modelId
stringlengths
4
112
sha
stringlengths
40
40
lastModified
stringlengths
24
24
tags
sequence
pipeline_tag
stringclasses
29 values
private
bool
1 class
author
stringlengths
2
38
⌀
config
null
id
stringlengths
4
112
downloads
float64
0
36.8M
⌀
likes
float64
0
712
⌀
library_name
stringclasses
17 values
__index_level_0__
int64
0
38.5k
readme
stringlengths
0
186k
masakhane/m2m100_418M_en_twi_rel_ft
f734d447f6dd198485ebda1b996b534db3cddcb0
2022-05-12T12:35:37.000Z
[ "pytorch", "m2m_100", "text2text-generation", "transformers", "license:afl-3.0", "autotrain_compatible" ]
text2text-generation
false
masakhane
null
masakhane/m2m100_418M_en_twi_rel_ft
0
null
transformers
37,500
--- license: afl-3.0 ---
masakhane/m2m100_418M_twi_en_rel_ft
dcca35a20b3059ba3fdf47cba53876ce3d94370c
2022-05-12T12:35:40.000Z
[ "pytorch", "m2m_100", "text2text-generation", "transformers", "license:afl-3.0", "autotrain_compatible" ]
text2text-generation
false
masakhane
null
masakhane/m2m100_418M_twi_en_rel_ft
0
null
transformers
37,501
--- license: afl-3.0 ---
masakhane/m2m100_418M_en_zul_rel_ft
33c070f3066efbc312546fa49d388e9d3dda0f39
2022-05-12T13:36:21.000Z
[ "pytorch", "m2m_100", "text2text-generation", "transformers", "license:afl-3.0", "autotrain_compatible" ]
text2text-generation
false
masakhane
null
masakhane/m2m100_418M_en_zul_rel_ft
0
null
transformers
37,502
--- license: afl-3.0 ---
huggingtweets/alice_lbl-lotrbookquotes-theprincess_lbl
8340978cf1d47a551622ea71b8ce605909e03525
2022-05-14T03:52:25.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/alice_lbl-lotrbookquotes-theprincess_lbl
0
null
transformers
37,503
--- language: en thumbnail: http://www.huggingtweets.com/alice_lbl-lotrbookquotes-theprincess_lbl/1652500340141/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1424546909104926720/g4pTa5BS_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1047569624693465089/0yKYd-Xl_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1424540771579928579/8moTa864_400x400.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Alice in Wonderland & Looking-Glass (line by line) & Lord of the Rings quotes & The Princess Bride (line by line)</div> <div style="text-align: center; font-size: 14px;">@alice_lbl-lotrbookquotes-theprincess_lbl</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Alice in Wonderland & Looking-Glass (line by line) & Lord of the Rings quotes & The Princess Bride (line by line). | Data | Alice in Wonderland & Looking-Glass (line by line) | Lord of the Rings quotes | The Princess Bride (line by line) | | --- | --- | --- | --- | | Tweets downloaded | 3078 | 3250 | 1769 | | Retweets | 0 | 0 | 0 | | Short tweets | 38 | 0 | 204 | | Tweets kept | 3040 | 3250 | 1565 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1q83n6h6/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @alice_lbl-lotrbookquotes-theprincess_lbl's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1614bya5) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1614bya5/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/alice_lbl-lotrbookquotes-theprincess_lbl') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
Splend1dchan/wav2vec2-large-lv60_t5lephone
643d0ef8b085bf671ff7778c3f6d12aff574aac8
2022-05-14T06:37:01.000Z
[ "pytorch" ]
null
false
Splend1dchan
null
Splend1dchan/wav2vec2-large-lv60_t5lephone
0
null
null
37,504
Entry not found
Splend1dchan/wav2vec2-large-lv60_byt5-small
11ea07b3e0dfdeab5db70c230e8b66a8d32c1096
2022-05-18T07:46:23.000Z
[ "pytorch" ]
null
false
Splend1dchan
null
Splend1dchan/wav2vec2-large-lv60_byt5-small
0
null
null
37,505
Entry not found
lilitket/20220511-135859
e9b9a46cb0b8724e33b51b1417c683bea03a3855
2022-05-11T11:44:30.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
lilitket
null
lilitket/20220511-135859
0
null
transformers
37,506
Entry not found
jinjinjin/CULR
a1d308b48caf97bf9622f1b7b32aa1c9b28f4965
2022-05-26T15:47:35.000Z
[ "pytorch", "xlm-roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
jinjinjin
null
jinjinjin/CULR
0
null
transformers
37,507
Entry not found
victor123/clip-roberta-finetuned
d616c6dc4c7ede87a40b55f2cc0d5b720c0205a8
2022-05-11T11:57:08.000Z
[ "pytorch", "vision-text-dual-encoder", "feature-extraction", "dataset:ydshieh/coco_dataset_script", "transformers", "generated_from_trainer", "model-index" ]
feature-extraction
false
victor123
null
victor123/clip-roberta-finetuned
0
null
transformers
37,508
--- tags: - generated_from_trainer datasets: - ydshieh/coco_dataset_script model-index: - name: clip-roberta-finetuned results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # clip-roberta-finetuned This model is a fine-tuned version of [./clip-roberta](https://huggingface.co/./clip-roberta) on the ydshieh/coco_dataset_script 2017 dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 256 - eval_batch_size: 256 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results ### Framework versions - Transformers 4.19.0.dev0 - Pytorch 1.10.1 - Datasets 2.1.0 - Tokenizers 0.12.1
hxl/test-mlm-wwm2
4980b6ea7509a290f4aad9e761af237f2d0a44d1
2022-05-11T13:43:39.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
hxl
null
hxl/test-mlm-wwm2
0
null
transformers
37,509
基础研究政策
subhasisj/hi-TAPT-MLM-MiniLM
1d39623bff01610a5cfaf401a33d74d056f9fd1b
2022-05-11T16:44:42.000Z
[ "pytorch", "tensorboard", "bert", "fill-mask", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
fill-mask
false
subhasisj
null
subhasisj/hi-TAPT-MLM-MiniLM
0
null
transformers
37,510
--- tags: - generated_from_trainer model-index: - name: hi-TAPT-MLM-MiniLM results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # hi-TAPT-MLM-MiniLM This model is a fine-tuned version of [subhasisj/MiniLMv2-qa-encoder](https://huggingface.co/subhasisj/MiniLMv2-qa-encoder) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.2.0 - Tokenizers 0.12.1
sileod/distractors_prediction
9801ae7d4622e6fbacfb4875b86dc3931e40ddf0
2022-05-24T17:03:43.000Z
[ "pytorch", "bert", "feature-extraction", "sentence-transformers", "sentence-similarity" ]
sentence-similarity
false
sileod
null
sileod/distractors_prediction
0
null
sentence-transformers
37,511
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity --- # sileod/distractors_prediction This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('sileod/distractors_prediction') embeddings = model.encode(sentences) print(embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=sileod/distractors_prediction) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 773 with parameters: ``` {'batch_size': 96, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters: ``` {'scale': 20.0, 'similarity_fct': 'cos_sim'} ``` Parameters of the fit()-Method: ``` { "epochs": 10, "evaluation_steps": 500, "evaluator": "sentence_transformers.evaluation.InformationRetrievalEvaluator.InformationRetrievalEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 100, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: RobertaModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) (2): Asym( (DOC-0): Dense({'in_features': 768, 'out_features': 768, 'bias': True, 'activation_function': 'torch.nn.modules.linear.Identity'}) ) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
theojolliffe/distilbart-cnn-arxiv-pubmed-pubmed-earlystopping
f6f8f09dee59259489341292ff4bc7f975b3017b
2022-05-11T23:46:14.000Z
[ "pytorch", "tensorboard", "bart", "text2text-generation", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
text2text-generation
false
theojolliffe
null
theojolliffe/distilbart-cnn-arxiv-pubmed-pubmed-earlystopping
0
null
transformers
37,512
--- license: apache-2.0 tags: - generated_from_trainer metrics: - rouge model-index: - name: distilbart-cnn-arxiv-pubmed-pubmed-earlystopping results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbart-cnn-arxiv-pubmed-pubmed-earlystopping This model is a fine-tuned version of [theojolliffe/distilbart-cnn-arxiv-pubmed-pubmed](https://huggingface.co/theojolliffe/distilbart-cnn-arxiv-pubmed-pubmed) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.8596 - Rouge1: 53.4491 - Rouge2: 35.0041 - Rougel: 37.2742 - Rougelsum: 50.9867 - Gen Len: 142.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:--------:| | No log | 0.31 | 125 | 1.3772 | 50.6084 | 30.8075 | 32.6113 | 47.883 | 142.0 | | No log | 0.63 | 250 | 1.2423 | 52.1758 | 31.6326 | 32.9448 | 49.8089 | 141.6296 | | No log | 0.94 | 375 | 1.1223 | 52.3494 | 32.3508 | 35.3638 | 49.6019 | 142.0 | | 1.3557 | 1.26 | 500 | 1.1004 | 51.8935 | 32.8506 | 35.521 | 49.6249 | 142.0 | | 1.3557 | 1.57 | 625 | 1.0600 | 50.8085 | 31.0397 | 34.2021 | 48.2264 | 141.5741 | | 1.3557 | 1.88 | 750 | 0.9834 | 53.0701 | 34.0699 | 36.4029 | 51.043 | 142.0 | | 1.3557 | 2.2 | 875 | 0.9554 | 53.4385 | 34.2976 | 36.8142 | 51.1262 | 141.9444 | | 0.868 | 2.51 | 1000 | 0.9256 | 52.2123 | 32.7568 | 34.5883 | 49.8566 | 142.0 | | 0.868 | 2.83 | 1125 | 0.8944 | 53.8062 | 34.6687 | 36.9645 | 51.5162 | 142.0 | | 0.868 | 3.14 | 1250 | 0.9290 | 53.1356 | 34.1301 | 37.7713 | 50.762 | 141.9074 | | 0.868 | 3.45 | 1375 | 0.9017 | 53.4455 | 35.0572 | 37.3033 | 50.9773 | 142.0 | | 0.6252 | 3.77 | 1500 | 0.8519 | 53.9228 | 35.5575 | 38.9119 | 51.5202 | 142.0 | | 0.6252 | 4.08 | 1625 | 0.8991 | 54.4223 | 36.3072 | 38.5771 | 51.9874 | 141.9074 | | 0.6252 | 4.4 | 1750 | 0.8857 | 53.4105 | 35.348 | 37.5814 | 50.8842 | 142.0 | | 0.6252 | 4.71 | 1875 | 0.8596 | 53.4491 | 35.0041 | 37.2742 | 50.9867 | 142.0 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.2.1 - Tokenizers 0.12.1
frmccann/CLSRIL-23
a301712c7cbdef70c167fe85529e68fb1cfc615b
2022-05-12T18:28:16.000Z
[ "pytorch", "wav2vec2", "feature-extraction", "transformers" ]
feature-extraction
false
frmccann
null
frmccann/CLSRIL-23
0
null
transformers
37,513
Entry not found
ynhi/t5vi-finetuned-en-to-vi
2a1711c0215118a5c9c70f6db1edc39f1984b076
2022-05-11T22:10:26.000Z
[ "pytorch", "tensorboard", "t5", "text2text-generation", "dataset:mt_eng_vietnamese", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
text2text-generation
false
ynhi
null
ynhi/t5vi-finetuned-en-to-vi
0
null
transformers
37,514
--- tags: - generated_from_trainer datasets: - mt_eng_vietnamese metrics: - bleu model-index: - name: t5vi-finetuned-en-to-vi results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: mt_eng_vietnamese type: mt_eng_vietnamese args: iwslt2015-en-vi metrics: - name: Bleu type: bleu value: 13.5652 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5vi-finetuned-en-to-vi This model is a fine-tuned version of [imthanhlv/t5vi](https://huggingface.co/imthanhlv/t5vi) on the mt_eng_vietnamese dataset. It achieves the following results on the evaluation set: - Loss: 1.3823 - Bleu: 13.5652 - Gen Len: 17.3578 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 20 - eval_batch_size: 20 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:| | 1.8037 | 1.0 | 6666 | 1.5935 | 11.0819 | 17.3467 | | 1.6216 | 2.0 | 13332 | 1.4639 | 12.4698 | 17.3515 | | 1.5104 | 3.0 | 19998 | 1.4139 | 13.2283 | 17.4058 | | 1.4483 | 4.0 | 26664 | 1.3904 | 13.4698 | 17.3562 | | 1.4097 | 5.0 | 33330 | 1.3823 | 13.5652 | 17.3578 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.2.0 - Tokenizers 0.12.1
mcurmei/single_label_N_max_long_training
10c1f47ab3a88590148523ef384c018fbefd4fdc
2022-05-11T18:10:19.000Z
[ "pytorch", "tensorboard", "distilbert", "question-answering", "dataset:squad", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
question-answering
false
mcurmei
null
mcurmei/single_label_N_max_long_training
0
null
transformers
37,515
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: single_label_N_max_long_training results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # single_label_N_max_long_training This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the squad dataset. It achieves the following results on the evaluation set: - Loss: 2.8288 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 3.0568 | 1.0 | 674 | 1.9993 | | 1.6024 | 2.0 | 1348 | 1.8497 | | 1.0196 | 3.0 | 2022 | 1.9178 | | 0.7622 | 4.0 | 2696 | 2.0412 | | 0.6066 | 5.0 | 3370 | 2.2523 | | 0.4136 | 6.0 | 4044 | 2.3845 | | 0.3113 | 7.0 | 4718 | 2.5712 | | 0.2777 | 8.0 | 5392 | 2.6790 | | 0.208 | 9.0 | 6066 | 2.7464 | | 0.1749 | 10.0 | 6740 | 2.8288 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.2.1 - Tokenizers 0.12.1
subhasisj/ar-finetuned-squad-qa-minilmv2-32
6816849c6acaa6dbd2ebc1d15019fe1c6186bcf0
2022-05-11T18:14:20.000Z
[ "pytorch", "bert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
subhasisj
null
subhasisj/ar-finetuned-squad-qa-minilmv2-32
0
null
transformers
37,516
Entry not found
huxxx657/roberta-base-finetuned-deletion-squad-10
dc23a5b43d2e9ae1bfc8ea79cd92eb7fc5b8eaf5
2022-05-11T20:03:05.000Z
[ "pytorch", "tensorboard", "roberta", "question-answering", "dataset:squad", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
question-answering
false
huxxx657
null
huxxx657/roberta-base-finetuned-deletion-squad-10
0
null
transformers
37,517
--- license: mit tags: - generated_from_trainer datasets: - squad model-index: - name: roberta-base-finetuned-deletion-squad-10 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-finetuned-deletion-squad-10 This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the squad dataset. It achieves the following results on the evaluation set: - Loss: 1.0246 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.0269 | 1.0 | 5533 | 1.0246 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.2.1 - Tokenizers 0.12.1
huxxx657/roberta-base-finetuned-deletion-squad-15
34b52ee5c004ef39a5b6d6eac38e22dadfb5bce5
2022-05-11T21:15:16.000Z
[ "pytorch", "tensorboard", "roberta", "question-answering", "dataset:squad", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
question-answering
false
huxxx657
null
huxxx657/roberta-base-finetuned-deletion-squad-15
0
null
transformers
37,518
--- license: mit tags: - generated_from_trainer datasets: - squad model-index: - name: roberta-base-finetuned-deletion-squad-15 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-finetuned-deletion-squad-15 This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the squad dataset. It achieves the following results on the evaluation set: - Loss: 1.1057 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.1127 | 1.0 | 5531 | 1.1057 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.2.1 - Tokenizers 0.12.1
theojolliffe/bart-cnn-pubmed-arxiv-pubmed-arxiv-earlystopping
712c24645113240d3ef9df3b8d69f5f5a230f0d3
2022-05-13T21:16:27.000Z
[ "pytorch", "tensorboard", "bart", "text2text-generation", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
text2text-generation
false
theojolliffe
null
theojolliffe/bart-cnn-pubmed-arxiv-pubmed-arxiv-earlystopping
0
null
transformers
37,519
--- license: mit tags: - generated_from_trainer metrics: - rouge model-index: - name: bart-cnn-pubmed-arxiv-pubmed-arxiv-earlystopping results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-cnn-pubmed-arxiv-pubmed-arxiv-earlystopping This model is a fine-tuned version of [theojolliffe/bart-cnn-pubmed-arxiv-pubmed-arxiv](https://huggingface.co/theojolliffe/bart-cnn-pubmed-arxiv-pubmed-arxiv) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.8793 - Rouge1: 56.2055 - Rouge2: 41.9231 - Rougel: 45.0616 - Rougelsum: 54.6643 - Gen Len: 142.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:--------:| | No log | 0.31 | 125 | 1.2057 | 50.9339 | 30.6777 | 32.6396 | 47.9592 | 141.3519 | | No log | 0.63 | 250 | 1.0933 | 52.0728 | 31.2361 | 32.8214 | 48.9776 | 141.9815 | | No log | 0.94 | 375 | 0.9685 | 51.6847 | 32.1578 | 34.1933 | 48.8808 | 141.5556 | | 1.1594 | 1.26 | 500 | 0.9725 | 50.5131 | 30.6043 | 32.1861 | 47.4346 | 142.0 | | 1.1594 | 1.57 | 625 | 0.9342 | 52.228 | 32.2073 | 33.797 | 49.2395 | 142.0 | | 1.1594 | 1.88 | 750 | 0.8715 | 52.2 | 33.6602 | 36.1303 | 49.7138 | 141.6481 | | 1.1594 | 2.2 | 875 | 0.8334 | 53.116 | 33.9871 | 35.9641 | 50.7658 | 141.8889 | | 0.6845 | 2.51 | 1000 | 0.8241 | 52.2612 | 32.8025 | 35.27 | 49.5694 | 142.0 | | 0.6845 | 2.83 | 1125 | 0.7986 | 54.1803 | 35.0019 | 37.4582 | 51.4577 | 142.0 | | 0.6845 | 3.14 | 1250 | 0.8532 | 52.1328 | 32.6086 | 34.7455 | 49.6219 | 141.7037 | | 0.6845 | 3.45 | 1375 | 0.8319 | 51.9614 | 32.8544 | 35.3269 | 49.3279 | 141.7593 | | 0.4488 | 3.77 | 1500 | 0.8033 | 53.1404 | 34.6086 | 37.5482 | 50.7414 | 142.0 | | 0.4488 | 4.08 | 1625 | 0.8322 | 53.1736 | 34.8662 | 37.7514 | 51.0601 | 142.0 | | 0.4488 | 4.4 | 1750 | 0.7985 | 51.8251 | 32.9457 | 36.4164 | 49.55 | 142.0 | | 0.4488 | 4.71 | 1875 | 0.8049 | 54.3423 | 36.6293 | 39.1316 | 52.2706 | 141.8148 | | 0.3017 | 5.03 | 2000 | 0.8148 | 53.0698 | 35.2569 | 38.406 | 50.9346 | 141.7778 | | 0.3017 | 5.34 | 2125 | 0.8153 | 53.4479 | 35.1525 | 37.8071 | 51.3731 | 141.0741 | | 0.3017 | 5.65 | 2250 | 0.8009 | 52.5517 | 34.8287 | 37.999 | 50.2889 | 141.6111 | | 0.3017 | 5.97 | 2375 | 0.7509 | 54.2725 | 37.4164 | 40.516 | 52.1379 | 142.0 | | 0.2052 | 6.28 | 2500 | 0.8019 | 54.622 | 36.4776 | 39.9306 | 52.5069 | 142.0 | | 0.2052 | 6.6 | 2625 | 0.8176 | 55.4796 | 38.4502 | 41.5523 | 53.5211 | 142.0 | | 0.2052 | 6.91 | 2750 | 0.7956 | 55.4906 | 37.9064 | 40.845 | 53.107 | 141.9815 | | 0.2052 | 7.22 | 2875 | 0.7966 | 54.5177 | 37.3399 | 40.7678 | 52.4241 | 142.0 | | 0.1465 | 7.54 | 3000 | 0.8311 | 54.3473 | 37.0659 | 40.2507 | 52.372 | 142.0 | | 0.1465 | 7.85 | 3125 | 0.8227 | 53.9245 | 36.4695 | 39.1205 | 51.9416 | 141.8889 | | 0.1465 | 8.17 | 3250 | 0.7947 | 54.766 | 38.4275 | 41.2293 | 52.9075 | 142.0 | | 0.1465 | 8.48 | 3375 | 0.7954 | 54.5305 | 37.6934 | 40.6804 | 52.5884 | 141.9444 | | 0.115 | 8.79 | 3500 | 0.8433 | 54.7962 | 37.9373 | 41.3906 | 52.3778 | 142.0 | | 0.115 | 9.11 | 3625 | 0.8416 | 56.59 | 41.2271 | 44.4207 | 54.7199 | 142.0 | | 0.115 | 9.42 | 3750 | 0.8164 | 55.1903 | 39.0588 | 41.4908 | 53.4897 | 142.0 | | 0.115 | 9.74 | 3875 | 0.8363 | 55.2894 | 39.3598 | 42.1138 | 53.831 | 141.8889 | | 0.0912 | 10.05 | 4000 | 0.8850 | 55.7705 | 40.4924 | 43.1048 | 54.254 | 142.0 | | 0.0912 | 10.36 | 4125 | 0.8268 | 56.1664 | 40.641 | 42.798 | 54.0001 | 141.9259 | | 0.0912 | 10.68 | 4250 | 0.8564 | 55.4701 | 39.4949 | 42.2559 | 53.4486 | 141.8889 | | 0.0912 | 10.99 | 4375 | 0.8557 | 56.0849 | 41.2861 | 45.8277 | 54.5999 | 141.6667 | | 0.0707 | 11.31 | 4500 | 0.8432 | 54.9496 | 39.3006 | 42.0025 | 53.3854 | 142.0 | | 0.0707 | 11.62 | 4625 | 0.8377 | 54.2438 | 37.6959 | 40.4637 | 52.3088 | 142.0 | | 0.0707 | 11.93 | 4750 | 0.8794 | 55.9488 | 40.5401 | 43.7347 | 54.1282 | 142.0 | | 0.0707 | 12.25 | 4875 | 0.8563 | 57.8762 | 43.366 | 46.6757 | 56.6985 | 142.0 | | 0.0604 | 12.56 | 5000 | 0.8835 | 54.8926 | 39.3755 | 42.384 | 53.2687 | 141.6481 | | 0.0604 | 12.88 | 5125 | 0.8570 | 55.6656 | 39.849 | 42.1455 | 54.352 | 142.0 | | 0.0604 | 13.19 | 5250 | 0.8539 | 57.1549 | 41.901 | 45.153 | 55.213 | 142.0 | | 0.0604 | 13.51 | 5375 | 0.8847 | 56.3279 | 40.9269 | 43.416 | 54.7242 | 142.0 | | 0.051 | 13.82 | 5500 | 0.8795 | 56.8982 | 42.3333 | 45.2669 | 55.1034 | 142.0 | | 0.051 | 14.13 | 5625 | 0.8751 | 55.3173 | 40.2853 | 43.2479 | 53.7236 | 142.0 | | 0.051 | 14.45 | 5750 | 0.8799 | 56.1678 | 41.0862 | 43.8581 | 54.6316 | 142.0 | | 0.051 | 14.76 | 5875 | 0.8678 | 57.3539 | 43.0473 | 44.8511 | 55.6474 | 142.0 | | 0.0467 | 15.08 | 6000 | 0.8945 | 56.1939 | 41.985 | 45.0266 | 54.8139 | 142.0 | | 0.0467 | 15.39 | 6125 | 0.9245 | 56.2071 | 41.5265 | 44.3228 | 54.5042 | 141.4074 | | 0.0467 | 15.7 | 6250 | 0.8793 | 56.2055 | 41.9231 | 45.0616 | 54.6643 | 142.0 | ### Framework versions - Transformers 4.19.1 - Pytorch 1.11.0+cu113 - Datasets 2.2.1 - Tokenizers 0.12.1
negfir/bert_uncased_L-4_H-768_A-12_wiki103
b50af847d5c05b2e9ad21b6afd3161e146c47458
2022-05-11T22:14:18.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
negfir
null
negfir/bert_uncased_L-4_H-768_A-12_wiki103
0
null
transformers
37,520
Entry not found
huggingtweets/nft_redlist
d4f123f82007d5c083b9b6d5d05708a84bd0c9ab
2022-05-12T00:43:18.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/nft_redlist
0
null
transformers
37,521
--- language: en thumbnail: http://www.huggingtweets.com/nft_redlist/1652316177890/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1487841586541215745/J1Y65sDN_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">TON Animals Red List</div> <div style="text-align: center; font-size: 14px;">@nft_redlist</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from TON Animals Red List. | Data | TON Animals Red List | | --- | --- | | Tweets downloaded | 48 | | Retweets | 1 | | Short tweets | 1 | | Tweets kept | 46 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/38vs0taq/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @nft_redlist's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1sshkc45) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1sshkc45/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/nft_redlist') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
negfir/bert_uncased_L-12_H-512_A-8_wiki103
1bcecfff581611bbc9d0674300f905a1f0c1f1ce
2022-05-12T01:26:10.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
negfir
null
negfir/bert_uncased_L-12_H-512_A-8_wiki103
0
null
transformers
37,522
Entry not found
s1c5000/s1c_roberta_large_mrc
972c2711e6cf796e5efd3653f839c71e43bc7965
2022-05-12T02:00:54.000Z
[ "pytorch", "roberta", "question-answering", "transformers", "license:apache-2.0", "autotrain_compatible" ]
question-answering
false
s1c5000
null
s1c5000/s1c_roberta_large_mrc
0
null
transformers
37,523
--- license: apache-2.0 ---
negfir/bert_uncased_L-4_H-512_A-8_wiki103
4a2ba9f5ce1c50a700f408f9014d704eee7effc7
2022-05-12T03:19:04.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
negfir
null
negfir/bert_uncased_L-4_H-512_A-8_wiki103
0
null
transformers
37,524
Entry not found
hxl/split_test_model
dc42f7b0a8219bdbfa57893cc75d4b05ad2b91e9
2022-05-12T03:35:32.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
hxl
null
hxl/split_test_model
0
null
transformers
37,525
Entry not found
zoha/wav2vec2-xlsr-persian
a05ebf85f6cd760096447ccd3760cc31d0b40474
2022-07-03T09:41:59.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
zoha
null
zoha/wav2vec2-xlsr-persian
0
null
transformers
37,526
Entry not found
negfir/bert_uncased_L-4_H-256_A-4_wiki103
d63e95fe8d23eb582ccb5473184182de943aebd2
2022-05-12T06:47:21.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
negfir
null
negfir/bert_uncased_L-4_H-256_A-4_wiki103
0
null
transformers
37,527
Entry not found
yogeshchandrasekharuni/t5-small-finetuned-xsum
806627cb27da1c29d4dfa02cbc4a6d1a2ba54e72
2022-05-12T07:34:14.000Z
[ "pytorch", "tensorboard", "t5", "text2text-generation", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
text2text-generation
false
yogeshchandrasekharuni
null
yogeshchandrasekharuni/t5-small-finetuned-xsum
0
null
transformers
37,528
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: t5-small-finetuned-xsum results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-xsum This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | No log | 1.0 | 16 | 2.3636 | 60.9559 | 47.1972 | 58.7384 | 59.5004 | 18.082 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.2.1 - Tokenizers 0.12.1
negfir/bert_uncased_L-12_H-256_A-4_wiki103
5932bbbfc1c5ba4992eb46d5a92105093560c5fa
2022-05-12T07:45:15.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
negfir
null
negfir/bert_uncased_L-12_H-256_A-4_wiki103
0
null
transformers
37,529
Entry not found
theojolliffe/bart-cnn-pubmed-arxiv-pubmed-arxiv-arxiv-earlystopping
b56d23b4765817e8cce727efd371a265b4ee64f0
2022-05-12T14:00:24.000Z
[ "pytorch", "tensorboard", "bart", "text2text-generation", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
text2text-generation
false
theojolliffe
null
theojolliffe/bart-cnn-pubmed-arxiv-pubmed-arxiv-arxiv-earlystopping
0
null
transformers
37,530
--- license: mit tags: - generated_from_trainer metrics: - rouge model-index: - name: bart-cnn-pubmed-arxiv-pubmed-arxiv-arxiv-earlystopping results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-cnn-pubmed-arxiv-pubmed-arxiv-arxiv-earlystopping This model is a fine-tuned version of [theojolliffe/bart-cnn-pubmed-arxiv-pubmed-arxiv-arxiv](https://huggingface.co/theojolliffe/bart-cnn-pubmed-arxiv-pubmed-arxiv-arxiv) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.8347 - Rouge1: 53.9049 - Rouge2: 35.5953 - Rougel: 39.788 - Rougelsum: 51.4101 - Gen Len: 142.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 200 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:--------:| | No log | 0.31 | 125 | 1.0240 | 52.5632 | 32.977 | 34.672 | 49.9905 | 142.0 | | No log | 0.63 | 250 | 1.0056 | 52.5508 | 32.4826 | 34.6851 | 49.835 | 141.6852 | | No log | 0.94 | 375 | 0.8609 | 53.0475 | 32.9384 | 35.3322 | 50.272 | 141.6481 | | 0.8255 | 1.26 | 500 | 0.9022 | 52.2493 | 31.5622 | 33.389 | 49.6612 | 142.0 | | 0.8255 | 1.57 | 625 | 0.8706 | 53.3568 | 33.2533 | 35.7531 | 50.4568 | 141.8889 | | 0.8255 | 1.88 | 750 | 0.8186 | 52.7375 | 33.4439 | 37.1094 | 50.5323 | 142.0 | | 0.8255 | 2.2 | 875 | 0.8041 | 53.4992 | 34.6929 | 37.9614 | 51.091 | 142.0 | | 0.5295 | 2.51 | 1000 | 0.7907 | 52.6185 | 33.8053 | 37.1725 | 50.4881 | 142.0 | | 0.5295 | 2.83 | 1125 | 0.7740 | 52.7107 | 33.1023 | 36.0865 | 50.0365 | 142.0 | | 0.5295 | 3.14 | 1250 | 0.8200 | 52.5607 | 33.7948 | 37.2312 | 50.3345 | 142.0 | | 0.5295 | 3.45 | 1375 | 0.8188 | 53.9233 | 34.446 | 36.7566 | 51.3135 | 142.0 | | 0.351 | 3.77 | 1500 | 0.8071 | 53.9096 | 35.5977 | 38.6832 | 51.4986 | 142.0 | | 0.351 | 4.08 | 1625 | 0.8347 | 53.9049 | 35.5953 | 39.788 | 51.4101 | 142.0 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.2.1 - Tokenizers 0.12.1
negfir/bert_uncased_L-4_H-128_A-2_wiki103
fda5c9a7c70d4145ba8190cd1e1939ca5027c7cd
2022-05-12T09:36:24.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
negfir
null
negfir/bert_uncased_L-4_H-128_A-2_wiki103
0
null
transformers
37,531
Entry not found
negfir/bert_uncased_L-12_H-128_A-2_wiki103
75852dd4bd7ba37d4133067fea547f8ecb212f1a
2022-05-12T13:09:37.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
negfir
null
negfir/bert_uncased_L-12_H-128_A-2_wiki103
0
null
transformers
37,532
Entry not found
subhasisj/hi-finetuned-squad-qa-minilmv2-32
511544040a14a8901b29ec17aa79f20f320182db
2022-05-12T16:09:36.000Z
[ "pytorch", "bert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
subhasisj
null
subhasisj/hi-finetuned-squad-qa-minilmv2-32
0
null
transformers
37,533
Entry not found
mybot/DialoGPT-medium-harrypotter
1f19ef956f7325fed91b1f36fc0f75d95255a384
2022-05-12T17:14:30.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
mybot
null
mybot/DialoGPT-medium-harrypotter
0
null
transformers
37,534
--- tags: - conversational --- # Harry Potter DialoGPT Model
vives/distilbert-base-uncased-finetuned-imdb-accelerate
89e822051a6dfef5d94885877993a1e32ad493c8
2022-05-12T17:18:17.000Z
[ "pytorch", "distilbert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
vives
null
vives/distilbert-base-uncased-finetuned-imdb-accelerate
0
null
transformers
37,535
Entry not found
deepparag/gpt-j-6B-longer-generation
3a4e20591c2bb653e01005e889086270f80ff1f0
2022-05-12T17:33:59.000Z
[ "en", "dataset:The Pile", "arxiv:2104.09864", "arxiv:2101.00027", "pytorch", "causal-lm", "license:apache-2.0" ]
null
false
deepparag
null
deepparag/gpt-j-6B-longer-generation
0
null
null
37,536
--- language: - en tags: - pytorch - causal-lm license: apache-2.0 datasets: - The Pile --- # This model is a clone of https://huggingface.co/EleutherAI/gpt-j-6B in which I have simply increased the max response size. # GPT-J 6B ## Model Description GPT-J 6B is a transformer model trained using Ben Wang's [Mesh Transformer JAX](https://github.com/kingoflolz/mesh-transformer-jax/). "GPT-J" refers to the class of model, while "6B" represents the number of trainable parameters. <figure> | Hyperparameter | Value | |----------------------|------------| | \\(n_{parameters}\\) | 6053381344 | | \\(n_{layers}\\) | 28&ast; | | \\(d_{model}\\) | 4096 | | \\(d_{ff}\\) | 16384 | | \\(n_{heads}\\) | 16 | | \\(d_{head}\\) | 256 | | \\(n_{ctx}\\) | 2048 | | \\(n_{vocab}\\) | 50257/50400&dagger; (same tokenizer as GPT-2/3) | | Positional Encoding | [Rotary Position Embedding (RoPE)](https://arxiv.org/abs/2104.09864) | | RoPE Dimensions | [64](https://github.com/kingoflolz/mesh-transformer-jax/blob/f2aa66e0925de6593dcbb70e72399b97b4130482/mesh_transformer/layers.py#L223) | <figcaption><p><strong>&ast;</strong> Each layer consists of one feedforward block and one self attention block.</p> <p><strong>&dagger;</strong> Although the embedding matrix has a size of 50400, only 50257 entries are used by the GPT-2 tokenizer.</p></figcaption></figure> The model consists of 28 layers with a model dimension of 4096, and a feedforward dimension of 16384. The model dimension is split into 16 heads, each with a dimension of 256. Rotary Position Embedding (RoPE) is applied to 64 dimensions of each head. The model is trained with a tokenization vocabulary of 50257, using the same set of BPEs as GPT-2/GPT-3. ## Training data GPT-J 6B was trained on [the Pile](https://pile.eleuther.ai), a large-scale curated dataset created by [EleutherAI](https://www.eleuther.ai). ## Training procedure This model was trained for 402 billion tokens over 383,500 steps on TPU v3-256 pod. It was trained as an autoregressive language model, using cross-entropy loss to maximize the likelihood of predicting the next token correctly. ## Intended Use and Limitations GPT-J learns an inner representation of the English language that can be used to extract features useful for downstream tasks. The model is best at what it was pretrained for however, which is generating text from a prompt. ### How to use This model can be easily loaded using the `AutoModelForCausalLM` functionality: ```python from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("EleutherAI/gpt-j-6B") model = AutoModelForCausalLM.from_pretrained("EleutherAI/gpt-j-6B") ``` ### Limitations and Biases The core functionality of GPT-J is taking a string of text and predicting the next token. While language models are widely used for tasks other than this, there are a lot of unknowns with this work. When prompting GPT-J it is important to remember that the statistically most likely next token is often not the token that produces the most "accurate" text. Never depend upon GPT-J to produce factually accurate output. GPT-J was trained on the Pile, a dataset known to contain profanity, lewd, and otherwise abrasive language. Depending upon use case GPT-J may produce socially unacceptable text. See [Sections 5 and 6 of the Pile paper](https://arxiv.org/abs/2101.00027) for a more detailed analysis of the biases in the Pile. As with all language models, it is hard to predict in advance how GPT-J will respond to particular prompts and offensive content may occur without warning. We recommend having a human curate or filter the outputs before releasing them, both to censor undesirable content and to improve the quality of the results. ## Evaluation results <figure> | Model | Public | Training FLOPs | LAMBADA PPL ↓ | LAMBADA Acc ↑ | Winogrande ↑ | Hellaswag ↑ | PIQA ↑ | Dataset Size (GB) | |--------------------------|-------------|----------------|--- |--- |--- |--- |--- |-------------------| | Random Chance | &check; | 0 | ~a lot | ~0% | 50% | 25% | 25% | 0 | | GPT-3 Ada&ddagger; | &cross; | ----- | 9.95 | 51.6% | 52.9% | 43.4% | 70.5% | ----- | | GPT-2 1.5B | &check; | ----- | 10.63 | 51.21% | 59.4% | 50.9% | 70.8% | 40 | | GPT-Neo 1.3B&ddagger; | &check; | 3.0e21 | 7.50 | 57.2% | 55.0% | 48.9% | 71.1% | 825 | | Megatron-2.5B&ast; | &cross; | 2.4e21 | ----- | 61.7% | ----- | ----- | ----- | 174 | | GPT-Neo 2.7B&ddagger; | &check; | 6.8e21 | 5.63 | 62.2% | 56.5% | 55.8% | 73.0% | 825 | | GPT-3 1.3B&ast;&ddagger; | &cross; | 2.4e21 | 5.44 | 63.6% | 58.7% | 54.7% | 75.1% | ~800 | | GPT-3 Babbage&ddagger; | &cross; | ----- | 5.58 | 62.4% | 59.0% | 54.5% | 75.5% | ----- | | Megatron-8.3B&ast; | &cross; | 7.8e21 | ----- | 66.5% | ----- | ----- | ----- | 174 | | GPT-3 2.7B&ast;&ddagger; | &cross; | 4.8e21 | 4.60 | 67.1% | 62.3% | 62.8% | 75.6% | ~800 | | Megatron-11B&dagger; | &check; | 1.0e22 | ----- | ----- | ----- | ----- | ----- | 161 | | **GPT-J 6B&ddagger;** | **&check;** | **1.5e22** | **3.99** | **69.7%** | **65.3%** | **66.1%** | **76.5%** | **825** | | GPT-3 6.7B&ast;&ddagger; | &cross; | 1.2e22 | 4.00 | 70.3% | 64.5% | 67.4% | 78.0% | ~800 | | GPT-3 Curie&ddagger; | &cross; | ----- | 4.00 | 69.3% | 65.6% | 68.5% | 77.9% | ----- | | GPT-3 13B&ast;&ddagger; | &cross; | 2.3e22 | 3.56 | 72.5% | 67.9% | 70.9% | 78.5% | ~800 | | GPT-3 175B&ast;&ddagger; | &cross; | 3.1e23 | 3.00 | 76.2% | 70.2% | 78.9% | 81.0% | ~800 | | GPT-3 Davinci&ddagger; | &cross; | ----- | 3.0 | 75% | 72% | 78% | 80% | ----- | <figcaption><p>Models roughly sorted by performance, or by FLOPs if not available.</p> <p><strong>&ast;</strong> Evaluation numbers reported by their respective authors. All other numbers are provided by running <a href="https://github.com/EleutherAI/lm-evaluation-harness/"><code>lm-evaluation-harness</code></a> either with released weights or with API access. Due to subtle implementation differences as well as different zero shot task framing, these might not be directly comparable. See <a href="https://blog.eleuther.ai/gpt3-model-sizes/">this blog post</a> for more details.</p> <p><strong>†</strong> Megatron-11B provides no comparable metrics, and several implementations using the released weights do not reproduce the generation quality and evaluations. (see <a href="https://github.com/huggingface/transformers/pull/10301">1</a> <a href="https://github.com/pytorch/fairseq/issues/2358">2</a> <a href="https://github.com/pytorch/fairseq/issues/2719">3</a>) Thus, evaluation was not attempted.</p> <p><strong>‡</strong> These models have been trained with data which contains possible test set contamination. The OpenAI GPT-3 models failed to deduplicate training data for certain test sets, while the GPT-Neo models as well as this one is trained on the Pile, which has not been deduplicated against any test sets.</p></figcaption></figure> ## Citation and Related Information ### BibTeX entry To cite this model: ```bibtex @misc{gpt-j, author = {Wang, Ben and Komatsuzaki, Aran}, title = {{GPT-J-6B: A 6 Billion Parameter Autoregressive Language Model}}, howpublished = {\url{https://github.com/kingoflolz/mesh-transformer-jax}}, year = 2021, month = May } ``` To cite the codebase that trained this model: ```bibtex @misc{mesh-transformer-jax, author = {Wang, Ben}, title = {{Mesh-Transformer-JAX: Model-Parallel Implementation of Transformer Language Model with JAX}}, howpublished = {\url{https://github.com/kingoflolz/mesh-transformer-jax}}, year = 2021, month = May } ``` If you use this model, we would love to hear about it! Reach out on [GitHub](https://github.com/kingoflolz/mesh-transformer-jax), Discord, or shoot Ben an email. ## Acknowledgements This project would not have been possible without compute generously provided by Google through the [TPU Research Cloud](https://sites.research.google/trc/), as well as the Cloud TPU team for providing early access to the [Cloud TPU VM](https://cloud.google.com/blog/products/compute/introducing-cloud-tpu-vms) Alpha. Thanks to everyone who have helped out one way or another (listed alphabetically): - [James Bradbury](https://twitter.com/jekbradbury) for valuable assistance with debugging JAX issues. - [Stella Biderman](https://www.stellabiderman.com), [Eric Hallahan](https://twitter.com/erichallahan), [Kurumuz](https://github.com/kurumuz/), and [Finetune](https://github.com/finetuneanon/) for converting the model to be compatible with the `transformers` package. - [Leo Gao](https://twitter.com/nabla_theta) for running zero shot evaluations for the baseline models for the table. - [Laurence Golding](https://github.com/researcher2/) for adding some features to the web demo. - [Aran Komatsuzaki](https://twitter.com/arankomatsuzaki) for advice with experiment design and writing the blog posts. - [Janko Prester](https://github.com/jprester/) for creating the web demo frontend.
subhasisj/de-TAPT-MLM-MiniLM
75a00d571ed16f2591d76c4f12a1ceb26629f566
2022-05-12T20:03:31.000Z
[ "pytorch", "tensorboard", "bert", "fill-mask", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
fill-mask
false
subhasisj
null
subhasisj/de-TAPT-MLM-MiniLM
0
null
transformers
37,537
--- tags: - generated_from_trainer model-index: - name: de-TAPT-MLM-MiniLM results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # de-TAPT-MLM-MiniLM This model is a fine-tuned version of [subhasisj/MiniLMv2-qa-encoder](https://huggingface.co/subhasisj/MiniLMv2-qa-encoder) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.2.1 - Tokenizers 0.12.1
ruselkomp/tests-finetuned-squad-test-bert
d660daaec838da395e329eb00721ac5703ea719a
2022-05-13T07:11:24.000Z
[ "pytorch", "tensorboard", "bert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
ruselkomp
null
ruselkomp/tests-finetuned-squad-test-bert
0
null
transformers
37,538
Entry not found
huxxx657/distilbert-base-uncased-finetuned-jumbling-squad-15
06169fe73669feb8f801e4c37cdf9a1f3800e6d5
2022-05-13T01:01:59.000Z
[ "pytorch", "tensorboard", "distilbert", "question-answering", "dataset:squad", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
question-answering
false
huxxx657
null
huxxx657/distilbert-base-uncased-finetuned-jumbling-squad-15
0
null
transformers
37,539
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: distilbert-base-uncased-finetuned-jumbling-squad-15 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-jumbling-squad-15 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the squad dataset. It achieves the following results on the evaluation set: - Loss: 1.3345 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.3629 | 1.0 | 5532 | 1.3345 | ### Framework versions - Transformers 4.19.0 - Pytorch 1.11.0+cu113 - Datasets 2.2.1 - Tokenizers 0.12.1
tomhavy/t5-small-finetuned-spider
737f58ee376b3681e9a136a78224e5433876fa60
2022-05-13T03:55:38.000Z
[ "pytorch", "tensorboard", "t5", "text2text-generation", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
text2text-generation
false
tomhavy
null
tomhavy/t5-small-finetuned-spider
0
null
transformers
37,540
--- tags: - generated_from_trainer model-index: - name: t5-small-finetuned-spider results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-spider This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1914 - Rouge2 Precision: 0.6349 - Rouge2 Recall: 0.3964 - Rouge2 Fmeasure: 0.4619 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 5 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 15 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge2 Precision | Rouge2 Recall | Rouge2 Fmeasure | |:-------------:|:-----:|:-----:|:---------------:|:----------------:|:-------------:|:---------------:| | 0.2912 | 1.0 | 1120 | 0.2631 | 0.5653 | 0.3537 | 0.4118 | | 0.2967 | 2.0 | 2240 | 0.2465 | 0.5758 | 0.363 | 0.4209 | | 0.3106 | 3.0 | 3360 | 0.2372 | 0.5858 | 0.367 | 0.427 | | 0.2993 | 4.0 | 4480 | 0.2340 | 0.5995 | 0.3791 | 0.4403 | | 0.2702 | 5.0 | 5600 | 0.2204 | 0.6035 | 0.3786 | 0.4401 | | 0.2624 | 6.0 | 6720 | 0.2159 | 0.6094 | 0.3807 | 0.4435 | | 0.2463 | 7.0 | 7840 | 0.2121 | 0.6207 | 0.3911 | 0.4544 | | 0.2427 | 8.0 | 8960 | 0.2053 | 0.6198 | 0.3886 | 0.452 | | 0.2336 | 9.0 | 10080 | 0.2014 | 0.6217 | 0.3871 | 0.4518 | | 0.2256 | 10.0 | 11200 | 0.1980 | 0.6298 | 0.394 | 0.4589 | | 0.2212 | 11.0 | 12320 | 0.1960 | 0.6304 | 0.3936 | 0.4589 | | 0.2141 | 12.0 | 13440 | 0.1962 | 0.63 | 0.3939 | 0.4586 | | 0.2069 | 13.0 | 14560 | 0.1921 | 0.6328 | 0.3942 | 0.4594 | | 0.2096 | 14.0 | 15680 | 0.1915 | 0.632 | 0.3953 | 0.46 | | 0.2115 | 15.0 | 16800 | 0.1914 | 0.6349 | 0.3964 | 0.4619 | ### Framework versions - Transformers 4.19.0 - Pytorch 1.11.0+cu113 - Datasets 2.2.1 - Tokenizers 0.12.1
hauver/autotrain-luyingqu-test-861227400
2b4ccb0517fee877d9b377b1c0c4f79f967cefb6
2022-05-13T04:56:25.000Z
[ "pytorch", "bert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
hauver
null
hauver/autotrain-luyingqu-test-861227400
0
null
transformers
37,541
Entry not found
shenyi/gpt2-wikitext2
b97f09491205fff54524e59920367c6b588615bb
2022-05-13T07:21:52.000Z
[ "pytorch", "tensorboard", "gpt2", "text-generation", "transformers", "generated_from_trainer", "license:mit", "model-index" ]
text-generation
false
shenyi
null
shenyi/gpt2-wikitext2
0
null
transformers
37,542
--- license: mit tags: - generated_from_trainer model-index: - name: gpt2-wikitext2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt2-wikitext2 This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 48 - eval_batch_size: 48 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Framework versions - Transformers 4.19.0.dev0 - Pytorch 1.7.1+cu110 - Datasets 2.2.1 - Tokenizers 0.12.1
shenyi/bert-base-cased-wikitext2
3793e46c9cc26758b6a983d9864fbc4ff98a37a3
2022-05-13T07:53:04.000Z
[ "pytorch", "tensorboard", "bert", "fill-mask", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
fill-mask
false
shenyi
null
shenyi/bert-base-cased-wikitext2
0
null
transformers
37,543
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: bert-base-cased-wikitext2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-cased-wikitext2 This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 7.0721 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 48 - eval_batch_size: 48 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 391 | 7.2240 | | 7.6715 | 2.0 | 782 | 7.0516 | | 7.0737 | 3.0 | 1173 | 7.0823 | ### Framework versions - Transformers 4.19.0.dev0 - Pytorch 1.7.1+cu110 - Datasets 2.2.1 - Tokenizers 0.12.1
vocab-transformers/entity-distilbert-base-uncased
2472d75cd9073c6c4594b849bbc4bf5591e51195
2022-05-13T11:34:43.000Z
[ "pytorch" ]
null
false
vocab-transformers
null
vocab-transformers/entity-distilbert-base-uncased
0
null
null
37,544
Entry not found
manirai91/mbert-conll2003
988ac654e3035e0443e9f9db71a8d0216f6748dc
2022-05-13T11:10:53.000Z
[ "pytorch", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
manirai91
null
manirai91/mbert-conll2003
0
null
transformers
37,545
Entry not found
ruselkomp/tests-finetuned-squad-test-bert-2
7737ef9ad6b4ad0cd0c624c7570f8c15a10291f5
2022-05-13T19:44:10.000Z
[ "pytorch", "tensorboard", "bert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
ruselkomp
null
ruselkomp/tests-finetuned-squad-test-bert-2
0
null
transformers
37,546
Entry not found
subhasisj/vi-finetuned-squad-qa-minilmv2-8
47bd3c8759487680ddec9acdc0bc5011cd8b1cf2
2022-05-13T17:04:48.000Z
[ "pytorch", "tensorboard", "bert", "question-answering", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
question-answering
false
subhasisj
null
subhasisj/vi-finetuned-squad-qa-minilmv2-8
0
null
transformers
37,547
--- tags: - generated_from_trainer model-index: - name: vi-finetuned-squad-qa-minilmv2-8 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vi-finetuned-squad-qa-minilmv2-8 This model is a fine-tuned version of [subhasisj/vi-TAPT-MLM-MiniLM](https://huggingface.co/subhasisj/vi-TAPT-MLM-MiniLM) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.3335 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.1669 | 1.0 | 1424 | 1.4979 | | 1.2377 | 2.0 | 2848 | 1.3259 | | 1.0536 | 3.0 | 4272 | 1.3133 | | 0.9568 | 4.0 | 5696 | 1.3103 | | 0.8859 | 5.0 | 7120 | 1.3335 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.2 - Datasets 2.0.0 - Tokenizers 0.11.0
subhasisj/en-TAPT-MLM-MiniLM
4cb8c511637548c33b17ffe9e4c367f521084b65
2022-05-13T19:35:12.000Z
[ "pytorch", "tensorboard", "bert", "fill-mask", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
fill-mask
false
subhasisj
null
subhasisj/en-TAPT-MLM-MiniLM
0
null
transformers
37,548
--- tags: - generated_from_trainer model-index: - name: en-TAPT-MLM-MiniLM results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # en-TAPT-MLM-MiniLM This model is a fine-tuned version of [subhasisj/MiniLMv2-qa-encoder](https://huggingface.co/subhasisj/MiniLMv2-qa-encoder) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.2.1 - Tokenizers 0.12.1
subhasisj/en-finetuned-squad-qa-minilmv2-32
c14c66ff4910a6837866bd733a44386e17152cf7
2022-05-13T21:50:53.000Z
[ "pytorch", "tensorboard", "bert", "question-answering", "dataset:squad", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
question-answering
false
subhasisj
null
subhasisj/en-finetuned-squad-qa-minilmv2-32
0
null
transformers
37,549
--- tags: - generated_from_trainer datasets: - squad model-index: - name: en-finetuned-squad-qa-minilmv2-32 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # en-finetuned-squad-qa-minilmv2-32 This model is a fine-tuned version of [subhasisj/en-TAPT-MLM-MiniLM](https://huggingface.co/subhasisj/en-TAPT-MLM-MiniLM) on the squad dataset. It achieves the following results on the evaluation set: - Loss: 1.1955 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 256 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 350 | 2.1514 | | 2.9587 | 2.0 | 700 | 1.4819 | | 1.3873 | 3.0 | 1050 | 1.2724 | | 1.3873 | 4.0 | 1400 | 1.2039 | | 1.0438 | 5.0 | 1750 | 1.1955 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.2.1 - Tokenizers 0.12.1
pidanr/bert-finetuned-race
2f9d4e11e6b5d9fb2cec7767ec9f84ee8bf04e93
2022-05-14T22:30:31.000Z
[ "pytorch", "tensorboard", "bert", "multiple-choice", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
multiple-choice
false
pidanr
null
pidanr/bert-finetuned-race
0
null
transformers
37,550
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: bert-finetuned-race results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-race This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.3863 - Accuracy: 0.2982 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.3936 | 0.25 | 3100 | 1.3863 | 0.2418 | | 1.3768 | 0.51 | 6200 | 1.3863 | 0.2483 | | 1.3954 | 0.76 | 9300 | 1.3863 | 0.2982 | ### Framework versions - Transformers 4.19.1 - Pytorch 1.11.0+cu113 - Datasets 2.2.1 - Tokenizers 0.12.1
miazhao/deberta_base_model_s3_ccnet_airbnb_dat_continue2
955836f96679de8732c0006dea680cf24126d1ec
2022-05-18T18:55:31.000Z
[ "pytorch", "deberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
miazhao
null
miazhao/deberta_base_model_s3_ccnet_airbnb_dat_continue2
0
null
transformers
37,551
Entry not found
ruselkomp/deepavlov-framebank-10size
699e3e719934866f3866f3b1b27421610b5efcd9
2022-05-14T03:48:21.000Z
[ "pytorch", "tensorboard", "bert", "question-answering", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
question-answering
false
ruselkomp
null
ruselkomp/deepavlov-framebank-10size
0
null
transformers
37,552
--- tags: - generated_from_trainer model-index: - name: deepavlov-test-bert-2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # deepavlov-test-bert-2 This model is a fine-tuned version of [DeepPavlov/rubert-base-cased](https://huggingface.co/DeepPavlov/rubert-base-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.1607 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 10 - eval_batch_size: 10 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 1.0314 | 1.0 | 4523 | 1.0242 | | 0.739 | 2.0 | 9046 | 1.0326 | | 0.5207 | 3.0 | 13569 | 1.1607 | ### Framework versions - Transformers 4.19.0.dev0 - Pytorch 1.11.0+cu113 - Datasets 2.2.2.dev0 - Tokenizers 0.12.1
Splend1dchan/wav2vec2-large-lv60_t5lephone-small_bs256
cf948787cdeb2177c85086aabfab990acb2eb95e
2022-05-16T04:07:34.000Z
[ "pytorch" ]
null
false
Splend1dchan
null
Splend1dchan/wav2vec2-large-lv60_t5lephone-small_bs256
0
null
null
37,553
Entry not found
ruselkomp/sber-full-test
e051a3dad5de72fbd41ba8ff8ff2c45c6b9bd359
2022-05-14T21:47:33.000Z
[ "pytorch", "tensorboard", "bert", "question-answering", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
question-answering
false
ruselkomp
null
ruselkomp/sber-full-test
0
null
transformers
37,554
--- tags: - generated_from_trainer model-index: - name: sber-full-test results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # sber-full-test This model is a fine-tuned version of [sberbank-ai/sbert_large_nlu_ru](https://huggingface.co/sberbank-ai/sbert_large_nlu_ru) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.4148 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 5 - eval_batch_size: 5 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 1.0779 | 1.0 | 9046 | 1.3850 | | 0.7429 | 2.0 | 18092 | 1.1795 | | 0.446 | 3.0 | 27138 | 1.4148 | ### Framework versions - Transformers 4.20.0.dev0 - Pytorch 1.11.0+cu113 - Datasets 2.2.2.dev0 - Tokenizers 0.12.1
huggingtweets/dnouri
46c8c3f622d48c927da1971f8581c521b68abbfd
2022-05-14T13:30:56.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/dnouri
0
null
transformers
37,555
--- language: en thumbnail: http://www.huggingtweets.com/dnouri/1652535050986/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/479663838896214016/nZtbm6to_400x400.jpeg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Daniel Nouri</div> <div style="text-align: center; font-size: 14px;">@dnouri</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Daniel Nouri. | Data | Daniel Nouri | | --- | --- | | Tweets downloaded | 3224 | | Retweets | 875 | | Short tweets | 147 | | Tweets kept | 2202 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2d09140r/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @dnouri's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1sbu4o5b) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1sbu4o5b/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/dnouri') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
ruiqi-zhong/t5proposer_0514
f11c36cf15f632aa0725b5f102c009aa02399048
2022-05-14T14:20:59.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
ruiqi-zhong
null
ruiqi-zhong/t5proposer_0514
0
null
transformers
37,556
Entry not found
ruiqi-zhong/t5verifier_0514
a6df4b9ee43f0263e5e044ed1a01be5478923fd4
2022-05-14T16:57:46.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
ruiqi-zhong
null
ruiqi-zhong/t5verifier_0514
0
null
transformers
37,557
Entry not found
likebeats/distilbert-base-uncased-finetuned-squad
d7e6316146f5086141e6f0d00250e1f601be15a1
2022-05-15T01:20:50.000Z
[ "pytorch", "tensorboard", "distilbert", "question-answering", "dataset:squad", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
question-answering
false
likebeats
null
likebeats/distilbert-base-uncased-finetuned-squad
0
null
transformers
37,558
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: distilbert-base-uncased-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-squad This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the squad dataset. It achieves the following results on the evaluation set: - Loss: 1.1538 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 1.2249 | 1.0 | 5533 | 1.1704 | | 0.9542 | 2.0 | 11066 | 1.1215 | | 0.7467 | 3.0 | 16599 | 1.1538 | ### Framework versions - Transformers 4.19.1 - Pytorch 1.11.0+cu113 - Datasets 2.2.1 - Tokenizers 0.12.1
menglingbei/t5-small-finetuned-xsum
bf04b3211ff065ca0d65fda9e40a4ace40d87ab8
2022-05-15T02:03:19.000Z
[ "pytorch", "tensorboard", "t5", "text2text-generation", "dataset:xsum", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
text2text-generation
false
menglingbei
null
menglingbei/t5-small-finetuned-xsum
0
null
transformers
37,559
--- license: apache-2.0 tags: - generated_from_trainer datasets: - xsum model-index: - name: t5-small-finetuned-xsum results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-xsum This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the xsum dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.19.1 - Pytorch 1.11.0+cu113 - Datasets 2.2.1 - Tokenizers 0.12.1
prodm93/gpt2-kbkw-abstract-model-v1
a4558b724ded4b8d7e647f6120209f29103b1e92
2022-05-15T04:23:34.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
prodm93
null
prodm93/gpt2-kbkw-abstract-model-v1
0
null
transformers
37,560
Entry not found
prodm93/t5-kbkw-abstract-model-v1
ce0c946abb57d4117f5802d4eae4c72156f3fbc6
2022-05-15T04:28:29.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
prodm93
null
prodm93/t5-kbkw-abstract-model-v1
0
null
transformers
37,561
Entry not found
harikp20/hkp24
bd6ae7b54bb7a6e354b96f704e547097501519b4
2022-05-15T11:34:27.000Z
[ "pytorch", "tensorboard", "distilbert", "question-answering", "dataset:squad", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
question-answering
false
harikp20
null
harikp20/hkp24
0
null
transformers
37,562
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: hkp24 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # hkp24 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the squad dataset. It achieves the following results on the evaluation set: - Loss: 1.1619 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 1.2249 | 1.0 | 5533 | 1.1675 | | 0.961 | 2.0 | 11066 | 1.1376 | | 0.7581 | 3.0 | 16599 | 1.1619 | ### Framework versions - Transformers 4.19.1 - Pytorch 1.11.0+cu113 - Datasets 2.2.1 - Tokenizers 0.12.1
pujaburman30/autotrain-hi_ner_xlmr-869827677
c6d32f007e56e2d0420cd6993b84d9a9a7ad9cc1
2022-05-15T09:00:47.000Z
[ "pytorch", "xlm-roberta", "token-classification", "unk", "dataset:pujaburman30/autotrain-data-hi_ner_xlmr", "transformers", "autotrain", "co2_eq_emissions", "autotrain_compatible" ]
token-classification
false
pujaburman30
null
pujaburman30/autotrain-hi_ner_xlmr-869827677
0
null
transformers
37,563
--- tags: autotrain language: unk widget: - text: "I love AutoTrain 🤗" datasets: - pujaburman30/autotrain-data-hi_ner_xlmr co2_eq_emissions: 4.365496441173981 --- # Model Trained Using AutoTrain - Problem type: Entity Extraction - Model ID: 869827677 - CO2 Emissions (in grams): 4.365496441173981 ## Validation Metrics - Loss: 0.894961416721344 - Accuracy: 0.7411180773249739 - Precision: 0.590625 - Recall: 0.5080645161290323 - F1: 0.546242774566474 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/pujaburman30/autotrain-hi_ner_xlmr-869827677 ``` Or Python API: ``` from transformers import AutoModelForTokenClassification, AutoTokenizer model = AutoModelForTokenClassification.from_pretrained("pujaburman30/autotrain-hi_ner_xlmr-869827677", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("pujaburman30/autotrain-hi_ner_xlmr-869827677", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
gkss/distilbert-base-uncased-finetuned-squad
416d389d30dbaa060faa481f2bb09665c4205686
2022-05-15T18:11:06.000Z
[ "pytorch", "distilbert", "question-answering", "dataset:squad", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
question-answering
false
gkss
null
gkss/distilbert-base-uncased-finetuned-squad
0
null
transformers
37,564
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: distilbert-base-uncased-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-squad This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Framework versions - Transformers 4.19.1 - Pytorch 1.11.0 - Datasets 2.2.1 - Tokenizers 0.12.1
prodm93/T5Dynamic_text_model_v1
8bb12f65924aaa6e9a2d5a20603d8a28e133e540
2022-05-15T22:10:00.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
prodm93
null
prodm93/T5Dynamic_text_model_v1
0
null
transformers
37,565
Entry not found
stevemobs/quales-iberlef-squad_2
df30ecab042de43fcf56374e7c0bb846aa22aac5
2022-05-16T01:51:09.000Z
[ "pytorch", "tensorboard", "roberta", "question-answering", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
question-answering
false
stevemobs
null
stevemobs/quales-iberlef-squad_2
0
null
transformers
37,566
--- tags: - generated_from_trainer model-index: - name: quales-iberlef-squad_2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # quales-iberlef-squad_2 This model is a fine-tuned version of [jamarju/roberta-large-bne-squad-2.0-es](https://huggingface.co/jamarju/roberta-large-bne-squad-2.0-es) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.19.1 - Pytorch 1.11.0+cu113 - Datasets 2.2.1 - Tokenizers 0.12.1
prodm93/T5Dynamic_title_model_v1
16f607228585063d3823cc26ec477918d64827ce
2022-05-15T22:10:06.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
prodm93
null
prodm93/T5Dynamic_title_model_v1
0
null
transformers
37,567
Entry not found
Splend1dchan/wav2vec2-large-lv60_mt5-small
b38c84bb3b7dca78cc7d44212177b786dbc03ea7
2022-05-24T02:45:22.000Z
[ "pytorch" ]
null
false
Splend1dchan
null
Splend1dchan/wav2vec2-large-lv60_mt5-small
0
null
null
37,568
Entry not found
Splend1dchan/wav2vec2-large-lv60_t5lephone-small_bs64
a19d4e0ee8e4a63114b461d46e830695723b5bc2
2022-05-20T02:08:07.000Z
[ "pytorch" ]
null
false
Splend1dchan
null
Splend1dchan/wav2vec2-large-lv60_t5lephone-small_bs64
0
null
null
37,569
Entry not found
nandezgarcia/roberta-base-bne-sqac-finetuned-recores
d34bc840c31f0072bc407ae0764e46d5f4843c7c
2022-05-16T08:07:43.000Z
[ "pytorch", "tensorboard", "roberta", "multiple-choice", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
multiple-choice
false
nandezgarcia
null
nandezgarcia/roberta-base-bne-sqac-finetuned-recores
0
null
transformers
37,570
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: roberta-base-bne-sqac-finetuned-recores results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-bne-sqac-finetuned-recores This model is a fine-tuned version of [PlanTL-GOB-ES/roberta-base-bne-sqac](https://huggingface.co/PlanTL-GOB-ES/roberta-base-bne-sqac) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 3.4624 - Accuracy: 0.3691 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.5643 | 1.0 | 1047 | 1.5474 | 0.3526 | | 0.8147 | 2.0 | 2094 | 2.6498 | 0.3719 | | 0.1618 | 3.0 | 3141 | 3.1061 | 0.3719 | | 0.0135 | 4.0 | 4188 | 3.4624 | 0.3691 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.1+cu102 - Datasets 2.2.1 - Tokenizers 0.12.1
jsunster/layoutlmv2-finetuned-cord
5d8e7ccec2a5ccb7c492ee36af7739c6b0c1882e
2022-05-16T09:35:27.000Z
[ "pytorch", "tensorboard", "layoutlmv2", "token-classification", "transformers", "generated_from_trainer", "license:cc-by-nc-sa-4.0", "model-index", "autotrain_compatible" ]
token-classification
false
jsunster
null
jsunster/layoutlmv2-finetuned-cord
0
null
transformers
37,571
--- license: cc-by-nc-sa-4.0 tags: - generated_from_trainer model-index: - name: layoutlmv2-finetuned-cord results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # layoutlmv2-finetuned-cord This model is a fine-tuned version of [microsoft/layoutlmv2-base-uncased](https://huggingface.co/microsoft/layoutlmv2-base-uncased) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 3000 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.19.1 - Pytorch 1.10.0+cu111 - Datasets 2.2.1 - Tokenizers 0.12.1
hasanalay/wav2vec2-large-xls-r-300m-turkish-colab-2
4fd60192b0d473ba412546245d9469b8b1497d8f
2022-05-16T14:46:24.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
hasanalay
null
hasanalay/wav2vec2-large-xls-r-300m-turkish-colab-2
0
null
transformers
37,572
Entry not found
mriggs/wikisource_epoch2
03160ffb4a70ef824ec10ca364db526d5af30fcf
2022-05-16T13:05:45.000Z
[ "pytorch", "flaubert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
mriggs
null
mriggs/wikisource_epoch2
0
null
transformers
37,573
Entry not found
subhasisj/ar-kd-XLM-minilmv2-32
3de48bb4b60413a0b49110ca40c81571e58fa308
2022-05-16T16:50:40.000Z
[ "pytorch", "tensorboard", "bert", "question-answering", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
question-answering
false
subhasisj
null
subhasisj/ar-kd-XLM-minilmv2-32
0
null
transformers
37,574
--- tags: - generated_from_trainer model-index: - name: ar-kd-XLM-minilmv2-32 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ar-kd-XLM-minilmv2-32 This model is a fine-tuned version of [subhasisj/ar-TAPT-MLM-MiniLM](https://huggingface.co/subhasisj/ar-TAPT-MLM-MiniLM) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 256 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.2.1 - Tokenizers 0.12.1
subhasisj/de-kd-XLM-minilmv2-4
f74f95b9806ad5bfc94b8b6767d350d2d9470562
2022-05-16T18:25:23.000Z
[ "pytorch", "tensorboard", "bert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
subhasisj
null
subhasisj/de-kd-XLM-minilmv2-4
0
null
transformers
37,575
Entry not found
knurm/xlm-roberta-base-finetuned-est
594e24c1a70265e60866f4d59c1ac205b5bfe611
2022-05-23T20:34:34.000Z
[ "pytorch", "tensorboard", "xlm-roberta", "question-answering", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
question-answering
false
knurm
null
knurm/xlm-roberta-base-finetuned-est
0
null
transformers
37,576
--- license: mit tags: - generated_from_trainer model-index: - name: xlm-roberta-base-finetuned-est results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-est This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 3.8077 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 52 | 4.2865 | | No log | 2.0 | 104 | 4.0711 | | No log | 3.0 | 156 | 3.9351 | | No log | 4.0 | 208 | 3.8885 | | No log | 5.0 | 260 | 3.8077 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
peggyhuang/gpt2-canard
2ce2bbb4466a375fe8982d456d69b60081174b1b
2022-05-16T19:41:04.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
peggyhuang
null
peggyhuang/gpt2-canard
0
null
transformers
37,577
Entry not found
negfir/bert_uncased_L-2_H-768_A-12_wiki103
0c97b767c00f7fc53b5f0f99c0e4bcbbd11c051d
2022-05-16T21:14:05.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
negfir
null
negfir/bert_uncased_L-2_H-768_A-12_wiki103
0
null
transformers
37,578
Entry not found
negfir/bert_uncased_L-2_H-512_A-8_wiki103
9a7ae337b6a94c245c3ae34debff5a527e4de5bc
2022-05-17T01:37:18.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
negfir
null
negfir/bert_uncased_L-2_H-512_A-8_wiki103
0
null
transformers
37,579
Entry not found
subhasisj/en-kd-XLM-minilmv2-4
8f7af302f6cde31bb8949181d8653a52a70a3a99
2022-05-17T17:53:16.000Z
[ "pytorch", "tensorboard", "bert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
subhasisj
null
subhasisj/en-kd-XLM-minilmv2-4
0
null
transformers
37,580
Entry not found
khalidalt/sentence_T5_tasky_classification
5ce8671cefb0cc0526edf5beb220b22084909bee
2022-05-17T13:11:35.000Z
[ "pytorch" ]
null
false
khalidalt
null
khalidalt/sentence_T5_tasky_classification
0
null
null
37,581
Entry not found
bmichele/poetry-generation-firstline-mbart-ws-en-sorted
a5e3ee6e64010c3eb360cc7acc98e7161107d05d
2022-05-17T13:28:22.000Z
[ "pytorch" ]
null
false
bmichele
null
bmichele/poetry-generation-firstline-mbart-ws-en-sorted
0
null
null
37,582
TODO: This is still a demo model, the file does not match with the model card!!! # poetry-generation-firstline-mbart-ws-fi-sorted * `nextline`: generates the first poem line from keywords * `mbart`: base model is [facebook/mbart-large-cc25](https://huggingface.co/facebook/mbart-large-cc25) * `ws`: trained on Wikisource data * `en`: English language * `sorted`: the order of input keywords matter when generating candidates
ykilcher/gpt-4chan
1eb96cbe347e27ffc89ce5ccb5c4a720b9569406
2022-06-14T21:14:10.000Z
[ "pytorch", "gptj", "text-generation", "en", "arxiv:2109.07958", "transformers", "causal-lm", "license:apache-2.0" ]
text-generation
false
ykilcher
null
ykilcher/gpt-4chan
0
26
transformers
37,583
subhasisj/hi-kd-XLM-minilmv2-32
dd0ee352fcd5c071fc423dc795559e1f1ab1e7b3
2022-05-17T18:20:21.000Z
[ "pytorch", "bert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
subhasisj
null
subhasisj/hi-kd-XLM-minilmv2-32
0
null
transformers
37,584
Entry not found
zoha/wav2vec2-base-timit-demo-google-colab
4eef48a4118dacaa80a38a9794eeedddbd6f4c22
2022-06-13T06:01:58.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
zoha
null
zoha/wav2vec2-base-timit-demo-google-colab
0
null
transformers
37,585
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base-timit-demo-google-colab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-timit-demo-google-colab This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5035 - Wer: 0.3346 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 1.1411 | 1.0 | 500 | 0.6675 | 0.6001 | | 0.5668 | 2.01 | 1000 | 0.4699 | 0.4973 | | 0.3773 | 3.01 | 1500 | 0.4475 | 0.4403 | | 0.2696 | 4.02 | 2000 | 0.4162 | 0.4166 | | 0.2165 | 5.02 | 2500 | 0.3809 | 0.4011 | | 0.1849 | 6.02 | 3000 | 0.4120 | 0.3849 | | 0.1542 | 7.03 | 3500 | 0.4436 | 0.3770 | | 0.1385 | 8.03 | 4000 | 0.3977 | 0.3732 | | 0.1224 | 9.04 | 4500 | 0.4530 | 0.3672 | | 0.1233 | 10.04 | 5000 | 0.3949 | 0.3596 | | 0.1078 | 11.04 | 5500 | 0.4616 | 0.3539 | | 0.097 | 12.05 | 6000 | 0.4354 | 0.3697 | | 0.0821 | 13.05 | 6500 | 0.4370 | 0.3643 | | 0.0724 | 14.06 | 7000 | 0.4729 | 0.3587 | | 0.0678 | 15.06 | 7500 | 0.5822 | 0.3742 | | 0.0632 | 16.06 | 8000 | 0.4460 | 0.3513 | | 0.0627 | 17.07 | 8500 | 0.5531 | 0.3537 | | 0.0574 | 18.07 | 9000 | 0.5262 | 0.3575 | | 0.0515 | 19.08 | 9500 | 0.4794 | 0.3488 | | 0.0475 | 20.08 | 10000 | 0.4941 | 0.3458 | | 0.0463 | 21.08 | 10500 | 0.4741 | 0.3377 | | 0.0392 | 22.09 | 11000 | 0.5390 | 0.3381 | | 0.0401 | 23.09 | 11500 | 0.4984 | 0.3413 | | 0.0371 | 24.1 | 12000 | 0.5112 | 0.3460 | | 0.0305 | 25.1 | 12500 | 0.5255 | 0.3418 | | 0.0278 | 26.1 | 13000 | 0.5045 | 0.3389 | | 0.0265 | 27.11 | 13500 | 0.4990 | 0.3371 | | 0.0248 | 28.11 | 14000 | 0.5242 | 0.3362 | | 0.0249 | 29.12 | 14500 | 0.5035 | 0.3346 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.11.0+cu113 - Datasets 1.18.3 - Tokenizers 0.12.1
pahntanapat/rsm-w2v2-xls-r-char
966b81cf51779d87f007e36d9086f3a84f0237e9
2022-05-30T12:27:10.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
pahntanapat
null
pahntanapat/rsm-w2v2-xls-r-char
0
null
transformers
37,586
Entry not found
haunt224/distilbert-base-uncased-finetuned-squad
5f5af64c8599794de12f3b371f8e94e5d8d6771d
2022-05-19T17:52:04.000Z
[ "pytorch", "tensorboard", "distilbert", "question-answering", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
question-answering
false
haunt224
null
haunt224/distilbert-base-uncased-finetuned-squad
0
null
transformers
37,587
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distilbert-base-uncased-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-squad This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.7507 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 6 | 4.4454 | | No log | 2.0 | 12 | 3.2500 | | No log | 3.0 | 18 | 2.7507 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.1 - Tokenizers 0.12.1
papsebestyen/hubert-base-cc-finetuned-forum
69443bed476baa338348667884bd73a5db7bb036
2022-05-18T18:45:32.000Z
[ "pytorch", "tensorboard", "bert", "fill-mask", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
fill-mask
false
papsebestyen
null
papsebestyen/hubert-base-cc-finetuned-forum
0
null
transformers
37,588
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: hubert-base-cc-finetuned-forum results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # hubert-base-cc-finetuned-forum This model is a fine-tuned version of [SZTAKI-HLT/hubert-base-cc](https://huggingface.co/SZTAKI-HLT/hubert-base-cc) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.4746 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.7966 | 1.0 | 157 | 2.5139 | | 2.6303 | 2.0 | 314 | 2.4601 | | 2.5525 | 3.0 | 471 | 2.4501 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0a0+17540c5 - Datasets 2.2.1 - Tokenizers 0.12.1
ruselkomp/deep-pavlov-full-2
1332065c45ce9801448f6d9889715d85785e83d2
2022-05-18T19:25:39.000Z
[ "pytorch", "tensorboard", "bert", "question-answering", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
question-answering
false
ruselkomp
null
ruselkomp/deep-pavlov-full-2
0
null
transformers
37,589
--- tags: - generated_from_trainer model-index: - name: deep-pavlov-full-2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # deep-pavlov-full-2 This model is a fine-tuned version of [DeepPavlov/rubert-base-cased](https://huggingface.co/DeepPavlov/rubert-base-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.0892 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 18 - eval_batch_size: 18 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.0425 | 1.0 | 2513 | 1.0277 | | 0.7953 | 2.0 | 5026 | 1.0226 | | 0.5902 | 3.0 | 7539 | 1.0892 | ### Framework versions - Transformers 4.20.0.dev0 - Pytorch 1.11.0+cu113 - Datasets 2.2.2.dev0 - Tokenizers 0.12.1
pszemraj/opt-peter-1.3B-1E
037d21b2cc5505d15027c6a160013862d15effe8
2022-06-24T14:06:36.000Z
[ "pytorch", "tensorboard", "opt", "text-generation", "transformers", "generated_from_trainer", "non-commercial", "license:apache-2.0" ]
text-generation
false
pszemraj
null
pszemraj/opt-peter-1.3B-1E
0
null
transformers
37,590
--- license: apache-2.0 tags: - generated_from_trainer - text-generation - opt - non-commercial inference: False --- # OPT-Peter-1.3B-1E > This is an initial checkpoint of the model - the latest version is [here](https://huggingface.co/pszemraj/opt-peter-1.3B) This model is a fine-tuned version of [facebook/opt-1.3b](https://huggingface.co/facebook/opt-1.3b) on text message data (mine) for 1.6 epochs. It achieves the following results on the evaluation set (at the end of epoch 1): - eval_loss: 3.3595 - eval_runtime: 988.6985 - eval_samples_per_second: 8.803 - eval_steps_per_second: 2.201 - epoch: 1.0 - step: 1235 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 6e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - distributed_type: multi-GPU - gradient_accumulation_steps: 16 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.01 - num_epochs: 1.6 ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.1 - Tokenizers 0.12.1
huggingtweets/barterblex
b880c0977b3185bcffa94c7b6ef7cc9d3ea135c5
2022-05-19T01:33:43.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/barterblex
0
null
transformers
37,591
--- language: en thumbnail: http://www.huggingtweets.com/barterblex/1652924018963/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1497272349636239361/L-9JXZCa_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Dr. Negative B</div> <div style="text-align: center; font-size: 14px;">@barterblex</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Dr. Negative B. | Data | Dr. Negative B | | --- | --- | | Tweets downloaded | 3230 | | Retweets | 1158 | | Short tweets | 343 | | Tweets kept | 1729 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/e0l085dr/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @barterblex's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/pkg7hp1s) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/pkg7hp1s/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/barterblex') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
quentin99/layoutlmv2-finetuned-funsd-test
263465585e0b94a54307f8d68a415a84c3d31a53
2022-05-19T02:57:46.000Z
[ "pytorch", "tensorboard", "layoutlmv2", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
quentin99
null
quentin99/layoutlmv2-finetuned-funsd-test
0
null
transformers
37,592
Entry not found
varunpatrikar/dummy-model
af4ce6186157544580ee827234e7eac72fd5e423
2022-05-19T07:34:54.000Z
[ "pytorch", "camembert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
varunpatrikar
null
varunpatrikar/dummy-model
0
null
transformers
37,593
Just a dummy first model
jesperjmb/CompundedIntros
052cb462234fed61e84a556c5e0326210a44957d
2022-05-19T08:08:29.000Z
[ "pytorch", "bert", "next-sentence-prediction", "transformers" ]
null
false
jesperjmb
null
jesperjmb/CompundedIntros
0
null
transformers
37,594
Fine-tuned KB BERT for identifying compounded introductions in the Riksdagen corpus
wooglee/gpt2-imdb-pos-v2
5a0cf5c6ec4bb2d03415adc1585f6f31b1180162
2022-05-19T08:55:34.000Z
[ "pytorch", "gpt2", "transformers" ]
null
false
wooglee
null
wooglee/gpt2-imdb-pos-v2
0
null
transformers
37,595
Entry not found
huggingtweets/pmadhavv
75be0c496c52e2d2a475722c360fa9325126d377
2022-05-19T09:30:17.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/pmadhavv
0
null
transformers
37,596
--- language: en thumbnail: http://www.huggingtweets.com/pmadhavv/1652952613201/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1522099366592352257/qhlVXNl9_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Madhav Patel</div> <div style="text-align: center; font-size: 14px;">@pmadhavv</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Madhav Patel. | Data | Madhav Patel | | --- | --- | | Tweets downloaded | 352 | | Retweets | 109 | | Short tweets | 46 | | Tweets kept | 197 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3utgj60m/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @pmadhavv's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/268raihu) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/268raihu/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/pmadhavv') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
okwach/mawaidhaChatbot
d0beecfc0129876997193e40aca0b21502f8c13d
2022-05-19T12:07:07.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
okwach
null
okwach/mawaidhaChatbot
0
null
transformers
37,597
--- tags: - conversational --- # mawaidhaChatbot Model
jjezabek/bert-base-uncased-yelp_full
9ee319e3f45edee2d2c1cd589d46b7f340ed287b
2022-05-19T20:49:03.000Z
[ "pytorch" ]
null
false
jjezabek
null
jjezabek/bert-base-uncased-yelp_full
0
null
null
37,598
Entry not found
Splend1dchan/wav2vec2-large-lv60_t5lephone-small_lrdiff_bs64
aeaf16dbb7f27eed2cd7874b86e23343b8e48658
2022-05-22T04:28:55.000Z
[ "pytorch" ]
null
false
Splend1dchan
null
Splend1dchan/wav2vec2-large-lv60_t5lephone-small_lrdiff_bs64
0
null
null
37,599
adapter lr = 1e-3, failed FAILED