869455338, -0.07377830892801285, 0.01614830642938614, -0.08786530792713165, -0.014181948266923428, -0.08341027796268463, -0.18348027765750885, -0.03629335016012192, 0.03463231027126312, -0.02831321395933628, -0.03792010247707367, -0.06455048173666, -0.06181197986006737, -0.012807458639144897, 0.005535210948437452, 0.07999560981988907, -0.039199624210596085, 0.08083228021860123, 0.004366551525890827, 0.026907656341791153, 0.01915123499929905, 0.04338867962360382, -0.08488199859857559, 0.019937774166464806, -0.07520244270563126, 0.07554740458726883, -0.08129511028528214, 0.024423006922006607, -0.10451212525367737, -0.13351589441299438, -0.005435519386082888, -0.02020541951060295, 0.046794719994068146, 0.11897987872362137, -0.1615172028541565, -0.036134134978055954, 0.1593552976846695, -0.06215120479464531, -0.07526346296072006, 0.11458737403154373, -0.06236143410205841, 0.03723597154021263, 0.060913678258657455, 0.14823463559150696, 0.13839122653007507, -0.11458370834589005, -0.004004909191280603, -0.004575103521347046, 0.05217823013663292, 0.03926827386021614, 0.04856858029961586, -0.0008764241356402636, -0.005004735663533211, 0.01560179702937603, -0.08035963773727417, -0.0020685074850916862, -0.09984558820724487, -0.09876085072755814, -0.05028127506375313, -0.08462323993444443, 0.07493258267641068, 0.03977863863110542, 0.04882432520389557, -0.060923121869564056, -0.0871017649769783, 0.141851007938385, 0.13077344000339508, -0.06058323383331299, 0.01143672689795494, -0.07872550189495087, 0.024093976244330406, -0.02976089157164097, -0.025203805416822433, -0.19610366225242615, -0.13601137697696686, 0.026592181995511055, -0.040487855672836304, 0.053118348121643066, 0.0585772730410099, 0.05418943986296654, 0.07135365903377533, -0.05665181577205658, -0.026042301207780838, -0.10582292824983597, 0.0003296805080026388, -0.07691001147031784, -0.17756162583827972, -0.05441988632082939, -0.02021368034183979, 0.16004498302936554, -0.2237398624420166, 0.02937646210193634, -0.023103896528482437, 0.12476339191198349, 0.012186587788164616, -0.05498357117176056, -0.010308757424354553, 0.0765904113650322, -0.018929701298475266, -0.07705385237932205, 0.043047793209552765, -0.00967330764979124, -0.09528273344039917, -0.11383543163537979, -0.10494083166122437, 0.05288400501012802, 0.06722217053174973, 0.01879963092505932, -0.10500248521566391, -0.0032366812229156494, -0.0787280946969986, -0.05515052005648613, -0.07437129318714142, 0.003341027069836855, 0.17672888934612274, -0.014624303206801414, 0.11167684197425842, -0.05355839431285858, -0.06340960413217545, -0.013418869115412235, 0.0030932212248444557, -0.0051588942296803, 0.08323247730731964, 0.1079496368765831, -0.12858246266841888, 0.0950816348195076, 0.08140034228563309, -0.0922466591000557, 0.15489083528518677, -0.06033986434340477, -0.086883544921875, -0.03780997917056084, 0.02319520153105259, -0.008488951250910759, 0.09737466275691986, -0.12766337394714355, 0.007496931590139866, 0.02629171870648861, 0.02825772948563099, 0.038203977048397064, -0.1722986102104187, -0.019800525158643723, 0.03143543377518654, -0.040164101868867874, -0.0522383414208889, -0.0070139942690730095, 0.03177869692444801, 0.08696123212575912, 0.014189762994647026, -0.008701225742697716, 0.025506095960736275, 0.002400388941168785, -0.09581082314252853, 0.1957044005393982, -0.1223868727684021, -0.12343120574951172, -0.11881009489297867, 0.0473516508936882, -0.1003466472029686, -0.03199477866292, 0.028797997161746025, -0.09911321848630905, -0.031855471432209015, -0.07590498775243759, 0.00219420762732625, -0.06381598860025406, -0.005206212401390076, 0.026604129001498222, 0.004541876260191202, 0.0712743028998375, -0.13853490352630615, 0.019972017034888268, -0.018757540732622147, -0.11996300518512726, 0.011967950500547886, 0.023630771785974503, 0.13843262195587158, 0.14109674096107483, -0.0058516766875982285, 0.0224084984511137, -0.028233662247657776, 0.2207602560520172, -0.06493882089853287, -0.01626885123550892, 0.09236111491918564, 0.004080017097294331, 0.04955664277076721, 0.09117674827575684, 0.03912811353802681, -0.09097272902727127, 0.03286164626479149, 0.08532378077507019, -0.018057536333799362, -0.24200795590877533, -0.05142565444111824, -0.051896337419748306, -0.05080626532435417, 0.09969540685415268, 0.036505524069070816, 0.04856199398636818, 0.04709145799279213, -0.010219710879027843, 0.039504677057266235, -0.030516894534230232, 0.08757677674293518, 0.11011574417352676, 0.03509389981627464, 0.09891965985298157, -0.030829792842268944, -0.04984692484140396, 0.06323838233947754, -0.011240135878324509, 0.3021204471588135, -0.014027449302375317, 0.0743478536605835, 0.07284847646951675, 0.15527652204036713, -0.03184390440583229, 0.04824664071202278, 0.018073003739118576, -0.01035032607614994, 0.015898074954748154, -0.05268806219100952, -0.015249400399625301, 0.02580692619085312, 0.02717278152704239, 0.04903332144021988, -0.10004495829343796, 0.026447193697094917, 0.04659079387784004, 0.2414924055337906, 0.031622663140296936, -0.2745228409767151, -0.09237301349639893, -0.0021471551153808832, -0.036425039172172546, -0.036905717104673386, 0.019300082698464394, 0.1287136673927307, -0.13120920956134796, 0.048619844019412994, -0.05274137854576111, 0.09210575371980667, -0.025464249774813652, 0.0013099733041599393, 0.056331101804971695, 0.11770199239253998, 0.0013867696980014443, 0.09434927999973297, -0.22362516820430756, 0.21739105880260468, 0.007359122857451439, 0.09781872481107712, -0.051345955580472946, 0.01377839408814907, 0.010462690144777298, 0.0982847809791565, 0.08416643738746643, 0.0109717333689332, -0.004338584840297699, -0.15978701412677765, -0.03934456408023834, 0.04209894686937332, 0.12759354710578918, -0.040637094527482986, 0.09334369003772736, -0.036694224923849106, 0.011875000782310963, 0.05541178956627846, -0.04659934714436531, -0.16931185126304626, -0.12934452295303345, 0.020349761471152306, -0.013392079621553421, -0.0319201685488224, -0.0704197958111763, -0.10157058387994766, -0.027398884296417236, 0.18764911592006683, -0.02268761396408081, -0.02633231319487095, -0.13490258157253265, 0.08063655346632004, 0.10938140004873276, -0.06805942207574844, 0.010623234324157238, 0.029936200007796288, 0.0832098200917244, 0.046255484223365784, -0.08621608465909958, 0.03914792090654373, -0.06808901578187943, -0.14686866104602814, -0.05087799206376076, 0.11853531748056412, 0.07100459188222885, 0.054745499044656754, -0.011814083904027939, 0.0012952762190252542, 0.017677640542387962, -0.10550180822610855, -0.0008405100088566542, 0.11196605116128922, 0.08666128665208817, 0.07927245646715164, -0.1126406341791153, 0.0427699014544487, -0.05698303505778313, -0.0023641453590244055, 0.1449265331029892, 0.17096161842346191, -0.08182696253061295, 0.04234197363257408, 0.05606943741440773, -0.08206376433372498, -0.15832065045833588, 0.0738261491060257, 0.11083970218896866, 0.007794979959726334, 0.034513264894485474, -0.20026759803295135, 0.11835825443267822, 0.13592319190502167, 0.01504850946366787, 0.04794280603528023, -0.368386447429657, -0.11837788671255112, 0.06396598368883133, 0.10686437040567398, 0.03424318507313728, -0.13500595092773438, -0.021738145500421524, 0.0017259607557207346, -0.15726450085639954, 0.09831748902797699, -0.07973433285951614, 0.10769084095954895, -0.010316668078303337, 0.09633243083953857, 0.01921910233795643, -0.03897184878587723, 0.14086592197418213, 0.08923830091953278, 0.07913744449615479, -0.05218437314033508, -0.013661312870681286, 0.10309872776269913, -0.05822976306080818, 0.05282514542341232, -0.004507495556026697, 0.08053087443113327, -0.1519233137369156, -0.025034956634044647, -0.08599194139242172, 0.05760277435183525, -0.05721097066998482, -0.07258886843919754, -0.05035385116934776, 0.059705741703510284, 0.08505330979824066, -0.03211640939116478, 0.04455069452524185, 0.02675214596092701, 0.10934973508119583, 0.04092007875442505, 0.09676937758922577, 0.010732094757258892, -0.13385160267353058, -0.03887234255671501, -0.008308831602334976, 0.06366455554962158, -0.10138818621635437, 0.02078029327094555, 0.14065256714820862, 0.06835818290710449, 0.15879088640213013, 0.056770309805870056, -0.03308720141649246, 0.002099572913721204, 0.03211298957467079, -0.12904328107833862, -0.159125417470932, -0.014214510098099709, -0.10092085599899292, -0.1446443796157837, 0.0396902821958065, 0.08920038491487503, -0.05070686340332031, 0.0006468362989835441, -0.007993083447217941, 0.005912691354751587, -0.03725213557481766, 0.18299774825572968, 0.04579377546906471, 0.05785590037703514, -0.0763898715376854, 0.10226201266050339, 0.06250814348459244, -0.08126145601272583, 0.031004955992102623, 0.04873352125287056, -0.09402041137218475, -0.028758930042386055, 0.045074645429849625, 0.145476296544075, -0.0634005069732666, -0.025500843301415443, -0.08638904988765717, -0.0798848494887352, 0.05966413766145706, 0.12303241342306137, 0.056140534579753876, 0.0028625549748539925, -0.06570226699113846, 0.0443015955388546, -0.14843758940696716, 0.07832807302474976, 0.05701643228530884, 0.08206168562173843, -0.14984607696533203, 0.15589942038059235, 0.004213047679513693, 0.04321407526731491, -0.01097043976187706, 0.0025751322973519564, -0.10701853781938553, -0.012561521492898464, -0.13261209428310394, -0.04390840232372284, -0.03738756477832794, 0.01774238608777523, 0.00041124640847556293, -0.05063590407371521, -0.04962274059653282, 0.04661766067147255, -0.07336513698101044, -0.05603829026222229, 0.032044023275375366, 0.0616932138800621, -0.1354467123746872, 0.003514524782076478, 0.025695962831377983, -0.09856827557086945, 0.07169638574123383, 0.07297024875879288, 0.012738410383462906, 0.042230527848005295, -0.0944146141409874, -0.017247365787625313, 0.03539817035198212, 0.040310993790626526, 0.0659184455871582, -0.07339923083782196, -0.000746925245039165, -0.02440587803721428, 0.05377393215894699, 0.03068874217569828, 0.04171079024672508, -0.11203499883413315, -0.009793572127819061, -0.060748904943466187, -0.07198581844568253, -0.08189361542463303, 0.03141573816537857, 0.09460382163524628, 0.03280258551239967, 0.17378737032413483, -0.07225225120782852, 0.06227044388651848, -0.19113905727863312, -0.04421956092119217, 0.013611922971904278, -0.028731239959597588, -0.0375613197684288, -0.045746318995952606, 0.06891466677188873, -0.0626981258392334, 0.08917099982500076, -0.048595719039440155, 0.0760456845164299, 0.026095248758792877, -0.04349757730960846, -0.00930511113256216, -0.005293113179504871, 0.20300908386707306, 0.05820660665631294, -0.03148038312792778, 0.05690549314022064, -0.009369807317852974, 0.046295151114463806, 0.04824686795473099, 0.21344292163848877, 0.1426687091588974, -0.08463440835475922, 0.04531287029385567, 0.0735735073685646, -0.08971810340881348, -0.15163138508796692, 0.07166227698326111, -0.017086366191506386, 0.10600858181715012, -0.03337101265788078, 0.1547233760356903, 0.09830540418624878, -0.17789432406425476, 0.048373643308877945, -0.028413796797394753, -0.12102438509464264, -0.10220802575349808, -0.046631064265966415, -0.07950141280889511, -0.12698878347873688, 0.0366644561290741, -0.1394302248954773, 0.03311457112431526, 0.07421048730611801, 0.03257622942328453, -0.0005061675328761339, 0.18422628939151764, -0.030747761949896812, 0.008539403788745403, 0.05508320778608322, -0.0015583140775561333, -0.019313834607601166, -0.05508655309677124, -0.04409271106123924, 0.03587548807263374, -0.012735691852867603, 0.08041418343782425, -0.056131813675165176, -0.005206833127886057, 0.02153245359659195, -0.038136184215545654, -0.05295773223042488, 0.01701461896300316, 0.01781618222594261, 0.028736354783177376, 0.0519535094499588, 0.052562158554792404, -0.024767696857452393, -0.038357798010110855, 0.24050447344779968, -0.07121256738901138, -0.09680203348398209, -0.1545623391866684, 0.2342175543308258, 0.06129840761423111, -0.01739351823925972, 0.08342106640338898, -0.11134551465511322, 0.0033488404005765915, 0.17731519043445587, 0.1520920693874359, -0.04464757815003395, -0.012951920740306377, 0.0085277259349823, -0.012783779762685299, -0.0406552292406559, 0.11162073165178299, 0.09399691969156265, 0.057457100600004196, -0.029141515493392944, -0.03785303607583046, -0.02189778722822666, -0.026530789211392403, -0.0665297731757164, 0.06615389883518219, 0.05012352764606476, -0.010416153818368912, -0.03826012462377548, 0.07984071224927902, -0.03176279738545418, -0.14187496900558472, 0.07060074806213379, -0.14044469594955444, -0.17044030129909515, -0.032098885625600815, 0.07541300356388092, -0.023870110511779785, 0.05984106287360191, -0.027660313993692398, -0.028874661773443222, 0.14759795367717743, 0.00008901089313440025, -0.07742289453744888, -0.10843171924352646, 0.10371953248977661, -0.04244426637887955, 0.1821063756942749, -0.006365304347127676, 0.07941899448633194, 0.10795927047729492, 0.03269209340214729, -0.09378638863563538, 0.058543942868709564, 0.07458137720823288, -0.06589244306087494, 0.015107615850865841, 0.14858804643154144, -0.04507753625512123, 0.10055025666952133, 0.04714122414588928, -0.1380874663591385, -0.011903694830834866, -0.01645311899483204, -0.009406225755810738, -0.0952218621969223, 0.020390592515468597, -0.07010222226381302, 0.1496729999780655, 0.2486104518175125, -0.03290712833404541, 0.008885546587407589, -0.07999779284000397, 0.036298967897892, 0.05386994406580925, 0.09265796840190887, -0.034434858709573746, -0.19632911682128906, 0.011673693545162678, -0.05192546918988228, 0.023318786174058914, -0.2267792671918869, -0.11008300632238388, 0.06859547644853592, -0.051678840070962906, -0.05049583688378334, 0.11992605775594711, 0.07032237946987152, 0.040122535079717636, -0.0339965857565403, -0.13109759986400604, -0.05551880598068237, 0.14034754037857056, -0.15343163907527924, -0.050491124391555786 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-squad2-with-ner-with-neg-with-repeat This model is a fine-tuned version of [twmkn9/distilbert-base-uncased-squad2](https://huggingface.co/twmkn9/distilbert-base-uncased-squad2) on the conll2003 dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results ### Framework versions - Transformers 4.8.2 - Pytorch 1.8.1+cu111 - Datasets 1.8.0 - Tokenizers 0.10.3
{"tags": ["generated_from_trainer"], "datasets": ["conll2003"], "model_index": [{"name": "distilbert-base-uncased-squad2-with-ner-with-neg-with-repeat", "results": [{"task": {"name": "Question Answering", "type": "question-answering"}, "dataset": {"name": "conll2003", "type": "conll2003", "args": "conll2003"}}]}]}
question-answering
andi611/distilbert-base-uncased-squad2-with-ner-with-neg-with-repeat
[ "transformers", "pytorch", "distilbert", "question-answering", "generated_from_trainer", "dataset:conll2003", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #distilbert #question-answering #generated_from_trainer #dataset-conll2003 #endpoints_compatible #region-us
# distilbert-base-uncased-squad2-with-ner-with-neg-with-repeat This model is a fine-tuned version of twmkn9/distilbert-base-uncased-squad2 on the conll2003 dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results ### Framework versions - Transformers 4.8.2 - Pytorch 1.8.1+cu111 - Datasets 1.8.0 - Tokenizers 0.10.3
[ "# distilbert-base-uncased-squad2-with-ner-with-neg-with-repeat\n\nThis model is a fine-tuned version of twmkn9/distilbert-base-uncased-squad2 on the conll2003 dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 2e-05\n- train_batch_size: 16\n- eval_batch_size: 16\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 5", "### Training results", "### Framework versions\n\n- Transformers 4.8.2\n- Pytorch 1.8.1+cu111\n- Datasets 1.8.0\n- Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #distilbert #question-answering #generated_from_trainer #dataset-conll2003 #endpoints_compatible #region-us \n", "# distilbert-base-uncased-squad2-with-ner-with-neg-with-repeat\n\nThis model is a fine-tuned version of twmkn9/distilbert-base-uncased-squad2 on the conll2003 dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 2e-05\n- train_batch_size: 16\n- eval_batch_size: 16\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 5", "### Training results", "### Framework versions\n\n- Transformers 4.8.2\n- Pytorch 1.8.1+cu111\n- Datasets 1.8.0\n- Tokenizers 0.10.3" ]
[ 45, 63, 6, 12, 8, 3, 90, 4, 34 ]
[ "passage: TAGS\n#transformers #pytorch #distilbert #question-answering #generated_from_trainer #dataset-conll2003 #endpoints_compatible #region-us \n# distilbert-base-uncased-squad2-with-ner-with-neg-with-repeat\n\nThis model is a fine-tuned version of twmkn9/distilbert-base-uncased-squad2 on the conll2003 dataset.## Model description\n\nMore information needed## Intended uses & limitations\n\nMore information needed## Training and evaluation data\n\nMore information needed## Training procedure### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 2e-05\n- train_batch_size: 16\n- eval_batch_size: 16\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 5### Training results### Framework versions\n\n- Transformers 4.8.2\n- Pytorch 1.8.1+cu111\n- Datasets 1.8.0\n- Tokenizers 0.10.3" ]
[ -0.08582551032304764, 0.14222602546215057, -0.0021311738528311253, 0.10169481486082077, 0.14611761271953583, 0.036837272346019745, 0.07338898628950119, 0.12399827688932419, -0.12155384570360184, 0.05251523107290268, 0.0778205394744873, 0.06972306966781616, 0.02489965595304966, 0.0992971733212471, -0.03290172666311264, -0.24822862446308136, -0.00019010488176718354, 0.007933249697089195, -0.059574246406555176, 0.11123473197221756, 0.09041738510131836, -0.1055879294872284, 0.06706506013870239, -0.005110539961606264, -0.1744271069765091, 0.03037690743803978, -0.03636103868484497, -0.026336299255490303, 0.09096716344356537, 0.00890294648706913, 0.1035921722650528, -0.0015932876849547029, 0.12528079748153687, -0.21141213178634644, -0.001290134503506124, 0.07427042722702026, 0.030224941670894623, 0.06782156229019165, 0.030173655599355698, 0.008106782101094723, 0.10022404044866562, -0.14865803718566895, 0.09254875779151917, 0.027165226638317108, -0.08324173092842102, -0.10783975571393967, -0.07804962247610092, 0.08636066317558289, 0.09150237590074539, 0.10933171212673187, -0.0005063741118647158, 0.1521303355693817, -0.11721751093864441, 0.08959654718637466, 0.180610790848732, -0.2585587799549103, -0.07370678335428238, 0.053965602070093155, 0.03163880854845047, 0.0645298957824707, -0.11207607388496399, -0.036159295588731766, 0.05092022195458412, 0.031238913536071777, 0.06963451951742172, -0.024498026818037033, -0.11864491552114487, 0.018698055297136307, -0.15116403996944427, -0.023708121851086617, 0.2147594690322876, 0.05825494974851608, -0.03374185040593147, -0.05740009620785713, -0.05571296438574791, -0.08863331377506256, 0.005623535253107548, -0.0609453059732914, 0.029532216489315033, -0.05869554355740547, -0.08727947622537613, -0.051463186740875244, -0.06677725911140442, -0.06548396497964859, -0.015019381418824196, 0.09098395705223083, 0.06304755061864853, 0.00043628603452816606, -0.03632810711860657, 0.11850631237030029, 0.002736251801252365, -0.10566497594118118, -0.024333300068974495, -0.012723131105303764, -0.09520772844552994, -0.06792127341032028, -0.04523969441652298, -0.011702168732881546, -0.010034378618001938, 0.15923219919204712, -0.03920808434486389, 0.04600772261619568, 0.01889946311712265, -0.0006731775356456637, -0.012844596058130264, 0.1342727690935135, -0.06686960160732269, -0.028863567858934402, -0.01546292845159769, 0.08358285576105118, -0.02703813835978508, 0.004556413274258375, -0.08097774535417557, -0.0345052033662796, 0.09697303920984268, 0.05831844359636307, -0.04990333691239357, 0.06263160705566406, -0.027149394154548645, -0.053835585713386536, -0.008668872527778149, -0.1286386400461197, 0.03049072064459324, -0.013936081901192665, -0.09835554659366608, -0.0033809440210461617, 0.0329374223947525, -0.008235159330070019, -0.03773711249232292, 0.07272075116634369, -0.10108727961778641, -0.006438500247895718, -0.07835612446069717, -0.0770992711186409, 0.006956484634429216, -0.08286815136671066, -0.004016163758933544, -0.08459333330392838, -0.20677366852760315, -0.03969695046544075, 0.025112489238381386, -0.03350386768579483, -0.039697736501693726, -0.07399182766675949, -0.06704369187355042, -0.019334832206368446, 0.0032310066744685173, 0.08156327158212662, -0.04029001295566559, 0.08605413138866425, -0.001278347335755825, 0.026588039472699165, 0.018508022651076317, 0.04717973992228508, -0.10041145235300064, 0.02181130461394787, -0.0745663046836853, 0.07071664184331894, -0.08063077926635742, 0.033245451748371124, -0.10649138689041138, -0.13020601868629456, -0.006621450185775757, -0.023089565336704254, 0.05310799553990364, 0.12059962004423141, -0.17163383960723877, -0.023970497772097588, 0.15769805014133453, -0.04813086614012718, -0.0813513696193695, 0.10621935874223709, -0.06267648935317993, 0.053203366696834564, 0.060927461832761765, 0.16176751255989075, 0.14501871168613434, -0.12100585550069809, -0.004518276546150446, -0.007145735435187817, 0.04008849337697029, 0.0384976863861084, 0.03447580710053444, 0.004891096148639917, 0.006532794330269098, 0.017134515568614006, -0.08171617984771729, -0.011530800722539425, -0.09921684861183167, -0.09730249643325806, -0.05004177242517471, -0.0992090106010437, 0.08128798007965088, 0.04033990949392319, 0.045147914439439774, -0.06369107216596603, -0.09113294631242752, 0.14333122968673706, 0.13380694389343262, -0.05649638548493385, 0.0063326857052743435, -0.08002230525016785, 0.0252387598156929, -0.021933147683739662, -0.02996988035738468, -0.18784888088703156, -0.12995073199272156, 0.03064780682325363, -0.018346738070249557, 0.05544363334774971, 0.06626905500888824, 0.062705397605896, 0.05995917692780495, -0.05634712055325508, -0.029232485219836235, -0.09453660994768143, 0.0021290674339979887, -0.08731627464294434, -0.1664196401834488, -0.045053429901599884, -0.018905777484178543, 0.14355367422103882, -0.2387954741716385, 0.024129407480359077, -0.03878391906619072, 0.1218489333987236, 0.014613817445933819, -0.053681813180446625, 0.0008711017435416579, 0.062354348599910736, -0.011427663266658783, -0.08177479356527328, 0.041782550513744354, -0.010171961039304733, -0.08355654031038284, -0.10828390717506409, -0.11317245662212372, 0.035728130489587784, 0.06202660873532295, 0.02778332121670246, -0.11651266366243362, -0.018756810575723648, -0.0768996924161911, -0.05281509831547737, -0.06658133119344711, -0.013653811067342758, 0.1888495236635208, -0.013990487903356552, 0.11734601855278015, -0.052276864647865295, -0.0730028823018074, -0.019704537466168404, 0.001978221582248807, -0.004886580631136894, 0.08512167632579803, 0.09222047030925751, -0.12511949241161346, 0.09239747375249863, 0.07833807170391083, -0.07583560049533844, 0.15486232936382294, -0.04811419919133186, -0.08758848905563354, -0.031018879264593124, 0.02327396720647812, -0.015740031376481056, 0.10033764690160751, -0.11098508536815643, 0.0016833358677104115, 0.02831409126520157, 0.025417175143957138, 0.036522556096315384, -0.16780255734920502, -0.026409504935145378, 0.03693471848964691, -0.04205184057354927, -0.046408407390117645, -0.009083387441933155, 0.03525524213910103, 0.08955679833889008, 0.015111292712390423, -0.01498142909258604, 0.020703746005892754, -0.0005554659874178469, -0.08996261656284332, 0.17961101233959198, -0.12573182582855225, -0.12945088744163513, -0.11489639431238174, 0.058017902076244354, -0.07593442499637604, -0.028012054041028023, 0.02309194765985012, -0.09154298156499863, -0.032013654708862305, -0.08011419326066971, -0.008681954815983772, -0.05826030671596527, -0.015484675765037537, 0.026647299528121948, 0.010311972349882126, 0.07514641433954239, -0.13985605537891388, 0.02082251012325287, -0.01490557100623846, -0.12370527535676956, 0.009628847241401672, 0.015419629402458668, 0.14186562597751617, 0.12946026027202606, -0.017652912065386772, 0.023890716955065727, -0.032000862061977386, 0.2337644100189209, -0.06535207480192184, -0.007112112361937761, 0.09125908464193344, 0.006565948016941547, 0.04898809641599655, 0.10201243311166763, 0.02523273229598999, -0.09595222026109695, 0.040496595203876495, 0.0833660140633583, -0.013973064720630646, -0.23686812818050385, -0.04402777552604675, -0.04058808088302612, -0.051016297191381454, 0.10273633152246475, 0.03812796622514725, 0.05208465829491615, 0.046201735734939575, -0.005047956015914679, 0.03964037820696831, -0.029718805104494095, 0.08196999132633209, 0.09422213584184647, 0.027509931474924088, 0.09230320155620575, -0.02307504042983055, -0.04714604467153549, 0.05819033086299896, 0.0019568661227822304, 0.2935417592525482, -0.030534928664565086, 0.08213755488395691, 0.05947774276137352, 0.1620016098022461, -0.040912602096796036, 0.04178539291024208, 0.014423922635614872, -0.00425003794953227, 0.010601853020489216, -0.04971485957503319, -0.02010984905064106, 0.02946416288614273, 0.019229117780923843, 0.05544579029083252, -0.10181838274002075, 0.028331631794571877, 0.04549887776374817, 0.238694429397583, 0.03911292180418968, -0.28179335594177246, -0.08829517662525177, -0.002569210948422551, -0.029316818341612816, -0.045459602028131485, 0.02125760354101658, 0.13632316887378693, -0.13057628273963928, 0.03194727376103401, -0.04436063766479492, 0.09235930442810059, -0.033144112676382065, 0.007882790639996529, 0.05156955122947693, 0.11455351859331131, -0.0031638608779758215, 0.09912144392728806, -0.21150001883506775, 0.21405711770057678, 0.011900782585144043, 0.09972836822271347, -0.05137651413679123, 0.0069177718833088875, 0.00592920184135437, 0.08982561528682709, 0.10814127326011658, 0.009516846388578415, 0.0066283768974244595, -0.17068110406398773, -0.04012700915336609, 0.038471002131700516, 0.12204797565937042, -0.035581428557634354, 0.09296676516532898, -0.04575048387050629, 0.010381272993981838, 0.05678851529955864, -0.05543462187051773, -0.1631467044353485, -0.11682498455047607, 0.017061827704310417, -0.01138462033122778, -0.022892067208886147, -0.06272783130407333, -0.09042108058929443, -0.03872506320476532, 0.19014081358909607, -0.009816951118409634, -0.03556614741683006, -0.12610448896884918, 0.08235260099172592, 0.11899842321872711, -0.06769903004169464, 0.0031537774484604597, 0.041608892381191254, 0.08464035391807556, 0.05229194089770317, -0.07964885234832764, 0.03975222632288933, -0.060814905911684036, -0.14298133552074432, -0.05172228813171387, 0.11714453250169754, 0.07115641981363297, 0.059894852340221405, -0.0048003350384533405, 0.004904287401586771, 0.01328063290566206, -0.09271416068077087, 0.005010698456317186, 0.10395453870296478, 0.088038370013237, 0.07284563034772873, -0.1186039000749588, 0.06980060786008835, -0.06657880544662476, 0.0020288543310016394, 0.14861392974853516, 0.18467094004154205, -0.0898786261677742, 0.04487668722867966, 0.046755120158195496, -0.09046491980552673, -0.16450147330760956, 0.07781995832920074, 0.10184477269649506, 0.007487035822123289, 0.04476313665509224, -0.19005024433135986, 0.10387372970581055, 0.1336791217327118, 0.014545687474310398, 0.05437680333852768, -0.3625195622444153, -0.1175193041563034, 0.07225566357374191, 0.10818769782781601, 0.01777925342321396, -0.12817800045013428, -0.018936477601528168, 0.0041217440739274025, -0.15225303173065186, 0.0902915745973587, -0.062093380838632584, 0.10520479083061218, -0.007408461067825556, 0.11709577590227127, 0.029744533821940422, -0.03490792587399483, 0.13254277408123016, 0.0776091068983078, 0.09015877544879913, -0.061919912695884705, -0.014702572487294674, 0.09136118739843369, -0.06418321281671524, 0.06645683944225311, 0.0038907642010599375, 0.08726786077022552, -0.15948912501335144, -0.021161096170544624, -0.08604801446199417, 0.056682758033275604, -0.052842069417238235, -0.07973387837409973, -0.0526120625436306, 0.06848819553852081, 0.0842437669634819, -0.03219841048121452, 0.03222073242068291, 0.02142276056110859, 0.09786424040794373, 0.043236520141363144, 0.10012015700340271, 0.014589055441319942, -0.11793706566095352, -0.020040888339281082, -0.004549815319478512, 0.05856122449040413, -0.0991322323679924, 0.025507677346467972, 0.15072156488895416, 0.06717102974653244, 0.15986423194408417, 0.046809613704681396, -0.032830823212862015, -0.007956989109516144, 0.026183143258094788, -0.12914806604385376, -0.15715265274047852, -0.01665477454662323, -0.0961865708231926, -0.14668022096157074, 0.023757323622703552, 0.09041330963373184, -0.0599999874830246, -0.005072290543466806, -0.008637790568172932, 0.012356477789580822, -0.029280826449394226, 0.18739208579063416, 0.05700133368372917, 0.05522819608449936, -0.07310307025909424, 0.10621598362922668, 0.06277631968259811, -0.060618992894887924, 0.04328467696905136, 0.042147211730480194, -0.08924876898527145, -0.029531117528676987, 0.049748826771974564, 0.1426488161087036, -0.057286638766527176, -0.019813118502497673, -0.08313161879777908, -0.06046918407082558, 0.052175372838974, 0.11489862203598022, 0.048270199447870255, -0.002670952118933201, -0.050248462706804276, 0.03761586919426918, -0.15391382575035095, 0.08787363022565842, 0.05937821418046951, 0.07735142856836319, -0.14989402890205383, 0.15731322765350342, -0.009762094356119633, 0.051736440509557724, -0.01332930102944374, 0.011709350161254406, -0.10300599038600922, -0.008421738632023335, -0.12955349683761597, -0.040816500782966614, -0.029100747779011726, 0.014691566117107868, -0.002767286729067564, -0.0534026063978672, -0.04663921147584915, 0.04475417360663414, -0.0743437111377716, -0.05632305145263672, 0.03991900011897087, 0.05858349800109863, -0.13954225182533264, -0.010032422840595245, 0.03217608854174614, -0.08669009804725647, 0.06641735136508942, 0.06453127413988113, 0.01166035607457161, 0.04110970348119736, -0.09087848663330078, -0.018029535189270973, 0.031462423503398895, 0.04101477935910225, 0.07276761531829834, -0.07347923517227173, -0.007729028817266226, -0.03126151114702225, 0.04889872670173645, 0.027559375390410423, 0.03645298257470131, -0.11715645343065262, -0.014475539326667786, -0.05906136706471443, -0.056289371103048325, -0.08290383964776993, 0.03330874443054199, 0.09265273809432983, 0.03924577683210373, 0.16424678266048431, -0.07034199684858322, 0.06006985530257225, -0.19091004133224487, -0.046873874962329865, 0.012306461110711098, -0.029978571459650993, -0.01981820911169052, -0.03820300102233887, 0.07404347509145737, -0.06517256051301956, 0.0883142426609993, -0.03768423572182655, 0.08299940824508667, 0.0236879400908947, -0.04802120849490166, -0.021916363388299942, -0.00824918132275343, 0.18316610157489777, 0.04914722591638565, -0.036200787872076035, 0.05984644591808319, -0.0058812848292291164, 0.04989597573876381, 0.04806295409798622, 0.2039537876844406, 0.14253465831279755, -0.07473994046449661, 0.03541134297847748, 0.07278000563383102, -0.10069311410188675, -0.1403992921113968, 0.07079451531171799, -0.0020656620617955923, 0.10352922230958939, -0.038750309497117996, 0.16248390078544617, 0.0967789962887764, -0.17194655537605286, 0.057665176689624786, -0.042447227984666824, -0.12966929376125336, -0.09723160415887833, -0.051550909876823425, -0.07820869237184525, -0.11693648248910904, 0.0341065376996994, -0.1414414346218109, 0.032159268856048584, 0.06448694318532944, 0.02437625825405121, -0.00669151870533824, 0.1813955307006836, -0.03499910235404968, 0.008321749046444893, 0.051797714084386826, -0.003476453712210059, -0.016621602699160576, -0.07654288411140442, -0.04175518453121185, 0.048884980380535126, 0.003122597699984908, 0.07660851627588272, -0.05510802939534187, 0.004904521629214287, 0.01063646748661995, -0.03677443414926529, -0.051519714295864105, 0.008262665010988712, 0.031182963401079178, 0.02047138847410679, 0.03279852867126465, 0.06099211424589157, -0.020603125914931297, -0.04066691920161247, 0.26530027389526367, -0.07562411576509476, -0.09820602089166641, -0.1524038314819336, 0.22049547731876373, 0.06243821606040001, -0.014766070991754532, 0.08099794387817383, -0.11887293308973312, 0.014760857447981834, 0.19140729308128357, 0.15825368463993073, -0.05674535781145096, -0.010448083281517029, -0.007871227338910103, -0.007514892611652613, -0.042562007904052734, 0.09772759675979614, 0.10681135952472687, 0.03234599158167839, -0.03527820482850075, -0.028295207768678665, -0.02205432765185833, -0.02026863396167755, -0.06345081329345703, 0.06611768156290054, 0.04881525784730911, 0.0019610051531344652, -0.04214205592870712, 0.0757095143198967, -0.033045198768377304, -0.15692506730556488, 0.04145057871937752, -0.1444685459136963, -0.16614282131195068, -0.032947711646556854, 0.06270325928926468, -0.020693853497505188, 0.057236652821302414, -0.026742611080408096, -0.015871359035372734, 0.1481669545173645, -0.004055749159306288, -0.07653551548719406, -0.10651955008506775, 0.09508480876684189, -0.042799800634384155, 0.19884741306304932, -0.006027340888977051, 0.06838610768318176, 0.09935923665761948, 0.02293138951063156, -0.10770627111196518, 0.05645374953746796, 0.08009903877973557, -0.05516968294978142, 0.020081911236047745, 0.15535223484039307, -0.04209888353943825, 0.1049845814704895, 0.04784242436289787, -0.13500374555587769, -0.01801261119544506, -0.02227938361465931, -0.004939413629472256, -0.09550273418426514, 0.01448024157434702, -0.06271038204431534, 0.15605410933494568, 0.24739910662174225, -0.0333867110311985, 0.020143786445260048, -0.08735236525535583, 0.025004027411341667, 0.05482039600610733, 0.08302000910043716, -0.03187571093440056, -0.18003855645656586, 0.004541716538369656, -0.025692347437143326, 0.020924808457493782, -0.22545894980430603, -0.10336926579475403, 0.06113845854997635, -0.054087188094854355, -0.0343872494995594, 0.12579049170017242, 0.0680900439620018, 0.042999330908060074, -0.032924313098192215, -0.0991155207157135, -0.052907273173332214, 0.141610249876976, -0.15455755591392517, -0.04987258091568947 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-squad2-with-ner-with-neg This model is a fine-tuned version of [twmkn9/distilbert-base-uncased-squad2](https://huggingface.co/twmkn9/distilbert-base-uncased-squad2) on the conll2003 dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 2.0 ### Training results ### Framework versions - Transformers 4.8.2 - Pytorch 1.8.1+cu111 - Datasets 1.8.0 - Tokenizers 0.10.3
{"tags": ["generated_from_trainer"], "datasets": ["conll2003"], "model_index": [{"name": "distilbert-base-uncased-squad2-with-ner-with-neg", "results": [{"task": {"name": "Question Answering", "type": "question-answering"}, "dataset": {"name": "conll2003", "type": "conll2003", "args": "conll2003"}}]}]}
question-answering
andi611/distilbert-base-uncased-squad2-with-ner-with-neg
[ "transformers", "pytorch", "distilbert", "question-answering", "generated_from_trainer", "dataset:conll2003", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #distilbert #question-answering #generated_from_trainer #dataset-conll2003 #endpoints_compatible #region-us
# distilbert-base-uncased-squad2-with-ner-with-neg This model is a fine-tuned version of twmkn9/distilbert-base-uncased-squad2 on the conll2003 dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 2.0 ### Training results ### Framework versions - Transformers 4.8.2 - Pytorch 1.8.1+cu111 - Datasets 1.8.0 - Tokenizers 0.10.3
[ "# distilbert-base-uncased-squad2-with-ner-with-neg\n\nThis model is a fine-tuned version of twmkn9/distilbert-base-uncased-squad2 on the conll2003 dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 32\n- eval_batch_size: 8\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_steps: 500\n- num_epochs: 2.0", "### Training results", "### Framework versions\n\n- Transformers 4.8.2\n- Pytorch 1.8.1+cu111\n- Datasets 1.8.0\n- Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #distilbert #question-answering #generated_from_trainer #dataset-conll2003 #endpoints_compatible #region-us \n", "# distilbert-base-uncased-squad2-with-ner-with-neg\n\nThis model is a fine-tuned version of twmkn9/distilbert-base-uncased-squad2 on the conll2003 dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 32\n- eval_batch_size: 8\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_steps: 500\n- num_epochs: 2.0", "### Training results", "### Framework versions\n\n- Transformers 4.8.2\n- Pytorch 1.8.1+cu111\n- Datasets 1.8.0\n- Tokenizers 0.10.3" ]
[ 45, 57, 6, 12, 8, 3, 105, 4, 34 ]
[ "passage: TAGS\n#transformers #pytorch #distilbert #question-answering #generated_from_trainer #dataset-conll2003 #endpoints_compatible #region-us \n# distilbert-base-uncased-squad2-with-ner-with-neg\n\nThis model is a fine-tuned version of twmkn9/distilbert-base-uncased-squad2 on the conll2003 dataset.## Model description\n\nMore information needed## Intended uses & limitations\n\nMore information needed## Training and evaluation data\n\nMore information needed## Training procedure### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 32\n- eval_batch_size: 8\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_steps: 500\n- num_epochs: 2.0### Training results### Framework versions\n\n- Transformers 4.8.2\n- Pytorch 1.8.1+cu111\n- Datasets 1.8.0\n- Tokenizers 0.10.3" ]
[ -0.09400216490030289, 0.1302441507577896, -0.002753168111667037, 0.10021708160638809, 0.1205512136220932, 0.047394897788763046, 0.09530285000801086, 0.14212486147880554, -0.06550721079111099, 0.055976368486881256, 0.07985403388738632, 0.08141762763261795, 0.03096115030348301, 0.10838901251554489, -0.031155839562416077, -0.25752872228622437, 0.0063161407597362995, -0.016515793278813362, -0.08573589473962784, 0.12313346564769745, 0.08594115078449249, -0.09702097624540329, 0.07742370665073395, -0.0012396842939779162, -0.13757602870464325, 0.008767828345298767, -0.0436696782708168, -0.03878587856888771, 0.1127917692065239, -0.025408519431948662, 0.08648767322301865, 0.027221916243433952, 0.1410539597272873, -0.22013741731643677, 0.0018001638818532228, 0.0811704695224762, 0.028065800666809082, 0.08382255584001541, 0.03180718421936035, -0.015889806672930717, 0.11522447317838669, -0.15070337057113647, 0.1084824800491333, 0.02374626137316227, -0.0827406644821167, -0.09592361003160477, -0.0719841867685318, 0.05636974796652794, 0.07792440801858902, 0.08862532675266266, 0.020336506888270378, 0.14136265218257904, -0.11697161942720413, 0.09120223671197891, 0.22092853486537933, -0.2650813162326813, -0.06667641550302505, 0.04737086221575737, 0.042638469487428665, 0.044165510684251785, -0.11893725395202637, -0.024003298953175545, 0.012594605796039104, 0.022448010742664337, 0.09884858876466751, -0.021334389224648476, -0.10772226005792618, 0.0037623734679073095, -0.12586624920368195, -0.007396006025373936, 0.10470520704984665, 0.03589814156293869, -0.033394958823919296, -0.08281006664037704, -0.07612684369087219, -0.0978085920214653, 0.002289207186549902, -0.05038293078541756, 0.03589068725705147, -0.0653337612748146, -0.08122481405735016, -0.04096893221139908, -0.05223051458597183, -0.08199222385883331, -0.00501272501423955, 0.19472424685955048, 0.043002624064683914, 0.019736872985959053, -0.02412121184170246, 0.1329420506954193, 0.04196351021528244, -0.13177989423274994, -0.024324536323547363, -0.010312040336430073, -0.12878793478012085, -0.050178103148937225, -0.035252414643764496, -0.004494790453463793, -0.016103196889162064, 0.1730145364999771, -0.03188231587409973, 0.07805370539426804, 0.05550934001803398, -0.02575647085905075, -0.014409791678190231, 0.13644079864025116, -0.06342349946498871, -0.049080103635787964, -0.02371273562312126, 0.09539908915758133, -0.009002897888422012, -0.01393832266330719, -0.06219189986586571, -0.03793555870652199, 0.06875565648078918, 0.06056014448404312, -0.055976688861846924, 0.056153178215026855, -0.033464789390563965, -0.05010610446333885, 0.007145486306399107, -0.12732857465744019, 0.03085979074239731, 0.008035886101424694, -0.09766623377799988, -0.005652419291436672, 0.03001030534505844, -0.01221047155559063, -0.01764248125255108, 0.12713904678821564, -0.08862503618001938, -0.008046570234000683, -0.06437356770038605, -0.06329908221960068, 0.0024027489125728607, -0.14135916531085968, -0.018376434221863747, -0.05877161771059036, -0.20072366297245026, -0.027038920670747757, 0.06391329318284988, -0.060685351490974426, -0.0117101538926363, -0.06752386689186096, -0.060580093413591385, 0.012050773948431015, -0.00023012723249848932, 0.1241026297211647, -0.058586299419403076, 0.08246959000825882, -0.0249829962849617, 0.05882697179913521, 0.02945876307785511, 0.03861286863684654, -0.1004648208618164, 0.02162793278694153, -0.08917586505413055, 0.07938853651285172, -0.07433045655488968, -0.00011306488158879802, -0.10898129642009735, -0.11776641756296158, -0.002570908982306719, -0.025311265140771866, 0.05439191684126854, 0.14507919549942017, -0.19637586176395416, -0.022186119109392166, 0.12540294229984283, -0.06696968525648117, -0.06588034331798553, 0.06789866089820862, -0.06120286509394646, 0.06476014107465744, 0.04437502473592758, 0.15426813066005707, 0.1241173967719078, -0.14887069165706635, -0.01322813518345356, 0.004081082064658403, 0.02422342076897621, 0.04178530350327492, 0.028839193284511566, 0.016487298533320427, 0.04637410491704941, 0.010763145051896572, -0.08534518629312515, -0.01779448240995407, -0.0816560685634613, -0.08423710614442825, -0.05263301357626915, -0.08289647847414017, 0.07783380895853043, 0.02582559548318386, 0.02527502551674843, -0.05702616274356842, -0.10413729399442673, 0.10821329057216644, 0.12928332388401031, -0.06172917038202286, 0.01832762360572815, -0.07282626628875732, -0.01507657766342163, 0.013226822018623352, -0.0362703837454319, -0.19123822450637817, -0.13703836500644684, 0.03402923047542572, -0.04646166041493416, 0.03550170734524727, 0.030475424602627754, 0.09003939479589462, 0.061500612646341324, -0.05629640817642212, -0.02648923546075821, -0.09092015027999878, 0.007924568839371204, -0.07475227117538452, -0.190307155251503, -0.06015031039714813, -0.029601873829960823, 0.14117130637168884, -0.16813622415065765, 0.0040915957652032375, -0.015292048454284668, 0.1406342089176178, 0.036432672291994095, -0.06618960946798325, 0.014549433253705502, 0.030686238780617714, 0.006049131974577904, -0.09854967892169952, 0.039897892624139786, -0.013993822038173676, -0.09794516116380692, -0.07014092057943344, -0.1203785315155983, 0.003847740823403001, 0.048794377595186234, 0.08470543473958969, -0.10181403160095215, -0.025711096823215485, -0.07533881813287735, -0.055863551795482635, -0.06550660729408264, 0.015739018097519875, 0.19811135530471802, 0.03346233814954758, 0.09488020092248917, -0.056925032287836075, -0.08387459069490433, -0.013013320975005627, 0.025363577529788017, 0.011813362129032612, 0.07735348492860794, 0.10166683048009872, -0.09066048264503479, 0.06646652519702911, 0.07904012501239777, -0.054221585392951965, 0.14314837753772736, -0.03241504728794098, -0.08220274746417999, -0.022259388118982315, -0.00012868797057308257, -0.022061897441744804, 0.12422862648963928, -0.06527864187955856, 0.028863325715065002, 0.03263426572084427, 0.03217898681759834, 0.017999490723013878, -0.16648879647254944, -0.017805295065045357, 0.023932088166475296, -0.06019723042845726, -0.060373369604349136, 0.004736610688269138, 0.035305205732584, 0.08801895380020142, 0.018553225323557854, -0.02575027383863926, 0.016355959698557854, -0.00949916522949934, -0.07138870656490326, 0.18287275731563568, -0.11111094057559967, -0.1266006976366043, -0.085132896900177, 0.04183776676654816, -0.06554124504327774, -0.041202180087566376, 0.00336630386300385, -0.08438881486654282, -0.044994525611400604, -0.08083785325288773, -0.018024176359176636, -0.008985153399407864, 0.012259777635335922, 0.02182197943329811, 0.00042053021024912596, 0.05784405395388603, -0.1398235559463501, 0.014836261980235577, -0.03807620331645012, -0.0946696549654007, 0.02542116492986679, 0.05169529840350151, 0.09948369860649109, 0.11730747669935226, -0.014619223773479462, 0.02694057486951351, -0.024817155674099922, 0.20383094251155853, -0.07277321070432663, 0.019943006336688995, 0.08658279478549957, -0.010317995212972164, 0.04932783171534538, 0.11937500536441803, 0.03358780965209007, -0.10215547680854797, 0.034204915165901184, 0.08568041026592255, -0.028088020160794258, -0.23475885391235352, -0.034915223717689514, -0.030526721850037575, -0.058662641793489456, 0.11019345372915268, 0.043588120490312576, -0.02041308395564556, 0.039009738713502884, 0.011039421893656254, -0.030099906027317047, -0.018560223281383514, 0.070632703602314, 0.07314750552177429, 0.054318301379680634, 0.08886582404375076, -0.009143686853349209, -0.026411516591906548, 0.06209797412157059, 0.016051001846790314, 0.2623107135295868, -0.05730908736586571, 0.09957534819841385, 0.030280007049441338, 0.13074366748332977, -0.049977365881204605, 0.07987294346094131, 0.013186079449951649, -0.006593094207346439, 0.0017681869212538004, -0.05800473317503929, -0.03077141009271145, 0.02889159508049488, -0.00018472377269063145, 0.03694945201277733, -0.07310321927070618, 0.07077668607234955, 0.04242263361811638, 0.27880433201789856, 0.028607400134205818, -0.2704269587993622, -0.07341263443231583, -0.01967398263514042, -0.03916061297059059, -0.04947652667760849, 0.01312989927828312, 0.14063256978988647, -0.1301051527261734, 0.06573561578989029, -0.07413613051176071, 0.0694318413734436, -0.04919610545039177, -0.0015665895771235228, 0.08124814927577972, 0.1436644047498703, -0.013712516985833645, 0.06857587397098541, -0.20459584891796112, 0.21859371662139893, 0.014541535638272762, 0.10776624828577042, -0.07508422434329987, 0.007078062742948532, 0.011725733987987041, 0.03525285795331001, 0.11065703630447388, 0.006868366152048111, -0.013871999457478523, -0.12548398971557617, -0.096284419298172, 0.05010508745908737, 0.13977403938770294, -0.034991901367902756, 0.08721833676099777, -0.042572326958179474, -0.007979479618370533, 0.04782309755682945, -0.08845419436693192, -0.13393664360046387, -0.11309480667114258, 0.03421938046813011, -0.007805973757058382, -0.04279814288020134, -0.05074309930205345, -0.10460956394672394, 0.004840695299208164, 0.15760108828544617, 0.01039617508649826, -0.050456464290618896, -0.15120846033096313, 0.023919465020298958, 0.16278964281082153, -0.05982629209756851, 0.015508133918046951, 0.029659811407327652, 0.08253981918096542, 0.044388916343450546, -0.08783453702926636, 0.055550843477249146, -0.0767812505364418, -0.1704981029033661, -0.054098088294267654, 0.13702493906021118, 0.08442769199609756, 0.051952704787254333, -0.01344100758433342, 0.02880495972931385, 0.011185752227902412, -0.09741264581680298, 0.02030215971171856, 0.0776628851890564, 0.043975580483675, 0.04516023397445679, -0.09851653128862381, 0.09358161687850952, -0.03585504740476608, 0.013432210311293602, 0.12806415557861328, 0.19669727981090546, -0.08791681379079819, 0.11475950479507446, 0.048085737973451614, -0.061345528811216354, -0.16253496706485748, 0.06084636226296425, 0.11768656969070435, 0.011184735223650932, 0.061448026448488235, -0.20164726674556732, 0.10704821348190308, 0.11302631348371506, 0.004454656504094601, 0.06661463528871536, -0.3438087999820709, -0.12687741219997406, 0.04909436032176018, 0.10364416241645813, 0.03380269557237625, -0.097081258893013, -0.015115723945200443, 0.0069103180430829525, -0.15674392879009247, 0.13561470806598663, -0.049353767186403275, 0.12168072164058685, -0.025164809077978134, 0.1133381798863411, 0.032378945499658585, -0.037462569773197174, 0.11440052092075348, 0.08385796844959259, 0.07941064238548279, -0.042191941291093826, -0.002943329745903611, 0.02635747566819191, -0.07011458277702332, 0.048333290964365005, -0.03827601671218872, 0.07659155875444412, -0.12702113389968872, -0.007737337611615658, -0.09633605927228928, 0.06042841449379921, -0.04766198247671127, -0.0792492926120758, -0.029903391376137733, 0.059773292392492294, 0.09577671438455582, -0.04030285030603409, 0.03622904047369957, 0.01759388856589794, 0.068299300968647, 0.07168396562337875, 0.10946208238601685, -0.020072314888238907, -0.10315808653831482, -0.01049590203911066, 0.007642440032213926, 0.04869251325726509, -0.09704602509737015, 0.03653005510568619, 0.14563584327697754, 0.07608570903539658, 0.126254141330719, 0.04014734551310539, -0.025832822546362877, -0.025402862578630447, 0.03247079625725746, -0.14480073750019073, -0.10193315148353577, 0.02083970233798027, -0.09912644326686859, -0.14002281427383423, 0.023858726024627686, 0.10540999472141266, -0.039616771042346954, -0.0006523468182422221, 0.001481762737967074, 0.0160911176353693, -0.012070702388882637, 0.1954088658094406, 0.0380953811109066, 0.05513893440365791, -0.08822838217020035, 0.1367628425359726, 0.025778882205486298, -0.04517229646444321, 0.03642963618040085, 0.06902574002742767, -0.10840560495853424, -0.0026825652457773685, 0.05061245709657669, 0.0949593260884285, -0.055673204362392426, -0.01027199812233448, -0.09544849395751953, -0.06078343465924263, 0.04396187886595726, 0.13503752648830414, 0.04089682549238205, 0.006670627277344465, -0.06754868477582932, 0.04073500260710716, -0.1411488801240921, 0.0757237896323204, 0.06454131752252579, 0.07325522601604462, -0.11895719170570374, 0.12895610928535461, 0.0008867387077771127, 0.0367065966129303, -0.0195370614528656, 0.018818505108356476, -0.08942930400371552, -0.020742949098348618, -0.09241176396608353, -0.03499269485473633, -0.032219450920820236, 0.014429708011448383, -0.004957661032676697, -0.05892106890678406, -0.0415884293615818, 0.03136788308620453, -0.07803770899772644, -0.051052361726760864, 0.016906287521123886, 0.028606334701180458, -0.15697762370109558, -0.01536808256059885, 0.03584260493516922, -0.10179131478071213, 0.091781847178936, 0.07587652653455734, -0.0015445137396454811, 0.03762752562761307, -0.1335785835981369, -0.03562457486987114, 0.025502361357212067, 0.023315709084272385, 0.07079034298658371, -0.09709113836288452, -0.012534447945654392, -0.04405050724744797, 0.03953848034143448, 0.019939439371228218, 0.062413014471530914, -0.1163400337100029, 0.020310504361987114, -0.06600774079561234, -0.04999103769659996, -0.06890930235385895, 0.028946558013558388, 0.10079432278871536, 0.032969068735837936, 0.16749778389930725, -0.06658747047185898, 0.06090817600488663, -0.17774654924869537, -0.041622523218393326, 0.020492257550358772, -0.026031387969851494, -0.06234216317534447, -0.031061319634318352, 0.0839870348572731, -0.058396704494953156, 0.08649589866399765, -0.036959338933229446, 0.067306287586689, 0.02729102224111557, -0.04004739597439766, -0.05170045047998428, -0.014374610036611557, 0.16021886467933655, 0.050443384796381, -0.021265115588903427, 0.0992632657289505, -0.010139968246221542, 0.03366639092564583, 0.027771709486842155, 0.25223854184150696, 0.13269056379795074, -0.04071178287267685, 0.05697198957204819, 0.06335660070180893, -0.11032639443874359, -0.13869042694568634, 0.1106167584657669, -0.028518984094262123, 0.10172811150550842, -0.042627524584531784, 0.1932307779788971, 0.05337033048272133, -0.17798015475273132, 0.05083238333463669, -0.019204914569854736, -0.11802781373262405, -0.11690812557935715, -0.01737639121711254, -0.06979739665985107, -0.12180578708648682, 0.03776851296424866, -0.12154465168714523, 0.054305147379636765, 0.07246777415275574, 0.031860388815402985, 0.02576831541955471, 0.1844795048236847, -0.05216199904680252, 0.01264782715588808, 0.05628029257059097, 0.02846050076186657, -0.008672833442687988, -0.04165050759911537, -0.05994155630469322, 0.016712406650185585, 0.012834299355745316, 0.07075410336256027, -0.06430050730705261, 0.0008503616554662585, 0.01229163073003292, -0.017403921112418175, -0.06201037019491196, 0.010795402340590954, 0.023367267102003098, 0.03617166727781296, 0.04368239641189575, 0.06743888556957245, 0.0010779405711218715, -0.045467399060726166, 0.2778385579586029, -0.07652998715639114, -0.0815667062997818, -0.1420253962278366, 0.21015189588069916, 0.041647784411907196, -0.020859386771917343, 0.07703899592161179, -0.10199082642793655, -0.02993522584438324, 0.15422169864177704, 0.14454443752765656, -0.08870825171470642, -0.013122023083269596, -0.02005704678595066, -0.00028395216213539243, -0.02612515166401863, 0.10245469212532043, 0.07901443541049957, 0.023497672751545906, -0.04733196645975113, -0.03644658997654915, -0.013400229625403881, -0.04143825173377991, -0.04872104525566101, 0.06305151432752609, 0.01811438798904419, -0.011346776969730854, -0.05064520612359047, 0.059446465224027634, -0.02188839018344879, -0.20362409949302673, 0.05639653280377388, -0.17293059825897217, -0.17322424054145813, -0.03398006781935692, 0.05250620096921921, -0.008202103897929192, 0.06390401721000671, -0.007860854268074036, -0.02982681430876255, 0.14049828052520752, 0.0019211076432839036, -0.06727470457553864, -0.10904820263385773, 0.09415442496538162, -0.05240887030959129, 0.20288591086864471, -0.0056631797924637794, 0.0645485520362854, 0.08252128213644028, 0.033663492649793625, -0.11767897009849548, 0.0334710069000721, 0.08316431939601898, -0.11794093996286392, 0.0005527316243387759, 0.15700764954090118, -0.05301482230424881, 0.09125833958387375, 0.041128117591142654, -0.12480662763118744, -0.012643394991755486, -0.0025648875162005424, -0.028231097385287285, -0.08304546028375626, -0.0015855955425649881, -0.03583023324608803, 0.16208815574645996, 0.2440314143896103, -0.01872611977159977, 0.017830083146691322, -0.09227441996335983, 0.0349770188331604, 0.0517246276140213, 0.04817106947302818, -0.049344006925821304, -0.19658394157886505, 0.017503589391708374, 0.017790254205465317, 0.016118424013257027, -0.1697896122932434, -0.10829341411590576, 0.0563586950302124, -0.05792001262307167, -0.03915208950638771, 0.11043139547109604, 0.016957687214016914, 0.05014672130346298, -0.0156776774674654, -0.08292742073535919, -0.02864518016576767, 0.1431574672460556, -0.18932220339775085, -0.04145378991961479 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-squad2-with-ner This model is a fine-tuned version of [twmkn9/distilbert-base-uncased-squad2](https://huggingface.co/twmkn9/distilbert-base-uncased-squad2) on the conll2003 dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2.0 ### Training results ### Framework versions - Transformers 4.8.2 - Pytorch 1.8.1+cu111 - Datasets 1.8.0 - Tokenizers 0.10.3
{"tags": ["generated_from_trainer"], "datasets": ["conll2003"], "model_index": [{"name": "distilbert-base-uncased-squad2-with-ner", "results": [{"task": {"name": "Question Answering", "type": "question-answering"}, "dataset": {"name": "conll2003", "type": "conll2003", "args": "conll2003"}}]}]}
question-answering
andi611/distilbert-base-uncased-squad2-with-ner
[ "transformers", "pytorch", "distilbert", "question-answering", "generated_from_trainer", "dataset:conll2003", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #distilbert #question-answering #generated_from_trainer #dataset-conll2003 #endpoints_compatible #region-us
# distilbert-base-uncased-squad2-with-ner This model is a fine-tuned version of twmkn9/distilbert-base-uncased-squad2 on the conll2003 dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2.0 ### Training results ### Framework versions - Transformers 4.8.2 - Pytorch 1.8.1+cu111 - Datasets 1.8.0 - Tokenizers 0.10.3
[ "# distilbert-base-uncased-squad2-with-ner\n\nThis model is a fine-tuned version of twmkn9/distilbert-base-uncased-squad2 on the conll2003 dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 32\n- eval_batch_size: 8\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 2.0", "### Training results", "### Framework versions\n\n- Transformers 4.8.2\n- Pytorch 1.8.1+cu111\n- Datasets 1.8.0\n- Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #distilbert #question-answering #generated_from_trainer #dataset-conll2003 #endpoints_compatible #region-us \n", "# distilbert-base-uncased-squad2-with-ner\n\nThis model is a fine-tuned version of twmkn9/distilbert-base-uncased-squad2 on the conll2003 dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 32\n- eval_batch_size: 8\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 2.0", "### Training results", "### Framework versions\n\n- Transformers 4.8.2\n- Pytorch 1.8.1+cu111\n- Datasets 1.8.0\n- Tokenizers 0.10.3" ]
[ 45, 52, 6, 12, 8, 3, 90, 4, 34 ]
[ "passage: TAGS\n#transformers #pytorch #distilbert #question-answering #generated_from_trainer #dataset-conll2003 #endpoints_compatible #region-us \n# distilbert-base-uncased-squad2-with-ner\n\nThis model is a fine-tuned version of twmkn9/distilbert-base-uncased-squad2 on the conll2003 dataset.## Model description\n\nMore information needed## Intended uses & limitations\n\nMore information needed## Training and evaluation data\n\nMore information needed## Training procedure### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 32\n- eval_batch_size: 8\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 2.0### Training results### Framework versions\n\n- Transformers 4.8.2\n- Pytorch 1.8.1+cu111\n- Datasets 1.8.0\n- Tokenizers 0.10.3" ]
[ -0.09720499813556671, 0.07295864075422287, -0.0019112036097794771, 0.0802915021777153, 0.15992502868175507, 0.033200953155756, 0.09989998489618301, 0.1124257817864418, -0.14413636922836304, 0.04061801731586456, 0.06599125266075134, 0.09147419780492783, 0.019672902300953865, 0.08332689106464386, -0.036918193101882935, -0.259628027677536, 0.004957047291100025, 0.01939406618475914, -0.1178784891963005, 0.11346596479415894, 0.10640537738800049, -0.11082547158002853, 0.05374990031123161, 0.0231920275837183, -0.19855017960071564, 0.024851959198713303, -0.024700874462723732, -0.03637903928756714, 0.10482246428728104, 0.019749043509364128, 0.1315188705921173, 0.010920841246843338, 0.12401136010885239, -0.21633578836917877, 0.005259618628770113, 0.08500813692808151, 0.024150071665644646, 0.06426956504583359, 0.01080372091382742, -0.007717467378824949, 0.11922026425600052, -0.10785474628210068, 0.09235736727714539, 0.037818048149347305, -0.09167526662349701, -0.17509661614894867, -0.09198236465454102, 0.08430447429418564, 0.08650466054677963, 0.10513899475336075, -0.0008129997295327485, 0.15566208958625793, -0.12331493943929672, 0.08448890596628189, 0.19280198216438293, -0.27179479598999023, -0.08545024693012238, 0.0618000328540802, 0.029333701357245445, 0.0315164178609848, -0.10722140222787857, -0.025321917608380318, 0.0602772980928421, 0.04120377078652382, 0.06940117478370667, -0.020793408155441284, -0.1375172734260559, 0.0040028090588748455, -0.13803575932979584, -0.011332673951983452, 0.16987355053424835, 0.04941598325967789, -0.04755591228604317, -0.043215274810791016, -0.05825270712375641, -0.08705160766839981, 0.000758385518565774, -0.0698375254869461, 0.03834156692028046, -0.04819144681096077, -0.11938901245594025, -0.045300811529159546, -0.08585681766271591, -0.06513377279043198, -0.018721453845500946, 0.15745733678340912, 0.04619154334068298, 0.01863132230937481, -0.053190503269433975, 0.12323939800262451, -0.006961447652429342, -0.12301541864871979, -0.032212626188993454, -0.010568015277385712, -0.07615737617015839, -0.07079675793647766, -0.06870466470718384, -0.015168671496212482, -0.009556123055517673, 0.1915893703699112, -0.05161910131573677, 0.0523495078086853, 0.018054494634270668, 0.005262007471174002, -0.03481176495552063, 0.14227794110774994, -0.06115027144551277, -0.011041761375963688, -0.012005171738564968, 0.06365513801574707, -0.021744655445218086, -0.007033155299723148, -0.08083552867174149, -0.013753648847341537, 0.07526633143424988, 0.036071304231882095, -0.06596476584672928, 0.05469413474202156, -0.0209148321300745, -0.04718375951051712, -0.02023852802813053, -0.10672640055418015, 0.026483656838536263, 0.0008289492689073086, -0.0938565582036972, 0.025556717067956924, 0.03790123760700226, 0.022738346830010414, -0.008070888929069042, 0.1073259562253952, -0.09893634170293808, 0.0032521672546863556, -0.0928722470998764, -0.08231065422296524, 0.00909377634525299, -0.06692132353782654, -0.003840739605948329, -0.09648963063955307, -0.1800209879875183, -0.033002376556396484, 0.05466475337743759, -0.022122878581285477, -0.018302591517567635, -0.05917735397815704, -0.0793214812874794, -0.001186918467283249, -0.0039971498772501945, 0.10523390769958496, -0.04112362861633301, 0.08053560554981232, 0.0220502819865942, 0.028636978939175606, -0.014685866422951221, 0.03631702810525894, -0.08771875500679016, 0.019751161336898804, -0.10026784241199493, 0.05835866555571556, -0.07544157654047012, 0.039266686886548996, -0.08821777254343033, -0.12405790388584137, -0.015969930216670036, -0.013234885409474373, 0.07004817575216293, 0.10540348291397095, -0.18121999502182007, -0.04883602634072304, 0.16306188702583313, -0.07369770854711533, -0.10925594717264175, 0.08790264278650284, -0.06719440966844559, 0.08533098548650742, 0.06034516543149948, 0.11562050133943558, 0.12451836466789246, -0.11970971524715424, -0.019683126360177994, -0.01715647615492344, 0.06754308938980103, 0.0398353673517704, 0.036574967205524445, -0.004373218864202499, 0.027285533025860786, 0.016023647040128708, -0.07274463027715683, -0.011796676553785801, -0.11019597202539444, -0.0931008979678154, -0.051481593400239944, -0.09371157735586166, 0.07179559022188187, 0.04550231993198395, 0.062421299517154694, -0.07067383080720901, -0.10425299406051636, 0.15783530473709106, 0.12501183152198792, -0.05913050100207329, 0.033715926110744476, -0.08326725661754608, 0.03236480429768562, -0.007837099954485893, -0.03338784724473953, -0.1987222135066986, -0.13504822552204132, 0.01417329628020525, 0.0017863946268334985, 0.033196646720170975, 0.0450219064950943, 0.06693818420171738, 0.06517677009105682, -0.06217673048377037, -0.004239043220877647, -0.12319979071617126, -0.0019961923826485872, -0.08493312448263168, -0.17861174046993256, -0.06485843658447266, -0.022312011569738388, 0.17559242248535156, -0.22143065929412842, 0.033107370138168335, -0.002571636810898781, 0.1410849392414093, 0.02336711995303631, -0.050774410367012024, -0.04641331359744072, 0.06705430150032043, -0.02658156305551529, -0.07352856546640396, 0.0509919635951519, 0.006592504680156708, -0.09043464064598083, -0.10874539613723755, -0.11237116158008575, 0.04368156939744949, 0.08809679746627808, -0.025437435135245323, -0.0979272648692131, -0.010905332863330841, -0.08330997079610825, -0.04076801985502243, -0.05793621018528938, -0.010660850442945957, 0.18108618259429932, -0.004996867850422859, 0.12263533473014832, -0.058632489293813705, -0.07057454437017441, -0.006365615408867598, -0.0073423138819634914, 0.025045759975910187, 0.05207221210002899, 0.09678515791893005, -0.08425188064575195, 0.09726131707429886, 0.08301006257534027, -0.08103398233652115, 0.1556047946214676, -0.04545649513602257, -0.07986026257276535, -0.02870197594165802, 0.003574179718270898, -0.0020187371410429478, 0.10921242088079453, -0.1322236955165863, 0.007404644042253494, 0.022012870758771896, 0.03677947819232941, 0.04840032383799553, -0.1950930505990982, -0.01687372475862503, 0.03435301408171654, -0.032095011323690414, -0.05127213895320892, -0.012970956042408943, 0.02089248038828373, 0.08337718993425369, 0.024185899645090103, -0.0036187150981277227, 0.024211302399635315, -0.004981265403330326, -0.09156715124845505, 0.20303820073604584, -0.11443541944026947, -0.10480774194002151, -0.10209855437278748, 0.011547178030014038, -0.06915397942066193, -0.01979076862335205, 0.034172218292951584, -0.0979277640581131, -0.02759174443781376, -0.050683725625276566, 0.019355814903974533, -0.021364344283938408, -0.004983681254088879, 0.04785076528787613, 0.014533968642354012, 0.07315798848867416, -0.15147002041339874, 0.01795913651585579, -0.038648903369903564, -0.13305573165416718, 0.011158832348883152, 0.02609081007540226, 0.11924521625041962, 0.14868396520614624, -0.016762737184762955, 0.026648741215467453, -0.030531348660588264, 0.2376657873392105, -0.07693974673748016, -0.025683483108878136, 0.10196445137262344, -0.003697979496791959, 0.0426657609641552, 0.09263139218091965, 0.04885547608137131, -0.10647110641002655, 0.03970293700695038, 0.09298773854970932, -0.03396354243159294, -0.24055717885494232, -0.03516840934753418, -0.04917445778846741, -0.06894057244062424, 0.0782318115234375, 0.023565217852592468, 0.054618995636701584, 0.06313136219978333, -0.0013320129364728928, 0.04516833275556564, -0.017398430034518242, 0.08512133359909058, 0.08174044638872147, 0.04700859636068344, 0.1107354611158371, -0.02504028007388115, -0.03980078920722008, 0.059419214725494385, -0.01536176260560751, 0.29991772770881653, -0.013350543566048145, 0.05751809477806091, 0.08641098439693451, 0.14643941819667816, -0.04343070834875107, 0.06662450730800629, 0.001185241504572332, -0.03033359907567501, 0.012051258236169815, -0.056904759258031845, -0.018689045682549477, 0.03162507712841034, -0.021212587133049965, 0.07201766967773438, -0.10980700701475143, 0.028508443385362625, 0.05991443246603012, 0.27389779686927795, 0.048961859196424484, -0.27508312463760376, -0.10699764639139175, -0.0038017865736037493, -0.026391038671135902, -0.036917656660079956, 0.017675090581178665, 0.11454284936189651, -0.13229182362556458, 0.05453329160809517, -0.05973482131958008, 0.09661441296339035, 0.0007380038732662797, 0.010601680725812912, 0.07498722523450851, 0.1096307560801506, -0.002036136342212558, 0.07801283150911331, -0.22721907496452332, 0.22976845502853394, 0.004971166141331196, 0.11100385338068008, -0.05009210854768753, 0.01783289574086666, 0.022286804392933846, 0.09478838741779327, 0.06868498772382736, 0.0026684184558689594, -0.002689031884074211, -0.1508031189441681, -0.01764589175581932, 0.046577390283346176, 0.13866731524467468, -0.04857266694307327, 0.11478199809789658, -0.038079600781202316, 0.019952891394495964, 0.06876224279403687, -0.0059104179963469505, -0.16526004672050476, -0.11631335318088531, 0.009922297671437263, -0.022538183256983757, -0.021390441805124283, -0.07873135805130005, -0.10733462125062943, -0.0378078892827034, 0.18739095330238342, -0.005072679370641708, -0.034622084349393845, -0.1330171376466751, 0.08872457593679428, 0.10463925451040268, -0.059742361307144165, 0.02299925871193409, 0.03390846401453018, 0.1032288521528244, 0.03864069655537605, -0.07733531296253204, 0.0540202297270298, -0.07381025701761246, -0.1736001819372177, -0.0489438995718956, 0.1179632917046547, 0.07179468870162964, 0.04570373147726059, -0.0041835494339466095, 0.013743448071181774, 0.019730107858777046, -0.09801116585731506, -0.0064035141840577126, 0.06975937634706497, 0.07227031141519547, 0.05596970394253731, -0.09501400589942932, 0.061738889664411545, -0.053052373230457306, 0.007352541666477919, 0.1408047378063202, 0.20236530900001526, -0.08772851526737213, 0.021533921360969543, 0.034264422953128815, -0.07902391254901886, -0.1646650731563568, 0.09823650866746902, 0.11470213532447815, 0.0053006443195044994, 0.032156892120838165, -0.19051434099674225, 0.12462196499109268, 0.12944796681404114, 0.002965507796034217, 0.08032141625881195, -0.3204555809497833, -0.13445284962654114, 0.058765921741724014, 0.10511545836925507, 0.051986295729875565, -0.12914563715457916, -0.021695798262953758, -0.018419167026877403, -0.19209866225719452, 0.1226721927523613, -0.13294844329357147, 0.10026334971189499, 0.004266035743057728, 0.09863527119159698, 0.01990383490920067, -0.0327482707798481, 0.1333334594964981, 0.07038720697164536, 0.08925671130418777, -0.04916645586490631, -0.011098834685981274, 0.10168717801570892, -0.05761057138442993, 0.013040823861956596, 0.01721738465130329, 0.0698222815990448, -0.12000399082899094, -0.01777726225554943, -0.09673474729061127, 0.05333370715379715, -0.06472046673297882, -0.08202648162841797, -0.05153435468673706, 0.05456055700778961, 0.07479061931371689, -0.028080672025680542, 0.08340824395418167, 0.013324555940926075, 0.16445158421993256, 0.058815307915210724, 0.09486639499664307, -0.02491353265941143, -0.07983895391225815, -0.012527617625892162, -0.009611541405320168, 0.06150438264012337, -0.13364779949188232, 0.03991502523422241, 0.14325957000255585, 0.07356172055006027, 0.14724023640155792, 0.07699976116418839, -0.041797708719968796, 0.012688440270721912, 0.04979091137647629, -0.10970848798751831, -0.1218441054224968, -0.005828274879604578, -0.08513046056032181, -0.13252517580986023, 0.05938193202018738, 0.1092231497168541, -0.056060709059238434, 0.000460008712252602, -0.007863909937441349, -0.015360265970230103, -0.06184374541044235, 0.17980779707431793, 0.05630108714103699, 0.05695191025733948, -0.08208172023296356, 0.09750743210315704, 0.03795364126563072, -0.04894562065601349, 0.013048382475972176, 0.03591048717498779, -0.0920381247997284, -0.014581299386918545, 0.028559355065226555, 0.1336354911327362, -0.07461435347795486, -0.03510250896215439, -0.11071604490280151, -0.07757823169231415, 0.04237871244549751, 0.1502121239900589, 0.06684604287147522, 0.0017972784116864204, -0.05080989748239517, 0.06997367739677429, -0.14938032627105713, 0.07007714360952377, 0.0480571910738945, 0.07979784160852432, -0.14338280260562897, 0.17716433107852936, 0.015138810500502586, 0.04071194678544998, -0.015504159964621067, 0.005519283004105091, -0.10340308398008347, 0.0004739078285638243, -0.1588662713766098, -0.05026858299970627, -0.02929997444152832, 0.004308436997234821, 0.001584466197527945, -0.055134765803813934, -0.07119842618703842, 0.04654600843787193, -0.0876423716545105, -0.046081554144620895, 0.03500089421868324, 0.03143874555826187, -0.13765409588813782, -0.0006699207006022334, 0.03557099401950836, -0.10125721246004105, 0.07550093531608582, 0.07060135900974274, 0.018539050593972206, 0.06726997345685959, -0.122517891228199, -0.025666380301117897, 0.034279726445674896, 0.031907521188259125, 0.07806308567523956, -0.07315771281719208, -0.006961824372410774, -0.030489081516861916, 0.0789395123720169, 0.023153280839323997, 0.0549212209880352, -0.11386837810277939, -0.017469508573412895, -0.04248567670583725, -0.06379248201847076, -0.058899763971567154, 0.026626188308000565, 0.07806582748889923, 0.05217486619949341, 0.17488797008991241, -0.07192429900169373, 0.05312428995966911, -0.20047183334827423, -0.03897145017981529, 0.011011063121259212, -0.024079984053969383, -0.043316539376974106, -0.04260125383734703, 0.06404437124729156, -0.06864476948976517, 0.09627388417720795, -0.05760772526264191, 0.10879119485616684, 0.03537161275744438, -0.06803380697965622, -0.021514713764190674, -0.0009723163093440235, 0.20467902719974518, 0.06696765124797821, -0.016104543581604958, 0.054503414779901505, 0.011305706575512886, 0.05238273739814758, 0.03305468335747719, 0.2417614907026291, 0.1337377279996872, -0.06721420586109161, 0.06389925628900528, 0.06964732706546783, -0.08737608045339584, -0.13875798881053925, 0.04990093782544136, -0.012161045335233212, 0.0834452286362648, -0.04709421098232269, 0.13486330211162567, 0.1121818870306015, -0.17766407132148743, 0.0529228150844574, -0.05466138944029808, -0.10707169026136398, -0.1224537342786789, -0.005600664298981428, -0.07221636921167374, -0.15472431480884552, 0.03897270932793617, -0.14318396151065826, 0.028826139867305756, 0.10316644608974457, 0.021165024489164352, 0.01171597745269537, 0.18491443991661072, -0.0524444542825222, 0.007816181518137455, 0.04739896208047867, -0.007964171469211578, -0.00792670901864767, -0.07876036316156387, -0.05252612382173538, 0.02888340689241886, -0.004272662103176117, 0.06851434707641602, -0.060910314321517944, -0.023094305768609047, 0.01789606548845768, -0.015794025734066963, -0.05761418864130974, 0.01687261462211609, 0.03116755001246929, 0.04254472255706787, 0.0254985298961401, 0.03924637660384178, 0.003955223131924868, -0.03557118400931358, 0.2643986940383911, -0.08922756463289261, -0.1128101572394371, -0.17546077072620392, 0.21497561037540436, 0.055666446685791016, -0.006562006659805775, 0.06680072844028473, -0.11702421307563782, -0.015489314682781696, 0.1963413804769516, 0.15647664666175842, -0.06614163517951965, -0.007298900745809078, 0.013358294032514095, -0.010581095702946186, -0.052648477256298065, 0.11264285445213318, 0.11055928468704224, 0.05374301224946976, -0.040434498339891434, -0.06744140386581421, -0.010175127536058426, -0.02168237790465355, -0.036395635455846786, 0.08697406947612762, 0.027511900290846825, -0.004423871636390686, -0.04779244214296341, 0.07101383060216904, -0.03272034972906113, -0.16361890733242035, 0.0746399536728859, -0.1642964780330658, -0.16989555954933167, -0.031928449869155884, 0.061093300580978394, -0.017129722982645035, 0.08361054956912994, -0.02354004606604576, -0.04326387494802475, 0.16034430265426636, -0.0008042867411859334, -0.05561847239732742, -0.11779578775167465, 0.11442229896783829, -0.06472214311361313, 0.20742186903953552, -0.028548849746584892, 0.07376138865947723, 0.11554064601659775, 0.039879750460386276, -0.07772764563560486, 0.036938417702913284, 0.07598244398832321, -0.08605966717004776, -0.009046300314366817, 0.12922127544879913, -0.05645159259438515, 0.09311328828334808, 0.05228226259350777, -0.19560858607292175, 0.008929952047765255, 0.013268663547933102, -0.030240310356020927, -0.0976858139038086, -0.0017774720909073949, -0.07152620702981949, 0.13148219883441925, 0.244767427444458, -0.03564208373427391, 0.021819129586219788, -0.07896038144826889, 0.04415837675333023, 0.05777362361550331, 0.09436391294002533, -0.05526658147573471, -0.230444073677063, 0.021441403776407242, 0.005974383559077978, -0.012170053087174892, -0.23380571603775024, -0.09623157232999802, 0.07724146544933319, -0.06860233098268509, -0.03538496792316437, 0.1113894134759903, 0.06864137202501297, 0.048301417380571365, -0.03678641468286514, -0.1122969537973404, -0.06808706372976303, 0.15562023222446442, -0.15137861669063568, -0.0665368139743805 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-ner This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the conll2003 dataset. It achieves the following results on the evaluation set: - eval_loss: 0.0814 - eval_precision: 0.9101 - eval_recall: 0.9336 - eval_f1: 0.9217 - eval_accuracy: 0.9799 - eval_runtime: 10.2964 - eval_samples_per_second: 315.646 - eval_steps_per_second: 39.529 - epoch: 1.14 - step: 500 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4.0 ### Framework versions - Transformers 4.8.2 - Pytorch 1.8.1+cu111 - Datasets 1.8.0 - Tokenizers 0.10.3
{"license": "mit", "tags": ["generated_from_trainer"], "datasets": ["conll2003"], "model_index": [{"name": "roberta-base-ner", "results": [{"task": {"name": "Token Classification", "type": "token-classification"}, "dataset": {"name": "conll2003", "type": "conll2003", "args": "conll2003"}}]}]}
token-classification
andi611/roberta-base-ner-conll2003
[ "transformers", "pytorch", "roberta", "token-classification", "generated_from_trainer", "dataset:conll2003", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #roberta #token-classification #generated_from_trainer #dataset-conll2003 #license-mit #autotrain_compatible #endpoints_compatible #region-us
# roberta-base-ner This model is a fine-tuned version of roberta-base on the conll2003 dataset. It achieves the following results on the evaluation set: - eval_loss: 0.0814 - eval_precision: 0.9101 - eval_recall: 0.9336 - eval_f1: 0.9217 - eval_accuracy: 0.9799 - eval_runtime: 10.2964 - eval_samples_per_second: 315.646 - eval_steps_per_second: 39.529 - epoch: 1.14 - step: 500 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4.0 ### Framework versions - Transformers 4.8.2 - Pytorch 1.8.1+cu111 - Datasets 1.8.0 - Tokenizers 0.10.3
[ "# roberta-base-ner\n\nThis model is a fine-tuned version of roberta-base on the conll2003 dataset.\nIt achieves the following results on the evaluation set:\n- eval_loss: 0.0814\n- eval_precision: 0.9101\n- eval_recall: 0.9336\n- eval_f1: 0.9217\n- eval_accuracy: 0.9799\n- eval_runtime: 10.2964\n- eval_samples_per_second: 315.646\n- eval_steps_per_second: 39.529\n- epoch: 1.14\n- step: 500", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 5e-05\n- train_batch_size: 32\n- eval_batch_size: 8\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 4.0", "### Framework versions\n\n- Transformers 4.8.2\n- Pytorch 1.8.1+cu111\n- Datasets 1.8.0\n- Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #roberta #token-classification #generated_from_trainer #dataset-conll2003 #license-mit #autotrain_compatible #endpoints_compatible #region-us \n", "# roberta-base-ner\n\nThis model is a fine-tuned version of roberta-base on the conll2003 dataset.\nIt achieves the following results on the evaluation set:\n- eval_loss: 0.0814\n- eval_precision: 0.9101\n- eval_recall: 0.9336\n- eval_f1: 0.9217\n- eval_accuracy: 0.9799\n- eval_runtime: 10.2964\n- eval_samples_per_second: 315.646\n- eval_steps_per_second: 39.529\n- epoch: 1.14\n- step: 500", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 5e-05\n- train_batch_size: 32\n- eval_batch_size: 8\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 4.0", "### Framework versions\n\n- Transformers 4.8.2\n- Pytorch 1.8.1+cu111\n- Datasets 1.8.0\n- Tokenizers 0.10.3" ]
[ 57, 141, 6, 12, 8, 3, 90, 34 ]
[ "passage: TAGS\n#transformers #pytorch #roberta #token-classification #generated_from_trainer #dataset-conll2003 #license-mit #autotrain_compatible #endpoints_compatible #region-us \n# roberta-base-ner\n\nThis model is a fine-tuned version of roberta-base on the conll2003 dataset.\nIt achieves the following results on the evaluation set:\n- eval_loss: 0.0814\n- eval_precision: 0.9101\n- eval_recall: 0.9336\n- eval_f1: 0.9217\n- eval_accuracy: 0.9799\n- eval_runtime: 10.2964\n- eval_samples_per_second: 315.646\n- eval_steps_per_second: 39.529\n- epoch: 1.14\n- step: 500## Model description\n\nMore information needed## Intended uses & limitations\n\nMore information needed## Training and evaluation data\n\nMore information needed## Training procedure### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 5e-05\n- train_batch_size: 32\n- eval_batch_size: 8\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 4.0### Framework versions\n\n- Transformers 4.8.2\n- Pytorch 1.8.1+cu111\n- Datasets 1.8.0\n- Tokenizers 0.10.3" ]
[ -0.08119548857212067, 0.2262132614850998, -0.004273960366845131, 0.08334942907094955, 0.1312549114227295, 0.008605102077126503, 0.04453509673476219, 0.16617810726165771, -0.11959061026573181, 0.11348707228899002, 0.0858413428068161, 0.03972220793366432, 0.07206880301237106, 0.141978457570076, -0.022415289655327797, -0.15478581190109253, -0.00808895193040371, -0.05295068025588989, -0.0057584913447499275, 0.0904054194688797, 0.1120329275727272, -0.09528848528862, 0.06590253859758377, -0.027894990518689156, -0.09966907650232315, 0.047353655099868774, -0.05418180301785469, -0.0693805143237114, 0.06560855358839035, 0.02493872307240963, 0.05577252060174942, -0.009273232892155647, 0.0931403785943985, -0.2669813334941864, -0.017741873860359192, 0.06827651709318161, 0.04432407766580582, 0.07499273866415024, 0.037618596106767654, -0.01919860765337944, 0.058096203953027725, -0.19757330417633057, 0.09750907868146896, 0.036306366324424744, -0.10100400447845459, -0.16222472488880157, -0.11702600121498108, 0.08585721254348755, 0.06128516420722008, 0.09561590105295181, -0.012490051798522472, 0.18161220848560333, -0.03960542753338814, 0.07140237092971802, 0.2071796953678131, -0.255245178937912, -0.048926472663879395, 0.02967972308397293, 0.06239751726388931, 0.05136168748140335, -0.1074841246008873, -0.002012957353144884, 0.053444646298885345, 0.007943456061184406, 0.07860232889652252, -0.0017918695230036974, -0.07597550004720688, 0.007255783304572105, -0.09667614102363586, -0.07949754595756531, 0.21213488280773163, 0.08788351714611053, -0.06382076442241669, -0.11257412284612656, -0.019757075235247612, -0.15067380666732788, -0.0016810871893540025, -0.04772902652621269, 0.03223536163568497, -0.05458259955048561, -0.08598007261753082, -0.019718172028660774, -0.07461860030889511, -0.012293455190956593, 0.02450849488377571, 0.09720344096422195, 0.03444541618227959, -0.0015940169105306268, 0.005796791985630989, 0.08733755350112915, -0.022169064730405807, -0.1506062150001526, -0.07069596648216248, -0.004983467981219292, -0.10766599327325821, -0.07083132863044739, -0.028641732409596443, -0.006675133015960455, 0.006836209446191788, 0.22579357028007507, -0.00845668837428093, 0.06804044544696808, 0.021871814504265785, -0.02080244943499565, 0.0010302006267011166, 0.16834908723831177, -0.03464970365166664, -0.10091537237167358, -0.018394991755485535, 0.07857350260019302, -0.0030054538510739803, -0.009990059770643711, -0.04219865798950195, -0.021731574088335037, 0.10422403365373611, 0.0785512700676918, -0.00910137128084898, 0.015166700817644596, -0.049143560230731964, -0.0028280357364565134, 0.004493904300034046, -0.1503184288740158, 0.03751394525170326, -0.015376432798802853, -0.10210954397916794, -0.06385554373264313, 0.054042790085077286, -0.003761044703423977, -0.02382674068212509, 0.010696381330490112, -0.05282646790146828, -0.04182140901684761, -0.04566928744316101, -0.07466859370470047, 0.02417626976966858, -0.07299286127090454, 0.027362588793039322, -0.08984820544719696, -0.16997000575065613, -0.05264529585838318, 0.012684816494584084, -0.06970654428005219, -0.042587291449308395, -0.03627970069646835, -0.06979833543300629, 0.0042637065052986145, -0.02655908092856407, 0.11712481826543808, -0.03473920375108719, 0.06993914395570755, 0.029271403327584267, 0.026362432166934013, 0.08122186362743378, 0.04098141938447952, -0.08448738604784012, 0.03655611723661423, -0.0822625607252121, 0.1169559434056282, -0.09634293615818024, 0.021793343126773834, -0.16752876341342926, -0.08691873401403427, 0.0030827897135168314, -0.03709142655134201, 0.09287311136722565, 0.11466576159000397, -0.1248871311545372, -0.004133433569222689, 0.11335351318120956, -0.009213247336447239, -0.09314781427383423, 0.07598506659269333, -0.05754878371953964, 0.05918541178107262, 0.07291468232870102, 0.11365177482366562, 0.12665612995624542, -0.12930235266685486, -0.0832589864730835, 0.0024669780395925045, 0.05527693033218384, 0.08659882843494415, 0.07579495757818222, -0.009471911936998367, 0.08847027271986008, 0.018024735152721405, -0.060932453721761703, -0.018444327637553215, -0.08038942515850067, -0.09310270100831985, -0.03405633941292763, -0.07278459519147873, 0.006155448034405708, 0.014328551478683949, 0.01735854521393776, -0.0839618667960167, -0.13909809291362762, 0.059752456843853, 0.1426095962524414, -0.04086686298251152, 0.004955251235514879, -0.09444494545459747, 0.003807926783338189, -0.03129120171070099, -0.023730820044875145, -0.18690608441829681, -0.08060471713542938, 0.0493578165769577, -0.052585750818252563, 0.014985376968979836, 0.025296198204159737, 0.07021691650152206, 0.034774888306856155, -0.02411096729338169, -0.008328475058078766, -0.09286396205425262, -0.013656760565936565, -0.07618112862110138, -0.13868895173072815, -0.06218020245432854, -0.031903307884931564, 0.22323651611804962, -0.20525753498077393, 0.011043179780244827, 0.013345364481210709, 0.1238008365035057, 0.007473309990018606, -0.08363736420869827, 0.004367237910628319, -0.004489927086979151, -0.01926073431968689, -0.11897371709346771, -0.00021916523110121489, 0.0013317145640030503, -0.0891048014163971, -0.05831054970622063, -0.16500161588191986, -0.009920231997966766, 0.08027303963899612, 0.12993448972702026, -0.11720852553844452, 0.004353510681539774, -0.060010652989149094, -0.03508469834923744, -0.055812884122133255, -0.02058587409555912, 0.21281227469444275, 0.03072396107017994, 0.11132784932851791, -0.043463170528411865, -0.0858803242444992, 0.013708507642149925, 0.01306043192744255, -0.014834891073405743, 0.11432244628667831, 0.007204086985439062, -0.13681542873382568, 0.06279861181974411, 0.04999275133013725, 0.038177914917469025, 0.07977630198001862, -0.03208262473344803, -0.10454235225915909, -0.05349806696176529, 0.04120630770921707, 0.02133585512638092, 0.09536981582641602, -0.06105869263410568, -0.0001793288829503581, 0.056340716779232025, -0.01283189095556736, -0.006918075028806925, -0.10974671691656113, 0.0008421095553785563, 0.07378682494163513, -0.02760329283773899, 0.017908232286572456, -0.040064796805381775, 0.013076050207018852, 0.06715509295463562, 0.03790390491485596, 0.000595522637013346, -0.004841422662138939, -0.016041835770010948, -0.06759117543697357, 0.15299734473228455, -0.08210944384336472, -0.15801136195659637, -0.13012027740478516, -0.004117162432521582, -0.02904384769499302, -0.016276683658361435, 0.023794421926140785, -0.07444135844707489, -0.07605089992284775, -0.10030460357666016, -0.02703729458153248, -0.07639486342668533, -0.03129399195313454, 0.08153974264860153, 0.039063889533281326, 0.10560765862464905, -0.14418098330497742, 0.014222818426787853, 0.00752458069473505, -0.0823773443698883, -0.00865181814879179, 0.0518726110458374, 0.12068046629428864, 0.051694683730602264, -0.03178238123655319, 0.013160972855985165, -0.036946769803762436, 0.21703925728797913, -0.08661708235740662, -0.03639882802963257, 0.10785175859928131, 0.009614966809749603, 0.04944698140025139, 0.11187475174665451, -0.0042525362223386765, -0.08908327668905258, 0.04690288379788399, 0.05523784086108208, -0.027158668264746666, -0.2544236183166504, -0.0020939279347658157, -0.014006164856255054, -0.0668501928448677, 0.14517244696617126, 0.04852937161922455, 0.01961742527782917, 0.05498742312192917, -0.04777051880955696, 0.08217982202768326, -0.01530213188380003, 0.10245425999164581, 0.07592169940471649, 0.036598969250917435, 0.09334327280521393, -0.03651053085923195, -0.01515469141304493, 0.05161016806960106, 0.0008322776993736625, 0.2411300539970398, -0.029355764389038086, 0.1486544907093048, 0.020887942984700203, 0.14551693201065063, -0.07331611961126328, 0.005948128644376993, 0.05935606360435486, 0.026597123593091965, -0.004108520224690437, -0.0774105116724968, -0.06125304847955704, 0.04807914420962334, -0.0035688732750713825, 0.053838592022657394, -0.07738212496042252, 0.060499511659145355, 0.02119239792227745, 0.21458804607391357, 0.0640687346458435, -0.31001415848731995, -0.08668292313814163, 0.02729163132607937, -0.026144718751311302, -0.0703171044588089, -0.04003088176250458, 0.09498382359743118, -0.14463627338409424, 0.06187991052865982, -0.010140092112123966, 0.07841911911964417, -0.06324408203363419, -0.0018576323054730892, 0.0012052098754793406, 0.08002803474664688, 0.00949933659285307, 0.09639114141464233, -0.17971044778823853, 0.1764608919620514, 0.026908647269010544, 0.11399427801370621, -0.05666766315698624, 0.06727690994739532, -0.013676146045327187, -0.031734418123960495, 0.15008142590522766, -0.010805179364979267, -0.03460092842578888, -0.20592081546783447, -0.12164094299077988, 0.028174646198749542, 0.10871387273073196, -0.1018744483590126, 0.1252438724040985, -0.031641293317079544, -0.0061995186842978, 0.025932110846042633, -0.037222858518362045, -0.1542394459247589, -0.14975236356258392, 0.026755934581160545, -0.009601626545190811, -0.021344227716326714, -0.0719761773943901, -0.07534460723400116, -0.08662319928407669, 0.22082510590553284, -0.0056022293865680695, -0.03866272792220116, -0.13364526629447937, 0.14142687618732452, 0.15353447198867798, -0.08063370734453201, 0.014327213168144226, 0.0233355313539505, 0.12047647684812546, 0.045783307403326035, -0.03662277013063431, 0.024879779666662216, -0.029350563883781433, -0.13501118123531342, -0.0603574775159359, 0.12186774611473083, 0.04093421995639801, 0.06918541342020035, 0.009642783552408218, 0.031000422313809395, 0.016781702637672424, -0.062042202800512314, 0.005825004540383816, 0.06810683757066727, 0.0714888796210289, 0.0591265894472599, -0.03479832783341408, -0.0032359235920011997, -0.09270764887332916, -0.011638069525361061, 0.13768796622753143, 0.2678297758102417, -0.08958641439676285, 0.06143274903297424, 0.0163107980042696, -0.08816848695278168, -0.15043212473392487, 0.03619791567325592, 0.10502011328935623, 0.03582833707332611, 0.08606605231761932, -0.15705324709415436, 0.06609770655632019, 0.1168094053864479, -0.004783916752785444, 0.008913972415030003, -0.2896529734134674, -0.12163937836885452, 0.05202042683959007, 0.06688442081212997, -0.020632479339838028, -0.13421869277954102, -0.05970923975110054, -0.02916014939546585, -0.17291373014450073, 0.016727808862924576, -0.04113335162401199, 0.10343967378139496, 0.010140297003090382, 0.03994559869170189, 0.049970950931310654, -0.035924557596445084, 0.15774616599082947, 0.05817101150751114, 0.06520623713731766, -0.06711018085479736, 0.02365349978208542, 0.1317431777715683, -0.09244342893362045, 0.09615326672792435, -0.02195613458752632, 0.06684038043022156, -0.17428070306777954, -0.019705433398485184, -0.03617853671312332, 0.06292080134153366, -0.05655444785952568, -0.04840873181819916, -0.05768672749400139, 0.03482794389128685, 0.08495470136404037, -0.018416475504636765, 0.05407065153121948, 0.029476016759872437, 0.05281049758195877, 0.09183972328901291, 0.035855233669281006, 0.08237036317586899, -0.12667670845985413, 0.005981443915516138, -0.010381252504885197, 0.024912001565098763, -0.17598703503608704, 0.02684822678565979, 0.12282748520374298, 0.05139239877462387, 0.14064815640449524, -0.004394615534693003, -0.09496672451496124, 0.02299196645617485, 0.01864670217037201, -0.0706225261092186, -0.12318608164787292, 0.009016449563205242, -0.023700276389718056, -0.16487811505794525, -0.032529231160879135, 0.13248828053474426, -0.054190412163734436, -0.021640844643115997, -0.03699571266770363, 0.020901231095194817, 0.006106166169047356, 0.1787622720003128, 0.017310528084635735, 0.0734739676117897, -0.07214893400669098, 0.1173366978764534, 0.11685547977685928, -0.04473316669464111, 0.0920286551117897, 0.0005660928436554968, -0.06780929118394852, -0.00971912033855915, 0.04465378448367119, 0.08967617899179459, 0.01396053284406662, -0.0020378802437335253, -0.06304536014795303, -0.04405269771814346, 0.05741804465651512, 0.02140987664461136, 0.03185737133026123, 0.003430067328736186, 0.007784249261021614, 0.0048517161048948765, -0.14720851182937622, 0.09601457417011261, 0.07132168859243393, 0.050247903913259506, -0.11221598833799362, 0.1008879691362381, 0.001822130405344069, 0.010794702917337418, 0.007015452720224857, -0.007096792105585337, -0.0456870011985302, -0.004052453208714724, -0.08685211092233658, 0.011170177720487118, -0.010483494028449059, 0.003279611235484481, -0.02229621633887291, -0.041911378502845764, -0.04664858803153038, 0.06531030684709549, -0.058947596698999405, -0.11463197320699692, 0.00914782378822565, 0.09000792354345322, -0.14042487740516663, -0.04474193602800369, 0.0363122820854187, -0.12317007780075073, 0.07751885801553726, 0.05542365089058876, 0.03831951320171356, -0.009451723657548428, -0.053133945912122726, -0.020256461575627327, 0.03019251674413681, 0.04384369030594826, 0.05984319746494293, -0.11223360896110535, 0.008396136574447155, -0.03766006603837013, 0.026982706040143967, 0.015661321580410004, 0.00269096321426332, -0.12816181778907776, -0.07166960090398788, -0.06327653676271439, -0.00785044115036726, -0.050807684659957886, 0.06293565779924393, 0.10026545822620392, 0.03224784880876541, 0.13842801749706268, -0.04373420774936676, 0.044125769287347794, -0.2302417904138565, -0.038231052458286285, -0.02798285521566868, -0.027145015075802803, -0.06450023502111435, -0.025483710691332817, 0.08933795243501663, -0.038109831511974335, 0.09079609811306, -0.03499087318778038, 0.14683978259563446, 0.040682658553123474, -0.047728974372148514, -0.018099574372172356, -0.000523312424775213, 0.16982664167881012, 0.0977061316370964, -0.01550288125872612, 0.09853202849626541, -0.02777063101530075, 0.09988594800233841, -0.03223158046603203, 0.060706835240125656, 0.1828833818435669, 0.021659867838025093, 0.05406505614519119, 0.048597659915685654, -0.12266232818365097, -0.10645092278718948, 0.1356901228427887, -0.045106299221515656, 0.09685499966144562, -0.03420409932732582, 0.08186451345682144, 0.08879835903644562, -0.16102948784828186, 0.05024350434541702, -0.07601910084486008, -0.08892831951379776, -0.08124012500047684, -0.01501450128853321, -0.09838013350963593, -0.05270831286907196, 0.05040444806218147, -0.10161250829696655, 0.03613191097974777, 0.09576817601919174, 0.00006039501022314653, 0.004351505544036627, 0.10418237745761871, -0.05082855373620987, -0.019102856516838074, 0.05397305265069008, -0.011716069653630257, -0.014541341923177242, -0.05739440768957138, -0.02345310151576996, 0.09318913519382477, 0.06241235136985779, 0.1269753873348236, -0.01642007939517498, 0.06837012618780136, 0.04066874831914902, -0.017928393557667732, -0.1039547324180603, -0.002160474192351103, 0.027189765125513077, 0.02037227340042591, 0.030541015788912773, 0.06618330627679825, 0.03107038140296936, -0.043963778764009476, 0.26019784808158875, -0.0398043617606163, -0.049775995314121246, -0.14014849066734314, 0.10352526605129242, 0.09842202812433243, 0.009718194603919983, 0.05492511764168739, -0.13223513960838318, 0.01611979678273201, 0.11225625872612, 0.09842195361852646, 0.001205972395837307, -0.023189667612314224, -0.001599168754182756, -0.015360201708972454, -0.06275683641433716, 0.04897516593337059, 0.0862959772348404, -0.07760277390480042, -0.05214281752705574, 0.02412448450922966, 0.021803423762321472, -0.04524409770965576, -0.05459405109286308, 0.05322388559579849, -0.014635525643825531, 0.04249542951583862, -0.022876232862472534, 0.06001274287700653, 0.03987320512533188, -0.2776928246021271, 0.06395485252141953, -0.1810896396636963, -0.17656192183494568, 0.003174686571583152, 0.08182691037654877, 0.013937183655798435, 0.06636925786733627, 0.0033244311343878508, -0.0017276345752179623, 0.161542147397995, -0.0074610584415495396, -0.07333982735872269, -0.08522292971611023, 0.0698765367269516, -0.037582654505968094, 0.25103265047073364, -0.005946434568613768, 0.05492573231458664, 0.11020933836698532, -0.009548412635922432, -0.1709594577550888, 0.011054201051592827, 0.09503503888845444, -0.007703213952481747, 0.06411256641149521, 0.16373828053474426, -0.0544753260910511, 0.1399986296892166, 0.07956409454345703, -0.0959118977189064, -0.036872681230306625, -0.03663386031985283, 0.034614644944667816, -0.09638635069131851, -0.008860450237989426, -0.03779887408018112, 0.14084771275520325, 0.18294741213321686, -0.05156267434358597, 0.0011020565871149302, -0.08648873120546341, 0.007463410496711731, 0.04546285793185234, 0.10903923958539963, -0.01130974106490612, -0.15010525286197662, 0.02691849134862423, -0.01272362656891346, 0.062406621873378754, -0.2604256570339203, -0.10227829217910767, 0.08467723429203033, -0.05965704470872879, -0.02536117099225521, 0.1332615315914154, 0.0559406541287899, 0.017929820343852043, -0.0447239987552166, -0.15265865623950958, -0.036155372858047485, 0.13667388260364532, -0.14137932658195496, -0.04622560366988182 ]
null
null
transformers
# My Awesome Model
{"tags": ["conversational"]}
text-generation
andikarachman/DialoGPT-small-sheldon
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# My Awesome Model
[ "# My Awesome Model" ]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# My Awesome Model" ]
[ 51, 4 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# My Awesome Model" ]
[ -0.05259015038609505, 0.05521034821867943, -0.005910294596105814, 0.017722278833389282, 0.15250112116336823, 0.02286236733198166, 0.07657632976770401, 0.09513414651155472, -0.025391526520252228, -0.047348517924547195, 0.15119488537311554, 0.19781284034252167, -0.020334534347057343, 0.101333387196064, -0.04688440263271332, -0.3143521845340729, 0.06439975649118423, 0.05463787540793419, -0.015605635941028595, 0.12023304402828217, 0.09468326717615128, -0.0530015267431736, 0.08742043375968933, -0.012155864387750626, -0.1293085366487503, -0.0027921805158257484, -0.002384399762377143, -0.10180269181728363, 0.11194873601198196, 0.033712033182382584, 0.05166437849402428, 0.0182647667825222, -0.05843055993318558, -0.139859139919281, 0.03845210000872612, -0.015005595050752163, -0.05602653697133064, 0.05648263916373253, 0.059830192476511, -0.07164353132247925, 0.1669619083404541, 0.13275989890098572, -0.04237370565533638, 0.056127581745386124, -0.17620700597763062, 0.017941240221261978, 0.01800798624753952, 0.019184142351150513, 0.05306641012430191, 0.10830496996641159, -0.03932326287031174, 0.09217294305562973, -0.11410652846097946, 0.08313368260860443, 0.07800983637571335, -0.29151955246925354, -0.025312699377536774, 0.10440942645072937, 0.06437138468027115, 0.048375632613897324, -0.013386772945523262, 0.0621674507856369, 0.02149512618780136, 0.008602659218013287, 0.02225899137556553, -0.06727100163698196, -0.05789240449666977, 0.032748885452747345, -0.0967593789100647, -0.03634428232908249, 0.19753605127334595, -0.024647634476423264, 0.053590498864650726, -0.06265407055616379, -0.11300963163375854, -0.039751436561346054, -0.050429005175828934, -0.029761891812086105, -0.05090925097465515, 0.09489558637142181, 0.004352911841124296, -0.09534718841314316, -0.13405443727970123, -0.01370926946401596, -0.1618979275226593, 0.15892250835895538, 0.012579603120684624, 0.046201955527067184, -0.19210097193717957, 0.11465331166982651, -0.03857925534248352, -0.08259090781211853, 0.030513519421219826, -0.12010065466165543, 0.03160654753446579, -0.008132083341479301, -0.019599268212914467, -0.049325279891490936, 0.061037879437208176, 0.08101806789636612, 0.018783701583743095, 0.005755073390901089, 0.018167443573474884, 0.05343452841043472, 0.05891622602939606, 0.10033947974443436, -0.02891627699136734, -0.0625043511390686, 0.0025436533614993095, -0.12051084637641907, -0.01122665498405695, -0.05357983708381653, -0.18095199763774872, 0.002246231772005558, 0.02455340512096882, 0.05192234739661217, 0.011778532527387142, 0.09955989569425583, -0.028496338054537773, -0.026898741722106934, 0.06898727267980576, 0.002862759632989764, -0.015707949176430702, -0.005368964280933142, -0.010934269987046719, 0.11485416442155838, -0.023099146783351898, 0.04774846136569977, -0.12022071331739426, 0.020393015816807747, -0.07851235568523407, -0.0019349842332303524, -0.06214260309934616, -0.04864754155278206, -0.0019346009939908981, -0.06985589861869812, 0.021118074655532837, -0.14833110570907593, -0.17990200221538544, -0.005064866971224546, 0.021302316337823868, -0.052403319627046585, -0.09162671118974686, -0.0982397273182869, -0.02586611732840538, 0.03574685752391815, -0.05873546749353409, 0.013170980848371983, -0.06884536147117615, 0.06542801111936569, 0.0029820678755640984, 0.05682007595896721, -0.14085575938224792, 0.08719147741794586, -0.12582023441791534, -0.023288866505026817, -0.061977192759513855, 0.1109607070684433, 0.024780582636594772, 0.1267160177230835, 0.004311583004891872, -0.0033308975398540497, -0.08729329705238342, 0.08271238207817078, -0.04243258014321327, 0.22770646214485168, -0.10479787737131119, -0.08809807151556015, 0.2632525563240051, -0.05423165112733841, -0.16432519257068634, 0.10179096460342407, -0.014350244775414467, 0.12198644131422043, 0.13850919902324677, 0.16080057621002197, 0.007628654129803181, 0.03313867375254631, 0.10115300863981247, 0.08631709218025208, -0.08573295921087265, -0.0611947737634182, 0.023627014830708504, -0.011463395319879055, -0.10670105367898941, 0.046802595257759094, 0.04794782027602196, 0.08188598603010178, -0.04982871189713478, -0.028600862249732018, -0.01972118206322193, -0.044152840971946716, 0.05264130234718323, 0.007675500120967627, 0.13217447698116302, -0.03674980252981186, -0.03692879155278206, -0.023745311424136162, 0.01699630729854107, -0.03115241602063179, 0.007061392068862915, -0.05687357112765312, 0.11091547459363937, -0.03406180441379547, 0.051789235323667526, -0.16953988373279572, -0.04873261600732803, -0.02087729424238205, 0.1402055323123932, 0.04973345249891281, 0.1329866498708725, 0.06287940591573715, -0.010758201591670513, 0.00859389640390873, 0.007998145185410976, 0.13181665539741516, 0.007865442894399166, -0.07660657912492752, -0.047718439251184464, 0.09176599979400635, -0.05973208695650101, 0.06147782504558563, -0.098741315305233, -0.004747362341731787, -0.01433002483099699, 0.08674649894237518, 0.006352655589580536, 0.029382232576608658, -0.006192679051309824, 0.003654100699350238, -0.06161240115761757, 0.017873648554086685, 0.12492607533931732, -0.01421504095196724, -0.07439801841974258, 0.22084392607212067, -0.15798072516918182, 0.18006981909275055, 0.18165533244609833, -0.3081994652748108, 0.024602634832262993, -0.08860466629266739, -0.036338552832603455, 0.03426366671919823, 0.0491504967212677, -0.034147560596466064, 0.16587987542152405, -0.016766328364610672, 0.201018825173378, -0.03547777235507965, -0.01287798210978508, -0.010399105958640575, -0.03656993433833122, -0.010632630437612534, 0.09065473079681396, 0.15122920274734497, -0.1677125245332718, 0.18270380795001984, 0.1660280078649521, 0.06873020529747009, 0.17776396870613098, 0.034313347190618515, -0.006856906693428755, 0.07112615555524826, -0.022670727223157883, -0.07675548642873764, -0.049287427216768265, -0.26302891969680786, -0.027947327122092247, 0.06471601128578186, 0.04510856419801712, 0.11924877762794495, -0.10971947014331818, -0.037208184599876404, 0.010892451740801334, -0.013165894895792007, 0.02132410928606987, 0.09682225435972214, 0.01171150617301464, 0.11804302036762238, -0.021027036011219025, -0.05209195241332054, 0.0898953229188919, 0.02727191150188446, -0.0787680521607399, 0.19168277084827423, -0.10074768215417862, -0.3233809769153595, -0.11354339867830276, -0.18166927993297577, -0.017843691632151604, 0.05878754332661629, 0.08049646019935608, -0.09228580445051193, -0.02625267766416073, -0.01639235019683838, 0.0758359357714653, -0.09145816415548325, -0.015880629420280457, -0.09367848187685013, 0.034986745566129684, -0.10827737301588058, -0.07011983543634415, -0.05141967162489891, -0.03368452936410904, -0.04457031562924385, 0.13157756626605988, -0.12242637574672699, 0.06396433711051941, 0.2076517641544342, 0.06227295100688934, 0.05622440204024315, -0.0229496993124485, 0.23288212716579437, -0.10842552781105042, 0.02383521944284439, 0.1717897206544876, -0.03566030040383339, 0.0727933868765831, 0.13435456156730652, 0.006721907295286655, -0.08144525438547134, 0.03465581312775612, -0.04592517390847206, -0.08630958944559097, -0.20441576838493347, -0.14156180620193481, -0.12814727425575256, 0.07913564145565033, 0.03285396471619606, 0.05478321388363838, 0.15024253726005554, 0.11386489123106003, 0.007987297140061855, 0.00976672861725092, -0.006888182368129492, 0.05438044294714928, 0.17482298612594604, -0.05838097631931305, 0.10041683167219162, -0.037591226398944855, -0.1924494504928589, 0.08022978901863098, 0.04309763014316559, 0.08280511945486069, 0.07474655658006668, 0.0856199786067009, 0.013537914492189884, 0.03723837807774544, 0.10897084325551987, 0.1165735274553299, 0.031679023057222366, -0.038079675287008286, -0.04882059991359711, -0.026300756260752678, -0.03285675123333931, 0.05745977535843849, 0.07790146768093109, -0.1608346849679947, -0.06348084658384323, -0.06350091099739075, 0.07662643492221832, 0.09017108380794525, 0.11811108142137527, -0.21219493448734283, 0.01579318381845951, 0.092556893825531, -0.0494147390127182, -0.1304239183664322, 0.07402537018060684, -0.00466050673276186, -0.1397053301334381, 0.037663187831640244, -0.014095795340836048, 0.1359514445066452, -0.0778401643037796, 0.10336452722549438, -0.08307972550392151, -0.06147889420390129, 0.03632286190986633, 0.1355396956205368, -0.30774354934692383, 0.2137020230293274, -0.022472934797406197, -0.05296783149242401, -0.10508129745721817, -0.011727629229426384, 0.020913105458021164, 0.09079049527645111, 0.10090240091085434, -0.0025442070327699184, 0.0061299679800868034, -0.0345483273267746, -0.053218815475702286, 0.024456629529595375, 0.07957815378904343, -0.08542889356613159, 0.0017540202243253589, -0.02361489273607731, -0.004407065454870462, -0.032844748347997665, -0.01189463958144188, -0.011617658659815788, -0.16786961257457733, 0.06556065380573273, -0.002625665394589305, 0.11129079759120941, 0.03491498529911041, 0.0024013579823076725, -0.1009332686662674, 0.19977013766765594, 0.01796281896531582, -0.08052749931812286, -0.08830537647008896, -0.03254766762256622, 0.03660419583320618, -0.06121435388922691, 0.027481911703944206, -0.06916457414627075, 0.033381566405296326, -0.06441576033830643, -0.18325145542621613, 0.1268530637025833, -0.10945470631122589, -0.03609596937894821, -0.04321056231856346, 0.18323224782943726, -0.00929707009345293, -0.0011623724130913615, 0.05866571143269539, 0.0032208464108407497, -0.1347510665655136, -0.10740556567907333, 0.020214511081576347, -0.015275230631232262, 0.009142245166003704, 0.05559912323951721, -0.009665844030678272, 0.00045268211397342384, -0.039558928459882736, -0.023234419524669647, 0.32348164916038513, 0.10732097923755646, -0.04944206401705742, 0.17007054388523102, 0.13087597489356995, -0.0827672928571701, -0.30699312686920166, -0.10971353948116302, -0.10529600828886032, -0.026918673887848854, -0.037983208894729614, -0.19617970287799835, 0.09504909813404083, -0.03528566658496857, -0.022136637941002846, 0.11253651231527328, -0.2759084105491638, -0.0770430713891983, 0.1826775223016739, 0.003314757253974676, 0.3998824954032898, -0.10265109688043594, -0.08777514100074768, -0.06741699576377869, -0.1120782196521759, 0.2033512443304062, -0.05560711398720741, 0.08663415163755417, -0.00517998356372118, 0.15513743460178375, 0.055607251822948456, -0.02176513522863388, 0.08932057023048401, -0.005811662413179874, -0.0546204075217247, -0.1219351515173912, -0.03444604203104973, -0.009159418754279613, 0.007239421829581261, 0.03589896112680435, -0.04242607578635216, 0.01279151439666748, -0.1399589478969574, -0.045490626245737076, -0.0764620453119278, 0.024699507281184196, 0.021008269861340523, -0.0652410089969635, -0.01643640361726284, -0.03945036977529526, -0.012804778292775154, 0.03164318576455116, 0.15236099064350128, -0.06478006392717361, 0.1476556956768036, 0.04904455319046974, 0.15412139892578125, -0.14745712280273438, -0.02258288487792015, -0.06896031647920609, -0.05498642474412918, 0.04900865629315376, -0.10053684562444687, 0.050061121582984924, 0.1202658861875534, -0.0742902010679245, 0.0987328365445137, 0.0922594666481018, -0.01938629150390625, 0.0012483424507081509, 0.1226617842912674, -0.2489612102508545, -0.07742628455162048, -0.10509459674358368, 0.013337249867618084, 0.10138551890850067, 0.06995654851198196, 0.17304721474647522, -0.0037713919300585985, -0.036284226924180984, -0.0064643872901797295, 0.025414984673261642, -0.03540204465389252, 0.05724727362394333, -0.002706433180719614, 0.016663886606693268, -0.15213344991207123, 0.060368724167346954, -0.00024176653823815286, -0.1438901126384735, -0.013603870756924152, 0.16073721647262573, -0.11208858340978622, -0.15145981311798096, -0.007263668347150087, 0.13685113191604614, -0.13171035051345825, -0.03302847594022751, -0.03708777576684952, -0.170182466506958, 0.07439173012971878, 0.1024777740240097, 0.08549231290817261, 0.08025266975164413, -0.06620611250400543, -0.00807863101363182, -0.011656313203275204, -0.026087598875164986, 0.031810320913791656, -0.023377234116196632, -0.09044221043586731, 0.03872343525290489, -0.026654237881302834, 0.13591371476650238, -0.09607382118701935, -0.09331836551427841, -0.135749951004982, 0.039314381778240204, -0.12405620515346527, -0.08138058334589005, -0.12200927734375, -0.0591500885784626, 0.00224387738853693, -0.0001289021165575832, -0.035674065351486206, -0.06687422841787338, -0.13582271337509155, 0.04366770386695862, -0.04484611004590988, 0.0013091047294437885, -0.040241483598947525, 0.04561002552509308, 0.06766383349895477, -0.03493715822696686, 0.13722217082977295, 0.11722734570503235, -0.07864081114530563, 0.08946478366851807, -0.16657429933547974, -0.0683990865945816, 0.08854512125253677, 0.008173754438757896, 0.06165994703769684, 0.06743349134922028, 0.033807408064603806, 0.06109451875090599, 0.04151686280965805, 0.03488299250602722, 0.01739438995718956, -0.09271225333213806, 0.015541021712124348, 0.022296719253063202, -0.1294609159231186, -0.04801803454756737, -0.029226921498775482, 0.00939185917377472, 0.008117396384477615, 0.11003357172012329, -0.0426274873316288, 0.09439733624458313, -0.05888751894235611, 0.036728594452142715, 0.016222506761550903, -0.16461637616157532, -0.020102784037590027, -0.11915475130081177, 0.028684545308351517, -0.0033096212428063154, 0.25625869631767273, 0.06346847862005234, 0.020517030730843544, 0.01250078622251749, 0.08567021042108536, 0.07241600006818771, 0.02562166005373001, 0.1956365555524826, 0.10854171961545944, -0.05020022392272949, -0.12334850430488586, 0.09686340391635895, 0.034720368683338165, 0.06432123482227325, 0.13385434448719025, -0.026959087699651718, 0.002498799469321966, 0.11019360274076462, 0.011678861454129219, 0.04961980879306793, -0.09859088063240051, -0.16400282084941864, -0.00994415208697319, 0.061864156275987625, -0.04559077322483063, 0.12240655720233917, 0.11382720619440079, -0.020697353407740593, 0.03180128335952759, -0.010503606870770454, -0.05694027617573738, -0.16998925805091858, -0.1630837321281433, -0.08357038348913193, -0.11794789135456085, -0.0027763545513153076, -0.11386270076036453, 0.013879159465432167, 0.06452289968729019, 0.0604364387691021, -0.09019444137811661, 0.08891061693429947, 0.0687386617064476, -0.11843101680278778, 0.08828350901603699, -0.033263903111219406, 0.07249268144369125, 0.0015160300536081195, 0.003872724948450923, -0.13800905644893646, 0.032393742352724075, -0.008493867702782154, 0.04159298539161682, -0.09244006127119064, 0.022458361461758614, -0.11297028511762619, -0.07659684121608734, -0.07971972227096558, 0.05093973129987717, -0.03541257977485657, 0.1390930563211441, 0.001295371213927865, -0.035233911126852036, 0.024190181866288185, 0.22729112207889557, -0.06350252777338028, -0.030667411163449287, -0.0618741400539875, 0.21414142847061157, 0.024466563016176224, 0.10703565180301666, -0.016775688156485558, 0.019240234047174454, -0.0764411985874176, 0.3689337372779846, 0.344390869140625, -0.1225387305021286, -0.0015968306688591838, 0.031062176451086998, 0.036916591227054596, 0.11621878296136856, 0.12602226436138153, 0.057955991476774216, 0.2995031177997589, -0.08396036922931671, -0.002026971662417054, -0.02688612788915634, -0.03624163940548897, -0.04409930482506752, 0.10547586530447006, 0.06835740804672241, -0.03330419585108757, -0.027012333273887634, 0.1376710683107376, -0.2966996431350708, 0.12323499470949173, -0.15714547038078308, -0.1487535685300827, -0.06873904913663864, -0.005042468197643757, 0.08589684963226318, 0.04748665541410446, 0.1069009080529213, -0.019124338403344154, -0.08203735202550888, 0.05766449123620987, 0.0320524163544178, -0.22844897210597992, 0.011852608993649483, 0.08361081779003143, -0.06153005734086037, 0.011767351068556309, -0.017906347289681435, 0.038472190499305725, 0.07790610194206238, 0.025976579636335373, -0.032770540565252304, 0.06325861811637878, -0.005814229138195515, -0.05033424496650696, 0.04302205145359039, 0.05059972032904625, 0.017107632011175156, -0.1511564701795578, 0.07320158183574677, -0.1762860119342804, 0.0566408596932888, -0.005331212189048529, -0.04948166385293007, 0.000018263708625454456, 0.01998119056224823, -0.06808236241340637, 0.05880929157137871, 0.0952666699886322, -0.012173139490187168, -0.002317852806299925, -0.056667573750019073, 0.007662574760615826, -0.0679154172539711, -0.0747012197971344, -0.10497893393039703, -0.1338900774717331, -0.11392296850681305, 0.10846775025129318, -0.011928223073482513, -0.19833622872829437, 0.02906924858689308, -0.11258108913898468, 0.04933213070034981, -0.13360801339149475, 0.08599711954593658, 0.1282832771539688, 0.021543797105550766, -0.01265349704772234, 0.04020093381404877, 0.01591683179140091, 0.08550478518009186, -0.09200563281774521, -0.10515180230140686 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-marc-en This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the amazon_reviews_multi dataset. It achieves the following results on the evaluation set: - Loss: 0.8885 - Mae: 0.4390 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Mae | |:-------------:|:-----:|:----:|:---------------:|:------:| | 1.1089 | 1.0 | 235 | 0.9027 | 0.4756 | | 0.9674 | 2.0 | 470 | 0.8885 | 0.4390 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.9.0+cu111 - Datasets 1.14.0 - Tokenizers 0.10.3
{"license": "mit", "tags": ["generated_from_trainer"], "datasets": ["amazon_reviews_multi"], "model-index": [{"name": "xlm-roberta-base-finetuned-marc-en", "results": []}]}
text-classification
anditya/xlm-roberta-base-finetuned-marc-en
[ "transformers", "pytorch", "tensorboard", "xlm-roberta", "text-classification", "generated_from_trainer", "dataset:amazon_reviews_multi", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #xlm-roberta #text-classification #generated_from_trainer #dataset-amazon_reviews_multi #license-mit #autotrain_compatible #endpoints_compatible #region-us
xlm-roberta-base-finetuned-marc-en ================================== This model is a fine-tuned version of xlm-roberta-base on the amazon\_reviews\_multi dataset. It achieves the following results on the evaluation set: * Loss: 0.8885 * Mae: 0.4390 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 16 * eval\_batch\_size: 16 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 2 ### Training results ### Framework versions * Transformers 4.11.3 * Pytorch 1.9.0+cu111 * Datasets 1.14.0 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 2", "### Training results", "### Framework versions\n\n\n* Transformers 4.11.3\n* Pytorch 1.9.0+cu111\n* Datasets 1.14.0\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #xlm-roberta #text-classification #generated_from_trainer #dataset-amazon_reviews_multi #license-mit #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 2", "### Training results", "### Framework versions\n\n\n* Transformers 4.11.3\n* Pytorch 1.9.0+cu111\n* Datasets 1.14.0\n* Tokenizers 0.10.3" ]
[ 67, 98, 4, 34 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #xlm-roberta #text-classification #generated_from_trainer #dataset-amazon_reviews_multi #license-mit #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 2### Training results### Framework versions\n\n\n* Transformers 4.11.3\n* Pytorch 1.9.0+cu111\n* Datasets 1.14.0\n* Tokenizers 0.10.3" ]
[ -0.09092789888381958, 0.08008227497339249, -0.0020140453707426786, 0.11630697548389435, 0.18312716484069824, 0.042973749339580536, 0.15040470659732819, 0.11954569816589355, -0.09022784978151321, -0.0003494977136142552, 0.11352355778217316, 0.17042438685894012, 0.007949714548885822, 0.1317906379699707, -0.06562875211238861, -0.25790008902549744, -0.012251557782292366, 0.05035068839788437, -0.04488401114940643, 0.1443592607975006, 0.10154645889997482, -0.1380293369293213, 0.09442190825939178, -0.0014341471251100302, -0.19770415127277374, -0.006765956524759531, 0.029228247702121735, -0.06890206784009933, 0.13384534418582916, 0.03764583170413971, 0.13645893335342407, 0.008102459833025932, 0.07276447862386703, -0.19063866138458252, 0.020796533674001694, 0.040146905928850174, 0.00358709879219532, 0.0915832370519638, 0.030548246577382088, -0.01468250248581171, 0.1342829167842865, -0.060973599553108215, 0.07154899835586548, 0.018368558958172798, -0.11795462667942047, -0.2320529818534851, -0.08308214694261551, 0.035912688821554184, 0.056772612035274506, 0.09991798549890518, -0.010324102826416492, 0.15634198486804962, -0.07674280554056168, 0.10339420288801193, 0.23605166375637054, -0.2893300950527191, -0.07612571865320206, 0.032290682196617126, 0.043305903673172, 0.08403892815113068, -0.10349797457456589, -0.023395158350467682, 0.05919168144464493, 0.05649252235889435, 0.12055753171443939, -0.0452197901904583, -0.0962030366063118, 0.01583736389875412, -0.1441667675971985, -0.02332693338394165, 0.2023565173149109, 0.03447432816028595, -0.0476268008351326, -0.051082272082567215, -0.032434288412332535, -0.15748977661132812, -0.03979404643177986, -0.0009673985186964273, 0.050246383994817734, -0.06319781392812729, -0.08705104142427444, -0.013781961984932423, -0.11613631248474121, -0.05173107236623764, -0.06630995124578476, 0.1457367241382599, 0.04109196364879608, 0.01682303659617901, -0.03500403091311455, 0.10437536239624023, 0.021311579272150993, -0.10318823158740997, 0.012504742480814457, 0.007507571950554848, -0.010289235971868038, -0.047606464475393295, -0.05751515179872513, -0.07956288009881973, 0.002544892020523548, 0.11920338124036789, -0.04774501919746399, 0.03242870792746544, 0.03772571310400963, 0.057246528565883636, -0.07498431205749512, 0.19655898213386536, -0.028955459594726562, -0.005452427081763744, -0.004732458386570215, 0.04949004575610161, 0.015602247789502144, -0.010551849380135536, -0.12953022122383118, 0.007022026460617781, 0.08074092119932175, 0.013663754798471928, -0.07587581127882004, 0.06431995332241058, -0.06985332071781158, -0.04672382026910782, -0.007498918566852808, -0.07484535127878189, 0.031198130920529366, -0.008710284717381, -0.06582239270210266, -0.02350885048508644, 0.023388126865029335, 0.017721518874168396, -0.011746599338948727, 0.13322429358959198, -0.08970562368631363, 0.0364038459956646, -0.09379757940769196, -0.10690733790397644, 0.021213319152593613, -0.07686057686805725, 0.0376054085791111, -0.10856878012418747, -0.16822496056556702, -0.03304174169898033, 0.0522976890206337, -0.018100610002875328, -0.060430899262428284, -0.03577180206775665, -0.06308238208293915, 0.01012183167040348, -0.014289181679487228, 0.1470746546983719, -0.07050348073244095, 0.11098764836788177, 0.03432513028383255, 0.05846457928419113, -0.04605408012866974, 0.04961748793721199, -0.09303298592567444, -0.008509560488164425, -0.15352317690849304, 0.03393903747200966, -0.04447499290108681, 0.058807726949453354, -0.07169647514820099, -0.11825202405452728, 0.013603618368506432, 0.019700555130839348, 0.04256633669137955, 0.07442475855350494, -0.1713005006313324, -0.07580258697271347, 0.14970633387565613, -0.06509901583194733, -0.12265316396951675, 0.11653491109609604, -0.08050192892551422, 0.06815876066684723, 0.07918455451726913, 0.16007547080516815, 0.07368943095207214, -0.07665113359689713, 0.02364281751215458, -0.009748673066496849, 0.030511032789945602, -0.06656751781702042, 0.07645123451948166, 0.023808009922504425, -0.011088239029049873, 0.031931594014167786, -0.03572938218712807, 0.036782167851924896, -0.09431610256433487, -0.08854455500841141, -0.03681464493274689, -0.09542662650346756, 0.05960068479180336, 0.07206001877784729, 0.07265763729810715, -0.11765731126070023, -0.07257198542356491, 0.07150136679410934, 0.0861012265086174, -0.055003076791763306, 0.018849531188607216, -0.05219917744398117, 0.06374433636665344, -0.034731317311525345, -0.022515803575515747, -0.17951369285583496, -0.029770378023386, 0.014603286981582642, 0.005661679431796074, 0.032073505222797394, 0.040834296494722366, 0.05372710898518562, 0.04150041192770004, -0.07131427526473999, -0.011015200987458229, -0.050375696271657944, -0.00942130945622921, -0.1230582743883133, -0.19584792852401733, -0.018969720229506493, -0.023339437320828438, 0.11454646289348602, -0.224257692694664, 0.03413281589746475, -0.04092243313789368, 0.05761338770389557, 0.041867028921842575, -0.010956901125609875, -0.02053735964000225, 0.0860079899430275, -0.03713130205869675, -0.0327489897608757, 0.07592474669218063, 0.012195399962365627, -0.10368473827838898, -0.007822113111615181, -0.09257585555315018, 0.19031088054180145, 0.1289455145597458, -0.09699749946594238, -0.0888260006904602, 0.010719056241214275, -0.054551877081394196, -0.03350850194692612, -0.08110085129737854, 0.03831710293889046, 0.1832561194896698, -0.00408615218475461, 0.1422782838344574, -0.08589011430740356, -0.04746617004275322, 0.027460463345050812, -0.04416185989975929, 0.026127975434064865, 0.14056192338466644, 0.12522448599338531, -0.0920635238289833, 0.1394202560186386, 0.14817063510417938, -0.07915978133678436, 0.1658279448747635, -0.03801234811544418, -0.059139613062143326, -0.024806562811136246, -0.03590410575270653, -0.011826027184724808, 0.1085469201207161, -0.12760300934314728, 0.00472189811989665, 0.03235438093543053, 0.009446932934224606, 0.01708807982504368, -0.23087909817695618, -0.04802200570702553, 0.035222526639699936, -0.040130965411663055, -0.011457022279500961, 0.006225543096661568, 0.01636500284075737, 0.11100597679615021, -0.00038215177482925355, -0.061102356761693954, 0.04150799661874771, 0.007206903304904699, -0.09109006822109222, 0.21807080507278442, -0.0752849280834198, -0.18252205848693848, -0.13199250400066376, -0.0493457093834877, -0.04442271217703819, -0.00279906764626503, 0.06433742493391037, -0.07138606905937195, -0.02895044907927513, -0.06548784673213959, 0.00514746131375432, -0.006640486419200897, 0.016602864488959312, -0.018567554652690887, 0.023830769583582878, 0.03936237096786499, -0.10331819206476212, -0.012889090925455093, -0.061911795288324356, -0.040967509150505066, 0.053883109241724014, 0.04405555874109268, 0.10898144543170929, 0.14961715042591095, -0.025291262194514275, -0.003893762594088912, -0.03315175324678421, 0.21485087275505066, -0.08689753711223602, -0.04712153226137161, 0.13125620782375336, -0.009326517581939697, 0.03263324499130249, 0.1212800070643425, 0.0720895454287529, -0.09237991273403168, 0.017520809546113014, 0.02917098067700863, -0.03997639939188957, -0.27003076672554016, -0.03821174427866936, -0.053288307040929794, 0.0005041555850766599, 0.07316083461046219, 0.026278546079993248, 0.005705300718545914, 0.06592023372650146, 0.04250522330403328, 0.0648341029882431, -0.02982121892273426, 0.06391338258981705, 0.1108853667974472, 0.03844940662384033, 0.13148561120033264, -0.05558411031961441, -0.06147214397788048, 0.05758168175816536, -0.00863972119987011, 0.24782785773277283, 0.011279144324362278, 0.1309511810541153, 0.07623305916786194, 0.12350870668888092, 0.017918558791279793, 0.05768585205078125, 0.018591217696666718, -0.03858204931020737, -0.019616344943642616, -0.025811797007918358, -0.029816756024956703, 0.0286216102540493, -0.04727308079600334, 0.048704832792282104, -0.13749583065509796, -0.01498402375727892, 0.06358642131090164, 0.23906491696834564, 0.016769928857684135, -0.30908310413360596, -0.10424860566854477, 0.010606772266328335, -0.05240930989384651, -0.009383879601955414, 0.026137301698327065, 0.10281414538621902, -0.12598705291748047, 0.03643062710762024, -0.08053163439035416, 0.09221653640270233, -0.0863085463643074, 0.04050378501415253, 0.0738224908709526, 0.0681130588054657, -0.003933573141694069, 0.07893651723861694, -0.307219922542572, 0.2819614112377167, -0.005618869327008724, 0.060745105147361755, -0.06372545659542084, -0.025851668789982796, 0.023402828723192215, 0.05463678762316704, 0.06036457046866417, -0.005185297690331936, -0.05821243301033974, -0.17296744883060455, -0.029245417565107346, 0.025523608550429344, 0.07566779851913452, -0.01468990370631218, 0.08854345232248306, -0.0285579115152359, 0.004089497961103916, 0.05787508934736252, -0.027434229850769043, -0.05153360217809677, -0.09460210800170898, -0.004334294702857733, 0.020693570375442505, -0.05909181386232376, -0.06367843598127365, -0.13336031138896942, -0.08024092018604279, 0.13815522193908691, -0.014427115209400654, -0.04591428115963936, -0.09696020931005478, 0.07496039569377899, 0.06935662031173706, -0.0799306333065033, 0.03762155771255493, 0.014699560590088367, 0.0846717432141304, 0.024481261149048805, -0.047440964728593826, 0.09554848819971085, -0.05173030123114586, -0.1872195154428482, -0.0632166862487793, 0.11352117359638214, 0.028094131499528885, 0.06719598174095154, -0.023858340457081795, 0.0004107730055693537, -0.04823746904730797, -0.08825484663248062, 0.02258949913084507, 0.007237046025693417, 0.08538832515478134, 0.04420587047934532, -0.06016400828957558, 0.003088439116254449, -0.0743371769785881, -0.05789945647120476, 0.20305874943733215, 0.20633313059806824, -0.09303376823663712, 0.032080233097076416, 0.01414012722671032, -0.08177021145820618, -0.17220793664455414, 0.03629900887608528, 0.07108122855424881, 0.012489903718233109, 0.05826587229967117, -0.15110467374324799, 0.11386826634407043, 0.09753286093473434, -0.008590045385062695, 0.13361698389053345, -0.323248952627182, -0.13557180762290955, 0.09210297465324402, 0.15564033389091492, 0.12722596526145935, -0.13530485332012177, -0.012024758383631706, -0.029694128781557083, -0.12655147910118103, 0.13825254142284393, -0.08200353384017944, 0.14067378640174866, -0.03298668563365936, 0.10618506371974945, 0.0052995807491242886, -0.05460384488105774, 0.11506109684705734, 0.01607188954949379, 0.10979824513196945, -0.05073171481490135, -0.046968698501586914, 0.018168210983276367, -0.03173650801181793, 0.017488637939095497, -0.07388205081224442, 0.019537346437573433, -0.09553373605012894, -0.037904515862464905, -0.07616972178220749, 0.03510139882564545, -0.04053482040762901, -0.05432239547371864, -0.04073890298604965, 0.035612355917692184, 0.02205091342329979, -0.017490994185209274, 0.14471615850925446, 0.005916844122111797, 0.14710642397403717, 0.06948163360357285, 0.09639938920736313, -0.05343913659453392, -0.09279846400022507, -0.03582580387592316, -0.021688245236873627, 0.049793485552072525, -0.15473158657550812, 0.02326696179807186, 0.14285890758037567, 0.012413830496370792, 0.15901656448841095, 0.07501823455095291, -0.028941627591848373, 0.015591477043926716, 0.06824849545955658, -0.15109407901763916, -0.0993746891617775, -0.015658222138881683, -0.09098188579082489, -0.11272766441106796, 0.04547811672091484, 0.11424396187067032, -0.06779132783412933, -0.027168378233909607, -0.013252581469714642, 0.009434499777853489, -0.04961276799440384, 0.19228704273700714, 0.0712907612323761, 0.049355633556842804, -0.10086462646722794, 0.08726470172405243, 0.05299781262874603, -0.07277260720729828, 0.009131514467298985, 0.07398980855941772, -0.0851946696639061, -0.06054844334721565, 0.06302937865257263, 0.1840636432170868, -0.06436847895383835, -0.05052271485328674, -0.14428043365478516, -0.12239868193864822, 0.08020304143428802, 0.15456198155879974, 0.1154261901974678, 0.01174027007073164, -0.04472504183650017, -0.009678967297077179, -0.10332822054624557, 0.10373563319444656, 0.06035935878753662, 0.06799294799566269, -0.15564770996570587, 0.11893093585968018, 0.0298626646399498, 0.0544048435986042, -0.021874960511922836, 0.03503105044364929, -0.11320466548204422, 0.016281502321362495, -0.11635188013315201, -0.004599275998771191, -0.01955498568713665, 0.0156586654484272, 0.00008569054625695571, -0.056630246341228485, -0.06948243826627731, 0.011811119504272938, -0.12271115183830261, -0.015396937727928162, 0.041357602924108505, 0.07619098573923111, -0.08720040321350098, -0.03770965710282326, 0.024497678503394127, -0.04467649757862091, 0.07077261805534363, 0.04765259474515915, 0.00999519880861044, 0.0638277679681778, -0.1326751559972763, 0.03493008390069008, 0.05847730115056038, 0.016229216009378433, 0.048695411533117294, -0.1218823567032814, 0.00844301376491785, 0.004147431813180447, 0.07234194129705429, 0.02527628093957901, 0.06878162175416946, -0.1595860719680786, -0.003925286699086428, -0.011753080412745476, -0.08088759332895279, -0.0604778528213501, 0.02060185931622982, 0.06034849211573601, 0.033461686223745346, 0.21250495314598083, -0.08307280391454697, 0.04318675398826599, -0.19975832104682922, 0.00521842809394002, -0.01949070766568184, -0.1242818534374237, -0.12428144365549088, -0.0736192986369133, 0.05655497685074806, -0.0671464130282402, 0.1680191457271576, 0.04778936877846718, 0.05581874027848244, 0.02484714426100254, -0.020287757739424706, -0.0074821035377681255, 0.016732243821024895, 0.17049984633922577, 0.007073113229125738, -0.04048845171928406, 0.0606084018945694, 0.047959793359041214, 0.1063975840806961, 0.10674457252025604, 0.20010076463222504, 0.1684790700674057, 0.009575174190104008, 0.08692093193531036, 0.03743763640522957, -0.03279959410429001, -0.13300663232803345, 0.03713468834757805, -0.025708554312586784, 0.11290872097015381, -0.026694100350141525, 0.20042958855628967, 0.07072245329618454, -0.16473351418972015, 0.04714856669306755, -0.05892984941601753, -0.08779802173376083, -0.11389470845460892, -0.055804088711738586, -0.09887007623910904, -0.1443217545747757, 0.005623009521514177, -0.130331888794899, -0.001939242472872138, 0.09170602262020111, 0.007379705086350441, -0.04041507467627525, 0.11972035467624664, 0.02042819932103157, 0.011828257702291012, 0.08732693642377853, 0.013573730364441872, -0.03270769864320755, -0.10997237265110016, -0.04921284690499306, -0.03101533092558384, -0.025611599907279015, 0.023357538506388664, -0.05341451242566109, -0.06802772730588913, 0.024218278005719185, -0.026913153007626534, -0.10152031481266022, 0.014489524997770786, 0.02225584164261818, 0.07951844483613968, 0.03816826641559601, 0.015252734534442425, 0.008539740927517414, -0.0018916655099019408, 0.2537987232208252, -0.06090321019291878, -0.059095606207847595, -0.12073633074760437, 0.23759934306144714, 0.04082411155104637, -0.027152735739946365, 0.0369359627366066, -0.0620994009077549, 0.004789397120475769, 0.250545471906662, 0.23370525240898132, -0.07233811914920807, -0.008881565183401108, 0.016480514779686928, -0.005681920796632767, -0.014903892762959003, 0.12409383058547974, 0.11327847838401794, 0.043661732226610184, -0.07554518431425095, -0.03618474677205086, -0.053929403424263, 0.002410672837868333, -0.017594728618860245, 0.06780397146940231, 0.05220600590109825, 0.005234327167272568, -0.041317231953144073, 0.0750744640827179, -0.08238773792982101, -0.11706630140542984, 0.04748406261205673, -0.2140689343214035, -0.17265373468399048, -0.01564285345375538, 0.09141164273023605, -0.0005080309347249568, 0.06623675674200058, -0.025556398555636406, -0.014778113923966885, 0.07295584678649902, -0.016154099255800247, -0.1069135069847107, -0.08071832358837128, 0.09760671108961105, -0.1033845841884613, 0.18947070837020874, -0.05197722837328911, 0.05551624298095703, 0.12156101316213608, 0.06087696552276611, -0.06552910804748535, 0.07936710119247437, 0.036825064569711685, -0.040335942059755325, 0.04746859520673752, 0.10013407468795776, -0.03197331726551056, 0.07261445373296738, 0.05393337458372116, -0.12573927640914917, 0.016867447644472122, -0.0939512848854065, -0.04653635248541832, -0.056750234216451645, -0.011542480438947678, -0.07443743944168091, 0.12872548401355743, 0.23667973279953003, -0.03721931204199791, -0.007397593930363655, -0.05932502821087837, 0.02578439563512802, 0.06336025893688202, 0.041056301444768906, -0.047882936894893646, -0.22828209400177002, 0.009885349310934544, 0.07289337366819382, -0.015281859785318375, -0.26788604259490967, -0.070579893887043, 0.0017346341628581285, -0.07060904800891876, -0.07644132524728775, 0.08083239942789078, 0.07705751806497574, 0.044927142560482025, -0.06221795082092285, -0.06259375810623169, -0.06772700697183609, 0.1547669768333435, -0.15244202315807343, -0.0954475924372673 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # andreiliphdpr/bert-base-multilingual-uncased-finetuned-cola This model is a fine-tuned version of [bert-base-multilingual-uncased](https://huggingface.co/bert-base-multilingual-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0423 - Train Accuracy: 0.9869 - Validation Loss: 0.0303 - Validation Accuracy: 0.9913 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 43750, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Validation Loss | Validation Accuracy | Epoch | |:----------:|:--------------:|:---------------:|:-------------------:|:-----:| | 0.0423 | 0.9869 | 0.0303 | 0.9913 | 0 | ### Framework versions - Transformers 4.15.0.dev0 - TensorFlow 2.6.2 - Datasets 1.15.1 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_keras_callback"], "model-index": [{"name": "andreiliphdpr/bert-base-multilingual-uncased-finetuned-cola", "results": []}]}
text-classification
andreiliphdpr/bert-base-multilingual-uncased-finetuned-cola
[ "transformers", "tf", "bert", "text-classification", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #tf #bert #text-classification #generated_from_keras_callback #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
andreiliphdpr/bert-base-multilingual-uncased-finetuned-cola =========================================================== This model is a fine-tuned version of bert-base-multilingual-uncased on an unknown dataset. It achieves the following results on the evaluation set: * Train Loss: 0.0423 * Train Accuracy: 0.9869 * Validation Loss: 0.0303 * Validation Accuracy: 0.9913 * Epoch: 0 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * optimizer: {'name': 'Adam', 'learning\_rate': {'class\_name': 'PolynomialDecay', 'config': {'initial\_learning\_rate': 2e-05, 'decay\_steps': 43750, 'end\_learning\_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta\_1': 0.9, 'beta\_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} * training\_precision: float32 ### Training results ### Framework versions * Transformers 4.15.0.dev0 * TensorFlow 2.6.2 * Datasets 1.15.1 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* optimizer: {'name': 'Adam', 'learning\\_rate': {'class\\_name': 'PolynomialDecay', 'config': {'initial\\_learning\\_rate': 2e-05, 'decay\\_steps': 43750, 'end\\_learning\\_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta\\_1': 0.9, 'beta\\_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}\n* training\\_precision: float32", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0.dev0\n* TensorFlow 2.6.2\n* Datasets 1.15.1\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #tf #bert #text-classification #generated_from_keras_callback #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* optimizer: {'name': 'Adam', 'learning\\_rate': {'class\\_name': 'PolynomialDecay', 'config': {'initial\\_learning\\_rate': 2e-05, 'decay\\_steps': 43750, 'end\\_learning\\_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta\\_1': 0.9, 'beta\\_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}\n* training\\_precision: float32", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0.dev0\n* TensorFlow 2.6.2\n* Datasets 1.15.1\n* Tokenizers 0.10.3" ]
[ 54, 178, 4, 34 ]
[ "passage: TAGS\n#transformers #tf #bert #text-classification #generated_from_keras_callback #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* optimizer: {'name': 'Adam', 'learning\\_rate': {'class\\_name': 'PolynomialDecay', 'config': {'initial\\_learning\\_rate': 2e-05, 'decay\\_steps': 43750, 'end\\_learning\\_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta\\_1': 0.9, 'beta\\_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}\n* training\\_precision: float32### Training results### Framework versions\n\n\n* Transformers 4.15.0.dev0\n* TensorFlow 2.6.2\n* Datasets 1.15.1\n* Tokenizers 0.10.3" ]
[ -0.07604354619979858, 0.04004450514912605, -0.004855964332818985, 0.07535058259963989, 0.1570156365633011, 0.05533894896507263, 0.12335391342639923, 0.11806740611791611, -0.08734147250652313, 0.1044764295220375, 0.15147076547145844, 0.14114727079868317, 0.06838317215442657, 0.11619718372821808, -0.07617706805467606, -0.14641806483268738, 0.07352844625711441, -0.024033086374402046, -0.08165863156318665, 0.08267858624458313, 0.0854148268699646, -0.06551729142665863, 0.08561220020055771, -0.016603903844952583, -0.10714992880821228, 0.03358760103583336, 0.08991540223360062, -0.06877151876688004, 0.12221787869930267, 0.07386856526136398, 0.08186998218297958, -0.021304475143551826, 0.013845540583133698, -0.19608968496322632, 0.00993469450622797, 0.1105644553899765, -0.002310708863660693, 0.06789813935756683, 0.017976053059101105, -0.000811175093986094, 0.09949468821287155, -0.09758460521697998, 0.06006024777889252, 0.04393984004855156, -0.12966233491897583, -0.2620150148868561, -0.12073546648025513, 0.023061545565724373, 0.07650593668222427, 0.0965787023305893, 0.0005667535006068647, 0.1389661431312561, -0.04527023807168007, 0.08789300918579102, 0.14940953254699707, -0.2773582637310028, -0.037163328379392624, 0.033368080854415894, 0.012309801764786243, 0.06438956409692764, -0.04722139239311218, 0.008968153037130833, 0.03151431679725647, 0.042871128767728806, 0.030156370252370834, -0.014962472021579742, 0.013098192401230335, -0.037350933998823166, -0.07487091422080994, -0.07249516993761063, 0.12531481683254242, 0.03929222747683525, -0.0769432932138443, -0.06376904249191284, -0.023607194423675537, -0.14878904819488525, 0.01048215851187706, -0.025156881660223007, 0.0012753907358273864, 0.01968318596482277, -0.033500444144010544, -0.03265063464641571, -0.055018048733472824, -0.06558734178543091, -0.007083766628056765, 0.1311214566230774, 0.02973947860300541, 0.04461245238780975, -0.011519726365804672, 0.06716479361057281, -0.030777888372540474, -0.10383189469575882, -0.02179054357111454, -0.0018984859343618155, -0.04864130914211273, -0.021537721157073975, -0.07961749285459518, -0.02030433528125286, 0.05572369694709778, 0.15041546523571014, -0.06215686723589897, 0.11803188174962997, -0.02017299085855484, 0.02294073812663555, -0.11985484510660172, 0.12224483489990234, -0.02155117131769657, 0.006739196367561817, 0.00025449253735132515, 0.08153312653303146, 0.03593133017420769, -0.047000445425510406, -0.050760816782712936, 0.006930394098162651, 0.10291526466608047, 0.03423026204109192, -0.05823007971048355, 0.08447454869747162, -0.0783843919634819, -0.00318393437191844, -0.03349801525473595, -0.11749120056629181, 0.04289548844099045, 0.020504450425505638, -0.09205406904220581, 0.004519828595221043, 0.0795428454875946, 0.007584364153444767, -0.05304846540093422, 0.03990470990538597, -0.06104334816336632, -0.04470815137028694, -0.10958245396614075, -0.11801827698945999, 0.0228402279317379, -0.07066377252340317, -0.012699710205197334, -0.07444752007722855, -0.17709225416183472, -0.04004163667559624, 0.0747729018330574, -0.03169970214366913, -0.019439740106463432, -0.06678032875061035, -0.15521982312202454, 0.062485624104738235, -0.00016420263273175806, 0.12851972877979279, -0.045807916671037674, 0.08256816118955612, 0.004181011114269495, 0.04009903594851494, -0.051806360483169556, 0.0393509678542614, -0.03185616806149483, 0.032680049538612366, -0.1812210977077484, 0.07962477207183838, -0.07581908255815506, 0.03391289338469505, -0.15205132961273193, -0.07603359967470169, 0.05062207207083702, 0.022793469950556755, 0.12553763389587402, 0.10212786495685577, -0.13661326467990875, -0.06499016284942627, 0.09658318012952805, -0.08781414479017258, -0.0917821079492569, 0.08562012016773224, -0.05564966797828674, 0.031541675329208374, 0.07928842306137085, 0.07400143146514893, 0.028364745900034904, -0.10869817435741425, 0.016962526366114616, -0.055974215269088745, 0.01353627722710371, 0.033990003168582916, 0.03366114944219589, -0.04538455232977867, -0.11502443253993988, 0.013602074235677719, -0.024410175159573555, 0.019882366061210632, -0.05728639289736748, -0.058350373059511185, -0.03289623185992241, -0.055530451238155365, 0.03004360944032669, 0.025030098855495453, 0.03254194185137749, -0.09996996074914932, -0.13924244046211243, 0.05663926899433136, 0.053059015423059464, -0.058960072696208954, 0.025531398132443428, -0.08154994249343872, 0.02591938152909279, 0.04913562536239624, 0.015427066944539547, -0.16006267070770264, -0.03935461863875389, 0.01941581256687641, -0.004872950725257397, 0.021090464666485786, -0.047839198261499405, 0.06828907132148743, 0.019643524661660194, -0.05093427747488022, -0.0071347919292747974, -0.03339146450161934, 0.01618598774075508, -0.07973432540893555, -0.22785580158233643, -0.01467589009553194, -0.00978896114975214, 0.0779854953289032, -0.2852429151535034, 0.01430017501115799, 0.06817178428173065, 0.10258768498897552, 0.02091982401907444, -0.019715122878551483, -0.040324702858924866, 0.05349591001868248, -0.01918378844857216, -0.06199502944946289, 0.028030848130583763, 0.02346423827111721, -0.13109242916107178, -0.04098575562238693, -0.17703606188297272, 0.09348520636558533, 0.12643803656101227, -0.09328935295343399, -0.1376393437385559, 0.04795146733522415, -0.018609685823321342, -0.03306030109524727, -0.013089261949062347, -0.025638021528720856, 0.17456184327602386, 0.02942054718732834, 0.1393793821334839, -0.04565827175974846, -0.004311702214181423, 0.03429282829165459, -0.02152232453227043, -0.0334579162299633, 0.1278318613767624, -0.00773880397900939, -0.08859597146511078, 0.08552662283182144, 0.09926414489746094, -0.10175111144781113, 0.10548476129770279, -0.044203490018844604, -0.050576478242874146, -0.0709543526172638, 0.05299225449562073, 0.06234383583068848, 0.08092468976974487, -0.09684323519468307, 0.009629899635910988, 0.010028651915490627, 0.02824103832244873, -0.021737627685070038, -0.19314059615135193, 0.0017620291328057647, 0.010956687852740288, -0.05595461651682854, 0.01113477349281311, -0.008739102631807327, 0.01690738834440708, 0.12105909734964371, 0.03409339860081673, -0.03740118443965912, 0.07985645532608032, -0.028255870565772057, -0.09688255190849304, 0.22597360610961914, -0.14466844499111176, -0.12804804742336273, -0.14245419204235077, -0.02479696087539196, -0.042438164353370667, 0.003238470759242773, -0.003104757284745574, -0.0993850976228714, -0.06183692440390587, -0.06579182296991348, -0.019721506163477898, -0.039739638566970825, 0.033648017793893814, 0.03955758363008499, -0.0030981528107076883, 0.14093324542045593, -0.10852077603340149, -0.04173103719949722, -0.0012204537633806467, -0.08123774826526642, 0.015432767570018768, -0.0052390568889677525, 0.0018036658875644207, 0.10852131247520447, 0.0015193764120340347, 0.023525295779109, -0.046731479465961456, 0.2320813238620758, -0.052623599767684937, -0.017823103815317154, 0.14541587233543396, -0.017839614301919937, 0.06662338972091675, 0.12415116280317307, 0.0437413789331913, -0.12193699181079865, 0.058340709656476974, 0.06165708601474762, -0.017190590500831604, -0.24715325236320496, -0.0022587503772228956, -0.031605061143636703, -0.08990567922592163, 0.06897079199552536, 0.029301302507519722, 0.14301197230815887, 0.017973776906728745, -0.0006617592298425734, 0.11366930603981018, 0.05007120966911316, 0.06911671906709671, 0.14969824254512787, 0.06113835796713829, 0.0900401622056961, -0.03361506760120392, 0.010958344675600529, 0.034093890339136124, -0.017776748165488243, 0.21014562249183655, 0.021159987896680832, 0.07082808017730713, 0.06302106380462646, 0.08605454117059708, -0.03692258521914482, 0.0031125580426305532, 0.0031827744096517563, -0.0028676032088696957, 0.006934436038136482, -0.06275937706232071, -0.060208819806575775, 0.05629853904247284, -0.04254794120788574, 0.08222100138664246, -0.12384926527738571, 0.019079964607954025, 0.04554875195026398, 0.24227647483348846, 0.08282168209552765, -0.2956824004650116, -0.11736009269952774, 0.004843544214963913, -0.029744576662778854, -0.060369379818439484, -0.005246786400675774, 0.07941120862960815, -0.08834081888198853, 0.07253380864858627, -0.06083134934306145, 0.05257635936141014, -0.03811278194189072, 0.04617715999484062, 0.11397749930620193, 0.09906598925590515, 0.002472387393936515, 0.01978406496345997, -0.35736697912216187, 0.2866699695587158, 0.039590202271938324, 0.15513330698013306, -0.08148738741874695, 0.04790038987994194, 0.03899963200092316, -0.03520670533180237, 0.05696055665612221, -0.006444950122386217, -0.14155583083629608, -0.23135673999786377, -0.03230297565460205, -0.0006347219459712505, 0.14735685288906097, 0.014698777347803116, 0.10569225996732712, -0.056716933846473694, 0.022161945700645447, 0.07745598256587982, -0.021547719836235046, -0.16496066749095917, -0.06693603098392487, 0.04970187321305275, 0.051850803196430206, -0.009873712435364723, -0.0871572345495224, -0.07617473602294922, -0.06076623499393463, 0.17425237596035004, -0.1623634546995163, -0.0421607568860054, -0.13316962122917175, 0.07992509007453918, 0.087840735912323, -0.06326038390398026, 0.0381888709962368, -0.0037632673047482967, 0.062020160257816315, 0.04024217650294304, -0.081662118434906, 0.14022096991539001, -0.025918830186128616, -0.23128339648246765, -0.06286680698394775, 0.09907642751932144, 0.05452476069331169, 0.04203936830163002, -0.009594287723302841, 0.0712294727563858, 0.03997508063912392, -0.10522294789552689, 0.08644029498100281, 0.02772989682853222, 0.0509389191865921, 0.07440590858459473, -0.019436225295066833, -0.006554835941642523, -0.046093590557575226, -0.01799275353550911, 0.09876672178506851, 0.29941943287849426, -0.06878924369812012, 0.01758437603712082, 0.020324714481830597, -0.09031124413013458, -0.20032501220703125, 0.0804174542427063, 0.10268229246139526, 0.01674913801252842, -0.056862834841012955, -0.19149935245513916, 0.045758478343486786, 0.09229099750518799, -0.014819069765508175, 0.05975012108683586, -0.29032275080680847, -0.15027214586734772, 0.06828600913286209, 0.1343095302581787, 0.1306988000869751, -0.17117461562156677, -0.04722800850868225, -0.057670578360557556, -0.03981974720954895, 0.14164814352989197, -0.058595411479473114, 0.10821007937192917, 0.02737741358578205, 0.05150434374809265, 0.008796297013759613, -0.040786344558000565, 0.143533393740654, -0.044377218931913376, 0.10017498582601547, -0.04893263429403305, -0.05357201397418976, 0.07636035978794098, -0.08093875646591187, 0.03014446794986725, -0.049008823931217194, 0.0289746206253767, -0.1430375874042511, 0.0010429826797917485, -0.0809791311621666, 0.042545001953840256, -0.06484068185091019, -0.01659516990184784, -0.011311136186122894, 0.06147895008325577, 0.06692781299352646, -0.020382743328809738, 0.11076144129037857, -0.019618671387434006, 0.16946589946746826, 0.1451271027326584, 0.08137113600969315, 0.013960320502519608, -0.01361884642392397, 0.08526451140642166, -0.02879086323082447, 0.07549339532852173, -0.15650013089179993, 0.051679279655218124, 0.1316744089126587, -0.007664077449589968, 0.16223137080669403, 0.06536892056465149, -0.07587295025587082, 0.028754981234669685, 0.05481419712305069, -0.13030821084976196, -0.08956366032361984, 0.021236008033156395, 0.05078340321779251, -0.0933580994606018, 0.026722464710474014, 0.1500921994447708, -0.040318284183740616, 0.021252553910017014, 0.0035019416827708483, 0.044411368668079376, -0.0713832750916481, 0.1372288167476654, 0.02534930221736431, 0.0636586993932724, -0.07022670656442642, 0.13201501965522766, 0.05655007064342499, -0.11085642129182816, 0.11452359706163406, 0.023382075130939484, -0.06500349193811417, -0.001460923464037478, 0.03190351650118828, 0.0887800082564354, 0.03537564352154732, -0.06877660751342773, -0.11764845997095108, -0.16664175689220428, 0.07353414595127106, 0.19814041256904602, 0.04301408305764198, 0.06643804162740707, -0.042590029537677765, -0.0050694746896624565, -0.08865378051996231, 0.0545399971306324, 0.0472671315073967, 0.030537355691194534, -0.14012844860553741, 0.18376798927783966, 0.0014576775720342994, -0.013497693464159966, -0.0068137929774820805, 0.007690319325774908, -0.20128782093524933, 0.00697154738008976, -0.1484145075082779, 0.008897939696907997, 0.02339988574385643, -0.012696045450866222, 0.03781593590974808, -0.06229887902736664, -0.05453860014677048, 0.03882545977830887, -0.09069465100765228, -0.045810356736183167, 0.055744342505931854, 0.06372568756341934, -0.11707762628793716, -0.07781826704740524, 0.0391683466732502, -0.10311362147331238, 0.03648018464446068, 0.05854661390185356, 0.0063970135524868965, 0.03242797404527664, -0.1079181432723999, 0.037150442600250244, 0.03911622613668442, -0.002500956179574132, 0.03771447762846947, -0.16728538274765015, 0.01545899361371994, -0.031750332564115524, 0.039258431643247604, 0.0388539582490921, 0.10375171154737473, -0.09528869390487671, -0.03314268961548805, -0.010203775018453598, -0.02763419784605503, -0.05496792495250702, 0.06598405539989471, 0.14409580826759338, -0.014908294193446636, 0.17377246916294098, -0.13017050921916962, 0.008282207883894444, -0.17972441017627716, 0.009430967271327972, -0.002881365828216076, -0.09129374474287033, -0.10544459521770477, -0.02111542597413063, 0.11030951887369156, -0.08180011808872223, 0.08670371770858765, -0.0612356960773468, 0.08899831771850586, 0.04370829463005066, -0.09266878664493561, -0.05633258447051048, 0.06392328441143036, 0.17221295833587646, 0.046912819147109985, -0.01405514869838953, 0.06268346309661865, -0.0221415963023901, 0.08953895419836044, 0.10983467102050781, 0.20544156432151794, 0.13792462646961212, 0.03000873327255249, 0.11926544457674026, 0.05926317349076271, -0.07751438766717911, -0.07550813257694244, 0.10657522082328796, -0.07727477699518204, 0.15325725078582764, -0.06083892285823822, 0.12520934641361237, 0.05765163525938988, -0.18485531210899353, 0.02267231047153473, -0.08716076612472534, -0.10419241338968277, -0.12494392693042755, -0.09887450933456421, -0.07673215866088867, -0.09468719363212585, 0.00007798698061378673, -0.09947533905506134, 0.0341622419655323, 0.07214158028364182, 0.027663975954055786, -0.0005471697659231722, 0.08125882595777512, -0.05879838392138481, 0.028440158814191818, 0.10627990961074829, -0.00818169116973877, -0.01357510406523943, -0.03966832160949707, -0.0943431407213211, 0.059168845415115356, -0.013878033496439457, 0.05007651448249817, 0.005999011918902397, -0.01785774901509285, 0.042905330657958984, -0.00926223024725914, -0.09862003475427628, 0.05371581017971039, 0.022506097331643105, 0.02219892479479313, 0.07271252572536469, 0.044033706188201904, -0.004984842613339424, -0.02071317285299301, 0.14431239664554596, -0.10384654998779297, -0.026291539892554283, -0.14573313295841217, 0.2697571814060211, -0.0202921312302351, 0.03845958784222603, 0.0007889542612247169, -0.07214446365833282, -0.03653344139456749, 0.1888655424118042, 0.13509882986545563, -0.07830430567264557, -0.026165079325437546, 0.053102046251297, -0.013163874857127666, -0.03859217092394829, 0.14458584785461426, 0.07542961835861206, -0.03592032194137573, -0.04859170317649841, -0.025086645036935806, -0.016383150592446327, -0.015484845265746117, -0.031502123922109604, 0.07781076431274414, 0.01073560118675232, -0.008578506298363209, -0.014210938476026058, 0.05834640935063362, -0.05445961281657219, -0.14369596540927887, 0.08545885235071182, -0.1904020607471466, -0.15636901557445526, -0.00423542782664299, 0.006500741932541132, -0.006211619358509779, 0.06757977604866028, -0.010124830529093742, 0.0025311571080237627, 0.10057304799556732, -0.03877801448106766, -0.009855229407548904, -0.12466248124837875, 0.06023101881146431, -0.029032675549387932, 0.18866881728172302, -0.012192712165415287, 0.058833807706832886, 0.13803908228874207, 0.022784994915127754, -0.08534558117389679, 0.03560633957386017, 0.07614405453205109, -0.09851831197738647, -0.009074695408344269, 0.08036595582962036, -0.03000980243086815, 0.1475282907485962, 0.059249211102724075, -0.08920064568519592, 0.044772177934646606, -0.09731946140527725, -0.097465880215168, -0.037283338606357574, -0.047667764127254486, -0.07447955012321472, 0.13273115456104279, 0.245256707072258, -0.043245043605566025, 0.010304230265319347, -0.03388388454914093, -0.0030875850934535265, 0.04923320561647415, 0.027333499863743782, -0.05678637698292732, -0.23703518509864807, 0.071747787296772, 0.051359664648771286, 0.04386620223522186, -0.17634208500385284, -0.09500159323215485, 0.012889081612229347, -0.01783173903822899, -0.0966467559337616, 0.10669451951980591, 0.031704455614089966, 0.049503568559885025, -0.05349695309996605, -0.14301671087741852, -0.04321422427892685, 0.1946382373571396, -0.09130127727985382, -0.08506778627634048 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # andreiliphdpr/distilbert-base-uncased-finetuned-cola This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0015 - Train Accuracy: 0.9995 - Validation Loss: 0.0570 - Validation Accuracy: 0.9915 - Epoch: 4 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 43750, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Validation Loss | Validation Accuracy | Epoch | |:----------:|:--------------:|:---------------:|:-------------------:|:-----:| | 0.0399 | 0.9870 | 0.0281 | 0.9908 | 0 | | 0.0182 | 0.9944 | 0.0326 | 0.9901 | 1 | | 0.0089 | 0.9971 | 0.0396 | 0.9912 | 2 | | 0.0040 | 0.9987 | 0.0486 | 0.9918 | 3 | | 0.0015 | 0.9995 | 0.0570 | 0.9915 | 4 | ### Framework versions - Transformers 4.15.0.dev0 - TensorFlow 2.6.2 - Datasets 1.15.1 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_keras_callback"], "model-index": [{"name": "andreiliphdpr/distilbert-base-uncased-finetuned-cola", "results": []}]}
text-classification
andreiliphdpr/distilbert-base-uncased-finetuned-cola
[ "transformers", "tf", "distilbert", "text-classification", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #tf #distilbert #text-classification #generated_from_keras_callback #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
andreiliphdpr/distilbert-base-uncased-finetuned-cola ==================================================== This model is a fine-tuned version of distilbert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set: * Train Loss: 0.0015 * Train Accuracy: 0.9995 * Validation Loss: 0.0570 * Validation Accuracy: 0.9915 * Epoch: 4 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * optimizer: {'name': 'Adam', 'learning\_rate': {'class\_name': 'PolynomialDecay', 'config': {'initial\_learning\_rate': 2e-05, 'decay\_steps': 43750, 'end\_learning\_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta\_1': 0.9, 'beta\_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} * training\_precision: float32 ### Training results ### Framework versions * Transformers 4.15.0.dev0 * TensorFlow 2.6.2 * Datasets 1.15.1 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* optimizer: {'name': 'Adam', 'learning\\_rate': {'class\\_name': 'PolynomialDecay', 'config': {'initial\\_learning\\_rate': 2e-05, 'decay\\_steps': 43750, 'end\\_learning\\_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta\\_1': 0.9, 'beta\\_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}\n* training\\_precision: float32", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0.dev0\n* TensorFlow 2.6.2\n* Datasets 1.15.1\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #tf #distilbert #text-classification #generated_from_keras_callback #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* optimizer: {'name': 'Adam', 'learning\\_rate': {'class\\_name': 'PolynomialDecay', 'config': {'initial\\_learning\\_rate': 2e-05, 'decay\\_steps': 43750, 'end\\_learning\\_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta\\_1': 0.9, 'beta\\_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}\n* training\\_precision: float32", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0.dev0\n* TensorFlow 2.6.2\n* Datasets 1.15.1\n* Tokenizers 0.10.3" ]
[ 56, 178, 4, 34 ]
[ "passage: TAGS\n#transformers #tf #distilbert #text-classification #generated_from_keras_callback #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* optimizer: {'name': 'Adam', 'learning\\_rate': {'class\\_name': 'PolynomialDecay', 'config': {'initial\\_learning\\_rate': 2e-05, 'decay\\_steps': 43750, 'end\\_learning\\_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta\\_1': 0.9, 'beta\\_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}\n* training\\_precision: float32### Training results### Framework versions\n\n\n* Transformers 4.15.0.dev0\n* TensorFlow 2.6.2\n* Datasets 1.15.1\n* Tokenizers 0.10.3" ]
[ -0.07470399886369705, 0.05361977219581604, -0.005306803621351719, 0.07277624309062958, 0.14869673550128937, 0.0520809143781662, 0.12685774266719818, 0.12341102212667465, -0.0877026617527008, 0.10561789572238922, 0.14896973967552185, 0.1407383531332016, 0.059846702963113785, 0.11960646510124207, -0.0792069062590599, -0.15124525129795074, 0.07255341112613678, -0.023611722514033318, -0.07530978322029114, 0.08256996423006058, 0.08681702613830566, -0.06593990325927734, 0.0884184017777443, -0.016957109794020653, -0.11077683418989182, 0.034442342817783356, 0.0867237076163292, -0.07540891319513321, 0.12110964953899384, 0.06966500729322433, 0.08458662778139114, -0.01586451195180416, 0.014952250756323338, -0.1916072964668274, 0.009581568650901318, 0.11546767503023148, -0.00036362968967296183, 0.06955467909574509, 0.014438637532293797, -0.01241745613515377, 0.09523700177669525, -0.10263975709676743, 0.060586679726839066, 0.04251614212989807, -0.1332281231880188, -0.26822173595428467, -0.11771702021360397, 0.024430684745311737, 0.0842369794845581, 0.09278234094381332, 0.004848302807658911, 0.13687501847743988, -0.03981255739927292, 0.0884346291422844, 0.14555121958255768, -0.2738858461380005, -0.034452520310878754, 0.03416474536061287, 0.013926437124609947, 0.058111242949962616, -0.047397688031196594, 0.00691781984642148, 0.030384600162506104, 0.03970735892653465, 0.03739050775766373, -0.019983217120170593, 0.030011814087629318, -0.03914690017700195, -0.07764989882707596, -0.07687047868967056, 0.12825843691825867, 0.03655103221535683, -0.07299347966909409, -0.06900004297494888, -0.03395720198750496, -0.1418086290359497, 0.011736389249563217, -0.02582949958741665, 0.0016849162057042122, 0.02256271056830883, -0.037987153977155685, -0.03802269697189331, -0.05272819474339485, -0.05741916969418526, -0.008332407101988792, 0.12447479367256165, 0.026494888588786125, 0.04287102445960045, -0.013190149329602718, 0.06585720926523209, -0.02092578634619713, -0.10607708990573883, -0.0237022303044796, -0.0017837040359154344, -0.05249103531241417, -0.022975316271185875, -0.07427537441253662, -0.023590853437781334, 0.05292816832661629, 0.16681520640850067, -0.06531964987516403, 0.11712696403265, -0.021078215911984444, 0.022657716646790504, -0.11327260732650757, 0.12071269750595093, -0.0154820391908288, 0.006470149848610163, 0.0031570931896567345, 0.07693713903427124, 0.044994182884693146, -0.049638211727142334, -0.051078397780656815, 0.011873441748321056, 0.10143395513296127, 0.035319335758686066, -0.04623895138502121, 0.08105254173278809, -0.07703428715467453, -0.00580536387860775, -0.019341493025422096, -0.12322185188531876, 0.042903151363134384, 0.016658028587698936, -0.08736948668956757, 0.008906030096113682, 0.0728420689702034, 0.012042413465678692, -0.055216506123542786, 0.045471932739019394, -0.06259874999523163, -0.04626310244202614, -0.10631345957517624, -0.11727175861597061, 0.026091350242495537, -0.07535578310489655, -0.016712000593543053, -0.07847655564546585, -0.17995628714561462, -0.038367561995983124, 0.0793062373995781, -0.028959274291992188, -0.023574691265821457, -0.06825947016477585, -0.1529788225889206, 0.06691034138202667, -0.0034543261863291264, 0.11102095246315002, -0.04437801614403725, 0.07595702260732651, 0.0019252069760113955, 0.040962476283311844, -0.05445663258433342, 0.03860224783420563, -0.037586476653814316, 0.03907375782728195, -0.18594776093959808, 0.08819770067930222, -0.07177485525608063, 0.029934478923678398, -0.15741749107837677, -0.07200537621974945, 0.048972778022289276, 0.017455745488405228, 0.12069489061832428, 0.107505202293396, -0.13432937860488892, -0.06637315452098846, 0.09505344182252884, -0.09318510442972183, -0.08014117926359177, 0.08841389417648315, -0.05584327504038811, 0.018519068136811256, 0.07886271178722382, 0.07920504361391068, 0.0313180536031723, -0.10768459737300873, 0.0057704453356564045, -0.05392792820930481, 0.0039240652695298195, 0.032304830849170685, 0.03541715815663338, -0.05100487545132637, -0.09116818755865097, 0.007845135405659676, -0.018310492858290672, 0.019226331263780594, -0.049266405403614044, -0.05844658613204956, -0.03630014881491661, -0.04860241711139679, 0.03930848836898804, 0.026956729590892792, 0.029794244095683098, -0.09643591195344925, -0.13980914652347565, 0.0699000358581543, 0.052125681191682816, -0.061373814940452576, 0.030814258381724358, -0.08851709216833115, 0.02305331453680992, 0.043922096490859985, 0.013623317703604698, -0.16381892561912537, -0.04922002553939819, 0.021752020344138145, -0.0071260761469602585, 0.016990436241030693, -0.05358535051345825, 0.06948816031217575, 0.016778625547885895, -0.04976808652281761, -0.014856056310236454, -0.03214205428957939, 0.015284254215657711, -0.07513412088155746, -0.22388005256652832, -0.018653707578778267, -0.013843334279954433, 0.0705270916223526, -0.26588407158851624, 0.015956318005919456, 0.0820138156414032, 0.1145436018705368, 0.029676245525479317, -0.02296854369342327, -0.0345798097550869, 0.057070620357990265, -0.02250470034778118, -0.0695258229970932, 0.030098807066679, 0.020958665758371353, -0.1339581310749054, -0.030531562864780426, -0.1816764920949936, 0.08577407151460648, 0.12482917308807373, -0.08067051321268082, -0.12857426702976227, 0.04960300773382187, -0.022468915209174156, -0.03473777323961258, -0.014467455446720123, -0.02878977544605732, 0.17462344467639923, 0.031882066279649734, 0.13596704602241516, -0.04383954405784607, -0.010934408754110336, 0.03081069327890873, -0.020190929993987083, -0.04349585250020027, 0.11904219537973404, -0.014149222522974014, -0.08476387709379196, 0.08542450517416, 0.10587642341852188, -0.09850117564201355, 0.10682107508182526, -0.04420847445726395, -0.049390219151973724, -0.07283845543861389, 0.05539027974009514, 0.06632329523563385, 0.07806932181119919, -0.08973389118909836, 0.011044230312108994, 0.007914125919342041, 0.03204205259680748, -0.023866189643740654, -0.18586090207099915, 0.008051440119743347, 0.008508898317813873, -0.05776697024703026, 0.020605390891432762, -0.0028834000695496798, 0.014435943216085434, 0.11426574736833572, 0.03532696142792702, -0.04020709544420242, 0.08557377755641937, -0.025411482900381088, -0.09395240247249603, 0.21635910868644714, -0.14792829751968384, -0.1334538459777832, -0.14168986678123474, -0.02744264528155327, -0.04044148698449135, 0.002549397526308894, -0.0010371898533776402, -0.09982231259346008, -0.06202317774295807, -0.0666702389717102, -0.02827809378504753, -0.04048402979969978, 0.030339457094669342, 0.04342583194375038, -0.0016094360034912825, 0.13494190573692322, -0.11078377068042755, -0.040824178606271744, 0.003483556443825364, -0.0768749788403511, 0.013200541958212852, -0.002470871666446328, 0.000011841963896586094, 0.11864005029201508, 0.0035226449836045504, 0.024603841826319695, -0.05016912519931793, 0.22194796800613403, -0.05384225770831108, -0.006748410407453775, 0.15269117057323456, -0.022731713950634003, 0.07248924672603607, 0.12890911102294922, 0.04062303528189659, -0.1191830039024353, 0.05788680538535118, 0.06460372358560562, -0.02202097699046135, -0.2431444525718689, -0.006772556342184544, -0.03512098267674446, -0.07929934561252594, 0.06865032017230988, 0.030157193541526794, 0.13986219465732574, 0.012901149690151215, -0.0037007536739110947, 0.1104208379983902, 0.050562307238578796, 0.07502562552690506, 0.16149631142616272, 0.06223171204328537, 0.09112004935741425, -0.03574196621775627, 0.006429768167436123, 0.034164708107709885, -0.012941332533955574, 0.21021287143230438, 0.020496858283877373, 0.0825275331735611, 0.06018068641424179, 0.07927829027175903, -0.03176766633987427, 0.0006712687900289893, 0.0026130937039852142, 0.004335401579737663, 0.007416818290948868, -0.06372585892677307, -0.05586541071534157, 0.05695090815424919, -0.03674844652414322, 0.0764390081167221, -0.11770518869161606, 0.040365107357501984, 0.045542240142822266, 0.2550595700740814, 0.08858844637870789, -0.29706570506095886, -0.11443059146404266, 0.008149862289428711, -0.028692396357655525, -0.0555114783346653, -0.006489580497145653, 0.08434716612100601, -0.08653908967971802, 0.07692396640777588, -0.06872174143791199, 0.04922477528452873, -0.049755752086639404, 0.04100138321518898, 0.10732614248991013, 0.10199808329343796, 0.0032377426978200674, 0.009747734293341637, -0.3569236397743225, 0.27973300218582153, 0.042484987527132034, 0.15807968378067017, -0.08048976957798004, 0.053418636322021484, 0.03671650588512421, -0.03521270304918289, 0.06201725825667381, -0.0025779108982533216, -0.16417457163333893, -0.21158988773822784, -0.0434279628098011, -0.0038803676143288612, 0.1470792442560196, 0.018993113189935684, 0.10265400260686874, -0.05437634512782097, 0.016008952632546425, 0.07497530430555344, -0.02747572585940361, -0.16333524882793427, -0.06888190656900406, 0.05355699732899666, 0.06049298867583275, -0.016933629289269447, -0.08843731135129929, -0.0717928409576416, -0.04474788159132004, 0.17584006488323212, -0.1662386655807495, -0.04868176206946373, -0.1368337869644165, 0.07250618934631348, 0.08879949152469635, -0.06478063017129898, 0.04214506223797798, -0.0042030359618365765, 0.06422670185565948, 0.037994250655174255, -0.08699340373277664, 0.1379442662000656, -0.027079988270998, -0.22694522142410278, -0.06243942305445671, 0.09691522270441055, 0.046188075095415115, 0.037244997918605804, -0.010595145635306835, 0.07482173293828964, 0.04661024361848831, -0.10103253275156021, 0.09363020211458206, 0.03668047860264778, 0.04975797235965729, 0.07086612284183502, -0.015589576214551926, -0.015771951526403427, -0.040646664798259735, -0.013807742856442928, 0.10040310025215149, 0.28697651624679565, -0.06812883913516998, 0.028564760461449623, 0.02287452295422554, -0.09124338626861572, -0.20213046669960022, 0.07599052041769028, 0.09917053580284119, 0.014774146489799023, -0.05898820981383324, -0.1936713457107544, 0.04204229265451431, 0.09452756494283676, -0.012514741159975529, 0.05513065308332443, -0.3046952188014984, -0.15049663186073303, 0.05973222106695175, 0.12305096536874771, 0.12522928416728973, -0.16621999442577362, -0.05035490170121193, -0.05864250659942627, -0.043964844197034836, 0.13380885124206543, -0.056867584586143494, 0.10412587225437164, 0.02956126630306244, 0.04451797530055046, 0.005975096020847559, -0.043379057198762894, 0.13215085864067078, -0.034750547260046005, 0.09712710231542587, -0.050351474434137344, -0.05714113637804985, 0.08565225452184677, -0.08667898178100586, 0.028139250352978706, -0.04589414224028587, 0.030237819999456406, -0.14241033792495728, 0.002439948497340083, -0.07574139535427094, 0.04787975549697876, -0.061678510159254074, -0.02146933600306511, -0.008925356902182102, 0.0590754896402359, 0.07042202353477478, -0.017356516793370247, 0.12351624667644501, -0.014873418025672436, 0.16451837122440338, 0.15097112953662872, 0.08582185953855515, 0.009000878781080246, -0.021508391946554184, 0.08139361441135406, -0.03140616416931152, 0.0744212418794632, -0.16338899731636047, 0.05592624470591545, 0.13084757328033447, -0.0034663507249206305, 0.15918661653995514, 0.0635872408747673, -0.07435398548841476, 0.03747468441724777, 0.054709553718566895, -0.1281919628381729, -0.09895379096269608, 0.021536294370889664, 0.04465784877538681, -0.08962661772966385, 0.03388670086860657, 0.15774516761302948, -0.033754028379917145, 0.02335265465080738, 0.006116052158176899, 0.042012400925159454, -0.0650874674320221, 0.13298054039478302, 0.021087469533085823, 0.06586389243602753, -0.0689850002527237, 0.14106637239456177, 0.06104908511042595, -0.11851464956998825, 0.11830557882785797, 0.026889078319072723, -0.0674038752913475, 0.00043469519005157053, 0.015234103426337242, 0.08239377290010452, 0.026891741901636124, -0.06555021554231644, -0.11975576728582382, -0.1561119556427002, 0.0760340690612793, 0.199196919798851, 0.03865707665681839, 0.07076361775398254, -0.04323003068566322, -0.007575625088065863, -0.09283273667097092, 0.058713801205158234, 0.04555721953511238, 0.0329708494246006, -0.14505454897880554, 0.18000103533267975, 0.0015220254426822066, -0.013496868312358856, -0.0057295034639537334, 0.005342561285942793, -0.1960735321044922, 0.004930602852255106, -0.1425158679485321, 0.005810409784317017, 0.013860070146620274, -0.01519657950848341, 0.036711759865283966, -0.05491475388407707, -0.0567319430410862, 0.044923219829797745, -0.08744239062070847, -0.04714645445346832, 0.0496358685195446, 0.060490209609270096, -0.12014807015657425, -0.07800089567899704, 0.03297564759850502, -0.10443845391273499, 0.04533843696117401, 0.05265389755368233, 0.0020731131080538034, 0.02317558042705059, -0.09451019018888474, 0.03137215971946716, 0.042051613330841064, -0.005533685442060232, 0.036840010434389114, -0.16479426622390747, 0.013912614434957504, -0.03191789239645004, 0.037004254758358, 0.03777093440294266, 0.10250185430049896, -0.09466473013162613, -0.02403504028916359, -0.009090549312531948, -0.02709837630391121, -0.05721138417720795, 0.06853204220533371, 0.14372390508651733, -0.01665787398815155, 0.17619192600250244, -0.12759016454219818, 0.01238891389220953, -0.1721036434173584, 0.009366003796458244, -0.0006810732302255929, -0.08683519065380096, -0.10530301928520203, -0.012317449785768986, 0.10674533993005753, -0.08573559671640396, 0.08107852190732956, -0.06796438246965408, 0.08799213171005249, 0.05140446498990059, -0.10050179064273834, -0.06332789361476898, 0.06291480362415314, 0.1680346429347992, 0.04657205566763878, -0.018845435231924057, 0.069976806640625, -0.02356942929327488, 0.08959560841321945, 0.10864482074975967, 0.20048978924751282, 0.14161305129528046, 0.03491447493433952, 0.1222112625837326, 0.0539688877761364, -0.07443657517433167, -0.09077032655477524, 0.1108388602733612, -0.0754433199763298, 0.1600208282470703, -0.05818016827106476, 0.11350005120038986, 0.06775310635566711, -0.1782953143119812, 0.02158825285732746, -0.0772351548075676, -0.10010237991809845, -0.1261867731809616, -0.10292021185159683, -0.07644340395927429, -0.09618759900331497, 0.00046067184302955866, -0.0993729680776596, 0.03658146411180496, 0.06041216477751732, 0.02511672116816044, 0.0016374364495277405, 0.07765016704797745, -0.058628689497709274, 0.02839116007089615, 0.10692355036735535, -0.010404616594314575, -0.012650714255869389, -0.027512764558196068, -0.09229219704866409, 0.05605260655283928, -0.013462955132126808, 0.04849214106798172, 0.008289008401334286, -0.011895943433046341, 0.046314630657434464, -0.012510925531387329, -0.09879443794488907, 0.0530565045773983, 0.02970070019364357, 0.017654873430728912, 0.07048051804304123, 0.0504986010491848, -0.009886769577860832, -0.022072352468967438, 0.14046630263328552, -0.10376813262701035, -0.027750948444008827, -0.15251228213310242, 0.27048754692077637, -0.016845835372805595, 0.03680714592337608, 0.000940284167882055, -0.07372693717479706, -0.03631637617945671, 0.17129714787006378, 0.13169951736927032, -0.06579599529504776, -0.026044584810733795, 0.04989323392510414, -0.011504542082548141, -0.038649268448352814, 0.14434602856636047, 0.06820856779813766, -0.02836086042225361, -0.046369053423404694, -0.03504912555217743, -0.015449612401425838, -0.01857980713248253, -0.038815174251794815, 0.0734090730547905, 0.00584804592654109, -0.012597383931279182, -0.007886042818427086, 0.06025306135416031, -0.058998554944992065, -0.12030995637178421, 0.08613227307796478, -0.1917705237865448, -0.15255361795425415, 0.0022666254080832005, 0.010207136161625385, -0.007118977140635252, 0.07088325917720795, -0.0063158064149320126, -0.005386526696383953, 0.10323347896337509, -0.036686841398477554, -0.018060674890875816, -0.1170710101723671, 0.05244822055101395, -0.03435426577925682, 0.18685798346996307, -0.014667244628071785, 0.0574505589902401, 0.1412942260503769, 0.025017455220222473, -0.09437333792448044, 0.03202136978507042, 0.07401280105113983, -0.09868666529655457, -0.008371513336896896, 0.08270182460546494, -0.0291419867426157, 0.16052906215190887, 0.06135657802224159, -0.08805018663406372, 0.041760675609111786, -0.08272396773099899, -0.08755508810281754, -0.04133656248450279, -0.049257755279541016, -0.0732451006770134, 0.1316535323858261, 0.2371564507484436, -0.040724240243434906, 0.009743427857756615, -0.029541784897446632, -0.0028112600557506084, 0.05063784122467041, 0.02546480856835842, -0.05871054530143738, -0.23552989959716797, 0.07311996072530746, 0.05145171657204628, 0.040630754083395004, -0.16394832730293274, -0.09813342988491058, 0.014776842668652534, -0.01703745499253273, -0.09968898445367813, 0.1056937649846077, 0.0339590422809124, 0.048317618668079376, -0.05067063122987747, -0.1356552541255951, -0.041048210114240646, 0.19174274802207947, -0.09890907257795334, -0.0807732418179512 ]
null
null
transformers
# SimCLS SimCLS is a framework for abstractive summarization presented in [SimCLS: A Simple Framework for Contrastive Learning of Abstractive Summarization](https://arxiv.org/abs/2106.01890). It is a two-stage approach consisting of a *generator* and a *scorer*. In the first stage, a large pre-trained model for abstractive summarization (the *generator*) is used to generate candidate summaries, whereas, in the second stage, the *scorer* assigns a score to each candidate given the source document. The final summary is the highest-scoring candidate. This model is the *scorer* trained for summarization of BillSum ([paper](https://arxiv.org/abs/1910.00523), [datasets](https://huggingface.co/datasets/billsum)). It should be used in conjunction with [google/pegasus-billsum](https://huggingface.co/google/pegasus-billsum). See [our Github repository](https://github.com/andrejmiscic/simcls-pytorch) for details on training, evaluation, and usage. ## Usage ```bash git clone https://github.com/andrejmiscic/simcls-pytorch.git cd simcls-pytorch pip3 install torch torchvision torchaudio transformers sentencepiece ``` ```python from src.model import SimCLS, GeneratorType summarizer = SimCLS(generator_type=GeneratorType.Pegasus, generator_path="google/pegasus-billsum", scorer_path="andrejmiscic/simcls-scorer-billsum") document = "This is a legal document." summary = summarizer(document) print(summary) ``` ### Results All of our results are reported together with 95% confidence intervals computed using 10000 iterations of bootstrap. See [SimCLS paper](https://arxiv.org/abs/2106.01890) for a description of baselines. We believe the discrepancies of Rouge-L scores between the original Pegasus work and our evaluation are due to the computation of the metric. Namely, we use a summary level Rouge-L score. | System | Rouge-1 | Rouge-2 | Rouge-L\* | |-----------------|----------------------:|----------------------:|----------------------:| | Pegasus | 57.31 | 40.19 | 45.82 | | **Our results** | --- | --- | --- | | Origin | 56.24, [55.74, 56.74] | 37.46, [36.89, 38.03] | 50.71, [50.19, 51.22] | | Min | 44.37, [43.85, 44.89] | 25.75, [25.30, 26.22] | 38.68, [38.18, 39.16] | | Max | 62.88, [62.42, 63.33] | 43.96, [43.39, 44.54] | 57.50, [57.01, 58.00] | | Random | 54.93, [54.43, 55.43] | 35.42, [34.85, 35.97] | 49.19, [48.68, 49.70] | | **SimCLS** | 57.49, [57.01, 58.00] | 38.54, [37.98, 39.10] | 51.91, [51.39, 52.43] | ### Citation of the original work ```bibtex @inproceedings{liu-liu-2021-simcls, title = "{S}im{CLS}: A Simple Framework for Contrastive Learning of Abstractive Summarization", author = "Liu, Yixin and Liu, Pengfei", booktitle = "Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 2: Short Papers)", month = aug, year = "2021", address = "Online", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.acl-short.135", doi = "10.18653/v1/2021.acl-short.135", pages = "1065--1072", } ```
{"language": ["en"], "tags": ["simcls"], "datasets": ["billsum"]}
feature-extraction
andrejmiscic/simcls-scorer-billsum
[ "transformers", "pytorch", "roberta", "feature-extraction", "simcls", "en", "dataset:billsum", "arxiv:2106.01890", "arxiv:1910.00523", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[ "2106.01890", "1910.00523" ]
[ "en" ]
TAGS #transformers #pytorch #roberta #feature-extraction #simcls #en #dataset-billsum #arxiv-2106.01890 #arxiv-1910.00523 #endpoints_compatible #region-us
SimCLS ====== SimCLS is a framework for abstractive summarization presented in SimCLS: A Simple Framework for Contrastive Learning of Abstractive Summarization. It is a two-stage approach consisting of a *generator* and a *scorer*. In the first stage, a large pre-trained model for abstractive summarization (the *generator*) is used to generate candidate summaries, whereas, in the second stage, the *scorer* assigns a score to each candidate given the source document. The final summary is the highest-scoring candidate. This model is the *scorer* trained for summarization of BillSum (paper, datasets). It should be used in conjunction with google/pegasus-billsum. See our Github repository for details on training, evaluation, and usage. Usage ----- ### Results All of our results are reported together with 95% confidence intervals computed using 10000 iterations of bootstrap. See SimCLS paper for a description of baselines. We believe the discrepancies of Rouge-L scores between the original Pegasus work and our evaluation are due to the computation of the metric. Namely, we use a summary level Rouge-L score. of the original work
[ "### Results\n\n\nAll of our results are reported together with 95% confidence intervals computed using 10000 iterations of bootstrap. See SimCLS paper for a description of baselines.\nWe believe the discrepancies of Rouge-L scores between the original Pegasus work and our evaluation are due to the computation of the metric. Namely, we use a summary level Rouge-L score.\n\n\n\nof the original work" ]
[ "TAGS\n#transformers #pytorch #roberta #feature-extraction #simcls #en #dataset-billsum #arxiv-2106.01890 #arxiv-1910.00523 #endpoints_compatible #region-us \n", "### Results\n\n\nAll of our results are reported together with 95% confidence intervals computed using 10000 iterations of bootstrap. See SimCLS paper for a description of baselines.\nWe believe the discrepancies of Rouge-L scores between the original Pegasus work and our evaluation are due to the computation of the metric. Namely, we use a summary level Rouge-L score.\n\n\n\nof the original work" ]
[ 60, 89 ]
[ "passage: TAGS\n#transformers #pytorch #roberta #feature-extraction #simcls #en #dataset-billsum #arxiv-2106.01890 #arxiv-1910.00523 #endpoints_compatible #region-us \n### Results\n\n\nAll of our results are reported together with 95% confidence intervals computed using 10000 iterations of bootstrap. See SimCLS paper for a description of baselines.\nWe believe the discrepancies of Rouge-L scores between the original Pegasus work and our evaluation are due to the computation of the metric. Namely, we use a summary level Rouge-L score.\n\n\n\nof the original work" ]
[ -0.15926522016525269, 0.07968520373106003, -0.0021207602694630623, 0.05473798140883446, 0.06995599716901779, 0.02604193240404129, -0.04203996807336807, 0.06937102228403091, 0.025845305994153023, 0.04364890232682228, 0.11982541531324387, 0.07049716264009476, 0.077130526304245, 0.07378271967172623, -0.10441885143518448, -0.08017254620790482, 0.030166666954755783, 0.10307329148054123, -0.16006846725940704, 0.13522271811962128, 0.06989214569330215, -0.07717011123895645, 0.11457011848688126, 0.0341247096657753, -0.0835317000746727, 0.04955895617604256, 0.0984494611620903, -0.037130918353796005, 0.10146303474903107, 0.03565714880824089, 0.12059003859758377, 0.027188239619135857, 0.07417288422584534, -0.11627886444330215, 0.028102871030569077, -0.020698023959994316, -0.009133387356996536, 0.0577719509601593, 0.015812478959560394, -0.11197131127119064, 0.20780491828918457, 0.0411461666226387, 0.05655638501048088, 0.02136859856545925, -0.1349782794713974, -0.15040703117847443, -0.14826121926307678, -0.00010790622036438435, 0.08924731612205505, 0.02696358598768711, 0.037923142313957214, 0.16789786517620087, -0.14242731034755707, 0.0471508763730526, 0.23837165534496307, -0.2577868402004242, -0.008740637451410294, 0.1914757490158081, 0.03331027179956436, -0.1445411592721939, -0.03354404494166374, 0.04185478389263153, 0.09076639264822006, 0.003950286190956831, -0.014405368827283382, -0.0764300525188446, 0.004523357376456261, 0.06831573694944382, -0.09939758479595184, -0.08759328722953796, 0.2593784034252167, -0.009567534551024437, -0.09695369750261307, 0.06064602732658386, -0.04177665337920189, -0.05444394424557686, -0.014166882261633873, -0.05673663318157196, -0.007060614414513111, -0.04429803043603897, 0.053662482649087906, 0.11176370084285736, -0.0532374270260334, -0.09648454934358597, -0.09739208966493607, 0.11528809368610382, 0.008584798313677311, 0.09443794190883636, -0.10234413295984268, 0.14045745134353638, -0.1919976770877838, -0.0605158768594265, -0.027052786201238632, -0.07384268194437027, -0.05309033393859863, 0.021663784980773926, -0.05463603138923645, 0.07578655332326889, -0.009196240454912186, 0.2699434757232666, 0.03648179769515991, 0.001714917947538197, 0.13744862377643585, 0.0009309912566095591, 0.0479348786175251, 0.1341477781534195, -0.061298519372940063, -0.11979669332504272, 0.0338873565196991, -0.059177231043577194, 0.04683113843202591, -0.034004829823970795, 0.017794853076338768, -0.14440570771694183, -0.03630802780389786, 0.07323481887578964, -0.059369903057813644, -0.05110316351056099, -0.10031133145093918, -0.01389318984001875, 0.021715102717280388, -0.11413171887397766, -0.01821608655154705, -0.0797765925526619, -0.08116500079631805, 0.12044606357812881, 0.12285634130239487, -0.04091527312994003, -0.023569416254758835, 0.05835261195898056, -0.1109180673956871, -0.02703937515616417, -0.059369977563619614, -0.09562990814447403, 0.021500779315829277, -0.09041443467140198, 0.02814108319580555, -0.03475487604737282, -0.06056847795844078, 0.0046679237857460976, 0.048400212079286575, -0.06587434560060501, -0.004651450552046299, 0.007662358693778515, -0.02205279842019081, 0.025123190134763718, 0.03280926123261452, -0.015492742881178856, -0.044870518147945404, 0.06466997414827347, 0.04165731370449066, 0.06517889350652695, -0.12704774737358093, 0.012510773725807667, -0.07367633283138275, 0.06337642669677734, -0.12722422182559967, -0.09103914350271225, -0.044491834938526154, -0.03939931094646454, -0.04124780371785164, -0.10471253097057343, -0.05523005500435829, -0.03090597689151764, 0.08051443099975586, 0.15390080213546753, -0.10875070095062256, -0.022936612367630005, 0.2111208587884903, -0.14524270594120026, -0.14113616943359375, 0.14717985689640045, -0.05841192230582237, -0.02116698957979679, 0.04350887984037399, 0.024008408188819885, 0.09051597118377686, -0.1745421439409256, 0.014630782417953014, 0.05924434959888458, 0.10909926891326904, -0.15671579539775848, 0.11314146220684052, -0.020605172961950302, -0.10463476181030273, 0.05836676433682442, -0.04100152477622032, 0.03136635199189186, -0.08280003815889359, -0.014908299781382084, -0.059434179216623306, -0.03593948110938072, 0.030465995892882347, 0.022112805396318436, 0.005111579783260822, -0.06707361340522766, -0.04574943333864212, -0.19785282015800476, 0.11208232492208481, -0.029187364503741264, 0.019806955009698868, -0.08856277912855148, 0.19441498816013336, -0.06020860746502876, -0.059117771685123444, -0.1465032994747162, 0.03684712573885918, -0.017500590533018112, -0.02558196149766445, -0.05264172703027725, 0.09714561700820923, 0.009073288179934025, -0.05484534800052643, -0.04660654813051224, 0.08522559702396393, 0.007089863996952772, -0.03783734142780304, -0.057127490639686584, -0.08716531842947006, -0.0066985166631639, -0.05285666510462761, 0.02832474745810032, -0.11791002005338669, -0.022197052836418152, -0.04735526815056801, 0.10794587433338165, 0.0019492078572511673, -0.021107440814375877, 0.0008761333301663399, 0.036156415939331055, -0.0833543986082077, 0.0137112932279706, -0.008548958227038383, -0.0004510296566877514, -0.059443194419145584, 0.02281052991747856, -0.09375963360071182, 0.14506827294826508, 0.0853051245212555, 0.004228634759783745, -0.05616316571831703, 0.0004337560385465622, 0.03709184378385544, 0.023310571908950806, -0.060278575867414474, 0.030802439898252487, -0.08036494255065918, -0.0320550911128521, 0.11848858743906021, -0.07699728012084961, -0.02855212613940239, 0.03894227370619774, -0.0901002511382103, 0.0119878388941288, 0.15743087232112885, 0.19211366772651672, 0.030800161883234978, 0.04982142522931099, 0.16655772924423218, -0.03166762739419937, 0.02653626911342144, -0.07240667939186096, -0.07014905661344528, -0.05861872062087059, -0.03265145421028137, 0.004876245278865099, 0.21739956736564636, -0.15455007553100586, -0.023568231612443924, 0.04454420879483223, -0.017712511122226715, 0.008354179561138153, -0.12910954654216766, -0.05322372168302536, 0.05213271453976631, 0.005330475512892008, -0.14788874983787537, 0.10677666962146759, -0.022191263735294342, 0.14965900778770447, -0.0826013907790184, -0.09348287433385849, -0.03909669443964958, -0.02113068476319313, -0.062094930559396744, 0.21018756926059723, -0.02999158576130867, -0.06759607791900635, -0.12312253564596176, -0.026494642719626427, -0.08416049927473068, 0.011385465040802956, 0.0014002074021846056, -0.028569327667355537, -0.054923705756664276, -0.028977131471037865, 0.06336762756109238, -0.1159428134560585, 0.03159281611442566, 0.03772955387830734, -0.018891368061304092, -0.052975378930568695, -0.11780206859111786, -0.054973479360342026, -0.10536540299654007, 0.01622307486832142, 0.042200807482004166, -0.11614633351564407, 0.11141522973775864, 0.20740146934986115, -0.05667302384972572, 0.04204270616173744, -0.0027349686715751886, 0.1983829289674759, -0.009916015900671482, -0.04971618577837944, 0.2276880294084549, 0.0393572673201561, 0.025372633710503578, 0.0735878124833107, 0.016251318156719208, -0.09081079810857773, -0.014437360689043999, -0.03349770978093147, -0.118062324821949, -0.22590525448322296, -0.07542234659194946, -0.09156038612127304, 0.036973729729652405, -0.028686106204986572, -0.03536099195480347, -0.07327257096767426, 0.05531942471861839, -0.014612512663006783, -0.005862759426236153, -0.02074282430112362, -0.0025091548450291157, 0.13700389862060547, 0.008058672770857811, 0.10821317881345749, -0.08055073767900467, -0.02031427063047886, 0.08429986238479614, -0.023264991119503975, 0.1712440401315689, -0.012747811153531075, -0.0747816264629364, 0.02329784817993641, 0.19611400365829468, 0.021698689088225365, 0.1570630520582199, 0.048860494047403336, -0.027414409443736076, -0.027374865487217903, 0.020487627014517784, -0.11994490027427673, -0.03550015389919281, -0.015932699665427208, 0.026767544448375702, -0.16035453975200653, -0.011050261557102203, -0.04565859213471413, 0.026381131261587143, 0.20179110765457153, -0.21612629294395447, -0.09269285202026367, 0.05030025914311409, 0.028992829844355583, -0.0861205980181694, 0.08446165174245834, 0.01619764417409897, -0.11404553800821304, 0.04600740969181061, -0.053971149027347565, 0.06820754706859589, 0.08963269740343094, -0.022211221978068352, -0.03661586344242096, -0.07251613587141037, -0.034341923892498016, 0.06959950178861618, -0.14528797566890717, 0.24268211424350739, -0.025619300082325935, -0.04355545714497566, -0.011622928082942963, 0.026439165696501732, 0.03955714404582977, 0.10415012389421463, 0.18921954929828644, 0.034055303782224655, -0.14521226286888123, -0.12072239071130753, -0.033668871968984604, 0.07279766350984573, 0.059621717780828476, -0.023572761565446854, 0.08925671130418777, -0.05925048887729645, 0.026706691831350327, 0.028050370514392853, 0.06315198540687561, -0.014216996729373932, -0.08165787905454636, 0.04847870022058487, -0.07129563391208649, -0.1763128787279129, -0.020906152203679085, -0.0709252655506134, 0.008749851956963539, 0.05102122575044632, -0.010803534649312496, -0.03167719021439552, -0.056689806282520294, 0.014693506062030792, 0.15526321530342102, -0.10623887926340103, 0.06602100282907486, -0.06626153737306595, 0.033894967287778854, 0.03605514392256737, -0.12923869490623474, 0.03000614047050476, -0.10495644807815552, -0.04833897575736046, -0.026648955419659615, 0.1453256458044052, 0.014653877355158329, 0.028439821675419807, 0.039677832275629044, 0.05054543539881706, -0.06769830733537674, -0.10921063274145126, -0.001360860769636929, 0.011242212727665901, 0.02529955469071865, 0.15387581288814545, 0.030876396223902702, -0.0482158325612545, 0.016231419518589973, -0.005154033191502094, 0.0841909646987915, 0.22053782641887665, -0.11970038712024689, 0.06995666772127151, 0.030741529539227486, -0.07549052685499191, -0.3197937607765198, -0.058258168399333954, -0.08374308049678802, 0.08215832710266113, 0.0669369325041771, 0.011644169688224792, 0.1259760856628418, 0.03798731416463852, -0.018288707360625267, -0.02828490547835827, -0.33365732431411743, -0.06285129487514496, 0.1928086280822754, 0.033368583768606186, 0.4620630741119385, -0.09087101370096207, 0.01308098528534174, -0.013239651918411255, -0.24943101406097412, 0.09346675872802734, 0.046051669865846634, 0.02764894813299179, -0.1219257265329361, 0.03434866666793823, 0.04063110053539276, -0.02125224471092224, 0.19026805460453033, 0.021836483851075172, 0.10961055010557175, 0.008957048878073692, -0.020998291671276093, 0.058576297014951706, -0.06410988420248032, 0.04865574091672897, 0.07672517001628876, 0.06335092335939407, -0.1919700801372528, -0.014054955914616585, -0.06154913082718849, 0.06355394423007965, -0.0464201495051384, -0.004254649858921766, -0.12286444008350372, -0.00029338389867916703, -0.0009882465237751603, -0.04125538840889931, 0.10922941565513611, 0.010995977558195591, 0.13400648534297943, 0.01953214593231678, 0.0985754132270813, -0.03755339980125427, -0.03137899935245514, 0.09390353411436081, 0.010403941385447979, 0.012473449110984802, -0.17345035076141357, 0.0724642351269722, 0.16147632896900177, 0.10977280139923096, 0.014621410518884659, 0.06463789939880371, -0.02720300853252411, 0.0022277934476733208, 0.07422373443841934, -0.19700652360916138, -0.07648961991071701, -0.000045493732613977045, -0.12504611909389496, -0.08868859708309174, 0.11932478845119476, 0.057411182671785355, -0.03218460455536842, -0.02733032777905464, -0.04633031785488129, 0.04837219417095184, -0.053602609783411026, 0.18543726205825806, 0.02465858682990074, 0.00470344303175807, -0.11955834925174713, 0.08704019337892532, -0.015748750418424606, -0.16435052454471588, -0.05553001910448074, -0.12044573575258255, -0.07225069403648376, -0.00470329262316227, -0.08527456223964691, 0.050728973001241684, -0.2008455991744995, -0.041178520768880844, -0.15060123801231384, -0.1267828792333603, 0.006372510455548763, 0.20171239972114563, 0.14436693489551544, 0.0769650936126709, -0.0009082251926884055, -0.1361365169286728, -0.09674785286188126, 0.04702208563685417, 0.2773990035057068, 0.007736893370747566, -0.07034578919410706, -0.026120642200112343, -0.05155152454972267, 0.0970592051744461, -0.037549298256635666, -0.010434439405798912, -0.08633039146661758, 0.04973089322447777, -0.14132677018642426, -0.009748432785272598, -0.058582231402397156, -0.011364759877324104, 0.010506696999073029, -0.04814937338232994, -0.06944317370653152, 0.023443065583705902, -0.10011336207389832, 0.06790061295032501, 0.008132737129926682, 0.050924863666296005, -0.04752260446548462, -0.024534640833735466, 0.12933750450611115, -0.05786353349685669, 0.015040980651974678, 0.10778849571943283, 0.02545640431344509, 0.09423346072435379, -0.1903625875711441, -0.0022208597511053085, -0.0033616244327276945, 0.03177230805158615, 0.038000673055648804, -0.1457098424434662, 0.08131731301546097, 0.05372822657227516, -0.024793611839413643, 0.006145427003502846, -0.10583486407995224, -0.08562223613262177, -0.09610608965158463, -0.008140316233038902, -0.0713144913315773, -0.01837516389787197, 0.0031951172277331352, 0.11423251777887344, 0.18123185634613037, 0.025197990238666534, 0.02135646715760231, -0.001167955226264894, -0.11888492852449417, -0.008083630353212357, -0.043664589524269104, -0.019675495103001595, -0.12552084028720856, -0.03590422496199608, 0.05301821604371071, 0.093498595058918, 0.187718465924263, 0.03324102982878685, 0.07586584240198135, -0.02314727008342743, -0.015609271824359894, 0.1478785276412964, -0.014526906423270702, 0.08976678550243378, 0.008711968548595905, -0.017223967239260674, 0.013118047267198563, 0.06783601641654968, 0.05685197189450264, 0.13442687690258026, 0.20514455437660217, 0.0790472999215126, 0.018715975806117058, 0.05570781230926514, -0.12884046137332916, -0.05659232288599014, 0.10485304147005081, -0.09760891646146774, -0.0009485800401307642, 0.024858104065060616, 0.03134828433394432, 0.10622277855873108, 0.08955138921737671, -0.09803376346826553, 0.026211174204945564, -0.10559628158807755, -0.07968121021986008, -0.21750421822071075, -0.06400266289710999, -0.038783106952905655, -0.1126546785235405, 0.009049002081155777, -0.10878286510705948, 0.04607628658413887, 0.2602236568927765, 0.057096436619758606, -0.02026546373963356, 0.0007347243372350931, -0.19368381798267365, -0.0432068295776844, 0.05892268195748329, 0.05603577569127083, -0.0029146173037588596, 0.045106396079063416, 0.09137368947267532, -0.01883392035961151, -0.049993786960840225, 0.00746936583891511, 0.0002047582238446921, 0.025456711649894714, -0.0030616282019764185, -0.04276732727885246, -0.021081162616610527, -0.05093761906027794, 0.024122217670083046, 0.05277619883418083, 0.13770948350429535, 0.03549730405211449, 0.02300148271024227, -0.00994077604264021, 0.24217724800109863, -0.1119956448674202, 0.06197402626276016, -0.1367904245853424, 0.21009205281734467, 0.0641840398311615, 0.032487086951732635, 0.03906542435288429, -0.030007222667336464, 0.04817715659737587, 0.13621006906032562, 0.05811777338385582, 0.10235435515642166, -0.00692236190661788, -0.015898138284683228, 0.031195057556033134, 0.051102254539728165, 0.01629449427127838, 0.05886543542146683, 0.24344056844711304, -0.086883544921875, -0.05607622489333153, -0.05948187783360481, 0.0048467679880559444, 0.015847379341721535, 0.1078638955950737, -0.02417171746492386, -0.05692474544048309, -0.05030465126037598, 0.12186603993177414, -0.0017377176554873586, -0.17252697050571442, 0.16052915155887604, -0.16405965387821198, -0.051594432443380356, -0.009339902549982071, -0.06600134074687958, -0.020122095942497253, 0.07913000136613846, -0.12458708137273788, -0.026967104524374008, 0.17580842971801758, 0.05086667835712433, -0.17062750458717346, -0.15635405480861664, 0.13512368500232697, 0.054001759737730026, 0.1285114884376526, 0.036969155073165894, 0.11595749855041504, 0.051193080842494965, 0.032136160880327225, 0.0019044291693717241, -0.04074995964765549, 0.06350942701101303, 0.10479521006345749, -0.02695312350988388, 0.05217289924621582, 0.025754831731319427, 0.01677826978266239, -0.04077361524105072, -0.018410570919513702, 0.019926240667700768, -0.09405354410409927, -0.04142777621746063, -0.08473558723926544, 0.05851518735289574, -0.0724262073636055, 0.12613506615161896, 0.1444041132926941, -0.04537690803408623, 0.04062635824084282, -0.04258442297577858, 0.012966741807758808, 0.04999401420354843, -0.006293836515396833, 0.045636676251888275, -0.08940889686346054, 0.08087697625160217, -0.02714276872575283, -0.019373182207345963, -0.11890862882137299, -0.021440675482153893, -0.05058731138706207, -0.006722956895828247, 0.006160476244986057, 0.08420293778181076, -0.015444133430719376, 0.04146274924278259, -0.04370046406984329, 0.04268397390842438, -0.0060537392273545265, 0.10815122723579407, -0.006428778171539307, -0.11403557658195496 ]
null
null
transformers
# SimCLS SimCLS is a framework for abstractive summarization presented in [SimCLS: A Simple Framework for Contrastive Learning of Abstractive Summarization](https://arxiv.org/abs/2106.01890). It is a two-stage approach consisting of a *generator* and a *scorer*. In the first stage, a large pre-trained model for abstractive summarization (the *generator*) is used to generate candidate summaries, whereas, in the second stage, the *scorer* assigns a score to each candidate given the source document. The final summary is the highest-scoring candidate. This model is the *scorer* trained for summarization of CNN/DailyMail ([paper](https://arxiv.org/abs/1602.06023), [datasets](https://huggingface.co/datasets/cnn_dailymail)). It should be used in conjunction with [facebook/bart-large-cnn](https://huggingface.co/facebook/bart-large-cnn). See [our Github repository](https://github.com/andrejmiscic/simcls-pytorch) for details on training, evaluation, and usage. ## Usage ```bash git clone https://github.com/andrejmiscic/simcls-pytorch.git cd simcls-pytorch pip3 install torch torchvision torchaudio transformers sentencepiece ``` ```python from src.model import SimCLS, GeneratorType summarizer = SimCLS(generator_type=GeneratorType.Bart, generator_path="facebook/bart-large-cnn", scorer_path="andrejmiscic/simcls-scorer-cnndm") article = "This is a news article." summary = summarizer(article) print(summary) ``` ### Results All of our results are reported together with 95% confidence intervals computed using 10000 iterations of bootstrap. See [SimCLS paper](https://arxiv.org/abs/2106.01890) for a description of baselines. | System | Rouge-1 | Rouge-2 | Rouge-L | |------------------|----------------------:|----------------------:|----------------------:| | BART | 44.16 | 21.28 | 40.90 | | **SimCLS paper** | --- | --- | --- | | Origin | 44.39 | 21.21 | 41.28 | | Min | 33.17 | 11.67 | 30.77 | | Max | 54.36 | 28.73 | 50.77 | | Random | 43.98 | 20.06 | 40.94 | | **SimCLS** | 46.67 | 22.15 | 43.54 | | **Our results** | --- | --- | --- | | Origin | 44.41, [44.18, 44.63] | 21.05, [20.80, 21.29] | 41.53, [41.30, 41.75] | | Min | 33.43, [33.25, 33.62] | 10.97, [10.82, 11.12] | 30.57, [30.40, 30.74] | | Max | 53.87, [53.67, 54.08] | 29.72, [29.47, 29.98] | 51.13, [50.92, 51.34] | | Random | 43.94, [43.73, 44.16] | 20.09, [19.86, 20.31] | 41.06, [40.85, 41.27] | | **SimCLS** | 46.53, [46.32, 46.75] | 22.14, [21.91, 22.37] | 43.56, [43.34, 43.78] | ### Citation of the original work ```bibtex @inproceedings{liu-liu-2021-simcls, title = "{S}im{CLS}: A Simple Framework for Contrastive Learning of Abstractive Summarization", author = "Liu, Yixin and Liu, Pengfei", booktitle = "Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 2: Short Papers)", month = aug, year = "2021", address = "Online", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.acl-short.135", doi = "10.18653/v1/2021.acl-short.135", pages = "1065--1072", } ```
{"language": ["en"], "tags": ["simcls"], "datasets": ["cnn_dailymail"]}
feature-extraction
andrejmiscic/simcls-scorer-cnndm
[ "transformers", "pytorch", "roberta", "feature-extraction", "simcls", "en", "dataset:cnn_dailymail", "arxiv:2106.01890", "arxiv:1602.06023", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[ "2106.01890", "1602.06023" ]
[ "en" ]
TAGS #transformers #pytorch #roberta #feature-extraction #simcls #en #dataset-cnn_dailymail #arxiv-2106.01890 #arxiv-1602.06023 #endpoints_compatible #region-us
SimCLS ====== SimCLS is a framework for abstractive summarization presented in SimCLS: A Simple Framework for Contrastive Learning of Abstractive Summarization. It is a two-stage approach consisting of a *generator* and a *scorer*. In the first stage, a large pre-trained model for abstractive summarization (the *generator*) is used to generate candidate summaries, whereas, in the second stage, the *scorer* assigns a score to each candidate given the source document. The final summary is the highest-scoring candidate. This model is the *scorer* trained for summarization of CNN/DailyMail (paper, datasets). It should be used in conjunction with facebook/bart-large-cnn. See our Github repository for details on training, evaluation, and usage. Usage ----- ### Results All of our results are reported together with 95% confidence intervals computed using 10000 iterations of bootstrap. See SimCLS paper for a description of baselines. of the original work
[ "### Results\n\n\nAll of our results are reported together with 95% confidence intervals computed using 10000 iterations of bootstrap. See SimCLS paper for a description of baselines.\n\n\n\nof the original work" ]
[ "TAGS\n#transformers #pytorch #roberta #feature-extraction #simcls #en #dataset-cnn_dailymail #arxiv-2106.01890 #arxiv-1602.06023 #endpoints_compatible #region-us \n", "### Results\n\n\nAll of our results are reported together with 95% confidence intervals computed using 10000 iterations of bootstrap. See SimCLS paper for a description of baselines.\n\n\n\nof the original work" ]
[ 61, 44 ]
[ "passage: TAGS\n#transformers #pytorch #roberta #feature-extraction #simcls #en #dataset-cnn_dailymail #arxiv-2106.01890 #arxiv-1602.06023 #endpoints_compatible #region-us \n### Results\n\n\nAll of our results are reported together with 95% confidence intervals computed using 10000 iterations of bootstrap. See SimCLS paper for a description of baselines.\n\n\n\nof the original work" ]
[ -0.15719319880008698, 0.03445946052670479, -0.0017400895012542605, -0.028454462066292763, 0.06328556686639786, 0.009245865978300571, -0.0003628362901508808, 0.05016249790787697, 0.012165267951786518, 0.04516688361763954, 0.15623894333839417, 0.21202486753463745, 0.032098062336444855, 0.1747933179140091, -0.09338419884443283, -0.0743536651134491, 0.030721241608262062, 0.07718624174594879, -0.11040627956390381, 0.16915439069271088, 0.05696974694728851, -0.1511692851781845, 0.07577814161777496, 0.0018566574435681105, -0.1275155246257782, 0.024919690564274788, 0.042208075523376465, -0.09585338830947876, 0.07567992806434631, -0.014903238043189049, 0.10878261178731918, 0.05589890107512474, 0.04779575765132904, -0.08217024058103561, 0.02760029025375843, 0.009538177400827408, -0.02335287816822529, 0.08188305795192719, 0.029652422294020653, -0.043082769960165024, 0.1967773288488388, 0.03910225257277489, 0.025485090911388397, 0.027782147750258446, -0.1407131552696228, -0.07529860734939575, -0.06515887379646301, 0.054319124668836594, 0.12770624458789825, 0.04751409590244293, 0.01021465566009283, 0.2022610604763031, -0.1222635880112648, 0.09115529805421829, 0.10163728892803192, -0.20316296815872192, -0.02080547623336315, 0.10562719404697418, -0.0056084031239151955, -0.05917052552103996, -0.014338760636746883, 0.0452410951256752, 0.0812624990940094, -0.03032061830163002, -0.11285831034183502, -0.06115657463669777, -0.0639353096485138, 0.03108930215239525, -0.11374212801456451, -0.09587899595499039, 0.24295976758003235, 0.028489409014582634, -0.04822497442364693, 0.033560361713171005, -0.08846233785152435, -0.04147997125983238, -0.026685867458581924, -0.0015442029107362032, -0.025182237848639488, -0.01691320911049843, -0.10022863000631332, 0.13438841700553894, -0.10672567784786224, -0.05058141425251961, -0.10669289529323578, 0.16897474229335785, 0.0018630821723490953, 0.12187141180038452, -0.10951726883649826, 0.13708163797855377, 0.03102714568376541, -0.11002591997385025, -0.0075196935795247555, -0.0719727873802185, 0.030762959271669388, 0.014947566203773022, -0.03190157935023308, 0.07191144675016403, 0.013861330226063728, 0.16854354739189148, 0.09492900222539902, 0.018165383487939835, 0.13937833905220032, 0.03901784494519234, 0.05778668075799942, 0.04000091552734375, -0.07817819714546204, -0.10571455955505371, 0.023355873301625252, -0.05100230872631073, 0.022064825519919395, -0.027423659339547157, -0.0013013887219130993, -0.004861053079366684, -0.0030039723496884108, 0.05514879897236824, -0.025661053135991096, 0.0020511650945991278, -0.07537851482629776, -0.0077355727553367615, 0.0019306562608107924, -0.08344712108373642, -0.052838124334812164, -0.07188455015420914, -0.06677940487861633, 0.11247680336236954, 0.050044137984514236, 0.0015218798071146011, 0.004260673187673092, 0.052389245480298996, -0.13999943435192108, -0.01482227724045515, -0.044833820313215256, -0.0627216175198555, 0.014509792439639568, -0.13477492332458496, 0.04521555453538895, -0.09187109023332596, -0.1438509076833725, -0.018560398370027542, 0.030843069776892662, -0.029514778405427933, 0.01306593045592308, -0.034679144620895386, -0.01367775909602642, -0.0067505366168916225, -0.0057996660470962524, 0.07084328681230545, -0.06853403151035309, 0.08465348184108734, 0.07471174001693726, 0.0520019568502903, -0.0949339047074318, -0.008565661497414112, -0.13167811930179596, 0.02001170441508293, -0.03919713944196701, -0.02091958560049534, -0.016499517485499382, 0.12730064988136292, -0.05454442650079727, -0.06658469885587692, -0.038413193076848984, -0.00983763299882412, 0.04912364482879639, 0.15920712053775787, -0.12931151688098907, -0.035203173756599426, 0.15392515063285828, -0.12369140982627869, -0.19708481431007385, 0.05102832615375519, -0.06798670440912247, 0.11795084178447723, 0.055257879197597504, 0.03815743699669838, -0.01984979212284088, -0.02654287777841091, 0.022474724799394608, -0.003737494582310319, 0.09038881212472916, -0.1725989580154419, 0.03031904809176922, -0.04885387793183327, -0.05079164355993271, 0.07164491713047028, 0.03050747700035572, 0.04759848862886429, -0.1096702367067337, -0.030673285946249962, -0.03496406599879265, -0.07627259194850922, -0.04234450310468674, 0.0497983917593956, 0.061668913811445236, -0.06543094664812088, 0.006286395248025656, -0.14693085849285126, 0.07461418956518173, -0.021595731377601624, -0.03461736440658569, -0.09429629892110825, 0.16226957738399506, -0.17700082063674927, -0.07093062251806259, -0.16674815118312836, 0.05878318473696709, -0.04671379551291466, 0.10520458966493607, -0.04283168166875839, 0.03855469450354576, 0.06434723734855652, -0.07078856229782104, 0.017451640218496323, 0.025162655860185623, 0.04491717740893364, 0.019689345732331276, -0.030478093773126602, -0.058717869222164154, -0.0007777701248414814, -0.05914924666285515, 0.006334354169666767, -0.0888248085975647, -0.03767358139157295, -0.02614671178162098, 0.1524331271648407, -0.005839102901518345, -0.06224750354886055, 0.019249778240919113, 0.03720828890800476, -0.07383063435554504, 0.021425535902380943, 0.051546137779951096, -0.008350093849003315, -0.08266816288232803, 0.017475752159953117, -0.0800514742732048, 0.12921778857707977, 0.1217830628156662, -0.13022325932979584, -0.01896936073899269, -0.0015800443943589926, -0.023722384124994278, 0.015633823350071907, -0.003569988999515772, 0.03379517421126366, -0.026705818250775337, -0.04392293468117714, 0.0724220871925354, -0.0717400461435318, -0.0413799062371254, 0.04097571596503258, -0.05603044107556343, 0.015324077568948269, 0.12748269736766815, 0.18489396572113037, -0.10985273122787476, 0.07489252835512161, 0.19384482502937317, 0.04684668779373169, 0.04067215323448181, -0.09005798399448395, -0.1124257892370224, -0.012758861295878887, -0.04665407910943031, -0.023017127066850662, 0.16235458850860596, -0.23131121695041656, -0.03256668522953987, 0.06893617659807205, -0.021152492612600327, 0.04449539631605148, -0.13326583802700043, -0.03546932339668274, 0.032938383519649506, 0.03037925437092781, -0.14881955087184906, 0.07888167351484299, -0.027916409075260162, 0.10927126556634903, -0.09940025955438614, -0.049416664987802505, 0.0021526829805225134, -0.02203655242919922, -0.05456266552209854, 0.18721719086170197, -0.019338691607117653, -0.10051988065242767, -0.09523875266313553, -0.04397385194897652, -0.007566827815026045, 0.0022191880270838737, -0.004686566069722176, -0.04032687097787857, -0.08229093253612518, -0.01924380473792553, 0.007641298696398735, -0.11694590002298355, 0.05603835731744766, 0.08139674365520477, 0.017924783751368523, -0.04002959653735161, -0.09368480741977692, -0.03755345568060875, -0.10264552384614944, -0.008368088863790035, 0.06873616576194763, -0.05402856320142746, 0.11475428193807602, 0.13658489286899567, -0.024303600192070007, 0.06149837002158165, 0.025399627164006233, 0.19116482138633728, -0.02489352412521839, -0.06221972033381462, 0.21352405846118927, -0.0197378471493721, -0.010542673990130424, 0.10881618410348892, 0.033716995269060135, -0.11281149089336395, -0.0043699308298528194, -0.06605464220046997, -0.10304195433855057, -0.1676645129919052, -0.08496494591236115, -0.09183737635612488, 0.02083965577185154, 0.026025352999567986, -0.014619488269090652, -0.01475081779062748, 0.11657647788524628, -0.004361145664006472, -0.09420770406723022, -0.06919063627719879, -0.01510484516620636, 0.028467252850532532, -0.013190875761210918, 0.10275907069444656, -0.043289199471473694, -0.05613509938120842, 0.043429479002952576, -0.08389152586460114, 0.16390477120876312, 0.01941457949578762, -0.035212159156799316, 0.013663792051374912, 0.19494234025478363, 0.04466849938035011, 0.2547432482242584, 0.03371391072869301, -0.05703965574502945, 0.01252517756074667, 0.016427893191576004, -0.14680331945419312, 0.019348375499248505, 0.042581405490636826, -0.024511389434337616, -0.08518187701702118, -0.05969124287366867, 0.02492528036236763, 0.03240560367703438, 0.20800548791885376, -0.3033592998981476, -0.06410138309001923, 0.020614733919501305, -0.006747696548700333, -0.07985150068998337, 0.06387858092784882, 0.01059176865965128, -0.07088840007781982, 0.03578553348779678, -0.028906889259815216, 0.07290533185005188, 0.00109545246232301, -0.025948388502001762, -0.07390052080154419, -0.08551555871963501, 0.0022843852639198303, 0.0705682560801506, -0.18458183109760284, 0.2629737854003906, -0.017758028581738472, 0.013171610422432423, -0.05320430174469948, -0.009334985166788101, -0.011569485068321228, -0.05122437700629234, 0.16464859247207642, 0.01370195485651493, -0.13604886829853058, -0.11764374375343323, -0.11446301639080048, 0.06723169982433319, 0.05946045368909836, -0.06454190611839294, 0.08148284256458282, 0.0007561817183159292, 0.014601465314626694, 0.0314970426261425, -0.0228608176112175, -0.05454195663332939, -0.10979657620191574, 0.007643822114914656, -0.0030690578278154135, -0.08213277906179428, -0.02908615581691265, -0.06431618332862854, -0.008680089376866817, 0.09892971068620682, 0.020389648154377937, -0.07741124927997589, -0.06981337815523148, 0.06816867738962173, 0.16786792874336243, -0.04803545027971268, 0.06811827421188354, -0.044750530272722244, -0.05216148495674133, 0.08190646022558212, -0.09911773353815079, 0.0821533054113388, -0.1190008744597435, -0.0803326889872551, -0.05947139859199524, 0.1492116004228592, -0.006935656536370516, -0.02427426166832447, 0.018252519890666008, 0.06561808288097382, -0.09175474941730499, -0.09696339815855026, -0.0034650471061468124, -0.001363875693641603, 0.01065068133175373, 0.12932494282722473, 0.015930606052279472, 0.05405030399560928, -0.004547981545329094, -0.0059397039003670216, 0.13831570744514465, 0.24766747653484344, -0.059074681252241135, 0.028059186413884163, 0.09411416947841644, -0.015936754643917084, -0.27820056676864624, -0.062012869864702225, -0.0811314731836319, 0.06003759428858757, -0.034191884100437164, 0.040241632610559464, 0.14513720571994781, 0.058818936347961426, -0.005309772212058306, 0.07908650487661362, -0.32624396681785583, -0.10378065705299377, 0.19863156974315643, 0.06424389779567719, 0.4301724135875702, -0.09055387228727341, -0.019902175292372704, 0.0352666936814785, -0.19661137461662292, 0.07586758583784103, 0.026564517989754677, 0.014754004776477814, -0.061416953802108765, 0.03500862792134285, 0.02034367248415947, -0.0844949409365654, 0.15884672105312347, 0.02818654663860798, 0.051337093114852905, -0.03821355476975441, -0.00909993052482605, 0.06552053242921829, 0.0030314845498651266, -0.00891666579991579, 0.07555466145277023, 0.08094070106744766, -0.1725296974182129, -0.009399556554853916, -0.06778229773044586, 0.031159834936261177, -0.0161079503595829, -0.03457273170351982, -0.020657286047935486, -0.03385040909051895, -0.02872975543141365, -0.03544505313038826, 0.17023396492004395, 0.004541994538158178, 0.1576979160308838, 0.15138360857963562, 0.043847426772117615, -0.1674213409423828, -0.01681431196630001, 0.024286149069666862, -0.02162018232047558, 0.007418166380375624, -0.09215331822633743, 0.024116545915603638, 0.16622111201286316, 0.12629862129688263, 0.0035997938830405474, 0.09929228574037552, -0.0026000766083598137, 0.010702395811676979, 0.10972476750612259, -0.23683172464370728, -0.057098738849163055, 0.02751384675502777, -0.11174195259809494, -0.06661436706781387, 0.10889655351638794, 0.06302490830421448, -0.02089323289692402, -0.017458949238061905, -0.046080704778432846, 0.02571752481162548, -0.051459308713674545, 0.2535494565963745, 0.022887252271175385, 0.01433184091001749, -0.16334690153598785, 0.09271185100078583, -0.04091900587081909, -0.14772555232048035, -0.08037339895963669, -0.08573652058839798, -0.13467107713222504, -0.01789928413927555, -0.028244128450751305, 0.03824613615870476, -0.13991805911064148, -0.04056427627801895, -0.13927061855793, -0.09313974529504776, 0.04531196877360344, 0.1771961897611618, 0.11739204823970795, 0.08706678450107574, -0.012631661258637905, -0.09743837267160416, -0.05756203085184097, 0.009969856590032578, 0.22675594687461853, 0.016633639112114906, -0.0701402798295021, 0.06615041196346283, -0.0640973150730133, 0.04811665788292885, -0.052628107368946075, -0.005320153199136257, -0.047598402947187424, 0.0711871013045311, -0.04617636650800705, -0.051489707082509995, -0.10494334250688553, -0.0725308433175087, 0.06548065692186356, -0.03904712200164795, -0.07415153831243515, 0.002573880599811673, -0.09924305230379105, 0.051289528608322144, 0.018385788425803185, 0.007924611680209637, -0.019362835213541985, -0.011780282482504845, 0.08003303408622742, -0.04139718785881996, 0.016074564307928085, 0.15259777009487152, -0.029300397261977196, 0.08134294301271439, -0.2003977745771408, -0.032085955142974854, 0.09301657229661942, 0.01597362570464611, 0.03717060759663582, -0.03520895540714264, 0.0728556290268898, 0.10154286026954651, -0.050593577325344086, 0.0006050254451110959, -0.06513647735118866, -0.099769726395607, -0.08992079645395279, -0.0049751317128539085, -0.049332551658153534, -0.04345668852329254, -0.06515942513942719, 0.0743519514799118, 0.14185336232185364, 0.08113061636686325, -0.01161254197359085, 0.01882867142558098, -0.08708145469427109, 0.01194673590362072, -0.021464897319674492, -0.07911906391382217, -0.07028447836637497, -0.03290059417486191, 0.06270110607147217, 0.010458434000611305, 0.1986897736787796, -0.06979885697364807, 0.03604145720601082, -0.024518344551324844, -0.023459110409021378, 0.11830489337444305, -0.0025853149127215147, 0.2556924521923065, 0.0638907253742218, -0.01796453446149826, -0.06073625013232231, 0.0833335667848587, 0.049854353070259094, -0.0028115466702729464, 0.1279279738664627, 0.08166924118995667, -0.0072715445421636105, 0.07651711255311966, -0.06327440589666367, -0.03782271593809128, 0.14785727858543396, -0.11081711947917938, -0.029044413939118385, 0.04027824103832245, 0.04812553524971008, 0.12589949369430542, 0.10803831368684769, -0.030241310596466064, -0.04587503895163536, -0.01750597544014454, -0.049378901720047, -0.1200370192527771, -0.013454345054924488, -0.051793936640024185, -0.11041088402271271, 0.05013412609696388, -0.08230432122945786, 0.01023286022245884, 0.20684674382209778, 0.07118279486894608, -0.025046922266483307, 0.047976065427064896, -0.04642205685377121, -0.048180971294641495, 0.07010974735021591, 0.041719529777765274, -0.0008890393655747175, -0.0061182077042758465, 0.007143013644963503, -0.08311603963375092, -0.03531806543469429, 0.003473206888884306, -0.016140740364789963, -0.07644281536340714, 0.011641353368759155, -0.04003588482737541, -0.0581478513777256, -0.054085440933704376, 0.009029936045408249, 0.05568632110953331, 0.10397897660732269, 0.029301011934876442, 0.04997393116354942, -0.01265010703355074, 0.18654783070087433, -0.10940445214509964, 0.011288418434560299, -0.0970403179526329, 0.14481648802757263, 0.06400774419307709, 0.0530218780040741, 0.0584535114467144, -0.05105865001678467, 0.025411920621991158, 0.21332287788391113, 0.13822472095489502, 0.05754322186112404, 0.01299198903143406, -0.004150835797190666, 0.01789262890815735, 0.04143219813704491, -0.007250935770571232, 0.049349602311849594, 0.21912474930286407, -0.054095543920993805, -0.07622291147708893, -0.04161660000681877, -0.019523458555340767, -0.0015339883975684643, 0.01876966655254364, 0.009057899937033653, -0.07746359705924988, -0.0801364928483963, 0.1203140988945961, -0.11182467639446259, -0.09730657190084457, 0.1623132824897766, -0.17307023704051971, -0.06329777836799622, -0.029037630185484886, 0.04068838059902191, 0.04399683699011803, 0.07793872058391571, -0.08786927908658981, -0.01487633679062128, 0.07537916302680969, 0.06405283510684967, -0.1716928780078888, -0.11172817647457123, 0.09316468983888626, 0.016178272664546967, 0.06946146488189697, -0.008838155306875706, 0.09375279396772385, 0.0827920213341713, 0.03343794867396355, -0.025664905086159706, 0.013485175557434559, 0.0583796352148056, 0.018913788720965385, 0.019719919189810753, 0.0489928312599659, 0.05104328319430351, -0.03735487908124924, 0.011884710751473904, -0.1351632922887802, 0.03391186147928238, -0.11095632612705231, 0.028630243614315987, -0.08643683046102524, 0.04436907172203064, -0.0014501909026876092, 0.12626466155052185, 0.086760975420475, -0.06227096915245056, 0.04090794175863266, -0.03305055946111679, 0.04323345050215721, 0.03344625234603882, -0.02669144608080387, -0.02031221240758896, -0.1324554681777954, 0.00623807217925787, -0.03239875286817551, -0.03836248070001602, -0.11256541311740875, 0.013342341408133507, -0.06552452594041824, -0.04513450339436531, -0.018278779461979866, 0.08738042414188385, 0.0939357653260231, 0.051321838051080704, -0.027941156178712845, 0.08329601585865021, 0.024279695004224777, 0.1069621741771698, -0.06987731158733368, -0.12098768353462219 ]
null
null
transformers
# SimCLS SimCLS is a framework for abstractive summarization presented in [SimCLS: A Simple Framework for Contrastive Learning of Abstractive Summarization](https://arxiv.org/abs/2106.01890). It is a two-stage approach consisting of a *generator* and a *scorer*. In the first stage, a large pre-trained model for abstractive summarization (the *generator*) is used to generate candidate summaries, whereas, in the second stage, the *scorer* assigns a score to each candidate given the source document. The final summary is the highest-scoring candidate. This model is the *scorer* trained for summarization of XSum ([paper](https://arxiv.org/abs/1808.08745), [datasets](https://huggingface.co/datasets/xsum)). It should be used in conjunction with [google/pegasus-xsum](https://huggingface.co/google/pegasus-xsum). See [our Github repository](https://github.com/andrejmiscic/simcls-pytorch) for details on training, evaluation, and usage. ## Usage ```bash git clone https://github.com/andrejmiscic/simcls-pytorch.git cd simcls-pytorch pip3 install torch torchvision torchaudio transformers sentencepiece ``` ```python from src.model import SimCLS, GeneratorType summarizer = SimCLS(generator_type=GeneratorType.Pegasus, generator_path="google/pegasus-xsum", scorer_path="andrejmiscic/simcls-scorer-xsum") article = "This is a news article." summary = summarizer(article) print(summary) ``` ### Results All of our results are reported together with 95% confidence intervals computed using 10000 iterations of bootstrap. See [SimCLS paper](https://arxiv.org/abs/2106.01890) for a description of baselines. | System | Rouge-1 | Rouge-2 | Rouge-L | |------------------|----------------------:|----------------------:|----------------------:| | Pegasus | 47.21 | 24.56 | 39.25 | | **SimCLS paper** | --- | --- | --- | | Origin | 47.10 | 24.53 | 39.23 | | Min | 40.97 | 19.18 | 33.68 | | Max | 52.45 | 28.28 | 43.36 | | Random | 46.72 | 23.64 | 38.55 | | **SimCLS** | 47.61 | 24.57 | 39.44 | | **Our results** | --- | --- | --- | | Origin | 47.16, [46.85, 47.48] | 24.59, [24.25, 24.92] | 39.30, [38.96, 39.62] | | Min | 41.06, [40.76, 41.34] | 18.30, [18.03, 18.56] | 32.70, [32.42, 32.97] | | Max | 51.83, [51.53, 52.14] | 28.92, [28.57, 29.26] | 44.02, [43.69, 44.36] | | Random | 46.47, [46.17, 46.78] | 23.45, [23.13, 23.77] | 38.28, [37.96, 38.60] | | **SimCLS** | 47.17, [46.87, 47.46] | 23.90, [23.59, 24.23] | 38.96, [38.64, 39.29] | ### Citation of the original work ```bibtex @inproceedings{liu-liu-2021-simcls, title = "{S}im{CLS}: A Simple Framework for Contrastive Learning of Abstractive Summarization", author = "Liu, Yixin and Liu, Pengfei", booktitle = "Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 2: Short Papers)", month = aug, year = "2021", address = "Online", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.acl-short.135", doi = "10.18653/v1/2021.acl-short.135", pages = "1065--1072", } ```
{"language": ["en"], "tags": ["simcls"], "datasets": ["xsum"]}
feature-extraction
andrejmiscic/simcls-scorer-xsum
[ "transformers", "pytorch", "roberta", "feature-extraction", "simcls", "en", "dataset:xsum", "arxiv:2106.01890", "arxiv:1808.08745", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[ "2106.01890", "1808.08745" ]
[ "en" ]
TAGS #transformers #pytorch #roberta #feature-extraction #simcls #en #dataset-xsum #arxiv-2106.01890 #arxiv-1808.08745 #endpoints_compatible #region-us
SimCLS ====== SimCLS is a framework for abstractive summarization presented in SimCLS: A Simple Framework for Contrastive Learning of Abstractive Summarization. It is a two-stage approach consisting of a *generator* and a *scorer*. In the first stage, a large pre-trained model for abstractive summarization (the *generator*) is used to generate candidate summaries, whereas, in the second stage, the *scorer* assigns a score to each candidate given the source document. The final summary is the highest-scoring candidate. This model is the *scorer* trained for summarization of XSum (paper, datasets). It should be used in conjunction with google/pegasus-xsum. See our Github repository for details on training, evaluation, and usage. Usage ----- ### Results All of our results are reported together with 95% confidence intervals computed using 10000 iterations of bootstrap. See SimCLS paper for a description of baselines. of the original work
[ "### Results\n\n\nAll of our results are reported together with 95% confidence intervals computed using 10000 iterations of bootstrap. See SimCLS paper for a description of baselines.\n\n\n\nof the original work" ]
[ "TAGS\n#transformers #pytorch #roberta #feature-extraction #simcls #en #dataset-xsum #arxiv-2106.01890 #arxiv-1808.08745 #endpoints_compatible #region-us \n", "### Results\n\n\nAll of our results are reported together with 95% confidence intervals computed using 10000 iterations of bootstrap. See SimCLS paper for a description of baselines.\n\n\n\nof the original work" ]
[ 58, 44 ]
[ "passage: TAGS\n#transformers #pytorch #roberta #feature-extraction #simcls #en #dataset-xsum #arxiv-2106.01890 #arxiv-1808.08745 #endpoints_compatible #region-us \n### Results\n\n\nAll of our results are reported together with 95% confidence intervals computed using 10000 iterations of bootstrap. See SimCLS paper for a description of baselines.\n\n\n\nof the original work" ]
[ -0.17033986747264862, 0.032596196979284286, -0.00137401616666466, -0.01656252145767212, 0.07892412692308426, 0.0014636045088991523, -0.02782597206532955, 0.06548700481653214, 0.05138135328888893, 0.059431616216897964, 0.1426418274641037, 0.2276240885257721, 0.04077858477830887, 0.16872833669185638, -0.10592474043369293, -0.08768867701292038, 0.030237112194299698, 0.07422394305467606, -0.11356596648693085, 0.15813028812408447, 0.06845787912607193, -0.1501152515411377, 0.0755477100610733, -0.0004210730839986354, -0.14258110523223877, 0.016900675371289253, 0.05069328099489212, -0.08904584497213364, 0.06929250806570053, -0.010480990633368492, 0.11684293299913406, 0.046326588839292526, 0.041786372661590576, -0.085638627409935, 0.014977885410189629, -0.0011842661770060658, -0.004373420961201191, 0.07829391956329346, 0.04689507558941841, -0.053145796060562134, 0.16984400153160095, 0.05918406695127487, 0.027513908222317696, 0.03314860537648201, -0.1326644867658615, -0.10469689220190048, -0.06504940241575241, 0.044493742287158966, 0.12667739391326904, 0.032075054943561554, 0.009824451059103012, 0.1875077188014984, -0.1271631121635437, 0.08655014634132385, 0.1309409886598587, -0.22196339070796967, -0.02254421077668667, 0.0961168184876442, 0.029235344380140305, -0.0706084817647934, -0.03584892675280571, 0.03207802027463913, 0.06970151513814926, -0.03290509805083275, -0.08359815180301666, -0.07365730404853821, -0.055056069046258926, 0.027962524443864822, -0.11504506319761276, -0.08389844000339508, 0.25491246581077576, 0.023656662553548813, -0.054772306233644485, 0.03010229393839836, -0.09669376164674759, -0.041749030351638794, -0.021170061081647873, 0.0053969440050423145, -0.021300649270415306, -0.016214244067668915, -0.06859125941991806, 0.15786299109458923, -0.09329491853713989, -0.058857034891843796, -0.07683394104242325, 0.181528240442276, 0.0010219793766736984, 0.11497951298952103, -0.08190333098173141, 0.13195329904556274, -0.01737235300242901, -0.09998886287212372, -0.012533346191048622, -0.07907847315073013, -0.007600685115903616, 0.02386908233165741, -0.03820694610476494, 0.06534937769174576, 0.022855553776025772, 0.19928671419620514, 0.0981292575597763, 0.030429961159825325, 0.16210919618606567, 0.03729822114109993, 0.05393294617533684, 0.0642903745174408, -0.05511246249079704, -0.13477712869644165, 0.027844415977597237, -0.0722721740603447, 0.019410260021686554, -0.026352187618613243, -0.003528282977640629, -0.024688659235835075, 0.008734876289963722, 0.06061287969350815, -0.03569939360022545, -0.013143707066774368, -0.08099009096622467, -0.025009412318468094, -0.019462812691926956, -0.0863352119922638, -0.05044523999094963, -0.0870976373553276, -0.07126020640134811, 0.08939982205629349, 0.05648760497570038, -0.003544834442436695, -0.0007266458705998957, 0.050365470349788666, -0.12317685037851334, -0.016966721042990685, -0.05915717035531998, -0.06916500627994537, 0.0032260813750326633, -0.16535334289073944, 0.0585358589887619, -0.08829948306083679, -0.14956848323345184, -0.018316777423024178, 0.052563153207302094, -0.03925682604312897, 0.004043601453304291, -0.013008585199713707, 0.002255883999168873, -0.0009045713231898844, -0.012185974977910519, 0.0597563311457634, -0.05682352930307388, 0.08283524215221405, 0.0796792209148407, 0.06773926317691803, -0.10995319485664368, 0.008288000710308552, -0.12205548584461212, 0.037628646939992905, -0.07478608936071396, -0.03561064600944519, -0.023717934265732765, 0.13870453834533691, -0.05199039727449417, -0.06698356568813324, -0.039140790700912476, -0.013361864723265171, 0.06058894470334053, 0.1300232708454132, -0.11409500986337662, -0.028209920972585678, 0.1587233990430832, -0.1314585953950882, -0.22214645147323608, 0.06111803278326988, -0.0488983690738678, 0.11653892695903778, 0.029959972947835922, 0.06937933713197708, 0.004045739769935608, -0.024084679782390594, 0.027151327580213547, 0.0016905020456761122, 0.09599389135837555, -0.19931861758232117, 0.04807938635349274, -0.0655735433101654, -0.028343014419078827, 0.08315590023994446, 0.04480111971497536, 0.03740681707859039, -0.10027015209197998, -0.030937300994992256, -0.05708222836256027, -0.08388806134462357, -0.045979782938957214, 0.05687585845589638, 0.05845247209072113, -0.07449787110090256, 0.00889640860259533, -0.1503889560699463, 0.08379945158958435, -0.032018255442380905, -0.035625897347927094, -0.08007379621267319, 0.20103377103805542, -0.17469489574432373, -0.08133406937122345, -0.18443916738033295, 0.07150335609912872, -0.030551142990589142, 0.10310836136341095, -0.06723552197217941, 0.03173661604523659, 0.060213930904865265, -0.05752203240990639, 0.016507908701896667, 0.013789888471364975, 0.05712522193789482, 0.009883258491754532, -0.05131080001592636, -0.049329232424497604, -0.021229950711131096, -0.0559815876185894, 0.013472042046487331, -0.07983489334583282, -0.03827409818768501, -0.04397260770201683, 0.13976235687732697, -0.012682647444307804, -0.061667732894420624, 0.0062295603565871716, 0.027682365849614143, -0.08285349607467651, 0.010461447760462761, 0.056724779307842255, -0.007256396114826202, -0.07310129702091217, 0.0006285262061282992, -0.06995996087789536, 0.14224474132061005, 0.1175316870212555, -0.1266728639602661, -0.026333758607506752, -0.017609739676117897, -0.023367300629615784, 0.011693871580064297, 0.0036155374255031347, 0.02762693725526333, -0.04723431169986725, -0.038622595369815826, 0.06596755236387253, -0.06861719489097595, -0.03166138380765915, 0.045718275010585785, -0.06722472608089447, 0.030031001195311546, 0.12841728329658508, 0.19883954524993896, -0.11338592320680618, 0.0781468078494072, 0.21233049035072327, 0.03523726388812065, 0.032420460134744644, -0.09245310723781586, -0.1122826337814331, -0.015715470537543297, -0.018640749156475067, -0.01356123760342598, 0.17763611674308777, -0.23800985515117645, -0.03281397372484207, 0.06922699511051178, -0.02208888903260231, 0.04291417449712753, -0.1264614760875702, -0.01783199980854988, 0.028977321460843086, 0.040092598646879196, -0.12379900366067886, 0.08264141529798508, -0.030432485044002533, 0.10038869082927704, -0.09417425841093063, -0.052956294268369675, -0.01047324389219284, -0.022535273805260658, -0.04929293692111969, 0.19245445728302002, -0.023483505472540855, -0.09237624704837799, -0.09973781555891037, -0.012709764763712883, -0.008375677280128002, 0.012881739996373653, 0.005980115849524736, -0.009837044402956963, -0.09054344147443771, -0.0027794395573437214, 0.008402116596698761, -0.14331728219985962, 0.06019573286175728, 0.05841720849275589, 0.019646788015961647, -0.03206156939268112, -0.08909523487091064, -0.046883028000593185, -0.09637375921010971, 0.004393670707941055, 0.07439330220222473, -0.0673932433128357, 0.12655675411224365, 0.1419239491224289, -0.026318151503801346, 0.05255875363945961, 0.017356326803565025, 0.1797640025615692, -0.011594324372708797, -0.05630922690033913, 0.21402180194854736, -0.027821464464068413, -0.0037347162142395973, 0.10480912774801254, 0.01609962247312069, -0.12853915989398956, -0.001790348207578063, -0.06703293323516846, -0.10825764387845993, -0.16406512260437012, -0.08404744416475296, -0.11005755513906479, 0.019910501316189766, 0.03587969020009041, -0.024517374113202095, -0.038407132029533386, 0.1296999603509903, 0.012110370211303234, -0.0914887860417366, -0.07752879709005356, -0.01680523343384266, 0.01583651639521122, -0.01919408328831196, 0.12407194077968597, -0.036668356508016586, -0.033450573682785034, 0.04279443621635437, -0.06895646452903748, 0.2142299860715866, 0.015930503606796265, -0.02658648043870926, 0.03284704312682152, 0.22589750587940216, 0.04445120692253113, 0.2633066475391388, 0.03130362555384636, -0.04774574935436249, -0.0030637236777693033, 0.017664914950728416, -0.16970136761665344, 0.022112922742962837, 0.05523483827710152, -0.0042044976726174355, -0.10456326603889465, -0.05586814135313034, 0.027771102264523506, 0.044425565749406815, 0.2033413052558899, -0.28701314330101013, -0.07350952923297882, 0.0348363071680069, -0.000369446468539536, -0.09071711450815201, 0.059119679033756256, 0.007949368096888065, -0.08580829203128815, 0.014461871236562729, -0.042684439569711685, 0.0791856199502945, 0.017277147620916367, -0.03413941711187363, -0.0683630183339119, -0.07309725135564804, 0.008592606522142887, 0.06459001451730728, -0.17601259052753448, 0.24971750378608704, -0.01962977834045887, 0.006381772458553314, -0.04946626350283623, 0.022276869043707848, -0.015484381467103958, -0.04666262865066528, 0.17324991524219513, 0.020543958991765976, -0.18280856311321259, -0.13088665902614594, -0.07897698879241943, 0.0566490963101387, 0.06510020047426224, -0.06246047466993332, 0.08208218216896057, -0.018278753384947777, 0.02605654112994671, 0.03554448485374451, 0.009631505236029625, -0.03003835678100586, -0.1076524555683136, 0.012695045210421085, -0.024328751489520073, -0.08836954832077026, -0.03841309994459152, -0.04749462008476257, -0.00479783583432436, 0.107761912047863, 0.0024978125002235174, -0.07465660572052002, -0.08509667217731476, 0.04646232724189758, 0.1825942099094391, -0.056598179042339325, 0.0918358862400055, -0.058359429240226746, -0.05381025746464729, 0.07734429836273193, -0.0934622660279274, 0.10108328610658646, -0.128027081489563, -0.0575871542096138, -0.06429298222064972, 0.14475108683109283, -0.029135452583432198, -0.02707635425031185, 0.015165071003139019, 0.06682609021663666, -0.09680206328630447, -0.10289694368839264, -0.002849164418876171, 0.022443905472755432, 0.000040085811633616686, 0.13201628625392914, -0.01057349145412445, 0.07902713119983673, 0.019323056563735008, -0.02188100852072239, 0.15218603610992432, 0.21504366397857666, -0.07280752062797546, 0.031723231077194214, 0.06440962105989456, -0.034952349960803986, -0.27903807163238525, -0.049082186073064804, -0.06421651691198349, 0.07053426653146744, -0.014943563379347324, 0.049454279243946075, 0.14641515910625458, 0.054563600569963455, -0.0010072588920593262, 0.07224146276712418, -0.3049624562263489, -0.1058667004108429, 0.20854605734348297, 0.08248686045408249, 0.4063519835472107, -0.10386794805526733, -0.01895551197230816, 0.015629133209586143, -0.19500890374183655, 0.04897569119930267, 0.04921991005539894, 0.025493059307336807, -0.06979332864284515, 0.011020862497389317, 0.026019956916570663, -0.08267813920974731, 0.1596723049879074, 0.02403266727924347, 0.05348466336727142, -0.03451864793896675, 0.019943270832300186, 0.0322488397359848, -0.007838485762476921, -0.0010101345833390951, 0.07245858758687973, 0.06867944449186325, -0.19024144113063812, -0.008648311719298363, -0.05505216494202614, 0.055962447077035904, -0.015861881896853447, -0.04613687843084335, -0.014205113053321838, -0.027455559000372887, -0.019730094820261, -0.034995898604393005, 0.15351857244968414, 0.004709779750555754, 0.16404232382774353, 0.17283256351947784, 0.025281118229031563, -0.1711474359035492, -0.047750819474458694, 0.03135145828127861, -0.004793752450495958, 0.0034062161576002836, -0.08959285914897919, 0.03369096666574478, 0.1772278994321823, 0.12475312501192093, 0.012918135151267052, 0.09742603451013565, 0.00457617687061429, 0.0019190587336197495, 0.10610637813806534, -0.21245376765727997, -0.05033394694328308, 0.028777362778782845, -0.12428699433803558, -0.07151169329881668, 0.10627752542495728, 0.052936602383852005, -0.021719301119446754, -0.013231324963271618, -0.059976644814014435, 0.03723137825727463, -0.0511322095990181, 0.26510268449783325, 0.01917334459722042, 0.019998442381620407, -0.1516113579273224, 0.09780928492546082, -0.03609480708837509, -0.1397797018289566, -0.08625272661447525, -0.1029009222984314, -0.12281019240617752, -0.021963119506835938, -0.015288397669792175, 0.017932023853063583, -0.13792209327220917, -0.04349435865879059, -0.1463964879512787, -0.10369092226028442, 0.03346475586295128, 0.14804372191429138, 0.12548893690109253, 0.07942179590463638, -0.0029444906394928694, -0.08696580678224564, -0.06587004661560059, 0.01801510713994503, 0.22693975269794464, 0.03298996016383171, -0.09333976358175278, 0.04929160699248314, -0.06583619862794876, 0.02810964547097683, -0.03980579599738121, -0.003593274625018239, -0.06927190721035004, 0.06518518924713135, -0.05120013654232025, -0.04540308564901352, -0.11309609562158585, -0.06724657118320465, 0.06699125468730927, -0.020352480933070183, -0.06485744565725327, 0.014956679195165634, -0.10383052378892899, 0.03921779617667198, 0.014458865858614445, 0.012893548235297203, -0.006341245956718922, -0.021430395543575287, 0.08214415609836578, -0.04452437162399292, 0.017655685544013977, 0.14773567020893097, -0.016020193696022034, 0.072006456553936, -0.18412388861179352, -0.028296789154410362, 0.09347962588071823, 0.021362019702792168, 0.040851891040802, -0.0697430819272995, 0.07563845813274384, 0.10469024628400803, -0.040983106940984726, -0.007456863299012184, -0.06940222531557083, -0.10908836871385574, -0.1079913079738617, -0.013599223457276821, -0.05507954955101013, -0.03841259330511093, -0.05705070495605469, 0.07818513363599777, 0.1483212262392044, 0.06388247013092041, -0.0073476023972034454, 0.029681529849767685, -0.10253629088401794, 0.009720874950289726, -0.020635688677430153, -0.06994135677814484, -0.06514330208301544, -0.040639035403728485, 0.054347701370716095, 0.014353103935718536, 0.18456119298934937, -0.04312661290168762, 0.06521130353212357, -0.027869675308465958, -0.030911214649677277, 0.14155711233615875, 0.00887906365096569, 0.260456919670105, 0.04735705628991127, -0.017451873049139977, -0.04471805319190025, 0.09584258496761322, 0.05529391020536423, 0.014954326674342155, 0.12783856689929962, 0.09434032440185547, -0.029891202226281166, 0.07025478035211563, -0.06573225557804108, -0.047160085290670395, 0.12758295238018036, -0.08015289157629013, -0.006375532131642103, 0.04343641549348831, 0.046130936592817307, 0.1270512491464615, 0.07849520444869995, -0.06352059543132782, -0.03264281153678894, -0.03808426856994629, -0.058413758873939514, -0.1337827444076538, 0.00038635110831819475, -0.04941854998469353, -0.11082861572504044, 0.03688051179051399, -0.09049437195062637, 0.00346165569499135, 0.20133966207504272, 0.05640028417110443, -0.025192389264702797, 0.0448429100215435, -0.06425823271274567, -0.04583892226219177, 0.05299844220280647, 0.04662533849477768, -0.007911461405456066, 0.000168134574778378, 0.013492417521774769, -0.09080105274915695, -0.03120291233062744, 0.006157929077744484, -0.027343356981873512, -0.08709462732076645, 0.004579006694257259, -0.02724584937095642, -0.03955414891242981, -0.06072620302438736, 0.0070447251200675964, 0.04580603539943695, 0.09764990955591202, 0.023203371092677116, 0.036830585449934006, -0.021405750885605812, 0.20329317450523376, -0.1232471764087677, 0.020304476842284203, -0.08623959124088287, 0.15120218694210052, 0.07095712423324585, 0.04737887158989906, 0.05898401513695717, -0.03958536684513092, 0.0371311716735363, 0.20011934638023376, 0.11748959869146347, 0.05639271438121796, 0.014362422749400139, 0.0016634106868878007, 0.013098586350679398, 0.0279996395111084, 0.011427119374275208, 0.05089270696043968, 0.2167370319366455, -0.04724057391285896, -0.05114222317934036, -0.040487006306648254, -0.029303882271051407, -0.020879806950688362, 0.03886975720524788, 0.003015996655449271, -0.06474745273590088, -0.06870205700397491, 0.11407551914453506, -0.1010264977812767, -0.10743387043476105, 0.17858374118804932, -0.18386638164520264, -0.06839169561862946, -0.03718537464737892, 0.039120957255363464, 0.041083358228206635, 0.07615530490875244, -0.10328010469675064, -0.00781124597415328, 0.09323064982891083, 0.07010321319103241, -0.17295974493026733, -0.10855081677436829, 0.08599012345075607, 0.00675625167787075, 0.06249985098838806, -0.014720636419951916, 0.07985933125019073, 0.0869014784693718, 0.046820636838674545, -0.041142284870147705, 0.0032941116951406, 0.06004184111952782, 0.010223878547549248, 0.03519386798143387, 0.058477070182561874, 0.0349838063120842, -0.00045993959065526724, 0.0013062068028375506, -0.13117605447769165, 0.02658946067094803, -0.09628740698099136, 0.03859374299645424, -0.0884980857372284, 0.03372865170240402, -0.030241921544075012, 0.13453912734985352, 0.08335530757904053, -0.0636061280965805, 0.02708525024354458, -0.04290761053562164, 0.04903392121195793, 0.02683679573237896, -0.008533379063010216, -0.026436718180775642, -0.14406418800354004, 0.016365166753530502, -0.007402108516544104, -0.0449465811252594, -0.11744791269302368, 0.0009520488092675805, -0.051317013800144196, -0.04632692039012909, -0.028862211853265762, 0.0941256582736969, 0.08709832280874252, 0.05021527037024498, -0.03518448770046234, 0.05652095749974251, 0.00033175284625031054, 0.11223793774843216, -0.04840332642197609, -0.11615771055221558 ]
null
null
transformers
{"language": false, "license": "cc-by-4.0", "tags": ["translation"], "widget": [{"text": "Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua."}]}
translation
andrek/LAT2NOB
[ "transformers", "pytorch", "jax", "t5", "text2text-generation", "translation", "no", "license:cc-by-4.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "no" ]
TAGS #transformers #pytorch #jax #t5 #text2text-generation #translation #no #license-cc-by-4.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
[]
[ "TAGS\n#transformers #pytorch #jax #t5 #text2text-generation #translation #no #license-cc-by-4.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 65 ]
[ "passage: TAGS\n#transformers #pytorch #jax #t5 #text2text-generation #translation #no #license-cc-by-4.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ -0.011113007552921772, 0.0444910041987896, -0.006725424900650978, 0.04868190735578537, 0.1441434770822525, 0.0225673820823431, 0.15364035964012146, 0.1192670464515686, -0.02185981534421444, -0.04449192062020302, 0.133904367685318, 0.21237300336360931, 0.015930255874991417, 0.022381654009222984, -0.07557264715433121, -0.25125652551651, 0.031183775514364243, 0.05665701627731323, 0.03046879544854164, 0.11474844813346863, 0.09892088919878006, -0.039891328662633896, 0.10526151955127716, -0.024646297097206116, -0.1372194141149521, 0.028298718854784966, 0.07734295725822449, -0.1247144490480423, 0.09504100680351257, 0.0750681459903717, 0.058729350566864014, 0.07457824796438217, -0.03500743582844734, -0.14295151829719543, 0.01840752735733986, 0.0041891420260071754, -0.1098027303814888, 0.055370308458805084, 0.09555273503065109, -0.0546380840241909, 0.12248706817626953, 0.020266473293304443, -0.03351413086056709, 0.08315533399581909, -0.13922445476055145, -0.0634009838104248, -0.0591031089425087, 0.055120594799518585, 0.059239014983177185, 0.09379560500383377, 0.0031805788166821003, 0.12495805323123932, -0.0720442682504654, 0.1007494255900383, 0.1400282233953476, -0.41574135422706604, -0.0027897797990590334, 0.07664203643798828, 0.08444889634847641, 0.1186809241771698, -0.025724882259964943, 0.06956783682107925, 0.03622916340827942, 0.021658185869455338, 0.015671391040086746, -0.09599242359399796, -0.10279922932386398, 0.019122999161481857, -0.06805050373077393, -0.049216143786907196, 0.2523804008960724, -0.05024898424744606, 0.022593967616558075, -0.017738426104187965, -0.07390379905700684, -0.06299538910388947, -0.01074872724711895, 0.007588647305965424, -0.013874282129108906, 0.07563455402851105, 0.025622177869081497, -0.05847162380814552, -0.14651791751384735, -0.005830046720802784, -0.1969510316848755, 0.05860942229628563, 0.019109318032860756, 0.05306593328714371, -0.17752112448215485, 0.07945820689201355, 0.01084638200700283, -0.1005430668592453, 0.017875468358397484, -0.09456072747707367, 0.08898701518774033, 0.0052075511775910854, -0.04600628465414047, -0.05956481769680977, 0.059943318367004395, 0.08096954971551895, -0.03695524483919144, 0.023686468601226807, -0.09471098333597183, 0.11408829689025879, -0.024743888527154922, 0.04358319938182831, -0.00757765956223011, -0.0016036310698837042, 0.07933644950389862, -0.12149379402399063, 0.03653033450245857, -0.038682714104652405, -0.1993517130613327, -0.08437510579824448, 0.002213523956015706, 0.12303926050662994, 0.013721284456551075, 0.08592192083597183, -0.020236391574144363, -0.01607886329293251, 0.06775805354118347, -0.05327562987804413, 0.003940509166568518, 0.009807093068957329, 0.03829089179635048, 0.13033674657344818, 0.04386330023407936, 0.008699266240000725, -0.14496679604053497, 0.04152277857065201, -0.07053548097610474, 0.00838262215256691, -0.031111232936382294, -0.07808646559715271, 0.05340171977877617, -0.07578657567501068, 0.019716819748282433, -0.1648884117603302, -0.12312082201242447, 0.03597413748502731, -0.0011947351740673184, -0.026250818744301796, -0.06282250583171844, -0.03575941175222397, -0.03907537832856178, 0.05210418999195099, -0.0837392508983612, -0.019527345895767212, -0.05387004464864731, 0.1074889525771141, -0.05668121576309204, 0.054520364850759506, -0.15912403166294098, 0.06114409118890762, -0.1324215829372406, -0.030319994315505028, -0.09094533324241638, 0.05213010311126709, -0.010165941901504993, 0.0939265713095665, -0.05777271091938019, -0.06026608124375343, -0.019539525732398033, 0.036783527582883835, -0.04181807115674019, 0.195048987865448, -0.1430751532316208, -0.07642987370491028, 0.23339439928531647, -0.08778176456689835, -0.17422491312026978, 0.09775354713201523, 0.020199080929160118, 0.02980584278702736, 0.077785924077034, 0.1516215056180954, 0.013917520642280579, -0.05903894454240799, 0.0824209600687027, 0.1163051426410675, -0.06555566191673279, -0.11019253730773926, 0.03816595673561096, -0.05289965867996216, -0.09281410276889801, 0.04161139577627182, 0.0028247854206711054, 0.058115266263484955, -0.027293188497424126, -0.03573846444487572, -0.03868086636066437, 0.012415177188813686, 0.04886641725897789, -0.007373135071247816, 0.09410540759563446, -0.06718412786722183, -0.03256889060139656, 0.008256076835095882, -0.029471086338162422, -0.014398663304746151, 0.07533005625009537, -0.04379396513104439, 0.1042388305068016, -0.02822532132267952, 0.03870847076177597, -0.12422272562980652, -0.009596963413059711, -0.004014921374619007, 0.1539497822523117, 0.06428924947977066, 0.07435291260480881, 0.0373535230755806, -0.013490435667335987, -0.042694296687841415, 0.007658120710402727, 0.13246536254882812, -0.0009241015650331974, -0.05646327883005142, -0.11772220581769943, 0.0595390610396862, -0.020699944347143173, -0.03374334052205086, -0.07796188443899155, 0.013212001882493496, 0.06344299763441086, 0.09112092852592468, -0.01981229893863201, 0.07552590221166611, -0.03416912257671356, 0.028391290456056595, -0.07877770811319351, 0.01052823942154646, 0.11356494575738907, 0.00402103690430522, -0.10445092618465424, 0.276447594165802, -0.17561176419258118, 0.2070440649986267, 0.22299110889434814, -0.2679833173751831, 0.02294953539967537, -0.0449334979057312, -0.002654636511579156, 0.004939118400216103, 0.07782039046287537, 0.01119379885494709, 0.09118811786174774, -0.0019129087449982762, 0.2044692039489746, -0.09790759533643723, -0.0229465551674366, 0.010956903919577599, -0.05728158727288246, -0.030235832557082176, 0.08587720990180969, 0.12192200869321823, -0.1927311271429062, 0.1791437715291977, 0.2754870057106018, 0.022192664444446564, 0.1902310997247696, -0.01941496692597866, -0.018166683614253998, 0.03263641893863678, 0.011337777599692345, -0.007957383058965206, -0.05610177665948868, -0.13199608027935028, -0.014164399355649948, 0.08527962863445282, 0.04635424166917801, 0.06488056480884552, -0.11386717855930328, -0.0476672425866127, -0.01644853502511978, -0.03173566982150078, -0.04437801614403725, 0.08786970376968384, 0.037833236157894135, 0.12990769743919373, -0.0402056947350502, -0.016991984099149704, 0.13044877350330353, 0.010955232195556164, -0.12880641222000122, 0.16839773952960968, -0.17402897775173187, -0.2655417323112488, -0.1806153953075409, -0.15118521451950073, -0.054953064769506454, 0.02347889542579651, 0.14331310987472534, -0.05233421549201012, -0.02672019600868225, -0.025752827525138855, 0.00266033667139709, -0.1306256353855133, -0.022913789376616478, -0.11339065432548523, 0.047709908336400986, -0.06349597126245499, -0.10260391980409622, -0.045431576669216156, 0.021087273955345154, -0.09442763030529022, 0.12558773159980774, -0.11740933358669281, 0.04563438892364502, 0.14074258506298065, -0.011553877964615822, 0.041546594351530075, -0.07685361802577972, 0.16243161261081696, -0.04460256174206734, -0.0043192291632294655, 0.20879553258419037, -0.015169919468462467, 0.06295886635780334, 0.11955270916223526, 0.013497285544872284, -0.051065169274806976, -0.0008094933000393212, -0.0605677105486393, -0.07511682063341141, -0.2807048261165619, -0.07786435633897781, -0.14245404303073883, 0.06748868525028229, 0.03844721242785454, 0.05324888974428177, 0.14953431487083435, 0.06607185304164886, -0.040120966732501984, 0.07254981249570847, 0.045204538851976395, 0.11202462017536163, 0.2553665339946747, -0.001803274150006473, 0.11441762000322342, -0.08096662163734436, -0.0537777878344059, 0.0975322350859642, 0.07781092822551727, 0.10862527042627335, 0.07260147482156754, 0.11881745606660843, 0.049781691282987595, 0.14745785295963287, 0.14198097586631775, 0.11705681681632996, 0.036436777561903, 0.007874852046370506, -0.04993272200226784, -0.06749666482210159, -0.024707654491066933, 0.027248984202742577, 0.01880635693669319, -0.11857786029577255, -0.07640586048364639, -0.07009441405534744, 0.05168179050087929, 0.12255754321813583, 0.03296005725860596, -0.1958189308643341, 0.03801657259464264, 0.07339153438806534, 0.0007719259592704475, -0.1131349429488182, 0.10632379353046417, -0.003532401053234935, -0.12016323953866959, 0.10473303496837616, -0.04845462366938591, 0.12050292640924454, -0.012980960309505463, 0.06679729372262955, -0.040614619851112366, -0.09479960054159164, 0.032451990991830826, 0.11306624114513397, -0.3829692304134369, 0.17978684604167938, 0.014846445992588997, -0.027739018201828003, -0.0726892352104187, -0.021351953968405724, -0.005108516663312912, 0.18909025192260742, 0.13894306123256683, 0.00713957566767931, -0.06502575427293777, -0.015687299892306328, -0.006442282348871231, 0.014109350740909576, 0.10443465411663055, -0.010756013914942741, -0.017677202820777893, -0.05091188848018646, -0.0021837332751601934, -0.03352053090929985, 0.05488860607147217, -0.04548939689993858, -0.17161165177822113, 0.07414260506629944, 0.057454995810985565, 0.06860263645648956, 0.005700501147657633, -0.022221049293875694, -0.08441650867462158, 0.19395318627357483, -0.17907029390335083, -0.10012736171483994, -0.11793211102485657, -0.11539284139871597, 0.06477576494216919, -0.06488651037216187, 0.05204414948821068, -0.08538004010915756, -0.021020304411649704, -0.06129448488354683, -0.20758579671382904, 0.1386503279209137, -0.08449172228574753, -0.06103429198265076, -0.03646478429436684, 0.17354625463485718, -0.12017735093832016, 0.031554628163576126, 0.021636703982949257, 0.003052959218621254, -0.08177172392606735, -0.0944179967045784, -0.011861798353493214, -0.0005066675366833806, 0.05515472963452339, -0.005885514430701733, -0.11499712616205215, -0.06940623372793198, -0.03181900456547737, -0.04206151142716408, 0.27633970975875854, 0.19781582057476044, -0.06500622630119324, 0.18190674483776093, 0.15823014080524445, -0.13285474479198456, -0.26057180762290955, -0.11664874106645584, -0.11960123479366302, -0.03403230383992195, -0.009882810525596142, -0.13592703640460968, 0.005400790832936764, 0.0076415748335421085, -0.011725804768502712, 0.12301356345415115, -0.2310335338115692, -0.1026141494512558, 0.10043886303901672, 0.014357764273881912, 0.33392006158828735, -0.13605807721614838, -0.11734752357006073, -0.04087470471858978, -0.2147815227508545, 0.19651192426681519, -0.06620751321315765, 0.09528548270463943, -0.025823839008808136, 0.08775286376476288, 0.018187837675213814, -0.030151180922985077, 0.07204817235469818, -0.0219814945012331, 0.018111493438482285, -0.10374269634485245, -0.05039626359939575, 0.1028854250907898, 0.009597412310540676, 0.014844047836959362, -0.1298929750919342, 0.018013961613178253, -0.11266180127859116, -0.023237863555550575, -0.08895048499107361, 0.05398623272776604, -0.022029254585504532, -0.0594581738114357, -0.0038023556116968393, -0.05500961095094681, 0.02953554317355156, -0.015909744426608086, 0.23524044454097748, -0.06160188093781471, 0.1317899227142334, 0.18225470185279846, 0.16154658794403076, -0.08765915036201477, 0.03156700357794762, -0.0841277614235878, -0.0827488899230957, 0.07423359900712967, -0.11429943889379501, 0.043635305017232895, 0.12553353607654572, -0.04624899476766586, 0.06719360500574112, 0.09402789175510406, 0.0036176249850541353, 0.0027748593129217625, 0.11436799168586731, -0.19859202206134796, -0.023199593648314476, -0.062429096549749374, 0.01671871356666088, 0.08789700269699097, 0.051457714289426804, 0.19403210282325745, -0.017049752175807953, -0.03991992399096489, 0.006250880192965269, 0.008870009332895279, -0.06980738043785095, 0.032322339713573456, 0.0046806479804217815, 0.004193649627268314, -0.1282404512166977, 0.11171748489141464, 0.034870695322752, -0.15442152321338654, 0.009935024194419384, 0.18278701603412628, -0.1408742070198059, -0.12739591300487518, -0.024828452616930008, 0.07055606693029404, -0.18903575837612152, -0.04342970252037048, -0.037991274148225784, -0.1559569388628006, 0.06144837290048599, 0.14878317713737488, 0.022554170340299606, 0.0702887773513794, -0.03976375237107277, -0.07178101688623428, -0.010616782121360302, 0.0038255401886999607, -0.06244109198451042, 0.02271546795964241, -0.08821810036897659, 0.08448692411184311, -0.014428729191422462, 0.11479716002941132, -0.06420392543077469, -0.01084406953305006, -0.12124704569578171, 0.024183940142393112, -0.1414751261472702, -0.011322847567498684, -0.06953700631856918, -0.03867913782596588, -0.007284826133400202, -0.02137904427945614, -0.0514959990978241, -0.029393037781119347, -0.11784622818231583, 0.012062003836035728, -0.034387700259685516, 0.07273639738559723, -0.055987078696489334, -0.01750750094652176, 0.040794067084789276, -0.021624630317091942, 0.12831872701644897, 0.1029701679944992, -0.11162696033716202, 0.10538159310817719, -0.1409258097410202, -0.05448806658387184, 0.07477200031280518, 0.02639753557741642, 0.044499896466732025, 0.08450733870267868, 0.013028199784457684, 0.09869986772537231, 0.003409312106668949, 0.04033893346786499, -0.0016710308846086264, -0.12895502150058746, -0.024845417588949203, -0.019918126985430717, -0.11913180351257324, -0.05621066316962242, -0.003430143231526017, 0.06229740008711815, -0.0008467131410725415, 0.1366741806268692, -0.06432726979255676, 0.07726593315601349, -0.05709131062030792, 0.01991286315023899, -0.004203334450721741, -0.1441156566143036, -0.11722081154584885, -0.10425948351621628, 0.019262349233031273, -0.003935534972697496, 0.1978766918182373, 0.028951287269592285, 0.004263665527105331, 0.04130031168460846, 0.04965388774871826, -0.021064555272459984, 0.0066953618079423904, 0.2581484019756317, 0.04240664467215538, -0.03947542980313301, -0.1304943561553955, 0.03736669942736626, -0.01026113796979189, -0.004231574013829231, 0.12696674466133118, 0.06628357619047165, 0.02619437873363495, 0.110025554895401, 0.02392006292939186, 0.01964910700917244, -0.08033084124326706, -0.11417447775602341, 0.06193380802869797, 0.09693148732185364, -0.03332780674099922, 0.08308830857276917, 0.18776163458824158, -0.03854767605662346, 0.019761445000767708, -0.027128908783197403, -0.04301066696643829, -0.18424849212169647, -0.16417522728443146, -0.06485016644001007, -0.11863076686859131, 0.007389910984784365, -0.09548148512840271, 0.08490397781133652, -0.002620008774101734, 0.07798907905817032, -0.09658244997262955, 0.01512572355568409, 0.03763238340616226, -0.13460683822631836, 0.08761437982320786, -0.011467987671494484, 0.08557022362947464, -0.03700621426105499, -0.0103765819221735, -0.04972028732299805, -0.05769762024283409, -0.02384006232023239, 0.0721486434340477, 0.002262681722640991, 0.026357345283031464, -0.11986155062913895, -0.09131824970245361, -0.024180222302675247, 0.07656846940517426, 0.004077413119375706, 0.20594137907028198, 0.01085876114666462, -0.034453134983778, 0.03986063227057457, 0.1668778508901596, -0.06708694994449615, -0.08822906762361526, 0.002742933575063944, 0.2464081346988678, 0.04807261377573013, 0.09266326576471329, 0.003671094076707959, 0.000530242279637605, -0.04503447934985161, 0.31903138756752014, 0.2885515093803406, -0.08761239796876907, -0.001634150859899819, 0.02448836900293827, 0.03223051503300667, 0.10125432163476944, 0.13673095405101776, 0.07781486958265305, 0.24329347908496857, -0.07340242713689804, 0.025958461686968803, -0.034678541123867035, 0.03430356830358505, -0.10844395309686661, 0.11306065320968628, -0.009907981380820274, -0.0991881713271141, 0.010477469302713871, 0.08459296077489853, -0.20985408127307892, 0.09112150967121124, -0.03215159475803375, -0.11081407219171524, -0.018246060237288475, -0.02096456103026867, 0.13527916371822357, 0.03761613368988037, 0.042578715831041336, -0.02514502964913845, -0.06290861964225769, 0.08215594291687012, 0.014004964381456375, -0.2033291906118393, 0.025655120611190796, 0.06201848387718201, -0.08995717018842697, 0.031116371974349022, -0.002184450626373291, 0.07623296231031418, 0.0790623128414154, 0.09270888566970825, -0.05003160238265991, 0.059993088245391846, 0.006408952176570892, -0.009650450199842453, 0.03546195104718208, -0.011725964024662971, 0.011993605643510818, -0.05167074501514435, 0.04647251218557358, -0.09172306954860687, 0.07201354205608368, 0.011836569756269455, -0.0621035136282444, -0.013986346311867237, 0.027640430256724358, -0.057357389479875565, 0.052104685455560684, 0.07152314484119415, -0.015867087990045547, -0.032512012869119644, -0.08771568536758423, -0.03940077871084213, 0.02492530457675457, -0.10863379389047623, -0.039347801357507706, -0.06803732365369797, -0.0714278370141983, 0.13234227895736694, 0.035548146814107895, -0.20501312613487244, 0.02124202623963356, -0.08670545369386673, 0.03556486964225769, -0.22441457211971283, 0.07981348782777786, 0.09468921273946762, -0.007422801572829485, 0.006081585772335529, -0.08300436288118362, 0.05625935643911362, 0.07104276120662689, -0.11060250550508499, -0.06391263008117676 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-cased-finetuned-squad This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.2 - Datasets 1.13.3 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["squad"], "model-index": [{"name": "bert-base-cased-finetuned-squad", "results": []}]}
question-answering
andresestevez/bert-base-cased-finetuned-squad
[ "transformers", "pytorch", "bert", "question-answering", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #bert #question-answering #generated_from_trainer #dataset-squad #license-apache-2.0 #endpoints_compatible #region-us
# bert-base-cased-finetuned-squad This model is a fine-tuned version of bert-base-cased on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.2 - Datasets 1.13.3 - Tokenizers 0.10.3
[ "# bert-base-cased-finetuned-squad\n\nThis model is a fine-tuned version of bert-base-cased on the squad dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 2e-05\n- train_batch_size: 2\n- eval_batch_size: 2\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 3\n- mixed_precision_training: Native AMP", "### Training results", "### Framework versions\n\n- Transformers 4.11.3\n- Pytorch 1.10.2\n- Datasets 1.13.3\n- Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #bert #question-answering #generated_from_trainer #dataset-squad #license-apache-2.0 #endpoints_compatible #region-us \n", "# bert-base-cased-finetuned-squad\n\nThis model is a fine-tuned version of bert-base-cased on the squad dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 2e-05\n- train_batch_size: 2\n- eval_batch_size: 2\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 3\n- mixed_precision_training: Native AMP", "### Training results", "### Framework versions\n\n- Transformers 4.11.3\n- Pytorch 1.10.2\n- Datasets 1.13.3\n- Tokenizers 0.10.3" ]
[ 50, 39, 6, 12, 8, 3, 103, 4, 30 ]
[ "passage: TAGS\n#transformers #pytorch #bert #question-answering #generated_from_trainer #dataset-squad #license-apache-2.0 #endpoints_compatible #region-us \n# bert-base-cased-finetuned-squad\n\nThis model is a fine-tuned version of bert-base-cased on the squad dataset.## Model description\n\nMore information needed## Intended uses & limitations\n\nMore information needed## Training and evaluation data\n\nMore information needed## Training procedure### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 2e-05\n- train_batch_size: 2\n- eval_batch_size: 2\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 3\n- mixed_precision_training: Native AMP### Training results### Framework versions\n\n- Transformers 4.11.3\n- Pytorch 1.10.2\n- Datasets 1.13.3\n- Tokenizers 0.10.3" ]
[ -0.07310211658477783, 0.07519020140171051, -0.0026218167040497065, 0.04544032737612724, 0.1473884880542755, 0.017622200772166252, 0.10186264663934708, 0.11956318467855453, -0.10235770046710968, 0.03354891762137413, 0.04702116549015045, 0.045705102384090424, 0.06058087572455406, 0.10552949458360672, -0.011767732910811901, -0.2790325880050659, 0.02617131918668747, 0.03254890441894531, -0.0870722085237503, 0.08843248337507248, 0.13016383349895477, -0.11203014105558395, 0.03293382376432419, 0.03549519181251526, -0.14039508998394012, 0.04482436552643776, -0.04288868606090546, -0.05371396243572235, 0.1106339767575264, 0.02025868371129036, 0.136409729719162, -0.0037951290141791105, 0.11838746070861816, -0.24191589653491974, 0.014822295866906643, 0.0737561360001564, 0.05029568448662758, 0.07866828888654709, 0.07075197994709015, 0.029315464198589325, 0.09065611660480499, -0.08038343489170074, 0.12473272532224655, 0.028835833072662354, -0.06614851951599121, -0.23783278465270996, -0.08661472052335739, 0.04955505579710007, 0.11377781629562378, 0.08410441875457764, 0.0008628295036032796, 0.11720561981201172, -0.11979664862155914, 0.05127653107047081, 0.16459596157073975, -0.2692326307296753, -0.0807492658495903, 0.008251454681158066, 0.05542946606874466, 0.04902320355176926, -0.10780028253793716, -0.048564568161964417, 0.033937968313694, 0.057848166674375534, 0.09666039049625397, -0.005617523565888405, -0.10800240933895111, 0.009761844761669636, -0.1483624130487442, -0.025234417989850044, 0.15793080627918243, 0.049457769840955734, -0.05812624841928482, -0.0809684470295906, -0.018884509801864624, -0.03603323921561241, -0.05118635296821594, -0.03179795295000076, 0.031018059700727463, -0.02030671201646328, -0.06480666995048523, -0.053012870252132416, -0.08953505009412766, -0.08624651283025742, -0.004902176093310118, 0.11208656430244446, 0.07262532413005829, -0.008120246231555939, -0.04235050082206726, 0.09588274359703064, 0.0025340148713439703, -0.0947701707482338, -0.0006801308481954038, -0.005929028615355492, -0.0746634379029274, -0.059723176062107086, -0.05601823329925537, -0.02393595688045025, 0.0232477355748415, 0.12804514169692993, -0.03193894028663635, 0.07178197801113129, -0.021570676937699318, 0.018193857744336128, -0.006359318736940622, 0.12518949806690216, -0.04289201274514198, 0.016433198004961014, -0.009989215061068535, 0.08223078399896622, -0.034236542880535126, 0.002685061888769269, -0.07413117587566376, -0.00016555417096242309, 0.08386946469545364, 0.0594598762691021, -0.045460354536771774, 0.019645672291517258, -0.047939736396074295, -0.027207637205719948, -0.02177521400153637, -0.11850163340568542, 0.0347260981798172, -0.007411295082420111, -0.0683484897017479, -0.00025286234449595213, 0.0014023258117958903, 0.027854926884174347, -0.038367561995983124, 0.062389176338911057, -0.06623174250125885, -0.010183321312069893, -0.10408168286085129, -0.0820247232913971, 0.024944722652435303, -0.04476282745599747, 0.002096879994496703, -0.08844193071126938, -0.1624724119901657, -0.018240315839648247, 0.05183450132608414, -0.04530501738190651, -0.0626022070646286, -0.03686758130788803, -0.03489494323730469, 0.00969554390758276, -0.02350982464849949, 0.1805509775876999, -0.052859827876091, 0.0772586464881897, -0.01885729469358921, 0.006976368371397257, -0.008210813626646996, 0.05980439484119415, -0.0732961967587471, 0.03097810037434101, -0.12324443459510803, 0.05677112191915512, -0.11386904865503311, 0.019642174243927002, -0.13868345320224762, -0.11061619967222214, 0.004440566059201956, -0.006430528126657009, 0.09455956518650055, 0.08483622968196869, -0.1504441350698471, -0.03208598494529724, 0.1172347217798233, -0.07674961537122726, -0.07723220437765121, 0.10229763388633728, -0.056448739022016525, 0.053832340985536575, 0.044115230441093445, 0.1508265733718872, 0.099319688975811, -0.11226879060268402, 0.032153621315956116, 0.01868327707052231, 0.08868458122015, 0.02574945241212845, 0.07844860106706619, -0.01959727145731449, -0.05976943299174309, 0.013545180670917034, -0.0506502166390419, 0.04130377992987633, -0.09334097802639008, -0.07581967860460281, -0.03150692209601402, -0.08143699169158936, 0.0395851768553257, 0.018472004681825638, 0.03760416805744171, -0.07031293958425522, -0.09819567203521729, 0.1557316929101944, 0.13706015050411224, -0.0554516576230526, 0.014667858369648457, -0.09412796050310135, 0.039779819548130035, -0.04013081267476082, -0.008553468622267246, -0.1966560333967209, -0.11581117659807205, 0.04449905827641487, -0.05150962620973587, 0.03254540264606476, 0.046999454498291016, 0.056457776576280594, 0.05077849328517914, -0.045339521020650864, -0.039792463183403015, -0.11833100020885468, 0.00011697028821799904, -0.10680209845304489, -0.19133464992046356, -0.07847069203853607, -0.0461711660027504, 0.14171504974365234, -0.20237882435321808, 0.016432588919997215, -0.035754796117544174, 0.12919442355632782, 0.011057612486183643, -0.03254709020256996, -0.026480570435523987, 0.0740211233496666, 0.002261731307953596, -0.06600043922662735, 0.053936950862407684, 0.022902272641658783, -0.07809140533208847, -0.025532424449920654, -0.0623900331556797, 0.04740113392472267, 0.07838759571313858, 0.0023092543706297874, -0.07651878893375397, -0.07307083159685135, -0.06824726611375809, -0.04450047388672829, -0.07756222784519196, -0.0034998853225260973, 0.23527304828166962, 0.01369581650942564, 0.12998148798942566, -0.07000395655632019, -0.05684733763337135, -0.004275200888514519, -0.0010704582091420889, -0.004949708469212055, 0.07874992489814758, 0.06474270671606064, -0.07413111627101898, 0.07973147928714752, 0.11417742818593979, -0.060539111495018005, 0.12753157317638397, -0.06937503814697266, -0.11276540905237198, -0.0006787683814764023, 0.016586506739258766, -0.018338631838560104, 0.12125468254089355, -0.16253861784934998, 0.01142224669456482, 0.03610963746905327, 0.03436223417520523, 0.05245901644229889, -0.1864532232284546, 0.0005694167921319604, 0.014958256855607033, -0.030102333053946495, -0.051301389932632446, -0.03860959783196449, 0.04250384867191315, 0.09518881887197495, 0.03716467320919037, -0.030164919793605804, 0.021840739995241165, -0.015125931240618229, -0.08034001290798187, 0.1908901035785675, -0.1324881911277771, -0.12856033444404602, -0.12148351967334747, 0.00015128713857848197, -0.0254858136177063, -0.029293419793248177, 0.03550676628947258, -0.09901752322912216, -0.05043232440948486, -0.07415402680635452, 0.03282884135842323, -0.07134199142456055, -0.00963262002915144, 0.02614055946469307, 0.01216580718755722, 0.09696053713560104, -0.14022301137447357, 0.014231768436729908, -0.020114000886678696, -0.10795304924249649, 0.00046857722918502986, 0.05075548589229584, 0.07880605757236481, 0.12307365238666534, -0.01696772873401642, 0.0030787738505750895, -0.051084306091070175, 0.19352315366268158, -0.04496939107775688, -0.03591359034180641, 0.12044426053762436, 0.003909100778400898, 0.049083296209573746, 0.10564859211444855, 0.04520828649401665, -0.08230122923851013, 0.041686829179525375, 0.07704610377550125, 0.000721001997590065, -0.26383936405181885, -0.03238716721534729, -0.04119617119431496, -0.08929120004177094, 0.11138646304607391, 0.050734903663396835, -0.05829019472002983, 0.06288868188858032, -0.01628093607723713, 0.03671697527170181, -0.016295485198497772, 0.09170717746019363, 0.11514239758253098, 0.009640425443649292, 0.09586024284362793, -0.02373471111059189, -0.047708310186862946, 0.059699416160583496, 0.031625665724277496, 0.2705502510070801, -0.00869592186063528, 0.062116410583257675, 0.06649477034807205, 0.17288430035114288, -0.009670712985098362, 0.0457271970808506, -0.0009160085464827716, 0.00397301884368062, -0.0072226631455123425, -0.04222199693322182, -0.03221246972680092, 0.02075476199388504, 0.014111759141087532, 0.033325109630823135, -0.11191218346357346, -0.041785627603530884, 0.002801924478262663, 0.3241698741912842, 0.01491275243461132, -0.25257062911987305, -0.07559370994567871, 0.021928289905190468, -0.0749865248799324, -0.09666483849287033, 0.02509135752916336, 0.10241227596998215, -0.14145630598068237, 0.01093236356973648, -0.04986856132745743, 0.1097206100821495, -0.023716771975159645, -0.0066580623388290405, 0.04748931899666786, 0.12396705150604248, 0.005842194426804781, 0.10572648048400879, -0.24013514816761017, 0.21485719084739685, -0.004783282522112131, 0.10030100494623184, -0.04745323956012726, 0.048519354313611984, 0.021167593076825142, 0.03315474092960358, 0.06167538836598396, -0.0016744992462918162, -0.0414171926677227, -0.20727378129959106, -0.057792045176029205, 0.0653148740530014, 0.0992489755153656, -0.0274864062666893, 0.08935840427875519, -0.044123727828264236, 0.03527959808707237, 0.052937328815460205, -0.06389523297548294, -0.17927652597427368, -0.12134747952222824, -0.005365092772990465, -0.0018573201959952712, 0.028428224846720695, -0.12421585619449615, -0.10857558995485306, -0.02960844524204731, 0.18104934692382812, 0.01833694986999035, -0.03418063744902611, -0.13048586249351501, 0.07671196013689041, 0.11464950442314148, -0.04077784717082977, 0.03009266033768654, 0.011208400130271912, 0.15118078887462616, 0.026160314679145813, -0.06725680083036423, 0.06536093354225159, -0.08078523725271225, -0.1324775665998459, -0.06293877959251404, 0.12117446213960648, 0.06519711017608643, 0.05297011509537697, 0.014016415923833847, -0.004017441999167204, -0.0051412503235042095, -0.08045289665460587, -0.004137571435421705, 0.07464905083179474, 0.07117148488759995, 0.08412623405456543, -0.12287957966327667, 0.03468277305364609, -0.04041452333331108, -0.010780551470816135, 0.1575365960597992, 0.20820482075214386, -0.0653819665312767, 0.06156110018491745, 0.10594207048416138, -0.082233726978302, -0.17126810550689697, 0.06723427027463913, 0.1361558735370636, 0.0043397280387580395, 0.022359997034072876, -0.25990772247314453, 0.12072494626045227, 0.11718311160802841, -0.018318409100174904, -0.0005956310196779668, -0.2999231517314911, -0.10507256537675858, 0.13290265202522278, 0.13889220356941223, 0.015844721347093582, -0.12468943744897842, -0.02430085465312004, -0.028119714930653572, -0.14443029463291168, 0.1016199067234993, -0.09677650779485703, 0.0937068834900856, -0.004997361917048693, 0.09386728703975677, 0.022497987374663353, -0.030788656324148178, 0.15057595074176788, 0.0038168500177562237, 0.08263036608695984, -0.0325874388217926, 0.0746065080165863, 0.0614064559340477, -0.04044148698449135, 0.0395275354385376, -0.011908918619155884, 0.04762399196624756, -0.18432481586933136, -0.02943846583366394, -0.061849888414144516, 0.059294264763593674, -0.03528105840086937, -0.07217365503311157, -0.02394714392721653, 0.05670783296227455, 0.050430700182914734, -0.022176474332809448, 0.06299407035112381, 0.001940066576935351, 0.12619028985500336, 0.03810673579573631, 0.12624435126781464, -0.02677796594798565, -0.10718145221471786, -0.004835671279579401, -0.030720897018909454, 0.07822316884994507, -0.09252993762493134, 0.026173731312155724, 0.11996570229530334, 0.030133306980133057, 0.14811360836029053, 0.05498243123292923, -0.06160109490156174, 0.01715281419456005, 0.04012531414628029, -0.07638978213071823, -0.15401606261730194, -0.005923622753471136, 0.09565616399049759, -0.16203412413597107, 0.007923649623990059, 0.09069594740867615, -0.055866338312625885, -0.032044973224401474, -0.007561061531305313, 0.007627077866345644, -0.04901086911559105, 0.1694217324256897, 0.028689438477158546, 0.06334877759218216, -0.08143237233161926, 0.12475217878818512, 0.08517846465110779, -0.09991303086280823, 0.04761946573853493, 0.0437500886619091, -0.05738961696624756, -0.024508442729711533, 0.06724254041910172, 0.17921793460845947, -0.0128521379083395, -0.05763588473200798, -0.0639520063996315, -0.13872769474983215, 0.05705694109201431, 0.07282283157110214, 0.03957574442028999, -0.015160116367042065, -0.04972149059176445, 0.05164264515042305, -0.11889948695898056, 0.06847600638866425, 0.044554974883794785, 0.07573585212230682, -0.10213466733694077, 0.10573548823595047, 0.011697018519043922, 0.04142151027917862, -0.010690459981560707, -0.014705139212310314, -0.08968019485473633, 0.005107716657221317, -0.18270324170589447, -0.014176595956087112, -0.042864106595516205, 0.018549788743257523, 0.0031300627160817385, -0.05079859495162964, -0.034860458225011826, 0.03818417340517044, -0.09077577292919159, -0.04728880897164345, 0.018917087465524673, 0.08496546745300293, -0.12288924306631088, -0.002995795803144574, 0.03996988758444786, -0.10157611221075058, 0.08002031594514847, 0.06060019135475159, 0.03216645494103432, 0.05511367321014404, -0.12154088914394379, -0.027683721855282784, 0.01758434809744358, 0.03842030093073845, 0.0590987429022789, -0.11770866811275482, -0.006390826310962439, -0.011294623836874962, 0.030888520181179047, 0.000523440889082849, 0.053964387625455856, -0.13202200829982758, -0.0726751759648323, -0.032108157873153687, -0.07476893812417984, -0.06704507023096085, 0.029116475954651833, 0.092470183968544, 0.07225479185581207, 0.16075879335403442, -0.07610701769590378, 0.031798433512449265, -0.18607674539089203, -0.02013997547328472, -0.026609310880303383, -0.024061691015958786, -0.054015107452869415, -0.06361769139766693, 0.059149038046598434, -0.052474524825811386, 0.13013271987438202, -0.03207867965102196, 0.0811874270439148, 0.03529796749353409, -0.0732961967587471, 0.041366927325725555, 0.019655423238873482, 0.23846818506717682, 0.06956440955400467, -0.014046362601220608, 0.06051216647028923, -0.0020782393403351307, 0.038998305797576904, 0.10478312522172928, 0.1413315236568451, 0.18010582029819489, 0.03199207782745361, 0.04891693964600563, 0.09022995084524155, -0.08534074574708939, -0.10790067166090012, 0.11410443484783173, 0.01954987272620201, 0.09959099441766739, -0.052025504410266876, 0.24893249571323395, 0.08770394325256348, -0.18804436922073364, 0.053760871291160583, -0.06049637123942375, -0.09261585026979446, -0.09273695200681686, -0.029483722522854805, -0.06356817483901978, -0.14952732622623444, 0.009461354464292526, -0.13636505603790283, 0.012872438877820969, 0.09817831218242645, 0.012681129388511181, 0.014498652890324593, 0.12078690528869629, -0.015008763410151005, 0.007374714594334364, 0.06880630552768707, -0.005921431817114353, 0.014498664997518063, -0.08449635654687881, -0.09090983867645264, 0.05276632308959961, 0.008245560340583324, 0.06498667597770691, -0.035340823233127594, -0.01943233795464039, 0.026224011555314064, -0.007027538027614355, -0.06225883215665817, 0.025139158591628075, -0.004567497409880161, 0.030086467042565346, 0.08301541954278946, 0.052938807755708694, -0.004197944886982441, -0.03568344563245773, 0.29014575481414795, -0.07305193692445755, -0.08975284546613693, -0.1526060253381729, 0.2250816822052002, 0.01971849426627159, -0.014182101003825665, 0.07031465321779251, -0.08692019432783127, -0.024370960891246796, 0.15635231137275696, 0.1114964634180069, -0.05588001012802124, -0.016972215846180916, -0.0002831934834830463, -0.02916558086872101, -0.08267229795455933, 0.13822659850120544, 0.14411737024784088, -0.00044296120177023113, -0.07535011321306229, -0.020119212567806244, -0.03200218454003334, -0.011759737506508827, -0.08507055044174194, 0.054664239287376404, 0.039478421211242676, -0.013364016078412533, -0.0426470972597599, 0.08039505034685135, -0.00048565957695245743, -0.17419636249542236, -0.013422299176454544, -0.08245939016342163, -0.17606449127197266, -0.04956676438450813, 0.061111729592084885, -0.004225386306643486, 0.04548970237374306, -0.0334879532456398, 0.02349098213016987, 0.14522892236709595, -0.010020596906542778, -0.005942608695477247, -0.13940954208374023, 0.1515444666147232, -0.055403441190719604, 0.210720956325531, -0.00014434308104682714, 0.060618311166763306, 0.11052931100130081, 0.04417882859706879, -0.11693279445171356, 0.04858940467238426, 0.06615652143955231, -0.08203615248203278, 0.024323761463165283, 0.14965234696865082, -0.03702927008271217, 0.11440040171146393, 0.035145457834005356, -0.11754557490348816, 0.010521617718040943, -0.10030481219291687, -0.03150486573576927, -0.06456893682479858, 0.011672206223011017, -0.08132817596197128, 0.13671763241291046, 0.20749954879283905, -0.04234354570508003, -0.016239838674664497, -0.0905156210064888, 0.021039607003331184, 0.03463936224579811, 0.08758780360221863, -0.039430901408195496, -0.20824626088142395, -0.0005795739707536995, 0.03858274593949318, 0.019481778144836426, -0.2518274486064911, -0.09588677436113358, 0.04559881240129471, -0.03390764445066452, -0.04812713712453842, 0.10730338096618652, 0.07319614291191101, 0.0381324328482151, -0.04926621913909912, -0.1694556474685669, -0.056992191821336746, 0.15144358575344086, -0.12125390768051147, -0.03337099030613899 ]
null
null
transformers
# Rick and Morty DialoGPT Model
{"tags": ["conversational"]}
text-generation
anduush/DialoGPT-small-Rick
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# Rick and Morty DialoGPT Model
[ "# Rick and Morty DialoGPT Model" ]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# Rick and Morty DialoGPT Model" ]
[ 51, 10 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# Rick and Morty DialoGPT Model" ]
[ -0.01990443281829357, 0.10367733240127563, -0.006012056488543749, 0.013662099838256836, 0.1287931650876999, 0.004103946499526501, 0.13405320048332214, 0.13470496237277985, -0.029608309268951416, -0.0377325713634491, 0.1409052610397339, 0.2081032246351242, -0.009616929106414318, 0.025026321411132812, -0.08027864247560501, -0.33285143971443176, 0.04419311136007309, 0.04611847549676895, -0.04805411398410797, 0.11171722412109375, 0.09962809830904007, -0.03511058911681175, 0.07650627940893173, 0.012189619243144989, -0.11959464848041534, 0.014523470774292946, 0.01571112684905529, -0.09889741986989975, 0.11399844288825989, 0.07783890515565872, 0.031239205971360207, 0.033389654010534286, -0.042143791913986206, -0.13308840990066528, 0.04855761677026749, -0.0014628645731136203, -0.03996938467025757, 0.06519230455160141, 0.0068825362250208855, -0.09896008670330048, 0.13105708360671997, 0.11774895340204239, -0.001342291128821671, 0.030811335891485214, -0.1546017825603485, -0.03095608949661255, -0.013916928321123123, 0.04583658277988434, 0.05571185424923897, 0.1092928797006607, -0.03970988467335701, 0.11546611040830612, -0.046847838908433914, 0.11656361073255539, 0.13404695689678192, -0.27711591124534607, -0.013774634338915348, 0.14150507748126984, 0.03755388408899307, 0.031246060505509377, -0.03764049708843231, 0.09234841167926788, 0.010574371553957462, -0.009135077707469463, -0.054559025913476944, -0.07839421927928925, -0.06956472247838974, 0.03881034255027771, -0.08538595587015152, -0.0028573249001055956, 0.22309143841266632, -0.029777048155665398, 0.0931403860449791, -0.061110686510801315, -0.083645299077034, 0.0022445949725806713, -0.04396601766347885, -0.031562261283397675, -0.0995510146021843, 0.08443354815244675, -0.04024428874254227, -0.08693728595972061, -0.10731299221515656, -0.022938303649425507, -0.15873323380947113, 0.16214832663536072, 0.03501884266734123, 0.03956814110279083, -0.21219894289970398, 0.07603893429040909, -0.04213596507906914, -0.10128775984048843, 0.025763655081391335, -0.0809730738401413, 0.0031352867372334003, 0.01420458871871233, -0.034850042313337326, -0.01257789321243763, 0.09354974329471588, 0.11913833022117615, -0.002085368847474456, 0.028482265770435333, -0.03459439426660538, 0.04555915296077728, 0.04445279389619827, 0.04635937884449959, -0.030874032527208328, -0.005519113503396511, 0.024999095126986504, -0.0903957337141037, -0.010871811769902706, -0.060442280024290085, -0.1946737915277481, 0.013364237733185291, 0.05735969915986061, 0.055262304842472076, 0.030765585601329803, 0.13551434874534607, 0.0010974886827170849, -0.0475224107503891, 0.03023342229425907, -0.020769428461790085, -0.016528211534023285, 0.029149476438760757, -0.0072809201665222645, 0.1526104062795639, 0.022983204573392868, 0.05690442770719528, -0.11451500654220581, 0.012773441150784492, -0.03330712020397186, -0.006917042192071676, -0.03216493874788284, -0.061537809669971466, 0.003289242973551154, 0.0014469954185187817, 0.013694697991013527, -0.12761977314949036, -0.15719962120056152, -0.003717299085110426, 0.00613630935549736, -0.05369097366929054, -0.10004933178424835, -0.10542158782482147, -0.03153182193636894, 0.046352777630090714, -0.053748197853565216, 0.03198752924799919, -0.039340607821941376, 0.09383489936590195, -0.03441528603434563, 0.0691300630569458, -0.0863635316491127, 0.0905333161354065, -0.06098577380180359, -0.04111234471201897, -0.0643690675497055, 0.12356391549110413, 0.011561519466340542, 0.04442533850669861, -0.03781363368034363, -0.01636880449950695, -0.11087207496166229, 0.06495212018489838, -0.03516015037894249, 0.22487092018127441, -0.08996163308620453, -0.09683383256196976, 0.22284504771232605, -0.04562665522098541, -0.12769415974617004, 0.12243670970201492, -0.03600937873125076, 0.09682484716176987, 0.11536505818367004, 0.16257616877555847, 0.03866875544190407, -0.0002237519365735352, 0.10846788436174393, 0.10610917955636978, -0.07603283226490021, 0.006744202226400375, 0.0250004380941391, -0.02382737584412098, -0.09139634668827057, 0.015165179036557674, 0.07776524871587753, 0.04803644120693207, -0.05478836968541145, -0.015317765064537525, 0.015090391971170902, -0.003627530997619033, 0.06564177572727203, -0.017049036920070648, 0.11691898107528687, -0.03955721855163574, -0.07620245963335037, -0.014626736752688885, 0.028113901615142822, -0.06986767798662186, 0.026787258684635162, -0.07962338626384735, 0.02948051132261753, -0.01967560686171055, 0.06687499582767487, -0.16950036585330963, -0.09430424869060516, -0.06010226905345917, 0.23349159955978394, 0.07496993243694305, 0.11698364466428757, 0.06350064277648926, -0.056928664445877075, 0.0006459777359850705, 0.037900060415267944, 0.19767099618911743, -0.006904584355652332, -0.07503941655158997, -0.11777795851230621, 0.10312607139348984, -0.07375676929950714, 0.06138577312231064, -0.0416308231651783, 0.007855354808270931, 0.019795136526226997, 0.11127804219722748, -0.04220014438033104, 0.039965033531188965, 0.012499134056270123, -0.03696384280920029, -0.05908297002315521, 0.0004571304307319224, 0.09440597146749496, -0.0005542659782804549, -0.10514124482870102, 0.2379530370235443, -0.21215155720710754, 0.12180843949317932, 0.1799643337726593, -0.2256188690662384, 0.008836638182401657, -0.10462760180234909, -0.016665222123265266, 0.01030759233981371, 0.03996801748871803, -0.040312353521585464, 0.24249082803726196, -0.014560520648956299, 0.17035135626792908, -0.04880015179514885, -0.05010494217276573, -0.0440804697573185, -0.05291803553700447, 0.0003277618088759482, 0.12486644089221954, 0.09157522767782211, -0.18372175097465515, 0.17465431988239288, 0.06325390189886093, 0.03004654310643673, 0.1566917598247528, 0.022896459326148033, 0.020663797855377197, 0.05599488690495491, -0.0012882096925750375, -0.03033529780805111, -0.07880529016256332, -0.20945574343204498, -0.012111871503293514, 0.07547834515571594, 0.04618273675441742, 0.10363037884235382, -0.1018955409526825, -0.030724551528692245, -0.006948297843337059, -0.030821966007351875, 0.03848150745034218, 0.13554143905639648, 0.015318007208406925, 0.12024796009063721, -0.019162237644195557, -0.06668011844158173, 0.0741129145026207, 0.01461794413626194, -0.09263674914836884, 0.18050695955753326, -0.1221487745642662, -0.3382752537727356, -0.10329627990722656, -0.20327065885066986, -0.04040617123246193, 0.0422586165368557, 0.11002974957227707, -0.1460546851158142, -0.029720865190029144, 0.0010455691954120994, 0.08435780555009842, -0.1366978883743286, 0.006720550823956728, -0.017843635752797127, -0.01294276025146246, -0.1374056041240692, -0.09384968876838684, -0.04747654125094414, -0.060003772377967834, -0.03218422830104828, 0.10381519794464111, -0.1596987098455429, 0.007801016326993704, 0.230968177318573, 0.04797196388244629, 0.07053504139184952, -0.036995481699705124, 0.17910921573638916, -0.08220451325178146, 0.016473548486828804, 0.24478016793727875, -0.05610832944512367, 0.0740312784910202, 0.10560029745101929, -0.005553957540541887, -0.052998270839452744, 0.03756273165345192, 0.00788428820669651, -0.0785532221198082, -0.21784749627113342, -0.1030275970697403, -0.11046822369098663, 0.04284128174185753, 0.05120398849248886, 0.04543844982981682, 0.1585974246263504, 0.06446543335914612, -0.05187172442674637, -0.011306295171380043, 0.08315242826938629, 0.08576013147830963, 0.24794787168502808, -0.06311704963445663, 0.1473274976015091, -0.020790869370102882, -0.16434483230113983, 0.07334780693054199, 0.06416254490613937, 0.07227631658315659, 0.06913222372531891, 0.11215730756521225, 0.0020037174690514803, 0.017364054918289185, 0.12614323198795319, 0.05889604985713959, -0.011050567030906677, -0.031410302966833115, -0.04586650803685188, -0.04347039759159088, -0.020151739940047264, 0.041160233318805695, 0.05188119783997536, -0.1600257307291031, -0.02415069006383419, 0.022831739857792854, 0.046689603477716446, -0.003216250566765666, 0.08608495444059372, -0.19217506051063538, -0.018159521743655205, 0.06477150321006775, -0.0016290671192109585, -0.09313707798719406, 0.08108778297901154, -0.009849769994616508, -0.09697907418012619, 0.03780587762594223, -0.03585495799779892, 0.1301390826702118, -0.0750122219324112, 0.07286842167377472, -0.1119815781712532, -0.02080838568508625, -0.0087605444714427, 0.11860883235931396, -0.3024371266365051, 0.1707288920879364, -0.0030656929593533278, -0.04842326417565346, -0.11293680220842361, -0.015061003156006336, 0.03821004554629326, 0.08916047215461731, 0.10371578484773636, -0.030773809179663658, -0.06436607241630554, 0.0791664570569992, -0.050910793244838715, 0.03525971621274948, 0.10187692940235138, -0.04662879928946495, -0.014911266043782234, -0.05685164034366608, 0.0027524156030267477, 0.02270045317709446, -0.10804066807031631, 0.014929873868823051, -0.19113284349441528, 0.07794220000505447, 0.0811065286397934, 0.0722472071647644, 0.04095001146197319, -0.029467018321156502, -0.1261810064315796, 0.2744207978248596, 0.007417048793286085, -0.09985779225826263, -0.11269644647836685, 0.04465123638510704, 0.05646880716085434, -0.07145541161298752, -0.028514720499515533, -0.07924950867891312, 0.052012015134096146, -0.07113154232501984, -0.1981293261051178, 0.11338871717453003, -0.09873685240745544, -0.04736494645476341, -0.03962721675634384, 0.2276533544063568, -0.027753405272960663, 0.02130931057035923, 0.0393831804394722, -0.001616212772205472, -0.12734149396419525, -0.09492160379886627, 0.004517016001045704, -0.0013660878175869584, 0.02586340345442295, 0.022777099162340164, -0.04388801380991936, 0.0049570053815841675, -0.06949588656425476, -0.0037953434512019157, 0.3158918023109436, 0.10998717695474625, -0.04474896565079689, 0.1561327874660492, 0.10242960602045059, -0.06360200047492981, -0.28859275579452515, -0.11298105865716934, -0.07240703701972961, -0.05466444417834282, -0.0838940367102623, -0.18133240938186646, 0.08497140556573868, -0.042584747076034546, -0.00881777424365282, 0.042027126997709274, -0.2644155025482178, -0.09412363916635513, 0.18815293908119202, -0.01533579919487238, 0.4300551414489746, -0.11307147145271301, -0.07450833916664124, -0.05387028306722641, -0.13561248779296875, 0.18766070902347565, -0.018648525699973106, 0.0966244488954544, 0.00443116994574666, 0.20654869079589844, 0.05815155804157257, -0.0008219819865189493, 0.0747876986861229, 0.011587066575884819, -0.0452013723552227, -0.09014920890331268, -0.09217863529920578, -0.020688166841864586, 0.005974666681140661, 0.034957773983478546, -0.0941787138581276, 0.05258546397089958, -0.11336535215377808, -0.05589618906378746, -0.07209338247776031, 0.026715638116002083, 0.02418643794953823, -0.06410122662782669, -0.006407043896615505, -0.048794936388731, -0.0010418962920084596, 0.00979152973741293, 0.21295785903930664, -0.11305148899555206, 0.12096642702817917, 0.04414689913392067, 0.1508360654115677, -0.08366664499044418, -0.03614836558699608, -0.04910365119576454, -0.05565084517002106, 0.0676501989364624, -0.1319035291671753, 0.04462771117687225, 0.10053624957799911, -0.030742639675736427, 0.0898696631193161, 0.11227817088365555, -0.02972952462732792, 0.0016581144882366061, 0.07279330492019653, -0.23832836747169495, -0.08509121090173721, -0.07718803733587265, 0.05435929819941521, 0.057659514248371124, 0.09007556736469269, 0.21964938938617706, 0.011087107472121716, -0.023847850039601326, 0.027587326243519783, 0.029717741534113884, -0.01658647321164608, 0.05797221511602402, 0.008770608343183994, 0.031205764040350914, -0.14632299542427063, 0.04562913626432419, -0.010501107200980186, -0.07197817414999008, 0.03429242596030235, 0.16717956960201263, -0.10209374874830246, -0.12234743684530258, -0.04288604483008385, 0.17517046630382538, -0.13247300684452057, -0.017495078966021538, -0.05478521063923836, -0.1241658553481102, 0.07977617532014847, 0.11423204839229584, 0.05072414129972458, 0.042339734733104706, -0.09691346436738968, -0.03881148621439934, -0.05552472919225693, 0.01957569271326065, 0.018891409039497375, -0.030404040589928627, -0.037885911762714386, 0.025801094248890877, -0.04172535613179207, 0.11203933507204056, -0.087384894490242, -0.09792038798332214, -0.16838693618774414, 0.03925701230764389, -0.049022991210222244, -0.07899222522974014, -0.09344983100891113, -0.03523614630103111, 0.014231358654797077, -0.03348008170723915, -0.018664700910449028, -0.02225758694112301, -0.0958842933177948, 0.03419994190335274, -0.048781368881464005, -0.005008503329008818, -0.08496184647083282, 0.017331385985016823, 0.04781922325491905, -0.023604100570082664, 0.1431105136871338, 0.12453559041023254, -0.11789791285991669, 0.10031480342149734, -0.16611437499523163, -0.06820093840360641, 0.09455996751785278, 0.02471991442143917, 0.043245621025562286, 0.028927266597747803, 0.005174829158931971, 0.04808570072054863, 0.05950818210840225, 0.03694291412830353, 0.041101954877376556, -0.07111897319555283, 0.061451081186532974, -0.06278520077466965, -0.11226452142000198, -0.04257739707827568, -0.005422866903245449, 0.00011432790051912889, 0.07346735894680023, 0.11052975058555603, -0.05098198726773262, 0.09580544382333755, -0.050767768174409866, 0.046003878116607666, 0.0289035402238369, -0.16526201367378235, 0.008764104917645454, -0.08482556790113449, 0.05248309671878815, 0.0030253108125180006, 0.15688744187355042, 0.028536081314086914, -0.03175791725516319, 0.02630779519677162, 0.05105529725551605, 0.06318540126085281, -0.00840448122471571, 0.19050461053848267, 0.09726009517908096, -0.04487645998597145, -0.09418396651744843, 0.08849480748176575, 0.05022666975855827, 0.05143674090504646, 0.1403687596321106, -0.020687401294708252, 0.012512898072600365, 0.07724163681268692, 0.014415515586733818, 0.017872430384159088, -0.07756411284208298, -0.09487451612949371, -0.011494439095258713, 0.025514457374811172, -0.02882363088428974, 0.1138797178864479, 0.16729387640953064, -0.0008394720498472452, 0.013234704732894897, -0.01801590994000435, -0.05735309422016144, -0.20129387080669403, -0.1959676295518875, -0.09400797635316849, -0.13690303266048431, -0.0009418319095857441, -0.13835963606834412, 0.03616710752248764, 0.042394787073135376, 0.09917435795068741, -0.039446551352739334, 0.019261397421360016, 0.026794444769620895, -0.10323353111743927, 0.039175424724817276, -0.04838612675666809, 0.09421038627624512, -0.007761404849588871, 0.005773975048214197, -0.046786144375801086, 0.02436385303735733, 0.02127891033887863, 0.038409680128097534, -0.012736459262669086, 0.024856114760041237, -0.11602245271205902, -0.09478921443223953, -0.058010075241327286, 0.0558818019926548, 0.0046934462152421474, 0.18179026246070862, 0.02449701726436615, -0.03384847193956375, 0.0275272186845541, 0.19317778944969177, -0.06196035072207451, -0.09709009528160095, -0.08241496980190277, 0.2182236760854721, -0.018931716680526733, 0.09253086894750595, -0.035876765847206116, 0.012440751306712627, -0.07121489197015762, 0.33243879675865173, 0.29320472478866577, -0.10524016618728638, 0.010426074266433716, -0.0019151283195242286, 0.0405552051961422, 0.1290767937898636, 0.07575080543756485, 0.11663594841957092, 0.256552129983902, -0.06501701474189758, -0.057690393179655075, -0.014668738469481468, -0.027142031118273735, -0.06502988189458847, 0.04214107245206833, 0.04939494654536247, -0.07117093354463577, -0.00912293791770935, 0.12242040783166885, -0.24606983363628387, 0.04577518254518509, -0.13518153131008148, -0.14807558059692383, -0.0726354643702507, 0.002261551097035408, 0.09914402663707733, 0.010166509076952934, 0.08546656370162964, -0.014570544473826885, -0.0710548534989357, 0.03896206244826317, 0.021210450679063797, -0.2144380509853363, 0.021960165351629257, 0.07259857654571533, -0.028754761442542076, -0.07154250144958496, -0.013138728216290474, 0.08338925242424011, 0.09720319509506226, 0.03173141926527023, -0.009079075418412685, 0.04570826143026352, -0.0000614441087236628, -0.06747788935899734, 0.035688117146492004, 0.022403022274374962, 0.01331246830523014, -0.05491582676768303, 0.07895619422197342, -0.17176033556461334, 0.020258452743291855, -0.03599786013364792, -0.06506339460611343, -0.006352625321596861, 0.02872123196721077, -0.06236473098397255, 0.0810769721865654, 0.08681372553110123, -0.010693355463445187, -0.015406738966703415, -0.019259916618466377, -0.012411676347255707, -0.028850549831986427, -0.07069326192140579, -0.09390060603618622, -0.15529757738113403, -0.12466321885585785, 0.08110006153583527, -0.008061634376645088, -0.2096063792705536, 0.012769150547683239, -0.13104628026485443, 0.04622570425271988, -0.10809949785470963, 0.09371429681777954, 0.08394473046064377, 0.020185640081763268, -0.007141938898712397, 0.003890183288604021, 0.036074474453926086, 0.07894916087388992, -0.13067346811294556, -0.08049263805150986 ]
null
null
transformers
# Medical History Model based on ruGPT2 by @sberbank-ai A simple model for helping medical staff to complete patient's medical histories. Model used pretrained [sberbank-ai/rugpt3small_based_on_gpt2](https://huggingface.co/sberbank-ai/rugpt3small_based_on_gpt2)
{"language": ["ru"], "license": "mit", "tags": ["PyTorch", "Transformers"]}
text-generation
anechaev/ru_med_gpt3sm_based_on_gpt2
[ "transformers", "pytorch", "safetensors", "gpt2", "text-generation", "PyTorch", "Transformers", "ru", "license:mit", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "ru" ]
TAGS #transformers #pytorch #safetensors #gpt2 #text-generation #PyTorch #Transformers #ru #license-mit #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# Medical History Model based on ruGPT2 by @sberbank-ai A simple model for helping medical staff to complete patient's medical histories. Model used pretrained sberbank-ai/rugpt3small_based_on_gpt2
[ "# Medical History Model based on ruGPT2 by @sberbank-ai\n\nA simple model for helping medical staff to complete patient's medical histories.\nModel used pretrained sberbank-ai/rugpt3small_based_on_gpt2" ]
[ "TAGS\n#transformers #pytorch #safetensors #gpt2 #text-generation #PyTorch #Transformers #ru #license-mit #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# Medical History Model based on ruGPT2 by @sberbank-ai\n\nA simple model for helping medical staff to complete patient's medical histories.\nModel used pretrained sberbank-ai/rugpt3small_based_on_gpt2" ]
[ 68, 57 ]
[ "passage: TAGS\n#transformers #pytorch #safetensors #gpt2 #text-generation #PyTorch #Transformers #ru #license-mit #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# Medical History Model based on ruGPT2 by @sberbank-ai\n\nA simple model for helping medical staff to complete patient's medical histories.\nModel used pretrained sberbank-ai/rugpt3small_based_on_gpt2" ]
[ -0.03622813522815704, 0.042556457221508026, -0.005221223458647728, -0.06183047965168953, 0.0620671883225441, 0.05883243307471275, 0.16856946051120758, 0.1413961797952652, -0.000020800634956685826, 0.05130678042769432, 0.2202240377664566, 0.025663968175649643, 0.04905559495091438, 0.08175023645162582, 0.003930386155843735, -0.2796454131603241, 0.024299101904034615, 0.127010777592659, 0.06426301598548889, 0.15510806441307068, 0.042881809175014496, -0.027045229449868202, 0.04581443965435028, 0.07889457046985626, -0.10959097743034363, -0.005062061361968517, 0.09975732862949371, -0.06948095560073853, 0.1590237319469452, -0.027392080053687096, 0.027618175372481346, 0.005268234293907881, 0.09517653286457062, -0.08378401398658752, 0.0361233651638031, -0.05204040929675102, -0.04070327430963516, 0.07354631274938583, -0.05154532566666603, -0.12738028168678284, 0.19980527460575104, 0.011641398072242737, 0.006463685538619757, -0.012688965536653996, -0.11215443164110184, -0.1149243637919426, -0.075428806245327, 0.1605091392993927, 0.009521213360130787, 0.12179727107286453, 0.00638124393299222, 0.14664968848228455, -0.09609805047512054, 0.00033574458211660385, 0.19984963536262512, -0.3336467742919922, -0.025647077709436417, 0.07661084085702896, 0.10028184950351715, -0.08803113549947739, -0.022898053750395775, 0.13313990831375122, -0.034968070685863495, 0.06174095347523689, 0.017788009718060493, -0.06393998861312866, 0.06771119683980942, 0.07109009474515915, -0.09195362776517868, -0.026919953525066376, 0.16036711633205414, -0.1664959043264389, 0.03140956163406372, -0.07071179151535034, -0.028090480715036392, -0.01970086805522442, -0.0031309188343584538, -0.08771545439958572, -0.04885181784629822, -0.006535997148603201, 0.0020846526604145765, 0.004742532968521118, -0.06821764260530472, -0.08142184466123581, -0.143644779920578, 0.005164532922208309, 0.005628267768770456, 0.08913324773311615, -0.1127999946475029, 0.12772753834724426, 0.036449577659368515, -0.01274983398616314, 0.0043721385300159454, -0.04031519591808319, -0.01575479283928871, -0.01670742966234684, -0.016161585226655006, 0.05648139864206314, 0.1320410966873169, 0.17464947700500488, -0.043248500674963, -0.07326090335845947, 0.087818443775177, 0.025171462446451187, -0.0031734141521155834, -0.004750356078147888, -0.15540693700313568, -0.0030979267321527004, -0.012116041965782642, -0.0046013519167900085, 0.011598261073231697, 0.04669758677482605, -0.0501638799905777, -0.016967620700597763, -0.011391292326152325, 0.06873925030231476, -0.10164312273263931, 0.048100799322128296, -0.014322309754788876, 0.0011317296884953976, 0.08363267034292221, 0.0072302743792533875, -0.08124620467424393, 0.0022280756384134293, 0.014596624299883842, 0.020979145541787148, 0.08446786552667618, 0.02830727957189083, -0.07358209043741226, 0.126780167222023, -0.0174570232629776, -0.02098924107849598, 0.007662578020244837, 0.0200835969299078, 0.024375218898057938, -0.0708920881152153, 0.06328085064888, -0.15243534743785858, -0.18445315957069397, -0.011879541911184788, -0.0125888055190444, -0.05095118284225464, 0.048511095345020294, -0.0373636856675148, 0.022964730858802795, -0.009042711928486824, -0.02455691620707512, -0.03017248585820198, -0.062233954668045044, 0.04315702244639397, -0.18204884231090546, 0.03280890733003616, -0.16302086412906647, -0.02052072435617447, -0.1301296055316925, 0.03883973881602287, -0.017013056203722954, -0.10355135053396225, 0.0561407133936882, -0.0635949894785881, -0.0696338564157486, -0.01706809736788273, -0.08409092575311661, 0.0016930202255025506, 0.047894056886434555, 0.09895874559879303, -0.016513360664248466, -0.08150216937065125, 0.25702527165412903, -0.028984785079956055, -0.25397583842277527, 0.10791859030723572, -0.007632010150700808, 0.16235274076461792, 0.08450967818498611, 0.18024776875972748, 0.08601551502943039, -0.0992787554860115, -0.06351160258054733, -0.13924747705459595, -0.11838050931692123, -0.05135713145136833, 0.06891223788261414, 0.014477670192718506, -0.027619704604148865, 0.005282358266413212, -0.12849308550357819, 0.009181024506688118, -0.11832874268293381, 0.022318413481116295, -0.002541421679779887, -0.12105752527713776, 0.013434834778308868, -0.008531435392796993, 0.08667111396789551, -0.04868528991937637, -0.019657721742987633, 0.049596138298511505, 0.07894256711006165, 0.00983403716236353, -0.033241670578718185, -0.17134490609169006, 0.03162013739347458, 0.06679221242666245, 0.05492304638028145, -0.1095457449555397, -0.030202189460396767, -0.0704970434308052, 0.04584667086601257, -0.04751512408256531, 0.058459483087062836, 0.03176712617278099, 0.03641867637634277, -0.045512907207012177, 0.023506663739681244, 0.13135354220867157, -0.015807054936885834, -0.05140594393014908, -0.041228875517845154, 0.0933295264840126, -0.059961751103401184, 0.07785110175609589, -0.008860625326633453, 0.05552057921886444, -0.11966755241155624, 0.1075117290019989, -0.022227156907320023, -0.00823533721268177, 0.02395198494195938, -0.006838734727352858, 0.01672418601810932, 0.0104605033993721, 0.06436007469892502, -0.02945137210190296, -0.055841706693172455, 0.2172788381576538, -0.14957402646541595, 0.189424529671669, 0.0532122366130352, -0.07215624302625656, -0.023614320904016495, -0.06789339333772659, -0.06760728359222412, 0.031168103218078613, -0.19732899963855743, -0.03245049715042114, 0.19169248640537262, -0.005928827915340662, 0.08887511491775513, 0.05071433633565903, -0.054454561322927475, -0.0295686237514019, -0.06084177643060684, 0.06044537201523781, 0.037673674523830414, 0.08170198649168015, -0.21096724271774292, 0.00838739238679409, 0.19858476519584656, 0.08448570221662521, 0.13574299216270447, 0.042878657579422, 0.005633647553622723, -0.0803956687450409, -0.11452548205852509, 0.013590759597718716, 0.020471248775720596, -0.169459268450737, -0.013442524708807468, 0.0664375051856041, -0.05217878893017769, 0.02828047052025795, -0.03610369935631752, -0.07715363800525665, -0.04788578301668167, -0.020236222073435783, -0.05050826072692871, 0.1641024798154831, -0.045019812881946564, 0.1635541170835495, 0.01517251692712307, -0.010589966550469398, 0.02658817730844021, 0.06092590466141701, -0.13978423178195953, 0.13028836250305176, -0.03034244477748871, -0.2363644540309906, -0.03373038023710251, -0.10732954740524292, 0.10907686501741409, 0.02767397277057171, 0.0392162948846817, -0.07132041454315186, 0.040276795625686646, -0.008881616406142712, 0.050698600709438324, 0.093093641102314, -0.016089240089058876, -0.007026086561381817, 0.01747818849980831, -0.037429966032505035, 0.01910235360264778, -0.07380358129739761, -0.14780879020690918, -0.08720982074737549, 0.1750914305448532, -0.11190550029277802, 0.01204358134418726, 0.1464066356420517, 0.04317546635866165, 0.006167809944599867, -0.035485077649354935, 0.03604472428560257, -0.08417385816574097, 0.05964157357811928, 0.22160299122333527, 0.013334522023797035, -0.03449904918670654, 0.08529692888259888, 0.0773094892501831, -0.05197152495384216, 0.06978684663772583, 0.000427800725447014, -0.017601197585463524, -0.2474881261587143, -0.09301433712244034, -0.03568512201309204, 0.05998505279421806, -0.000987377017736435, 0.053606826812028885, 0.026345424354076385, 0.13297854363918304, 0.03039061278104782, -0.025618670508265495, -0.009285458363592625, 0.03889760002493858, 0.11125296354293823, -0.03336144611239433, 0.16728626191616058, 0.037771306931972504, -0.11787574738264084, 0.07905080914497375, -0.08191512525081635, 0.1218249574303627, 0.03329380974173546, -0.08512217551469803, 0.13825127482414246, 0.0461416020989418, 0.10540078580379486, 0.06620002537965775, 0.14407701790332794, -0.02645755745470524, -0.0032279309816658497, -0.0036249086260795593, -0.08424244076013565, -0.02242099493741989, -0.10651770979166031, -0.07163543999195099, -0.005044817458838224, 0.031943436712026596, 0.0753142461180687, 0.1585291028022766, 0.13692833483219147, -0.14652679860591888, -0.08292632550001144, 0.020203836262226105, -0.05099740996956825, -0.1056513786315918, 0.09834443032741547, -0.00003482776810415089, -0.1311863511800766, 0.0690932422876358, -0.06784965842962265, 0.0967184379696846, -0.005704554263502359, 0.1383890062570572, 0.008526669815182686, -0.18432804942131042, -0.04958265274763107, 0.08322539180517197, -0.2362082153558731, 0.18365880846977234, -0.017880335450172424, 0.006570244673639536, -0.08448763936758041, -0.05309027060866356, 0.05655785650014877, 0.20352721214294434, 0.1771170198917389, 0.02524408884346485, 0.005146249197423458, 0.02591482363641262, -0.05464887246489525, 0.0645986869931221, 0.0731148049235344, -0.11544250696897507, 0.00779705448076129, -0.04150800034403801, 0.026591157540678978, -0.07054334878921509, -0.18173642456531525, -0.11403576284646988, 0.004182123113423586, 0.09096553921699524, -0.025831418111920357, 0.11978907883167267, -0.037216026335954666, -0.04088151827454567, -0.05977177619934082, 0.07325396686792374, 0.04567928984761238, -0.02364754118025303, -0.12310885637998581, 0.13147872686386108, 0.03699752688407898, -0.08097638934850693, -0.009670192375779152, 0.015724098309874535, -0.020870385691523552, -0.012939001433551311, -0.12757058441638947, 0.012307573109865189, -0.15168800950050354, -0.12802527844905853, -0.047565657645463943, 0.10796226561069489, 0.0499122329056263, 0.03352701663970947, 0.031122323125600815, 0.05614041909575462, -0.08519133180379868, -0.057934921234846115, 0.2101282924413681, 0.004485801327973604, 0.03721201419830322, 0.032553546130657196, -0.06936195492744446, -0.0774175301194191, -0.0056121679954230785, -0.09177547693252563, 0.11112061142921448, 0.12622861564159393, -0.05086784437298775, 0.13087907433509827, 0.12249297648668289, -0.04884438216686249, -0.328509122133255, -0.11467605829238892, -0.059739213436841965, -0.007713387720286846, 0.03764086216688156, -0.11386007815599442, 0.15669044852256775, 0.07844292372465134, -0.014794299378991127, -0.05617385357618332, -0.17944853007793427, -0.04508507624268532, 0.18939171731472015, -0.002872707787901163, 0.3338836133480072, -0.06916893273591995, -0.045211393386125565, 0.06304911524057388, -0.11580657958984375, 0.07938061654567719, -0.1894848644733429, 0.0383453331887722, -0.13941235840320587, 0.0496358685195446, 0.03335469961166382, -0.031038103625178337, 0.03198965638875961, -0.053501587361097336, -0.03119404800236225, -0.10397748649120331, -0.032023124396800995, 0.1401626318693161, 0.02500493824481964, 0.03416900709271431, 0.03854740411043167, -0.013463972136378288, -0.10723336786031723, -0.028670813888311386, -0.06548837572336197, -0.0020226717460900545, 0.046991072595119476, -0.1238429993391037, -0.07412601262331009, 0.06245773658156395, -0.04271269589662552, -0.00040213874308392406, 0.023976454511284828, -0.12028402090072632, 0.06312324106693268, -0.07098826766014099, 0.13371974229812622, -0.03116658702492714, 0.07425788044929504, -0.025104189291596413, -0.11866742372512817, 0.009918338619172573, -0.09337082505226135, -0.01010008342564106, 0.12468154728412628, 0.0027743116952478886, 0.06517700105905533, 0.06561212986707687, -0.03711545839905739, 0.034030888229608536, 0.0829930305480957, -0.22714775800704956, -0.09803496301174164, -0.05348977446556091, 0.012734729796648026, 0.0051620700396597385, 0.07140365988016129, 0.18056431412696838, -0.06859228014945984, -0.040022652596235275, -0.020775744691491127, 0.03530076891183853, -0.08628705143928528, 0.19965310394763947, -0.03385763615369797, -0.0017905286513268948, -0.06435322016477585, -0.03756605461239815, 0.050840891897678375, 0.008505258709192276, 0.009364032186567783, 0.030974827706813812, -0.1559506505727768, -0.14121964573860168, -0.03920932114124298, 0.14998912811279297, -0.17943722009658813, -0.08957741409540176, -0.08286283165216446, -0.1485915184020996, 0.08329376578330994, 0.1601911336183548, 0.009215629659593105, 0.01138351671397686, -0.08398323506116867, -0.016829535365104675, -0.04265579953789711, 0.10143937915563583, 0.04079563543200493, 0.03487483412027359, 0.05995873734354973, 0.035703420639038086, -0.009123441763222218, 0.14544740319252014, -0.11416241526603699, 0.051249612122774124, -0.10008420050144196, 0.014648105017840862, -0.19958476722240448, -0.05163038522005081, -0.008632810786366463, -0.10425849258899689, -0.030124494805932045, -0.02007594332098961, -0.06261206418275833, -0.07518541812896729, -0.02121841348707676, 0.0311332568526268, 0.033854011446237564, 0.002254686551168561, -0.07332088053226471, 0.00011068409366998821, 0.10307303816080093, 0.0050740959122776985, 0.19398410618305206, 0.06741855293512344, -0.012995634227991104, 0.04489480331540108, -0.13571298122406006, -0.016208218410611153, 0.06646883487701416, 0.07596433907747269, -0.00020360334019642323, -0.10053321719169617, 0.006374315824359655, 0.044856902211904526, -0.1052270159125328, 0.133968323469162, 0.025866147130727768, 0.01231048908084631, 0.03885453939437866, -0.0637645572423935, 0.03815087676048279, -0.0697033703327179, -0.0488264299929142, -0.01412177924066782, 0.05856253579258919, 0.056862663477659225, -0.09462834894657135, 0.023921016603708267, -0.08917315304279327, -0.005155148915946484, 0.002616296289488673, -0.07725300639867783, -0.10642967373132706, -0.00447419099509716, 0.053591158241033554, 0.07632878422737122, 0.225823774933815, -0.0628114640712738, -0.13266244530677795, 0.027121908962726593, 0.19100570678710938, 0.037765536457300186, -0.05424461141228676, 0.08142078667879105, 0.06923297792673111, -0.05761715769767761, -0.16706202924251556, 0.01583283208310604, -0.014201984740793705, -0.11961027979850769, 0.1616271585226059, -0.052546191960573196, 0.08859720081090927, -0.10416897386312485, -0.06201315298676491, 0.04597583785653114, -0.08641806244850159, -0.16586995124816895, -0.07249454408884048, -0.07968732714653015, 0.020548759028315544, 0.05003415793180466, 0.22247810661792755, -0.01468265987932682, -0.008026186376810074, -0.061247777193784714, -0.019589265808463097, -0.12712660431861877, -0.10256332159042358, -0.013334281742572784, -0.08331552147865295, -0.014166864566504955, -0.09738864749670029, 0.019722606986761093, 0.11622896790504456, 0.07574866712093353, -0.005984662566334009, 0.09507763385772705, -0.05173918604850769, 0.05463268607854843, 0.06836447864770889, -0.03511550650000572, 0.02055521309375763, -0.0785331204533577, 0.07856804877519608, -0.07085390388965607, 0.02809523418545723, 0.06637360900640488, -0.0022953881416469812, 0.005894429050385952, -0.03534940630197525, -0.07352543622255325, -0.008040422573685646, 0.032670214772224426, -0.0347026102244854, -0.040425557643175125, 0.040082745254039764, 0.11081530153751373, 0.06278092414140701, 0.05802393704652786, 0.2224443107843399, 0.00933571346104145, -0.11167910695075989, -0.10512803494930267, 0.02425011433660984, -0.004170891363173723, 0.022574061527848244, -0.012253087013959885, 0.03741884231567383, 0.04013071954250336, 0.34588563442230225, 0.2446148544549942, -0.04506867378950119, 0.00962132215499878, 0.055694349110126495, 0.03478991612792015, 0.1082707941532135, 0.10172830522060394, 0.11615382879972458, 0.1351083517074585, -0.07154113054275513, -0.03909166157245636, -0.08287058025598526, -0.08262399584054947, -0.08814011514186859, 0.02682492695748806, 0.0945851281285286, -0.02882315404713154, 0.01996767893433571, 0.08749993145465851, -0.12126117944717407, -0.0016262581339105964, -0.07062175869941711, -0.08524968475103378, -0.021246161311864853, -0.03627645596861839, 0.07203122228384018, 0.010006069205701351, 0.04955485090613365, -0.01622900739312172, 0.024733588099479675, 0.1246008351445198, 0.04059983044862747, -0.2016901671886444, -0.001864572404883802, 0.07980965822935104, -0.014496730640530586, 0.12148625403642654, -0.044840991497039795, 0.025037039071321487, 0.06561805307865143, -0.01887684501707554, -0.04892687499523163, 0.15543793141841888, -0.0627671480178833, -0.005023750010877848, 0.05338858440518379, 0.011490190401673317, 0.08468350768089294, -0.078297920525074, 0.05765734612941742, -0.10207950323820114, 0.0037182930391281843, 0.01235282514244318, -0.04247443005442619, -0.06931665539741516, 0.20675207674503326, 0.006130095571279526, 0.06514526158571243, 0.0295877605676651, -0.03283000737428665, 0.11385083198547363, -0.11026758700609207, 0.07203289121389389, -0.006394772790372372, 0.05111505836248398, 0.021160388365387917, -0.08946546912193298, 0.05218387022614479, -0.04008948430418968, -0.010920282453298569, -0.2598887085914612, -0.0359145849943161, -0.12029516696929932, 0.02997552789747715, -0.07899942994117737, 0.07406998425722122, 0.06359703838825226, 0.04931323230266571, -0.023546269163489342, 0.035689596086740494, 0.010798678733408451, 0.04039807245135307, -0.08368559181690216, -0.08468353748321533 ]
null
null
transformers
# Model Trained Using AutoNLP - Problem type: Summarization - Model ID: 583416409 - CO2 Emissions (in grams): 72.26141764997115 ## Validation Metrics - Loss: 1.4701834917068481 - Rouge1: 47.7785 - Rouge2: 24.8518 - RougeL: 40.2231 - RougeLsum: 43.9487 - Gen Len: 18.8029 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_HUGGINGFACE_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/anegi/autonlp-dialogue-summariztion-583416409 ```
{"language": "en", "tags": "autonlp", "datasets": ["anegi/autonlp-data-dialogue-summariztion"], "widget": [{"text": "I love AutoNLP \ud83e\udd17"}], "co2_eq_emissions": 72.26141764997115}
text2text-generation
anegi/autonlp-dialogue-summariztion-583416409
[ "transformers", "pytorch", "bart", "text2text-generation", "autonlp", "en", "dataset:anegi/autonlp-data-dialogue-summariztion", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #bart #text2text-generation #autonlp #en #dataset-anegi/autonlp-data-dialogue-summariztion #co2_eq_emissions #autotrain_compatible #endpoints_compatible #region-us
# Model Trained Using AutoNLP - Problem type: Summarization - Model ID: 583416409 - CO2 Emissions (in grams): 72.26141764997115 ## Validation Metrics - Loss: 1.4701834917068481 - Rouge1: 47.7785 - Rouge2: 24.8518 - RougeL: 40.2231 - RougeLsum: 43.9487 - Gen Len: 18.8029 ## Usage You can use cURL to access this model:
[ "# Model Trained Using AutoNLP\n\n- Problem type: Summarization\n- Model ID: 583416409\n- CO2 Emissions (in grams): 72.26141764997115", "## Validation Metrics\n\n- Loss: 1.4701834917068481\n- Rouge1: 47.7785\n- Rouge2: 24.8518\n- RougeL: 40.2231\n- RougeLsum: 43.9487\n- Gen Len: 18.8029", "## Usage\n\nYou can use cURL to access this model:" ]
[ "TAGS\n#transformers #pytorch #bart #text2text-generation #autonlp #en #dataset-anegi/autonlp-data-dialogue-summariztion #co2_eq_emissions #autotrain_compatible #endpoints_compatible #region-us \n", "# Model Trained Using AutoNLP\n\n- Problem type: Summarization\n- Model ID: 583416409\n- CO2 Emissions (in grams): 72.26141764997115", "## Validation Metrics\n\n- Loss: 1.4701834917068481\n- Rouge1: 47.7785\n- Rouge2: 24.8518\n- RougeL: 40.2231\n- RougeLsum: 43.9487\n- Gen Len: 18.8029", "## Usage\n\nYou can use cURL to access this model:" ]
[ 73, 41, 54, 13 ]
[ "passage: TAGS\n#transformers #pytorch #bart #text2text-generation #autonlp #en #dataset-anegi/autonlp-data-dialogue-summariztion #co2_eq_emissions #autotrain_compatible #endpoints_compatible #region-us \n# Model Trained Using AutoNLP\n\n- Problem type: Summarization\n- Model ID: 583416409\n- CO2 Emissions (in grams): 72.26141764997115## Validation Metrics\n\n- Loss: 1.4701834917068481\n- Rouge1: 47.7785\n- Rouge2: 24.8518\n- RougeL: 40.2231\n- RougeLsum: 43.9487\n- Gen Len: 18.8029## Usage\n\nYou can use cURL to access this model:" ]
[ -0.1870366930961609, 0.12556131184101105, -0.0015887677436694503, 0.06795724481344223, 0.04877448081970215, 0.008806940168142319, 0.11767777055501938, 0.06759350001811981, 0.04215208441019058, 0.01804986223578453, 0.12763690948486328, 0.11940869688987732, -0.004427247680723667, 0.20136862993240356, -0.05939555540680885, -0.15732890367507935, 0.07373552769422531, 0.04381376504898071, 0.039959926158189774, 0.11685851961374283, 0.12017955631017685, -0.08591421693563461, 0.12891602516174316, 0.08579981327056885, -0.14019496738910675, -0.013903859071433544, 0.039628639817237854, -0.07513321191072464, 0.13121309876441956, 0.10954245924949646, 0.1569463312625885, 0.0798877403140068, 0.1233903095126152, -0.09445350617170334, 0.007651573978364468, -0.04645640775561333, -0.04827269911766052, 0.11770806461572647, 0.03747403249144554, -0.06276635080575943, 0.011967171914875507, 0.03994715213775635, 0.02625562623143196, 0.046761926263570786, -0.08829747140407562, -0.034861620515584946, -0.05955180153250694, -0.05593518540263176, 0.129425510764122, 0.08457989245653152, -0.01901906356215477, 0.2553984820842743, -0.19227732717990875, 0.02629212476313114, 0.13040538132190704, -0.1899430751800537, 0.002246327232569456, 0.13607993721961975, 0.026864521205425262, -0.12374471873044968, -0.06119566410779953, 0.07413773238658905, 0.10372458398342133, -0.033036161214113235, 0.05838411673903465, -0.08496315777301788, -0.01390030700713396, 0.009717551060020924, -0.11299978196620941, -0.013839587569236755, 0.23967741429805756, 0.08419078588485718, -0.08642591536045074, 0.019826414063572884, -0.07030592858791351, -0.10443983227014542, -0.048147059977054596, -0.11887337267398834, -0.00007829261448932812, -0.0629548653960228, -0.053802721202373505, 0.03727087378501892, -0.16055655479431152, -0.04563439264893532, -0.12547388672828674, 0.0694584846496582, -0.04330943524837494, 0.006088416092097759, -0.03069334663450718, 0.13195790350437164, -0.19476871192455292, -0.061538487672805786, -0.03628591448068619, -0.065697580575943, -0.09276153147220612, -0.01758127100765705, -0.02520461566746235, 0.10050283372402191, -0.002797264838591218, 0.2277870774269104, 0.024210289120674133, -0.03840743377804756, 0.10885141789913177, 0.020367499440908432, 0.009516666643321514, 0.176579087972641, -0.06924036145210266, -0.11405713111162186, 0.05771234631538391, -0.0655985027551651, 0.026238489896059036, -0.06345585733652115, -0.13108965754508972, -0.12125337868928909, 0.055449653416872025, 0.02808966115117073, 0.02189333736896515, -0.033119745552539825, -0.1390409767627716, -0.020042575895786285, 0.1796305924654007, 0.007944216951727867, 0.03517860919237137, -0.015585977584123611, -0.016289643943309784, 0.0511983186006546, 0.11228868365287781, 0.06507687270641327, -0.02134723775088787, 0.07276497036218643, -0.1351063847541809, -0.023340368643403053, -0.04150623455643654, -0.07682842761278152, 0.0443890206515789, -0.04899369552731514, 0.03724543750286102, -0.2065383344888687, -0.06688535958528519, 0.03007648140192032, -0.025930894538760185, -0.036997005343437195, -0.06914003938436508, -0.045340608805418015, -0.007991504855453968, 0.02700653485953808, 0.009431375190615654, -0.026518480852246284, -0.042739588767290115, -0.032549332827329636, 0.024239687249064445, 0.05261052027344704, -0.1522074192762375, 0.023536929860711098, -0.06543044000864029, 0.008375142700970173, -0.12319163233041763, 0.012958312407135963, 0.015749545767903328, -0.042760904878377914, -0.1251462996006012, -0.06319905072450638, 0.016982248052954674, -0.032806139439344406, 0.11246921867132187, 0.21010558307170868, -0.0891207903623581, -0.07261351495981216, 0.04885944724082947, -0.06131824105978012, -0.09747251123189926, 0.10952095687389374, -0.03135162964463234, 0.01474340632557869, 0.026329156011343002, -0.03099312074482441, 0.06985048949718475, -0.12577442824840546, -0.018242457881569862, 0.07859720289707184, -0.015624270774424076, -0.15159650146961212, 0.1103176400065422, -0.023445384576916695, -0.14510156214237213, -0.018984856083989143, 0.05503536015748978, 0.035945430397987366, -0.11258844286203384, -0.11333395540714264, -0.05038568750023842, 0.0006387017201632261, 0.050545599311590195, -0.06563127785921097, 0.03262345865368843, -0.01198448333889246, -0.09049785882234573, -0.09009797871112823, 0.10395810753107071, 0.007901553995907307, 0.03011929988861084, -0.09092237800359726, 0.10293040424585342, -0.1428758203983307, -0.053969383239746094, -0.13638141751289368, -0.04923606663942337, -0.011582274921238422, -0.016613079234957695, -0.017413415014743805, 0.07478100061416626, 0.012013601139187813, 0.07421812415122986, -0.0013434631982818246, 0.012505524791777134, 0.014969509094953537, -0.008956468664109707, -0.13553385436534882, -0.14073725044727325, -0.033672068268060684, -0.009931123815476894, 0.2599031925201416, -0.09980522841215134, -0.01939108967781067, -0.028748231008648872, 0.10320515185594559, -0.0352880023419857, 0.041714858263731, -0.012165379710495472, 0.015577315352857113, -0.08665388077497482, 0.01961534470319748, 0.010215194895863533, -0.006614474579691887, -0.18208463490009308, 0.10622864961624146, -0.14412827789783478, 0.13965043425559998, 0.14746959507465363, -0.030003948137164116, -0.07697132229804993, -0.04050933197140694, -0.00008888661977835, -0.0019879762548953295, -0.06940246373414993, -0.0285895187407732, 0.04716011881828308, 0.003917728550732136, 0.1052483320236206, -0.06258407235145569, -0.007250874303281307, 0.08117605000734329, -0.0709766298532486, 0.02517002262175083, 0.1395743489265442, 0.18270714581012726, -0.11873295903205872, 0.07335663586854935, 0.12667560577392578, -0.1069871336221695, 0.006582766305655241, 0.07599128037691116, -0.07616253942251205, -0.06398044526576996, -0.09700905531644821, 0.026895469054579735, 0.11601938307285309, -0.06698160618543625, 0.0740446075797081, 0.10546182096004486, -0.035611141473054886, -0.006795637309551239, -0.15068252384662628, -0.032603781670331955, 0.03524406999349594, 0.03765159100294113, -0.09197518974542618, 0.06016895920038223, -0.012019125744700432, 0.14189797639846802, -0.012878550216555595, -0.170961394906044, 0.00997348502278328, 0.032760754227638245, -0.14806640148162842, 0.2747958302497864, -0.07078889012336731, -0.27387863397598267, -0.11449169367551804, -0.017126521095633507, -0.004780590999871492, 0.04131260886788368, 0.08477985858917236, -0.0706278383731842, -0.11531531065702438, -0.009463262744247913, 0.0027311472222208977, 0.01899793930351734, 0.09510153532028198, -0.04048501327633858, -0.07049834728240967, -0.04064760357141495, -0.11525005847215652, -0.023706955835223198, -0.035200074315071106, -0.011901813559234142, 0.13203158974647522, -0.07905406504869461, 0.1311579942703247, 0.18438521027565002, -0.022133473306894302, -0.035633351653814316, 0.04698013514280319, 0.26389235258102417, -0.06417997926473618, 0.03794487193226814, 0.11804038286209106, 0.040631767362356186, 0.03719185292720795, 0.10877037793397903, 0.03217029199004173, -0.0586814284324646, 0.005441874731332064, -0.02099783346056938, -0.07194960862398148, -0.21643680334091187, -0.13876406848430634, -0.020717810839414597, 0.004879136569797993, 0.032889172434806824, -0.00843715202063322, 0.16933833062648773, 0.14570046961307526, -0.023492883890867233, 0.025773074477910995, -0.08412446826696396, 0.09130000323057175, 0.11179855465888977, -0.016254838556051254, 0.16718536615371704, -0.05290863662958145, -0.09789475798606873, 0.12321851402521133, -0.04278172180056572, 0.11805898696184158, 0.12917903065681458, 0.02577587589621544, -0.007991589605808258, 0.13167895376682281, 0.0877789780497551, 0.1433541625738144, 0.12533625960350037, -0.06660643219947815, -0.036071114242076874, -0.052702706307172775, -0.015780603513121605, 0.08918731659650803, 0.11018681526184082, -0.013842783868312836, -0.11301665008068085, 0.056725915521383286, 0.019673366099596024, 0.018650513142347336, 0.18586747348308563, -0.38553130626678467, -0.08472535759210587, -0.002314519602805376, 0.0102224824950099, -0.06855914741754532, -0.0485093854367733, -0.040990546345710754, -0.17391785979270935, 0.005380586721003056, 0.009507116861641407, 0.08776962757110596, 0.022172892466187477, 0.015325242653489113, -0.1409122198820114, 0.0449993722140789, -0.027944041416049004, 0.07091684639453888, -0.2221163809299469, 0.28557509183883667, 0.045973338186740875, -0.04140695929527283, -0.05699741095304489, 0.008781833574175835, 0.0019541815854609013, 0.19653263688087463, 0.16363860666751862, 0.03164563328027725, 0.06939979642629623, -0.11364257335662842, -0.20522989332675934, 0.08094406872987747, -0.008554251864552498, -0.07481718063354492, 0.03555701673030853, 0.033068522810935974, -0.079239122569561, 0.033292606472969055, 0.0030486444011330605, -0.1467607170343399, -0.056162912398576736, 0.10246768593788147, 0.11875271052122116, -0.05430230870842934, 0.005811134818941355, -0.11841912567615509, 0.02830728143453598, 0.2210516482591629, -0.012167578563094139, -0.021296242251992226, -0.13683922588825226, 0.004519931972026825, 0.139864981174469, -0.1018168181180954, 0.08793549239635468, -0.054837167263031006, 0.09994202852249146, -0.04694780707359314, -0.03871120139956474, 0.1297958940267563, -0.12318746745586395, -0.06943630427122116, -0.022128285840153694, 0.13224467635154724, 0.04474350064992905, 0.09557940065860748, 0.07259666174650192, 0.00006117126031313092, -0.10975254327058792, -0.15133748948574066, -0.0021588951349258423, 0.006290218327194452, 0.052638035267591476, -0.014197110198438168, 0.02943485602736473, -0.08548634499311447, -0.012600711546838284, 0.027690667659044266, 0.15078425407409668, 0.21767385303974152, -0.09003604203462601, 0.04538692533969879, 0.19754618406295776, -0.014645957387983799, -0.2179892659187317, -0.026840034872293472, -0.009176772087812424, 0.08240270614624023, -0.08561474084854126, -0.08161046355962753, 0.10029276460409164, 0.1053541973233223, -0.04476054757833481, 0.012358367443084717, -0.20588397979736328, -0.16210684180259705, 0.22766312956809998, -0.01603328436613083, 0.271081805229187, -0.0038571199402213097, -0.0035480624064803123, -0.09191688150167465, -0.2693941295146942, 0.17231805622577667, -0.00792308896780014, 0.07914519309997559, -0.011073652654886246, 0.08961085230112076, 0.04218081012368202, -0.030962461605668068, 0.21345295011997223, 0.04956628382205963, -0.010538297705352306, 0.020923350006341934, -0.08794780820608139, 0.015606299042701721, -0.04954142868518829, 0.09864075481891632, 0.027124403044581413, 0.04619099572300911, -0.10988642275333405, -0.04229756072163582, 0.0012327672448009253, 0.13613900542259216, -0.046186890453100204, -0.07688803970813751, -0.020840464159846306, -0.014043762348592281, -0.024672528728842735, -0.03297065570950508, 0.06629011780023575, 0.008719916455447674, 0.017040081322193146, 0.08228873461484909, 0.17983302474021912, -0.08559879660606384, -0.03045467473566532, 0.02111206017434597, -0.08042851835489273, 0.1010521799325943, -0.1433231681585312, 0.07227910310029984, 0.1328490525484085, -0.007421485148370266, 0.045509643852710724, 0.032538555562496185, -0.07668063789606094, -0.01783902570605278, 0.10804591327905655, -0.15034787356853485, 0.026945294812321663, -0.03480517864227295, 0.018356630578637123, -0.03361691161990166, 0.10256327688694, 0.13027669489383698, -0.03644142672419548, -0.05920659005641937, 0.004061822779476643, -0.02762337028980255, -0.04873498156666756, 0.17414362728595734, 0.05407004803419113, 0.0783412978053093, -0.12447313219308853, 0.00924971979111433, 0.009628505446016788, -0.029206572100520134, -0.030606381595134735, -0.0026841757353395224, -0.11815188080072403, -0.10081282258033752, -0.030226562172174454, 0.1199755147099495, -0.3727124333381653, -0.053302545100450516, -0.037031810730695724, -0.05330673232674599, 0.042170342057943344, 0.17501461505889893, 0.11491596698760986, 0.04266957938671112, 0.009521217085421085, -0.11364135891199112, -0.1092766523361206, -0.025674674659967422, 0.09039882570505142, 0.04438050091266632, -0.012045889161527157, 0.020435722544789314, -0.024586601182818413, 0.146748349070549, -0.045561082661151886, -0.012673893012106419, -0.11003602296113968, -0.02212548442184925, -0.11032582819461823, -0.014794698916375637, -0.06574070453643799, -0.024059994146227837, -0.024815088137984276, -0.08677081018686295, -0.07421454787254333, 0.036396559327840805, -0.07191553711891174, 0.0005962528521195054, -0.009586974047124386, 0.03263142332434654, -0.06307350844144821, -0.021705003455281258, 0.06436993926763535, -0.021124430000782013, 0.08678461611270905, 0.11886615306138992, 0.054163627326488495, 0.06498762965202332, -0.17062650620937347, 0.013215736486017704, 0.1036614328622818, 0.032820675522089005, 0.13846661150455475, -0.16578206419944763, 0.03114491142332554, 0.037407808005809784, 0.0587335079908371, -0.017511244863271713, 0.03056642971932888, -0.11306513100862503, 0.0254774522036314, -0.059574805200099945, -0.14461924135684967, -0.06576774269342422, -0.01184750534594059, 0.06278304010629654, 0.05402318760752678, 0.04021403193473816, 0.0225503109395504, 0.0723387748003006, -0.10028435289859772, 0.052910998463630676, -0.08052849769592285, -0.029579782858490944, -0.10379156470298767, -0.06710323691368103, 0.04951959475874901, -0.0009761503897607327, 0.13611559569835663, -0.057524945586919785, 0.17375421524047852, -0.0152394138276577, 0.041759271174669266, 0.0697738453745842, -0.012183175422251225, 0.09238757193088531, 0.133841872215271, 0.036551956087350845, 0.030448168516159058, 0.13938982784748077, 0.10358979552984238, -0.014019506983458996, 0.14289787411689758, -0.0749320238828659, 0.03378472104668617, 0.18378876149654388, -0.03347829729318619, -0.12671148777008057, -0.0688752830028534, -0.09171710163354874, -0.09092588722705841, -0.0028694935608655214, 0.01648791693150997, 0.04529838263988495, 0.10616134107112885, -0.06913323700428009, -0.007918104529380798, 0.012127917259931564, -0.049767035990953445, -0.24163536727428436, -0.06986240297555923, -0.13662494719028473, -0.08294374495744705, -0.03079543448984623, -0.11698999255895615, -0.041769590228796005, 0.035927291959524155, 0.06872621178627014, -0.027028106153011322, 0.054982028901576996, -0.05888642743229866, -0.016756515949964523, -0.017017599195241928, 0.03571339324116707, 0.06109369173645973, -0.05381070077419281, -0.009672132320702076, 0.0025016821455210447, 0.0492071732878685, 0.009311717003583908, -0.03940162435173988, 0.03544975817203522, 0.11597796529531479, 0.026038430631160736, -0.0957394391298294, -0.057878993451595306, -0.007320299278944731, 0.05839047580957413, 0.03821147605776787, 0.0037725907750427723, 0.0524829626083374, 0.01569843478500843, 0.1659683734178543, -0.06201281398534775, -0.010584763251245022, -0.15936213731765747, 0.25801289081573486, -0.04185103625059128, 0.05825776234269142, 0.018826914951205254, -0.03756004571914673, -0.004825791344046593, 0.175334170460701, 0.15585030615329742, -0.0029086689464747906, 0.03408470004796982, -0.0019579213112592697, 0.011510041542351246, 0.019888248294591904, -0.04153181612491608, 0.07026401907205582, 0.18139329552650452, -0.12692449986934662, -0.028182949870824814, -0.007632516790181398, -0.013028828427195549, 0.032033443450927734, 0.041157934814691544, -0.010985207743942738, -0.04253434017300606, -0.04188239574432373, 0.07210458815097809, -0.041103724390268326, 0.03786121681332588, 0.06369294971227646, -0.1277441829442978, -0.13609114289283752, 0.0142092015594244, -0.05274582281708717, 0.019396478310227394, 0.12338952720165253, -0.1145983412861824, -0.0901213064789772, 0.14969675242900848, 0.04139045998454094, -0.18251799046993256, -0.1076449304819107, 0.053526587784290314, 0.10403203964233398, 0.14820004999637604, 0.018969377502799034, 0.16761159896850586, 0.10921932011842728, 0.07533948868513107, -0.11244411766529083, 0.08369141817092896, 0.058942314237356186, -0.07747757434844971, 0.10733094811439514, 0.007630618289113045, -0.023380860686302185, 0.06690478324890137, 0.00620084535330534, -0.16639837622642517, 0.05539475008845329, -0.05555718392133713, -0.0019053566502407193, -0.041939400136470795, 0.014029075391590595, -0.10467024147510529, 0.11516875773668289, 0.07801761478185654, -0.0805373266339302, -0.08371859043836594, -0.01904708333313465, 0.10497237741947174, 0.07384705543518066, -0.15036451816558838, -0.024535560980439186, -0.10509750992059708, 0.1077326312661171, 0.006265583448112011, 0.04254470020532608, -0.09195774793624878, -0.02661922574043274, -0.05161314457654953, -0.05608963593840599, -0.03476804494857788, 0.03414274752140045, -0.015753408893942833, 0.02004065550863743, -0.02093280293047428, -0.08307062089443207, -0.0009785882430151105, 0.05893693119287491, -0.07750964909791946, -0.18969595432281494 ]
null
null
transformers
# Model Trained Using AutoNLP - Problem type: Binary Classification - Model ID: 412010597 - CO2 Emissions (in grams): 10.411685187181709 ## Validation Metrics - Loss: 0.12585781514644623 - Accuracy: 0.9475446428571429 - Precision: 0.9454660748256183 - Recall: 0.964424320827943 - AUC: 0.990229573862156 - F1: 0.9548511047070125 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/anel/autonlp-cml-412010597 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("anel/autonlp-cml-412010597", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("anel/autonlp-cml-412010597", use_auth_token=True) inputs = tokenizer("I love AutoNLP", return_tensors="pt") outputs = model(**inputs) ```
{"language": "en", "tags": "autonlp", "datasets": ["anel/autonlp-data-cml"], "widget": [{"text": "I love AutoNLP \ud83e\udd17"}], "co2_eq_emissions": 10.411685187181709}
text-classification
anel/autonlp-cml-412010597
[ "transformers", "pytorch", "roberta", "text-classification", "autonlp", "en", "dataset:anel/autonlp-data-cml", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #roberta #text-classification #autonlp #en #dataset-anel/autonlp-data-cml #co2_eq_emissions #autotrain_compatible #endpoints_compatible #region-us
# Model Trained Using AutoNLP - Problem type: Binary Classification - Model ID: 412010597 - CO2 Emissions (in grams): 10.411685187181709 ## Validation Metrics - Loss: 0.12585781514644623 - Accuracy: 0.9475446428571429 - Precision: 0.9454660748256183 - Recall: 0.964424320827943 - AUC: 0.990229573862156 - F1: 0.9548511047070125 ## Usage You can use cURL to access this model: Or Python API:
[ "# Model Trained Using AutoNLP\n\n- Problem type: Binary Classification\n- Model ID: 412010597\n- CO2 Emissions (in grams): 10.411685187181709", "## Validation Metrics\n\n- Loss: 0.12585781514644623\n- Accuracy: 0.9475446428571429\n- Precision: 0.9454660748256183\n- Recall: 0.964424320827943\n- AUC: 0.990229573862156\n- F1: 0.9548511047070125", "## Usage\n\nYou can use cURL to access this model:\n\n\n\nOr Python API:" ]
[ "TAGS\n#transformers #pytorch #roberta #text-classification #autonlp #en #dataset-anel/autonlp-data-cml #co2_eq_emissions #autotrain_compatible #endpoints_compatible #region-us \n", "# Model Trained Using AutoNLP\n\n- Problem type: Binary Classification\n- Model ID: 412010597\n- CO2 Emissions (in grams): 10.411685187181709", "## Validation Metrics\n\n- Loss: 0.12585781514644623\n- Accuracy: 0.9475446428571429\n- Precision: 0.9454660748256183\n- Recall: 0.964424320827943\n- AUC: 0.990229573862156\n- F1: 0.9548511047070125", "## Usage\n\nYou can use cURL to access this model:\n\n\n\nOr Python API:" ]
[ 67, 42, 80, 17 ]
[ "passage: TAGS\n#transformers #pytorch #roberta #text-classification #autonlp #en #dataset-anel/autonlp-data-cml #co2_eq_emissions #autotrain_compatible #endpoints_compatible #region-us \n# Model Trained Using AutoNLP\n\n- Problem type: Binary Classification\n- Model ID: 412010597\n- CO2 Emissions (in grams): 10.411685187181709## Validation Metrics\n\n- Loss: 0.12585781514644623\n- Accuracy: 0.9475446428571429\n- Precision: 0.9454660748256183\n- Recall: 0.964424320827943\n- AUC: 0.990229573862156\n- F1: 0.9548511047070125## Usage\n\nYou can use cURL to access this model:\n\n\n\nOr Python API:" ]
[ -0.14829126000404358, 0.13050992786884308, -0.0008166239713318646, 0.07318787276744843, 0.11990471929311752, 0.032161176204681396, 0.036206141114234924, 0.09389826655387878, 0.00878667738288641, 0.06382101029157639, 0.1510053426027298, 0.19947928190231323, 0.015326591208577156, 0.11443499475717545, -0.15171268582344055, -0.14437153935432434, 0.04260392487049103, 0.08147598803043365, 0.09956836700439453, 0.12121161073446274, 0.09578512609004974, -0.10261750966310501, 0.13568611443042755, 0.050183314830064774, -0.15994201600551605, -0.010805320926010609, 0.08073961734771729, -0.11157629638910294, 0.08752943575382233, 0.08373056352138519, 0.16875207424163818, 0.025261979550123215, 0.08743996173143387, -0.11174236983060837, -0.021789327263832092, 0.0029246946796774864, -0.012402675114572048, 0.09083763509988785, 0.040642328560352325, -0.06335341930389404, -0.011017335578799248, 0.005673951003700495, 0.0811346098780632, 0.045510075986385345, -0.08324988186359406, -0.06802733242511749, -0.060603559017181396, 0.05714980140328407, 0.13293147087097168, 0.11666695028543472, 0.011711565777659416, 0.2524005174636841, -0.084551602602005, 0.08503817766904831, 0.0650254338979721, -0.28106603026390076, -0.013772530481219292, 0.11862688511610031, -0.01775064691901207, -0.10456305742263794, -0.025465697050094604, 0.010630282573401928, 0.09437470138072968, 0.025924809277057648, 0.06359849125146866, -0.06424666941165924, -0.058318283408880234, 0.006098214071244001, -0.10350295901298523, -0.06659876555204391, 0.18418912589550018, 0.015404317528009415, -0.08550664782524109, -0.0133893433958292, -0.0924895852804184, -0.12586992979049683, -0.07035792618989944, -0.03310932219028473, -0.02387041039764881, -0.03611796349287033, -0.05304548144340515, 0.08262193202972412, -0.11946085095405579, -0.04742923006415367, -0.18574540317058563, 0.12176764756441116, 0.007185015827417374, 0.058125950396060944, -0.041725024580955505, 0.10883297771215439, -0.074915811419487, -0.08711790293455124, -0.0262365210801363, -0.030839573591947556, -0.047320656478405, -0.0670214518904686, -0.03230069577693939, 0.02432013303041458, -0.014175549149513245, 0.20363810658454895, 0.04372938722372055, 0.038923561573028564, 0.03469054773449898, 0.0027654345612972975, -0.01771172694861889, 0.18544048070907593, -0.08836611360311508, -0.015108139254152775, 0.06849922984838486, -0.07656976580619812, 0.020613310858607292, -0.034976642578840256, -0.0839197114109993, -0.12656280398368835, 0.1287752389907837, 0.02055312693119049, 0.019102128222584724, 0.0642324760556221, -0.07150367647409439, -0.03919284790754318, 0.07776694744825363, -0.04877042770385742, 0.043120305985212326, -0.019211897626519203, -0.06032102555036545, 0.0723293125629425, 0.11086517572402954, 0.046771090477705, -0.07975878566503525, 0.0967869684100151, -0.11253786087036133, 0.02057473547756672, -0.04500322788953781, -0.10366681963205338, 0.0566377155482769, -0.07062310725450516, 0.03766750916838646, -0.21226489543914795, -0.1579974889755249, -0.0033977238927036524, 0.011026313528418541, -0.04075419157743454, -0.027639100328087807, -0.011558130383491516, -0.03327959403395653, 0.05500435456633568, -0.024891283363103867, -0.03113635815680027, -0.03580861538648605, 0.03047836944460869, 0.04997523874044418, 0.040493983775377274, -0.11443280428647995, 0.034410037100315094, -0.07727626711130142, 0.006227824836969376, -0.1238541230559349, 0.025021258741617203, -0.019575880840420723, 0.062174346297979355, -0.1473524570465088, -0.0705549567937851, 0.0792483240365982, -0.0342630110681057, 0.07278935611248016, 0.129432812333107, -0.038068145513534546, -0.0033181391190737486, 0.060491736978292465, -0.0464506559073925, -0.11607389897108078, 0.10009320825338364, -0.05043439939618111, -0.01513058040291071, 0.06667131930589676, -0.05103937163949013, 0.14856192469596863, -0.13102489709854126, -0.06724952906370163, 0.030815863981842995, -0.05843652784824371, -0.13896936178207397, 0.053052645176649094, 0.028048165142536163, -0.1727866381406784, 0.028548642992973328, 0.06709357351064682, 0.010938465595245361, -0.05222621187567711, -0.08531925082206726, -0.07546167820692062, -0.026893965899944305, 0.0278092622756958, -0.007270548492670059, 0.07212625443935394, -0.029407262802124023, -0.0772673711180687, -0.025883667171001434, 0.11617670208215714, -0.021473059430718422, -0.0010753528913483024, -0.1548132449388504, 0.11303536593914032, -0.20171627402305603, -0.05375389754772186, -0.19299593567848206, -0.010679949074983597, -0.0186174176633358, 0.03573977202177048, -0.03011307679116726, -0.04626627638936043, 0.055000025779008865, 0.007561295293271542, 0.001288564526475966, -0.0037998936604708433, 0.13588491082191467, -0.0014100682456046343, -0.1441437005996704, -0.049077004194259644, -0.030394265428185463, -0.010682692751288414, 0.19781170785427094, -0.12279069423675537, -0.019294997677206993, 0.007044519297778606, 0.10474537312984467, -0.017734820023179054, 0.03240249305963516, -0.03995180130004883, 0.045231033116579056, -0.06010863184928894, 0.0016122108791023493, 0.019914526492357254, -0.0067677791230380535, -0.11438004672527313, 0.04228644445538521, -0.16899999976158142, 0.19522014260292053, 0.16693374514579773, -0.0901605486869812, -0.07524322718381882, 0.0021110880188643932, 0.02601795829832554, -0.013737744651734829, -0.026995841413736343, 0.01659047231078148, 0.12220693379640579, 0.005254930350929499, 0.13216833770275116, -0.07469332218170166, -0.04842305928468704, 0.06229221075773239, -0.08341174572706223, -0.024388710036873817, 0.13447178900241852, 0.06837031245231628, -0.21432086825370789, 0.08138789981603622, 0.03827786445617676, -0.12028630822896957, -0.006426936015486717, 0.047359440475702286, -0.05277642235159874, -0.03374676778912544, -0.04924435913562775, 0.036440614610910416, 0.04590360075235367, -0.019609929993748665, 0.052783526480197906, 0.08898178488016129, -0.01716465689241886, 0.017767807468771935, -0.1293654590845108, 0.022477006539702415, 0.03181764855980873, 0.026829037815332413, -0.08406245708465576, 0.015477964654564857, 0.04640558362007141, 0.11549805104732513, 0.038860492408275604, -0.10094618052244186, 0.05922788381576538, 0.0348939374089241, -0.13651520013809204, 0.24865351617336273, -0.08784772455692291, -0.2043866217136383, -0.16669709980487823, -0.14470818638801575, -0.022855427116155624, 0.0030272165313363075, 0.0268528014421463, -0.02960003726184368, -0.1301194727420807, -0.028509290888905525, -0.09462487697601318, -0.04191257432103157, 0.024209871888160706, -0.01209721714258194, -0.019738154485821724, 0.04191895201802254, -0.07083361595869064, -0.05181976407766342, -0.017556844279170036, -0.010992844589054585, 0.1366373747587204, -0.06045062467455864, 0.10557923465967178, 0.17502179741859436, -0.04298420622944832, 0.004403233993798494, 0.021899288520216942, 0.19707442820072174, -0.029725542291998863, -0.02168034203350544, 0.158016175031662, -0.0032497397623956203, 0.03971845656633377, 0.13928964734077454, 0.01941591314971447, -0.059960540384054184, -0.006793082691729069, -0.0177567470818758, -0.04590770974755287, -0.1990499496459961, -0.16475893557071686, -0.017337828874588013, -0.01517219003289938, 0.12520691752433777, 0.009049156680703163, 0.11764813214540482, 0.15445390343666077, 0.0032542389817535877, 0.09095504879951477, -0.06685055792331696, 0.11601023375988007, 0.16651707887649536, 0.03685441613197327, 0.1541493982076645, -0.0685235932469368, -0.0732007548213005, 0.06440421938896179, -0.0006236726185306907, 0.09428870677947998, 0.04957076907157898, -0.03224927932024002, -0.026726773008704185, 0.13489463925361633, 0.07748553156852722, 0.13899774849414825, 0.055680591613054276, -0.04029811918735504, 0.026761727407574654, -0.021354179829359055, -0.0993238091468811, 0.04206777364015579, 0.054697684943675995, 0.013977150432765484, -0.1116199791431427, -0.013539264909923077, -0.007260837592184544, 0.0947447419166565, 0.15853697061538696, -0.4944573640823364, -0.0876128152012825, 0.016649028286337852, -0.04406573995947838, -0.12768054008483887, -0.015034063719213009, -0.10867336392402649, -0.1506519615650177, 0.05356866866350174, -0.04381101578474045, 0.11561145633459091, -0.04651132971048355, -0.012472013011574745, -0.0720336064696312, 0.005202747881412506, -0.020886801183223724, 0.069678895175457, -0.2351701259613037, 0.22640089690685272, 0.05538056790828705, 0.03875303640961647, -0.08390958607196808, -0.000669703702442348, 0.008886925876140594, 0.1106002926826477, 0.12445990741252899, -0.007743517402559519, 0.013108160346746445, -0.25516438484191895, -0.14137916266918182, 0.037598107010126114, -0.014885257929563522, 0.0262939240783453, 0.10318208485841751, -0.0022024260833859444, -0.030463671311736107, 0.008263512514531612, -0.04314253479242325, -0.06711667776107788, -0.053688742220401764, 0.04433925077319145, 0.12099529802799225, -0.033848147839307785, 0.009675804525613785, -0.06167168170213699, -0.022449186071753502, 0.1446307897567749, -0.07463550567626953, -0.07016682624816895, -0.1473631113767624, -0.0059305219911038876, 0.12289243936538696, -0.11772183328866959, 0.08900151401758194, -0.04794399067759514, 0.06299713999032974, 0.002787770237773657, -0.12983529269695282, 0.10464860498905182, -0.087710902094841, -0.035432811826467514, 0.01213237177580595, 0.07270872592926025, 0.002557693747803569, 0.03619243577122688, 0.08037255704402924, 0.028436725959181786, -0.10392901301383972, -0.11090564727783203, -0.009454308077692986, 0.04792182892560959, 0.16693115234375, 0.0711725503206253, 0.040858589112758636, -0.12876881659030914, -0.05096026137471199, 0.08204798400402069, 0.16760236024856567, 0.15217474102973938, -0.07915028929710388, -0.019648214802145958, 0.11765290051698685, -0.009870023466646671, -0.2188677042722702, -0.018622448667883873, -0.011789347976446152, 0.05003874748945236, -0.1476992517709732, -0.013513483107089996, 0.12158636748790741, 0.06087716668844223, -0.045992832630872726, -0.012503840029239655, -0.15867556631565094, -0.12050072848796844, 0.26820361614227295, 0.03630776330828667, 0.2036009430885315, -0.05731077119708061, -0.028373226523399353, -0.14095552265644073, -0.3267349600791931, 0.12489490956068039, -0.00385266006924212, 0.0772317573428154, -0.06050243601202965, 0.13445332646369934, 0.04369863495230675, -0.08082924783229828, 0.13245047628879547, 0.02292884700000286, 0.037184227257966995, -0.04543817788362503, -0.052010782063007355, -0.05086452513933182, -0.07817555963993073, 0.14588405191898346, 0.04373655095696449, 0.06614265590906143, -0.1884118914604187, -0.054376039654016495, -0.020989563316106796, 0.09587865322828293, -0.010238777846097946, -0.048155780881643295, -0.02823137305676937, -0.032470785081386566, 0.004791119135916233, -0.05989634245634079, 0.04668385535478592, -0.009899317286908627, 0.04473608732223511, 0.13985471427440643, 0.16719582676887512, -0.09764168411493301, -0.022565269842743874, 0.03722735866904259, -0.08750063180923462, 0.10811891406774521, -0.1556635946035385, 0.092319056391716, 0.12794259190559387, -0.024040061980485916, 0.07714972645044327, 0.06125618889927864, -0.041869860142469406, -0.022064348682761192, 0.05949557572603226, -0.14269636571407318, 0.08154388517141342, 0.0010647771414369345, 0.0028402814641594887, -0.047193743288517, 0.06896520406007767, 0.1511022448539734, -0.05387767404317856, -0.042160920798778534, 0.00416143424808979, -0.012341814115643501, -0.032634422183036804, 0.1983155608177185, 0.04608045145869255, 0.05465935170650482, -0.12364614009857178, 0.03750596567988396, 0.025933334603905678, -0.05538846552371979, 0.023702148348093033, -0.031292594969272614, -0.13358773291110992, -0.09503944963216782, -0.0053751966916024685, 0.10637158900499344, -0.2726069688796997, -0.061798371374607086, -0.021618453785777092, -0.08711857348680496, 0.086231529712677, 0.2211495339870453, 0.09977705776691437, 0.050255145877599716, -0.0303172804415226, -0.08521939069032669, -0.14033518731594086, 0.008934198878705502, 0.1139485090970993, 0.06322254985570908, -0.14767199754714966, 0.1321520060300827, -0.04655101150274277, 0.06377474963665009, -0.04238526150584221, 0.017507372424006462, -0.146836519241333, 0.021504152566194534, -0.1764572560787201, 0.044937893748283386, -0.07475557923316956, 0.018495498225092888, 0.006765189580619335, -0.02804647758603096, -0.07701434195041656, 0.030139947310090065, -0.07075564563274384, -0.020002225413918495, 0.03145680949091911, 0.007918231189250946, -0.0608692392706871, -0.053373854607343674, 0.06675998866558075, -0.025525839999318123, 0.06968854367733002, 0.1523447036743164, 0.01895793341100216, 0.04968305677175522, -0.10431693494319916, -0.030492698773741722, 0.11275254189968109, 0.03632056713104248, 0.1047593355178833, -0.1520490050315857, 0.07195230573415756, 0.07452020794153214, 0.023788079619407654, 0.05239491909742355, 0.10089344531297684, -0.10454432666301727, -0.030535778030753136, -0.07697135955095291, -0.07794869691133499, -0.12534382939338684, 0.00027081003645434976, 0.12812013924121857, 0.051399555057287216, 0.10474088042974472, -0.03693345934152603, 0.04472964257001877, -0.10627356916666031, 0.007506153546273708, -0.07016808539628983, -0.07292597740888596, -0.05620816349983215, -0.038867320865392685, 0.07099882513284683, -0.023025689646601677, 0.08705417811870575, -0.04553500935435295, 0.08047368377447128, 0.001583046279847622, 0.08449381589889526, 0.030248936265707016, -0.008584065362811089, 0.15052056312561035, 0.10593371093273163, -0.03310870751738548, 0.046677183359861374, 0.10092330724000931, 0.08543100953102112, -0.029156217351555824, 0.029862191528081894, 0.02236364781856537, -0.004408904816955328, 0.14421485364437103, 0.007578871212899685, -0.05473775789141655, -0.06928502023220062, -0.07698822021484375, -0.15262973308563232, 0.040502727031707764, 0.023917509242892265, 0.05240509286522865, 0.12750007212162018, -0.0691034272313118, -0.02350224182009697, -0.04407421872019768, -0.0760381892323494, -0.20294001698493958, -0.09207522124052048, -0.1478896290063858, -0.06444411724805832, 0.004658655263483524, -0.08248075097799301, -0.03968317061662674, 0.0862758532166481, 0.03820068761706352, -0.024925032630562782, 0.06907258182764053, -0.0862920880317688, -0.011774875223636627, 0.002594622317701578, 0.01731918193399906, 0.01768379658460617, 0.021671747788786888, 0.00796110462397337, 0.000595061865169555, 0.0014925284776836634, 0.05437539145350456, -0.008864681236445904, 0.03678082674741745, 0.11081326752901077, 0.004100237973034382, -0.08740513026714325, -0.03786388784646988, 0.0575253888964653, 0.07612015306949615, 0.06927473098039627, 0.013178786262869835, 0.053896404802799225, -0.013457088731229305, 0.2084084302186966, -0.10728438943624496, -0.006570087280124426, -0.14675238728523254, 0.2961617112159729, 0.029311850666999817, 0.04817305877804756, 0.03231394663453102, -0.03934164717793465, 0.02675667405128479, 0.2029884308576584, 0.09402648359537125, -0.013050821609795094, 0.006767825223505497, -0.0025980141945183277, -0.013460141606628895, 0.0026986603625118732, 0.03298647329211235, 0.0858365148305893, 0.20152735710144043, -0.0980454534292221, -0.01640511490404606, 0.0011454548221081495, -0.007080403156578541, -0.02874080464243889, 0.03827506676316261, -0.03836635872721672, -0.03899525851011276, -0.03873114660382271, 0.07231054455041885, -0.07331065088510513, 0.0965997576713562, 0.06957326084375381, -0.07465778291225433, -0.10480599105358124, 0.03953859582543373, -0.04670054093003273, -0.030131982639431953, 0.09413474798202515, -0.08029705286026001, -0.053503796458244324, 0.07427596300840378, 0.007202385924756527, -0.1691310703754425, -0.03798035532236099, 0.02790449745953083, 0.16716592013835907, 0.17547520995140076, 0.0280692670494318, 0.1594904661178589, 0.15805841982364655, 0.05640554055571556, -0.11910451948642731, 0.08030185103416443, 0.01370283029973507, -0.0966215506196022, 0.14048509299755096, 0.023202285170555115, -0.014494726434350014, 0.0415056049823761, 0.043154094368219376, -0.16814780235290527, 0.00320456107147038, -0.09082484990358353, 0.059570152312517166, -0.08459680527448654, -0.005431215278804302, -0.07868906855583191, 0.10697680711746216, 0.11223134398460388, -0.06432127207517624, -0.027458811178803444, -0.03650742024183273, 0.06050681695342064, 0.019881131127476692, -0.08177990466356277, -0.023009687662124634, -0.11021562665700912, 0.07447172701358795, -0.02803812362253666, 0.013657557778060436, -0.20416028797626495, -0.028891412541270256, -0.013664279133081436, -0.08079737424850464, -0.042840003967285156, 0.06764035671949387, 0.0405300036072731, 0.02499525249004364, -0.05060545727610588, -0.059409547597169876, -0.009315479546785355, 0.10298454761505127, -0.08971668779850006, -0.1482522040605545 ]
null
null
transformers
# Model Trained Using AutoNLP - Problem type: Binary Classification - Model ID: 432211280 - CO2 Emissions (in grams): 8.898145050355591 ## Validation Metrics - Loss: 0.12489336729049683 - Accuracy: 0.9520089285714286 - Precision: 0.9436443331246086 - Recall: 0.9747736093143596 - AUC: 0.9910066767410616 - F1: 0.958956411072224 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/anelnurkayeva/autonlp-covid-432211280 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("anelnurkayeva/autonlp-covid-432211280", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("anelnurkayeva/autonlp-covid-432211280", use_auth_token=True) inputs = tokenizer("I love AutoNLP", return_tensors="pt") outputs = model(**inputs) ```
{"language": "en", "tags": "autonlp", "datasets": ["anelnurkayeva/autonlp-data-covid"], "widget": [{"text": "I love AutoNLP \ud83e\udd17"}], "co2_eq_emissions": 8.898145050355591}
text-classification
anelnurkayeva/autonlp-covid-432211280
[ "transformers", "pytorch", "roberta", "text-classification", "autonlp", "en", "dataset:anelnurkayeva/autonlp-data-covid", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #roberta #text-classification #autonlp #en #dataset-anelnurkayeva/autonlp-data-covid #co2_eq_emissions #autotrain_compatible #endpoints_compatible #region-us
# Model Trained Using AutoNLP - Problem type: Binary Classification - Model ID: 432211280 - CO2 Emissions (in grams): 8.898145050355591 ## Validation Metrics - Loss: 0.12489336729049683 - Accuracy: 0.9520089285714286 - Precision: 0.9436443331246086 - Recall: 0.9747736093143596 - AUC: 0.9910066767410616 - F1: 0.958956411072224 ## Usage You can use cURL to access this model: Or Python API:
[ "# Model Trained Using AutoNLP\n\n- Problem type: Binary Classification\n- Model ID: 432211280\n- CO2 Emissions (in grams): 8.898145050355591", "## Validation Metrics\n\n- Loss: 0.12489336729049683\n- Accuracy: 0.9520089285714286\n- Precision: 0.9436443331246086\n- Recall: 0.9747736093143596\n- AUC: 0.9910066767410616\n- F1: 0.958956411072224", "## Usage\n\nYou can use cURL to access this model:\n\n\n\nOr Python API:" ]
[ "TAGS\n#transformers #pytorch #roberta #text-classification #autonlp #en #dataset-anelnurkayeva/autonlp-data-covid #co2_eq_emissions #autotrain_compatible #endpoints_compatible #region-us \n", "# Model Trained Using AutoNLP\n\n- Problem type: Binary Classification\n- Model ID: 432211280\n- CO2 Emissions (in grams): 8.898145050355591", "## Validation Metrics\n\n- Loss: 0.12489336729049683\n- Accuracy: 0.9520089285714286\n- Precision: 0.9436443331246086\n- Recall: 0.9747736093143596\n- AUC: 0.9910066767410616\n- F1: 0.958956411072224", "## Usage\n\nYou can use cURL to access this model:\n\n\n\nOr Python API:" ]
[ 70, 42, 79, 17 ]
[ "passage: TAGS\n#transformers #pytorch #roberta #text-classification #autonlp #en #dataset-anelnurkayeva/autonlp-data-covid #co2_eq_emissions #autotrain_compatible #endpoints_compatible #region-us \n# Model Trained Using AutoNLP\n\n- Problem type: Binary Classification\n- Model ID: 432211280\n- CO2 Emissions (in grams): 8.898145050355591## Validation Metrics\n\n- Loss: 0.12489336729049683\n- Accuracy: 0.9520089285714286\n- Precision: 0.9436443331246086\n- Recall: 0.9747736093143596\n- AUC: 0.9910066767410616\n- F1: 0.958956411072224## Usage\n\nYou can use cURL to access this model:\n\n\n\nOr Python API:" ]
[ -0.16381917893886566, 0.1521633416414261, -0.0009368985192850232, 0.08059846609830856, 0.12998417019844055, 0.026351192966103554, 0.05564902722835541, 0.09257683902978897, 0.018965618684887886, 0.06356372684240341, 0.16317637264728546, 0.19942522048950195, 0.026447521522641182, 0.1431794911623001, -0.12009322643280029, -0.16220317780971527, 0.061270713806152344, 0.07639306783676147, 0.1097090020775795, 0.12177339941263199, 0.09053833782672882, -0.10720416903495789, 0.1266566514968872, 0.055147141218185425, -0.16359955072402954, -0.01915031112730503, 0.08367830514907837, -0.12276535481214523, 0.1043589785695076, 0.08444498479366302, 0.15957540273666382, 0.025375839322805405, 0.10434890538454056, -0.0793926939368248, -0.024899525567889214, -0.008273004554212093, -0.021883144974708557, 0.10164616256952286, 0.05835408717393875, -0.04558010771870613, -0.0016354294493794441, 0.0046769967302680016, 0.08606185019016266, 0.03032154031097889, -0.09168344736099243, -0.05847412347793579, -0.05983852967619896, 0.04624813422560692, 0.12094037979841232, 0.12014968693256378, -0.0006233133608475327, 0.2776283323764801, -0.09455205500125885, 0.08334751427173615, 0.03269415348768234, -0.2687121629714966, -0.021450944244861603, 0.12026333063840866, -0.03816264867782593, -0.11588678508996964, -0.020943516865372658, 0.014632975682616234, 0.08958175778388977, 0.016590604558587074, 0.0564703531563282, -0.05532506853342056, -0.05899642035365105, -0.004476901609450579, -0.1120738685131073, -0.07749694585800171, 0.1792588233947754, 0.022640012204647064, -0.07710803300142288, -0.0169970765709877, -0.09636376053094864, -0.12617573142051697, -0.06835267692804337, -0.05263981968164444, -0.031411804258823395, -0.050307098776102066, -0.061006754636764526, 0.08711446076631546, -0.1182173639535904, -0.05398431047797203, -0.17215068638324738, 0.11424862593412399, 0.015858223661780357, 0.04963534325361252, -0.021805597469210625, 0.1139412522315979, -0.09896548092365265, -0.08359207957983017, -0.002918739803135395, -0.026993876323103905, -0.05885166674852371, -0.05007927492260933, -0.027352040633559227, 0.03996783867478371, -0.011433249339461327, 0.18819628655910492, 0.04909013584256172, 0.019391782581806183, 0.06786193698644638, 0.0025475947186350822, -0.008991199545562267, 0.20240095257759094, -0.1138211339712143, -0.009946947917342186, 0.05788933113217354, -0.053217608481645584, 0.022184982895851135, -0.03419646993279457, -0.09136723726987839, -0.13200876116752625, 0.1547035127878189, 0.026756752282381058, 0.02229374088346958, 0.05834682285785675, -0.07848731428384781, -0.03667794540524483, 0.08508336544036865, -0.044688768684864044, 0.02694428153336048, -0.03245959058403969, -0.08521973341703415, 0.06511770188808441, 0.09860237687826157, 0.0359121598303318, -0.0788983479142189, 0.08234374225139618, -0.121835857629776, 0.022506646811962128, -0.046362899243831635, -0.11315497010946274, 0.0415695458650589, -0.09173093736171722, 0.04026942700147629, -0.21494217216968536, -0.1627638041973114, -0.018834251910448074, -0.00735465670004487, -0.04847314581274986, -0.035945646464824677, -0.02974613383412361, -0.026639804244041443, 0.04143407940864563, -0.02241514064371586, -0.027229899540543556, -0.03860562667250633, 0.043784525245428085, 0.04050811380147934, 0.043226826936006546, -0.10668237507343292, 0.037158481776714325, -0.0989488884806633, -0.005091649480164051, -0.09799175709486008, 0.020468972623348236, -0.014965576119720936, 0.026730971410870552, -0.1350795328617096, -0.07272537797689438, 0.10885223746299744, -0.026368556544184685, 0.09373584389686584, 0.15017692744731903, -0.061922285705804825, -0.008744559250772, 0.055909156799316406, -0.053387150168418884, -0.10303931683301926, 0.10144301503896713, -0.04310780391097069, 0.01763346791267395, 0.06348633021116257, -0.01632346771657467, 0.13904398679733276, -0.09792420268058777, -0.04435142129659653, 0.006938806269317865, -0.04160601645708084, -0.13388697803020477, 0.058532536029815674, 0.015294915065169334, -0.16224642097949982, 0.040553152561187744, 0.05491746589541435, 0.032568518072366714, -0.07289064675569534, -0.09022416174411774, -0.056164734065532684, -0.03617957606911659, 0.04577132314443588, 0.006837665569037199, 0.0796150341629982, -0.025386393070220947, -0.07461774349212646, -0.021382778882980347, 0.13177813589572906, -0.012404101900756359, -0.015880990773439407, -0.15065151453018188, 0.13046793639659882, -0.18763549625873566, -0.05478106811642647, -0.19656123220920563, -0.007978797890245914, -0.017414333298802376, 0.02962139993906021, -0.0266879852861166, -0.031203728169202805, 0.051609452813863754, 0.03245061635971069, 0.021989837288856506, -0.02131965383887291, 0.10393089801073074, 0.00632341206073761, -0.13440516591072083, -0.05841529741883278, -0.018063699826598167, -0.006139322649687529, 0.22975321114063263, -0.11979249864816666, -0.021977927535772324, -0.031510695815086365, 0.0957607552409172, -0.026080483570694923, 0.03027910180389881, -0.02567581832408905, 0.059454161673784256, -0.056247785687446594, 0.007040131837129593, 0.040374092757701874, -0.02235136553645134, -0.0945701003074646, 0.03523324057459831, -0.1719469279050827, 0.2075246274471283, 0.158697247505188, -0.06965596973896027, -0.08971483260393143, 0.011902065016329288, 0.029724307358264923, -0.013802731409668922, -0.023222604766488075, 0.027024617418646812, 0.09887221455574036, 0.009549576789140701, 0.12951497733592987, -0.0634850487112999, -0.00628868630155921, 0.07638595998287201, -0.08614734560251236, -0.022175338119268417, 0.1562480330467224, 0.07254492491483688, -0.18268349766731262, 0.09122245758771896, 0.03286204859614372, -0.11708545684814453, 0.014310614205896854, 0.03992890566587448, -0.05893026664853096, -0.03914931043982506, -0.06685812771320343, 0.02285517007112503, 0.06752407550811768, -0.03289853036403656, 0.04104762151837349, 0.09678884595632553, -0.019466793164610863, 0.010768860578536987, -0.13011083006858826, 0.005062805023044348, 0.02364620938897133, 0.03010762482881546, -0.06711463630199432, 0.026381295174360275, 0.04034578800201416, 0.131409153342247, 0.027330581098794937, -0.13364453613758087, 0.04497033730149269, 0.039884503930807114, -0.132025808095932, 0.24211610853672028, -0.08778050541877747, -0.212844118475914, -0.1735229343175888, -0.10877758264541626, -0.04409058019518852, 0.001538658863864839, 0.025383293628692627, -0.027964208275079727, -0.11518596112728119, -0.023432472720742226, -0.07286018133163452, -0.008251301944255829, 0.009309082292020321, -0.035890404134988785, -0.033480823040008545, 0.039506178349256516, -0.07605357468128204, -0.048821449279785156, -0.03425760939717293, -0.02681102231144905, 0.15657685697078705, -0.05583847314119339, 0.12340274453163147, 0.17958326637744904, -0.0504845455288887, 0.006559290457516909, 0.023912793025374413, 0.20259664952754974, -0.02492699585855007, -0.018479682505130768, 0.17943811416625977, 0.02143693156540394, 0.03190530464053154, 0.1298113465309143, 0.014999791979789734, -0.0559576116502285, -0.01546228863298893, -0.03024527244269848, -0.03876105323433876, -0.18121811747550964, -0.18420788645744324, 0.005947598721832037, -0.00039661070331931114, 0.1398823857307434, -0.00515766954049468, 0.11585789918899536, 0.1707974523305893, 0.011567514389753342, 0.0598122663795948, -0.08986100554466248, 0.10678394138813019, 0.1837472766637802, 0.028846340253949165, 0.16573745012283325, -0.05605265498161316, -0.07681126147508621, 0.059862636029720306, -0.037365637719631195, 0.08580858260393143, 0.03601511940360069, -0.05156758427619934, -0.02255316823720932, 0.1601090133190155, 0.07065080106258392, 0.14549686014652252, 0.07912825793027878, -0.03741539642214775, 0.019908813759684563, -0.03332861512899399, -0.1209469735622406, 0.029746579006314278, 0.061885882169008255, 0.008447983302175999, -0.13355255126953125, -0.012281443923711777, -0.007801097352057695, 0.06065748631954193, 0.17495138943195343, -0.48808741569519043, -0.10300018638372421, -0.007190281990915537, -0.023573553189635277, -0.13288846611976624, -0.01838047057390213, -0.1062714159488678, -0.17571160197257996, 0.014728689566254616, -0.0343390554189682, 0.10708999633789062, -0.051113665103912354, -0.004951613023877144, -0.1009378433227539, 0.0116537194699049, -0.015906421467661858, 0.09260417520999908, -0.2326086163520813, 0.25362586975097656, 0.04750877618789673, 0.036347731947898865, -0.08957742899656296, -0.011238272301852703, 0.008002247661352158, 0.09205464273691177, 0.12034282833337784, -0.003777767764404416, 0.06115517392754555, -0.2891516387462616, -0.1566808670759201, 0.04145337641239166, -0.036681726574897766, 0.01444634422659874, 0.09448433667421341, 0.007497353013604879, -0.02321620099246502, 0.001687521580606699, -0.046854402869939804, -0.07641351968050003, -0.04795321822166443, 0.03990296274423599, 0.09962566196918488, -0.016104865819215775, 0.01199195347726345, -0.09023252874612808, -0.03451451659202576, 0.11967414617538452, -0.026851560920476913, -0.0737612321972847, -0.12975731492042542, 0.02352888695895672, 0.1292334794998169, -0.12766005098819733, 0.08446705341339111, -0.055138614028692245, 0.04923304170370102, -0.0037301077973097563, -0.11517815291881561, 0.10023228824138641, -0.0791131928563118, -0.05124226212501526, 0.016774123534560204, 0.0714396983385086, 0.01432629395276308, 0.03828665614128113, 0.07653162628412247, 0.03989265114068985, -0.09956599026918411, -0.10822448879480362, -0.002554743317887187, 0.05382736027240753, 0.14563000202178955, 0.06424173712730408, 0.0387641079723835, -0.14838533103466034, -0.06920957565307617, 0.06580909341573715, 0.1704954355955124, 0.19126662611961365, -0.09146186709403992, -0.029289022088050842, 0.1398629993200302, 0.00508460495620966, -0.21480686962604523, -0.026379326358437538, -0.0040460433810949326, 0.06288012117147446, -0.12477302551269531, -0.03785547986626625, 0.08991498500108719, 0.08530999720096588, -0.044928986579179764, -0.0227804034948349, -0.1934574544429779, -0.1254984438419342, 0.29600557684898376, 0.05810174718499184, 0.19740250706672668, -0.05151017755270004, -0.01644882559776306, -0.10609021782875061, -0.28246402740478516, 0.13775324821472168, 0.022341012954711914, 0.08572688698768616, -0.061347417533397675, 0.14048154652118683, 0.056752316653728485, -0.07077977806329727, 0.14296087622642517, 0.0009732143371365964, 0.023966018110513687, -0.043072327971458435, -0.07216553390026093, -0.05101097747683525, -0.06748028099536896, 0.14751122891902924, 0.07416503876447678, 0.07347730547189713, -0.18221332132816315, -0.04534376412630081, -0.03758818656206131, 0.1008274033665657, -0.014446955174207687, -0.06757055222988129, -0.0193558968603611, -0.009148950688540936, -0.020210353657603264, -0.06504961848258972, 0.02349076233804226, 0.002616006648167968, 0.03834538906812668, 0.14520315825939178, 0.1168651282787323, -0.06987441331148148, -0.020830243825912476, 0.026018651202321053, -0.08813882619142532, 0.10070040822029114, -0.1320122331380844, 0.06860120594501495, 0.13442650437355042, -0.01277910452336073, 0.07715275883674622, 0.03841591626405716, -0.058626431971788406, -0.018881535157561302, 0.05517389252781868, -0.160154789686203, 0.07981832325458527, -0.000298161874525249, 0.009641467593610287, -0.02524203062057495, 0.06328167766332626, 0.13824118673801422, -0.07044083625078201, -0.044539887458086014, 0.00738187599927187, -0.015589823946356773, -0.018022550269961357, 0.22390295565128326, 0.049833305180072784, 0.05837102606892586, -0.12759752571582794, 0.04003255069255829, 0.03973967954516411, -0.058273863047361374, 0.029119204729795456, -0.039404258131980896, -0.13577648997306824, -0.09908557683229446, -0.030914440751075745, 0.13003207743167877, -0.29961344599723816, -0.07446656376123428, -0.03485828638076782, -0.07049078494310379, 0.06506827473640442, 0.19808267056941986, 0.11904903501272202, 0.03568382188677788, -0.029588529840111732, -0.11023970693349838, -0.1369076520204544, 0.006751323584467173, 0.13935476541519165, 0.04680730402469635, -0.13434408605098724, 0.15106748044490814, -0.03273846209049225, 0.08455602079629898, -0.04336491972208023, -0.01003278885036707, -0.14466796815395355, 0.02000856027007103, -0.15751948952674866, 0.025342000648379326, -0.08438339084386826, 0.014086627401411533, 0.009117784909904003, -0.029682133346796036, -0.06238808482885361, 0.017027074471116066, -0.06956175714731216, -0.00868729967623949, 0.02569357119500637, 0.011040223762392998, -0.06645192205905914, -0.05443143844604492, 0.055141616612672806, -0.013444457203149796, 0.059358954429626465, 0.15065868198871613, 0.04421994090080261, 0.06507266312837601, -0.08567606657743454, -0.00987659115344286, 0.10548463463783264, 0.026946792379021645, 0.1195228099822998, -0.14580225944519043, 0.07182289659976959, 0.05830498784780502, 0.024585356935858727, 0.05290275812149048, 0.11801747232675552, -0.10994037985801697, -0.007086510770022869, -0.05571635812520981, -0.07907071709632874, -0.12558303773403168, 0.019804026931524277, 0.09733504056930542, 0.05553179606795311, 0.10974705964326859, -0.04749652370810509, 0.056582652032375336, -0.11322911083698273, 0.0047056409530341625, -0.08280424028635025, -0.06691767275333405, -0.04079873487353325, -0.05115688592195511, 0.06336252391338348, -0.01679244637489319, 0.07561216503381729, -0.026876574382185936, 0.10437789559364319, -0.009782949462532997, 0.07918042689561844, 0.03041304089128971, -0.017608368769288063, 0.1331101655960083, 0.11419478058815002, -0.015277067199349403, 0.029546866193413734, 0.1295439898967743, 0.08374843746423721, -0.004839922767132521, 0.010240022093057632, 0.0022958884947001934, -0.02240883931517601, 0.14341719448566437, 0.0028272138442844152, -0.06927943974733353, -0.04183010011911392, -0.09159459173679352, -0.13715553283691406, 0.032736822962760925, 0.017801938578486443, 0.051120638847351074, 0.11600854992866516, -0.07046829909086227, -0.024618735536932945, -0.0481274276971817, -0.07088258862495422, -0.1791909784078598, -0.09101080894470215, -0.14180275797843933, -0.06172693148255348, -0.004161984194070101, -0.07596102356910706, -0.05297406017780304, 0.10190519690513611, 0.034281227737665176, -0.04504281282424927, 0.06780993193387985, -0.08432185649871826, -0.012876027263700962, -0.005293369293212891, 0.015451141633093357, 0.016206413507461548, -0.023416096344590187, -0.005619159899652004, -0.015481541864573956, 0.018996190279722214, 0.0533599853515625, -0.007318508345633745, 0.02438005805015564, 0.10394671559333801, 0.0035802789498120546, -0.09717851132154465, -0.03830404952168465, 0.04802671819925308, 0.07212549448013306, 0.07629916816949844, 0.021299364045262337, 0.051839474588632584, -0.01862294226884842, 0.22441962361335754, -0.08161066472530365, -0.011388103477656841, -0.13475348055362701, 0.32211413979530334, 0.01550955418497324, 0.0462164431810379, 0.041917361319065094, -0.05172627791762352, 0.024338373914361, 0.20087480545043945, 0.11716970056295395, -0.01588103175163269, 0.005534637253731489, -0.006750909145921469, -0.014986539259552956, -0.016218727454543114, 0.0366809107363224, 0.06659594178199768, 0.17876240611076355, -0.10685542225837708, 0.010787221603095531, -0.024904770776629448, -0.002850305289030075, -0.030294107273221016, 0.026698565110564232, -0.017735304310917854, -0.0340469665825367, -0.05384768545627594, 0.08169877529144287, -0.08116816729307175, 0.0918121263384819, 0.06779258698225021, -0.10018269717693329, -0.13006368279457092, 0.028607141226530075, -0.053486935794353485, -0.011939866468310356, 0.11935137957334518, -0.0952271968126297, -0.021171867847442627, 0.0398196280002594, 0.019423363730311394, -0.16089263558387756, -0.06442026793956757, 0.03825115039944649, 0.1940261423587799, 0.18392565846443176, 0.024765245616436005, 0.17457807064056396, 0.1473865807056427, 0.056372273713350296, -0.12298567593097687, 0.1001100242137909, 0.019287772476673126, -0.079874686896801, 0.13599957525730133, 0.0036751271691173315, 0.0035608878824859858, 0.015600628219544888, 0.03831096366047859, -0.17861002683639526, 0.013129239901900291, -0.09447114169597626, 0.06889183819293976, -0.07277428358793259, 0.016050420701503754, -0.07055778056383133, 0.11227977275848389, 0.11020778119564056, -0.06036730483174324, -0.037159357219934464, -0.04235037788748741, 0.07320336252450943, 0.025771742686629295, -0.11237536370754242, -0.02480119839310646, -0.11220186948776245, 0.07513079792261124, -0.05090945214033127, 0.01731164939701557, -0.21180568635463715, -0.01651906594634056, -0.030897067859768867, -0.08907699584960938, -0.03854057192802429, 0.08081313222646713, 0.008166279643774033, 0.031500499695539474, -0.04028630629181862, -0.04585794359445572, -0.008131120353937149, 0.10506606101989746, -0.08555722236633301, -0.16146671772003174 ]
null
null
transformers
# BERT for Patents BERT for Patents is a model trained by Google on 100M+ patents (not just US patents). It is based on BERT<sub>LARGE</sub>. If you want to learn more about the model, check out the [blog post](https://cloud.google.com/blog/products/ai-machine-learning/how-ai-improves-patent-analysis), [white paper](https://services.google.com/fh/files/blogs/bert_for_patents_white_paper.pdf) and [GitHub page](https://github.com/google/patents-public-data/blob/master/models/BERT%20for%20Patents.md) containing the original TensorFlow checkpoint. --- ### Projects using this model (or variants of it): - [Patents4IPPC](https://github.com/ec-jrc/Patents4IPPC) (carried out by [Pi School](https://picampus-school.com/) and commissioned by the [Joint Research Centre (JRC)](https://ec.europa.eu/jrc/en) of the European Commission)
{"language": ["en"], "license": "apache-2.0", "tags": ["masked-lm", "pytorch"], "metrics": ["perplexity"], "pipeline-tag": "fill-mask", "mask-token": "[MASK]", "widget": [{"text": "The present [MASK] provides a torque sensor that is small and highly rigid and for which high production efficiency is possible."}, {"text": "The present invention relates to [MASK] accessories and pertains particularly to a brake light unit for bicycles."}, {"text": "The present invention discloses a space-bound-free [MASK] and its coordinate determining circuit for determining a coordinate of a stylus pen."}, {"text": "The illuminated [MASK] includes a substantially translucent canopy supported by a plurality of ribs pivotally swingable towards and away from a shaft."}]}
fill-mask
anferico/bert-for-patents
[ "transformers", "pytorch", "tf", "safetensors", "fill-mask", "masked-lm", "en", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #tf #safetensors #fill-mask #masked-lm #en #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us
# BERT for Patents BERT for Patents is a model trained by Google on 100M+ patents (not just US patents). It is based on BERT<sub>LARGE</sub>. If you want to learn more about the model, check out the blog post, white paper and GitHub page containing the original TensorFlow checkpoint. --- ### Projects using this model (or variants of it): - Patents4IPPC (carried out by Pi School and commissioned by the Joint Research Centre (JRC) of the European Commission)
[ "# BERT for Patents\n\nBERT for Patents is a model trained by Google on 100M+ patents (not just US patents). It is based on BERT<sub>LARGE</sub>.\n\nIf you want to learn more about the model, check out the blog post, white paper and GitHub page containing the original TensorFlow checkpoint.\n\n---", "### Projects using this model (or variants of it):\n- Patents4IPPC (carried out by Pi School and commissioned by the Joint Research Centre (JRC) of the European Commission)" ]
[ "TAGS\n#transformers #pytorch #tf #safetensors #fill-mask #masked-lm #en #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us \n", "# BERT for Patents\n\nBERT for Patents is a model trained by Google on 100M+ patents (not just US patents). It is based on BERT<sub>LARGE</sub>.\n\nIf you want to learn more about the model, check out the blog post, white paper and GitHub page containing the original TensorFlow checkpoint.\n\n---", "### Projects using this model (or variants of it):\n- Patents4IPPC (carried out by Pi School and commissioned by the Joint Research Centre (JRC) of the European Commission)" ]
[ 61, 81, 45 ]
[ "passage: TAGS\n#transformers #pytorch #tf #safetensors #fill-mask #masked-lm #en #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us \n# BERT for Patents\n\nBERT for Patents is a model trained by Google on 100M+ patents (not just US patents). It is based on BERT<sub>LARGE</sub>.\n\nIf you want to learn more about the model, check out the blog post, white paper and GitHub page containing the original TensorFlow checkpoint.\n\n---### Projects using this model (or variants of it):\n- Patents4IPPC (carried out by Pi School and commissioned by the Joint Research Centre (JRC) of the European Commission)" ]
[ 0.00972627941519022, 0.07630278915166855, -0.00027916941326111555, 0.08849065750837326, 0.02344997599720955, -0.08142474293708801, 0.22104212641716003, 0.023340245708823204, 0.1373320370912552, -0.05651729553937912, 0.14177000522613525, 0.058000653982162476, -0.033669959753751755, 0.1642535775899887, 0.0046648504212498665, -0.21260268986225128, 0.021847007796168327, 0.059619467705488205, -0.0825466439127922, 0.06225740909576416, 0.08262655138969421, -0.10403218865394592, 0.05601562559604645, 0.07653132826089859, -0.04436325654387474, 0.01237813662737608, 0.02548452652990818, -0.11643868684768677, 0.08966857194900513, -0.04781899228692055, 0.15595409274101257, 0.08377831429243088, 0.003595057176426053, 0.01773134618997574, 0.032249484211206436, -0.04028027877211571, -0.004869228228926659, 0.09792740643024445, 0.12955322861671448, 0.023016778752207756, 0.041878122836351395, 0.1381434053182602, -0.011963987722992897, 0.022960877045989037, -0.0630110576748848, -0.10749544203281403, -0.08730141818523407, 0.09281589835882187, -0.0455983467400074, 0.041904281824827194, 0.007981427945196629, 0.160924032330513, 0.03962855413556099, 0.09427894651889801, 0.291929692029953, -0.45697659254074097, -0.03433522582054138, 0.11326117068529129, 0.17910981178283691, -0.13604775071144104, 0.033146027475595474, 0.09084420651197433, 0.015222679823637009, 0.03879503533244133, 0.18390309810638428, -0.1019287183880806, -0.08712513744831085, -0.0389762818813324, -0.11978533864021301, 0.006684047169983387, 0.22989358007907867, -0.00876178964972496, -0.08259738981723785, -0.005624748300760984, -0.019546668976545334, -0.01261813286691904, 0.01676701009273529, -0.03233833238482475, 0.08845086395740509, 0.003435663180425763, -0.06739043444395065, -0.12661363184452057, -0.10692688077688217, 0.0007906855898909271, -0.10494226217269897, 0.1987665444612503, 0.007529248483479023, 0.05478260666131973, -0.10205260664224625, 0.03762717545032501, 0.0052354540675878525, -0.1120712086558342, 0.03658493608236313, -0.04729925096035004, 0.13217265903949738, -0.001977526815608144, -0.030256075784564018, -0.08723736554384232, 0.06304430961608887, 0.06334513425827026, 0.02606436237692833, -0.050469689071178436, -0.011372916400432587, 0.11817652732133865, 0.0006119685131125152, 0.13611085712909698, -0.14783939719200134, 0.01716855727136135, 0.10499332845211029, -0.09437695890665054, 0.012361875735223293, -0.012199455872178078, -0.17470550537109375, 0.04077886417508125, -0.020388757809996605, -0.026167597621679306, 0.00834012869745493, 0.08011800050735474, -0.08422967046499252, 0.02403804287314415, 0.009405133314430714, -0.01634763926267624, 0.021048424765467644, -0.0914623886346817, 0.015999644994735718, 0.01111450232565403, 0.09781942516565323, 0.016980553045868874, -0.03010784462094307, 0.033242106437683105, -0.07844285666942596, -0.04921095818281174, -0.0628458559513092, -0.06763884425163269, 0.06292533874511719, -0.09992418438196182, 0.06790252029895782, -0.2020295262336731, -0.13199517130851746, 0.04344921559095383, 0.12029977142810822, -0.02603228949010372, 0.006965640466660261, 0.06133965402841568, -0.06883910298347473, -0.09383083134889603, -0.018013333901762962, -0.04954851418733597, -0.0406915582716465, 0.059094127267599106, -0.09011803567409515, 0.11574015021324158, -0.13509365916252136, 0.03466591611504555, -0.1583825796842575, 0.07240205258131027, -0.1935891956090927, -0.06306710839271545, -0.04694955796003342, 0.009162230417132378, -0.03956754878163338, -0.09805317968130112, 0.013342723250389099, 0.03043392300605774, 0.05188120901584625, 0.08237481117248535, 0.015118932351469994, -0.031016264110803604, 0.09384121000766754, -0.058736659586429596, -0.17189715802669525, 0.09558195620775223, -0.024888228625059128, 0.17376482486724854, 0.041723571717739105, 0.20682761073112488, -0.06400670856237411, -0.19408756494522095, -0.03352538123726845, 0.017968883737921715, -0.06207198649644852, -0.1471984088420868, 0.07229924947023392, 0.00903791282325983, -0.20029982924461365, 0.01809491217136383, -0.09273801743984222, 0.030609773471951485, -0.049668483436107635, -0.009374636225402355, 0.0005843183607794344, -0.04370046779513359, 0.11090455204248428, -0.020151279866695404, 0.11767896264791489, -0.054771192371845245, 0.010369215160608292, 0.05520343780517578, -0.0631905198097229, -0.055276528000831604, 0.0014659517910331488, -0.06058073416352272, 0.17531174421310425, -0.1092788428068161, 0.0007688066107220948, -0.12384888529777527, -0.0668933242559433, 0.035026468336582184, -0.1276770979166031, 0.05297807231545448, 0.17630119621753693, 0.03502119705080986, 0.05327148362994194, -0.001581132528372109, 0.07311618328094482, -0.06681603193283081, 0.03332040086388588, -0.04048953950405121, -0.07615723460912704, -0.03990110754966736, -0.05679189786314964, -0.11842571943998337, 0.06872015446424484, 0.01194017194211483, -0.06661050021648407, 0.0706801638007164, 0.07465006411075592, -0.027331404387950897, 0.042399801313877106, 0.05268154665827751, -0.017814844846725464, 0.010613701306283474, 0.061065804213285446, 0.03636687248945236, -0.03748014196753502, 0.12726275622844696, 0.0762040913105011, 0.24173371493816376, 0.11553972959518433, -0.1587526649236679, -0.07548552006483078, 0.004758047871291637, -0.036363959312438965, 0.058352574706077576, -0.06851735711097717, 0.005875876173377037, 0.12516722083091736, -0.016405995935201645, 0.12118105590343475, -0.10687896609306335, -0.026910414919257164, 0.057049110531806946, -0.14613111317157745, -0.02534620091319084, 0.07197742164134979, 0.20079897344112396, -0.04420746862888336, 0.12611016631126404, 0.21580012142658234, -0.029386868700385094, 0.14957860112190247, -0.004097647964954376, -0.016706589609384537, -0.07031062990427017, -0.07634237408638, 0.007016930263489485, 0.15914900600910187, -0.16608357429504395, 0.009647149592638016, 0.08747821301221848, -0.07413937151432037, 0.039819877594709396, -0.13137292861938477, -0.05928308144211769, -0.01924801431596279, -0.006519733462482691, -0.13226686418056488, 0.050356604158878326, -0.08232942968606949, 0.07831041514873505, 0.03995416313409805, -0.11173304170370102, 0.07019974291324615, 0.0158288162201643, -0.03915773332118988, 0.12292329967021942, -0.042264532297849655, -0.19852329790592194, -0.18616452813148499, -0.03781909868121147, -0.03254217281937599, 0.10194317996501923, 0.035511408001184464, 0.08933907747268677, -0.0949706956744194, -0.044205375015735626, 0.00040658272337168455, -0.008753838948905468, 0.030676962807774544, -0.014189621433615685, 0.013995221816003323, -0.021471437066793442, -0.06946776807308197, -0.04932093992829323, -0.022230977192521095, 0.02569965086877346, 0.08561147749423981, -0.007783445529639721, 0.1059521958231926, 0.054312847554683685, -0.09376855939626694, -0.021031299605965614, -0.042057495564222336, 0.10493913292884827, -0.03626763075590134, 0.011105584912002087, 0.16184251010417938, 0.028547942638397217, 0.036531779915094376, 0.1253415197134018, 0.07669802010059357, -0.0834265798330307, 0.04274410381913185, -0.12227284163236618, -0.11241210252046585, -0.17806756496429443, -0.01398845948278904, -0.043460119515657425, 0.09273923933506012, 0.009481513872742653, -0.018009545281529427, -0.012693261727690697, 0.11148664355278015, 0.08416400849819183, 0.08299241214990616, -0.04873465374112129, 0.049625422805547714, 0.1027769073843956, -0.02680615335702896, 0.10593321919441223, -0.013404474593698978, -0.10802146792411804, 0.043312836438417435, 0.06386969983577728, 0.1705617755651474, 0.05621090531349182, 0.033299315720796585, 0.08782543241977692, 0.13981808722019196, 0.0746307224035263, 0.18899236619472504, 0.04514097794890404, -0.00440019927918911, -0.03519798442721367, -0.09657339006662369, 0.03968748450279236, 0.0010983471293002367, -0.09421940892934799, -0.10685869306325912, 0.0463283397257328, -0.13401968777179718, 0.017900459468364716, 0.22816039621829987, 0.02741364948451519, -0.16915781795978546, -0.011974388733506203, -0.0023512498009949923, -0.027025293558835983, -0.022039134055376053, 0.06524743139743805, 0.12780527770519257, -0.1023586094379425, 0.03814377635717392, -0.04383715242147446, 0.02819077856838703, 0.024607306346297264, 0.047224365174770355, 0.03596581518650055, -0.04827209934592247, 0.02418006770312786, 0.04432941600680351, -0.17758145928382874, 0.2717016041278839, -0.01134288590401411, -0.004195013083517551, -0.05972437560558319, -0.02274598740041256, -0.018514085561037064, 0.044195808470249176, 0.18286588788032532, -0.007756057661026716, 0.10240491479635239, -0.1214628741145134, -0.06850941479206085, 0.02227744832634926, 0.0034780509304255247, -0.06270340830087662, 0.040757548063993454, 0.01466425135731697, -0.08195048570632935, -0.03139299154281616, -0.03298329561948776, 0.0008805265533737838, -0.014213920570909977, 0.055325839668512344, -0.014950159937143326, 0.03427576646208763, -0.0494166724383831, -0.07612834870815277, -0.12775814533233643, 0.06226015463471413, -0.06631860882043839, -0.0990329310297966, -0.07837579399347305, -0.048517487943172455, 0.05551556125283241, -0.03361215069890022, 0.12366421520709991, -0.038672175258398056, -0.010118012316524982, -0.024543285369873047, -0.14381395280361176, 0.09321524202823639, -0.11642727255821228, -0.09873805940151215, -0.025155125185847282, 0.030848728492856026, -0.05876602232456207, 0.03410959243774414, 0.031098317354917526, 0.021955477073788643, -0.11297791451215744, -0.08764585107564926, 0.015255481004714966, -0.1157594695687294, 0.11074088513851166, -0.033467166125774384, -0.04141904041171074, 0.06900740414857864, 0.04168664664030075, 0.011975479312241077, 0.03746770694851875, 0.11005832999944687, -0.08870275318622589, 0.09976030886173248, 0.20612606406211853, -0.0089775575324893, -0.3188249170780182, -0.041444290429353714, -0.014665967784821987, -0.014024070464074612, 0.06593629717826843, -0.08985918760299683, 0.14118170738220215, 0.05922074615955353, -0.0720958486199379, 0.05640228092670441, -0.13448965549468994, -0.12949903309345245, 0.09339519590139389, 0.08502782881259918, 0.26316291093826294, -0.09994935244321823, -0.02706286869943142, 0.008573844097554684, -0.09722922742366791, 0.12115538865327835, -0.09282267838716507, 0.07870348542928696, 0.0046542552299797535, -0.016008026897907257, -0.00635865842923522, -0.0983307957649231, 0.03758162260055542, -0.0689140185713768, 0.050782013684511185, -0.0011825596448034048, -0.029825562611222267, 0.04661468043923378, 0.05465176701545715, 0.15766581892967224, 0.10006503015756607, 0.03464777022600174, 0.09559860080480576, -0.08133476227521896, -0.07264772057533264, 0.180280864238739, 0.01837136410176754, -0.12366575747728348, -0.05394785478711128, 0.009700043126940727, -0.09189030528068542, -0.01745232194662094, 0.1777370721101761, 0.013849192298948765, 0.021499156951904297, 0.1810505986213684, 0.09757452458143234, -0.1334386020898819, -0.03348766267299652, 0.03556424751877785, -0.12214948982000351, 0.08594151586294174, -0.02883366122841835, -0.09055671840906143, 0.06948669999837875, -0.011926032602787018, 0.031451914459466934, 0.06795740127563477, -0.04777195677161217, 0.03557533770799637, 0.1088547483086586, -0.21465849876403809, -0.177581325173378, -0.06036039814352989, -0.022632086649537086, 0.04286143183708191, 0.12892545759677887, 0.16530567407608032, -0.1425265371799469, -0.02578926831483841, 0.0010895838495343924, -0.017708342522382736, -0.0381397120654583, 0.033896248787641525, 0.06796596944332123, 0.013216452673077583, -0.09090015292167664, 0.05202842503786087, 0.05765936151146889, 0.004808762110769749, 0.017547158524394035, -0.07258982211351395, -0.0709744542837143, -0.08101353794336319, -0.018795479089021683, 0.1382424235343933, -0.05514528229832649, -0.035837169736623764, -0.0886433944106102, -0.08772158622741699, -0.0025869563687592745, 0.15374089777469635, 0.0531255304813385, 0.031107408925890923, -0.02334209531545639, -0.01348962914198637, 0.0065006990917027, 0.029044808819890022, -0.03734259307384491, 0.06382497400045395, -0.11674394458532333, 0.08426373451948166, -0.038166504353284836, 0.08357162773609161, -0.11703336983919144, 0.06332453340291977, -0.15249408781528473, -0.026387469843029976, 0.018037941306829453, -0.020588798448443413, -0.1333865076303482, -0.07520470023155212, -0.017732640728354454, -0.04220176115632057, -0.020259402692317963, 0.04482853040099144, -0.1169961541891098, 0.029344161972403526, 0.035111576318740845, 0.01607651077210903, -0.074787937104702, -0.011945836246013641, 0.11828651279211044, -0.027734221890568733, 0.0833582654595375, -0.011841966770589352, -0.02406008541584015, 0.03039715252816677, -0.1475827842950821, 0.007432359270751476, 0.039250101894140244, 0.02338944561779499, 0.01834017224609852, -0.03619049862027168, 0.004526323173195124, -0.00416462030261755, 0.04542429745197296, 0.013403434306383133, 0.03621421009302139, -0.15643420815467834, -0.04751012101769447, 0.023657530546188354, 0.012601408176124096, -0.04597080126404762, -0.03121037222445011, 0.09095925837755203, 0.05822950601577759, 0.0880407840013504, -0.04075150191783905, 0.03339046612381935, -0.003844813909381628, 0.021289819851517677, -0.003628546604886651, -0.1530108004808426, -0.08474350720643997, -0.06884638220071793, -0.011590463109314442, -0.014064449816942215, 0.20372523367404938, 0.16528519988059998, -0.07309519499540329, -0.021426113322377205, 0.05745275318622589, 0.10162507742643356, 0.005854785908013582, 0.025400949642062187, -0.029425520449876785, -0.019715452566742897, -0.14022867381572723, 0.0894145593047142, 0.03328343853354454, -0.052218031138181686, 0.14545322954654694, 0.05947060510516167, -0.09358865022659302, 0.02318219467997551, 0.07458018511533737, 0.09267701953649521, -0.15834037959575653, -0.1451951563358307, 0.047240324318408966, 0.17035438120365143, -0.09216462075710297, 0.06090607866644859, -0.003895198693498969, -0.07431428134441376, 0.07813054323196411, 0.07175388932228088, -0.005467575043439865, -0.08316584676504135, -0.14387618005275726, -0.029140733182430267, -0.04007917270064354, 0.015539612621068954, -0.07948444038629532, -0.023769672960042953, 0.11035193502902985, 0.0027440048288553953, -0.05838790535926819, 0.12050474435091019, -0.17298316955566406, 0.006114340852946043, 0.10204828530550003, 0.02795289270579815, -0.028962455689907074, -0.09314523637294769, -0.0627879649400711, -0.13575051724910736, 0.0701163113117218, -0.03405815735459328, 0.040294814854860306, -0.04766562953591347, -0.09002252668142319, -0.027360055595636368, -0.04913059622049332, -0.05981051176786423, 0.04002536088228226, 0.05530403554439545, 0.0341399610042572, -0.024793829768896103, -0.05504513904452324, 0.025116998702287674, 0.20006854832172394, -0.04277648404240608, 0.004116739612072706, -0.13058441877365112, 0.04378996044397354, -0.04366664960980415, -0.0028209059964865446, 0.01657641865313053, -0.03143942356109619, -0.048151835799217224, 0.3913959562778473, 0.20076197385787964, -0.006693971808999777, 0.02629043720662594, 0.013143106363713741, 0.008610264398157597, 0.02373616024851799, 0.11705294251441956, 0.0353192538022995, 0.3020641803741455, -0.04994184523820877, -0.020827753469347954, -0.05280124768614769, 0.006270000711083412, -0.1104588583111763, -0.017989356070756912, 0.036978378891944885, -0.1353578120470047, -0.08827413618564606, 0.04114561900496483, -0.1068606749176979, -0.21331465244293213, 0.018884968012571335, -0.08899412304162979, -0.020772581920027733, -0.014202402904629707, 0.0009399037808179855, -0.013559205457568169, 0.09812512993812561, -0.05002634972333908, 0.04144845902919769, 0.061759330332279205, 0.04512813314795494, -0.1289309710264206, 0.11262283474206924, 0.1079307347536087, 0.030073845759034157, 0.153629869222641, 0.009154900908470154, 0.050410982221364975, 0.05866609886288643, 0.029599543660879135, -0.08242477476596832, 0.04453897848725319, 0.035543251782655716, -0.06403534859418869, 0.003745968919247389, -0.05232721194624901, 0.006120557431131601, -0.11395708471536636, -0.026115750893950462, 0.008734374307096004, 0.018480436876416206, -0.012201395817101002, 0.02334519475698471, -0.06372614949941635, 0.038182299584150314, -0.09384845197200775, 0.08159389346837997, 0.08572635799646378, -0.056026287376880646, -0.04249238967895508, -0.05471748113632202, 0.06548593193292618, 0.03403932601213455, -0.19437003135681152, -0.013191357254981995, -0.012193849310278893, -0.03886422514915466, -0.061516083776950836, -0.05919203907251358, -0.21384435892105103, 0.03377857431769371, -0.061419274657964706, 0.05176706239581108, -0.11749071627855301, -0.08588949590921402, 0.16304059326648712, -0.005808728747069836, -0.003074161009863019, 0.1590987592935562, -0.02683972381055355, -0.024642281234264374, -0.08123871684074402, -0.07169096916913986 ]
null
null
transformers
#Monke Messenger DialoGPT Model
{"tags": ["conversational"]}
text-generation
ange/DialoGPT-medium-Monke
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
#Monke Messenger DialoGPT Model
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 51 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ -0.009697278961539268, 0.03208012506365776, -0.007204889785498381, 0.004809224978089333, 0.16726240515708923, 0.014898733235895634, 0.09765533357858658, 0.13672804832458496, -0.007841327227652073, -0.031050153076648712, 0.14490588009357452, 0.20411323010921478, -0.006439372431486845, 0.0661218985915184, -0.07572533935308456, -0.2683109939098358, 0.05759621039032936, 0.046649303287267685, 0.016515716910362244, 0.1200079694390297, 0.08573378622531891, -0.05473608896136284, 0.08714032918214798, -0.014583407901227474, -0.150366872549057, 0.017733458429574966, 0.043394338339567184, -0.12260226160287857, 0.11910516023635864, 0.05462685227394104, 0.07063519209623337, 0.014929565601050854, -0.07541623711585999, -0.1631229966878891, 0.03031250834465027, 0.01425902172923088, -0.0594632662832737, 0.04757995903491974, 0.059961482882499695, -0.10165371745824814, 0.10819483548402786, 0.09530027210712433, -0.013078106567263603, 0.06798283755779266, -0.16849711537361145, -0.020869607105851173, -0.01446688175201416, 0.009899779222905636, 0.05550243332982063, 0.09964893013238907, -0.03413357585668564, 0.10497362166643143, -0.09214533120393753, 0.11017382889986038, 0.10932035744190216, -0.32057443261146545, -0.005767723545432091, 0.09167823940515518, 0.039358653128147125, 0.07352814823389053, -0.04467793554067612, 0.06258884817361832, 0.018015462905168533, 0.017986174672842026, -0.014015024527907372, -0.07283061742782593, -0.11612214148044586, 0.04717336222529411, -0.08668071031570435, -0.059868961572647095, 0.2244078367948532, -0.05464440956711769, 0.06881742179393768, -0.05281897634267807, -0.10522868484258652, -0.04308144748210907, -0.029833965003490448, 0.00475557055324316, -0.07660607248544693, 0.08692064881324768, 0.00869679357856512, -0.09547875821590424, -0.1376667022705078, -0.02496783249080181, -0.1776352822780609, 0.16140350699424744, 0.02465328387916088, 0.05232657864689827, -0.2027255892753601, 0.09623090922832489, 0.017906051129102707, -0.08045592904090881, 0.022091427817940712, -0.10046248883008957, 0.029131146147847176, 0.013760408386588097, -0.04754498973488808, -0.061387211084365845, 0.0843690037727356, 0.11199145019054413, -0.01731434464454651, 0.025486016646027565, -0.039331406354904175, 0.08100687712430954, 0.03553595021367073, 0.09077847748994827, 0.007288969587534666, -0.028338588774204254, 0.025842782109975815, -0.13719046115875244, -0.003647835226729512, -0.07116208970546722, -0.16572439670562744, -0.021088803187012672, 0.02994808368384838, 0.08289173990488052, 0.015449047088623047, 0.11682453751564026, -0.03272046521306038, -0.025152435526251793, 0.03602350503206253, -0.047656361013650894, -0.012649794109165668, 0.016648368909955025, 0.013163427822291851, 0.12399329990148544, -0.0022096503525972366, 0.03235051408410072, -0.13653022050857544, 0.031423524022102356, -0.06793295592069626, -0.003740974934771657, -0.03486552834510803, -0.040637075901031494, 0.009043924510478973, -0.06862333416938782, 0.003486064961180091, -0.15030112862586975, -0.15063877403736115, 0.007587034720927477, -0.007836631499230862, -0.04107699543237686, -0.06370922178030014, -0.06952770054340363, -0.013550350442528725, 0.04251532256603241, -0.07093454152345657, -0.011352915316820145, -0.06403283774852753, 0.11004766076803207, -0.03197755664587021, 0.07921615242958069, -0.11953279376029968, 0.08390819281339645, -0.11260783672332764, -0.02386913076043129, -0.060801517218351364, 0.09317506104707718, -0.0006014376995153725, 0.09549830108880997, -0.006563255097717047, -0.017931854352355003, -0.07981178909540176, 0.06445012241601944, -0.042872510850429535, 0.21701598167419434, -0.0615808479487896, -0.11181682348251343, 0.28781595826148987, -0.052628401666879654, -0.1370542049407959, 0.11647392809391022, 0.008682746440172195, 0.05777018144726753, 0.10703510791063309, 0.19733482599258423, -0.015276194550096989, 0.004040541127324104, 0.09471915662288666, 0.11263324320316315, -0.11276852339506149, -0.033160366117954254, 0.013019153848290443, -0.04081077128648758, -0.10867965966463089, 0.04689536616206169, 0.09810488671064377, 0.07090286910533905, -0.04786505550146103, -0.03377414867281914, -0.01366397924721241, 0.0052589005790650845, 0.08885077387094498, -0.007157256826758385, 0.10962837189435959, -0.05819983780384064, -0.03796621412038803, -0.029282379895448685, -0.012126247398555279, -0.03951939567923546, 0.03137664496898651, -0.043376367539167404, 0.10821941494941711, -0.011204327456653118, 0.06364280730485916, -0.16185984015464783, -0.07691477984189987, -0.017002692446112633, 0.1581239402294159, 0.024538565427064896, 0.09859629720449448, 0.0552486926317215, -0.040398042649030685, -0.0012767292791977525, 0.012792680412530899, 0.15581141412258148, -0.022091681137681007, -0.065607450902462, -0.052166227251291275, 0.08642971515655518, -0.05641226842999458, 0.04504093527793884, -0.05937713757157326, 0.012367865070700645, 0.05064384639263153, 0.10342344641685486, -0.00018274025933351368, 0.03323284164071083, -0.008164864964783192, 0.002145637758076191, -0.058205123990774155, 0.007405933458358049, 0.10799351334571838, 0.00036868182360194623, -0.07365862280130386, 0.22074243426322937, -0.17796069383621216, 0.1765957772731781, 0.1893044263124466, -0.299345999956131, 0.017949223518371582, -0.10759581625461578, -0.04561871662735939, 0.014407722279429436, 0.05567655712366104, -0.0454222597181797, 0.1703362911939621, -0.009871348738670349, 0.18874616920948029, -0.04946064203977585, -0.04464937001466751, -0.0200483538210392, -0.05118836089968681, -0.0024189651012420654, 0.07781197130680084, 0.10685696452856064, -0.13992026448249817, 0.1964332014322281, 0.1621224284172058, 0.048237916082143784, 0.19945049285888672, 0.015346456319093704, -0.011589210480451584, 0.0909530371427536, 0.005220826715230942, -0.058739423751831055, -0.07409929484128952, -0.2594851851463318, -0.030033592134714127, 0.07992640137672424, 0.0422382652759552, 0.1212305948138237, -0.11349532753229141, -0.038956157863140106, -0.01763172075152397, -0.023146281018853188, 0.021672505885362625, 0.0914369598031044, 0.06075398623943329, 0.13201528787612915, -0.001710098935291171, -0.007300339173525572, 0.10524573177099228, 0.01783694699406624, -0.09354141354560852, 0.18308524787425995, -0.13652534782886505, -0.37097251415252686, -0.13911493122577667, -0.18057456612586975, -0.05449081212282181, 0.05712554603815079, 0.11679314076900482, -0.12011238187551498, -0.018752124160528183, 0.01578843593597412, 0.10931742936372757, -0.08449502289295197, 0.0021454424131661654, -0.06880278885364532, 0.0321490578353405, -0.10310184955596924, -0.09194442629814148, -0.055416494607925415, -0.031392451375722885, -0.08001253753900528, 0.1423761546611786, -0.10777941346168518, 0.04476889222860336, 0.20262959599494934, 0.04653622955083847, 0.05625178664922714, -0.044105201959609985, 0.19377262890338898, -0.11264272034168243, -0.01661740615963936, 0.19215328991413116, -0.048360925167798996, 0.07476246356964111, 0.1232115849852562, -0.006348740309476852, -0.08765771239995956, 0.03011748194694519, -0.02085109055042267, -0.07988511025905609, -0.23219464719295502, -0.13938382267951965, -0.12429051846265793, 0.09477275609970093, 0.028005298227071762, 0.056365787982940674, 0.17219258844852448, 0.06577219814062119, -0.038416244089603424, 0.006410336587578058, 0.02959546446800232, 0.08237514644861221, 0.23417828977108002, -0.06035616248846054, 0.1364797055721283, -0.03420931473374367, -0.14982740581035614, 0.08169995993375778, 0.0713929831981659, 0.10213395953178406, 0.06678459793329239, 0.0804823637008667, 0.0149586396291852, 0.06188136339187622, 0.1311223804950714, 0.08191446959972382, 0.019586285576224327, -0.02480296604335308, -0.03388110175728798, -0.025523077696561813, -0.05937909707427025, 0.040128443390131, 0.06589099019765854, -0.16763372719287872, -0.039227183908224106, -0.09338314831256866, 0.09657008945941925, 0.0873042419552803, 0.06609832495450974, -0.1842060089111328, -0.008006223477423191, 0.08488986641168594, -0.03854905813932419, -0.13727426528930664, 0.09535189718008041, 0.01523482333868742, -0.15144726634025574, 0.03139317408204079, -0.04061909019947052, 0.12188644707202911, -0.07804752141237259, 0.09809603542089462, -0.08108244836330414, -0.07448557764291763, 0.02123199962079525, 0.1261177361011505, -0.30527687072753906, 0.20240111649036407, -0.0024993624538183212, -0.06486981362104416, -0.1243603527545929, -0.0032166161108762026, 0.002410882618278265, 0.07357452809810638, 0.10519039630889893, -0.007196315098553896, 0.001897757756523788, -0.06300821900367737, -0.01829923689365387, 0.032471053302288055, 0.13080233335494995, -0.0401318334043026, -0.021158374845981598, -0.050194524228572845, -0.001653497340157628, -0.03173094615340233, -0.06934895366430283, 0.02002747356891632, -0.19509181380271912, 0.08751901984214783, 0.04166261479258537, 0.09648149460554123, 0.029994789510965347, 0.004265148192644119, -0.09651939570903778, 0.24698667228221893, -0.07148019969463348, -0.10072879493236542, -0.10919588059186935, -0.046813901513814926, 0.03569883480668068, -0.05628936365246773, 0.04309194162487984, -0.0788632407784462, 0.028997479006648064, -0.06352769583463669, -0.19235502183437347, 0.12410202622413635, -0.09027006477117538, -0.04412810131907463, -0.02371402643620968, 0.2110891044139862, -0.05598580464720726, 0.010335659608244896, 0.02930437959730625, 0.01208863127976656, -0.11645778268575668, -0.09678568691015244, 0.031018631532788277, -0.007351789623498917, 0.050603240728378296, 0.041841957718133926, -0.05915454775094986, -0.017138581722974777, -0.052199993282556534, -0.022926922887563705, 0.3496883809566498, 0.14231905341148376, -0.043836336582899094, 0.19347235560417175, 0.12347975373268127, -0.07452994585037231, -0.3159443140029907, -0.1066238060593605, -0.10937739163637161, -0.04680149629712105, -0.07012093812227249, -0.2002030611038208, 0.06474938243627548, 0.00662544509395957, -0.013415241613984108, 0.12749312818050385, -0.2561831772327423, -0.07571036368608475, 0.15906259417533875, -0.017980827018618584, 0.3745945692062378, -0.1168576180934906, -0.10926306992769241, -0.03950892388820648, -0.14175476133823395, 0.16968177258968353, -0.01989765651524067, 0.11221715062856674, -0.009765521623194218, 0.14388824999332428, 0.05548359826207161, -0.023479344323277473, 0.08544106781482697, 0.004999885335564613, -0.03290518373250961, -0.10304180532693863, -0.05676887184381485, 0.007092386484146118, 0.02477436140179634, 0.018026655539870262, -0.041834570467472076, 0.02227151393890381, -0.11731979995965958, -0.04657655209302902, -0.08982590585947037, 0.04431166127324104, 0.03899754583835602, -0.07325074821710587, -0.002380647463724017, -0.07165111601352692, -0.012272949330508709, 0.022334342822432518, 0.20356793701648712, -0.08029330521821976, 0.16448934376239777, 0.09239562600851059, 0.12419285625219345, -0.14376309514045715, -0.00019283240544609725, -0.0762530043721199, -0.05611240118741989, 0.07737895101308823, -0.09433035552501678, 0.058893077075481415, 0.10901971161365509, -0.04567738622426987, 0.08828683942556381, 0.10377411544322968, 0.008936077356338501, 0.003213887568563223, 0.10916902124881744, -0.2667325437068939, -0.0296600554138422, -0.07532413303852081, 0.000883326749317348, 0.09092561900615692, 0.08562852442264557, 0.18840822577476501, 0.025361526757478714, -0.04293036088347435, -0.002770674182102084, 0.028597986325621605, -0.039021048694849014, 0.051667019724845886, 0.001123449532315135, 0.01947369985282421, -0.1530752182006836, 0.072522833943367, 0.01490565575659275, -0.15215420722961426, 0.021316176280379295, 0.16572684049606323, -0.11656328290700912, -0.1283872276544571, -0.06520111113786697, 0.08313824236392975, -0.11755692958831787, -0.01578943058848381, -0.03279297426342964, -0.13145680725574493, 0.07992171496152878, 0.12629036605358124, 0.05557859688997269, 0.0972496047616005, -0.06061713397502899, -0.020469192415475845, -0.018721895292401314, -0.014099318534135818, -0.012384648434817791, -0.007667020428925753, -0.055978111922740936, 0.0590752474963665, -0.026677248999476433, 0.1425808072090149, -0.09221141785383224, -0.1037059873342514, -0.16142144799232483, 0.0374140702188015, -0.11013076454401016, -0.08825794607400894, -0.08821134269237518, -0.050188567489385605, 0.002360827289521694, -0.019856395199894905, -0.04037635400891304, -0.05829505994915962, -0.12300454825162888, 0.0338277705013752, -0.040771447122097015, 0.024727050215005875, -0.07512269169092178, 0.015856385231018066, 0.08507686108350754, -0.03285100311040878, 0.15655414760112762, 0.1450488418340683, -0.1006515845656395, 0.10741901397705078, -0.14806775748729706, -0.09138492494821548, 0.11116421222686768, 0.015329592861235142, 0.0449691042304039, 0.09723787009716034, 0.013362943194806576, 0.0635865181684494, 0.032776717096567154, 0.05308786407113075, 0.027619892731308937, -0.11959987878799438, 0.06483134627342224, -0.03626115620136261, -0.14700546860694885, -0.049338050186634064, -0.05282869189977646, 0.01647452637553215, 0.013054544106125832, 0.09622690081596375, -0.05301849544048309, 0.10698331147432327, -0.04055701196193695, 0.0346808135509491, 0.017554637044668198, -0.1730053424835205, -0.03816922754049301, -0.08538098633289337, 0.03681723028421402, 0.014741539023816586, 0.25266793370246887, 0.030072299763560295, 0.012416383251547813, 0.032671261578798294, 0.08285367488861084, 0.03899408504366875, 0.010228337720036507, 0.17482228577136993, 0.1162426546216011, -0.06621865928173065, -0.10445023328065872, 0.0729617029428482, 0.016332454979419708, 0.01286179106682539, 0.13617953658103943, 0.008365051820874214, 0.005795429926365614, 0.08649782836437225, -0.016865963116288185, 0.009968153201043606, -0.10052056610584259, -0.13426925241947174, -0.022176474332809448, 0.05151832848787308, -0.04655967652797699, 0.11727844923734665, 0.1406494379043579, -0.01806013658642769, 0.03222079202532768, -0.021771740168333054, -0.05699979141354561, -0.1683429479598999, -0.1429590880870819, -0.06883849948644638, -0.13416796922683716, 0.00897989235818386, -0.11180389672517776, 0.05395037308335304, 0.06001098081469536, 0.06750501692295074, -0.06899319589138031, 0.10220931470394135, 0.04626858979463577, -0.11440542340278625, 0.06264589726924896, -0.0296088308095932, 0.09430401772260666, -0.02759445086121559, -0.019505485892295837, -0.09039592742919922, 0.014574515633285046, 0.011419114656746387, 0.06245238706469536, -0.04707273095846176, 0.007463190704584122, -0.14696238934993744, -0.08972041308879852, -0.0523175448179245, 0.0718572810292244, -0.050409089773893356, 0.14282815158367157, 0.00775480642914772, -0.0170906875282526, 0.039554283022880554, 0.22787313163280487, -0.07476283609867096, -0.04778539761900902, -0.05269690603017807, 0.20717895030975342, 0.02975541539490223, 0.1171872541308403, -0.022938819602131844, -0.006106364540755749, -0.0919521227478981, 0.3764844834804535, 0.30030161142349243, -0.09031439572572708, 0.011794124729931355, 0.02137952297925949, 0.04502861574292183, 0.1316293478012085, 0.1216534823179245, 0.10318691283464432, 0.3006802201271057, -0.07452366501092911, -0.04653361067175865, -0.012629742734134197, -0.023858042433857918, -0.09059546142816544, 0.1021224707365036, 0.04839762672781944, -0.06382183730602264, -0.03313443064689636, 0.0954432487487793, -0.25862133502960205, 0.1277991235256195, -0.12311873584985733, -0.17578600347042084, -0.06654827296733856, 0.009760108776390553, 0.10465722531080246, 0.015642458572983742, 0.0946015790104866, 0.007128213066607714, -0.11252258718013763, 0.06305865943431854, 0.03397420793771744, -0.22762253880500793, 0.0006893770187161863, 0.06642123311758041, -0.07006710022687912, -0.0024247700348496437, -0.026499588042497635, 0.05657242611050606, 0.0656052976846695, 0.054629553109407425, -0.00971333310008049, 0.03816632181406021, 0.0034184439573436975, -0.0585215799510479, 0.016623929142951965, 0.05121519789099693, 0.02472509816288948, -0.09763528406620026, 0.06927435845136642, -0.1574270874261856, 0.04766253009438515, -0.0030655991286039352, -0.04124255105853081, 0.006064958870410919, 0.008823691867291927, -0.06491616368293762, 0.05165379121899605, 0.07916834205389023, -0.0016257909592241049, -0.0062433634884655476, -0.057178743183612823, -0.02632102556526661, -0.027755750343203545, -0.09291748702526093, -0.10495562851428986, -0.14682936668395996, -0.11640441417694092, 0.09368976950645447, -0.01011267676949501, -0.1848134547472, 0.022154374048113823, -0.08606051653623581, 0.08319322764873505, -0.1670055389404297, 0.08040720224380493, 0.07041648775339127, 0.013038921169936657, -0.0031511052511632442, -0.02002427540719509, 0.054132770746946335, 0.086809903383255, -0.10407156497240067, -0.07400695979595184 ]
null
null
transformers
# Wav2Vec2-Large-XLSR-53-Turkish Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Turkish using the [Common Voice](https://huggingface.co/datasets/common_voice). When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor from unicode_tr import unicode_tr test_dataset = load_dataset("common_voice", "tr", split="test[:2%]") processor = Wav2Vec2Processor.from_pretrained("aniltrkkn/wav2vec2-large-xlsr-53-turkish") model = Wav2Vec2ForCTC.from_pretrained("aniltrkkn/wav2vec2-large-xlsr-53-turkish") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): \tspeech_array, sampling_rate = torchaudio.load(batch["path"]) \tbatch["speech"] = resampler(speech_array).squeeze().numpy() \treturn batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): \tlogits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` ## Evaluation The model can be evaluated as follows on the Turkish test data of Common Voice. ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re test_dataset = load_dataset("common_voice", "tr", split="test") wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("aniltrkkn/wav2vec2-large-xlsr-53-turkish") model = Wav2Vec2ForCTC.from_pretrained("aniltrkkn/wav2vec2-large-xlsr-53-turkish") model.to("cuda") chars_to_ignore_regex = '[\\,\\?\\.\\!\\-\\;\\:\\"\\“]' resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): \tbatch["sentence"] = str(unicode_tr(re.sub(chars_to_ignore_regex, "", batch["sentence"])).lower()) \tspeech_array, sampling_rate = torchaudio.load(batch["path"]) \tbatch["speech"] = resampler(speech_array).squeeze().numpy() \treturn batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the aduio files as arrays def evaluate(batch): \tinputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) \twith torch.no_grad(): \t\tlogits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits \tpred_ids = torch.argmax(logits, dim=-1) \tbatch["pred_strings"] = processor.batch_decode(pred_ids) \treturn batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ``` **Test Result**: 17.46 % ## Training unicode_tr package is used for converting sentences to lower case since regular lower() does not work well with Turkish. Since training data is very limited for Turkish, all data is employed with a K-Fold (k=5) training approach. Best model out of the 5 trainings is uploaded. Training arguments: --num_train_epochs="30" \\ --per_device_train_batch_size="32" \\ --evaluation_strategy="steps" \\ --activation_dropout="0.055" \\ --attention_dropout="0.094" \\ --feat_proj_dropout="0.04" \\ --hidden_dropout="0.047" \\ --layerdrop="0.041" \\ --learning_rate="2.34e-4" \\ --mask_time_prob="0.082" \\ --warmup_steps="250" \\ All trainings took ~20 hours with a GeForce RTX 3090 Graphics Card.
{"language": "tr", "license": "apache-2.0", "tags": ["audio", "automatic-speech-recognition", "speech", "xlsr-fine-tuning-week"], "datasets": ["common_voice"], "metrics": ["wer"], "results": [{"task": {"name": "Speech Recognition", "type": "automatic-speech-recognition"}, "dataset": {"name": "Common Voice tr", "type": "common_voice", "args": "tr"}, "metrics": [{"name": "Test WER", "type": "wer", "value": 17.46}]}]}
automatic-speech-recognition
aniltrkkn/wav2vec2-large-xlsr-53-turkish
[ "transformers", "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "audio", "speech", "xlsr-fine-tuning-week", "tr", "dataset:common_voice", "license:apache-2.0", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "tr" ]
TAGS #transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #tr #dataset-common_voice #license-apache-2.0 #endpoints_compatible #region-us
# Wav2Vec2-Large-XLSR-53-Turkish Fine-tuned facebook/wav2vec2-large-xlsr-53 on Turkish using the Common Voice. When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ## Evaluation The model can be evaluated as follows on the Turkish test data of Common Voice. Test Result: 17.46 % ## Training unicode_tr package is used for converting sentences to lower case since regular lower() does not work well with Turkish. Since training data is very limited for Turkish, all data is employed with a K-Fold (k=5) training approach. Best model out of the 5 trainings is uploaded. Training arguments: --num_train_epochs="30" \\ --per_device_train_batch_size="32" \\ --evaluation_strategy="steps" \\ --activation_dropout="0.055" \\ --attention_dropout="0.094" \\ --feat_proj_dropout="0.04" \\ --hidden_dropout="0.047" \\ --layerdrop="0.041" \\ --learning_rate="2.34e-4" \\ --mask_time_prob="0.082" \\ --warmup_steps="250" \\ All trainings took ~20 hours with a GeForce RTX 3090 Graphics Card.
[ "# Wav2Vec2-Large-XLSR-53-Turkish\n\nFine-tuned facebook/wav2vec2-large-xlsr-53 on Turkish using the Common Voice.\nWhen using this model, make sure that your speech input is sampled at 16kHz.", "## Usage\n\nThe model can be used directly (without a language model) as follows:", "## Evaluation\n\nThe model can be evaluated as follows on the Turkish test data of Common Voice. \n\n\n\n\nTest Result: 17.46 %", "## Training\nunicode_tr package is used for converting sentences to lower case since regular lower() does not work well with Turkish.\n\nSince training data is very limited for Turkish, all data is employed with a K-Fold (k=5) training approach. Best model out of the 5 trainings is uploaded. Training arguments:\n --num_train_epochs=\"30\" \\\\\n --per_device_train_batch_size=\"32\" \\\\\n --evaluation_strategy=\"steps\" \\\\\n --activation_dropout=\"0.055\" \\\\\n --attention_dropout=\"0.094\" \\\\\n --feat_proj_dropout=\"0.04\" \\\\\n --hidden_dropout=\"0.047\" \\\\\n --layerdrop=\"0.041\" \\\\\n --learning_rate=\"2.34e-4\" \\\\\n --mask_time_prob=\"0.082\" \\\\\n --warmup_steps=\"250\" \\\\\n\nAll trainings took ~20 hours with a GeForce RTX 3090 Graphics Card." ]
[ "TAGS\n#transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #tr #dataset-common_voice #license-apache-2.0 #endpoints_compatible #region-us \n", "# Wav2Vec2-Large-XLSR-53-Turkish\n\nFine-tuned facebook/wav2vec2-large-xlsr-53 on Turkish using the Common Voice.\nWhen using this model, make sure that your speech input is sampled at 16kHz.", "## Usage\n\nThe model can be used directly (without a language model) as follows:", "## Evaluation\n\nThe model can be evaluated as follows on the Turkish test data of Common Voice. \n\n\n\n\nTest Result: 17.46 %", "## Training\nunicode_tr package is used for converting sentences to lower case since regular lower() does not work well with Turkish.\n\nSince training data is very limited for Turkish, all data is employed with a K-Fold (k=5) training approach. Best model out of the 5 trainings is uploaded. Training arguments:\n --num_train_epochs=\"30\" \\\\\n --per_device_train_batch_size=\"32\" \\\\\n --evaluation_strategy=\"steps\" \\\\\n --activation_dropout=\"0.055\" \\\\\n --attention_dropout=\"0.094\" \\\\\n --feat_proj_dropout=\"0.04\" \\\\\n --hidden_dropout=\"0.047\" \\\\\n --layerdrop=\"0.041\" \\\\\n --learning_rate=\"2.34e-4\" \\\\\n --mask_time_prob=\"0.082\" \\\\\n --warmup_steps=\"250\" \\\\\n\nAll trainings took ~20 hours with a GeForce RTX 3090 Graphics Card." ]
[ 76, 64, 20, 28, 221 ]
[ "passage: TAGS\n#transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #tr #dataset-common_voice #license-apache-2.0 #endpoints_compatible #region-us \n# Wav2Vec2-Large-XLSR-53-Turkish\n\nFine-tuned facebook/wav2vec2-large-xlsr-53 on Turkish using the Common Voice.\nWhen using this model, make sure that your speech input is sampled at 16kHz.## Usage\n\nThe model can be used directly (without a language model) as follows:## Evaluation\n\nThe model can be evaluated as follows on the Turkish test data of Common Voice. \n\n\n\n\nTest Result: 17.46 %## Training\nunicode_tr package is used for converting sentences to lower case since regular lower() does not work well with Turkish.\n\nSince training data is very limited for Turkish, all data is employed with a K-Fold (k=5) training approach. Best model out of the 5 trainings is uploaded. Training arguments:\n --num_train_epochs=\"30\" \\\\\n --per_device_train_batch_size=\"32\" \\\\\n --evaluation_strategy=\"steps\" \\\\\n --activation_dropout=\"0.055\" \\\\\n --attention_dropout=\"0.094\" \\\\\n --feat_proj_dropout=\"0.04\" \\\\\n --hidden_dropout=\"0.047\" \\\\\n --layerdrop=\"0.041\" \\\\\n --learning_rate=\"2.34e-4\" \\\\\n --mask_time_prob=\"0.082\" \\\\\n --warmup_steps=\"250\" \\\\\n\nAll trainings took ~20 hours with a GeForce RTX 3090 Graphics Card." ]
[ -0.08582102507352829, -0.00908301118761301, -0.0029396822210401297, 0.041449662297964096, 0.07567466050386429, 0.03322187438607216, 0.14107158780097961, 0.15376360714435577, -0.08434385806322098, 0.08252322673797607, 0.045700009912252426, 0.009794929064810276, 0.10336989909410477, 0.1623224914073944, 0.013186769559979439, -0.17585521936416626, 0.012872809544205666, -0.051693595945835114, 0.055520638823509216, 0.11161395162343979, 0.10476598143577576, -0.05994546413421631, -0.0065272506326437, 0.038876309990882874, -0.06430824100971222, -0.0035188833717256784, 0.0016451687552034855, -0.09556692093610764, 0.0646081268787384, 0.020157465711236, 0.07522091269493103, -0.025142010301351547, -0.015434077940881252, -0.19685673713684082, 0.021314047276973724, 0.09948670119047165, 0.00632533710449934, 0.04089419171214104, 0.12854591012001038, -0.050159912556409836, 0.1531934142112732, -0.20647671818733215, -0.00006771374319214374, 0.05053641274571419, -0.06099863350391388, -0.16737355291843414, -0.10137377679347992, 0.08704224973917007, 0.11765645444393158, 0.0714733675122261, -0.05669551342725754, 0.1027325913310051, -0.06000914052128792, 0.07519520074129105, 0.13707132637500763, -0.2637762427330017, -0.03876050189137459, -0.07153181731700897, -0.0592472217977047, 0.00991656444966793, -0.0755005031824112, 0.001466365996748209, 0.008616364561021328, -0.01627017930150032, -0.042974963784217834, 0.00039468990871682763, -0.011733276769518852, -0.07752689719200134, -0.06160624697804451, -0.06606601178646088, 0.14405478537082672, 0.021742356941103935, -0.04005380719900131, -0.1847728192806244, -0.041036780923604965, -0.10642854869365692, -0.027812829241156578, 0.021027637645602226, -0.010645110160112381, 0.00009155731822829694, 0.035758890211582184, -0.004084254149347544, -0.09439150989055634, -0.03947041183710098, -0.0672558844089508, 0.1528601348400116, 0.07975976914167404, -0.007803248707205057, -0.0016352144302800298, 0.10693687945604324, -0.07170939445495605, -0.08351270854473114, -0.03779864311218262, -0.004833439365029335, -0.11397555470466614, 0.029720813035964966, -0.032637640833854675, -0.09637800604104996, 0.019638167694211006, 0.053935520350933075, 0.03303676098585129, 0.1139635294675827, 0.0364118255674839, 0.026230093091726303, -0.053819600492715836, 0.06633396446704865, -0.014599664136767387, -0.11396434903144836, 0.02159160003066063, 0.03584537282586098, 0.010385607369244099, -0.011259226128458977, -0.011500513181090355, -0.02965652570128441, 0.03909365087747574, 0.05245393142104149, 0.01407473161816597, 0.03578440845012665, -0.013230513781309128, -0.0016453518765047193, 0.05728866532444954, -0.12762530148029327, 0.011111557483673096, 0.01688334159553051, -0.10239071398973465, 0.09361393004655838, 0.011910571716725826, -0.05388282984495163, -0.11336211115121841, 0.08877153694629669, 0.02974397875368595, 0.04608689993619919, -0.0675714835524559, -0.08469942957162857, -0.010405163280665874, -0.06225450709462166, -0.05307784304022789, -0.09045582264661789, -0.15056878328323364, 0.001634268555790186, 0.03371920809149742, -0.05902332067489624, 0.08697089552879333, -0.02992340736091137, -0.08973400294780731, 0.0701955258846283, -0.010504781268537045, 0.055326953530311584, -0.06398016959428787, 0.07439038157463074, 0.030454667285084724, 0.056973524391651154, 0.08041179925203323, 0.02596697397530079, -0.06276661902666092, 0.010888279415667057, -0.07589864730834961, 0.17274382710456848, -0.029336920008063316, -0.09388092905282974, -0.12811510264873505, -0.045694414526224136, -0.04006371274590492, 0.023579346016049385, 0.08065740764141083, 0.08083542436361313, -0.1895703673362732, -0.02031318098306656, 0.16930514574050903, -0.07689155638217926, 0.007870921865105629, 0.161931112408638, -0.026166997849941254, -0.014069889672100544, 0.12402310967445374, 0.1949906200170517, 0.12216266989707947, -0.10111740976572037, -0.12764114141464233, 0.030815381556749344, -0.06406018882989883, 0.09033861756324768, 0.045484211295843124, -0.05973702296614647, 0.12491247057914734, 0.03148099035024643, -0.03141309693455696, 0.06089727208018303, 0.01617453806102276, -0.04291391372680664, -0.03889210522174835, -0.042468562722206116, 0.11677845567464828, -0.010737661272287369, 0.017974497750401497, -0.11204016208648682, -0.15702404081821442, 0.06455110758543015, 0.13004305958747864, -0.024961154907941818, -0.005449033807963133, -0.1236138790845871, 0.05667700991034508, -0.11861809343099594, 0.011934406124055386, -0.11566413938999176, 0.01799093559384346, -0.029810283333063126, -0.0359967015683651, 0.048517558723688126, 0.047794975340366364, 0.07947767525911331, 0.028156956657767296, -0.050888337194919586, -0.0199479628354311, -0.02730356529355049, 0.0044297813437879086, -0.047308776527643204, -0.11841283738613129, 0.02477286383509636, 0.0022231636103242636, 0.10478261858224869, -0.07221107184886932, 0.003150002798065543, 0.10089564323425293, 0.11540396511554718, -0.036860957741737366, -0.0401696115732193, 0.022090444341301918, -0.006850098725408316, 0.020766910165548325, -0.08310004323720932, 0.02032862789928913, -0.007541716564446688, -0.014577826485037804, 0.03530170023441315, -0.24414855241775513, -0.11384745687246323, 0.14859126508235931, 0.08911880850791931, -0.1155426874756813, 0.07965762913227081, -0.010266821831464767, -0.04887207970023155, -0.057417113333940506, -0.04295852407813072, 0.2773037850856781, 0.05526380240917206, 0.1317971795797348, -0.0713268369436264, -0.06136670336127281, 0.012855694629251957, -0.04709003493189812, 0.020481612533330917, 0.07291701436042786, -0.08052285015583038, -0.0967305451631546, 0.05301414057612419, -0.0028228438459336758, -0.02209145948290825, 0.23114721477031708, -0.008461140096187592, -0.10808101296424866, -0.037395596504211426, 0.0922074243426323, 0.031132005155086517, 0.16985273361206055, -0.05282864347100258, 0.01878383196890354, 0.04840675741434097, 0.07618288695812225, 0.04260833561420441, -0.1537637710571289, 0.042659785598516464, 0.0467439703643322, -0.08308123797178268, -0.049192164093256, 0.028652118518948555, 0.026870040223002434, 0.0959310382604599, -0.033088717609643936, 0.048890553414821625, 0.030313054099678993, -0.03117002360522747, -0.060889024287462234, 0.12034443765878677, -0.12955719232559204, -0.1962173879146576, -0.08731602132320404, 0.04691874608397484, -0.040099628269672394, -0.032761815935373306, 0.03943140059709549, -0.16605962812900543, -0.02826240286231041, -0.023531289771199226, 0.04249833524227142, -0.07206030189990997, -0.03652390465140343, -0.10392649471759796, -0.007329726591706276, 0.10284357517957687, -0.11273770779371262, -0.0055091953836381435, 0.0050958991050720215, -0.03990515321493149, 0.005714563187211752, 0.07115829735994339, -0.018833119422197342, 0.08958784490823746, -0.07733850926160812, 0.04095719754695892, -0.030182214453816414, 0.06027299165725708, -0.11406941711902618, 0.06289097666740417, 0.11660449206829071, 0.03565075993537903, 0.05745819956064224, 0.06977143883705139, -0.007217857521027327, -0.038655299693346024, -0.032811347395181656, 0.04691985994577408, -0.06482894718647003, -0.22121132910251617, -0.05512678623199463, -0.1069357767701149, -0.03738101199269295, 0.0529981292784214, 0.017951183021068573, -0.005783334374427795, 0.06715096533298492, -0.10217262804508209, 0.03722011297941208, 0.0004785055061802268, 0.04224192351102829, 0.12177296727895737, 0.08180953562259674, 0.057553038001060486, -0.11688970029354095, 0.008064812049269676, 0.06579473614692688, 0.011998818255960941, 0.17669153213500977, -0.08091500401496887, 0.14575006067752838, 0.054722633212804794, 0.11002835631370544, 0.030406037345528603, 0.052084341645240784, -0.031665313988924026, -0.0039026266895234585, 0.0360388308763504, -0.07727782428264618, -0.06995020806789398, 0.01921159215271473, 0.054165322333574295, -0.03295008838176727, -0.02097480557858944, 0.09325512498617172, 0.11333814263343811, 0.09508003294467926, 0.03300027549266815, -0.2131897509098053, -0.07058991491794586, -0.03570804372429848, -0.03952281177043915, -0.0498838797211647, -0.03056851029396057, 0.14502301812171936, -0.12800391018390656, 0.10191468149423599, -0.07483198493719101, 0.07862929999828339, -0.12283774465322495, -0.027710195630788803, -0.002128445077687502, 0.1565750390291214, 0.0163424015045166, 0.09753202646970749, -0.15770076215267181, 0.1262725442647934, 0.014704485423862934, 0.1856199949979782, -0.06106993928551674, 0.038226015865802765, 0.11656907200813293, -0.11881846934556961, 0.08170045167207718, 0.006344552151858807, -0.02834811620414257, -0.08314572274684906, -0.1657777726650238, 0.006203727796673775, 0.06807712465524673, 0.06076429411768913, 0.056035712361335754, -0.0422515906393528, 0.007601067423820496, -0.011371537111699581, -0.06655518710613251, -0.11836591362953186, -0.1817157119512558, 0.036631159484386444, -0.001068290090188384, -0.038549020886421204, -0.022336922585964203, -0.034163959324359894, -0.11111922562122345, 0.17196926474571228, -0.09807489812374115, -0.13198183476924896, -0.0818704217672348, -0.011522406712174416, 0.11425911635160446, -0.06349757313728333, 0.0034421102609485388, 0.010305941104888916, 0.04108932241797447, -0.020579269155859947, -0.044007863849401474, 0.007187091279774904, -0.07521753758192062, -0.11204708367586136, -0.01536561455577612, 0.13308563828468323, -0.0013013877905905247, 0.07333497703075409, 0.05125434696674347, -0.004427260719239712, -0.00628041522577405, -0.10288731753826141, 0.0032589274924248457, 0.026728449389338493, -0.014697556383907795, 0.05143776163458824, 0.08169286698102951, -0.041230082511901855, -0.049125030636787415, 0.008975997567176819, 0.10573172569274902, 0.23050308227539062, -0.09051875025033951, 0.1461258828639984, -0.029237624257802963, -0.04212617501616478, -0.11071319133043289, -0.005913500674068928, 0.0812329426407814, 0.051955003291368484, -0.04018876701593399, -0.11187834292650223, 0.027542980387806892, 0.07797438651323318, 0.012147323228418827, 0.031595829874277115, -0.31737565994262695, -0.11613757908344269, 0.070046067237854, 0.011394182220101357, 0.05284764990210533, -0.09890883415937424, -0.038629431277513504, -0.06265413761138916, -0.002255625557154417, 0.005226358771324158, -0.16465219855308533, 0.12502726912498474, -0.0062727476470172405, 0.02978678233921528, 0.03406750410795212, -0.0661327987909317, 0.18731024861335754, -0.012376170605421066, 0.04710063710808754, -0.0917053371667862, 0.06073000654578209, 0.1232292503118515, -0.05347727984189987, 0.1182718276977539, -0.1738971769809723, 0.016498317942023277, -0.1764102727174759, -0.02239927463233471, -0.029147189110517502, 0.05722053721547127, -0.015680469572544098, -0.00813234318047762, -0.03605830669403076, -0.008863233961164951, 0.11198090016841888, -0.0011922656558454037, -0.12712043523788452, -0.0131909204646945, -0.06963035464286804, 0.041146524250507355, 0.09244585782289505, 0.10811162739992142, -0.24661189317703247, -0.04205074533820152, 0.03747440129518509, 0.04665638878941536, -0.1570681929588318, -0.012986605986952782, 0.06990396231412888, -0.00008725489897187799, 0.11496885865926743, -0.041000209748744965, -0.08229454606771469, 0.09795285761356354, 0.07623037695884705, -0.03285471722483635, -0.14273297786712646, 0.046358659863471985, -0.017029626294970512, -0.023533668369054794, -0.07020044326782227, 0.08354559540748596, -0.07746152579784393, 0.03461910039186478, -0.0007703760056756437, 0.013914825394749641, -0.061220426112413406, 0.20283761620521545, 0.007424214854836464, 0.07535485178232193, -0.08675510436296463, 0.08604113757610321, 0.023300211876630783, -0.01895259879529476, 0.10004023462533951, 0.02206374518573284, -0.09345049411058426, -0.0174888726323843, 0.06050225347280502, 0.06032094731926918, 0.10669420659542084, -0.09221591055393219, -0.08487184345722198, -0.06527659296989441, -0.01933504082262516, -0.062282856553792953, 0.019319266080856323, 0.0024017684627324343, -0.06502047181129456, -0.02022320032119751, -0.11940833181142807, 0.053966328501701355, 0.13735419511795044, -0.00557991536334157, -0.07801442593336105, 0.22435849905014038, 0.059310898184776306, -0.019095178693532944, 0.006926613859832287, -0.005439902190119028, 0.023281676694750786, 0.019955923780798912, -0.18766066431999207, 0.061739251017570496, -0.06150835379958153, -0.008221358992159367, -0.00044170071487315, 0.04946768283843994, -0.02583472803235054, 0.038275666534900665, -0.0795358419418335, -0.05362784117460251, -0.003905049292370677, 0.030212324112653732, -0.1146058663725853, 0.03688793629407883, 0.011177361942827702, -0.09062664955854416, 0.06384030729532242, 0.09320954978466034, -0.03024144284427166, 0.01420497801154852, -0.08362691849470139, -0.0567161850631237, -0.025975732132792473, 0.026975402608513832, -0.0012502862373366952, -0.07587364315986633, 0.07418365776538849, 0.022811297327280045, 0.01909864880144596, 0.028878914192318916, 0.06026249751448631, -0.11804158985614777, 0.01349472813308239, -0.08697864413261414, 0.05600983276963234, -0.0656530112028122, 0.07725351303815842, 0.06905092298984528, 0.038444843143224716, 0.15107563138008118, -0.10339666903018951, 0.047878820449113846, -0.13209670782089233, -0.022917181253433228, -0.021979549899697304, -0.07671468704938889, 0.015178976580500603, -0.044684428721666336, 0.10248056054115295, -0.048353418707847595, 0.11069415509700775, 0.0266517736017704, -0.03262423723936081, 0.019715217873454094, -0.06417135894298553, -0.026406897231936455, -0.014437584206461906, 0.1576457917690277, -0.01548814121633768, 0.0008855548221617937, -0.02457074448466301, -0.03352575749158859, 0.058467164635658264, -0.0503384992480278, 0.14100702106952667, 0.21628133952617645, 0.02596501260995865, 0.08314843475818634, -0.0013649979373440146, -0.12877808511257172, -0.13327926397323608, 0.08424866944551468, -0.13753125071525574, 0.07465551793575287, -0.03255094587802887, 0.05802065506577492, 0.13488604128360748, -0.1490052342414856, 0.0899539515376091, -0.022109052166342735, -0.09300165623426437, -0.01744534634053707, -0.10703890025615692, -0.02920992113649845, -0.11469140648841858, 0.0269676074385643, -0.05470352992415428, 0.06284116208553314, 0.12865349650382996, 0.06616293638944626, -0.03503989055752754, 0.2559673488140106, -0.10959704965353012, -0.07062579691410065, 0.07814972847700119, -0.03024696372449398, -0.0065666306763887405, -0.012712115421891212, -0.06555937975645065, 0.023794803768396378, -0.05692475289106369, 0.12740491330623627, 0.04579487815499306, 0.028695065528154373, -0.005663977935910225, -0.023868778720498085, -0.06114433705806732, 0.005686990451067686, 0.015781214460730553, 0.12174598127603531, 0.18377122282981873, 0.10870660096406937, -0.044128116220235825, -0.08489443361759186, 0.11165603995323181, -0.018711159005761147, -0.18460147082805634, -0.10218314081430435, -0.0018327627331018448, 0.05044804513454437, -0.02836054563522339, 0.01886257342994213, -0.1357761025428772, 0.02239026501774788, 0.15468335151672363, 0.16282497346401215, 0.02462448552250862, -0.004118223674595356, -0.05173728987574577, -0.011104709468781948, -0.01284969411790371, 0.08228535205125809, -0.008506253361701965, 0.11901374906301498, -0.02204444259405136, 0.04871642589569092, -0.03296691179275513, -0.06203126162290573, -0.0396561436355114, 0.10684405267238617, -0.033652111887931824, -0.04701390489935875, -0.021777106449007988, 0.08315397799015045, 0.01897190697491169, -0.2008150964975357, 0.06168489158153534, -0.0920679047703743, -0.1476641148328781, 0.0679248720407486, 0.08996390551328659, 0.0777023583650589, 0.031207222491502762, -0.011737548746168613, 0.022724973037838936, 0.05298569053411484, -0.003258300479501486, -0.08606134355068207, -0.06777894496917725, 0.006725301966071129, -0.0948537290096283, 0.15575388073921204, 0.04033795744180679, 0.11523762345314026, 0.1162940189242363, 0.05843573436141014, -0.06185530871152878, 0.08507364243268967, 0.04856318607926369, -0.08051812648773193, 0.06847921013832092, 0.15474210679531097, -0.0206760261207819, -0.004712916910648346, 0.07218346744775772, 0.006565378047525883, 0.016836602240800858, 0.0015402734279632568, 0.042337361723184586, -0.09378138184547424, 0.044901277869939804, -0.047080524265766144, 0.12179498374462128, 0.2501809895038605, -0.03377646580338478, -0.016539130359888077, -0.06241855397820473, 0.025841690599918365, 0.03718726709485054, 0.03467504680156708, -0.028355497866868973, -0.165096253156662, 0.0003597994218580425, 0.03689833730459213, 0.08830077946186066, -0.15233135223388672, -0.10648094862699509, 0.03538987785577774, -0.08309324830770493, -0.04805926978588104, 0.10184351354837418, 0.0821298286318779, 0.0732317641377449, -0.049952324479818344, -0.006671153474599123, -0.01458795927464962, 0.08094874024391174, -0.09358125180006027, -0.05448579043149948 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # sagemaker-BioclinicalBERT-ADR This model is a fine-tuned version of [emilyalsentzer/Bio_ClinicalBERT](https://huggingface.co/emilyalsentzer/Bio_ClinicalBERT) on the ade_corpus_v2 dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 171 | 0.9441 | ### Framework versions - Transformers 4.12.3 - Pytorch 1.9.1 - Datasets 1.15.1 - Tokenizers 0.10.3
{"tags": ["generated_from_trainer"], "datasets": ["ade_corpus_v2"], "model-index": [{"name": "sagemaker-BioclinicalBERT-ADR", "results": []}]}
question-answering
anindabitm/sagemaker-BioclinicalBERT-ADR
[ "transformers", "pytorch", "bert", "question-answering", "generated_from_trainer", "dataset:ade_corpus_v2", "endpoints_compatible", "has_space", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #bert #question-answering #generated_from_trainer #dataset-ade_corpus_v2 #endpoints_compatible #has_space #region-us
sagemaker-BioclinicalBERT-ADR ============================= This model is a fine-tuned version of emilyalsentzer/Bio\_ClinicalBERT on the ade\_corpus\_v2 dataset. Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 3e-05 * train\_batch\_size: 32 * eval\_batch\_size: 64 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * lr\_scheduler\_warmup\_steps: 500 * num\_epochs: 1 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.12.3 * Pytorch 1.9.1 * Datasets 1.15.1 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 3e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 500\n* num\\_epochs: 1\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.12.3\n* Pytorch 1.9.1\n* Datasets 1.15.1\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #bert #question-answering #generated_from_trainer #dataset-ade_corpus_v2 #endpoints_compatible #has_space #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 3e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 500\n* num\\_epochs: 1\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.12.3\n* Pytorch 1.9.1\n* Datasets 1.15.1\n* Tokenizers 0.10.3" ]
[ 51, 131, 4, 31 ]
[ "passage: TAGS\n#transformers #pytorch #bert #question-answering #generated_from_trainer #dataset-ade_corpus_v2 #endpoints_compatible #has_space #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 3e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 500\n* num\\_epochs: 1\n* mixed\\_precision\\_training: Native AMP### Training results### Framework versions\n\n\n* Transformers 4.12.3\n* Pytorch 1.9.1\n* Datasets 1.15.1\n* Tokenizers 0.10.3" ]
[ -0.09891840815544128, 0.08913470059633255, -0.002293934114277363, 0.09105642139911652, 0.14140817523002625, 0.0344599224627018, 0.07669659703969955, 0.14229746162891388, -0.05839009955525398, 0.060519009828567505, 0.13236528635025024, 0.1099979504942894, 0.012860510498285294, 0.12673784792423248, -0.039570800960063934, -0.27049171924591064, -0.004412887152284384, 0.028895430266857147, -0.10699943453073502, 0.1325443983078003, 0.08290282636880875, -0.1540583074092865, 0.06378393620252609, -0.013514054007828236, -0.1368577629327774, 0.016986194998025894, -0.016164282336831093, -0.03236112743616104, 0.1328057050704956, -0.008606957271695137, 0.12130231410264969, 0.020736437290906906, 0.09887205809354782, -0.2223549485206604, 0.007306781131774187, 0.041717611253261566, 0.03154212608933449, 0.07563869655132294, 0.04905880242586136, -0.015414644032716751, 0.08946996927261353, -0.12312502413988113, 0.06894905865192413, 0.008933844976127148, -0.13676764070987701, -0.283743292093277, -0.08474601805210114, 0.00499568460509181, 0.07675701379776001, 0.10710924118757248, -0.02940111793577671, 0.12156382948160172, -0.11625678092241287, 0.08918660879135132, 0.2782362103462219, -0.2656592130661011, -0.07473619282245636, 0.017639510333538055, 0.046932436525821686, 0.08852963149547577, -0.12149924784898758, -0.026582371443510056, 0.02991364151239395, 0.049233462661504745, 0.12509967386722565, -0.02922772243618965, -0.0590578131377697, 0.04400809109210968, -0.14947998523712158, -0.05083725228905678, 0.14723218977451324, 0.05820409953594208, -0.013591461814939976, -0.04813488572835922, -0.040231503546237946, -0.15869174897670746, -0.029804306104779243, -0.027117019519209862, 0.042812857776880264, -0.07156247645616531, -0.10022364556789398, -0.005046335980296135, -0.09525666385889053, -0.08729372173547745, -0.02564801648259163, 0.14718376100063324, 0.04567955061793327, -0.0040544383227825165, -0.015084500424563885, 0.11578673124313354, 0.0065317279659211636, -0.14523325860500336, 0.0009067095234058797, 0.012455688789486885, -0.0629720687866211, -0.035475295037031174, -0.073232002556324, -0.0004314058169256896, 0.0058240401558578014, 0.13370546698570251, -0.0819900780916214, 0.051351554691791534, 0.057468920946121216, 0.007830140180885792, -0.07401267439126968, 0.17095211148262024, -0.07047465443611145, -0.033716462552547455, -0.057694047689437866, 0.0779913142323494, -0.03704578056931496, -0.00033427891321480274, -0.07560941576957703, -0.00297397468239069, 0.11295576393604279, 0.030662616714835167, -0.04810703918337822, 0.04076571390032768, -0.04337484389543533, -0.01881270296871662, -0.04786534979939461, -0.09105135500431061, 0.04264170676469803, 0.00973141472786665, -0.09723498672246933, -0.03966052830219269, 0.0067678107880055904, 0.01094844937324524, -0.0010549627477303147, 0.1005135029554367, -0.09294553101062775, 0.027281103655695915, -0.09180135279893875, -0.13338378071784973, 0.00836899969726801, -0.06737955659627914, 0.02602146752178669, -0.07748932391405106, -0.13872398436069489, -0.04240167886018753, 0.04892127588391304, -0.06238550692796707, -0.03383221849799156, -0.04960964247584343, -0.07106421887874603, 0.014296932145953178, -0.021046198904514313, 0.16953879594802856, -0.06753677874803543, 0.1255030632019043, 0.027232667431235313, 0.09445547312498093, 0.02830973081290722, 0.06670945882797241, -0.08625463396310806, 0.02986190654337406, -0.14715376496315002, 0.05805059149861336, -0.07841286808252335, 0.037243738770484924, -0.11470551788806915, -0.13913428783416748, -0.0013822722248733044, -0.00718294084072113, 0.10398583114147186, 0.12349814176559448, -0.14907121658325195, -0.05890451371669769, 0.16099077463150024, -0.03614932671189308, -0.12377994507551193, 0.1022757887840271, -0.06406374275684357, 0.03281467780470848, 0.038260165601968765, 0.210649773478508, 0.05555245280265808, -0.11061049997806549, 0.02438647300004959, -0.023745650425553322, 0.0911712795495987, 0.005724531132727861, 0.07596510648727417, 0.004059013910591602, 0.019147787243127823, 0.006607017945498228, -0.06326906383037567, 0.05507560074329376, -0.1326768547296524, -0.08812405169010162, -0.02087472379207611, -0.10057298094034195, 0.07082249969244003, 0.07228435575962067, 0.06544031202793121, -0.1039801836013794, -0.08830881118774414, 0.06902668625116348, 0.07966212928295135, -0.0745861679315567, 0.021430684253573418, -0.03868221491575241, 0.051642730832099915, -0.04875371977686882, -0.032497208565473557, -0.1862875074148178, -0.054588865488767624, 0.001004490302875638, 0.023178504779934883, 0.0026911781169474125, 0.04862123727798462, 0.09538077563047409, 0.039075057953596115, -0.06898809969425201, -0.05111088976264, -0.07452819496393204, 0.011085943318903446, -0.12791389226913452, -0.19601106643676758, -0.05771031230688095, -0.02660774067044258, 0.11038751155138016, -0.2025536298751831, 0.01258515939116478, -0.0204033050686121, 0.0887235626578331, 0.019572660326957703, -0.02474948763847351, -0.014236045069992542, 0.07618258893489838, -0.012486215680837631, -0.05036552995443344, 0.05329526588320732, -0.02353646047413349, -0.09353494644165039, -0.03658845275640488, -0.09212680160999298, 0.13164348900318146, 0.09910547733306885, -0.07305087894201279, -0.09660863876342773, -0.017893757671117783, -0.07806757092475891, -0.03766949474811554, -0.050497591495513916, 0.01977614127099514, 0.13587446510791779, 0.0040996018797159195, 0.11146564781665802, -0.06783811748027802, -0.04923368617892265, 0.0076325517147779465, -0.029005754739046097, 0.016667647287249565, 0.16296911239624023, 0.08758848905563354, -0.04943845421075821, 0.13294707238674164, 0.16136950254440308, -0.07518456876277924, 0.1278662532567978, -0.0444275364279747, -0.11115449666976929, -0.04479614272713661, -0.008627152070403099, -0.014289473183453083, 0.1358688920736313, -0.12640362977981567, 0.003652476239949465, 0.030022144317626953, 0.044328685849905014, 0.02122241072356701, -0.2088167518377304, -0.06656874716281891, 0.044340137392282486, -0.04658205062150955, -0.03077075444161892, 0.004486394114792347, 0.03272412717342377, 0.11360303312540054, 0.01891023851931095, -0.04646182805299759, -0.008334684185683727, -0.011211973614990711, -0.06522632390260696, 0.20859041810035706, -0.07577203959226608, -0.1271410435438156, -0.062084607779979706, -0.032113201916217804, -0.018076781183481216, -0.0029620418790727854, 0.06488292664289474, -0.10417991131544113, 0.0048684305511415005, -0.059910450130701065, 0.034674301743507385, -0.04165402799844742, 0.03281758725643158, -0.018214784562587738, -0.009771701879799366, 0.06619851291179657, -0.09811381250619888, 0.0023564419243484735, -0.05979609861969948, -0.04807622730731964, 0.06872766464948654, 0.032440513372421265, 0.13158948719501495, 0.13481560349464417, -0.0027678008191287518, 0.023998506367206573, -0.03658514469861984, 0.2596266269683838, -0.08523044735193253, -0.030065547674894333, 0.10429392755031586, 0.02987355925142765, 0.04654858261346817, 0.1225380077958107, 0.056271109730005264, -0.10134625434875488, 0.028571806848049164, 0.058720313012599945, -0.029149161651730537, -0.21004782617092133, -0.038227446377277374, -0.057558685541152954, -0.03022860549390316, 0.10564278066158295, 0.004771249834448099, 0.0014528280589729548, 0.04369409382343292, 0.03907153010368347, -0.009440802969038486, -0.05191577225923538, 0.05090557783842087, 0.09666198492050171, 0.019815456122159958, 0.125431090593338, -0.010408519767224789, -0.06438557803630829, 0.02916829288005829, 0.005524007137864828, 0.255780428647995, -0.017458613961935043, 0.07376740872859955, 0.06246952340006828, 0.18342547118663788, -0.0296618714928627, 0.06870733946561813, 0.01344595942646265, -0.046177368611097336, -0.010509105399250984, -0.038939882069826126, -0.01621864177286625, 0.03837857022881508, 0.02989305555820465, 0.025668129324913025, -0.1435709446668625, -0.047332484275102615, 0.0467388890683651, 0.25162339210510254, 0.08050133287906647, -0.27550458908081055, -0.08844193816184998, 0.013138453476130962, -0.047266636043787, -0.018109800294041634, 0.010072881355881691, 0.13494767248630524, -0.09623325616121292, 0.005493721459060907, -0.05716380849480629, 0.08975185453891754, -0.007875326089560986, 0.03427237644791603, 0.05498432740569115, 0.05861001834273338, -0.005800166632980108, 0.07870250195264816, -0.28614863753318787, 0.3133821487426758, -0.0043787299655377865, 0.04285665974020958, -0.062128081917762756, -0.025762058794498444, 0.015779396519064903, 0.0046857730485498905, 0.09968315809965134, 0.0001382846530759707, -0.05509532243013382, -0.21167950332164764, -0.045145053416490555, 0.03491666540503502, 0.11715306341648102, -0.06512870639562607, 0.13051727414131165, -0.008730670437216759, 0.011964374221861362, 0.0694974735379219, 0.013215161859989166, -0.0856265127658844, -0.06667723506689072, 0.003324841847643256, -0.005936483386904001, -0.005266366992145777, -0.0723196417093277, -0.11547048389911652, -0.0928647369146347, 0.10761421173810959, -0.0014665474882349372, -0.01861618645489216, -0.1264576017856598, 0.11786103248596191, 0.1461954563856125, -0.0780433639883995, 0.02200258895754814, 0.03595240041613579, 0.04574764892458916, 0.042477190494537354, -0.032682787626981735, 0.11431261897087097, -0.05748739466071129, -0.17808617651462555, -0.0434875562787056, 0.1268319934606552, 0.063253253698349, 0.08810239285230637, -0.0232111606746912, 0.03859959915280342, -0.053548429161310196, -0.09312118589878082, 0.05850250646471977, -0.03859329596161842, 0.07160291075706482, 0.05590282008051872, -0.06221751123666763, 0.0907648503780365, -0.05013230815529823, -0.02413301356136799, 0.18825314939022064, 0.2792138457298279, -0.10682935267686844, 0.02432234399020672, 0.0021061571314930916, -0.05257188156247139, -0.18257227540016174, 0.05462266877293587, 0.0937439501285553, 0.015244944021105766, 0.07489319145679474, -0.19405387341976166, 0.08073137700557709, 0.08928468078374863, -0.011220818385481834, 0.06960324943065643, -0.33267858624458313, -0.12116304039955139, 0.09293335676193237, 0.14183588325977325, 0.085801862180233, -0.16071158647537231, -0.014209083281457424, 0.028167519718408585, -0.13517919182777405, 0.09983141720294952, -0.04686855524778366, 0.1353672295808792, -0.029818367213010788, 0.10553931444883347, 0.024799199774861336, -0.0642414540052414, 0.14983698725700378, 0.011114370077848434, 0.09551116824150085, -0.031345877796411514, -0.024792440235614777, 0.03790353238582611, -0.04875093325972557, 0.020802654325962067, -0.04495818540453911, 0.028181536123156548, -0.14748427271842957, -0.020752547308802605, -0.12304461002349854, 0.023776689544320107, -0.03923838958144188, -0.06678928434848785, -0.033420413732528687, 0.06187189370393753, 0.07586666941642761, -0.011260113678872585, 0.11532004177570343, -0.02927534095942974, 0.16709642112255096, 0.0650751069188118, 0.06628836691379547, -0.02167370356619358, -0.07100238651037216, 0.01654001511633396, 0.0017112018540501595, 0.04085950180888176, -0.1468404084444046, 0.03387851268053055, 0.1690419465303421, 0.04407495632767677, 0.13893736898899078, 0.07632184773683548, -0.024899922311306, 0.0009391314233653247, 0.04910672828555107, -0.1490963250398636, -0.13115215301513672, -0.0035753147676587105, -0.07141292840242386, -0.14638593792915344, 0.016257058829069138, 0.09120632708072662, -0.049411576241254807, -0.008540255948901176, -0.020529339089989662, 0.01310649886727333, -0.04928029701113701, 0.23178181052207947, 0.07982572168111801, 0.06937547028064728, -0.08429200947284698, 0.05729900300502777, 0.04461273178458214, -0.11498329043388367, 0.02346048876643181, 0.08180516958236694, -0.055829569697380066, -0.04147058352828026, 0.0555427148938179, 0.1257186084985733, -0.040546830743551254, -0.009170831181108952, -0.13575725257396698, -0.11531814932823181, 0.08738669008016586, 0.13209529221057892, 0.08505553007125854, 0.0023505273275077343, -0.02468879334628582, 0.023868802934885025, -0.1088465005159378, 0.10559876263141632, 0.06554213166236877, 0.054262418299913406, -0.11902432143688202, 0.1513933539390564, -0.023088015615940094, 0.05746060609817505, -0.025317037478089333, 0.017699019983410835, -0.1273573338985443, 0.03288482502102852, -0.12848296761512756, -0.06140276789665222, -0.031671397387981415, -0.013423659838736057, -0.010065889917314053, -0.09412115812301636, -0.06199584901332855, 0.011295255273580551, -0.13403427600860596, -0.028926916420459747, 0.010788965038955212, 0.05448746308684349, -0.12896102666854858, -0.058550480753183365, 0.0391557514667511, -0.07462094724178314, 0.0775763988494873, 0.048997871577739716, 0.023206720128655434, 0.02623096853494644, -0.10462839901447296, -0.003017617389559746, 0.02639761194586754, 0.0002766836842056364, 0.05768844485282898, -0.146115243434906, -0.024059990420937538, -0.029553424566984177, 0.07120110839605331, 0.027079252526164055, 0.03609622269868851, -0.12561388313770294, -0.0008427569991908967, -0.039162687957286835, -0.07623238861560822, -0.06099145859479904, 0.03267546743154526, 0.0640828013420105, 0.04159829765558243, 0.14261192083358765, -0.06606815755367279, 0.06519591808319092, -0.23303323984146118, -0.015499409288167953, -0.020497575402259827, -0.08574157953262329, -0.05801091715693474, -0.059235867112874985, 0.09645741432905197, -0.0482100211083889, 0.12556332349777222, -0.00553537905216217, 0.08331911265850067, 0.03252594172954559, -0.04836445301771164, 0.04773147031664848, 0.030732519924640656, 0.20335111021995544, 0.01965387910604477, -0.05094115436077118, 0.07833374291658401, 0.06480804830789566, 0.06961620599031448, 0.16664841771125793, 0.22311493754386902, 0.17941266298294067, 0.05195866897702217, 0.056367985904216766, 0.02095704711973667, -0.09162582457065582, -0.1464042365550995, 0.046624746173620224, -0.006737209390848875, 0.09422427415847778, -0.02822711132466793, 0.21648570895195007, 0.046175431460142136, -0.19958098232746124, 0.0628008246421814, -0.06562799215316772, -0.09643453359603882, -0.09345850348472595, -0.0026899015065282583, -0.0753229558467865, -0.17234830558300018, 0.003239409066736698, -0.13219726085662842, 0.040859539061784744, 0.10038530081510544, 0.027590597048401833, 0.008755362592637539, 0.17197681963443756, 0.053283367305994034, 0.02049250528216362, 0.06508557498455048, 0.010869471356272697, 0.002111267764121294, -0.08213755488395691, -0.05382730811834335, 0.011490621604025364, -0.03246736526489258, 0.03101813979446888, -0.061390720307826996, -0.10838674008846283, 0.018828293308615685, -0.020424634218215942, -0.09933343529701233, -0.0028232194017618895, 0.02740437164902687, 0.07426928728818893, 0.07192346453666687, 0.012453673407435417, 0.004773185588419437, -0.03493882715702057, 0.2746492326259613, -0.0943751409649849, -0.05844502151012421, -0.11309665441513062, 0.25760871171951294, 0.0427878275513649, 0.001795996562577784, 0.030357716605067253, -0.07704769819974899, -0.0007444641669280827, 0.2122371792793274, 0.1632263958454132, -0.09588178992271423, 0.003479819279164076, 0.02581445313990116, -0.004474040120840073, -0.020210476592183113, 0.060308944433927536, 0.12940406799316406, 0.044177718460559845, -0.11724924296140671, -0.03918304294347763, -0.06067817285656929, -0.031566597521305084, -0.02691766247153282, 0.06377612054347992, 0.07337692379951477, -0.003176545724272728, -0.05337082967162132, 0.07815342396497726, -0.06690644472837448, -0.12284320592880249, 0.0719708800315857, -0.23431949317455292, -0.16430804133415222, -0.03176289424300194, 0.06726814806461334, 0.0018793706549331546, 0.060856979340314865, -0.031107595190405846, -0.009366275742650032, 0.08289211243391037, -0.006908742245286703, -0.046162866055965424, -0.10904766619205475, 0.128231942653656, -0.0873372033238411, 0.17672185599803925, -0.04452025145292282, 0.04529194161295891, 0.12606029212474823, 0.04192188382148743, -0.07623115181922913, 0.058069322258234024, 0.09400609135627747, -0.10134004056453705, 0.014326874166727066, 0.13637585937976837, -0.03265771642327309, 0.0946742594242096, 0.051519475877285004, -0.16164319217205048, 0.012789168395102024, -0.04781542718410492, -0.042760204523801804, -0.04839560389518738, -0.03337644413113594, -0.042586371302604675, 0.13479027152061462, 0.22379489243030548, -0.04870914667844772, 0.020078139379620552, -0.06333401799201965, 0.011222447268664837, 0.04712442308664322, 0.09028305113315582, -0.0723412036895752, -0.22928670048713684, 0.02419242635369301, 0.05738191306591034, -0.014452625066041946, -0.2162725329399109, -0.11090017855167389, 0.04141039773821831, -0.05908584222197533, -0.04421235993504524, 0.10862042009830475, 0.06434731185436249, 0.04982880875468254, -0.05165843293070793, -0.11406668275594711, -0.06041833758354187, 0.18188579380512238, -0.16451063752174377, -0.06483820825815201 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # sagemaker-distilbert-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2434 - Accuracy: 0.9165 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.9423 | 1.0 | 500 | 0.2434 | 0.9165 | ### Framework versions - Transformers 4.12.3 - Pytorch 1.9.1 - Datasets 1.15.1 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["emotion"], "metrics": ["accuracy"], "model-index": [{"name": "sagemaker-distilbert-emotion", "results": [{"task": {"type": "text-classification", "name": "Text Classification"}, "dataset": {"name": "emotion", "type": "emotion", "args": "default"}, "metrics": [{"type": "accuracy", "value": 0.9165, "name": "Accuracy"}]}]}]}
text-classification
anindabitm/sagemaker-distilbert-emotion
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #distilbert #text-classification #generated_from_trainer #dataset-emotion #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us
sagemaker-distilbert-emotion ============================ This model is a fine-tuned version of distilbert-base-uncased on the emotion dataset. It achieves the following results on the evaluation set: * Loss: 0.2434 * Accuracy: 0.9165 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 3e-05 * train\_batch\_size: 32 * eval\_batch\_size: 64 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * lr\_scheduler\_warmup\_steps: 500 * num\_epochs: 1 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.12.3 * Pytorch 1.9.1 * Datasets 1.15.1 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 3e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 500\n* num\\_epochs: 1\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.12.3\n* Pytorch 1.9.1\n* Datasets 1.15.1\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #distilbert #text-classification #generated_from_trainer #dataset-emotion #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 3e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 500\n* num\\_epochs: 1\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.12.3\n* Pytorch 1.9.1\n* Datasets 1.15.1\n* Tokenizers 0.10.3" ]
[ 63, 131, 4, 31 ]
[ "passage: TAGS\n#transformers #pytorch #distilbert #text-classification #generated_from_trainer #dataset-emotion #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 3e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 500\n* num\\_epochs: 1\n* mixed\\_precision\\_training: Native AMP### Training results### Framework versions\n\n\n* Transformers 4.12.3\n* Pytorch 1.9.1\n* Datasets 1.15.1\n* Tokenizers 0.10.3" ]
[ -0.11837613582611084, 0.1543351113796234, -0.003603972727432847, 0.11183581501245499, 0.12739664316177368, 0.022878220304846764, 0.10721538960933685, 0.16699880361557007, -0.10111086815595627, 0.06387995183467865, 0.11303813010454178, 0.1483011543750763, 0.043047476559877396, 0.1800822913646698, -0.07202117890119553, -0.28924816846847534, 0.023244589567184448, 0.032159626483917236, -0.013603254221379757, 0.1261374056339264, 0.10769407451152802, -0.11838165670633316, 0.09594909101724625, 0.0010638361563906074, -0.14941614866256714, -0.007261131890118122, -0.01208103820681572, -0.057330116629600525, 0.10750635713338852, 0.0014201451558619738, 0.07195501029491425, 0.03991401568055153, 0.07995164394378662, -0.22014452517032623, 0.012164656072854996, 0.04840351268649101, 0.015382297337055206, 0.09114862233400345, 0.058430466800928116, -0.058908965438604355, 0.14157436788082123, -0.09782223403453827, 0.08080454915761948, 0.02933705970644951, -0.12579043209552765, -0.2903655767440796, -0.1011161059141159, 0.04775403067469597, 0.08300988376140594, 0.08396870642900467, -0.021364055573940277, 0.14067555963993073, -0.07596412301063538, 0.11064133048057556, 0.2744048535823822, -0.24716363847255707, -0.054917991161346436, 0.005511750467121601, 0.017445571720600128, 0.04044044017791748, -0.1113806664943695, -0.03889385610818863, 0.03182241693139076, 0.04706019535660744, 0.14486002922058105, -0.024018313735723495, -0.0740620419383049, -0.007533211261034012, -0.12171243131160736, -0.0633034035563469, 0.16323760151863098, 0.03745148330926895, -0.02962128259241581, -0.09584372490644455, -0.04318343847990036, -0.17879915237426758, -0.04851372539997101, 0.00667280750349164, 0.056851621717214584, -0.03543173149228096, -0.08462603390216827, 0.03528746962547302, -0.08264046162366867, -0.031160978600382805, -0.017575401812791824, 0.11850959062576294, 0.03588465601205826, 0.008479141630232334, -0.01874055340886116, 0.0899289920926094, -0.011930983513593674, -0.158717080950737, -0.020114438608288765, 0.0030990380328148603, -0.0031545378733426332, -0.04256492480635643, -0.04705759882926941, -0.038762595504522324, 0.006422210484743118, 0.15545488893985748, -0.11857292056083679, 0.08842629194259644, 0.012996894307434559, 0.007682775612920523, -0.03404007852077484, 0.1736244559288025, -0.027913648635149002, -0.018383368849754333, -0.013358066789805889, 0.07133235037326813, 0.03232838958501816, -0.008974552154541016, -0.08438459038734436, 0.047629330307245255, 0.09521305561065674, 0.0383065827190876, -0.06879504770040512, 0.06931496411561966, -0.07647304981946945, -0.016467349603772163, 0.01397458091378212, -0.10510764271020889, 0.0430348701775074, 0.02499917522072792, -0.08724648505449295, -0.031164446845650673, 0.002788531593978405, -0.009516514837741852, -0.03220942243933678, 0.09179986268281937, -0.07090102136135101, 0.024775264784693718, -0.07785706967115402, -0.12903408706188202, 0.04065423458814621, -0.10105662792921066, 0.00963031966239214, -0.06942633539438248, -0.17784561216831207, -0.038965292274951935, 0.06810345500707626, -0.05729544162750244, -0.038596637547016144, -0.07722818106412888, -0.07238946855068207, 0.042007025331258774, -0.009164949879050255, 0.09392977505922318, -0.08157063275575638, 0.07733868062496185, 0.023606736212968826, 0.09834159165620804, 0.012647953815758228, 0.05767158046364784, -0.1123456358909607, 0.029518958181142807, -0.1950959861278534, 0.08706353604793549, -0.08051420003175735, 0.07977759838104248, -0.10023565590381622, -0.11927729845046997, 0.06214994937181473, -0.018791886046528816, 0.0882602110505104, 0.13789469003677368, -0.1989341825246811, -0.08109022676944733, 0.1874118447303772, -0.09164733439683914, -0.1158265471458435, 0.1065397784113884, -0.05862856283783913, 0.043826110661029816, 0.06908378005027771, 0.22259867191314697, 0.04803643748164177, -0.0827505812048912, -0.038985978811979294, -0.02437431365251541, 0.06559756398200989, -0.015065304934978485, 0.053651563823223114, 0.03099905140697956, 0.07602955400943756, 0.028325917199254036, 0.001142260618507862, 0.03702513873577118, -0.10235582292079926, -0.0862097293138504, -0.039290837943553925, -0.07971367985010147, 0.023167163133621216, 0.0724732056260109, 0.048356588929891586, -0.13896535336971283, -0.09049472212791443, 0.03247474506497383, 0.10335296392440796, -0.07529491931200027, 0.04016033560037613, -0.07861742377281189, 0.06997567415237427, 0.017843758687376976, -0.005587626714259386, -0.18841251730918884, -0.007240258157253265, 0.030585063621401787, 0.0016626478172838688, -0.004395666066557169, -0.049733731895685196, 0.07025570422410965, 0.045390885323286057, -0.05947435647249222, -0.04165800288319588, -0.023398151621222496, 0.0075073097832500935, -0.09686305373907089, -0.24679021537303925, -0.04165744036436081, -0.04643191397190094, 0.12916356325149536, -0.1773872673511505, 0.04002687707543373, 0.058347634971141815, 0.10489656776189804, 0.04189150780439377, -0.04356949031352997, 0.014493320137262344, 0.061084989458322525, -0.04397936537861824, -0.07461843639612198, 0.056644365191459656, 0.013763496652245522, -0.07663474977016449, 0.0045542954467237, -0.12263242900371552, 0.11598627269268036, 0.11511194705963135, -0.001906289136968553, -0.08724113553762436, -0.02875882014632225, -0.0692279115319252, -0.013547703623771667, -0.04575734585523605, 0.05855436623096466, 0.14891910552978516, 0.015346912667155266, 0.1367952674627304, -0.07775311172008514, -0.04299632087349892, 0.03867389261722565, -0.034631580114364624, -0.007141605485230684, 0.13975439965724945, 0.03596067801117897, -0.08201639354228973, 0.14243470132350922, 0.10314483940601349, -0.04581154137849808, 0.13645175099372864, -0.06408238410949707, -0.06139000877737999, -0.03766321390867233, -0.03011254407465458, 0.0006627661059610546, 0.11162186414003372, -0.1258595734834671, -0.021620837971568108, 0.034058600664138794, 0.019893422722816467, -0.01158282533288002, -0.1868378072977066, -0.019171809777617455, 0.038299042731523514, -0.05880694463849068, -0.047663457691669464, -0.011641432531177998, 0.018677890300750732, 0.10764066129922867, 0.003986363299190998, -0.055185310542583466, 0.009195665828883648, 0.0028655354399234056, -0.07642689347267151, 0.19908322393894196, -0.12159758806228638, -0.17786571383476257, -0.07665104418992996, -0.07649917155504227, -0.05434083566069603, -0.016904905438423157, 0.08014795184135437, -0.12079811096191406, -0.0411948561668396, -0.10055164992809296, -0.0008590462384745479, 0.008758091367781162, 0.019678879529237747, 0.02470877207815647, 0.004008642863482237, 0.0454113632440567, -0.11157272011041641, -0.027560485526919365, -0.04230765253305435, -0.002857549348846078, 0.0769641101360321, 0.014526997692883015, 0.09557095915079117, 0.1401277482509613, -0.0013876197626814246, 0.04866979271173477, -0.05239533260464668, 0.22267955541610718, -0.07544218748807907, -0.006031872238963842, 0.1071099266409874, 0.004186802078038454, 0.0721597820520401, 0.1333232969045639, 0.050544291734695435, -0.11408083140850067, 0.008745088241994381, 0.03685984015464783, -0.04053723067045212, -0.22257384657859802, -0.03704514354467392, -0.03992819786071777, 0.020139485597610474, 0.1042783111333847, 0.027278758585453033, 0.005482812877744436, 0.052087362855672836, 0.023433586582541466, -0.017469104379415512, -0.015712963417172432, 0.09295354783535004, 0.10768511146306992, 0.030773909762501717, 0.11299581080675125, -0.04381914809346199, -0.015720488503575325, 0.06628048419952393, -0.011439019814133644, 0.2233322262763977, -0.03464122116565704, 0.1589147001504898, 0.04811767488718033, 0.1493292897939682, -0.018851323053240776, 0.0694626197218895, -0.012259836308658123, -0.017061851918697357, -0.015374460257589817, -0.04035329446196556, -0.049273695796728134, 0.03298238292336464, -0.04660562798380852, 0.04422784596681595, -0.1512918323278427, 0.014314874075353146, 0.07183079421520233, 0.3302708864212036, 0.0589555986225605, -0.34346017241477966, -0.11173069477081299, 0.013120951130986214, -0.0428515262901783, -0.02635222300887108, 0.009747270494699478, 0.08257672190666199, -0.08503390848636627, 0.09766539931297302, -0.05262461304664612, 0.09564774483442307, -0.07680870592594147, 0.0361005999147892, 0.03936290368437767, 0.08292390406131744, -0.01231981161981821, 0.06103919446468353, -0.2909838855266571, 0.27077189087867737, 0.010940955020487309, 0.07318498194217682, -0.08081170916557312, 0.008950899355113506, 0.047714028507471085, 0.05568809434771538, 0.07670014351606369, 0.000006953746378712822, -0.11198442429304123, -0.1783648431301117, -0.08167610317468643, 0.015564302913844585, 0.08265890926122665, -0.00588970584794879, 0.10358839482069016, -0.003525681793689728, -0.0032993813510984182, 0.048775266855955124, -0.0531260184943676, -0.06408720463514328, -0.09419245272874832, 0.008202844299376011, 0.029899228364229202, -0.01646074838936329, -0.06377828866243362, -0.11641669273376465, -0.03497447073459625, 0.16022245585918427, 0.02565125934779644, -0.06161787733435631, -0.14062124490737915, 0.0689857080578804, 0.08391270786523819, -0.08637922257184982, 0.022689804434776306, 0.002772259758785367, 0.1096462681889534, 0.013663090765476227, -0.06999297440052032, 0.10933694988489151, -0.06911008805036545, -0.18869486451148987, -0.04719846323132515, 0.11738148331642151, 0.06046763435006142, 0.07299277186393738, -0.0038077894132584333, 0.0315268412232399, -0.02446954883635044, -0.08080863207578659, 0.05297119542956352, 0.03195960447192192, 0.08176760375499725, 0.011373446322977543, -0.03340031951665878, 0.022487932816147804, -0.06869642436504364, -0.0307016521692276, 0.16960974037647247, 0.2629065215587616, -0.09611620754003525, 0.0872335359454155, 0.03145379573106766, -0.06567491590976715, -0.17972074449062347, 0.04460444673895836, 0.07519912719726562, -0.00024864799343049526, 0.015201414935290813, -0.21626658737659454, 0.06182254105806351, 0.07966611534357071, -0.009729016572237015, 0.0681985393166542, -0.2905254364013672, -0.11711744964122772, 0.11910469084978104, 0.11460644751787186, 0.07299523800611496, -0.1515073925256729, -0.01971275545656681, -0.02064916305243969, -0.10996430367231369, 0.13154596090316772, -0.07878710329532623, 0.11792054772377014, -0.028099937364459038, 0.10213853418827057, 0.020324520766735077, -0.045450806617736816, 0.12259246408939362, 0.033844154328107834, 0.09771598130464554, -0.05779586359858513, 0.018801843747496605, 0.06296809017658234, -0.08221397548913956, 0.0674949586391449, -0.09313590824604034, 0.03408272564411163, -0.1389821320772171, -0.015654917806386948, -0.093145452439785, 0.02080852910876274, -0.03764854744076729, -0.052348822355270386, -0.05797258019447327, 0.04278038442134857, 0.10190743207931519, -0.025698086246848106, 0.1333283931016922, 0.005760887172073126, 0.12026791274547577, 0.13177889585494995, 0.09839772433042526, -0.09058015793561935, -0.05844483524560928, 0.007070167921483517, -0.016856076195836067, 0.03183398023247719, -0.18063884973526, 0.037690624594688416, 0.14328686892986298, 0.018046490848064423, 0.1486673653125763, 0.06972695142030716, -0.049082983285188675, 0.014150657691061497, 0.06275259703397751, -0.1383049637079239, -0.08541978895664215, 0.004360504914075136, -0.017115797847509384, -0.13802103698253632, 0.026750091463327408, 0.09348145872354507, -0.05954287573695183, -0.016794737428426743, -0.007997254841029644, 0.04708428308367729, -0.012471656315028667, 0.19100423157215118, 0.024301907047629356, 0.051281802356243134, -0.12916436791419983, 0.10173992812633514, 0.02499849908053875, -0.12302640825510025, 0.062201015651226044, 0.11744813621044159, -0.0925678238272667, -0.03540899604558945, 0.07276899367570877, 0.18206922709941864, -0.05268663167953491, -0.05029132589697838, -0.1615176945924759, -0.13878220319747925, 0.10869903117418289, 0.15774159133434296, 0.0825851634144783, 0.022886332124471664, -0.044025320559740067, 0.011712602339684963, -0.12630650401115417, 0.09506743401288986, 0.08651246875524521, 0.05231746658682823, -0.11164930462837219, 0.12111131846904755, -0.003965741954743862, 0.03271762281656265, -0.015358959324657917, -0.004825884010642767, -0.11675626784563065, 0.009485473856329918, -0.12980639934539795, -0.0069797751493752, -0.07128564268350601, 0.013277019374072552, -0.007787046954035759, -0.03179322928190231, -0.043717239052057266, 0.01376134529709816, -0.12043898552656174, -0.026978667825460434, 0.004508053418248892, 0.061205703765153885, -0.13844263553619385, -0.041000496596097946, 0.006765751633793116, -0.09196198731660843, 0.10163606703281403, 0.05801330879330635, -0.005373474210500717, 0.026491383090615273, -0.08311029523611069, -0.004849073011428118, 0.07716238498687744, -0.01412529032677412, 0.06808032840490341, -0.13256385922431946, -0.014777755364775658, -0.007917745970189571, 0.008419463410973549, 0.029371142387390137, 0.10639815032482147, -0.11208819597959518, 0.02575114369392395, -0.0019627632573246956, -0.06521273404359818, -0.062467120587825775, 0.07209564000368118, 0.09943100810050964, 0.017558665946125984, 0.17507526278495789, -0.08254262059926987, 0.034964419901371, -0.20692650973796844, -0.012348880991339684, -0.0011038414668291807, -0.1236477941274643, -0.10039031505584717, -0.037640418857336044, 0.08573988080024719, -0.06129469349980354, 0.12877348065376282, 0.03895843029022217, 0.006093417294323444, 0.03583093360066414, -0.02027837559580803, -0.017640287056565285, 0.02333320491015911, 0.14525777101516724, 0.01790521666407585, -0.05678962916135788, 0.09238801151514053, 0.04573407396674156, 0.09581481665372849, 0.12464381754398346, 0.21681421995162964, 0.12954676151275635, 0.0830640196800232, 0.09286683797836304, 0.01819639839231968, -0.05779906362295151, -0.16253724694252014, 0.07260998338460922, -0.04267285391688347, 0.14041000604629517, -0.012748371809720993, 0.2006291151046753, 0.07843073457479477, -0.1765861064195633, 0.08515732735395432, -0.047791868448257446, -0.08835535496473312, -0.1149892583489418, -0.0679900199174881, -0.09158860892057419, -0.15626230835914612, -0.0040159691125154495, -0.14893268048763275, 0.04185378924012184, 0.05038124695420265, 0.02336333878338337, 0.002437800634652376, 0.0959417074918747, 0.014424346387386322, 0.02176879718899727, 0.09789475798606873, 0.005082043819129467, -0.060347188264131546, -0.06804761290550232, -0.05849951505661011, 0.004710895009338856, -0.005629145074635744, 0.04984884709119797, -0.014791627414524555, -0.045716166496276855, 0.03775022178888321, -0.03004000522196293, -0.10855578631162643, 0.015347364358603954, 0.017828311771154404, 0.06680692732334137, 0.04981262981891632, 0.01979895494878292, -0.004206622950732708, -0.0026987676974385977, 0.21402043104171753, -0.0733867883682251, -0.02979242242872715, -0.13238458335399628, 0.2621976435184479, 0.026569610461592674, -0.03176701068878174, 0.048486821353435516, -0.07207082211971283, -0.030228544026613235, 0.175558939576149, 0.19087213277816772, -0.027840644121170044, -0.004068813286721706, -0.03574039041996002, -0.0014217686839401722, -0.03389324992895126, 0.09978348016738892, 0.13023768365383148, 0.011857615783810616, -0.09112060815095901, -0.011114929802715778, -0.05494571849703789, -0.04664573073387146, -0.0459960512816906, 0.0710899829864502, 0.045706186443567276, 0.001936300890520215, -0.03808143362402916, 0.06844818592071533, -0.07579191029071808, -0.0714210569858551, 0.060162097215652466, -0.21802693605422974, -0.16615860164165497, -0.02034897170960903, 0.04306776449084282, 0.03574448823928833, 0.06552550196647644, 0.013666756451129913, -0.004965460859239101, 0.12732325494289398, -0.01480206847190857, -0.09256330877542496, -0.11389236152172089, 0.11374516785144806, -0.15393441915512085, 0.1912686675786972, -0.05101769417524338, 0.01951257511973381, 0.13197007775306702, 0.03952339291572571, -0.10324212163686752, 0.05166172608733177, 0.05417279154062271, -0.05462360754609108, 0.002384183695539832, 0.14519453048706055, -0.04710952937602997, 0.08871696144342422, 0.04123096913099289, -0.13678009808063507, -0.0051964325830340385, -0.057282187044620514, -0.05457058176398277, -0.03973320499062538, -0.017201481387019157, -0.040711838752031326, 0.10954301804304123, 0.2188241332769394, -0.04361145943403244, 0.010944243520498276, -0.07149084657430649, 0.01361110433936119, 0.043276604264974594, -0.008871621452271938, -0.047616828233003616, -0.24529977142810822, 0.01836584508419037, 0.10463471710681915, 0.0043829986825585365, -0.23500698804855347, -0.09399379044771194, 0.008361619897186756, -0.050332095474004745, -0.08896009624004364, 0.09696648269891739, 0.04677649214863777, 0.0587175115942955, -0.057566385716199875, -0.056300994008779526, -0.04263915866613388, 0.18627896904945374, -0.1378536820411682, -0.059317294508218765 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # albert-base-v2-finetuned-qnli This model is a fine-tuned version of [albert-base-v2](https://huggingface.co/albert-base-v2) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.3194 - Accuracy: 0.9112 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.3116 | 1.0 | 6547 | 0.2818 | 0.8849 | | 0.2467 | 2.0 | 13094 | 0.2532 | 0.9001 | | 0.1858 | 3.0 | 19641 | 0.3194 | 0.9112 | | 0.1449 | 4.0 | 26188 | 0.4338 | 0.9103 | | 0.0584 | 5.0 | 32735 | 0.5752 | 0.9052 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.18.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["glue"], "metrics": ["accuracy"], "model-index": [{"name": "albert-base-v2-finetuned-qnli", "results": [{"task": {"type": "text-classification", "name": "Text Classification"}, "dataset": {"name": "glue", "type": "glue", "args": "qnli"}, "metrics": [{"type": "accuracy", "value": 0.9112209408749771, "name": "Accuracy"}]}]}]}
text-classification
anirudh21/albert-base-v2-finetuned-qnli
[ "transformers", "pytorch", "tensorboard", "albert", "text-classification", "generated_from_trainer", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #albert #text-classification #generated_from_trainer #dataset-glue #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us
albert-base-v2-finetuned-qnli ============================= This model is a fine-tuned version of albert-base-v2 on the glue dataset. It achieves the following results on the evaluation set: * Loss: 0.3194 * Accuracy: 0.9112 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 16 * eval\_batch\_size: 16 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 5 ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.10.0+cu111 * Datasets 1.18.0 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.0+cu111\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #albert #text-classification #generated_from_trainer #dataset-glue #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.0+cu111\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ 66, 98, 4, 35 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #albert #text-classification #generated_from_trainer #dataset-glue #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.0+cu111\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ -0.10851341485977173, 0.08287949860095978, -0.0015716948546469212, 0.12378216534852982, 0.1644035279750824, 0.034203559160232544, 0.11756833642721176, 0.1303785890340805, -0.08961959183216095, 0.01978359930217266, 0.13182155787944794, 0.1571536362171173, 0.019342191517353058, 0.10459926724433899, -0.050261739641427994, -0.2606520652770996, -0.015629388391971588, 0.05233924835920334, -0.047430187463760376, 0.13125889003276825, 0.08640951663255692, -0.12352532893419266, 0.10119590908288956, 0.016996311023831367, -0.19539082050323486, 0.006376367527991533, 0.009158787317574024, -0.0564240999519825, 0.14400716125965118, 0.03155115246772766, 0.11656567454338074, -0.004729350097477436, 0.08431360125541687, -0.1941358745098114, 0.011082910932600498, 0.04820818454027176, 0.0049487631767988205, 0.09291473031044006, 0.04774554818868637, 0.0033729670103639364, 0.14480124413967133, -0.09592609107494354, 0.0522734709084034, 0.027718715369701385, -0.12452755123376846, -0.21515901386737823, -0.08181779086589813, 0.03230409324169159, 0.08416493982076645, 0.11512179672718048, -0.005395589396357536, 0.12806573510169983, -0.08085677772760391, 0.08780300617218018, 0.23827265202999115, -0.30694082379341125, -0.06739146262407303, 0.025221778079867363, 0.00799495168030262, 0.032211191952228546, -0.10505171120166779, -0.02871882915496826, 0.05733394995331764, 0.04659018665552139, 0.12641079723834991, -0.033901676535606384, -0.11446501314640045, 0.014867664314806461, -0.13147439062595367, -0.03409222885966301, 0.16096091270446777, 0.04539426788687706, -0.033270757645368576, -0.05664939805865288, -0.051134154200553894, -0.15639479458332062, -0.035082269459962845, -0.004277274943888187, 0.04805569350719452, -0.02432965487241745, -0.0460941419005394, -0.0016077898908406496, -0.11016025394201279, -0.06246815249323845, -0.08158069103956223, 0.11988197267055511, 0.03115209750831127, 0.016247021034359932, -0.037016041576862335, 0.11204948276281357, 0.0013566170819103718, -0.13201206922531128, 0.012988509610295296, 0.02687028981745243, 0.00729374261572957, -0.044786155223846436, -0.053867775946855545, -0.053863268345594406, 0.00430115032941103, 0.12289395928382874, -0.04026487097144127, 0.040145393460989, 0.04916608706116676, 0.04391423612833023, -0.09642386436462402, 0.20065082609653473, -0.03766079246997833, -0.018071161583065987, 0.00929968897253275, 0.03564739599823952, 0.024339625611901283, -0.009158243425190449, -0.11860004812479019, -0.000343729363521561, 0.07517223805189133, 0.005142418202012777, -0.07092933356761932, 0.07137508690357208, -0.05376800149679184, -0.02296004444360733, -0.0021376493386924267, -0.08764661103487015, 0.03296663612127304, -0.002671253401786089, -0.07513636350631714, -0.015495436266064644, 0.030281322076916695, 0.021347740665078163, -0.014448919333517551, 0.11615916341543198, -0.08655691146850586, 0.03218672797083855, -0.09627551585435867, -0.10221421718597412, 0.023033635690808296, -0.10830260813236237, 0.03779095411300659, -0.09124257415533066, -0.1834726780653, -0.009110176004469395, 0.06036468595266342, -0.025423433631658554, -0.061499450355768204, -0.0546928234398365, -0.06525935232639313, 0.015102635137736797, -0.007776893209666014, 0.13168306648731232, -0.06625673919916153, 0.08166395872831345, 0.02689969912171364, 0.06423691660165787, -0.04112587869167328, 0.052426837384700775, -0.10481588542461395, 0.014568629674613476, -0.14707937836647034, 0.031188983470201492, -0.037114519625902176, 0.07600796222686768, -0.08274073898792267, -0.09499000012874603, 0.015633273869752884, -0.0025613398756831884, 0.0618094764649868, 0.09867966920137405, -0.17744845151901245, -0.07985639572143555, 0.15661577880382538, -0.06437281519174576, -0.1325954645872116, 0.12001652270555496, -0.0612134151160717, 0.045997507870197296, 0.06028265133500099, 0.1512797325849533, 0.06379801779985428, -0.08271874487400055, -0.004605399910360575, 0.02407730370759964, 0.04843881353735924, -0.07159419357776642, 0.07669540494680405, 0.008389415219426155, 0.002951052039861679, 0.0340876542031765, -0.019045770168304443, 0.061201177537441254, -0.08733832836151123, -0.10032474249601364, -0.04622561112046242, -0.08203887939453125, 0.028672071173787117, 0.0776790976524353, 0.07325249910354614, -0.09814091771841049, -0.08594372123479843, 0.03338034823536873, 0.0765068531036377, -0.04751443490386009, 0.028013426810503006, -0.05600306764245033, 0.06213730573654175, -0.043482739478349686, -0.023733915761113167, -0.17221353948116302, -0.017427945509552956, -0.000443327211542055, -0.006937176920473576, 0.009066986851394176, 0.026353659108281136, 0.06821393221616745, 0.05675322189927101, -0.05200904235243797, -0.010675321333110332, -0.02982199192047119, -0.0041316417045891285, -0.13505974411964417, -0.2008715569972992, -0.03134380653500557, -0.02398592233657837, 0.15125882625579834, -0.20457713305950165, 0.04213083162903786, -0.021903015673160553, 0.06635771691799164, 0.012865194119513035, -0.0053146895952522755, -0.04286836460232735, 0.0698426365852356, -0.04436494782567024, -0.05092164874076843, 0.07527109980583191, 0.019110465422272682, -0.09808443486690521, -0.04705537110567093, -0.08996978402137756, 0.15877945721149445, 0.13385072350502014, -0.1099434345960617, -0.07223377376794815, -0.0058516887947916985, -0.06560415774583817, -0.03339000791311264, -0.05574433505535126, 0.040243301540613174, 0.21176877617835999, -0.007056929636746645, 0.15119796991348267, -0.0662810429930687, -0.04895230755209923, 0.026796160265803337, -0.03642735630273819, 0.021458491683006287, 0.12952668964862823, 0.13312320411205292, -0.05990966781973839, 0.14652734994888306, 0.15359628200531006, -0.09059371799230576, 0.13318632543087006, -0.03999984264373779, -0.07472026348114014, -0.017710551619529724, -0.03931165114045143, -0.004119568970054388, 0.10875216871500015, -0.1615610122680664, -0.004651137627661228, 0.030832653865218163, 0.014737037010490894, 0.020087437704205513, -0.22307056188583374, -0.04519743472337723, 0.04278237000107765, -0.03178243339061737, -0.021580059081315994, -0.007723218761384487, 0.0037444550544023514, 0.10487890243530273, 0.0055309683084487915, -0.08151063323020935, 0.03770234063267708, 0.005515687167644501, -0.08669986575841904, 0.21752367913722992, -0.06947796791791916, -0.15518920123577118, -0.12592779099941254, -0.07883378863334656, -0.04955562576651573, 0.0021320621017366648, 0.07115191966295242, -0.09382370859384537, -0.032456617802381516, -0.07577887177467346, 0.019918303936719894, 0.004875612910836935, 0.031803544610738754, 0.01505905669182539, 0.0028410842642188072, 0.06437543779611588, -0.10163018107414246, -0.016886616125702858, -0.05557944253087044, -0.050702955573797226, 0.036809612065553665, 0.035607509315013885, 0.11485431343317032, 0.14555047452449799, -0.016081763431429863, 0.013742087408900261, -0.030881134793162346, 0.22703666985034943, -0.06183459237217903, -0.033547043800354004, 0.13601787388324738, -0.008285166695713997, 0.04035327211022377, 0.1131085455417633, 0.07463839650154114, -0.07826251536607742, -0.00111157086212188, 0.03700360655784607, -0.03763021528720856, -0.2307037115097046, -0.046411383897066116, -0.06072646379470825, 0.007775360718369484, 0.09654852747917175, 0.02273011952638626, 0.02955014817416668, 0.07200337946414948, 0.04007653146982193, 0.08878234028816223, -0.05143848434090614, 0.059663355350494385, 0.10464063286781311, 0.04082774370908737, 0.1216021254658699, -0.05594692751765251, -0.06648729741573334, 0.04218735173344612, -0.01800714246928692, 0.2236419916152954, 0.016036270186305046, 0.13117147982120514, 0.05609254539012909, 0.15269875526428223, -0.004133033100515604, 0.0846896767616272, -0.0062759071588516235, -0.05142221599817276, -0.01511458307504654, -0.03756638243794441, -0.03472224622964859, 0.032171182334423065, -0.08392827957868576, 0.079414002597332, -0.1315862387418747, 0.016221044585108757, 0.05463474988937378, 0.26152393221855164, 0.04587202146649361, -0.321972519159317, -0.09329250454902649, 0.009788069874048233, -0.029937151819467545, -0.027202531695365906, 0.03143763169646263, 0.08129655569791794, -0.09414859861135483, 0.035591233521699905, -0.0738305002450943, 0.10116495192050934, -0.04594714939594269, 0.0491180457174778, 0.08238666504621506, 0.07942087948322296, 0.0074699679389595985, 0.09445410221815109, -0.30067723989486694, 0.2845527231693268, 0.004858710337430239, 0.06776915490627289, -0.08622097969055176, 0.008372905664145947, 0.04453708976507187, 0.06563539057970047, 0.09501554816961288, -0.0140914935618639, -0.04899032041430473, -0.18717963993549347, -0.06885536760091782, 0.03427093103528023, 0.05553438887000084, -0.03511710464954376, 0.08751165121793747, -0.028084883466362953, 0.0065111275762319565, 0.07207874953746796, 0.018553245812654495, -0.04902458190917969, -0.11115951836109161, -0.01427517831325531, 0.026247471570968628, -0.07107964158058167, -0.05908683314919472, -0.11763347685337067, -0.1296166181564331, 0.15435954928398132, -0.02876298874616623, -0.02926171012222767, -0.11168454587459564, 0.08655610680580139, 0.049155063927173615, -0.09150857478380203, 0.0343179889023304, 0.005369671154767275, 0.08151274919509888, 0.02817639894783497, -0.0781378522515297, 0.10608948767185211, -0.07388927042484283, -0.15226562321186066, -0.06808533519506454, 0.09889303892850876, 0.030818484723567963, 0.06943147629499435, -0.01059445645660162, 0.015278245322406292, -0.05115121603012085, -0.0893559604883194, 0.025140443816781044, 0.008072792552411556, 0.08026784658432007, 0.005880521144717932, -0.06082103028893471, 0.021673541516065598, -0.05721529945731163, -0.032977454364299774, 0.20603495836257935, 0.21837805211544037, -0.10593485087156296, 0.01963035576045513, 0.00011520516272867098, -0.07776135206222534, -0.19612984359264374, 0.04137551784515381, 0.04815450683236122, 0.018216095864772797, 0.03512553870677948, -0.17524226009845734, 0.15107755362987518, 0.1101469025015831, -0.014013183303177357, 0.10103233903646469, -0.30580073595046997, -0.12347456812858582, 0.13789689540863037, 0.12939028441905975, 0.13237634301185608, -0.1306103616952896, -0.01185387559235096, -0.028198547661304474, -0.1425543576478958, 0.09835414588451385, -0.10393572598695755, 0.11367519944906235, -0.044036321341991425, 0.07140891253948212, 0.0034511450212448835, -0.06000930443406105, 0.12067489326000214, 0.025124182924628258, 0.09810183197259903, -0.056498534977436066, -0.034325432032346725, 0.03099016286432743, -0.04756839945912361, 0.031243259087204933, -0.10857679694890976, 0.023675616830587387, -0.12081367522478104, -0.025438150390982628, -0.06328153610229492, 0.049994807690382004, -0.04249459132552147, -0.060809362679719925, -0.03294748067855835, 0.01564195565879345, 0.05251622945070267, -0.009419661946594715, 0.14960907399654388, 0.023017099127173424, 0.14949700236320496, 0.08569129556417465, 0.08571472764015198, -0.07848557829856873, -0.0662907212972641, -0.018670717254281044, -0.01171959936618805, 0.052121590822935104, -0.1567266285419464, 0.0222612377256155, 0.14933155477046967, 0.023854093626141548, 0.14069582521915436, 0.08444757014513016, -0.012314979918301105, 0.006973995827138424, 0.05782342329621315, -0.16315408051013947, -0.08276087045669556, -0.01947229914367199, -0.05304446816444397, -0.12343880534172058, 0.044341687113046646, 0.08120200037956238, -0.07319604605436325, -0.01001099031418562, -0.008966249413788319, 0.00801245216280222, -0.060733210295438766, 0.17431361973285675, 0.04631480574607849, 0.04427378252148628, -0.103228360414505, 0.06995489448308945, 0.04022670537233353, -0.08173894137144089, 0.006496574729681015, 0.0679832473397255, -0.07813875377178192, -0.05333561822772026, 0.08378839492797852, 0.21410124003887177, -0.04703439027070999, -0.04646718502044678, -0.1423557847738266, -0.13277803361415863, 0.08483558148145676, 0.14282391965389252, 0.11973793059587479, 0.011175474151968956, -0.0649867057800293, -0.0028957000467926264, -0.11970946192741394, 0.0956927016377449, 0.04556654393672943, 0.06415167450904846, -0.1412634551525116, 0.13030587136745453, 0.014540751464664936, 0.04957909509539604, -0.018316565081477165, 0.02747558057308197, -0.09735246002674103, 0.01003090851008892, -0.11197996139526367, -0.014422730542719364, -0.03730938956141472, 0.010056210681796074, -0.005486046429723501, -0.04593383148312569, -0.06191306561231613, 0.010265232995152473, -0.10761867463588715, -0.020014287903904915, 0.03203214704990387, 0.06906575709581375, -0.09926522523164749, -0.03584988787770271, 0.025884181261062622, -0.06411145627498627, 0.06664050370454788, 0.04775208234786987, 0.024460744112730026, 0.05203469842672348, -0.13428330421447754, 0.020065493881702423, 0.07125937938690186, 0.023615064099431038, 0.06857342272996902, -0.10210324823856354, -0.0048413085751235485, -0.0018470374634489417, 0.03993143141269684, 0.01879689283668995, 0.060570936650037766, -0.13668784499168396, -0.0018133589765056968, -0.0059414212591946125, -0.08354639261960983, -0.06759142130613327, 0.025267822667956352, 0.09829063713550568, 0.010769153945147991, 0.20157437026500702, -0.07453074306249619, 0.05111348256468773, -0.21752247214317322, 0.008580947294831276, -0.011457758024334908, -0.10675018280744553, -0.11847562342882156, -0.07331645488739014, 0.060511115938425064, -0.05910194292664528, 0.15643341839313507, 0.04336113855242729, 0.03594420477747917, 0.029215503484010696, -0.016089623793959618, 0.025112714618444443, 0.013912186026573181, 0.20906245708465576, 0.031809382140636444, -0.03966294229030609, 0.06834982335567474, 0.04653722792863846, 0.10755541920661926, 0.1338290572166443, 0.20528732240200043, 0.14109309017658234, -0.0016062030335888267, 0.104256771504879, 0.03466791287064552, -0.05762480944395065, -0.1563846468925476, 0.03676179423928261, -0.04096238315105438, 0.11012841761112213, -0.017167802900075912, 0.20791314542293549, 0.07202707976102829, -0.17344166338443756, 0.04336996749043465, -0.05798328295350075, -0.0792505294084549, -0.12193125486373901, -0.048324186354875565, -0.08294760435819626, -0.12893500924110413, 0.004624804016202688, -0.11551131308078766, 0.0029855608008801937, 0.11830372363328934, 0.0003146572853438556, -0.025349488481879234, 0.15853318572044373, 0.012229030951857567, 0.03587009757757187, 0.0623665414750576, 0.009986549615859985, -0.033745404332876205, -0.12574751675128937, -0.049979232251644135, -0.01642908900976181, -0.03286297246813774, 0.02869069203734398, -0.06801576167345047, -0.043811243027448654, 0.0380096510052681, -0.018702475354075432, -0.0994282215833664, 0.008727424778044224, 0.010006695054471493, 0.06349524110555649, 0.04147202521562576, 0.009688003920018673, 0.02728598564863205, -0.008197645656764507, 0.20150049030780792, -0.08199817687273026, -0.05192165821790695, -0.10646841675043106, 0.24835076928138733, 0.04308316856622696, -0.024649769067764282, 0.02875283546745777, -0.062391892075538635, 0.00807760376483202, 0.25195541977882385, 0.20674537122249603, -0.06871533393859863, -0.007414078805595636, 0.005721509922295809, -0.0078910943120718, -0.0229549128562212, 0.09814517945051193, 0.13991482555866241, 0.039135899394750595, -0.10182734578847885, -0.05337280035018921, -0.05527487024664879, -0.020565170794725418, -0.03373938426375389, 0.08031013607978821, 0.05193829908967018, 0.0009627835243009031, -0.02825058251619339, 0.049038421362638474, -0.06365194916725159, -0.07327164709568024, 0.06637400388717651, -0.21353663504123688, -0.1605113446712494, -0.009253967553377151, 0.09987538307905197, 0.011628348380327225, 0.06883668899536133, -0.02442094497382641, -0.005353689659386873, 0.09306224435567856, -0.01920473948121071, -0.106890469789505, -0.07222694903612137, 0.08502697199583054, -0.1229671910405159, 0.2248678207397461, -0.042769718915224075, 0.04968447983264923, 0.12772446870803833, 0.07353010773658752, -0.08143990486860275, 0.05894053354859352, 0.03563410043716431, -0.05077586695551872, 0.029180480167269707, 0.07570891827344894, -0.03623399883508682, 0.05392841622233391, 0.0446491502225399, -0.1353415846824646, 0.023813316598534584, -0.06738412380218506, -0.061082519590854645, -0.04242687672376633, -0.020358486101031303, -0.053828101605176926, 0.13348907232284546, 0.22147727012634277, -0.02643861249089241, -0.01265759114176035, -0.06895022839307785, 0.011453851126134396, 0.0556543804705143, 0.027651680633425713, -0.06081826612353325, -0.20048682391643524, 0.02100181393325329, 0.04676947742700577, -0.02104194276034832, -0.2525334358215332, -0.09901151061058044, 0.0026946943253278732, -0.08497780561447144, -0.08980201184749603, 0.06273863464593887, 0.0974934995174408, 0.05462854355573654, -0.0601477175951004, -0.05967121943831444, -0.06285107880830765, 0.14960379898548126, -0.1336909383535385, -0.09875859320163727 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # albert-base-v2-finetuned-rte This model is a fine-tuned version of [albert-base-v2](https://huggingface.co/albert-base-v2) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 1.2496 - Accuracy: 0.7581 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 10 - eval_batch_size: 10 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 249 | 0.5914 | 0.6751 | | No log | 2.0 | 498 | 0.5843 | 0.7184 | | 0.5873 | 3.0 | 747 | 0.6925 | 0.7220 | | 0.5873 | 4.0 | 996 | 1.1613 | 0.7545 | | 0.2149 | 5.0 | 1245 | 1.2496 | 0.7581 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.18.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["glue"], "metrics": ["accuracy"], "model-index": [{"name": "albert-base-v2-finetuned-rte", "results": [{"task": {"type": "text-classification", "name": "Text Classification"}, "dataset": {"name": "glue", "type": "glue", "args": "rte"}, "metrics": [{"type": "accuracy", "value": 0.7581227436823105, "name": "Accuracy"}]}]}]}
text-classification
anirudh21/albert-base-v2-finetuned-rte
[ "transformers", "pytorch", "tensorboard", "albert", "text-classification", "generated_from_trainer", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #albert #text-classification #generated_from_trainer #dataset-glue #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us
albert-base-v2-finetuned-rte ============================ This model is a fine-tuned version of albert-base-v2 on the glue dataset. It achieves the following results on the evaluation set: * Loss: 1.2496 * Accuracy: 0.7581 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 10 * eval\_batch\_size: 10 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 5 ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.10.0+cu111 * Datasets 1.18.0 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 10\n* eval\\_batch\\_size: 10\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.0+cu111\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #albert #text-classification #generated_from_trainer #dataset-glue #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 10\n* eval\\_batch\\_size: 10\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.0+cu111\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ 66, 98, 4, 35 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #albert #text-classification #generated_from_trainer #dataset-glue #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 10\n* eval\\_batch\\_size: 10\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.0+cu111\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ -0.10812227427959442, 0.08284442871809006, -0.0015580077888444066, 0.12244495004415512, 0.16290700435638428, 0.03442436084151268, 0.11997165530920029, 0.12939207255840302, -0.08743293583393097, 0.01921333745121956, 0.13137651979923248, 0.15945979952812195, 0.019810274243354797, 0.10694754123687744, -0.05106024071574211, -0.2621508538722992, -0.014195792376995087, 0.05278029665350914, -0.04353747144341469, 0.13184162974357605, 0.08598319441080093, -0.12341554462909698, 0.10074693709611893, 0.015679562464356422, -0.1942601501941681, 0.006165030878037214, 0.008540485054254532, -0.058614201843738556, 0.14441728591918945, 0.028705954551696777, 0.11618482321500778, -0.004100530408322811, 0.08499672263860703, -0.19648362696170807, 0.011473403312265873, 0.047650501132011414, 0.00452944403514266, 0.09177328646183014, 0.04591868445277214, 0.0025606248527765274, 0.14506928622722626, -0.09642227739095688, 0.05479328706860542, 0.02678256668150425, -0.12495309114456177, -0.21436306834220886, -0.08185486495494843, 0.03439687564969063, 0.08545161038637161, 0.11497870832681656, -0.00704431626945734, 0.12902942299842834, -0.08128020167350769, 0.08706013113260269, 0.24161988496780396, -0.30761340260505676, -0.06689779460430145, 0.025999119505286217, 0.010811397805809975, 0.033626001328229904, -0.10598018020391464, -0.029820840805768967, 0.057460296899080276, 0.0453692227602005, 0.12635180354118347, -0.034481607377529144, -0.11089450865983963, 0.014401528984308243, -0.13264597952365875, -0.03350748494267464, 0.1629151701927185, 0.047308363020420074, -0.03316374495625496, -0.05942146107554436, -0.04950757697224617, -0.15870119631290436, -0.0357450395822525, -0.0067693935707211494, 0.04712338373064995, -0.024480249732732773, -0.046772316098213196, -0.0004205122822895646, -0.11031024903059006, -0.06184318661689758, -0.08021574467420578, 0.11916148662567139, 0.03234322369098663, 0.014026869088411331, -0.03719112649559975, 0.11222857981920242, 0.0006609389674849808, -0.13266374170780182, 0.013174224644899368, 0.02464505471289158, 0.006400905083864927, -0.046067800372838974, -0.053933948278427124, -0.051930271089076996, 0.004880490712821484, 0.1251206398010254, -0.03353549540042877, 0.041673459112644196, 0.05016564950346947, 0.0428360253572464, -0.09581884741783142, 0.20034925639629364, -0.03589331731200218, -0.022892795503139496, 0.008429545909166336, 0.03780374675989151, 0.024145780131220818, -0.009151838719844818, -0.11865413933992386, 0.0003033840039279312, 0.07693354785442352, 0.004838700871914625, -0.07210666686296463, 0.07228454202413559, -0.05257178097963333, -0.022996045649051666, -0.0056682457216084, -0.08841325342655182, 0.03352183476090431, -0.0014572732616215944, -0.07455167919397354, -0.014107013121247292, 0.027440382167696953, 0.02270200289785862, -0.014683040790259838, 0.11508310586214066, -0.08568273484706879, 0.031704094260931015, -0.09580230712890625, -0.1030389666557312, 0.02285224385559559, -0.11259704828262329, 0.03726596757769585, -0.09101028740406036, -0.18348291516304016, -0.0100685004144907, 0.060151342302560806, -0.022707665339112282, -0.06010086089372635, -0.05793559551239014, -0.066010981798172, 0.01335061900317669, -0.007147449534386396, 0.13123619556427002, -0.06641251593828201, 0.08052718639373779, 0.02494223043322563, 0.06419709324836731, -0.04216453805565834, 0.05222154036164284, -0.10420840978622437, 0.013122577220201492, -0.14495594799518585, 0.030937576666474342, -0.03678807616233826, 0.07637365162372589, -0.08259858191013336, -0.09401261806488037, 0.0149227324873209, -0.0021897535771131516, 0.05989959090948105, 0.10013262927532196, -0.18082264065742493, -0.08013774454593658, 0.1591133326292038, -0.06347007304430008, -0.13310538232326508, 0.11787702888250351, -0.06260894984006882, 0.048464272171258926, 0.0631970688700676, 0.15259835124015808, 0.06378328055143356, -0.08348127454519272, -0.005408478435128927, 0.021814236417412758, 0.048930659890174866, -0.06933651119470596, 0.07577134668827057, 0.007370618637651205, 0.005409549456089735, 0.03380436822772026, -0.019116850569844246, 0.058931175619363785, -0.08602556586265564, -0.10096555203199387, -0.045310650020837784, -0.08115530014038086, 0.02798488922417164, 0.07748840749263763, 0.07319899648427963, -0.09830629080533981, -0.08539480715990067, 0.03303101658821106, 0.07598836719989777, -0.04915986955165863, 0.028289390727877617, -0.05608874931931496, 0.061022695153951645, -0.04128282517194748, -0.023319358006119728, -0.17212943732738495, -0.016190392896533012, 0.0005925387376919389, -0.011388246901333332, 0.008831306360661983, 0.0268185306340456, 0.06821294873952866, 0.05501342937350273, -0.05090034380555153, -0.011488190852105618, -0.030438117682933807, -0.0028543774969875813, -0.13574649393558502, -0.20113439857959747, -0.0303611159324646, -0.024897273629903793, 0.15370577573776245, -0.20515237748622894, 0.04379026219248772, -0.0218726247549057, 0.06603100150823593, 0.013438552618026733, -0.006492766551673412, -0.043173227459192276, 0.07049788534641266, -0.043958332389593124, -0.05093691870570183, 0.07494747638702393, 0.01759704016149044, -0.0997835174202919, -0.050611332058906555, -0.09440138190984726, 0.15558204054832458, 0.13407504558563232, -0.10751816630363464, -0.0719401016831398, -0.0066538527607917786, -0.06547510623931885, -0.032848749309778214, -0.0556197315454483, 0.03889739513397217, 0.2107492834329605, -0.005632870364934206, 0.14939838647842407, -0.06562180072069168, -0.0491597056388855, 0.026276521384716034, -0.03514552861452103, 0.021682914346456528, 0.12900611758232117, 0.1326981484889984, -0.0608346089720726, 0.1453821212053299, 0.157245472073555, -0.09012020379304886, 0.13328681886196136, -0.039709266275167465, -0.07490214705467224, -0.01796800084412098, -0.04088638722896576, -0.005572074092924595, 0.10911056399345398, -0.16404250264167786, -0.006710957735776901, 0.030228465795516968, 0.014972531236708164, 0.018954835832118988, -0.2238462120294571, -0.045524124056100845, 0.042652279138565063, -0.031195417046546936, -0.024214979261159897, -0.0070041390135884285, 0.002806958043947816, 0.10440855473279953, 0.005079586990177631, -0.08259882777929306, 0.03672057017683983, 0.0037537789903581142, -0.08651493489742279, 0.21775184571743011, -0.06903107464313507, -0.1535114049911499, -0.12222585082054138, -0.08019690960645676, -0.048169177025556564, 0.0020812905859202147, 0.07224124670028687, -0.09284645318984985, -0.031278096139431, -0.07695784419775009, 0.01751301996409893, 0.006551098078489304, 0.03173869475722313, 0.014846734702587128, 0.0031716942321509123, 0.06113307178020477, -0.10139652341604233, -0.017856748774647713, -0.057308267802000046, -0.050315167754888535, 0.035979967564344406, 0.03342410549521446, 0.11453315615653992, 0.14718614518642426, -0.013780667446553707, 0.015139991417527199, -0.032366957515478134, 0.22485680878162384, -0.06382457911968231, -0.033108726143836975, 0.13422982394695282, -0.009643759578466415, 0.04004998132586479, 0.11612338572740555, 0.07465962320566177, -0.07813198864459991, -0.0009871404618024826, 0.036782220005989075, -0.036834467202425, -0.22948744893074036, -0.04466257244348526, -0.05993299558758736, 0.007193927187472582, 0.09785855561494827, 0.02257000282406807, 0.03244899958372116, 0.07305794954299927, 0.041135963052511215, 0.08613163977861404, -0.0483919233083725, 0.06095427647233009, 0.10213974118232727, 0.0407949835062027, 0.12108917534351349, -0.055966634303331375, -0.06715616583824158, 0.0403464213013649, -0.018208958208560944, 0.22627267241477966, 0.019024720415472984, 0.12926751375198364, 0.05745925009250641, 0.15136666595935822, -0.004715285263955593, 0.08385144919157028, -0.003752421122044325, -0.05124466493725777, -0.015357966534793377, -0.03749721869826317, -0.03234773501753807, 0.032910168170928955, -0.08123943209648132, 0.07988361269235611, -0.1318807154893875, 0.012943650595843792, 0.0551995150744915, 0.26127544045448303, 0.047058720141649246, -0.3217346966266632, -0.09054535627365112, 0.010688036680221558, -0.03129878267645836, -0.025067448616027832, 0.03157437592744827, 0.07830601185560226, -0.09578756242990494, 0.03814588859677315, -0.0738612711429596, 0.10083618015050888, -0.0458424836397171, 0.05078555643558502, 0.0804804340004921, 0.07735026627779007, 0.006706494837999344, 0.09341100603342056, -0.3036722242832184, 0.2834796905517578, 0.0035002632066607475, 0.06949956715106964, -0.08718965202569962, 0.007772665470838547, 0.045814331620931625, 0.06404118984937668, 0.09618905931711197, -0.01632317155599594, -0.04745786264538765, -0.18542560935020447, -0.06897355616092682, 0.036088909953832626, 0.05739724636077881, -0.03728330507874489, 0.08835294842720032, -0.028076564893126488, 0.006294912192970514, 0.07221323996782303, 0.01991957239806652, -0.05177241191267967, -0.11080443114042282, -0.01316156703978777, 0.025379929691553116, -0.06901412457227707, -0.05881553143262863, -0.11750908195972443, -0.13316702842712402, 0.15201975405216217, -0.0310304407030344, -0.028276722878217697, -0.10973682999610901, 0.08481571823358536, 0.04866652935743332, -0.09133616089820862, 0.03455067798495293, 0.006649347487837076, 0.08086611330509186, 0.02914884127676487, -0.07710839062929153, 0.10547436028718948, -0.0720558762550354, -0.1527612954378128, -0.0684044286608696, 0.10014782100915909, 0.032016582787036896, 0.06865500658750534, -0.007832658477127552, 0.015194501727819443, -0.05106080695986748, -0.0897548645734787, 0.023692140355706215, 0.010981851257383823, 0.07974552363157272, 0.005882829427719116, -0.06248464435338974, 0.017326340079307556, -0.05921978875994682, -0.03291132673621178, 0.20764625072479248, 0.2192559540271759, -0.10535869002342224, 0.020500577986240387, -0.00006998603203101084, -0.0781852975487709, -0.19457176327705383, 0.04168194532394409, 0.04751267284154892, 0.01738695427775383, 0.034920211881399155, -0.17412154376506805, 0.15018044412136078, 0.111032634973526, -0.012775520794093609, 0.09992801398038864, -0.30901405215263367, -0.12349440157413483, 0.14063270390033722, 0.12993454933166504, 0.12902319431304932, -0.13090476393699646, -0.011571654118597507, -0.0294426828622818, -0.14248374104499817, 0.10050363093614578, -0.106709785759449, 0.11364344507455826, -0.042604390531778336, 0.06998642534017563, 0.003539761994034052, -0.0601409412920475, 0.11970093846321106, 0.027830716222524643, 0.09865162521600723, -0.056436408311128616, -0.037706006318330765, 0.032426685094833374, -0.04790187627077103, 0.030735043808817863, -0.10820221900939941, 0.02033689245581627, -0.11749106645584106, -0.025151778012514114, -0.06331976503133774, 0.04986036941409111, -0.04251127317547798, -0.06181933358311653, -0.03260885179042816, 0.015196210704743862, 0.05443786084651947, -0.009022600017488003, 0.15055452287197113, 0.02123957872390747, 0.15013273060321808, 0.07863333821296692, 0.08657515048980713, -0.07703308761119843, -0.06609087437391281, -0.019071929156780243, -0.012569399550557137, 0.05087347328662872, -0.1562030017375946, 0.022460510954260826, 0.14846327900886536, 0.02353331819176674, 0.14283978939056396, 0.08526536077260971, -0.010798539966344833, 0.007355075795203447, 0.05790757015347481, -0.16167131066322327, -0.0826474279165268, -0.017122425138950348, -0.055330365896224976, -0.1237967386841774, 0.04717588052153587, 0.08043020963668823, -0.07182483375072479, -0.010483046062290668, -0.009834694676101208, 0.007744421251118183, -0.06063826382160187, 0.17511682212352753, 0.046105481684207916, 0.04325881972908974, -0.10343967378139496, 0.07066210359334946, 0.039044808596372604, -0.0840577557682991, 0.00690052704885602, 0.06680739670991898, -0.08035073429346085, -0.053326625376939774, 0.08293135464191437, 0.21501411497592926, -0.044330909848213196, -0.04578620567917824, -0.14233599603176117, -0.13313572108745575, 0.08464813232421875, 0.14407436549663544, 0.11949189007282257, 0.011414795182645321, -0.06579258292913437, -0.0011755614541471004, -0.1191522628068924, 0.09452519565820694, 0.047057755291461945, 0.06393074989318848, -0.1401626169681549, 0.13182871043682098, 0.014576438814401627, 0.04705206677317619, -0.017599385231733322, 0.02661941386759281, -0.0982167050242424, 0.010065296664834023, -0.11071572452783585, -0.01638023555278778, -0.039149753749370575, 0.00935458019375801, -0.00443012872710824, -0.04479186236858368, -0.06155195087194443, 0.00842215958982706, -0.10835433006286621, -0.02062421478331089, 0.031824398785829544, 0.06987245380878448, -0.09949462860822678, -0.03449708968400955, 0.024442551657557487, -0.06465699523687363, 0.06727047264575958, 0.04811401665210724, 0.023914756253361702, 0.052063822746276855, -0.13652265071868896, 0.020782122388482094, 0.07181064039468765, 0.02361925318837166, 0.06701847165822983, -0.10220653563737869, -0.004876402206718922, -0.0017990900669246912, 0.04090458154678345, 0.019799603149294853, 0.0603041872382164, -0.13507509231567383, -0.0022187200374901295, -0.006090464070439339, -0.08331664651632309, -0.0679805725812912, 0.0249689519405365, 0.09742291271686554, 0.009958837181329727, 0.20324599742889404, -0.07385322451591492, 0.051081717014312744, -0.21548718214035034, 0.00877484492957592, -0.01059644017368555, -0.10749498754739761, -0.11681066453456879, -0.07492906600236893, 0.06093829497694969, -0.059279702603816986, 0.15723103284835815, 0.04010610282421112, 0.03651111572980881, 0.029036229476332664, -0.014900012873113155, 0.024790026247501373, 0.015106980688869953, 0.21222227811813354, 0.032654862850904465, -0.040924038738012314, 0.06674925237894058, 0.04646531492471695, 0.10732819885015488, 0.13213618099689484, 0.20533587038516998, 0.142837256193161, -0.00258012511767447, 0.10387079417705536, 0.03378888592123985, -0.05719137564301491, -0.1541213095188141, 0.03995395824313164, -0.040848247706890106, 0.11034556478261948, -0.01728212460875511, 0.21199411153793335, 0.07046006619930267, -0.17349955439567566, 0.04224659875035286, -0.057234689593315125, -0.07918669283390045, -0.1217208206653595, -0.05066544935107231, -0.0836598351597786, -0.12687627971172333, 0.005300647579133511, -0.11485069990158081, 0.0027721673250198364, 0.1179838627576828, 0.001846663886681199, -0.02463175170123577, 0.15798072516918182, 0.009304087609052658, 0.03368942067027092, 0.0642816573381424, 0.009936983697116375, -0.03598416596651077, -0.1271963268518448, -0.04774310439825058, -0.016977321356534958, -0.03416181355714798, 0.028776120394468307, -0.06920942664146423, -0.044600386172533035, 0.03728986531496048, -0.020476868376135826, -0.09851723909378052, 0.009807947091758251, 0.009499584324657917, 0.06362617015838623, 0.041688475757837296, 0.011955582536756992, 0.025226576253771782, -0.006849984638392925, 0.20173397660255432, -0.08332333713769913, -0.05610296502709389, -0.10735572129487991, 0.2468525618314743, 0.044899292290210724, -0.024989979341626167, 0.02815493382513523, -0.06256871670484543, 0.010907826945185661, 0.2521902918815613, 0.2085081934928894, -0.06703315675258636, -0.006053169723600149, 0.006465097889304161, -0.008075987920165062, -0.02444472908973694, 0.09652169048786163, 0.13940924406051636, 0.03708821162581444, -0.10022728890180588, -0.049726471304893494, -0.052722834050655365, -0.02125512808561325, -0.034651994705200195, 0.08233179152011871, 0.05292993411421776, -0.00044139812234789133, -0.027730140835046768, 0.051345095038414, -0.06320849806070328, -0.07256685942411423, 0.06447811424732208, -0.21257071197032928, -0.15995584428310394, -0.009265612810850143, 0.10035287588834763, 0.012283086776733398, 0.06838137656450272, -0.023861100897192955, -0.006440651137381792, 0.09381371736526489, -0.01769033633172512, -0.10623181611299515, -0.0727761834859848, 0.0859944075345993, -0.12497203052043915, 0.2244545966386795, -0.04299304261803627, 0.0498611256480217, 0.12851198017597198, 0.072982557117939, -0.0786944329738617, 0.060381922870874405, 0.03657121583819389, -0.048771921545267105, 0.029440419748425484, 0.07410670071840286, -0.03660116717219353, 0.05301995947957039, 0.045426223427057266, -0.13402394950389862, 0.026019947603344917, -0.06739998608827591, -0.06193745881319046, -0.043238814920186996, -0.0188886895775795, -0.052731383591890335, 0.13421235978603363, 0.2197740375995636, -0.026442497968673706, -0.011201264336705208, -0.06913057714700699, 0.011395959183573723, 0.05622691288590431, 0.026137161999940872, -0.06217151880264282, -0.19980597496032715, 0.02065468765795231, 0.04513493925333023, -0.020284051075577736, -0.24929621815681458, -0.09989801049232483, 0.002649355214089155, -0.0853772908449173, -0.089887835085392, 0.061325278133153915, 0.09884094446897507, 0.05472015216946602, -0.060149237513542175, -0.06073954328894615, -0.06216742470860481, 0.15102964639663696, -0.1342906653881073, -0.0989464744925499 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # albert-base-v2-finetuned-wnli This model is a fine-tuned version of [albert-base-v2](https://huggingface.co/albert-base-v2) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.6878 - Accuracy: 0.5634 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 40 | 0.6878 | 0.5634 | | No log | 2.0 | 80 | 0.6919 | 0.5634 | | No log | 3.0 | 120 | 0.6877 | 0.5634 | | No log | 4.0 | 160 | 0.6984 | 0.4085 | | No log | 5.0 | 200 | 0.6957 | 0.5211 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.18.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["glue"], "metrics": ["accuracy"], "model-index": [{"name": "albert-base-v2-finetuned-wnli", "results": [{"task": {"type": "text-classification", "name": "Text Classification"}, "dataset": {"name": "glue", "type": "glue", "args": "wnli"}, "metrics": [{"type": "accuracy", "value": 0.5633802816901409, "name": "Accuracy"}]}]}]}
text-classification
anirudh21/albert-base-v2-finetuned-wnli
[ "transformers", "pytorch", "tensorboard", "albert", "text-classification", "generated_from_trainer", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #albert #text-classification #generated_from_trainer #dataset-glue #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us
albert-base-v2-finetuned-wnli ============================= This model is a fine-tuned version of albert-base-v2 on the glue dataset. It achieves the following results on the evaluation set: * Loss: 0.6878 * Accuracy: 0.5634 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 16 * eval\_batch\_size: 16 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 5 ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.10.0+cu111 * Datasets 1.18.0 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.0+cu111\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #albert #text-classification #generated_from_trainer #dataset-glue #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.0+cu111\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ 66, 98, 4, 35 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #albert #text-classification #generated_from_trainer #dataset-glue #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.0+cu111\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ -0.10851341485977173, 0.08287949860095978, -0.0015716948546469212, 0.12378216534852982, 0.1644035279750824, 0.034203559160232544, 0.11756833642721176, 0.1303785890340805, -0.08961959183216095, 0.01978359930217266, 0.13182155787944794, 0.1571536362171173, 0.019342191517353058, 0.10459926724433899, -0.050261739641427994, -0.2606520652770996, -0.015629388391971588, 0.05233924835920334, -0.047430187463760376, 0.13125889003276825, 0.08640951663255692, -0.12352532893419266, 0.10119590908288956, 0.016996311023831367, -0.19539082050323486, 0.006376367527991533, 0.009158787317574024, -0.0564240999519825, 0.14400716125965118, 0.03155115246772766, 0.11656567454338074, -0.004729350097477436, 0.08431360125541687, -0.1941358745098114, 0.011082910932600498, 0.04820818454027176, 0.0049487631767988205, 0.09291473031044006, 0.04774554818868637, 0.0033729670103639364, 0.14480124413967133, -0.09592609107494354, 0.0522734709084034, 0.027718715369701385, -0.12452755123376846, -0.21515901386737823, -0.08181779086589813, 0.03230409324169159, 0.08416493982076645, 0.11512179672718048, -0.005395589396357536, 0.12806573510169983, -0.08085677772760391, 0.08780300617218018, 0.23827265202999115, -0.30694082379341125, -0.06739146262407303, 0.025221778079867363, 0.00799495168030262, 0.032211191952228546, -0.10505171120166779, -0.02871882915496826, 0.05733394995331764, 0.04659018665552139, 0.12641079723834991, -0.033901676535606384, -0.11446501314640045, 0.014867664314806461, -0.13147439062595367, -0.03409222885966301, 0.16096091270446777, 0.04539426788687706, -0.033270757645368576, -0.05664939805865288, -0.051134154200553894, -0.15639479458332062, -0.035082269459962845, -0.004277274943888187, 0.04805569350719452, -0.02432965487241745, -0.0460941419005394, -0.0016077898908406496, -0.11016025394201279, -0.06246815249323845, -0.08158069103956223, 0.11988197267055511, 0.03115209750831127, 0.016247021034359932, -0.037016041576862335, 0.11204948276281357, 0.0013566170819103718, -0.13201206922531128, 0.012988509610295296, 0.02687028981745243, 0.00729374261572957, -0.044786155223846436, -0.053867775946855545, -0.053863268345594406, 0.00430115032941103, 0.12289395928382874, -0.04026487097144127, 0.040145393460989, 0.04916608706116676, 0.04391423612833023, -0.09642386436462402, 0.20065082609653473, -0.03766079246997833, -0.018071161583065987, 0.00929968897253275, 0.03564739599823952, 0.024339625611901283, -0.009158243425190449, -0.11860004812479019, -0.000343729363521561, 0.07517223805189133, 0.005142418202012777, -0.07092933356761932, 0.07137508690357208, -0.05376800149679184, -0.02296004444360733, -0.0021376493386924267, -0.08764661103487015, 0.03296663612127304, -0.002671253401786089, -0.07513636350631714, -0.015495436266064644, 0.030281322076916695, 0.021347740665078163, -0.014448919333517551, 0.11615916341543198, -0.08655691146850586, 0.03218672797083855, -0.09627551585435867, -0.10221421718597412, 0.023033635690808296, -0.10830260813236237, 0.03779095411300659, -0.09124257415533066, -0.1834726780653, -0.009110176004469395, 0.06036468595266342, -0.025423433631658554, -0.061499450355768204, -0.0546928234398365, -0.06525935232639313, 0.015102635137736797, -0.007776893209666014, 0.13168306648731232, -0.06625673919916153, 0.08166395872831345, 0.02689969912171364, 0.06423691660165787, -0.04112587869167328, 0.052426837384700775, -0.10481588542461395, 0.014568629674613476, -0.14707937836647034, 0.031188983470201492, -0.037114519625902176, 0.07600796222686768, -0.08274073898792267, -0.09499000012874603, 0.015633273869752884, -0.0025613398756831884, 0.0618094764649868, 0.09867966920137405, -0.17744845151901245, -0.07985639572143555, 0.15661577880382538, -0.06437281519174576, -0.1325954645872116, 0.12001652270555496, -0.0612134151160717, 0.045997507870197296, 0.06028265133500099, 0.1512797325849533, 0.06379801779985428, -0.08271874487400055, -0.004605399910360575, 0.02407730370759964, 0.04843881353735924, -0.07159419357776642, 0.07669540494680405, 0.008389415219426155, 0.002951052039861679, 0.0340876542031765, -0.019045770168304443, 0.061201177537441254, -0.08733832836151123, -0.10032474249601364, -0.04622561112046242, -0.08203887939453125, 0.028672071173787117, 0.0776790976524353, 0.07325249910354614, -0.09814091771841049, -0.08594372123479843, 0.03338034823536873, 0.0765068531036377, -0.04751443490386009, 0.028013426810503006, -0.05600306764245033, 0.06213730573654175, -0.043482739478349686, -0.023733915761113167, -0.17221353948116302, -0.017427945509552956, -0.000443327211542055, -0.006937176920473576, 0.009066986851394176, 0.026353659108281136, 0.06821393221616745, 0.05675322189927101, -0.05200904235243797, -0.010675321333110332, -0.02982199192047119, -0.0041316417045891285, -0.13505974411964417, -0.2008715569972992, -0.03134380653500557, -0.02398592233657837, 0.15125882625579834, -0.20457713305950165, 0.04213083162903786, -0.021903015673160553, 0.06635771691799164, 0.012865194119513035, -0.0053146895952522755, -0.04286836460232735, 0.0698426365852356, -0.04436494782567024, -0.05092164874076843, 0.07527109980583191, 0.019110465422272682, -0.09808443486690521, -0.04705537110567093, -0.08996978402137756, 0.15877945721149445, 0.13385072350502014, -0.1099434345960617, -0.07223377376794815, -0.0058516887947916985, -0.06560415774583817, -0.03339000791311264, -0.05574433505535126, 0.040243301540613174, 0.21176877617835999, -0.007056929636746645, 0.15119796991348267, -0.0662810429930687, -0.04895230755209923, 0.026796160265803337, -0.03642735630273819, 0.021458491683006287, 0.12952668964862823, 0.13312320411205292, -0.05990966781973839, 0.14652734994888306, 0.15359628200531006, -0.09059371799230576, 0.13318632543087006, -0.03999984264373779, -0.07472026348114014, -0.017710551619529724, -0.03931165114045143, -0.004119568970054388, 0.10875216871500015, -0.1615610122680664, -0.004651137627661228, 0.030832653865218163, 0.014737037010490894, 0.020087437704205513, -0.22307056188583374, -0.04519743472337723, 0.04278237000107765, -0.03178243339061737, -0.021580059081315994, -0.007723218761384487, 0.0037444550544023514, 0.10487890243530273, 0.0055309683084487915, -0.08151063323020935, 0.03770234063267708, 0.005515687167644501, -0.08669986575841904, 0.21752367913722992, -0.06947796791791916, -0.15518920123577118, -0.12592779099941254, -0.07883378863334656, -0.04955562576651573, 0.0021320621017366648, 0.07115191966295242, -0.09382370859384537, -0.032456617802381516, -0.07577887177467346, 0.019918303936719894, 0.004875612910836935, 0.031803544610738754, 0.01505905669182539, 0.0028410842642188072, 0.06437543779611588, -0.10163018107414246, -0.016886616125702858, -0.05557944253087044, -0.050702955573797226, 0.036809612065553665, 0.035607509315013885, 0.11485431343317032, 0.14555047452449799, -0.016081763431429863, 0.013742087408900261, -0.030881134793162346, 0.22703666985034943, -0.06183459237217903, -0.033547043800354004, 0.13601787388324738, -0.008285166695713997, 0.04035327211022377, 0.1131085455417633, 0.07463839650154114, -0.07826251536607742, -0.00111157086212188, 0.03700360655784607, -0.03763021528720856, -0.2307037115097046, -0.046411383897066116, -0.06072646379470825, 0.007775360718369484, 0.09654852747917175, 0.02273011952638626, 0.02955014817416668, 0.07200337946414948, 0.04007653146982193, 0.08878234028816223, -0.05143848434090614, 0.059663355350494385, 0.10464063286781311, 0.04082774370908737, 0.1216021254658699, -0.05594692751765251, -0.06648729741573334, 0.04218735173344612, -0.01800714246928692, 0.2236419916152954, 0.016036270186305046, 0.13117147982120514, 0.05609254539012909, 0.15269875526428223, -0.004133033100515604, 0.0846896767616272, -0.0062759071588516235, -0.05142221599817276, -0.01511458307504654, -0.03756638243794441, -0.03472224622964859, 0.032171182334423065, -0.08392827957868576, 0.079414002597332, -0.1315862387418747, 0.016221044585108757, 0.05463474988937378, 0.26152393221855164, 0.04587202146649361, -0.321972519159317, -0.09329250454902649, 0.009788069874048233, -0.029937151819467545, -0.027202531695365906, 0.03143763169646263, 0.08129655569791794, -0.09414859861135483, 0.035591233521699905, -0.0738305002450943, 0.10116495192050934, -0.04594714939594269, 0.0491180457174778, 0.08238666504621506, 0.07942087948322296, 0.0074699679389595985, 0.09445410221815109, -0.30067723989486694, 0.2845527231693268, 0.004858710337430239, 0.06776915490627289, -0.08622097969055176, 0.008372905664145947, 0.04453708976507187, 0.06563539057970047, 0.09501554816961288, -0.0140914935618639, -0.04899032041430473, -0.18717963993549347, -0.06885536760091782, 0.03427093103528023, 0.05553438887000084, -0.03511710464954376, 0.08751165121793747, -0.028084883466362953, 0.0065111275762319565, 0.07207874953746796, 0.018553245812654495, -0.04902458190917969, -0.11115951836109161, -0.01427517831325531, 0.026247471570968628, -0.07107964158058167, -0.05908683314919472, -0.11763347685337067, -0.1296166181564331, 0.15435954928398132, -0.02876298874616623, -0.02926171012222767, -0.11168454587459564, 0.08655610680580139, 0.049155063927173615, -0.09150857478380203, 0.0343179889023304, 0.005369671154767275, 0.08151274919509888, 0.02817639894783497, -0.0781378522515297, 0.10608948767185211, -0.07388927042484283, -0.15226562321186066, -0.06808533519506454, 0.09889303892850876, 0.030818484723567963, 0.06943147629499435, -0.01059445645660162, 0.015278245322406292, -0.05115121603012085, -0.0893559604883194, 0.025140443816781044, 0.008072792552411556, 0.08026784658432007, 0.005880521144717932, -0.06082103028893471, 0.021673541516065598, -0.05721529945731163, -0.032977454364299774, 0.20603495836257935, 0.21837805211544037, -0.10593485087156296, 0.01963035576045513, 0.00011520516272867098, -0.07776135206222534, -0.19612984359264374, 0.04137551784515381, 0.04815450683236122, 0.018216095864772797, 0.03512553870677948, -0.17524226009845734, 0.15107755362987518, 0.1101469025015831, -0.014013183303177357, 0.10103233903646469, -0.30580073595046997, -0.12347456812858582, 0.13789689540863037, 0.12939028441905975, 0.13237634301185608, -0.1306103616952896, -0.01185387559235096, -0.028198547661304474, -0.1425543576478958, 0.09835414588451385, -0.10393572598695755, 0.11367519944906235, -0.044036321341991425, 0.07140891253948212, 0.0034511450212448835, -0.06000930443406105, 0.12067489326000214, 0.025124182924628258, 0.09810183197259903, -0.056498534977436066, -0.034325432032346725, 0.03099016286432743, -0.04756839945912361, 0.031243259087204933, -0.10857679694890976, 0.023675616830587387, -0.12081367522478104, -0.025438150390982628, -0.06328153610229492, 0.049994807690382004, -0.04249459132552147, -0.060809362679719925, -0.03294748067855835, 0.01564195565879345, 0.05251622945070267, -0.009419661946594715, 0.14960907399654388, 0.023017099127173424, 0.14949700236320496, 0.08569129556417465, 0.08571472764015198, -0.07848557829856873, -0.0662907212972641, -0.018670717254281044, -0.01171959936618805, 0.052121590822935104, -0.1567266285419464, 0.0222612377256155, 0.14933155477046967, 0.023854093626141548, 0.14069582521915436, 0.08444757014513016, -0.012314979918301105, 0.006973995827138424, 0.05782342329621315, -0.16315408051013947, -0.08276087045669556, -0.01947229914367199, -0.05304446816444397, -0.12343880534172058, 0.044341687113046646, 0.08120200037956238, -0.07319604605436325, -0.01001099031418562, -0.008966249413788319, 0.00801245216280222, -0.060733210295438766, 0.17431361973285675, 0.04631480574607849, 0.04427378252148628, -0.103228360414505, 0.06995489448308945, 0.04022670537233353, -0.08173894137144089, 0.006496574729681015, 0.0679832473397255, -0.07813875377178192, -0.05333561822772026, 0.08378839492797852, 0.21410124003887177, -0.04703439027070999, -0.04646718502044678, -0.1423557847738266, -0.13277803361415863, 0.08483558148145676, 0.14282391965389252, 0.11973793059587479, 0.011175474151968956, -0.0649867057800293, -0.0028957000467926264, -0.11970946192741394, 0.0956927016377449, 0.04556654393672943, 0.06415167450904846, -0.1412634551525116, 0.13030587136745453, 0.014540751464664936, 0.04957909509539604, -0.018316565081477165, 0.02747558057308197, -0.09735246002674103, 0.01003090851008892, -0.11197996139526367, -0.014422730542719364, -0.03730938956141472, 0.010056210681796074, -0.005486046429723501, -0.04593383148312569, -0.06191306561231613, 0.010265232995152473, -0.10761867463588715, -0.020014287903904915, 0.03203214704990387, 0.06906575709581375, -0.09926522523164749, -0.03584988787770271, 0.025884181261062622, -0.06411145627498627, 0.06664050370454788, 0.04775208234786987, 0.024460744112730026, 0.05203469842672348, -0.13428330421447754, 0.020065493881702423, 0.07125937938690186, 0.023615064099431038, 0.06857342272996902, -0.10210324823856354, -0.0048413085751235485, -0.0018470374634489417, 0.03993143141269684, 0.01879689283668995, 0.060570936650037766, -0.13668784499168396, -0.0018133589765056968, -0.0059414212591946125, -0.08354639261960983, -0.06759142130613327, 0.025267822667956352, 0.09829063713550568, 0.010769153945147991, 0.20157437026500702, -0.07453074306249619, 0.05111348256468773, -0.21752247214317322, 0.008580947294831276, -0.011457758024334908, -0.10675018280744553, -0.11847562342882156, -0.07331645488739014, 0.060511115938425064, -0.05910194292664528, 0.15643341839313507, 0.04336113855242729, 0.03594420477747917, 0.029215503484010696, -0.016089623793959618, 0.025112714618444443, 0.013912186026573181, 0.20906245708465576, 0.031809382140636444, -0.03966294229030609, 0.06834982335567474, 0.04653722792863846, 0.10755541920661926, 0.1338290572166443, 0.20528732240200043, 0.14109309017658234, -0.0016062030335888267, 0.104256771504879, 0.03466791287064552, -0.05762480944395065, -0.1563846468925476, 0.03676179423928261, -0.04096238315105438, 0.11012841761112213, -0.017167802900075912, 0.20791314542293549, 0.07202707976102829, -0.17344166338443756, 0.04336996749043465, -0.05798328295350075, -0.0792505294084549, -0.12193125486373901, -0.048324186354875565, -0.08294760435819626, -0.12893500924110413, 0.004624804016202688, -0.11551131308078766, 0.0029855608008801937, 0.11830372363328934, 0.0003146572853438556, -0.025349488481879234, 0.15853318572044373, 0.012229030951857567, 0.03587009757757187, 0.0623665414750576, 0.009986549615859985, -0.033745404332876205, -0.12574751675128937, -0.049979232251644135, -0.01642908900976181, -0.03286297246813774, 0.02869069203734398, -0.06801576167345047, -0.043811243027448654, 0.0380096510052681, -0.018702475354075432, -0.0994282215833664, 0.008727424778044224, 0.010006695054471493, 0.06349524110555649, 0.04147202521562576, 0.009688003920018673, 0.02728598564863205, -0.008197645656764507, 0.20150049030780792, -0.08199817687273026, -0.05192165821790695, -0.10646841675043106, 0.24835076928138733, 0.04308316856622696, -0.024649769067764282, 0.02875283546745777, -0.062391892075538635, 0.00807760376483202, 0.25195541977882385, 0.20674537122249603, -0.06871533393859863, -0.007414078805595636, 0.005721509922295809, -0.0078910943120718, -0.0229549128562212, 0.09814517945051193, 0.13991482555866241, 0.039135899394750595, -0.10182734578847885, -0.05337280035018921, -0.05527487024664879, -0.020565170794725418, -0.03373938426375389, 0.08031013607978821, 0.05193829908967018, 0.0009627835243009031, -0.02825058251619339, 0.049038421362638474, -0.06365194916725159, -0.07327164709568024, 0.06637400388717651, -0.21353663504123688, -0.1605113446712494, -0.009253967553377151, 0.09987538307905197, 0.011628348380327225, 0.06883668899536133, -0.02442094497382641, -0.005353689659386873, 0.09306224435567856, -0.01920473948121071, -0.106890469789505, -0.07222694903612137, 0.08502697199583054, -0.1229671910405159, 0.2248678207397461, -0.042769718915224075, 0.04968447983264923, 0.12772446870803833, 0.07353010773658752, -0.08143990486860275, 0.05894053354859352, 0.03563410043716431, -0.05077586695551872, 0.029180480167269707, 0.07570891827344894, -0.03623399883508682, 0.05392841622233391, 0.0446491502225399, -0.1353415846824646, 0.023813316598534584, -0.06738412380218506, -0.061082519590854645, -0.04242687672376633, -0.020358486101031303, -0.053828101605176926, 0.13348907232284546, 0.22147727012634277, -0.02643861249089241, -0.01265759114176035, -0.06895022839307785, 0.011453851126134396, 0.0556543804705143, 0.027651680633425713, -0.06081826612353325, -0.20048682391643524, 0.02100181393325329, 0.04676947742700577, -0.02104194276034832, -0.2525334358215332, -0.09901151061058044, 0.0026946943253278732, -0.08497780561447144, -0.08980201184749603, 0.06273863464593887, 0.0974934995174408, 0.05462854355573654, -0.0601477175951004, -0.05967121943831444, -0.06285107880830765, 0.14960379898548126, -0.1336909383535385, -0.09875859320163727 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # albert-large-v2-finetuned-rte This model is a fine-tuned version of [albert-large-v2](https://huggingface.co/albert-large-v2) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.6827 - Accuracy: 0.5487 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 18 | 0.6954 | 0.5271 | | No log | 2.0 | 36 | 0.6860 | 0.5379 | | No log | 3.0 | 54 | 0.6827 | 0.5487 | | No log | 4.0 | 72 | 0.7179 | 0.5235 | | No log | 5.0 | 90 | 0.7504 | 0.5379 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.18.1 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["glue"], "metrics": ["accuracy"], "model-index": [{"name": "albert-large-v2-finetuned-rte", "results": [{"task": {"type": "text-classification", "name": "Text Classification"}, "dataset": {"name": "glue", "type": "glue", "args": "rte"}, "metrics": [{"type": "accuracy", "value": 0.5487364620938628, "name": "Accuracy"}]}]}]}
text-classification
anirudh21/albert-large-v2-finetuned-rte
[ "transformers", "pytorch", "tensorboard", "albert", "text-classification", "generated_from_trainer", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #albert #text-classification #generated_from_trainer #dataset-glue #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us
albert-large-v2-finetuned-rte ============================= This model is a fine-tuned version of albert-large-v2 on the glue dataset. It achieves the following results on the evaluation set: * Loss: 0.6827 * Accuracy: 0.5487 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 16 * eval\_batch\_size: 16 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 5 ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.10.0+cu111 * Datasets 1.18.1 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.0+cu111\n* Datasets 1.18.1\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #albert #text-classification #generated_from_trainer #dataset-glue #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.0+cu111\n* Datasets 1.18.1\n* Tokenizers 0.10.3" ]
[ 66, 98, 4, 33 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #albert #text-classification #generated_from_trainer #dataset-glue #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.0+cu111\n* Datasets 1.18.1\n* Tokenizers 0.10.3" ]
[ -0.1043897345662117, 0.09041710197925568, -0.0018204497173428535, 0.12200300395488739, 0.16448982059955597, 0.03956865519285202, 0.13497143983840942, 0.1270168423652649, -0.08481080830097198, 0.015455087646842003, 0.12540465593338013, 0.153660848736763, 0.023047437891364098, 0.09091728925704956, -0.04355344548821449, -0.26016730070114136, -0.019337916746735573, 0.05018600821495056, -0.060656387358903885, 0.13257810473442078, 0.08433875441551208, -0.12124460190534592, 0.0994998961687088, 0.013166174292564392, -0.19330553710460663, 0.006458010524511337, 0.0084362318739295, -0.05300622433423996, 0.14907553791999817, 0.032914966344833374, 0.12039439380168915, 0.0010248207254335284, 0.08637624979019165, -0.20333199203014374, 0.011971702799201012, 0.0485745444893837, 0.0050692204385995865, 0.09407994151115417, 0.0499265193939209, 0.008502666838467121, 0.13834148645401, -0.0866832360625267, 0.05521291494369507, 0.032211288809776306, -0.12968367338180542, -0.21511566638946533, -0.07950890064239502, 0.029673296958208084, 0.07841763645410538, 0.11043371260166168, -0.00716405501589179, 0.12414336204528809, -0.08651991188526154, 0.08560904860496521, 0.2336435168981552, -0.2942045331001282, -0.06738997250795364, 0.0342283695936203, 0.008772971108555794, 0.04296833649277687, -0.10561344772577286, -0.02603508159518242, 0.05543508380651474, 0.04415561258792877, 0.12440583109855652, -0.030688507482409477, -0.1179208979010582, 0.018727442249655724, -0.13574853539466858, -0.0319734551012516, 0.1635868400335312, 0.04732310399413109, -0.03021303191781044, -0.05170556530356407, -0.04995705932378769, -0.15496456623077393, -0.03114769048988819, -0.008811096660792828, 0.050622597336769104, -0.024373497813940048, -0.045188650488853455, -0.005700754001736641, -0.10870394110679626, -0.06958650797605515, -0.07608795166015625, 0.11917579174041748, 0.032009463757276535, 0.013160968199372292, -0.03322426229715347, 0.11538581550121307, 0.002047595800831914, -0.1271321177482605, 0.023262539878487587, 0.028598491102457047, 0.0013884284999221563, -0.04260369762778282, -0.05158384516835213, -0.05187821388244629, 0.00866610649973154, 0.12119698524475098, -0.0374576710164547, 0.03818407654762268, 0.054203156381845474, 0.04675496742129326, -0.09873638302087784, 0.1985936313867569, -0.0405128039419651, -0.019729875028133392, -0.003358252579346299, 0.046564240008592606, 0.020224222913384438, -0.011167053133249283, -0.11705933511257172, 0.0015681820223107934, 0.07488088309764862, 0.007234811782836914, -0.06780674308538437, 0.06805625557899475, -0.06067543849349022, -0.026134150102734566, -0.00582540687173605, -0.08523271977901459, 0.02753078006207943, 0.0015990851679816842, -0.07716228067874908, -0.016031717881560326, 0.03096054121851921, 0.02303786389529705, -0.008554721251130104, 0.11098548024892807, -0.0875086784362793, 0.030586492270231247, -0.09531625360250473, -0.10716207325458527, 0.01914925128221512, -0.10970630496740341, 0.033739835023880005, -0.08660628646612167, -0.17853286862373352, -0.010206986218690872, 0.05820174887776375, -0.02350551448762417, -0.05964024364948273, -0.05787455663084984, -0.06257002800703049, 0.011450978927314281, -0.0047058057971298695, 0.12778115272521973, -0.06686297804117203, 0.08575877547264099, 0.026083016768097878, 0.06403693556785583, -0.040051139891147614, 0.05534994974732399, -0.10165484994649887, 0.011382686905562878, -0.13711349666118622, 0.03074643574655056, -0.04538505896925926, 0.06834545731544495, -0.08063977211713791, -0.09354162961244583, 0.01778559572994709, 0.0006385404267348349, 0.05734335258603096, 0.10040190070867538, -0.18436020612716675, -0.08850996196269989, 0.1568250209093094, -0.06554961204528809, -0.12835486233234406, 0.12294255197048187, -0.058451417833566666, 0.049851201474666595, 0.06012613698840141, 0.15347108244895935, 0.0778881162405014, -0.08005436509847641, 0.0018642847426235676, 0.025876367464661598, 0.05513768270611763, -0.0625874325633049, 0.07856831699609756, 0.000510420766659081, 0.0018666420364752412, 0.03265516459941864, -0.024883462116122246, 0.06353659182786942, -0.0928104966878891, -0.10366548597812653, -0.04003290459513664, -0.08430887013673782, 0.04179241508245468, 0.08037082105875015, 0.06832953542470932, -0.09617464244365692, -0.0834355279803276, 0.037935853004455566, 0.0807463750243187, -0.04798172414302826, 0.022671908140182495, -0.050730880349874496, 0.05897333472967148, -0.037085819989442825, -0.023646162822842598, -0.1692752242088318, -0.02350112423300743, 0.0016649349126964808, -0.010917467065155506, 0.016340263187885284, 0.04113783687353134, 0.06870339065790176, 0.06370645016431808, -0.052015453577041626, -0.014911185018718243, -0.04408225044608116, -0.003138963133096695, -0.12948457896709442, -0.20873630046844482, -0.03088158369064331, -0.021439122036099434, 0.16991887986660004, -0.20735763013362885, 0.04764413461089134, -0.02439938299357891, 0.062108322978019714, 0.016043543815612793, -0.007533009629696608, -0.04192341864109039, 0.07536851614713669, -0.041417963802814484, -0.05027645081281662, 0.07738333940505981, 0.011750129982829094, -0.10127293318510056, -0.05371388792991638, -0.09444814920425415, 0.16020287573337555, 0.13115833699703217, -0.11465359479188919, -0.0724000409245491, -0.01126941293478012, -0.06456045061349869, -0.034696999937295914, -0.05413107946515083, 0.03604563698172569, 0.20521071553230286, -0.0061521041207015514, 0.148649662733078, -0.06420578807592392, -0.042227379977703094, 0.022919071838259697, -0.03824517875909805, 0.023668700829148293, 0.13661155104637146, 0.13755904138088226, -0.050012361258268356, 0.1495388299226761, 0.1569514274597168, -0.088559590280056, 0.1428588181734085, -0.041790347546339035, -0.07380831241607666, -0.01835949718952179, -0.03915363550186157, -0.005380677524954081, 0.11051664501428604, -0.1627344787120819, -0.004747296683490276, 0.027950014919042587, 0.01196958962827921, 0.01957515813410282, -0.22983019053936005, -0.049459058791399, 0.044974543154239655, -0.03769618272781372, -0.018881667405366898, -0.009966891258955002, 0.002720503369346261, 0.10604012757539749, 0.0008937334059737623, -0.0848451629281044, 0.03172663599252701, 0.0022889338433742523, -0.0838480219244957, 0.2177211195230484, -0.07052799314260483, -0.15200303494930267, -0.1336527019739151, -0.07158368080854416, -0.05252264440059662, 0.0019286591559648514, 0.06796949356794357, -0.10265792161226273, -0.02505035512149334, -0.07416200637817383, 0.032283633947372437, 0.007663427852094173, 0.026632966473698616, 0.007754262536764145, 0.005139422602951527, 0.06503865122795105, -0.1074826717376709, -0.01233445480465889, -0.057872917503118515, -0.0591345876455307, 0.03848171979188919, 0.034625981003046036, 0.115079365670681, 0.15166349709033966, -0.012620719149708748, 0.009598924778401852, -0.029637129977345467, 0.22535473108291626, -0.06218699738383293, -0.03518056496977806, 0.1383657604455948, -0.00844966433942318, 0.04050154611468315, 0.10554705560207367, 0.08095891773700714, -0.07628611475229263, -0.0016992816235870123, 0.04296675696969032, -0.03480858728289604, -0.23365439474582672, -0.04573305323719978, -0.05494158715009689, 0.014232792891561985, 0.09255701303482056, 0.019993748515844345, 0.029775872826576233, 0.06984301656484604, 0.03963799774646759, 0.08110816776752472, -0.04758360981941223, 0.050262778997421265, 0.10383641719818115, 0.03471602872014046, 0.12061983346939087, -0.053521495312452316, -0.0673314705491066, 0.04152953252196312, -0.01598353125154972, 0.22365815937519073, 0.02313443087041378, 0.13652832806110382, 0.06385821849107742, 0.15331554412841797, -0.00816011056303978, 0.0783262625336647, -0.0021609202958643436, -0.04902302101254463, -0.016767462715506554, -0.040544673800468445, -0.03478052467107773, 0.028274979442358017, -0.07335725426673889, 0.0820470005273819, -0.1323360651731491, 0.011274303309619427, 0.052326325327157974, 0.2542121410369873, 0.044810209423303604, -0.31556814908981323, -0.09052421897649765, 0.00866544246673584, -0.02356516383588314, -0.01863424852490425, 0.028864992782473564, 0.08615357428789139, -0.09284189343452454, 0.02936282567679882, -0.07169239223003387, 0.09910397231578827, -0.054707691073417664, 0.0510663241147995, 0.08254608511924744, 0.08267651498317719, 0.005808492656797171, 0.09461677074432373, -0.2964196503162384, 0.2862945795059204, 0.0039495741948485374, 0.05975591763854027, -0.0789700374007225, 0.006556149106472731, 0.046888552606105804, 0.06812030076980591, 0.08470743149518967, -0.013251593336462975, -0.020075054839253426, -0.2003544569015503, -0.0688004121184349, 0.03323981165885925, 0.062028754502534866, -0.046769145876169205, 0.08501488715410233, -0.028460077941417694, 0.009700755588710308, 0.07592134177684784, 0.016847729682922363, -0.05689072608947754, -0.10987614095211029, -0.010992318391799927, 0.0211940910667181, -0.06817856431007385, -0.06148962303996086, -0.12117602676153183, -0.13506893813610077, 0.14350582659244537, -0.035363178700208664, -0.025651419535279274, -0.10787783563137054, 0.08389080315828323, 0.05256499722599983, -0.09024346619844437, 0.03252946212887764, 0.006361968349665403, 0.07474474608898163, 0.02820555865764618, -0.0720175951719284, 0.10513556748628616, -0.07201699167490005, -0.1567019373178482, -0.06933965533971786, 0.09822496026754379, 0.036299943923950195, 0.07195328176021576, -0.016210954636335373, 0.009944227524101734, -0.04810528829693794, -0.08777511119842529, 0.02948813885450363, 0.01058610063046217, 0.06848503649234772, 0.0174538716673851, -0.06458134204149246, 0.023709574714303017, -0.06219806522130966, -0.03656124323606491, 0.20266254246234894, 0.23392795026302338, -0.10307903587818146, 0.016509070992469788, 0.008817926980555058, -0.07866012305021286, -0.19457846879959106, 0.04412205144762993, 0.04552039876580238, 0.016301503404974937, 0.0460701584815979, -0.18476153910160065, 0.14131374657154083, 0.11442817002534866, -0.013105911202728748, 0.10344818979501724, -0.3194306790828705, -0.12042511254549026, 0.14050836861133575, 0.13497504591941833, 0.11862707883119583, -0.13775183260440826, -0.015473544597625732, -0.024572154507040977, -0.14168329536914825, 0.104047492146492, -0.10836904495954514, 0.11888211220502853, -0.04508076608181, 0.06266004592180252, 0.0037345942109823227, -0.05790884792804718, 0.12771525979042053, 0.020587172359228134, 0.10045302659273148, -0.05350383371114731, -0.033641278743743896, 0.03071650117635727, -0.04200958088040352, 0.022741947323083878, -0.11080576479434967, 0.02306830883026123, -0.11522656679153442, -0.02256503328680992, -0.06575943529605865, 0.04976709559559822, -0.04724540561437607, -0.0656195804476738, -0.03238914906978607, 0.01894870586693287, 0.04376131296157837, -0.009512390941381454, 0.13846907019615173, 0.019795814529061317, 0.15673676133155823, 0.08587489277124405, 0.08065654337406158, -0.06639920175075531, -0.07217054069042206, -0.023511311039328575, -0.01077340543270111, 0.05354699864983559, -0.15230706334114075, 0.017872119322419167, 0.14700889587402344, 0.02564365789294243, 0.1493699550628662, 0.08398130536079407, -0.016955314204096794, 0.005387521348893642, 0.05736297369003296, -0.16045571863651276, -0.08898655325174332, -0.022810498252511024, -0.057850807905197144, -0.12351630628108978, 0.04439418017864227, 0.08429817855358124, -0.07308221608400345, -0.007165681105107069, -0.007022528909146786, 0.006990774534642696, -0.059922955930233, 0.17914733290672302, 0.05237842723727226, 0.04748550057411194, -0.0986846312880516, 0.0733439028263092, 0.040773339569568634, -0.07562568783760071, -0.0016482991632074118, 0.06309086829423904, -0.07577116042375565, -0.05331952124834061, 0.07815593481063843, 0.21861189603805542, -0.046605970710515976, -0.044787194579839706, -0.1488434225320816, -0.13134630024433136, 0.07773518562316895, 0.1400838941335678, 0.12035413086414337, 0.011797239072620869, -0.06410318613052368, 0.0008707083179615438, -0.11228730529546738, 0.09598390012979507, 0.04239305108785629, 0.06328403204679489, -0.1388140320777893, 0.1358414888381958, 0.020042940974235535, 0.04542526602745056, -0.01682385802268982, 0.023282723501324654, -0.10045109689235687, 0.009182396344840527, -0.10750310868024826, -0.024285614490509033, -0.026428405195474625, 0.01211906410753727, -0.005861642770469189, -0.04758259654045105, -0.0566759891808033, 0.005985803436487913, -0.10838011652231216, -0.021770738065242767, 0.03533035144209862, 0.07539134472608566, -0.10229399800300598, -0.03510992228984833, 0.031127886846661568, -0.062376491725444794, 0.06643445789813995, 0.03968359902501106, 0.026856200769543648, 0.05519283562898636, -0.14207905530929565, 0.023693231865763664, 0.06791891902685165, 0.025541288778185844, 0.06395706534385681, -0.09913884848356247, -0.008636538870632648, -0.013803153298795223, 0.04345450550317764, 0.01916884072124958, 0.061185795813798904, -0.13449762761592865, -0.0013455058215186, -0.010348033159971237, -0.08741991221904755, -0.06637092679738998, 0.027137411758303642, 0.0962412878870964, 0.012502683326601982, 0.2001606822013855, -0.07415919005870819, 0.05315055325627327, -0.22284531593322754, 0.007784545887261629, -0.009375255554914474, -0.10596857219934464, -0.117481529712677, -0.0776430070400238, 0.058280833065509796, -0.061822276562452316, 0.15235701203346252, 0.0425226092338562, 0.032762084156274796, 0.025983376428484917, -0.013488364405930042, 0.02397947758436203, 0.012583584524691105, 0.20739060640335083, 0.03827144205570221, -0.03573043271899223, 0.06570188701152802, 0.0477876141667366, 0.10386498272418976, 0.12428651750087738, 0.20066112279891968, 0.14294204115867615, -0.015342270024120808, 0.0958690345287323, 0.043385203927755356, -0.06158531829714775, -0.14614607393741608, 0.044377125799655914, -0.034792233258485794, 0.1079014241695404, -0.018612291663885117, 0.21717964112758636, 0.06784909218549728, -0.17057251930236816, 0.04580388590693474, -0.053313955664634705, -0.08039191365242004, -0.12306919693946838, -0.03409576043486595, -0.07853835076093674, -0.1308421641588211, 0.0009298619697801769, -0.1138087809085846, 0.0009946830105036497, 0.12857311964035034, 0.0004376996657811105, -0.02373930811882019, 0.15620113909244537, 0.01808966137468815, 0.03327104076743126, 0.06001606956124306, 0.008834846317768097, -0.037406764924526215, -0.14248812198638916, -0.055841442197561264, -0.010784979909658432, -0.024631042033433914, 0.024992385879158974, -0.0701456367969513, -0.052444834262132645, 0.0370294526219368, -0.019407952204346657, -0.10484905540943146, 0.010788097977638245, 0.003588929073885083, 0.05906722694635391, 0.03694666177034378, 0.008093061856925488, 0.0268037561327219, -0.0061460998840630054, 0.20350411534309387, -0.07954155653715134, -0.05374414101243019, -0.09890949726104736, 0.24820192158222198, 0.03600170463323593, -0.019097449257969856, 0.030537579208612442, -0.06343317031860352, 0.008436888456344604, 0.24792559444904327, 0.21281282603740692, -0.07731661945581436, -0.006568665150552988, 0.01074000634253025, -0.007876424118876457, -0.02606234699487686, 0.09869705140590668, 0.13348488509655, 0.02694064937531948, -0.10093294084072113, -0.04489089176058769, -0.05451182648539543, -0.020151840522885323, -0.02722935564815998, 0.07710536569356918, 0.0591934435069561, 0.005201260559260845, -0.032312966883182526, 0.052586235105991364, -0.06001158803701401, -0.07486385107040405, 0.0692172423005104, -0.21624009311199188, -0.16352620720863342, -0.016660498455166817, 0.10600580275058746, 0.010035257786512375, 0.0684928447008133, -0.02732844464480877, -0.004101307597011328, 0.08941727131605148, -0.018484266474843025, -0.1078256294131279, -0.08087000250816345, 0.08553116768598557, -0.1175895631313324, 0.22102504968643188, -0.045581746846437454, 0.05132993310689926, 0.12591637670993805, 0.06818245351314545, -0.07157515734434128, 0.06208227574825287, 0.03936963155865669, -0.05185438692569733, 0.022042429074645042, 0.06987792253494263, -0.034005582332611084, 0.06092541292309761, 0.04595522955060005, -0.13468651473522186, 0.027433451265096664, -0.06213991343975067, -0.06929901987314224, -0.03811642527580261, -0.020439451560378075, -0.053217582404613495, 0.13125689327716827, 0.22217302024364471, -0.02466833032667637, -0.011345439590513706, -0.0688401386141777, 0.009084232151508331, 0.06049910560250282, 0.030142048373818398, -0.06082216650247574, -0.19785021245479584, 0.018391301855444908, 0.04134780913591385, -0.01892002485692501, -0.26198142766952515, -0.09846517443656921, 0.0023176679387688637, -0.08312686532735825, -0.08758088946342468, 0.06375978142023087, 0.09902011603116989, 0.057703327387571335, -0.05802591145038605, -0.06846413016319275, -0.06341823935508728, 0.15233372151851654, -0.13802897930145264, -0.09735766798257828 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # albert-large-v2-finetuned-wnli This model is a fine-tuned version of [albert-large-v2](https://huggingface.co/albert-large-v2) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.6919 - Accuracy: 0.5352 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 17 | 0.7292 | 0.4366 | | No log | 2.0 | 34 | 0.6919 | 0.5352 | | No log | 3.0 | 51 | 0.7084 | 0.4648 | | No log | 4.0 | 68 | 0.7152 | 0.5352 | | No log | 5.0 | 85 | 0.7343 | 0.5211 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.18.1 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["glue"], "metrics": ["accuracy"], "model-index": [{"name": "albert-large-v2-finetuned-wnli", "results": [{"task": {"type": "text-classification", "name": "Text Classification"}, "dataset": {"name": "glue", "type": "glue", "args": "wnli"}, "metrics": [{"type": "accuracy", "value": 0.5352112676056338, "name": "Accuracy"}]}]}]}
text-classification
anirudh21/albert-large-v2-finetuned-wnli
[ "transformers", "pytorch", "tensorboard", "albert", "text-classification", "generated_from_trainer", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #albert #text-classification #generated_from_trainer #dataset-glue #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us
albert-large-v2-finetuned-wnli ============================== This model is a fine-tuned version of albert-large-v2 on the glue dataset. It achieves the following results on the evaluation set: * Loss: 0.6919 * Accuracy: 0.5352 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 16 * eval\_batch\_size: 16 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 5 ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.10.0+cu111 * Datasets 1.18.1 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.0+cu111\n* Datasets 1.18.1\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #albert #text-classification #generated_from_trainer #dataset-glue #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.0+cu111\n* Datasets 1.18.1\n* Tokenizers 0.10.3" ]
[ 66, 98, 4, 33 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #albert #text-classification #generated_from_trainer #dataset-glue #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.0+cu111\n* Datasets 1.18.1\n* Tokenizers 0.10.3" ]
[ -0.1043897345662117, 0.09041710197925568, -0.0018204497173428535, 0.12200300395488739, 0.16448982059955597, 0.03956865519285202, 0.13497143983840942, 0.1270168423652649, -0.08481080830097198, 0.015455087646842003, 0.12540465593338013, 0.153660848736763, 0.023047437891364098, 0.09091728925704956, -0.04355344548821449, -0.26016730070114136, -0.019337916746735573, 0.05018600821495056, -0.060656387358903885, 0.13257810473442078, 0.08433875441551208, -0.12124460190534592, 0.0994998961687088, 0.013166174292564392, -0.19330553710460663, 0.006458010524511337, 0.0084362318739295, -0.05300622433423996, 0.14907553791999817, 0.032914966344833374, 0.12039439380168915, 0.0010248207254335284, 0.08637624979019165, -0.20333199203014374, 0.011971702799201012, 0.0485745444893837, 0.0050692204385995865, 0.09407994151115417, 0.0499265193939209, 0.008502666838467121, 0.13834148645401, -0.0866832360625267, 0.05521291494369507, 0.032211288809776306, -0.12968367338180542, -0.21511566638946533, -0.07950890064239502, 0.029673296958208084, 0.07841763645410538, 0.11043371260166168, -0.00716405501589179, 0.12414336204528809, -0.08651991188526154, 0.08560904860496521, 0.2336435168981552, -0.2942045331001282, -0.06738997250795364, 0.0342283695936203, 0.008772971108555794, 0.04296833649277687, -0.10561344772577286, -0.02603508159518242, 0.05543508380651474, 0.04415561258792877, 0.12440583109855652, -0.030688507482409477, -0.1179208979010582, 0.018727442249655724, -0.13574853539466858, -0.0319734551012516, 0.1635868400335312, 0.04732310399413109, -0.03021303191781044, -0.05170556530356407, -0.04995705932378769, -0.15496456623077393, -0.03114769048988819, -0.008811096660792828, 0.050622597336769104, -0.024373497813940048, -0.045188650488853455, -0.005700754001736641, -0.10870394110679626, -0.06958650797605515, -0.07608795166015625, 0.11917579174041748, 0.032009463757276535, 0.013160968199372292, -0.03322426229715347, 0.11538581550121307, 0.002047595800831914, -0.1271321177482605, 0.023262539878487587, 0.028598491102457047, 0.0013884284999221563, -0.04260369762778282, -0.05158384516835213, -0.05187821388244629, 0.00866610649973154, 0.12119698524475098, -0.0374576710164547, 0.03818407654762268, 0.054203156381845474, 0.04675496742129326, -0.09873638302087784, 0.1985936313867569, -0.0405128039419651, -0.019729875028133392, -0.003358252579346299, 0.046564240008592606, 0.020224222913384438, -0.011167053133249283, -0.11705933511257172, 0.0015681820223107934, 0.07488088309764862, 0.007234811782836914, -0.06780674308538437, 0.06805625557899475, -0.06067543849349022, -0.026134150102734566, -0.00582540687173605, -0.08523271977901459, 0.02753078006207943, 0.0015990851679816842, -0.07716228067874908, -0.016031717881560326, 0.03096054121851921, 0.02303786389529705, -0.008554721251130104, 0.11098548024892807, -0.0875086784362793, 0.030586492270231247, -0.09531625360250473, -0.10716207325458527, 0.01914925128221512, -0.10970630496740341, 0.033739835023880005, -0.08660628646612167, -0.17853286862373352, -0.010206986218690872, 0.05820174887776375, -0.02350551448762417, -0.05964024364948273, -0.05787455663084984, -0.06257002800703049, 0.011450978927314281, -0.0047058057971298695, 0.12778115272521973, -0.06686297804117203, 0.08575877547264099, 0.026083016768097878, 0.06403693556785583, -0.040051139891147614, 0.05534994974732399, -0.10165484994649887, 0.011382686905562878, -0.13711349666118622, 0.03074643574655056, -0.04538505896925926, 0.06834545731544495, -0.08063977211713791, -0.09354162961244583, 0.01778559572994709, 0.0006385404267348349, 0.05734335258603096, 0.10040190070867538, -0.18436020612716675, -0.08850996196269989, 0.1568250209093094, -0.06554961204528809, -0.12835486233234406, 0.12294255197048187, -0.058451417833566666, 0.049851201474666595, 0.06012613698840141, 0.15347108244895935, 0.0778881162405014, -0.08005436509847641, 0.0018642847426235676, 0.025876367464661598, 0.05513768270611763, -0.0625874325633049, 0.07856831699609756, 0.000510420766659081, 0.0018666420364752412, 0.03265516459941864, -0.024883462116122246, 0.06353659182786942, -0.0928104966878891, -0.10366548597812653, -0.04003290459513664, -0.08430887013673782, 0.04179241508245468, 0.08037082105875015, 0.06832953542470932, -0.09617464244365692, -0.0834355279803276, 0.037935853004455566, 0.0807463750243187, -0.04798172414302826, 0.022671908140182495, -0.050730880349874496, 0.05897333472967148, -0.037085819989442825, -0.023646162822842598, -0.1692752242088318, -0.02350112423300743, 0.0016649349126964808, -0.010917467065155506, 0.016340263187885284, 0.04113783687353134, 0.06870339065790176, 0.06370645016431808, -0.052015453577041626, -0.014911185018718243, -0.04408225044608116, -0.003138963133096695, -0.12948457896709442, -0.20873630046844482, -0.03088158369064331, -0.021439122036099434, 0.16991887986660004, -0.20735763013362885, 0.04764413461089134, -0.02439938299357891, 0.062108322978019714, 0.016043543815612793, -0.007533009629696608, -0.04192341864109039, 0.07536851614713669, -0.041417963802814484, -0.05027645081281662, 0.07738333940505981, 0.011750129982829094, -0.10127293318510056, -0.05371388792991638, -0.09444814920425415, 0.16020287573337555, 0.13115833699703217, -0.11465359479188919, -0.0724000409245491, -0.01126941293478012, -0.06456045061349869, -0.034696999937295914, -0.05413107946515083, 0.03604563698172569, 0.20521071553230286, -0.0061521041207015514, 0.148649662733078, -0.06420578807592392, -0.042227379977703094, 0.022919071838259697, -0.03824517875909805, 0.023668700829148293, 0.13661155104637146, 0.13755904138088226, -0.050012361258268356, 0.1495388299226761, 0.1569514274597168, -0.088559590280056, 0.1428588181734085, -0.041790347546339035, -0.07380831241607666, -0.01835949718952179, -0.03915363550186157, -0.005380677524954081, 0.11051664501428604, -0.1627344787120819, -0.004747296683490276, 0.027950014919042587, 0.01196958962827921, 0.01957515813410282, -0.22983019053936005, -0.049459058791399, 0.044974543154239655, -0.03769618272781372, -0.018881667405366898, -0.009966891258955002, 0.002720503369346261, 0.10604012757539749, 0.0008937334059737623, -0.0848451629281044, 0.03172663599252701, 0.0022889338433742523, -0.0838480219244957, 0.2177211195230484, -0.07052799314260483, -0.15200303494930267, -0.1336527019739151, -0.07158368080854416, -0.05252264440059662, 0.0019286591559648514, 0.06796949356794357, -0.10265792161226273, -0.02505035512149334, -0.07416200637817383, 0.032283633947372437, 0.007663427852094173, 0.026632966473698616, 0.007754262536764145, 0.005139422602951527, 0.06503865122795105, -0.1074826717376709, -0.01233445480465889, -0.057872917503118515, -0.0591345876455307, 0.03848171979188919, 0.034625981003046036, 0.115079365670681, 0.15166349709033966, -0.012620719149708748, 0.009598924778401852, -0.029637129977345467, 0.22535473108291626, -0.06218699738383293, -0.03518056496977806, 0.1383657604455948, -0.00844966433942318, 0.04050154611468315, 0.10554705560207367, 0.08095891773700714, -0.07628611475229263, -0.0016992816235870123, 0.04296675696969032, -0.03480858728289604, -0.23365439474582672, -0.04573305323719978, -0.05494158715009689, 0.014232792891561985, 0.09255701303482056, 0.019993748515844345, 0.029775872826576233, 0.06984301656484604, 0.03963799774646759, 0.08110816776752472, -0.04758360981941223, 0.050262778997421265, 0.10383641719818115, 0.03471602872014046, 0.12061983346939087, -0.053521495312452316, -0.0673314705491066, 0.04152953252196312, -0.01598353125154972, 0.22365815937519073, 0.02313443087041378, 0.13652832806110382, 0.06385821849107742, 0.15331554412841797, -0.00816011056303978, 0.0783262625336647, -0.0021609202958643436, -0.04902302101254463, -0.016767462715506554, -0.040544673800468445, -0.03478052467107773, 0.028274979442358017, -0.07335725426673889, 0.0820470005273819, -0.1323360651731491, 0.011274303309619427, 0.052326325327157974, 0.2542121410369873, 0.044810209423303604, -0.31556814908981323, -0.09052421897649765, 0.00866544246673584, -0.02356516383588314, -0.01863424852490425, 0.028864992782473564, 0.08615357428789139, -0.09284189343452454, 0.02936282567679882, -0.07169239223003387, 0.09910397231578827, -0.054707691073417664, 0.0510663241147995, 0.08254608511924744, 0.08267651498317719, 0.005808492656797171, 0.09461677074432373, -0.2964196503162384, 0.2862945795059204, 0.0039495741948485374, 0.05975591763854027, -0.0789700374007225, 0.006556149106472731, 0.046888552606105804, 0.06812030076980591, 0.08470743149518967, -0.013251593336462975, -0.020075054839253426, -0.2003544569015503, -0.0688004121184349, 0.03323981165885925, 0.062028754502534866, -0.046769145876169205, 0.08501488715410233, -0.028460077941417694, 0.009700755588710308, 0.07592134177684784, 0.016847729682922363, -0.05689072608947754, -0.10987614095211029, -0.010992318391799927, 0.0211940910667181, -0.06817856431007385, -0.06148962303996086, -0.12117602676153183, -0.13506893813610077, 0.14350582659244537, -0.035363178700208664, -0.025651419535279274, -0.10787783563137054, 0.08389080315828323, 0.05256499722599983, -0.09024346619844437, 0.03252946212887764, 0.006361968349665403, 0.07474474608898163, 0.02820555865764618, -0.0720175951719284, 0.10513556748628616, -0.07201699167490005, -0.1567019373178482, -0.06933965533971786, 0.09822496026754379, 0.036299943923950195, 0.07195328176021576, -0.016210954636335373, 0.009944227524101734, -0.04810528829693794, -0.08777511119842529, 0.02948813885450363, 0.01058610063046217, 0.06848503649234772, 0.0174538716673851, -0.06458134204149246, 0.023709574714303017, -0.06219806522130966, -0.03656124323606491, 0.20266254246234894, 0.23392795026302338, -0.10307903587818146, 0.016509070992469788, 0.008817926980555058, -0.07866012305021286, -0.19457846879959106, 0.04412205144762993, 0.04552039876580238, 0.016301503404974937, 0.0460701584815979, -0.18476153910160065, 0.14131374657154083, 0.11442817002534866, -0.013105911202728748, 0.10344818979501724, -0.3194306790828705, -0.12042511254549026, 0.14050836861133575, 0.13497504591941833, 0.11862707883119583, -0.13775183260440826, -0.015473544597625732, -0.024572154507040977, -0.14168329536914825, 0.104047492146492, -0.10836904495954514, 0.11888211220502853, -0.04508076608181, 0.06266004592180252, 0.0037345942109823227, -0.05790884792804718, 0.12771525979042053, 0.020587172359228134, 0.10045302659273148, -0.05350383371114731, -0.033641278743743896, 0.03071650117635727, -0.04200958088040352, 0.022741947323083878, -0.11080576479434967, 0.02306830883026123, -0.11522656679153442, -0.02256503328680992, -0.06575943529605865, 0.04976709559559822, -0.04724540561437607, -0.0656195804476738, -0.03238914906978607, 0.01894870586693287, 0.04376131296157837, -0.009512390941381454, 0.13846907019615173, 0.019795814529061317, 0.15673676133155823, 0.08587489277124405, 0.08065654337406158, -0.06639920175075531, -0.07217054069042206, -0.023511311039328575, -0.01077340543270111, 0.05354699864983559, -0.15230706334114075, 0.017872119322419167, 0.14700889587402344, 0.02564365789294243, 0.1493699550628662, 0.08398130536079407, -0.016955314204096794, 0.005387521348893642, 0.05736297369003296, -0.16045571863651276, -0.08898655325174332, -0.022810498252511024, -0.057850807905197144, -0.12351630628108978, 0.04439418017864227, 0.08429817855358124, -0.07308221608400345, -0.007165681105107069, -0.007022528909146786, 0.006990774534642696, -0.059922955930233, 0.17914733290672302, 0.05237842723727226, 0.04748550057411194, -0.0986846312880516, 0.0733439028263092, 0.040773339569568634, -0.07562568783760071, -0.0016482991632074118, 0.06309086829423904, -0.07577116042375565, -0.05331952124834061, 0.07815593481063843, 0.21861189603805542, -0.046605970710515976, -0.044787194579839706, -0.1488434225320816, -0.13134630024433136, 0.07773518562316895, 0.1400838941335678, 0.12035413086414337, 0.011797239072620869, -0.06410318613052368, 0.0008707083179615438, -0.11228730529546738, 0.09598390012979507, 0.04239305108785629, 0.06328403204679489, -0.1388140320777893, 0.1358414888381958, 0.020042940974235535, 0.04542526602745056, -0.01682385802268982, 0.023282723501324654, -0.10045109689235687, 0.009182396344840527, -0.10750310868024826, -0.024285614490509033, -0.026428405195474625, 0.01211906410753727, -0.005861642770469189, -0.04758259654045105, -0.0566759891808033, 0.005985803436487913, -0.10838011652231216, -0.021770738065242767, 0.03533035144209862, 0.07539134472608566, -0.10229399800300598, -0.03510992228984833, 0.031127886846661568, -0.062376491725444794, 0.06643445789813995, 0.03968359902501106, 0.026856200769543648, 0.05519283562898636, -0.14207905530929565, 0.023693231865763664, 0.06791891902685165, 0.025541288778185844, 0.06395706534385681, -0.09913884848356247, -0.008636538870632648, -0.013803153298795223, 0.04345450550317764, 0.01916884072124958, 0.061185795813798904, -0.13449762761592865, -0.0013455058215186, -0.010348033159971237, -0.08741991221904755, -0.06637092679738998, 0.027137411758303642, 0.0962412878870964, 0.012502683326601982, 0.2001606822013855, -0.07415919005870819, 0.05315055325627327, -0.22284531593322754, 0.007784545887261629, -0.009375255554914474, -0.10596857219934464, -0.117481529712677, -0.0776430070400238, 0.058280833065509796, -0.061822276562452316, 0.15235701203346252, 0.0425226092338562, 0.032762084156274796, 0.025983376428484917, -0.013488364405930042, 0.02397947758436203, 0.012583584524691105, 0.20739060640335083, 0.03827144205570221, -0.03573043271899223, 0.06570188701152802, 0.0477876141667366, 0.10386498272418976, 0.12428651750087738, 0.20066112279891968, 0.14294204115867615, -0.015342270024120808, 0.0958690345287323, 0.043385203927755356, -0.06158531829714775, -0.14614607393741608, 0.044377125799655914, -0.034792233258485794, 0.1079014241695404, -0.018612291663885117, 0.21717964112758636, 0.06784909218549728, -0.17057251930236816, 0.04580388590693474, -0.053313955664634705, -0.08039191365242004, -0.12306919693946838, -0.03409576043486595, -0.07853835076093674, -0.1308421641588211, 0.0009298619697801769, -0.1138087809085846, 0.0009946830105036497, 0.12857311964035034, 0.0004376996657811105, -0.02373930811882019, 0.15620113909244537, 0.01808966137468815, 0.03327104076743126, 0.06001606956124306, 0.008834846317768097, -0.037406764924526215, -0.14248812198638916, -0.055841442197561264, -0.010784979909658432, -0.024631042033433914, 0.024992385879158974, -0.0701456367969513, -0.052444834262132645, 0.0370294526219368, -0.019407952204346657, -0.10484905540943146, 0.010788097977638245, 0.003588929073885083, 0.05906722694635391, 0.03694666177034378, 0.008093061856925488, 0.0268037561327219, -0.0061460998840630054, 0.20350411534309387, -0.07954155653715134, -0.05374414101243019, -0.09890949726104736, 0.24820192158222198, 0.03600170463323593, -0.019097449257969856, 0.030537579208612442, -0.06343317031860352, 0.008436888456344604, 0.24792559444904327, 0.21281282603740692, -0.07731661945581436, -0.006568665150552988, 0.01074000634253025, -0.007876424118876457, -0.02606234699487686, 0.09869705140590668, 0.13348488509655, 0.02694064937531948, -0.10093294084072113, -0.04489089176058769, -0.05451182648539543, -0.020151840522885323, -0.02722935564815998, 0.07710536569356918, 0.0591934435069561, 0.005201260559260845, -0.032312966883182526, 0.052586235105991364, -0.06001158803701401, -0.07486385107040405, 0.0692172423005104, -0.21624009311199188, -0.16352620720863342, -0.016660498455166817, 0.10600580275058746, 0.010035257786512375, 0.0684928447008133, -0.02732844464480877, -0.004101307597011328, 0.08941727131605148, -0.018484266474843025, -0.1078256294131279, -0.08087000250816345, 0.08553116768598557, -0.1175895631313324, 0.22102504968643188, -0.045581746846437454, 0.05132993310689926, 0.12591637670993805, 0.06818245351314545, -0.07157515734434128, 0.06208227574825287, 0.03936963155865669, -0.05185438692569733, 0.022042429074645042, 0.06987792253494263, -0.034005582332611084, 0.06092541292309761, 0.04595522955060005, -0.13468651473522186, 0.027433451265096664, -0.06213991343975067, -0.06929901987314224, -0.03811642527580261, -0.020439451560378075, -0.053217582404613495, 0.13125689327716827, 0.22217302024364471, -0.02466833032667637, -0.011345439590513706, -0.0688401386141777, 0.009084232151508331, 0.06049910560250282, 0.030142048373818398, -0.06082216650247574, -0.19785021245479584, 0.018391301855444908, 0.04134780913591385, -0.01892002485692501, -0.26198142766952515, -0.09846517443656921, 0.0023176679387688637, -0.08312686532735825, -0.08758088946342468, 0.06375978142023087, 0.09902011603116989, 0.057703327387571335, -0.05802591145038605, -0.06846413016319275, -0.06341823935508728, 0.15233372151851654, -0.13802897930145264, -0.09735766798257828 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # albert-xlarge-v2-finetuned-mrpc This model is a fine-tuned version of [albert-xlarge-v2](https://huggingface.co/albert-xlarge-v2) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.5563 - Accuracy: 0.7132 - F1: 0.8146 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | No log | 1.0 | 63 | 0.6898 | 0.5221 | 0.6123 | | No log | 2.0 | 126 | 0.6298 | 0.6838 | 0.8122 | | No log | 3.0 | 189 | 0.6043 | 0.7010 | 0.8185 | | No log | 4.0 | 252 | 0.5834 | 0.7010 | 0.8146 | | No log | 5.0 | 315 | 0.5563 | 0.7132 | 0.8146 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.18.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["glue"], "metrics": ["accuracy", "f1"], "model-index": [{"name": "albert-xlarge-v2-finetuned-mrpc", "results": [{"task": {"type": "text-classification", "name": "Text Classification"}, "dataset": {"name": "glue", "type": "glue", "args": "mrpc"}, "metrics": [{"type": "accuracy", "value": 0.7132352941176471, "name": "Accuracy"}, {"type": "f1", "value": 0.8145800316957211, "name": "F1"}]}]}]}
text-classification
anirudh21/albert-xlarge-v2-finetuned-mrpc
[ "transformers", "pytorch", "tensorboard", "albert", "text-classification", "generated_from_trainer", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #albert #text-classification #generated_from_trainer #dataset-glue #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us
albert-xlarge-v2-finetuned-mrpc =============================== This model is a fine-tuned version of albert-xlarge-v2 on the glue dataset. It achieves the following results on the evaluation set: * Loss: 0.5563 * Accuracy: 0.7132 * F1: 0.8146 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 16 * eval\_batch\_size: 16 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 5 ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.10.0+cu111 * Datasets 1.18.0 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.0+cu111\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #albert #text-classification #generated_from_trainer #dataset-glue #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.0+cu111\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ 66, 98, 4, 35 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #albert #text-classification #generated_from_trainer #dataset-glue #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.0+cu111\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ -0.10851341485977173, 0.08287949860095978, -0.0015716948546469212, 0.12378216534852982, 0.1644035279750824, 0.034203559160232544, 0.11756833642721176, 0.1303785890340805, -0.08961959183216095, 0.01978359930217266, 0.13182155787944794, 0.1571536362171173, 0.019342191517353058, 0.10459926724433899, -0.050261739641427994, -0.2606520652770996, -0.015629388391971588, 0.05233924835920334, -0.047430187463760376, 0.13125889003276825, 0.08640951663255692, -0.12352532893419266, 0.10119590908288956, 0.016996311023831367, -0.19539082050323486, 0.006376367527991533, 0.009158787317574024, -0.0564240999519825, 0.14400716125965118, 0.03155115246772766, 0.11656567454338074, -0.004729350097477436, 0.08431360125541687, -0.1941358745098114, 0.011082910932600498, 0.04820818454027176, 0.0049487631767988205, 0.09291473031044006, 0.04774554818868637, 0.0033729670103639364, 0.14480124413967133, -0.09592609107494354, 0.0522734709084034, 0.027718715369701385, -0.12452755123376846, -0.21515901386737823, -0.08181779086589813, 0.03230409324169159, 0.08416493982076645, 0.11512179672718048, -0.005395589396357536, 0.12806573510169983, -0.08085677772760391, 0.08780300617218018, 0.23827265202999115, -0.30694082379341125, -0.06739146262407303, 0.025221778079867363, 0.00799495168030262, 0.032211191952228546, -0.10505171120166779, -0.02871882915496826, 0.05733394995331764, 0.04659018665552139, 0.12641079723834991, -0.033901676535606384, -0.11446501314640045, 0.014867664314806461, -0.13147439062595367, -0.03409222885966301, 0.16096091270446777, 0.04539426788687706, -0.033270757645368576, -0.05664939805865288, -0.051134154200553894, -0.15639479458332062, -0.035082269459962845, -0.004277274943888187, 0.04805569350719452, -0.02432965487241745, -0.0460941419005394, -0.0016077898908406496, -0.11016025394201279, -0.06246815249323845, -0.08158069103956223, 0.11988197267055511, 0.03115209750831127, 0.016247021034359932, -0.037016041576862335, 0.11204948276281357, 0.0013566170819103718, -0.13201206922531128, 0.012988509610295296, 0.02687028981745243, 0.00729374261572957, -0.044786155223846436, -0.053867775946855545, -0.053863268345594406, 0.00430115032941103, 0.12289395928382874, -0.04026487097144127, 0.040145393460989, 0.04916608706116676, 0.04391423612833023, -0.09642386436462402, 0.20065082609653473, -0.03766079246997833, -0.018071161583065987, 0.00929968897253275, 0.03564739599823952, 0.024339625611901283, -0.009158243425190449, -0.11860004812479019, -0.000343729363521561, 0.07517223805189133, 0.005142418202012777, -0.07092933356761932, 0.07137508690357208, -0.05376800149679184, -0.02296004444360733, -0.0021376493386924267, -0.08764661103487015, 0.03296663612127304, -0.002671253401786089, -0.07513636350631714, -0.015495436266064644, 0.030281322076916695, 0.021347740665078163, -0.014448919333517551, 0.11615916341543198, -0.08655691146850586, 0.03218672797083855, -0.09627551585435867, -0.10221421718597412, 0.023033635690808296, -0.10830260813236237, 0.03779095411300659, -0.09124257415533066, -0.1834726780653, -0.009110176004469395, 0.06036468595266342, -0.025423433631658554, -0.061499450355768204, -0.0546928234398365, -0.06525935232639313, 0.015102635137736797, -0.007776893209666014, 0.13168306648731232, -0.06625673919916153, 0.08166395872831345, 0.02689969912171364, 0.06423691660165787, -0.04112587869167328, 0.052426837384700775, -0.10481588542461395, 0.014568629674613476, -0.14707937836647034, 0.031188983470201492, -0.037114519625902176, 0.07600796222686768, -0.08274073898792267, -0.09499000012874603, 0.015633273869752884, -0.0025613398756831884, 0.0618094764649868, 0.09867966920137405, -0.17744845151901245, -0.07985639572143555, 0.15661577880382538, -0.06437281519174576, -0.1325954645872116, 0.12001652270555496, -0.0612134151160717, 0.045997507870197296, 0.06028265133500099, 0.1512797325849533, 0.06379801779985428, -0.08271874487400055, -0.004605399910360575, 0.02407730370759964, 0.04843881353735924, -0.07159419357776642, 0.07669540494680405, 0.008389415219426155, 0.002951052039861679, 0.0340876542031765, -0.019045770168304443, 0.061201177537441254, -0.08733832836151123, -0.10032474249601364, -0.04622561112046242, -0.08203887939453125, 0.028672071173787117, 0.0776790976524353, 0.07325249910354614, -0.09814091771841049, -0.08594372123479843, 0.03338034823536873, 0.0765068531036377, -0.04751443490386009, 0.028013426810503006, -0.05600306764245033, 0.06213730573654175, -0.043482739478349686, -0.023733915761113167, -0.17221353948116302, -0.017427945509552956, -0.000443327211542055, -0.006937176920473576, 0.009066986851394176, 0.026353659108281136, 0.06821393221616745, 0.05675322189927101, -0.05200904235243797, -0.010675321333110332, -0.02982199192047119, -0.0041316417045891285, -0.13505974411964417, -0.2008715569972992, -0.03134380653500557, -0.02398592233657837, 0.15125882625579834, -0.20457713305950165, 0.04213083162903786, -0.021903015673160553, 0.06635771691799164, 0.012865194119513035, -0.0053146895952522755, -0.04286836460232735, 0.0698426365852356, -0.04436494782567024, -0.05092164874076843, 0.07527109980583191, 0.019110465422272682, -0.09808443486690521, -0.04705537110567093, -0.08996978402137756, 0.15877945721149445, 0.13385072350502014, -0.1099434345960617, -0.07223377376794815, -0.0058516887947916985, -0.06560415774583817, -0.03339000791311264, -0.05574433505535126, 0.040243301540613174, 0.21176877617835999, -0.007056929636746645, 0.15119796991348267, -0.0662810429930687, -0.04895230755209923, 0.026796160265803337, -0.03642735630273819, 0.021458491683006287, 0.12952668964862823, 0.13312320411205292, -0.05990966781973839, 0.14652734994888306, 0.15359628200531006, -0.09059371799230576, 0.13318632543087006, -0.03999984264373779, -0.07472026348114014, -0.017710551619529724, -0.03931165114045143, -0.004119568970054388, 0.10875216871500015, -0.1615610122680664, -0.004651137627661228, 0.030832653865218163, 0.014737037010490894, 0.020087437704205513, -0.22307056188583374, -0.04519743472337723, 0.04278237000107765, -0.03178243339061737, -0.021580059081315994, -0.007723218761384487, 0.0037444550544023514, 0.10487890243530273, 0.0055309683084487915, -0.08151063323020935, 0.03770234063267708, 0.005515687167644501, -0.08669986575841904, 0.21752367913722992, -0.06947796791791916, -0.15518920123577118, -0.12592779099941254, -0.07883378863334656, -0.04955562576651573, 0.0021320621017366648, 0.07115191966295242, -0.09382370859384537, -0.032456617802381516, -0.07577887177467346, 0.019918303936719894, 0.004875612910836935, 0.031803544610738754, 0.01505905669182539, 0.0028410842642188072, 0.06437543779611588, -0.10163018107414246, -0.016886616125702858, -0.05557944253087044, -0.050702955573797226, 0.036809612065553665, 0.035607509315013885, 0.11485431343317032, 0.14555047452449799, -0.016081763431429863, 0.013742087408900261, -0.030881134793162346, 0.22703666985034943, -0.06183459237217903, -0.033547043800354004, 0.13601787388324738, -0.008285166695713997, 0.04035327211022377, 0.1131085455417633, 0.07463839650154114, -0.07826251536607742, -0.00111157086212188, 0.03700360655784607, -0.03763021528720856, -0.2307037115097046, -0.046411383897066116, -0.06072646379470825, 0.007775360718369484, 0.09654852747917175, 0.02273011952638626, 0.02955014817416668, 0.07200337946414948, 0.04007653146982193, 0.08878234028816223, -0.05143848434090614, 0.059663355350494385, 0.10464063286781311, 0.04082774370908737, 0.1216021254658699, -0.05594692751765251, -0.06648729741573334, 0.04218735173344612, -0.01800714246928692, 0.2236419916152954, 0.016036270186305046, 0.13117147982120514, 0.05609254539012909, 0.15269875526428223, -0.004133033100515604, 0.0846896767616272, -0.0062759071588516235, -0.05142221599817276, -0.01511458307504654, -0.03756638243794441, -0.03472224622964859, 0.032171182334423065, -0.08392827957868576, 0.079414002597332, -0.1315862387418747, 0.016221044585108757, 0.05463474988937378, 0.26152393221855164, 0.04587202146649361, -0.321972519159317, -0.09329250454902649, 0.009788069874048233, -0.029937151819467545, -0.027202531695365906, 0.03143763169646263, 0.08129655569791794, -0.09414859861135483, 0.035591233521699905, -0.0738305002450943, 0.10116495192050934, -0.04594714939594269, 0.0491180457174778, 0.08238666504621506, 0.07942087948322296, 0.0074699679389595985, 0.09445410221815109, -0.30067723989486694, 0.2845527231693268, 0.004858710337430239, 0.06776915490627289, -0.08622097969055176, 0.008372905664145947, 0.04453708976507187, 0.06563539057970047, 0.09501554816961288, -0.0140914935618639, -0.04899032041430473, -0.18717963993549347, -0.06885536760091782, 0.03427093103528023, 0.05553438887000084, -0.03511710464954376, 0.08751165121793747, -0.028084883466362953, 0.0065111275762319565, 0.07207874953746796, 0.018553245812654495, -0.04902458190917969, -0.11115951836109161, -0.01427517831325531, 0.026247471570968628, -0.07107964158058167, -0.05908683314919472, -0.11763347685337067, -0.1296166181564331, 0.15435954928398132, -0.02876298874616623, -0.02926171012222767, -0.11168454587459564, 0.08655610680580139, 0.049155063927173615, -0.09150857478380203, 0.0343179889023304, 0.005369671154767275, 0.08151274919509888, 0.02817639894783497, -0.0781378522515297, 0.10608948767185211, -0.07388927042484283, -0.15226562321186066, -0.06808533519506454, 0.09889303892850876, 0.030818484723567963, 0.06943147629499435, -0.01059445645660162, 0.015278245322406292, -0.05115121603012085, -0.0893559604883194, 0.025140443816781044, 0.008072792552411556, 0.08026784658432007, 0.005880521144717932, -0.06082103028893471, 0.021673541516065598, -0.05721529945731163, -0.032977454364299774, 0.20603495836257935, 0.21837805211544037, -0.10593485087156296, 0.01963035576045513, 0.00011520516272867098, -0.07776135206222534, -0.19612984359264374, 0.04137551784515381, 0.04815450683236122, 0.018216095864772797, 0.03512553870677948, -0.17524226009845734, 0.15107755362987518, 0.1101469025015831, -0.014013183303177357, 0.10103233903646469, -0.30580073595046997, -0.12347456812858582, 0.13789689540863037, 0.12939028441905975, 0.13237634301185608, -0.1306103616952896, -0.01185387559235096, -0.028198547661304474, -0.1425543576478958, 0.09835414588451385, -0.10393572598695755, 0.11367519944906235, -0.044036321341991425, 0.07140891253948212, 0.0034511450212448835, -0.06000930443406105, 0.12067489326000214, 0.025124182924628258, 0.09810183197259903, -0.056498534977436066, -0.034325432032346725, 0.03099016286432743, -0.04756839945912361, 0.031243259087204933, -0.10857679694890976, 0.023675616830587387, -0.12081367522478104, -0.025438150390982628, -0.06328153610229492, 0.049994807690382004, -0.04249459132552147, -0.060809362679719925, -0.03294748067855835, 0.01564195565879345, 0.05251622945070267, -0.009419661946594715, 0.14960907399654388, 0.023017099127173424, 0.14949700236320496, 0.08569129556417465, 0.08571472764015198, -0.07848557829856873, -0.0662907212972641, -0.018670717254281044, -0.01171959936618805, 0.052121590822935104, -0.1567266285419464, 0.0222612377256155, 0.14933155477046967, 0.023854093626141548, 0.14069582521915436, 0.08444757014513016, -0.012314979918301105, 0.006973995827138424, 0.05782342329621315, -0.16315408051013947, -0.08276087045669556, -0.01947229914367199, -0.05304446816444397, -0.12343880534172058, 0.044341687113046646, 0.08120200037956238, -0.07319604605436325, -0.01001099031418562, -0.008966249413788319, 0.00801245216280222, -0.060733210295438766, 0.17431361973285675, 0.04631480574607849, 0.04427378252148628, -0.103228360414505, 0.06995489448308945, 0.04022670537233353, -0.08173894137144089, 0.006496574729681015, 0.0679832473397255, -0.07813875377178192, -0.05333561822772026, 0.08378839492797852, 0.21410124003887177, -0.04703439027070999, -0.04646718502044678, -0.1423557847738266, -0.13277803361415863, 0.08483558148145676, 0.14282391965389252, 0.11973793059587479, 0.011175474151968956, -0.0649867057800293, -0.0028957000467926264, -0.11970946192741394, 0.0956927016377449, 0.04556654393672943, 0.06415167450904846, -0.1412634551525116, 0.13030587136745453, 0.014540751464664936, 0.04957909509539604, -0.018316565081477165, 0.02747558057308197, -0.09735246002674103, 0.01003090851008892, -0.11197996139526367, -0.014422730542719364, -0.03730938956141472, 0.010056210681796074, -0.005486046429723501, -0.04593383148312569, -0.06191306561231613, 0.010265232995152473, -0.10761867463588715, -0.020014287903904915, 0.03203214704990387, 0.06906575709581375, -0.09926522523164749, -0.03584988787770271, 0.025884181261062622, -0.06411145627498627, 0.06664050370454788, 0.04775208234786987, 0.024460744112730026, 0.05203469842672348, -0.13428330421447754, 0.020065493881702423, 0.07125937938690186, 0.023615064099431038, 0.06857342272996902, -0.10210324823856354, -0.0048413085751235485, -0.0018470374634489417, 0.03993143141269684, 0.01879689283668995, 0.060570936650037766, -0.13668784499168396, -0.0018133589765056968, -0.0059414212591946125, -0.08354639261960983, -0.06759142130613327, 0.025267822667956352, 0.09829063713550568, 0.010769153945147991, 0.20157437026500702, -0.07453074306249619, 0.05111348256468773, -0.21752247214317322, 0.008580947294831276, -0.011457758024334908, -0.10675018280744553, -0.11847562342882156, -0.07331645488739014, 0.060511115938425064, -0.05910194292664528, 0.15643341839313507, 0.04336113855242729, 0.03594420477747917, 0.029215503484010696, -0.016089623793959618, 0.025112714618444443, 0.013912186026573181, 0.20906245708465576, 0.031809382140636444, -0.03966294229030609, 0.06834982335567474, 0.04653722792863846, 0.10755541920661926, 0.1338290572166443, 0.20528732240200043, 0.14109309017658234, -0.0016062030335888267, 0.104256771504879, 0.03466791287064552, -0.05762480944395065, -0.1563846468925476, 0.03676179423928261, -0.04096238315105438, 0.11012841761112213, -0.017167802900075912, 0.20791314542293549, 0.07202707976102829, -0.17344166338443756, 0.04336996749043465, -0.05798328295350075, -0.0792505294084549, -0.12193125486373901, -0.048324186354875565, -0.08294760435819626, -0.12893500924110413, 0.004624804016202688, -0.11551131308078766, 0.0029855608008801937, 0.11830372363328934, 0.0003146572853438556, -0.025349488481879234, 0.15853318572044373, 0.012229030951857567, 0.03587009757757187, 0.0623665414750576, 0.009986549615859985, -0.033745404332876205, -0.12574751675128937, -0.049979232251644135, -0.01642908900976181, -0.03286297246813774, 0.02869069203734398, -0.06801576167345047, -0.043811243027448654, 0.0380096510052681, -0.018702475354075432, -0.0994282215833664, 0.008727424778044224, 0.010006695054471493, 0.06349524110555649, 0.04147202521562576, 0.009688003920018673, 0.02728598564863205, -0.008197645656764507, 0.20150049030780792, -0.08199817687273026, -0.05192165821790695, -0.10646841675043106, 0.24835076928138733, 0.04308316856622696, -0.024649769067764282, 0.02875283546745777, -0.062391892075538635, 0.00807760376483202, 0.25195541977882385, 0.20674537122249603, -0.06871533393859863, -0.007414078805595636, 0.005721509922295809, -0.0078910943120718, -0.0229549128562212, 0.09814517945051193, 0.13991482555866241, 0.039135899394750595, -0.10182734578847885, -0.05337280035018921, -0.05527487024664879, -0.020565170794725418, -0.03373938426375389, 0.08031013607978821, 0.05193829908967018, 0.0009627835243009031, -0.02825058251619339, 0.049038421362638474, -0.06365194916725159, -0.07327164709568024, 0.06637400388717651, -0.21353663504123688, -0.1605113446712494, -0.009253967553377151, 0.09987538307905197, 0.011628348380327225, 0.06883668899536133, -0.02442094497382641, -0.005353689659386873, 0.09306224435567856, -0.01920473948121071, -0.106890469789505, -0.07222694903612137, 0.08502697199583054, -0.1229671910405159, 0.2248678207397461, -0.042769718915224075, 0.04968447983264923, 0.12772446870803833, 0.07353010773658752, -0.08143990486860275, 0.05894053354859352, 0.03563410043716431, -0.05077586695551872, 0.029180480167269707, 0.07570891827344894, -0.03623399883508682, 0.05392841622233391, 0.0446491502225399, -0.1353415846824646, 0.023813316598534584, -0.06738412380218506, -0.061082519590854645, -0.04242687672376633, -0.020358486101031303, -0.053828101605176926, 0.13348907232284546, 0.22147727012634277, -0.02643861249089241, -0.01265759114176035, -0.06895022839307785, 0.011453851126134396, 0.0556543804705143, 0.027651680633425713, -0.06081826612353325, -0.20048682391643524, 0.02100181393325329, 0.04676947742700577, -0.02104194276034832, -0.2525334358215332, -0.09901151061058044, 0.0026946943253278732, -0.08497780561447144, -0.08980201184749603, 0.06273863464593887, 0.0974934995174408, 0.05462854355573654, -0.0601477175951004, -0.05967121943831444, -0.06285107880830765, 0.14960379898548126, -0.1336909383535385, -0.09875859320163727 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # albert-xlarge-v2-finetuned-wnli This model is a fine-tuned version of [albert-xlarge-v2](https://huggingface.co/albert-xlarge-v2) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.6869 - Accuracy: 0.5634 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 40 | 0.6906 | 0.5070 | | No log | 2.0 | 80 | 0.6869 | 0.5634 | | No log | 3.0 | 120 | 0.6905 | 0.5352 | | No log | 4.0 | 160 | 0.6960 | 0.4225 | | No log | 5.0 | 200 | 0.7011 | 0.3803 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.18.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["glue"], "metrics": ["accuracy"], "model-index": [{"name": "albert-xlarge-v2-finetuned-wnli", "results": [{"task": {"type": "text-classification", "name": "Text Classification"}, "dataset": {"name": "glue", "type": "glue", "args": "wnli"}, "metrics": [{"type": "accuracy", "value": 0.5633802816901409, "name": "Accuracy"}]}]}]}
text-classification
anirudh21/albert-xlarge-v2-finetuned-wnli
[ "transformers", "pytorch", "tensorboard", "albert", "text-classification", "generated_from_trainer", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #albert #text-classification #generated_from_trainer #dataset-glue #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us
albert-xlarge-v2-finetuned-wnli =============================== This model is a fine-tuned version of albert-xlarge-v2 on the glue dataset. It achieves the following results on the evaluation set: * Loss: 0.6869 * Accuracy: 0.5634 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 16 * eval\_batch\_size: 16 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 5 ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.10.0+cu111 * Datasets 1.18.0 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.0+cu111\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #albert #text-classification #generated_from_trainer #dataset-glue #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.0+cu111\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ 66, 98, 4, 35 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #albert #text-classification #generated_from_trainer #dataset-glue #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.0+cu111\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ -0.10851341485977173, 0.08287949860095978, -0.0015716948546469212, 0.12378216534852982, 0.1644035279750824, 0.034203559160232544, 0.11756833642721176, 0.1303785890340805, -0.08961959183216095, 0.01978359930217266, 0.13182155787944794, 0.1571536362171173, 0.019342191517353058, 0.10459926724433899, -0.050261739641427994, -0.2606520652770996, -0.015629388391971588, 0.05233924835920334, -0.047430187463760376, 0.13125889003276825, 0.08640951663255692, -0.12352532893419266, 0.10119590908288956, 0.016996311023831367, -0.19539082050323486, 0.006376367527991533, 0.009158787317574024, -0.0564240999519825, 0.14400716125965118, 0.03155115246772766, 0.11656567454338074, -0.004729350097477436, 0.08431360125541687, -0.1941358745098114, 0.011082910932600498, 0.04820818454027176, 0.0049487631767988205, 0.09291473031044006, 0.04774554818868637, 0.0033729670103639364, 0.14480124413967133, -0.09592609107494354, 0.0522734709084034, 0.027718715369701385, -0.12452755123376846, -0.21515901386737823, -0.08181779086589813, 0.03230409324169159, 0.08416493982076645, 0.11512179672718048, -0.005395589396357536, 0.12806573510169983, -0.08085677772760391, 0.08780300617218018, 0.23827265202999115, -0.30694082379341125, -0.06739146262407303, 0.025221778079867363, 0.00799495168030262, 0.032211191952228546, -0.10505171120166779, -0.02871882915496826, 0.05733394995331764, 0.04659018665552139, 0.12641079723834991, -0.033901676535606384, -0.11446501314640045, 0.014867664314806461, -0.13147439062595367, -0.03409222885966301, 0.16096091270446777, 0.04539426788687706, -0.033270757645368576, -0.05664939805865288, -0.051134154200553894, -0.15639479458332062, -0.035082269459962845, -0.004277274943888187, 0.04805569350719452, -0.02432965487241745, -0.0460941419005394, -0.0016077898908406496, -0.11016025394201279, -0.06246815249323845, -0.08158069103956223, 0.11988197267055511, 0.03115209750831127, 0.016247021034359932, -0.037016041576862335, 0.11204948276281357, 0.0013566170819103718, -0.13201206922531128, 0.012988509610295296, 0.02687028981745243, 0.00729374261572957, -0.044786155223846436, -0.053867775946855545, -0.053863268345594406, 0.00430115032941103, 0.12289395928382874, -0.04026487097144127, 0.040145393460989, 0.04916608706116676, 0.04391423612833023, -0.09642386436462402, 0.20065082609653473, -0.03766079246997833, -0.018071161583065987, 0.00929968897253275, 0.03564739599823952, 0.024339625611901283, -0.009158243425190449, -0.11860004812479019, -0.000343729363521561, 0.07517223805189133, 0.005142418202012777, -0.07092933356761932, 0.07137508690357208, -0.05376800149679184, -0.02296004444360733, -0.0021376493386924267, -0.08764661103487015, 0.03296663612127304, -0.002671253401786089, -0.07513636350631714, -0.015495436266064644, 0.030281322076916695, 0.021347740665078163, -0.014448919333517551, 0.11615916341543198, -0.08655691146850586, 0.03218672797083855, -0.09627551585435867, -0.10221421718597412, 0.023033635690808296, -0.10830260813236237, 0.03779095411300659, -0.09124257415533066, -0.1834726780653, -0.009110176004469395, 0.06036468595266342, -0.025423433631658554, -0.061499450355768204, -0.0546928234398365, -0.06525935232639313, 0.015102635137736797, -0.007776893209666014, 0.13168306648731232, -0.06625673919916153, 0.08166395872831345, 0.02689969912171364, 0.06423691660165787, -0.04112587869167328, 0.052426837384700775, -0.10481588542461395, 0.014568629674613476, -0.14707937836647034, 0.031188983470201492, -0.037114519625902176, 0.07600796222686768, -0.08274073898792267, -0.09499000012874603, 0.015633273869752884, -0.0025613398756831884, 0.0618094764649868, 0.09867966920137405, -0.17744845151901245, -0.07985639572143555, 0.15661577880382538, -0.06437281519174576, -0.1325954645872116, 0.12001652270555496, -0.0612134151160717, 0.045997507870197296, 0.06028265133500099, 0.1512797325849533, 0.06379801779985428, -0.08271874487400055, -0.004605399910360575, 0.02407730370759964, 0.04843881353735924, -0.07159419357776642, 0.07669540494680405, 0.008389415219426155, 0.002951052039861679, 0.0340876542031765, -0.019045770168304443, 0.061201177537441254, -0.08733832836151123, -0.10032474249601364, -0.04622561112046242, -0.08203887939453125, 0.028672071173787117, 0.0776790976524353, 0.07325249910354614, -0.09814091771841049, -0.08594372123479843, 0.03338034823536873, 0.0765068531036377, -0.04751443490386009, 0.028013426810503006, -0.05600306764245033, 0.06213730573654175, -0.043482739478349686, -0.023733915761113167, -0.17221353948116302, -0.017427945509552956, -0.000443327211542055, -0.006937176920473576, 0.009066986851394176, 0.026353659108281136, 0.06821393221616745, 0.05675322189927101, -0.05200904235243797, -0.010675321333110332, -0.02982199192047119, -0.0041316417045891285, -0.13505974411964417, -0.2008715569972992, -0.03134380653500557, -0.02398592233657837, 0.15125882625579834, -0.20457713305950165, 0.04213083162903786, -0.021903015673160553, 0.06635771691799164, 0.012865194119513035, -0.0053146895952522755, -0.04286836460232735, 0.0698426365852356, -0.04436494782567024, -0.05092164874076843, 0.07527109980583191, 0.019110465422272682, -0.09808443486690521, -0.04705537110567093, -0.08996978402137756, 0.15877945721149445, 0.13385072350502014, -0.1099434345960617, -0.07223377376794815, -0.0058516887947916985, -0.06560415774583817, -0.03339000791311264, -0.05574433505535126, 0.040243301540613174, 0.21176877617835999, -0.007056929636746645, 0.15119796991348267, -0.0662810429930687, -0.04895230755209923, 0.026796160265803337, -0.03642735630273819, 0.021458491683006287, 0.12952668964862823, 0.13312320411205292, -0.05990966781973839, 0.14652734994888306, 0.15359628200531006, -0.09059371799230576, 0.13318632543087006, -0.03999984264373779, -0.07472026348114014, -0.017710551619529724, -0.03931165114045143, -0.004119568970054388, 0.10875216871500015, -0.1615610122680664, -0.004651137627661228, 0.030832653865218163, 0.014737037010490894, 0.020087437704205513, -0.22307056188583374, -0.04519743472337723, 0.04278237000107765, -0.03178243339061737, -0.021580059081315994, -0.007723218761384487, 0.0037444550544023514, 0.10487890243530273, 0.0055309683084487915, -0.08151063323020935, 0.03770234063267708, 0.005515687167644501, -0.08669986575841904, 0.21752367913722992, -0.06947796791791916, -0.15518920123577118, -0.12592779099941254, -0.07883378863334656, -0.04955562576651573, 0.0021320621017366648, 0.07115191966295242, -0.09382370859384537, -0.032456617802381516, -0.07577887177467346, 0.019918303936719894, 0.004875612910836935, 0.031803544610738754, 0.01505905669182539, 0.0028410842642188072, 0.06437543779611588, -0.10163018107414246, -0.016886616125702858, -0.05557944253087044, -0.050702955573797226, 0.036809612065553665, 0.035607509315013885, 0.11485431343317032, 0.14555047452449799, -0.016081763431429863, 0.013742087408900261, -0.030881134793162346, 0.22703666985034943, -0.06183459237217903, -0.033547043800354004, 0.13601787388324738, -0.008285166695713997, 0.04035327211022377, 0.1131085455417633, 0.07463839650154114, -0.07826251536607742, -0.00111157086212188, 0.03700360655784607, -0.03763021528720856, -0.2307037115097046, -0.046411383897066116, -0.06072646379470825, 0.007775360718369484, 0.09654852747917175, 0.02273011952638626, 0.02955014817416668, 0.07200337946414948, 0.04007653146982193, 0.08878234028816223, -0.05143848434090614, 0.059663355350494385, 0.10464063286781311, 0.04082774370908737, 0.1216021254658699, -0.05594692751765251, -0.06648729741573334, 0.04218735173344612, -0.01800714246928692, 0.2236419916152954, 0.016036270186305046, 0.13117147982120514, 0.05609254539012909, 0.15269875526428223, -0.004133033100515604, 0.0846896767616272, -0.0062759071588516235, -0.05142221599817276, -0.01511458307504654, -0.03756638243794441, -0.03472224622964859, 0.032171182334423065, -0.08392827957868576, 0.079414002597332, -0.1315862387418747, 0.016221044585108757, 0.05463474988937378, 0.26152393221855164, 0.04587202146649361, -0.321972519159317, -0.09329250454902649, 0.009788069874048233, -0.029937151819467545, -0.027202531695365906, 0.03143763169646263, 0.08129655569791794, -0.09414859861135483, 0.035591233521699905, -0.0738305002450943, 0.10116495192050934, -0.04594714939594269, 0.0491180457174778, 0.08238666504621506, 0.07942087948322296, 0.0074699679389595985, 0.09445410221815109, -0.30067723989486694, 0.2845527231693268, 0.004858710337430239, 0.06776915490627289, -0.08622097969055176, 0.008372905664145947, 0.04453708976507187, 0.06563539057970047, 0.09501554816961288, -0.0140914935618639, -0.04899032041430473, -0.18717963993549347, -0.06885536760091782, 0.03427093103528023, 0.05553438887000084, -0.03511710464954376, 0.08751165121793747, -0.028084883466362953, 0.0065111275762319565, 0.07207874953746796, 0.018553245812654495, -0.04902458190917969, -0.11115951836109161, -0.01427517831325531, 0.026247471570968628, -0.07107964158058167, -0.05908683314919472, -0.11763347685337067, -0.1296166181564331, 0.15435954928398132, -0.02876298874616623, -0.02926171012222767, -0.11168454587459564, 0.08655610680580139, 0.049155063927173615, -0.09150857478380203, 0.0343179889023304, 0.005369671154767275, 0.08151274919509888, 0.02817639894783497, -0.0781378522515297, 0.10608948767185211, -0.07388927042484283, -0.15226562321186066, -0.06808533519506454, 0.09889303892850876, 0.030818484723567963, 0.06943147629499435, -0.01059445645660162, 0.015278245322406292, -0.05115121603012085, -0.0893559604883194, 0.025140443816781044, 0.008072792552411556, 0.08026784658432007, 0.005880521144717932, -0.06082103028893471, 0.021673541516065598, -0.05721529945731163, -0.032977454364299774, 0.20603495836257935, 0.21837805211544037, -0.10593485087156296, 0.01963035576045513, 0.00011520516272867098, -0.07776135206222534, -0.19612984359264374, 0.04137551784515381, 0.04815450683236122, 0.018216095864772797, 0.03512553870677948, -0.17524226009845734, 0.15107755362987518, 0.1101469025015831, -0.014013183303177357, 0.10103233903646469, -0.30580073595046997, -0.12347456812858582, 0.13789689540863037, 0.12939028441905975, 0.13237634301185608, -0.1306103616952896, -0.01185387559235096, -0.028198547661304474, -0.1425543576478958, 0.09835414588451385, -0.10393572598695755, 0.11367519944906235, -0.044036321341991425, 0.07140891253948212, 0.0034511450212448835, -0.06000930443406105, 0.12067489326000214, 0.025124182924628258, 0.09810183197259903, -0.056498534977436066, -0.034325432032346725, 0.03099016286432743, -0.04756839945912361, 0.031243259087204933, -0.10857679694890976, 0.023675616830587387, -0.12081367522478104, -0.025438150390982628, -0.06328153610229492, 0.049994807690382004, -0.04249459132552147, -0.060809362679719925, -0.03294748067855835, 0.01564195565879345, 0.05251622945070267, -0.009419661946594715, 0.14960907399654388, 0.023017099127173424, 0.14949700236320496, 0.08569129556417465, 0.08571472764015198, -0.07848557829856873, -0.0662907212972641, -0.018670717254281044, -0.01171959936618805, 0.052121590822935104, -0.1567266285419464, 0.0222612377256155, 0.14933155477046967, 0.023854093626141548, 0.14069582521915436, 0.08444757014513016, -0.012314979918301105, 0.006973995827138424, 0.05782342329621315, -0.16315408051013947, -0.08276087045669556, -0.01947229914367199, -0.05304446816444397, -0.12343880534172058, 0.044341687113046646, 0.08120200037956238, -0.07319604605436325, -0.01001099031418562, -0.008966249413788319, 0.00801245216280222, -0.060733210295438766, 0.17431361973285675, 0.04631480574607849, 0.04427378252148628, -0.103228360414505, 0.06995489448308945, 0.04022670537233353, -0.08173894137144089, 0.006496574729681015, 0.0679832473397255, -0.07813875377178192, -0.05333561822772026, 0.08378839492797852, 0.21410124003887177, -0.04703439027070999, -0.04646718502044678, -0.1423557847738266, -0.13277803361415863, 0.08483558148145676, 0.14282391965389252, 0.11973793059587479, 0.011175474151968956, -0.0649867057800293, -0.0028957000467926264, -0.11970946192741394, 0.0956927016377449, 0.04556654393672943, 0.06415167450904846, -0.1412634551525116, 0.13030587136745453, 0.014540751464664936, 0.04957909509539604, -0.018316565081477165, 0.02747558057308197, -0.09735246002674103, 0.01003090851008892, -0.11197996139526367, -0.014422730542719364, -0.03730938956141472, 0.010056210681796074, -0.005486046429723501, -0.04593383148312569, -0.06191306561231613, 0.010265232995152473, -0.10761867463588715, -0.020014287903904915, 0.03203214704990387, 0.06906575709581375, -0.09926522523164749, -0.03584988787770271, 0.025884181261062622, -0.06411145627498627, 0.06664050370454788, 0.04775208234786987, 0.024460744112730026, 0.05203469842672348, -0.13428330421447754, 0.020065493881702423, 0.07125937938690186, 0.023615064099431038, 0.06857342272996902, -0.10210324823856354, -0.0048413085751235485, -0.0018470374634489417, 0.03993143141269684, 0.01879689283668995, 0.060570936650037766, -0.13668784499168396, -0.0018133589765056968, -0.0059414212591946125, -0.08354639261960983, -0.06759142130613327, 0.025267822667956352, 0.09829063713550568, 0.010769153945147991, 0.20157437026500702, -0.07453074306249619, 0.05111348256468773, -0.21752247214317322, 0.008580947294831276, -0.011457758024334908, -0.10675018280744553, -0.11847562342882156, -0.07331645488739014, 0.060511115938425064, -0.05910194292664528, 0.15643341839313507, 0.04336113855242729, 0.03594420477747917, 0.029215503484010696, -0.016089623793959618, 0.025112714618444443, 0.013912186026573181, 0.20906245708465576, 0.031809382140636444, -0.03966294229030609, 0.06834982335567474, 0.04653722792863846, 0.10755541920661926, 0.1338290572166443, 0.20528732240200043, 0.14109309017658234, -0.0016062030335888267, 0.104256771504879, 0.03466791287064552, -0.05762480944395065, -0.1563846468925476, 0.03676179423928261, -0.04096238315105438, 0.11012841761112213, -0.017167802900075912, 0.20791314542293549, 0.07202707976102829, -0.17344166338443756, 0.04336996749043465, -0.05798328295350075, -0.0792505294084549, -0.12193125486373901, -0.048324186354875565, -0.08294760435819626, -0.12893500924110413, 0.004624804016202688, -0.11551131308078766, 0.0029855608008801937, 0.11830372363328934, 0.0003146572853438556, -0.025349488481879234, 0.15853318572044373, 0.012229030951857567, 0.03587009757757187, 0.0623665414750576, 0.009986549615859985, -0.033745404332876205, -0.12574751675128937, -0.049979232251644135, -0.01642908900976181, -0.03286297246813774, 0.02869069203734398, -0.06801576167345047, -0.043811243027448654, 0.0380096510052681, -0.018702475354075432, -0.0994282215833664, 0.008727424778044224, 0.010006695054471493, 0.06349524110555649, 0.04147202521562576, 0.009688003920018673, 0.02728598564863205, -0.008197645656764507, 0.20150049030780792, -0.08199817687273026, -0.05192165821790695, -0.10646841675043106, 0.24835076928138733, 0.04308316856622696, -0.024649769067764282, 0.02875283546745777, -0.062391892075538635, 0.00807760376483202, 0.25195541977882385, 0.20674537122249603, -0.06871533393859863, -0.007414078805595636, 0.005721509922295809, -0.0078910943120718, -0.0229549128562212, 0.09814517945051193, 0.13991482555866241, 0.039135899394750595, -0.10182734578847885, -0.05337280035018921, -0.05527487024664879, -0.020565170794725418, -0.03373938426375389, 0.08031013607978821, 0.05193829908967018, 0.0009627835243009031, -0.02825058251619339, 0.049038421362638474, -0.06365194916725159, -0.07327164709568024, 0.06637400388717651, -0.21353663504123688, -0.1605113446712494, -0.009253967553377151, 0.09987538307905197, 0.011628348380327225, 0.06883668899536133, -0.02442094497382641, -0.005353689659386873, 0.09306224435567856, -0.01920473948121071, -0.106890469789505, -0.07222694903612137, 0.08502697199583054, -0.1229671910405159, 0.2248678207397461, -0.042769718915224075, 0.04968447983264923, 0.12772446870803833, 0.07353010773658752, -0.08143990486860275, 0.05894053354859352, 0.03563410043716431, -0.05077586695551872, 0.029180480167269707, 0.07570891827344894, -0.03623399883508682, 0.05392841622233391, 0.0446491502225399, -0.1353415846824646, 0.023813316598534584, -0.06738412380218506, -0.061082519590854645, -0.04242687672376633, -0.020358486101031303, -0.053828101605176926, 0.13348907232284546, 0.22147727012634277, -0.02643861249089241, -0.01265759114176035, -0.06895022839307785, 0.011453851126134396, 0.0556543804705143, 0.027651680633425713, -0.06081826612353325, -0.20048682391643524, 0.02100181393325329, 0.04676947742700577, -0.02104194276034832, -0.2525334358215332, -0.09901151061058044, 0.0026946943253278732, -0.08497780561447144, -0.08980201184749603, 0.06273863464593887, 0.0974934995174408, 0.05462854355573654, -0.0601477175951004, -0.05967121943831444, -0.06285107880830765, 0.14960379898548126, -0.1336909383535385, -0.09875859320163727 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # albert-xxlarge-v2-finetuned-wnli This model is a fine-tuned version of [albert-xxlarge-v2](https://huggingface.co/albert-xxlarge-v2) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.6970 - Accuracy: 0.5070 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 13 | 0.8066 | 0.4366 | | No log | 2.0 | 26 | 0.6970 | 0.5070 | | No log | 3.0 | 39 | 0.7977 | 0.4507 | | No log | 4.0 | 52 | 0.7906 | 0.4930 | | No log | 5.0 | 65 | 0.8459 | 0.4366 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.18.1 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["glue"], "metrics": ["accuracy"], "model-index": [{"name": "albert-xxlarge-v2-finetuned-wnli", "results": [{"task": {"type": "text-classification", "name": "Text Classification"}, "dataset": {"name": "glue", "type": "glue", "args": "wnli"}, "metrics": [{"type": "accuracy", "value": 0.5070422535211268, "name": "Accuracy"}]}]}]}
text-classification
anirudh21/albert-xxlarge-v2-finetuned-wnli
[ "transformers", "pytorch", "tensorboard", "albert", "text-classification", "generated_from_trainer", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #albert #text-classification #generated_from_trainer #dataset-glue #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us
albert-xxlarge-v2-finetuned-wnli ================================ This model is a fine-tuned version of albert-xxlarge-v2 on the glue dataset. It achieves the following results on the evaluation set: * Loss: 0.6970 * Accuracy: 0.5070 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 16 * eval\_batch\_size: 16 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 5 ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.10.0+cu111 * Datasets 1.18.1 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.0+cu111\n* Datasets 1.18.1\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #albert #text-classification #generated_from_trainer #dataset-glue #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.0+cu111\n* Datasets 1.18.1\n* Tokenizers 0.10.3" ]
[ 66, 98, 4, 33 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #albert #text-classification #generated_from_trainer #dataset-glue #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.0+cu111\n* Datasets 1.18.1\n* Tokenizers 0.10.3" ]
[ -0.1043897345662117, 0.09041710197925568, -0.0018204497173428535, 0.12200300395488739, 0.16448982059955597, 0.03956865519285202, 0.13497143983840942, 0.1270168423652649, -0.08481080830097198, 0.015455087646842003, 0.12540465593338013, 0.153660848736763, 0.023047437891364098, 0.09091728925704956, -0.04355344548821449, -0.26016730070114136, -0.019337916746735573, 0.05018600821495056, -0.060656387358903885, 0.13257810473442078, 0.08433875441551208, -0.12124460190534592, 0.0994998961687088, 0.013166174292564392, -0.19330553710460663, 0.006458010524511337, 0.0084362318739295, -0.05300622433423996, 0.14907553791999817, 0.032914966344833374, 0.12039439380168915, 0.0010248207254335284, 0.08637624979019165, -0.20333199203014374, 0.011971702799201012, 0.0485745444893837, 0.0050692204385995865, 0.09407994151115417, 0.0499265193939209, 0.008502666838467121, 0.13834148645401, -0.0866832360625267, 0.05521291494369507, 0.032211288809776306, -0.12968367338180542, -0.21511566638946533, -0.07950890064239502, 0.029673296958208084, 0.07841763645410538, 0.11043371260166168, -0.00716405501589179, 0.12414336204528809, -0.08651991188526154, 0.08560904860496521, 0.2336435168981552, -0.2942045331001282, -0.06738997250795364, 0.0342283695936203, 0.008772971108555794, 0.04296833649277687, -0.10561344772577286, -0.02603508159518242, 0.05543508380651474, 0.04415561258792877, 0.12440583109855652, -0.030688507482409477, -0.1179208979010582, 0.018727442249655724, -0.13574853539466858, -0.0319734551012516, 0.1635868400335312, 0.04732310399413109, -0.03021303191781044, -0.05170556530356407, -0.04995705932378769, -0.15496456623077393, -0.03114769048988819, -0.008811096660792828, 0.050622597336769104, -0.024373497813940048, -0.045188650488853455, -0.005700754001736641, -0.10870394110679626, -0.06958650797605515, -0.07608795166015625, 0.11917579174041748, 0.032009463757276535, 0.013160968199372292, -0.03322426229715347, 0.11538581550121307, 0.002047595800831914, -0.1271321177482605, 0.023262539878487587, 0.028598491102457047, 0.0013884284999221563, -0.04260369762778282, -0.05158384516835213, -0.05187821388244629, 0.00866610649973154, 0.12119698524475098, -0.0374576710164547, 0.03818407654762268, 0.054203156381845474, 0.04675496742129326, -0.09873638302087784, 0.1985936313867569, -0.0405128039419651, -0.019729875028133392, -0.003358252579346299, 0.046564240008592606, 0.020224222913384438, -0.011167053133249283, -0.11705933511257172, 0.0015681820223107934, 0.07488088309764862, 0.007234811782836914, -0.06780674308538437, 0.06805625557899475, -0.06067543849349022, -0.026134150102734566, -0.00582540687173605, -0.08523271977901459, 0.02753078006207943, 0.0015990851679816842, -0.07716228067874908, -0.016031717881560326, 0.03096054121851921, 0.02303786389529705, -0.008554721251130104, 0.11098548024892807, -0.0875086784362793, 0.030586492270231247, -0.09531625360250473, -0.10716207325458527, 0.01914925128221512, -0.10970630496740341, 0.033739835023880005, -0.08660628646612167, -0.17853286862373352, -0.010206986218690872, 0.05820174887776375, -0.02350551448762417, -0.05964024364948273, -0.05787455663084984, -0.06257002800703049, 0.011450978927314281, -0.0047058057971298695, 0.12778115272521973, -0.06686297804117203, 0.08575877547264099, 0.026083016768097878, 0.06403693556785583, -0.040051139891147614, 0.05534994974732399, -0.10165484994649887, 0.011382686905562878, -0.13711349666118622, 0.03074643574655056, -0.04538505896925926, 0.06834545731544495, -0.08063977211713791, -0.09354162961244583, 0.01778559572994709, 0.0006385404267348349, 0.05734335258603096, 0.10040190070867538, -0.18436020612716675, -0.08850996196269989, 0.1568250209093094, -0.06554961204528809, -0.12835486233234406, 0.12294255197048187, -0.058451417833566666, 0.049851201474666595, 0.06012613698840141, 0.15347108244895935, 0.0778881162405014, -0.08005436509847641, 0.0018642847426235676, 0.025876367464661598, 0.05513768270611763, -0.0625874325633049, 0.07856831699609756, 0.000510420766659081, 0.0018666420364752412, 0.03265516459941864, -0.024883462116122246, 0.06353659182786942, -0.0928104966878891, -0.10366548597812653, -0.04003290459513664, -0.08430887013673782, 0.04179241508245468, 0.08037082105875015, 0.06832953542470932, -0.09617464244365692, -0.0834355279803276, 0.037935853004455566, 0.0807463750243187, -0.04798172414302826, 0.022671908140182495, -0.050730880349874496, 0.05897333472967148, -0.037085819989442825, -0.023646162822842598, -0.1692752242088318, -0.02350112423300743, 0.0016649349126964808, -0.010917467065155506, 0.016340263187885284, 0.04113783687353134, 0.06870339065790176, 0.06370645016431808, -0.052015453577041626, -0.014911185018718243, -0.04408225044608116, -0.003138963133096695, -0.12948457896709442, -0.20873630046844482, -0.03088158369064331, -0.021439122036099434, 0.16991887986660004, -0.20735763013362885, 0.04764413461089134, -0.02439938299357891, 0.062108322978019714, 0.016043543815612793, -0.007533009629696608, -0.04192341864109039, 0.07536851614713669, -0.041417963802814484, -0.05027645081281662, 0.07738333940505981, 0.011750129982829094, -0.10127293318510056, -0.05371388792991638, -0.09444814920425415, 0.16020287573337555, 0.13115833699703217, -0.11465359479188919, -0.0724000409245491, -0.01126941293478012, -0.06456045061349869, -0.034696999937295914, -0.05413107946515083, 0.03604563698172569, 0.20521071553230286, -0.0061521041207015514, 0.148649662733078, -0.06420578807592392, -0.042227379977703094, 0.022919071838259697, -0.03824517875909805, 0.023668700829148293, 0.13661155104637146, 0.13755904138088226, -0.050012361258268356, 0.1495388299226761, 0.1569514274597168, -0.088559590280056, 0.1428588181734085, -0.041790347546339035, -0.07380831241607666, -0.01835949718952179, -0.03915363550186157, -0.005380677524954081, 0.11051664501428604, -0.1627344787120819, -0.004747296683490276, 0.027950014919042587, 0.01196958962827921, 0.01957515813410282, -0.22983019053936005, -0.049459058791399, 0.044974543154239655, -0.03769618272781372, -0.018881667405366898, -0.009966891258955002, 0.002720503369346261, 0.10604012757539749, 0.0008937334059737623, -0.0848451629281044, 0.03172663599252701, 0.0022889338433742523, -0.0838480219244957, 0.2177211195230484, -0.07052799314260483, -0.15200303494930267, -0.1336527019739151, -0.07158368080854416, -0.05252264440059662, 0.0019286591559648514, 0.06796949356794357, -0.10265792161226273, -0.02505035512149334, -0.07416200637817383, 0.032283633947372437, 0.007663427852094173, 0.026632966473698616, 0.007754262536764145, 0.005139422602951527, 0.06503865122795105, -0.1074826717376709, -0.01233445480465889, -0.057872917503118515, -0.0591345876455307, 0.03848171979188919, 0.034625981003046036, 0.115079365670681, 0.15166349709033966, -0.012620719149708748, 0.009598924778401852, -0.029637129977345467, 0.22535473108291626, -0.06218699738383293, -0.03518056496977806, 0.1383657604455948, -0.00844966433942318, 0.04050154611468315, 0.10554705560207367, 0.08095891773700714, -0.07628611475229263, -0.0016992816235870123, 0.04296675696969032, -0.03480858728289604, -0.23365439474582672, -0.04573305323719978, -0.05494158715009689, 0.014232792891561985, 0.09255701303482056, 0.019993748515844345, 0.029775872826576233, 0.06984301656484604, 0.03963799774646759, 0.08110816776752472, -0.04758360981941223, 0.050262778997421265, 0.10383641719818115, 0.03471602872014046, 0.12061983346939087, -0.053521495312452316, -0.0673314705491066, 0.04152953252196312, -0.01598353125154972, 0.22365815937519073, 0.02313443087041378, 0.13652832806110382, 0.06385821849107742, 0.15331554412841797, -0.00816011056303978, 0.0783262625336647, -0.0021609202958643436, -0.04902302101254463, -0.016767462715506554, -0.040544673800468445, -0.03478052467107773, 0.028274979442358017, -0.07335725426673889, 0.0820470005273819, -0.1323360651731491, 0.011274303309619427, 0.052326325327157974, 0.2542121410369873, 0.044810209423303604, -0.31556814908981323, -0.09052421897649765, 0.00866544246673584, -0.02356516383588314, -0.01863424852490425, 0.028864992782473564, 0.08615357428789139, -0.09284189343452454, 0.02936282567679882, -0.07169239223003387, 0.09910397231578827, -0.054707691073417664, 0.0510663241147995, 0.08254608511924744, 0.08267651498317719, 0.005808492656797171, 0.09461677074432373, -0.2964196503162384, 0.2862945795059204, 0.0039495741948485374, 0.05975591763854027, -0.0789700374007225, 0.006556149106472731, 0.046888552606105804, 0.06812030076980591, 0.08470743149518967, -0.013251593336462975, -0.020075054839253426, -0.2003544569015503, -0.0688004121184349, 0.03323981165885925, 0.062028754502534866, -0.046769145876169205, 0.08501488715410233, -0.028460077941417694, 0.009700755588710308, 0.07592134177684784, 0.016847729682922363, -0.05689072608947754, -0.10987614095211029, -0.010992318391799927, 0.0211940910667181, -0.06817856431007385, -0.06148962303996086, -0.12117602676153183, -0.13506893813610077, 0.14350582659244537, -0.035363178700208664, -0.025651419535279274, -0.10787783563137054, 0.08389080315828323, 0.05256499722599983, -0.09024346619844437, 0.03252946212887764, 0.006361968349665403, 0.07474474608898163, 0.02820555865764618, -0.0720175951719284, 0.10513556748628616, -0.07201699167490005, -0.1567019373178482, -0.06933965533971786, 0.09822496026754379, 0.036299943923950195, 0.07195328176021576, -0.016210954636335373, 0.009944227524101734, -0.04810528829693794, -0.08777511119842529, 0.02948813885450363, 0.01058610063046217, 0.06848503649234772, 0.0174538716673851, -0.06458134204149246, 0.023709574714303017, -0.06219806522130966, -0.03656124323606491, 0.20266254246234894, 0.23392795026302338, -0.10307903587818146, 0.016509070992469788, 0.008817926980555058, -0.07866012305021286, -0.19457846879959106, 0.04412205144762993, 0.04552039876580238, 0.016301503404974937, 0.0460701584815979, -0.18476153910160065, 0.14131374657154083, 0.11442817002534866, -0.013105911202728748, 0.10344818979501724, -0.3194306790828705, -0.12042511254549026, 0.14050836861133575, 0.13497504591941833, 0.11862707883119583, -0.13775183260440826, -0.015473544597625732, -0.024572154507040977, -0.14168329536914825, 0.104047492146492, -0.10836904495954514, 0.11888211220502853, -0.04508076608181, 0.06266004592180252, 0.0037345942109823227, -0.05790884792804718, 0.12771525979042053, 0.020587172359228134, 0.10045302659273148, -0.05350383371114731, -0.033641278743743896, 0.03071650117635727, -0.04200958088040352, 0.022741947323083878, -0.11080576479434967, 0.02306830883026123, -0.11522656679153442, -0.02256503328680992, -0.06575943529605865, 0.04976709559559822, -0.04724540561437607, -0.0656195804476738, -0.03238914906978607, 0.01894870586693287, 0.04376131296157837, -0.009512390941381454, 0.13846907019615173, 0.019795814529061317, 0.15673676133155823, 0.08587489277124405, 0.08065654337406158, -0.06639920175075531, -0.07217054069042206, -0.023511311039328575, -0.01077340543270111, 0.05354699864983559, -0.15230706334114075, 0.017872119322419167, 0.14700889587402344, 0.02564365789294243, 0.1493699550628662, 0.08398130536079407, -0.016955314204096794, 0.005387521348893642, 0.05736297369003296, -0.16045571863651276, -0.08898655325174332, -0.022810498252511024, -0.057850807905197144, -0.12351630628108978, 0.04439418017864227, 0.08429817855358124, -0.07308221608400345, -0.007165681105107069, -0.007022528909146786, 0.006990774534642696, -0.059922955930233, 0.17914733290672302, 0.05237842723727226, 0.04748550057411194, -0.0986846312880516, 0.0733439028263092, 0.040773339569568634, -0.07562568783760071, -0.0016482991632074118, 0.06309086829423904, -0.07577116042375565, -0.05331952124834061, 0.07815593481063843, 0.21861189603805542, -0.046605970710515976, -0.044787194579839706, -0.1488434225320816, -0.13134630024433136, 0.07773518562316895, 0.1400838941335678, 0.12035413086414337, 0.011797239072620869, -0.06410318613052368, 0.0008707083179615438, -0.11228730529546738, 0.09598390012979507, 0.04239305108785629, 0.06328403204679489, -0.1388140320777893, 0.1358414888381958, 0.020042940974235535, 0.04542526602745056, -0.01682385802268982, 0.023282723501324654, -0.10045109689235687, 0.009182396344840527, -0.10750310868024826, -0.024285614490509033, -0.026428405195474625, 0.01211906410753727, -0.005861642770469189, -0.04758259654045105, -0.0566759891808033, 0.005985803436487913, -0.10838011652231216, -0.021770738065242767, 0.03533035144209862, 0.07539134472608566, -0.10229399800300598, -0.03510992228984833, 0.031127886846661568, -0.062376491725444794, 0.06643445789813995, 0.03968359902501106, 0.026856200769543648, 0.05519283562898636, -0.14207905530929565, 0.023693231865763664, 0.06791891902685165, 0.025541288778185844, 0.06395706534385681, -0.09913884848356247, -0.008636538870632648, -0.013803153298795223, 0.04345450550317764, 0.01916884072124958, 0.061185795813798904, -0.13449762761592865, -0.0013455058215186, -0.010348033159971237, -0.08741991221904755, -0.06637092679738998, 0.027137411758303642, 0.0962412878870964, 0.012502683326601982, 0.2001606822013855, -0.07415919005870819, 0.05315055325627327, -0.22284531593322754, 0.007784545887261629, -0.009375255554914474, -0.10596857219934464, -0.117481529712677, -0.0776430070400238, 0.058280833065509796, -0.061822276562452316, 0.15235701203346252, 0.0425226092338562, 0.032762084156274796, 0.025983376428484917, -0.013488364405930042, 0.02397947758436203, 0.012583584524691105, 0.20739060640335083, 0.03827144205570221, -0.03573043271899223, 0.06570188701152802, 0.0477876141667366, 0.10386498272418976, 0.12428651750087738, 0.20066112279891968, 0.14294204115867615, -0.015342270024120808, 0.0958690345287323, 0.043385203927755356, -0.06158531829714775, -0.14614607393741608, 0.044377125799655914, -0.034792233258485794, 0.1079014241695404, -0.018612291663885117, 0.21717964112758636, 0.06784909218549728, -0.17057251930236816, 0.04580388590693474, -0.053313955664634705, -0.08039191365242004, -0.12306919693946838, -0.03409576043486595, -0.07853835076093674, -0.1308421641588211, 0.0009298619697801769, -0.1138087809085846, 0.0009946830105036497, 0.12857311964035034, 0.0004376996657811105, -0.02373930811882019, 0.15620113909244537, 0.01808966137468815, 0.03327104076743126, 0.06001606956124306, 0.008834846317768097, -0.037406764924526215, -0.14248812198638916, -0.055841442197561264, -0.010784979909658432, -0.024631042033433914, 0.024992385879158974, -0.0701456367969513, -0.052444834262132645, 0.0370294526219368, -0.019407952204346657, -0.10484905540943146, 0.010788097977638245, 0.003588929073885083, 0.05906722694635391, 0.03694666177034378, 0.008093061856925488, 0.0268037561327219, -0.0061460998840630054, 0.20350411534309387, -0.07954155653715134, -0.05374414101243019, -0.09890949726104736, 0.24820192158222198, 0.03600170463323593, -0.019097449257969856, 0.030537579208612442, -0.06343317031860352, 0.008436888456344604, 0.24792559444904327, 0.21281282603740692, -0.07731661945581436, -0.006568665150552988, 0.01074000634253025, -0.007876424118876457, -0.02606234699487686, 0.09869705140590668, 0.13348488509655, 0.02694064937531948, -0.10093294084072113, -0.04489089176058769, -0.05451182648539543, -0.020151840522885323, -0.02722935564815998, 0.07710536569356918, 0.0591934435069561, 0.005201260559260845, -0.032312966883182526, 0.052586235105991364, -0.06001158803701401, -0.07486385107040405, 0.0692172423005104, -0.21624009311199188, -0.16352620720863342, -0.016660498455166817, 0.10600580275058746, 0.010035257786512375, 0.0684928447008133, -0.02732844464480877, -0.004101307597011328, 0.08941727131605148, -0.018484266474843025, -0.1078256294131279, -0.08087000250816345, 0.08553116768598557, -0.1175895631313324, 0.22102504968643188, -0.045581746846437454, 0.05132993310689926, 0.12591637670993805, 0.06818245351314545, -0.07157515734434128, 0.06208227574825287, 0.03936963155865669, -0.05185438692569733, 0.022042429074645042, 0.06987792253494263, -0.034005582332611084, 0.06092541292309761, 0.04595522955060005, -0.13468651473522186, 0.027433451265096664, -0.06213991343975067, -0.06929901987314224, -0.03811642527580261, -0.020439451560378075, -0.053217582404613495, 0.13125689327716827, 0.22217302024364471, -0.02466833032667637, -0.011345439590513706, -0.0688401386141777, 0.009084232151508331, 0.06049910560250282, 0.030142048373818398, -0.06082216650247574, -0.19785021245479584, 0.018391301855444908, 0.04134780913591385, -0.01892002485692501, -0.26198142766952515, -0.09846517443656921, 0.0023176679387688637, -0.08312686532735825, -0.08758088946342468, 0.06375978142023087, 0.09902011603116989, 0.057703327387571335, -0.05802591145038605, -0.06846413016319275, -0.06341823935508728, 0.15233372151851654, -0.13802897930145264, -0.09735766798257828 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-finetuned-cola This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.9664 - Matthews Correlation: 0.5797 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.5017 | 1.0 | 535 | 0.5252 | 0.4841 | | 0.2903 | 2.0 | 1070 | 0.5550 | 0.4967 | | 0.1839 | 3.0 | 1605 | 0.7295 | 0.5634 | | 0.1132 | 4.0 | 2140 | 0.7762 | 0.5702 | | 0.08 | 5.0 | 2675 | 0.9664 | 0.5797 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.18.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["glue"], "metrics": ["matthews_correlation"], "model-index": [{"name": "bert-base-uncased-finetuned-cola", "results": [{"task": {"type": "text-classification", "name": "Text Classification"}, "dataset": {"name": "glue", "type": "glue", "args": "cola"}, "metrics": [{"type": "matthews_correlation", "value": 0.5796941781913538, "name": "Matthews Correlation"}]}]}]}
text-classification
anirudh21/bert-base-uncased-finetuned-cola
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #bert #text-classification #generated_from_trainer #dataset-glue #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us
bert-base-uncased-finetuned-cola ================================ This model is a fine-tuned version of bert-base-uncased on the glue dataset. It achieves the following results on the evaluation set: * Loss: 0.9664 * Matthews Correlation: 0.5797 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 16 * eval\_batch\_size: 16 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 5 ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.10.0+cu111 * Datasets 1.18.0 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.0+cu111\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #bert #text-classification #generated_from_trainer #dataset-glue #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.0+cu111\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ 65, 98, 4, 35 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #bert #text-classification #generated_from_trainer #dataset-glue #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.0+cu111\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ -0.11325017362833023, 0.0812758356332779, -0.0017998769180849195, 0.12009552121162415, 0.16387249529361725, 0.03597983717918396, 0.11156629025936127, 0.12876233458518982, -0.08335161954164505, 0.02751629427075386, 0.1264062076807022, 0.15765658020973206, 0.019992440938949585, 0.12018559128046036, -0.04816516116261482, -0.26051899790763855, -0.010511714965105057, 0.05137874186038971, -0.05034004524350166, 0.13128826022148132, 0.08885212242603302, -0.12818656861782074, 0.0962095707654953, 0.01392721850425005, -0.19697393476963043, 0.002868467941880226, 0.009638463146984577, -0.05619091913104057, 0.14565445482730865, 0.028437048196792603, 0.12006663531064987, -0.0032987322192639112, 0.08477217704057693, -0.19016307592391968, 0.011393117718398571, 0.04880033805966377, 0.0022858590818941593, 0.09458186477422714, 0.050123583525419235, 0.003134331200271845, 0.1275525540113449, -0.08717275410890579, 0.05313878133893013, 0.02806706912815571, -0.11805792152881622, -0.22305718064308167, -0.07618046551942825, 0.04159955307841301, 0.0740705281496048, 0.11006677150726318, -0.005639785435050726, 0.1308141052722931, -0.08605938404798508, 0.08880318701267242, 0.23550336062908173, -0.30583614110946655, -0.06443625688552856, 0.03265710920095444, 0.012285517528653145, 0.03883311152458191, -0.1104314923286438, -0.03320043161511421, 0.05513565614819527, 0.04949193447828293, 0.12685690820217133, -0.03112470917403698, -0.11342370510101318, 0.012215370312333107, -0.13411471247673035, -0.026288814842700958, 0.1539786458015442, 0.04028100147843361, -0.03150342404842377, -0.05181613191962242, -0.05343287065625191, -0.15177714824676514, -0.03826058283448219, -0.0056069716811180115, 0.04760108143091202, -0.027068566530942917, -0.05595731362700462, 0.0036838229279965162, -0.1128939539194107, -0.06788966804742813, -0.08033433556556702, 0.12181299179792404, 0.033589623868465424, 0.015907712280750275, -0.0370270200073719, 0.109775111079216, -0.012047775089740753, -0.13138563930988312, 0.014832996763288975, 0.025630218908190727, 0.009522379375994205, -0.044848375022411346, -0.052508819848299026, -0.05302315577864647, 0.01229069847613573, 0.13055101037025452, -0.05346065014600754, 0.04409528151154518, 0.05234171450138092, 0.04307950660586357, -0.09279292076826096, 0.19667470455169678, -0.038260214030742645, -0.02218792960047722, 0.006767041981220245, 0.03915246203541756, 0.01817500777542591, -0.01055796816945076, -0.11901400238275528, 0.0019544779788702726, 0.08567898720502853, 0.006048509385436773, -0.06584642827510834, 0.07457306236028671, -0.05257037654519081, -0.017383383587002754, 0.0006280068191699684, -0.0888577327132225, 0.030389923602342606, 0.002498867455869913, -0.07382941991090775, -0.021265869960188866, 0.0300530344247818, 0.015772582963109016, -0.019487250596284866, 0.12534859776496887, -0.09381720423698425, 0.029932312667369843, -0.09329327195882797, -0.10815554112195969, 0.022634536027908325, -0.09775605797767639, 0.028863679617643356, -0.09573209285736084, -0.1677841991186142, -0.013606186956167221, 0.0570659302175045, -0.028021475300192833, -0.060382694005966187, -0.04458434879779816, -0.06752058118581772, 0.01605340465903282, -0.011641287244856358, 0.13161610066890717, -0.06672880053520203, 0.09067602455615997, 0.03318045288324356, 0.0643010064959526, -0.04610082507133484, 0.0545768141746521, -0.104961097240448, 0.01095003355294466, -0.16204912960529327, 0.025268353521823883, -0.046960558742284775, 0.08063752204179764, -0.08346693217754364, -0.09894329309463501, 0.008691877126693726, -0.0016926821554079652, 0.06715283542871475, 0.09742321074008942, -0.1710415780544281, -0.08145228773355484, 0.1614946871995926, -0.07140012830495834, -0.1350884735584259, 0.11643988639116287, -0.0545065701007843, 0.049516938626766205, 0.06354523450136185, 0.16835786402225494, 0.06510867923498154, -0.09108350425958633, -0.008360018953680992, 0.02844308875501156, 0.053611110895872116, -0.08353448659181595, 0.07455205917358398, 0.00392266595736146, 0.012171769514679909, 0.035311244428157806, -0.022403843700885773, 0.06179405376315117, -0.09068257361650467, -0.09588084369897842, -0.043618425726890564, -0.08639056235551834, 0.032657064497470856, 0.07789120078086853, 0.07061269134283066, -0.09810224920511246, -0.08729390799999237, 0.046419985592365265, 0.07929067313671112, -0.04685145616531372, 0.02679145336151123, -0.05538740009069443, 0.07372362166643143, -0.037138938903808594, -0.024889251217246056, -0.17947198450565338, -0.031591761857271194, 0.0025699553079903126, 0.00027104539913125336, 0.013970430940389633, 0.019852332770824432, 0.06701859831809998, 0.05625145882368088, -0.052319593727588654, -0.014577965252101421, -0.022202685475349426, -0.0010289466008543968, -0.13953229784965515, -0.2043076455593109, -0.03315692022442818, -0.022695127874612808, 0.141119122505188, -0.2048681080341339, 0.040859151631593704, -0.008060089312493801, 0.07516436278820038, 0.00908584799617529, -0.003364209784194827, -0.04505103826522827, 0.07078433781862259, -0.03831224516034126, -0.04826338216662407, 0.07603529095649719, 0.01888037845492363, -0.09175366163253784, -0.042933713644742966, -0.0914168655872345, 0.1744447946548462, 0.1380210965871811, -0.11001050472259521, -0.07561561465263367, -0.013212217949330807, -0.06705914437770844, -0.03366536274552345, -0.05237497016787529, 0.0310813020914793, 0.1884153038263321, -0.004342822823673487, 0.1502731442451477, -0.06727545708417892, -0.050321921706199646, 0.024544494226574898, -0.03312907740473747, 0.02288474328815937, 0.12549304962158203, 0.13732585310935974, -0.0625513568520546, 0.15156804025173187, 0.14943420886993408, -0.09030985087156296, 0.13565336167812347, -0.04143119975924492, -0.07433126121759415, -0.015361492522060871, -0.037960514426231384, -0.007015106733888388, 0.1112690195441246, -0.1571711301803589, -0.00569313345476985, 0.03188199922442436, 0.015982702374458313, 0.024935567751526833, -0.22176682949066162, -0.038873136043548584, 0.03447072207927704, -0.034860335290431976, -0.020748944953083992, -0.012351339682936668, 0.0049042352475225925, 0.1071660965681076, 0.009230108000338078, -0.07983247935771942, 0.035771407186985016, 0.007041286677122116, -0.08509243279695511, 0.22050073742866516, -0.0732455626130104, -0.15531153976917267, -0.12630519270896912, -0.07531169056892395, -0.04058314859867096, -0.002001648535951972, 0.06999749690294266, -0.09772171080112457, -0.03454066812992096, -0.06494801491498947, 0.026123855262994766, 0.002242924179881811, 0.038012176752090454, 0.0022714107763022184, 0.0032895600888878107, 0.06618290394544601, -0.10766226053237915, -0.017943644896149635, -0.060056332498788834, -0.04557625949382782, 0.03699665516614914, 0.03504917398095131, 0.11433953791856766, 0.1497831493616104, -0.014221231453120708, 0.013781113550066948, -0.03170427307486534, 0.23820388317108154, -0.06084933876991272, -0.026581011712551117, 0.13501763343811035, -0.0076615759171545506, 0.04777873679995537, 0.12092947214841843, 0.07617264240980148, -0.07880193740129471, 0.002600674517452717, 0.03899788483977318, -0.03430943936109543, -0.23151859641075134, -0.04990599676966667, -0.05700865015387535, 0.003815891221165657, 0.09155996143817902, 0.028392238542437553, 0.031110122799873352, 0.07152868807315826, 0.0391230545938015, 0.07864564657211304, -0.05178530141711235, 0.05781975015997887, 0.1154990866780281, 0.03813260793685913, 0.127434641122818, -0.05280769616365433, -0.062106065452098846, 0.044395819306373596, -0.018649987876415253, 0.21916259825229645, 0.003968053963035345, 0.13120047748088837, 0.055209796875715256, 0.1672869324684143, -0.0032082071993499994, 0.08467075973749161, -0.010750634595751762, -0.04991510882973671, -0.010758607648313046, -0.03968540206551552, -0.03318402171134949, 0.02596471644937992, -0.07350622117519379, 0.07018791139125824, -0.12936514616012573, 0.008289091289043427, 0.059413567185401917, 0.24862781167030334, 0.04488257318735123, -0.32264694571495056, -0.0988081842660904, 0.0020014536567032337, -0.02992011047899723, -0.02737218514084816, 0.025928953662514687, 0.08604683727025986, -0.09423001855611801, 0.031115587800741196, -0.06771036982536316, 0.10112819820642471, -0.04301420971751213, 0.05122147873044014, 0.08861610293388367, 0.09055721759796143, 0.0049886442720890045, 0.09118586778640747, -0.2906533181667328, 0.2798357307910919, 0.006987671833485365, 0.06918463855981827, -0.08365077525377274, 0.006707466207444668, 0.03907150775194168, 0.06553469598293304, 0.08288156241178513, -0.014953190460801125, -0.039788488298654556, -0.19358643889427185, -0.06484533101320267, 0.0339672788977623, 0.06623050570487976, -0.03288320079445839, 0.08651845902204514, -0.031395073980093, 0.007457742467522621, 0.07362592965364456, 0.008733662776648998, -0.04875722900032997, -0.10116855055093765, -0.010509002022445202, 0.02958148531615734, -0.06401415169239044, -0.06195148453116417, -0.1207931861281395, -0.12192783504724503, 0.1639934778213501, -0.03318662568926811, -0.03521491587162018, -0.11417360603809357, 0.08966812491416931, 0.06180043891072273, -0.0941837728023529, 0.038484714925289154, -0.0009707536664791405, 0.07954935729503632, 0.02598000504076481, -0.07708893716335297, 0.11154722422361374, -0.07479967921972275, -0.15117181837558746, -0.06584189832210541, 0.10492885112762451, 0.027630958706140518, 0.06822939962148666, -0.013515608385205269, 0.012359414249658585, -0.05078385770320892, -0.09151500463485718, 0.017749764025211334, -0.009329475462436676, 0.07841002941131592, 0.0031738318502902985, -0.06693345308303833, 0.012862754054367542, -0.054870735853910446, -0.03405337408185005, 0.20014168322086334, 0.21855491399765015, -0.10459254682064056, 0.019309353083372116, 0.025887245312333107, -0.07127265632152557, -0.20469018816947937, 0.03517827019095421, 0.04953690990805626, 0.012814527377486229, 0.032210033386945724, -0.17098402976989746, 0.1580735146999359, 0.10622065514326096, -0.015065732412040234, 0.10073093324899673, -0.299551397562027, -0.12669068574905396, 0.14076679944992065, 0.13006934523582458, 0.12501086294651031, -0.13742731511592865, -0.021279647946357727, -0.025343095883727074, -0.14574852585792542, 0.10519156605005264, -0.10746797174215317, 0.11452843248844147, -0.03742414340376854, 0.07620010524988174, 0.002816242864355445, -0.06205955520272255, 0.11955329775810242, 0.026662414893507957, 0.09018383920192719, -0.06074850261211395, -0.042297229170799255, 0.0341629758477211, -0.04408671706914902, 0.03661029040813446, -0.10185978561639786, 0.026655469089746475, -0.10676504671573639, -0.026511017233133316, -0.0700063407421112, 0.04556037113070488, -0.04346230998635292, -0.06344757974147797, -0.03487858176231384, 0.022959129884839058, 0.04026412591338158, -0.0137229198589921, 0.13840116560459137, 0.021211916580796242, 0.15411525964736938, 0.09435506165027618, 0.07961063086986542, -0.08547985553741455, -0.0797184407711029, -0.015108020976185799, -0.01672511175274849, 0.05510300397872925, -0.14676183462142944, 0.02361373044550419, 0.1522795557975769, 0.023286614567041397, 0.13679563999176025, 0.0861886516213417, -0.021892758086323738, -0.0019361572340130806, 0.0652974396944046, -0.1634119302034378, -0.08178110420703888, -0.014039850793778896, -0.061166077852249146, -0.13189998269081116, 0.048213761299848557, 0.0864153578877449, -0.06775419414043427, -0.008551523089408875, -0.00740694859996438, 0.006305362097918987, -0.05940462648868561, 0.18928800523281097, 0.06243189051747322, 0.04615224152803421, -0.10399850457906723, 0.06477366387844086, 0.04499476030468941, -0.07792001962661743, 0.003070139791816473, 0.07963893562555313, -0.08338174968957901, -0.052400678396224976, 0.08749459683895111, 0.19778034090995789, -0.05147331953048706, -0.05141191557049751, -0.1413978934288025, -0.13067592680454254, 0.08519208431243896, 0.1525023728609085, 0.12004642188549042, 0.013027970679104328, -0.059264328330755234, 0.003653865307569504, -0.11338938027620316, 0.09490028768777847, 0.04414375126361847, 0.06387224793434143, -0.14424721896648407, 0.1478741616010666, 0.014303641393780708, 0.05093104764819145, -0.020217612385749817, 0.03035593591630459, -0.11080899834632874, 0.00768400589004159, -0.10925600677728653, -0.014188872650265694, -0.03684592247009277, 0.0077499947510659695, -0.0033408727031201124, -0.054110124707221985, -0.06255713850259781, 0.011927232146263123, -0.1080976277589798, -0.021136194467544556, 0.030454004183411598, 0.06746035814285278, -0.1149725690484047, -0.03279729187488556, 0.027025137096643448, -0.06026068702340126, 0.06934566795825958, 0.04836318641901016, 0.024385672062635422, 0.058933038264513016, -0.13959120213985443, 0.01653558574616909, 0.0693189948797226, 0.020435437560081482, 0.0718948245048523, -0.09006860852241516, -0.006668671499937773, -0.002739422954618931, 0.04672892019152641, 0.02170906402170658, 0.07274547964334488, -0.14131338894367218, -0.0019496014574542642, -0.01645248383283615, -0.08669720590114594, -0.06424178183078766, 0.0252529326826334, 0.09883679449558258, 0.010830315761268139, 0.19647841155529022, -0.07557108253240585, 0.04333958774805069, -0.22063951194286346, 0.011873209848999977, -0.01501546148210764, -0.10546151548624039, -0.10812777280807495, -0.0694873109459877, 0.06165764853358269, -0.05573686584830284, 0.15247857570648193, 0.043157633394002914, 0.03789886459708214, 0.03379714488983154, -0.005651878193020821, 0.018328923732042313, 0.015883320942521095, 0.20190127193927765, 0.03162865713238716, -0.0364995002746582, 0.06019076332449913, 0.04753594845533371, 0.1018684133887291, 0.125466987490654, 0.2096361517906189, 0.14029313623905182, 0.009925403632223606, 0.09996341168880463, 0.04067710041999817, -0.0595560185611248, -0.15866446495056152, 0.0363604910671711, -0.04750402644276619, 0.10207531601190567, -0.02192346751689911, 0.21357475221157074, 0.07121794670820236, -0.1699521839618683, 0.04399692267179489, -0.06269006431102753, -0.08588816970586777, -0.12070256471633911, -0.04586905241012573, -0.08106168359518051, -0.1309642642736435, 0.0001321805320912972, -0.11273068934679031, -0.0012162922648712993, 0.12198466807603836, 0.003683202899992466, -0.023600250482559204, 0.16350850462913513, 0.011624647304415703, 0.029433852061629295, 0.0566394217312336, 0.011841543018817902, -0.033431462943553925, -0.12000541388988495, -0.050130732357501984, -0.01859196648001671, -0.01961885765194893, 0.028178444132208824, -0.06570537388324738, -0.05181530490517616, 0.039616916328668594, -0.01562797836959362, -0.09667304158210754, 0.007670079357922077, 0.011419818736612797, 0.06166885048151016, 0.047199420630931854, 0.005478383507579565, 0.024718012660741806, -0.00981750525534153, 0.2050236016511917, -0.08058343827724457, -0.06479468941688538, -0.10787871479988098, 0.24570158123970032, 0.036584436893463135, -0.021753570064902306, 0.029966039583086967, -0.06766568124294281, 0.001812550937756896, 0.2563922703266144, 0.21230579912662506, -0.07576889544725418, -0.005493332166224718, 0.014079378917813301, -0.007522681262344122, -0.02169375866651535, 0.09983312338590622, 0.1424679160118103, 0.06358201801776886, -0.10010802745819092, -0.043535325676202774, -0.05389847978949547, -0.01864388771355152, -0.034852199256420135, 0.07309868186712265, 0.049223218113183975, 0.006786705926060677, -0.03663778677582741, 0.05149189755320549, -0.06335853785276413, -0.08562761545181274, 0.06320024281740189, -0.2137106955051422, -0.16493570804595947, -0.013268045149743557, 0.10432645678520203, 0.009276872500777245, 0.06678687036037445, -0.02361975610256195, -0.0030751030426472425, 0.08530234545469284, -0.019469894468784332, -0.10770940780639648, -0.08061136305332184, 0.09170249849557877, -0.10910338163375854, 0.22337853908538818, -0.0447578951716423, 0.05735598877072334, 0.12990860641002655, 0.0712352991104126, -0.07847760617733002, 0.05848822370171547, 0.03836846724152565, -0.06419610232114792, 0.026543453335762024, 0.0695822536945343, -0.038894206285476685, 0.05666741356253624, 0.04231509193778038, -0.14395594596862793, 0.022577930241823196, -0.06142842397093773, -0.06316056102514267, -0.04586682468652725, -0.023666471242904663, -0.059554725885391235, 0.13229267299175262, 0.21798373758792877, -0.02747350186109543, -0.012410398572683334, -0.07058558613061905, 0.01229069009423256, 0.05498321354389191, 0.021564923226833344, -0.06255114823579788, -0.2111641764640808, 0.022540688514709473, 0.046501778066158295, -0.020975574851036072, -0.2504262924194336, -0.097313292324543, 0.002028163056820631, -0.07102660834789276, -0.0982884019613266, 0.06894835084676743, 0.09115249663591385, 0.05199338123202324, -0.05813044682145119, -0.05868222564458847, -0.06910606473684311, 0.1469157636165619, -0.1437578797340393, -0.0993814542889595 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-finetuned-mrpc This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.6645 - Accuracy: 0.7917 - F1: 0.8590 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | No log | 1.0 | 63 | 0.5387 | 0.7402 | 0.8349 | | No log | 2.0 | 126 | 0.5770 | 0.7696 | 0.8513 | | No log | 3.0 | 189 | 0.5357 | 0.7574 | 0.8223 | | No log | 4.0 | 252 | 0.6645 | 0.7917 | 0.8590 | | No log | 5.0 | 315 | 0.6977 | 0.7721 | 0.8426 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.18.1 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["glue"], "metrics": ["accuracy", "f1"], "model-index": [{"name": "bert-base-uncased-finetuned-mrpc", "results": [{"task": {"type": "text-classification", "name": "Text Classification"}, "dataset": {"name": "glue", "type": "glue", "args": "mrpc"}, "metrics": [{"type": "accuracy", "value": 0.7916666666666666, "name": "Accuracy"}, {"type": "f1", "value": 0.8590381426202321, "name": "F1"}]}]}]}
text-classification
anirudh21/bert-base-uncased-finetuned-mrpc
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #bert #text-classification #generated_from_trainer #dataset-glue #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us
bert-base-uncased-finetuned-mrpc ================================ This model is a fine-tuned version of bert-base-uncased on the glue dataset. It achieves the following results on the evaluation set: * Loss: 0.6645 * Accuracy: 0.7917 * F1: 0.8590 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 16 * eval\_batch\_size: 16 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 5 ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.10.0+cu111 * Datasets 1.18.1 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.0+cu111\n* Datasets 1.18.1\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #bert #text-classification #generated_from_trainer #dataset-glue #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.0+cu111\n* Datasets 1.18.1\n* Tokenizers 0.10.3" ]
[ 65, 98, 4, 33 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #bert #text-classification #generated_from_trainer #dataset-glue #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.0+cu111\n* Datasets 1.18.1\n* Tokenizers 0.10.3" ]
[ -0.11133186519145966, 0.08905862271785736, -0.0019529515411704779, 0.11926262825727463, 0.16365353763103485, 0.04162043333053589, 0.1258639693260193, 0.12645882368087769, -0.07455145567655563, 0.022976869717240334, 0.12096518278121948, 0.15348933637142181, 0.023043740540742874, 0.10704247653484344, -0.040501244366168976, -0.26026225090026855, -0.013247538357973099, 0.04851532354950905, -0.06437662988901138, 0.13277100026607513, 0.0866004005074501, -0.12581570446491241, 0.09601885080337524, 0.009649556130170822, -0.19422127306461334, 0.0017206711927428842, 0.007977565750479698, -0.05212786793708801, 0.15086549520492554, 0.02926788479089737, 0.12350449711084366, 0.0014905447605997324, 0.08821775764226913, -0.19845278561115265, 0.011854307726025581, 0.04817909002304077, 0.0027517774142324924, 0.0955868512392044, 0.051991056650877, 0.007646949961781502, 0.12070808559656143, -0.07913677394390106, 0.05419687181711197, 0.0324590690433979, -0.12292025983333588, -0.22264188528060913, -0.07268179953098297, 0.040208227932453156, 0.06921274960041046, 0.10662046819925308, -0.006979895289987326, 0.12474232167005539, -0.09115926176309586, 0.08684293180704117, 0.2320433109998703, -0.29412421584129333, -0.06459763646125793, 0.04311281442642212, 0.01435175258666277, 0.04788975790143013, -0.11191442608833313, -0.03154014050960541, 0.05195839703083038, 0.0461265929043293, 0.12408581376075745, -0.02880127541720867, -0.11727513372898102, 0.017000213265419006, -0.13744957745075226, -0.023232145234942436, 0.15813182294368744, 0.04339705780148506, -0.028095675632357597, -0.04658012092113495, -0.05194289609789848, -0.15150019526481628, -0.0341365784406662, -0.009446341544389725, 0.050389364361763, -0.026576237753033638, -0.05501849949359894, -0.0005341381765902042, -0.11177557706832886, -0.07694505900144577, -0.07482677698135376, 0.12085600942373276, 0.033654965460300446, 0.013262685388326645, -0.03246248513460159, 0.11479304730892181, -0.011589611880481243, -0.12685932219028473, 0.022527087479829788, 0.027043979614973068, 0.0019975421018898487, -0.04214833676815033, -0.05068589746952057, -0.048043690621852875, 0.016031749546527863, 0.13082049787044525, -0.04954429715871811, 0.042875126004219055, 0.059499725699424744, 0.04633919149637222, -0.09586818516254425, 0.1958521455526352, -0.043208133429288864, -0.027714340016245842, -0.006344474386423826, 0.048830073326826096, 0.013338039629161358, -0.010817881673574448, -0.1172495111823082, 0.0006783725111745298, 0.08582327514886856, 0.007432086858898401, -0.06191590428352356, 0.0717836543917656, -0.06002074480056763, -0.021904723718762398, -0.002673383802175522, -0.08606187254190445, 0.024990789592266083, 0.006296610459685326, -0.0766998827457428, -0.021041015163064003, 0.03123394027352333, 0.016464808955788612, -0.013112714514136314, 0.11979532986879349, -0.09522491693496704, 0.02930484339594841, -0.09236255288124084, -0.11073702573776245, 0.019086187705397606, -0.0985613614320755, 0.02576073631644249, -0.09113888442516327, -0.16786926984786987, -0.013992294669151306, 0.05608450621366501, -0.027498900890350342, -0.05760985240340233, -0.0475313775241375, -0.06458979099988937, 0.012755324132740498, -0.009550596587359905, 0.12700213491916656, -0.06766325980424881, 0.09375490248203278, 0.03293578326702118, 0.06472074240446091, -0.04454372823238373, 0.05696758255362511, -0.10222452878952026, 0.00863958615809679, -0.1531236618757248, 0.025275954976677895, -0.054325055330991745, 0.07460157573223114, -0.08293235301971436, -0.0979761928319931, 0.006310020573437214, 0.001816469244658947, 0.0621962696313858, 0.10018028318881989, -0.17708736658096313, -0.08879605680704117, 0.16124749183654785, -0.0710144191980362, -0.13228903710842133, 0.11820337921380997, -0.05107412859797478, 0.054325610399246216, 0.06299453973770142, 0.16892650723457336, 0.07679277658462524, -0.08739560097455978, -0.003738977015018463, 0.03158546984195709, 0.05849802494049072, -0.07640291005373001, 0.07802613079547882, -0.0030734259635210037, 0.009865626692771912, 0.033974140882492065, -0.03170346841216087, 0.06573118269443512, -0.09504654258489609, -0.09940528124570847, -0.037974968552589417, -0.08879686892032623, 0.044805895537137985, 0.08003824949264526, 0.06611926853656769, -0.09458979964256287, -0.08521248400211334, 0.04980127513408661, 0.08448254317045212, -0.04761314392089844, 0.020896904170513153, -0.05010635033249855, 0.06983544677495956, -0.032594289630651474, -0.02474372647702694, -0.17688089609146118, -0.037930309772491455, 0.003483257722109556, -0.0039383661933243275, 0.02035306766629219, 0.03337440267205238, 0.06896461546421051, 0.06123299151659012, -0.053501445800065994, -0.02038055844604969, -0.03648308664560318, -0.00002287392817379441, -0.1335783153772354, -0.21121446788311005, -0.03343959152698517, -0.019917041063308716, 0.15845483541488647, -0.20825287699699402, 0.04502106085419655, -0.011167707853019238, 0.07090239226818085, 0.012584364973008633, -0.005436633713543415, -0.044851191341876984, 0.0748448297381401, -0.03540888428688049, -0.04858015850186348, 0.07784289866685867, 0.011372145265340805, -0.09612031280994415, -0.049932003021240234, -0.09360146522521973, 0.17633934319019318, 0.13601675629615784, -0.11704548448324203, -0.07527592033147812, -0.016421815380454063, -0.06632382422685623, -0.036007825285196304, -0.04987955093383789, 0.025685802102088928, 0.1804990917444229, -0.003062593284994364, 0.1465587466955185, -0.06498240679502487, -0.043712347745895386, 0.020373014733195305, -0.033853475004434586, 0.025405069813132286, 0.13192012906074524, 0.1413542479276657, -0.05207671597599983, 0.1545637845993042, 0.15501214563846588, -0.08902566134929657, 0.14543376863002777, -0.04214373603463173, -0.0748271718621254, -0.016834532842040062, -0.03663995862007141, -0.008665396831929684, 0.11529027670621872, -0.16037599742412567, -0.005457292776554823, 0.02912897802889347, 0.014270984567701817, 0.02504456229507923, -0.2274867594242096, -0.04320798069238663, 0.03586262837052345, -0.04130497947335243, -0.01643715798854828, -0.014064619317650795, 0.0027289174031466246, 0.10714861750602722, 0.005249135196208954, -0.08377781510353088, 0.030804669484496117, 0.003663246054202318, -0.08201051503419876, 0.22146055102348328, -0.07282085716724396, -0.15294183790683746, -0.13444940745830536, -0.06660070270299911, -0.04344457760453224, -0.0014246109640225768, 0.06601156294345856, -0.10414940118789673, -0.028113164007663727, -0.06262822449207306, 0.03830212354660034, 0.004589039832353592, 0.03437737375497818, -0.004018603358417749, 0.00657397136092186, 0.06800608336925507, -0.11233603954315186, -0.013323396444320679, -0.06123647093772888, -0.054307855665683746, 0.03794674575328827, 0.03348831459879875, 0.1152501180768013, 0.15420082211494446, -0.008943500928580761, 0.009582378901541233, -0.02896696701645851, 0.23741787672042847, -0.06176336109638214, -0.02700284868478775, 0.1373521089553833, -0.007044375408440828, 0.046653326600790024, 0.11434922367334366, 0.08235130459070206, -0.07713320851325989, 0.001954220002517104, 0.04405386000871658, -0.030877048149704933, -0.23404191434383392, -0.04935338348150253, -0.05210452526807785, 0.010211923159658909, 0.08878380060195923, 0.0263607706874609, 0.033074650913476944, 0.0701175332069397, 0.03870290890336037, 0.07352612167596817, -0.04850434139370918, 0.04964708164334297, 0.11228486150503159, 0.03282718360424042, 0.1266881227493286, -0.04986396059393883, -0.06297986954450607, 0.043346017599105835, -0.015013319440186024, 0.2204647958278656, 0.010978217236697674, 0.13841557502746582, 0.06098794937133789, 0.1687219887971878, -0.007599520031362772, 0.07964138686656952, -0.006470580119639635, -0.0480966717004776, -0.012450417503714561, -0.042461179196834564, -0.03277895227074623, 0.02386617846786976, -0.0633908063173294, 0.07316172122955322, -0.12784387171268463, 0.002153912326321006, 0.05816841125488281, 0.24054603278636932, 0.043740857392549515, -0.31777966022491455, -0.09679872542619705, 0.0009995258878916502, -0.02303040400147438, -0.019651269540190697, 0.023238854482769966, 0.09026823192834854, -0.09268199652433395, 0.023662075400352478, -0.06703127175569534, 0.09906945377588272, -0.051414329558610916, 0.052619848400354385, 0.09066727012395859, 0.09268876165151596, 0.004245291464030743, 0.09179902076721191, -0.2841222882270813, 0.2825339734554291, 0.006451143883168697, 0.06203732267022133, -0.07681001722812653, 0.004484171513468027, 0.042655907571315765, 0.0672745406627655, 0.07669815421104431, -0.013844494707882404, -0.013681527227163315, -0.20734888315200806, -0.06543828547000885, 0.03263978287577629, 0.07243955135345459, -0.045596618205308914, 0.08456134051084518, -0.03200501576066017, 0.009431060403585434, 0.07785575091838837, 0.007943558506667614, -0.05700425058603287, -0.0989052876830101, -0.0066357944160699844, 0.026470888406038284, -0.058259185403585434, -0.06398952752351761, -0.1230858787894249, -0.12608890235424042, 0.15262210369110107, -0.044219762086868286, -0.03065975196659565, -0.11101675778627396, 0.08675365895032883, 0.06787785142660141, -0.09378422051668167, 0.03687017410993576, 0.0008370286086574197, 0.07200143486261368, 0.029249131679534912, -0.07188139110803604, 0.11157342791557312, -0.07399313151836395, -0.1556416153907776, -0.06647086888551712, 0.104044109582901, 0.0331459641456604, 0.06995214521884918, -0.019532447680830956, 0.00719364732503891, -0.04930555820465088, -0.09108687192201614, 0.020983189344406128, -0.006218554452061653, 0.0660010576248169, 0.01643621176481247, -0.07195252925157547, 0.016427665948867798, -0.0584491491317749, -0.03676079213619232, 0.195094496011734, 0.231685072183609, -0.10245425999164581, 0.014935157261788845, 0.0347125418484211, -0.07203398644924164, -0.20408256351947784, 0.03791389986872673, 0.04614792764186859, 0.011792877689003944, 0.04392878711223602, -0.18103481829166412, 0.15197651088237762, 0.1111534908413887, -0.014523960649967194, 0.10267108678817749, -0.3126608729362488, -0.1235581636428833, 0.14298833906650543, 0.1342335194349289, 0.11511382460594177, -0.14407789707183838, -0.024876737967133522, -0.02181370183825493, -0.1444968283176422, 0.11025463044643402, -0.1117299497127533, 0.12037906050682068, -0.0398285835981369, 0.06697919219732285, 0.0030573406256735325, -0.060316167771816254, 0.1276148408651352, 0.024638628587126732, 0.09279965609312057, -0.05677800625562668, -0.04094500467181206, 0.03420594707131386, -0.039200082421302795, 0.03079371154308319, -0.10382209718227386, 0.025593414902687073, -0.10117554664611816, -0.02422892302274704, -0.07245633751153946, 0.045847080647945404, -0.046680010855197906, -0.06783711165189743, -0.033105358481407166, 0.028009602800011635, 0.031175268813967705, -0.013056238181889057, 0.12842966616153717, 0.018968183547258377, 0.15660439431667328, 0.09254854172468185, 0.07436569780111313, -0.07338538765907288, -0.08729100972414017, -0.020110439509153366, -0.015169162303209305, 0.05668302997946739, -0.14192290604114532, 0.019950851798057556, 0.1506595015525818, 0.024422260001301765, 0.14566189050674438, 0.0867476612329483, -0.02538667619228363, -0.004407581873238087, 0.06520739942789078, -0.16033421456813812, -0.08821505308151245, -0.018662557005882263, -0.06888008862733841, -0.13312126696109772, 0.04920397698879242, 0.08933067321777344, -0.06783970445394516, -0.005022241733968258, -0.005429842043668032, 0.005148249678313732, -0.05956215411424637, 0.19488242268562317, 0.06826712936162949, 0.04803852364420891, -0.09914720803499222, 0.06858506798744202, 0.04464946314692497, -0.07150598615407944, -0.005870631895959377, 0.07404763996601105, -0.08173765242099762, -0.053046490997076035, 0.07989339530467987, 0.20063315331935883, -0.052188098430633545, -0.05016574636101723, -0.1473959982395172, -0.12722855806350708, 0.07782372087240219, 0.14665807783603668, 0.12170588970184326, 0.014889874495565891, -0.05797991901636124, 0.006879615131765604, -0.10471697151660919, 0.09580202400684357, 0.04195791110396385, 0.06361298263072968, -0.1446261703968048, 0.14945848286151886, 0.018656911328434944, 0.04625488072633743, -0.01877550035715103, 0.026508020237088203, -0.11395233124494553, 0.006303508300334215, -0.1044108048081398, -0.023725476115942, -0.02777123637497425, 0.009469111450016499, -0.003293682122603059, -0.0564289465546608, -0.05815250054001808, 0.007981112226843834, -0.10841017216444016, -0.023606132715940475, 0.03359111398458481, 0.07412499189376831, -0.11748779565095901, -0.03310609608888626, 0.03258558735251427, -0.05866628140211105, 0.06956537067890167, 0.041607704013586044, 0.027655839920043945, 0.062097810208797455, -0.1473986804485321, 0.019762378185987473, 0.06487227231264114, 0.022647852078080177, 0.06713290512561798, -0.08713969588279724, -0.010961699299514294, -0.014117802493274212, 0.05160350725054741, 0.021655473858118057, 0.07142218202352524, -0.13985759019851685, -0.0021922437008470297, -0.022398816421628, -0.09011746197938919, -0.06335126608610153, 0.026643486693501472, 0.09845574200153351, 0.013312122784554958, 0.1954699158668518, -0.07467038184404373, 0.04432955011725426, -0.22673293948173523, 0.012374944984912872, -0.012795829214155674, -0.10381277650594711, -0.10733368992805481, -0.07530756294727325, 0.05926626920700073, -0.058445077389478683, 0.14853167533874512, 0.03978360444307327, 0.03640449047088623, 0.030186934396624565, -0.004084479529410601, 0.017567522823810577, 0.014031066559255123, 0.20188163220882416, 0.03866882249712944, -0.03264259919524193, 0.057398777455091476, 0.049991462379693985, 0.09843739122152328, 0.11804857105016708, 0.20447298884391785, 0.1436595320701599, -0.00314920162782073, 0.09408754110336304, 0.048237256705760956, -0.06430841237306595, -0.14881686866283417, 0.04514099285006523, -0.04295225813984871, 0.09882565587759018, -0.02223559468984604, 0.22379912436008453, 0.06590496003627777, -0.16823959350585938, 0.045339588075876236, -0.0586080364882946, -0.08733558654785156, -0.12066669017076492, -0.03335215151309967, -0.07706573605537415, -0.1345870941877365, -0.0034736711531877518, -0.11086759716272354, -0.004712322261184454, 0.13174545764923096, 0.00435912050306797, -0.022046202793717384, 0.16329890489578247, 0.01685476116836071, 0.027369504794478416, 0.05427151545882225, 0.011038078926503658, -0.03601040318608284, -0.13445979356765747, -0.0557694211602211, -0.014484543353319168, -0.012583866715431213, 0.024787230417132378, -0.06907813996076584, -0.06132526695728302, 0.038356371223926544, -0.014558801427483559, -0.10189516097307205, 0.008760918863117695, 0.00524946441873908, 0.05576273426413536, 0.0421140231192112, 0.0041798437014222145, 0.0240002628415823, -0.007524000480771065, 0.20796890556812286, -0.07884730398654938, -0.06447882950305939, -0.10116071254014969, 0.24150483310222626, 0.03024158999323845, -0.01677129603922367, 0.03052443638443947, -0.068937286734581, 0.00332126347348094, 0.2530229985713959, 0.2168397456407547, -0.08563920855522156, -0.005170372314751148, 0.019505873322486877, -0.0077157290652394295, -0.02484976127743721, 0.09807652980089188, 0.13559643924236298, 0.0541095957159996, -0.09923514723777771, -0.03597794473171234, -0.05173882842063904, -0.019268035888671875, -0.028210937976837158, 0.06725333631038666, 0.05516672506928444, 0.010451171547174454, -0.041946202516555786, 0.0554967075586319, -0.0605655238032341, -0.08724214881658554, 0.06884598731994629, -0.21638870239257812, -0.16818119585514069, -0.021216057240962982, 0.1115516647696495, 0.007965395227074623, 0.06611339747905731, -0.02789974957704544, -0.0024506242480129004, 0.08178551495075226, -0.018245579674839973, -0.11011886596679688, -0.0889228880405426, 0.09163569658994675, -0.0986751914024353, 0.22029219567775726, -0.04808669164776802, 0.058025676757097244, 0.12799890339374542, 0.06588960438966751, -0.07130536437034607, 0.06044834852218628, 0.04130556061863899, -0.06485708802938461, 0.020893828943371773, 0.06521593034267426, -0.03691593185067177, 0.06423820555210114, 0.04287641867995262, -0.1430591344833374, 0.0246424600481987, -0.05352221056818962, -0.07084938883781433, -0.0436973012983799, -0.025169692933559418, -0.05865161120891571, 0.13127975165843964, 0.21824824810028076, -0.026447517797350883, -0.012017136439681053, -0.06991426646709442, 0.011169633828103542, 0.060161199420690536, 0.025424111634492874, -0.06303494423627853, -0.20723320543766022, 0.020028190687298775, 0.04028359428048134, -0.0187641941010952, -0.2560427784919739, -0.09827766567468643, 0.0031050678808242083, -0.06987909972667694, -0.0955338403582573, 0.07019004225730896, 0.09278862178325653, 0.055528778582811356, -0.05535483732819557, -0.06456311047077179, -0.0702747106552124, 0.14895184338092804, -0.14866593480110168, -0.10021559149026871 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-finetuned-qnli This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.6268 - Accuracy: 0.7917 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 63 | 0.5339 | 0.7620 | | No log | 2.0 | 126 | 0.4728 | 0.7866 | | No log | 3.0 | 189 | 0.5386 | 0.7847 | | No log | 4.0 | 252 | 0.6096 | 0.7904 | | No log | 5.0 | 315 | 0.6268 | 0.7917 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.18.1 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["glue"], "metrics": ["accuracy"], "model-index": [{"name": "bert-base-uncased-finetuned-qnli", "results": [{"task": {"type": "text-classification", "name": "Text Classification"}, "dataset": {"name": "glue", "type": "glue", "args": "qnli"}, "metrics": [{"type": "accuracy", "value": 0.791689547867472, "name": "Accuracy"}]}]}]}
text-classification
anirudh21/bert-base-uncased-finetuned-qnli
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #bert #text-classification #generated_from_trainer #dataset-glue #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us
bert-base-uncased-finetuned-qnli ================================ This model is a fine-tuned version of bert-base-uncased on the glue dataset. It achieves the following results on the evaluation set: * Loss: 0.6268 * Accuracy: 0.7917 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 16 * eval\_batch\_size: 16 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 5 ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.10.0+cu111 * Datasets 1.18.1 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.0+cu111\n* Datasets 1.18.1\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #bert #text-classification #generated_from_trainer #dataset-glue #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.0+cu111\n* Datasets 1.18.1\n* Tokenizers 0.10.3" ]
[ 65, 98, 4, 33 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #bert #text-classification #generated_from_trainer #dataset-glue #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.0+cu111\n* Datasets 1.18.1\n* Tokenizers 0.10.3" ]
[ -0.11133186519145966, 0.08905862271785736, -0.0019529515411704779, 0.11926262825727463, 0.16365353763103485, 0.04162043333053589, 0.1258639693260193, 0.12645882368087769, -0.07455145567655563, 0.022976869717240334, 0.12096518278121948, 0.15348933637142181, 0.023043740540742874, 0.10704247653484344, -0.040501244366168976, -0.26026225090026855, -0.013247538357973099, 0.04851532354950905, -0.06437662988901138, 0.13277100026607513, 0.0866004005074501, -0.12581570446491241, 0.09601885080337524, 0.009649556130170822, -0.19422127306461334, 0.0017206711927428842, 0.007977565750479698, -0.05212786793708801, 0.15086549520492554, 0.02926788479089737, 0.12350449711084366, 0.0014905447605997324, 0.08821775764226913, -0.19845278561115265, 0.011854307726025581, 0.04817909002304077, 0.0027517774142324924, 0.0955868512392044, 0.051991056650877, 0.007646949961781502, 0.12070808559656143, -0.07913677394390106, 0.05419687181711197, 0.0324590690433979, -0.12292025983333588, -0.22264188528060913, -0.07268179953098297, 0.040208227932453156, 0.06921274960041046, 0.10662046819925308, -0.006979895289987326, 0.12474232167005539, -0.09115926176309586, 0.08684293180704117, 0.2320433109998703, -0.29412421584129333, -0.06459763646125793, 0.04311281442642212, 0.01435175258666277, 0.04788975790143013, -0.11191442608833313, -0.03154014050960541, 0.05195839703083038, 0.0461265929043293, 0.12408581376075745, -0.02880127541720867, -0.11727513372898102, 0.017000213265419006, -0.13744957745075226, -0.023232145234942436, 0.15813182294368744, 0.04339705780148506, -0.028095675632357597, -0.04658012092113495, -0.05194289609789848, -0.15150019526481628, -0.0341365784406662, -0.009446341544389725, 0.050389364361763, -0.026576237753033638, -0.05501849949359894, -0.0005341381765902042, -0.11177557706832886, -0.07694505900144577, -0.07482677698135376, 0.12085600942373276, 0.033654965460300446, 0.013262685388326645, -0.03246248513460159, 0.11479304730892181, -0.011589611880481243, -0.12685932219028473, 0.022527087479829788, 0.027043979614973068, 0.0019975421018898487, -0.04214833676815033, -0.05068589746952057, -0.048043690621852875, 0.016031749546527863, 0.13082049787044525, -0.04954429715871811, 0.042875126004219055, 0.059499725699424744, 0.04633919149637222, -0.09586818516254425, 0.1958521455526352, -0.043208133429288864, -0.027714340016245842, -0.006344474386423826, 0.048830073326826096, 0.013338039629161358, -0.010817881673574448, -0.1172495111823082, 0.0006783725111745298, 0.08582327514886856, 0.007432086858898401, -0.06191590428352356, 0.0717836543917656, -0.06002074480056763, -0.021904723718762398, -0.002673383802175522, -0.08606187254190445, 0.024990789592266083, 0.006296610459685326, -0.0766998827457428, -0.021041015163064003, 0.03123394027352333, 0.016464808955788612, -0.013112714514136314, 0.11979532986879349, -0.09522491693496704, 0.02930484339594841, -0.09236255288124084, -0.11073702573776245, 0.019086187705397606, -0.0985613614320755, 0.02576073631644249, -0.09113888442516327, -0.16786926984786987, -0.013992294669151306, 0.05608450621366501, -0.027498900890350342, -0.05760985240340233, -0.0475313775241375, -0.06458979099988937, 0.012755324132740498, -0.009550596587359905, 0.12700213491916656, -0.06766325980424881, 0.09375490248203278, 0.03293578326702118, 0.06472074240446091, -0.04454372823238373, 0.05696758255362511, -0.10222452878952026, 0.00863958615809679, -0.1531236618757248, 0.025275954976677895, -0.054325055330991745, 0.07460157573223114, -0.08293235301971436, -0.0979761928319931, 0.006310020573437214, 0.001816469244658947, 0.0621962696313858, 0.10018028318881989, -0.17708736658096313, -0.08879605680704117, 0.16124749183654785, -0.0710144191980362, -0.13228903710842133, 0.11820337921380997, -0.05107412859797478, 0.054325610399246216, 0.06299453973770142, 0.16892650723457336, 0.07679277658462524, -0.08739560097455978, -0.003738977015018463, 0.03158546984195709, 0.05849802494049072, -0.07640291005373001, 0.07802613079547882, -0.0030734259635210037, 0.009865626692771912, 0.033974140882492065, -0.03170346841216087, 0.06573118269443512, -0.09504654258489609, -0.09940528124570847, -0.037974968552589417, -0.08879686892032623, 0.044805895537137985, 0.08003824949264526, 0.06611926853656769, -0.09458979964256287, -0.08521248400211334, 0.04980127513408661, 0.08448254317045212, -0.04761314392089844, 0.020896904170513153, -0.05010635033249855, 0.06983544677495956, -0.032594289630651474, -0.02474372647702694, -0.17688089609146118, -0.037930309772491455, 0.003483257722109556, -0.0039383661933243275, 0.02035306766629219, 0.03337440267205238, 0.06896461546421051, 0.06123299151659012, -0.053501445800065994, -0.02038055844604969, -0.03648308664560318, -0.00002287392817379441, -0.1335783153772354, -0.21121446788311005, -0.03343959152698517, -0.019917041063308716, 0.15845483541488647, -0.20825287699699402, 0.04502106085419655, -0.011167707853019238, 0.07090239226818085, 0.012584364973008633, -0.005436633713543415, -0.044851191341876984, 0.0748448297381401, -0.03540888428688049, -0.04858015850186348, 0.07784289866685867, 0.011372145265340805, -0.09612031280994415, -0.049932003021240234, -0.09360146522521973, 0.17633934319019318, 0.13601675629615784, -0.11704548448324203, -0.07527592033147812, -0.016421815380454063, -0.06632382422685623, -0.036007825285196304, -0.04987955093383789, 0.025685802102088928, 0.1804990917444229, -0.003062593284994364, 0.1465587466955185, -0.06498240679502487, -0.043712347745895386, 0.020373014733195305, -0.033853475004434586, 0.025405069813132286, 0.13192012906074524, 0.1413542479276657, -0.05207671597599983, 0.1545637845993042, 0.15501214563846588, -0.08902566134929657, 0.14543376863002777, -0.04214373603463173, -0.0748271718621254, -0.016834532842040062, -0.03663995862007141, -0.008665396831929684, 0.11529027670621872, -0.16037599742412567, -0.005457292776554823, 0.02912897802889347, 0.014270984567701817, 0.02504456229507923, -0.2274867594242096, -0.04320798069238663, 0.03586262837052345, -0.04130497947335243, -0.01643715798854828, -0.014064619317650795, 0.0027289174031466246, 0.10714861750602722, 0.005249135196208954, -0.08377781510353088, 0.030804669484496117, 0.003663246054202318, -0.08201051503419876, 0.22146055102348328, -0.07282085716724396, -0.15294183790683746, -0.13444940745830536, -0.06660070270299911, -0.04344457760453224, -0.0014246109640225768, 0.06601156294345856, -0.10414940118789673, -0.028113164007663727, -0.06262822449207306, 0.03830212354660034, 0.004589039832353592, 0.03437737375497818, -0.004018603358417749, 0.00657397136092186, 0.06800608336925507, -0.11233603954315186, -0.013323396444320679, -0.06123647093772888, -0.054307855665683746, 0.03794674575328827, 0.03348831459879875, 0.1152501180768013, 0.15420082211494446, -0.008943500928580761, 0.009582378901541233, -0.02896696701645851, 0.23741787672042847, -0.06176336109638214, -0.02700284868478775, 0.1373521089553833, -0.007044375408440828, 0.046653326600790024, 0.11434922367334366, 0.08235130459070206, -0.07713320851325989, 0.001954220002517104, 0.04405386000871658, -0.030877048149704933, -0.23404191434383392, -0.04935338348150253, -0.05210452526807785, 0.010211923159658909, 0.08878380060195923, 0.0263607706874609, 0.033074650913476944, 0.0701175332069397, 0.03870290890336037, 0.07352612167596817, -0.04850434139370918, 0.04964708164334297, 0.11228486150503159, 0.03282718360424042, 0.1266881227493286, -0.04986396059393883, -0.06297986954450607, 0.043346017599105835, -0.015013319440186024, 0.2204647958278656, 0.010978217236697674, 0.13841557502746582, 0.06098794937133789, 0.1687219887971878, -0.007599520031362772, 0.07964138686656952, -0.006470580119639635, -0.0480966717004776, -0.012450417503714561, -0.042461179196834564, -0.03277895227074623, 0.02386617846786976, -0.0633908063173294, 0.07316172122955322, -0.12784387171268463, 0.002153912326321006, 0.05816841125488281, 0.24054603278636932, 0.043740857392549515, -0.31777966022491455, -0.09679872542619705, 0.0009995258878916502, -0.02303040400147438, -0.019651269540190697, 0.023238854482769966, 0.09026823192834854, -0.09268199652433395, 0.023662075400352478, -0.06703127175569534, 0.09906945377588272, -0.051414329558610916, 0.052619848400354385, 0.09066727012395859, 0.09268876165151596, 0.004245291464030743, 0.09179902076721191, -0.2841222882270813, 0.2825339734554291, 0.006451143883168697, 0.06203732267022133, -0.07681001722812653, 0.004484171513468027, 0.042655907571315765, 0.0672745406627655, 0.07669815421104431, -0.013844494707882404, -0.013681527227163315, -0.20734888315200806, -0.06543828547000885, 0.03263978287577629, 0.07243955135345459, -0.045596618205308914, 0.08456134051084518, -0.03200501576066017, 0.009431060403585434, 0.07785575091838837, 0.007943558506667614, -0.05700425058603287, -0.0989052876830101, -0.0066357944160699844, 0.026470888406038284, -0.058259185403585434, -0.06398952752351761, -0.1230858787894249, -0.12608890235424042, 0.15262210369110107, -0.044219762086868286, -0.03065975196659565, -0.11101675778627396, 0.08675365895032883, 0.06787785142660141, -0.09378422051668167, 0.03687017410993576, 0.0008370286086574197, 0.07200143486261368, 0.029249131679534912, -0.07188139110803604, 0.11157342791557312, -0.07399313151836395, -0.1556416153907776, -0.06647086888551712, 0.104044109582901, 0.0331459641456604, 0.06995214521884918, -0.019532447680830956, 0.00719364732503891, -0.04930555820465088, -0.09108687192201614, 0.020983189344406128, -0.006218554452061653, 0.0660010576248169, 0.01643621176481247, -0.07195252925157547, 0.016427665948867798, -0.0584491491317749, -0.03676079213619232, 0.195094496011734, 0.231685072183609, -0.10245425999164581, 0.014935157261788845, 0.0347125418484211, -0.07203398644924164, -0.20408256351947784, 0.03791389986872673, 0.04614792764186859, 0.011792877689003944, 0.04392878711223602, -0.18103481829166412, 0.15197651088237762, 0.1111534908413887, -0.014523960649967194, 0.10267108678817749, -0.3126608729362488, -0.1235581636428833, 0.14298833906650543, 0.1342335194349289, 0.11511382460594177, -0.14407789707183838, -0.024876737967133522, -0.02181370183825493, -0.1444968283176422, 0.11025463044643402, -0.1117299497127533, 0.12037906050682068, -0.0398285835981369, 0.06697919219732285, 0.0030573406256735325, -0.060316167771816254, 0.1276148408651352, 0.024638628587126732, 0.09279965609312057, -0.05677800625562668, -0.04094500467181206, 0.03420594707131386, -0.039200082421302795, 0.03079371154308319, -0.10382209718227386, 0.025593414902687073, -0.10117554664611816, -0.02422892302274704, -0.07245633751153946, 0.045847080647945404, -0.046680010855197906, -0.06783711165189743, -0.033105358481407166, 0.028009602800011635, 0.031175268813967705, -0.013056238181889057, 0.12842966616153717, 0.018968183547258377, 0.15660439431667328, 0.09254854172468185, 0.07436569780111313, -0.07338538765907288, -0.08729100972414017, -0.020110439509153366, -0.015169162303209305, 0.05668302997946739, -0.14192290604114532, 0.019950851798057556, 0.1506595015525818, 0.024422260001301765, 0.14566189050674438, 0.0867476612329483, -0.02538667619228363, -0.004407581873238087, 0.06520739942789078, -0.16033421456813812, -0.08821505308151245, -0.018662557005882263, -0.06888008862733841, -0.13312126696109772, 0.04920397698879242, 0.08933067321777344, -0.06783970445394516, -0.005022241733968258, -0.005429842043668032, 0.005148249678313732, -0.05956215411424637, 0.19488242268562317, 0.06826712936162949, 0.04803852364420891, -0.09914720803499222, 0.06858506798744202, 0.04464946314692497, -0.07150598615407944, -0.005870631895959377, 0.07404763996601105, -0.08173765242099762, -0.053046490997076035, 0.07989339530467987, 0.20063315331935883, -0.052188098430633545, -0.05016574636101723, -0.1473959982395172, -0.12722855806350708, 0.07782372087240219, 0.14665807783603668, 0.12170588970184326, 0.014889874495565891, -0.05797991901636124, 0.006879615131765604, -0.10471697151660919, 0.09580202400684357, 0.04195791110396385, 0.06361298263072968, -0.1446261703968048, 0.14945848286151886, 0.018656911328434944, 0.04625488072633743, -0.01877550035715103, 0.026508020237088203, -0.11395233124494553, 0.006303508300334215, -0.1044108048081398, -0.023725476115942, -0.02777123637497425, 0.009469111450016499, -0.003293682122603059, -0.0564289465546608, -0.05815250054001808, 0.007981112226843834, -0.10841017216444016, -0.023606132715940475, 0.03359111398458481, 0.07412499189376831, -0.11748779565095901, -0.03310609608888626, 0.03258558735251427, -0.05866628140211105, 0.06956537067890167, 0.041607704013586044, 0.027655839920043945, 0.062097810208797455, -0.1473986804485321, 0.019762378185987473, 0.06487227231264114, 0.022647852078080177, 0.06713290512561798, -0.08713969588279724, -0.010961699299514294, -0.014117802493274212, 0.05160350725054741, 0.021655473858118057, 0.07142218202352524, -0.13985759019851685, -0.0021922437008470297, -0.022398816421628, -0.09011746197938919, -0.06335126608610153, 0.026643486693501472, 0.09845574200153351, 0.013312122784554958, 0.1954699158668518, -0.07467038184404373, 0.04432955011725426, -0.22673293948173523, 0.012374944984912872, -0.012795829214155674, -0.10381277650594711, -0.10733368992805481, -0.07530756294727325, 0.05926626920700073, -0.058445077389478683, 0.14853167533874512, 0.03978360444307327, 0.03640449047088623, 0.030186934396624565, -0.004084479529410601, 0.017567522823810577, 0.014031066559255123, 0.20188163220882416, 0.03866882249712944, -0.03264259919524193, 0.057398777455091476, 0.049991462379693985, 0.09843739122152328, 0.11804857105016708, 0.20447298884391785, 0.1436595320701599, -0.00314920162782073, 0.09408754110336304, 0.048237256705760956, -0.06430841237306595, -0.14881686866283417, 0.04514099285006523, -0.04295225813984871, 0.09882565587759018, -0.02223559468984604, 0.22379912436008453, 0.06590496003627777, -0.16823959350585938, 0.045339588075876236, -0.0586080364882946, -0.08733558654785156, -0.12066669017076492, -0.03335215151309967, -0.07706573605537415, -0.1345870941877365, -0.0034736711531877518, -0.11086759716272354, -0.004712322261184454, 0.13174545764923096, 0.00435912050306797, -0.022046202793717384, 0.16329890489578247, 0.01685476116836071, 0.027369504794478416, 0.05427151545882225, 0.011038078926503658, -0.03601040318608284, -0.13445979356765747, -0.0557694211602211, -0.014484543353319168, -0.012583866715431213, 0.024787230417132378, -0.06907813996076584, -0.06132526695728302, 0.038356371223926544, -0.014558801427483559, -0.10189516097307205, 0.008760918863117695, 0.00524946441873908, 0.05576273426413536, 0.0421140231192112, 0.0041798437014222145, 0.0240002628415823, -0.007524000480771065, 0.20796890556812286, -0.07884730398654938, -0.06447882950305939, -0.10116071254014969, 0.24150483310222626, 0.03024158999323845, -0.01677129603922367, 0.03052443638443947, -0.068937286734581, 0.00332126347348094, 0.2530229985713959, 0.2168397456407547, -0.08563920855522156, -0.005170372314751148, 0.019505873322486877, -0.0077157290652394295, -0.02484976127743721, 0.09807652980089188, 0.13559643924236298, 0.0541095957159996, -0.09923514723777771, -0.03597794473171234, -0.05173882842063904, -0.019268035888671875, -0.028210937976837158, 0.06725333631038666, 0.05516672506928444, 0.010451171547174454, -0.041946202516555786, 0.0554967075586319, -0.0605655238032341, -0.08724214881658554, 0.06884598731994629, -0.21638870239257812, -0.16818119585514069, -0.021216057240962982, 0.1115516647696495, 0.007965395227074623, 0.06611339747905731, -0.02789974957704544, -0.0024506242480129004, 0.08178551495075226, -0.018245579674839973, -0.11011886596679688, -0.0889228880405426, 0.09163569658994675, -0.0986751914024353, 0.22029219567775726, -0.04808669164776802, 0.058025676757097244, 0.12799890339374542, 0.06588960438966751, -0.07130536437034607, 0.06044834852218628, 0.04130556061863899, -0.06485708802938461, 0.020893828943371773, 0.06521593034267426, -0.03691593185067177, 0.06423820555210114, 0.04287641867995262, -0.1430591344833374, 0.0246424600481987, -0.05352221056818962, -0.07084938883781433, -0.0436973012983799, -0.025169692933559418, -0.05865161120891571, 0.13127975165843964, 0.21824824810028076, -0.026447517797350883, -0.012017136439681053, -0.06991426646709442, 0.011169633828103542, 0.060161199420690536, 0.025424111634492874, -0.06303494423627853, -0.20723320543766022, 0.020028190687298775, 0.04028359428048134, -0.0187641941010952, -0.2560427784919739, -0.09827766567468643, 0.0031050678808242083, -0.06987909972667694, -0.0955338403582573, 0.07019004225730896, 0.09278862178325653, 0.055528778582811356, -0.05535483732819557, -0.06456311047077179, -0.0702747106552124, 0.14895184338092804, -0.14866593480110168, -0.10021559149026871 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-finetuned-rte This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.8075 - Accuracy: 0.6643 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 63 | 0.6777 | 0.5668 | | No log | 2.0 | 126 | 0.6723 | 0.6282 | | No log | 3.0 | 189 | 0.7238 | 0.6318 | | No log | 4.0 | 252 | 0.7993 | 0.6354 | | No log | 5.0 | 315 | 0.8075 | 0.6643 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.18.1 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["glue"], "metrics": ["accuracy"], "model-index": [{"name": "bert-base-uncased-finetuned-rte", "results": [{"task": {"type": "text-classification", "name": "Text Classification"}, "dataset": {"name": "glue", "type": "glue", "args": "rte"}, "metrics": [{"type": "accuracy", "value": 0.6642599277978339, "name": "Accuracy"}]}]}]}
text-classification
anirudh21/bert-base-uncased-finetuned-rte
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #bert #text-classification #generated_from_trainer #dataset-glue #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us
bert-base-uncased-finetuned-rte =============================== This model is a fine-tuned version of bert-base-uncased on the glue dataset. It achieves the following results on the evaluation set: * Loss: 0.8075 * Accuracy: 0.6643 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 16 * eval\_batch\_size: 16 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 5 ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.10.0+cu111 * Datasets 1.18.1 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.0+cu111\n* Datasets 1.18.1\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #bert #text-classification #generated_from_trainer #dataset-glue #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.0+cu111\n* Datasets 1.18.1\n* Tokenizers 0.10.3" ]
[ 65, 98, 4, 33 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #bert #text-classification #generated_from_trainer #dataset-glue #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.0+cu111\n* Datasets 1.18.1\n* Tokenizers 0.10.3" ]
[ -0.11133186519145966, 0.08905862271785736, -0.0019529515411704779, 0.11926262825727463, 0.16365353763103485, 0.04162043333053589, 0.1258639693260193, 0.12645882368087769, -0.07455145567655563, 0.022976869717240334, 0.12096518278121948, 0.15348933637142181, 0.023043740540742874, 0.10704247653484344, -0.040501244366168976, -0.26026225090026855, -0.013247538357973099, 0.04851532354950905, -0.06437662988901138, 0.13277100026607513, 0.0866004005074501, -0.12581570446491241, 0.09601885080337524, 0.009649556130170822, -0.19422127306461334, 0.0017206711927428842, 0.007977565750479698, -0.05212786793708801, 0.15086549520492554, 0.02926788479089737, 0.12350449711084366, 0.0014905447605997324, 0.08821775764226913, -0.19845278561115265, 0.011854307726025581, 0.04817909002304077, 0.0027517774142324924, 0.0955868512392044, 0.051991056650877, 0.007646949961781502, 0.12070808559656143, -0.07913677394390106, 0.05419687181711197, 0.0324590690433979, -0.12292025983333588, -0.22264188528060913, -0.07268179953098297, 0.040208227932453156, 0.06921274960041046, 0.10662046819925308, -0.006979895289987326, 0.12474232167005539, -0.09115926176309586, 0.08684293180704117, 0.2320433109998703, -0.29412421584129333, -0.06459763646125793, 0.04311281442642212, 0.01435175258666277, 0.04788975790143013, -0.11191442608833313, -0.03154014050960541, 0.05195839703083038, 0.0461265929043293, 0.12408581376075745, -0.02880127541720867, -0.11727513372898102, 0.017000213265419006, -0.13744957745075226, -0.023232145234942436, 0.15813182294368744, 0.04339705780148506, -0.028095675632357597, -0.04658012092113495, -0.05194289609789848, -0.15150019526481628, -0.0341365784406662, -0.009446341544389725, 0.050389364361763, -0.026576237753033638, -0.05501849949359894, -0.0005341381765902042, -0.11177557706832886, -0.07694505900144577, -0.07482677698135376, 0.12085600942373276, 0.033654965460300446, 0.013262685388326645, -0.03246248513460159, 0.11479304730892181, -0.011589611880481243, -0.12685932219028473, 0.022527087479829788, 0.027043979614973068, 0.0019975421018898487, -0.04214833676815033, -0.05068589746952057, -0.048043690621852875, 0.016031749546527863, 0.13082049787044525, -0.04954429715871811, 0.042875126004219055, 0.059499725699424744, 0.04633919149637222, -0.09586818516254425, 0.1958521455526352, -0.043208133429288864, -0.027714340016245842, -0.006344474386423826, 0.048830073326826096, 0.013338039629161358, -0.010817881673574448, -0.1172495111823082, 0.0006783725111745298, 0.08582327514886856, 0.007432086858898401, -0.06191590428352356, 0.0717836543917656, -0.06002074480056763, -0.021904723718762398, -0.002673383802175522, -0.08606187254190445, 0.024990789592266083, 0.006296610459685326, -0.0766998827457428, -0.021041015163064003, 0.03123394027352333, 0.016464808955788612, -0.013112714514136314, 0.11979532986879349, -0.09522491693496704, 0.02930484339594841, -0.09236255288124084, -0.11073702573776245, 0.019086187705397606, -0.0985613614320755, 0.02576073631644249, -0.09113888442516327, -0.16786926984786987, -0.013992294669151306, 0.05608450621366501, -0.027498900890350342, -0.05760985240340233, -0.0475313775241375, -0.06458979099988937, 0.012755324132740498, -0.009550596587359905, 0.12700213491916656, -0.06766325980424881, 0.09375490248203278, 0.03293578326702118, 0.06472074240446091, -0.04454372823238373, 0.05696758255362511, -0.10222452878952026, 0.00863958615809679, -0.1531236618757248, 0.025275954976677895, -0.054325055330991745, 0.07460157573223114, -0.08293235301971436, -0.0979761928319931, 0.006310020573437214, 0.001816469244658947, 0.0621962696313858, 0.10018028318881989, -0.17708736658096313, -0.08879605680704117, 0.16124749183654785, -0.0710144191980362, -0.13228903710842133, 0.11820337921380997, -0.05107412859797478, 0.054325610399246216, 0.06299453973770142, 0.16892650723457336, 0.07679277658462524, -0.08739560097455978, -0.003738977015018463, 0.03158546984195709, 0.05849802494049072, -0.07640291005373001, 0.07802613079547882, -0.0030734259635210037, 0.009865626692771912, 0.033974140882492065, -0.03170346841216087, 0.06573118269443512, -0.09504654258489609, -0.09940528124570847, -0.037974968552589417, -0.08879686892032623, 0.044805895537137985, 0.08003824949264526, 0.06611926853656769, -0.09458979964256287, -0.08521248400211334, 0.04980127513408661, 0.08448254317045212, -0.04761314392089844, 0.020896904170513153, -0.05010635033249855, 0.06983544677495956, -0.032594289630651474, -0.02474372647702694, -0.17688089609146118, -0.037930309772491455, 0.003483257722109556, -0.0039383661933243275, 0.02035306766629219, 0.03337440267205238, 0.06896461546421051, 0.06123299151659012, -0.053501445800065994, -0.02038055844604969, -0.03648308664560318, -0.00002287392817379441, -0.1335783153772354, -0.21121446788311005, -0.03343959152698517, -0.019917041063308716, 0.15845483541488647, -0.20825287699699402, 0.04502106085419655, -0.011167707853019238, 0.07090239226818085, 0.012584364973008633, -0.005436633713543415, -0.044851191341876984, 0.0748448297381401, -0.03540888428688049, -0.04858015850186348, 0.07784289866685867, 0.011372145265340805, -0.09612031280994415, -0.049932003021240234, -0.09360146522521973, 0.17633934319019318, 0.13601675629615784, -0.11704548448324203, -0.07527592033147812, -0.016421815380454063, -0.06632382422685623, -0.036007825285196304, -0.04987955093383789, 0.025685802102088928, 0.1804990917444229, -0.003062593284994364, 0.1465587466955185, -0.06498240679502487, -0.043712347745895386, 0.020373014733195305, -0.033853475004434586, 0.025405069813132286, 0.13192012906074524, 0.1413542479276657, -0.05207671597599983, 0.1545637845993042, 0.15501214563846588, -0.08902566134929657, 0.14543376863002777, -0.04214373603463173, -0.0748271718621254, -0.016834532842040062, -0.03663995862007141, -0.008665396831929684, 0.11529027670621872, -0.16037599742412567, -0.005457292776554823, 0.02912897802889347, 0.014270984567701817, 0.02504456229507923, -0.2274867594242096, -0.04320798069238663, 0.03586262837052345, -0.04130497947335243, -0.01643715798854828, -0.014064619317650795, 0.0027289174031466246, 0.10714861750602722, 0.005249135196208954, -0.08377781510353088, 0.030804669484496117, 0.003663246054202318, -0.08201051503419876, 0.22146055102348328, -0.07282085716724396, -0.15294183790683746, -0.13444940745830536, -0.06660070270299911, -0.04344457760453224, -0.0014246109640225768, 0.06601156294345856, -0.10414940118789673, -0.028113164007663727, -0.06262822449207306, 0.03830212354660034, 0.004589039832353592, 0.03437737375497818, -0.004018603358417749, 0.00657397136092186, 0.06800608336925507, -0.11233603954315186, -0.013323396444320679, -0.06123647093772888, -0.054307855665683746, 0.03794674575328827, 0.03348831459879875, 0.1152501180768013, 0.15420082211494446, -0.008943500928580761, 0.009582378901541233, -0.02896696701645851, 0.23741787672042847, -0.06176336109638214, -0.02700284868478775, 0.1373521089553833, -0.007044375408440828, 0.046653326600790024, 0.11434922367334366, 0.08235130459070206, -0.07713320851325989, 0.001954220002517104, 0.04405386000871658, -0.030877048149704933, -0.23404191434383392, -0.04935338348150253, -0.05210452526807785, 0.010211923159658909, 0.08878380060195923, 0.0263607706874609, 0.033074650913476944, 0.0701175332069397, 0.03870290890336037, 0.07352612167596817, -0.04850434139370918, 0.04964708164334297, 0.11228486150503159, 0.03282718360424042, 0.1266881227493286, -0.04986396059393883, -0.06297986954450607, 0.043346017599105835, -0.015013319440186024, 0.2204647958278656, 0.010978217236697674, 0.13841557502746582, 0.06098794937133789, 0.1687219887971878, -0.007599520031362772, 0.07964138686656952, -0.006470580119639635, -0.0480966717004776, -0.012450417503714561, -0.042461179196834564, -0.03277895227074623, 0.02386617846786976, -0.0633908063173294, 0.07316172122955322, -0.12784387171268463, 0.002153912326321006, 0.05816841125488281, 0.24054603278636932, 0.043740857392549515, -0.31777966022491455, -0.09679872542619705, 0.0009995258878916502, -0.02303040400147438, -0.019651269540190697, 0.023238854482769966, 0.09026823192834854, -0.09268199652433395, 0.023662075400352478, -0.06703127175569534, 0.09906945377588272, -0.051414329558610916, 0.052619848400354385, 0.09066727012395859, 0.09268876165151596, 0.004245291464030743, 0.09179902076721191, -0.2841222882270813, 0.2825339734554291, 0.006451143883168697, 0.06203732267022133, -0.07681001722812653, 0.004484171513468027, 0.042655907571315765, 0.0672745406627655, 0.07669815421104431, -0.013844494707882404, -0.013681527227163315, -0.20734888315200806, -0.06543828547000885, 0.03263978287577629, 0.07243955135345459, -0.045596618205308914, 0.08456134051084518, -0.03200501576066017, 0.009431060403585434, 0.07785575091838837, 0.007943558506667614, -0.05700425058603287, -0.0989052876830101, -0.0066357944160699844, 0.026470888406038284, -0.058259185403585434, -0.06398952752351761, -0.1230858787894249, -0.12608890235424042, 0.15262210369110107, -0.044219762086868286, -0.03065975196659565, -0.11101675778627396, 0.08675365895032883, 0.06787785142660141, -0.09378422051668167, 0.03687017410993576, 0.0008370286086574197, 0.07200143486261368, 0.029249131679534912, -0.07188139110803604, 0.11157342791557312, -0.07399313151836395, -0.1556416153907776, -0.06647086888551712, 0.104044109582901, 0.0331459641456604, 0.06995214521884918, -0.019532447680830956, 0.00719364732503891, -0.04930555820465088, -0.09108687192201614, 0.020983189344406128, -0.006218554452061653, 0.0660010576248169, 0.01643621176481247, -0.07195252925157547, 0.016427665948867798, -0.0584491491317749, -0.03676079213619232, 0.195094496011734, 0.231685072183609, -0.10245425999164581, 0.014935157261788845, 0.0347125418484211, -0.07203398644924164, -0.20408256351947784, 0.03791389986872673, 0.04614792764186859, 0.011792877689003944, 0.04392878711223602, -0.18103481829166412, 0.15197651088237762, 0.1111534908413887, -0.014523960649967194, 0.10267108678817749, -0.3126608729362488, -0.1235581636428833, 0.14298833906650543, 0.1342335194349289, 0.11511382460594177, -0.14407789707183838, -0.024876737967133522, -0.02181370183825493, -0.1444968283176422, 0.11025463044643402, -0.1117299497127533, 0.12037906050682068, -0.0398285835981369, 0.06697919219732285, 0.0030573406256735325, -0.060316167771816254, 0.1276148408651352, 0.024638628587126732, 0.09279965609312057, -0.05677800625562668, -0.04094500467181206, 0.03420594707131386, -0.039200082421302795, 0.03079371154308319, -0.10382209718227386, 0.025593414902687073, -0.10117554664611816, -0.02422892302274704, -0.07245633751153946, 0.045847080647945404, -0.046680010855197906, -0.06783711165189743, -0.033105358481407166, 0.028009602800011635, 0.031175268813967705, -0.013056238181889057, 0.12842966616153717, 0.018968183547258377, 0.15660439431667328, 0.09254854172468185, 0.07436569780111313, -0.07338538765907288, -0.08729100972414017, -0.020110439509153366, -0.015169162303209305, 0.05668302997946739, -0.14192290604114532, 0.019950851798057556, 0.1506595015525818, 0.024422260001301765, 0.14566189050674438, 0.0867476612329483, -0.02538667619228363, -0.004407581873238087, 0.06520739942789078, -0.16033421456813812, -0.08821505308151245, -0.018662557005882263, -0.06888008862733841, -0.13312126696109772, 0.04920397698879242, 0.08933067321777344, -0.06783970445394516, -0.005022241733968258, -0.005429842043668032, 0.005148249678313732, -0.05956215411424637, 0.19488242268562317, 0.06826712936162949, 0.04803852364420891, -0.09914720803499222, 0.06858506798744202, 0.04464946314692497, -0.07150598615407944, -0.005870631895959377, 0.07404763996601105, -0.08173765242099762, -0.053046490997076035, 0.07989339530467987, 0.20063315331935883, -0.052188098430633545, -0.05016574636101723, -0.1473959982395172, -0.12722855806350708, 0.07782372087240219, 0.14665807783603668, 0.12170588970184326, 0.014889874495565891, -0.05797991901636124, 0.006879615131765604, -0.10471697151660919, 0.09580202400684357, 0.04195791110396385, 0.06361298263072968, -0.1446261703968048, 0.14945848286151886, 0.018656911328434944, 0.04625488072633743, -0.01877550035715103, 0.026508020237088203, -0.11395233124494553, 0.006303508300334215, -0.1044108048081398, -0.023725476115942, -0.02777123637497425, 0.009469111450016499, -0.003293682122603059, -0.0564289465546608, -0.05815250054001808, 0.007981112226843834, -0.10841017216444016, -0.023606132715940475, 0.03359111398458481, 0.07412499189376831, -0.11748779565095901, -0.03310609608888626, 0.03258558735251427, -0.05866628140211105, 0.06956537067890167, 0.041607704013586044, 0.027655839920043945, 0.062097810208797455, -0.1473986804485321, 0.019762378185987473, 0.06487227231264114, 0.022647852078080177, 0.06713290512561798, -0.08713969588279724, -0.010961699299514294, -0.014117802493274212, 0.05160350725054741, 0.021655473858118057, 0.07142218202352524, -0.13985759019851685, -0.0021922437008470297, -0.022398816421628, -0.09011746197938919, -0.06335126608610153, 0.026643486693501472, 0.09845574200153351, 0.013312122784554958, 0.1954699158668518, -0.07467038184404373, 0.04432955011725426, -0.22673293948173523, 0.012374944984912872, -0.012795829214155674, -0.10381277650594711, -0.10733368992805481, -0.07530756294727325, 0.05926626920700073, -0.058445077389478683, 0.14853167533874512, 0.03978360444307327, 0.03640449047088623, 0.030186934396624565, -0.004084479529410601, 0.017567522823810577, 0.014031066559255123, 0.20188163220882416, 0.03866882249712944, -0.03264259919524193, 0.057398777455091476, 0.049991462379693985, 0.09843739122152328, 0.11804857105016708, 0.20447298884391785, 0.1436595320701599, -0.00314920162782073, 0.09408754110336304, 0.048237256705760956, -0.06430841237306595, -0.14881686866283417, 0.04514099285006523, -0.04295225813984871, 0.09882565587759018, -0.02223559468984604, 0.22379912436008453, 0.06590496003627777, -0.16823959350585938, 0.045339588075876236, -0.0586080364882946, -0.08733558654785156, -0.12066669017076492, -0.03335215151309967, -0.07706573605537415, -0.1345870941877365, -0.0034736711531877518, -0.11086759716272354, -0.004712322261184454, 0.13174545764923096, 0.00435912050306797, -0.022046202793717384, 0.16329890489578247, 0.01685476116836071, 0.027369504794478416, 0.05427151545882225, 0.011038078926503658, -0.03601040318608284, -0.13445979356765747, -0.0557694211602211, -0.014484543353319168, -0.012583866715431213, 0.024787230417132378, -0.06907813996076584, -0.06132526695728302, 0.038356371223926544, -0.014558801427483559, -0.10189516097307205, 0.008760918863117695, 0.00524946441873908, 0.05576273426413536, 0.0421140231192112, 0.0041798437014222145, 0.0240002628415823, -0.007524000480771065, 0.20796890556812286, -0.07884730398654938, -0.06447882950305939, -0.10116071254014969, 0.24150483310222626, 0.03024158999323845, -0.01677129603922367, 0.03052443638443947, -0.068937286734581, 0.00332126347348094, 0.2530229985713959, 0.2168397456407547, -0.08563920855522156, -0.005170372314751148, 0.019505873322486877, -0.0077157290652394295, -0.02484976127743721, 0.09807652980089188, 0.13559643924236298, 0.0541095957159996, -0.09923514723777771, -0.03597794473171234, -0.05173882842063904, -0.019268035888671875, -0.028210937976837158, 0.06725333631038666, 0.05516672506928444, 0.010451171547174454, -0.041946202516555786, 0.0554967075586319, -0.0605655238032341, -0.08724214881658554, 0.06884598731994629, -0.21638870239257812, -0.16818119585514069, -0.021216057240962982, 0.1115516647696495, 0.007965395227074623, 0.06611339747905731, -0.02789974957704544, -0.0024506242480129004, 0.08178551495075226, -0.018245579674839973, -0.11011886596679688, -0.0889228880405426, 0.09163569658994675, -0.0986751914024353, 0.22029219567775726, -0.04808669164776802, 0.058025676757097244, 0.12799890339374542, 0.06588960438966751, -0.07130536437034607, 0.06044834852218628, 0.04130556061863899, -0.06485708802938461, 0.020893828943371773, 0.06521593034267426, -0.03691593185067177, 0.06423820555210114, 0.04287641867995262, -0.1430591344833374, 0.0246424600481987, -0.05352221056818962, -0.07084938883781433, -0.0436973012983799, -0.025169692933559418, -0.05865161120891571, 0.13127975165843964, 0.21824824810028076, -0.026447517797350883, -0.012017136439681053, -0.06991426646709442, 0.011169633828103542, 0.060161199420690536, 0.025424111634492874, -0.06303494423627853, -0.20723320543766022, 0.020028190687298775, 0.04028359428048134, -0.0187641941010952, -0.2560427784919739, -0.09827766567468643, 0.0031050678808242083, -0.06987909972667694, -0.0955338403582573, 0.07019004225730896, 0.09278862178325653, 0.055528778582811356, -0.05535483732819557, -0.06456311047077179, -0.0702747106552124, 0.14895184338092804, -0.14866593480110168, -0.10021559149026871 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-finetuned-wnli This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.6854 - Accuracy: 0.5634 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 40 | 0.6854 | 0.5634 | | No log | 2.0 | 80 | 0.6983 | 0.3239 | | No log | 3.0 | 120 | 0.6995 | 0.5352 | | No log | 4.0 | 160 | 0.6986 | 0.5634 | | No log | 5.0 | 200 | 0.6996 | 0.5634 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.18.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["glue"], "metrics": ["accuracy"], "model-index": [{"name": "bert-base-uncased-finetuned-wnli", "results": [{"task": {"type": "text-classification", "name": "Text Classification"}, "dataset": {"name": "glue", "type": "glue", "args": "wnli"}, "metrics": [{"type": "accuracy", "value": 0.5633802816901409, "name": "Accuracy"}]}]}]}
text-classification
anirudh21/bert-base-uncased-finetuned-wnli
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #bert #text-classification #generated_from_trainer #dataset-glue #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us
bert-base-uncased-finetuned-wnli ================================ This model is a fine-tuned version of bert-base-uncased on the glue dataset. It achieves the following results on the evaluation set: * Loss: 0.6854 * Accuracy: 0.5634 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 16 * eval\_batch\_size: 16 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 5 ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.10.0+cu111 * Datasets 1.18.0 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.0+cu111\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #bert #text-classification #generated_from_trainer #dataset-glue #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.0+cu111\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ 65, 98, 4, 35 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #bert #text-classification #generated_from_trainer #dataset-glue #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.0+cu111\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ -0.11325017362833023, 0.0812758356332779, -0.0017998769180849195, 0.12009552121162415, 0.16387249529361725, 0.03597983717918396, 0.11156629025936127, 0.12876233458518982, -0.08335161954164505, 0.02751629427075386, 0.1264062076807022, 0.15765658020973206, 0.019992440938949585, 0.12018559128046036, -0.04816516116261482, -0.26051899790763855, -0.010511714965105057, 0.05137874186038971, -0.05034004524350166, 0.13128826022148132, 0.08885212242603302, -0.12818656861782074, 0.0962095707654953, 0.01392721850425005, -0.19697393476963043, 0.002868467941880226, 0.009638463146984577, -0.05619091913104057, 0.14565445482730865, 0.028437048196792603, 0.12006663531064987, -0.0032987322192639112, 0.08477217704057693, -0.19016307592391968, 0.011393117718398571, 0.04880033805966377, 0.0022858590818941593, 0.09458186477422714, 0.050123583525419235, 0.003134331200271845, 0.1275525540113449, -0.08717275410890579, 0.05313878133893013, 0.02806706912815571, -0.11805792152881622, -0.22305718064308167, -0.07618046551942825, 0.04159955307841301, 0.0740705281496048, 0.11006677150726318, -0.005639785435050726, 0.1308141052722931, -0.08605938404798508, 0.08880318701267242, 0.23550336062908173, -0.30583614110946655, -0.06443625688552856, 0.03265710920095444, 0.012285517528653145, 0.03883311152458191, -0.1104314923286438, -0.03320043161511421, 0.05513565614819527, 0.04949193447828293, 0.12685690820217133, -0.03112470917403698, -0.11342370510101318, 0.012215370312333107, -0.13411471247673035, -0.026288814842700958, 0.1539786458015442, 0.04028100147843361, -0.03150342404842377, -0.05181613191962242, -0.05343287065625191, -0.15177714824676514, -0.03826058283448219, -0.0056069716811180115, 0.04760108143091202, -0.027068566530942917, -0.05595731362700462, 0.0036838229279965162, -0.1128939539194107, -0.06788966804742813, -0.08033433556556702, 0.12181299179792404, 0.033589623868465424, 0.015907712280750275, -0.0370270200073719, 0.109775111079216, -0.012047775089740753, -0.13138563930988312, 0.014832996763288975, 0.025630218908190727, 0.009522379375994205, -0.044848375022411346, -0.052508819848299026, -0.05302315577864647, 0.01229069847613573, 0.13055101037025452, -0.05346065014600754, 0.04409528151154518, 0.05234171450138092, 0.04307950660586357, -0.09279292076826096, 0.19667470455169678, -0.038260214030742645, -0.02218792960047722, 0.006767041981220245, 0.03915246203541756, 0.01817500777542591, -0.01055796816945076, -0.11901400238275528, 0.0019544779788702726, 0.08567898720502853, 0.006048509385436773, -0.06584642827510834, 0.07457306236028671, -0.05257037654519081, -0.017383383587002754, 0.0006280068191699684, -0.0888577327132225, 0.030389923602342606, 0.002498867455869913, -0.07382941991090775, -0.021265869960188866, 0.0300530344247818, 0.015772582963109016, -0.019487250596284866, 0.12534859776496887, -0.09381720423698425, 0.029932312667369843, -0.09329327195882797, -0.10815554112195969, 0.022634536027908325, -0.09775605797767639, 0.028863679617643356, -0.09573209285736084, -0.1677841991186142, -0.013606186956167221, 0.0570659302175045, -0.028021475300192833, -0.060382694005966187, -0.04458434879779816, -0.06752058118581772, 0.01605340465903282, -0.011641287244856358, 0.13161610066890717, -0.06672880053520203, 0.09067602455615997, 0.03318045288324356, 0.0643010064959526, -0.04610082507133484, 0.0545768141746521, -0.104961097240448, 0.01095003355294466, -0.16204912960529327, 0.025268353521823883, -0.046960558742284775, 0.08063752204179764, -0.08346693217754364, -0.09894329309463501, 0.008691877126693726, -0.0016926821554079652, 0.06715283542871475, 0.09742321074008942, -0.1710415780544281, -0.08145228773355484, 0.1614946871995926, -0.07140012830495834, -0.1350884735584259, 0.11643988639116287, -0.0545065701007843, 0.049516938626766205, 0.06354523450136185, 0.16835786402225494, 0.06510867923498154, -0.09108350425958633, -0.008360018953680992, 0.02844308875501156, 0.053611110895872116, -0.08353448659181595, 0.07455205917358398, 0.00392266595736146, 0.012171769514679909, 0.035311244428157806, -0.022403843700885773, 0.06179405376315117, -0.09068257361650467, -0.09588084369897842, -0.043618425726890564, -0.08639056235551834, 0.032657064497470856, 0.07789120078086853, 0.07061269134283066, -0.09810224920511246, -0.08729390799999237, 0.046419985592365265, 0.07929067313671112, -0.04685145616531372, 0.02679145336151123, -0.05538740009069443, 0.07372362166643143, -0.037138938903808594, -0.024889251217246056, -0.17947198450565338, -0.031591761857271194, 0.0025699553079903126, 0.00027104539913125336, 0.013970430940389633, 0.019852332770824432, 0.06701859831809998, 0.05625145882368088, -0.052319593727588654, -0.014577965252101421, -0.022202685475349426, -0.0010289466008543968, -0.13953229784965515, -0.2043076455593109, -0.03315692022442818, -0.022695127874612808, 0.141119122505188, -0.2048681080341339, 0.040859151631593704, -0.008060089312493801, 0.07516436278820038, 0.00908584799617529, -0.003364209784194827, -0.04505103826522827, 0.07078433781862259, -0.03831224516034126, -0.04826338216662407, 0.07603529095649719, 0.01888037845492363, -0.09175366163253784, -0.042933713644742966, -0.0914168655872345, 0.1744447946548462, 0.1380210965871811, -0.11001050472259521, -0.07561561465263367, -0.013212217949330807, -0.06705914437770844, -0.03366536274552345, -0.05237497016787529, 0.0310813020914793, 0.1884153038263321, -0.004342822823673487, 0.1502731442451477, -0.06727545708417892, -0.050321921706199646, 0.024544494226574898, -0.03312907740473747, 0.02288474328815937, 0.12549304962158203, 0.13732585310935974, -0.0625513568520546, 0.15156804025173187, 0.14943420886993408, -0.09030985087156296, 0.13565336167812347, -0.04143119975924492, -0.07433126121759415, -0.015361492522060871, -0.037960514426231384, -0.007015106733888388, 0.1112690195441246, -0.1571711301803589, -0.00569313345476985, 0.03188199922442436, 0.015982702374458313, 0.024935567751526833, -0.22176682949066162, -0.038873136043548584, 0.03447072207927704, -0.034860335290431976, -0.020748944953083992, -0.012351339682936668, 0.0049042352475225925, 0.1071660965681076, 0.009230108000338078, -0.07983247935771942, 0.035771407186985016, 0.007041286677122116, -0.08509243279695511, 0.22050073742866516, -0.0732455626130104, -0.15531153976917267, -0.12630519270896912, -0.07531169056892395, -0.04058314859867096, -0.002001648535951972, 0.06999749690294266, -0.09772171080112457, -0.03454066812992096, -0.06494801491498947, 0.026123855262994766, 0.002242924179881811, 0.038012176752090454, 0.0022714107763022184, 0.0032895600888878107, 0.06618290394544601, -0.10766226053237915, -0.017943644896149635, -0.060056332498788834, -0.04557625949382782, 0.03699665516614914, 0.03504917398095131, 0.11433953791856766, 0.1497831493616104, -0.014221231453120708, 0.013781113550066948, -0.03170427307486534, 0.23820388317108154, -0.06084933876991272, -0.026581011712551117, 0.13501763343811035, -0.0076615759171545506, 0.04777873679995537, 0.12092947214841843, 0.07617264240980148, -0.07880193740129471, 0.002600674517452717, 0.03899788483977318, -0.03430943936109543, -0.23151859641075134, -0.04990599676966667, -0.05700865015387535, 0.003815891221165657, 0.09155996143817902, 0.028392238542437553, 0.031110122799873352, 0.07152868807315826, 0.0391230545938015, 0.07864564657211304, -0.05178530141711235, 0.05781975015997887, 0.1154990866780281, 0.03813260793685913, 0.127434641122818, -0.05280769616365433, -0.062106065452098846, 0.044395819306373596, -0.018649987876415253, 0.21916259825229645, 0.003968053963035345, 0.13120047748088837, 0.055209796875715256, 0.1672869324684143, -0.0032082071993499994, 0.08467075973749161, -0.010750634595751762, -0.04991510882973671, -0.010758607648313046, -0.03968540206551552, -0.03318402171134949, 0.02596471644937992, -0.07350622117519379, 0.07018791139125824, -0.12936514616012573, 0.008289091289043427, 0.059413567185401917, 0.24862781167030334, 0.04488257318735123, -0.32264694571495056, -0.0988081842660904, 0.0020014536567032337, -0.02992011047899723, -0.02737218514084816, 0.025928953662514687, 0.08604683727025986, -0.09423001855611801, 0.031115587800741196, -0.06771036982536316, 0.10112819820642471, -0.04301420971751213, 0.05122147873044014, 0.08861610293388367, 0.09055721759796143, 0.0049886442720890045, 0.09118586778640747, -0.2906533181667328, 0.2798357307910919, 0.006987671833485365, 0.06918463855981827, -0.08365077525377274, 0.006707466207444668, 0.03907150775194168, 0.06553469598293304, 0.08288156241178513, -0.014953190460801125, -0.039788488298654556, -0.19358643889427185, -0.06484533101320267, 0.0339672788977623, 0.06623050570487976, -0.03288320079445839, 0.08651845902204514, -0.031395073980093, 0.007457742467522621, 0.07362592965364456, 0.008733662776648998, -0.04875722900032997, -0.10116855055093765, -0.010509002022445202, 0.02958148531615734, -0.06401415169239044, -0.06195148453116417, -0.1207931861281395, -0.12192783504724503, 0.1639934778213501, -0.03318662568926811, -0.03521491587162018, -0.11417360603809357, 0.08966812491416931, 0.06180043891072273, -0.0941837728023529, 0.038484714925289154, -0.0009707536664791405, 0.07954935729503632, 0.02598000504076481, -0.07708893716335297, 0.11154722422361374, -0.07479967921972275, -0.15117181837558746, -0.06584189832210541, 0.10492885112762451, 0.027630958706140518, 0.06822939962148666, -0.013515608385205269, 0.012359414249658585, -0.05078385770320892, -0.09151500463485718, 0.017749764025211334, -0.009329475462436676, 0.07841002941131592, 0.0031738318502902985, -0.06693345308303833, 0.012862754054367542, -0.054870735853910446, -0.03405337408185005, 0.20014168322086334, 0.21855491399765015, -0.10459254682064056, 0.019309353083372116, 0.025887245312333107, -0.07127265632152557, -0.20469018816947937, 0.03517827019095421, 0.04953690990805626, 0.012814527377486229, 0.032210033386945724, -0.17098402976989746, 0.1580735146999359, 0.10622065514326096, -0.015065732412040234, 0.10073093324899673, -0.299551397562027, -0.12669068574905396, 0.14076679944992065, 0.13006934523582458, 0.12501086294651031, -0.13742731511592865, -0.021279647946357727, -0.025343095883727074, -0.14574852585792542, 0.10519156605005264, -0.10746797174215317, 0.11452843248844147, -0.03742414340376854, 0.07620010524988174, 0.002816242864355445, -0.06205955520272255, 0.11955329775810242, 0.026662414893507957, 0.09018383920192719, -0.06074850261211395, -0.042297229170799255, 0.0341629758477211, -0.04408671706914902, 0.03661029040813446, -0.10185978561639786, 0.026655469089746475, -0.10676504671573639, -0.026511017233133316, -0.0700063407421112, 0.04556037113070488, -0.04346230998635292, -0.06344757974147797, -0.03487858176231384, 0.022959129884839058, 0.04026412591338158, -0.0137229198589921, 0.13840116560459137, 0.021211916580796242, 0.15411525964736938, 0.09435506165027618, 0.07961063086986542, -0.08547985553741455, -0.0797184407711029, -0.015108020976185799, -0.01672511175274849, 0.05510300397872925, -0.14676183462142944, 0.02361373044550419, 0.1522795557975769, 0.023286614567041397, 0.13679563999176025, 0.0861886516213417, -0.021892758086323738, -0.0019361572340130806, 0.0652974396944046, -0.1634119302034378, -0.08178110420703888, -0.014039850793778896, -0.061166077852249146, -0.13189998269081116, 0.048213761299848557, 0.0864153578877449, -0.06775419414043427, -0.008551523089408875, -0.00740694859996438, 0.006305362097918987, -0.05940462648868561, 0.18928800523281097, 0.06243189051747322, 0.04615224152803421, -0.10399850457906723, 0.06477366387844086, 0.04499476030468941, -0.07792001962661743, 0.003070139791816473, 0.07963893562555313, -0.08338174968957901, -0.052400678396224976, 0.08749459683895111, 0.19778034090995789, -0.05147331953048706, -0.05141191557049751, -0.1413978934288025, -0.13067592680454254, 0.08519208431243896, 0.1525023728609085, 0.12004642188549042, 0.013027970679104328, -0.059264328330755234, 0.003653865307569504, -0.11338938027620316, 0.09490028768777847, 0.04414375126361847, 0.06387224793434143, -0.14424721896648407, 0.1478741616010666, 0.014303641393780708, 0.05093104764819145, -0.020217612385749817, 0.03035593591630459, -0.11080899834632874, 0.00768400589004159, -0.10925600677728653, -0.014188872650265694, -0.03684592247009277, 0.0077499947510659695, -0.0033408727031201124, -0.054110124707221985, -0.06255713850259781, 0.011927232146263123, -0.1080976277589798, -0.021136194467544556, 0.030454004183411598, 0.06746035814285278, -0.1149725690484047, -0.03279729187488556, 0.027025137096643448, -0.06026068702340126, 0.06934566795825958, 0.04836318641901016, 0.024385672062635422, 0.058933038264513016, -0.13959120213985443, 0.01653558574616909, 0.0693189948797226, 0.020435437560081482, 0.0718948245048523, -0.09006860852241516, -0.006668671499937773, -0.002739422954618931, 0.04672892019152641, 0.02170906402170658, 0.07274547964334488, -0.14131338894367218, -0.0019496014574542642, -0.01645248383283615, -0.08669720590114594, -0.06424178183078766, 0.0252529326826334, 0.09883679449558258, 0.010830315761268139, 0.19647841155529022, -0.07557108253240585, 0.04333958774805069, -0.22063951194286346, 0.011873209848999977, -0.01501546148210764, -0.10546151548624039, -0.10812777280807495, -0.0694873109459877, 0.06165764853358269, -0.05573686584830284, 0.15247857570648193, 0.043157633394002914, 0.03789886459708214, 0.03379714488983154, -0.005651878193020821, 0.018328923732042313, 0.015883320942521095, 0.20190127193927765, 0.03162865713238716, -0.0364995002746582, 0.06019076332449913, 0.04753594845533371, 0.1018684133887291, 0.125466987490654, 0.2096361517906189, 0.14029313623905182, 0.009925403632223606, 0.09996341168880463, 0.04067710041999817, -0.0595560185611248, -0.15866446495056152, 0.0363604910671711, -0.04750402644276619, 0.10207531601190567, -0.02192346751689911, 0.21357475221157074, 0.07121794670820236, -0.1699521839618683, 0.04399692267179489, -0.06269006431102753, -0.08588816970586777, -0.12070256471633911, -0.04586905241012573, -0.08106168359518051, -0.1309642642736435, 0.0001321805320912972, -0.11273068934679031, -0.0012162922648712993, 0.12198466807603836, 0.003683202899992466, -0.023600250482559204, 0.16350850462913513, 0.011624647304415703, 0.029433852061629295, 0.0566394217312336, 0.011841543018817902, -0.033431462943553925, -0.12000541388988495, -0.050130732357501984, -0.01859196648001671, -0.01961885765194893, 0.028178444132208824, -0.06570537388324738, -0.05181530490517616, 0.039616916328668594, -0.01562797836959362, -0.09667304158210754, 0.007670079357922077, 0.011419818736612797, 0.06166885048151016, 0.047199420630931854, 0.005478383507579565, 0.024718012660741806, -0.00981750525534153, 0.2050236016511917, -0.08058343827724457, -0.06479468941688538, -0.10787871479988098, 0.24570158123970032, 0.036584436893463135, -0.021753570064902306, 0.029966039583086967, -0.06766568124294281, 0.001812550937756896, 0.2563922703266144, 0.21230579912662506, -0.07576889544725418, -0.005493332166224718, 0.014079378917813301, -0.007522681262344122, -0.02169375866651535, 0.09983312338590622, 0.1424679160118103, 0.06358201801776886, -0.10010802745819092, -0.043535325676202774, -0.05389847978949547, -0.01864388771355152, -0.034852199256420135, 0.07309868186712265, 0.049223218113183975, 0.006786705926060677, -0.03663778677582741, 0.05149189755320549, -0.06335853785276413, -0.08562761545181274, 0.06320024281740189, -0.2137106955051422, -0.16493570804595947, -0.013268045149743557, 0.10432645678520203, 0.009276872500777245, 0.06678687036037445, -0.02361975610256195, -0.0030751030426472425, 0.08530234545469284, -0.019469894468784332, -0.10770940780639648, -0.08061136305332184, 0.09170249849557877, -0.10910338163375854, 0.22337853908538818, -0.0447578951716423, 0.05735598877072334, 0.12990860641002655, 0.0712352991104126, -0.07847760617733002, 0.05848822370171547, 0.03836846724152565, -0.06419610232114792, 0.026543453335762024, 0.0695822536945343, -0.038894206285476685, 0.05666741356253624, 0.04231509193778038, -0.14395594596862793, 0.022577930241823196, -0.06142842397093773, -0.06316056102514267, -0.04586682468652725, -0.023666471242904663, -0.059554725885391235, 0.13229267299175262, 0.21798373758792877, -0.02747350186109543, -0.012410398572683334, -0.07058558613061905, 0.01229069009423256, 0.05498321354389191, 0.021564923226833344, -0.06255114823579788, -0.2111641764640808, 0.022540688514709473, 0.046501778066158295, -0.020975574851036072, -0.2504262924194336, -0.097313292324543, 0.002028163056820631, -0.07102660834789276, -0.0982884019613266, 0.06894835084676743, 0.09115249663591385, 0.05199338123202324, -0.05813044682145119, -0.05868222564458847, -0.06910606473684311, 0.1469157636165619, -0.1437578797340393, -0.0993814542889595 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-cola This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.8623 - Matthews Correlation: 0.5224 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.5278 | 1.0 | 535 | 0.5223 | 0.4007 | | 0.3515 | 2.0 | 1070 | 0.5150 | 0.4993 | | 0.2391 | 3.0 | 1605 | 0.6471 | 0.5103 | | 0.1841 | 4.0 | 2140 | 0.7640 | 0.5153 | | 0.1312 | 5.0 | 2675 | 0.8623 | 0.5224 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["glue"], "metrics": ["matthews_correlation"], "model-index": [{"name": "distilbert-base-uncased-finetuned-cola", "results": [{"task": {"type": "text-classification", "name": "Text Classification"}, "dataset": {"name": "glue", "type": "glue", "args": "cola"}, "metrics": [{"type": "matthews_correlation", "value": 0.5224154837835395, "name": "Matthews Correlation"}]}]}]}
text-classification
anirudh21/distilbert-base-uncased-finetuned-cola
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #dataset-glue #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us
distilbert-base-uncased-finetuned-cola ====================================== This model is a fine-tuned version of distilbert-base-uncased on the glue dataset. It achieves the following results on the evaluation set: * Loss: 0.8623 * Matthews Correlation: 0.5224 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 16 * eval\_batch\_size: 16 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 5 ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.10.0+cu111 * Datasets 1.17.0 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.0+cu111\n* Datasets 1.17.0\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #dataset-glue #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.0+cu111\n* Datasets 1.17.0\n* Tokenizers 0.10.3" ]
[ 67, 98, 4, 33 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #dataset-glue #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.0+cu111\n* Datasets 1.17.0\n* Tokenizers 0.10.3" ]
[ -0.10177629441022873, 0.09868992865085602, -0.002423677360638976, 0.12112317979335785, 0.1650812178850174, 0.03426579013466835, 0.1299346536397934, 0.12770213186740875, -0.08564593642950058, 0.021304525434970856, 0.1207699179649353, 0.16118186712265015, 0.023844653740525246, 0.10977903753519058, -0.04856811463832855, -0.26443108916282654, -0.014250527136027813, 0.05101621896028519, -0.05502324551343918, 0.13528308272361755, 0.09085173904895782, -0.12123988568782806, 0.09099695831537247, 0.010560519993305206, -0.19217939674854279, 0.0012736907228827477, -0.00007869464025134221, -0.05158104747533798, 0.1480625867843628, 0.026134053245186806, 0.1222379058599472, 0.004350635223090649, 0.08203282207250595, -0.20211967825889587, 0.0109197236597538, 0.047976233065128326, 0.0034287353046238422, 0.09363500773906708, 0.04515067860484123, 0.002628615591675043, 0.12063173204660416, -0.0803351029753685, 0.05412057787179947, 0.025187760591506958, -0.11920642107725143, -0.2130812108516693, -0.07939155399799347, 0.036630984395742416, 0.07490450143814087, 0.10550613701343536, -0.007987946271896362, 0.12026778608560562, -0.08140391111373901, 0.09315772354602814, 0.22560088336467743, -0.2846624255180359, -0.06620592623949051, 0.04440826550126076, 0.014406891539692879, 0.04722030460834503, -0.10258147865533829, -0.03414628654718399, 0.04851415753364563, 0.0509343147277832, 0.1279968023300171, -0.027470313012599945, -0.11697384715080261, 0.006325297988951206, -0.14067994058132172, -0.031778451055288315, 0.16862210631370544, 0.04232211038470268, -0.027326999232172966, -0.05612191930413246, -0.05705082044005394, -0.1505020707845688, -0.035502392798662186, -0.01559263002127409, 0.049344535917043686, -0.023357374593615532, -0.04166480526328087, -0.009466851130127907, -0.10793615877628326, -0.06508545577526093, -0.07387420535087585, 0.11076346784830093, 0.03758743405342102, 0.006860504392534494, -0.029825663194060326, 0.11246810108423233, -0.007811444811522961, -0.12158264964818954, 0.025255942717194557, 0.022893251851201057, 0.01350346952676773, -0.03933148831129074, -0.05274882912635803, -0.06423640251159668, 0.01213061437010765, 0.12725643813610077, -0.05570182576775551, 0.04239019751548767, 0.05044251307845116, 0.04930534213781357, -0.09428779035806656, 0.19049058854579926, -0.034276507794857025, -0.025200827047228813, 0.0005440381937660277, 0.05053231865167618, 0.017217280343174934, -0.011495225131511688, -0.12165343761444092, 0.004494988825172186, 0.08820939809083939, 0.007856707088649273, -0.06190384179353714, 0.07444976270198822, -0.059118129312992096, -0.024367066100239754, 0.0022545091342180967, -0.09038243442773819, 0.021844087168574333, 0.0009826826862990856, -0.07183235138654709, -0.020876631140708923, 0.036078646779060364, 0.015619035810232162, -0.01955125480890274, 0.1076565608382225, -0.08774691820144653, 0.02745640277862549, -0.09359776973724365, -0.10990453511476517, 0.016444405540823936, -0.10769655555486679, 0.022347012534737587, -0.09183300286531448, -0.179530531167984, -0.017432404682040215, 0.05996386706829071, -0.024156158789992332, -0.057796917855739594, -0.058523666113615036, -0.06686114519834518, 0.011313402093946934, -0.00775144575163722, 0.11726417392492294, -0.06450776755809784, 0.09395397454500198, 0.025765664875507355, 0.06269765645265579, -0.042549166828393936, 0.05981731042265892, -0.10193105041980743, 0.013144214637577534, -0.15104839205741882, 0.0400441437959671, -0.05145822837948799, 0.06935621798038483, -0.08194040507078171, -0.10615845024585724, 0.002663051476702094, -0.0028380511794239283, 0.06268789619207382, 0.09636878967285156, -0.18458586931228638, -0.08252619951963425, 0.1638277769088745, -0.07281412184238434, -0.12196049094200134, 0.12136763334274292, -0.0580064132809639, 0.05861146003007889, 0.05951378867030144, 0.17990033328533173, 0.08656419813632965, -0.07854954153299332, 0.0018196254968643188, 0.023756947368383408, 0.05026758089661598, -0.06338667124509811, 0.06808595359325409, 0.0018259093631058931, 0.01989728771150112, 0.03576963394880295, -0.027762150391936302, 0.0641099065542221, -0.08784174174070358, -0.09886786341667175, -0.0402458980679512, -0.08253508061170578, 0.0465523786842823, 0.07975026965141296, 0.06739030033349991, -0.09414571523666382, -0.07797343283891678, 0.05024334043264389, 0.08206507563591003, -0.058022212237119675, 0.024602338671684265, -0.049497149884700775, 0.07355623692274094, -0.023844702169299126, -0.021642537787556648, -0.17968407273292542, -0.032223403453826904, 0.007671972271054983, 0.0017039760714396834, 0.018056152388453484, 0.03337876871228218, 0.06358686834573746, 0.06016344204545021, -0.05022745952010155, -0.019244832918047905, -0.0352572537958622, -0.0006887496565468609, -0.12579292058944702, -0.19718441367149353, -0.028450479730963707, -0.02205497771501541, 0.16075244545936584, -0.2082725465297699, 0.05154874175786972, -0.014233555644750595, 0.06959009915590286, 0.012252251617610455, -0.0065546054393053055, -0.037181925028562546, 0.07644595205783844, -0.04241294413805008, -0.05049571767449379, 0.08215155452489853, 0.01450799684971571, -0.09128501266241074, -0.050215501338243484, -0.09774215519428253, 0.1582167148590088, 0.12925271689891815, -0.11003289371728897, -0.07731720805168152, -0.023380616679787636, -0.0669984295964241, -0.034903690218925476, -0.04613172262907028, 0.026549331843852997, 0.1879379004240036, -0.0049881828017532825, 0.14970116317272186, -0.06918737292289734, -0.043393924832344055, 0.018244462087750435, -0.03694281727075577, 0.01636327989399433, 0.13443101942539215, 0.13418081402778625, -0.06011265516281128, 0.15530750155448914, 0.14804664254188538, -0.08511312305927277, 0.1510668396949768, -0.04195278137922287, -0.06577235460281372, -0.01610550656914711, -0.029684927314519882, -0.011206655763089657, 0.10058020800352097, -0.15690045058727264, -0.002004367997869849, 0.030701281502842903, 0.015433641150593758, 0.02562039904296398, -0.22722068428993225, -0.04094555974006653, 0.03781639412045479, -0.044886574149131775, -0.006275756284594536, -0.00595852779224515, 0.005161743611097336, 0.10115070641040802, -0.0004888595431111753, -0.08683908730745316, 0.03661135584115982, 0.0027518956921994686, -0.08374463021755219, 0.2156449258327484, -0.081173375248909, -0.17226016521453857, -0.13096117973327637, -0.07049524784088135, -0.047677770256996155, -0.0015197350876405835, 0.06859971582889557, -0.09709104150533676, -0.02635144256055355, -0.07209304720163345, 0.025860309600830078, 0.007600440643727779, 0.022702498361468315, 0.0029937936924397945, 0.007451718207448721, 0.06447025388479233, -0.11222215741872787, -0.015035846270620823, -0.058496929705142975, -0.04542740061879158, 0.044325705617666245, 0.02816983126103878, 0.11031338572502136, 0.15270480513572693, -0.013083916157484055, 0.012781093828380108, -0.03162777051329613, 0.23638051748275757, -0.06001908704638481, -0.0208893995732069, 0.1460668295621872, -0.007206457667052746, 0.051826294511556625, 0.11371733248233795, 0.07455668598413467, -0.07760798186063766, 0.003885192796587944, 0.037943821400403976, -0.034547463059425354, -0.23284892737865448, -0.053616248071193695, -0.05520634725689888, 0.011296672746539116, 0.089586041867733, 0.02373400144279003, 0.030841536819934845, 0.07044725120067596, 0.04116436094045639, 0.07381468266248703, -0.037414710968732834, 0.05087532848119736, 0.1295747458934784, 0.030546288937330246, 0.12477082759141922, -0.04690399020910263, -0.06424792855978012, 0.040794432163238525, -0.010863419622182846, 0.22334444522857666, 0.009917938150465488, 0.13131633400917053, 0.06607729941606522, 0.1649666577577591, -0.009735438972711563, 0.07535355538129807, -0.010470135137438774, -0.03799179568886757, -0.0162015613168478, -0.03991588577628136, -0.04029099643230438, 0.023612579330801964, -0.06360199302434921, 0.06474608182907104, -0.12359699606895447, 0.014717328362166882, 0.05894068628549576, 0.24849559366703033, 0.03377196192741394, -0.3200716972351074, -0.09709673374891281, 0.0007384793716482818, -0.029719963669776917, -0.019953938201069832, 0.026196908205747604, 0.09424502402544022, -0.09753169119358063, 0.029457727447152138, -0.07466296851634979, 0.0962631106376648, -0.055720455944538116, 0.05116957798600197, 0.08169417083263397, 0.09054762125015259, 0.011883794330060482, 0.09314082562923431, -0.2884000837802887, 0.27650073170661926, 0.0002981654542963952, 0.056524623185396194, -0.07594560086727142, 0.008374286815524101, 0.041159119457006454, 0.06563553959131241, 0.07949315011501312, -0.01224528532475233, -0.01759219914674759, -0.18658626079559326, -0.06754712015390396, 0.027284175157546997, 0.06876907497644424, -0.04146112501621246, 0.08209217339754105, -0.031855158507823944, 0.008920346386730671, 0.07337794452905655, 0.0023068361915647984, -0.053541041910648346, -0.10786380618810654, -0.005141935311257839, 0.022722337394952774, -0.06008746474981308, -0.06107710674405098, -0.12087935954332352, -0.12990501523017883, 0.155729740858078, -0.035367779433727264, -0.038886189460754395, -0.106304831802845, 0.08325839787721634, 0.05899275466799736, -0.08922765403985977, 0.0430733785033226, 0.0019881264306604862, 0.07539381086826324, 0.02154691517353058, -0.07059939950704575, 0.10247620195150375, -0.07363677769899368, -0.1557348668575287, -0.0653294250369072, 0.10667534172534943, 0.033229321241378784, 0.06670800596475601, -0.014250626787543297, 0.00431025680154562, -0.046546995639801025, -0.08820211887359619, 0.020896978676319122, 0.004755881614983082, 0.07743469625711441, 0.018997633829712868, -0.07543632388114929, 0.01201551128178835, -0.06481624394655228, -0.034086693078279495, 0.20510898530483246, 0.2221778780221939, -0.09982394427061081, 0.024086005985736847, 0.025836989283561707, -0.0738971009850502, -0.19793148338794708, 0.03522804379463196, 0.05483577400445938, 0.008683490566909313, 0.04294142872095108, -0.18465115129947662, 0.13146370649337769, 0.10747389495372772, -0.011773521080613136, 0.10583452880382538, -0.324044793844223, -0.12059681862592697, 0.13578835129737854, 0.13629050552845, 0.09854068607091904, -0.1321391612291336, -0.02271113730967045, -0.018754245713353157, -0.1379910707473755, 0.11446153372526169, -0.09142790734767914, 0.120912104845047, -0.037892017513513565, 0.07596635818481445, 0.0028597572818398476, -0.0584384985268116, 0.12073198705911636, 0.023140931501984596, 0.0945015400648117, -0.058765899389982224, -0.033337973058223724, 0.03047853522002697, -0.042802438139915466, 0.03446131944656372, -0.09962396323680878, 0.029662422835826874, -0.10281215608119965, -0.0251001063734293, -0.06927776336669922, 0.04619433730840683, -0.04536258056759834, -0.06819522380828857, -0.037817176431417465, 0.025476092472672462, 0.04637615382671356, -0.007411271333694458, 0.12242395430803299, 0.02384062111377716, 0.1488822102546692, 0.09686450660228729, 0.07455138862133026, -0.06877368688583374, -0.08208677172660828, -0.026989970356225967, -0.01078053005039692, 0.050466980785131454, -0.1369129866361618, 0.019369233399629593, 0.15191002190113068, 0.020388750359416008, 0.15307851135730743, 0.08298779278993607, -0.021846970543265343, -0.00145810900721699, 0.059030331671237946, -0.16558411717414856, -0.09374777227640152, -0.017512774094939232, -0.06781873852014542, -0.12064754962921143, 0.04518076777458191, 0.09283262491226196, -0.06830855458974838, -0.006686370354145765, -0.004924751818180084, 0.013755558989942074, -0.05032142624258995, 0.18429741263389587, 0.06282955408096313, 0.047867823392152786, -0.096428282558918, 0.07266043871641159, 0.0449543371796608, -0.07330744713544846, 0.0033405697904527187, 0.07132815569639206, -0.08534601330757141, -0.05450327321887016, 0.06432835012674332, 0.1912047564983368, -0.043927162885665894, -0.04855562746524811, -0.1453658491373062, -0.12287921458482742, 0.07764768600463867, 0.1408335417509079, 0.11843205243349075, 0.01058033388108015, -0.06616745889186859, 0.0029106447473168373, -0.10731884837150574, 0.10160065442323685, 0.045956265181303024, 0.06211207062005997, -0.14301945269107819, 0.14211498200893402, 0.020740197971463203, 0.04820193350315094, -0.01806846633553505, 0.023208048194646835, -0.10020429641008377, 0.007697694003582001, -0.09298595041036606, -0.019537312909960747, -0.029065001755952835, 0.011588165536522865, -0.005960927344858646, -0.04729988053441048, -0.0542338490486145, 0.010628738440573215, -0.10766087472438812, -0.023693302646279335, 0.030114110559225082, 0.07296796143054962, -0.10916557163000107, -0.035426318645477295, 0.030875829979777336, -0.06108306720852852, 0.07371184974908829, 0.04329424351453781, 0.015606247819960117, 0.050780802965164185, -0.13902859389781952, 0.02026754431426525, 0.07313340902328491, 0.029131997376680374, 0.06079116463661194, -0.09932733327150345, -0.007924248464405537, -0.00831547100096941, 0.039642333984375, 0.02172110602259636, 0.07442112267017365, -0.1410936713218689, 0.0035281842574477196, -0.02308511547744274, -0.08286073803901672, -0.06700614094734192, 0.028149420395493507, 0.08893175423145294, 0.018416542559862137, 0.19928090274333954, -0.07619873434305191, 0.049508191645145416, -0.21921874582767487, 0.007203821558505297, -0.006482485681772232, -0.11031077802181244, -0.10131534934043884, -0.07205703109502792, 0.05513612926006317, -0.060717787593603134, 0.1499030590057373, 0.04670583829283714, 0.0190992783755064, 0.02442006766796112, -0.011104658246040344, 0.0123064573854208, 0.009836219251155853, 0.18994872272014618, 0.030648769810795784, -0.03457606956362724, 0.05985496938228607, 0.044767893850803375, 0.10333859920501709, 0.11458932608366013, 0.2000289261341095, 0.14501407742500305, -0.009634922258555889, 0.09320678561925888, 0.043747033923864365, -0.055918898433446884, -0.15551309287548065, 0.05201669782400131, -0.0348605252802372, 0.10937416553497314, -0.02125314436852932, 0.22091102600097656, 0.06478510051965714, -0.1696740686893463, 0.051610227674245834, -0.05148177221417427, -0.08721215277910233, -0.11527423560619354, -0.049710892140865326, -0.07701697945594788, -0.13180910050868988, -0.003880183445289731, -0.11571096628904343, -0.0028426540084183216, 0.12518630921840668, 0.003630818100646138, -0.027395818382501602, 0.15849998593330383, 0.014401617459952831, 0.022212907671928406, 0.06015627831220627, 0.008367235772311687, -0.03863980621099472, -0.14036662876605988, -0.059315942227840424, -0.012330079451203346, -0.008793477900326252, 0.03116128407418728, -0.06153199076652527, -0.04473326727747917, 0.03117159940302372, -0.02042582258582115, -0.09601709246635437, 0.006006556563079357, 0.011131567880511284, 0.0533316507935524, 0.044897403568029404, 0.009516828693449497, 0.018703876063227654, -0.0037758296821266413, 0.20052506029605865, -0.0717770978808403, -0.06498154252767563, -0.10246375948190689, 0.23358504474163055, 0.0361536405980587, -0.018478771671652794, 0.03453867882490158, -0.06657195836305618, 0.004409546032547951, 0.24914872646331787, 0.21641024947166443, -0.07975707203149796, -0.0060849878937006, 0.016893045976758003, -0.007865218445658684, -0.021979933604598045, 0.09790797531604767, 0.14306801557540894, 0.04558771848678589, -0.09230106323957443, -0.04356169328093529, -0.058740004897117615, -0.0174243226647377, -0.03374728187918663, 0.0693250447511673, 0.051049165427684784, 0.009482786059379578, -0.03563119098544121, 0.0567263662815094, -0.06666052341461182, -0.09042596817016602, 0.05730389058589935, -0.21876642107963562, -0.16741296648979187, -0.01652800291776657, 0.1028960645198822, 0.0017809192650020123, 0.061948828399181366, -0.029001614078879356, -0.003035155590623617, 0.09021490812301636, -0.019437670707702637, -0.09757450222969055, -0.07405272871255875, 0.0848613753914833, -0.11156534403562546, 0.21836979687213898, -0.047714509069919586, 0.054364051669836044, 0.1254379153251648, 0.06760457158088684, -0.0644994005560875, 0.06536801904439926, 0.04187343269586563, -0.04156811535358429, 0.023007867857813835, 0.06869390606880188, -0.03251289203763008, 0.06446241587400436, 0.047979000955820084, -0.13706746697425842, 0.02370663918554783, -0.04812363535165787, -0.06919568032026291, -0.043872371315956116, -0.020693952217698097, -0.06029629707336426, 0.12902742624282837, 0.2190595120191574, -0.024821428582072258, -0.00955967791378498, -0.07230399549007416, 0.00883461069315672, 0.05615578591823578, 0.021983714774250984, -0.057219840586185455, -0.21056394279003143, 0.016822319477796555, 0.04565083608031273, -0.01846429333090782, -0.25154390931129456, -0.10084811598062515, 0.004124476574361324, -0.07295944541692734, -0.0947342962026596, 0.07150569558143616, 0.08810579776763916, 0.054769519716501236, -0.05578319728374481, -0.04721960425376892, -0.07467550039291382, 0.14914295077323914, -0.1454761028289795, -0.09100616723299026 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-mrpc This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.3830 - Accuracy: 0.8456 - F1: 0.8959 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | No log | 1.0 | 230 | 0.3826 | 0.8186 | 0.8683 | | No log | 2.0 | 460 | 0.3830 | 0.8456 | 0.8959 | | 0.4408 | 3.0 | 690 | 0.3835 | 0.8382 | 0.8866 | | 0.4408 | 4.0 | 920 | 0.5036 | 0.8431 | 0.8919 | | 0.1941 | 5.0 | 1150 | 0.5783 | 0.8431 | 0.8930 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["glue"], "metrics": ["accuracy", "f1"], "model-index": [{"name": "distilbert-base-uncased-finetuned-mrpc", "results": [{"task": {"type": "text-classification", "name": "Text Classification"}, "dataset": {"name": "glue", "type": "glue", "args": "mrpc"}, "metrics": [{"type": "accuracy", "value": 0.8455882352941176, "name": "Accuracy"}, {"type": "f1", "value": 0.8958677685950412, "name": "F1"}]}]}]}
text-classification
anirudh21/distilbert-base-uncased-finetuned-mrpc
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #dataset-glue #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us
distilbert-base-uncased-finetuned-mrpc ====================================== This model is a fine-tuned version of distilbert-base-uncased on the glue dataset. It achieves the following results on the evaluation set: * Loss: 0.3830 * Accuracy: 0.8456 * F1: 0.8959 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 16 * eval\_batch\_size: 16 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 5 ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.10.0+cu111 * Datasets 1.17.0 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.0+cu111\n* Datasets 1.17.0\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #dataset-glue #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.0+cu111\n* Datasets 1.17.0\n* Tokenizers 0.10.3" ]
[ 67, 98, 4, 33 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #dataset-glue #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.0+cu111\n* Datasets 1.17.0\n* Tokenizers 0.10.3" ]
[ -0.10177629441022873, 0.09868992865085602, -0.002423677360638976, 0.12112317979335785, 0.1650812178850174, 0.03426579013466835, 0.1299346536397934, 0.12770213186740875, -0.08564593642950058, 0.021304525434970856, 0.1207699179649353, 0.16118186712265015, 0.023844653740525246, 0.10977903753519058, -0.04856811463832855, -0.26443108916282654, -0.014250527136027813, 0.05101621896028519, -0.05502324551343918, 0.13528308272361755, 0.09085173904895782, -0.12123988568782806, 0.09099695831537247, 0.010560519993305206, -0.19217939674854279, 0.0012736907228827477, -0.00007869464025134221, -0.05158104747533798, 0.1480625867843628, 0.026134053245186806, 0.1222379058599472, 0.004350635223090649, 0.08203282207250595, -0.20211967825889587, 0.0109197236597538, 0.047976233065128326, 0.0034287353046238422, 0.09363500773906708, 0.04515067860484123, 0.002628615591675043, 0.12063173204660416, -0.0803351029753685, 0.05412057787179947, 0.025187760591506958, -0.11920642107725143, -0.2130812108516693, -0.07939155399799347, 0.036630984395742416, 0.07490450143814087, 0.10550613701343536, -0.007987946271896362, 0.12026778608560562, -0.08140391111373901, 0.09315772354602814, 0.22560088336467743, -0.2846624255180359, -0.06620592623949051, 0.04440826550126076, 0.014406891539692879, 0.04722030460834503, -0.10258147865533829, -0.03414628654718399, 0.04851415753364563, 0.0509343147277832, 0.1279968023300171, -0.027470313012599945, -0.11697384715080261, 0.006325297988951206, -0.14067994058132172, -0.031778451055288315, 0.16862210631370544, 0.04232211038470268, -0.027326999232172966, -0.05612191930413246, -0.05705082044005394, -0.1505020707845688, -0.035502392798662186, -0.01559263002127409, 0.049344535917043686, -0.023357374593615532, -0.04166480526328087, -0.009466851130127907, -0.10793615877628326, -0.06508545577526093, -0.07387420535087585, 0.11076346784830093, 0.03758743405342102, 0.006860504392534494, -0.029825663194060326, 0.11246810108423233, -0.007811444811522961, -0.12158264964818954, 0.025255942717194557, 0.022893251851201057, 0.01350346952676773, -0.03933148831129074, -0.05274882912635803, -0.06423640251159668, 0.01213061437010765, 0.12725643813610077, -0.05570182576775551, 0.04239019751548767, 0.05044251307845116, 0.04930534213781357, -0.09428779035806656, 0.19049058854579926, -0.034276507794857025, -0.025200827047228813, 0.0005440381937660277, 0.05053231865167618, 0.017217280343174934, -0.011495225131511688, -0.12165343761444092, 0.004494988825172186, 0.08820939809083939, 0.007856707088649273, -0.06190384179353714, 0.07444976270198822, -0.059118129312992096, -0.024367066100239754, 0.0022545091342180967, -0.09038243442773819, 0.021844087168574333, 0.0009826826862990856, -0.07183235138654709, -0.020876631140708923, 0.036078646779060364, 0.015619035810232162, -0.01955125480890274, 0.1076565608382225, -0.08774691820144653, 0.02745640277862549, -0.09359776973724365, -0.10990453511476517, 0.016444405540823936, -0.10769655555486679, 0.022347012534737587, -0.09183300286531448, -0.179530531167984, -0.017432404682040215, 0.05996386706829071, -0.024156158789992332, -0.057796917855739594, -0.058523666113615036, -0.06686114519834518, 0.011313402093946934, -0.00775144575163722, 0.11726417392492294, -0.06450776755809784, 0.09395397454500198, 0.025765664875507355, 0.06269765645265579, -0.042549166828393936, 0.05981731042265892, -0.10193105041980743, 0.013144214637577534, -0.15104839205741882, 0.0400441437959671, -0.05145822837948799, 0.06935621798038483, -0.08194040507078171, -0.10615845024585724, 0.002663051476702094, -0.0028380511794239283, 0.06268789619207382, 0.09636878967285156, -0.18458586931228638, -0.08252619951963425, 0.1638277769088745, -0.07281412184238434, -0.12196049094200134, 0.12136763334274292, -0.0580064132809639, 0.05861146003007889, 0.05951378867030144, 0.17990033328533173, 0.08656419813632965, -0.07854954153299332, 0.0018196254968643188, 0.023756947368383408, 0.05026758089661598, -0.06338667124509811, 0.06808595359325409, 0.0018259093631058931, 0.01989728771150112, 0.03576963394880295, -0.027762150391936302, 0.0641099065542221, -0.08784174174070358, -0.09886786341667175, -0.0402458980679512, -0.08253508061170578, 0.0465523786842823, 0.07975026965141296, 0.06739030033349991, -0.09414571523666382, -0.07797343283891678, 0.05024334043264389, 0.08206507563591003, -0.058022212237119675, 0.024602338671684265, -0.049497149884700775, 0.07355623692274094, -0.023844702169299126, -0.021642537787556648, -0.17968407273292542, -0.032223403453826904, 0.007671972271054983, 0.0017039760714396834, 0.018056152388453484, 0.03337876871228218, 0.06358686834573746, 0.06016344204545021, -0.05022745952010155, -0.019244832918047905, -0.0352572537958622, -0.0006887496565468609, -0.12579292058944702, -0.19718441367149353, -0.028450479730963707, -0.02205497771501541, 0.16075244545936584, -0.2082725465297699, 0.05154874175786972, -0.014233555644750595, 0.06959009915590286, 0.012252251617610455, -0.0065546054393053055, -0.037181925028562546, 0.07644595205783844, -0.04241294413805008, -0.05049571767449379, 0.08215155452489853, 0.01450799684971571, -0.09128501266241074, -0.050215501338243484, -0.09774215519428253, 0.1582167148590088, 0.12925271689891815, -0.11003289371728897, -0.07731720805168152, -0.023380616679787636, -0.0669984295964241, -0.034903690218925476, -0.04613172262907028, 0.026549331843852997, 0.1879379004240036, -0.0049881828017532825, 0.14970116317272186, -0.06918737292289734, -0.043393924832344055, 0.018244462087750435, -0.03694281727075577, 0.01636327989399433, 0.13443101942539215, 0.13418081402778625, -0.06011265516281128, 0.15530750155448914, 0.14804664254188538, -0.08511312305927277, 0.1510668396949768, -0.04195278137922287, -0.06577235460281372, -0.01610550656914711, -0.029684927314519882, -0.011206655763089657, 0.10058020800352097, -0.15690045058727264, -0.002004367997869849, 0.030701281502842903, 0.015433641150593758, 0.02562039904296398, -0.22722068428993225, -0.04094555974006653, 0.03781639412045479, -0.044886574149131775, -0.006275756284594536, -0.00595852779224515, 0.005161743611097336, 0.10115070641040802, -0.0004888595431111753, -0.08683908730745316, 0.03661135584115982, 0.0027518956921994686, -0.08374463021755219, 0.2156449258327484, -0.081173375248909, -0.17226016521453857, -0.13096117973327637, -0.07049524784088135, -0.047677770256996155, -0.0015197350876405835, 0.06859971582889557, -0.09709104150533676, -0.02635144256055355, -0.07209304720163345, 0.025860309600830078, 0.007600440643727779, 0.022702498361468315, 0.0029937936924397945, 0.007451718207448721, 0.06447025388479233, -0.11222215741872787, -0.015035846270620823, -0.058496929705142975, -0.04542740061879158, 0.044325705617666245, 0.02816983126103878, 0.11031338572502136, 0.15270480513572693, -0.013083916157484055, 0.012781093828380108, -0.03162777051329613, 0.23638051748275757, -0.06001908704638481, -0.0208893995732069, 0.1460668295621872, -0.007206457667052746, 0.051826294511556625, 0.11371733248233795, 0.07455668598413467, -0.07760798186063766, 0.003885192796587944, 0.037943821400403976, -0.034547463059425354, -0.23284892737865448, -0.053616248071193695, -0.05520634725689888, 0.011296672746539116, 0.089586041867733, 0.02373400144279003, 0.030841536819934845, 0.07044725120067596, 0.04116436094045639, 0.07381468266248703, -0.037414710968732834, 0.05087532848119736, 0.1295747458934784, 0.030546288937330246, 0.12477082759141922, -0.04690399020910263, -0.06424792855978012, 0.040794432163238525, -0.010863419622182846, 0.22334444522857666, 0.009917938150465488, 0.13131633400917053, 0.06607729941606522, 0.1649666577577591, -0.009735438972711563, 0.07535355538129807, -0.010470135137438774, -0.03799179568886757, -0.0162015613168478, -0.03991588577628136, -0.04029099643230438, 0.023612579330801964, -0.06360199302434921, 0.06474608182907104, -0.12359699606895447, 0.014717328362166882, 0.05894068628549576, 0.24849559366703033, 0.03377196192741394, -0.3200716972351074, -0.09709673374891281, 0.0007384793716482818, -0.029719963669776917, -0.019953938201069832, 0.026196908205747604, 0.09424502402544022, -0.09753169119358063, 0.029457727447152138, -0.07466296851634979, 0.0962631106376648, -0.055720455944538116, 0.05116957798600197, 0.08169417083263397, 0.09054762125015259, 0.011883794330060482, 0.09314082562923431, -0.2884000837802887, 0.27650073170661926, 0.0002981654542963952, 0.056524623185396194, -0.07594560086727142, 0.008374286815524101, 0.041159119457006454, 0.06563553959131241, 0.07949315011501312, -0.01224528532475233, -0.01759219914674759, -0.18658626079559326, -0.06754712015390396, 0.027284175157546997, 0.06876907497644424, -0.04146112501621246, 0.08209217339754105, -0.031855158507823944, 0.008920346386730671, 0.07337794452905655, 0.0023068361915647984, -0.053541041910648346, -0.10786380618810654, -0.005141935311257839, 0.022722337394952774, -0.06008746474981308, -0.06107710674405098, -0.12087935954332352, -0.12990501523017883, 0.155729740858078, -0.035367779433727264, -0.038886189460754395, -0.106304831802845, 0.08325839787721634, 0.05899275466799736, -0.08922765403985977, 0.0430733785033226, 0.0019881264306604862, 0.07539381086826324, 0.02154691517353058, -0.07059939950704575, 0.10247620195150375, -0.07363677769899368, -0.1557348668575287, -0.0653294250369072, 0.10667534172534943, 0.033229321241378784, 0.06670800596475601, -0.014250626787543297, 0.00431025680154562, -0.046546995639801025, -0.08820211887359619, 0.020896978676319122, 0.004755881614983082, 0.07743469625711441, 0.018997633829712868, -0.07543632388114929, 0.01201551128178835, -0.06481624394655228, -0.034086693078279495, 0.20510898530483246, 0.2221778780221939, -0.09982394427061081, 0.024086005985736847, 0.025836989283561707, -0.0738971009850502, -0.19793148338794708, 0.03522804379463196, 0.05483577400445938, 0.008683490566909313, 0.04294142872095108, -0.18465115129947662, 0.13146370649337769, 0.10747389495372772, -0.011773521080613136, 0.10583452880382538, -0.324044793844223, -0.12059681862592697, 0.13578835129737854, 0.13629050552845, 0.09854068607091904, -0.1321391612291336, -0.02271113730967045, -0.018754245713353157, -0.1379910707473755, 0.11446153372526169, -0.09142790734767914, 0.120912104845047, -0.037892017513513565, 0.07596635818481445, 0.0028597572818398476, -0.0584384985268116, 0.12073198705911636, 0.023140931501984596, 0.0945015400648117, -0.058765899389982224, -0.033337973058223724, 0.03047853522002697, -0.042802438139915466, 0.03446131944656372, -0.09962396323680878, 0.029662422835826874, -0.10281215608119965, -0.0251001063734293, -0.06927776336669922, 0.04619433730840683, -0.04536258056759834, -0.06819522380828857, -0.037817176431417465, 0.025476092472672462, 0.04637615382671356, -0.007411271333694458, 0.12242395430803299, 0.02384062111377716, 0.1488822102546692, 0.09686450660228729, 0.07455138862133026, -0.06877368688583374, -0.08208677172660828, -0.026989970356225967, -0.01078053005039692, 0.050466980785131454, -0.1369129866361618, 0.019369233399629593, 0.15191002190113068, 0.020388750359416008, 0.15307851135730743, 0.08298779278993607, -0.021846970543265343, -0.00145810900721699, 0.059030331671237946, -0.16558411717414856, -0.09374777227640152, -0.017512774094939232, -0.06781873852014542, -0.12064754962921143, 0.04518076777458191, 0.09283262491226196, -0.06830855458974838, -0.006686370354145765, -0.004924751818180084, 0.013755558989942074, -0.05032142624258995, 0.18429741263389587, 0.06282955408096313, 0.047867823392152786, -0.096428282558918, 0.07266043871641159, 0.0449543371796608, -0.07330744713544846, 0.0033405697904527187, 0.07132815569639206, -0.08534601330757141, -0.05450327321887016, 0.06432835012674332, 0.1912047564983368, -0.043927162885665894, -0.04855562746524811, -0.1453658491373062, -0.12287921458482742, 0.07764768600463867, 0.1408335417509079, 0.11843205243349075, 0.01058033388108015, -0.06616745889186859, 0.0029106447473168373, -0.10731884837150574, 0.10160065442323685, 0.045956265181303024, 0.06211207062005997, -0.14301945269107819, 0.14211498200893402, 0.020740197971463203, 0.04820193350315094, -0.01806846633553505, 0.023208048194646835, -0.10020429641008377, 0.007697694003582001, -0.09298595041036606, -0.019537312909960747, -0.029065001755952835, 0.011588165536522865, -0.005960927344858646, -0.04729988053441048, -0.0542338490486145, 0.010628738440573215, -0.10766087472438812, -0.023693302646279335, 0.030114110559225082, 0.07296796143054962, -0.10916557163000107, -0.035426318645477295, 0.030875829979777336, -0.06108306720852852, 0.07371184974908829, 0.04329424351453781, 0.015606247819960117, 0.050780802965164185, -0.13902859389781952, 0.02026754431426525, 0.07313340902328491, 0.029131997376680374, 0.06079116463661194, -0.09932733327150345, -0.007924248464405537, -0.00831547100096941, 0.039642333984375, 0.02172110602259636, 0.07442112267017365, -0.1410936713218689, 0.0035281842574477196, -0.02308511547744274, -0.08286073803901672, -0.06700614094734192, 0.028149420395493507, 0.08893175423145294, 0.018416542559862137, 0.19928090274333954, -0.07619873434305191, 0.049508191645145416, -0.21921874582767487, 0.007203821558505297, -0.006482485681772232, -0.11031077802181244, -0.10131534934043884, -0.07205703109502792, 0.05513612926006317, -0.060717787593603134, 0.1499030590057373, 0.04670583829283714, 0.0190992783755064, 0.02442006766796112, -0.011104658246040344, 0.0123064573854208, 0.009836219251155853, 0.18994872272014618, 0.030648769810795784, -0.03457606956362724, 0.05985496938228607, 0.044767893850803375, 0.10333859920501709, 0.11458932608366013, 0.2000289261341095, 0.14501407742500305, -0.009634922258555889, 0.09320678561925888, 0.043747033923864365, -0.055918898433446884, -0.15551309287548065, 0.05201669782400131, -0.0348605252802372, 0.10937416553497314, -0.02125314436852932, 0.22091102600097656, 0.06478510051965714, -0.1696740686893463, 0.051610227674245834, -0.05148177221417427, -0.08721215277910233, -0.11527423560619354, -0.049710892140865326, -0.07701697945594788, -0.13180910050868988, -0.003880183445289731, -0.11571096628904343, -0.0028426540084183216, 0.12518630921840668, 0.003630818100646138, -0.027395818382501602, 0.15849998593330383, 0.014401617459952831, 0.022212907671928406, 0.06015627831220627, 0.008367235772311687, -0.03863980621099472, -0.14036662876605988, -0.059315942227840424, -0.012330079451203346, -0.008793477900326252, 0.03116128407418728, -0.06153199076652527, -0.04473326727747917, 0.03117159940302372, -0.02042582258582115, -0.09601709246635437, 0.006006556563079357, 0.011131567880511284, 0.0533316507935524, 0.044897403568029404, 0.009516828693449497, 0.018703876063227654, -0.0037758296821266413, 0.20052506029605865, -0.0717770978808403, -0.06498154252767563, -0.10246375948190689, 0.23358504474163055, 0.0361536405980587, -0.018478771671652794, 0.03453867882490158, -0.06657195836305618, 0.004409546032547951, 0.24914872646331787, 0.21641024947166443, -0.07975707203149796, -0.0060849878937006, 0.016893045976758003, -0.007865218445658684, -0.021979933604598045, 0.09790797531604767, 0.14306801557540894, 0.04558771848678589, -0.09230106323957443, -0.04356169328093529, -0.058740004897117615, -0.0174243226647377, -0.03374728187918663, 0.0693250447511673, 0.051049165427684784, 0.009482786059379578, -0.03563119098544121, 0.0567263662815094, -0.06666052341461182, -0.09042596817016602, 0.05730389058589935, -0.21876642107963562, -0.16741296648979187, -0.01652800291776657, 0.1028960645198822, 0.0017809192650020123, 0.061948828399181366, -0.029001614078879356, -0.003035155590623617, 0.09021490812301636, -0.019437670707702637, -0.09757450222969055, -0.07405272871255875, 0.0848613753914833, -0.11156534403562546, 0.21836979687213898, -0.047714509069919586, 0.054364051669836044, 0.1254379153251648, 0.06760457158088684, -0.0644994005560875, 0.06536801904439926, 0.04187343269586563, -0.04156811535358429, 0.023007867857813835, 0.06869390606880188, -0.03251289203763008, 0.06446241587400436, 0.047979000955820084, -0.13706746697425842, 0.02370663918554783, -0.04812363535165787, -0.06919568032026291, -0.043872371315956116, -0.020693952217698097, -0.06029629707336426, 0.12902742624282837, 0.2190595120191574, -0.024821428582072258, -0.00955967791378498, -0.07230399549007416, 0.00883461069315672, 0.05615578591823578, 0.021983714774250984, -0.057219840586185455, -0.21056394279003143, 0.016822319477796555, 0.04565083608031273, -0.01846429333090782, -0.25154390931129456, -0.10084811598062515, 0.004124476574361324, -0.07295944541692734, -0.0947342962026596, 0.07150569558143616, 0.08810579776763916, 0.054769519716501236, -0.05578319728374481, -0.04721960425376892, -0.07467550039291382, 0.14914295077323914, -0.1454761028289795, -0.09100616723299026 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-qnli This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.8121 - Accuracy: 0.6065 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 156 | 0.6949 | 0.4874 | | No log | 2.0 | 312 | 0.6596 | 0.5957 | | No log | 3.0 | 468 | 0.7186 | 0.5812 | | 0.6026 | 4.0 | 624 | 0.7727 | 0.6029 | | 0.6026 | 5.0 | 780 | 0.8121 | 0.6065 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["glue"], "metrics": ["accuracy"], "model-index": [{"name": "distilbert-base-uncased-finetuned-qnli", "results": [{"task": {"type": "text-classification", "name": "Text Classification"}, "dataset": {"name": "glue", "type": "glue", "args": "rte"}, "metrics": [{"type": "accuracy", "value": 0.6064981949458483, "name": "Accuracy"}]}]}]}
text-classification
anirudh21/distilbert-base-uncased-finetuned-qnli
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #dataset-glue #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us
distilbert-base-uncased-finetuned-qnli ====================================== This model is a fine-tuned version of distilbert-base-uncased on the glue dataset. It achieves the following results on the evaluation set: * Loss: 0.8121 * Accuracy: 0.6065 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 16 * eval\_batch\_size: 16 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 5 ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.10.0+cu111 * Datasets 1.17.0 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.0+cu111\n* Datasets 1.17.0\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #dataset-glue #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.0+cu111\n* Datasets 1.17.0\n* Tokenizers 0.10.3" ]
[ 67, 98, 4, 33 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #dataset-glue #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.0+cu111\n* Datasets 1.17.0\n* Tokenizers 0.10.3" ]
[ -0.10177629441022873, 0.09868992865085602, -0.002423677360638976, 0.12112317979335785, 0.1650812178850174, 0.03426579013466835, 0.1299346536397934, 0.12770213186740875, -0.08564593642950058, 0.021304525434970856, 0.1207699179649353, 0.16118186712265015, 0.023844653740525246, 0.10977903753519058, -0.04856811463832855, -0.26443108916282654, -0.014250527136027813, 0.05101621896028519, -0.05502324551343918, 0.13528308272361755, 0.09085173904895782, -0.12123988568782806, 0.09099695831537247, 0.010560519993305206, -0.19217939674854279, 0.0012736907228827477, -0.00007869464025134221, -0.05158104747533798, 0.1480625867843628, 0.026134053245186806, 0.1222379058599472, 0.004350635223090649, 0.08203282207250595, -0.20211967825889587, 0.0109197236597538, 0.047976233065128326, 0.0034287353046238422, 0.09363500773906708, 0.04515067860484123, 0.002628615591675043, 0.12063173204660416, -0.0803351029753685, 0.05412057787179947, 0.025187760591506958, -0.11920642107725143, -0.2130812108516693, -0.07939155399799347, 0.036630984395742416, 0.07490450143814087, 0.10550613701343536, -0.007987946271896362, 0.12026778608560562, -0.08140391111373901, 0.09315772354602814, 0.22560088336467743, -0.2846624255180359, -0.06620592623949051, 0.04440826550126076, 0.014406891539692879, 0.04722030460834503, -0.10258147865533829, -0.03414628654718399, 0.04851415753364563, 0.0509343147277832, 0.1279968023300171, -0.027470313012599945, -0.11697384715080261, 0.006325297988951206, -0.14067994058132172, -0.031778451055288315, 0.16862210631370544, 0.04232211038470268, -0.027326999232172966, -0.05612191930413246, -0.05705082044005394, -0.1505020707845688, -0.035502392798662186, -0.01559263002127409, 0.049344535917043686, -0.023357374593615532, -0.04166480526328087, -0.009466851130127907, -0.10793615877628326, -0.06508545577526093, -0.07387420535087585, 0.11076346784830093, 0.03758743405342102, 0.006860504392534494, -0.029825663194060326, 0.11246810108423233, -0.007811444811522961, -0.12158264964818954, 0.025255942717194557, 0.022893251851201057, 0.01350346952676773, -0.03933148831129074, -0.05274882912635803, -0.06423640251159668, 0.01213061437010765, 0.12725643813610077, -0.05570182576775551, 0.04239019751548767, 0.05044251307845116, 0.04930534213781357, -0.09428779035806656, 0.19049058854579926, -0.034276507794857025, -0.025200827047228813, 0.0005440381937660277, 0.05053231865167618, 0.017217280343174934, -0.011495225131511688, -0.12165343761444092, 0.004494988825172186, 0.08820939809083939, 0.007856707088649273, -0.06190384179353714, 0.07444976270198822, -0.059118129312992096, -0.024367066100239754, 0.0022545091342180967, -0.09038243442773819, 0.021844087168574333, 0.0009826826862990856, -0.07183235138654709, -0.020876631140708923, 0.036078646779060364, 0.015619035810232162, -0.01955125480890274, 0.1076565608382225, -0.08774691820144653, 0.02745640277862549, -0.09359776973724365, -0.10990453511476517, 0.016444405540823936, -0.10769655555486679, 0.022347012534737587, -0.09183300286531448, -0.179530531167984, -0.017432404682040215, 0.05996386706829071, -0.024156158789992332, -0.057796917855739594, -0.058523666113615036, -0.06686114519834518, 0.011313402093946934, -0.00775144575163722, 0.11726417392492294, -0.06450776755809784, 0.09395397454500198, 0.025765664875507355, 0.06269765645265579, -0.042549166828393936, 0.05981731042265892, -0.10193105041980743, 0.013144214637577534, -0.15104839205741882, 0.0400441437959671, -0.05145822837948799, 0.06935621798038483, -0.08194040507078171, -0.10615845024585724, 0.002663051476702094, -0.0028380511794239283, 0.06268789619207382, 0.09636878967285156, -0.18458586931228638, -0.08252619951963425, 0.1638277769088745, -0.07281412184238434, -0.12196049094200134, 0.12136763334274292, -0.0580064132809639, 0.05861146003007889, 0.05951378867030144, 0.17990033328533173, 0.08656419813632965, -0.07854954153299332, 0.0018196254968643188, 0.023756947368383408, 0.05026758089661598, -0.06338667124509811, 0.06808595359325409, 0.0018259093631058931, 0.01989728771150112, 0.03576963394880295, -0.027762150391936302, 0.0641099065542221, -0.08784174174070358, -0.09886786341667175, -0.0402458980679512, -0.08253508061170578, 0.0465523786842823, 0.07975026965141296, 0.06739030033349991, -0.09414571523666382, -0.07797343283891678, 0.05024334043264389, 0.08206507563591003, -0.058022212237119675, 0.024602338671684265, -0.049497149884700775, 0.07355623692274094, -0.023844702169299126, -0.021642537787556648, -0.17968407273292542, -0.032223403453826904, 0.007671972271054983, 0.0017039760714396834, 0.018056152388453484, 0.03337876871228218, 0.06358686834573746, 0.06016344204545021, -0.05022745952010155, -0.019244832918047905, -0.0352572537958622, -0.0006887496565468609, -0.12579292058944702, -0.19718441367149353, -0.028450479730963707, -0.02205497771501541, 0.16075244545936584, -0.2082725465297699, 0.05154874175786972, -0.014233555644750595, 0.06959009915590286, 0.012252251617610455, -0.0065546054393053055, -0.037181925028562546, 0.07644595205783844, -0.04241294413805008, -0.05049571767449379, 0.08215155452489853, 0.01450799684971571, -0.09128501266241074, -0.050215501338243484, -0.09774215519428253, 0.1582167148590088, 0.12925271689891815, -0.11003289371728897, -0.07731720805168152, -0.023380616679787636, -0.0669984295964241, -0.034903690218925476, -0.04613172262907028, 0.026549331843852997, 0.1879379004240036, -0.0049881828017532825, 0.14970116317272186, -0.06918737292289734, -0.043393924832344055, 0.018244462087750435, -0.03694281727075577, 0.01636327989399433, 0.13443101942539215, 0.13418081402778625, -0.06011265516281128, 0.15530750155448914, 0.14804664254188538, -0.08511312305927277, 0.1510668396949768, -0.04195278137922287, -0.06577235460281372, -0.01610550656914711, -0.029684927314519882, -0.011206655763089657, 0.10058020800352097, -0.15690045058727264, -0.002004367997869849, 0.030701281502842903, 0.015433641150593758, 0.02562039904296398, -0.22722068428993225, -0.04094555974006653, 0.03781639412045479, -0.044886574149131775, -0.006275756284594536, -0.00595852779224515, 0.005161743611097336, 0.10115070641040802, -0.0004888595431111753, -0.08683908730745316, 0.03661135584115982, 0.0027518956921994686, -0.08374463021755219, 0.2156449258327484, -0.081173375248909, -0.17226016521453857, -0.13096117973327637, -0.07049524784088135, -0.047677770256996155, -0.0015197350876405835, 0.06859971582889557, -0.09709104150533676, -0.02635144256055355, -0.07209304720163345, 0.025860309600830078, 0.007600440643727779, 0.022702498361468315, 0.0029937936924397945, 0.007451718207448721, 0.06447025388479233, -0.11222215741872787, -0.015035846270620823, -0.058496929705142975, -0.04542740061879158, 0.044325705617666245, 0.02816983126103878, 0.11031338572502136, 0.15270480513572693, -0.013083916157484055, 0.012781093828380108, -0.03162777051329613, 0.23638051748275757, -0.06001908704638481, -0.0208893995732069, 0.1460668295621872, -0.007206457667052746, 0.051826294511556625, 0.11371733248233795, 0.07455668598413467, -0.07760798186063766, 0.003885192796587944, 0.037943821400403976, -0.034547463059425354, -0.23284892737865448, -0.053616248071193695, -0.05520634725689888, 0.011296672746539116, 0.089586041867733, 0.02373400144279003, 0.030841536819934845, 0.07044725120067596, 0.04116436094045639, 0.07381468266248703, -0.037414710968732834, 0.05087532848119736, 0.1295747458934784, 0.030546288937330246, 0.12477082759141922, -0.04690399020910263, -0.06424792855978012, 0.040794432163238525, -0.010863419622182846, 0.22334444522857666, 0.009917938150465488, 0.13131633400917053, 0.06607729941606522, 0.1649666577577591, -0.009735438972711563, 0.07535355538129807, -0.010470135137438774, -0.03799179568886757, -0.0162015613168478, -0.03991588577628136, -0.04029099643230438, 0.023612579330801964, -0.06360199302434921, 0.06474608182907104, -0.12359699606895447, 0.014717328362166882, 0.05894068628549576, 0.24849559366703033, 0.03377196192741394, -0.3200716972351074, -0.09709673374891281, 0.0007384793716482818, -0.029719963669776917, -0.019953938201069832, 0.026196908205747604, 0.09424502402544022, -0.09753169119358063, 0.029457727447152138, -0.07466296851634979, 0.0962631106376648, -0.055720455944538116, 0.05116957798600197, 0.08169417083263397, 0.09054762125015259, 0.011883794330060482, 0.09314082562923431, -0.2884000837802887, 0.27650073170661926, 0.0002981654542963952, 0.056524623185396194, -0.07594560086727142, 0.008374286815524101, 0.041159119457006454, 0.06563553959131241, 0.07949315011501312, -0.01224528532475233, -0.01759219914674759, -0.18658626079559326, -0.06754712015390396, 0.027284175157546997, 0.06876907497644424, -0.04146112501621246, 0.08209217339754105, -0.031855158507823944, 0.008920346386730671, 0.07337794452905655, 0.0023068361915647984, -0.053541041910648346, -0.10786380618810654, -0.005141935311257839, 0.022722337394952774, -0.06008746474981308, -0.06107710674405098, -0.12087935954332352, -0.12990501523017883, 0.155729740858078, -0.035367779433727264, -0.038886189460754395, -0.106304831802845, 0.08325839787721634, 0.05899275466799736, -0.08922765403985977, 0.0430733785033226, 0.0019881264306604862, 0.07539381086826324, 0.02154691517353058, -0.07059939950704575, 0.10247620195150375, -0.07363677769899368, -0.1557348668575287, -0.0653294250369072, 0.10667534172534943, 0.033229321241378784, 0.06670800596475601, -0.014250626787543297, 0.00431025680154562, -0.046546995639801025, -0.08820211887359619, 0.020896978676319122, 0.004755881614983082, 0.07743469625711441, 0.018997633829712868, -0.07543632388114929, 0.01201551128178835, -0.06481624394655228, -0.034086693078279495, 0.20510898530483246, 0.2221778780221939, -0.09982394427061081, 0.024086005985736847, 0.025836989283561707, -0.0738971009850502, -0.19793148338794708, 0.03522804379463196, 0.05483577400445938, 0.008683490566909313, 0.04294142872095108, -0.18465115129947662, 0.13146370649337769, 0.10747389495372772, -0.011773521080613136, 0.10583452880382538, -0.324044793844223, -0.12059681862592697, 0.13578835129737854, 0.13629050552845, 0.09854068607091904, -0.1321391612291336, -0.02271113730967045, -0.018754245713353157, -0.1379910707473755, 0.11446153372526169, -0.09142790734767914, 0.120912104845047, -0.037892017513513565, 0.07596635818481445, 0.0028597572818398476, -0.0584384985268116, 0.12073198705911636, 0.023140931501984596, 0.0945015400648117, -0.058765899389982224, -0.033337973058223724, 0.03047853522002697, -0.042802438139915466, 0.03446131944656372, -0.09962396323680878, 0.029662422835826874, -0.10281215608119965, -0.0251001063734293, -0.06927776336669922, 0.04619433730840683, -0.04536258056759834, -0.06819522380828857, -0.037817176431417465, 0.025476092472672462, 0.04637615382671356, -0.007411271333694458, 0.12242395430803299, 0.02384062111377716, 0.1488822102546692, 0.09686450660228729, 0.07455138862133026, -0.06877368688583374, -0.08208677172660828, -0.026989970356225967, -0.01078053005039692, 0.050466980785131454, -0.1369129866361618, 0.019369233399629593, 0.15191002190113068, 0.020388750359416008, 0.15307851135730743, 0.08298779278993607, -0.021846970543265343, -0.00145810900721699, 0.059030331671237946, -0.16558411717414856, -0.09374777227640152, -0.017512774094939232, -0.06781873852014542, -0.12064754962921143, 0.04518076777458191, 0.09283262491226196, -0.06830855458974838, -0.006686370354145765, -0.004924751818180084, 0.013755558989942074, -0.05032142624258995, 0.18429741263389587, 0.06282955408096313, 0.047867823392152786, -0.096428282558918, 0.07266043871641159, 0.0449543371796608, -0.07330744713544846, 0.0033405697904527187, 0.07132815569639206, -0.08534601330757141, -0.05450327321887016, 0.06432835012674332, 0.1912047564983368, -0.043927162885665894, -0.04855562746524811, -0.1453658491373062, -0.12287921458482742, 0.07764768600463867, 0.1408335417509079, 0.11843205243349075, 0.01058033388108015, -0.06616745889186859, 0.0029106447473168373, -0.10731884837150574, 0.10160065442323685, 0.045956265181303024, 0.06211207062005997, -0.14301945269107819, 0.14211498200893402, 0.020740197971463203, 0.04820193350315094, -0.01806846633553505, 0.023208048194646835, -0.10020429641008377, 0.007697694003582001, -0.09298595041036606, -0.019537312909960747, -0.029065001755952835, 0.011588165536522865, -0.005960927344858646, -0.04729988053441048, -0.0542338490486145, 0.010628738440573215, -0.10766087472438812, -0.023693302646279335, 0.030114110559225082, 0.07296796143054962, -0.10916557163000107, -0.035426318645477295, 0.030875829979777336, -0.06108306720852852, 0.07371184974908829, 0.04329424351453781, 0.015606247819960117, 0.050780802965164185, -0.13902859389781952, 0.02026754431426525, 0.07313340902328491, 0.029131997376680374, 0.06079116463661194, -0.09932733327150345, -0.007924248464405537, -0.00831547100096941, 0.039642333984375, 0.02172110602259636, 0.07442112267017365, -0.1410936713218689, 0.0035281842574477196, -0.02308511547744274, -0.08286073803901672, -0.06700614094734192, 0.028149420395493507, 0.08893175423145294, 0.018416542559862137, 0.19928090274333954, -0.07619873434305191, 0.049508191645145416, -0.21921874582767487, 0.007203821558505297, -0.006482485681772232, -0.11031077802181244, -0.10131534934043884, -0.07205703109502792, 0.05513612926006317, -0.060717787593603134, 0.1499030590057373, 0.04670583829283714, 0.0190992783755064, 0.02442006766796112, -0.011104658246040344, 0.0123064573854208, 0.009836219251155853, 0.18994872272014618, 0.030648769810795784, -0.03457606956362724, 0.05985496938228607, 0.044767893850803375, 0.10333859920501709, 0.11458932608366013, 0.2000289261341095, 0.14501407742500305, -0.009634922258555889, 0.09320678561925888, 0.043747033923864365, -0.055918898433446884, -0.15551309287548065, 0.05201669782400131, -0.0348605252802372, 0.10937416553497314, -0.02125314436852932, 0.22091102600097656, 0.06478510051965714, -0.1696740686893463, 0.051610227674245834, -0.05148177221417427, -0.08721215277910233, -0.11527423560619354, -0.049710892140865326, -0.07701697945594788, -0.13180910050868988, -0.003880183445289731, -0.11571096628904343, -0.0028426540084183216, 0.12518630921840668, 0.003630818100646138, -0.027395818382501602, 0.15849998593330383, 0.014401617459952831, 0.022212907671928406, 0.06015627831220627, 0.008367235772311687, -0.03863980621099472, -0.14036662876605988, -0.059315942227840424, -0.012330079451203346, -0.008793477900326252, 0.03116128407418728, -0.06153199076652527, -0.04473326727747917, 0.03117159940302372, -0.02042582258582115, -0.09601709246635437, 0.006006556563079357, 0.011131567880511284, 0.0533316507935524, 0.044897403568029404, 0.009516828693449497, 0.018703876063227654, -0.0037758296821266413, 0.20052506029605865, -0.0717770978808403, -0.06498154252767563, -0.10246375948190689, 0.23358504474163055, 0.0361536405980587, -0.018478771671652794, 0.03453867882490158, -0.06657195836305618, 0.004409546032547951, 0.24914872646331787, 0.21641024947166443, -0.07975707203149796, -0.0060849878937006, 0.016893045976758003, -0.007865218445658684, -0.021979933604598045, 0.09790797531604767, 0.14306801557540894, 0.04558771848678589, -0.09230106323957443, -0.04356169328093529, -0.058740004897117615, -0.0174243226647377, -0.03374728187918663, 0.0693250447511673, 0.051049165427684784, 0.009482786059379578, -0.03563119098544121, 0.0567263662815094, -0.06666052341461182, -0.09042596817016602, 0.05730389058589935, -0.21876642107963562, -0.16741296648979187, -0.01652800291776657, 0.1028960645198822, 0.0017809192650020123, 0.061948828399181366, -0.029001614078879356, -0.003035155590623617, 0.09021490812301636, -0.019437670707702637, -0.09757450222969055, -0.07405272871255875, 0.0848613753914833, -0.11156534403562546, 0.21836979687213898, -0.047714509069919586, 0.054364051669836044, 0.1254379153251648, 0.06760457158088684, -0.0644994005560875, 0.06536801904439926, 0.04187343269586563, -0.04156811535358429, 0.023007867857813835, 0.06869390606880188, -0.03251289203763008, 0.06446241587400436, 0.047979000955820084, -0.13706746697425842, 0.02370663918554783, -0.04812363535165787, -0.06919568032026291, -0.043872371315956116, -0.020693952217698097, -0.06029629707336426, 0.12902742624282837, 0.2190595120191574, -0.024821428582072258, -0.00955967791378498, -0.07230399549007416, 0.00883461069315672, 0.05615578591823578, 0.021983714774250984, -0.057219840586185455, -0.21056394279003143, 0.016822319477796555, 0.04565083608031273, -0.01846429333090782, -0.25154390931129456, -0.10084811598062515, 0.004124476574361324, -0.07295944541692734, -0.0947342962026596, 0.07150569558143616, 0.08810579776763916, 0.054769519716501236, -0.05578319728374481, -0.04721960425376892, -0.07467550039291382, 0.14914295077323914, -0.1454761028289795, -0.09100616723299026 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-rte This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.6661 - Accuracy: 0.6173 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 156 | 0.6921 | 0.5162 | | No log | 2.0 | 312 | 0.6661 | 0.6173 | | No log | 3.0 | 468 | 0.7794 | 0.5632 | | 0.5903 | 4.0 | 624 | 0.8832 | 0.5921 | | 0.5903 | 5.0 | 780 | 0.9376 | 0.5921 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["glue"], "metrics": ["accuracy"], "model-index": [{"name": "distilbert-base-uncased-finetuned-rte", "results": [{"task": {"type": "text-classification", "name": "Text Classification"}, "dataset": {"name": "glue", "type": "glue", "args": "rte"}, "metrics": [{"type": "accuracy", "value": 0.6173285198555957, "name": "Accuracy"}]}]}]}
text-classification
anirudh21/distilbert-base-uncased-finetuned-rte
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #dataset-glue #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us
distilbert-base-uncased-finetuned-rte ===================================== This model is a fine-tuned version of distilbert-base-uncased on the glue dataset. It achieves the following results on the evaluation set: * Loss: 0.6661 * Accuracy: 0.6173 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 16 * eval\_batch\_size: 16 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 5 ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.10.0+cu111 * Datasets 1.17.0 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.0+cu111\n* Datasets 1.17.0\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #dataset-glue #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.0+cu111\n* Datasets 1.17.0\n* Tokenizers 0.10.3" ]
[ 67, 98, 4, 33 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #dataset-glue #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.0+cu111\n* Datasets 1.17.0\n* Tokenizers 0.10.3" ]
[ -0.10177629441022873, 0.09868992865085602, -0.002423677360638976, 0.12112317979335785, 0.1650812178850174, 0.03426579013466835, 0.1299346536397934, 0.12770213186740875, -0.08564593642950058, 0.021304525434970856, 0.1207699179649353, 0.16118186712265015, 0.023844653740525246, 0.10977903753519058, -0.04856811463832855, -0.26443108916282654, -0.014250527136027813, 0.05101621896028519, -0.05502324551343918, 0.13528308272361755, 0.09085173904895782, -0.12123988568782806, 0.09099695831537247, 0.010560519993305206, -0.19217939674854279, 0.0012736907228827477, -0.00007869464025134221, -0.05158104747533798, 0.1480625867843628, 0.026134053245186806, 0.1222379058599472, 0.004350635223090649, 0.08203282207250595, -0.20211967825889587, 0.0109197236597538, 0.047976233065128326, 0.0034287353046238422, 0.09363500773906708, 0.04515067860484123, 0.002628615591675043, 0.12063173204660416, -0.0803351029753685, 0.05412057787179947, 0.025187760591506958, -0.11920642107725143, -0.2130812108516693, -0.07939155399799347, 0.036630984395742416, 0.07490450143814087, 0.10550613701343536, -0.007987946271896362, 0.12026778608560562, -0.08140391111373901, 0.09315772354602814, 0.22560088336467743, -0.2846624255180359, -0.06620592623949051, 0.04440826550126076, 0.014406891539692879, 0.04722030460834503, -0.10258147865533829, -0.03414628654718399, 0.04851415753364563, 0.0509343147277832, 0.1279968023300171, -0.027470313012599945, -0.11697384715080261, 0.006325297988951206, -0.14067994058132172, -0.031778451055288315, 0.16862210631370544, 0.04232211038470268, -0.027326999232172966, -0.05612191930413246, -0.05705082044005394, -0.1505020707845688, -0.035502392798662186, -0.01559263002127409, 0.049344535917043686, -0.023357374593615532, -0.04166480526328087, -0.009466851130127907, -0.10793615877628326, -0.06508545577526093, -0.07387420535087585, 0.11076346784830093, 0.03758743405342102, 0.006860504392534494, -0.029825663194060326, 0.11246810108423233, -0.007811444811522961, -0.12158264964818954, 0.025255942717194557, 0.022893251851201057, 0.01350346952676773, -0.03933148831129074, -0.05274882912635803, -0.06423640251159668, 0.01213061437010765, 0.12725643813610077, -0.05570182576775551, 0.04239019751548767, 0.05044251307845116, 0.04930534213781357, -0.09428779035806656, 0.19049058854579926, -0.034276507794857025, -0.025200827047228813, 0.0005440381937660277, 0.05053231865167618, 0.017217280343174934, -0.011495225131511688, -0.12165343761444092, 0.004494988825172186, 0.08820939809083939, 0.007856707088649273, -0.06190384179353714, 0.07444976270198822, -0.059118129312992096, -0.024367066100239754, 0.0022545091342180967, -0.09038243442773819, 0.021844087168574333, 0.0009826826862990856, -0.07183235138654709, -0.020876631140708923, 0.036078646779060364, 0.015619035810232162, -0.01955125480890274, 0.1076565608382225, -0.08774691820144653, 0.02745640277862549, -0.09359776973724365, -0.10990453511476517, 0.016444405540823936, -0.10769655555486679, 0.022347012534737587, -0.09183300286531448, -0.179530531167984, -0.017432404682040215, 0.05996386706829071, -0.024156158789992332, -0.057796917855739594, -0.058523666113615036, -0.06686114519834518, 0.011313402093946934, -0.00775144575163722, 0.11726417392492294, -0.06450776755809784, 0.09395397454500198, 0.025765664875507355, 0.06269765645265579, -0.042549166828393936, 0.05981731042265892, -0.10193105041980743, 0.013144214637577534, -0.15104839205741882, 0.0400441437959671, -0.05145822837948799, 0.06935621798038483, -0.08194040507078171, -0.10615845024585724, 0.002663051476702094, -0.0028380511794239283, 0.06268789619207382, 0.09636878967285156, -0.18458586931228638, -0.08252619951963425, 0.1638277769088745, -0.07281412184238434, -0.12196049094200134, 0.12136763334274292, -0.0580064132809639, 0.05861146003007889, 0.05951378867030144, 0.17990033328533173, 0.08656419813632965, -0.07854954153299332, 0.0018196254968643188, 0.023756947368383408, 0.05026758089661598, -0.06338667124509811, 0.06808595359325409, 0.0018259093631058931, 0.01989728771150112, 0.03576963394880295, -0.027762150391936302, 0.0641099065542221, -0.08784174174070358, -0.09886786341667175, -0.0402458980679512, -0.08253508061170578, 0.0465523786842823, 0.07975026965141296, 0.06739030033349991, -0.09414571523666382, -0.07797343283891678, 0.05024334043264389, 0.08206507563591003, -0.058022212237119675, 0.024602338671684265, -0.049497149884700775, 0.07355623692274094, -0.023844702169299126, -0.021642537787556648, -0.17968407273292542, -0.032223403453826904, 0.007671972271054983, 0.0017039760714396834, 0.018056152388453484, 0.03337876871228218, 0.06358686834573746, 0.06016344204545021, -0.05022745952010155, -0.019244832918047905, -0.0352572537958622, -0.0006887496565468609, -0.12579292058944702, -0.19718441367149353, -0.028450479730963707, -0.02205497771501541, 0.16075244545936584, -0.2082725465297699, 0.05154874175786972, -0.014233555644750595, 0.06959009915590286, 0.012252251617610455, -0.0065546054393053055, -0.037181925028562546, 0.07644595205783844, -0.04241294413805008, -0.05049571767449379, 0.08215155452489853, 0.01450799684971571, -0.09128501266241074, -0.050215501338243484, -0.09774215519428253, 0.1582167148590088, 0.12925271689891815, -0.11003289371728897, -0.07731720805168152, -0.023380616679787636, -0.0669984295964241, -0.034903690218925476, -0.04613172262907028, 0.026549331843852997, 0.1879379004240036, -0.0049881828017532825, 0.14970116317272186, -0.06918737292289734, -0.043393924832344055, 0.018244462087750435, -0.03694281727075577, 0.01636327989399433, 0.13443101942539215, 0.13418081402778625, -0.06011265516281128, 0.15530750155448914, 0.14804664254188538, -0.08511312305927277, 0.1510668396949768, -0.04195278137922287, -0.06577235460281372, -0.01610550656914711, -0.029684927314519882, -0.011206655763089657, 0.10058020800352097, -0.15690045058727264, -0.002004367997869849, 0.030701281502842903, 0.015433641150593758, 0.02562039904296398, -0.22722068428993225, -0.04094555974006653, 0.03781639412045479, -0.044886574149131775, -0.006275756284594536, -0.00595852779224515, 0.005161743611097336, 0.10115070641040802, -0.0004888595431111753, -0.08683908730745316, 0.03661135584115982, 0.0027518956921994686, -0.08374463021755219, 0.2156449258327484, -0.081173375248909, -0.17226016521453857, -0.13096117973327637, -0.07049524784088135, -0.047677770256996155, -0.0015197350876405835, 0.06859971582889557, -0.09709104150533676, -0.02635144256055355, -0.07209304720163345, 0.025860309600830078, 0.007600440643727779, 0.022702498361468315, 0.0029937936924397945, 0.007451718207448721, 0.06447025388479233, -0.11222215741872787, -0.015035846270620823, -0.058496929705142975, -0.04542740061879158, 0.044325705617666245, 0.02816983126103878, 0.11031338572502136, 0.15270480513572693, -0.013083916157484055, 0.012781093828380108, -0.03162777051329613, 0.23638051748275757, -0.06001908704638481, -0.0208893995732069, 0.1460668295621872, -0.007206457667052746, 0.051826294511556625, 0.11371733248233795, 0.07455668598413467, -0.07760798186063766, 0.003885192796587944, 0.037943821400403976, -0.034547463059425354, -0.23284892737865448, -0.053616248071193695, -0.05520634725689888, 0.011296672746539116, 0.089586041867733, 0.02373400144279003, 0.030841536819934845, 0.07044725120067596, 0.04116436094045639, 0.07381468266248703, -0.037414710968732834, 0.05087532848119736, 0.1295747458934784, 0.030546288937330246, 0.12477082759141922, -0.04690399020910263, -0.06424792855978012, 0.040794432163238525, -0.010863419622182846, 0.22334444522857666, 0.009917938150465488, 0.13131633400917053, 0.06607729941606522, 0.1649666577577591, -0.009735438972711563, 0.07535355538129807, -0.010470135137438774, -0.03799179568886757, -0.0162015613168478, -0.03991588577628136, -0.04029099643230438, 0.023612579330801964, -0.06360199302434921, 0.06474608182907104, -0.12359699606895447, 0.014717328362166882, 0.05894068628549576, 0.24849559366703033, 0.03377196192741394, -0.3200716972351074, -0.09709673374891281, 0.0007384793716482818, -0.029719963669776917, -0.019953938201069832, 0.026196908205747604, 0.09424502402544022, -0.09753169119358063, 0.029457727447152138, -0.07466296851634979, 0.0962631106376648, -0.055720455944538116, 0.05116957798600197, 0.08169417083263397, 0.09054762125015259, 0.011883794330060482, 0.09314082562923431, -0.2884000837802887, 0.27650073170661926, 0.0002981654542963952, 0.056524623185396194, -0.07594560086727142, 0.008374286815524101, 0.041159119457006454, 0.06563553959131241, 0.07949315011501312, -0.01224528532475233, -0.01759219914674759, -0.18658626079559326, -0.06754712015390396, 0.027284175157546997, 0.06876907497644424, -0.04146112501621246, 0.08209217339754105, -0.031855158507823944, 0.008920346386730671, 0.07337794452905655, 0.0023068361915647984, -0.053541041910648346, -0.10786380618810654, -0.005141935311257839, 0.022722337394952774, -0.06008746474981308, -0.06107710674405098, -0.12087935954332352, -0.12990501523017883, 0.155729740858078, -0.035367779433727264, -0.038886189460754395, -0.106304831802845, 0.08325839787721634, 0.05899275466799736, -0.08922765403985977, 0.0430733785033226, 0.0019881264306604862, 0.07539381086826324, 0.02154691517353058, -0.07059939950704575, 0.10247620195150375, -0.07363677769899368, -0.1557348668575287, -0.0653294250369072, 0.10667534172534943, 0.033229321241378784, 0.06670800596475601, -0.014250626787543297, 0.00431025680154562, -0.046546995639801025, -0.08820211887359619, 0.020896978676319122, 0.004755881614983082, 0.07743469625711441, 0.018997633829712868, -0.07543632388114929, 0.01201551128178835, -0.06481624394655228, -0.034086693078279495, 0.20510898530483246, 0.2221778780221939, -0.09982394427061081, 0.024086005985736847, 0.025836989283561707, -0.0738971009850502, -0.19793148338794708, 0.03522804379463196, 0.05483577400445938, 0.008683490566909313, 0.04294142872095108, -0.18465115129947662, 0.13146370649337769, 0.10747389495372772, -0.011773521080613136, 0.10583452880382538, -0.324044793844223, -0.12059681862592697, 0.13578835129737854, 0.13629050552845, 0.09854068607091904, -0.1321391612291336, -0.02271113730967045, -0.018754245713353157, -0.1379910707473755, 0.11446153372526169, -0.09142790734767914, 0.120912104845047, -0.037892017513513565, 0.07596635818481445, 0.0028597572818398476, -0.0584384985268116, 0.12073198705911636, 0.023140931501984596, 0.0945015400648117, -0.058765899389982224, -0.033337973058223724, 0.03047853522002697, -0.042802438139915466, 0.03446131944656372, -0.09962396323680878, 0.029662422835826874, -0.10281215608119965, -0.0251001063734293, -0.06927776336669922, 0.04619433730840683, -0.04536258056759834, -0.06819522380828857, -0.037817176431417465, 0.025476092472672462, 0.04637615382671356, -0.007411271333694458, 0.12242395430803299, 0.02384062111377716, 0.1488822102546692, 0.09686450660228729, 0.07455138862133026, -0.06877368688583374, -0.08208677172660828, -0.026989970356225967, -0.01078053005039692, 0.050466980785131454, -0.1369129866361618, 0.019369233399629593, 0.15191002190113068, 0.020388750359416008, 0.15307851135730743, 0.08298779278993607, -0.021846970543265343, -0.00145810900721699, 0.059030331671237946, -0.16558411717414856, -0.09374777227640152, -0.017512774094939232, -0.06781873852014542, -0.12064754962921143, 0.04518076777458191, 0.09283262491226196, -0.06830855458974838, -0.006686370354145765, -0.004924751818180084, 0.013755558989942074, -0.05032142624258995, 0.18429741263389587, 0.06282955408096313, 0.047867823392152786, -0.096428282558918, 0.07266043871641159, 0.0449543371796608, -0.07330744713544846, 0.0033405697904527187, 0.07132815569639206, -0.08534601330757141, -0.05450327321887016, 0.06432835012674332, 0.1912047564983368, -0.043927162885665894, -0.04855562746524811, -0.1453658491373062, -0.12287921458482742, 0.07764768600463867, 0.1408335417509079, 0.11843205243349075, 0.01058033388108015, -0.06616745889186859, 0.0029106447473168373, -0.10731884837150574, 0.10160065442323685, 0.045956265181303024, 0.06211207062005997, -0.14301945269107819, 0.14211498200893402, 0.020740197971463203, 0.04820193350315094, -0.01806846633553505, 0.023208048194646835, -0.10020429641008377, 0.007697694003582001, -0.09298595041036606, -0.019537312909960747, -0.029065001755952835, 0.011588165536522865, -0.005960927344858646, -0.04729988053441048, -0.0542338490486145, 0.010628738440573215, -0.10766087472438812, -0.023693302646279335, 0.030114110559225082, 0.07296796143054962, -0.10916557163000107, -0.035426318645477295, 0.030875829979777336, -0.06108306720852852, 0.07371184974908829, 0.04329424351453781, 0.015606247819960117, 0.050780802965164185, -0.13902859389781952, 0.02026754431426525, 0.07313340902328491, 0.029131997376680374, 0.06079116463661194, -0.09932733327150345, -0.007924248464405537, -0.00831547100096941, 0.039642333984375, 0.02172110602259636, 0.07442112267017365, -0.1410936713218689, 0.0035281842574477196, -0.02308511547744274, -0.08286073803901672, -0.06700614094734192, 0.028149420395493507, 0.08893175423145294, 0.018416542559862137, 0.19928090274333954, -0.07619873434305191, 0.049508191645145416, -0.21921874582767487, 0.007203821558505297, -0.006482485681772232, -0.11031077802181244, -0.10131534934043884, -0.07205703109502792, 0.05513612926006317, -0.060717787593603134, 0.1499030590057373, 0.04670583829283714, 0.0190992783755064, 0.02442006766796112, -0.011104658246040344, 0.0123064573854208, 0.009836219251155853, 0.18994872272014618, 0.030648769810795784, -0.03457606956362724, 0.05985496938228607, 0.044767893850803375, 0.10333859920501709, 0.11458932608366013, 0.2000289261341095, 0.14501407742500305, -0.009634922258555889, 0.09320678561925888, 0.043747033923864365, -0.055918898433446884, -0.15551309287548065, 0.05201669782400131, -0.0348605252802372, 0.10937416553497314, -0.02125314436852932, 0.22091102600097656, 0.06478510051965714, -0.1696740686893463, 0.051610227674245834, -0.05148177221417427, -0.08721215277910233, -0.11527423560619354, -0.049710892140865326, -0.07701697945594788, -0.13180910050868988, -0.003880183445289731, -0.11571096628904343, -0.0028426540084183216, 0.12518630921840668, 0.003630818100646138, -0.027395818382501602, 0.15849998593330383, 0.014401617459952831, 0.022212907671928406, 0.06015627831220627, 0.008367235772311687, -0.03863980621099472, -0.14036662876605988, -0.059315942227840424, -0.012330079451203346, -0.008793477900326252, 0.03116128407418728, -0.06153199076652527, -0.04473326727747917, 0.03117159940302372, -0.02042582258582115, -0.09601709246635437, 0.006006556563079357, 0.011131567880511284, 0.0533316507935524, 0.044897403568029404, 0.009516828693449497, 0.018703876063227654, -0.0037758296821266413, 0.20052506029605865, -0.0717770978808403, -0.06498154252767563, -0.10246375948190689, 0.23358504474163055, 0.0361536405980587, -0.018478771671652794, 0.03453867882490158, -0.06657195836305618, 0.004409546032547951, 0.24914872646331787, 0.21641024947166443, -0.07975707203149796, -0.0060849878937006, 0.016893045976758003, -0.007865218445658684, -0.021979933604598045, 0.09790797531604767, 0.14306801557540894, 0.04558771848678589, -0.09230106323957443, -0.04356169328093529, -0.058740004897117615, -0.0174243226647377, -0.03374728187918663, 0.0693250447511673, 0.051049165427684784, 0.009482786059379578, -0.03563119098544121, 0.0567263662815094, -0.06666052341461182, -0.09042596817016602, 0.05730389058589935, -0.21876642107963562, -0.16741296648979187, -0.01652800291776657, 0.1028960645198822, 0.0017809192650020123, 0.061948828399181366, -0.029001614078879356, -0.003035155590623617, 0.09021490812301636, -0.019437670707702637, -0.09757450222969055, -0.07405272871255875, 0.0848613753914833, -0.11156534403562546, 0.21836979687213898, -0.047714509069919586, 0.054364051669836044, 0.1254379153251648, 0.06760457158088684, -0.0644994005560875, 0.06536801904439926, 0.04187343269586563, -0.04156811535358429, 0.023007867857813835, 0.06869390606880188, -0.03251289203763008, 0.06446241587400436, 0.047979000955820084, -0.13706746697425842, 0.02370663918554783, -0.04812363535165787, -0.06919568032026291, -0.043872371315956116, -0.020693952217698097, -0.06029629707336426, 0.12902742624282837, 0.2190595120191574, -0.024821428582072258, -0.00955967791378498, -0.07230399549007416, 0.00883461069315672, 0.05615578591823578, 0.021983714774250984, -0.057219840586185455, -0.21056394279003143, 0.016822319477796555, 0.04565083608031273, -0.01846429333090782, -0.25154390931129456, -0.10084811598062515, 0.004124476574361324, -0.07295944541692734, -0.0947342962026596, 0.07150569558143616, 0.08810579776763916, 0.054769519716501236, -0.05578319728374481, -0.04721960425376892, -0.07467550039291382, 0.14914295077323914, -0.1454761028289795, -0.09100616723299026 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-sst2 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.4028 - Accuracy: 0.9083 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.188 | 1.0 | 4210 | 0.3127 | 0.9037 | | 0.1299 | 2.0 | 8420 | 0.3887 | 0.9048 | | 0.0845 | 3.0 | 12630 | 0.4028 | 0.9083 | | 0.0691 | 4.0 | 16840 | 0.3924 | 0.9071 | | 0.052 | 5.0 | 21050 | 0.5047 | 0.9002 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["glue"], "metrics": ["accuracy"], "model-index": [{"name": "distilbert-base-uncased-finetuned-sst2", "results": [{"task": {"type": "text-classification", "name": "Text Classification"}, "dataset": {"name": "glue", "type": "glue", "args": "sst2"}, "metrics": [{"type": "accuracy", "value": 0.908256880733945, "name": "Accuracy"}]}]}]}
text-classification
anirudh21/distilbert-base-uncased-finetuned-sst2
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #dataset-glue #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us
distilbert-base-uncased-finetuned-sst2 ====================================== This model is a fine-tuned version of distilbert-base-uncased on the glue dataset. It achieves the following results on the evaluation set: * Loss: 0.4028 * Accuracy: 0.9083 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 16 * eval\_batch\_size: 16 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 5 ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.10.0+cu111 * Datasets 1.17.0 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.0+cu111\n* Datasets 1.17.0\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #dataset-glue #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.0+cu111\n* Datasets 1.17.0\n* Tokenizers 0.10.3" ]
[ 67, 98, 4, 33 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #dataset-glue #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.0+cu111\n* Datasets 1.17.0\n* Tokenizers 0.10.3" ]
[ -0.10177629441022873, 0.09868992865085602, -0.002423677360638976, 0.12112317979335785, 0.1650812178850174, 0.03426579013466835, 0.1299346536397934, 0.12770213186740875, -0.08564593642950058, 0.021304525434970856, 0.1207699179649353, 0.16118186712265015, 0.023844653740525246, 0.10977903753519058, -0.04856811463832855, -0.26443108916282654, -0.014250527136027813, 0.05101621896028519, -0.05502324551343918, 0.13528308272361755, 0.09085173904895782, -0.12123988568782806, 0.09099695831537247, 0.010560519993305206, -0.19217939674854279, 0.0012736907228827477, -0.00007869464025134221, -0.05158104747533798, 0.1480625867843628, 0.026134053245186806, 0.1222379058599472, 0.004350635223090649, 0.08203282207250595, -0.20211967825889587, 0.0109197236597538, 0.047976233065128326, 0.0034287353046238422, 0.09363500773906708, 0.04515067860484123, 0.002628615591675043, 0.12063173204660416, -0.0803351029753685, 0.05412057787179947, 0.025187760591506958, -0.11920642107725143, -0.2130812108516693, -0.07939155399799347, 0.036630984395742416, 0.07490450143814087, 0.10550613701343536, -0.007987946271896362, 0.12026778608560562, -0.08140391111373901, 0.09315772354602814, 0.22560088336467743, -0.2846624255180359, -0.06620592623949051, 0.04440826550126076, 0.014406891539692879, 0.04722030460834503, -0.10258147865533829, -0.03414628654718399, 0.04851415753364563, 0.0509343147277832, 0.1279968023300171, -0.027470313012599945, -0.11697384715080261, 0.006325297988951206, -0.14067994058132172, -0.031778451055288315, 0.16862210631370544, 0.04232211038470268, -0.027326999232172966, -0.05612191930413246, -0.05705082044005394, -0.1505020707845688, -0.035502392798662186, -0.01559263002127409, 0.049344535917043686, -0.023357374593615532, -0.04166480526328087, -0.009466851130127907, -0.10793615877628326, -0.06508545577526093, -0.07387420535087585, 0.11076346784830093, 0.03758743405342102, 0.006860504392534494, -0.029825663194060326, 0.11246810108423233, -0.007811444811522961, -0.12158264964818954, 0.025255942717194557, 0.022893251851201057, 0.01350346952676773, -0.03933148831129074, -0.05274882912635803, -0.06423640251159668, 0.01213061437010765, 0.12725643813610077, -0.05570182576775551, 0.04239019751548767, 0.05044251307845116, 0.04930534213781357, -0.09428779035806656, 0.19049058854579926, -0.034276507794857025, -0.025200827047228813, 0.0005440381937660277, 0.05053231865167618, 0.017217280343174934, -0.011495225131511688, -0.12165343761444092, 0.004494988825172186, 0.08820939809083939, 0.007856707088649273, -0.06190384179353714, 0.07444976270198822, -0.059118129312992096, -0.024367066100239754, 0.0022545091342180967, -0.09038243442773819, 0.021844087168574333, 0.0009826826862990856, -0.07183235138654709, -0.020876631140708923, 0.036078646779060364, 0.015619035810232162, -0.01955125480890274, 0.1076565608382225, -0.08774691820144653, 0.02745640277862549, -0.09359776973724365, -0.10990453511476517, 0.016444405540823936, -0.10769655555486679, 0.022347012534737587, -0.09183300286531448, -0.179530531167984, -0.017432404682040215, 0.05996386706829071, -0.024156158789992332, -0.057796917855739594, -0.058523666113615036, -0.06686114519834518, 0.011313402093946934, -0.00775144575163722, 0.11726417392492294, -0.06450776755809784, 0.09395397454500198, 0.025765664875507355, 0.06269765645265579, -0.042549166828393936, 0.05981731042265892, -0.10193105041980743, 0.013144214637577534, -0.15104839205741882, 0.0400441437959671, -0.05145822837948799, 0.06935621798038483, -0.08194040507078171, -0.10615845024585724, 0.002663051476702094, -0.0028380511794239283, 0.06268789619207382, 0.09636878967285156, -0.18458586931228638, -0.08252619951963425, 0.1638277769088745, -0.07281412184238434, -0.12196049094200134, 0.12136763334274292, -0.0580064132809639, 0.05861146003007889, 0.05951378867030144, 0.17990033328533173, 0.08656419813632965, -0.07854954153299332, 0.0018196254968643188, 0.023756947368383408, 0.05026758089661598, -0.06338667124509811, 0.06808595359325409, 0.0018259093631058931, 0.01989728771150112, 0.03576963394880295, -0.027762150391936302, 0.0641099065542221, -0.08784174174070358, -0.09886786341667175, -0.0402458980679512, -0.08253508061170578, 0.0465523786842823, 0.07975026965141296, 0.06739030033349991, -0.09414571523666382, -0.07797343283891678, 0.05024334043264389, 0.08206507563591003, -0.058022212237119675, 0.024602338671684265, -0.049497149884700775, 0.07355623692274094, -0.023844702169299126, -0.021642537787556648, -0.17968407273292542, -0.032223403453826904, 0.007671972271054983, 0.0017039760714396834, 0.018056152388453484, 0.03337876871228218, 0.06358686834573746, 0.06016344204545021, -0.05022745952010155, -0.019244832918047905, -0.0352572537958622, -0.0006887496565468609, -0.12579292058944702, -0.19718441367149353, -0.028450479730963707, -0.02205497771501541, 0.16075244545936584, -0.2082725465297699, 0.05154874175786972, -0.014233555644750595, 0.06959009915590286, 0.012252251617610455, -0.0065546054393053055, -0.037181925028562546, 0.07644595205783844, -0.04241294413805008, -0.05049571767449379, 0.08215155452489853, 0.01450799684971571, -0.09128501266241074, -0.050215501338243484, -0.09774215519428253, 0.1582167148590088, 0.12925271689891815, -0.11003289371728897, -0.07731720805168152, -0.023380616679787636, -0.0669984295964241, -0.034903690218925476, -0.04613172262907028, 0.026549331843852997, 0.1879379004240036, -0.0049881828017532825, 0.14970116317272186, -0.06918737292289734, -0.043393924832344055, 0.018244462087750435, -0.03694281727075577, 0.01636327989399433, 0.13443101942539215, 0.13418081402778625, -0.06011265516281128, 0.15530750155448914, 0.14804664254188538, -0.08511312305927277, 0.1510668396949768, -0.04195278137922287, -0.06577235460281372, -0.01610550656914711, -0.029684927314519882, -0.011206655763089657, 0.10058020800352097, -0.15690045058727264, -0.002004367997869849, 0.030701281502842903, 0.015433641150593758, 0.02562039904296398, -0.22722068428993225, -0.04094555974006653, 0.03781639412045479, -0.044886574149131775, -0.006275756284594536, -0.00595852779224515, 0.005161743611097336, 0.10115070641040802, -0.0004888595431111753, -0.08683908730745316, 0.03661135584115982, 0.0027518956921994686, -0.08374463021755219, 0.2156449258327484, -0.081173375248909, -0.17226016521453857, -0.13096117973327637, -0.07049524784088135, -0.047677770256996155, -0.0015197350876405835, 0.06859971582889557, -0.09709104150533676, -0.02635144256055355, -0.07209304720163345, 0.025860309600830078, 0.007600440643727779, 0.022702498361468315, 0.0029937936924397945, 0.007451718207448721, 0.06447025388479233, -0.11222215741872787, -0.015035846270620823, -0.058496929705142975, -0.04542740061879158, 0.044325705617666245, 0.02816983126103878, 0.11031338572502136, 0.15270480513572693, -0.013083916157484055, 0.012781093828380108, -0.03162777051329613, 0.23638051748275757, -0.06001908704638481, -0.0208893995732069, 0.1460668295621872, -0.007206457667052746, 0.051826294511556625, 0.11371733248233795, 0.07455668598413467, -0.07760798186063766, 0.003885192796587944, 0.037943821400403976, -0.034547463059425354, -0.23284892737865448, -0.053616248071193695, -0.05520634725689888, 0.011296672746539116, 0.089586041867733, 0.02373400144279003, 0.030841536819934845, 0.07044725120067596, 0.04116436094045639, 0.07381468266248703, -0.037414710968732834, 0.05087532848119736, 0.1295747458934784, 0.030546288937330246, 0.12477082759141922, -0.04690399020910263, -0.06424792855978012, 0.040794432163238525, -0.010863419622182846, 0.22334444522857666, 0.009917938150465488, 0.13131633400917053, 0.06607729941606522, 0.1649666577577591, -0.009735438972711563, 0.07535355538129807, -0.010470135137438774, -0.03799179568886757, -0.0162015613168478, -0.03991588577628136, -0.04029099643230438, 0.023612579330801964, -0.06360199302434921, 0.06474608182907104, -0.12359699606895447, 0.014717328362166882, 0.05894068628549576, 0.24849559366703033, 0.03377196192741394, -0.3200716972351074, -0.09709673374891281, 0.0007384793716482818, -0.029719963669776917, -0.019953938201069832, 0.026196908205747604, 0.09424502402544022, -0.09753169119358063, 0.029457727447152138, -0.07466296851634979, 0.0962631106376648, -0.055720455944538116, 0.05116957798600197, 0.08169417083263397, 0.09054762125015259, 0.011883794330060482, 0.09314082562923431, -0.2884000837802887, 0.27650073170661926, 0.0002981654542963952, 0.056524623185396194, -0.07594560086727142, 0.008374286815524101, 0.041159119457006454, 0.06563553959131241, 0.07949315011501312, -0.01224528532475233, -0.01759219914674759, -0.18658626079559326, -0.06754712015390396, 0.027284175157546997, 0.06876907497644424, -0.04146112501621246, 0.08209217339754105, -0.031855158507823944, 0.008920346386730671, 0.07337794452905655, 0.0023068361915647984, -0.053541041910648346, -0.10786380618810654, -0.005141935311257839, 0.022722337394952774, -0.06008746474981308, -0.06107710674405098, -0.12087935954332352, -0.12990501523017883, 0.155729740858078, -0.035367779433727264, -0.038886189460754395, -0.106304831802845, 0.08325839787721634, 0.05899275466799736, -0.08922765403985977, 0.0430733785033226, 0.0019881264306604862, 0.07539381086826324, 0.02154691517353058, -0.07059939950704575, 0.10247620195150375, -0.07363677769899368, -0.1557348668575287, -0.0653294250369072, 0.10667534172534943, 0.033229321241378784, 0.06670800596475601, -0.014250626787543297, 0.00431025680154562, -0.046546995639801025, -0.08820211887359619, 0.020896978676319122, 0.004755881614983082, 0.07743469625711441, 0.018997633829712868, -0.07543632388114929, 0.01201551128178835, -0.06481624394655228, -0.034086693078279495, 0.20510898530483246, 0.2221778780221939, -0.09982394427061081, 0.024086005985736847, 0.025836989283561707, -0.0738971009850502, -0.19793148338794708, 0.03522804379463196, 0.05483577400445938, 0.008683490566909313, 0.04294142872095108, -0.18465115129947662, 0.13146370649337769, 0.10747389495372772, -0.011773521080613136, 0.10583452880382538, -0.324044793844223, -0.12059681862592697, 0.13578835129737854, 0.13629050552845, 0.09854068607091904, -0.1321391612291336, -0.02271113730967045, -0.018754245713353157, -0.1379910707473755, 0.11446153372526169, -0.09142790734767914, 0.120912104845047, -0.037892017513513565, 0.07596635818481445, 0.0028597572818398476, -0.0584384985268116, 0.12073198705911636, 0.023140931501984596, 0.0945015400648117, -0.058765899389982224, -0.033337973058223724, 0.03047853522002697, -0.042802438139915466, 0.03446131944656372, -0.09962396323680878, 0.029662422835826874, -0.10281215608119965, -0.0251001063734293, -0.06927776336669922, 0.04619433730840683, -0.04536258056759834, -0.06819522380828857, -0.037817176431417465, 0.025476092472672462, 0.04637615382671356, -0.007411271333694458, 0.12242395430803299, 0.02384062111377716, 0.1488822102546692, 0.09686450660228729, 0.07455138862133026, -0.06877368688583374, -0.08208677172660828, -0.026989970356225967, -0.01078053005039692, 0.050466980785131454, -0.1369129866361618, 0.019369233399629593, 0.15191002190113068, 0.020388750359416008, 0.15307851135730743, 0.08298779278993607, -0.021846970543265343, -0.00145810900721699, 0.059030331671237946, -0.16558411717414856, -0.09374777227640152, -0.017512774094939232, -0.06781873852014542, -0.12064754962921143, 0.04518076777458191, 0.09283262491226196, -0.06830855458974838, -0.006686370354145765, -0.004924751818180084, 0.013755558989942074, -0.05032142624258995, 0.18429741263389587, 0.06282955408096313, 0.047867823392152786, -0.096428282558918, 0.07266043871641159, 0.0449543371796608, -0.07330744713544846, 0.0033405697904527187, 0.07132815569639206, -0.08534601330757141, -0.05450327321887016, 0.06432835012674332, 0.1912047564983368, -0.043927162885665894, -0.04855562746524811, -0.1453658491373062, -0.12287921458482742, 0.07764768600463867, 0.1408335417509079, 0.11843205243349075, 0.01058033388108015, -0.06616745889186859, 0.0029106447473168373, -0.10731884837150574, 0.10160065442323685, 0.045956265181303024, 0.06211207062005997, -0.14301945269107819, 0.14211498200893402, 0.020740197971463203, 0.04820193350315094, -0.01806846633553505, 0.023208048194646835, -0.10020429641008377, 0.007697694003582001, -0.09298595041036606, -0.019537312909960747, -0.029065001755952835, 0.011588165536522865, -0.005960927344858646, -0.04729988053441048, -0.0542338490486145, 0.010628738440573215, -0.10766087472438812, -0.023693302646279335, 0.030114110559225082, 0.07296796143054962, -0.10916557163000107, -0.035426318645477295, 0.030875829979777336, -0.06108306720852852, 0.07371184974908829, 0.04329424351453781, 0.015606247819960117, 0.050780802965164185, -0.13902859389781952, 0.02026754431426525, 0.07313340902328491, 0.029131997376680374, 0.06079116463661194, -0.09932733327150345, -0.007924248464405537, -0.00831547100096941, 0.039642333984375, 0.02172110602259636, 0.07442112267017365, -0.1410936713218689, 0.0035281842574477196, -0.02308511547744274, -0.08286073803901672, -0.06700614094734192, 0.028149420395493507, 0.08893175423145294, 0.018416542559862137, 0.19928090274333954, -0.07619873434305191, 0.049508191645145416, -0.21921874582767487, 0.007203821558505297, -0.006482485681772232, -0.11031077802181244, -0.10131534934043884, -0.07205703109502792, 0.05513612926006317, -0.060717787593603134, 0.1499030590057373, 0.04670583829283714, 0.0190992783755064, 0.02442006766796112, -0.011104658246040344, 0.0123064573854208, 0.009836219251155853, 0.18994872272014618, 0.030648769810795784, -0.03457606956362724, 0.05985496938228607, 0.044767893850803375, 0.10333859920501709, 0.11458932608366013, 0.2000289261341095, 0.14501407742500305, -0.009634922258555889, 0.09320678561925888, 0.043747033923864365, -0.055918898433446884, -0.15551309287548065, 0.05201669782400131, -0.0348605252802372, 0.10937416553497314, -0.02125314436852932, 0.22091102600097656, 0.06478510051965714, -0.1696740686893463, 0.051610227674245834, -0.05148177221417427, -0.08721215277910233, -0.11527423560619354, -0.049710892140865326, -0.07701697945594788, -0.13180910050868988, -0.003880183445289731, -0.11571096628904343, -0.0028426540084183216, 0.12518630921840668, 0.003630818100646138, -0.027395818382501602, 0.15849998593330383, 0.014401617459952831, 0.022212907671928406, 0.06015627831220627, 0.008367235772311687, -0.03863980621099472, -0.14036662876605988, -0.059315942227840424, -0.012330079451203346, -0.008793477900326252, 0.03116128407418728, -0.06153199076652527, -0.04473326727747917, 0.03117159940302372, -0.02042582258582115, -0.09601709246635437, 0.006006556563079357, 0.011131567880511284, 0.0533316507935524, 0.044897403568029404, 0.009516828693449497, 0.018703876063227654, -0.0037758296821266413, 0.20052506029605865, -0.0717770978808403, -0.06498154252767563, -0.10246375948190689, 0.23358504474163055, 0.0361536405980587, -0.018478771671652794, 0.03453867882490158, -0.06657195836305618, 0.004409546032547951, 0.24914872646331787, 0.21641024947166443, -0.07975707203149796, -0.0060849878937006, 0.016893045976758003, -0.007865218445658684, -0.021979933604598045, 0.09790797531604767, 0.14306801557540894, 0.04558771848678589, -0.09230106323957443, -0.04356169328093529, -0.058740004897117615, -0.0174243226647377, -0.03374728187918663, 0.0693250447511673, 0.051049165427684784, 0.009482786059379578, -0.03563119098544121, 0.0567263662815094, -0.06666052341461182, -0.09042596817016602, 0.05730389058589935, -0.21876642107963562, -0.16741296648979187, -0.01652800291776657, 0.1028960645198822, 0.0017809192650020123, 0.061948828399181366, -0.029001614078879356, -0.003035155590623617, 0.09021490812301636, -0.019437670707702637, -0.09757450222969055, -0.07405272871255875, 0.0848613753914833, -0.11156534403562546, 0.21836979687213898, -0.047714509069919586, 0.054364051669836044, 0.1254379153251648, 0.06760457158088684, -0.0644994005560875, 0.06536801904439926, 0.04187343269586563, -0.04156811535358429, 0.023007867857813835, 0.06869390606880188, -0.03251289203763008, 0.06446241587400436, 0.047979000955820084, -0.13706746697425842, 0.02370663918554783, -0.04812363535165787, -0.06919568032026291, -0.043872371315956116, -0.020693952217698097, -0.06029629707336426, 0.12902742624282837, 0.2190595120191574, -0.024821428582072258, -0.00955967791378498, -0.07230399549007416, 0.00883461069315672, 0.05615578591823578, 0.021983714774250984, -0.057219840586185455, -0.21056394279003143, 0.016822319477796555, 0.04565083608031273, -0.01846429333090782, -0.25154390931129456, -0.10084811598062515, 0.004124476574361324, -0.07295944541692734, -0.0947342962026596, 0.07150569558143616, 0.08810579776763916, 0.054769519716501236, -0.05578319728374481, -0.04721960425376892, -0.07467550039291382, 0.14914295077323914, -0.1454761028289795, -0.09100616723299026 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-wnli This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.6883 - Accuracy: 0.5634 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 40 | 0.6883 | 0.5634 | | No log | 2.0 | 80 | 0.6934 | 0.5634 | | No log | 3.0 | 120 | 0.6960 | 0.5211 | | No log | 4.0 | 160 | 0.6958 | 0.5634 | | No log | 5.0 | 200 | 0.6964 | 0.5634 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["glue"], "metrics": ["accuracy"], "model-index": [{"name": "distilbert-base-uncased-finetuned-wnli", "results": [{"task": {"type": "text-classification", "name": "Text Classification"}, "dataset": {"name": "glue", "type": "glue", "args": "wnli"}, "metrics": [{"type": "accuracy", "value": 0.5633802816901409, "name": "Accuracy"}]}]}]}
text-classification
anirudh21/distilbert-base-uncased-finetuned-wnli
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #dataset-glue #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us
distilbert-base-uncased-finetuned-wnli ====================================== This model is a fine-tuned version of distilbert-base-uncased on the glue dataset. It achieves the following results on the evaluation set: * Loss: 0.6883 * Accuracy: 0.5634 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 16 * eval\_batch\_size: 16 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 5 ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.10.0+cu111 * Datasets 1.17.0 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.0+cu111\n* Datasets 1.17.0\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #dataset-glue #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.0+cu111\n* Datasets 1.17.0\n* Tokenizers 0.10.3" ]
[ 67, 98, 4, 33 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #dataset-glue #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.0+cu111\n* Datasets 1.17.0\n* Tokenizers 0.10.3" ]
[ -0.10177629441022873, 0.09868992865085602, -0.002423677360638976, 0.12112317979335785, 0.1650812178850174, 0.03426579013466835, 0.1299346536397934, 0.12770213186740875, -0.08564593642950058, 0.021304525434970856, 0.1207699179649353, 0.16118186712265015, 0.023844653740525246, 0.10977903753519058, -0.04856811463832855, -0.26443108916282654, -0.014250527136027813, 0.05101621896028519, -0.05502324551343918, 0.13528308272361755, 0.09085173904895782, -0.12123988568782806, 0.09099695831537247, 0.010560519993305206, -0.19217939674854279, 0.0012736907228827477, -0.00007869464025134221, -0.05158104747533798, 0.1480625867843628, 0.026134053245186806, 0.1222379058599472, 0.004350635223090649, 0.08203282207250595, -0.20211967825889587, 0.0109197236597538, 0.047976233065128326, 0.0034287353046238422, 0.09363500773906708, 0.04515067860484123, 0.002628615591675043, 0.12063173204660416, -0.0803351029753685, 0.05412057787179947, 0.025187760591506958, -0.11920642107725143, -0.2130812108516693, -0.07939155399799347, 0.036630984395742416, 0.07490450143814087, 0.10550613701343536, -0.007987946271896362, 0.12026778608560562, -0.08140391111373901, 0.09315772354602814, 0.22560088336467743, -0.2846624255180359, -0.06620592623949051, 0.04440826550126076, 0.014406891539692879, 0.04722030460834503, -0.10258147865533829, -0.03414628654718399, 0.04851415753364563, 0.0509343147277832, 0.1279968023300171, -0.027470313012599945, -0.11697384715080261, 0.006325297988951206, -0.14067994058132172, -0.031778451055288315, 0.16862210631370544, 0.04232211038470268, -0.027326999232172966, -0.05612191930413246, -0.05705082044005394, -0.1505020707845688, -0.035502392798662186, -0.01559263002127409, 0.049344535917043686, -0.023357374593615532, -0.04166480526328087, -0.009466851130127907, -0.10793615877628326, -0.06508545577526093, -0.07387420535087585, 0.11076346784830093, 0.03758743405342102, 0.006860504392534494, -0.029825663194060326, 0.11246810108423233, -0.007811444811522961, -0.12158264964818954, 0.025255942717194557, 0.022893251851201057, 0.01350346952676773, -0.03933148831129074, -0.05274882912635803, -0.06423640251159668, 0.01213061437010765, 0.12725643813610077, -0.05570182576775551, 0.04239019751548767, 0.05044251307845116, 0.04930534213781357, -0.09428779035806656, 0.19049058854579926, -0.034276507794857025, -0.025200827047228813, 0.0005440381937660277, 0.05053231865167618, 0.017217280343174934, -0.011495225131511688, -0.12165343761444092, 0.004494988825172186, 0.08820939809083939, 0.007856707088649273, -0.06190384179353714, 0.07444976270198822, -0.059118129312992096, -0.024367066100239754, 0.0022545091342180967, -0.09038243442773819, 0.021844087168574333, 0.0009826826862990856, -0.07183235138654709, -0.020876631140708923, 0.036078646779060364, 0.015619035810232162, -0.01955125480890274, 0.1076565608382225, -0.08774691820144653, 0.02745640277862549, -0.09359776973724365, -0.10990453511476517, 0.016444405540823936, -0.10769655555486679, 0.022347012534737587, -0.09183300286531448, -0.179530531167984, -0.017432404682040215, 0.05996386706829071, -0.024156158789992332, -0.057796917855739594, -0.058523666113615036, -0.06686114519834518, 0.011313402093946934, -0.00775144575163722, 0.11726417392492294, -0.06450776755809784, 0.09395397454500198, 0.025765664875507355, 0.06269765645265579, -0.042549166828393936, 0.05981731042265892, -0.10193105041980743, 0.013144214637577534, -0.15104839205741882, 0.0400441437959671, -0.05145822837948799, 0.06935621798038483, -0.08194040507078171, -0.10615845024585724, 0.002663051476702094, -0.0028380511794239283, 0.06268789619207382, 0.09636878967285156, -0.18458586931228638, -0.08252619951963425, 0.1638277769088745, -0.07281412184238434, -0.12196049094200134, 0.12136763334274292, -0.0580064132809639, 0.05861146003007889, 0.05951378867030144, 0.17990033328533173, 0.08656419813632965, -0.07854954153299332, 0.0018196254968643188, 0.023756947368383408, 0.05026758089661598, -0.06338667124509811, 0.06808595359325409, 0.0018259093631058931, 0.01989728771150112, 0.03576963394880295, -0.027762150391936302, 0.0641099065542221, -0.08784174174070358, -0.09886786341667175, -0.0402458980679512, -0.08253508061170578, 0.0465523786842823, 0.07975026965141296, 0.06739030033349991, -0.09414571523666382, -0.07797343283891678, 0.05024334043264389, 0.08206507563591003, -0.058022212237119675, 0.024602338671684265, -0.049497149884700775, 0.07355623692274094, -0.023844702169299126, -0.021642537787556648, -0.17968407273292542, -0.032223403453826904, 0.007671972271054983, 0.0017039760714396834, 0.018056152388453484, 0.03337876871228218, 0.06358686834573746, 0.06016344204545021, -0.05022745952010155, -0.019244832918047905, -0.0352572537958622, -0.0006887496565468609, -0.12579292058944702, -0.19718441367149353, -0.028450479730963707, -0.02205497771501541, 0.16075244545936584, -0.2082725465297699, 0.05154874175786972, -0.014233555644750595, 0.06959009915590286, 0.012252251617610455, -0.0065546054393053055, -0.037181925028562546, 0.07644595205783844, -0.04241294413805008, -0.05049571767449379, 0.08215155452489853, 0.01450799684971571, -0.09128501266241074, -0.050215501338243484, -0.09774215519428253, 0.1582167148590088, 0.12925271689891815, -0.11003289371728897, -0.07731720805168152, -0.023380616679787636, -0.0669984295964241, -0.034903690218925476, -0.04613172262907028, 0.026549331843852997, 0.1879379004240036, -0.0049881828017532825, 0.14970116317272186, -0.06918737292289734, -0.043393924832344055, 0.018244462087750435, -0.03694281727075577, 0.01636327989399433, 0.13443101942539215, 0.13418081402778625, -0.06011265516281128, 0.15530750155448914, 0.14804664254188538, -0.08511312305927277, 0.1510668396949768, -0.04195278137922287, -0.06577235460281372, -0.01610550656914711, -0.029684927314519882, -0.011206655763089657, 0.10058020800352097, -0.15690045058727264, -0.002004367997869849, 0.030701281502842903, 0.015433641150593758, 0.02562039904296398, -0.22722068428993225, -0.04094555974006653, 0.03781639412045479, -0.044886574149131775, -0.006275756284594536, -0.00595852779224515, 0.005161743611097336, 0.10115070641040802, -0.0004888595431111753, -0.08683908730745316, 0.03661135584115982, 0.0027518956921994686, -0.08374463021755219, 0.2156449258327484, -0.081173375248909, -0.17226016521453857, -0.13096117973327637, -0.07049524784088135, -0.047677770256996155, -0.0015197350876405835, 0.06859971582889557, -0.09709104150533676, -0.02635144256055355, -0.07209304720163345, 0.025860309600830078, 0.007600440643727779, 0.022702498361468315, 0.0029937936924397945, 0.007451718207448721, 0.06447025388479233, -0.11222215741872787, -0.015035846270620823, -0.058496929705142975, -0.04542740061879158, 0.044325705617666245, 0.02816983126103878, 0.11031338572502136, 0.15270480513572693, -0.013083916157484055, 0.012781093828380108, -0.03162777051329613, 0.23638051748275757, -0.06001908704638481, -0.0208893995732069, 0.1460668295621872, -0.007206457667052746, 0.051826294511556625, 0.11371733248233795, 0.07455668598413467, -0.07760798186063766, 0.003885192796587944, 0.037943821400403976, -0.034547463059425354, -0.23284892737865448, -0.053616248071193695, -0.05520634725689888, 0.011296672746539116, 0.089586041867733, 0.02373400144279003, 0.030841536819934845, 0.07044725120067596, 0.04116436094045639, 0.07381468266248703, -0.037414710968732834, 0.05087532848119736, 0.1295747458934784, 0.030546288937330246, 0.12477082759141922, -0.04690399020910263, -0.06424792855978012, 0.040794432163238525, -0.010863419622182846, 0.22334444522857666, 0.009917938150465488, 0.13131633400917053, 0.06607729941606522, 0.1649666577577591, -0.009735438972711563, 0.07535355538129807, -0.010470135137438774, -0.03799179568886757, -0.0162015613168478, -0.03991588577628136, -0.04029099643230438, 0.023612579330801964, -0.06360199302434921, 0.06474608182907104, -0.12359699606895447, 0.014717328362166882, 0.05894068628549576, 0.24849559366703033, 0.03377196192741394, -0.3200716972351074, -0.09709673374891281, 0.0007384793716482818, -0.029719963669776917, -0.019953938201069832, 0.026196908205747604, 0.09424502402544022, -0.09753169119358063, 0.029457727447152138, -0.07466296851634979, 0.0962631106376648, -0.055720455944538116, 0.05116957798600197, 0.08169417083263397, 0.09054762125015259, 0.011883794330060482, 0.09314082562923431, -0.2884000837802887, 0.27650073170661926, 0.0002981654542963952, 0.056524623185396194, -0.07594560086727142, 0.008374286815524101, 0.041159119457006454, 0.06563553959131241, 0.07949315011501312, -0.01224528532475233, -0.01759219914674759, -0.18658626079559326, -0.06754712015390396, 0.027284175157546997, 0.06876907497644424, -0.04146112501621246, 0.08209217339754105, -0.031855158507823944, 0.008920346386730671, 0.07337794452905655, 0.0023068361915647984, -0.053541041910648346, -0.10786380618810654, -0.005141935311257839, 0.022722337394952774, -0.06008746474981308, -0.06107710674405098, -0.12087935954332352, -0.12990501523017883, 0.155729740858078, -0.035367779433727264, -0.038886189460754395, -0.106304831802845, 0.08325839787721634, 0.05899275466799736, -0.08922765403985977, 0.0430733785033226, 0.0019881264306604862, 0.07539381086826324, 0.02154691517353058, -0.07059939950704575, 0.10247620195150375, -0.07363677769899368, -0.1557348668575287, -0.0653294250369072, 0.10667534172534943, 0.033229321241378784, 0.06670800596475601, -0.014250626787543297, 0.00431025680154562, -0.046546995639801025, -0.08820211887359619, 0.020896978676319122, 0.004755881614983082, 0.07743469625711441, 0.018997633829712868, -0.07543632388114929, 0.01201551128178835, -0.06481624394655228, -0.034086693078279495, 0.20510898530483246, 0.2221778780221939, -0.09982394427061081, 0.024086005985736847, 0.025836989283561707, -0.0738971009850502, -0.19793148338794708, 0.03522804379463196, 0.05483577400445938, 0.008683490566909313, 0.04294142872095108, -0.18465115129947662, 0.13146370649337769, 0.10747389495372772, -0.011773521080613136, 0.10583452880382538, -0.324044793844223, -0.12059681862592697, 0.13578835129737854, 0.13629050552845, 0.09854068607091904, -0.1321391612291336, -0.02271113730967045, -0.018754245713353157, -0.1379910707473755, 0.11446153372526169, -0.09142790734767914, 0.120912104845047, -0.037892017513513565, 0.07596635818481445, 0.0028597572818398476, -0.0584384985268116, 0.12073198705911636, 0.023140931501984596, 0.0945015400648117, -0.058765899389982224, -0.033337973058223724, 0.03047853522002697, -0.042802438139915466, 0.03446131944656372, -0.09962396323680878, 0.029662422835826874, -0.10281215608119965, -0.0251001063734293, -0.06927776336669922, 0.04619433730840683, -0.04536258056759834, -0.06819522380828857, -0.037817176431417465, 0.025476092472672462, 0.04637615382671356, -0.007411271333694458, 0.12242395430803299, 0.02384062111377716, 0.1488822102546692, 0.09686450660228729, 0.07455138862133026, -0.06877368688583374, -0.08208677172660828, -0.026989970356225967, -0.01078053005039692, 0.050466980785131454, -0.1369129866361618, 0.019369233399629593, 0.15191002190113068, 0.020388750359416008, 0.15307851135730743, 0.08298779278993607, -0.021846970543265343, -0.00145810900721699, 0.059030331671237946, -0.16558411717414856, -0.09374777227640152, -0.017512774094939232, -0.06781873852014542, -0.12064754962921143, 0.04518076777458191, 0.09283262491226196, -0.06830855458974838, -0.006686370354145765, -0.004924751818180084, 0.013755558989942074, -0.05032142624258995, 0.18429741263389587, 0.06282955408096313, 0.047867823392152786, -0.096428282558918, 0.07266043871641159, 0.0449543371796608, -0.07330744713544846, 0.0033405697904527187, 0.07132815569639206, -0.08534601330757141, -0.05450327321887016, 0.06432835012674332, 0.1912047564983368, -0.043927162885665894, -0.04855562746524811, -0.1453658491373062, -0.12287921458482742, 0.07764768600463867, 0.1408335417509079, 0.11843205243349075, 0.01058033388108015, -0.06616745889186859, 0.0029106447473168373, -0.10731884837150574, 0.10160065442323685, 0.045956265181303024, 0.06211207062005997, -0.14301945269107819, 0.14211498200893402, 0.020740197971463203, 0.04820193350315094, -0.01806846633553505, 0.023208048194646835, -0.10020429641008377, 0.007697694003582001, -0.09298595041036606, -0.019537312909960747, -0.029065001755952835, 0.011588165536522865, -0.005960927344858646, -0.04729988053441048, -0.0542338490486145, 0.010628738440573215, -0.10766087472438812, -0.023693302646279335, 0.030114110559225082, 0.07296796143054962, -0.10916557163000107, -0.035426318645477295, 0.030875829979777336, -0.06108306720852852, 0.07371184974908829, 0.04329424351453781, 0.015606247819960117, 0.050780802965164185, -0.13902859389781952, 0.02026754431426525, 0.07313340902328491, 0.029131997376680374, 0.06079116463661194, -0.09932733327150345, -0.007924248464405537, -0.00831547100096941, 0.039642333984375, 0.02172110602259636, 0.07442112267017365, -0.1410936713218689, 0.0035281842574477196, -0.02308511547744274, -0.08286073803901672, -0.06700614094734192, 0.028149420395493507, 0.08893175423145294, 0.018416542559862137, 0.19928090274333954, -0.07619873434305191, 0.049508191645145416, -0.21921874582767487, 0.007203821558505297, -0.006482485681772232, -0.11031077802181244, -0.10131534934043884, -0.07205703109502792, 0.05513612926006317, -0.060717787593603134, 0.1499030590057373, 0.04670583829283714, 0.0190992783755064, 0.02442006766796112, -0.011104658246040344, 0.0123064573854208, 0.009836219251155853, 0.18994872272014618, 0.030648769810795784, -0.03457606956362724, 0.05985496938228607, 0.044767893850803375, 0.10333859920501709, 0.11458932608366013, 0.2000289261341095, 0.14501407742500305, -0.009634922258555889, 0.09320678561925888, 0.043747033923864365, -0.055918898433446884, -0.15551309287548065, 0.05201669782400131, -0.0348605252802372, 0.10937416553497314, -0.02125314436852932, 0.22091102600097656, 0.06478510051965714, -0.1696740686893463, 0.051610227674245834, -0.05148177221417427, -0.08721215277910233, -0.11527423560619354, -0.049710892140865326, -0.07701697945594788, -0.13180910050868988, -0.003880183445289731, -0.11571096628904343, -0.0028426540084183216, 0.12518630921840668, 0.003630818100646138, -0.027395818382501602, 0.15849998593330383, 0.014401617459952831, 0.022212907671928406, 0.06015627831220627, 0.008367235772311687, -0.03863980621099472, -0.14036662876605988, -0.059315942227840424, -0.012330079451203346, -0.008793477900326252, 0.03116128407418728, -0.06153199076652527, -0.04473326727747917, 0.03117159940302372, -0.02042582258582115, -0.09601709246635437, 0.006006556563079357, 0.011131567880511284, 0.0533316507935524, 0.044897403568029404, 0.009516828693449497, 0.018703876063227654, -0.0037758296821266413, 0.20052506029605865, -0.0717770978808403, -0.06498154252767563, -0.10246375948190689, 0.23358504474163055, 0.0361536405980587, -0.018478771671652794, 0.03453867882490158, -0.06657195836305618, 0.004409546032547951, 0.24914872646331787, 0.21641024947166443, -0.07975707203149796, -0.0060849878937006, 0.016893045976758003, -0.007865218445658684, -0.021979933604598045, 0.09790797531604767, 0.14306801557540894, 0.04558771848678589, -0.09230106323957443, -0.04356169328093529, -0.058740004897117615, -0.0174243226647377, -0.03374728187918663, 0.0693250447511673, 0.051049165427684784, 0.009482786059379578, -0.03563119098544121, 0.0567263662815094, -0.06666052341461182, -0.09042596817016602, 0.05730389058589935, -0.21876642107963562, -0.16741296648979187, -0.01652800291776657, 0.1028960645198822, 0.0017809192650020123, 0.061948828399181366, -0.029001614078879356, -0.003035155590623617, 0.09021490812301636, -0.019437670707702637, -0.09757450222969055, -0.07405272871255875, 0.0848613753914833, -0.11156534403562546, 0.21836979687213898, -0.047714509069919586, 0.054364051669836044, 0.1254379153251648, 0.06760457158088684, -0.0644994005560875, 0.06536801904439926, 0.04187343269586563, -0.04156811535358429, 0.023007867857813835, 0.06869390606880188, -0.03251289203763008, 0.06446241587400436, 0.047979000955820084, -0.13706746697425842, 0.02370663918554783, -0.04812363535165787, -0.06919568032026291, -0.043872371315956116, -0.020693952217698097, -0.06029629707336426, 0.12902742624282837, 0.2190595120191574, -0.024821428582072258, -0.00955967791378498, -0.07230399549007416, 0.00883461069315672, 0.05615578591823578, 0.021983714774250984, -0.057219840586185455, -0.21056394279003143, 0.016822319477796555, 0.04565083608031273, -0.01846429333090782, -0.25154390931129456, -0.10084811598062515, 0.004124476574361324, -0.07295944541692734, -0.0947342962026596, 0.07150569558143616, 0.08810579776763916, 0.054769519716501236, -0.05578319728374481, -0.04721960425376892, -0.07467550039291382, 0.14914295077323914, -0.1454761028289795, -0.09100616723299026 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # electra-base-discriminator-finetuned-rte This model is a fine-tuned version of [google/electra-base-discriminator](https://huggingface.co/google/electra-base-discriminator) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.4793 - Accuracy: 0.8231 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 156 | 0.6076 | 0.6570 | | No log | 2.0 | 312 | 0.4824 | 0.7762 | | No log | 3.0 | 468 | 0.4793 | 0.8231 | | 0.4411 | 4.0 | 624 | 0.7056 | 0.7906 | | 0.4411 | 5.0 | 780 | 0.6849 | 0.8159 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.18.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["glue"], "metrics": ["accuracy"], "model-index": [{"name": "electra-base-discriminator-finetuned-rte", "results": [{"task": {"type": "text-classification", "name": "Text Classification"}, "dataset": {"name": "glue", "type": "glue", "args": "rte"}, "metrics": [{"type": "accuracy", "value": 0.8231046931407943, "name": "Accuracy"}]}]}]}
text-classification
anirudh21/electra-base-discriminator-finetuned-rte
[ "transformers", "pytorch", "tensorboard", "electra", "text-classification", "generated_from_trainer", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #electra #text-classification #generated_from_trainer #dataset-glue #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us
electra-base-discriminator-finetuned-rte ======================================== This model is a fine-tuned version of google/electra-base-discriminator on the glue dataset. It achieves the following results on the evaluation set: * Loss: 0.4793 * Accuracy: 0.8231 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 16 * eval\_batch\_size: 16 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 5 ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.10.0+cu111 * Datasets 1.18.0 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.0+cu111\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #electra #text-classification #generated_from_trainer #dataset-glue #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.0+cu111\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ 66, 98, 4, 35 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #electra #text-classification #generated_from_trainer #dataset-glue #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.0+cu111\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ -0.10993218421936035, 0.09303925931453705, -0.0018562558107078075, 0.11975739896297455, 0.17762814462184906, 0.03187306597828865, 0.09995214641094208, 0.12710557878017426, -0.08821161836385727, 0.02938605286180973, 0.13181909918785095, 0.17248812317848206, 0.02147456631064415, 0.11136481910943985, -0.05232442170381546, -0.26265934109687805, -0.0085792550817132, 0.04750598967075348, -0.06312747299671173, 0.13089106976985931, 0.09350745379924774, -0.12371840327978134, 0.0995192676782608, 0.019917162135243416, -0.18416346609592438, 0.008807512931525707, -0.000048867084842640907, -0.06115612015128136, 0.14592516422271729, 0.034306108951568604, 0.11762060970067978, -0.00911291129887104, 0.08563094586133957, -0.1951460987329483, 0.013859066180884838, 0.0488617904484272, -0.002918922109529376, 0.09141622483730316, 0.035062674432992935, 0.003967548720538616, 0.1587071418762207, -0.0852406695485115, 0.05617314204573631, 0.02328403666615486, -0.11948850005865097, -0.20560768246650696, -0.0779259130358696, 0.030848832800984383, 0.08741845935583115, 0.11399535834789276, -0.005196638870984316, 0.1362311691045761, -0.08127991110086441, 0.08750331401824951, 0.2212054431438446, -0.2868227958679199, -0.06537944823503494, 0.0169778224080801, 0.018395235762000084, 0.035376835614442825, -0.09749932587146759, -0.03057807683944702, 0.057718969881534576, 0.04944853112101555, 0.11963897198438644, -0.023592226207256317, -0.10478898137807846, 0.01874537207186222, -0.13447271287441254, -0.04013517126441002, 0.173468217253685, 0.04529625549912453, -0.03147750347852707, -0.05682028830051422, -0.053107790648937225, -0.1579091101884842, -0.030751265585422516, -0.005766710266470909, 0.042122676968574524, -0.024105016142129898, -0.043130431324243546, 0.0011519145919010043, -0.1125771775841713, -0.06111526861786842, -0.0783105120062828, 0.12700434029102325, 0.0365166962146759, 0.018269825726747513, -0.03523501753807068, 0.10577011853456497, 0.006595340557396412, -0.12484759092330933, 0.0063986945897340775, 0.026714814826846123, 0.011504312977194786, -0.04626300185918808, -0.053255971521139145, -0.06518927961587906, 0.016250334680080414, 0.1351046860218048, -0.034201495349407196, 0.042291734367609024, 0.0633799359202385, 0.04074253514409065, -0.08117340505123138, 0.18557307124137878, -0.03318364545702934, -0.011626181192696095, 0.012305648066103458, 0.03446268290281296, 0.026384979486465454, -0.01277640275657177, -0.12349376082420349, 0.003581979777663946, 0.07299818843603134, 0.013957533985376358, -0.06314987689256668, 0.06885430961847305, -0.05203275755047798, -0.021058836951851845, 0.010806522332131863, -0.08922680467367172, 0.029732314869761467, -0.004704609513282776, -0.07978168874979019, -0.01965859718620777, 0.03036697395145893, 0.025049975141882896, -0.021466488018631935, 0.10741426050662994, -0.09047967940568924, 0.024893928319215775, -0.09548268467187881, -0.10385119169950485, 0.02405233308672905, -0.12066178768873215, 0.04083560034632683, -0.10284851491451263, -0.19468048214912415, -0.012204325757920742, 0.0591849684715271, -0.024119358509778976, -0.0751781314611435, -0.057571858167648315, -0.06249626725912094, 0.02043125592172146, -0.011472281999886036, 0.11457894742488861, -0.06786517798900604, 0.08566759526729584, 0.032077889889478683, 0.05974006652832031, -0.03833478316664696, 0.05214707553386688, -0.10209894180297852, 0.008537751622498035, -0.14924949407577515, 0.030569937080144882, -0.03233163803815842, 0.08155159652233124, -0.0876268818974495, -0.09882117807865143, 0.011876729317009449, 0.0030013099312782288, 0.06287110596895218, 0.09573369473218918, -0.1693664789199829, -0.07770423591136932, 0.14866259694099426, -0.07934831082820892, -0.13363078236579895, 0.12035750597715378, -0.05827704817056656, 0.042403385043144226, 0.06371321529150009, 0.1437835842370987, 0.059065740555524826, -0.08460871875286102, -0.014025665819644928, 0.007826954126358032, 0.034052010625600815, -0.0782342404127121, 0.07619888335466385, 0.007573139853775501, 0.015471214428544044, 0.028043072670698166, -0.01616419479250908, 0.06630200892686844, -0.08420117944478989, -0.09790369123220444, -0.047176435589790344, -0.07874805480241776, 0.03403299301862717, 0.07676862180233002, 0.06206413730978966, -0.10093844681978226, -0.0900677740573883, 0.046655330806970596, 0.08729763329029083, -0.05616789683699608, 0.02331736870110035, -0.06781508773565292, 0.07085300236940384, -0.050842080265283585, -0.02671901136636734, -0.17297154664993286, -0.028807468712329865, -0.004454363137483597, -0.004673823714256287, 0.014174513518810272, 0.020979048684239388, 0.06160533428192139, 0.05672350153326988, -0.04055402800440788, -0.014758279547095299, -0.03196488693356514, -0.005129905417561531, -0.12734556198120117, -0.1980491280555725, -0.03147100657224655, -0.02565714530646801, 0.1387709379196167, -0.22493639588356018, 0.0432548001408577, -0.022894784808158875, 0.07332275807857513, 0.008166888728737831, -0.003848462598398328, -0.04335092753171921, 0.0682745948433876, -0.052231524139642715, -0.04929289594292641, 0.07083682715892792, 0.020703019574284554, -0.09721647202968597, -0.0519232302904129, -0.09582822769880295, 0.15381859242916107, 0.12923119962215424, -0.10309077799320221, -0.07164105772972107, -0.0083346888422966, -0.06123215705156326, -0.033842071890830994, -0.06052513048052788, 0.03598521649837494, 0.20838044583797455, -0.008705025538802147, 0.1514522135257721, -0.07073947787284851, -0.04729161784052849, 0.028893057256937027, -0.03693579137325287, 0.018599754199385643, 0.1305069476366043, 0.1555924415588379, -0.07595258206129074, 0.14878009259700775, 0.12888412177562714, -0.09408707916736603, 0.13803602755069733, -0.037724193185567856, -0.07006612420082092, -0.0151677830144763, -0.03873472660779953, -0.006152993068099022, 0.09859757125377655, -0.16054300963878632, 0.00044495463953353465, 0.030342187732458115, 0.015624715015292168, 0.022183913737535477, -0.21764636039733887, -0.04037681221961975, 0.04375113546848297, -0.03616701811552048, -0.02169610746204853, -0.0051982467994093895, 0.0011029565939679742, 0.09880496561527252, 0.002264350187033415, -0.08198396861553192, 0.04158433899283409, 0.012333126738667488, -0.08977969735860825, 0.21849697828292847, -0.07294631749391556, -0.1600169986486435, -0.12679468095302582, -0.06509174406528473, -0.037019047886133194, 0.004053042735904455, 0.07418730854988098, -0.09482315182685852, -0.04170699790120125, -0.07617878168821335, 0.014309358783066273, 0.0034513489808887243, 0.030703971162438393, 0.014478925615549088, 0.007094135507941246, 0.05695921182632446, -0.10524827986955643, -0.012378708459436893, -0.0519661046564579, -0.04015309363603592, 0.0367339663207531, 0.039968814700841904, 0.11802729964256287, 0.14835304021835327, -0.01666850969195366, 0.013988040387630463, -0.02906576730310917, 0.22939100861549377, -0.06861412525177002, -0.028029391542077065, 0.15066766738891602, -0.005935404449701309, 0.044070128351449966, 0.11753897368907928, 0.06605994701385498, -0.07593461871147156, 0.00543209770694375, 0.03088444657623768, -0.04107694700360298, -0.235112264752388, -0.052737366408109665, -0.05770053341984749, -0.002185037126764655, 0.09727739542722702, 0.032169878482818604, 0.03930181637406349, 0.07662338018417358, 0.03596808388829231, 0.07360756397247314, -0.054025694727897644, 0.06227331981062889, 0.11977670341730118, 0.050643883645534515, 0.12243027240037918, -0.05779528245329857, -0.06631535291671753, 0.04130024462938309, -0.01903594098985195, 0.23022998869419098, 0.015007009729743004, 0.14573970437049866, 0.05565778538584709, 0.1535622775554657, -0.0005968016921542585, 0.08172149956226349, -0.006551842670887709, -0.049307454377412796, -0.013366537168622017, -0.03192223235964775, -0.03543268144130707, 0.03208816424012184, -0.07185499370098114, 0.06844620406627655, -0.12878894805908203, 0.027398373931646347, 0.05281217768788338, 0.2502261698246002, 0.03661729395389557, -0.33694279193878174, -0.09630628675222397, 0.006317086983472109, -0.037142813205718994, -0.030822260305285454, 0.02474534511566162, 0.08048032224178314, -0.09706829488277435, 0.037767499685287476, -0.07365977764129639, 0.10132131725549698, -0.047447267919778824, 0.04141630604863167, 0.07737306505441666, 0.09100155532360077, 0.004611567594110966, 0.09646192193031311, -0.2767905592918396, 0.2734326124191284, -0.001023047138005495, 0.07582991570234299, -0.08475460112094879, 0.009737282060086727, 0.038403574377298355, 0.06259626895189285, 0.08297977596521378, -0.018109217286109924, -0.08623840659856796, -0.1842016875743866, -0.06493131816387177, 0.03816809132695198, 0.04816474765539169, -0.03193073347210884, 0.09269404411315918, -0.03255445882678032, 0.013009076938033104, 0.0689353346824646, -0.0008464672137051821, -0.043154459446668625, -0.11219543218612671, -0.018749535083770752, 0.032622016966342926, -0.053593773394823074, -0.05234724283218384, -0.11583185195922852, -0.1189291775226593, 0.14456146955490112, -0.04827075079083443, -0.04067594185471535, -0.11432097107172012, 0.08901102840900421, 0.05766443535685539, -0.09570139646530151, 0.051527850329875946, 0.009181435219943523, 0.08645030111074448, 0.03281962126493454, -0.0706310123205185, 0.10370880365371704, -0.07966743409633636, -0.1503232717514038, -0.0629192367196083, 0.08772337436676025, 0.03594321757555008, 0.06015893444418907, -0.007348454091697931, 0.017944328486919403, -0.056459251791238785, -0.0866134986281395, 0.02172291837632656, -0.0022606197744607925, 0.09106890857219696, 0.017863746732473373, -0.050611209124326706, 0.015585520304739475, -0.054170649498701096, -0.04604087769985199, 0.20429325103759766, 0.21279276907444, -0.09902685135602951, 0.01883353292942047, 0.013565711677074432, -0.07652195543050766, -0.18549098074436188, 0.023287760093808174, 0.052796270698308945, 0.020619532093405724, 0.04055831581354141, -0.18354250490665436, 0.14787302911281586, 0.11467036604881287, -0.01167855504900217, 0.11124106496572495, -0.3092828691005707, -0.1202506572008133, 0.13276176154613495, 0.12265028804540634, 0.1171359196305275, -0.12558132410049438, -0.01402408815920353, -0.03074740432202816, -0.1345207244157791, 0.09962276369333267, -0.08962751179933548, 0.11052592098712921, -0.03924911469221115, 0.0827980563044548, 0.0015659835189580917, -0.057843804359436035, 0.12301284819841385, 0.019426845014095306, 0.09309196472167969, -0.06273852288722992, -0.03151955455541611, 0.01008270587772131, -0.04370889067649841, 0.04556463286280632, -0.11929388344287872, 0.02470386028289795, -0.1207934096455574, -0.030746610835194588, -0.060320496559143066, 0.05135529115796089, -0.03341133892536163, -0.05600405111908913, -0.03839591145515442, 0.008260402828454971, 0.05163063108921051, -0.0055680968798696995, 0.15884771943092346, 0.0260087251663208, 0.1466272622346878, 0.07920314371585846, 0.08837610483169556, -0.07449349761009216, -0.08372492343187332, -0.022218074649572372, -0.008739529177546501, 0.05441742017865181, -0.15279950201511383, 0.026358669623732567, 0.14814555644989014, 0.01793789677321911, 0.14715786278247833, 0.08141490817070007, -0.014006084762513638, 0.017506493255496025, 0.061306171119213104, -0.15042272210121155, -0.07854358106851578, -0.01290026493370533, -0.04538888856768608, -0.124518483877182, 0.04827684909105301, 0.08916214853525162, -0.07279811799526215, -0.012631990015506744, -0.013764576055109501, 0.011335966177284718, -0.049227289855480194, 0.17471757531166077, 0.05657902732491493, 0.04618668928742409, -0.10172462463378906, 0.06917989999055862, 0.045334137976169586, -0.08747346699237823, 0.020230140537023544, 0.07296179234981537, -0.07737967371940613, -0.056503742933273315, 0.08207309991121292, 0.20515675842761993, -0.07268963754177094, -0.059580422937870026, -0.14837035536766052, -0.1235557571053505, 0.0908619835972786, 0.15014784038066864, 0.11396310478448868, 0.002191154519096017, -0.06248815730214119, 0.001188953290693462, -0.12312684208154678, 0.09436533600091934, 0.05079396069049835, 0.05825848504900932, -0.15327033400535583, 0.12664328515529633, 0.016738098114728928, 0.04621300473809242, -0.016041206195950508, 0.02562527544796467, -0.09077546000480652, 0.012571540661156178, -0.09827841073274612, -0.004030080046504736, -0.03934266045689583, 0.008737364783883095, 0.001799125224351883, -0.046036310493946075, -0.06403874605894089, 0.013945028185844421, -0.10473553091287613, -0.01699390448629856, 0.03233787789940834, 0.06791332364082336, -0.10198774933815002, -0.03585846349596977, 0.026827169582247734, -0.06131670996546745, 0.06869570910930634, 0.048540595918893814, 0.0222605150192976, 0.04965469613671303, -0.13199225068092346, 0.03003573790192604, 0.07863347232341766, 0.022135267034173012, 0.06137925758957863, -0.10601583123207092, -0.0007533631869591773, 0.000573481316678226, 0.03743851184844971, 0.013618634082376957, 0.046978339552879333, -0.14038409292697906, 0.00015889028145466, -0.007508769165724516, -0.08565139770507812, -0.07067415863275528, 0.02340167760848999, 0.09075982868671417, 0.007828038185834885, 0.2145799845457077, -0.07112079858779907, 0.041902463883161545, -0.2117060422897339, 0.0127671854570508, -0.012437400408089161, -0.09761452674865723, -0.11836007237434387, -0.0634927824139595, 0.055777717381715775, -0.06098109111189842, 0.1452653706073761, 0.041852839291095734, 0.027462540194392204, 0.029232097789645195, -0.0026169908232986927, 0.019868170842528343, 0.014651289209723473, 0.20861364901065826, 0.032792799174785614, -0.03748399764299393, 0.059693578630685806, 0.03904883563518524, 0.10668560862541199, 0.11475371569395065, 0.19278621673583984, 0.12879374623298645, 0.01076571550220251, 0.10934294015169144, 0.03128606826066971, -0.05863118916749954, -0.156927689909935, 0.03646245226264, -0.039669279009103775, 0.10560476034879684, -0.0005126527394168079, 0.21131570637226105, 0.0905061587691307, -0.16577453911304474, 0.0380982905626297, -0.0589977391064167, -0.08098681271076202, -0.12119633704423904, -0.07406049221754074, -0.08644623309373856, -0.13388611376285553, 0.007452758494764566, -0.11749137192964554, 0.006951653864234686, 0.12492231279611588, -0.0023579136468470097, -0.027557147666811943, 0.14081402122974396, 0.02850053459405899, 0.02905062772333622, 0.044530052691698074, 0.007642372045665979, -0.029235411435365677, -0.10651388764381409, -0.050203531980514526, -0.013492216356098652, -0.030439767986536026, 0.03399078920483589, -0.06657307595014572, -0.04580254480242729, 0.049214381724596024, -0.019320320338010788, -0.0966344028711319, 0.009096598252654076, 0.014410317875444889, 0.05934319272637367, 0.04073020815849304, 0.011165669187903404, 0.024138860404491425, -0.0059270127676427364, 0.2053600400686264, -0.07232540100812912, -0.0562208816409111, -0.11182606220245361, 0.21762651205062866, 0.053876686841249466, -0.02000606618821621, 0.031390197575092316, -0.06914068013429642, 0.007513601798564196, 0.23325438797473907, 0.19339855015277863, -0.05827881768345833, -0.012427110224962234, -0.004847933538258076, -0.00956749264150858, -0.02099345065653324, 0.0910603478550911, 0.1416623294353485, 0.0469084233045578, -0.09867993742227554, -0.04819963127374649, -0.061097849160432816, -0.009727383963763714, -0.0412248857319355, 0.06169692426919937, 0.04181385412812233, 0.001692313002422452, -0.020432209596037865, 0.057825811207294464, -0.06730454415082932, -0.07403378933668137, 0.06150418892502785, -0.19884897768497467, -0.16156165301799774, -0.010300726629793644, 0.1102413535118103, 0.01749129593372345, 0.06399773061275482, -0.02622102200984955, -0.015628423541784286, 0.08604495227336884, -0.016923977062106133, -0.11325999349355698, -0.07480964064598083, 0.08663355559110641, -0.10703404247760773, 0.21945820748806, -0.04706016927957535, 0.05619185045361519, 0.12956269085407257, 0.06781532615423203, -0.07991959899663925, 0.06199520826339722, 0.03496561571955681, -0.03855300322175026, 0.04563915729522705, 0.07112543284893036, -0.03436211869120598, 0.05684373900294304, 0.04618493467569351, -0.1332332044839859, 0.018335504457354546, -0.06255962699651718, -0.053373973816633224, -0.03750753775238991, -0.011835905723273754, -0.05690811946988106, 0.134381964802742, 0.20424987375736237, -0.03040335513651371, -0.01295243389904499, -0.07077576220035553, 0.017100604251027107, 0.0582498274743557, 0.028955571353435516, -0.057430993765592575, -0.20965342223644257, 0.0193637665361166, 0.04905003309249878, -0.019286978989839554, -0.24684861302375793, -0.09661472588777542, -0.006176378112286329, -0.08670622855424881, -0.09091965109109879, 0.06341086328029633, 0.1018756553530693, 0.05184410884976387, -0.06113895773887634, -0.028823498636484146, -0.06907874345779419, 0.1478630006313324, -0.13758938014507294, -0.10041738301515579 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # electra-base-discriminator-finetuned-wnli This model is a fine-tuned version of [google/electra-base-discriminator](https://huggingface.co/google/electra-base-discriminator) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.6893 - Accuracy: 0.5634 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 40 | 0.6893 | 0.5634 | | No log | 2.0 | 80 | 0.7042 | 0.4225 | | No log | 3.0 | 120 | 0.7008 | 0.3803 | | No log | 4.0 | 160 | 0.6998 | 0.5634 | | No log | 5.0 | 200 | 0.7016 | 0.5352 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.18.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["glue"], "metrics": ["accuracy"], "model-index": [{"name": "electra-base-discriminator-finetuned-wnli", "results": [{"task": {"type": "text-classification", "name": "Text Classification"}, "dataset": {"name": "glue", "type": "glue", "args": "wnli"}, "metrics": [{"type": "accuracy", "value": 0.5633802816901409, "name": "Accuracy"}]}]}]}
text-classification
anirudh21/electra-base-discriminator-finetuned-wnli
[ "transformers", "pytorch", "tensorboard", "electra", "text-classification", "generated_from_trainer", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #electra #text-classification #generated_from_trainer #dataset-glue #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us
electra-base-discriminator-finetuned-wnli ========================================= This model is a fine-tuned version of google/electra-base-discriminator on the glue dataset. It achieves the following results on the evaluation set: * Loss: 0.6893 * Accuracy: 0.5634 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 16 * eval\_batch\_size: 16 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 5 ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.10.0+cu111 * Datasets 1.18.0 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.0+cu111\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #electra #text-classification #generated_from_trainer #dataset-glue #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.0+cu111\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ 66, 98, 4, 35 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #electra #text-classification #generated_from_trainer #dataset-glue #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.0+cu111\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ -0.10993218421936035, 0.09303925931453705, -0.0018562558107078075, 0.11975739896297455, 0.17762814462184906, 0.03187306597828865, 0.09995214641094208, 0.12710557878017426, -0.08821161836385727, 0.02938605286180973, 0.13181909918785095, 0.17248812317848206, 0.02147456631064415, 0.11136481910943985, -0.05232442170381546, -0.26265934109687805, -0.0085792550817132, 0.04750598967075348, -0.06312747299671173, 0.13089106976985931, 0.09350745379924774, -0.12371840327978134, 0.0995192676782608, 0.019917162135243416, -0.18416346609592438, 0.008807512931525707, -0.000048867084842640907, -0.06115612015128136, 0.14592516422271729, 0.034306108951568604, 0.11762060970067978, -0.00911291129887104, 0.08563094586133957, -0.1951460987329483, 0.013859066180884838, 0.0488617904484272, -0.002918922109529376, 0.09141622483730316, 0.035062674432992935, 0.003967548720538616, 0.1587071418762207, -0.0852406695485115, 0.05617314204573631, 0.02328403666615486, -0.11948850005865097, -0.20560768246650696, -0.0779259130358696, 0.030848832800984383, 0.08741845935583115, 0.11399535834789276, -0.005196638870984316, 0.1362311691045761, -0.08127991110086441, 0.08750331401824951, 0.2212054431438446, -0.2868227958679199, -0.06537944823503494, 0.0169778224080801, 0.018395235762000084, 0.035376835614442825, -0.09749932587146759, -0.03057807683944702, 0.057718969881534576, 0.04944853112101555, 0.11963897198438644, -0.023592226207256317, -0.10478898137807846, 0.01874537207186222, -0.13447271287441254, -0.04013517126441002, 0.173468217253685, 0.04529625549912453, -0.03147750347852707, -0.05682028830051422, -0.053107790648937225, -0.1579091101884842, -0.030751265585422516, -0.005766710266470909, 0.042122676968574524, -0.024105016142129898, -0.043130431324243546, 0.0011519145919010043, -0.1125771775841713, -0.06111526861786842, -0.0783105120062828, 0.12700434029102325, 0.0365166962146759, 0.018269825726747513, -0.03523501753807068, 0.10577011853456497, 0.006595340557396412, -0.12484759092330933, 0.0063986945897340775, 0.026714814826846123, 0.011504312977194786, -0.04626300185918808, -0.053255971521139145, -0.06518927961587906, 0.016250334680080414, 0.1351046860218048, -0.034201495349407196, 0.042291734367609024, 0.0633799359202385, 0.04074253514409065, -0.08117340505123138, 0.18557307124137878, -0.03318364545702934, -0.011626181192696095, 0.012305648066103458, 0.03446268290281296, 0.026384979486465454, -0.01277640275657177, -0.12349376082420349, 0.003581979777663946, 0.07299818843603134, 0.013957533985376358, -0.06314987689256668, 0.06885430961847305, -0.05203275755047798, -0.021058836951851845, 0.010806522332131863, -0.08922680467367172, 0.029732314869761467, -0.004704609513282776, -0.07978168874979019, -0.01965859718620777, 0.03036697395145893, 0.025049975141882896, -0.021466488018631935, 0.10741426050662994, -0.09047967940568924, 0.024893928319215775, -0.09548268467187881, -0.10385119169950485, 0.02405233308672905, -0.12066178768873215, 0.04083560034632683, -0.10284851491451263, -0.19468048214912415, -0.012204325757920742, 0.0591849684715271, -0.024119358509778976, -0.0751781314611435, -0.057571858167648315, -0.06249626725912094, 0.02043125592172146, -0.011472281999886036, 0.11457894742488861, -0.06786517798900604, 0.08566759526729584, 0.032077889889478683, 0.05974006652832031, -0.03833478316664696, 0.05214707553386688, -0.10209894180297852, 0.008537751622498035, -0.14924949407577515, 0.030569937080144882, -0.03233163803815842, 0.08155159652233124, -0.0876268818974495, -0.09882117807865143, 0.011876729317009449, 0.0030013099312782288, 0.06287110596895218, 0.09573369473218918, -0.1693664789199829, -0.07770423591136932, 0.14866259694099426, -0.07934831082820892, -0.13363078236579895, 0.12035750597715378, -0.05827704817056656, 0.042403385043144226, 0.06371321529150009, 0.1437835842370987, 0.059065740555524826, -0.08460871875286102, -0.014025665819644928, 0.007826954126358032, 0.034052010625600815, -0.0782342404127121, 0.07619888335466385, 0.007573139853775501, 0.015471214428544044, 0.028043072670698166, -0.01616419479250908, 0.06630200892686844, -0.08420117944478989, -0.09790369123220444, -0.047176435589790344, -0.07874805480241776, 0.03403299301862717, 0.07676862180233002, 0.06206413730978966, -0.10093844681978226, -0.0900677740573883, 0.046655330806970596, 0.08729763329029083, -0.05616789683699608, 0.02331736870110035, -0.06781508773565292, 0.07085300236940384, -0.050842080265283585, -0.02671901136636734, -0.17297154664993286, -0.028807468712329865, -0.004454363137483597, -0.004673823714256287, 0.014174513518810272, 0.020979048684239388, 0.06160533428192139, 0.05672350153326988, -0.04055402800440788, -0.014758279547095299, -0.03196488693356514, -0.005129905417561531, -0.12734556198120117, -0.1980491280555725, -0.03147100657224655, -0.02565714530646801, 0.1387709379196167, -0.22493639588356018, 0.0432548001408577, -0.022894784808158875, 0.07332275807857513, 0.008166888728737831, -0.003848462598398328, -0.04335092753171921, 0.0682745948433876, -0.052231524139642715, -0.04929289594292641, 0.07083682715892792, 0.020703019574284554, -0.09721647202968597, -0.0519232302904129, -0.09582822769880295, 0.15381859242916107, 0.12923119962215424, -0.10309077799320221, -0.07164105772972107, -0.0083346888422966, -0.06123215705156326, -0.033842071890830994, -0.06052513048052788, 0.03598521649837494, 0.20838044583797455, -0.008705025538802147, 0.1514522135257721, -0.07073947787284851, -0.04729161784052849, 0.028893057256937027, -0.03693579137325287, 0.018599754199385643, 0.1305069476366043, 0.1555924415588379, -0.07595258206129074, 0.14878009259700775, 0.12888412177562714, -0.09408707916736603, 0.13803602755069733, -0.037724193185567856, -0.07006612420082092, -0.0151677830144763, -0.03873472660779953, -0.006152993068099022, 0.09859757125377655, -0.16054300963878632, 0.00044495463953353465, 0.030342187732458115, 0.015624715015292168, 0.022183913737535477, -0.21764636039733887, -0.04037681221961975, 0.04375113546848297, -0.03616701811552048, -0.02169610746204853, -0.0051982467994093895, 0.0011029565939679742, 0.09880496561527252, 0.002264350187033415, -0.08198396861553192, 0.04158433899283409, 0.012333126738667488, -0.08977969735860825, 0.21849697828292847, -0.07294631749391556, -0.1600169986486435, -0.12679468095302582, -0.06509174406528473, -0.037019047886133194, 0.004053042735904455, 0.07418730854988098, -0.09482315182685852, -0.04170699790120125, -0.07617878168821335, 0.014309358783066273, 0.0034513489808887243, 0.030703971162438393, 0.014478925615549088, 0.007094135507941246, 0.05695921182632446, -0.10524827986955643, -0.012378708459436893, -0.0519661046564579, -0.04015309363603592, 0.0367339663207531, 0.039968814700841904, 0.11802729964256287, 0.14835304021835327, -0.01666850969195366, 0.013988040387630463, -0.02906576730310917, 0.22939100861549377, -0.06861412525177002, -0.028029391542077065, 0.15066766738891602, -0.005935404449701309, 0.044070128351449966, 0.11753897368907928, 0.06605994701385498, -0.07593461871147156, 0.00543209770694375, 0.03088444657623768, -0.04107694700360298, -0.235112264752388, -0.052737366408109665, -0.05770053341984749, -0.002185037126764655, 0.09727739542722702, 0.032169878482818604, 0.03930181637406349, 0.07662338018417358, 0.03596808388829231, 0.07360756397247314, -0.054025694727897644, 0.06227331981062889, 0.11977670341730118, 0.050643883645534515, 0.12243027240037918, -0.05779528245329857, -0.06631535291671753, 0.04130024462938309, -0.01903594098985195, 0.23022998869419098, 0.015007009729743004, 0.14573970437049866, 0.05565778538584709, 0.1535622775554657, -0.0005968016921542585, 0.08172149956226349, -0.006551842670887709, -0.049307454377412796, -0.013366537168622017, -0.03192223235964775, -0.03543268144130707, 0.03208816424012184, -0.07185499370098114, 0.06844620406627655, -0.12878894805908203, 0.027398373931646347, 0.05281217768788338, 0.2502261698246002, 0.03661729395389557, -0.33694279193878174, -0.09630628675222397, 0.006317086983472109, -0.037142813205718994, -0.030822260305285454, 0.02474534511566162, 0.08048032224178314, -0.09706829488277435, 0.037767499685287476, -0.07365977764129639, 0.10132131725549698, -0.047447267919778824, 0.04141630604863167, 0.07737306505441666, 0.09100155532360077, 0.004611567594110966, 0.09646192193031311, -0.2767905592918396, 0.2734326124191284, -0.001023047138005495, 0.07582991570234299, -0.08475460112094879, 0.009737282060086727, 0.038403574377298355, 0.06259626895189285, 0.08297977596521378, -0.018109217286109924, -0.08623840659856796, -0.1842016875743866, -0.06493131816387177, 0.03816809132695198, 0.04816474765539169, -0.03193073347210884, 0.09269404411315918, -0.03255445882678032, 0.013009076938033104, 0.0689353346824646, -0.0008464672137051821, -0.043154459446668625, -0.11219543218612671, -0.018749535083770752, 0.032622016966342926, -0.053593773394823074, -0.05234724283218384, -0.11583185195922852, -0.1189291775226593, 0.14456146955490112, -0.04827075079083443, -0.04067594185471535, -0.11432097107172012, 0.08901102840900421, 0.05766443535685539, -0.09570139646530151, 0.051527850329875946, 0.009181435219943523, 0.08645030111074448, 0.03281962126493454, -0.0706310123205185, 0.10370880365371704, -0.07966743409633636, -0.1503232717514038, -0.0629192367196083, 0.08772337436676025, 0.03594321757555008, 0.06015893444418907, -0.007348454091697931, 0.017944328486919403, -0.056459251791238785, -0.0866134986281395, 0.02172291837632656, -0.0022606197744607925, 0.09106890857219696, 0.017863746732473373, -0.050611209124326706, 0.015585520304739475, -0.054170649498701096, -0.04604087769985199, 0.20429325103759766, 0.21279276907444, -0.09902685135602951, 0.01883353292942047, 0.013565711677074432, -0.07652195543050766, -0.18549098074436188, 0.023287760093808174, 0.052796270698308945, 0.020619532093405724, 0.04055831581354141, -0.18354250490665436, 0.14787302911281586, 0.11467036604881287, -0.01167855504900217, 0.11124106496572495, -0.3092828691005707, -0.1202506572008133, 0.13276176154613495, 0.12265028804540634, 0.1171359196305275, -0.12558132410049438, -0.01402408815920353, -0.03074740432202816, -0.1345207244157791, 0.09962276369333267, -0.08962751179933548, 0.11052592098712921, -0.03924911469221115, 0.0827980563044548, 0.0015659835189580917, -0.057843804359436035, 0.12301284819841385, 0.019426845014095306, 0.09309196472167969, -0.06273852288722992, -0.03151955455541611, 0.01008270587772131, -0.04370889067649841, 0.04556463286280632, -0.11929388344287872, 0.02470386028289795, -0.1207934096455574, -0.030746610835194588, -0.060320496559143066, 0.05135529115796089, -0.03341133892536163, -0.05600405111908913, -0.03839591145515442, 0.008260402828454971, 0.05163063108921051, -0.0055680968798696995, 0.15884771943092346, 0.0260087251663208, 0.1466272622346878, 0.07920314371585846, 0.08837610483169556, -0.07449349761009216, -0.08372492343187332, -0.022218074649572372, -0.008739529177546501, 0.05441742017865181, -0.15279950201511383, 0.026358669623732567, 0.14814555644989014, 0.01793789677321911, 0.14715786278247833, 0.08141490817070007, -0.014006084762513638, 0.017506493255496025, 0.061306171119213104, -0.15042272210121155, -0.07854358106851578, -0.01290026493370533, -0.04538888856768608, -0.124518483877182, 0.04827684909105301, 0.08916214853525162, -0.07279811799526215, -0.012631990015506744, -0.013764576055109501, 0.011335966177284718, -0.049227289855480194, 0.17471757531166077, 0.05657902732491493, 0.04618668928742409, -0.10172462463378906, 0.06917989999055862, 0.045334137976169586, -0.08747346699237823, 0.020230140537023544, 0.07296179234981537, -0.07737967371940613, -0.056503742933273315, 0.08207309991121292, 0.20515675842761993, -0.07268963754177094, -0.059580422937870026, -0.14837035536766052, -0.1235557571053505, 0.0908619835972786, 0.15014784038066864, 0.11396310478448868, 0.002191154519096017, -0.06248815730214119, 0.001188953290693462, -0.12312684208154678, 0.09436533600091934, 0.05079396069049835, 0.05825848504900932, -0.15327033400535583, 0.12664328515529633, 0.016738098114728928, 0.04621300473809242, -0.016041206195950508, 0.02562527544796467, -0.09077546000480652, 0.012571540661156178, -0.09827841073274612, -0.004030080046504736, -0.03934266045689583, 0.008737364783883095, 0.001799125224351883, -0.046036310493946075, -0.06403874605894089, 0.013945028185844421, -0.10473553091287613, -0.01699390448629856, 0.03233787789940834, 0.06791332364082336, -0.10198774933815002, -0.03585846349596977, 0.026827169582247734, -0.06131670996546745, 0.06869570910930634, 0.048540595918893814, 0.0222605150192976, 0.04965469613671303, -0.13199225068092346, 0.03003573790192604, 0.07863347232341766, 0.022135267034173012, 0.06137925758957863, -0.10601583123207092, -0.0007533631869591773, 0.000573481316678226, 0.03743851184844971, 0.013618634082376957, 0.046978339552879333, -0.14038409292697906, 0.00015889028145466, -0.007508769165724516, -0.08565139770507812, -0.07067415863275528, 0.02340167760848999, 0.09075982868671417, 0.007828038185834885, 0.2145799845457077, -0.07112079858779907, 0.041902463883161545, -0.2117060422897339, 0.0127671854570508, -0.012437400408089161, -0.09761452674865723, -0.11836007237434387, -0.0634927824139595, 0.055777717381715775, -0.06098109111189842, 0.1452653706073761, 0.041852839291095734, 0.027462540194392204, 0.029232097789645195, -0.0026169908232986927, 0.019868170842528343, 0.014651289209723473, 0.20861364901065826, 0.032792799174785614, -0.03748399764299393, 0.059693578630685806, 0.03904883563518524, 0.10668560862541199, 0.11475371569395065, 0.19278621673583984, 0.12879374623298645, 0.01076571550220251, 0.10934294015169144, 0.03128606826066971, -0.05863118916749954, -0.156927689909935, 0.03646245226264, -0.039669279009103775, 0.10560476034879684, -0.0005126527394168079, 0.21131570637226105, 0.0905061587691307, -0.16577453911304474, 0.0380982905626297, -0.0589977391064167, -0.08098681271076202, -0.12119633704423904, -0.07406049221754074, -0.08644623309373856, -0.13388611376285553, 0.007452758494764566, -0.11749137192964554, 0.006951653864234686, 0.12492231279611588, -0.0023579136468470097, -0.027557147666811943, 0.14081402122974396, 0.02850053459405899, 0.02905062772333622, 0.044530052691698074, 0.007642372045665979, -0.029235411435365677, -0.10651388764381409, -0.050203531980514526, -0.013492216356098652, -0.030439767986536026, 0.03399078920483589, -0.06657307595014572, -0.04580254480242729, 0.049214381724596024, -0.019320320338010788, -0.0966344028711319, 0.009096598252654076, 0.014410317875444889, 0.05934319272637367, 0.04073020815849304, 0.011165669187903404, 0.024138860404491425, -0.0059270127676427364, 0.2053600400686264, -0.07232540100812912, -0.0562208816409111, -0.11182606220245361, 0.21762651205062866, 0.053876686841249466, -0.02000606618821621, 0.031390197575092316, -0.06914068013429642, 0.007513601798564196, 0.23325438797473907, 0.19339855015277863, -0.05827881768345833, -0.012427110224962234, -0.004847933538258076, -0.00956749264150858, -0.02099345065653324, 0.0910603478550911, 0.1416623294353485, 0.0469084233045578, -0.09867993742227554, -0.04819963127374649, -0.061097849160432816, -0.009727383963763714, -0.0412248857319355, 0.06169692426919937, 0.04181385412812233, 0.001692313002422452, -0.020432209596037865, 0.057825811207294464, -0.06730454415082932, -0.07403378933668137, 0.06150418892502785, -0.19884897768497467, -0.16156165301799774, -0.010300726629793644, 0.1102413535118103, 0.01749129593372345, 0.06399773061275482, -0.02622102200984955, -0.015628423541784286, 0.08604495227336884, -0.016923977062106133, -0.11325999349355698, -0.07480964064598083, 0.08663355559110641, -0.10703404247760773, 0.21945820748806, -0.04706016927957535, 0.05619185045361519, 0.12956269085407257, 0.06781532615423203, -0.07991959899663925, 0.06199520826339722, 0.03496561571955681, -0.03855300322175026, 0.04563915729522705, 0.07112543284893036, -0.03436211869120598, 0.05684373900294304, 0.04618493467569351, -0.1332332044839859, 0.018335504457354546, -0.06255962699651718, -0.053373973816633224, -0.03750753775238991, -0.011835905723273754, -0.05690811946988106, 0.134381964802742, 0.20424987375736237, -0.03040335513651371, -0.01295243389904499, -0.07077576220035553, 0.017100604251027107, 0.0582498274743557, 0.028955571353435516, -0.057430993765592575, -0.20965342223644257, 0.0193637665361166, 0.04905003309249878, -0.019286978989839554, -0.24684861302375793, -0.09661472588777542, -0.006176378112286329, -0.08670622855424881, -0.09091965109109879, 0.06341086328029633, 0.1018756553530693, 0.05184410884976387, -0.06113895773887634, -0.028823498636484146, -0.06907874345779419, 0.1478630006313324, -0.13758938014507294, -0.10041738301515579 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlnet-base-cased-finetuned-rte This model is a fine-tuned version of [xlnet-base-cased](https://huggingface.co/xlnet-base-cased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 1.0656 - Accuracy: 0.6895 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 156 | 0.7007 | 0.4874 | | No log | 2.0 | 312 | 0.6289 | 0.6751 | | No log | 3.0 | 468 | 0.7020 | 0.6606 | | 0.6146 | 4.0 | 624 | 1.0573 | 0.6570 | | 0.6146 | 5.0 | 780 | 1.0656 | 0.6895 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
{"license": "mit", "tags": ["generated_from_trainer"], "datasets": ["glue"], "metrics": ["accuracy"], "model-index": [{"name": "xlnet-base-cased-finetuned-rte", "results": [{"task": {"type": "text-classification", "name": "Text Classification"}, "dataset": {"name": "glue", "type": "glue", "args": "rte"}, "metrics": [{"type": "accuracy", "value": 0.6895306859205776, "name": "Accuracy"}]}]}]}
text-classification
anirudh21/xlnet-base-cased-finetuned-rte
[ "transformers", "pytorch", "tensorboard", "xlnet", "text-classification", "generated_from_trainer", "dataset:glue", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #xlnet #text-classification #generated_from_trainer #dataset-glue #license-mit #model-index #autotrain_compatible #endpoints_compatible #region-us
xlnet-base-cased-finetuned-rte ============================== This model is a fine-tuned version of xlnet-base-cased on the glue dataset. It achieves the following results on the evaluation set: * Loss: 1.0656 * Accuracy: 0.6895 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 16 * eval\_batch\_size: 16 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 5 ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.10.0+cu111 * Datasets 1.17.0 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.0+cu111\n* Datasets 1.17.0\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #xlnet #text-classification #generated_from_trainer #dataset-glue #license-mit #model-index #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.0+cu111\n* Datasets 1.17.0\n* Tokenizers 0.10.3" ]
[ 63, 98, 4, 33 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #xlnet #text-classification #generated_from_trainer #dataset-glue #license-mit #model-index #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.0+cu111\n* Datasets 1.17.0\n* Tokenizers 0.10.3" ]
[ -0.10428813844919205, 0.08606728911399841, -0.0016652968479320407, 0.11203289777040482, 0.178323894739151, 0.03587399050593376, 0.1422092765569687, 0.12105150520801544, -0.07487485557794571, 0.01749599538743496, 0.11799986660480499, 0.16327886283397675, 0.01426203828305006, 0.11028683930635452, -0.05076964199542999, -0.25780999660491943, -0.01838730089366436, 0.05112311989068985, -0.09375208616256714, 0.13316062092781067, 0.09461808949708939, -0.12941020727157593, 0.09752862900495529, -0.0012786698061972857, -0.22555625438690186, 0.009620069526135921, 0.024519119411706924, -0.048298053443431854, 0.14869609475135803, 0.0437336266040802, 0.13435246050357819, 0.009876473806798458, 0.08514367043972015, -0.2008315473794937, 0.015185787342488766, 0.05411100760102272, -0.005987721029669046, 0.09637220203876495, 0.05563075467944145, -0.000902180967386812, 0.12637796998023987, -0.09877689182758331, 0.03961428627371788, 0.026241080835461617, -0.12148396670818329, -0.18894241750240326, -0.06203315407037735, 0.026262447237968445, 0.06079692393541336, 0.10516218096017838, -0.011427421122789383, 0.1503337323665619, -0.08175568282604218, 0.10497426241636276, 0.21432170271873474, -0.2972007095813751, -0.07189786434173584, 0.07312695682048798, 0.032733794301748276, 0.07328260689973831, -0.10627708584070206, -0.007345761638134718, 0.06488141417503357, 0.03776244819164276, 0.12117583304643631, -0.031421370804309845, -0.10192602872848511, 0.024684742093086243, -0.1451515555381775, -0.004046661779284477, 0.14530040323734283, 0.03847802057862282, -0.0186499934643507, -0.04539604112505913, -0.053627386689186096, -0.14591990411281586, -0.029724255204200745, -0.011557523161172867, 0.04957367479801178, -0.03277236595749855, -0.08243786543607712, -0.016274595633149147, -0.1090828999876976, -0.06553417444229126, -0.07860966771841049, 0.145026296377182, 0.030148550868034363, 0.010920589789748192, -0.038184601813554764, 0.09992051124572754, -0.002928889123722911, -0.1167655885219574, 0.02607799507677555, 0.029134228825569153, -0.01679358258843422, -0.0598924458026886, -0.05425398051738739, -0.08107319474220276, 0.016468899324536324, 0.08951442688703537, -0.0565398633480072, 0.03710445389151573, 0.05194235220551491, 0.0524422787129879, -0.08050522208213806, 0.19223135709762573, -0.05798216164112091, -0.017917320132255554, -0.005939421709626913, 0.04240904375910759, -0.0007607306470163167, -0.016512064263224602, -0.1277061104774475, 0.003440083470195532, 0.09100478887557983, 0.010132648050785065, -0.05871643126010895, 0.08156256377696991, -0.0504530668258667, -0.028745079413056374, -0.020040571689605713, -0.08557922393083572, 0.037039514631032944, 0.0008006365387700498, -0.08948250859975815, -0.023264644667506218, 0.014190313406288624, 0.015073247253894806, -0.011834132485091686, 0.10333071649074554, -0.10848590731620789, 0.04278672859072685, -0.09352458268404007, -0.1328708529472351, 0.009103232994675636, -0.08720165491104126, 0.01835586130619049, -0.09100461006164551, -0.16319847106933594, -0.025429701432585716, 0.048447366803884506, -0.022504184395074844, -0.04433698207139969, -0.06973545253276825, -0.0808270052075386, 0.005245080217719078, -0.004493770655244589, 0.11511240154504776, -0.061242084950208664, 0.09593571722507477, 0.031782861799001694, 0.062484025955200195, -0.05710206553339958, 0.04814092814922333, -0.09673654288053513, 0.0025846746284514666, -0.14792665839195251, 0.051310788840055466, -0.054677799344062805, 0.07148873805999756, -0.07182297855615616, -0.10717858374118805, 0.019370103254914284, 0.011312977410852909, 0.05906069651246071, 0.09013873338699341, -0.19556672871112823, -0.09377948939800262, 0.16637885570526123, -0.06235509738326073, -0.11713363975286484, 0.1163918599486351, -0.06718885153532028, 0.058450646698474884, 0.0750528872013092, 0.178889200091362, 0.07683201134204865, -0.07832994312047958, -0.0036994963884353638, 0.0246751569211483, 0.03712381422519684, -0.07048708945512772, 0.05341239273548126, 0.02404945157468319, 0.0218147411942482, 0.02379576861858368, -0.038289107382297516, 0.0652037113904953, -0.10946324467658997, -0.09683749824762344, -0.03266213834285736, -0.0925590917468071, 0.05532373487949371, 0.07832688838243484, 0.07349096983671188, -0.0981440618634224, -0.08118050545454025, 0.07853281497955322, 0.08280482888221741, -0.06553175300359726, 0.020533261820673943, -0.06335542351007462, 0.05687185376882553, -0.03261362388730049, -0.02954253926873207, -0.17402143776416779, -0.06212783232331276, 0.0028035438153892756, 0.015381124801933765, 0.036423224955797195, 0.05486239120364189, 0.06420231610536575, 0.058370839804410934, -0.04917372763156891, -0.009852666407823563, -0.01811136305332184, -0.003412325168028474, -0.13720856606960297, -0.21637782454490662, -0.0275924950838089, -0.01988442987203598, 0.1610165238380432, -0.24399851262569427, 0.04963685944676399, -0.015102245844900608, 0.06734810769557953, 0.014052843675017357, -0.0064779724925756454, -0.04390536621212959, 0.0841355249285698, -0.04472869262099266, -0.05011444911360741, 0.07337099313735962, 0.009592469781637192, -0.11098098009824753, -0.05216618999838829, -0.1159026250243187, 0.17623698711395264, 0.13631559908390045, -0.14021918177604675, -0.08245372027158737, 0.0016534766182303429, -0.054511819034814835, -0.029891300946474075, -0.04886205494403839, 0.03647077456116676, 0.17578579485416412, -0.010163011960685253, 0.14994913339614868, -0.06591308861970901, -0.0447867214679718, 0.020595714449882507, -0.04379599168896675, 0.026350202038884163, 0.12835721671581268, 0.12501417100429535, -0.09030787646770477, 0.14809127151966095, 0.117082878947258, -0.09137064963579178, 0.15674786269664764, -0.027972502633929253, -0.05675051733851433, -0.026638804003596306, -0.028015512973070145, -0.00710601732134819, 0.10669802874326706, -0.1339329481124878, -0.012586062774062157, 0.01129439938813448, 0.006538182497024536, 0.03407806530594826, -0.23141683638095856, -0.05051086097955704, 0.03455999493598938, -0.047444019466638565, -0.01590023934841156, -0.023215211927890778, 0.0030036706011742353, 0.10639581829309464, 0.0008437093929387629, -0.09557357430458069, 0.03471217676997185, -0.0037551524583250284, -0.09060638397932053, 0.225599005818367, -0.07743661105632782, -0.16429094970226288, -0.1258813440799713, -0.05752002075314522, -0.05760033428668976, -0.0012936909915879369, 0.04069944843649864, -0.09997933357954025, -0.02542676404118538, -0.06273780018091202, 0.019831322133541107, -0.007582434918731451, 0.02831296995282173, -0.007439093664288521, 0.012375585734844208, 0.06147059425711632, -0.11688028275966644, -0.004769910126924515, -0.06928548216819763, -0.07352591305971146, 0.045227084308862686, 0.0291226077824831, 0.11675691604614258, 0.17049051821231842, -0.029428109526634216, 0.011371353641152382, -0.035355180501937866, 0.24059024453163147, -0.07139472663402557, -0.030119135975837708, 0.10570178925991058, -0.00069289596285671, 0.044496968388557434, 0.10907603055238724, 0.08492789417505264, -0.08458196371793747, 0.002109389752149582, 0.041447658091783524, -0.03312678635120392, -0.23897050321102142, -0.05825506150722504, -0.05032741650938988, 0.0016728303162381053, 0.07271090894937515, 0.03140116110444069, 0.05221502482891083, 0.06331983953714371, 0.04798385500907898, 0.06487210094928741, -0.0482594333589077, 0.04874210059642792, 0.10411611199378967, 0.0427270382642746, 0.13101470470428467, -0.04498549550771713, -0.0688958391547203, 0.03409098461270332, -0.018930330872535706, 0.22341980040073395, 0.013603595085442066, 0.15078309178352356, 0.05548296868801117, 0.16499081254005432, -0.0005183197790756822, 0.06507028639316559, -0.0009120108443312347, -0.05340998247265816, 0.000046952030970714986, -0.039398808032274246, -0.01643037609755993, 0.019372664391994476, -0.05342580005526543, 0.052974067628383636, -0.1212552934885025, 0.012116641737520695, 0.06376424431800842, 0.20285353064537048, 0.03746386617422104, -0.3264169692993164, -0.08442109823226929, -0.004374874290078878, -0.027873331680893898, -0.013427142053842545, 0.011061340570449829, 0.12043124437332153, -0.0897056981921196, 0.02995370142161846, -0.07365009933710098, 0.09697625786066055, -0.05822952836751938, 0.05427476391196251, 0.08772054314613342, 0.10604920238256454, -0.005647209472954273, 0.08791260421276093, -0.28875961899757385, 0.2853658199310303, 0.01082118134945631, 0.06648030132055283, -0.06753084808588028, -0.01380794495344162, 0.026510443538427353, 0.07847429811954498, 0.06303410232067108, -0.009497535414993763, -0.0150214908644557, -0.21086567640304565, -0.046908073127269745, 0.03283198922872543, 0.09624595940113068, -0.02120836265385151, 0.1001904085278511, -0.025227027013897896, 0.0070177107118070126, 0.0870286300778389, -0.013844323344528675, -0.053847536444664, -0.09353027492761612, -0.011314580217003822, 0.03737982362508774, -0.058129534125328064, -0.05567801371216774, -0.12020870298147202, -0.14593689143657684, 0.17864301800727844, -0.04390694946050644, -0.03127536177635193, -0.10239233821630478, 0.09985890984535217, 0.06045155227184296, -0.09050890058279037, 0.025585457682609558, 0.01704566180706024, 0.07839331775903702, 0.026851747184991837, -0.06737703830003738, 0.11558223515748978, -0.05665621906518936, -0.14432455599308014, -0.06044209375977516, 0.09293290972709656, 0.04543357715010643, 0.06662038713693619, -0.011638748459517956, 0.0023645483888685703, -0.04353378713130951, -0.09017695486545563, 0.018018774688243866, -0.013892876915633678, 0.035127948969602585, 0.0355663038790226, -0.04938352480530739, 0.01542927697300911, -0.07626110315322876, -0.02373092621564865, 0.1995227187871933, 0.231485515832901, -0.10526424646377563, -0.005280467215925455, 0.026019224897027016, -0.07955366373062134, -0.20057065784931183, 0.07382825016975403, 0.047398459166288376, 0.013760693371295929, 0.03886720538139343, -0.17620733380317688, 0.13552062213420868, 0.10219420492649078, -0.0018867338076233864, 0.11118956655263901, -0.32304176688194275, -0.12585006654262543, 0.10949832946062088, 0.13401854038238525, 0.11137726157903671, -0.13701069355010986, -0.01774488389492035, -0.016652880236506462, -0.10845309495925903, 0.1375017762184143, -0.11218367516994476, 0.1264999806880951, -0.02207484468817711, 0.08391615003347397, 0.007154947612434626, -0.05524202436208725, 0.11886292695999146, 0.03299669176340103, 0.10945820063352585, -0.04844710975885391, -0.05539398640394211, 0.04960281029343605, -0.02878173440694809, 0.013832468539476395, -0.09251520782709122, 0.01927126944065094, -0.08728360384702682, -0.022615475580096245, -0.07731232792139053, 0.05082353204488754, -0.03860398381948471, -0.06797187775373459, -0.04515999183058739, 0.031026950106024742, 0.03595404326915741, -0.006345473695546389, 0.12954525649547577, 0.009522918611764908, 0.16245856881141663, 0.10650363564491272, 0.08639518916606903, -0.07463172823190689, -0.06675920635461807, -0.005186889320611954, -0.008627697825431824, 0.0594828836619854, -0.135049507021904, 0.020472705364227295, 0.15682247281074524, 0.024287838488817215, 0.14766530692577362, 0.09198787808418274, -0.025421183556318283, -0.00040218979120254517, 0.06658532470464706, -0.1524987816810608, -0.11303617805242538, -0.019208403304219246, -0.10019081830978394, -0.11879875510931015, 0.06146860122680664, 0.10162826627492905, -0.07725005596876144, -0.0038541185203939676, -0.005616243928670883, -0.0030056012328714132, -0.0658537894487381, 0.19596898555755615, 0.08189929276704788, 0.047177769243717194, -0.10251355916261673, 0.057310473173856735, 0.04781726002693176, -0.04890630394220352, -0.0007590145105496049, 0.08679723739624023, -0.07584496587514877, -0.04651613160967827, 0.0704900473356247, 0.2091292440891266, -0.0893586054444313, -0.043515849858522415, -0.1532253921031952, -0.1202746033668518, 0.06285014748573303, 0.1698121279478073, 0.1164172813296318, 0.01633572205901146, -0.05523233488202095, 0.009002409875392914, -0.1276037096977234, 0.08944763243198395, 0.0454486608505249, 0.06814064830541611, -0.1552525758743286, 0.19672484695911407, 0.011780589818954468, 0.055862948298454285, -0.028078770264983177, 0.023050114512443542, -0.11338090896606445, 0.012657035142183304, -0.10317298024892807, -0.02269485965371132, -0.027423297986388206, 0.006688912399113178, -0.00011877462384290993, -0.054342519491910934, -0.06359311193227768, 0.006026039831340313, -0.1119275763630867, -0.02125752903521061, 0.04321863502264023, 0.05345725640654564, -0.11293870210647583, -0.035522714257240295, 0.011882747523486614, -0.04839710891246796, 0.0674266666173935, 0.03036271594464779, 0.01697402074933052, 0.0654403567314148, -0.17007938027381897, 0.0216713547706604, 0.06603197008371353, 0.020713888108730316, 0.0726521834731102, -0.06662551313638687, -0.004492159932851791, -0.009896024130284786, 0.07287111133337021, 0.02615693397819996, 0.04661388695240021, -0.12614667415618896, 0.005225708708167076, -0.03942665457725525, -0.06504091620445251, -0.06597025692462921, 0.041805610060691833, 0.07780006527900696, 0.022560512647032738, 0.19609634578227997, -0.0811176747083664, 0.04195390269160271, -0.2219500094652176, 0.008380915969610214, -0.007908070459961891, -0.11123660951852798, -0.0963941216468811, -0.07295104116201401, 0.06990380585193634, -0.06863756477832794, 0.15336152911186218, 0.05478281155228615, 0.02688126638531685, 0.026156766340136528, -0.01036914624273777, 0.0010789562948048115, 0.021314244717359543, 0.20502901077270508, 0.04216735064983368, -0.03351347893476486, 0.05987225100398064, 0.05677120387554169, 0.10363412648439407, 0.11534404009580612, 0.20879516005516052, 0.12810689210891724, -0.01669846475124359, 0.0945393294095993, 0.057853225618600845, -0.06248157098889351, -0.13778401911258698, 0.05854183807969093, -0.053721167147159576, 0.0936954990029335, -0.033193040639162064, 0.1907767653465271, 0.07390537112951279, -0.16480226814746857, 0.04034055396914482, -0.049034133553504944, -0.1006176769733429, -0.12444210797548294, -0.0444168858230114, -0.08323399722576141, -0.1394290179014206, -0.0036284613888710737, -0.12123534828424454, -0.00023062652326188982, 0.10855002701282501, 0.007553000934422016, -0.028276080265641212, 0.14754849672317505, 0.031906381249427795, 0.02262558788061142, 0.06185629963874817, 0.004160131793469191, -0.025280732661485672, -0.13284632563591003, -0.048323988914489746, -0.01635207049548626, -0.009591094218194485, 0.030624650418758392, -0.060525212436914444, -0.049109090119600296, 0.04747637361288071, -0.031822267919778824, -0.10725878924131393, 0.009598834440112114, 0.021189076825976372, 0.053891558200120926, 0.026095254346728325, 0.010946900583803654, 0.00505652604624629, -0.015545427799224854, 0.21612727642059326, -0.07698795199394226, -0.07292301952838898, -0.09133568406105042, 0.25457391142845154, 0.026203498244285583, -0.002381684957072139, 0.022264929488301277, -0.0692046731710434, 0.006356778088957071, 0.24845321476459503, 0.24113351106643677, -0.10209083557128906, 0.002063155174255371, 0.005386540666222572, -0.008007694967091084, -0.027793673798441887, 0.10733611136674881, 0.11228428781032562, 0.06658362597227097, -0.09837423264980316, -0.035231295973062515, -0.054743289947509766, -0.008530682884156704, -0.026892706751823425, 0.03835967928171158, 0.06288773566484451, 0.018653782084584236, -0.04654109477996826, 0.0643942728638649, -0.08694345504045486, -0.0811210423707962, 0.061419710516929626, -0.20919528603553772, -0.15798348188400269, -0.021361786872148514, 0.10454515367746353, 0.003392850048840046, 0.07379980385303497, -0.03373359516263008, -0.00033476055250503123, 0.0568898469209671, -0.021446174010634422, -0.10673440992832184, -0.07390060275793076, 0.08734328299760818, -0.11699157953262329, 0.19343653321266174, -0.052960291504859924, 0.06736491620540619, 0.12963174283504486, 0.05639595165848732, -0.06109137460589409, 0.06447287648916245, 0.03861542418599129, -0.05846170336008072, 0.031629566103219986, 0.07515596598386765, -0.03316196799278259, 0.0722062811255455, 0.04893116652965546, -0.13736364245414734, 0.029363475739955902, -0.07103103399276733, -0.06018224358558655, -0.05051732063293457, -0.04084402695298195, -0.05114667862653732, 0.12673650681972504, 0.22431668639183044, -0.026565589010715485, 0.006210958585143089, -0.06552431732416153, -0.008117343299090862, 0.06160584092140198, 0.05171484127640724, -0.0638611912727356, -0.23273693025112152, 0.011224966496229172, 0.05697038024663925, -0.013584474101662636, -0.2518930435180664, -0.07719819247722626, -0.007188118062913418, -0.0740160271525383, -0.08013597130775452, 0.08560343831777573, 0.11117090284824371, 0.05491456016898155, -0.05599109083414078, -0.05876316875219345, -0.07226286083459854, 0.15498897433280945, -0.14144767820835114, -0.09858812391757965 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlnet-base-cased-finetuned-wnli This model is a fine-tuned version of [xlnet-base-cased](https://huggingface.co/xlnet-base-cased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.6874 - Accuracy: 0.5634 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 40 | 0.7209 | 0.5352 | | No log | 2.0 | 80 | 0.6874 | 0.5634 | | No log | 3.0 | 120 | 0.6908 | 0.5634 | | No log | 4.0 | 160 | 0.6987 | 0.4930 | | No log | 5.0 | 200 | 0.6952 | 0.5634 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
{"license": "mit", "tags": ["generated_from_trainer"], "datasets": ["glue"], "metrics": ["accuracy"], "model-index": [{"name": "xlnet-base-cased-finetuned-wnli", "results": [{"task": {"type": "text-classification", "name": "Text Classification"}, "dataset": {"name": "glue", "type": "glue", "args": "wnli"}, "metrics": [{"type": "accuracy", "value": 0.5633802816901409, "name": "Accuracy"}]}]}]}
text-classification
anirudh21/xlnet-base-cased-finetuned-wnli
[ "transformers", "pytorch", "tensorboard", "xlnet", "text-classification", "generated_from_trainer", "dataset:glue", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #xlnet #text-classification #generated_from_trainer #dataset-glue #license-mit #model-index #autotrain_compatible #endpoints_compatible #region-us
xlnet-base-cased-finetuned-wnli =============================== This model is a fine-tuned version of xlnet-base-cased on the glue dataset. It achieves the following results on the evaluation set: * Loss: 0.6874 * Accuracy: 0.5634 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 16 * eval\_batch\_size: 16 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 5 ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.10.0+cu111 * Datasets 1.17.0 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.0+cu111\n* Datasets 1.17.0\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #xlnet #text-classification #generated_from_trainer #dataset-glue #license-mit #model-index #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.0+cu111\n* Datasets 1.17.0\n* Tokenizers 0.10.3" ]
[ 63, 98, 4, 33 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #xlnet #text-classification #generated_from_trainer #dataset-glue #license-mit #model-index #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.0+cu111\n* Datasets 1.17.0\n* Tokenizers 0.10.3" ]
[ -0.10428813844919205, 0.08606728911399841, -0.0016652968479320407, 0.11203289777040482, 0.178323894739151, 0.03587399050593376, 0.1422092765569687, 0.12105150520801544, -0.07487485557794571, 0.01749599538743496, 0.11799986660480499, 0.16327886283397675, 0.01426203828305006, 0.11028683930635452, -0.05076964199542999, -0.25780999660491943, -0.01838730089366436, 0.05112311989068985, -0.09375208616256714, 0.13316062092781067, 0.09461808949708939, -0.12941020727157593, 0.09752862900495529, -0.0012786698061972857, -0.22555625438690186, 0.009620069526135921, 0.024519119411706924, -0.048298053443431854, 0.14869609475135803, 0.0437336266040802, 0.13435246050357819, 0.009876473806798458, 0.08514367043972015, -0.2008315473794937, 0.015185787342488766, 0.05411100760102272, -0.005987721029669046, 0.09637220203876495, 0.05563075467944145, -0.000902180967386812, 0.12637796998023987, -0.09877689182758331, 0.03961428627371788, 0.026241080835461617, -0.12148396670818329, -0.18894241750240326, -0.06203315407037735, 0.026262447237968445, 0.06079692393541336, 0.10516218096017838, -0.011427421122789383, 0.1503337323665619, -0.08175568282604218, 0.10497426241636276, 0.21432170271873474, -0.2972007095813751, -0.07189786434173584, 0.07312695682048798, 0.032733794301748276, 0.07328260689973831, -0.10627708584070206, -0.007345761638134718, 0.06488141417503357, 0.03776244819164276, 0.12117583304643631, -0.031421370804309845, -0.10192602872848511, 0.024684742093086243, -0.1451515555381775, -0.004046661779284477, 0.14530040323734283, 0.03847802057862282, -0.0186499934643507, -0.04539604112505913, -0.053627386689186096, -0.14591990411281586, -0.029724255204200745, -0.011557523161172867, 0.04957367479801178, -0.03277236595749855, -0.08243786543607712, -0.016274595633149147, -0.1090828999876976, -0.06553417444229126, -0.07860966771841049, 0.145026296377182, 0.030148550868034363, 0.010920589789748192, -0.038184601813554764, 0.09992051124572754, -0.002928889123722911, -0.1167655885219574, 0.02607799507677555, 0.029134228825569153, -0.01679358258843422, -0.0598924458026886, -0.05425398051738739, -0.08107319474220276, 0.016468899324536324, 0.08951442688703537, -0.0565398633480072, 0.03710445389151573, 0.05194235220551491, 0.0524422787129879, -0.08050522208213806, 0.19223135709762573, -0.05798216164112091, -0.017917320132255554, -0.005939421709626913, 0.04240904375910759, -0.0007607306470163167, -0.016512064263224602, -0.1277061104774475, 0.003440083470195532, 0.09100478887557983, 0.010132648050785065, -0.05871643126010895, 0.08156256377696991, -0.0504530668258667, -0.028745079413056374, -0.020040571689605713, -0.08557922393083572, 0.037039514631032944, 0.0008006365387700498, -0.08948250859975815, -0.023264644667506218, 0.014190313406288624, 0.015073247253894806, -0.011834132485091686, 0.10333071649074554, -0.10848590731620789, 0.04278672859072685, -0.09352458268404007, -0.1328708529472351, 0.009103232994675636, -0.08720165491104126, 0.01835586130619049, -0.09100461006164551, -0.16319847106933594, -0.025429701432585716, 0.048447366803884506, -0.022504184395074844, -0.04433698207139969, -0.06973545253276825, -0.0808270052075386, 0.005245080217719078, -0.004493770655244589, 0.11511240154504776, -0.061242084950208664, 0.09593571722507477, 0.031782861799001694, 0.062484025955200195, -0.05710206553339958, 0.04814092814922333, -0.09673654288053513, 0.0025846746284514666, -0.14792665839195251, 0.051310788840055466, -0.054677799344062805, 0.07148873805999756, -0.07182297855615616, -0.10717858374118805, 0.019370103254914284, 0.011312977410852909, 0.05906069651246071, 0.09013873338699341, -0.19556672871112823, -0.09377948939800262, 0.16637885570526123, -0.06235509738326073, -0.11713363975286484, 0.1163918599486351, -0.06718885153532028, 0.058450646698474884, 0.0750528872013092, 0.178889200091362, 0.07683201134204865, -0.07832994312047958, -0.0036994963884353638, 0.0246751569211483, 0.03712381422519684, -0.07048708945512772, 0.05341239273548126, 0.02404945157468319, 0.0218147411942482, 0.02379576861858368, -0.038289107382297516, 0.0652037113904953, -0.10946324467658997, -0.09683749824762344, -0.03266213834285736, -0.0925590917468071, 0.05532373487949371, 0.07832688838243484, 0.07349096983671188, -0.0981440618634224, -0.08118050545454025, 0.07853281497955322, 0.08280482888221741, -0.06553175300359726, 0.020533261820673943, -0.06335542351007462, 0.05687185376882553, -0.03261362388730049, -0.02954253926873207, -0.17402143776416779, -0.06212783232331276, 0.0028035438153892756, 0.015381124801933765, 0.036423224955797195, 0.05486239120364189, 0.06420231610536575, 0.058370839804410934, -0.04917372763156891, -0.009852666407823563, -0.01811136305332184, -0.003412325168028474, -0.13720856606960297, -0.21637782454490662, -0.0275924950838089, -0.01988442987203598, 0.1610165238380432, -0.24399851262569427, 0.04963685944676399, -0.015102245844900608, 0.06734810769557953, 0.014052843675017357, -0.0064779724925756454, -0.04390536621212959, 0.0841355249285698, -0.04472869262099266, -0.05011444911360741, 0.07337099313735962, 0.009592469781637192, -0.11098098009824753, -0.05216618999838829, -0.1159026250243187, 0.17623698711395264, 0.13631559908390045, -0.14021918177604675, -0.08245372027158737, 0.0016534766182303429, -0.054511819034814835, -0.029891300946474075, -0.04886205494403839, 0.03647077456116676, 0.17578579485416412, -0.010163011960685253, 0.14994913339614868, -0.06591308861970901, -0.0447867214679718, 0.020595714449882507, -0.04379599168896675, 0.026350202038884163, 0.12835721671581268, 0.12501417100429535, -0.09030787646770477, 0.14809127151966095, 0.117082878947258, -0.09137064963579178, 0.15674786269664764, -0.027972502633929253, -0.05675051733851433, -0.026638804003596306, -0.028015512973070145, -0.00710601732134819, 0.10669802874326706, -0.1339329481124878, -0.012586062774062157, 0.01129439938813448, 0.006538182497024536, 0.03407806530594826, -0.23141683638095856, -0.05051086097955704, 0.03455999493598938, -0.047444019466638565, -0.01590023934841156, -0.023215211927890778, 0.0030036706011742353, 0.10639581829309464, 0.0008437093929387629, -0.09557357430458069, 0.03471217676997185, -0.0037551524583250284, -0.09060638397932053, 0.225599005818367, -0.07743661105632782, -0.16429094970226288, -0.1258813440799713, -0.05752002075314522, -0.05760033428668976, -0.0012936909915879369, 0.04069944843649864, -0.09997933357954025, -0.02542676404118538, -0.06273780018091202, 0.019831322133541107, -0.007582434918731451, 0.02831296995282173, -0.007439093664288521, 0.012375585734844208, 0.06147059425711632, -0.11688028275966644, -0.004769910126924515, -0.06928548216819763, -0.07352591305971146, 0.045227084308862686, 0.0291226077824831, 0.11675691604614258, 0.17049051821231842, -0.029428109526634216, 0.011371353641152382, -0.035355180501937866, 0.24059024453163147, -0.07139472663402557, -0.030119135975837708, 0.10570178925991058, -0.00069289596285671, 0.044496968388557434, 0.10907603055238724, 0.08492789417505264, -0.08458196371793747, 0.002109389752149582, 0.041447658091783524, -0.03312678635120392, -0.23897050321102142, -0.05825506150722504, -0.05032741650938988, 0.0016728303162381053, 0.07271090894937515, 0.03140116110444069, 0.05221502482891083, 0.06331983953714371, 0.04798385500907898, 0.06487210094928741, -0.0482594333589077, 0.04874210059642792, 0.10411611199378967, 0.0427270382642746, 0.13101470470428467, -0.04498549550771713, -0.0688958391547203, 0.03409098461270332, -0.018930330872535706, 0.22341980040073395, 0.013603595085442066, 0.15078309178352356, 0.05548296868801117, 0.16499081254005432, -0.0005183197790756822, 0.06507028639316559, -0.0009120108443312347, -0.05340998247265816, 0.000046952030970714986, -0.039398808032274246, -0.01643037609755993, 0.019372664391994476, -0.05342580005526543, 0.052974067628383636, -0.1212552934885025, 0.012116641737520695, 0.06376424431800842, 0.20285353064537048, 0.03746386617422104, -0.3264169692993164, -0.08442109823226929, -0.004374874290078878, -0.027873331680893898, -0.013427142053842545, 0.011061340570449829, 0.12043124437332153, -0.0897056981921196, 0.02995370142161846, -0.07365009933710098, 0.09697625786066055, -0.05822952836751938, 0.05427476391196251, 0.08772054314613342, 0.10604920238256454, -0.005647209472954273, 0.08791260421276093, -0.28875961899757385, 0.2853658199310303, 0.01082118134945631, 0.06648030132055283, -0.06753084808588028, -0.01380794495344162, 0.026510443538427353, 0.07847429811954498, 0.06303410232067108, -0.009497535414993763, -0.0150214908644557, -0.21086567640304565, -0.046908073127269745, 0.03283198922872543, 0.09624595940113068, -0.02120836265385151, 0.1001904085278511, -0.025227027013897896, 0.0070177107118070126, 0.0870286300778389, -0.013844323344528675, -0.053847536444664, -0.09353027492761612, -0.011314580217003822, 0.03737982362508774, -0.058129534125328064, -0.05567801371216774, -0.12020870298147202, -0.14593689143657684, 0.17864301800727844, -0.04390694946050644, -0.03127536177635193, -0.10239233821630478, 0.09985890984535217, 0.06045155227184296, -0.09050890058279037, 0.025585457682609558, 0.01704566180706024, 0.07839331775903702, 0.026851747184991837, -0.06737703830003738, 0.11558223515748978, -0.05665621906518936, -0.14432455599308014, -0.06044209375977516, 0.09293290972709656, 0.04543357715010643, 0.06662038713693619, -0.011638748459517956, 0.0023645483888685703, -0.04353378713130951, -0.09017695486545563, 0.018018774688243866, -0.013892876915633678, 0.035127948969602585, 0.0355663038790226, -0.04938352480530739, 0.01542927697300911, -0.07626110315322876, -0.02373092621564865, 0.1995227187871933, 0.231485515832901, -0.10526424646377563, -0.005280467215925455, 0.026019224897027016, -0.07955366373062134, -0.20057065784931183, 0.07382825016975403, 0.047398459166288376, 0.013760693371295929, 0.03886720538139343, -0.17620733380317688, 0.13552062213420868, 0.10219420492649078, -0.0018867338076233864, 0.11118956655263901, -0.32304176688194275, -0.12585006654262543, 0.10949832946062088, 0.13401854038238525, 0.11137726157903671, -0.13701069355010986, -0.01774488389492035, -0.016652880236506462, -0.10845309495925903, 0.1375017762184143, -0.11218367516994476, 0.1264999806880951, -0.02207484468817711, 0.08391615003347397, 0.007154947612434626, -0.05524202436208725, 0.11886292695999146, 0.03299669176340103, 0.10945820063352585, -0.04844710975885391, -0.05539398640394211, 0.04960281029343605, -0.02878173440694809, 0.013832468539476395, -0.09251520782709122, 0.01927126944065094, -0.08728360384702682, -0.022615475580096245, -0.07731232792139053, 0.05082353204488754, -0.03860398381948471, -0.06797187775373459, -0.04515999183058739, 0.031026950106024742, 0.03595404326915741, -0.006345473695546389, 0.12954525649547577, 0.009522918611764908, 0.16245856881141663, 0.10650363564491272, 0.08639518916606903, -0.07463172823190689, -0.06675920635461807, -0.005186889320611954, -0.008627697825431824, 0.0594828836619854, -0.135049507021904, 0.020472705364227295, 0.15682247281074524, 0.024287838488817215, 0.14766530692577362, 0.09198787808418274, -0.025421183556318283, -0.00040218979120254517, 0.06658532470464706, -0.1524987816810608, -0.11303617805242538, -0.019208403304219246, -0.10019081830978394, -0.11879875510931015, 0.06146860122680664, 0.10162826627492905, -0.07725005596876144, -0.0038541185203939676, -0.005616243928670883, -0.0030056012328714132, -0.0658537894487381, 0.19596898555755615, 0.08189929276704788, 0.047177769243717194, -0.10251355916261673, 0.057310473173856735, 0.04781726002693176, -0.04890630394220352, -0.0007590145105496049, 0.08679723739624023, -0.07584496587514877, -0.04651613160967827, 0.0704900473356247, 0.2091292440891266, -0.0893586054444313, -0.043515849858522415, -0.1532253921031952, -0.1202746033668518, 0.06285014748573303, 0.1698121279478073, 0.1164172813296318, 0.01633572205901146, -0.05523233488202095, 0.009002409875392914, -0.1276037096977234, 0.08944763243198395, 0.0454486608505249, 0.06814064830541611, -0.1552525758743286, 0.19672484695911407, 0.011780589818954468, 0.055862948298454285, -0.028078770264983177, 0.023050114512443542, -0.11338090896606445, 0.012657035142183304, -0.10317298024892807, -0.02269485965371132, -0.027423297986388206, 0.006688912399113178, -0.00011877462384290993, -0.054342519491910934, -0.06359311193227768, 0.006026039831340313, -0.1119275763630867, -0.02125752903521061, 0.04321863502264023, 0.05345725640654564, -0.11293870210647583, -0.035522714257240295, 0.011882747523486614, -0.04839710891246796, 0.0674266666173935, 0.03036271594464779, 0.01697402074933052, 0.0654403567314148, -0.17007938027381897, 0.0216713547706604, 0.06603197008371353, 0.020713888108730316, 0.0726521834731102, -0.06662551313638687, -0.004492159932851791, -0.009896024130284786, 0.07287111133337021, 0.02615693397819996, 0.04661388695240021, -0.12614667415618896, 0.005225708708167076, -0.03942665457725525, -0.06504091620445251, -0.06597025692462921, 0.041805610060691833, 0.07780006527900696, 0.022560512647032738, 0.19609634578227997, -0.0811176747083664, 0.04195390269160271, -0.2219500094652176, 0.008380915969610214, -0.007908070459961891, -0.11123660951852798, -0.0963941216468811, -0.07295104116201401, 0.06990380585193634, -0.06863756477832794, 0.15336152911186218, 0.05478281155228615, 0.02688126638531685, 0.026156766340136528, -0.01036914624273777, 0.0010789562948048115, 0.021314244717359543, 0.20502901077270508, 0.04216735064983368, -0.03351347893476486, 0.05987225100398064, 0.05677120387554169, 0.10363412648439407, 0.11534404009580612, 0.20879516005516052, 0.12810689210891724, -0.01669846475124359, 0.0945393294095993, 0.057853225618600845, -0.06248157098889351, -0.13778401911258698, 0.05854183807969093, -0.053721167147159576, 0.0936954990029335, -0.033193040639162064, 0.1907767653465271, 0.07390537112951279, -0.16480226814746857, 0.04034055396914482, -0.049034133553504944, -0.1006176769733429, -0.12444210797548294, -0.0444168858230114, -0.08323399722576141, -0.1394290179014206, -0.0036284613888710737, -0.12123534828424454, -0.00023062652326188982, 0.10855002701282501, 0.007553000934422016, -0.028276080265641212, 0.14754849672317505, 0.031906381249427795, 0.02262558788061142, 0.06185629963874817, 0.004160131793469191, -0.025280732661485672, -0.13284632563591003, -0.048323988914489746, -0.01635207049548626, -0.009591094218194485, 0.030624650418758392, -0.060525212436914444, -0.049109090119600296, 0.04747637361288071, -0.031822267919778824, -0.10725878924131393, 0.009598834440112114, 0.021189076825976372, 0.053891558200120926, 0.026095254346728325, 0.010946900583803654, 0.00505652604624629, -0.015545427799224854, 0.21612727642059326, -0.07698795199394226, -0.07292301952838898, -0.09133568406105042, 0.25457391142845154, 0.026203498244285583, -0.002381684957072139, 0.022264929488301277, -0.0692046731710434, 0.006356778088957071, 0.24845321476459503, 0.24113351106643677, -0.10209083557128906, 0.002063155174255371, 0.005386540666222572, -0.008007694967091084, -0.027793673798441887, 0.10733611136674881, 0.11228428781032562, 0.06658362597227097, -0.09837423264980316, -0.035231295973062515, -0.054743289947509766, -0.008530682884156704, -0.026892706751823425, 0.03835967928171158, 0.06288773566484451, 0.018653782084584236, -0.04654109477996826, 0.0643942728638649, -0.08694345504045486, -0.0811210423707962, 0.061419710516929626, -0.20919528603553772, -0.15798348188400269, -0.021361786872148514, 0.10454515367746353, 0.003392850048840046, 0.07379980385303497, -0.03373359516263008, -0.00033476055250503123, 0.0568898469209671, -0.021446174010634422, -0.10673440992832184, -0.07390060275793076, 0.08734328299760818, -0.11699157953262329, 0.19343653321266174, -0.052960291504859924, 0.06736491620540619, 0.12963174283504486, 0.05639595165848732, -0.06109137460589409, 0.06447287648916245, 0.03861542418599129, -0.05846170336008072, 0.031629566103219986, 0.07515596598386765, -0.03316196799278259, 0.0722062811255455, 0.04893116652965546, -0.13736364245414734, 0.029363475739955902, -0.07103103399276733, -0.06018224358558655, -0.05051732063293457, -0.04084402695298195, -0.05114667862653732, 0.12673650681972504, 0.22431668639183044, -0.026565589010715485, 0.006210958585143089, -0.06552431732416153, -0.008117343299090862, 0.06160584092140198, 0.05171484127640724, -0.0638611912727356, -0.23273693025112152, 0.011224966496229172, 0.05697038024663925, -0.013584474101662636, -0.2518930435180664, -0.07719819247722626, -0.007188118062913418, -0.0740160271525383, -0.08013597130775452, 0.08560343831777573, 0.11117090284824371, 0.05491456016898155, -0.05599109083414078, -0.05876316875219345, -0.07226286083459854, 0.15498897433280945, -0.14144767820835114, -0.09858812391757965 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wavlm-base-english This model is a fine-tuned version of [microsoft/wavlm-base](https://huggingface.co/microsoft/wavlm-base) on the english_ASR - CLEAN dataset. It achieves the following results on the evaluation set: - Loss: 0.0955 - Wer: 0.0773 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 1.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 2.8664 | 0.17 | 300 | 2.8439 | 1.0 | | 0.5009 | 0.34 | 600 | 0.2709 | 0.2162 | | 0.2056 | 0.5 | 900 | 0.1934 | 0.1602 | | 0.1648 | 0.67 | 1200 | 0.1576 | 0.1306 | | 0.1922 | 0.84 | 1500 | 0.1358 | 0.1114 | | 0.093 | 1.01 | 1800 | 0.1277 | 0.1035 | | 0.0652 | 1.18 | 2100 | 0.1251 | 0.1005 | | 0.0848 | 1.35 | 2400 | 0.1188 | 0.0964 | | 0.0706 | 1.51 | 2700 | 0.1091 | 0.0905 | | 0.0846 | 1.68 | 3000 | 0.1018 | 0.0840 | | 0.0684 | 1.85 | 3300 | 0.0978 | 0.0809 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.9.1 - Datasets 1.18.0 - Tokenizers 0.10.3
{"tags": ["automatic-speech-recognition", "english_asr", "generated_from_trainer"], "model-index": [{"name": "wavlm-base-english", "results": []}]}
automatic-speech-recognition
anjulRajendraSharma/WavLm-base-en
[ "transformers", "pytorch", "tensorboard", "wavlm", "automatic-speech-recognition", "english_asr", "generated_from_trainer", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #wavlm #automatic-speech-recognition #english_asr #generated_from_trainer #endpoints_compatible #region-us
wavlm-base-english ================== This model is a fine-tuned version of microsoft/wavlm-base on the english\_ASR - CLEAN dataset. It achieves the following results on the evaluation set: * Loss: 0.0955 * Wer: 0.0773 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 0.0003 * train\_batch\_size: 16 * eval\_batch\_size: 16 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * lr\_scheduler\_warmup\_steps: 500 * num\_epochs: 1.0 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.9.1 * Datasets 1.18.0 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0003\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 500\n* num\\_epochs: 1.0\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.9.1\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #wavlm #automatic-speech-recognition #english_asr #generated_from_trainer #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0003\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 500\n* num\\_epochs: 1.0\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.9.1\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ 52, 130, 4, 33 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #wavlm #automatic-speech-recognition #english_asr #generated_from_trainer #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0003\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 500\n* num\\_epochs: 1.0\n* mixed\\_precision\\_training: Native AMP### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.9.1\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ -0.11998158693313599, 0.04163835570216179, -0.002532340120524168, 0.07453712075948715, 0.1470426470041275, -0.0006227655103430152, 0.09204435348510742, 0.12833712995052338, -0.059435419738292694, 0.05654207244515419, 0.114042729139328, 0.14007169008255005, 0.02805384062230587, 0.09174080938100815, -0.04367753118276596, -0.2907477915287018, -0.0038359840400516987, 0.016593236476182938, -0.05149126425385475, 0.11086759716272354, 0.09236364811658859, -0.12970536947250366, 0.0540427565574646, 0.015484705567359924, -0.13736559450626373, 0.020547842606902122, 0.012963888235390186, -0.08559231460094452, 0.1300203949213028, 0.020728329196572304, 0.0963023230433464, 0.012599548324942589, 0.07799196988344193, -0.23346303403377533, 0.010769392363727093, 0.03227852284908295, 0.04652915149927139, 0.06125182658433914, 0.07571414858102798, -0.036594364792108536, 0.11318966001272202, -0.1174011081457138, 0.06626462936401367, 0.036252815276384354, -0.11542708426713943, -0.2642792761325836, -0.049505479633808136, 0.01394646242260933, 0.0533268079161644, 0.10278477519750595, -0.02330102026462555, 0.09885250777006149, -0.08609762042760849, 0.11662919074296951, 0.24172165989875793, -0.2664618194103241, -0.04250776767730713, -0.03741735592484474, 0.024110740050673485, 0.08941745012998581, -0.11998509615659714, -0.016020435839891434, 0.026989897713065147, 0.05289561673998833, 0.10579681396484375, -0.025397993624210358, -0.07384190708398819, 0.01064884103834629, -0.15105384588241577, -0.029967186972498894, 0.10252679139375687, 0.026961516588926315, -0.03246214613318443, -0.08950458467006683, -0.03718537837266922, -0.15612639486789703, -0.06565035134553909, -0.005900940857827663, 0.027607807889580727, -0.03960608318448067, -0.08182232081890106, -0.020669156685471535, -0.07996556907892227, -0.06634156405925751, -0.03461482748389244, 0.18282592296600342, 0.039254605770111084, -0.006011317949742079, -0.030829407274723053, 0.06690853089094162, 0.011014251969754696, -0.13401751220226288, 0.01887364685535431, 0.03979991376399994, -0.03272539749741554, -0.009543301537632942, -0.06589335948228836, -0.0532478503882885, 0.016599154099822044, 0.06514106690883636, -0.09422759711742401, 0.0788780078291893, 0.007012942340224981, 0.030039895325899124, -0.10821480304002762, 0.21789363026618958, -0.05108920484781265, -0.009958796203136444, -0.02599724940955639, 0.06981737166643143, -0.008696301840245724, -0.01883615180850029, -0.09168125689029694, 0.006074585020542145, 0.11805877834558487, 0.021466361358761787, -0.05911409854888916, 0.051620811223983765, -0.035990502685308456, -0.015977539122104645, -0.037088967859745026, -0.14346227049827576, 0.0482996329665184, 0.033610474318265915, -0.06523275375366211, 0.043218474835157394, 0.015388667583465576, 0.0013053083093836904, -0.0615902878344059, 0.09164489805698395, -0.06688928604125977, 0.04857346788048744, -0.06282931566238403, -0.1283837854862213, 0.005803560838103294, -0.08322475850582123, 0.011825286783277988, -0.09618104994297028, -0.11752592772245407, -0.022086238488554955, 0.02765611559152603, -0.03472535312175751, -0.004172281827777624, -0.08417142182588577, -0.08164291083812714, 0.035271383821964264, -0.03061952255666256, 0.13092872500419617, -0.057592663913965225, 0.10848447680473328, 0.04468162730336189, 0.0778765007853508, -0.01132360752671957, 0.07890886813402176, -0.06859254837036133, 0.006404153537005186, -0.13627415895462036, 0.11274529248476028, -0.0869605615735054, 0.03226960822939873, -0.10979652404785156, -0.11898405104875565, -0.01854320801794529, 0.02110060676932335, 0.088826484978199, 0.09237752109766006, -0.16933484375476837, -0.10607761889696121, 0.1910850554704666, -0.06451275199651718, -0.04481879621744156, 0.1351730227470398, -0.04070369899272919, 0.0025219167582690716, 0.07185325771570206, 0.24636167287826538, 0.058359164744615555, -0.11369559168815613, 0.020800955593585968, -0.01588575728237629, 0.06658358871936798, 0.0005163674359209836, 0.04034335911273956, -0.02900022454559803, 0.031186504289507866, 0.02797418273985386, -0.008827661164104939, 0.06734974682331085, -0.09273618459701538, -0.08984125405550003, -0.04383203387260437, -0.10576362162828445, 0.042053770273923874, 0.061097774654626846, 0.06401940435171127, -0.08924935758113861, -0.0900711789727211, 0.04404124245047569, 0.06301183998584747, -0.09685917943716049, 0.05197065323591232, -0.08191177248954773, 0.05276383459568024, -0.029231403023004532, -0.016221314668655396, -0.19744537770748138, 0.03146635368466377, 0.01539506483823061, 0.009136722423136234, 0.040053606033325195, -0.0035726868081837893, 0.09403330832719803, 0.04036545380949974, -0.05406863987445831, -0.032854508608579636, -0.013037359341979027, 0.006673816125839949, -0.10282808542251587, -0.19798223674297333, -0.02296856790781021, -0.03509178385138512, 0.09431236237287521, -0.18861518800258636, 0.011683163233101368, 0.027913058176636696, 0.06833603978157043, 0.02231740392744541, -0.034388236701488495, -0.006192964501678944, 0.10150706768035889, -0.008702677674591541, -0.04608242213726044, 0.06207280978560448, -0.016800345852971077, -0.10260186344385147, 0.011694320477545261, -0.14812177419662476, 0.10064385831356049, 0.14088574051856995, -0.08238600194454193, -0.07766525447368622, 0.009627871215343475, -0.04875809699296951, -0.028758829459547997, -0.036274801939725876, 0.018506517633795738, 0.228802889585495, -0.002744724042713642, 0.14716829359531403, -0.06532549113035202, -0.0189987625926733, 0.03206583112478256, -0.02432536520063877, 0.01118962001055479, 0.15463177859783173, 0.02554449252784252, -0.025028595700860023, 0.09826070070266724, 0.10352136939764023, -0.10440899431705475, 0.15020868182182312, -0.04987797886133194, -0.10051663219928741, 0.004095674026757479, -0.006813181564211845, 0.0035113433841615915, 0.08674632757902145, -0.15794843435287476, -0.0292816124856472, 0.022882871329784393, 0.04049661383032799, 0.021121442317962646, -0.22175127267837524, -0.007079440634697676, 0.029795648530125618, -0.0804755762219429, -0.03240428864955902, 0.0033691979479044676, 0.021314237266778946, 0.10259048640727997, -0.006798440124839544, -0.08207064121961594, -0.00005717980093322694, -0.01889782026410103, -0.0871141254901886, 0.1817876547574997, -0.09758219867944717, -0.16977347433567047, -0.10301809757947922, -0.06717758625745773, -0.03170153498649597, 0.0031479711178690195, 0.05907163396477699, -0.12112843245267868, -0.029240909963846207, -0.06719610095024109, 0.039518244564533234, -0.03778156265616417, 0.03189520910382271, 0.010884154587984085, -0.011318795382976532, 0.06497877836227417, -0.11105329543352127, -0.009141365997493267, -0.05846146121621132, -0.025704529136419296, 0.04240855947136879, 0.046266861259937286, 0.09713945537805557, 0.1606743037700653, -0.013058501295745373, 0.031109528616070747, -0.03301915526390076, 0.21497902274131775, -0.07736773788928986, -0.04076753184199333, 0.09922386705875397, -0.01847119629383087, 0.039068784564733505, 0.09625834971666336, 0.0567852258682251, -0.09169716387987137, -0.01084692869335413, 0.02175862528383732, -0.040363412350416183, -0.22057311236858368, -0.0552191324532032, -0.05940880626440048, -0.02914823219180107, 0.1054290309548378, 0.027613459154963493, -0.0020494135096669197, 0.02148035168647766, 0.04963405802845955, 0.01370504405349493, -0.013521118089556694, 0.04228420928120613, 0.13736826181411743, 0.024551721289753914, 0.12268680334091187, -0.02718352898955345, -0.05978541076183319, 0.023652123287320137, -0.01051757950335741, 0.21311764419078827, 0.022052135318517685, 0.11878958344459534, 0.03267250955104828, 0.16844865679740906, 0.00970893632620573, 0.07563219219446182, 0.0074583422392606735, -0.033222854137420654, 0.016752392053604126, -0.051408614963293076, -0.05202333256602287, 0.031179439276456833, 0.053513914346694946, 0.021354416385293007, -0.12226515263319016, -0.02862081490457058, 0.04134034365415573, 0.2858757972717285, 0.04500506818294525, -0.2933906018733978, -0.08972669392824173, -0.008488542400300503, -0.08939678966999054, -0.018439549952745438, 0.04200068488717079, 0.09884311258792877, -0.07907745242118835, 0.054470788687467575, -0.05103391036391258, 0.0857473611831665, -0.0522688627243042, 0.03464842960238457, 0.017931587994098663, 0.08414259552955627, 0.013450159691274166, 0.047020331025123596, -0.31936711072921753, 0.2992134988307953, 0.017131373286247253, 0.08345726132392883, -0.05633071810007095, -0.015300001949071884, 0.028523141518235207, -0.0078080217353999615, 0.08289085328578949, -0.009722167626023293, -0.08117790520191193, -0.18760503828525543, -0.06436292827129364, 0.026978902518749237, 0.15414710342884064, 0.02102554589509964, 0.10736607760190964, -0.023086586967110634, -0.003892855951562524, 0.07085947692394257, -0.08818413317203522, -0.09726419299840927, -0.095626100897789, -0.005406948272138834, 0.08958418667316437, 0.01408030092716217, -0.0484631210565567, -0.10953710973262787, -0.13494904339313507, 0.11584111303091049, -0.0718645453453064, -0.018827831372618675, -0.123893141746521, 0.07466824352741241, 0.12396661937236786, -0.07752233743667603, 0.028704838827252388, 0.030470028519630432, 0.06234534829854965, 0.018467258661985397, -0.053892962634563446, 0.10387034714221954, -0.06474635004997253, -0.1727917343378067, -0.017885494977235794, 0.14876557886600494, 0.05091026797890663, 0.07379410415887833, -0.016954675316810608, 0.04073470085859299, -0.032474201172590256, -0.07844270020723343, 0.07470544427633286, 0.04548806697130203, -0.008814245462417603, 0.05936620756983757, -0.062117744237184525, -0.019068708643317223, -0.09017277508974075, -0.02660028450191021, 0.20749308168888092, 0.22409434616565704, -0.08598675578832626, 0.06530939787626266, 0.060406360775232315, -0.0647466778755188, -0.1946263164281845, 0.025197679176926613, 0.08700767904520035, 0.023418234661221504, 0.023361820727586746, -0.17956651747226715, 0.071558877825737, 0.05069415643811226, -0.0019688275642693043, 0.08719142526388168, -0.30321377515792847, -0.14710135757923126, 0.14350654184818268, 0.11855833232402802, 0.08339009433984756, -0.1551773101091385, -0.036490049213171005, -0.014680902473628521, -0.08189891278743744, 0.07286092638969421, -0.030522093176841736, 0.14625117182731628, -0.020952614024281502, 0.12628675997257233, 0.021253937855362892, -0.056846942752599716, 0.11226662993431091, 0.02428676187992096, 0.04831443727016449, -0.02807535044848919, 0.011524666100740433, 0.007492984179407358, -0.022820325568318367, 0.04822926968336105, -0.05790156498551369, 0.02194518968462944, -0.07946830242872238, -0.03841802850365639, -0.10954103618860245, 0.033888377249240875, -0.0007265887106768787, -0.03898947685956955, -0.010162408463656902, 0.008793751709163189, 0.06504692137241364, -0.005666190292686224, 0.10130519419908524, -0.06756848096847534, 0.12279968708753586, 0.11314909160137177, 0.12121441960334778, -0.061313703656196594, -0.07111066579818726, 0.0007582858670502901, -0.016363373026251793, 0.05652259662747383, -0.10483234375715256, 0.043371398001909256, 0.1420988142490387, 0.049600474536418915, 0.1417151391506195, 0.0764908492565155, -0.0484144501388073, 0.016751805320382118, 0.0461842305958271, -0.12463750690221786, -0.14933857321739197, -0.002481906209141016, -0.029612433165311813, -0.0926567018032074, 0.027822941541671753, 0.11235175281763077, -0.06388284265995026, -0.003983058966696262, -0.0231733750551939, 0.01879633590579033, -0.07234236598014832, 0.22779366374015808, 0.08160041272640228, 0.04681781679391861, -0.10767946392297745, 0.072519451379776, 0.0297352634370327, -0.156979501247406, 0.06290553510189056, 0.09338133782148361, -0.0705217719078064, -0.0395837239921093, 0.021711163222789764, 0.1273939609527588, -0.037506237626075745, -0.05587111413478851, -0.11409370601177216, -0.13519929349422455, 0.09684748202562332, 0.15274940431118011, 0.06654511392116547, 0.01122418325394392, -0.076797716319561, 0.013512063771486282, -0.1209079697728157, 0.08543479442596436, 0.05498049780726433, 0.0453963428735733, -0.11799059063196182, 0.1591956466436386, 0.0070688314735889435, 0.04013863578438759, -0.024800123646855354, -0.0024473881348967552, -0.09983040392398834, 0.04301941394805908, -0.11980690062046051, -0.016298146918416023, -0.03950633108615875, 0.007251098286360502, 0.007718921639025211, -0.08356009423732758, -0.05149896442890167, 0.0239020474255085, -0.12348625808954239, -0.02694845385849476, 0.0018106942297890782, 0.03590220957994461, -0.11388847976922989, -0.0322745144367218, 0.021934974938631058, -0.06530527770519257, 0.06884729117155075, 0.0794583261013031, -0.052944861352443695, 0.08160001039505005, -0.13762715458869934, -0.015433699823915958, 0.06730056554079056, 0.0012909055221825838, 0.04996560513973236, -0.11632642894983292, -0.01219093892723322, 0.013849628157913685, 0.07739196717739105, 0.03507186472415924, 0.1124134510755539, -0.12504898011684418, 0.017734255641698837, -0.05012917146086693, -0.06496607512235641, -0.07814478874206543, 0.053501639515161514, 0.07388566434383392, 0.040734920650720596, 0.1665755957365036, -0.10835888236761093, 0.051257044076919556, -0.18463672697544098, 0.002423262922093272, -0.03330413997173309, -0.09900689125061035, -0.05583468824625015, -0.039862558245658875, 0.0976385623216629, -0.05793595686554909, 0.13453109562397003, -0.0006930747185833752, 0.05002014338970184, 0.029245974496006966, -0.09760068356990814, -0.026460107415914536, 0.03335731849074364, 0.2411070317029953, 0.03813379257917404, -0.041235532611608505, 0.05609863996505737, 0.04093090072274208, 0.09008461236953735, 0.20178799331188202, 0.18372276425361633, 0.18152481317520142, -0.0023905341513454914, 0.11359725892543793, 0.03810369223356247, -0.0759560763835907, -0.13318447768688202, 0.0774720162153244, -0.05246661603450775, 0.11562809348106384, -0.03727570176124573, 0.22242453694343567, 0.09699341654777527, -0.1603240966796875, 0.08715705573558807, -0.03414086624979973, -0.1027391329407692, -0.13086307048797607, -0.03175564110279083, -0.082534059882164, -0.16630160808563232, 0.014201851561665535, -0.11034226417541504, 0.06427384912967682, 0.057299498468637466, 0.03594272583723068, 0.012908383272588253, 0.16890905797481537, 0.014663507230579853, 0.0019459545146673918, 0.10636401176452637, -0.010090297088027, -0.025514712557196617, -0.07684583216905594, -0.06598733365535736, 0.029902644455432892, -0.031601641327142715, 0.04240717366337776, -0.030615709722042084, -0.11799801886081696, 0.035881757736206055, -0.05057896673679352, -0.0954534113407135, 0.014200318604707718, 0.027705533429980278, 0.08085718005895615, 0.07233326882123947, 0.03487979248166084, -0.043873947113752365, -0.021555524319410324, 0.21555186808109283, -0.09311560541391373, -0.10295198857784271, -0.09809660911560059, 0.2718040347099304, 0.05268971249461174, 0.004324762616306543, -0.0026161191053688526, -0.06375130265951157, 0.00787526648491621, 0.25201207399368286, 0.18092527985572815, -0.05499201640486717, 0.00652813958004117, -0.011869695968925953, 0.002491292078047991, -0.016007250174880028, 0.08390436321496964, 0.14495240151882172, 0.08899461477994919, -0.07718940824270248, -0.05774896219372749, -0.05235978215932846, -0.03928554058074951, -0.061132531613111496, 0.08419179171323776, 0.029202783480286598, -0.011579962447285652, -0.06132054328918457, 0.07504217326641083, -0.08996940404176712, -0.12341266870498657, 0.01802864857017994, -0.19796575605869293, -0.1371220052242279, -0.021161988377571106, 0.07047933340072632, 0.034721147269010544, 0.04301748797297478, -0.01586991548538208, -0.009172268211841583, 0.06118795648217201, -0.005612165667116642, -0.0785558819770813, -0.03872337192296982, 0.07737231254577637, -0.12655359506607056, 0.11419066041707993, -0.0329565703868866, 0.06874293088912964, 0.10999137908220291, 0.10147783160209656, -0.046400610357522964, 0.0836714655160904, 0.03979054093360901, -0.09519223868846893, 0.04440470039844513, 0.18167716264724731, -0.032016854733228683, 0.07600022107362747, 0.04080798849463463, -0.12378472834825516, 0.033783506602048874, -0.08344094455242157, -0.07281014323234558, -0.034677278250455856, -0.042584266513586044, -0.04529016837477684, 0.12536205351352692, 0.1976609230041504, -0.03294936195015907, 0.007462077774107456, -0.07151228189468384, 0.0030124036129564047, 0.028927847743034363, 0.04767664894461632, -0.08201234042644501, -0.25852611660957336, -0.00010463649232406169, 0.04014723747968674, -0.017571622505784035, -0.24040311574935913, -0.09385418146848679, 0.025227000936865807, -0.062015350908041, -0.06645318120718002, 0.11024084687232971, 0.07651247829198837, 0.04431873932480812, -0.04354936257004738, -0.0969240590929985, -0.012340723536908627, 0.19149592518806458, -0.1866261512041092, -0.06065918132662773 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wavlm-libri-clean-100h-base This model is a fine-tuned version of [microsoft/wavlm-base](https://huggingface.co/microsoft/wavlm-base) on the LIBRISPEECH_ASR - CLEAN dataset. It achieves the following results on the evaluation set: - Loss: 0.0955 - Wer: 0.0773 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 1.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 2.8664 | 0.17 | 300 | 2.8439 | 1.0 | | 0.5009 | 0.34 | 600 | 0.2709 | 0.2162 | | 0.2056 | 0.5 | 900 | 0.1934 | 0.1602 | | 0.1648 | 0.67 | 1200 | 0.1576 | 0.1306 | | 0.1922 | 0.84 | 1500 | 0.1358 | 0.1114 | | 0.093 | 1.01 | 1800 | 0.1277 | 0.1035 | | 0.0652 | 1.18 | 2100 | 0.1251 | 0.1005 | | 0.0848 | 1.35 | 2400 | 0.1188 | 0.0964 | | 0.0706 | 1.51 | 2700 | 0.1091 | 0.0905 | | 0.0846 | 1.68 | 3000 | 0.1018 | 0.0840 | | 0.0684 | 1.85 | 3300 | 0.0978 | 0.0809 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.9.1 - Datasets 1.18.0 - Tokenizers 0.10.3
{"tags": ["automatic-speech-recognition", "librispeech_asr", "generated_from_trainer"], "model-index": [{"name": "wavlm-libri-clean-100h-base", "results": []}]}
automatic-speech-recognition
anjulRajendraSharma/wavlm-base-libri-clean-100
[ "transformers", "pytorch", "tensorboard", "wavlm", "automatic-speech-recognition", "librispeech_asr", "generated_from_trainer", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #wavlm #automatic-speech-recognition #librispeech_asr #generated_from_trainer #endpoints_compatible #region-us
wavlm-libri-clean-100h-base =========================== This model is a fine-tuned version of microsoft/wavlm-base on the LIBRISPEECH\_ASR - CLEAN dataset. It achieves the following results on the evaluation set: * Loss: 0.0955 * Wer: 0.0773 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 0.0003 * train\_batch\_size: 16 * eval\_batch\_size: 16 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * lr\_scheduler\_warmup\_steps: 500 * num\_epochs: 1.0 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.9.1 * Datasets 1.18.0 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0003\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 500\n* num\\_epochs: 1.0\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.9.1\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #wavlm #automatic-speech-recognition #librispeech_asr #generated_from_trainer #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0003\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 500\n* num\\_epochs: 1.0\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.9.1\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ 53, 130, 4, 33 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #wavlm #automatic-speech-recognition #librispeech_asr #generated_from_trainer #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0003\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 500\n* num\\_epochs: 1.0\n* mixed\\_precision\\_training: Native AMP### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.9.1\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ -0.1113317608833313, 0.05163652077317238, -0.003161116736009717, 0.07574845105409622, 0.13238266110420227, -0.00946098193526268, 0.09934161603450775, 0.13532514870166779, -0.07627210021018982, 0.06872375309467316, 0.12121498584747314, 0.14556971192359924, 0.022185176610946655, 0.11784261465072632, -0.052558835595846176, -0.2855158746242523, 0.006716356612741947, 0.029094595462083817, -0.025811845436692238, 0.11374841630458832, 0.08712143450975418, -0.12930037081241608, 0.05435663089156151, 0.01631789654493332, -0.14340437948703766, 0.019118711352348328, 0.014291436411440372, -0.08883298933506012, 0.11959568411111832, 0.015060145407915115, 0.08315783739089966, 0.022718163207173347, 0.07097861915826797, -0.22207435965538025, 0.010232403874397278, 0.035953812301158905, 0.03883221000432968, 0.06335027515888214, 0.06256655603647232, -0.049659185111522675, 0.13054166734218597, -0.10844804346561432, 0.07213439047336578, 0.03407984972000122, -0.11789747327566147, -0.27217739820480347, -0.06176833435893059, 0.022847220301628113, 0.05364687368273735, 0.0951579362154007, -0.02077983133494854, 0.12109668552875519, -0.08146371692419052, 0.11965113878250122, 0.26404696702957153, -0.2715003788471222, -0.04285112023353577, -0.035993363708257675, 0.025310223922133446, 0.07512804865837097, -0.11463954299688339, -0.01289327722042799, 0.03218818083405495, 0.047955673187971115, 0.12225513905286789, -0.02615693397819996, -0.05951200798153877, 0.0033278546761721373, -0.14888738095760345, -0.039558615535497665, 0.0995466485619545, 0.017725074663758278, -0.0368439182639122, -0.0918428972363472, -0.03974641487002373, -0.16097277402877808, -0.06269177049398422, -0.0017880817176774144, 0.0322030708193779, -0.047788795083761215, -0.09756151586771011, -0.010766642168164253, -0.07026049494743347, -0.06910639256238937, -0.02709275111556053, 0.18747609853744507, 0.040355533361434937, -0.003692193189635873, -0.03818590193986893, 0.06916003674268723, -0.0023696545977145433, -0.1387982964515686, -0.0028600068762898445, 0.04234529659152031, -0.023084411397576332, -0.01736976020038128, -0.0628172904253006, -0.04475419223308563, 0.017489325255155563, 0.11255679279565811, -0.0944342091679573, 0.084541454911232, -0.004056765232235193, 0.02289719693362713, -0.10413864254951477, 0.20570024847984314, -0.03474551439285278, 0.0066858818754553795, -0.011115510948002338, 0.06962998956441879, 0.011938817799091339, -0.026016192510724068, -0.08662262558937073, 0.018575990572571754, 0.11420704424381256, 0.029154745861887932, -0.05855061858892441, 0.05076778307557106, -0.03696277365088463, -0.010554107837378979, -0.03675362467765808, -0.14061188697814941, 0.048959098756313324, 0.02875867486000061, -0.06708145886659622, 0.02223053015768528, 0.018125196918845177, -0.00619215052574873, -0.05887928232550621, 0.10290293395519257, -0.06834173947572708, 0.04650231823325157, -0.06295086443424225, -0.12881402671337128, 0.01093428023159504, -0.09502141177654266, 0.006754789035767317, -0.0934346467256546, -0.10671953856945038, -0.023529941216111183, 0.026935230940580368, -0.03595489636063576, -0.008962621912360191, -0.08161810040473938, -0.08368080854415894, 0.03641142696142197, -0.028068508952856064, 0.11375845968723297, -0.06317763775587082, 0.10487544536590576, 0.054407428950071335, 0.08519937098026276, -0.003110807156190276, 0.07098329067230225, -0.07192663103342056, 0.015363933518528938, -0.16445353627204895, 0.10409232974052429, -0.08766636252403259, 0.041040483862161636, -0.10212335735559464, -0.12053170055150986, -0.004064782988280058, 0.011339926160871983, 0.0960780680179596, 0.09802553057670593, -0.1601274460554123, -0.10648305714130402, 0.1951880007982254, -0.0803743377327919, -0.05342980846762657, 0.12519356608390808, -0.04276081547141075, -0.004263666924089193, 0.07386016845703125, 0.26377156376838684, 0.05857149884104729, -0.11405106633901596, 0.012809636071324348, -0.031173091381788254, 0.06535962969064713, -0.012478647753596306, 0.04144275560975075, -0.019196655601263046, 0.040286168456077576, 0.025506118312478065, 0.00023662399325985461, 0.049647118896245956, -0.09429094195365906, -0.08316663652658463, -0.049628205597400665, -0.09648940712213516, 0.031228583306074142, 0.05498069152235985, 0.05787576735019684, -0.10568740963935852, -0.09090667217969894, 0.04891885817050934, 0.06865889579057693, -0.09979831427335739, 0.0605480819940567, -0.09034640341997147, 0.06492286175489426, -0.01815994456410408, -0.010731087997555733, -0.20039819180965424, 0.04078787565231323, 0.019075334072113037, -0.007315457798540592, 0.04455588385462761, -0.034108687192201614, 0.08771773427724838, 0.04525135084986687, -0.04516637697815895, -0.0314689576625824, -0.01267380453646183, 0.003148340852931142, -0.10202339291572571, -0.20360811054706573, -0.02902616187930107, -0.038446325808763504, 0.08943213522434235, -0.17837998270988464, 0.02056678757071495, 0.051577646285295486, 0.07702798396348953, 0.028983736410737038, -0.0377034954726696, -0.0006434252136386931, 0.10127804428339005, -0.01265986543148756, -0.0532362200319767, 0.06033733859658241, -0.007156952749937773, -0.09214932471513748, 0.004622810520231724, -0.1533423513174057, 0.1094784289598465, 0.14189234375953674, -0.04726051539182663, -0.08050058037042618, 0.0012562632327899337, -0.04995869845151901, -0.023834655061364174, -0.03568723425269127, 0.03419147804379463, 0.2150026559829712, -0.002816117135807872, 0.1479821801185608, -0.07515877485275269, -0.03463711962103844, 0.036949895322322845, -0.02629878744482994, 0.011352133005857468, 0.14857207238674164, 0.028348367661237717, -0.02490920014679432, 0.1021636426448822, 0.0872596949338913, -0.09883295744657516, 0.14247363805770874, -0.054592885076999664, -0.09227647632360458, -0.007245865184813738, -0.004392691422253847, 0.01872623711824417, 0.0928841233253479, -0.15465882420539856, -0.03722258657217026, 0.01991516351699829, 0.03031671606004238, 0.017681177705526352, -0.2178957164287567, -0.0008988460758700967, 0.03674694523215294, -0.0759037435054779, -0.04536103084683418, 0.00006308064621407539, 0.01781461015343666, 0.1037377268075943, -0.004557745065540075, -0.07958042621612549, -0.0023875767365098, -0.011094961315393448, -0.08327910304069519, 0.183299258351326, -0.0958600714802742, -0.16834262013435364, -0.09821464121341705, -0.07828568667173386, -0.04286946356296539, 0.003283722558990121, 0.07204441726207733, -0.1133328378200531, -0.03154373914003372, -0.07673230767250061, 0.017739931121468544, -0.029121877625584602, 0.04262087494134903, 0.018607383593916893, -0.009504263289272785, 0.06487862765789032, -0.11680767685174942, -0.019023757427930832, -0.06561015546321869, -0.016585158184170723, 0.04774445295333862, 0.052170298993587494, 0.10199679434299469, 0.1565740704536438, -0.01529640518128872, 0.043300777673721313, -0.039099499583244324, 0.20994071662425995, -0.07132921367883682, -0.042972054332494736, 0.10690539330244064, -0.01595720835030079, 0.04875625669956207, 0.09061220288276672, 0.052712179720401764, -0.10298807919025421, -0.009405550546944141, 0.02148417755961418, -0.0507967509329319, -0.21108636260032654, -0.049739982932806015, -0.05724102258682251, -0.01860436610877514, 0.11070157587528229, 0.027766967192292213, 0.007899043150246143, 0.02213316224515438, 0.04477156326174736, 0.01263426337391138, -0.011227316223084927, 0.06478338688611984, 0.13921159505844116, 0.029768772423267365, 0.130473792552948, -0.036398280411958694, -0.05491683632135391, 0.024207452312111855, -0.014677624218165874, 0.22403432428836823, 0.01339814718812704, 0.12893681228160858, 0.04252561926841736, 0.16244195401668549, 0.017359040677547455, 0.07523608207702637, -0.006470642052590847, -0.032418541610240936, 0.017287980765104294, -0.056354496628046036, -0.048078492283821106, 0.025388946756720543, 0.02928055450320244, 0.02768661454319954, -0.128167524933815, -0.022634444758296013, 0.04239867627620697, 0.2964293956756592, 0.04508870840072632, -0.3040156960487366, -0.09466709941625595, -0.00798326637595892, -0.07916539907455444, -0.011935669928789139, 0.04129181429743767, 0.09775243699550629, -0.07065741717815399, 0.0644608736038208, -0.050035275518894196, 0.09036726504564285, -0.0556558258831501, 0.03821232169866562, 0.010643146932125092, 0.0887405276298523, 0.004079063888639212, 0.04236188158392906, -0.31920844316482544, 0.28702297806739807, 0.01609787717461586, 0.08674462884664536, -0.05775201693177223, -0.007856632582843304, 0.02533838339149952, -0.00011264794738963246, 0.08019346743822098, -0.013339872471988201, -0.10005201399326324, -0.1904822736978531, -0.06657741963863373, 0.023514196276664734, 0.15078620612621307, 0.020766502246260643, 0.11420189589262009, -0.016603823751211166, -0.005675575230270624, 0.0643385797739029, -0.098627470433712, -0.08757264912128448, -0.09945240616798401, -0.0020922734402120113, 0.08492617309093475, 0.0024354388006031513, -0.05421360209584236, -0.10718604177236557, -0.09621249884366989, 0.1336240917444229, -0.05724387615919113, -0.025762103497982025, -0.12309523671865463, 0.060951877385377884, 0.11144479364156723, -0.07968232780694962, 0.035693880170583725, 0.024579357355833054, 0.07515580207109451, 0.008672136813402176, -0.06188398599624634, 0.1016794741153717, -0.062156833708286285, -0.1671169251203537, -0.015643011778593063, 0.15370674431324005, 0.04166291654109955, 0.07177387177944183, -0.01118231937289238, 0.045670513063669205, -0.02538614720106125, -0.08405565470457077, 0.06685008853673935, 0.03712601959705353, 0.009695258922874928, 0.033905331045389175, -0.0508209690451622, -0.006084883119910955, -0.08905985206365585, -0.01979869417846203, 0.19902046024799347, 0.24063941836357117, -0.08782996237277985, 0.08143994957208633, 0.05592905357480049, -0.059142500162124634, -0.18849115073680878, 0.02393614873290062, 0.07568515837192535, 0.01334795355796814, 0.006172007415443659, -0.1896609365940094, 0.06192873790860176, 0.05266301706433296, -0.0019535450264811516, 0.09255209565162659, -0.3096010386943817, -0.14692112803459167, 0.13538150489330292, 0.11936844140291214, 0.08808663487434387, -0.1540398746728897, -0.042587146162986755, -0.01579287089407444, -0.08091090619564056, 0.08645989000797272, -0.05225299671292305, 0.14789102971553802, -0.024331260472536087, 0.11115212738513947, 0.022486714646220207, -0.05485660210251808, 0.10820329189300537, 0.023874765262007713, 0.060327500104904175, -0.03486957773566246, 0.013675462454557419, 0.02350359596312046, -0.04107533395290375, 0.05026795715093613, -0.06852661818265915, 0.025901617482304573, -0.08648708462715149, -0.038816940039396286, -0.10092874616384506, 0.03564293310046196, -0.002399266231805086, -0.03645074740052223, -0.023438835516572, 0.0022985029499977827, 0.06490951031446457, -0.010282840579748154, 0.11905116587877274, -0.05929241701960564, 0.13665509223937988, 0.12722072005271912, 0.10956835746765137, -0.0854843258857727, -0.07048140466213226, 0.007292140740901232, -0.019521325826644897, 0.05694209039211273, -0.11681699007749557, 0.038316238671541214, 0.1389397829771042, 0.05756181851029396, 0.13117806613445282, 0.07919564843177795, -0.04723064601421356, 0.01806841418147087, 0.04907810688018799, -0.1372091919183731, -0.13456778228282928, 0.0028575314208865166, -0.01789185404777527, -0.08837787806987762, 0.047175854444503784, 0.11319490522146225, -0.061706919223070145, -0.006623178254812956, -0.020605353638529778, 0.012411581352353096, -0.06265860050916672, 0.22070959210395813, 0.06977777928113937, 0.05326329544186592, -0.11997532099485397, 0.0680033415555954, 0.028348412364721298, -0.14960534870624542, 0.06463149189949036, 0.10119213163852692, -0.07109244912862778, -0.032020214945077896, 0.020493656396865845, 0.135512575507164, -0.03530973196029663, -0.04977785050868988, -0.13256579637527466, -0.13799384236335754, 0.10857351869344711, 0.1841304749250412, 0.07004819065332413, 0.01332462951540947, -0.07462328672409058, 0.017554106190800667, -0.13528601825237274, 0.08110768347978592, 0.05538859963417053, 0.05311650037765503, -0.11915375292301178, 0.1700955331325531, 0.013484620489180088, 0.0369705967605114, -0.02217935584485531, -0.010501711629331112, -0.11562540382146835, 0.04203863814473152, -0.11184146255254745, -0.009252948686480522, -0.0465397872030735, 0.008476722985506058, 0.006945252884179354, -0.06742691993713379, -0.05558391660451889, 0.03544331341981888, -0.12347590923309326, -0.025303760543465614, -0.0027261145878583193, 0.03462601453065872, -0.1307975947856903, -0.025702159851789474, 0.01445313822478056, -0.08096346259117126, 0.07112986594438553, 0.08353161066770554, -0.0469617024064064, 0.06652441620826721, -0.11726967245340347, -0.02472607232630253, 0.07321794331073761, -0.007908511906862259, 0.04985443875193596, -0.12303290516138077, -0.008219793438911438, 0.011179790832102299, 0.062129516154527664, 0.035393860191106796, 0.1170632392168045, -0.1263328343629837, 0.015301820822060108, -0.042931780219078064, -0.07042136788368225, -0.06940273195505142, 0.05465198680758476, 0.08199115842580795, 0.03790983930230141, 0.16623257100582123, -0.10633440315723419, 0.04447364807128906, -0.18491360545158386, -0.003964684903621674, -0.026852088049054146, -0.11112771928310394, -0.06415031105279922, -0.033455170691013336, 0.09486211091279984, -0.05223032459616661, 0.12737929821014404, 0.0005647166981361806, 0.04567629098892212, 0.03152827173471451, -0.08106624335050583, -0.03296225517988205, 0.03473353758454323, 0.23298174142837524, 0.03680821508169174, -0.04535820707678795, 0.0692354068160057, 0.037785131484270096, 0.0937834158539772, 0.1871572583913803, 0.18901927769184113, 0.16866496205329895, 0.01733933575451374, 0.10836748033761978, 0.03908238932490349, -0.060015417635440826, -0.14962352812290192, 0.08018597960472107, -0.04674888402223587, 0.12211570888757706, -0.028417354449629784, 0.2152394950389862, 0.101061150431633, -0.15515708923339844, 0.08636238425970078, -0.026443863287568092, -0.09837283939123154, -0.1327931135892868, -0.04630192741751671, -0.08576054871082306, -0.1622251570224762, 0.014849571511149406, -0.1126793920993805, 0.06732624024152756, 0.05328354984521866, 0.03340446203947067, 0.021202722564339638, 0.16011245548725128, 0.009900867007672787, 0.011366378515958786, 0.09989655762910843, -0.007636502850800753, -0.043655093759298325, -0.06420166045427322, -0.06936538219451904, 0.036472074687480927, -0.037515223026275635, 0.042170554399490356, -0.020697863772511482, -0.0950121060013771, 0.03621389716863632, -0.047707974910736084, -0.09513572603464127, 0.019388195127248764, 0.025822069495916367, 0.08824752271175385, 0.07300026714801788, 0.032070938497781754, -0.048696164041757584, -0.01746630296111107, 0.2187063843011856, -0.09089379757642746, -0.10040810704231262, -0.10016993433237076, 0.29647743701934814, 0.05295487120747566, -0.00025530735729262233, 0.0020133014768362045, -0.06314679980278015, -0.001717928797006607, 0.23547708988189697, 0.1683039665222168, -0.033273033797740936, 0.012650715187191963, -0.022074967622756958, 0.0013746165204793215, -0.01053546741604805, 0.08773057907819748, 0.14112775027751923, 0.08781053870916367, -0.06753474473953247, -0.054361492395401, -0.052672337740659714, -0.03888959810137749, -0.06808920204639435, 0.08192698657512665, 0.030339185148477554, -0.013667445629835129, -0.056253887712955475, 0.0645681619644165, -0.08506302535533905, -0.09998096525669098, 0.029609765857458115, -0.20909033715724945, -0.13760259747505188, -0.015154222026467323, 0.06253795325756073, 0.025102658197283745, 0.04849417507648468, -0.008875468745827675, -0.009090682491660118, 0.06341114640235901, -0.0035881593357771635, -0.08599485456943512, -0.0561843141913414, 0.08122049272060394, -0.13164019584655762, 0.12408551573753357, -0.03945187106728554, 0.060630664229393005, 0.11237750947475433, 0.09358163923025131, -0.05921739339828491, 0.08383864909410477, 0.03499815613031387, -0.10643671452999115, 0.03181812912225723, 0.18016885221004486, -0.037535328418016434, 0.07712863385677338, 0.033476945012807846, -0.1267378330230713, 0.023615805432200432, -0.08290984481573105, -0.05831145495176315, -0.03569447994232178, -0.048308830708265305, -0.04590396210551262, 0.11796541512012482, 0.19370447099208832, -0.03787892311811447, 0.0062349336221814156, -0.06730811297893524, 0.010516203008592129, 0.041215479373931885, 0.02570345625281334, -0.07392922788858414, -0.26404592394828796, 0.004147571511566639, 0.04258657619357109, -0.015183608047664165, -0.2597670555114746, -0.09692978858947754, 0.015737971290946007, -0.0570504330098629, -0.07527502626180649, 0.10609984397888184, 0.07413669675588608, 0.04814750328660011, -0.05022377148270607, -0.10336172580718994, -0.014079662039875984, 0.18967045843601227, -0.17552343010902405, -0.05924071744084358 ]
null
null
transformers
Model to summarize the meeting transcripts.
{}
text2text-generation
ankitkhowal/minutes-of-meeting
[ "transformers", "pytorch", "bart", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #bart #text2text-generation #autotrain_compatible #endpoints_compatible #region-us
Model to summarize the meeting transcripts.
[]
[ "TAGS\n#transformers #pytorch #bart #text2text-generation #autotrain_compatible #endpoints_compatible #region-us \n" ]
[ 38 ]
[ "passage: TAGS\n#transformers #pytorch #bart #text2text-generation #autotrain_compatible #endpoints_compatible #region-us \n" ]
[ -0.0318886935710907, 0.0096189696341753, -0.007606509141623974, 0.001847309060394764, 0.14772942662239075, 0.02160252071917057, 0.1334671527147293, 0.12192132323980331, 0.01626305654644966, -0.028771573677659035, 0.14323928952217102, 0.1992919147014618, -0.024837283417582512, 0.16441908478736877, -0.08063437789678574, -0.2598302364349365, 0.05283436179161072, 0.07620055228471756, 0.042803842574357986, 0.12526075541973114, 0.08328705281019211, -0.0723603218793869, 0.0735759362578392, -0.032824575901031494, -0.1756834238767624, 0.0490216426551342, 0.03857412934303284, -0.11679597198963165, 0.10073336213827133, 0.044240228831768036, 0.14631077647209167, 0.03982788696885109, -0.06636208295822144, -0.1283167600631714, 0.034403931349515915, -0.012848195619881153, -0.06484833359718323, 0.0399547815322876, 0.0953272208571434, -0.10738255828619003, 0.0691714733839035, 0.07824554294347763, -0.0009729358134791255, 0.051042620092630386, -0.13444896042346954, -0.04049830511212349, -0.027359316125512123, 0.032211143523454666, 0.06613613665103912, 0.08172227442264557, -0.002032114891335368, 0.12712892889976501, -0.09982932358980179, 0.129965141415596, 0.14824458956718445, -0.30388808250427246, -0.012859301641583443, 0.046737879514694214, 0.08478476107120514, 0.05252804234623909, -0.024114781990647316, 0.03457428514957428, 0.02039201185107231, 0.030345473438501358, -0.011317359283566475, -0.08197411149740219, -0.12215276807546616, 0.02166357822716236, -0.0591701939702034, -0.05171586200594902, 0.2085941880941391, -0.08335429430007935, 0.052767593413591385, -0.035482101142406464, -0.09834597259759903, -0.04572887346148491, -0.030292777344584465, 0.012228906154632568, -0.07027875632047653, 0.06717630475759506, -0.024450715631246567, -0.051333602517843246, -0.139779195189476, 0.009453840553760529, -0.19736739993095398, 0.1813373863697052, 0.003591995220631361, 0.05767586827278137, -0.22959688305854797, 0.07853192090988159, 0.032813530415296555, -0.11851274222135544, 0.05080040171742439, -0.09867561608552933, 0.05972042679786682, 0.0018865568563342094, -0.07992928475141525, -0.09396862983703613, 0.07693824172019958, 0.15202535688877106, 0.0570392943918705, 0.03992437571287155, -0.050025515258312225, 0.08682024478912354, 0.005244566593319178, 0.08907615393400192, 0.0664292722940445, -0.08503730595111847, 0.05343325808644295, -0.12424403429031372, 0.024643665179610252, -0.07267257571220398, -0.1592642068862915, -0.049884188920259476, 0.04776405170559883, 0.07991299778223038, 0.05279557406902313, 0.05907239764928818, -0.05020331218838692, -0.017758851870894432, 0.07987207174301147, -0.07385040819644928, 0.012242065742611885, 0.0059492760337889194, 0.024120714515447617, 0.1218082532286644, 0.002459706272929907, 0.013701106421649456, -0.09565173089504242, 0.10911376029253006, -0.04307014122605324, 0.0018043185118585825, -0.05350656807422638, -0.05434543266892433, 0.03374440222978592, -0.09654112905263901, 0.023122891783714294, -0.16352982819080353, -0.16724829375743866, 0.007726968731731176, 0.012249041348695755, -0.003505572210997343, -0.033027712255716324, -0.03621775656938553, -0.005919867195188999, 0.05795317515730858, -0.08099211752414703, -0.01666862703859806, -0.042124539613723755, 0.10648948699235916, -0.0036009550094604492, 0.08183425664901733, -0.16650360822677612, 0.06636875867843628, -0.11494749039411545, -0.03601225093007088, -0.09505820274353027, 0.035676173865795135, 0.0012118915328755975, 0.15507112443447113, 0.018306683748960495, -0.009874354116618633, -0.10775242745876312, 0.05634631961584091, -0.018046220764517784, 0.19111143052577972, -0.10143165290355682, -0.11551348119974136, 0.2726460099220276, -0.08581715822219849, -0.15655820071697235, 0.0745999738574028, 0.0038844537921249866, 0.03687083348631859, 0.10288292169570923, 0.17752613127231598, 0.06705204397439957, -0.009362038224935532, 0.09385570883750916, 0.10423172265291214, -0.08946622908115387, -0.12407493591308594, -0.005046447739005089, -0.010976677760481834, -0.10818316042423248, 0.06363586336374283, 0.10392338782548904, 0.08065568655729294, -0.05380159243941307, -0.03353259712457657, -0.03641233593225479, -0.013897283934056759, 0.10549046844244003, 0.026039913296699524, 0.1269293576478958, -0.0887337177991867, -0.012849004939198494, -0.014335026033222675, -0.01335445512086153, 0.003660373855382204, 0.047355301678180695, -0.0394231453537941, 0.10426464676856995, -0.0038209620397537947, 0.03976859524846077, -0.20150139927864075, -0.06227380782365799, -0.014103719033300877, 0.13805876672267914, 0.0026925376150757074, 0.11038415879011154, 0.07020298391580582, -0.037029724568128586, 0.0012128711678087711, -0.02271571010351181, 0.1580611914396286, -0.01027847919613123, -0.07842051237821579, -0.048077233135700226, 0.057122793048620224, -0.07903748750686646, -0.004407473839819431, -0.04450428858399391, 0.023696700111031532, 0.03759979456663132, 0.13724929094314575, 0.016397079452872276, 0.04251628741621971, -0.035238903015851974, 0.039600640535354614, -0.08605601638555527, 0.029575467109680176, 0.10157769173383713, 0.014959105290472507, -0.07233147323131561, 0.2013004571199417, -0.1762475073337555, 0.2476811707019806, 0.212754026055336, -0.27035385370254517, 0.024685995653271675, -0.04099436104297638, -0.01907818578183651, 0.011665256693959236, 0.04634355753660202, -0.016739649698138237, 0.04964808002114296, 0.017727717757225037, 0.19336023926734924, -0.03373531624674797, -0.04479131102561951, -0.01514318399131298, -0.0669543519616127, -0.010299740359187126, 0.053888946771621704, 0.030631281435489655, -0.13001108169555664, 0.18424159288406372, 0.2280101478099823, 0.025706658139824867, 0.18376773595809937, 0.022436637431383133, -0.0006371058989316225, 0.07107949256896973, -0.019524546340107918, -0.0311858169734478, -0.06731158494949341, -0.18211530148983002, -0.03696368262171745, 0.0802861750125885, 0.012168895453214645, 0.09167364984750748, -0.11742155998945236, -0.02911762334406376, -0.006805825047194958, 0.01033635064959526, -0.0067903995513916016, 0.09016279131174088, 0.07038231194019318, 0.10586395859718323, -0.02393309772014618, -0.022413793951272964, 0.11036060005426407, 0.012995772063732147, -0.08900920301675797, 0.15894490480422974, -0.1406673640012741, -0.35423746705055237, -0.18273937702178955, -0.16229088604450226, -0.02076569013297558, 0.0609489381313324, 0.13703471422195435, -0.07584594935178757, -0.0263918898999691, 0.026742594316601753, 0.02490844950079918, -0.04625730961561203, 0.02991250529885292, -0.05131559073925018, 0.052110932767391205, -0.05489020794630051, -0.07748328149318695, -0.0574861541390419, -0.010487782768905163, -0.02249021828174591, 0.1595280021429062, -0.12328781187534332, 0.08628269284963608, 0.14141078293323517, 0.007060518022626638, 0.06670382618904114, -0.019857754930853844, 0.16306842863559723, -0.07192041724920273, -0.01979277841746807, 0.20871739089488983, -0.06324824690818787, 0.08185254782438278, 0.13290759921073914, 0.0014225946506485343, -0.0659416913986206, 0.036012422293424606, -0.06399042159318924, -0.09558235108852386, -0.2123410850763321, -0.11684432625770569, -0.1203472763299942, 0.08290492743253708, 0.05139313265681267, 0.05275741592049599, 0.13240981101989746, 0.08159936964511871, -0.01733388565480709, 0.026433371007442474, 0.004888464231044054, 0.09375131875276566, 0.19021064043045044, -0.019578177481889725, 0.1585603803396225, -0.07485145330429077, -0.12854962050914764, 0.09895215928554535, 0.041452351957559586, 0.10840454697608948, 0.08608803153038025, 0.03231623023748398, 0.014189885929226875, 0.09416954219341278, 0.154267817735672, 0.14471131563186646, 0.04096266254782677, -0.01844504289329052, -0.014848168008029461, -0.019450439140200615, -0.07458235323429108, 0.03915075212717056, 0.035822778940200806, -0.1387520581483841, -0.05972644314169884, -0.12952616810798645, 0.07954489439725876, 0.08016408234834671, 0.05154338851571083, -0.21658846735954285, 0.010716202668845654, 0.09096989780664444, -0.032574914395809174, -0.10637634992599487, 0.05862889811396599, -0.020082173869013786, -0.14357052743434906, 0.08368008583784103, -0.041197724640369415, 0.13136643171310425, -0.016771353781223297, 0.09348223358392715, -0.07598451524972916, -0.11635787039995193, 0.04214917868375778, 0.1051286980509758, -0.3333568274974823, 0.19576585292816162, -0.005010900087654591, -0.049015872180461884, -0.09523550420999527, -0.010616874322295189, 0.01414541807025671, 0.1286686807870865, 0.06345471739768982, -0.005398744251579046, -0.07144735753536224, -0.12392700463533401, -0.01792708784341812, 0.022568373009562492, 0.13874293863773346, -0.025139471516013145, 0.005983670707792044, -0.03845648840069771, -0.028553906828165054, -0.035857707262039185, -0.016320165246725082, -0.00006297017534961924, -0.17832933366298676, 0.07639492303133011, 0.05771424248814583, 0.06800124049186707, 0.0010011186823248863, -0.021595092490315437, -0.03323802351951599, 0.2092742919921875, -0.058046482503414154, -0.07962445914745331, -0.11384638398885727, -0.0835738554596901, 0.04440158233046532, -0.09057649224996567, 0.050487905740737915, -0.08124570548534393, 0.033525500446558, -0.08009763807058334, -0.21084435284137726, 0.11020998656749725, -0.10891846567392349, -0.03099050186574459, -0.06553018093109131, 0.1588260680437088, -0.08069963753223419, 0.012498589232563972, 0.03211408853530884, 0.008073501288890839, -0.12820586562156677, -0.0717388316988945, -0.03555352985858917, -0.005153812002390623, 0.040916040539741516, 0.009281206876039505, -0.06748723983764648, -0.048664286732673645, -0.019427035003900528, -0.015754178166389465, 0.28569287061691284, 0.1475352942943573, -0.0609462708234787, 0.18389250338077545, 0.13568007946014404, -0.0724790170788765, -0.31663528084754944, -0.12009056657552719, -0.09762241691350937, -0.018755966797471046, -0.02749086543917656, -0.1484328955411911, 0.09650276601314545, -0.027682725340127945, -0.03106766566634178, 0.11427687108516693, -0.2001187950372696, -0.09288447350263596, 0.16899827122688293, -0.01052873209118843, 0.3756139874458313, -0.12983417510986328, -0.11189896613359451, -0.08148515969514847, -0.1828407496213913, 0.13390463590621948, -0.048098571598529816, 0.08482028543949127, -0.03219360485672951, 0.1280236542224884, 0.04634714499115944, -0.05130390822887421, 0.07594503462314606, -0.0059575652703642845, 0.0011326826643198729, -0.12049131095409393, -0.037878088653087616, 0.045219022780656815, -0.019460856914520264, 0.02688322775065899, -0.06330608576536179, 0.017958227545022964, -0.15472637116909027, -0.035788290202617645, -0.09085410833358765, 0.06023867800831795, 0.02375026047229767, -0.034585386514663696, 0.030826816335320473, -0.07676052302122116, -0.01754079759120941, 0.01558644324541092, 0.21057024598121643, -0.045633990317583084, 0.17369864881038666, 0.1272992342710495, 0.10232851654291153, -0.15472714602947235, 0.053716737776994705, -0.06897317618131638, -0.07662619650363922, 0.05559123307466507, -0.06246177479624748, 0.06266094744205475, 0.1154441237449646, -0.051855891942977905, 0.04971490427851677, 0.09952472150325775, 0.02619350329041481, -0.0035122428089380264, 0.16450707614421844, -0.2513583302497864, 0.056844647973775864, -0.06753088533878326, 0.03402099013328552, 0.061399027705192566, 0.05922277644276619, 0.1611248403787613, 0.05132662132382393, -0.05297247692942619, -0.02526140585541725, -0.00987333245575428, -0.041071340441703796, 0.06454507261514664, 0.03129083290696144, 0.028051014989614487, -0.13582447171211243, 0.03623811900615692, 0.014572393149137497, -0.16184279322624207, -0.008318443782627583, 0.18180175125598907, -0.13040250539779663, -0.11827728897333145, -0.0003556807932909578, 0.13719442486763, -0.1603710651397705, -0.04452987387776375, -0.07251504808664322, -0.10844884812831879, 0.07334499061107635, 0.18042348325252533, 0.08402121067047119, 0.08780218660831451, -0.03176552429795265, -0.019938340410590172, -0.007511130999773741, -0.012712632305920124, 0.04139583930373192, 0.05297689884901047, -0.062334027141332626, 0.07110132277011871, -0.02785586751997471, 0.13658872246742249, -0.09310124069452286, -0.05491911247372627, -0.14652810990810394, 0.036501798778772354, -0.14568524062633514, -0.05431540310382843, -0.09395479410886765, -0.05915261059999466, -0.0031735983211547136, -0.04335375502705574, -0.036842718720436096, -0.05164634436368942, -0.11949747055768967, 0.01925506442785263, -0.05278397724032402, 0.007503626402467489, -0.09032180160284042, -0.013594781048595905, 0.09462499618530273, -0.039998870342969894, 0.08794531226158142, 0.15195296704769135, -0.0913335531949997, 0.09685277938842773, -0.14502272009849548, -0.11198843270540237, 0.09822298586368561, 0.024706006050109863, 0.05699537321925163, 0.10741657018661499, 0.013904707506299019, 0.10026929527521133, 0.05376213416457176, 0.05014893040060997, 0.0676761269569397, -0.12273658812046051, 0.03846529871225357, -0.027500825002789497, -0.17917148768901825, -0.05761365592479706, -0.03858879581093788, 0.07174218446016312, 0.021226610988378525, 0.13927356898784637, -0.04824436455965042, 0.11497675627470016, -0.046819183975458145, 0.021025141701102257, -0.005755160469561815, -0.1860162913799286, -0.06618314236402512, -0.09151892364025116, 0.013906091451644897, 0.01864214614033699, 0.2196902483701706, 0.011389349587261677, 0.05455735698342323, 0.03266080841422081, 0.06021501496434212, 0.01324552483856678, 0.002735121175646782, 0.19415953755378723, 0.09189482778310776, -0.05106740444898605, -0.10222998261451721, 0.07806974649429321, 0.015882208943367004, -0.01169833354651928, 0.13383661210536957, 0.056038159877061844, -0.0000010217938779533142, 0.11240266263484955, -0.0205028485506773, 0.06780295819044113, -0.13827838003635406, -0.22069905698299408, -0.03221917152404785, 0.04884885624051094, -0.011768092401325703, 0.11001694947481155, 0.1406608521938324, -0.029341092333197594, 0.027563219889998436, -0.030912354588508606, -0.044107139110565186, -0.17532260715961456, -0.11427092552185059, -0.09254711121320724, -0.1073429211974144, 0.004966165870428085, -0.07934264838695526, 0.053909074515104294, 0.05231036990880966, 0.03997195512056351, -0.06067992001771927, 0.09453555941581726, 0.05611402541399002, -0.08242598921060562, 0.05563623085618019, -0.039030808955430984, 0.057145651429891586, 0.0187069084495306, -0.01721620187163353, -0.13299258053302765, 0.006979918107390404, -0.02085346356034279, 0.06046636775135994, -0.059781454503536224, -0.0046447101049125195, -0.1300465315580368, -0.11646021157503128, -0.040615372359752655, 0.05290810763835907, -0.010315419174730778, 0.1543513685464859, 0.010002214461565018, 0.006278361659497023, 0.02952582575380802, 0.21361204981803894, -0.08304668962955475, -0.0997757539153099, -0.027381369844079018, 0.1809464693069458, 0.06438671052455902, 0.09963551163673401, -0.03316444158554077, 0.008969796821475029, -0.09206332266330719, 0.34561264514923096, 0.2768198251724243, -0.05752769485116005, 0.03757641464471817, 0.027008935809135437, 0.04348360002040863, 0.12249194085597992, 0.13782788813114166, 0.08802539855241776, 0.2891320586204529, -0.06964948028326035, -0.02117864601314068, -0.014709130860865116, -0.022582873702049255, -0.12718559801578522, 0.0898301973938942, 0.0016211067559197545, -0.06520198285579681, -0.04728702828288078, 0.09117545187473297, -0.19861075282096863, 0.15790048241615295, -0.055438071489334106, -0.19179017841815948, -0.04403429105877876, 0.006371563300490379, 0.1934935450553894, -0.006737882271409035, 0.08999232947826385, -0.0039511388167738914, -0.07897204160690308, 0.06476317346096039, 0.0007307027699425817, -0.21401961147785187, 0.006611082702875137, 0.05997241288423538, -0.15226763486862183, -0.009286170825362206, -0.02284272201359272, 0.0413786917924881, 0.0732390508055687, 0.07314230501651764, -0.038510482758283615, 0.04344063252210617, -0.002147699473425746, -0.03637602925300598, 0.019572056829929352, 0.05892649292945862, 0.0019930254202336073, -0.09937852621078491, 0.06121731922030449, -0.1571817398071289, 0.051574014127254486, -0.013654936105012894, -0.015761863440275192, -0.003717645537108183, 0.01800469495356083, -0.046465542167425156, 0.06301630288362503, 0.06507781893014908, -0.007565658539533615, -0.017934875562787056, -0.041166454553604126, -0.026228422299027443, 0.003031977917999029, -0.08298347890377045, -0.11668974161148071, -0.1263510286808014, -0.11484553664922714, 0.14168350398540497, 0.008285743184387684, -0.22244790196418762, 0.00014119630213826895, -0.11391746252775192, 0.04563592001795769, -0.1792900711297989, 0.10082010924816132, 0.0644376203417778, -0.0009037127019837499, 0.005460427142679691, -0.07608924806118011, 0.044657569378614426, 0.08494101464748383, -0.11684994399547577, -0.10534628480672836 ]
null
null
transformers
# Open Domain Question Answering A core goal in artificial intelligence is to build systems that can read the web, and then answer complex questions about any topic. These question-answering (QA) systems could have a big impact on the way that we access information. Furthermore, open-domain question answering is a benchmark task in the development of Artificial Intelligence, since understanding text and being able to answer questions about it is something that we generally associate with intelligence. # The Natural Questions Dataset To help spur development in open-domain question answering, we have created the Natural Questions (NQ) corpus, along with a challenge website based on this data. The NQ corpus contains questions from real users, and it requires QA systems to read and comprehend an entire Wikipedia article that may or may not contain the answer to the question. The inclusion of real user questions, and the requirement that solutions should read an entire page to find the answer, cause NQ to be a more realistic and challenging task than prior QA datasets.
{"tags": ["small answer"], "datasets": ["natural_questions"]}
question-answering
ankur310794/bert-large-uncased-nq-small-answer
[ "transformers", "tf", "bert", "question-answering", "small answer", "dataset:natural_questions", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #tf #bert #question-answering #small answer #dataset-natural_questions #endpoints_compatible #region-us
# Open Domain Question Answering A core goal in artificial intelligence is to build systems that can read the web, and then answer complex questions about any topic. These question-answering (QA) systems could have a big impact on the way that we access information. Furthermore, open-domain question answering is a benchmark task in the development of Artificial Intelligence, since understanding text and being able to answer questions about it is something that we generally associate with intelligence. # The Natural Questions Dataset To help spur development in open-domain question answering, we have created the Natural Questions (NQ) corpus, along with a challenge website based on this data. The NQ corpus contains questions from real users, and it requires QA systems to read and comprehend an entire Wikipedia article that may or may not contain the answer to the question. The inclusion of real user questions, and the requirement that solutions should read an entire page to find the answer, cause NQ to be a more realistic and challenging task than prior QA datasets.
[ "# Open Domain Question Answering\nA core goal in artificial intelligence is to build systems that can read the web, and then answer complex questions about any topic. These question-answering (QA) systems could have a big impact on the way that we access information. Furthermore, open-domain question answering is a benchmark task in the development of Artificial Intelligence, since understanding text and being able to answer questions about it is something that we generally associate with intelligence.", "# The Natural Questions Dataset\nTo help spur development in open-domain question answering, we have created the Natural Questions (NQ) corpus, along with a challenge website based on this data. The NQ corpus contains questions from real users, and it requires QA systems to read and comprehend an entire Wikipedia article that may or may not contain the answer to the question. The inclusion of real user questions, and the requirement that solutions should read an entire page to find the answer, cause NQ to be a more realistic and challenging task than prior QA datasets." ]
[ "TAGS\n#transformers #tf #bert #question-answering #small answer #dataset-natural_questions #endpoints_compatible #region-us \n", "# Open Domain Question Answering\nA core goal in artificial intelligence is to build systems that can read the web, and then answer complex questions about any topic. These question-answering (QA) systems could have a big impact on the way that we access information. Furthermore, open-domain question answering is a benchmark task in the development of Artificial Intelligence, since understanding text and being able to answer questions about it is something that we generally associate with intelligence.", "# The Natural Questions Dataset\nTo help spur development in open-domain question answering, we have created the Natural Questions (NQ) corpus, along with a challenge website based on this data. The NQ corpus contains questions from real users, and it requires QA systems to read and comprehend an entire Wikipedia article that may or may not contain the answer to the question. The inclusion of real user questions, and the requirement that solutions should read an entire page to find the answer, cause NQ to be a more realistic and challenging task than prior QA datasets." ]
[ 40, 98, 125 ]
[ "passage: TAGS\n#transformers #tf #bert #question-answering #small answer #dataset-natural_questions #endpoints_compatible #region-us \n# Open Domain Question Answering\nA core goal in artificial intelligence is to build systems that can read the web, and then answer complex questions about any topic. These question-answering (QA) systems could have a big impact on the way that we access information. Furthermore, open-domain question answering is a benchmark task in the development of Artificial Intelligence, since understanding text and being able to answer questions about it is something that we generally associate with intelligence.# The Natural Questions Dataset\nTo help spur development in open-domain question answering, we have created the Natural Questions (NQ) corpus, along with a challenge website based on this data. The NQ corpus contains questions from real users, and it requires QA systems to read and comprehend an entire Wikipedia article that may or may not contain the answer to the question. The inclusion of real user questions, and the requirement that solutions should read an entire page to find the answer, cause NQ to be a more realistic and challenging task than prior QA datasets." ]
[ 0.06341800838708878, 0.09114639461040497, -0.0007522614905610681, 0.01632395014166832, 0.07480042427778244, 0.018070057034492493, 0.025344377383589745, 0.10081589221954346, 0.10633332282304764, 0.054983291774988174, 0.08856486529111862, -0.0036973801907151937, -0.010275817476212978, -0.013579466380178928, 0.07652714848518372, -0.1060975044965744, 0.01911846362054348, 0.013699431903660297, 0.02535111829638481, 0.09403588622808456, 0.06512893736362457, -0.06691844761371613, 0.07031898200511932, 0.017912786453962326, -0.024243095889687538, 0.021231506019830704, -0.01916070654988289, -0.041343171149492264, 0.12438856065273285, 0.11021144688129425, -0.0032038132194429636, 0.006590098142623901, -0.015557900071144104, -0.17054933309555054, 0.017731625586748123, 0.02705175057053566, 0.014974547550082207, 0.05010223388671875, -0.06848205626010895, 0.11011967808008194, 0.024329153820872307, -0.03745395317673683, 0.04838259145617485, 0.12323469668626785, -0.1244530975818634, -0.1471565067768097, 0.015086771920323372, -0.0023155936505645514, -0.031213460490107536, 0.12514205276966095, -0.06308646500110626, 0.04606901481747627, -0.0617893822491169, 0.08343689143657684, 0.07403253763914108, -0.12416643649339676, -0.03809625282883644, 0.10503699630498886, -0.0033005340956151485, 0.12775829434394836, 0.04441005364060402, 0.0398310124874115, 0.0543731190264225, -0.018814507871866226, 0.025982197374105453, -0.03423565998673439, -0.14029046893119812, -0.011992930434644222, -0.06916721165180206, -0.05904456600546837, 0.22742655873298645, 0.0667695701122284, -0.04554327204823494, -0.07123135030269623, -0.021005691960453987, 0.14612236618995667, 0.03392234444618225, -0.13567283749580383, -0.056734926998615265, 0.01922348327934742, -0.05130444094538689, -0.1781083047389984, -0.02921244688332081, -0.003047587350010872, -0.03854406252503395, 0.07594551146030426, 0.04867127165198326, 0.07741034775972366, -0.13324323296546936, 0.03927529975771904, -0.08014259487390518, -0.03501681238412857, -0.023016855120658875, -0.09910877048969269, -0.09514009952545166, 0.06463392078876495, -0.07528499513864517, -0.001621621078811586, 0.022969763725996017, 0.05180264264345169, 0.034774526953697205, 0.013754025101661682, -0.05626910179853439, -0.007178288884460926, 0.08234327286481857, 0.12909537553787231, -0.0970936045050621, -0.05001576617360115, 0.048959486186504364, -0.1081080436706543, -0.012625766918063164, -0.08137036859989166, -0.04627138748764992, 0.0182510893791914, -0.02017815411090851, 0.06265603750944138, 0.1425093114376068, 0.08494026213884354, 0.042435258626937866, -0.05208246782422066, -0.008352993056178093, 0.018975766375660896, -0.10667909681797028, 0.02411315217614174, -0.07495764642953873, -0.04779813438653946, 0.027929043397307396, 0.010678072459995747, -0.09573758393526077, -0.09808764606714249, -0.01472460012882948, -0.15930059552192688, -0.030121153220534325, -0.04750847443938255, 0.06502292305231094, -0.10366877168416977, 0.049072571098804474, -0.09282001107931137, -0.06874793022871017, -0.007155594415962696, 0.053193915635347366, -0.01540741790086031, -0.10790412127971649, 0.05995108187198639, 0.05443796142935753, -0.09203633666038513, -0.027660423889756203, -0.06229327619075775, -0.01407638005912304, 0.0662299171090126, 0.023605285212397575, 0.05853985995054245, -0.122299924492836, 0.030676456168293953, -0.06433887034654617, -0.02013147994875908, 0.08348803222179413, 0.0629749521613121, -0.0032069331500679255, -0.0418027900159359, -0.06320315599441528, -0.06468603014945984, 0.004579247906804085, 0.00724303163588047, -0.005282019264996052, 0.07876370847225189, 0.06880128383636475, 0.0620611310005188, 0.0654483437538147, 0.03403080254793167, -0.16955867409706116, 0.15339700877666473, -0.02946937084197998, 0.17175926268100739, 0.1081870049238205, 0.06906116753816605, 0.1081785187125206, 0.05543968081474304, 0.008564097806811333, 0.002603171393275261, -0.017612166702747345, 0.09864044934511185, -0.015504583716392517, 0.06129305437207222, -0.1265827715396881, 0.07570414245128632, 0.012196908704936504, -0.030246930196881294, -0.045481834560632706, -0.1138252392411232, -0.06531807780265808, -0.06370873749256134, 0.026367856189608574, 0.022144777700304985, -0.025633513927459717, -0.016668351367115974, -0.032654959708452225, -0.20412473380565643, -0.03051302768290043, -0.007904086261987686, 0.014814844354987144, -0.16198872029781342, -0.0007824655622243881, -0.10512281209230423, 0.09047164022922516, -0.15292182564735413, -0.20706920325756073, 0.04002811014652252, -0.052210692316293716, 0.15301749110221863, 0.22718356549739838, -0.0280240960419178, -0.09377897530794144, -0.06642141938209534, 0.03399002552032471, -0.03188173845410347, -0.029109926894307137, 0.0032736421562731266, -0.10173917561769485, 0.051990263164043427, -0.06986315548419952, 0.01309414766728878, -0.012513563968241215, -0.015315690077841282, -0.07975344359874725, -0.05610555410385132, -0.022800004109740257, -0.004600695800036192, 0.018266750499606133, 0.0008821596275083721, 0.021138334646821022, 0.053124889731407166, 0.04689878970384598, -0.04323554039001465, -0.14732563495635986, -0.01131210383027792, -0.07358647882938385, 0.05980569124221802, 0.024261360988020897, -0.11615593731403351, -0.021093692630529404, 0.11707626283168793, -0.08110910654067993, -0.027034781873226166, -0.018083743751049042, -0.07376252859830856, 0.22168107330799103, -0.026855379343032837, -0.06629232317209244, -0.092086561024189, -0.013461564667522907, 0.0491056852042675, -0.01028013601899147, 0.06993585079908371, -0.0025805856566876173, 0.038901153951883316, -0.19565574824810028, -0.03165964037179947, 0.042413562536239624, 0.0880812481045723, 0.09102751314640045, 0.01882331259548664, -0.03693630173802376, -0.007126233074814081, 0.03322022035717964, -0.05283091217279434, 0.10691510140895844, -0.1669435203075409, 0.0339505635201931, 0.06530095636844635, 0.02903677336871624, 0.015827113762497902, -0.04298245534300804, 0.010680913925170898, 0.050510141998529434, -0.0728418305516243, -0.1050390899181366, -0.011644304729998112, -0.015225717797875404, 0.13381971418857574, 0.06578544527292252, 0.07693221420049667, 0.029295602813363075, -0.04091813042759895, -0.14108707010746002, 0.11171150207519531, 0.006879473105072975, -0.18330518901348114, 0.010531306266784668, -0.05912778899073601, -0.09441162645816803, -0.019215544685721397, 0.08160655200481415, -0.12081390619277954, -0.02468608319759369, -0.048335567116737366, 0.09710239619016647, -0.016748499125242233, -0.08788282424211502, -0.016212547197937965, -0.043626293540000916, -0.006633071228861809, -0.10033688694238663, 0.014907119795680046, -0.03757837414741516, -0.12840141355991364, 0.04928493872284889, -0.06656685471534729, 0.1894904524087906, 0.09057586640119553, -0.0165106114000082, -0.0735883042216301, -0.05381431803107262, 0.34457966685295105, -0.12150441110134125, 0.11413716524839401, 0.16289235651493073, -0.06447617709636688, 0.016531052067875862, 0.10825614631175995, 0.00890120305120945, -0.07671446353197098, 0.10484249889850616, 0.0901840478181839, -0.14180125296115875, -0.265645831823349, -0.07226945459842682, -0.04339880496263504, -0.012923527508974075, -0.005238175857812166, 0.02532937191426754, 0.153061181306839, 0.09806520491838455, -0.0807076096534729, -0.02905431017279625, 0.011489814147353172, 0.043947841972112656, 0.2146802693605423, -0.04915313422679901, 0.10770954936742783, -0.026710081845521927, -0.05257560685276985, 0.046443257480859756, 0.08093252032995224, 0.19397902488708496, 0.003298594383522868, 0.15473808348178864, 0.0386495366692543, 0.1403045952320099, -0.03264951333403587, 0.060470324009656906, -0.03930763155221939, 0.02799270860850811, -0.1151861846446991, -0.01054293755441904, -0.06227875500917435, 0.07095570862293243, 0.09421764314174652, -0.06618908792734146, 0.001743691973388195, -0.026793835684657097, 0.008680110797286034, 0.20130647718906403, -0.0038707826752215624, -0.0007942216470837593, -0.08411359041929245, 0.03522749990224838, 0.04674718528985977, -0.11037465184926987, 0.07029713690280914, 0.08747559785842896, -0.10619989782571793, -0.07421048730611801, 0.009800801984965801, 0.14528203010559082, -0.023784426972270012, 0.07166124880313873, -0.07427439838647842, -0.12537196278572083, 0.04569115489721298, 0.14511528611183167, -0.15308941900730133, 0.07191680371761322, 0.04091108962893486, -0.020888805389404297, -0.12715332210063934, -0.04896939918398857, -0.06125530228018761, -0.03877978399395943, 0.1872231364250183, 0.011207557283341885, 0.02696255035698414, -0.05939608812332153, -0.008102060295641422, 0.16922253370285034, 0.08345561474561691, 0.003742719069123268, 0.04160279035568237, 0.020578911527991295, 0.06887411326169968, 0.04156362637877464, 0.16820472478866577, -0.06357969343662262, -0.1608741581439972, 0.01460010651499033, -0.010747984051704407, 0.07624954730272293, 0.0032958851661533117, 0.07296846807003021, 0.060630083084106445, 0.11716719716787338, -0.013514567166566849, -0.08694121986627579, -0.10494106262922287, -0.03989005461335182, 0.0558294877409935, -0.06278328597545624, -0.04841293767094612, -0.022014275193214417, 0.024096602573990822, 0.015833856537938118, -0.09731081128120422, 0.039794012904167175, -0.08319387584924698, -0.1381213217973709, -0.09799253940582275, -0.017728131264448166, 0.047131869941949844, 0.0764843225479126, 0.012158320285379887, -0.10263658314943314, -0.002202175557613373, -0.15845756232738495, 0.022059010341763496, -0.00015970401000231504, -0.18808862566947937, 0.03818787261843681, -0.06530499458312988, 0.1872493028640747, -0.12465465068817139, 0.02192855440080166, 0.14120694994926453, 0.06361109763383865, -0.04923593997955322, 0.038223352283239365, 0.2783659100532532, -0.05841562896966934, -0.20121388137340546, 0.009053132496774197, -0.0771200880408287, -0.07655353844165802, 0.03313247486948967, -0.13160136342048645, 0.1482831984758377, -0.07463324815034866, 0.0016989297000691295, -0.014375489205121994, -0.08906283974647522, -0.035041384398937225, 0.0803607702255249, 0.0534089133143425, 0.34806138277053833, -0.09054436534643173, 0.0390973761677742, 0.054595451802015305, -0.11469396948814392, 0.1105283796787262, -0.10317523777484894, 0.03882642462849617, 0.012029657140374184, 0.07538513839244843, 0.033663682639598846, -0.04065895453095436, 0.040019690990448, -0.08435636758804321, 0.0013545961119234562, -0.05064032971858978, 0.044895097613334656, 0.07510519027709961, -0.013153339736163616, 0.09659240394830704, 0.13275843858718872, 0.12167598307132721, -0.026492489501833916, -0.06046714633703232, -0.13861677050590515, -0.01166844554245472, -0.07062015682458878, -0.17160305380821228, -0.17519737780094147, 0.04237771034240723, 0.2025996893644333, 0.006346399895846844, 0.04114349186420441, -0.08945837616920471, 0.05809316784143448, 0.10419297218322754, 0.15560220181941986, -0.05495015159249306, -0.052010808140039444, 0.022457318380475044, -0.04076933488249779, 0.09215471148490906, -0.11193783581256866, 0.06313907355070114, 0.15573297441005707, -0.016429828479886055, -0.0030401027761399746, 0.03058544173836708, -0.09746511280536652, 0.03660806268453598, -0.06592576950788498, -0.06950279325246811, -0.22657284140586853, -0.009387733414769173, 0.05363507941365242, -0.11915740370750427, -0.046508051455020905, 0.09365028142929077, -0.035455357283353806, 0.0004345503984950483, 0.009855222888290882, -0.017030205577611923, 0.03320906311273575, 0.002116380026564002, 0.046440210193395615, 0.03920746222138405, -0.06373618543148041, 0.003162533976137638, 0.056805334985256195, -0.0751352533698082, 0.036754779517650604, -0.10515515506267548, -0.09612099826335907, -0.01006371434777975, -0.01564701646566391, -0.029405711218714714, -0.135872945189476, -0.08806749433279037, 0.003954979125410318, -0.13488507270812988, 0.01007175911217928, 0.07668562978506088, -0.039617449045181274, -0.03351031243801117, -0.021168123930692673, 0.02254013903439045, -0.07047118991613388, 0.04343738034367561, -0.12030644714832306, -0.011649935506284237, -0.004243323113769293, -0.18008513748645782, 0.01418233197182417, 0.17857632040977478, -0.06526251882314682, -0.0877906009554863, -0.1205621212720871, 0.03770354390144348, -0.2764579653739929, -0.0534663200378418, -0.022503314539790154, -0.006918135564774275, -0.03994033858180046, -0.06568484008312225, -0.03254348039627075, 0.009491942822933197, -0.031665489077568054, -0.02136358991265297, 0.05703214555978775, 0.01410429272800684, -0.10537083446979523, -0.011832524091005325, 0.06349728256464005, 0.010707725770771503, 0.0950876995921135, -0.06124414876103401, -0.17582011222839355, 0.01492875162512064, -0.03541276231408119, 0.03010820969939232, -0.05388450622558594, 0.09905453771352768, -0.006532001309096813, -0.07989192754030228, -0.010234110057353973, -0.03073679842054844, -0.05106211453676224, 0.011696703732013702, -0.05588389188051224, -0.06218980252742767, 0.07230368256568909, -0.023428820073604584, -0.040521617978811264, -0.027796460315585136, -0.039278652518987656, -0.05352478846907616, 0.012582032941281796, 0.03892992436885834, 0.0029983404092490673, 0.08806533366441727, -0.13163168728351593, -0.004259379114955664, 0.06418471038341522, 0.027963552623987198, -0.035337965935468674, -0.08101272583007812, -0.029685089364647865, -0.060663316398859024, 0.23902709782123566, -0.13157276809215546, 0.08669064939022064, 0.0339483805000782, -0.055621709674596786, -0.003667280310764909, -0.11182300001382828, 0.033410266041755676, -0.0013669291511178017, -0.04446934908628464, 0.04203417897224426, 0.010329047217965126, -0.11178695410490036, 0.06848812103271484, 0.1188947930932045, 0.013067344203591347, 0.25764429569244385, 0.016472643241286278, -0.0017653554677963257, 0.042488180100917816, 0.08573586493730545, -0.01358471903949976, 0.08526555448770523, 0.020241372287273407, 0.04266684502363205, -0.13385999202728271, 0.11642397195100784, -0.023998811841011047, 0.1266849786043167, -0.047362033277750015, -0.011786030605435371, -0.06516183912754059, -0.0025098188780248165, -0.024758441373705864, -0.02637254074215889, 0.00776837021112442, -0.16796743869781494, -0.07079233229160309, -0.055144935846328735, 0.043869346380233765, -0.1317405253648758, 0.14700865745544434, -0.011330286972224712, -0.05523307994008064, 0.01591949723660946, -0.00100768415722996, 0.07251182943582535, 0.07868395745754242, 0.07663434743881226, -0.018815627321600914, 0.1175907552242279, 0.039719358086586, 0.12113599479198456, -0.06642913073301315, -0.014865167438983917, -0.061134323477745056, -0.03075144626200199, -0.060897983610630035, 0.04101261496543884, 0.03718758746981621, 0.23315753042697906, -0.03434361517429352, -0.05203806981444359, 0.010808056220412254, 0.23174569010734558, -0.05393800511956215, -0.004134895745664835, -0.13380464911460876, 0.23247478902339935, -0.031949155032634735, -0.009136458858847618, 0.01007299404591322, -0.010928818956017494, -0.056479256600141525, 0.2764843702316284, 0.153377503156662, -0.06523147225379944, -0.03835689276456833, -0.018352443352341652, 0.02048225700855255, -0.041380904614925385, 0.0910421684384346, 0.06680457293987274, 0.3500213921070099, -0.06226099655032158, 0.11455145478248596, 0.02250072918832302, 0.06319164484739304, 0.034896571189165115, 0.08543100953102112, 0.11150292307138443, -0.01334538497030735, -0.06223262846469879, 0.08032441139221191, -0.23919379711151123, -0.13750824332237244, 0.012025461532175541, -0.016813166439533234, -0.06263618916273117, 0.04407311603426933, -0.09476299583911896, -0.04751411825418472, 0.09338431805372238, -0.023981928825378418, 0.04809824749827385, 0.025586649775505066, -0.008043884299695492, -0.005085566081106663, 0.02984347753226757, 0.0986853763461113, 0.10025573521852493, 0.2548554241657257, 0.0492115244269371, 0.068291574716568, 0.06639135628938675, -0.09155770391225815, -0.08898326754570007, 0.06817011535167694, 0.08833066374063492, -0.05545906722545624, -0.07200963795185089, 0.07336094230413437, 0.0269674863666296, 0.17071396112442017, 0.17741240561008453, -0.05022340640425682, 0.030524807050824165, 0.07225190848112106, 0.11259390413761139, -0.13554169237613678, 0.011744259856641293, -0.10988824814558029, 0.13410358130931854, 0.09098632633686066, -0.0413263700902462, -0.026559116318821907, -0.019812431186437607, 0.05975755676627159, -0.002027788432314992, 0.08684495836496353, -0.03412995859980583, -0.040086012333631516, -0.0016308611957356334, 0.021448791027069092, -0.016307752579450607, -0.20161373913288116, -0.060742802917957306, 0.13173046708106995, 0.014047426171600819, 0.1046173945069313, 0.07206390798091888, 0.06744664907455444, -0.019823279231786728, -0.010028485208749771, -0.12660269439220428, -0.04595692455768585, 0.09470364451408386, -0.12710772454738617, -0.08055856823921204 ]
null
null
transformers
# My Awesome Model
{"tags": ["conversational"]}
text-generation
ann101020/le2sbot-hp
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# My Awesome Model
[ "# My Awesome Model" ]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# My Awesome Model" ]
[ 51, 4 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# My Awesome Model" ]
[ -0.05259015038609505, 0.05521034821867943, -0.005910294596105814, 0.017722278833389282, 0.15250112116336823, 0.02286236733198166, 0.07657632976770401, 0.09513414651155472, -0.025391526520252228, -0.047348517924547195, 0.15119488537311554, 0.19781284034252167, -0.020334534347057343, 0.101333387196064, -0.04688440263271332, -0.3143521845340729, 0.06439975649118423, 0.05463787540793419, -0.015605635941028595, 0.12023304402828217, 0.09468326717615128, -0.0530015267431736, 0.08742043375968933, -0.012155864387750626, -0.1293085366487503, -0.0027921805158257484, -0.002384399762377143, -0.10180269181728363, 0.11194873601198196, 0.033712033182382584, 0.05166437849402428, 0.0182647667825222, -0.05843055993318558, -0.139859139919281, 0.03845210000872612, -0.015005595050752163, -0.05602653697133064, 0.05648263916373253, 0.059830192476511, -0.07164353132247925, 0.1669619083404541, 0.13275989890098572, -0.04237370565533638, 0.056127581745386124, -0.17620700597763062, 0.017941240221261978, 0.01800798624753952, 0.019184142351150513, 0.05306641012430191, 0.10830496996641159, -0.03932326287031174, 0.09217294305562973, -0.11410652846097946, 0.08313368260860443, 0.07800983637571335, -0.29151955246925354, -0.025312699377536774, 0.10440942645072937, 0.06437138468027115, 0.048375632613897324, -0.013386772945523262, 0.0621674507856369, 0.02149512618780136, 0.008602659218013287, 0.02225899137556553, -0.06727100163698196, -0.05789240449666977, 0.032748885452747345, -0.0967593789100647, -0.03634428232908249, 0.19753605127334595, -0.024647634476423264, 0.053590498864650726, -0.06265407055616379, -0.11300963163375854, -0.039751436561346054, -0.050429005175828934, -0.029761891812086105, -0.05090925097465515, 0.09489558637142181, 0.004352911841124296, -0.09534718841314316, -0.13405443727970123, -0.01370926946401596, -0.1618979275226593, 0.15892250835895538, 0.012579603120684624, 0.046201955527067184, -0.19210097193717957, 0.11465331166982651, -0.03857925534248352, -0.08259090781211853, 0.030513519421219826, -0.12010065466165543, 0.03160654753446579, -0.008132083341479301, -0.019599268212914467, -0.049325279891490936, 0.061037879437208176, 0.08101806789636612, 0.018783701583743095, 0.005755073390901089, 0.018167443573474884, 0.05343452841043472, 0.05891622602939606, 0.10033947974443436, -0.02891627699136734, -0.0625043511390686, 0.0025436533614993095, -0.12051084637641907, -0.01122665498405695, -0.05357983708381653, -0.18095199763774872, 0.002246231772005558, 0.02455340512096882, 0.05192234739661217, 0.011778532527387142, 0.09955989569425583, -0.028496338054537773, -0.026898741722106934, 0.06898727267980576, 0.002862759632989764, -0.015707949176430702, -0.005368964280933142, -0.010934269987046719, 0.11485416442155838, -0.023099146783351898, 0.04774846136569977, -0.12022071331739426, 0.020393015816807747, -0.07851235568523407, -0.0019349842332303524, -0.06214260309934616, -0.04864754155278206, -0.0019346009939908981, -0.06985589861869812, 0.021118074655532837, -0.14833110570907593, -0.17990200221538544, -0.005064866971224546, 0.021302316337823868, -0.052403319627046585, -0.09162671118974686, -0.0982397273182869, -0.02586611732840538, 0.03574685752391815, -0.05873546749353409, 0.013170980848371983, -0.06884536147117615, 0.06542801111936569, 0.0029820678755640984, 0.05682007595896721, -0.14085575938224792, 0.08719147741794586, -0.12582023441791534, -0.023288866505026817, -0.061977192759513855, 0.1109607070684433, 0.024780582636594772, 0.1267160177230835, 0.004311583004891872, -0.0033308975398540497, -0.08729329705238342, 0.08271238207817078, -0.04243258014321327, 0.22770646214485168, -0.10479787737131119, -0.08809807151556015, 0.2632525563240051, -0.05423165112733841, -0.16432519257068634, 0.10179096460342407, -0.014350244775414467, 0.12198644131422043, 0.13850919902324677, 0.16080057621002197, 0.007628654129803181, 0.03313867375254631, 0.10115300863981247, 0.08631709218025208, -0.08573295921087265, -0.0611947737634182, 0.023627014830708504, -0.011463395319879055, -0.10670105367898941, 0.046802595257759094, 0.04794782027602196, 0.08188598603010178, -0.04982871189713478, -0.028600862249732018, -0.01972118206322193, -0.044152840971946716, 0.05264130234718323, 0.007675500120967627, 0.13217447698116302, -0.03674980252981186, -0.03692879155278206, -0.023745311424136162, 0.01699630729854107, -0.03115241602063179, 0.007061392068862915, -0.05687357112765312, 0.11091547459363937, -0.03406180441379547, 0.051789235323667526, -0.16953988373279572, -0.04873261600732803, -0.02087729424238205, 0.1402055323123932, 0.04973345249891281, 0.1329866498708725, 0.06287940591573715, -0.010758201591670513, 0.00859389640390873, 0.007998145185410976, 0.13181665539741516, 0.007865442894399166, -0.07660657912492752, -0.047718439251184464, 0.09176599979400635, -0.05973208695650101, 0.06147782504558563, -0.098741315305233, -0.004747362341731787, -0.01433002483099699, 0.08674649894237518, 0.006352655589580536, 0.029382232576608658, -0.006192679051309824, 0.003654100699350238, -0.06161240115761757, 0.017873648554086685, 0.12492607533931732, -0.01421504095196724, -0.07439801841974258, 0.22084392607212067, -0.15798072516918182, 0.18006981909275055, 0.18165533244609833, -0.3081994652748108, 0.024602634832262993, -0.08860466629266739, -0.036338552832603455, 0.03426366671919823, 0.0491504967212677, -0.034147560596466064, 0.16587987542152405, -0.016766328364610672, 0.201018825173378, -0.03547777235507965, -0.01287798210978508, -0.010399105958640575, -0.03656993433833122, -0.010632630437612534, 0.09065473079681396, 0.15122920274734497, -0.1677125245332718, 0.18270380795001984, 0.1660280078649521, 0.06873020529747009, 0.17776396870613098, 0.034313347190618515, -0.006856906693428755, 0.07112615555524826, -0.022670727223157883, -0.07675548642873764, -0.049287427216768265, -0.26302891969680786, -0.027947327122092247, 0.06471601128578186, 0.04510856419801712, 0.11924877762794495, -0.10971947014331818, -0.037208184599876404, 0.010892451740801334, -0.013165894895792007, 0.02132410928606987, 0.09682225435972214, 0.01171150617301464, 0.11804302036762238, -0.021027036011219025, -0.05209195241332054, 0.0898953229188919, 0.02727191150188446, -0.0787680521607399, 0.19168277084827423, -0.10074768215417862, -0.3233809769153595, -0.11354339867830276, -0.18166927993297577, -0.017843691632151604, 0.05878754332661629, 0.08049646019935608, -0.09228580445051193, -0.02625267766416073, -0.01639235019683838, 0.0758359357714653, -0.09145816415548325, -0.015880629420280457, -0.09367848187685013, 0.034986745566129684, -0.10827737301588058, -0.07011983543634415, -0.05141967162489891, -0.03368452936410904, -0.04457031562924385, 0.13157756626605988, -0.12242637574672699, 0.06396433711051941, 0.2076517641544342, 0.06227295100688934, 0.05622440204024315, -0.0229496993124485, 0.23288212716579437, -0.10842552781105042, 0.02383521944284439, 0.1717897206544876, -0.03566030040383339, 0.0727933868765831, 0.13435456156730652, 0.006721907295286655, -0.08144525438547134, 0.03465581312775612, -0.04592517390847206, -0.08630958944559097, -0.20441576838493347, -0.14156180620193481, -0.12814727425575256, 0.07913564145565033, 0.03285396471619606, 0.05478321388363838, 0.15024253726005554, 0.11386489123106003, 0.007987297140061855, 0.00976672861725092, -0.006888182368129492, 0.05438044294714928, 0.17482298612594604, -0.05838097631931305, 0.10041683167219162, -0.037591226398944855, -0.1924494504928589, 0.08022978901863098, 0.04309763014316559, 0.08280511945486069, 0.07474655658006668, 0.0856199786067009, 0.013537914492189884, 0.03723837807774544, 0.10897084325551987, 0.1165735274553299, 0.031679023057222366, -0.038079675287008286, -0.04882059991359711, -0.026300756260752678, -0.03285675123333931, 0.05745977535843849, 0.07790146768093109, -0.1608346849679947, -0.06348084658384323, -0.06350091099739075, 0.07662643492221832, 0.09017108380794525, 0.11811108142137527, -0.21219493448734283, 0.01579318381845951, 0.092556893825531, -0.0494147390127182, -0.1304239183664322, 0.07402537018060684, -0.00466050673276186, -0.1397053301334381, 0.037663187831640244, -0.014095795340836048, 0.1359514445066452, -0.0778401643037796, 0.10336452722549438, -0.08307972550392151, -0.06147889420390129, 0.03632286190986633, 0.1355396956205368, -0.30774354934692383, 0.2137020230293274, -0.022472934797406197, -0.05296783149242401, -0.10508129745721817, -0.011727629229426384, 0.020913105458021164, 0.09079049527645111, 0.10090240091085434, -0.0025442070327699184, 0.0061299679800868034, -0.0345483273267746, -0.053218815475702286, 0.024456629529595375, 0.07957815378904343, -0.08542889356613159, 0.0017540202243253589, -0.02361489273607731, -0.004407065454870462, -0.032844748347997665, -0.01189463958144188, -0.011617658659815788, -0.16786961257457733, 0.06556065380573273, -0.002625665394589305, 0.11129079759120941, 0.03491498529911041, 0.0024013579823076725, -0.1009332686662674, 0.19977013766765594, 0.01796281896531582, -0.08052749931812286, -0.08830537647008896, -0.03254766762256622, 0.03660419583320618, -0.06121435388922691, 0.027481911703944206, -0.06916457414627075, 0.033381566405296326, -0.06441576033830643, -0.18325145542621613, 0.1268530637025833, -0.10945470631122589, -0.03609596937894821, -0.04321056231856346, 0.18323224782943726, -0.00929707009345293, -0.0011623724130913615, 0.05866571143269539, 0.0032208464108407497, -0.1347510665655136, -0.10740556567907333, 0.020214511081576347, -0.015275230631232262, 0.009142245166003704, 0.05559912323951721, -0.009665844030678272, 0.00045268211397342384, -0.039558928459882736, -0.023234419524669647, 0.32348164916038513, 0.10732097923755646, -0.04944206401705742, 0.17007054388523102, 0.13087597489356995, -0.0827672928571701, -0.30699312686920166, -0.10971353948116302, -0.10529600828886032, -0.026918673887848854, -0.037983208894729614, -0.19617970287799835, 0.09504909813404083, -0.03528566658496857, -0.022136637941002846, 0.11253651231527328, -0.2759084105491638, -0.0770430713891983, 0.1826775223016739, 0.003314757253974676, 0.3998824954032898, -0.10265109688043594, -0.08777514100074768, -0.06741699576377869, -0.1120782196521759, 0.2033512443304062, -0.05560711398720741, 0.08663415163755417, -0.00517998356372118, 0.15513743460178375, 0.055607251822948456, -0.02176513522863388, 0.08932057023048401, -0.005811662413179874, -0.0546204075217247, -0.1219351515173912, -0.03444604203104973, -0.009159418754279613, 0.007239421829581261, 0.03589896112680435, -0.04242607578635216, 0.01279151439666748, -0.1399589478969574, -0.045490626245737076, -0.0764620453119278, 0.024699507281184196, 0.021008269861340523, -0.0652410089969635, -0.01643640361726284, -0.03945036977529526, -0.012804778292775154, 0.03164318576455116, 0.15236099064350128, -0.06478006392717361, 0.1476556956768036, 0.04904455319046974, 0.15412139892578125, -0.14745712280273438, -0.02258288487792015, -0.06896031647920609, -0.05498642474412918, 0.04900865629315376, -0.10053684562444687, 0.050061121582984924, 0.1202658861875534, -0.0742902010679245, 0.0987328365445137, 0.0922594666481018, -0.01938629150390625, 0.0012483424507081509, 0.1226617842912674, -0.2489612102508545, -0.07742628455162048, -0.10509459674358368, 0.013337249867618084, 0.10138551890850067, 0.06995654851198196, 0.17304721474647522, -0.0037713919300585985, -0.036284226924180984, -0.0064643872901797295, 0.025414984673261642, -0.03540204465389252, 0.05724727362394333, -0.002706433180719614, 0.016663886606693268, -0.15213344991207123, 0.060368724167346954, -0.00024176653823815286, -0.1438901126384735, -0.013603870756924152, 0.16073721647262573, -0.11208858340978622, -0.15145981311798096, -0.007263668347150087, 0.13685113191604614, -0.13171035051345825, -0.03302847594022751, -0.03708777576684952, -0.170182466506958, 0.07439173012971878, 0.1024777740240097, 0.08549231290817261, 0.08025266975164413, -0.06620611250400543, -0.00807863101363182, -0.011656313203275204, -0.026087598875164986, 0.031810320913791656, -0.023377234116196632, -0.09044221043586731, 0.03872343525290489, -0.026654237881302834, 0.13591371476650238, -0.09607382118701935, -0.09331836551427841, -0.135749951004982, 0.039314381778240204, -0.12405620515346527, -0.08138058334589005, -0.12200927734375, -0.0591500885784626, 0.00224387738853693, -0.0001289021165575832, -0.035674065351486206, -0.06687422841787338, -0.13582271337509155, 0.04366770386695862, -0.04484611004590988, 0.0013091047294437885, -0.040241483598947525, 0.04561002552509308, 0.06766383349895477, -0.03493715822696686, 0.13722217082977295, 0.11722734570503235, -0.07864081114530563, 0.08946478366851807, -0.16657429933547974, -0.0683990865945816, 0.08854512125253677, 0.008173754438757896, 0.06165994703769684, 0.06743349134922028, 0.033807408064603806, 0.06109451875090599, 0.04151686280965805, 0.03488299250602722, 0.01739438995718956, -0.09271225333213806, 0.015541021712124348, 0.022296719253063202, -0.1294609159231186, -0.04801803454756737, -0.029226921498775482, 0.00939185917377472, 0.008117396384477615, 0.11003357172012329, -0.0426274873316288, 0.09439733624458313, -0.05888751894235611, 0.036728594452142715, 0.016222506761550903, -0.16461637616157532, -0.020102784037590027, -0.11915475130081177, 0.028684545308351517, -0.0033096212428063154, 0.25625869631767273, 0.06346847862005234, 0.020517030730843544, 0.01250078622251749, 0.08567021042108536, 0.07241600006818771, 0.02562166005373001, 0.1956365555524826, 0.10854171961545944, -0.05020022392272949, -0.12334850430488586, 0.09686340391635895, 0.034720368683338165, 0.06432123482227325, 0.13385434448719025, -0.026959087699651718, 0.002498799469321966, 0.11019360274076462, 0.011678861454129219, 0.04961980879306793, -0.09859088063240051, -0.16400282084941864, -0.00994415208697319, 0.061864156275987625, -0.04559077322483063, 0.12240655720233917, 0.11382720619440079, -0.020697353407740593, 0.03180128335952759, -0.010503606870770454, -0.05694027617573738, -0.16998925805091858, -0.1630837321281433, -0.08357038348913193, -0.11794789135456085, -0.0027763545513153076, -0.11386270076036453, 0.013879159465432167, 0.06452289968729019, 0.0604364387691021, -0.09019444137811661, 0.08891061693429947, 0.0687386617064476, -0.11843101680278778, 0.08828350901603699, -0.033263903111219406, 0.07249268144369125, 0.0015160300536081195, 0.003872724948450923, -0.13800905644893646, 0.032393742352724075, -0.008493867702782154, 0.04159298539161682, -0.09244006127119064, 0.022458361461758614, -0.11297028511762619, -0.07659684121608734, -0.07971972227096558, 0.05093973129987717, -0.03541257977485657, 0.1390930563211441, 0.001295371213927865, -0.035233911126852036, 0.024190181866288185, 0.22729112207889557, -0.06350252777338028, -0.030667411163449287, -0.0618741400539875, 0.21414142847061157, 0.024466563016176224, 0.10703565180301666, -0.016775688156485558, 0.019240234047174454, -0.0764411985874176, 0.3689337372779846, 0.344390869140625, -0.1225387305021286, -0.0015968306688591838, 0.031062176451086998, 0.036916591227054596, 0.11621878296136856, 0.12602226436138153, 0.057955991476774216, 0.2995031177997589, -0.08396036922931671, -0.002026971662417054, -0.02688612788915634, -0.03624163940548897, -0.04409930482506752, 0.10547586530447006, 0.06835740804672241, -0.03330419585108757, -0.027012333273887634, 0.1376710683107376, -0.2966996431350708, 0.12323499470949173, -0.15714547038078308, -0.1487535685300827, -0.06873904913663864, -0.005042468197643757, 0.08589684963226318, 0.04748665541410446, 0.1069009080529213, -0.019124338403344154, -0.08203735202550888, 0.05766449123620987, 0.0320524163544178, -0.22844897210597992, 0.011852608993649483, 0.08361081779003143, -0.06153005734086037, 0.011767351068556309, -0.017906347289681435, 0.038472190499305725, 0.07790610194206238, 0.025976579636335373, -0.032770540565252304, 0.06325861811637878, -0.005814229138195515, -0.05033424496650696, 0.04302205145359039, 0.05059972032904625, 0.017107632011175156, -0.1511564701795578, 0.07320158183574677, -0.1762860119342804, 0.0566408596932888, -0.005331212189048529, -0.04948166385293007, 0.000018263708625454456, 0.01998119056224823, -0.06808236241340637, 0.05880929157137871, 0.0952666699886322, -0.012173139490187168, -0.002317852806299925, -0.056667573750019073, 0.007662574760615826, -0.0679154172539711, -0.0747012197971344, -0.10497893393039703, -0.1338900774717331, -0.11392296850681305, 0.10846775025129318, -0.011928223073482513, -0.19833622872829437, 0.02906924858689308, -0.11258108913898468, 0.04933213070034981, -0.13360801339149475, 0.08599711954593658, 0.1282832771539688, 0.021543797105550766, -0.01265349704772234, 0.04020093381404877, 0.01591683179140091, 0.08550478518009186, -0.09200563281774521, -0.10515180230140686 ]
null
null
transformers
A POS-tagger for Old Church Slavonic trained on the Old Church Slavonic UD treebank (https://github.com/UniversalDependencies/UD_Old_Church_Slavonic-PROIEL). GitHub with api: https://github.com/annadmitrieva/chu-api
{"language": ["chu"], "license": "mit", "tags": ["Old Church Slavonic", "POS-tagging"], "widget": [{"text": "\u041d\u0435 \u043e\u0441\u046b\u0436\u0434\u0430\u0438\u0442\u0435 \u0434\u0430 \u043d\u0435 \u043e\u0441\u046b\u0436\u0434\u0435\u043d\u0438 \u0431\u046b\u0434\u0435\u0442\u0435"}]}
token-classification
annadmitrieva/old-church-slavonic-pos
[ "transformers", "pytorch", "safetensors", "distilbert", "token-classification", "Old Church Slavonic", "POS-tagging", "chu", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "chu" ]
TAGS #transformers #pytorch #safetensors #distilbert #token-classification #Old Church Slavonic #POS-tagging #chu #license-mit #autotrain_compatible #endpoints_compatible #region-us
A POS-tagger for Old Church Slavonic trained on the Old Church Slavonic UD treebank (URL GitHub with api: URL
[]
[ "TAGS\n#transformers #pytorch #safetensors #distilbert #token-classification #Old Church Slavonic #POS-tagging #chu #license-mit #autotrain_compatible #endpoints_compatible #region-us \n" ]
[ 62 ]
[ "passage: TAGS\n#transformers #pytorch #safetensors #distilbert #token-classification #Old Church Slavonic #POS-tagging #chu #license-mit #autotrain_compatible #endpoints_compatible #region-us \n" ]
[ -0.0474105067551136, 0.11634867638349533, -0.008265712298452854, 0.058698635548353195, 0.11759233474731445, 0.01770544983446598, 0.06867824494838715, 0.017077209427952766, 0.10730880498886108, 0.05126281827688217, 0.1232663244009018, 0.1885610967874527, -0.03957781940698624, -0.03329659625887871, -0.0684065893292427, -0.25793853402137756, 0.04430854320526123, 0.04395622760057449, -0.00957451481372118, 0.0898505300283432, 0.061951953917741776, -0.09723620116710663, 0.04799428582191467, -0.056412223726511, -0.04070793837308884, 0.029816102236509323, -0.05005974695086479, -0.0744568407535553, 0.08750627189874649, 0.008253339678049088, 0.09151284396648407, 0.003276665462180972, -0.03375831991434097, -0.08733843266963959, 0.025557735934853554, -0.062150418758392334, -0.0837860256433487, -0.02313963882625103, 0.0041264016181230545, -0.06349455565214157, 0.07698779553174973, 0.03809438273310661, -0.02829466015100479, 0.00815641600638628, -0.13703663647174835, -0.15534377098083496, -0.08866699039936066, 0.08738839626312256, 0.03572046756744385, 0.07123053818941116, 0.03077213652431965, 0.13035671412944794, -0.17231512069702148, 0.10412133485078812, 0.12779377400875092, -0.33750948309898376, -0.03362104296684265, 0.14270304143428802, 0.08323051035404205, 0.09995169937610626, -0.06449639797210693, 0.06401795148849487, 0.039977964013814926, 0.021276023238897324, -0.0629025548696518, -0.057138122618198395, 0.015006042085587978, 0.041897401213645935, -0.15426203608512878, -0.09160186350345612, 0.2073662430047989, -0.09801914542913437, 0.06666362285614014, 0.03496044874191284, -0.06013134494423866, -0.025297338142991066, -0.006367773283272982, -0.01732347346842289, -0.04672420769929886, 0.060169752687215805, 0.06270171701908112, 0.024588532745838165, -0.08031263947486877, 0.03752122074365616, -0.20598402619361877, 0.2263157218694687, 0.05745304003357887, -0.003357744077220559, -0.06795895099639893, 0.06084558367729187, -0.019984928891062737, -0.09527337551116943, -0.01834353245794773, -0.024522490799427032, 0.12178734689950943, -0.01959048956632614, -0.042958978563547134, 0.12998555600643158, 0.06396379321813583, 0.295026570558548, 0.03128892183303833, 0.029887381941080093, -0.031195763498544693, 0.08437161892652512, 0.026819197461009026, 0.07374532520771027, 0.07713264971971512, -0.037245973944664, 0.021507224068045616, -0.06740592420101166, 0.059258878231048584, -0.007450584787875414, -0.15908639132976532, -0.09638546407222748, 0.06136205047369003, 0.1375163495540619, 0.029751049354672432, 0.05694204941391945, -0.04275280237197876, 0.03265036642551422, 0.05403586104512215, -0.04900665953755379, 0.07028448581695557, -0.025349203497171402, 0.08821388334035873, 0.03984959051012993, -0.04843538627028465, -0.00957223679870367, -0.05072654038667679, 0.18995225429534912, -0.011666352860629559, 0.015934448689222336, -0.0055434382520616055, -0.08040493726730347, 0.08665529638528824, -0.1999172419309616, 0.0028976313769817352, -0.12713482975959778, -0.13194307684898376, 0.009652414359152317, -0.025164751335978508, -0.0032066511921584606, -0.0018704994581639767, -0.002643517218530178, -0.04663848504424095, -0.02303055301308632, -0.034319303929805756, -0.1316903829574585, -0.08333660662174225, 0.10877861082553864, -0.10138093680143356, 0.0024266194086521864, -0.08973231166601181, 0.04627131298184395, -0.11324514448642731, 0.0015638802433386445, -0.17071691155433655, -0.05587819218635559, -0.12300998717546463, 0.1479438841342926, 0.09228334575891495, -0.0006734570488333702, -0.09741275757551193, 0.06629016250371933, -0.0052545079961419106, 0.1158532053232193, -0.12077326327562332, -0.07394228875637054, 0.17923447489738464, -0.19305996596813202, -0.12294309586286545, 0.12817978858947754, 0.05457429215312004, -0.01921391487121582, 0.07531779259443283, 0.13547562062740326, 0.13326828181743622, -0.07001069188117981, -0.0008837837958708405, 0.07404530048370361, -0.06448796391487122, -0.10919466614723206, -0.007244568783789873, -0.0679580420255661, 0.01546523068100214, 0.03398599848151207, 0.011035487055778503, 0.03777652606368065, -0.05524367094039917, -0.0075918217189610004, -0.023264292627573013, -0.0010877355234697461, 0.06576617062091827, 0.04437108337879181, 0.03665223345160484, -0.10166704654693604, 0.002559307962656021, 0.00012733228504657745, -0.02780165523290634, 0.06494992226362228, 0.062073759734630585, -0.07716239988803864, 0.19173774123191833, 0.0836549922823906, 0.010057457722723484, -0.135535329580307, 0.006910534575581551, 0.014781326986849308, 0.11255879700183868, 0.00441023102030158, 0.053641464561223984, 0.0856257975101471, 0.0077789174392819405, -0.039921753108501434, -0.018530111759901047, 0.12557464838027954, 0.01277666911482811, -0.095286525785923, -0.08446000516414642, 0.03270133584737778, -0.03169900178909302, -0.01196819357573986, -0.08053554594516754, 0.052405402064323425, 0.18353866040706635, 0.18368756771087646, -0.05441748723387718, 0.06530039757490158, -0.08480077981948853, 0.07379547506570816, -0.03605526685714722, 0.0008221969474107027, 0.08341491222381592, 0.03453139215707779, -0.033498890697956085, 0.1107851043343544, -0.17195966839790344, 0.2967969477176666, 0.20714354515075684, -0.23230543732643127, 0.035355690866708755, -0.06760264933109283, -0.025682181119918823, 0.010192886926233768, 0.04064522683620453, -0.043101005256175995, -0.045179665088653564, -0.00788352731615305, 0.08787588030099869, -0.023524712771177292, -0.07070564478635788, 0.0014301091432571411, -0.05106084421277046, -0.09582579135894775, 0.10750926285982132, 0.10296908020973206, -0.2156399041414261, 0.209473118185997, 0.3545410633087158, -0.01953730918467045, 0.09293241053819656, -0.07829494774341583, 0.021935882046818733, 0.025595184415578842, -0.02308598905801773, -0.018355175852775574, 0.04333227500319481, -0.17175869643688202, -0.007158085238188505, 0.048840172588825226, 0.02759169228374958, 0.0139846196398139, -0.11779829114675522, -0.03979530557990074, 0.02959231100976467, 0.029349271208047867, -0.022389719262719154, 0.09544049203395844, 0.010874379426240921, 0.0972672775387764, -0.08275540173053741, -0.07607053220272064, 0.10693252831697464, 0.04398731142282486, -0.03611709922552109, 0.12474344670772552, -0.1829809844493866, -0.23578640818595886, -0.11470863968133926, -0.1407761126756668, 0.04821084439754486, 0.03265396133065224, 0.13051441311836243, -0.06788971275091171, -0.05106007680296898, 0.021451741456985474, -0.020211244001984596, -0.0712568387389183, 0.016511350870132446, -0.1493675857782364, -0.015108310617506504, -0.10346982628107071, -0.0471099317073822, -0.08227726817131042, -0.0629660114645958, -0.061520252376794815, 0.14951719343662262, -0.086258664727211, 0.0704444944858551, 0.05865097790956497, 0.01982821337878704, 0.06927232444286346, -0.04628189653158188, 0.1350127011537552, -0.04116841033101082, -0.003542720340192318, 0.18956582248210907, -0.07267685234546661, 0.09594901651144028, 0.1315418928861618, 0.02044052444398403, -0.0614522360265255, -0.03475421294569969, 0.00794148724526167, -0.11904728412628174, -0.17541274428367615, -0.1121600791811943, -0.13155485689640045, 0.10041596740484238, 0.02766185998916626, 0.06398944556713104, 0.04206732288002968, 0.04641389474272728, -0.057845793664455414, -0.0749964788556099, 0.0021590811666101217, 0.06712999939918518, 0.32745885848999023, 0.0008435109630227089, 0.10175289213657379, -0.05078975483775139, -0.07290703058242798, 0.0969100072979927, -0.050465960055589676, 0.09928235411643982, 0.1062106117606163, -0.06365463137626648, 0.08004340529441833, 0.2162604033946991, 0.13914965093135834, 0.039100658148527145, 0.0265359990298748, -0.02018672227859497, -0.005515547469258308, -0.04806795343756676, -0.05353359133005142, -0.025255447253584862, 0.044441357254981995, -0.1092064306139946, -0.03381022438406944, -0.11882858723402023, 0.05718756094574928, 0.08697264641523361, 0.022650621831417084, -0.15920789539813995, -0.03603818267583847, 0.05352415889501572, 0.078511081635952, -0.09672137349843979, 0.07811077684164047, -0.01845255121588707, -0.08586810529232025, 0.11826625466346741, -0.009007804095745087, 0.10082422196865082, 0.025640180334448814, 0.1038886159658432, -0.01680644042789936, -0.11065337061882019, 0.0009065076010301709, 0.04039006307721138, -0.2957231104373932, 0.20881421864032745, 0.0073619140312075615, -0.03790118172764778, -0.04847204312682152, -0.02423705905675888, 0.0706871747970581, 0.2567981779575348, 0.02695460245013237, 0.0527188703417778, -0.07339321076869965, -0.09828947484493256, 0.038279399275779724, -0.028524124994874, 0.07860517501831055, -0.07727834582328796, -0.0016928762197494507, -0.03467097133398056, 0.014104855246841908, -0.03830500692129135, -0.07643139362335205, -0.014179627411067486, -0.12863892316818237, 0.05987114459276199, 0.06787695735692978, 0.05407346785068512, -0.02526257000863552, -0.09162383526563644, -0.18762172758579254, 0.1364554613828659, -0.10590958595275879, -0.016487756744027138, -0.08606453984975815, -0.05262012034654617, 0.05977889895439148, -0.06499585509300232, 0.06628607213497162, -0.04690183699131012, -0.03668814152479172, -0.06900132447481155, -0.05206760764122009, 0.13755057752132416, -0.11100966483354568, -0.07581239938735962, -0.02308228425681591, 0.22793325781822205, 0.008456047624349594, 0.027326907962560654, -0.016063297167420387, 0.05007924512028694, -0.00674104830250144, -0.06891147792339325, 0.03395961597561836, 0.09952034801244736, 0.0650191605091095, 0.08357848227024078, -0.08612757921218872, -0.06787315011024475, 0.022307848557829857, -0.003134719328954816, 0.15028515458106995, 0.29914841055870056, -0.035574741661548615, 0.06058768182992935, 0.10340540111064911, -0.06793262809515, -0.35660025477409363, -0.11513934284448624, -0.17889472842216492, -0.0072630178183317184, 0.05492782965302467, -0.042468491941690445, 0.12058591842651367, 0.0762956514954567, -0.06250174343585968, 0.036143288016319275, -0.20245930552482605, -0.09361761808395386, 0.18548491597175598, -0.04013096168637276, 0.3831343352794647, -0.0838465616106987, -0.09987321496009827, 0.05081998556852341, -0.17811216413974762, 0.009937813505530357, -0.04384274035692215, 0.038439709693193436, -0.005376093089580536, 0.008584530092775822, 0.04569803550839424, -0.048008449375629425, 0.09993443638086319, 0.033969540148973465, 0.02257426269352436, -0.15448705852031708, -0.0789606124162674, 0.090849369764328, -0.035936493426561356, -0.0972866490483284, -0.06873943656682968, 0.00720955478027463, -0.11166628450155258, -0.016855388879776, -0.021153179928660393, 0.12134959548711777, -0.029831713065505028, -0.03759189695119858, -0.01899980567395687, 0.00968296267092228, -0.05887357518076897, 0.006499661598354578, 0.20179609954357147, -0.023194171488285065, 0.11732624471187592, 0.08649896830320358, 0.08098337799310684, -0.14161372184753418, 0.07633925974369049, -0.09075915813446045, -0.03678693622350693, 0.03846551477909088, 0.10384568572044373, 0.04649445787072182, 0.15906774997711182, -0.015815960243344307, -0.0047510406002402306, 0.08338862657546997, 0.05199510604143143, -0.06305187195539474, 0.08357159048318863, -0.18478387594223022, -0.09296302497386932, 0.0023321316111832857, -0.06472688913345337, 0.04140454903244972, 0.13621419668197632, 0.0996135026216507, 0.06852547079324722, -0.01572713628411293, 0.007823392748832703, -0.022973494604229927, 0.01988813281059265, 0.048573609441518784, -0.03316108137369156, -0.004682008642703295, -0.09753776341676712, 0.022654986009001732, -0.04601661115884781, -0.16356778144836426, -0.03932303935289383, 0.11245742440223694, -0.15552164614200592, -0.13776136934757233, -0.03552516549825668, 0.043354976922273636, -0.1382078230381012, -0.030620798468589783, -0.019021283835172653, -0.1735755354166031, 0.11613985896110535, 0.21858499944210052, 0.10460959374904633, 0.050443075597286224, -0.0327950194478035, 0.015413815155625343, 0.015097606927156448, 0.06970001012086868, 0.021631693467497826, 0.0436236709356308, -0.15433034300804138, 0.04959337040781975, -0.018016565591096878, 0.01932300627231598, -0.058671772480010986, -0.04147465154528618, -0.11831024289131165, 0.04664551094174385, -0.07518437504768372, -0.06244877725839615, -0.1241380050778389, -0.024007907137274742, 0.0024501809384673834, -0.16774196922779083, -0.03287828713655472, -0.035412877798080444, -0.09775854647159576, 0.07445935159921646, 0.03517257049679756, 0.10660552233457565, -0.05391235277056694, -0.06653514504432678, 0.1066296398639679, -0.03260350227355957, 0.11362891644239426, 0.1341092884540558, -0.05288289114832878, 0.0728512704372406, -0.1273462176322937, -0.0946686640381813, 0.12528681755065918, 0.04995177313685417, 0.029760463163256645, 0.17097420990467072, -0.023855436593294144, 0.07748769968748093, -0.03567756339907646, 0.1040666326880455, 0.03668508678674698, -0.07607483863830566, 0.08751126378774643, -0.004979080520570278, -0.17809021472930908, 0.0050339726731181145, -0.02705438621342182, 0.1376253366470337, -0.012555747292935848, 0.16628390550613403, -0.06069072708487511, -0.0016117087798193097, -0.057143695652484894, 0.03804833069443703, 0.0072130970656871796, -0.18220023810863495, -0.12275983393192291, -0.07990266382694244, 0.013662490993738174, 0.0384882390499115, 0.16037866473197937, -0.020777205005288124, -0.0720447525382042, 0.06738237291574478, 0.10471594333648682, 0.016837310045957565, -0.01650996133685112, 0.2004603147506714, 0.08218609541654587, -0.06173615902662277, -0.10369645059108734, 0.004622071981430054, -0.02556667849421501, -0.13720063865184784, 0.10669928044080734, 0.11829311400651932, 0.028833746910095215, 0.016410863026976585, 0.055345483124256134, 0.016994431614875793, -0.15251320600509644, -0.1274818331003189, 0.01892501674592495, 0.03920381888747215, -0.0012240660144016147, 0.14930778741836548, 0.1400579810142517, -0.01495968084782362, -0.021551018580794334, -0.05468396842479706, -0.0022757151164114475, -0.14913752675056458, -0.1681307554244995, -0.04505442827939987, -0.05791958048939705, 0.01870054006576538, -0.009043541736900806, 0.03972825035452843, 0.06722494959831238, 0.04923127964138985, -0.04692695289850235, 0.01578737422823906, -0.04961396008729935, -0.03409310802817345, 0.006710524670779705, -0.05489983409643173, 0.06892271339893341, -0.08811528980731964, -0.11341703683137894, -0.09381775557994843, -0.019395316019654274, -0.054201312363147736, -0.011105109006166458, -0.0026864390820264816, -0.028899583965539932, -0.1644727885723114, -0.05920371785759926, -0.025869173929095268, 0.06941544264554977, 0.008073225617408752, 0.025867359712719917, 0.028265774250030518, -0.010381766594946384, 0.03654398396611214, 0.1674565076828003, -0.01507575437426567, -0.1653399020433426, 0.07502194494009018, 0.15986232459545135, 0.11879545450210571, 0.10413447767496109, 0.02562720514833927, 0.03182845935225487, 0.05129969120025635, 0.1418733298778534, 0.24933451414108276, -0.0014035621425136924, 0.06591559946537018, 0.02359781041741371, 0.02721569687128067, 0.11122895032167435, 0.005149662494659424, 0.06680771708488464, 0.19719190895557404, -0.041373271495103836, -0.03980334848165512, -0.088617242872715, -0.01976822316646576, -0.17299893498420715, -0.0047083753161132336, -0.004999286495149136, -0.08702559769153595, 0.01624167338013649, 0.0885075032711029, -0.10214193165302277, 0.13351821899414062, 0.04310128092765808, -0.1852610856294632, -0.05681882053613663, 0.0015699954237788916, 0.16506370902061462, 0.07793749123811722, 0.05502821132540703, -0.07591848820447922, -0.08486863970756531, -0.010085036978125572, 0.019723959267139435, -0.13319715857505798, -0.04763300344347954, 0.054960835725069046, 0.040814414620399475, 0.08204079419374466, -0.02961929887533188, 0.04534395411610603, 0.11884446442127228, 0.08709125220775604, -0.02349299192428589, 0.012844526208937168, 0.057610947638750076, -0.04907649755477905, -0.0110700698569417, -0.14964793622493744, 0.016654135659337044, -0.0005920145777054131, 0.09541333466768265, -0.16511020064353943, 0.06839893758296967, 0.010588554665446281, -0.08856011927127838, 0.008192461915314198, 0.09461256116628647, -0.028950486332178116, 0.04076170176267624, 0.045734137296676636, 0.007989814504981041, -0.053198739886283875, -0.0550294890999794, -0.060740694403648376, 0.028090203180909157, -0.08392855525016785, -0.04042330011725426, -0.0761353075504303, -0.0246942937374115, 0.05149832367897034, -0.02698250487446785, 0.013595850206911564, -0.09075700491666794, -0.11206284910440445, 0.08268749713897705, -0.21447716653347015, 0.03901194781064987, 0.06363561004400253, 0.0036026439629495144, 0.023458492010831833, -0.06469336897134781, 0.012340853922069073, 0.09721982479095459, -0.08261135220527649, -0.020463382825255394 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-finetuned-addresso This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 5 - eval_batch_size: 5 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Framework versions - Transformers 4.12.5 - Pytorch 1.8.1 - Datasets 1.15.1 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "model-index": [{"name": "bert-base-uncased-finetuned-addresso", "results": []}]}
text-classification
annafavaro/bert-base-uncased-finetuned-addresso
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #bert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
# bert-base-uncased-finetuned-addresso This model is a fine-tuned version of bert-base-uncased on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 5 - eval_batch_size: 5 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Framework versions - Transformers 4.12.5 - Pytorch 1.8.1 - Datasets 1.15.1 - Tokenizers 0.10.3
[ "# bert-base-uncased-finetuned-addresso\n\nThis model is a fine-tuned version of bert-base-uncased on an unknown dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 2e-05\n- train_batch_size: 5\n- eval_batch_size: 5\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 1", "### Framework versions\n\n- Transformers 4.12.5\n- Pytorch 1.8.1\n- Datasets 1.15.1\n- Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #bert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "# bert-base-uncased-finetuned-addresso\n\nThis model is a fine-tuned version of bert-base-uncased on an unknown dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 2e-05\n- train_batch_size: 5\n- eval_batch_size: 5\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 1", "### Framework versions\n\n- Transformers 4.12.5\n- Pytorch 1.8.1\n- Datasets 1.15.1\n- Tokenizers 0.10.3" ]
[ 55, 43, 6, 12, 8, 3, 90, 30 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #bert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n# bert-base-uncased-finetuned-addresso\n\nThis model is a fine-tuned version of bert-base-uncased on an unknown dataset.## Model description\n\nMore information needed## Intended uses & limitations\n\nMore information needed## Training and evaluation data\n\nMore information needed## Training procedure### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 2e-05\n- train_batch_size: 5\n- eval_batch_size: 5\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 1### Framework versions\n\n- Transformers 4.12.5\n- Pytorch 1.8.1\n- Datasets 1.15.1\n- Tokenizers 0.10.3" ]
[ -0.06482783704996109, 0.07127998024225235, -0.0020309744868427515, 0.0748772844672203, 0.1943807750940323, 0.02254786156117916, 0.12746836245059967, 0.0818110778927803, -0.1132730022072792, 0.03403251990675926, 0.06650880724191666, 0.08765990287065506, 0.015962351113557816, 0.10446649044752121, -0.05554581061005592, -0.25444239377975464, 0.009845377877354622, 0.04743649810552597, -0.10624119639396667, 0.08194869756698608, 0.09809279441833496, -0.12528400123119354, 0.07506228983402252, 0.02615467458963394, -0.20760567486286163, 0.045496195554733276, -0.021749945357441902, -0.07475604861974716, 0.10122986137866974, 0.024434959515929222, 0.14821498095989227, -0.008880967274308205, 0.12879233062267303, -0.1670479029417038, -0.0004716544644907117, 0.08660799264907837, 0.032091058790683746, 0.0796973779797554, 0.03509058058261871, 0.02169569954276085, 0.06668152660131454, -0.08655978739261627, 0.09844454377889633, 0.020835816860198975, -0.05912534520030022, -0.20986609160900116, -0.05398185923695564, 0.04781926050782204, 0.07941637933254242, 0.08787696063518524, 0.016827154904603958, 0.1291610300540924, -0.06833364069461823, 0.07538694888353348, 0.22728238999843597, -0.2820639908313751, -0.07429713755846024, 0.0583631657063961, 0.032888878136873245, 0.06056205928325653, -0.08548000454902649, -0.025947466492652893, 0.05725432559847832, 0.05455540120601654, 0.12222535163164139, -0.02919747866690159, -0.10787362605333328, -0.018304575234651566, -0.1479939967393875, 0.01616409607231617, 0.16848725080490112, 0.024382727220654488, -0.06122123450040817, -0.030890630558133125, -0.07897752523422241, -0.04588529095053673, -0.03909917548298836, -0.06050833687186241, 0.061419133096933365, -0.041522737592458725, -0.06878223270177841, -0.07379425317049026, -0.07038010656833649, -0.05624677985906601, -0.024884942919015884, 0.1803014725446701, 0.05481278523802757, 0.02458324283361435, -0.05746012181043625, 0.08222071081399918, -0.04690936952829361, -0.11194325983524323, 0.01663736253976822, -0.004999787081032991, -0.005269996821880341, -0.05779242888092995, -0.07784036546945572, -0.04577965289354324, 0.008760667406022549, 0.16394290328025818, -0.05274555832147598, 0.07085705548524857, -0.0008801071089692414, 0.010783814825117588, -0.04155841842293739, 0.1498125195503235, -0.03562990948557854, -0.02623867616057396, 0.02280987612903118, 0.05492512881755829, 0.008636078797280788, -0.006391433533281088, -0.11896242201328278, 0.011525725945830345, 0.07058390974998474, 0.006299552973359823, -0.08077353239059448, 0.05225706472992897, -0.009211190044879913, -0.04908572882413864, -0.020238490775227547, -0.1155654564499855, 0.03933054581284523, -0.020206393674016, -0.06847377121448517, 0.011098627932369709, 0.041396789252758026, 0.008137228898704052, -0.03235330805182457, 0.1268593966960907, -0.09894480556249619, 0.011223584413528442, -0.1149035170674324, -0.11435352265834808, -0.003983956761658192, -0.09493635594844818, 0.016313739120960236, -0.09666376560926437, -0.18486396968364716, -0.0012387498281896114, 0.06905325502157211, -0.02793380618095398, -0.02748860977590084, -0.028408462181687355, -0.07399045675992966, 0.012074343860149384, -0.015006317757070065, 0.12208043783903122, -0.04356575757265091, 0.0540771521627903, 0.032133642584085464, 0.03483156859874725, -0.05642194300889969, 0.054095420986413956, -0.08234420418739319, 0.00705278804525733, -0.18981213867664337, 0.04174603521823883, -0.09537146985530853, 0.023840315639972687, -0.08613316714763641, -0.10509175062179565, 0.011220532469451427, 0.0069501339457929134, 0.07132108509540558, 0.07543934881687164, -0.12569601833820343, -0.058089207857847214, 0.1340712159872055, -0.07954874634742737, -0.07478845119476318, 0.08866428583860397, -0.056648992002010345, 0.056348446756601334, 0.06259752810001373, 0.13083192706108093, 0.05982320010662079, -0.13509933650493622, -0.01003497838973999, 0.0182887502014637, 0.08504799008369446, -0.02003195323050022, 0.036013033241033554, -0.005909984931349754, -0.014977451413869858, 0.01913730800151825, -0.05848417058587074, -0.017067622393369675, -0.09326506406068802, -0.06583848595619202, -0.05344030633568764, -0.0938539206981659, 0.03801330178976059, 0.024282267317175865, 0.07439607381820679, -0.06934529542922974, -0.10127466171979904, 0.19989338517189026, 0.09820044785737991, -0.07840946316719055, 0.026531167328357697, -0.07089631259441376, 0.03710761293768883, -0.03969868645071983, -0.013262985274195671, -0.2132486253976822, -0.09429936856031418, 0.028118789196014404, -0.03413846716284752, 0.054796118289232254, 0.03197386488318443, 0.05245034396648407, 0.07875534892082214, -0.04700471833348274, 0.019009172916412354, -0.07833432406187057, 0.002981848083436489, -0.12927205860614777, -0.17793045938014984, -0.061129070818424225, -0.02534143626689911, 0.11483053117990494, -0.2141788750886917, 0.03653190657496452, -0.04209783673286438, 0.12581036984920502, 0.02863951027393341, -0.023782210424542427, -0.06574627012014389, 0.0819670781493187, -0.026252061128616333, -0.07513885200023651, 0.04807289317250252, 0.015100068412721157, -0.05231960117816925, -0.12748883664608002, -0.12923656404018402, 0.1179465800523758, 0.1126578077673912, -0.07279430329799652, -0.0677889958024025, 0.015973616391420364, -0.04446060210466385, -0.032350990921258926, -0.07610908895730972, -0.006528378929942846, 0.19473443925380707, -0.021413588896393776, 0.16281673312187195, -0.06844127178192139, -0.03660007566213608, 0.01956287957727909, -0.02525261417031288, 0.00795168150216341, 0.04781927540898323, 0.10929710417985916, -0.07041371613740921, 0.10857638716697693, 0.13064192235469818, -0.12934978306293488, 0.129508838057518, -0.02557157725095749, -0.06461670994758606, 0.0017241956666111946, -0.03892230987548828, -0.01462436094880104, 0.09749121963977814, -0.16354595124721527, -0.012755957432091236, 0.0268046036362648, 0.02348237857222557, 0.04770719259977341, -0.1845017969608307, 0.02357657626271248, 0.02734464965760708, -0.014813501387834549, -0.006884340662509203, -0.04923297464847565, 0.02195499651134014, 0.08876961469650269, 0.025379111990332603, -0.04512178525328636, 0.033738091588020325, 0.011743451468646526, -0.0659957081079483, 0.20087891817092896, -0.1297997683286667, -0.1280069500207901, -0.12086914479732513, -0.05426810309290886, -0.0789153054356575, 0.0015907140914350748, 0.04987316578626633, -0.08877213299274445, -0.06888382881879807, -0.053730178624391556, 0.019874775782227516, -0.01854623481631279, 0.009621970355510712, 0.07986113429069519, -0.0062939184717834, 0.09203676134347916, -0.13781417906284332, -0.005938954651355743, -0.04227641597390175, -0.12083905190229416, -0.004131841938942671, 0.05733755603432655, 0.09680427610874176, 0.12741997838020325, -0.04607066884636879, 0.013409686274826527, -0.02476895973086357, 0.2438976913690567, -0.04083620756864548, -0.034070055931806564, 0.130591481924057, -0.0006612929282709956, 0.051469042897224426, 0.08942621201276779, 0.0697643980383873, -0.10268253833055496, 0.027446875348687172, 0.08706175535917282, -0.03571101278066635, -0.21866685152053833, -0.042874522507190704, -0.026343934237957, -0.07475528866052628, 0.1012221947312355, 0.03485661745071411, 0.016621798276901245, 0.07582280039787292, 0.014436637982726097, 0.12458053976297379, -0.03603839874267578, 0.09939361363649368, 0.14016090333461761, 0.046723753213882446, 0.12822003662586212, -0.030461890622973442, -0.05581929534673691, 0.05884920433163643, -0.016485368832945824, 0.27276360988616943, 0.01056771818548441, 0.05529798939824104, 0.05308819189667702, 0.1270957589149475, -0.018954208120703697, 0.06702067703008652, -0.008122342638671398, -0.018726002424955368, -0.00877716951072216, -0.0599750280380249, -0.021232038736343384, 0.013612331822514534, -0.08878146857023239, 0.06001707911491394, -0.1015816479921341, 0.01851636916399002, 0.022571049630641937, 0.2724939286708832, -0.0051433369517326355, -0.30137982964515686, -0.0824236050248146, -0.0009932322427630424, -0.029318014159798622, -0.06483785808086395, 0.02623801678419113, 0.0875699445605278, -0.10312759131193161, 0.061154838651418686, -0.06357145309448242, 0.10677103698253632, -0.000544574111700058, 0.03903781995177269, 0.08097449690103531, 0.1609259843826294, 0.0004277942643966526, 0.06688416004180908, -0.24540048837661743, 0.21155893802642822, 0.03190566599369049, 0.12232138961553574, -0.06331686675548553, 0.027951359748840332, 0.02402138151228428, 0.09151279181241989, 0.044485773891210556, -0.01762104406952858, 0.014433196745812893, -0.18140743672847748, -0.03191894292831421, 0.053866975009441376, 0.12924876809120178, -0.01296161487698555, 0.09779172390699387, -0.042958855628967285, 0.013293405994772911, 0.06786082684993744, -0.034877270460128784, -0.16583849489688873, -0.10926494747400284, -0.0058926246128976345, 0.04052126407623291, -0.06797628849744797, -0.06330692023038864, -0.10937657207250595, -0.05965428799390793, 0.17022934556007385, 0.0008190429653041065, -0.04218725860118866, -0.12707547843456268, 0.0820937305688858, 0.07691386342048645, -0.05734375864267349, 0.05111538618803024, 0.0037491335533559322, 0.11601132154464722, 0.03615519404411316, -0.1210191622376442, 0.08452130109071732, -0.09079315513372421, -0.14539624750614166, -0.04150857403874397, 0.060971882194280624, 0.05956388637423515, 0.030709395185112953, -0.002243492752313614, 0.017728926613926888, -0.005500136408954859, -0.08587019145488739, -0.02496328018605709, 0.04379953071475029, 0.09765604883432388, 0.07023851573467255, -0.11221930384635925, -0.004877164959907532, -0.02145123854279518, 0.018938368186354637, 0.11181559413671494, 0.18864159286022186, -0.0807129442691803, 0.014265134930610657, 0.10372155159711838, -0.09551047533750534, -0.1938483715057373, 0.08355789631605148, 0.1150779202580452, -0.013502406887710094, 0.0250273235142231, -0.2301628291606903, 0.2003554403781891, 0.13904792070388794, -0.023296112194657326, 0.07003854215145111, -0.254669189453125, -0.13193564116954803, 0.12157884240150452, 0.13654108345508575, 0.1072758361697197, -0.1519617736339569, -0.020558878779411316, -0.0579586885869503, -0.16811944544315338, 0.1548812985420227, -0.14593477547168732, 0.11150141060352325, 0.0010514033492654562, 0.09156664460897446, 0.010070144198834896, -0.029858732596039772, 0.11764966696500778, 0.035878174006938934, 0.10127396136522293, -0.0477503165602684, 0.023724885657429695, 0.08749599009752274, -0.045134562999010086, 0.03710810840129852, -0.010998078621923923, 0.04206577315926552, -0.08947563916444778, -0.02285541221499443, -0.06004130095243454, 0.06792858242988586, -0.03262588009238243, -0.07366415858268738, -0.04543084651231766, 0.006601712200790644, 0.03646131232380867, -0.02596798539161682, 0.14474833011627197, 0.03938424214720726, 0.1439361423254013, 0.1238657757639885, 0.09168225526809692, -0.10233992338180542, -0.08092840760946274, 0.006892133504152298, -0.029559431597590446, 0.09152509272098541, -0.11339717358350754, 0.03876519948244095, 0.11755739152431488, 0.03865289315581322, 0.12366588413715363, 0.07926517724990845, -0.02655557170510292, 0.005541619379073381, 0.04145324230194092, -0.1335441917181015, -0.11690329760313034, -0.006528540048748255, -0.028150996193289757, -0.11843185871839523, 0.09016934037208557, 0.12867923080921173, -0.07010656595230103, -0.008421570993959904, -0.020283197984099388, -0.015657974407076836, -0.03965875506401062, 0.18670882284641266, 0.04791470617055893, 0.044516097754240036, -0.09730249643325806, 0.1257469803094864, 0.06875155121088028, -0.049491047859191895, 0.043182648718357086, 0.04300791025161743, -0.08831536769866943, -0.012590600177645683, 0.06941433995962143, 0.19431298971176147, -0.09560523927211761, -0.04660581424832344, -0.11031771451234818, -0.10097156465053558, 0.049522534012794495, 0.16346707940101624, 0.08274250477552414, -0.04646121710538864, -0.06204168125987053, 0.07495921105146408, -0.14729119837284088, 0.07200373709201813, 0.02011757902801037, 0.09302335977554321, -0.15527069568634033, 0.12429793179035187, 0.026232216507196426, 0.03527490422129631, -0.032713185995817184, 0.01698041521012783, -0.1148754209280014, -0.02406720072031021, -0.17539483308792114, -0.018336301669478416, -0.0029778413008898497, 0.003850010922178626, 0.0005384054384194314, -0.034224431961774826, -0.06369123607873917, 0.05262862890958786, -0.0855221152305603, -0.03500119224190712, 0.04442349448800087, 0.038364339619874954, -0.13584786653518677, 0.005877737421542406, 0.008716482669115067, -0.08260458707809448, 0.053644172847270966, 0.06791216135025024, 0.011017367243766785, 0.05276920646429062, -0.1260472536087036, -0.030220529064536095, 0.05506206303834915, 0.04055769741535187, 0.09521279484033585, -0.039130937308073044, -0.010245230980217457, -0.013597169890999794, 0.09555211663246155, 0.0010559933725744486, 0.11895984411239624, -0.1280859261751175, -0.010789777152240276, -0.05583572015166283, -0.058643173426389694, -0.05599839240312576, 0.03203649818897247, 0.11417573690414429, 0.04526040330529213, 0.17988811433315277, -0.07765397429466248, 0.00009340154065284878, -0.17264962196350098, -0.025497563183307648, -0.005759535823017359, -0.06700249016284943, -0.06243986263871193, -0.04660474881529808, 0.05489515885710716, -0.056803859770298004, 0.14052744209766388, 0.006926666479557753, 0.10342966020107269, 0.03380339592695236, -0.041473325341939926, -0.029574686661362648, -0.003120236797258258, 0.2033691108226776, 0.06760731339454651, -0.01561333891004324, 0.06013897433876991, 0.037064097821712494, 0.10256253927946091, 0.07694888114929199, 0.19496870040893555, 0.12809236347675323, -0.08007717877626419, 0.07468537241220474, 0.05985938757658005, -0.08189867436885834, -0.18416105210781097, 0.06448280811309814, -0.003918569069355726, 0.13957487046718597, -0.050268664956092834, 0.1659354418516159, 0.08513946831226349, -0.14603590965270996, 0.03673909977078438, -0.05874859169125557, -0.09227850288152695, -0.1428954154253006, -0.014899106696248055, -0.08174628764390945, -0.14529503881931305, 0.005542591214179993, -0.14597125351428986, 0.021918928250670433, 0.12892936170101166, -0.004473341163247824, 0.013092444278299809, 0.16308923065662384, -0.07594950497150421, 0.011767691932618618, 0.04774288833141327, -0.0007578060613013804, -0.024609539657831192, -0.08286842703819275, -0.07727253437042236, 0.015173918567597866, 0.024820934981107712, 0.059062857180833817, -0.05560570955276489, -0.02293265238404274, 0.03284610062837601, -0.009783509187400341, -0.055837150663137436, 0.02767094410955906, 0.03119293600320816, 0.03437473252415657, 0.03697701916098595, 0.00037367083132267, -0.022803854197263718, -0.03279315307736397, 0.27131277322769165, -0.09997837245464325, -0.07954549044370651, -0.11923228204250336, 0.23711881041526794, 0.05489432439208031, 0.005741704721003771, 0.05218159407377243, -0.09054107218980789, -0.03901854157447815, 0.20498888194561005, 0.1526886522769928, -0.07900801301002502, -0.02225271612405777, 0.00841880775988102, -0.020533263683319092, -0.059610478579998016, 0.1463993340730667, 0.13479220867156982, 0.05783594772219658, -0.049329109489917755, -0.0390130952000618, -0.00757700065150857, -0.0011081632692366838, -0.12755174934864044, 0.03752902150154114, 0.03285277634859085, -0.01044008880853653, -0.023686781525611877, 0.03545396029949188, -0.0005624783225357533, -0.18568232655525208, 0.02435450814664364, -0.13456642627716064, -0.16792801022529602, -0.025609705597162247, 0.07342006266117096, -0.03224695473909378, 0.060551196336746216, -0.024826906621456146, -0.014231882058084011, 0.1310618817806244, -0.02728888764977455, -0.03743394836783409, -0.11774065345525742, 0.10766338557004929, -0.10528386384248734, 0.22948811948299408, -0.006597437895834446, 0.06548415869474411, 0.11115207523107529, 0.044069696217775345, -0.08548576384782791, 0.03589988499879837, 0.04028264805674553, -0.0874578207731247, 0.014100431464612484, 0.10439809411764145, -0.07000457495450974, 0.08478646725416183, 0.01957501471042633, -0.17240706086158752, -0.01884405128657818, -0.011146796867251396, -0.05424334108829498, -0.04781334847211838, -0.03646528348326683, -0.09805415570735931, 0.11880992352962494, 0.20953521132469177, -0.01626778021454811, -0.003906672354787588, -0.08207675814628601, 0.045402105897665024, 0.07434853911399841, 0.07040543854236603, -0.055882737040519714, -0.23611235618591309, 0.018572039902210236, 0.03231353312730789, -0.007916754111647606, -0.24496731162071228, -0.07079659402370453, 0.03734647110104561, -0.03427828848361969, -0.07317657768726349, 0.07006927579641342, 0.08166645467281342, 0.042308028787374496, -0.0600370429456234, -0.1314670592546463, -0.08981449902057648, 0.157475546002388, -0.16047711670398712, -0.07317055761814117 ]
null
null
null
ktrain predictor for NER of ADR in patient forum discussions. Created in ktrain 0.29 with transformers 4.10. See requirements.txt to run model.
{}
null
annedirkson/ADR_extraction_patient_forum
[ "tf", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #tf #region-us
ktrain predictor for NER of ADR in patient forum discussions. Created in ktrain 0.29 with transformers 4.10. See URL to run model.
[]
[ "TAGS\n#tf #region-us \n" ]
[ 9 ]
[ "passage: TAGS\n#tf #region-us \n" ]
[ 0.02717403694987297, -0.0850527435541153, -0.008868269622325897, -0.021143348887562752, 0.07884491235017776, 0.06604291498661041, -0.01935601979494095, 0.048123981803655624, 0.17828558385372162, -0.053398214280605316, 0.08256072551012039, 0.0009474587859585881, -0.022046472877264023, 0.09297667443752289, -0.02209344506263733, -0.19969743490219116, 0.00041887242696247995, -0.0015154649736359715, -0.042260799556970596, 0.04567328467965126, -0.03771711140871048, -0.026329118758440018, 0.030627479776740074, -0.1159137561917305, -0.13830040395259857, 0.12074124813079834, 0.06795552372932434, -0.04049430415034294, 0.12169930338859558, 0.05518333241343498, 0.12711569666862488, 0.02800789475440979, -0.1264970302581787, -0.14019377529621124, 0.04070953652262688, 0.015509658493101597, -0.1364237517118454, 0.009036021307110786, 0.07121166586875916, -0.061136167496442795, 0.059957318007946014, 0.12422697246074677, -0.02070854976773262, 0.07782208174467087, -0.2704756557941437, -0.17011389136314392, -0.04335585609078407, -0.011380821466445923, 0.009439419023692608, 0.02034422568976879, 0.03494933620095253, 0.22119572758674622, -0.19268950819969177, 0.08085671812295914, 0.0667259618639946, -0.27503007650375366, 0.02575431950390339, 0.14233475923538208, -0.03822958096861839, 0.1485864818096161, -0.022014182060956955, 0.08272524923086166, 0.06752051413059235, 0.00688638212159276, -0.089729443192482, -0.09771507233381271, -0.19509509205818176, 0.1414337307214737, -0.10734352469444275, -0.08794605731964111, 0.35105767846107483, 0.0310226883739233, -0.001470237853936851, 0.21522894501686096, -0.09059171378612518, -0.046921294182538986, 0.0703350156545639, -0.03347092494368553, -0.021047772839665413, 0.1274232715368271, 0.1346426159143448, -0.07975554466247559, -0.13711398839950562, 0.00797922071069479, -0.30296027660369873, 0.17487899959087372, -0.03417843580245972, 0.1232241541147232, -0.2726263999938965, 0.015277048572897911, -0.2604098916053772, -0.0025342307053506374, 0.0632655918598175, -0.07521133124828339, -0.0705866888165474, -0.057595036923885345, -0.03067977912724018, -0.032462842762470245, 0.0665893629193306, 0.11917254328727722, -0.08973272144794464, 0.039811961352825165, -0.16164931654930115, 0.11579488962888718, 0.017941581085324287, 0.033652376383543015, 0.030433742329478264, 0.05717121809720993, -0.005282871890813112, -0.25493112206459045, -0.08231059461832047, -0.053496260195970535, -0.07874602824449539, -0.018844015896320343, -0.0834488794207573, 0.1340535581111908, -0.027304908260703087, -0.02118043787777424, -0.048680201172828674, 0.04640261083841324, 0.03816661238670349, -0.038869790732860565, -0.08223643898963928, -0.020980896428227425, 0.022619226947426796, 0.06617368012666702, -0.072126604616642, -0.028710564598441124, 0.041142065078020096, 0.049063000828027725, -0.1366422474384308, -0.042985327541828156, -0.003312063403427601, -0.0043203337118029594, 0.07464902848005295, -0.0869700014591217, 0.030992023646831512, -0.1929476112127304, -0.0472056120634079, 0.0482732430100441, -0.029292818158864975, -0.01024946104735136, 0.12697157263755798, 0.06623061001300812, 0.004117061849683523, -0.04233861342072487, -0.019819604232907295, -0.03495892509818077, -0.06701481342315674, 0.09131357073783875, -0.024492869153618813, 0.05391552671790123, -0.23763039708137512, 0.018832607194781303, -0.08696866035461426, 0.053401507437229156, -0.13578394055366516, -0.02757594734430313, -0.022242018952965736, 0.17814864218235016, 0.015685174614191055, 0.04663572460412979, -0.27110999822616577, 0.021877288818359375, -0.08512535691261292, 0.17755696177482605, -0.16860368847846985, -0.06670980155467987, 0.2544674575328827, -0.09709347784519196, -0.14496742188930511, 0.046707138419151306, 0.05935780331492424, 0.04641662538051605, 0.06388852745294571, 0.410780131816864, 0.004673480987548828, -0.13018378615379333, 0.15353848040103912, 0.22013212740421295, -0.19294801354408264, -0.09771259129047394, 0.0450412854552269, -0.1074908971786499, -0.22106847167015076, -0.01014086976647377, 0.07999573647975922, 0.12680090963840485, -0.08026163280010223, 0.002472531283274293, 0.047156259417533875, -0.007242947816848755, 0.09082997590303421, 0.04170104116201401, 0.09191294014453888, -0.08928097784519196, 0.10163529962301254, -0.06283904612064362, -0.009731750003993511, 0.14271113276481628, 0.009920487180352211, -0.04340474307537079, 0.07706569135189056, 0.03029152750968933, 0.046988703310489655, -0.15473642945289612, -0.22551152110099792, 0.026446353644132614, 0.1752074658870697, 0.04971577599644661, 0.1923559606075287, 0.09056459367275238, -0.08277427405118942, -0.021399736404418945, 0.014442592859268188, 0.09127546101808548, 0.04057294502854347, 0.04075543209910393, -0.03846470266580582, 0.1246790736913681, -0.08546542376279831, -0.10931690037250519, -0.07317113876342773, -0.028430841863155365, 0.2242366522550583, 0.030650822445750237, 0.10337765514850616, 0.01933816261589527, 0.01822059229016304, 0.030919868499040604, 0.08019567281007767, -0.03319520875811577, 0.052064426243305206, -0.013382078148424625, -0.05563787370920181, 0.18501773476600647, -0.07589933276176453, 0.2834354043006897, 0.15232636034488678, -0.16404320299625397, -0.09509498625993729, -0.01736132986843586, -0.025077451020479202, 0.001909477636218071, 0.12994548678398132, -0.11213427037000656, -0.026438463479280472, -0.0257734265178442, 0.03532560169696808, -0.04055468365550041, -0.05263499543070793, -0.01917918212711811, -0.020069655030965805, -0.08579973131418228, 0.09432121366262436, 0.07586310803890228, -0.2295633852481842, 0.1382981836795807, 0.3559110760688782, 0.1796407550573349, 0.26193368434906006, -0.11397716403007507, -0.05855877697467804, 0.011532061733305454, 0.06026087701320648, -0.021124225109815598, 0.07123273611068726, -0.14530611038208008, -0.008005826734006405, 0.0368618443608284, 0.03432610630989075, 0.08440769463777542, -0.11618398874998093, -0.09510861337184906, 0.0029869279824197292, -0.026261117309331894, -0.10964810848236084, 0.11012405902147293, -0.031061027199029922, 0.10527210682630539, 0.039033908396959305, -0.06190889701247215, 0.1389293074607849, 0.003243963932618499, -0.13659702241420746, 0.09190700948238373, -0.20584796369075775, -0.2565053105354309, -0.052567996084690094, -0.054230593144893646, 0.05180581659078598, 0.010775500908493996, 0.016439594328403473, -0.14750497043132782, -0.00936737097799778, 0.05936877429485321, 0.03910360857844353, -0.17949117720127106, 0.03446900099515915, -0.022245118394494057, 0.06179428845643997, -0.0514342226088047, -0.016059985384345055, -0.04964269697666168, -0.06048547849059105, -0.03312843292951584, 0.10799992829561234, -0.1608588993549347, 0.12976780533790588, 0.21070943772792816, 0.028973262757062912, 0.09744609892368317, -0.08195380866527557, 0.1790461391210556, -0.12664757668972015, -0.021499238908290863, 0.09458950161933899, -0.0719936415553093, 0.03432232886552811, 0.11047855019569397, 0.027225371450185776, -0.11436644941568375, 0.013327416032552719, -0.008767236024141312, -0.1515822410583496, -0.20803174376487732, -0.05325626954436302, -0.1431025117635727, 0.16778264939785004, -0.058733150362968445, 0.08097824454307556, 0.16500656306743622, -0.05470458045601845, 0.12694261968135834, -0.05262105166912079, -0.04224622622132301, -0.026009192690253258, 0.09739430993795395, -0.0371873714029789, -0.05030309781432152, -0.10384762287139893, -0.003709179814904928, 0.17872263491153717, 0.06415131688117981, 0.06738148629665375, 0.1878499835729599, 0.017725571990013123, 0.044345464557409286, 0.08392728865146637, 0.10997383296489716, 0.11611323058605194, 0.01523895189166069, -0.06838341802358627, -0.023196758702397346, -0.022009072825312614, 0.049760691821575165, -0.00935616996139288, 0.08982796967029572, -0.23563462495803833, -0.010928129777312279, -0.22800509631633759, 0.09860672056674957, -0.08199206739664078, 0.08540554344654083, 0.009525075554847717, 0.08308512717485428, 0.03622916713356972, 0.01877555437386036, -0.012388920411467552, 0.13321413099765778, 0.14962659776210785, -0.11656196415424347, 0.042060691863298416, 0.0688527375459671, 0.07596452534198761, 0.0869511291384697, 0.08671046793460846, -0.02421536296606064, -0.13187971711158752, -0.018008289858698845, 0.04761394113302231, -0.24226294457912445, 0.3007655143737793, 0.029850153252482414, -0.146848663687706, -0.03066643700003624, -0.12310768663883209, 0.005882469471544027, 0.16395089030265808, 0.13341280817985535, 0.08789431303739548, -0.057201988995075226, -0.11609908938407898, 0.07388512045145035, -0.020925631746649742, 0.19865243136882782, -0.008668205700814724, -0.1292501837015152, -0.023054441437125206, 0.010980689898133278, -0.0016276967944577336, 0.1562221348285675, -0.012750579044222832, -0.017227984964847565, 0.002756120404228568, -0.006488984450697899, -0.06410319358110428, 0.0026286165229976177, 0.07253312319517136, -0.013497952371835709, -0.01913713663816452, 0.04064587131142616, 0.019095588475465775, -0.15303049981594086, -0.1324007362127304, 0.0672294870018959, -0.07941722869873047, 0.003969867713749409, -0.05856693536043167, -0.1448700726032257, -0.06501573324203491, -0.23802143335342407, 0.14097581803798676, -0.05953530594706535, 0.10631141066551208, -0.02782464399933815, 0.19487741589546204, -0.0976346880197525, 0.05912959948182106, -0.044061627238988876, -0.03172034025192261, 0.07814668864011765, -0.07014089822769165, 0.1342686414718628, -0.24209095537662506, -0.013489527627825737, 0.11034577339887619, -0.03585628420114517, 0.06518436223268509, 0.021693933755159378, -0.05027263984084129, 0.22330157458782196, 0.2487058937549591, -0.026084737852215767, 0.15694501996040344, 0.16753646731376648, -0.020935555920004845, -0.23530246317386627, -0.006903721950948238, -0.21484902501106262, -0.08337562531232834, 0.12223940342664719, -0.13747304677963257, 0.03902800381183624, 0.0939217358827591, 0.0010952826123684645, 0.3430778682231903, -0.21177361905574799, -0.009985336102545261, 0.1372734159231186, -0.05210535228252411, 0.47172674536705017, -0.1271582543849945, -0.11997315287590027, 0.0815739557147026, -0.11366132646799088, 0.1517474353313446, -0.13138315081596375, 0.029561515897512436, 0.0255831740796566, -0.02374509908258915, 0.05028553307056427, -0.00786512903869152, 0.10975268483161926, 0.021521033719182014, 0.09373980015516281, -0.09065324813127518, -0.17102524638175964, 0.1288868486881256, 0.019541898742318153, -0.03531601279973984, 0.15949246287345886, -0.015569837763905525, -0.09701990336179733, 0.0463201180100441, -0.1232416108250618, 0.0032187465112656355, 0.059858646243810654, -0.0867670401930809, -0.022623684257268906, 0.04102484509348869, -0.11957581341266632, -0.06114617735147476, 0.13741794228553772, -0.08614290505647659, 0.21285583078861237, 0.06624244898557663, 0.032228127121925354, -0.1354018747806549, 0.01047166995704174, -0.06558533012866974, -0.04777657985687256, 0.06017064303159714, -0.10746829211711884, 0.04421492666006088, 0.11987651884555817, -0.00028638483490794897, 0.06740226596593857, 0.08938949555158615, -0.07416799664497375, -0.04142049327492714, 0.18825039267539978, -0.22916147112846375, -0.12095700204372406, -0.1039200946688652, -0.2088722139596939, 0.18829181790351868, -0.00033193003037013113, 0.08079792559146881, 0.10683409869670868, 0.05332430079579353, 0.004853931255638599, -0.08454360067844391, -0.10531865060329437, -0.021416716277599335, 0.11170656234025955, -0.0036168815568089485, -0.08204439282417297, 0.1367543786764145, 0.06214701756834984, -0.0844874456524849, -0.044769253581762314, 0.24389880895614624, -0.09824013710021973, -0.06865081191062927, -0.14207328855991364, 0.0799635574221611, -0.1154094859957695, -0.042342398315668106, 0.06996291875839233, -0.025765985250473022, 0.03759332746267319, 0.35033339262008667, -0.0014574960805475712, 0.14303019642829895, 0.04988197982311249, -0.02733386866748333, 0.15122100710868835, -0.09843126684427261, -0.13155727088451385, -0.026046710088849068, -0.12582315504550934, 0.05420156568288803, -0.053652845323085785, 0.2096225619316101, -0.11101435124874115, -0.10032586753368378, -0.24927568435668945, 0.06682116538286209, -0.08582878857851028, -0.11772854626178741, 0.026482315734028816, -0.05452973395586014, 0.06110908463597298, -0.01597735472023487, -0.022840779274702072, -0.034086089581251144, -0.16206711530685425, 0.08766068518161774, 0.10225462913513184, 0.0334702804684639, -0.0017433000029996037, -0.03288787975907326, 0.11959493905305862, 0.030483977869153023, 0.13645082712173462, 0.1581796109676361, -0.016835417598485947, 0.21972838044166565, -0.14576731622219086, -0.09877008944749832, 0.12693777680397034, -0.016846541315317154, 0.08400796353816986, 0.19594350457191467, -0.03968813642859459, -0.028964776545763016, -0.05892662703990936, 0.08430557698011398, -0.1088123619556427, -0.08649290353059769, -0.022326575592160225, 0.003364799777045846, -0.21979905664920807, -0.02176833525300026, -0.1472289115190506, 0.14305536448955536, 0.022358523681759834, -0.03921317681670189, 0.05692265182733536, 0.06586925685405731, -0.010081776417791843, -0.03367740660905838, 0.03290082514286041, -0.12625771760940552, 0.024649139493703842, -0.01577853038907051, 0.0049084872007369995, 0.0037789340130984783, 0.21141743659973145, -0.03039473667740822, -0.004658805206418037, 0.025475207716226578, 0.04434748366475105, 0.02890673466026783, -0.026134492829442024, 0.12308955937623978, 0.06094574183225632, -0.09079490602016449, -0.18515504896640778, 0.05709775164723396, -0.08041227608919144, -0.09655862301588058, 0.2132132202386856, -0.011032160371541977, -0.0498165488243103, 0.017368722707033157, 0.015895338729023933, -0.038362376391887665, 0.054460570216178894, -0.23657652735710144, 0.024670686572790146, 0.002929141279309988, -0.01258489117026329, -0.048942871391773224, 0.20124459266662598, -0.0353495329618454, 0.08595104515552521, -0.050877586007118225, 0.012544764205813408, -0.12850943207740784, -0.08488316088914871, 0.034536056220531464, -0.1126176044344902, 0.042023174464702606, -0.048515982925891876, 0.031012289226055145, 0.15582618117332458, 0.0739961713552475, -0.003876814153045416, 0.14785565435886383, -0.09909118711948395, -0.144780695438385, 0.06316819787025452, -0.007257051300257444, 0.06261762976646423, -0.04910898953676224, -0.06487711519002914, -0.09342164546251297, -0.11874929070472717, -0.1416812539100647, 0.010283995419740677, -0.011591076850891113, -0.07210418581962585, -0.18373948335647583, -0.03681862726807594, -0.04052470624446869, 0.09620131552219391, -0.1130053848028183, 0.11246046423912048, 0.012194735929369926, 0.0019887308590114117, 0.03048613853752613, 0.16527454555034637, -0.016040582209825516, 0.019492071121931076, -0.05144422873854637, 0.1734255999326706, -0.04004361107945442, 0.13704326748847961, -0.0776640996336937, -0.035643141716718674, -0.057162247598171234, 0.26574304699897766, 0.23077107965946198, -0.09328072518110275, 0.02422376722097397, 0.01214075181633234, 0.05587726831436157, 0.13885337114334106, 0.21728123724460602, 0.032460786402225494, 0.27867618203163147, -0.025291087105870247, -0.00876180361956358, 0.012466421350836754, 0.07244925200939178, -0.029872586950659752, 0.1044088676571846, 0.12353460490703583, -0.033191386610269547, -0.07762714475393295, 0.15343908965587616, -0.18617749214172363, 0.12963999807834625, 0.03220813348889351, -0.18334601819515228, -0.016535360366106033, -0.10126204043626785, -0.033897873014211655, -0.040622614324092865, 0.1163916140794754, -0.08412478864192963, -0.14704664051532745, -0.1700751930475235, 0.07020367681980133, -0.34893110394477844, -0.2056313157081604, 0.09749093651771545, 0.061539795249700546, 0.021139536052942276, -0.03948601335287094, -0.00437897490337491, -0.018801681697368622, 0.03479531407356262, 0.005350892897695303, 0.06393729895353317, 0.039459969848394394, 0.004331011325120926, -0.22488799691200256, -0.01230921782553196, 0.050469908863306046, -0.12342507392168045, 0.05510052666068077, -0.11021779477596283, -0.04029572755098343, 0.14694444835186005, -0.019185082986950874, 0.03388690575957298, 0.02084450237452984, -0.15405040979385376, 0.053510215133428574, 0.09726190567016602, 0.03100808523595333, 0.0325760617852211, -0.06833793967962265, -0.056453824043273926, 0.10628129541873932, -0.17016896605491638, -0.14204639196395874, 0.15940703451633453, -0.062126755714416504, 0.12933465838432312, -0.0804775059223175, -0.039271190762519836, 0.015225794166326523, -0.07323937118053436, 0.14804202318191528, -0.11058732122182846, 0.08404544740915298, 0.11253806203603745, 0.02362382598221302, 0.0498819425702095, -0.1676456332206726, 0.08748652040958405, 0.010140333324670792, -0.04800152778625488, -0.014966586604714394 ]
null
null
transformers
# German GPT-2 model **Note**: This model was de-anonymized and now lives at: https://huggingface.co/dbmdz/german-gpt2 Please use the new model name instead!
{"language": "de", "license": "mit", "widget": [{"text": "Heute ist sehr sch\u00f6nes Wetter in"}]}
text-generation
anonymous-german-nlp/german-gpt2
[ "transformers", "pytorch", "tf", "jax", "gpt2", "text-generation", "de", "license:mit", "autotrain_compatible", "endpoints_compatible", "has_space", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "de" ]
TAGS #transformers #pytorch #tf #jax #gpt2 #text-generation #de #license-mit #autotrain_compatible #endpoints_compatible #has_space #text-generation-inference #region-us
# German GPT-2 model Note: This model was de-anonymized and now lives at: URL Please use the new model name instead!
[ "# German GPT-2 model\n\nNote: This model was de-anonymized and now lives at:\n\nURL\n\nPlease use the new model name instead!" ]
[ "TAGS\n#transformers #pytorch #tf #jax #gpt2 #text-generation #de #license-mit #autotrain_compatible #endpoints_compatible #has_space #text-generation-inference #region-us \n", "# German GPT-2 model\n\nNote: This model was de-anonymized and now lives at:\n\nURL\n\nPlease use the new model name instead!" ]
[ 64, 30 ]
[ "passage: TAGS\n#transformers #pytorch #tf #jax #gpt2 #text-generation #de #license-mit #autotrain_compatible #endpoints_compatible #has_space #text-generation-inference #region-us \n# German GPT-2 model\n\nNote: This model was de-anonymized and now lives at:\n\nURL\n\nPlease use the new model name instead!" ]
[ -0.004146211314946413, 0.052292048931121826, -0.0017446852289140224, 0.10401535034179688, 0.06770245730876923, 0.04612460359930992, 0.16857320070266724, 0.08686314523220062, 0.04005904495716095, -0.043726298958063126, 0.15250873565673828, 0.11394444108009338, -0.010773802176117897, 0.11226895451545715, 0.006834208499640226, -0.32639795541763306, 0.10027890652418137, 0.020932987332344055, -0.03049357607960701, 0.07669755071401596, 0.1295587718486786, -0.007808450143784285, 0.13466811180114746, 0.03754570707678795, -0.10230156034231186, 0.02399960346519947, 0.059490662068128586, -0.10181722790002823, 0.114165298640728, 0.0567164309322834, 0.041275735944509506, 0.06526504456996918, 0.031615182757377625, 0.014064384624361992, 0.020574623718857765, -0.006308617535978556, -0.10198620706796646, 0.0671619325876236, -0.011570177972316742, -0.0104652289301157, 0.20365245640277863, 0.08989328891038895, -0.034699101001024246, -0.014629073441028595, -0.12147289514541626, -0.14198677241802216, -0.045931581407785416, 0.16700297594070435, -0.05094432458281517, 0.04326477646827698, 0.00829167477786541, 0.1266251653432846, -0.0892551839351654, 0.04867285117506981, 0.11899357289075851, -0.3673287332057953, -0.018484193831682205, 0.19879266619682312, 0.05962751805782318, -0.006792906206101179, 0.008333247154951096, 0.12211193144321442, 0.038816533982753754, 0.03653288260102272, 0.043969180434942245, -0.04301433265209198, -0.007596329320222139, 0.04072488099336624, -0.104734867811203, -0.07307813316583633, 0.19957351684570312, -0.030754026025533676, -0.0020896594505757093, -0.0251996461302042, -0.0888960137963295, 0.024465275928378105, -0.01959490031003952, -0.10848776996135712, -0.0182937141507864, 0.05109265446662903, 0.033405378460884094, -0.13632360100746155, -0.07878472656011581, -0.05848713964223862, -0.15206755697727203, 0.24087658524513245, 0.017366958782076836, 0.10358400642871857, -0.1565927267074585, 0.12190970778465271, -0.2065938264131546, -0.09862641245126724, -0.009519199840724468, -0.13170304894447327, 0.124495729804039, 0.03197849541902542, -0.04874715954065323, -0.013748752884566784, 0.04342101886868477, 0.13098779320716858, 0.045260604470968246, -0.0380730926990509, 0.05904991924762726, 0.08947157114744186, 0.01547185331583023, 0.13336631655693054, -0.08082497864961624, -0.053855471312999725, 0.07448676973581314, -0.08793243765830994, 0.03342029079794884, -0.0367877371609211, -0.2315431535243988, -0.04647444188594818, 0.018850114196538925, 0.009433425962924957, 0.017293009907007217, 0.164878249168396, -0.0035458134952932596, -0.03470992296934128, 0.1682012528181076, -0.013662251643836498, 0.007650303188711405, -0.07273545861244202, -0.000016373944163206033, 0.06254211068153381, 0.036811910569667816, 0.000600361090619117, -0.058570656925439835, 0.021815789863467216, -0.08518850803375244, -0.0863618478178978, -0.06224353611469269, -0.11847801506519318, 0.030337223783135414, 0.01481977291405201, 0.006603074260056019, -0.17927832901477814, -0.17531909048557281, 0.050456345081329346, 0.0714808851480484, -0.0031973617151379585, -0.07176379859447479, 0.022802848368883133, -0.06754770874977112, 0.06693919748067856, -0.041381869465112686, -0.035664815455675125, -0.03356527164578438, 0.031176814809441566, -0.06688419729471207, 0.10878784954547882, -0.2484581470489502, 0.0669030025601387, -0.10127029567956924, -0.021750090643763542, -0.16855034232139587, 0.028734920546412468, -0.03324766457080841, -0.012212519533932209, -0.006469004787504673, -0.06422402709722519, -0.04883856698870659, 0.08062411099672318, -0.009569935500621796, 0.1309739500284195, -0.11389981210231781, -0.10027898102998734, 0.23314079642295837, -0.13780605792999268, -0.13964314758777618, 0.08911114186048508, -0.00308074033819139, 0.06182469055056572, 0.08672021329402924, 0.16388075053691864, 0.0840025246143341, -0.08050226420164108, 0.05228419601917267, 0.07239318639039993, -0.1384262591600418, -0.07590438425540924, 0.04178276285529137, 0.0017047091387212276, -0.21768628060817719, 0.0643579363822937, -0.13124153017997742, 0.015099816024303436, -0.04145544022321701, -0.020258046686649323, -0.04338189214468002, -0.008444469422101974, 0.10386542230844498, -0.04660406708717346, 0.09383706748485565, -0.04728597030043602, -0.10455272346735, 0.040687669068574905, 0.040428608655929565, 0.006141968071460724, 0.0068289004266262054, -0.040854379534721375, 0.1273738145828247, -0.003221274120733142, 0.057165928184986115, -0.0886780172586441, -0.09800665825605392, -0.00576305715367198, 0.041165389120578766, 0.06708233803510666, 0.17620302736759186, 0.07589804381132126, -0.02557668648660183, -0.04542999342083931, 0.02317991480231285, 0.03312442824244499, 0.016594916582107544, -0.022054649889469147, -0.09336157143115997, -0.027534648776054382, -0.029177898541092873, -0.03966621309518814, -0.014648922719061375, 0.0027619400061666965, -0.04076787829399109, 0.08259785920381546, -0.010768325999379158, 0.0663367360830307, -0.07403264939785004, -0.01934998482465744, -0.06556235253810883, -0.01017635315656662, 0.03806828334927559, 0.010669127106666565, -0.042082853615283966, 0.22839128971099854, -0.06808433681726456, 0.2582804560661316, 0.18852339684963226, -0.0910840779542923, -0.040052659809589386, 0.08346520364284515, -0.039766695350408554, 0.05460658669471741, 0.06484398990869522, -0.07161002606153488, 0.10043509304523468, -0.07526103407144547, 0.10698391497135162, -0.09465004503726959, 0.0008046855218708515, -0.003603581804782152, -0.04358905553817749, -0.054138053208589554, 0.03323812410235405, 0.1500823199748993, -0.13172754645347595, 0.12988010048866272, 0.189460888504982, -0.014792882837355137, 0.18607386946678162, 0.025444652885198593, -0.007485576905310154, -0.015372129157185555, -0.08691908419132233, -0.03207157924771309, 0.06545715779066086, -0.09594450891017914, -0.01914137415587902, 0.09401978552341461, 0.03612760454416275, 0.07553821802139282, -0.10056672990322113, -0.03259501978754997, 0.008043880574405193, -0.020340902730822563, -0.04872255399823189, 0.11703679710626602, -0.03344898298382759, 0.13494423031806946, 0.006197758950293064, -0.10785522311925888, 0.08983567357063293, 0.043818216770887375, -0.06765075773000717, 0.15294253826141357, -0.0628613755106926, -0.2617343068122864, -0.12628905475139618, -0.022068152204155922, -0.08544472604990005, 0.058062389492988586, 0.08022889494895935, -0.008032609708607197, -0.0525667667388916, -0.02058514580130577, 0.09330832213163376, -0.053362373262643814, 0.05038239061832428, -0.08662831038236618, -0.03654133155941963, -0.03486268222332001, -0.12567827105522156, -0.07901978492736816, -0.05306737869977951, -0.07468146085739136, 0.10105065256357193, -0.08808975666761398, 0.06723485141992569, 0.1348811686038971, -0.06448782980442047, 0.04968656972050667, -0.012915467843413353, 0.20760385692119598, -0.04939508065581322, 0.09026502072811127, 0.16141918301582336, 0.05453570932149887, 0.0760999321937561, 0.11758141964673996, 0.005728523246943951, -0.04485388845205307, 0.0034046012442559004, -0.026836169883608818, -0.11552584171295166, -0.14264073967933655, -0.12241895496845245, -0.059447333216667175, 0.016051532700657845, 0.029955551028251648, 0.05581382289528847, 0.1816939264535904, 0.08849996328353882, -0.027589917182922363, 0.07288356870412827, -0.0378415621817112, 0.04811090975999832, 0.1418585628271103, -0.026941968128085136, 0.1361856609582901, -0.062070682644844055, -0.11881577223539352, 0.15372180938720703, 0.01723037101328373, 0.055359430611133575, 0.07025092840194702, -0.04721295088529587, 0.08107426762580872, 0.08182407170534134, 0.11115504056215286, 0.09841810166835785, 0.011749346740543842, -0.039537377655506134, -0.0723659098148346, -0.07690104097127914, 0.020411068573594093, 0.09233038127422333, 0.010081209242343903, -0.11414904147386551, -0.04146653413772583, -0.07087401300668716, 0.06486963480710983, 0.0283830463886261, 0.09300842881202698, -0.2526229918003082, -0.07294619828462601, 0.03683290630578995, -0.015579069964587688, -0.05622752010822296, 0.036272190511226654, -0.02884565480053425, -0.12075312435626984, 0.07031596451997757, 0.033914171159267426, 0.09001927822828293, 0.02660948410630226, 0.06318042427301407, 0.029577629640698433, -0.020998947322368622, 0.0027327181305736303, 0.0819702073931694, -0.2445390671491623, 0.26273590326309204, 0.0005449476884678006, -0.043836940079927444, -0.11326078325510025, -0.011039037257432938, 0.06362961232662201, 0.1702304184436798, 0.10475308448076248, 0.027365168556571007, -0.08717264235019684, 0.060815900564193726, -0.04831087961792946, 0.05020992085337639, 0.053089454770088196, -0.07535312324762344, 0.004107046406716108, -0.06268562376499176, -0.0008311254787258804, 0.026082346215844154, 0.150069460272789, -0.08232630789279938, -0.054715681821107864, 0.07883454114198685, 0.10001412034034729, 0.026013970375061035, -0.004451392684131861, -0.07228364050388336, -0.10367823392152786, 0.22116434574127197, 0.07185501605272293, -0.10683424770832062, -0.1450803279876709, -0.060997553169727325, 0.05152325704693794, -0.08368213474750519, 0.07045471668243408, -0.05378590151667595, 0.03960033506155014, -0.02095774933695793, -0.227796733379364, 0.1353544145822525, -0.07743348181247711, -0.03620650991797447, 0.011026063933968544, 0.11392796039581299, -0.04364040866494179, 0.02025531977415085, 0.05099571496248245, 0.010716570541262627, -0.0730975866317749, -0.16094790399074554, 0.025925153866410255, -0.014310263097286224, -0.01069643348455429, -0.05337737500667572, -0.07899437844753265, -0.035164374858140945, 0.09886635839939117, 0.07803381979465485, 0.15516237914562225, 0.12319771200418472, -0.10741859674453735, 0.150858074426651, 0.10993979871273041, -0.036857083439826965, -0.34546664357185364, -0.09360641986131668, -0.0653187483549118, 0.011389481835067272, -0.03075222298502922, -0.12165265530347824, 0.047457754611968994, 0.015719018876552582, -0.07451207935810089, 0.07734636217355728, -0.1881413757801056, -0.10747761279344559, 0.13944490253925323, -0.0363839827477932, 0.3040919899940491, -0.09013035148382187, -0.06355276703834534, -0.06775522232055664, -0.2029726207256317, 0.1580049842596054, -0.0533011294901371, 0.08520250022411346, -0.021097328513860703, 0.14778520166873932, 0.00895211473107338, -0.019725702702999115, 0.09987913072109222, 0.012549103237688541, 0.03262735530734062, -0.1201055571436882, -0.10072673112154007, 0.17904217541217804, -0.019100598990917206, 0.16017982363700867, -0.02852756902575493, 0.05682140588760376, -0.07773055136203766, -0.054389338940382004, -0.12467177212238312, 0.091567762196064, -0.0061605460941791534, -0.1203320249915123, -0.04696228727698326, 0.020977575331926346, -0.02276434190571308, -0.01949315331876278, 0.07686644047498703, -0.027211712673306465, 0.05112529173493385, 0.04930726811289787, 0.035383619368076324, -0.10305674374103546, 0.03424397110939026, -0.008909642696380615, -0.09459683299064636, 0.12688910961151123, -0.15259452164173126, 0.043452490121126175, 0.060882408171892166, -0.03166875243186951, 0.032417748123407364, 0.08128514885902405, -0.025448696687817574, -0.03300786018371582, 0.1397842913866043, -0.22703948616981506, -0.061011865735054016, -0.08987864851951599, -0.0758276879787445, 0.08576308190822601, 0.1528882533311844, 0.17084889113903046, -0.06742832064628601, -0.041112229228019714, -0.0066753411665558815, -0.027595868334174156, -0.08784182369709015, -0.05243817716836929, 0.07400190830230713, -0.01295922975987196, -0.10123367607593536, 0.03507097810506821, -0.00699603371322155, 0.009256049990653992, 0.029662495478987694, 0.007326300721615553, -0.09408359974622726, -0.11530566960573196, -0.04092693701386452, 0.04953916370868683, -0.2272692173719406, -0.044673074036836624, -0.005355822388082743, -0.08222611993551254, 0.06019175797700882, 0.0437559075653553, 0.08122199028730392, 0.07578682899475098, -0.037195947021245956, 0.006359584629535675, -0.02289155311882496, -0.03237099573016167, -0.044555775821208954, 0.02761290781199932, -0.10857846587896347, 0.08926766365766525, -0.06673772633075714, 0.0904652327299118, -0.11422254890203476, 0.00582286948338151, -0.1470559537410736, -0.03970568627119064, -0.16074229776859283, -0.09847371280193329, -0.020207537338137627, -0.027630247175693512, 0.005706453695893288, -0.08810269087553024, -0.08406677842140198, 0.02173001877963543, -0.12930892407894135, -0.008600877597928047, -0.008024429902434349, 0.03237040713429451, -0.07873818278312683, -0.0005235639400780201, 0.04241170361638069, 0.019997380673885345, 0.12611731886863708, 0.07735622674226761, -0.027592763304710388, 0.10296045243740082, -0.10204824060201645, -0.02041454240679741, 0.048626549541950226, 0.01428100187331438, 0.06596387922763824, 0.06213011592626572, 0.03546925634145737, 0.04851411283016205, -0.0002380812948103994, 0.058370668441057205, -0.051778655499219894, -0.07957424223423004, 0.03290005773305893, 0.0011167047778144479, -0.07590370625257492, 0.015198004432022572, 0.01109830942004919, 0.0512632392346859, 0.009126262739300728, 0.09587841480970383, -0.01666591688990593, -0.023448418825864792, -0.11022201180458069, 0.03268985450267792, -0.010087065398693085, -0.13726896047592163, -0.07264184206724167, -0.07858406752347946, -0.008547690697014332, 0.010291851125657558, 0.29010123014450073, 0.14545989036560059, -0.07660370320081711, 0.008895376697182655, 0.12276654690504074, 0.09258697181940079, -0.017876246944069862, 0.22462813556194305, 0.03147813677787781, -0.004638021811842918, -0.10170527547597885, 0.05976738780736923, -0.004754581023007631, -0.03612511605024338, 0.17761148512363434, -0.0007883433718234301, 0.0304254200309515, 0.06967014819383621, 0.08171822130680084, 0.054723627865314484, -0.18237590789794922, -0.18993869423866272, 0.0045096236281096935, 0.10420643538236618, -0.04300948604941368, -0.026340991258621216, 0.12380540370941162, -0.04935302212834358, 0.05837079510092735, 0.00539188040420413, 0.005912238731980324, -0.1519766002893448, -0.2650834023952484, -0.10284795612096786, -0.1808215230703354, -0.014358285814523697, -0.09107287228107452, -0.004629611503332853, 0.04001321271061897, 0.047277290374040604, -0.09193235635757446, 0.03214282914996147, -0.12496498972177505, -0.0794474333524704, 0.10195139795541763, -0.02743694745004177, 0.007758161053061485, -0.008507114835083485, -0.01960606686770916, -0.10839898139238358, 0.05877294763922691, -0.0382358655333519, 0.011724865064024925, -0.02406146004796028, -0.01280888170003891, -0.08509070426225662, -0.04105390980839729, -0.07627221941947937, 0.032078105956315994, 0.02606062963604927, 0.03585775941610336, -0.012411698698997498, -0.05500544235110283, 0.036543551832437515, 0.19658775627613068, -0.03846440836787224, -0.1002817377448082, -0.08775481581687927, 0.25865569710731506, -0.004026188049465418, 0.11768713593482971, -0.0049153827130794525, -0.03351878747344017, -0.07743906229734421, 0.23387552797794342, 0.4007292091846466, -0.08669859915971756, 0.025581663474440575, 0.021088682115077972, 0.016865301877260208, 0.08554811775684357, 0.1535852551460266, -0.004339142702519894, 0.2386467605829239, -0.04052448272705078, -0.04357437044382095, -0.03719262406229973, 0.0277701448649168, -0.034384697675704956, 0.1370689868927002, 0.027637101709842682, -0.13880489766597748, -0.04361279308795929, 0.052506834268569946, -0.14017793536186218, 0.060968734323978424, -0.0875777006149292, -0.09512408822774887, -0.10840729624032974, 0.028949009254574776, 0.0015815882943570614, 0.07452604174613953, 0.11276080459356308, -0.04388584941625595, -0.03434251993894577, 0.09161324054002762, 0.0024388115853071213, -0.1735701709985733, -0.05624684691429138, 0.09988363087177277, 0.07705222070217133, 0.12856854498386383, 0.0056543173268437386, 0.03507617861032486, 0.07629848271608353, -0.016398701816797256, -0.03860802575945854, 0.05134080722928047, 0.0007653604261577129, -0.057464856654405594, -0.006102892104536295, -0.07162769138813019, -0.016395023092627525, -0.10480178147554398, 0.04934599623084068, -0.10835527628660202, 0.023639898747205734, 0.05186815187335014, -0.0741339772939682, -0.07667441666126251, 0.07365840673446655, -0.09704338014125824, 0.09224803000688553, 0.1296052634716034, -0.02151622250676155, -0.03497730940580368, -0.056290362030267715, 0.07859671860933304, 0.0709967240691185, -0.09060946106910706, -0.06195784732699394, -0.05312913656234741, -0.05121317505836487, 0.008798163384199142, -0.00360797974281013, -0.17921601235866547, -0.006269725505262613, -0.074793241918087, 0.039493314921855927, -0.10416435450315475, 0.06526138633489609, 0.12889286875724792, -0.003141808556392789, 0.02340768091380596, 0.04571923613548279, -0.004785116761922836, 0.03160111978650093, -0.08587165921926498, -0.0921373963356018 ]
null
null
transformers
# Disclaimer: This page is under maintenance. Please DO NOT refer to the information on this page to make any decision yet. # Vaccinating COVID tweets A fine-tuned model for fact-classification task on English tweets about COVID-19/vaccine. ## Intended uses & limitations You can classify if the input tweet (or any others statement) about COVID-19/vaccine is `true`, `false` or `misleading`. Note that since this model was trained with data up to May 2020, the most recent information may not be reflected. #### How to use You can use this model directly on this page or using `transformers` in python. - Load pipeline and implement with input sequence ```python from transformers import pipeline pipe = pipeline("sentiment-analysis", model = "ans/vaccinating-covid-tweets") seq = "Vaccines to prevent SARS-CoV-2 infection are considered the most promising approach for curbing the pandemic." pipe(seq) ``` - Expected output ```python [ { "label": "false", "score": 0.07972867041826248 }, { "label": "misleading", "score": 0.019911376759409904 }, { "label": "true", "score": 0.9003599882125854 } ] ``` - `true` examples ```python "By the end of 2020, several vaccines had become available for use in different parts of the world." "Vaccines to prevent SARS-CoV-2 infection are considered the most promising approach for curbing the pandemic." "RNA vaccines were the first vaccines for SARS-CoV-2 to be produced and represent an entirely new vaccine approach." ``` - `false` examples ```python "COVID-19 vaccine caused new strain in UK." ``` #### Limitations and bias To conservatively classify whether an input sequence is true or not, the model may have predictions biased toward `false` or `misleading`. ## Training data & Procedure #### Pre-trained baseline model - Pre-trained model: [BERTweet](https://github.com/VinAIResearch/BERTweet) - trained based on the RoBERTa pre-training procedure - 850M General English Tweets (Jan 2012 to Aug 2019) - 23M COVID-19 English Tweets - Size of the model: >134M parameters - Further training - Pre-training with recent COVID-19/vaccine tweets and fine-tuning for fact classification #### 1) Pre-training language model - The model was pre-trained on COVID-19/vaccined related tweets using a masked language modeling (MLM) objective starting from BERTweet. - Following datasets on English tweets were used: - Tweets with trending #CovidVaccine hashtag, 207,000 tweets uploaded across Aug 2020 to Apr 2021 ([kaggle](https://www.kaggle.com/kaushiksuresh147/covidvaccine-tweets)) - Tweets about all COVID-19 vaccines, 78,000 tweets uploaded across Dec 2020 to May 2021 ([kaggle](https://www.kaggle.com/gpreda/all-covid19-vaccines-tweets)) - COVID-19 Twitter chatter dataset, 590,000 tweets uploaded across Mar 2021 to May 2021 ([github](https://github.com/thepanacealab/covid19_twitter)) #### 2) Fine-tuning for fact classification - A fine-tuned model from pre-trained language model (1) for fact-classification task on COVID-19/vaccine. - COVID-19/vaccine-related statements were collected from [Poynter](https://www.poynter.org/ifcn-covid-19-misinformation/) and [Snopes](https://www.snopes.com/) using Selenium resulting in over 14,000 fact-checked statements from Jan 2020 to May 2021. - Original labels were divided within following three categories: - `False`: includes false, no evidence, manipulated, fake, not true, unproven and unverified - `Misleading`: includes misleading, exaggerated, out of context and needs context - `True`: includes true and correct ## Evaluation results | Training loss | Validation loss | Training accuracy | Validation accuracy | | --- | --- | --- | --- | | 0.1062 | 0.1006 | 96.3% | 94.5% | # Contributors - This model is a part of final team project from MLDL for DS class at SNU. - Team BIBI - Vaccinating COVID-NineTweets - Team members: Ahn, Hyunju; An, Jiyong; An, Seungchan; Jeong, Seokho; Kim, Jungmin; Kim, Sangbeom - Advisor: Prof. Wen-Syan Li <a href="https://gsds.snu.ac.kr/"><img src="https://gsds.snu.ac.kr/wp-content/uploads/sites/50/2021/04/GSDS_logo2-e1619068952717.png" width="200" height="80"></a>
{"language": "en", "license": "apache-2.0", "datasets": ["tweets"], "widget": [{"text": "Vaccines to prevent SARS-CoV-2 infection are considered the most promising approach for curbing the pandemic."}]}
text-classification
ans/vaccinating-covid-tweets
[ "transformers", "pytorch", "roberta", "text-classification", "en", "dataset:tweets", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #roberta #text-classification #en #dataset-tweets #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
Disclaimer: This page is under maintenance. Please DO NOT refer to the information on this page to make any decision yet. ========================================================================================================================= Vaccinating COVID tweets ======================== A fine-tuned model for fact-classification task on English tweets about COVID-19/vaccine. Intended uses & limitations --------------------------- You can classify if the input tweet (or any others statement) about COVID-19/vaccine is 'true', 'false' or 'misleading'. Note that since this model was trained with data up to May 2020, the most recent information may not be reflected. #### How to use You can use this model directly on this page or using 'transformers' in python. * Load pipeline and implement with input sequence * Expected output * 'true' examples * 'false' examples #### Limitations and bias To conservatively classify whether an input sequence is true or not, the model may have predictions biased toward 'false' or 'misleading'. Training data & Procedure ------------------------- #### Pre-trained baseline model * Pre-trained model: BERTweet + trained based on the RoBERTa pre-training procedure + 850M General English Tweets (Jan 2012 to Aug 2019) + 23M COVID-19 English Tweets + Size of the model: >134M parameters * Further training + Pre-training with recent COVID-19/vaccine tweets and fine-tuning for fact classification #### 1) Pre-training language model * The model was pre-trained on COVID-19/vaccined related tweets using a masked language modeling (MLM) objective starting from BERTweet. * Following datasets on English tweets were used: + Tweets with trending #CovidVaccine hashtag, 207,000 tweets uploaded across Aug 2020 to Apr 2021 (kaggle) + Tweets about all COVID-19 vaccines, 78,000 tweets uploaded across Dec 2020 to May 2021 (kaggle) + COVID-19 Twitter chatter dataset, 590,000 tweets uploaded across Mar 2021 to May 2021 (github) #### 2) Fine-tuning for fact classification * A fine-tuned model from pre-trained language model (1) for fact-classification task on COVID-19/vaccine. * COVID-19/vaccine-related statements were collected from Poynter and Snopes using Selenium resulting in over 14,000 fact-checked statements from Jan 2020 to May 2021. * Original labels were divided within following three categories: + 'False': includes false, no evidence, manipulated, fake, not true, unproven and unverified + 'Misleading': includes misleading, exaggerated, out of context and needs context + 'True': includes true and correct Evaluation results ------------------ Contributors ============ * This model is a part of final team project from MLDL for DS class at SNU. + Team BIBI - Vaccinating COVID-NineTweets + Team members: Ahn, Hyunju; An, Jiyong; An, Seungchan; Jeong, Seokho; Kim, Jungmin; Kim, Sangbeom + Advisor: Prof. Wen-Syan Li <a href="URL src="URL width="200" height="80">
[ "#### How to use\n\n\nYou can use this model directly on this page or using 'transformers' in python.\n\n\n* Load pipeline and implement with input sequence\n* Expected output\n* 'true' examples\n* 'false' examples", "#### Limitations and bias\n\n\nTo conservatively classify whether an input sequence is true or not, the model may have predictions biased toward 'false' or 'misleading'.\n\n\nTraining data & Procedure\n-------------------------", "#### Pre-trained baseline model\n\n\n* Pre-trained model: BERTweet\n\t+ trained based on the RoBERTa pre-training procedure\n\t+ 850M General English Tweets (Jan 2012 to Aug 2019)\n\t+ 23M COVID-19 English Tweets\n\t+ Size of the model: >134M parameters\n* Further training\n\t+ Pre-training with recent COVID-19/vaccine tweets and fine-tuning for fact classification", "#### 1) Pre-training language model\n\n\n* The model was pre-trained on COVID-19/vaccined related tweets using a masked language modeling (MLM) objective starting from BERTweet.\n* Following datasets on English tweets were used:\n\t+ Tweets with trending #CovidVaccine hashtag, 207,000 tweets uploaded across Aug 2020 to Apr 2021 (kaggle)\n\t+ Tweets about all COVID-19 vaccines, 78,000 tweets uploaded across Dec 2020 to May 2021 (kaggle)\n\t+ COVID-19 Twitter chatter dataset, 590,000 tweets uploaded across Mar 2021 to May 2021 (github)", "#### 2) Fine-tuning for fact classification\n\n\n* A fine-tuned model from pre-trained language model (1) for fact-classification task on COVID-19/vaccine.\n* COVID-19/vaccine-related statements were collected from Poynter and Snopes using Selenium resulting in over 14,000 fact-checked statements from Jan 2020 to May 2021.\n* Original labels were divided within following three categories:\n\t+ 'False': includes false, no evidence, manipulated, fake, not true, unproven and unverified\n\t+ 'Misleading': includes misleading, exaggerated, out of context and needs context\n\t+ 'True': includes true and correct\n\n\nEvaluation results\n------------------\n\n\n\nContributors\n============\n\n\n* This model is a part of final team project from MLDL for DS class at SNU.\n\t+ Team BIBI - Vaccinating COVID-NineTweets\n\t+ Team members: Ahn, Hyunju; An, Jiyong; An, Seungchan; Jeong, Seokho; Kim, Jungmin; Kim, Sangbeom\n\t+ Advisor: Prof. Wen-Syan Li\n\n\n<a href=\"URL src=\"URL width=\"200\" height=\"80\">" ]
[ "TAGS\n#transformers #pytorch #roberta #text-classification #en #dataset-tweets #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "#### How to use\n\n\nYou can use this model directly on this page or using 'transformers' in python.\n\n\n* Load pipeline and implement with input sequence\n* Expected output\n* 'true' examples\n* 'false' examples", "#### Limitations and bias\n\n\nTo conservatively classify whether an input sequence is true or not, the model may have predictions biased toward 'false' or 'misleading'.\n\n\nTraining data & Procedure\n-------------------------", "#### Pre-trained baseline model\n\n\n* Pre-trained model: BERTweet\n\t+ trained based on the RoBERTa pre-training procedure\n\t+ 850M General English Tweets (Jan 2012 to Aug 2019)\n\t+ 23M COVID-19 English Tweets\n\t+ Size of the model: >134M parameters\n* Further training\n\t+ Pre-training with recent COVID-19/vaccine tweets and fine-tuning for fact classification", "#### 1) Pre-training language model\n\n\n* The model was pre-trained on COVID-19/vaccined related tweets using a masked language modeling (MLM) objective starting from BERTweet.\n* Following datasets on English tweets were used:\n\t+ Tweets with trending #CovidVaccine hashtag, 207,000 tweets uploaded across Aug 2020 to Apr 2021 (kaggle)\n\t+ Tweets about all COVID-19 vaccines, 78,000 tweets uploaded across Dec 2020 to May 2021 (kaggle)\n\t+ COVID-19 Twitter chatter dataset, 590,000 tweets uploaded across Mar 2021 to May 2021 (github)", "#### 2) Fine-tuning for fact classification\n\n\n* A fine-tuned model from pre-trained language model (1) for fact-classification task on COVID-19/vaccine.\n* COVID-19/vaccine-related statements were collected from Poynter and Snopes using Selenium resulting in over 14,000 fact-checked statements from Jan 2020 to May 2021.\n* Original labels were divided within following three categories:\n\t+ 'False': includes false, no evidence, manipulated, fake, not true, unproven and unverified\n\t+ 'Misleading': includes misleading, exaggerated, out of context and needs context\n\t+ 'True': includes true and correct\n\n\nEvaluation results\n------------------\n\n\n\nContributors\n============\n\n\n* This model is a part of final team project from MLDL for DS class at SNU.\n\t+ Team BIBI - Vaccinating COVID-NineTweets\n\t+ Team members: Ahn, Hyunju; An, Jiyong; An, Seungchan; Jeong, Seokho; Kim, Jungmin; Kim, Sangbeom\n\t+ Advisor: Prof. Wen-Syan Li\n\n\n<a href=\"URL src=\"URL width=\"200\" height=\"80\">" ]
[ 53, 55, 52, 94, 144, 276 ]
[ "passage: TAGS\n#transformers #pytorch #roberta #text-classification #en #dataset-tweets #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n#### How to use\n\n\nYou can use this model directly on this page or using 'transformers' in python.\n\n\n* Load pipeline and implement with input sequence\n* Expected output\n* 'true' examples\n* 'false' examples#### Limitations and bias\n\n\nTo conservatively classify whether an input sequence is true or not, the model may have predictions biased toward 'false' or 'misleading'.\n\n\nTraining data & Procedure\n-------------------------#### Pre-trained baseline model\n\n\n* Pre-trained model: BERTweet\n\t+ trained based on the RoBERTa pre-training procedure\n\t+ 850M General English Tweets (Jan 2012 to Aug 2019)\n\t+ 23M COVID-19 English Tweets\n\t+ Size of the model: >134M parameters\n* Further training\n\t+ Pre-training with recent COVID-19/vaccine tweets and fine-tuning for fact classification#### 1) Pre-training language model\n\n\n* The model was pre-trained on COVID-19/vaccined related tweets using a masked language modeling (MLM) objective starting from BERTweet.\n* Following datasets on English tweets were used:\n\t+ Tweets with trending #CovidVaccine hashtag, 207,000 tweets uploaded across Aug 2020 to Apr 2021 (kaggle)\n\t+ Tweets about all COVID-19 vaccines, 78,000 tweets uploaded across Dec 2020 to May 2021 (kaggle)\n\t+ COVID-19 Twitter chatter dataset, 590,000 tweets uploaded across Mar 2021 to May 2021 (github)" ]
[ -0.013448902405798435, 0.03936873748898506, -0.004436479415744543, -0.009491684846580029, 0.07302360236644745, 0.03746340423822403, 0.11799094080924988, 0.08363620936870575, -0.049996268004179, 0.13610602915287018, 0.07488454133272171, -0.031882982701063156, 0.09166305512189865, 0.13841623067855835, 0.061258960515260696, -0.23377352952957153, 0.04660249501466751, -0.10545200109481812, -0.021129703149199486, 0.12765614688396454, 0.09380724281072617, -0.0949796587228775, 0.08952781558036804, 0.030308671295642853, -0.03533737733960152, -0.039148397743701935, 0.00441170297563076, -0.041563745588064194, 0.04488696902990341, 0.042271167039871216, 0.1036655381321907, 0.011265303008258343, 0.09421373903751373, -0.21959622204303741, 0.02593880705535412, 0.08540822565555573, -0.008223352022469044, 0.07211948931217194, 0.0899994894862175, -0.06639910489320755, 0.131969153881073, -0.12924420833587646, 0.12691614031791687, 0.08465275168418884, -0.12200716882944107, -0.08498994261026382, -0.11340917646884918, 0.03757724165916443, 0.10530561208724976, 0.11514917761087418, -0.052248142659664154, 0.13092122972011566, -0.032333195209503174, 0.03913193196058273, 0.14871464669704437, -0.19899381697177887, -0.033997830003499985, -0.0026676435954868793, 0.016924478113651276, 0.067461296916008, -0.06267008930444717, 0.04529538378119469, 0.02189544029533863, -0.0014081430854275823, 0.04999930411577225, -0.003692243481054902, 0.06763387471437454, -0.0540752038359642, -0.12664908170700073, -0.07909099012613297, 0.07105504721403122, 0.033992476761341095, -0.04814741015434265, -0.16337649524211884, 0.010594365186989307, -0.0930943563580513, -0.06133028119802475, -0.0529850572347641, 0.02422441728413105, -0.016002284362912178, -0.02029547467827797, -0.053665779531002045, -0.10720721632242203, 0.027822909876704216, -0.06264109909534454, 0.024490617215633392, 0.006271620746701956, 0.009202114306390285, -0.016194455325603485, 0.05581517890095711, 0.03435241058468819, -0.12826620042324066, 0.011042569763958454, -0.013072270900011063, -0.14839820563793182, -0.05839892476797104, -0.038485124707221985, -0.01249348558485508, 0.04197731614112854, 0.09930972009897232, -0.11122259497642517, -0.008722657337784767, -0.02126074768602848, -0.034312814474105835, 0.058770835399627686, 0.0688132718205452, -0.17336326837539673, -0.02177235670387745, -0.0036159136798232794, 0.002689637942239642, -0.021962910890579224, -0.0069915191270411015, -0.015958230942487717, 0.03685222566127777, 0.00968978088349104, 0.08522342145442963, 0.030525509268045425, 0.04749440774321556, -0.057309988886117935, -0.05768413841724396, 0.11610102653503418, -0.10140196233987808, -0.0068834517151117325, 0.01779477670788765, -0.029611749574542046, 0.04612741246819496, 0.0209355466067791, 0.06544557958841324, -0.03165540471673012, 0.0416535809636116, -0.12973259389400482, -0.012871576473116875, -0.030869200825691223, -0.1331673413515091, 0.0596671923995018, -0.01522588450461626, -0.08317738026380539, -0.11397188156843185, -0.04033442586660385, -0.04793194681406021, -0.036298926919698715, -0.03365134820342064, -0.0186470877379179, -0.055702872574329376, -0.03532715514302254, 0.06651362776756287, 0.04311693459749222, 0.13308581709861755, -0.05247367173433304, 0.015982914716005325, -0.17738106846809387, 0.03336644917726517, 0.1097789853811264, 0.012785680592060089, -0.11197349429130554, 0.048503682017326355, -0.15333670377731323, 0.1272440254688263, -0.08822315186262131, 0.10395189374685287, -0.17992843687534332, -0.05366526171565056, 0.020150575786828995, -0.038446586579084396, 0.017712228000164032, 0.12890304625034332, -0.08443253487348557, -0.0644848644733429, 0.13885577023029327, -0.056551795452833176, -0.06459444016218185, 0.08847228437662125, -0.06117379665374756, 0.026036053895950317, 0.12344221770763397, 0.01227949745953083, 0.10395784676074982, -0.23182539641857147, -0.006558496505022049, -0.06827468425035477, -0.03148294612765312, 0.2048846185207367, 0.07157071679830551, -0.07628335058689117, -0.06060903146862984, -0.020489918068051338, -0.027569109573960304, 0.02893870323896408, -0.07724665105342865, -0.03591879829764366, 0.06222033500671387, -0.05998486280441284, 0.008962200954556465, -0.008221488445997238, -0.0247162114828825, -0.05076756700873375, -0.14243392646312714, -0.03554174304008484, 0.09779636561870575, -0.02427876740694046, 0.014073756523430347, -0.12648199498653412, -0.045430272817611694, 0.010997503995895386, -0.01552498061209917, -0.11902212351560593, -0.2123035043478012, 0.029755376279354095, -0.0011084777070209384, 0.10899335891008377, 0.012098335660994053, 0.015614221803843975, 0.06071534380316734, -0.03912686929106712, 0.04357315972447395, 0.011939833872020245, -0.004681963939219713, -0.10485426336526871, -0.18121540546417236, 0.01944657973945141, -0.04848868027329445, 0.23103369772434235, -0.06056256219744682, -0.006147617008537054, 0.04395207017660141, 0.11555338650941849, 0.0567823201417923, -0.027753489091992378, 0.0632747933268547, 0.003122609108686447, 0.03921777009963989, -0.05168933793902397, -0.0006015383987687528, -0.042590685188770294, -0.07347428798675537, 0.12919534742832184, -0.17596712708473206, -0.16972783207893372, 0.10617277026176453, 0.060603465884923935, -0.1418415904045105, -0.04652678966522217, -0.05930449441075325, 0.006352711468935013, -0.054402612149715424, -0.0677676722407341, 0.16220659017562866, 0.024433987215161324, 0.08531919866800308, -0.09277961403131485, -0.0843268632888794, 0.021138329058885574, -0.036027781665325165, -0.09463170170783997, 0.10425332933664322, 0.012878679670393467, -0.29877832531929016, 0.057022616267204285, 0.025656871497631073, 0.09425075352191925, 0.12515176832675934, 0.05858711525797844, -0.09751690179109573, -0.03187604621052742, -0.04549437388777733, 0.03969128802418709, -0.004740034230053425, 0.00007367608486674726, 0.05253325775265694, 0.07818099856376648, -0.02751145139336586, -0.004188488703221083, -0.044914569705724716, 0.01617114432156086, 0.027088703587651253, -0.030950604006648064, -0.0014942786656320095, 0.010016624815762043, 0.04637350142002106, 0.15848393738269806, 0.04028449207544327, 0.03087894432246685, -0.04813970625400543, -0.02761221118271351, -0.1605689525604248, 0.142806738615036, -0.1775972694158554, -0.27369093894958496, -0.10752144455909729, -0.08717995136976242, 0.030132602900266647, -0.0018690311117097735, -0.021390898153185844, -0.10396222770214081, -0.08399339020252228, -0.11274690926074982, 0.02730276621878147, 0.016400080174207687, -0.024619709700345993, -0.02756365016102791, 0.024175774306058884, 0.0315726101398468, -0.07139059156179428, 0.02590859867632389, -0.019023945555090904, -0.11014958471059799, 0.01621107943356037, -0.012665731832385063, 0.07178981602191925, 0.1964973509311676, 0.03135334327816963, -0.020207416266202927, -0.05185316875576973, 0.2343757152557373, -0.13968993723392487, 0.06855233013629913, 0.06806197762489319, 0.05263243243098259, 0.02851150743663311, 0.160502627491951, 0.025485342368483543, -0.05657515674829483, 0.07349901646375656, 0.10853396356105804, -0.03321949765086174, -0.2496657520532608, -0.10853330790996552, -0.026471449062228203, -0.09227298200130463, 0.1262916475534439, 0.014760329388082027, 0.1592530608177185, 0.04458293318748474, -0.1328105926513672, -0.032364971935749054, 0.0572197288274765, 0.06556034833192825, -0.005757328122854233, 0.04855070635676384, 0.08965568244457245, -0.012295658700168133, -0.003802474355325103, 0.09990403801202774, -0.11430351436138153, 0.1654636561870575, -0.01498192548751831, 0.16088439524173737, 0.09223321080207825, 0.04477136954665184, 0.03910515829920769, -0.028543539345264435, 0.020695112645626068, 0.020311228930950165, -0.00020159699488431215, -0.06600215286016464, 0.007805204950273037, 0.048548199236392975, 0.07393772155046463, -0.03424039110541344, -0.05357401818037033, -0.012117632664740086, 0.04399263486266136, 0.20397810637950897, 0.08218325674533844, -0.21075312793254852, -0.05736628174781799, 0.04100416228175163, -0.10321331769227982, -0.05089782923460007, -0.028998196125030518, 0.0956650897860527, -0.16649232804775238, 0.13258890807628632, 0.0025439385790377855, 0.09678749740123749, 0.030117275193333626, -0.02093559503555298, 0.04324540123343468, 0.05772409215569496, -0.08577346801757812, 0.09979429095983505, -0.21865275502204895, 0.19400738179683685, 0.02515997737646103, 0.021910421550273895, -0.07409307360649109, -0.024020036682486534, 0.011898175813257694, 0.0381416454911232, 0.14825724065303802, 0.03364044055342674, 0.04014749079942703, -0.11421061307191849, -0.14249363541603088, -0.058264102786779404, 0.10793571174144745, -0.1214773952960968, 0.12007047235965729, 0.02318059653043747, -0.03501111641526222, -0.05238334834575653, -0.0532677099108696, -0.15973307192325592, -0.12897181510925293, 0.06674233824014664, -0.0663154348731041, 0.0037028291262686253, -0.025760147720575333, -0.0526604950428009, -0.12379032373428345, 0.11463568359613419, -0.07926903665065765, -0.10400499403476715, -0.1754060834646225, 0.11910001188516617, 0.13711386919021606, -0.08446696400642395, 0.03317122161388397, -0.016842130571603775, 0.1546529084444046, -0.055578116327524185, -0.08774494379758835, 0.008734524250030518, -0.06091680750250816, -0.2567897439002991, -0.027114512398838997, 0.21035470068454742, 0.1685274839401245, 0.09933950006961823, 0.03573409095406532, 0.06811003386974335, 0.013778973370790482, -0.08308552205562592, 0.06724754720926285, 0.0781640037894249, 0.11712688952684402, 0.050711680203676224, 0.026585783809423447, -0.10861580073833466, -0.18371020257472992, 0.029298953711986542, 0.0798698365688324, 0.18023750185966492, -0.08134585618972778, 0.1230444610118866, 0.10063550621271133, -0.07664772868156433, -0.15994621813297272, -0.012275166809558868, 0.12766245007514954, 0.019186509773135185, -0.03295823931694031, -0.1772831231355667, 0.06646575033664703, 0.06759683042764664, 0.008635573089122772, -0.020180076360702515, -0.2309916615486145, -0.17200803756713867, 0.04835929721593857, -0.0030462536960840225, -0.06596919149160385, -0.06649891287088394, -0.04302997142076492, -0.017358800396323204, -0.020989323034882545, 0.21369828283786774, -0.04812205955386162, 0.050421103835105896, 0.038439974188804626, 0.0689103826880455, 0.03843791037797928, -0.017697881907224655, 0.158563494682312, 0.044443968683481216, 0.030652564018964767, -0.08947078138589859, -0.06887169182300568, 0.11309856176376343, -0.017979983240365982, 0.028468577191233635, 0.0945759117603302, -0.001840716227889061, -0.12240179628133774, -0.048684172332286835, -0.11222512274980545, 0.0403604693710804, -0.04733658954501152, -0.06151009723544121, -0.11009226739406586, 0.09325729310512543, 0.09303731471300125, -0.04893504083156586, 0.0167271476238966, -0.13523532450199127, 0.08003516495227814, 0.08179961889982224, 0.18607768416404724, 0.04855773597955704, 0.04398803040385246, -0.009457861073315144, -0.06276567280292511, 0.0417964793741703, -0.07706035673618317, 0.014801722951233387, 0.07215926051139832, 0.011980697512626648, 0.1035325899720192, -0.04074949771165848, -0.15889830887317657, 0.027213918045163155, 0.05735711380839348, -0.11764559894800186, -0.1261719912290573, -0.03616420179605484, 0.09062705188989639, -0.1129426509141922, -0.10440288484096527, 0.16973461210727692, -0.008212453685700893, -0.05553159490227699, -0.004423708189278841, 0.08200053125619888, -0.008141941390931606, 0.15622203052043915, 0.024606818333268166, 0.034891948103904724, -0.1268448680639267, -0.0004224055155646056, 0.14729391038417816, -0.03411964327096939, 0.05029318109154701, 0.14511272311210632, -0.12622706592082977, -0.048467740416526794, -0.037843670696020126, 0.05073235556483269, 0.00026964364224113524, -0.007060791831463575, 0.09818179905414581, -0.10304144769906998, 0.07939890772104263, 0.2026837319135666, -0.023828184232115746, 0.05091889575123787, 0.005413604434579611, -0.03242276608943939, -0.046896208077669144, 0.09233172982931137, 0.020748935639858246, -0.010505962185561657, -0.002139662392437458, 0.23538465797901154, 0.013128789141774178, 0.0483076274394989, -0.025619499385356903, -0.01506789866834879, -0.03938886150717735, -0.02438543736934662, -0.04127100110054016, 0.02964506857097149, -0.05139758810400963, -0.02642364799976349, 0.0006902407039888203, -0.07743100076913834, -0.02951117232441902, -0.027416575700044632, -0.04784715920686722, -0.0480385385453701, -0.016986139118671417, 0.0668768659234047, -0.1199243813753128, -0.02092600055038929, 0.0934223160147667, -0.03970371186733246, 0.12072804570198059, 0.023699887096881866, 0.024133754894137383, 0.009617453441023827, -0.14315173029899597, 0.007817852310836315, 0.012657971121370792, 0.053198184818029404, 0.04300323501229286, -0.1595688760280609, -0.002468391554430127, -0.05933351814746857, -0.09273799508810043, 0.0374593548476696, 0.017024731263518333, -0.07634694129228592, 0.03675999492406845, 0.0678798034787178, -0.025865204632282257, -0.10710569471120834, 0.032067425549030304, 0.031291257590055466, -0.054635465145111084, 0.08343695849180222, -0.02151918224990368, 0.07680755853652954, -0.18998394906520844, -0.028006231412291527, -0.00950164720416069, 0.016843486577272415, -0.03405380621552467, -0.01262721698731184, 0.1045757606625557, -0.0017647793283686042, 0.07151918113231659, -0.014809328131377697, 0.008664475753903389, 0.055765971541404724, 0.09131667017936707, 0.08473312109708786, 0.05974756181240082, 0.007185664493590593, 0.04625372216105461, -0.028740916401147842, 0.04221871495246887, -0.05906609445810318, -0.01101387944072485, -0.11361180245876312, 0.18683047592639923, 0.06280326098203659, 0.18037371337413788, -0.04828112944960594, 0.031191062182188034, -0.1117546483874321, 0.012086382135748863, 0.042941514402627945, -0.08460374176502228, -0.005674763582646847, -0.011305653490126133, 0.006267055403441191, 0.1830635666847229, -0.22420433163642883, 0.07564204186201096, 0.013685542158782482, -0.05213172733783722, -0.06815557181835175, -0.17719489336013794, -0.05298640951514244, -0.009601064957678318, -0.0025801206938922405, -0.12055569142103195, 0.012193741276860237, 0.05633369833230972, 0.059354688972234726, 0.042336586862802505, 0.07060336321592331, -0.11300080269575119, -0.08332499861717224, 0.06261924654245377, 0.046388525515794754, 0.07669074088335037, -0.006887095980346203, -0.035690680146217346, 0.06482977420091629, 0.05482111871242523, 0.055438872426748276, 0.0182416420429945, 0.04431169852614403, 0.06443492323160172, -0.040364451706409454, -0.11186239123344421, 0.055583447217941284, -0.014384317211806774, -0.004817750304937363, 0.0848829373717308, 0.07752072066068649, 0.06657341867685318, -0.020832598209381104, 0.17779040336608887, 0.009336069226264954, -0.051326822489500046, -0.19734399020671844, 0.08739836513996124, -0.04561146721243858, 0.022394096478819847, 0.03270407021045685, -0.06942902505397797, 0.0071815140545368195, 0.19811232388019562, 0.1713210493326187, -0.09484750032424927, -0.0019338260171934962, -0.04917290061712265, 0.010252753272652626, 0.0698394700884819, 0.09762924164533615, 0.002819836139678955, 0.18653002381324768, -0.0956248790025711, 0.02189789153635502, -0.016146739944815636, -0.017231769859790802, -0.06270604580640793, 0.02702566236257553, 0.006561540998518467, 0.004167002625763416, -0.02674483321607113, 0.1454322636127472, -0.06294499337673187, -0.16544729471206665, 0.022965971380472183, -0.037665579468011856, -0.10533557087182999, -0.006564251612871885, -0.08202187716960907, 0.06460511684417725, 0.046312473714351654, 0.03502337634563446, -0.004083321895450354, 0.11442834138870239, 0.04215778410434723, -0.06360951066017151, -0.09093111753463745, 0.13683708012104034, -0.042131077498197556, 0.16507145762443542, -0.0005629879888147116, 0.0809159129858017, 0.09370303899049759, -0.03782068192958832, -0.09084264189004898, 0.03360884636640549, 0.05624796822667122, -0.011697614565491676, 0.062399089336395264, 0.15711937844753265, 0.039703529328107834, 0.029430950060486794, 0.10319078713655472, -0.09943615645170212, 0.07222990691661835, -0.1141638308763504, 0.003495379351079464, -0.032514993101358414, 0.1313842535018921, -0.08373183012008667, 0.11012730002403259, 0.19690857827663422, -0.06149094179272652, 0.0254918672144413, -0.02306312508881092, -0.030159268528223038, 0.0005656505818478763, 0.021717147901654243, -0.023567626252770424, -0.1787758469581604, 0.015105617232620716, -0.0608416311442852, 0.04157683625817299, -0.18976303935050964, -0.012562954798340797, -0.017345959320664406, -0.030848009511828423, -0.020916663110256195, 0.14483711123466492, -0.008312941528856754, -0.01839405484497547, -0.022343827411532402, -0.020394252613186836, 0.05997467041015625, 0.14716726541519165, -0.11052588373422623, 0.0017984699225053191 ]
null
null
transformers
{"tags": ["conversational"]}
text-generation
anshengli2/DialogGPT-small-Bot
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 51 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ -0.009697278961539268, 0.03208012506365776, -0.007204889785498381, 0.004809224978089333, 0.16726240515708923, 0.014898733235895634, 0.09765533357858658, 0.13672804832458496, -0.007841327227652073, -0.031050153076648712, 0.14490588009357452, 0.20411323010921478, -0.006439372431486845, 0.0661218985915184, -0.07572533935308456, -0.2683109939098358, 0.05759621039032936, 0.046649303287267685, 0.016515716910362244, 0.1200079694390297, 0.08573378622531891, -0.05473608896136284, 0.08714032918214798, -0.014583407901227474, -0.150366872549057, 0.017733458429574966, 0.043394338339567184, -0.12260226160287857, 0.11910516023635864, 0.05462685227394104, 0.07063519209623337, 0.014929565601050854, -0.07541623711585999, -0.1631229966878891, 0.03031250834465027, 0.01425902172923088, -0.0594632662832737, 0.04757995903491974, 0.059961482882499695, -0.10165371745824814, 0.10819483548402786, 0.09530027210712433, -0.013078106567263603, 0.06798283755779266, -0.16849711537361145, -0.020869607105851173, -0.01446688175201416, 0.009899779222905636, 0.05550243332982063, 0.09964893013238907, -0.03413357585668564, 0.10497362166643143, -0.09214533120393753, 0.11017382889986038, 0.10932035744190216, -0.32057443261146545, -0.005767723545432091, 0.09167823940515518, 0.039358653128147125, 0.07352814823389053, -0.04467793554067612, 0.06258884817361832, 0.018015462905168533, 0.017986174672842026, -0.014015024527907372, -0.07283061742782593, -0.11612214148044586, 0.04717336222529411, -0.08668071031570435, -0.059868961572647095, 0.2244078367948532, -0.05464440956711769, 0.06881742179393768, -0.05281897634267807, -0.10522868484258652, -0.04308144748210907, -0.029833965003490448, 0.00475557055324316, -0.07660607248544693, 0.08692064881324768, 0.00869679357856512, -0.09547875821590424, -0.1376667022705078, -0.02496783249080181, -0.1776352822780609, 0.16140350699424744, 0.02465328387916088, 0.05232657864689827, -0.2027255892753601, 0.09623090922832489, 0.017906051129102707, -0.08045592904090881, 0.022091427817940712, -0.10046248883008957, 0.029131146147847176, 0.013760408386588097, -0.04754498973488808, -0.061387211084365845, 0.0843690037727356, 0.11199145019054413, -0.01731434464454651, 0.025486016646027565, -0.039331406354904175, 0.08100687712430954, 0.03553595021367073, 0.09077847748994827, 0.007288969587534666, -0.028338588774204254, 0.025842782109975815, -0.13719046115875244, -0.003647835226729512, -0.07116208970546722, -0.16572439670562744, -0.021088803187012672, 0.02994808368384838, 0.08289173990488052, 0.015449047088623047, 0.11682453751564026, -0.03272046521306038, -0.025152435526251793, 0.03602350503206253, -0.047656361013650894, -0.012649794109165668, 0.016648368909955025, 0.013163427822291851, 0.12399329990148544, -0.0022096503525972366, 0.03235051408410072, -0.13653022050857544, 0.031423524022102356, -0.06793295592069626, -0.003740974934771657, -0.03486552834510803, -0.040637075901031494, 0.009043924510478973, -0.06862333416938782, 0.003486064961180091, -0.15030112862586975, -0.15063877403736115, 0.007587034720927477, -0.007836631499230862, -0.04107699543237686, -0.06370922178030014, -0.06952770054340363, -0.013550350442528725, 0.04251532256603241, -0.07093454152345657, -0.011352915316820145, -0.06403283774852753, 0.11004766076803207, -0.03197755664587021, 0.07921615242958069, -0.11953279376029968, 0.08390819281339645, -0.11260783672332764, -0.02386913076043129, -0.060801517218351364, 0.09317506104707718, -0.0006014376995153725, 0.09549830108880997, -0.006563255097717047, -0.017931854352355003, -0.07981178909540176, 0.06445012241601944, -0.042872510850429535, 0.21701598167419434, -0.0615808479487896, -0.11181682348251343, 0.28781595826148987, -0.052628401666879654, -0.1370542049407959, 0.11647392809391022, 0.008682746440172195, 0.05777018144726753, 0.10703510791063309, 0.19733482599258423, -0.015276194550096989, 0.004040541127324104, 0.09471915662288666, 0.11263324320316315, -0.11276852339506149, -0.033160366117954254, 0.013019153848290443, -0.04081077128648758, -0.10867965966463089, 0.04689536616206169, 0.09810488671064377, 0.07090286910533905, -0.04786505550146103, -0.03377414867281914, -0.01366397924721241, 0.0052589005790650845, 0.08885077387094498, -0.007157256826758385, 0.10962837189435959, -0.05819983780384064, -0.03796621412038803, -0.029282379895448685, -0.012126247398555279, -0.03951939567923546, 0.03137664496898651, -0.043376367539167404, 0.10821941494941711, -0.011204327456653118, 0.06364280730485916, -0.16185984015464783, -0.07691477984189987, -0.017002692446112633, 0.1581239402294159, 0.024538565427064896, 0.09859629720449448, 0.0552486926317215, -0.040398042649030685, -0.0012767292791977525, 0.012792680412530899, 0.15581141412258148, -0.022091681137681007, -0.065607450902462, -0.052166227251291275, 0.08642971515655518, -0.05641226842999458, 0.04504093527793884, -0.05937713757157326, 0.012367865070700645, 0.05064384639263153, 0.10342344641685486, -0.00018274025933351368, 0.03323284164071083, -0.008164864964783192, 0.002145637758076191, -0.058205123990774155, 0.007405933458358049, 0.10799351334571838, 0.00036868182360194623, -0.07365862280130386, 0.22074243426322937, -0.17796069383621216, 0.1765957772731781, 0.1893044263124466, -0.299345999956131, 0.017949223518371582, -0.10759581625461578, -0.04561871662735939, 0.014407722279429436, 0.05567655712366104, -0.0454222597181797, 0.1703362911939621, -0.009871348738670349, 0.18874616920948029, -0.04946064203977585, -0.04464937001466751, -0.0200483538210392, -0.05118836089968681, -0.0024189651012420654, 0.07781197130680084, 0.10685696452856064, -0.13992026448249817, 0.1964332014322281, 0.1621224284172058, 0.048237916082143784, 0.19945049285888672, 0.015346456319093704, -0.011589210480451584, 0.0909530371427536, 0.005220826715230942, -0.058739423751831055, -0.07409929484128952, -0.2594851851463318, -0.030033592134714127, 0.07992640137672424, 0.0422382652759552, 0.1212305948138237, -0.11349532753229141, -0.038956157863140106, -0.01763172075152397, -0.023146281018853188, 0.021672505885362625, 0.0914369598031044, 0.06075398623943329, 0.13201528787612915, -0.001710098935291171, -0.007300339173525572, 0.10524573177099228, 0.01783694699406624, -0.09354141354560852, 0.18308524787425995, -0.13652534782886505, -0.37097251415252686, -0.13911493122577667, -0.18057456612586975, -0.05449081212282181, 0.05712554603815079, 0.11679314076900482, -0.12011238187551498, -0.018752124160528183, 0.01578843593597412, 0.10931742936372757, -0.08449502289295197, 0.0021454424131661654, -0.06880278885364532, 0.0321490578353405, -0.10310184955596924, -0.09194442629814148, -0.055416494607925415, -0.031392451375722885, -0.08001253753900528, 0.1423761546611786, -0.10777941346168518, 0.04476889222860336, 0.20262959599494934, 0.04653622955083847, 0.05625178664922714, -0.044105201959609985, 0.19377262890338898, -0.11264272034168243, -0.01661740615963936, 0.19215328991413116, -0.048360925167798996, 0.07476246356964111, 0.1232115849852562, -0.006348740309476852, -0.08765771239995956, 0.03011748194694519, -0.02085109055042267, -0.07988511025905609, -0.23219464719295502, -0.13938382267951965, -0.12429051846265793, 0.09477275609970093, 0.028005298227071762, 0.056365787982940674, 0.17219258844852448, 0.06577219814062119, -0.038416244089603424, 0.006410336587578058, 0.02959546446800232, 0.08237514644861221, 0.23417828977108002, -0.06035616248846054, 0.1364797055721283, -0.03420931473374367, -0.14982740581035614, 0.08169995993375778, 0.0713929831981659, 0.10213395953178406, 0.06678459793329239, 0.0804823637008667, 0.0149586396291852, 0.06188136339187622, 0.1311223804950714, 0.08191446959972382, 0.019586285576224327, -0.02480296604335308, -0.03388110175728798, -0.025523077696561813, -0.05937909707427025, 0.040128443390131, 0.06589099019765854, -0.16763372719287872, -0.039227183908224106, -0.09338314831256866, 0.09657008945941925, 0.0873042419552803, 0.06609832495450974, -0.1842060089111328, -0.008006223477423191, 0.08488986641168594, -0.03854905813932419, -0.13727426528930664, 0.09535189718008041, 0.01523482333868742, -0.15144726634025574, 0.03139317408204079, -0.04061909019947052, 0.12188644707202911, -0.07804752141237259, 0.09809603542089462, -0.08108244836330414, -0.07448557764291763, 0.02123199962079525, 0.1261177361011505, -0.30527687072753906, 0.20240111649036407, -0.0024993624538183212, -0.06486981362104416, -0.1243603527545929, -0.0032166161108762026, 0.002410882618278265, 0.07357452809810638, 0.10519039630889893, -0.007196315098553896, 0.001897757756523788, -0.06300821900367737, -0.01829923689365387, 0.032471053302288055, 0.13080233335494995, -0.0401318334043026, -0.021158374845981598, -0.050194524228572845, -0.001653497340157628, -0.03173094615340233, -0.06934895366430283, 0.02002747356891632, -0.19509181380271912, 0.08751901984214783, 0.04166261479258537, 0.09648149460554123, 0.029994789510965347, 0.004265148192644119, -0.09651939570903778, 0.24698667228221893, -0.07148019969463348, -0.10072879493236542, -0.10919588059186935, -0.046813901513814926, 0.03569883480668068, -0.05628936365246773, 0.04309194162487984, -0.0788632407784462, 0.028997479006648064, -0.06352769583463669, -0.19235502183437347, 0.12410202622413635, -0.09027006477117538, -0.04412810131907463, -0.02371402643620968, 0.2110891044139862, -0.05598580464720726, 0.010335659608244896, 0.02930437959730625, 0.01208863127976656, -0.11645778268575668, -0.09678568691015244, 0.031018631532788277, -0.007351789623498917, 0.050603240728378296, 0.041841957718133926, -0.05915454775094986, -0.017138581722974777, -0.052199993282556534, -0.022926922887563705, 0.3496883809566498, 0.14231905341148376, -0.043836336582899094, 0.19347235560417175, 0.12347975373268127, -0.07452994585037231, -0.3159443140029907, -0.1066238060593605, -0.10937739163637161, -0.04680149629712105, -0.07012093812227249, -0.2002030611038208, 0.06474938243627548, 0.00662544509395957, -0.013415241613984108, 0.12749312818050385, -0.2561831772327423, -0.07571036368608475, 0.15906259417533875, -0.017980827018618584, 0.3745945692062378, -0.1168576180934906, -0.10926306992769241, -0.03950892388820648, -0.14175476133823395, 0.16968177258968353, -0.01989765651524067, 0.11221715062856674, -0.009765521623194218, 0.14388824999332428, 0.05548359826207161, -0.023479344323277473, 0.08544106781482697, 0.004999885335564613, -0.03290518373250961, -0.10304180532693863, -0.05676887184381485, 0.007092386484146118, 0.02477436140179634, 0.018026655539870262, -0.041834570467472076, 0.02227151393890381, -0.11731979995965958, -0.04657655209302902, -0.08982590585947037, 0.04431166127324104, 0.03899754583835602, -0.07325074821710587, -0.002380647463724017, -0.07165111601352692, -0.012272949330508709, 0.022334342822432518, 0.20356793701648712, -0.08029330521821976, 0.16448934376239777, 0.09239562600851059, 0.12419285625219345, -0.14376309514045715, -0.00019283240544609725, -0.0762530043721199, -0.05611240118741989, 0.07737895101308823, -0.09433035552501678, 0.058893077075481415, 0.10901971161365509, -0.04567738622426987, 0.08828683942556381, 0.10377411544322968, 0.008936077356338501, 0.003213887568563223, 0.10916902124881744, -0.2667325437068939, -0.0296600554138422, -0.07532413303852081, 0.000883326749317348, 0.09092561900615692, 0.08562852442264557, 0.18840822577476501, 0.025361526757478714, -0.04293036088347435, -0.002770674182102084, 0.028597986325621605, -0.039021048694849014, 0.051667019724845886, 0.001123449532315135, 0.01947369985282421, -0.1530752182006836, 0.072522833943367, 0.01490565575659275, -0.15215420722961426, 0.021316176280379295, 0.16572684049606323, -0.11656328290700912, -0.1283872276544571, -0.06520111113786697, 0.08313824236392975, -0.11755692958831787, -0.01578943058848381, -0.03279297426342964, -0.13145680725574493, 0.07992171496152878, 0.12629036605358124, 0.05557859688997269, 0.0972496047616005, -0.06061713397502899, -0.020469192415475845, -0.018721895292401314, -0.014099318534135818, -0.012384648434817791, -0.007667020428925753, -0.055978111922740936, 0.0590752474963665, -0.026677248999476433, 0.1425808072090149, -0.09221141785383224, -0.1037059873342514, -0.16142144799232483, 0.0374140702188015, -0.11013076454401016, -0.08825794607400894, -0.08821134269237518, -0.050188567489385605, 0.002360827289521694, -0.019856395199894905, -0.04037635400891304, -0.05829505994915962, -0.12300454825162888, 0.0338277705013752, -0.040771447122097015, 0.024727050215005875, -0.07512269169092178, 0.015856385231018066, 0.08507686108350754, -0.03285100311040878, 0.15655414760112762, 0.1450488418340683, -0.1006515845656395, 0.10741901397705078, -0.14806775748729706, -0.09138492494821548, 0.11116421222686768, 0.015329592861235142, 0.0449691042304039, 0.09723787009716034, 0.013362943194806576, 0.0635865181684494, 0.032776717096567154, 0.05308786407113075, 0.027619892731308937, -0.11959987878799438, 0.06483134627342224, -0.03626115620136261, -0.14700546860694885, -0.049338050186634064, -0.05282869189977646, 0.01647452637553215, 0.013054544106125832, 0.09622690081596375, -0.05301849544048309, 0.10698331147432327, -0.04055701196193695, 0.0346808135509491, 0.017554637044668198, -0.1730053424835205, -0.03816922754049301, -0.08538098633289337, 0.03681723028421402, 0.014741539023816586, 0.25266793370246887, 0.030072299763560295, 0.012416383251547813, 0.032671261578798294, 0.08285367488861084, 0.03899408504366875, 0.010228337720036507, 0.17482228577136993, 0.1162426546216011, -0.06621865928173065, -0.10445023328065872, 0.0729617029428482, 0.016332454979419708, 0.01286179106682539, 0.13617953658103943, 0.008365051820874214, 0.005795429926365614, 0.08649782836437225, -0.016865963116288185, 0.009968153201043606, -0.10052056610584259, -0.13426925241947174, -0.022176474332809448, 0.05151832848787308, -0.04655967652797699, 0.11727844923734665, 0.1406494379043579, -0.01806013658642769, 0.03222079202532768, -0.021771740168333054, -0.05699979141354561, -0.1683429479598999, -0.1429590880870819, -0.06883849948644638, -0.13416796922683716, 0.00897989235818386, -0.11180389672517776, 0.05395037308335304, 0.06001098081469536, 0.06750501692295074, -0.06899319589138031, 0.10220931470394135, 0.04626858979463577, -0.11440542340278625, 0.06264589726924896, -0.0296088308095932, 0.09430401772260666, -0.02759445086121559, -0.019505485892295837, -0.09039592742919922, 0.014574515633285046, 0.011419114656746387, 0.06245238706469536, -0.04707273095846176, 0.007463190704584122, -0.14696238934993744, -0.08972041308879852, -0.0523175448179245, 0.0718572810292244, -0.050409089773893356, 0.14282815158367157, 0.00775480642914772, -0.0170906875282526, 0.039554283022880554, 0.22787313163280487, -0.07476283609867096, -0.04778539761900902, -0.05269690603017807, 0.20717895030975342, 0.02975541539490223, 0.1171872541308403, -0.022938819602131844, -0.006106364540755749, -0.0919521227478981, 0.3764844834804535, 0.30030161142349243, -0.09031439572572708, 0.011794124729931355, 0.02137952297925949, 0.04502861574292183, 0.1316293478012085, 0.1216534823179245, 0.10318691283464432, 0.3006802201271057, -0.07452366501092911, -0.04653361067175865, -0.012629742734134197, -0.023858042433857918, -0.09059546142816544, 0.1021224707365036, 0.04839762672781944, -0.06382183730602264, -0.03313443064689636, 0.0954432487487793, -0.25862133502960205, 0.1277991235256195, -0.12311873584985733, -0.17578600347042084, -0.06654827296733856, 0.009760108776390553, 0.10465722531080246, 0.015642458572983742, 0.0946015790104866, 0.007128213066607714, -0.11252258718013763, 0.06305865943431854, 0.03397420793771744, -0.22762253880500793, 0.0006893770187161863, 0.06642123311758041, -0.07006710022687912, -0.0024247700348496437, -0.026499588042497635, 0.05657242611050606, 0.0656052976846695, 0.054629553109407425, -0.00971333310008049, 0.03816632181406021, 0.0034184439573436975, -0.0585215799510479, 0.016623929142951965, 0.05121519789099693, 0.02472509816288948, -0.09763528406620026, 0.06927435845136642, -0.1574270874261856, 0.04766253009438515, -0.0030655991286039352, -0.04124255105853081, 0.006064958870410919, 0.008823691867291927, -0.06491616368293762, 0.05165379121899605, 0.07916834205389023, -0.0016257909592241049, -0.0062433634884655476, -0.057178743183612823, -0.02632102556526661, -0.027755750343203545, -0.09291748702526093, -0.10495562851428986, -0.14682936668395996, -0.11640441417694092, 0.09368976950645447, -0.01011267676949501, -0.1848134547472, 0.022154374048113823, -0.08606051653623581, 0.08319322764873505, -0.1670055389404297, 0.08040720224380493, 0.07041648775339127, 0.013038921169936657, -0.0031511052511632442, -0.02002427540719509, 0.054132770746946335, 0.086809903383255, -0.10407156497240067, -0.07400695979595184 ]
null
null
null
This repository doesn't contain a model, but only a tokenizer that can be used with the `tokenizers` library. This tokenizer is just a copy of `bert-base-uncased`. ```python from tokenizers import Tokenizer tokenizer = Tokenizer.from_pretrained("anthony/tokenizers-test") ```
{}
null
anthony/tokenizers-test
[ "region:us" ]
2022-03-02T23:29:05+00:00
[]
[]
TAGS #region-us
This repository doesn't contain a model, but only a tokenizer that can be used with the 'tokenizers' library. This tokenizer is just a copy of 'bert-base-uncased'.
[]
[ "TAGS\n#region-us \n" ]
[ 6 ]
[ "passage: TAGS\n#region-us \n" ]
[ 0.024608636274933815, -0.026205500587821007, -0.009666500613093376, -0.10395516455173492, 0.08638657629489899, 0.059816278517246246, 0.01882290467619896, 0.020661840215325356, 0.23975107073783875, -0.005599027033895254, 0.1219947561621666, 0.0015615287702530622, -0.037353623658418655, 0.03733762726187706, -0.0035912662278860807, -0.17583473026752472, 0.03876631706953049, -0.018274923786520958, 0.01843859627842903, 0.026470553129911423, -0.07776834815740585, -0.07564429938793182, 0.015296397730708122, -0.10247814655303955, -0.083692267537117, 0.11002834886312485, 0.031466204673051834, -0.019670886918902397, 0.10779199749231339, -0.04243955761194229, 0.18699054419994354, -0.011512263678014278, -0.11213519424200058, -0.2536850869655609, 0.021806683391332626, -0.01765260472893715, -0.08747660368680954, 0.01506110467016697, 0.0665089413523674, -0.09014441072940826, -0.0588928684592247, 0.0795099288225174, -0.01132340170443058, 0.04246443510055542, -0.27593839168548584, -0.12684126198291779, -0.05297930911183357, -0.1421966552734375, 0.08651168644428253, 0.04035491496324539, 0.008764253929257393, 0.15506891906261444, -0.20897391438484192, 0.004104613792151213, 0.08255259692668915, -0.2538507878780365, 0.05591634660959244, 0.17671173810958862, 0.03623908758163452, 0.18037272989749908, 0.0060391901060938835, 0.11029672622680664, 0.0716743916273117, -0.024263937026262283, -0.17590197920799255, -0.08127854019403458, -0.04696211963891983, 0.16642488539218903, -0.06727185100317001, -0.14248386025428772, 0.34701237082481384, 0.00015008423360995948, 0.009657775051891804, 0.16921205818653107, -0.059524230659008026, -0.09972117841243744, 0.07259953022003174, 0.016484731808304787, 0.018492350354790688, 0.1471305936574936, 0.16307872533798218, -0.0458691343665123, -0.13837823271751404, -0.018630273640155792, -0.22798998653888702, 0.17510560154914856, -0.03248048573732376, 0.13137903809547424, -0.27447956800460815, 0.01684025302529335, -0.2570667266845703, 0.0032130838371813297, 0.04178816080093384, -0.06004921346902847, -0.0226522795855999, -0.013265985064208508, -0.08018817007541656, 0.004899587947875261, 0.06192673370242119, 0.1266920566558838, -0.06128726154565811, 0.06128238886594772, -0.09319206327199936, 0.141696035861969, 0.07166698575019836, 0.07868369668722153, 0.13037432730197906, 0.041205424815416336, -0.07187089323997498, -0.21872246265411377, -0.0026476888451725245, -0.06275863200426102, -0.09502086788415909, -0.0020165652967989445, -0.11606067419052124, 0.17244569957256317, -0.030802514404058456, -0.09825427830219269, -0.11208184063434601, 0.09148659557104111, -0.032992321997880936, -0.03437839448451996, -0.03552987426519394, -0.020977836102247238, 0.019381176680326462, 0.04704452306032181, -0.1548958420753479, -0.005131472367793322, 0.07039852440357208, 0.11502562463283539, -0.1346137970685959, -0.003783059772104025, -0.07908964157104492, 0.03039063885807991, 0.07654735445976257, -0.16510222852230072, 0.03158547356724739, -0.1124754324555397, -0.07531405985355377, 0.002912673633545637, -0.015710093080997467, -0.016202643513679504, 0.166526660323143, -0.0020451415330171585, 0.0714716836810112, -0.026345307007431984, -0.05890209600329399, -0.11243434250354767, -0.08489254862070084, 0.05390460044145584, 0.03670717030763626, 0.03266148269176483, -0.2193479984998703, 0.014805203303694725, -0.12762966752052307, 0.1360815018415451, -0.10566820204257965, -0.04705966264009476, -0.022842247039079666, 0.20562705397605896, 0.037286072969436646, 0.08762791007757187, -0.22171171009540558, 0.039756543934345245, -0.05404696613550186, 0.18480908870697021, -0.1502426266670227, -0.0799463614821434, 0.20813211798667908, -0.07964949309825897, -0.10115210711956024, 0.021235812455415726, 0.020391687750816345, 0.026287272572517395, 0.0766737088561058, 0.4564172327518463, -0.09766800701618195, -0.09146861732006073, 0.10178250074386597, 0.17055274546146393, -0.12427149713039398, -0.1827561855316162, 0.06446871906518936, -0.16666454076766968, -0.1973118633031845, 0.0018917324487119913, 0.09222044050693512, 0.038269978016614914, -0.07875611633062363, -0.020746968686580658, 0.06325206160545349, -0.0007678253459744155, 0.09095914661884308, 0.03755716234445572, 0.09034032374620438, -0.08716782182455063, 0.11115926504135132, -0.05017651244997978, 0.004037132486701012, 0.1343354731798172, 0.027325427159667015, -0.03223329409956932, 0.08694463223218918, -0.0485352948307991, 0.05295134335756302, -0.1662379503250122, -0.15068690478801727, 0.03398871049284935, 0.06283251196146011, 0.03186952322721481, 0.1280253529548645, 0.08141885697841644, -0.10732853412628174, 0.022690722718834877, -0.004228927195072174, 0.058398615568876266, 0.03891623765230179, 0.006107209715992212, 0.008764320984482765, 0.0961301177740097, -0.10607069730758667, -0.13589619100093842, -0.07336436957120895, -0.014715781435370445, 0.14371353387832642, -0.0302802175283432, 0.07690227776765823, -0.004240254405885935, 0.00013200697139836848, 0.06930823624134064, 0.08137880265712738, 0.016412746161222458, 0.08971183747053146, -0.05237193778157234, -0.05160155147314072, 0.10863113403320312, -0.13533565402030945, 0.17837053537368774, 0.14053137600421906, -0.20532016456127167, 0.029453208670020103, -0.06838275492191315, 0.03670361638069153, -0.008162540383636951, 0.0975119024515152, -0.08272241055965424, -0.02106042578816414, 0.013134466484189034, 0.0052274600602686405, -0.013007243163883686, 0.017682146281003952, -0.07295988500118256, -0.07787393033504486, -0.10233919322490692, 0.08436838537454605, 0.11562882363796234, -0.10282530635595322, 0.14214380085468292, 0.4384984076023102, 0.11495281755924225, 0.21582984924316406, -0.09581480920314789, -0.0412987545132637, 0.007486371789127588, 0.0001535322517156601, -0.04476691037416458, 0.08031861484050751, -0.15973517298698425, -0.038901735097169876, 0.027348900213837624, 0.07128690183162689, 0.11475157737731934, -0.14959022402763367, -0.09639324247837067, -0.00793045200407505, 0.0022841424215584993, -0.1249532699584961, 0.023905446752905846, -0.03974650055170059, 0.04015624523162842, 0.07232289016246796, -0.021535737439990044, 0.13939237594604492, -0.04166141897439957, -0.0639561116695404, 0.07585346698760986, -0.2017085999250412, -0.23179671168327332, -0.12309670448303223, -0.14680525660514832, 0.04366797208786011, 0.05154111236333847, 0.01726446859538555, -0.17635835707187653, -0.015074856579303741, 0.07706750929355621, 0.07820965349674225, -0.20886357128620148, -0.022814949974417686, -0.004290030337870121, 0.0895976573228836, -0.10227091610431671, -0.0017130117630586028, -0.04419664293527603, -0.10150232166051865, 0.0017003051470965147, 0.07279510796070099, -0.137485533952713, 0.13807645440101624, 0.21589438617229462, 0.07225540280342102, 0.07359948754310608, -0.019093448296189308, 0.09936179965734482, -0.10856141895055771, -0.16549113392829895, 0.08348225057125092, -0.06234746053814888, 0.047262318432331085, 0.17534415423870087, 0.03307317942380905, -0.13904969394207, -0.015682822093367577, -0.0402069091796875, -0.15603256225585938, -0.238995760679245, -0.09178274869918823, -0.1182505264878273, 0.16442428529262543, 0.0009358620154671371, 0.06651917099952698, 0.08258313685655594, -0.022042419761419296, 0.16447891294956207, -0.07379321753978729, -0.07578866183757782, -0.006978808436542749, 0.12375060468912125, -0.056660156697034836, -0.03080669604241848, -0.10566964000463486, -0.008295975625514984, 0.1151021271944046, 0.15304014086723328, 0.12214863300323486, 0.2957419455051422, 0.08268889784812927, 0.026645636186003685, 0.08958091586828232, 0.17622539401054382, 0.09495089203119278, 0.07838419824838638, -0.045413073152303696, -0.014814783819019794, 0.014317171648144722, -0.04022889584302902, 0.010141594335436821, 0.14683100581169128, -0.2679629921913147, -0.006678564939647913, -0.2710230350494385, 0.0965198427438736, -0.10913380235433578, 0.11837165057659149, -0.01015760749578476, 0.10194015502929688, 0.11082887649536133, 0.03233652561903, -0.03858073800802231, 0.16613617539405823, 0.08450309932231903, -0.11277695000171661, 0.001758623169735074, 0.03737903758883476, 0.09715615212917328, -0.02818971499800682, 0.12721189856529236, -0.11048974841833115, -0.1464834064245224, 0.013753619976341724, 0.07152791321277618, -0.15373679995536804, 0.3138748109340668, 0.012069208547472954, -0.13481520116329193, -0.01481647603213787, -0.09957809001207352, -0.006440147757530212, 0.1254177987575531, 0.09333524852991104, 0.07935678958892822, -0.2185502052307129, -0.13339371979236603, 0.05872276425361633, -0.00575496768578887, 0.22408108413219452, -0.034034017473459244, -0.11356475204229355, -0.027013886719942093, 0.04241163283586502, -0.06043251231312752, 0.08524788916110992, 0.023536119610071182, -0.08113526552915573, -0.032957352697849274, 0.05323701351881027, 0.012368366122245789, 0.00524376705288887, 0.09360801428556442, 0.020107939839363098, -0.0009265501867048442, 0.01785753294825554, 0.047885000705718994, -0.0675911232829094, -0.1984109878540039, 0.09357594698667526, -0.05215044692158699, 0.0015536568826064467, -0.08013670891523361, -0.15122665464878082, -0.08837161958217621, -0.16009655594825745, 0.12540200352668762, -0.034406669437885284, 0.12700119614601135, -0.06619787961244583, 0.17341409623622894, -0.07871770113706589, 0.04481020197272301, -0.047349292784929276, 0.050332702696323395, -0.007268077693879604, -0.07756082713603973, 0.16585899889469147, -0.15564003586769104, 0.01809087023139, 0.19572502374649048, -0.018915493041276932, 0.07177707552909851, 0.021322092041373253, -0.0636206790804863, 0.23147478699684143, 0.3014698624610901, 0.008138049393892288, 0.1665448248386383, 0.3018903136253357, -0.07466315478086472, -0.2642788887023926, -0.05505012720823288, -0.2841376066207886, -0.05371501296758652, 0.10716094076633453, -0.22523896396160126, 0.06986407935619354, 0.14383509755134583, -0.06471995264291763, 0.30228954553604126, -0.21825523674488068, 0.012589273042976856, 0.15434536337852478, -0.08868814259767532, 0.5515313148498535, -0.1133413165807724, -0.17677772045135498, -0.008122089318931103, -0.08741296827793121, 0.10602109134197235, -0.0340677872300148, 0.06877441704273224, 0.013465235009789467, 0.04797380417585373, 0.048932258039712906, -0.03111894056200981, 0.22701001167297363, 0.008710170164704323, 0.09015397727489471, -0.07378865778446198, -0.18624304234981537, 0.11639340221881866, -0.04359482601284981, -0.08891059458255768, 0.0849778801202774, -0.05942516401410103, -0.11078983545303345, 0.04663389176130295, -0.07950539886951447, -0.024862350896000862, 0.08423490077257156, -0.04678233340382576, -0.042606171220541, -0.008054176345467567, -0.1618063747882843, -0.0002289071271661669, 0.31360217928886414, -0.07096036523580551, 0.16695955395698547, 0.03677211329340935, 0.00038613268407061696, -0.11027684062719345, 0.030288029462099075, -0.05203165486454964, -0.021576624363660812, 0.09578979015350342, -0.11096979677677155, 0.03204701095819473, 0.14160704612731934, -0.04864364117383957, 0.05846960097551346, 0.09256096184253693, -0.0849417969584465, 0.007583672646433115, 0.17753590643405914, -0.17537221312522888, -0.1273445188999176, -0.006135711446404457, -0.09862716495990753, 0.14055661857128143, 0.04394126310944557, 0.05191568285226822, 0.16669964790344238, 0.03967129811644554, -0.029474308714270592, -0.02817419543862343, -0.1153380498290062, -0.0201893113553524, 0.040153320878744125, 0.00045633706031367183, -0.08791285753250122, 0.2262638509273529, 0.06409153342247009, -0.1328488290309906, -0.051157206296920776, 0.2161225974559784, -0.06805316358804703, -0.04911920800805092, -0.223562553524971, 0.10752306133508682, -0.07112517952919006, -0.0965060144662857, 0.05453834682703018, -0.02270081453025341, 0.005106312222778797, 0.181985542178154, 0.03941008821129799, 0.11070270836353302, 0.03738937899470329, -0.02448922023177147, 0.15798696875572205, -0.142850860953331, -0.14191335439682007, -0.025354057550430298, -0.08757315576076508, -0.13844476640224457, -0.026804137974977493, 0.1617041826248169, -0.09177309274673462, -0.14772607386112213, -0.2621181011199951, 0.10968475043773651, -0.16432365775108337, -0.10192688554525375, -0.03469514101743698, -0.08968492597341537, 0.0696166530251503, 0.030301768332719803, -0.03093348816037178, -0.06706760823726654, -0.18593791127204895, 0.0816768929362297, 0.06349513679742813, 0.045533183962106705, -0.017847947776317596, 0.0067379772663116455, 0.1720137596130371, 0.025955144315958023, 0.10040043294429779, 0.16762186586856842, 0.011397695168852806, 0.2246655523777008, -0.1671202927827835, -0.11496317386627197, 0.1336962729692459, -0.026543032377958298, 0.06762003898620605, 0.16792191565036774, -0.0772583931684494, 0.015526676550507545, -0.028136352077126503, 0.07066910713911057, -0.11003983020782471, -0.105624258518219, 0.007937257178127766, 0.02567129209637642, -0.2755882740020752, -0.005599735304713249, -0.19717298448085785, 0.14788752794265747, 0.02579621411859989, 0.03297143429517746, 0.10257530212402344, 0.10404334217309952, 0.08312062919139862, -0.0017710148822516203, 0.03226327523589134, -0.1176818460226059, 0.02753005363047123, -0.059239376336336136, -0.020663779228925705, 0.017624232918024063, 0.36952024698257446, -0.03603357449173927, -0.046802736818790436, 0.003710439894348383, 0.1307835876941681, -0.02139742486178875, 0.017395347356796265, 0.13209912180900574, 0.12607666850090027, -0.08595693111419678, -0.1504845917224884, 0.04888554662466049, -0.04565655067563057, -0.02836887165904045, 0.1464131623506546, 0.05905961990356445, 0.1050296202301979, 0.0908031314611435, -0.014463032595813274, -0.00318976235575974, 0.012856799177825451, -0.15486004948616028, 0.06223496049642563, -0.010558074340224266, 0.012565906159579754, 0.017934376373887062, 0.15238402783870697, -0.005540105979889631, 0.07739730179309845, -0.09889880567789078, 0.004208535887300968, -0.13498884439468384, -0.07913459837436676, 0.03617347031831741, -0.13393273949623108, 0.04141177982091904, -0.01871878281235695, 0.029611799865961075, 0.30386561155319214, 0.02558239921927452, -0.020639164373278618, 0.12512871623039246, -0.1214587539434433, -0.12050267308950424, -0.001594188273884356, -0.029960084706544876, 0.0791488066315651, -0.02633434161543846, -0.0997740775346756, -0.1001306027173996, -0.15166029334068298, -0.09759195148944855, 0.05182836204767227, -0.04993441700935364, -0.059362251311540604, -0.17634081840515137, -0.05707859992980957, -0.05147340148687363, 0.14025864005088806, -0.12263951450586319, 0.15159130096435547, -0.014490418136119843, 0.004084470681846142, 0.04405883327126503, 0.1950942426919937, -0.03644494712352753, 0.08714226633310318, 0.0154351145029068, 0.1522706001996994, -0.05119588226079941, 0.14720745384693146, -0.10931728035211563, -0.04014137014746666, -0.06710435450077057, 0.21513493359088898, 0.25630924105644226, -0.06136954948306084, -0.008937356993556023, -0.012760217301547527, 0.058654606342315674, 0.1073930487036705, 0.16049085557460785, 0.002326392102986574, 0.2802925705909729, -0.03133585304021835, 0.04815128445625305, 0.02901598811149597, 0.013607407920062542, -0.06336209923028946, 0.03397751972079277, 0.07539387792348862, -0.035039983689785004, -0.1412304788827896, 0.15837742388248444, -0.21980468928813934, 0.18157227337360382, 0.11640069633722305, -0.19996967911720276, -0.013728445395827293, -0.04882071167230606, 0.1689416468143463, -0.0856364443898201, 0.1637246012687683, -0.0903693437576294, -0.2108195722103119, -0.2056000679731369, 0.03867346793413162, -0.34623071551322937, -0.254462867975235, 0.10422009229660034, 0.1488201916217804, 0.04015883058309555, -0.018507536500692368, -0.019967829808592796, -0.018367022275924683, 0.04877542704343796, -0.0067357709631323814, 0.06014643982052803, 0.031397558748722076, -0.02988368645310402, -0.24127542972564697, -0.029804671183228493, 0.023964406922459602, -0.07093082368373871, 0.07464958727359772, -0.06874357163906097, -0.022495782002806664, 0.08059766888618469, -0.03066304884850979, 0.03298592567443848, -0.035373736172914505, -0.16326889395713806, 0.027529051527380943, 0.03900543600320816, 0.036012712866067886, 0.00634160777553916, 0.0008072225609794259, -0.03455270454287529, 0.0644603744149208, -0.16716794669628143, -0.16015739738941193, 0.14140215516090393, -0.06745140254497528, 0.2779497504234314, -0.05812826007604599, -0.0809100940823555, 0.04766704887151718, -0.03426874056458473, 0.1807648241519928, -0.07756473124027252, 0.047254521399736404, 0.12766779959201813, 0.011127962730824947, 0.03121316432952881, -0.3092964291572571, 0.11082969605922699, -0.000795336440205574, -0.006093299947679043, -0.07581598311662674 ]