modelId
stringlengths
4
112
sha
stringlengths
40
40
lastModified
stringlengths
24
24
tags
sequence
pipeline_tag
stringclasses
29 values
private
bool
1 class
author
stringlengths
2
38
config
null
id
stringlengths
4
112
downloads
float64
0
36.8M
likes
float64
0
712
library_name
stringclasses
17 values
__index_level_0__
int64
0
38.5k
readme
stringlengths
0
186k
thebyy/DialoGPT-small-mortyisarick
c5dfb0dc22b3cee5cd8ca5c1d68650bdcc429722
2022-05-20T04:13:22.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
thebyy
null
thebyy/DialoGPT-small-mortyisarick
0
null
transformers
37,600
--- tags: - conversational ---
huggingtweets/connorhvnsen
084e9ea9979fad8d628956785622bccaecf8d885
2022-05-20T03:52:28.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/connorhvnsen
0
null
transformers
37,601
--- language: en thumbnail: http://www.huggingtweets.com/connorhvnsen/1653018744349/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1524595130031915009/JbJeqNFJ_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">HɅNSΞN ™</div> <div style="text-align: center; font-size: 14px;">@connorhvnsen</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from HɅNSΞN ™. | Data | HɅNSΞN ™ | | --- | --- | | Tweets downloaded | 1253 | | Retweets | 317 | | Short tweets | 309 | | Tweets kept | 627 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/qz1rz5ej/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @connorhvnsen's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/aeaa7tfg) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/aeaa7tfg/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/connorhvnsen') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
umanlp/mt5-mlm-16
867d4eeafd35ea31e097b713f66c5a1395c2e5f9
2022-05-20T09:45:06.000Z
[ "pytorch", "mt5", "feature-extraction", "transformers" ]
feature-extraction
false
umanlp
null
umanlp/mt5-mlm-16
0
null
transformers
37,602
Entry not found
umanlp/mt5-mlm-wiki14
04379b4bb8887c8382799a7fff3b9a716845f5e1
2022-05-20T09:56:45.000Z
[ "pytorch", "mt5", "feature-extraction", "transformers" ]
feature-extraction
false
umanlp
null
umanlp/mt5-mlm-wiki14
0
null
transformers
37,603
Entry not found
huggingtweets/welcomeunknown
c2f396f0fea7240b439bb8355e2436889619bb89
2022-05-20T12:32:41.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/welcomeunknown
0
null
transformers
37,604
--- language: en thumbnail: http://www.huggingtweets.com/welcomeunknown/1653049956766/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1465974364453572609/sxLKsmL8_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">b e a r 🤍⃤</div> <div style="text-align: center; font-size: 14px;">@welcomeunknown</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from b e a r 🤍⃤. | Data | b e a r 🤍⃤ | | --- | --- | | Tweets downloaded | 3071 | | Retweets | 1185 | | Short tweets | 214 | | Tweets kept | 1672 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/241jk5jh/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @welcomeunknown's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/gcn82iuh) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/gcn82iuh/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/welcomeunknown') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
ruselkomp/deep-pavlov-framebank-5epochs-2
f71f40cae7fd5342abf2dd0d672958512086f420
2022-05-20T15:09:32.000Z
[ "pytorch", "tensorboard", "bert", "question-answering", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
question-answering
false
ruselkomp
null
ruselkomp/deep-pavlov-framebank-5epochs-2
0
null
transformers
37,605
--- tags: - generated_from_trainer model-index: - name: deep-pavlov-framebank-5epochs-2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # deep-pavlov-framebank-5epochs-2 This model is a fine-tuned version of [DeepPavlov/rubert-base-cased](https://huggingface.co/DeepPavlov/rubert-base-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.4205 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 0.4667 | 1.0 | 2827 | 1.3508 | | 0.3114 | 2.0 | 5654 | 1.5341 | | 0.1941 | 3.0 | 8481 | 1.8772 | | 0.1185 | 4.0 | 11308 | 2.1496 | | 0.0795 | 5.0 | 14135 | 2.4205 | ### Framework versions - Transformers 4.19.0.dev0 - Pytorch 1.11.0+cu113 - Datasets 2.2.2.dev0 - Tokenizers 0.12.1
gulteng/distilbert-base-uncased-finetuned-squad
9c39b68b3fb0c0c0facc255228351589381dc653
2022-05-20T13:44:24.000Z
[ "pytorch", "tensorboard", "distilbert", "question-answering", "dataset:squad", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
question-answering
false
gulteng
null
gulteng/distilbert-base-uncased-finetuned-squad
0
null
transformers
37,606
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: distilbert-base-uncased-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-squad This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the squad dataset. It achieves the following results on the evaluation set: - Loss: 1.2131 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.2672 | 1.0 | 5533 | 1.2131 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.1 - Tokenizers 0.12.1
subhasisj/xlm-roberta-base-squad-32
20bfbe729c522bfe7b49b55a37ccfaac202e7cfd
2022-05-20T19:13:21.000Z
[ "pytorch", "tensorboard", "xlm-roberta", "question-answering", "dataset:squad", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
question-answering
false
subhasisj
null
subhasisj/xlm-roberta-base-squad-32
0
null
transformers
37,607
--- license: mit tags: - generated_from_trainer datasets: - squad model-index: - name: xlm-roberta-base-squad-32 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-squad-32 This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the squad dataset. It achieves the following results on the evaluation set: - Loss: 1.0083 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1.5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 256 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 350 | 1.2339 | | 2.3864 | 2.0 | 700 | 1.0571 | | 1.0541 | 3.0 | 1050 | 1.0246 | | 1.0541 | 4.0 | 1400 | 0.9947 | | 0.9214 | 5.0 | 1750 | 1.0083 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.2.1 - Tokenizers 0.12.1
roshnir/bert-base-multi-mlqa-dev-en
bc45e4425c2f40955cb3b57ada939a0eeb3d63d3
2022-05-20T17:05:01.000Z
[ "pytorch", "bert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
roshnir
null
roshnir/bert-base-multi-mlqa-dev-en
0
null
transformers
37,608
Entry not found
noah-rush/inquirer-bert
4de003c27367a2816c8c37a2a4112cb381e5cfd0
2022-05-20T20:42:07.000Z
[ "pytorch", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
noah-rush
null
noah-rush/inquirer-bert
0
null
transformers
37,609
Entry not found
marksverdhei/t5-large-reddit-syac
df248290f824eebd6f12bcebf30e27fbe7e8f0a4
2022-05-20T22:15:39.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
marksverdhei
null
marksverdhei/t5-large-reddit-syac
0
null
transformers
37,610
Entry not found
fransoa/arrombado-dms
91e5bfa5c6b4ec61223ffbb0489c82d6c555c1d1
2022-05-20T22:09:48.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
fransoa
null
fransoa/arrombado-dms
0
null
transformers
37,611
--- tags: - conversational --- # troska DialogGPT models
huggingtweets/slayersiu
6f1e2384db8707ab18097a6a15afcb86eb1cb7b3
2022-05-25T14:29:09.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/slayersiu
0
null
transformers
37,612
--- language: en thumbnail: http://www.huggingtweets.com/slayersiu/1653488944264/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1455287025821790214/c0-KTf04_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">DR. RASMUS</div> <div style="text-align: center; font-size: 14px;">@slayersiu</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from DR. RASMUS. | Data | DR. RASMUS | | --- | --- | | Tweets downloaded | 3189 | | Retweets | 39 | | Short tweets | 925 | | Tweets kept | 2225 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/39xz51i2/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @slayersiu's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/bdxg3cak) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/bdxg3cak/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/slayersiu') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
ruselkomp/deep-pavlov-framebank-hidesize
271bc699e191b73ed577664c9b73d973a3677efe
2022-05-21T02:48:28.000Z
[ "pytorch", "tensorboard", "bert", "question-answering", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
question-answering
false
ruselkomp
null
ruselkomp/deep-pavlov-framebank-hidesize
0
null
transformers
37,613
--- tags: - generated_from_trainer model-index: - name: deep-pavlov-framebank-hidesize results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # deep-pavlov-framebank-hidesize This model is a fine-tuned version of [DeepPavlov/rubert-base-cased](https://huggingface.co/DeepPavlov/rubert-base-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.0985 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.0729 | 1.0 | 2827 | 1.0161 | | 0.7899 | 2.0 | 5654 | 1.0360 | | 0.5958 | 3.0 | 8481 | 1.0985 | ### Framework versions - Transformers 4.19.0.dev0 - Pytorch 1.11.0+cu113 - Datasets 2.2.3.dev0 - Tokenizers 0.12.1
huggingtweets/mrquinnzard
3c7aab555774a317cd73c4770cfe70fdec47f354
2022-05-21T00:19:55.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/mrquinnzard
0
null
transformers
37,614
--- language: en thumbnail: http://www.huggingtweets.com/mrquinnzard/1653092375998/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1525619063447339009/xeQSjk3u_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">MrQuinnzard X ✊🏿🇺🇦</div> <div style="text-align: center; font-size: 14px;">@mrquinnzard</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from MrQuinnzard X ✊🏿🇺🇦. | Data | MrQuinnzard X ✊🏿🇺🇦 | | --- | --- | | Tweets downloaded | 716 | | Retweets | 47 | | Short tweets | 115 | | Tweets kept | 554 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2uwzvaxw/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @mrquinnzard's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/mntwd4n5) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/mntwd4n5/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/mrquinnzard') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/darcywubot
c1db72907beba6173dcf9e6a9e9768319cd8f611
2022-05-21T00:27:43.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/darcywubot
0
null
transformers
37,615
--- language: en thumbnail: http://www.huggingtweets.com/darcywubot/1653092857463/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1520965807374835712/oz5XZFva_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Darcy Bot</div> <div style="text-align: center; font-size: 14px;">@darcywubot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Darcy Bot. | Data | Darcy Bot | | --- | --- | | Tweets downloaded | 3250 | | Retweets | 6 | | Short tweets | 413 | | Tweets kept | 2831 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3ou05gm6/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @darcywubot's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3p4xvqb6) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3p4xvqb6/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/darcywubot') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/annebottz
b94835ef741550c4a834c642f21df28063280daf
2022-05-21T00:49:07.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/annebottz
0
null
transformers
37,616
--- language: en thumbnail: http://www.huggingtweets.com/annebottz/1653094143094/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1526210961031548935/59jbyuut_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Anne Bot</div> <div style="text-align: center; font-size: 14px;">@annebottz</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Anne Bot. | Data | Anne Bot | | --- | --- | | Tweets downloaded | 3250 | | Retweets | 0 | | Short tweets | 590 | | Tweets kept | 2660 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/263xyaa3/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @annebottz's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/edyr41r2) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/edyr41r2/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/annebottz') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
ruselkomp/deep-pavlov-framebank-hidesize-1
ddce9bd61f8d1ae159efdb584fa99344348e70b6
2022-05-21T12:19:16.000Z
[ "pytorch", "tensorboard", "bert", "question-answering", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
question-answering
false
ruselkomp
null
ruselkomp/deep-pavlov-framebank-hidesize-1
0
null
transformers
37,617
--- tags: - generated_from_trainer model-index: - name: deep-pavlov-framebank-hidesize-1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # deep-pavlov-framebank-hidesize-1 This model is a fine-tuned version of [DeepPavlov/rubert-base-cased](https://huggingface.co/DeepPavlov/rubert-base-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.0967 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.073 | 1.0 | 2827 | 1.0101 | | 0.7856 | 2.0 | 5654 | 1.0367 | | 0.5993 | 3.0 | 8481 | 1.0967 | ### Framework versions - Transformers 4.19.0.dev0 - Pytorch 1.11.0+cu113 - Datasets 2.2.3.dev0 - Tokenizers 0.12.1
subhasisj/vi-adapter-32
0662d668d2aa7f5ae1d73e2813f30684a3f436de
2022-05-21T22:30:44.000Z
[ "pytorch", "tensorboard", "xlm-roberta", "question-answering", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
question-answering
false
subhasisj
null
subhasisj/vi-adapter-32
0
null
transformers
37,618
--- tags: - generated_from_trainer model-index: - name: vi-adapter-32 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vi-adapter-32 This model was trained from scratch on the None dataset. It achieves the following results on the evaluation set: - Loss: 5.4211 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 256 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 356 | 5.6984 | | 5.7565 | 2.0 | 712 | 5.5596 | | 5.5609 | 3.0 | 1068 | 5.4781 | | 5.5609 | 4.0 | 1424 | 5.4349 | | 5.4654 | 5.0 | 1780 | 5.4211 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
ruselkomp/sber-framebank-hidesize
83fd2c4d9345197f6c7a64d6e340ee6465ee47d6
2022-05-21T19:49:37.000Z
[ "pytorch", "tensorboard", "bert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
ruselkomp
null
ruselkomp/sber-framebank-hidesize
0
null
transformers
37,619
Entry not found
HighCWu/anime-biggan-pytorch
9f8640938b6611f0af75520c95ff49506f66e765
2022-05-21T15:36:10.000Z
[ "pytorch" ]
null
false
HighCWu
null
HighCWu/anime-biggan-pytorch
0
null
null
37,620
Entry not found
renjithks/distilbert-cord-ner
dc44e6ed7f2473ee3cc7205fbf6acb67325fb7d3
2022-05-22T11:12:52.000Z
[ "pytorch", "tensorboard", "distilbert", "token-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
token-classification
false
renjithks
null
renjithks/distilbert-cord-ner
0
null
transformers
37,621
--- license: apache-2.0 tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: distilbert-cord-ner results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-cord-ner This model is a fine-tuned version of [Geotrend/distilbert-base-en-fr-de-no-da-cased](https://huggingface.co/Geotrend/distilbert-base-en-fr-de-no-da-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1670 - Precision: 0.9128 - Recall: 0.9242 - F1: 0.9185 - Accuracy: 0.9656 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 113 | 0.1814 | 0.8480 | 0.8618 | 0.8548 | 0.9393 | | No log | 2.0 | 226 | 0.1755 | 0.8669 | 0.9002 | 0.8832 | 0.9427 | | No log | 3.0 | 339 | 0.1499 | 0.8800 | 0.8935 | 0.8867 | 0.9533 | | No log | 4.0 | 452 | 0.1340 | 0.8975 | 0.9079 | 0.9027 | 0.9596 | | 0.1812 | 5.0 | 565 | 0.1553 | 0.8999 | 0.9146 | 0.9072 | 0.9592 | | 0.1812 | 6.0 | 678 | 0.1474 | 0.8961 | 0.9021 | 0.8991 | 0.9562 | | 0.1812 | 7.0 | 791 | 0.1682 | 0.9135 | 0.9223 | 0.9179 | 0.9622 | | 0.1812 | 8.0 | 904 | 0.1663 | 0.8960 | 0.9175 | 0.9066 | 0.9613 | | 0.0199 | 9.0 | 1017 | 0.1753 | 0.9061 | 0.9261 | 0.9160 | 0.9635 | | 0.0199 | 10.0 | 1130 | 0.1670 | 0.9128 | 0.9242 | 0.9185 | 0.9656 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.12.1
subhasisj/ar-adapter-32
c4a28e4e2a54fd2f1223f9a2c451baf07ad3c520
2022-05-21T20:22:40.000Z
[ "pytorch", "tensorboard", "xlm-roberta", "question-answering", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
question-answering
false
subhasisj
null
subhasisj/ar-adapter-32
0
null
transformers
37,622
--- tags: - generated_from_trainer model-index: - name: ar-adapter-32 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ar-adapter-32 This model was trained from scratch on the None dataset. It achieves the following results on the evaluation set: - Loss: 5.3886 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 256 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 352 | 5.6861 | | 5.7356 | 2.0 | 704 | 5.5388 | | 5.5308 | 3.0 | 1056 | 5.4493 | | 5.5308 | 4.0 | 1408 | 5.4030 | | 5.4304 | 5.0 | 1760 | 5.3886 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
stevemobs/distilbert-base-uncased-finetuned-squad
3c5d0b04d6d1052f2f07d3926eba6f2068add794
2022-05-21T21:52:36.000Z
[ "pytorch", "tensorboard", "distilbert", "question-answering", "dataset:squad_v2", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
question-answering
false
stevemobs
null
stevemobs/distilbert-base-uncased-finetuned-squad
0
null
transformers
37,623
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad_v2 model-index: - name: distilbert-base-uncased-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-squad This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the squad_v2 dataset. It achieves the following results on the evaluation set: - Loss: 1.4413 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 1.2121 | 1.0 | 8235 | 1.2995 | | 0.948 | 2.0 | 16470 | 1.2667 | | 0.7629 | 3.0 | 24705 | 1.4413 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
ruselkomp/sber-framebank-hidesize-1
1bf22f09f2bb88f1c4288816e2ba1879c3b872d9
2022-05-22T01:57:09.000Z
[ "pytorch", "tensorboard", "bert", "question-answering", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
question-answering
false
ruselkomp
null
ruselkomp/sber-framebank-hidesize-1
0
null
transformers
37,624
--- tags: - generated_from_trainer model-index: - name: sber-framebank-hidesize-1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # sber-framebank-hidesize-1 This model is a fine-tuned version of [sberbank-ai/sbert_large_nlu_ru](https://huggingface.co/sberbank-ai/sbert_large_nlu_ru) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.4154 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 1.053 | 1.0 | 11307 | 1.0655 | | 0.835 | 2.0 | 22614 | 1.2487 | | 0.6054 | 3.0 | 33921 | 1.4154 | ### Framework versions - Transformers 4.19.0.dev0 - Pytorch 1.11.0+cu113 - Datasets 2.2.3.dev0 - Tokenizers 0.12.1
prodm93/T5Dynamic_text_model_v2
54290f0d83594f770dc0b298e18968f9e71c3d8b
2022-05-21T22:23:59.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
prodm93
null
prodm93/T5Dynamic_text_model_v2
0
null
transformers
37,625
Entry not found
neibla/convnext-tiny-224-finetuned-eurosat
33eca54e09e648dffcf44cc89eb9b0057d97b8b5
2022-05-22T04:10:27.000Z
[ "pytorch", "tensorboard", "regnet", "image-classification", "transformers" ]
image-classification
false
neibla
null
neibla/convnext-tiny-224-finetuned-eurosat
0
null
transformers
37,626
Entry not found
sandrokim/two_tower_sentence_snoobert
dea46e48bf82d72e587995913c1b1ac2b7aa8cf2
2022-05-22T00:02:17.000Z
[ "pytorch", "bert", "feature-extraction", "sentence-transformers", "sentence-similarity", "transformers" ]
sentence-similarity
false
sandrokim
null
sandrokim/two_tower_sentence_snoobert
0
null
sentence-transformers
37,627
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # sandrokim/two_tower_sentence_snoobert This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('sandrokim/two_tower_sentence_snoobert') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('sandrokim/two_tower_sentence_snoobert') model = AutoModel.from_pretrained('sandrokim/two_tower_sentence_snoobert') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=sandrokim/two_tower_sentence_snoobert) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 719 with parameters: ``` {'batch_size': 8, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 5, "evaluation_steps": 1000, "evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 992, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
prodm93/t5-rn-abstract-model-v1
d588f01c9c1dade0117a1ae1e545fe3de5fff8e0
2022-05-22T01:15:18.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
prodm93
null
prodm93/t5-rn-abstract-model-v1
0
null
transformers
37,628
Entry not found
prodm93/gpt2-sum-abstract-model-v1
2e407224b90f76478a5c4258e68bd521c6a699c0
2022-05-22T01:26:57.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
prodm93
null
prodm93/gpt2-sum-abstract-model-v1
0
null
transformers
37,629
Entry not found
prodm93/t5-sum-abstract-model-v1
7702a55695a2bfcf21f6470cea48f803bb07c8e6
2022-05-22T01:35:40.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
prodm93
null
prodm93/t5-sum-abstract-model-v1
0
null
transformers
37,630
Entry not found
huggingtweets/flimosch
67b15dfc340db7659abbdc6ee7e93a0fe4dca131
2022-05-22T05:32:03.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/flimosch
0
null
transformers
37,631
--- language: en thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/791305273587752962/cQxUCInF_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">flimosch</div> <div style="text-align: center; font-size: 14px;">@flimosch</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from flimosch. | Data | flimosch | | --- | --- | | Tweets downloaded | 3174 | | Retweets | 649 | | Short tweets | 681 | | Tweets kept | 1844 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3umhpijp/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @flimosch's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1jet29t5) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1jet29t5/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/flimosch') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
sabah17/distilbert-base-uncased-finetuned-squad
0708777ae441ffafa5a07f658f05e7e7d1041fcb
2022-05-29T05:37:34.000Z
[ "pytorch", "tensorboard", "distilbert", "question-answering", "dataset:squad", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
question-answering
false
sabah17
null
sabah17/distilbert-base-uncased-finetuned-squad
0
null
transformers
37,632
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: distilbert-base-uncased-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-squad This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the squad dataset. It achieves the following results on the evaluation set: - Loss: 1.1635 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 1.2324 | 1.0 | 5533 | 1.1746 | | 0.9703 | 2.0 | 11066 | 1.1406 | | 0.7702 | 3.0 | 16599 | 1.1635 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
pglauner/xlm-roberta-base-finetuned-panx-de
7f77b368455ad3e566f561accccd15e2e4d2569e
2022-05-22T08:35:58.000Z
[ "pytorch", "tensorboard", "xlm-roberta", "token-classification", "dataset:xtreme", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
token-classification
false
pglauner
null
pglauner/xlm-roberta-base-finetuned-panx-de
0
null
transformers
37,633
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme args: PAN-X.de metrics: - name: F1 type: f1 value: 0.8620945214069894 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.1372 - F1: 0.8621 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2575 | 1.0 | 525 | 0.1621 | 0.8292 | | 0.1287 | 2.0 | 1050 | 0.1378 | 0.8526 | | 0.0831 | 3.0 | 1575 | 0.1372 | 0.8621 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.11.0+cu113 - Datasets 1.16.1 - Tokenizers 0.10.3
subhasisj/de-adapter-32
954361d68dbac518b6591b305e365a9f687905a1
2022-05-22T11:00:43.000Z
[ "pytorch", "tensorboard", "xlm-roberta", "question-answering", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
question-answering
false
subhasisj
null
subhasisj/de-adapter-32
0
null
transformers
37,634
--- tags: - generated_from_trainer model-index: - name: de-adapter-32 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # de-adapter-32 This model was trained from scratch on the None dataset. It achieves the following results on the evaluation set: - Loss: 5.4347 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 256 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 335 | 5.7031 | | 5.7592 | 2.0 | 670 | 5.5706 | | 5.5647 | 3.0 | 1005 | 5.4899 | | 5.5647 | 4.0 | 1340 | 5.4481 | | 5.4865 | 5.0 | 1675 | 5.4347 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
moghis/xlm-roberta-base-finetuned-panx-fr-de
fe80466c9549c97298c8afda097ab20e8379dea1
2022-05-22T09:56:59.000Z
[ "pytorch", "xlm-roberta", "token-classification", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
token-classification
false
moghis
null
moghis/xlm-roberta-base-finetuned-panx-fr-de
0
null
transformers
37,635
--- license: mit tags: - generated_from_trainer model-index: - name: xlm-roberta-base-finetuned-panx-fr-de results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-fr-de This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1631 - F1 Score: 0.8579 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 Score | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.2878 | 1.0 | 715 | 0.1840 | 0.8247 | | 0.1456 | 2.0 | 1430 | 0.1596 | 0.8473 | | 0.0925 | 3.0 | 2145 | 0.1631 | 0.8579 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
ruselkomp/sber-framebank-hidesize-2
aac0451c57f69fe279e5b3e40ff331bd16ce98d0
2022-05-23T01:04:10.000Z
[ "pytorch", "tensorboard", "bert", "question-answering", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
question-answering
false
ruselkomp
null
ruselkomp/sber-framebank-hidesize-2
0
null
transformers
37,636
--- tags: - generated_from_trainer model-index: - name: sber-framebank-hidesize-2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # sber-framebank-hidesize-2 This model is a fine-tuned version of [sberbank-ai/sbert_large_nlu_ru](https://huggingface.co/sberbank-ai/sbert_large_nlu_ru) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.5381 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 1.0513 | 1.0 | 11307 | 1.0576 | | 0.7052 | 2.0 | 22614 | 1.1270 | | 0.4185 | 3.0 | 33921 | 1.5381 | ### Framework versions - Transformers 4.19.0.dev0 - Pytorch 1.11.0+cu113 - Datasets 2.2.3.dev0 - Tokenizers 0.12.1
subhasisj/es-adapter-32
ffe543a6da4c9c0e59ce45c839a0da91fc7e03e5
2022-05-22T13:44:29.000Z
[ "pytorch", "tensorboard", "xlm-roberta", "question-answering", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
question-answering
false
subhasisj
null
subhasisj/es-adapter-32
0
null
transformers
37,637
--- tags: - generated_from_trainer model-index: - name: es-adapter-32 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # es-adapter-32 This model was trained from scratch on the None dataset. It achieves the following results on the evaluation set: - Loss: 5.4161 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 256 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 356 | 5.6970 | | 5.7468 | 2.0 | 712 | 5.5589 | | 5.5498 | 3.0 | 1068 | 5.4747 | | 5.5498 | 4.0 | 1424 | 5.4303 | | 5.4518 | 5.0 | 1780 | 5.4161 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
kirillka/rut5-small-finetuned-gen-description-2
38aa631890bfe8a440e40622a27e4c8a174787b3
2022-05-22T12:14:52.000Z
[ "pytorch", "tensorboard", "mt5", "text2text-generation", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
text2text-generation
false
kirillka
null
kirillka/rut5-small-finetuned-gen-description-2
0
null
transformers
37,638
--- license: mit tags: - generated_from_trainer model-index: - name: rut5-small-finetuned-gen-description-2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # rut5-small-finetuned-gen-description-2 This model is a fine-tuned version of [cointegrated/rut5-small](https://huggingface.co/cointegrated/rut5-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: nan ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 422 | nan | | 2.3892 | 2.0 | 844 | nan | | 0.0 | 3.0 | 1266 | nan | | 0.0 | 4.0 | 1688 | nan | | 0.0 | 5.0 | 2110 | nan | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
stevemobs/distilbert-base-uncased-combined-squad-adversarial
e6ca1e7c35d1385732c30a06a82cd4cfd14d0a43
2022-05-22T15:35:53.000Z
[ "pytorch", "tensorboard", "distilbert", "question-answering", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
question-answering
false
stevemobs
null
stevemobs/distilbert-base-uncased-combined-squad-adversarial
0
null
transformers
37,639
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distilbert-base-uncased-combined-squad-adversarial results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-combined-squad-adversarial This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.7273 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 1.574 | 1.0 | 10130 | 1.5529 | | 1.2707 | 2.0 | 20260 | 1.6522 | | 1.0196 | 3.0 | 30390 | 1.7273 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
masoumehb/wav2vec2-large-xlsr-turkish-demo-colab
3a4c8e2e2633ec5bb560152987920cbbab5cdfef
2022-05-24T12:20:20.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "dataset:common_voice", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
masoumehb
null
masoumehb/wav2vec2-large-xlsr-turkish-demo-colab
0
null
transformers
37,640
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice model-index: - name: wav2vec2-large-xlsr-turkish-demo-colab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xlsr-turkish-demo-colab This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the common_voice dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.11.3 - Pytorch 1.11.0 - Datasets 1.13.3 - Tokenizers 0.10.3
subhasisj/zh-adapter-32
f0e44fc14efa83da68333f3f6482493633a8a208
2022-05-22T19:42:24.000Z
[ "pytorch", "tensorboard", "xlm-roberta", "question-answering", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
question-answering
false
subhasisj
null
subhasisj/zh-adapter-32
0
null
transformers
37,641
--- tags: - generated_from_trainer model-index: - name: zh-adapter-32 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # zh-adapter-32 This model was trained from scratch on the None dataset. It achieves the following results on the evaluation set: - Loss: 5.2154 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 256 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 338 | 5.5948 | | 5.6797 | 2.0 | 676 | 5.4048 | | 5.4277 | 3.0 | 1014 | 5.2908 | | 5.4277 | 4.0 | 1352 | 5.2328 | | 5.313 | 5.0 | 1690 | 5.2154 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
jppaolim/v35_Baseline
dfb56f796dfa4b260a5dbe2581abefefcf5bcf52
2022-05-22T20:20:32.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
jppaolim
null
jppaolim/v35_Baseline
0
null
transformers
37,642
# Dummy model Arthur goes to the beach. Arthur wanted to go to the beach. He thought it would be fun. He went and got a big towel. He set out to get on the water. He was so excited he fell in love with the ocean. Arthur goes to the beach. Arthur and his family went to the beach on Saturday. They all wanted to go swimming. Arthur decided to try and go to the water. His mom didn't want him to go swimming. He tried to jump into the water but it was too dangerous. Arthur goes to the beach. Arthur was surfing at a beach. He found a shark swimming near him. He got out of the water and started to dive. A big wave hit his surfboard. Arthur had to run away before he was rescued. Arthur goes to the beach. Arthur is going to the beach for the first time. He is nervous and doesn't know what to expect. He begins to think about his day. He walks home from the beach. He takes a deep breath, and checks the weather. Arthur goes to the beach. Arthur was excited for the next day of school. He packed his bags and headed to the beach. When he got there, he saw his friend's car. He tried to help his friend move away from the car. His friend was okay, so he helped him. Arthur goes to the beach. Arthur was out with friends at a beach. He decided to go for a swim in the ocean. Arthur started swimming but felt tired. He fell asleep and went to sleep. When he woke up he was very tired and had a hard time. Arthur goes to the beach. Arthur is going to the beach today. He wants to go swimming. Arthur gets out of his car and heads for the beach. He goes swimming and enjoys the sun. He then decides he needs to do something else. Arthur goes to the beach. Arthur was going to go to the beach. He didn't have any money. Arthur decided to go to the lake. He bought all his friends water. He went home with a smile on his face. Arthur goes to the beach. Arthur loved going to the beach. He went to the beach everyday. One day, he decided to go to the beach. Arthur found that the beach was crowded with people. Arthur went home exhausted and feeling sad. Arthur goes to the beach. Arthur has always wanted to go to the beach. He decides to get on his bike. He parks and gets ready to go. The sun comes up and he goes to the beach. He loves his new adventure! Arthur goes to the beach. Arthur wanted to go to the beach. He decided to go to the beach with his girlfriend. They went to a local bar. The bar had a lot of good food. Arthur ate at the bar and got a good night's rest. Arthur goes to the beach. Arthur went to the beach with his family. Arthur got on a boat. Arthur started to go down the water. Arthur had a rough time. Arthur's family came home and they were happy. Arthur goes to the beach. Arthur was going to go to the beach with his friends. He had never been on a beach before. He got very excited and headed out the door. The weather was nice and warm. Arthur had a great time at the beach. Arthur goes to the beach. Arthur decides he wants to go to the beach. He decides to take a boat ride on the beach. He is not very experienced. Arthur gets lost in the sand. He never goes back to the beach again. Arthur goes to the beach. Arthur is at the beach with his friends. He gets lost in a large water slide. He tries to find his way back home. He lands on the beach and waits for help. When he gets there he finds a very famous guy. Arthur goes to the beach. Arthur loves going to the ocean. He has never been on a boat before. He decides he wants to go to the beach. He heads to the beach and gets to the water. He is happy he went to the beach. Arthur goes to the beach. Arthur is going on a trip to the beach. He has never been to the beach before. He is very excited about his trip. He gets in his car and drives home. He loves the beach. Arthur goes to the beach. Arthur is going to the beach with his family. He is going to go to a beach with his family. Arthur gets on the water and heads out. Arthur swims for hours in the water. Arthur is happy he was able to go to the beach. Arthur goes to the beach. Arthur is going to the beach with his family. He has never been to a beach before. He decides he wants to go. He goes to the beach and gets to know all of the people there. He is so happy he can't wait for next year. Arthur goes to the beach. Arthur was a very good swimmer. He was always in the water at the beach. One day, he was swimming with his friends. Arthur got hit by a car and died. His friends were very sad about it.
prodm93/rn_gpt2_customdata_model
e7f3505241ce173de033b1b2bedf65734862ff04
2022-05-22T20:47:22.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
prodm93
null
prodm93/rn_gpt2_customdata_model
0
null
transformers
37,643
Entry not found
jacklin/DeLADE-CLS
89839d2419f546d673ff39ba06ebf3a229ce0266
2022-05-22T21:27:36.000Z
[ "pytorch", "arxiv:2112.04666" ]
null
false
jacklin
null
jacklin/DeLADE-CLS
0
null
null
37,644
This model, DeLADE+[CLS], is trained by fusing neural lexical and semantic components in single transformer using DistilBERT as a backbone. *[A Dense Representation Framework for Lexical and Semantic Matching](https://arxiv.org/pdf/2112.04666.pdf)* Sheng-Chieh Lin and Jimmy Lin. You can find the usage of the model in our [DHR repo](https://github.com/jacklin64/DHR): (1) [Inference on MSMARCO Passage Ranking](https://github.com/castorini/DHR/blob/main/docs/msmarco-passage-train-eval.md); (2) [Inference on BEIR datasets](https://github.com/castorini/DHR/blob/main/docs/beir-eval.md).
jacklin/DeLADE
93f79f0f14023fc2d37a5d64baa8210b829d1c18
2022-05-22T21:27:15.000Z
[ "pytorch", "arxiv:2112.04666" ]
null
false
jacklin
null
jacklin/DeLADE
0
null
null
37,645
This model, DeLADE, is trained by fusing neural lexical and semantic components in single transformer using DistilBERT as a backbone. *[A Dense Representation Framework for Lexical and Semantic Matching](https://arxiv.org/pdf/2112.04666.pdf)* Sheng-Chieh Lin and Jimmy Lin. You can find the usage of the model in our [DHR repo](https://github.com/jacklin64/DHR): (1) [Inference on MSMARCO Passage Ranking](https://github.com/castorini/DHR/blob/main/docs/msmarco-passage-train-eval.md); (2) [Inference on BEIR datasets](https://github.com/castorini/DHR/blob/main/docs/beir-eval.md).
stevemobs/deberta-base-combined-squad1-aqa
7a0d74b4554c7af74164c0725ae942e42fae55b0
2022-05-23T02:32:12.000Z
[ "pytorch", "tensorboard", "deberta", "question-answering", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
question-answering
false
stevemobs
null
stevemobs/deberta-base-combined-squad1-aqa
0
null
transformers
37,646
--- license: mit tags: - generated_from_trainer model-index: - name: deberta-base-combined-squad1-aqa results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # deberta-base-combined-squad1-aqa This model is a fine-tuned version of [microsoft/deberta-base](https://huggingface.co/microsoft/deberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.9442 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 12 - eval_batch_size: 12 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 1.1133 | 1.0 | 9906 | 0.9652 | | 0.7943 | 2.0 | 19812 | 0.9442 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
globuslabs/ScholarBERT_10
b94cfe6ae48a5e7391d076e1321e18585158c5fc
2022-05-24T03:15:41.000Z
[ "pytorch", "bert", "fill-mask", "en", "arxiv:2205.11342", "transformers", "science", "multi-displinary", "license:apache-2.0", "autotrain_compatible" ]
fill-mask
false
globuslabs
null
globuslabs/ScholarBERT_10
0
null
transformers
37,647
--- language: en tags: - science - multi-displinary license: apache-2.0 --- # ScholarBERT_10 Model This is the **ScholarBERT_10** variant of the ScholarBERT model family. The model is pretrained on a large collection of scientific research articles (**22.1B tokens**). This is a **cased** (case-sensitive) model. The tokenizer will not convert all inputs to lower-case by default. The model is based on the same architecture as [BERT-large](https://huggingface.co/bert-large-cased) and has a total of 340M parameters. # Model Architecture | Hyperparameter | Value | |-----------------|:-------:| | Layers | 24 | | Hidden Size | 1024 | | Attention Heads | 16 | | Total Parameters | 340M | # Training Dataset The vocab and the model are pertrained on **10% of the PRD** scientific literature dataset. The PRD dataset is provided by Public.Resource.Org, Inc. (“Public Resource”), a nonprofit organization based in California. This dataset was constructed from a corpus of journal article files, from which We successfully extracted text from 75,496,055 articles from 178,928 journals. The articles span across Arts & Humanities, Life Sciences & Biomedicine, Physical Sciences, Social Sciences, and Technology. The distribution of articles is shown below. ![corpus pie chart](https://huggingface.co/globuslabs/ScholarBERT/resolve/main/corpus_pie_chart.png) # BibTeX entry and citation info If using this model, please cite this paper: ``` @misc{hong2022scholarbert, doi = {10.48550/ARXIV.2205.11342}, url = {https://arxiv.org/abs/2205.11342}, author = {Hong, Zhi and Ajith, Aswathy and Pauloski, Gregory and Duede, Eamon and Malamud, Carl and Magoulas, Roger and Chard, Kyle and Foster, Ian}, title = {ScholarBERT: Bigger is Not Always Better}, publisher = {arXiv}, year = {2022} } ```
zuu/asr-wav2vec2
1e8cf7828cfb4f3af02e90d43623f235388b94a4
2022-05-23T05:03:02.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
zuu
null
zuu/asr-wav2vec2
0
null
transformers
37,648
Entry not found
mehari/fnrbt
7e91e4067efa05b3b37316501e38eaa04e634e7d
2022-05-24T08:06:01.000Z
[ "pytorch", "roberta", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
mehari
null
mehari/fnrbt
0
null
transformers
37,649
Entry not found
t8oo/DialoGPT-small-zeni
1a79bbcc94770665eb0a431cb0c1724cec9a32c9
2022-05-23T06:55:16.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
t8oo
null
t8oo/DialoGPT-small-zeni
0
null
transformers
37,650
--- tags : - conversational --- # Zeni DialoGPT Model
spasis/bert-finetuned-squad-accelerate
82bfcb2ae14a6167194e7d77f9774344979b8e61
2022-05-23T11:06:21.000Z
[ "pytorch", "bert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
spasis
null
spasis/bert-finetuned-squad-accelerate
0
null
transformers
37,651
Entry not found
stplgg/xlm-roberta-base-finetuned-panx-de
e9ed9a23b4dc65997ec5b8f74581566427eed009
2022-05-23T09:43:15.000Z
[ "pytorch", "tensorboard", "xlm-roberta", "token-classification", "dataset:xtreme", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
token-classification
false
stplgg
null
stplgg/xlm-roberta-base-finetuned-panx-de
0
null
transformers
37,652
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme args: PAN-X.de metrics: - name: F1 type: f1 value: 0.8620945214069894 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.1372 - F1: 0.8621 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2575 | 1.0 | 525 | 0.1621 | 0.8292 | | 0.1287 | 2.0 | 1050 | 0.1378 | 0.8526 | | 0.0831 | 3.0 | 1575 | 0.1372 | 0.8621 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
theojolliffe/bart-cnn-pubmed-arxiv-pubmed-v3-e100
2099132aca15e848200431e0d821d86beacb399e
2022-05-24T00:25:24.000Z
[ "pytorch", "tensorboard", "bart", "text2text-generation", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
text2text-generation
false
theojolliffe
null
theojolliffe/bart-cnn-pubmed-arxiv-pubmed-v3-e100
0
null
transformers
37,653
--- license: mit tags: - generated_from_trainer metrics: - rouge model-index: - name: bart-cnn-pubmed-arxiv-pubmed-v3-e100 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-cnn-pubmed-arxiv-pubmed-v3-e100 This model is a fine-tuned version of [theojolliffe/bart-cnn-pubmed-arxiv-pubmed](https://huggingface.co/theojolliffe/bart-cnn-pubmed-arxiv-pubmed) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.1806 - Rouge1: 59.4159 - Rouge2: 48.867 - Rougel: 51.9013 - Rougelsum: 58.3382 - Gen Len: 142.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 100 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:--------:| | 1.2541 | 1.0 | 795 | 0.9350 | 52.5594 | 32.6314 | 35.2302 | 50.1767 | 142.0 | | 0.7018 | 2.0 | 1590 | 0.8022 | 53.4804 | 35.4649 | 37.1673 | 51.2428 | 142.0 | | 0.5266 | 3.0 | 2385 | 0.7752 | 52.9462 | 34.3697 | 36.611 | 50.6922 | 142.0 | | 0.3475 | 4.0 | 3180 | 0.7771 | 53.4605 | 35.4738 | 38.5714 | 51.3798 | 142.0 | | 0.2691 | 5.0 | 3975 | 0.7424 | 54.1132 | 35.7289 | 39.2653 | 51.6822 | 141.4259 | | 0.182 | 6.0 | 4770 | 0.8037 | 53.7969 | 35.7324 | 38.4764 | 51.4929 | 141.7778 | | 0.1446 | 7.0 | 5565 | 0.7686 | 55.0274 | 38.7813 | 42.6251 | 52.9847 | 142.0 | | 0.1191 | 8.0 | 6360 | 0.7807 | 55.4651 | 38.6537 | 41.2746 | 53.578 | 141.8704 | | 0.0976 | 9.0 | 7155 | 0.8045 | 55.2843 | 40.2358 | 42.8464 | 54.0957 | 142.0 | | 0.0882 | 10.0 | 7950 | 0.8533 | 56.8288 | 41.6714 | 44.3961 | 54.9406 | 142.0 | | 0.0721 | 11.0 | 8745 | 0.8962 | 55.3187 | 40.1599 | 43.2103 | 54.1964 | 142.0 | | 0.0597 | 12.0 | 9540 | 0.8653 | 55.5706 | 40.2321 | 44.0075 | 53.9883 | 142.0 | | 0.054 | 13.0 | 10335 | 0.8566 | 55.6622 | 40.0252 | 42.6907 | 54.0548 | 142.0 | | 0.0476 | 14.0 | 11130 | 0.8900 | 57.5046 | 43.6309 | 46.449 | 55.9909 | 142.0 | | 0.0432 | 15.0 | 11925 | 0.9149 | 55.604 | 39.9591 | 43.1729 | 54.3703 | 142.0 | | 0.0403 | 16.0 | 12720 | 0.9258 | 55.1275 | 39.6566 | 42.3852 | 53.7656 | 142.0 | | 0.0351 | 17.0 | 13515 | 0.9184 | 58.2352 | 44.6109 | 47.3863 | 56.9529 | 142.0 | | 0.032 | 18.0 | 14310 | 0.9275 | 55.9687 | 41.2482 | 44.0076 | 54.0707 | 142.0 | | 0.0313 | 19.0 | 15105 | 0.9635 | 56.3574 | 41.2113 | 44.8358 | 54.6279 | 142.0 | | 0.0258 | 20.0 | 15900 | 0.9478 | 57.8445 | 44.297 | 46.8836 | 56.2003 | 142.0 | | 0.0277 | 21.0 | 16695 | 0.9363 | 58.4823 | 46.0943 | 48.7817 | 57.5883 | 141.6667 | | 0.0219 | 22.0 | 17490 | 0.9705 | 57.6022 | 43.9147 | 47.3054 | 56.3866 | 142.0 | | 0.0231 | 23.0 | 18285 | 0.9857 | 56.5809 | 42.9124 | 46.789 | 55.3897 | 142.0 | | 0.021 | 24.0 | 19080 | 1.0155 | 56.9745 | 43.8859 | 46.6109 | 55.708 | 142.0 | | 0.02 | 25.0 | 19875 | 1.0095 | 57.9702 | 45.1809 | 48.2856 | 56.6941 | 142.0 | | 0.0175 | 26.0 | 20670 | 0.9634 | 57.7023 | 45.1577 | 48.2398 | 56.5282 | 142.0 | | 0.0161 | 27.0 | 21465 | 1.0197 | 58.739 | 46.3307 | 49.2328 | 57.5778 | 142.0 | | 0.0186 | 28.0 | 22260 | 0.9790 | 56.1661 | 42.9731 | 45.8654 | 54.4365 | 142.0 | | 0.0145 | 29.0 | 23055 | 0.9883 | 55.8554 | 41.7405 | 45.177 | 54.478 | 142.0 | | 0.013 | 30.0 | 23850 | 0.9977 | 55.5831 | 41.2429 | 44.8063 | 53.886 | 142.0 | | 0.0131 | 31.0 | 24645 | 0.9765 | 57.4478 | 44.8905 | 48.1376 | 56.102 | 141.463 | | 0.0118 | 32.0 | 25440 | 1.0000 | 58.4282 | 46.6557 | 49.4122 | 57.1979 | 142.0 | | 0.0117 | 33.0 | 26235 | 0.9924 | 57.1995 | 44.4177 | 47.6248 | 56.0251 | 141.2407 | | 0.011 | 34.0 | 27030 | 1.0698 | 57.8918 | 45.925 | 49.0505 | 56.9352 | 142.0 | | 0.0093 | 35.0 | 27825 | 1.0297 | 57.7003 | 45.4556 | 47.9919 | 56.5134 | 141.8148 | | 0.0112 | 36.0 | 28620 | 1.0429 | 58.4039 | 46.6401 | 49.3897 | 57.4753 | 142.0 | | 0.0101 | 37.0 | 29415 | 1.0761 | 59.2768 | 47.5384 | 50.2152 | 57.9493 | 142.0 | | 0.0095 | 38.0 | 30210 | 1.0254 | 58.6205 | 47.246 | 50.87 | 57.7829 | 142.0 | | 0.0087 | 39.0 | 31005 | 1.0216 | 57.7667 | 44.7762 | 48.067 | 56.6006 | 142.0 | | 0.0082 | 40.0 | 31800 | 1.0587 | 58.4703 | 45.8371 | 48.5321 | 57.2036 | 142.0 | | 0.0075 | 41.0 | 32595 | 1.0621 | 58.5629 | 46.8885 | 49.5943 | 57.4579 | 142.0 | | 0.0079 | 42.0 | 33390 | 1.0845 | 57.664 | 45.5954 | 48.408 | 56.661 | 141.9815 | | 0.0076 | 43.0 | 34185 | 1.0705 | 58.1776 | 46.0435 | 49.3126 | 57.138 | 142.0 | | 0.0074 | 44.0 | 34980 | 1.0636 | 58.1022 | 46.4877 | 48.7985 | 56.9073 | 142.0 | | 0.007 | 45.0 | 35775 | 1.0810 | 57.8251 | 44.8767 | 47.8991 | 56.5977 | 142.0 | | 0.0057 | 46.0 | 36570 | 1.0560 | 58.5086 | 46.3448 | 49.2576 | 57.4386 | 142.0 | | 0.0062 | 47.0 | 37365 | 1.0903 | 58.8772 | 47.2886 | 49.9502 | 57.611 | 142.0 | | 0.0058 | 48.0 | 38160 | 1.0847 | 59.4672 | 48.3847 | 51.602 | 58.4588 | 142.0 | | 0.0061 | 49.0 | 38955 | 1.0798 | 59.5308 | 48.0396 | 50.8641 | 58.5016 | 142.0 | | 0.0062 | 50.0 | 39750 | 1.0795 | 59.5026 | 48.5319 | 51.7426 | 58.7111 | 142.0 | | 0.0051 | 51.0 | 40545 | 1.0842 | 57.7941 | 46.1198 | 48.7341 | 56.7164 | 142.0 | | 0.0057 | 52.0 | 41340 | 1.0777 | 58.6131 | 46.3924 | 49.0787 | 57.1278 | 142.0 | | 0.0039 | 53.0 | 42135 | 1.1133 | 57.6447 | 45.6699 | 48.5207 | 56.6447 | 142.0 | | 0.0038 | 54.0 | 42930 | 1.0714 | 58.1462 | 46.4616 | 49.273 | 57.2771 | 142.0 | | 0.004 | 55.0 | 43725 | 1.0852 | 58.6577 | 47.2095 | 50.4702 | 57.7724 | 142.0 | | 0.0044 | 56.0 | 44520 | 1.1152 | 59.0564 | 47.1621 | 50.2807 | 58.3122 | 142.0 | | 0.0042 | 57.0 | 45315 | 1.0831 | 58.1767 | 46.8127 | 49.9166 | 57.1833 | 142.0 | | 0.0038 | 58.0 | 46110 | 1.1156 | 57.8515 | 46.3229 | 48.6843 | 56.7218 | 142.0 | | 0.0038 | 59.0 | 46905 | 1.1105 | 57.9332 | 45.8354 | 49.27 | 57.1209 | 142.0 | | 0.0034 | 60.0 | 47700 | 1.1104 | 60.0207 | 49.2067 | 51.8751 | 58.9484 | 142.0 | | 0.0028 | 61.0 | 48495 | 1.1533 | 58.3432 | 46.8835 | 50.2868 | 57.5427 | 141.6111 | | 0.0026 | 62.0 | 49290 | 1.1441 | 58.6838 | 46.9472 | 49.9524 | 57.5287 | 142.0 | | 0.0028 | 63.0 | 50085 | 1.1232 | 58.0202 | 45.5855 | 48.6554 | 56.8368 | 141.9444 | | 0.0037 | 64.0 | 50880 | 1.1520 | 58.3905 | 47.0348 | 49.8478 | 57.3665 | 142.0 | | 0.0029 | 65.0 | 51675 | 1.1358 | 59.231 | 48.7251 | 51.6138 | 58.5718 | 142.0 | | 0.0026 | 66.0 | 52470 | 1.1559 | 58.9482 | 47.2137 | 49.4299 | 57.7235 | 142.0 | | 0.0025 | 67.0 | 53265 | 1.1272 | 59.3333 | 47.7419 | 50.7018 | 58.326 | 142.0 | | 0.0026 | 68.0 | 54060 | 1.1613 | 58.6404 | 47.3218 | 50.255 | 57.4646 | 142.0 | | 0.0015 | 69.0 | 54855 | 1.1575 | 58.7927 | 47.7018 | 50.695 | 57.796 | 142.0 | | 0.0018 | 70.0 | 55650 | 1.1463 | 58.9455 | 47.2691 | 50.176 | 57.9997 | 142.0 | | 0.0023 | 71.0 | 56445 | 1.1622 | 58.5943 | 46.9325 | 49.4159 | 57.2131 | 142.0 | | 0.0024 | 72.0 | 57240 | 1.1258 | 58.2779 | 47.4119 | 49.9836 | 57.4867 | 142.0 | | 0.0019 | 73.0 | 58035 | 1.1333 | 58.9185 | 47.5755 | 50.0765 | 57.8661 | 142.0 | | 0.0017 | 74.0 | 58830 | 1.1469 | 60.5037 | 49.4508 | 52.2863 | 59.6675 | 141.963 | | 0.0017 | 75.0 | 59625 | 1.1349 | 59.4264 | 47.4554 | 50.0383 | 58.3103 | 142.0 | | 0.0025 | 76.0 | 60420 | 1.1215 | 58.2795 | 46.9852 | 49.5787 | 57.4501 | 142.0 | | 0.0012 | 77.0 | 61215 | 1.1272 | 58.2248 | 47.0914 | 50.2569 | 57.1888 | 142.0 | | 0.001 | 78.0 | 62010 | 1.1648 | 59.3808 | 48.4901 | 51.118 | 58.6251 | 142.0 | | 0.0011 | 79.0 | 62805 | 1.1433 | 58.8697 | 47.6232 | 50.0226 | 57.6299 | 142.0 | | 0.001 | 80.0 | 63600 | 1.1486 | 59.0608 | 47.1931 | 50.1354 | 57.8687 | 142.0 | | 0.0011 | 81.0 | 64395 | 1.1695 | 58.341 | 47.0306 | 49.9269 | 57.339 | 142.0 | | 0.001 | 82.0 | 65190 | 1.1589 | 58.9283 | 48.4586 | 51.2319 | 57.9485 | 142.0 | | 0.0009 | 83.0 | 65985 | 1.1868 | 59.1377 | 48.2469 | 50.8486 | 58.1111 | 142.0 | | 0.001 | 84.0 | 66780 | 1.1664 | 58.7706 | 47.5868 | 50.5937 | 57.7824 | 142.0 | | 0.0009 | 85.0 | 67575 | 1.1719 | 57.8121 | 45.5997 | 48.2442 | 56.5272 | 142.0 | | 0.0006 | 86.0 | 68370 | 1.1662 | 58.5204 | 47.5947 | 50.1839 | 57.6431 | 142.0 | | 0.0007 | 87.0 | 69165 | 1.1668 | 59.2416 | 48.2985 | 51.0347 | 58.2794 | 142.0 | | 0.0007 | 88.0 | 69960 | 1.1619 | 58.6933 | 47.5716 | 50.6785 | 57.5726 | 142.0 | | 0.0003 | 89.0 | 70755 | 1.1765 | 59.2853 | 48.6451 | 51.3017 | 58.2603 | 142.0 | | 0.0005 | 90.0 | 71550 | 1.1766 | 59.248 | 48.5642 | 50.9843 | 58.1706 | 142.0 | | 0.0005 | 91.0 | 72345 | 1.1983 | 59.0009 | 48.311 | 51.0192 | 57.9822 | 142.0 | | 0.0006 | 92.0 | 73140 | 1.1721 | 59.1248 | 49.0902 | 51.9937 | 58.2288 | 142.0 | | 0.0003 | 93.0 | 73935 | 1.1799 | 58.2448 | 47.4011 | 49.987 | 57.515 | 142.0 | | 0.0005 | 94.0 | 74730 | 1.1900 | 59.931 | 49.6663 | 52.3233 | 58.962 | 142.0 | | 0.0004 | 95.0 | 75525 | 1.1868 | 59.5898 | 49.0004 | 51.4835 | 58.6463 | 142.0 | | 0.0093 | 96.0 | 76320 | 1.1831 | 59.9405 | 49.83 | 52.4355 | 59.0702 | 142.0 | | 0.0004 | 97.0 | 77115 | 1.1841 | 59.7379 | 49.5435 | 52.5255 | 58.8526 | 142.0 | | 0.0004 | 98.0 | 77910 | 1.1790 | 59.5515 | 49.0724 | 51.9888 | 58.5488 | 142.0 | | 0.0003 | 99.0 | 78705 | 1.1786 | 59.7712 | 49.0557 | 51.8137 | 58.7144 | 142.0 | | 0.0002 | 100.0 | 79500 | 1.1806 | 59.4159 | 48.867 | 51.9013 | 58.3382 | 142.0 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
mkkc58/bert-finetuned-squad
2e0e83f84ad9f7dbb6e9dc4809fff87640b55e04
2022-05-24T08:54:29.000Z
[ "pytorch", "tensorboard", "bert", "question-answering", "dataset:squad", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
question-answering
false
mkkc58
null
mkkc58/bert-finetuned-squad
0
null
transformers
37,654
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: bert-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-squad This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
salma-elshafey/mbert2mbert-finetuned-ar-to-en
54f5d05b5ff6e2b8d2ac3f8051aac6f6f5f1bd29
2022-05-23T21:25:44.000Z
[ "pytorch", "tensorboard", "encoder-decoder", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
salma-elshafey
null
salma-elshafey/mbert2mbert-finetuned-ar-to-en
0
null
transformers
37,655
Entry not found
CEBaB/lstm.CEBaB.causalm.food__service.5-class.exclusive.seed_42
418ba18d44445faf3c064c0d6f182110d82f3000
2022-05-24T10:08:54.000Z
[ "pytorch", "lstm_causalm", "transformers" ]
null
false
CEBaB
null
CEBaB/lstm.CEBaB.causalm.food__service.5-class.exclusive.seed_42
0
null
transformers
37,656
Entry not found
huggingtweets/elonmusk-fchollet-steak_umm
a8fadabe75bc2ab1319fb0685f3140050fb75176
2022-05-24T00:03:41.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/elonmusk-fchollet-steak_umm
0
null
transformers
37,657
--- language: en thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1521957986335297536/itVSA7l0_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1505963741954945028/kk8k_nwH_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1234692331263016960/7uR-nYW0_400x400.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Elon Musk & Steak-umm & François Chollet</div> <div style="text-align: center; font-size: 14px;">@elonmusk-fchollet-steak_umm</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Elon Musk & Steak-umm & François Chollet. | Data | Elon Musk | Steak-umm | François Chollet | | --- | --- | --- | --- | | Tweets downloaded | 200 | 3249 | 3248 | | Retweets | 6 | 53 | 429 | | Short tweets | 61 | 1129 | 84 | | Tweets kept | 133 | 2067 | 2735 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3vvetpzj/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @elonmusk-fchollet-steak_umm's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2oru1ym7) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2oru1ym7/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/elonmusk-fchollet-steak_umm') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
luisu0124/Prueba_tf5
066407a72e148a13443f02babede63750fd0d0fd
2022-05-24T05:11:02.000Z
[ "pytorch", "bert", "transformers" ]
null
false
luisu0124
null
luisu0124/Prueba_tf5
0
null
transformers
37,658
Model preentrenado
nandezgarcia/roberta-base-bne-finetuned-recores-short
837ef9f911a9f40b7793d4f75d10288399b439bb
2022-05-24T06:21:47.000Z
[ "pytorch", "tensorboard", "roberta", "multiple-choice", "transformers" ]
multiple-choice
false
nandezgarcia
null
nandezgarcia/roberta-base-bne-finetuned-recores-short
0
null
transformers
37,659
Entry not found
nandezgarcia/roberta-base-bne-finetuned-recores-long
5744e236dd10135c44bcc34779ec283afb8c4350
2022-05-24T08:04:35.000Z
[ "pytorch", "tensorboard", "roberta", "multiple-choice", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
multiple-choice
false
nandezgarcia
null
nandezgarcia/roberta-base-bne-finetuned-recores-long
0
null
transformers
37,660
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: roberta-base-bne-finetuned-recores-long results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-bne-finetuned-recores-long This model is a fine-tuned version of [PlanTL-GOB-ES/roberta-base-bne](https://huggingface.co/PlanTL-GOB-ES/roberta-base-bne) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.2599 - Accuracy: 0.4525 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.5728 | 1.0 | 653 | 1.4938 | 0.3846 | | 0.9036 | 2.0 | 1306 | 1.9815 | 0.4615 | | 0.4161 | 3.0 | 1959 | 2.2599 | 0.4525 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.1+cu102 - Datasets 2.2.1 - Tokenizers 0.12.1
nandezgarcia/roberta-base-bne-sqac-finetuned-recores-long
d96b3147a4f042b4c562319f4463a0aa12e2de05
2022-05-24T06:51:27.000Z
[ "pytorch", "tensorboard", "roberta", "multiple-choice", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
multiple-choice
false
nandezgarcia
null
nandezgarcia/roberta-base-bne-sqac-finetuned-recores-long
0
null
transformers
37,661
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: roberta-base-bne-sqac-finetuned-recores-long results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-bne-sqac-finetuned-recores-long This model is a fine-tuned version of [PlanTL-GOB-ES/roberta-base-bne-sqac](https://huggingface.co/PlanTL-GOB-ES/roberta-base-bne-sqac) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.8161 - Accuracy: 0.3710 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.6126 | 1.0 | 653 | 1.5897 | 0.3032 | | 1.4433 | 2.0 | 1306 | 1.4736 | 0.4163 | | 0.8946 | 3.0 | 1959 | 1.8161 | 0.3710 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.1+cu102 - Datasets 2.2.1 - Tokenizers 0.12.1
theojolliffe/bart-cnn-pubmed-arxiv-pubmed-v3-e60
e0497d2c8f1d4010af898e87d49c4a15409219f4
2022-05-24T17:41:07.000Z
[ "pytorch", "tensorboard", "bart", "text2text-generation", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
text2text-generation
false
theojolliffe
null
theojolliffe/bart-cnn-pubmed-arxiv-pubmed-v3-e60
0
null
transformers
37,662
--- license: mit tags: - generated_from_trainer metrics: - rouge model-index: - name: bart-cnn-pubmed-arxiv-pubmed-v3-e60 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-cnn-pubmed-arxiv-pubmed-v3-e60 This model is a fine-tuned version of [theojolliffe/bart-cnn-pubmed-arxiv-pubmed](https://huggingface.co/theojolliffe/bart-cnn-pubmed-arxiv-pubmed) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.0969 - Rouge1: 60.5054 - Rouge2: 49.8345 - Rougel: 52.7857 - Rougelsum: 59.5625 - Gen Len: 142.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 60 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:--------:| | 1.2541 | 1.0 | 795 | 0.9312 | 52.6474 | 33.219 | 35.3153 | 50.2117 | 142.0 | | 0.7026 | 2.0 | 1590 | 0.8076 | 53.2385 | 34.2933 | 36.3889 | 50.8338 | 141.9815 | | 0.5259 | 3.0 | 2385 | 0.7832 | 53.3407 | 33.8438 | 37.2622 | 50.8487 | 142.0 | | 0.347 | 4.0 | 3180 | 0.7632 | 53.24 | 34.233 | 36.954 | 50.3872 | 142.0 | | 0.2657 | 5.0 | 3975 | 0.7389 | 54.7175 | 36.9459 | 39.4874 | 52.5236 | 142.0 | | 0.1799 | 6.0 | 4770 | 0.8152 | 53.7057 | 36.4558 | 39.2037 | 51.4357 | 141.8889 | | 0.1425 | 7.0 | 5565 | 0.7632 | 56.4087 | 40.1423 | 44.2536 | 54.2827 | 141.8519 | | 0.1161 | 8.0 | 6360 | 0.7787 | 57.048 | 41.4384 | 44.5318 | 55.001 | 141.9259 | | 0.0936 | 9.0 | 7155 | 0.8074 | 55.9781 | 39.7293 | 42.2029 | 53.7465 | 142.0 | | 0.0863 | 10.0 | 7950 | 0.8527 | 55.8303 | 40.3243 | 43.6105 | 53.7656 | 142.0 | | 0.0669 | 11.0 | 8745 | 0.8699 | 57.0888 | 42.5994 | 45.3813 | 55.4823 | 142.0 | | 0.0546 | 12.0 | 9540 | 0.8474 | 55.9644 | 41.4168 | 44.3511 | 54.27 | 141.8704 | | 0.0473 | 13.0 | 10335 | 0.8369 | 56.3014 | 41.3835 | 44.6644 | 54.6368 | 142.0 | | 0.0459 | 14.0 | 11130 | 0.8922 | 56.9204 | 42.6545 | 45.4635 | 55.3169 | 142.0 | | 0.0379 | 15.0 | 11925 | 0.9166 | 57.783 | 44.3517 | 48.0052 | 55.9449 | 142.0 | | 0.0333 | 16.0 | 12720 | 0.9346 | 57.7209 | 44.1832 | 47.634 | 56.0137 | 142.0 | | 0.0304 | 17.0 | 13515 | 0.9046 | 57.2015 | 42.7752 | 46.4241 | 55.7707 | 142.0 | | 0.0272 | 18.0 | 14310 | 0.9191 | 56.0557 | 41.6832 | 44.44 | 54.3098 | 142.0 | | 0.0242 | 19.0 | 15105 | 0.9431 | 56.8941 | 42.662 | 46.147 | 55.1771 | 142.0 | | 0.0208 | 20.0 | 15900 | 0.9127 | 58.5386 | 45.2057 | 48.5554 | 57.1466 | 142.0 | | 0.02 | 21.0 | 16695 | 0.9537 | 57.8511 | 44.5897 | 47.8505 | 56.5768 | 142.0 | | 0.018 | 22.0 | 17490 | 0.9576 | 57.5774 | 44.4534 | 47.6493 | 55.9042 | 142.0 | | 0.0151 | 23.0 | 18285 | 1.0039 | 57.7678 | 43.6504 | 47.3487 | 55.9951 | 141.5926 | | 0.0164 | 24.0 | 19080 | 0.9815 | 57.2684 | 44.4105 | 47.8775 | 55.9622 | 142.0 | | 0.0131 | 25.0 | 19875 | 0.9932 | 58.0703 | 44.5521 | 47.9763 | 56.4451 | 142.0 | | 0.0127 | 26.0 | 20670 | 0.9851 | 56.9139 | 43.707 | 46.8548 | 55.7885 | 142.0 | | 0.0113 | 27.0 | 21465 | 0.9894 | 59.2224 | 46.5814 | 49.2356 | 58.0085 | 142.0 | | 0.0107 | 28.0 | 22260 | 0.9845 | 58.6542 | 46.4524 | 49.3959 | 57.4585 | 142.0 | | 0.0098 | 29.0 | 23055 | 1.0165 | 57.8297 | 44.7935 | 47.7898 | 56.5338 | 142.0 | | 0.0093 | 30.0 | 23850 | 0.9844 | 58.6572 | 47.6771 | 50.309 | 57.4929 | 142.0 | | 0.0094 | 31.0 | 24645 | 1.0083 | 57.9771 | 46.1191 | 49.7179 | 56.8376 | 142.0 | | 0.0077 | 32.0 | 25440 | 0.9739 | 58.4251 | 46.2082 | 49.1364 | 57.1372 | 141.463 | | 0.007 | 33.0 | 26235 | 1.0364 | 58.4724 | 46.2787 | 49.7396 | 57.203 | 142.0 | | 0.0062 | 34.0 | 27030 | 1.0401 | 59.9105 | 48.5584 | 51.232 | 58.7889 | 142.0 | | 0.007 | 35.0 | 27825 | 1.0477 | 58.3057 | 46.0506 | 49.7662 | 57.1383 | 142.0 | | 0.0064 | 36.0 | 28620 | 1.0328 | 58.301 | 45.3733 | 48.1001 | 56.909 | 142.0 | | 0.0049 | 37.0 | 29415 | 1.0488 | 58.8353 | 45.8655 | 48.7498 | 57.3955 | 142.0 | | 0.0037 | 38.0 | 30210 | 1.0196 | 59.245 | 47.4285 | 50.9562 | 58.1597 | 142.0 | | 0.0049 | 39.0 | 31005 | 1.0270 | 59.4799 | 48.1755 | 51.5027 | 58.3599 | 142.0 | | 0.004 | 40.0 | 31800 | 1.0517 | 58.8698 | 46.8679 | 50.4378 | 57.7936 | 142.0 | | 0.0034 | 41.0 | 32595 | 1.0787 | 59.2729 | 47.718 | 50.9233 | 57.9377 | 141.8148 | | 0.0031 | 42.0 | 33390 | 1.0685 | 60.1618 | 48.1466 | 51.3451 | 58.978 | 142.0 | | 0.0028 | 43.0 | 34185 | 1.0770 | 60.4238 | 50.1106 | 53.211 | 59.3799 | 142.0 | | 0.0031 | 44.0 | 34980 | 1.0786 | 59.1729 | 47.6285 | 51.3243 | 58.0335 | 142.0 | | 0.0024 | 45.0 | 35775 | 1.0829 | 59.4366 | 48.3836 | 51.7183 | 58.4366 | 142.0 | | 0.0021 | 46.0 | 36570 | 1.0791 | 59.1313 | 47.6137 | 51.3465 | 58.048 | 142.0 | | 0.002 | 47.0 | 37365 | 1.0630 | 58.8133 | 46.795 | 50.2249 | 57.496 | 141.9444 | | 0.0016 | 48.0 | 38160 | 1.0800 | 58.7699 | 47.6953 | 50.1339 | 57.4936 | 142.0 | | 0.0018 | 49.0 | 38955 | 1.0563 | 58.1134 | 46.3537 | 49.7251 | 56.7849 | 142.0 | | 0.0013 | 50.0 | 39750 | 1.0819 | 59.3582 | 47.9255 | 51.1782 | 58.2925 | 142.0 | | 0.0013 | 51.0 | 40545 | 1.0762 | 59.0797 | 48.0875 | 50.8556 | 57.9182 | 142.0 | | 0.0013 | 52.0 | 41340 | 1.0906 | 60.0376 | 48.9763 | 51.9324 | 58.8537 | 142.0 | | 0.0008 | 53.0 | 42135 | 1.1106 | 59.3213 | 48.7152 | 51.4854 | 58.2943 | 142.0 | | 0.0009 | 54.0 | 42930 | 1.0845 | 59.8334 | 48.702 | 51.3005 | 58.921 | 142.0 | | 0.0008 | 55.0 | 43725 | 1.1035 | 60.1754 | 48.9721 | 51.4863 | 59.0829 | 142.0 | | 0.0008 | 56.0 | 44520 | 1.0872 | 59.8122 | 48.6515 | 51.8589 | 58.8101 | 142.0 | | 0.0011 | 57.0 | 45315 | 1.0872 | 59.5352 | 48.1967 | 51.1626 | 58.3402 | 142.0 | | 0.0005 | 58.0 | 46110 | 1.0937 | 59.4125 | 48.1826 | 51.5944 | 58.4618 | 142.0 | | 0.0008 | 59.0 | 46905 | 1.0936 | 60.0138 | 49.1796 | 52.3896 | 59.0976 | 142.0 | | 0.0005 | 60.0 | 47700 | 1.0969 | 60.5054 | 49.8345 | 52.7857 | 59.5625 | 142.0 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
nandezgarcia/roberta-base-bne-finetuned-recores-complete
18727530a2190a54c0f4931848fce88a70323d6a
2022-05-24T08:41:00.000Z
[ "pytorch", "tensorboard", "roberta", "multiple-choice", "transformers" ]
multiple-choice
false
nandezgarcia
null
nandezgarcia/roberta-base-bne-finetuned-recores-complete
0
null
transformers
37,663
Entry not found
mayur0703/hindiqa
cbc54667c33be02e1f7bd6cd01d2d84ec533222b
2022-05-24T09:49:25.000Z
[ "pytorch", "xlm-roberta", "question-answering", "transformers", "license:afl-3.0", "autotrain_compatible" ]
question-answering
false
mayur0703
null
mayur0703/hindiqa
0
null
transformers
37,664
--- license: afl-3.0 ---
trev/Twilight-Sparkle
d6cce001b3d292f945e74d749fbd05bd33982b92
2022-05-24T13:39:06.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
trev
null
trev/Twilight-Sparkle
0
null
transformers
37,665
--- tags: - conversational --- # Twilight Sparkle DialoGPT Model
huggingtweets/respctclub-utsavsingla
830ad1d517b2d70341232bb43e4605e455589df0
2022-05-24T14:54:46.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/respctclub-utsavsingla
0
null
transformers
37,666
--- language: en thumbnail: http://www.huggingtweets.com/respctclub-utsavsingla/1653404081829/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1500685428755623941/jT40-aBp_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1482271276077305859/n-xPut5M_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Utsav Singla | Respct.co 🙏🙏 & Respct</div> <div style="text-align: center; font-size: 14px;">@respctclub-utsavsingla</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Utsav Singla | Respct.co 🙏🙏 & Respct. | Data | Utsav Singla | Respct.co 🙏🙏 | Respct | | --- | --- | --- | | Tweets downloaded | 365 | 157 | | Retweets | 109 | 22 | | Short tweets | 21 | 5 | | Tweets kept | 235 | 130 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1tvesvyp/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @respctclub-utsavsingla's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3t9huyws) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3t9huyws/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/respctclub-utsavsingla') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
stevemobs/deberta-base-finetuned-aqa-squad1
bfe32be12f5c25cfe579d198f73983d120fb18f5
2022-05-24T19:56:41.000Z
[ "pytorch", "tensorboard", "deberta", "question-answering", "dataset:squad", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
question-answering
false
stevemobs
null
stevemobs/deberta-base-finetuned-aqa-squad1
0
null
transformers
37,667
--- license: mit tags: - generated_from_trainer datasets: - squad model-index: - name: deberta-base-finetuned-aqa-squad1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # deberta-base-finetuned-aqa-squad1 This model is a fine-tuned version of [stevemobs/deberta-base-finetuned-aqa](https://huggingface.co/stevemobs/deberta-base-finetuned-aqa) on the squad dataset. It achieves the following results on the evaluation set: - Loss: 0.7790 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 12 - eval_batch_size: 12 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 0.7662 | 1.0 | 7380 | 0.7575 | | 0.5586 | 2.0 | 14760 | 0.7790 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
theojolliffe/bart-cnn-pubmed-arxiv-pubmed-v3-e43
e50e8826767b38038e41f25c3be139e0d71e393c
2022-05-24T23:30:12.000Z
[ "pytorch", "tensorboard", "bart", "text2text-generation", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
text2text-generation
false
theojolliffe
null
theojolliffe/bart-cnn-pubmed-arxiv-pubmed-v3-e43
0
null
transformers
37,668
--- license: mit tags: - generated_from_trainer metrics: - rouge model-index: - name: bart-cnn-pubmed-arxiv-pubmed-v3-e43 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-cnn-pubmed-arxiv-pubmed-v3-e43 This model is a fine-tuned version of [theojolliffe/bart-cnn-pubmed-arxiv-pubmed](https://huggingface.co/theojolliffe/bart-cnn-pubmed-arxiv-pubmed) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.0837 - Rouge1: 58.1526 - Rouge2: 46.0425 - Rougel: 49.5624 - Rougelsum: 56.9295 - Gen Len: 142.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 43 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:--------:| | 1.2542 | 1.0 | 795 | 0.9354 | 51.4655 | 31.6464 | 34.2376 | 48.9765 | 141.963 | | 0.7019 | 2.0 | 1590 | 0.8119 | 53.3066 | 34.683 | 36.4262 | 50.907 | 142.0 | | 0.5251 | 3.0 | 2385 | 0.7839 | 52.4248 | 32.8685 | 36.0084 | 49.9957 | 142.0 | | 0.3449 | 4.0 | 3180 | 0.7673 | 52.716 | 34.7869 | 38.4201 | 50.8384 | 142.0 | | 0.2666 | 5.0 | 3975 | 0.7647 | 54.6433 | 37.1337 | 40.1459 | 52.4288 | 141.7778 | | 0.1805 | 6.0 | 4770 | 0.8400 | 53.5747 | 36.001 | 39.5984 | 51.1935 | 141.8148 | | 0.1413 | 7.0 | 5565 | 0.7925 | 53.9875 | 37.01 | 40.6532 | 51.9353 | 142.0 | | 0.113 | 8.0 | 6360 | 0.7665 | 56.395 | 41.5764 | 44.327 | 54.7845 | 142.0 | | 0.0907 | 9.0 | 7155 | 0.8442 | 55.1407 | 39.4113 | 43.0628 | 53.6503 | 142.0 | | 0.0824 | 10.0 | 7950 | 0.8469 | 55.7103 | 40.6761 | 43.3754 | 53.8227 | 142.0 | | 0.0639 | 11.0 | 8745 | 0.8892 | 56.0839 | 40.6204 | 43.2455 | 54.4412 | 142.0 | | 0.0504 | 12.0 | 9540 | 0.8613 | 56.9634 | 42.8236 | 45.4255 | 55.4026 | 142.0 | | 0.0447 | 13.0 | 10335 | 0.9341 | 57.7216 | 44.104 | 47.1429 | 56.4299 | 142.0 | | 0.0396 | 14.0 | 11130 | 0.9203 | 56.2073 | 42.9575 | 45.8068 | 54.8089 | 142.0 | | 0.036 | 15.0 | 11925 | 0.9253 | 58.5212 | 45.6047 | 49.1205 | 57.0551 | 142.0 | | 0.0302 | 16.0 | 12720 | 0.9187 | 58.8046 | 46.0106 | 48.0442 | 57.2799 | 142.0 | | 0.0261 | 17.0 | 13515 | 0.9578 | 57.3405 | 43.8227 | 46.6317 | 55.7836 | 142.0 | | 0.0231 | 18.0 | 14310 | 0.9578 | 57.7604 | 44.6164 | 47.8902 | 56.2309 | 141.8148 | | 0.0198 | 19.0 | 15105 | 0.9662 | 57.774 | 44.6407 | 47.5489 | 56.1936 | 142.0 | | 0.0165 | 20.0 | 15900 | 0.9509 | 59.6297 | 46.5076 | 48.3507 | 58.083 | 142.0 | | 0.0145 | 21.0 | 16695 | 0.9915 | 58.2245 | 45.1804 | 48.1191 | 56.889 | 142.0 | | 0.0128 | 22.0 | 17490 | 0.9945 | 58.2646 | 46.2782 | 49.4411 | 56.992 | 142.0 | | 0.0129 | 23.0 | 18285 | 1.0069 | 57.0055 | 44.1866 | 46.9101 | 55.5056 | 141.9444 | | 0.0116 | 24.0 | 19080 | 0.9967 | 58.1091 | 45.5303 | 48.2208 | 56.4496 | 142.0 | | 0.0093 | 25.0 | 19875 | 1.0188 | 56.59 | 43.677 | 45.8956 | 55.0954 | 142.0 | | 0.008 | 26.0 | 20670 | 0.9976 | 58.5408 | 46.7019 | 48.9235 | 57.2562 | 142.0 | | 0.0077 | 27.0 | 21465 | 1.0123 | 57.7909 | 45.7619 | 48.3412 | 56.3796 | 142.0 | | 0.0075 | 28.0 | 22260 | 1.0258 | 58.1694 | 45.03 | 48.282 | 56.7303 | 142.0 | | 0.0056 | 29.0 | 23055 | 1.0100 | 58.0406 | 45.37 | 48.0125 | 56.5288 | 142.0 | | 0.0049 | 30.0 | 23850 | 1.0235 | 56.419 | 43.248 | 46.3448 | 54.8467 | 142.0 | | 0.0042 | 31.0 | 24645 | 1.0395 | 57.7232 | 45.6305 | 48.4531 | 56.3343 | 141.9444 | | 0.0034 | 32.0 | 25440 | 1.0605 | 58.9049 | 46.8049 | 49.9103 | 57.6751 | 141.5 | | 0.0032 | 33.0 | 26235 | 1.0362 | 57.8681 | 45.9028 | 48.8624 | 56.5616 | 141.8704 | | 0.0025 | 34.0 | 27030 | 1.0521 | 58.8985 | 46.8547 | 49.8485 | 57.4249 | 142.0 | | 0.0021 | 35.0 | 27825 | 1.0639 | 58.9324 | 46.656 | 49.1907 | 57.4836 | 142.0 | | 0.0023 | 36.0 | 28620 | 1.0624 | 58.5734 | 46.6774 | 49.6377 | 57.3825 | 142.0 | | 0.0019 | 37.0 | 29415 | 1.0636 | 58.9899 | 46.8217 | 49.4829 | 57.8683 | 142.0 | | 0.0018 | 38.0 | 30210 | 1.0640 | 58.793 | 46.7964 | 49.7845 | 57.6379 | 142.0 | | 0.0013 | 39.0 | 31005 | 1.0692 | 57.7124 | 45.5948 | 49.0482 | 56.4246 | 142.0 | | 0.0012 | 40.0 | 31800 | 1.0746 | 58.1789 | 46.458 | 49.547 | 57.1007 | 141.6296 | | 0.0008 | 41.0 | 32595 | 1.0815 | 57.7392 | 45.6404 | 48.4845 | 56.6464 | 142.0 | | 0.0009 | 42.0 | 33390 | 1.0853 | 58.317 | 46.2661 | 49.0466 | 57.0971 | 142.0 | | 0.0005 | 43.0 | 34185 | 1.0837 | 58.1526 | 46.0425 | 49.5624 | 56.9295 | 142.0 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
ronanki/ml_mpnet_768_MNR_15
8bd5ae7f3cfd1365f8534ae990e9ebd0efdcd70c
2022-05-24T18:03:57.000Z
[ "pytorch", "xlm-roberta", "feature-extraction", "sentence-transformers", "sentence-similarity", "transformers" ]
sentence-similarity
false
ronanki
null
ronanki/ml_mpnet_768_MNR_15
0
null
sentence-transformers
37,669
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # ronanki/ml_mpnet_768_MNR_15 This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('ronanki/ml_mpnet_768_MNR_15') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('ronanki/ml_mpnet_768_MNR_15') model = AutoModel.from_pretrained('ronanki/ml_mpnet_768_MNR_15') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=ronanki/ml_mpnet_768_MNR_15) ## Training The model was trained with the parameters: **DataLoader**: `sentence_transformers.datasets.NoDuplicatesDataLoader.NoDuplicatesDataLoader` of length 8 with parameters: ``` {'batch_size': 4} ``` **Loss**: `sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters: ``` {'scale': 20.0, 'similarity_fct': 'cos_sim'} ``` Parameters of the fit()-Method: ``` { "epochs": 5, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 0, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: XLMRobertaModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
huggingtweets/bladeecity-jerma985
9bf3a0db7f6bc960c51f2c0dc6fb66ed982b0180
2022-05-24T18:59:10.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/bladeecity-jerma985
0
null
transformers
37,670
--- language: en thumbnail: http://www.huggingtweets.com/bladeecity-jerma985/1653418745528/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1501634135378391044/6FiRJ7RP_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/803601382943162368/F36Z7ypy_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Aim Nothyng & Jerma</div> <div style="text-align: center; font-size: 14px;">@bladeecity-jerma985</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Aim Nothyng & Jerma. | Data | Aim Nothyng | Jerma | | --- | --- | --- | | Tweets downloaded | 1620 | 2695 | | Retweets | 322 | 100 | | Short tweets | 492 | 286 | | Tweets kept | 806 | 2309 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3g5k759s/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @bladeecity-jerma985's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2wj5tjlg) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2wj5tjlg/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/bladeecity-jerma985') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
ulises801/DialoGPT-medium-rick
0a2c4b5b887e9957f74c767e9631c411d40ad580
2022-05-25T00:21:51.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
ulises801
null
ulises801/DialoGPT-medium-rick
0
null
transformers
37,671
--- tags: - conversational --- # Rick DialogGPT Model
syssec-utd/dis2py-37-with-cf
7d01efd2d5ccef9512afc2695642ba22c549727f
2022-05-31T14:40:52.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
text2text-generation
false
syssec-utd
null
syssec-utd/dis2py-37-with-cf
0
null
transformers
37,672
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: dis2py-37-with-cf results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # dis2py-37-with-cf This model is a fine-tuned version of [Salesforce/codet5-base](https://huggingface.co/Salesforce/codet5-base) on the syssec-utd/dis2py-37-with-cf-processed dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results ### Framework versions - Transformers 4.17.0 - Pytorch 1.11.0+cu102 - Datasets 2.0.0 - Tokenizers 0.11.6
morahil/wav2vec2-hindi-new-3
dc9d6fda2f537f57cef2a7a46ad3f85ec3a2ff33
2022-05-25T11:00:05.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
morahil
null
morahil/wav2vec2-hindi-new-3
0
null
transformers
37,673
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-hindi-new-3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-hindi-new-3 This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the None dataset. It achieves the following results on the evaluation set: - eval_loss: 2.1206 - eval_wer: 0.8949 - eval_runtime: 20.2358 - eval_samples_per_second: 19.767 - eval_steps_per_second: 2.471 - epoch: 25.8 - step: 1600 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 40 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.20.0.dev0 - Pytorch 1.11.0+cu113 - Datasets 2.2.3.dev0 - Tokenizers 0.12.1
theojolliffe/bart-cnn-pubmed-arxiv-pubmed-arxiv-arxiv-v3-e16
2113c7a627a6f842a6e97f23ee5d758e2aca6add
2022-05-25T10:47:47.000Z
[ "pytorch", "tensorboard", "bart", "text2text-generation", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
text2text-generation
false
theojolliffe
null
theojolliffe/bart-cnn-pubmed-arxiv-pubmed-arxiv-arxiv-v3-e16
0
null
transformers
37,674
--- license: mit tags: - generated_from_trainer metrics: - rouge model-index: - name: bart-cnn-pubmed-arxiv-pubmed-arxiv-arxiv-v3-e16 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-cnn-pubmed-arxiv-pubmed-arxiv-arxiv-v3-e16 This model is a fine-tuned version of [theojolliffe/bart-cnn-pubmed-arxiv-pubmed-arxiv-arxiv](https://huggingface.co/theojolliffe/bart-cnn-pubmed-arxiv-pubmed-arxiv-arxiv) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.8960 - Rouge1: 57.7198 - Rouge2: 44.5711 - Rougel: 47.6281 - Rougelsum: 56.2372 - Gen Len: 142.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 16 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | No log | 1.0 | 398 | 0.8634 | 53.7416 | 34.3731 | 37.1193 | 51.3075 | 142.0 | | 0.8276 | 2.0 | 796 | 0.8001 | 53.9975 | 35.1019 | 38.2722 | 51.7878 | 142.0 | | 0.5311 | 3.0 | 1194 | 0.7988 | 53.409 | 34.3201 | 37.5443 | 50.738 | 142.0 | | 0.3538 | 4.0 | 1592 | 0.7698 | 53.679 | 34.7209 | 37.7895 | 51.2497 | 142.0 | | 0.3538 | 5.0 | 1990 | 0.7863 | 54.2493 | 36.0643 | 39.1249 | 51.9758 | 142.0 | | 0.2367 | 6.0 | 2388 | 0.7810 | 54.4042 | 37.4276 | 41.529 | 52.1544 | 142.0 | | 0.164 | 7.0 | 2786 | 0.8055 | 56.0408 | 39.6744 | 42.8323 | 54.163 | 142.0 | | 0.1146 | 8.0 | 3184 | 0.8098 | 55.2046 | 38.5399 | 41.9178 | 53.0001 | 142.0 | | 0.089 | 9.0 | 3582 | 0.8199 | 57.1523 | 41.7614 | 44.5914 | 55.1602 | 142.0 | | 0.089 | 10.0 | 3980 | 0.8644 | 56.943 | 41.5063 | 44.4929 | 54.9515 | 142.0 | | 0.0647 | 11.0 | 4378 | 0.8413 | 57.0321 | 41.964 | 45.3971 | 55.0957 | 142.0 | | 0.0485 | 12.0 | 4776 | 0.8735 | 56.7275 | 41.8577 | 44.3911 | 54.9824 | 142.0 | | 0.0365 | 13.0 | 5174 | 0.8858 | 57.6103 | 43.8831 | 47.0374 | 56.0675 | 142.0 | | 0.0271 | 14.0 | 5572 | 0.8974 | 57.39 | 42.8693 | 45.9344 | 55.7404 | 142.0 | | 0.0271 | 15.0 | 5970 | 0.8990 | 57.9433 | 44.7301 | 47.843 | 56.5407 | 142.0 | | 0.0232 | 16.0 | 6368 | 0.8960 | 57.7198 | 44.5711 | 47.6281 | 56.2372 | 142.0 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
pritam18/swadeshi_bhojpuriwav2vec2asr
c7dc0df5854d5e054db9df9d9fb3e6bbb012bcd3
2022-05-25T18:35:33.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
pritam18
null
pritam18/swadeshi_bhojpuriwav2vec2asr
0
null
transformers
37,675
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: swadeshi_bhojpuriwav2vec2asr results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # swadeshi_bhojpuriwav2vec2asr This model is a fine-tuned version of [theainerd/Wav2Vec2-large-xlsr-hindi](https://huggingface.co/theainerd/Wav2Vec2-large-xlsr-hindi) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2155 - Wer: 0.2931 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.6928 | 3.2 | 400 | 2.4820 | 0.9925 | | 1.6981 | 6.4 | 800 | 0.8053 | 0.6320 | | 0.975 | 9.6 | 1200 | 0.5420 | 0.4980 | | 0.7672 | 12.8 | 1600 | 0.4224 | 0.4233 | | 0.636 | 16.0 | 2000 | 0.3481 | 0.3774 | | 0.5562 | 19.2 | 2400 | 0.2861 | 0.3409 | | 0.4973 | 22.4 | 2800 | 0.2450 | 0.3211 | | 0.4616 | 25.6 | 3200 | 0.2230 | 0.3004 | | 0.4264 | 28.8 | 3600 | 0.2155 | 0.2931 | ### Framework versions - Transformers 4.20.0.dev0 - Pytorch 1.11.0+cu113 - Datasets 2.2.3.dev0 - Tokenizers 0.12.1
neuralmagic/oBERT-teacher-squadv1
733308386b17fb771a5495823b8f9b05a6404ac1
2022-06-20T11:36:53.000Z
[ "pytorch", "en", "dataset:squad", "arxiv:2203.07259", "bert", "oBERT", "sparsity", "pruning", "compression" ]
null
false
neuralmagic
null
neuralmagic/oBERT-teacher-squadv1
0
null
null
37,676
--- tags: - bert - oBERT - sparsity - pruning - compression language: en datasets: squad --- # SQuADv1 teacher This model is used as a teacher for all runs on the SQuADv1 downstream task in the paper [The Optimal BERT Surgeon: Scalable and Accurate Second-Order Pruning for Large Language Models](https://arxiv.org/abs/2203.07259). SQuADv1 dev-set: ``` EM = 81.41 F1 = 88.54 ``` ## BibTeX entry and citation info ```bibtex @article{kurtic2022optimal, title={The Optimal BERT Surgeon: Scalable and Accurate Second-Order Pruning for Large Language Models}, author={Kurtic, Eldar and Campos, Daniel and Nguyen, Tuan and Frantar, Elias and Kurtz, Mark and Fineran, Benjamin and Goin, Michael and Alistarh, Dan}, journal={arXiv preprint arXiv:2203.07259}, year={2022} } ```
neuralmagic/oBERT-12-downstream-pruned-unstructured-90-squadv1
11cd9a179a8293ebaf3f487797bf18ec67db0ae2
2022-06-20T11:36:49.000Z
[ "pytorch", "en", "dataset:squad", "arxiv:2203.07259", "bert", "oBERT", "sparsity", "pruning", "compression" ]
null
false
neuralmagic
null
neuralmagic/oBERT-12-downstream-pruned-unstructured-90-squadv1
0
null
null
37,677
--- tags: - bert - oBERT - sparsity - pruning - compression language: en datasets: squad --- # oBERT-12-downstream-pruned-unstructured-90-squadv1 This model is obtained with [The Optimal BERT Surgeon: Scalable and Accurate Second-Order Pruning for Large Language Models](https://arxiv.org/abs/2203.07259). It corresponds to the model presented in the `Table 1 - 30 Epochs - oBERT - SQuADv1 90%`. ``` Pruning method: oBERT downstream unstructured Paper: https://arxiv.org/abs/2203.07259 Dataset: SQuADv1 Sparsity: 90% Number of layers: 12 ``` The dev-set performance reported in the paper is averaged over three seeds, and we release the best model (marked with `(*)`): ``` | oBERT 90% | F1 | EM | | ------------ | ----- | ----- | | seed=42 | 88.22 | 81.10 | | seed=3407 (*)| 88.46 | 81.26 | | seed=54321 | 88.26 | 81.00 | | ------------ | ----- | ----- | | mean | 88.31 | 81.12 | | stdev | 0.128 | 0.131 | ``` Code: _coming soon_ ## BibTeX entry and citation info ```bibtex @article{kurtic2022optimal, title={The Optimal BERT Surgeon: Scalable and Accurate Second-Order Pruning for Large Language Models}, author={Kurtic, Eldar and Campos, Daniel and Nguyen, Tuan and Frantar, Elias and Kurtz, Mark and Fineran, Benjamin and Goin, Michael and Alistarh, Dan}, journal={arXiv preprint arXiv:2203.07259}, year={2022} } ```
neuralmagic/oBERT-12-downstream-pruned-unstructured-97-squadv1
a243c9389bfb610522875045872f7fa6d6a498b0
2022-06-20T11:36:50.000Z
[ "pytorch", "en", "dataset:squad", "arxiv:2203.07259", "bert", "oBERT", "sparsity", "pruning", "compression" ]
null
false
neuralmagic
null
neuralmagic/oBERT-12-downstream-pruned-unstructured-97-squadv1
0
null
null
37,678
--- tags: - bert - oBERT - sparsity - pruning - compression language: en datasets: squad --- # oBERT-12-downstream-pruned-unstructured-97-squadv1 This model is obtained with [The Optimal BERT Surgeon: Scalable and Accurate Second-Order Pruning for Large Language Models](https://arxiv.org/abs/2203.07259). It corresponds to the model presented in the `Table 1 - 30 Epochs - oBERT - SQuADv1 97%`. ``` Pruning method: oBERT downstream unstructured Paper: https://arxiv.org/abs/2203.07259 Dataset: SQuADv1 Sparsity: 97% Number of layers: 12 ``` The dev-set performance reported in the paper is averaged over three seeds, and we release the best model (marked with `(*)`): ``` | oBERT 97% | F1 | EM | | ------------ | ----- | ----- | | seed=42 (*)| 86.06 | 78.28 | | seed=3407 | 86.04 | 78.12 | | seed=54321 | 85.85 | 77.93 | | ------------ | ----- | ----- | | mean | 85.98 | 78.11 | | stdev | 0.115 | 0.175 | ``` Code: _coming soon_ ## BibTeX entry and citation info ```bibtex @article{kurtic2022optimal, title={The Optimal BERT Surgeon: Scalable and Accurate Second-Order Pruning for Large Language Models}, author={Kurtic, Eldar and Campos, Daniel and Nguyen, Tuan and Frantar, Elias and Kurtz, Mark and Fineran, Benjamin and Goin, Michael and Alistarh, Dan}, journal={arXiv preprint arXiv:2203.07259}, year={2022} } ```
neuralmagic/oBERT-teacher-mnli
20f8a17d62e84cb0ef2cd979bd673500072ac9f0
2022-06-20T11:36:52.000Z
[ "pytorch", "en", "dataset:mnli", "arxiv:2203.07259", "bert", "oBERT", "sparsity", "pruning", "compression" ]
null
false
neuralmagic
null
neuralmagic/oBERT-teacher-mnli
0
null
null
37,679
--- tags: - bert - oBERT - sparsity - pruning - compression language: en datasets: mnli --- # MNLI teacher This model is used as a teacher for all runs on the MNLI downstream task in the paper [The Optimal BERT Surgeon: Scalable and Accurate Second-Order Pruning for Large Language Models](https://arxiv.org/abs/2203.07259). MNLI dev-set: ``` matched accuracy = 84.54 mismatched accuracy = 85.06 ``` ## BibTeX entry and citation info ```bibtex @article{kurtic2022optimal, title={The Optimal BERT Surgeon: Scalable and Accurate Second-Order Pruning for Large Language Models}, author={Kurtic, Eldar and Campos, Daniel and Nguyen, Tuan and Frantar, Elias and Kurtz, Mark and Fineran, Benjamin and Goin, Michael and Alistarh, Dan}, journal={arXiv preprint arXiv:2203.07259}, year={2022} } ```
neuralmagic/oBERT-12-downstream-pruned-unstructured-80-mnli
828739304f5bb17eee83f39e4940eca6a70d093d
2022-06-20T11:36:49.000Z
[ "pytorch", "en", "dataset:mnli", "arxiv:2203.07259", "bert", "oBERT", "sparsity", "pruning", "compression" ]
null
false
neuralmagic
null
neuralmagic/oBERT-12-downstream-pruned-unstructured-80-mnli
0
null
null
37,680
--- tags: - bert - oBERT - sparsity - pruning - compression language: en datasets: mnli --- # oBERT-12-downstream-pruned-unstructured-80-mnli This model is obtained with [The Optimal BERT Surgeon: Scalable and Accurate Second-Order Pruning for Large Language Models](https://arxiv.org/abs/2203.07259). It corresponds to the model presented in the `Table 1 - 30 Epochs - oBERT - MNLI 80%`. ``` Pruning method: oBERT downstream unstructured Paper: https://arxiv.org/abs/2203.07259 Dataset: MNLI Sparsity: 80% Number of layers: 12 ``` The dev-set performance reported in the paper is averaged over three seeds, and we release the best model (marked with `(*)`): ``` | oBERT 80% | m-acc | mm-acc| | ------------ | ----- | ----- | | seed=42 | 84.30 | 84.98 | | seed=3407 (*)| 84.46 | 84.99 | | seed=54321 | 84.18 | 84.76 | | ------------ | ----- | ----- | | mean | 84.32 | 84.91 | | stdev | 0.140 | 0.133 | ``` Code: _coming soon_ ## BibTeX entry and citation info ```bibtex @article{kurtic2022optimal, title={The Optimal BERT Surgeon: Scalable and Accurate Second-Order Pruning for Large Language Models}, author={Kurtic, Eldar and Campos, Daniel and Nguyen, Tuan and Frantar, Elias and Kurtz, Mark and Fineran, Benjamin and Goin, Michael and Alistarh, Dan}, journal={arXiv preprint arXiv:2203.07259}, year={2022} } ```
neuralmagic/oBERT-12-downstream-pruned-unstructured-90-mnli
7b039ca83c3209f18d902f4b516e99ebae6ee7f2
2022-06-20T11:36:49.000Z
[ "pytorch", "en", "dataset:mnli", "arxiv:2203.07259", "bert", "oBERT", "sparsity", "pruning", "compression" ]
null
false
neuralmagic
null
neuralmagic/oBERT-12-downstream-pruned-unstructured-90-mnli
0
null
null
37,681
--- tags: - bert - oBERT - sparsity - pruning - compression language: en datasets: mnli --- # oBERT-12-downstream-pruned-unstructured-90-mnli This model is obtained with [The Optimal BERT Surgeon: Scalable and Accurate Second-Order Pruning for Large Language Models](https://arxiv.org/abs/2203.07259). It corresponds to the model presented in the `Table 1 - 30 Epochs - oBERT - MNLI 90%`. ``` Pruning method: oBERT downstream unstructured Paper: https://arxiv.org/abs/2203.07259 Dataset: MNLI Sparsity: 90% Number of layers: 12 ``` The dev-set performance reported in the paper is averaged over three seeds, and we release the best model (marked with `(*)`): ``` | oBERT 90% | m-acc | mm-acc| | ------------ | ----- | ----- | | seed=42 | 83.74 | 84.31 | | seed=3407 (*)| 83.85 | 84.40 | | seed=54321 | 83.77 | 84.33 | | ------------ | ----- | ----- | | mean | 83.79 | 84.35 | | stdev | 0.056 | 0.047 | ``` Code: _coming soon_ ## BibTeX entry and citation info ```bibtex @article{kurtic2022optimal, title={The Optimal BERT Surgeon: Scalable and Accurate Second-Order Pruning for Large Language Models}, author={Kurtic, Eldar and Campos, Daniel and Nguyen, Tuan and Frantar, Elias and Kurtz, Mark and Fineran, Benjamin and Goin, Michael and Alistarh, Dan}, journal={arXiv preprint arXiv:2203.07259}, year={2022} } ```
neuralmagic/oBERT-12-downstream-pruned-unstructured-97-mnli
6f0c3a4713f4898e69a821c43750695766d37bfc
2022-06-20T11:36:49.000Z
[ "pytorch", "en", "dataset:mnli", "arxiv:2203.07259", "bert", "oBERT", "sparsity", "pruning", "compression" ]
null
false
neuralmagic
null
neuralmagic/oBERT-12-downstream-pruned-unstructured-97-mnli
0
null
null
37,682
--- tags: - bert - oBERT - sparsity - pruning - compression language: en datasets: mnli --- # oBERT-12-downstream-pruned-unstructured-97-mnli This model is obtained with [The Optimal BERT Surgeon: Scalable and Accurate Second-Order Pruning for Large Language Models](https://arxiv.org/abs/2203.07259). It corresponds to the model presented in the `Table 1 - 30 Epochs - oBERT - MNLI 97%`. ``` Pruning method: oBERT downstream unstructured Paper: https://arxiv.org/abs/2203.07259 Dataset: MNLI Sparsity: 97% Number of layers: 12 ``` The dev-set performance reported in the paper is averaged over three seeds, and we release the best model (marked with `(*)`): ``` | oBERT 97% | m-acc | mm-acc| | ------------ | ----- | ----- | | seed=42 (*)| 82.10 | 81.94 | | seed=3407 | 81.81 | 82.27 | | seed=54321 | 81.40 | 81.83 | | ------------ | ----- | ----- | | mean | 81.77 | 82.01 | | stdev | 0.351 | 0.228 | ``` Code: _coming soon_ ## BibTeX entry and citation info ```bibtex @article{kurtic2022optimal, title={The Optimal BERT Surgeon: Scalable and Accurate Second-Order Pruning for Large Language Models}, author={Kurtic, Eldar and Campos, Daniel and Nguyen, Tuan and Frantar, Elias and Kurtz, Mark and Fineran, Benjamin and Goin, Michael and Alistarh, Dan}, journal={arXiv preprint arXiv:2203.07259}, year={2022} } ```
neuralmagic/oBERT-teacher-qqp
9115006d21a4e7d36647f5982cdf012b4ff41f94
2022-06-20T11:36:53.000Z
[ "pytorch", "en", "dataset:qqp", "arxiv:2203.07259", "bert", "oBERT", "sparsity", "pruning", "compression" ]
null
false
neuralmagic
null
neuralmagic/oBERT-teacher-qqp
0
null
null
37,683
--- tags: - bert - oBERT - sparsity - pruning - compression language: en datasets: qqp --- # QQP teacher This model is used as a teacher for all runs on the QQP downstream task in the paper [The Optimal BERT Surgeon: Scalable and Accurate Second-Order Pruning for Large Language Models](https://arxiv.org/abs/2203.07259). QQP dev-set: ``` accuracy = 91.06 F1 = 88.00 ``` ## BibTeX entry and citation info ```bibtex @article{kurtic2022optimal, title={The Optimal BERT Surgeon: Scalable and Accurate Second-Order Pruning for Large Language Models}, author={Kurtic, Eldar and Campos, Daniel and Nguyen, Tuan and Frantar, Elias and Kurtz, Mark and Fineran, Benjamin and Goin, Michael and Alistarh, Dan}, journal={arXiv preprint arXiv:2203.07259}, year={2022} } ```
neuralmagic/oBERT-12-downstream-pruned-unstructured-80-qqp
5606d41cad5a7a4b6b1c0a19b57e2ed03556bcca
2022-06-20T11:36:49.000Z
[ "pytorch", "en", "dataset:qqp", "arxiv:2203.07259", "bert", "oBERT", "sparsity", "pruning", "compression" ]
null
false
neuralmagic
null
neuralmagic/oBERT-12-downstream-pruned-unstructured-80-qqp
0
null
null
37,684
--- tags: - bert - oBERT - sparsity - pruning - compression language: en datasets: qqp --- # oBERT-12-downstream-pruned-unstructured-80-qqp This model is obtained with [The Optimal BERT Surgeon: Scalable and Accurate Second-Order Pruning for Large Language Models](https://arxiv.org/abs/2203.07259). It corresponds to the model presented in the `Table 1 - 30 Epochs - oBERT - QQP 80%`. ``` Pruning method: oBERT downstream unstructured Paper: https://arxiv.org/abs/2203.07259 Dataset: QQP Sparsity: 80% Number of layers: 12 ``` The dev-set performance reported in the paper is averaged over three seeds, and we release the best model (marked with `(*)`): ``` | oBERT 80% | acc | F1 | | ------------ | ----- | ----- | | seed=42 (*)| 91.66 | 88.72 | | seed=3407 | 91.51 | 88.56 | | seed=54321 | 91.54 | 88.60 | | ------------ | ----- | ----- | | mean | 91.57 | 88.63 | | stdev | 0.079 | 0.083 | ``` Code: _coming soon_ ## BibTeX entry and citation info ```bibtex @article{kurtic2022optimal, title={The Optimal BERT Surgeon: Scalable and Accurate Second-Order Pruning for Large Language Models}, author={Kurtic, Eldar and Campos, Daniel and Nguyen, Tuan and Frantar, Elias and Kurtz, Mark and Fineran, Benjamin and Goin, Michael and Alistarh, Dan}, journal={arXiv preprint arXiv:2203.07259}, year={2022} } ```
neuralmagic/oBERT-12-downstream-pruned-unstructured-90-qqp
9233f2b32f0ddee0ed908dd842ac31b0bd3918bd
2022-06-20T11:36:49.000Z
[ "pytorch", "en", "dataset:qqp", "arxiv:2203.07259", "bert", "oBERT", "sparsity", "pruning", "compression" ]
null
false
neuralmagic
null
neuralmagic/oBERT-12-downstream-pruned-unstructured-90-qqp
0
null
null
37,685
--- tags: - bert - oBERT - sparsity - pruning - compression language: en datasets: qqp --- # oBERT-12-downstream-pruned-unstructured-90-qqp This model is obtained with [The Optimal BERT Surgeon: Scalable and Accurate Second-Order Pruning for Large Language Models](https://arxiv.org/abs/2203.07259). It corresponds to the model presented in the `Table 1 - 30 Epochs - oBERT - QQP 90%`. ``` Pruning method: oBERT downstream unstructured Paper: https://arxiv.org/abs/2203.07259 Dataset: QQP Sparsity: 90% Number of layers: 12 ``` The dev-set performance reported in the paper is averaged over three seeds, and we release the best model (marked with `(*)`): ``` | oBERT 90% | acc | F1 | | ------------ | ----- | ----- | | seed=42 | 91.30 | 88.24 | | seed=3407 (*)| 91.39 | 88.36 | | seed=54321 | 91.36 | 88.29 | | ------------ | ----- | ----- | | mean | 91.35 | 88.30 | | stdev | 0.045 | 0.060 | ``` Code: _coming soon_ ## BibTeX entry and citation info ```bibtex @article{kurtic2022optimal, title={The Optimal BERT Surgeon: Scalable and Accurate Second-Order Pruning for Large Language Models}, author={Kurtic, Eldar and Campos, Daniel and Nguyen, Tuan and Frantar, Elias and Kurtz, Mark and Fineran, Benjamin and Goin, Michael and Alistarh, Dan}, journal={arXiv preprint arXiv:2203.07259}, year={2022} } ```
neuralmagic/oBERT-12-downstream-pruned-unstructured-97-qqp
08fce0ae0a627b4750d468182eb52f61061f73ae
2022-06-20T11:36:50.000Z
[ "pytorch", "en", "dataset:qqp", "arxiv:2203.07259", "bert", "oBERT", "sparsity", "pruning", "compression" ]
null
false
neuralmagic
null
neuralmagic/oBERT-12-downstream-pruned-unstructured-97-qqp
0
null
null
37,686
--- tags: - bert - oBERT - sparsity - pruning - compression language: en datasets: qqp --- # oBERT-12-downstream-pruned-unstructured-97-qqp This model is obtained with [The Optimal BERT Surgeon: Scalable and Accurate Second-Order Pruning for Large Language Models](https://arxiv.org/abs/2203.07259). It corresponds to the model presented in the `Table 1 - 30 Epochs - oBERT - QQP 97%`. ``` Pruning method: oBERT downstream unstructured Paper: https://arxiv.org/abs/2203.07259 Dataset: QQP Sparsity: 97% Number of layers: 12 ``` The dev-set performance reported in the paper is averaged over three seeds, and we release the best model (marked with `(*)`): ``` | oBERT 97% | acc | F1 | | ------------ | ----- | ----- | | seed=42 (*)| 90.90 | 87.73 | | seed=3407 | 90.80 | 87.57 | | seed=54321 | 90.90 | 87.69 | | ------------ | ----- | ----- | | mean | 90.87 | 87.66 | | stdev | 0.057 | 0.083 | ``` Code: _coming soon_ ## BibTeX entry and citation info ```bibtex @article{kurtic2022optimal, title={The Optimal BERT Surgeon: Scalable and Accurate Second-Order Pruning for Large Language Models}, author={Kurtic, Eldar and Campos, Daniel and Nguyen, Tuan and Frantar, Elias and Kurtz, Mark and Fineran, Benjamin and Goin, Michael and Alistarh, Dan}, journal={arXiv preprint arXiv:2203.07259}, year={2022} } ```
neuralmagic/oBERT-12-upstream-pruned-unstructured-90
11f5620ab4851ec5a96160d020a9cec92d668f6a
2022-06-20T11:36:50.000Z
[ "pytorch", "en", "dataset:bookcorpus", "dataset:wikipedia", "arxiv:2203.07259", "bert", "oBERT", "sparsity", "pruning", "compression" ]
null
false
neuralmagic
null
neuralmagic/oBERT-12-upstream-pruned-unstructured-90
0
null
null
37,687
--- tags: - bert - oBERT - sparsity - pruning - compression language: en datasets: - bookcorpus - wikipedia --- # oBERT-12-upstream-pruned-unstructured-90 This model is obtained with [The Optimal BERT Surgeon: Scalable and Accurate Second-Order Pruning for Large Language Models](https://arxiv.org/abs/2203.07259). It corresponds to the upstream pruned model used as a starting point for sparse-transfer learning to downstream tasks presented in the `Table 2 - oBERT - {SQuADv1, MNLI, QQP} - 90%`. Finetuned versions of this model for each downstream task are: - SQuADv1: `neuralmagic/oBERT-12-upstream-pruned-unstructured-90-finetuned-squadv1` - MNLI: `neuralmagic/oBERT-12-upstream-pruned-unstructured-90-finetuned-mnli` - QQP: `neuralmagic/oBERT-12-upstream-pruned-unstructured-90-finetuned-qqp` ``` Pruning method: oBERT upstream unstructured Paper: https://arxiv.org/abs/2203.07259 Dataset: BookCorpus and English Wikipedia Sparsity: 90% Number of layers: 12 ``` Code: _coming soon_ ## BibTeX entry and citation info ```bibtex @article{kurtic2022optimal, title={The Optimal BERT Surgeon: Scalable and Accurate Second-Order Pruning for Large Language Models}, author={Kurtic, Eldar and Campos, Daniel and Nguyen, Tuan and Frantar, Elias and Kurtz, Mark and Fineran, Benjamin and Goin, Michael and Alistarh, Dan}, journal={arXiv preprint arXiv:2203.07259}, year={2022} } ```
neuralmagic/oBERT-12-upstream-pruned-unstructured-97
2a18dfa3901d129d1ea412a9b020ba2082404ecd
2022-06-20T11:36:51.000Z
[ "pytorch", "en", "dataset:bookcorpus", "dataset:wikipedia", "arxiv:2203.07259", "bert", "oBERT", "sparsity", "pruning", "compression" ]
null
false
neuralmagic
null
neuralmagic/oBERT-12-upstream-pruned-unstructured-97
0
null
null
37,688
--- tags: - bert - oBERT - sparsity - pruning - compression language: en datasets: - bookcorpus - wikipedia --- # oBERT-12-upstream-pruned-unstructured-97 This model is obtained with [The Optimal BERT Surgeon: Scalable and Accurate Second-Order Pruning for Large Language Models](https://arxiv.org/abs/2203.07259). It corresponds to the upstream pruned model used as a starting point for sparse-transfer learning to downstream tasks presented in the `Table 2 - oBERT - {SQuADv1, MNLI, QQP} - 97%`. Finetuned versions of this model for each downstream task are: - SQuADv1: `neuralmagic/oBERT-12-upstream-pruned-unstructured-97-finetuned-squadv1` - MNLI: `neuralmagic/oBERT-12-upstream-pruned-unstructured-97-finetuned-mnli` - QQP: `neuralmagic/oBERT-12-upstream-pruned-unstructured-97-finetuned-qqp` ``` Pruning method: oBERT upstream unstructured Paper: https://arxiv.org/abs/2203.07259 Dataset: BookCorpus and English Wikipedia Sparsity: 97% Number of layers: 12 ``` Code: _coming soon_ ## BibTeX entry and citation info ```bibtex @article{kurtic2022optimal, title={The Optimal BERT Surgeon: Scalable and Accurate Second-Order Pruning for Large Language Models}, author={Kurtic, Eldar and Campos, Daniel and Nguyen, Tuan and Frantar, Elias and Kurtz, Mark and Fineran, Benjamin and Goin, Michael and Alistarh, Dan}, journal={arXiv preprint arXiv:2203.07259}, year={2022} } ```
neuralmagic/oBERT-12-upstream-pruned-unstructured-90-finetuned-squadv1
135307894d942bb1258a35987450b76c3320e967
2022-06-20T11:36:50.000Z
[ "pytorch", "en", "dataset:squad", "arxiv:2203.07259", "bert", "oBERT", "sparsity", "pruning", "compression" ]
null
false
neuralmagic
null
neuralmagic/oBERT-12-upstream-pruned-unstructured-90-finetuned-squadv1
0
null
null
37,689
--- tags: - bert - oBERT - sparsity - pruning - compression language: en datasets: squad --- # oBERT-12-upstream-pruned-unstructured-90-finetuned-squadv1 This model is obtained with [The Optimal BERT Surgeon: Scalable and Accurate Second-Order Pruning for Large Language Models](https://arxiv.org/abs/2203.07259). It corresponds to the model presented in the `Table 2 - oBERT - SQuADv1 90%`. ``` Pruning method: oBERT upstream unstructured + sparse-transfer to downstream Paper: https://arxiv.org/abs/2203.07259 Dataset: SQuADv1 Sparsity: 90% Number of layers: 12 ``` The dev-set performance reported in the paper is averaged over three seeds, and we release the best model (marked with `(*)`): ``` | oBERT 90% | F1 | EM | | ------------ | ----- | ----- | | seed=42 (*)| 88.47 | 81.43 | | seed=3407 | 88.32 | 81.13 | | seed=54321 | 88.47 | 81.38 | | ------------ | ----- | ----- | | mean | 88.42 | 81.31 | | stdev | 0.086 | 0.160 | ``` Code: _coming soon_ ## BibTeX entry and citation info ```bibtex @article{kurtic2022optimal, title={The Optimal BERT Surgeon: Scalable and Accurate Second-Order Pruning for Large Language Models}, author={Kurtic, Eldar and Campos, Daniel and Nguyen, Tuan and Frantar, Elias and Kurtz, Mark and Fineran, Benjamin and Goin, Michael and Alistarh, Dan}, journal={arXiv preprint arXiv:2203.07259}, year={2022} } ```
neuralmagic/oBERT-12-upstream-pruned-unstructured-97-finetuned-squadv1
4fb62121f1ab5ea13156523ccc39b952488121b7
2022-06-20T11:36:51.000Z
[ "pytorch", "en", "dataset:squad", "arxiv:2203.07259", "bert", "oBERT", "sparsity", "pruning", "compression" ]
null
false
neuralmagic
null
neuralmagic/oBERT-12-upstream-pruned-unstructured-97-finetuned-squadv1
0
null
null
37,690
--- tags: - bert - oBERT - sparsity - pruning - compression language: en datasets: squad --- # oBERT-12-upstream-pruned-unstructured-97-finetuned-squadv1 This model is obtained with [The Optimal BERT Surgeon: Scalable and Accurate Second-Order Pruning for Large Language Models](https://arxiv.org/abs/2203.07259). It corresponds to the model presented in the `Table 2 - oBERT - SQuADv1 97%`. ``` Pruning method: oBERT upstream unstructured + sparse-transfer to downstream Paper: https://arxiv.org/abs/2203.07259 Dataset: SQuADv1 Sparsity: 97% Number of layers: 12 ``` The dev-set performance reported in the paper is averaged over three seeds, and we release the best model (marked with `(*)`): ``` | oBERT 97% | F1 | EM | | ------------ | ----- | ----- | | seed=42 | 84.11 | 76.02 | | seed=3407 (*)| 84.71 | 76.61 | | seed=54321 | 84.35 | 76.44 | | ------------ | ----- | ----- | | mean | 84.39 | 76.36 | | stdev | 0.301 | 0.303 | ``` Code: _coming soon_ ## BibTeX entry and citation info ```bibtex @article{kurtic2022optimal, title={The Optimal BERT Surgeon: Scalable and Accurate Second-Order Pruning for Large Language Models}, author={Kurtic, Eldar and Campos, Daniel and Nguyen, Tuan and Frantar, Elias and Kurtz, Mark and Fineran, Benjamin and Goin, Michael and Alistarh, Dan}, journal={arXiv preprint arXiv:2203.07259}, year={2022} } ```
neuralmagic/oBERT-12-upstream-pruned-unstructured-90-finetuned-mnli
3acc9173de167432e2cefc3e2c8e35f9bda25517
2022-06-20T11:36:50.000Z
[ "pytorch", "en", "dataset:mnli", "arxiv:2203.07259", "bert", "oBERT", "sparsity", "pruning", "compression" ]
null
false
neuralmagic
null
neuralmagic/oBERT-12-upstream-pruned-unstructured-90-finetuned-mnli
0
null
null
37,691
--- tags: - bert - oBERT - sparsity - pruning - compression language: en datasets: mnli --- # oBERT-12-upstream-pruned-unstructured-90-finetuned-mnli This model is obtained with [The Optimal BERT Surgeon: Scalable and Accurate Second-Order Pruning for Large Language Models](https://arxiv.org/abs/2203.07259). It corresponds to the model presented in the `Table 2 - oBERT - MNLI 90%`. ``` Pruning method: oBERT upstream unstructured + sparse-transfer to downstream Paper: https://arxiv.org/abs/2203.07259 Dataset: MNLI Sparsity: 90% Number of layers: 12 ``` The dev-set performance reported in the paper is averaged over three seeds, and we release the best model (marked with `(*)`): ``` | oBERT 90% | m-acc | mm-acc| | ------------ | ----- | ----- | | seed=42 (*)| 82.40 | 83.40 | | seed=3407 | 82.15 | 83.41 | | seed=54321 | 82.32 | 83.38 | | ------------ | ----- | ----- | | mean | 82.29 | 83.40 | | stdev | 0.127 | 0.015 | ``` Code: _coming soon_ ## BibTeX entry and citation info ```bibtex @article{kurtic2022optimal, title={The Optimal BERT Surgeon: Scalable and Accurate Second-Order Pruning for Large Language Models}, author={Kurtic, Eldar and Campos, Daniel and Nguyen, Tuan and Frantar, Elias and Kurtz, Mark and Fineran, Benjamin and Goin, Michael and Alistarh, Dan}, journal={arXiv preprint arXiv:2203.07259}, year={2022} } ```
neuralmagic/oBERT-12-upstream-pruned-unstructured-97-finetuned-mnli
465a50e80f12db9417a5f4272ed7f816643aec1d
2022-06-20T11:36:51.000Z
[ "pytorch", "en", "dataset:mnli", "arxiv:2203.07259", "bert", "oBERT", "sparsity", "pruning", "compression" ]
null
false
neuralmagic
null
neuralmagic/oBERT-12-upstream-pruned-unstructured-97-finetuned-mnli
0
null
null
37,692
--- tags: - bert - oBERT - sparsity - pruning - compression language: en datasets: mnli --- # oBERT-12-upstream-pruned-unstructured-97-finetuned-mnli This model is obtained with [The Optimal BERT Surgeon: Scalable and Accurate Second-Order Pruning for Large Language Models](https://arxiv.org/abs/2203.07259). It corresponds to the model presented in the `Table 2 - oBERT - MNLI 97%`. ``` Pruning method: oBERT upstream unstructured + sparse-transfer to downstream Paper: https://arxiv.org/abs/2203.07259 Dataset: MNLI Sparsity: 97% Number of layers: 12 ``` The dev-set performance reported in the paper is averaged over three seeds, and we release the best model (marked with `(*)`): ``` | oBERT 97% | m-acc | mm-acc| | ------------ | ----- | ----- | | seed=42 | 78.55 | 79.90 | | seed=3407 | 78.88 | 79.78 | | seed=54321(*)| 79.11 | 79.71 | | ------------ | ----- | ----- | | mean | 78.85 | 79.80 | | stdev | 0.281 | 0.096 | ``` Code: _coming soon_ ## BibTeX entry and citation info ```bibtex @article{kurtic2022optimal, title={The Optimal BERT Surgeon: Scalable and Accurate Second-Order Pruning for Large Language Models}, author={Kurtic, Eldar and Campos, Daniel and Nguyen, Tuan and Frantar, Elias and Kurtz, Mark and Fineran, Benjamin and Goin, Michael and Alistarh, Dan}, journal={arXiv preprint arXiv:2203.07259}, year={2022} } ```
neuralmagic/oBERT-12-upstream-pruned-unstructured-90-finetuned-qqp
fbb0202da0e4e1013b53f5240b5aa5e9c91e1741
2022-06-20T11:36:50.000Z
[ "pytorch", "en", "dataset:qqp", "arxiv:2203.07259", "bert", "oBERT", "sparsity", "pruning", "compression" ]
null
false
neuralmagic
null
neuralmagic/oBERT-12-upstream-pruned-unstructured-90-finetuned-qqp
0
null
null
37,693
--- tags: - bert - oBERT - sparsity - pruning - compression language: en datasets: qqp --- # oBERT-12-upstream-pruned-unstructured-90-finetuned-qqp This model is obtained with [The Optimal BERT Surgeon: Scalable and Accurate Second-Order Pruning for Large Language Models](https://arxiv.org/abs/2203.07259). It corresponds to the model presented in the `Table 2 - oBERT - QQP 90%`. ``` Pruning method: oBERT upstream unstructured + sparse-transfer to downstream Paper: https://arxiv.org/abs/2203.07259 Dataset: QQP Sparsity: 90% Number of layers: 12 ``` The dev-set performance reported in the paper is averaged over three seeds, and we release the best model (marked with `(*)`): ``` | oBERT 90% | acc | F1 | | ------------ | ----- | ----- | | seed=42 (*)| 90.93 | 87.77 | | seed=3407 | 90.70 | 87.49 | | seed=54321 | 90.86 | 87.68 | | ------------ | ----- | ----- | | mean | 90.83 | 87.65 | | stdev | 0.117 | 0.143 | ``` Code: _coming soon_ ## BibTeX entry and citation info ```bibtex @article{kurtic2022optimal, title={The Optimal BERT Surgeon: Scalable and Accurate Second-Order Pruning for Large Language Models}, author={Kurtic, Eldar and Campos, Daniel and Nguyen, Tuan and Frantar, Elias and Kurtz, Mark and Fineran, Benjamin and Goin, Michael and Alistarh, Dan}, journal={arXiv preprint arXiv:2203.07259}, year={2022} } ```
neuralmagic/oBERT-12-downstream-dense-squadv1
5466d30fe1d851554150afad56361fea2aaec9b8
2022-06-20T11:36:49.000Z
[ "pytorch", "en", "dataset:squad", "arxiv:2203.07259", "bert", "oBERT", "sparsity", "pruning", "compression" ]
null
false
neuralmagic
null
neuralmagic/oBERT-12-downstream-dense-squadv1
0
null
null
37,694
--- tags: - bert - oBERT - sparsity - pruning - compression language: en datasets: squad --- # oBERT-12-downstream-dense-squadv1 This model is obtained with [The Optimal BERT Surgeon: Scalable and Accurate Second-Order Pruning for Large Language Models](https://arxiv.org/abs/2203.07259). It corresponds to the model presented in the `Table 3 - 12 Layers - 0% Sparsity`, and it represents an upper bound for performance of the corresponding pruned models: - 80% unstructured: `neuralmagic/oBERT-12-downstream-pruned-unstructured-80-squadv1` - 80% block-4: `neuralmagic/oBERT-12-downstream-pruned-block4-80-squadv1` - 90% unstructured: `neuralmagic/oBERT-12-downstream-pruned-unstructured-90-squadv1` - 90% block-4: `neuralmagic/oBERT-12-downstream-pruned-block4-90-squadv1` SQuADv1 dev-set: ``` EM = 82.71 F1 = 89.48 ``` ## BibTeX entry and citation info ```bibtex @article{kurtic2022optimal, title={The Optimal BERT Surgeon: Scalable and Accurate Second-Order Pruning for Large Language Models}, author={Kurtic, Eldar and Campos, Daniel and Nguyen, Tuan and Frantar, Elias and Kurtz, Mark and Fineran, Benjamin and Goin, Michael and Alistarh, Dan}, journal={arXiv preprint arXiv:2203.07259}, year={2022} } ```
neuralmagic/oBERT-12-downstream-pruned-block4-80-squadv1
df9814e85c540b684ae352a4288cf99086dbb98e
2022-06-20T11:36:49.000Z
[ "pytorch", "en", "dataset:squad", "arxiv:2203.07259", "bert", "oBERT", "sparsity", "pruning", "compression" ]
null
false
neuralmagic
null
neuralmagic/oBERT-12-downstream-pruned-block4-80-squadv1
0
null
null
37,695
--- tags: - bert - oBERT - sparsity - pruning - compression language: en datasets: squad --- # oBERT-12-downstream-pruned-block4-80-squadv1 This model is obtained with [The Optimal BERT Surgeon: Scalable and Accurate Second-Order Pruning for Large Language Models](https://arxiv.org/abs/2203.07259). It corresponds to the model presented in the `Table 3 - 12 Layers - Sparsity 80% - 4-block`. ``` Pruning method: oBERT downstream block-4 Paper: https://arxiv.org/abs/2203.07259 Dataset: SQuADv1 Sparsity: 80% Number of layers: 12 ``` The dev-set performance of this model: ``` EM = 81.45 F1 = 88.57 ``` Code: _coming soon_ ## BibTeX entry and citation info ```bibtex @article{kurtic2022optimal, title={The Optimal BERT Surgeon: Scalable and Accurate Second-Order Pruning for Large Language Models}, author={Kurtic, Eldar and Campos, Daniel and Nguyen, Tuan and Frantar, Elias and Kurtz, Mark and Fineran, Benjamin and Goin, Michael and Alistarh, Dan}, journal={arXiv preprint arXiv:2203.07259}, year={2022} } ```
vai6hav/wav2vec2-large-xls-r-300m-hindi-colab
0b63ae132d54af2d17ff3a516014acfb2f724c6a
2022-05-25T15:01:42.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "dataset:common_voice", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
vai6hav
null
vai6hav/wav2vec2-large-xls-r-300m-hindi-colab
0
null
transformers
37,696
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice model-index: - name: wav2vec2-large-xls-r-300m-hindi-colab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-hindi-colab This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu113 - Datasets 1.18.3 - Tokenizers 0.10.3
neuralmagic/oBERT-12-downstream-pruned-block4-90-squadv1
c85ba0e67a6a32e7875966b7740533682a6f8c68
2022-06-20T11:36:49.000Z
[ "pytorch", "en", "dataset:squad", "arxiv:2203.07259", "bert", "oBERT", "sparsity", "pruning", "compression" ]
null
false
neuralmagic
null
neuralmagic/oBERT-12-downstream-pruned-block4-90-squadv1
0
null
null
37,697
--- tags: - bert - oBERT - sparsity - pruning - compression language: en datasets: squad --- # oBERT-12-downstream-pruned-block4-90-squadv1 This model is obtained with [The Optimal BERT Surgeon: Scalable and Accurate Second-Order Pruning for Large Language Models](https://arxiv.org/abs/2203.07259). It corresponds to the model presented in the `Table 3 - 12 Layers - Sparsity 90% - 4-block`. ``` Pruning method: oBERT downstream block-4 Paper: https://arxiv.org/abs/2203.07259 Dataset: SQuADv1 Sparsity: 90% Number of layers: 12 ``` The dev-set performance of this model: ``` EM = 80.14 F1 = 87.57 ``` Code: _coming soon_ ## BibTeX entry and citation info ```bibtex @article{kurtic2022optimal, title={The Optimal BERT Surgeon: Scalable and Accurate Second-Order Pruning for Large Language Models}, author={Kurtic, Eldar and Campos, Daniel and Nguyen, Tuan and Frantar, Elias and Kurtz, Mark and Fineran, Benjamin and Goin, Michael and Alistarh, Dan}, journal={arXiv preprint arXiv:2203.07259}, year={2022} } ```
neuralmagic/oBERT-6-downstream-pruned-unstructured-80-squadv1
af40ce51efec32a63a3a4b8b22d2a5769d11cd35
2022-06-20T11:36:52.000Z
[ "pytorch", "en", "dataset:squad", "arxiv:2203.07259", "bert", "oBERT", "sparsity", "pruning", "compression" ]
null
false
neuralmagic
null
neuralmagic/oBERT-6-downstream-pruned-unstructured-80-squadv1
0
null
null
37,698
--- tags: - bert - oBERT - sparsity - pruning - compression language: en datasets: squad --- # oBERT-6-downstream-pruned-unstructured-80-squadv1 This model is obtained with [The Optimal BERT Surgeon: Scalable and Accurate Second-Order Pruning for Large Language Models](https://arxiv.org/abs/2203.07259). It corresponds to the model presented in the `Table 3 - 6 Layers - Sparsity 80% - unstructured`. ``` Pruning method: oBERT downstream unstructured Paper: https://arxiv.org/abs/2203.07259 Dataset: SQuADv1 Sparsity: 80% Number of layers: 6 ``` The dev-set performance of this model: ``` EM = 81.15 F1 = 88.20 ``` Code: _coming soon_ ## BibTeX entry and citation info ```bibtex @article{kurtic2022optimal, title={The Optimal BERT Surgeon: Scalable and Accurate Second-Order Pruning for Large Language Models}, author={Kurtic, Eldar and Campos, Daniel and Nguyen, Tuan and Frantar, Elias and Kurtz, Mark and Fineran, Benjamin and Goin, Michael and Alistarh, Dan}, journal={arXiv preprint arXiv:2203.07259}, year={2022} } ```
neuralmagic/oBERT-6-downstream-pruned-unstructured-90-squadv1
6c736d82d3a35ef34f050e155959b6e8ca9ec4b4
2022-06-20T11:36:52.000Z
[ "pytorch", "en", "dataset:squad", "arxiv:2203.07259", "bert", "oBERT", "sparsity", "pruning", "compression" ]
null
false
neuralmagic
null
neuralmagic/oBERT-6-downstream-pruned-unstructured-90-squadv1
0
null
null
37,699
--- tags: - bert - oBERT - sparsity - pruning - compression language: en datasets: squad --- # oBERT-6-downstream-pruned-unstructured-90-squadv1 This model is obtained with [The Optimal BERT Surgeon: Scalable and Accurate Second-Order Pruning for Large Language Models](https://arxiv.org/abs/2203.07259). It corresponds to the model presented in the `Table 3 - 6 Layers - Sparsity 90% - unstructured`. ``` Pruning method: oBERT downstream unstructured Paper: https://arxiv.org/abs/2203.07259 Dataset: SQuADv1 Sparsity: 90% Number of layers: 6 ``` The dev-set performance of this model: ``` EM = 79.16 F1 = 86.78 ``` Code: _coming soon_ ## BibTeX entry and citation info ```bibtex @article{kurtic2022optimal, title={The Optimal BERT Surgeon: Scalable and Accurate Second-Order Pruning for Large Language Models}, author={Kurtic, Eldar and Campos, Daniel and Nguyen, Tuan and Frantar, Elias and Kurtz, Mark and Fineran, Benjamin and Goin, Michael and Alistarh, Dan}, journal={arXiv preprint arXiv:2203.07259}, year={2022} } ```