modelId
stringlengths 4
112
| sha
stringlengths 40
40
| lastModified
stringlengths 24
24
| tags
sequence | pipeline_tag
stringclasses 29
values | private
bool 1
class | author
stringlengths 2
38
⌀ | config
null | id
stringlengths 4
112
| downloads
float64 0
36.8M
⌀ | likes
float64 0
712
⌀ | library_name
stringclasses 17
values | __index_level_0__
int64 0
38.5k
| readme
stringlengths 0
186k
|
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
masakhane/m2m100_418M_en_pcm_rel | 7cf2f14f2ef70f4649f1ae681f71ffacadcee7ac | 2022-05-10T12:01:29.000Z | [
"pytorch",
"m2m_100",
"text2text-generation",
"transformers",
"license:afl-3.0",
"autotrain_compatible"
] | text2text-generation | false | masakhane | null | masakhane/m2m100_418M_en_pcm_rel | 0 | null | transformers | 37,400 | ---
license: afl-3.0
---
|
masakhane/afrimt5_en_swa_news | 067682312fc9c69f91946f332c97a14fe1917d86 | 2022-05-10T13:50:24.000Z | [
"pytorch",
"mt5",
"text2text-generation",
"transformers",
"license:afl-3.0",
"autotrain_compatible"
] | text2text-generation | false | masakhane | null | masakhane/afrimt5_en_swa_news | 0 | null | transformers | 37,401 | ---
license: afl-3.0
---
|
masakhane/afrimt5_swa_en_news | 3105a5405e9bc898eaaa7428ffa1e0d55bd9ce3f | 2022-05-10T13:50:27.000Z | [
"pytorch",
"mt5",
"text2text-generation",
"transformers",
"license:afl-3.0",
"autotrain_compatible"
] | text2text-generation | false | masakhane | null | masakhane/afrimt5_swa_en_news | 0 | null | transformers | 37,402 | ---
license: afl-3.0
---
|
masakhane/afrimbart_swa_en_news | 7bc9ac0993cc97fa5f86f340197f74c26f992a22 | 2022-05-10T13:50:29.000Z | [
"pytorch",
"mbart",
"text2text-generation",
"transformers",
"license:afl-3.0",
"autotrain_compatible"
] | text2text-generation | false | masakhane | null | masakhane/afrimbart_swa_en_news | 0 | null | transformers | 37,403 | ---
license: afl-3.0
---
|
masakhane/afrimbart_en_swa_news | 3f45d397e7a8bdb67d8e0264220cc0fe6e21d3b5 | 2022-05-10T13:50:32.000Z | [
"pytorch",
"mbart",
"text2text-generation",
"transformers",
"license:afl-3.0",
"autotrain_compatible"
] | text2text-generation | false | masakhane | null | masakhane/afrimbart_en_swa_news | 0 | null | transformers | 37,404 | ---
license: afl-3.0
---
|
masakhane/afribyt5_swa_en_news | 6e2b1535266fc3ac2a0c0261cd2921a34325867c | 2022-05-10T14:00:13.000Z | [
"pytorch",
"t5",
"text2text-generation",
"transformers",
"license:afl-3.0",
"autotrain_compatible"
] | text2text-generation | false | masakhane | null | masakhane/afribyt5_swa_en_news | 0 | null | transformers | 37,405 | ---
license: afl-3.0
---
|
masakhane/afribyt5_en_swa_news | 57b14166192dd8d307681ec5127be7728e7f9b2d | 2022-05-10T14:00:11.000Z | [
"pytorch",
"t5",
"text2text-generation",
"transformers",
"license:afl-3.0",
"autotrain_compatible"
] | text2text-generation | false | masakhane | null | masakhane/afribyt5_en_swa_news | 0 | null | transformers | 37,406 | ---
license: afl-3.0
---
|
masakhane/byt5_en_swa_news | 6034c53957ad712400087940547f71d604904ac8 | 2022-05-10T14:00:17.000Z | [
"pytorch",
"t5",
"text2text-generation",
"transformers",
"license:afl-3.0",
"autotrain_compatible"
] | text2text-generation | false | masakhane | null | masakhane/byt5_en_swa_news | 0 | null | transformers | 37,407 | ---
license: afl-3.0
---
|
masakhane/byt5_swa_en_news | 9a48ae2c054b542393f6e5b478c837ba3c83af4d | 2022-05-10T14:00:15.000Z | [
"pytorch",
"t5",
"text2text-generation",
"transformers",
"license:afl-3.0",
"autotrain_compatible"
] | text2text-generation | false | masakhane | null | masakhane/byt5_swa_en_news | 0 | null | transformers | 37,408 | ---
license: afl-3.0
---
|
masakhane/mt5_swa_en_news | 3ca8a182b1910a78f541acf3c43f1823927b0b84 | 2022-05-10T14:10:04.000Z | [
"pytorch",
"mt5",
"text2text-generation",
"transformers",
"license:afl-3.0",
"autotrain_compatible"
] | text2text-generation | false | masakhane | null | masakhane/mt5_swa_en_news | 0 | null | transformers | 37,409 | ---
license: afl-3.0
---
|
masakhane/mt5_en_swa_news | 2cf99d7bf6259ff8a488dda649298f25c87c76dc | 2022-05-10T14:10:00.000Z | [
"pytorch",
"mt5",
"text2text-generation",
"transformers",
"license:afl-3.0",
"autotrain_compatible"
] | text2text-generation | false | masakhane | null | masakhane/mt5_en_swa_news | 0 | null | transformers | 37,410 | ---
license: afl-3.0
---
|
masakhane/mbart50_en_swa_news | 23648ee40b089a349df43ae72be0d777a45954df | 2022-05-10T14:10:02.000Z | [
"pytorch",
"mbart",
"text2text-generation",
"transformers",
"license:afl-3.0",
"autotrain_compatible"
] | text2text-generation | false | masakhane | null | masakhane/mbart50_en_swa_news | 0 | null | transformers | 37,411 | ---
license: afl-3.0
---
|
masakhane/mbart50_swa_en_news | c5796515fba2685b61357c59cd857c36ce39cd60 | 2022-05-10T14:10:06.000Z | [
"pytorch",
"mbart",
"text2text-generation",
"transformers",
"license:afl-3.0",
"autotrain_compatible"
] | text2text-generation | false | masakhane | null | masakhane/mbart50_swa_en_news | 0 | null | transformers | 37,412 | ---
license: afl-3.0
---
|
masakhane/m2m100_418M_en_swa_news | 89b47d51eb0bba6d6da14367dbc9179b044172b2 | 2022-05-10T14:24:38.000Z | [
"pytorch",
"m2m_100",
"text2text-generation",
"transformers",
"license:afl-3.0",
"autotrain_compatible"
] | text2text-generation | false | masakhane | null | masakhane/m2m100_418M_en_swa_news | 0 | null | transformers | 37,413 | ---
license: afl-3.0
---
|
masakhane/m2m100_418M_swa_en_news | 4b1b6c23b28cfcb07dc0914fbe213c38b2a5f394 | 2022-05-10T14:24:49.000Z | [
"pytorch",
"m2m_100",
"text2text-generation",
"transformers",
"license:afl-3.0",
"autotrain_compatible"
] | text2text-generation | false | masakhane | null | masakhane/m2m100_418M_swa_en_news | 0 | null | transformers | 37,414 | ---
license: afl-3.0
---
|
masakhane/m2m100_418M_swa_en_rel_news | f59c1deea4c4faf9896fe809e45fe5a8130f9094 | 2022-05-10T14:24:41.000Z | [
"pytorch",
"m2m_100",
"text2text-generation",
"transformers",
"license:afl-3.0",
"autotrain_compatible"
] | text2text-generation | false | masakhane | null | masakhane/m2m100_418M_swa_en_rel_news | 0 | null | transformers | 37,415 | ---
license: afl-3.0
---
|
masakhane/m2m100_418M_en_swa_rel_news_ft | 7cd1397e1f1eb710d1594117f1e698b5a123f9d0 | 2022-05-10T14:34:00.000Z | [
"pytorch",
"m2m_100",
"text2text-generation",
"transformers",
"license:afl-3.0",
"autotrain_compatible"
] | text2text-generation | false | masakhane | null | masakhane/m2m100_418M_en_swa_rel_news_ft | 0 | null | transformers | 37,416 | ---
license: afl-3.0
---
|
masakhane/m2m100_418M_en_swa_rel_ft | 9a0844fff22a24a377679b1dcefb61a36b213df7 | 2022-05-10T14:34:18.000Z | [
"pytorch",
"m2m_100",
"text2text-generation",
"transformers",
"license:afl-3.0",
"autotrain_compatible"
] | text2text-generation | false | masakhane | null | masakhane/m2m100_418M_en_swa_rel_ft | 0 | null | transformers | 37,417 | ---
license: afl-3.0
---
|
masakhane/m2m100_418M_swa_en_rel_ft | eae203e3d1365d056662d817e689e55f37b1310d | 2022-05-10T14:34:28.000Z | [
"pytorch",
"m2m_100",
"text2text-generation",
"transformers",
"license:afl-3.0",
"autotrain_compatible"
] | text2text-generation | false | masakhane | null | masakhane/m2m100_418M_swa_en_rel_ft | 0 | null | transformers | 37,418 | ---
license: afl-3.0
---
|
masakhane/m2m100_418M_swa_en_rel | 62b6276422666842a4c1ef59ebc0f1c7b5124ae1 | 2022-05-10T14:40:03.000Z | [
"pytorch",
"m2m_100",
"text2text-generation",
"transformers",
"license:afl-3.0",
"autotrain_compatible"
] | text2text-generation | false | masakhane | null | masakhane/m2m100_418M_swa_en_rel | 0 | null | transformers | 37,419 | ---
license: afl-3.0
---
|
masakhane/m2m100_418M_en_swa_rel | fe3034124eef4919a355b3e345b3a99d88763c97 | 2022-05-10T14:40:06.000Z | [
"pytorch",
"m2m_100",
"text2text-generation",
"transformers",
"license:afl-3.0",
"autotrain_compatible"
] | text2text-generation | false | masakhane | null | masakhane/m2m100_418M_en_swa_rel | 0 | null | transformers | 37,420 | ---
license: afl-3.0
---
|
huggingtweets/_avichalp_ | ed2ee013c5457309edb25a266e8a070a904bb6b1 | 2022-05-10T11:56:46.000Z | [
"pytorch",
"gpt2",
"text-generation",
"en",
"transformers",
"huggingtweets"
] | text-generation | false | huggingtweets | null | huggingtweets/_avichalp_ | 0 | null | transformers | 37,421 | ---
language: en
thumbnail: http://www.huggingtweets.com/_avichalp_/1652183801632/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1472922431396331520/eqT17_QF_400x400.jpg')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">avi</div>
<div style="text-align: center; font-size: 14px;">@_avichalp_</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from avi.
| Data | avi |
| --- | --- |
| Tweets downloaded | 2625 |
| Retweets | 259 |
| Short tweets | 596 |
| Tweets kept | 1770 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2wg7ysai/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @_avichalp_'s tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3ae6t1qq) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3ae6t1qq/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/_avichalp_')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
masakhane/afrimt5_en_yor_news | 2fec7768b8f65eb3f4ad1cae83d05555407875ff | 2022-05-10T12:41:12.000Z | [
"pytorch",
"mt5",
"text2text-generation",
"transformers",
"license:afl-3.0",
"autotrain_compatible"
] | text2text-generation | false | masakhane | null | masakhane/afrimt5_en_yor_news | 0 | null | transformers | 37,422 | ---
license: afl-3.0
---
|
masakhane/afrimt5_yor_en_news | de96f9f96b5ae19b9217983893b85e1aea9e1f01 | 2022-05-10T12:41:16.000Z | [
"pytorch",
"mt5",
"text2text-generation",
"transformers",
"license:afl-3.0",
"autotrain_compatible"
] | text2text-generation | false | masakhane | null | masakhane/afrimt5_yor_en_news | 0 | null | transformers | 37,423 | ---
license: afl-3.0
---
|
masakhane/afrimbart_yor_en_news | 0f9f19e8ddcb61f1b2b3d0d272c28f7b53e86c58 | 2022-05-10T12:41:19.000Z | [
"pytorch",
"mbart",
"text2text-generation",
"transformers",
"license:afl-3.0",
"autotrain_compatible"
] | text2text-generation | false | masakhane | null | masakhane/afrimbart_yor_en_news | 0 | null | transformers | 37,424 | ---
license: afl-3.0
---
|
masakhane/afrimbart_en_yor_news | e8528b2bd82ed2264a4e57a7b079877633710de6 | 2022-05-10T12:41:22.000Z | [
"pytorch",
"mbart",
"text2text-generation",
"transformers",
"license:afl-3.0",
"autotrain_compatible"
] | text2text-generation | false | masakhane | null | masakhane/afrimbart_en_yor_news | 0 | null | transformers | 37,425 | ---
license: afl-3.0
---
|
hadifar/xlm-roberta-base-ft-CSTwitter | 7d1259adf82dd5a05b72bed93d363d6759925fb1 | 2022-05-10T12:30:32.000Z | [
"pytorch",
"xlm-roberta",
"fill-mask",
"transformers",
"autotrain_compatible"
] | fill-mask | false | hadifar | null | hadifar/xlm-roberta-base-ft-CSTwitter | 0 | null | transformers | 37,426 | Entry not found |
masakhane/afribyt5_yor_en_news | 79d6db1fa2dbfbfcf49de8b01d28947dfba5aaa1 | 2022-05-10T12:50:05.000Z | [
"pytorch",
"t5",
"text2text-generation",
"transformers",
"license:afl-3.0",
"autotrain_compatible"
] | text2text-generation | false | masakhane | null | masakhane/afribyt5_yor_en_news | 0 | null | transformers | 37,427 | ---
license: afl-3.0
---
|
masakhane/afribyt5_en_yor_news | a1de36d562b975ab47a356ea9ecf491186ef42ab | 2022-05-10T12:50:08.000Z | [
"pytorch",
"t5",
"text2text-generation",
"transformers",
"license:afl-3.0",
"autotrain_compatible"
] | text2text-generation | false | masakhane | null | masakhane/afribyt5_en_yor_news | 0 | null | transformers | 37,428 | ---
license: afl-3.0
---
|
masakhane/byt5_en_yor_news | 0064c2116c04ad96f8b384581b8fae6d262f2272 | 2022-05-10T12:50:11.000Z | [
"pytorch",
"t5",
"text2text-generation",
"transformers",
"license:afl-3.0",
"autotrain_compatible"
] | text2text-generation | false | masakhane | null | masakhane/byt5_en_yor_news | 0 | null | transformers | 37,429 | ---
license: afl-3.0
---
|
masakhane/mt5_yor_en_news | fbafd6ddc984e76536797ea648bcf638161eb887 | 2022-05-10T12:59:14.000Z | [
"pytorch",
"mt5",
"text2text-generation",
"transformers",
"license:afl-3.0",
"autotrain_compatible"
] | text2text-generation | false | masakhane | null | masakhane/mt5_yor_en_news | 0 | null | transformers | 37,430 | ---
license: afl-3.0
---
|
masakhane/mbart50_en_yor_news | 88e879d20029cbe7722c69a0a6175760adfbe73b | 2022-05-10T12:59:20.000Z | [
"pytorch",
"mbart",
"text2text-generation",
"transformers",
"license:afl-3.0",
"autotrain_compatible"
] | text2text-generation | false | masakhane | null | masakhane/mbart50_en_yor_news | 0 | null | transformers | 37,431 | ---
license: afl-3.0
---
|
masakhane/mbart50_yor_en_news | 4124838f1e6481362e4fc40c7369245eb84fffad | 2022-05-10T12:59:22.000Z | [
"pytorch",
"mbart",
"text2text-generation",
"transformers",
"license:afl-3.0",
"autotrain_compatible"
] | text2text-generation | false | masakhane | null | masakhane/mbart50_yor_en_news | 0 | null | transformers | 37,432 | ---
license: afl-3.0
---
|
masakhane/m2m100_418M_en_yor_news | 18acf0cd39255cd255c6247ff333ae94bdc6a9af | 2022-05-10T13:06:54.000Z | [
"pytorch",
"m2m_100",
"text2text-generation",
"transformers",
"license:afl-3.0",
"autotrain_compatible"
] | text2text-generation | false | masakhane | null | masakhane/m2m100_418M_en_yor_news | 0 | null | transformers | 37,433 | ---
license: afl-3.0
---
|
masakhane/m2m100_418M_yor_en_news | cbd3995cf1e4cb09866f7bc888c0e083837076c3 | 2022-05-10T13:06:56.000Z | [
"pytorch",
"m2m_100",
"text2text-generation",
"transformers",
"license:afl-3.0",
"autotrain_compatible"
] | text2text-generation | false | masakhane | null | masakhane/m2m100_418M_yor_en_news | 0 | null | transformers | 37,434 | ---
license: afl-3.0
---
|
masakhane/m2m100_418M_yor_en_rel_news | f7cdcd921dc01ee5731d37321b4d596f82cda1fe | 2022-05-10T13:06:51.000Z | [
"pytorch",
"m2m_100",
"text2text-generation",
"transformers",
"license:afl-3.0",
"autotrain_compatible"
] | text2text-generation | false | masakhane | null | masakhane/m2m100_418M_yor_en_rel_news | 0 | null | transformers | 37,435 | ---
license: afl-3.0
---
|
masakhane/m2m100_418M_en_yor_rel_news | ff9c7074bd1a35ccd34cdb1361a46c19ee4a4b75 | 2022-05-10T13:06:59.000Z | [
"pytorch",
"m2m_100",
"text2text-generation",
"transformers",
"license:afl-3.0",
"autotrain_compatible"
] | text2text-generation | false | masakhane | null | masakhane/m2m100_418M_en_yor_rel_news | 0 | null | transformers | 37,436 | ---
license: afl-3.0
---
|
masakhane/m2m100_418M_en_yor_rel_news_ft | dbab558511e313ebb496b396abce923ea76e3e0c | 2022-05-10T13:34:33.000Z | [
"pytorch",
"m2m_100",
"text2text-generation",
"transformers",
"license:afl-3.0",
"autotrain_compatible"
] | text2text-generation | false | masakhane | null | masakhane/m2m100_418M_en_yor_rel_news_ft | 0 | null | transformers | 37,437 | ---
license: afl-3.0
---
|
masakhane/m2m100_418M_yor_en_rel_news_ft | 22b87ae0e99dfaae41bec2d974a09cd4d3bee04a | 2022-05-10T13:34:38.000Z | [
"pytorch",
"m2m_100",
"text2text-generation",
"transformers",
"license:afl-3.0",
"autotrain_compatible"
] | text2text-generation | false | masakhane | null | masakhane/m2m100_418M_yor_en_rel_news_ft | 0 | null | transformers | 37,438 | ---
license: afl-3.0
---
|
masakhane/m2m100_418M_en_yor_rel_ft | 24a57cfdbf703de9879c7ced3c26596fdd34e5d9 | 2022-05-10T13:34:36.000Z | [
"pytorch",
"m2m_100",
"text2text-generation",
"transformers",
"autotrain_compatible"
] | text2text-generation | false | masakhane | null | masakhane/m2m100_418M_en_yor_rel_ft | 0 | null | transformers | 37,439 | Entry not found |
masakhane/m2m100_418M_yor_en_rel_ft | 81f081b87c2cae1d9b749ccd56898d759162e5c7 | 2022-05-10T13:34:41.000Z | [
"pytorch",
"m2m_100",
"text2text-generation",
"transformers",
"license:afl-3.0",
"autotrain_compatible"
] | text2text-generation | false | masakhane | null | masakhane/m2m100_418M_yor_en_rel_ft | 0 | null | transformers | 37,440 | ---
license: afl-3.0
---
|
masakhane/m2m100_418M_en_yor_rel | 2b3310280a8d722bca9d5a5a2ffc759309302e12 | 2022-05-10T13:38:28.000Z | [
"pytorch",
"m2m_100",
"text2text-generation",
"transformers",
"license:afl-3.0",
"autotrain_compatible"
] | text2text-generation | false | masakhane | null | masakhane/m2m100_418M_en_yor_rel | 0 | null | transformers | 37,441 | ---
license: afl-3.0
---
|
masakhane/afrimt5_en_tsn_news | df3c9a2a1ecd3d8a7efcd461b4305fb4ca4df275 | 2022-05-10T14:50:57.000Z | [
"pytorch",
"mt5",
"text2text-generation",
"transformers",
"license:afl-3.0",
"autotrain_compatible"
] | text2text-generation | false | masakhane | null | masakhane/afrimt5_en_tsn_news | 0 | null | transformers | 37,442 | ---
license: afl-3.0
---
|
masakhane/afrimt5_tsn_en_news | df91a8c50e119865f27d279c58fba9f7697e745f | 2022-05-10T14:51:00.000Z | [
"pytorch",
"mt5",
"text2text-generation",
"transformers",
"license:afl-3.0",
"autotrain_compatible"
] | text2text-generation | false | masakhane | null | masakhane/afrimt5_tsn_en_news | 0 | null | transformers | 37,443 | ---
license: afl-3.0
---
|
masakhane/afrimbart_tsn_en_news | a9484b162ca56515904d4e0f25f5e2c52ea79cf3 | 2022-05-10T14:51:02.000Z | [
"pytorch",
"mbart",
"text2text-generation",
"transformers",
"license:afl-3.0",
"autotrain_compatible"
] | text2text-generation | false | masakhane | null | masakhane/afrimbart_tsn_en_news | 0 | null | transformers | 37,444 | ---
license: afl-3.0
---
|
masakhane/afrimbart_en_tsn_news | 303765b01229dcd37996426839d0d70f7ea9b7d5 | 2022-05-10T14:51:05.000Z | [
"pytorch",
"mbart",
"text2text-generation",
"transformers",
"license:afl-3.0",
"autotrain_compatible"
] | text2text-generation | false | masakhane | null | masakhane/afrimbart_en_tsn_news | 0 | null | transformers | 37,445 | ---
license: afl-3.0
---
|
masakhane/afribyt5_tsn_en_news | a822051c38e74058da932cc1c84c424fad05ff40 | 2022-05-10T16:15:00.000Z | [
"pytorch",
"t5",
"text2text-generation",
"transformers",
"license:afl-3.0",
"autotrain_compatible"
] | text2text-generation | false | masakhane | null | masakhane/afribyt5_tsn_en_news | 0 | null | transformers | 37,446 | ---
license: afl-3.0
---
|
masakhane/afribyt5_en_tsn_news | c0c6561545344dbaed286dc7e67f5eb3d8dffbd9 | 2022-05-10T16:15:07.000Z | [
"pytorch",
"t5",
"text2text-generation",
"transformers",
"license:afl-3.0",
"autotrain_compatible"
] | text2text-generation | false | masakhane | null | masakhane/afribyt5_en_tsn_news | 0 | null | transformers | 37,447 | ---
license: afl-3.0
---
|
masakhane/byt5_en_tsn_news | 9185455f4df1a5cfda75abb75d90c36c7c0289a6 | 2022-05-10T16:15:05.000Z | [
"pytorch",
"t5",
"text2text-generation",
"transformers",
"license:afl-3.0",
"autotrain_compatible"
] | text2text-generation | false | masakhane | null | masakhane/byt5_en_tsn_news | 0 | null | transformers | 37,448 | ---
license: afl-3.0
---
|
masakhane/byt5_tsn_en_news | 748bf3e329e485fe642d4ac2f91d5b1bda841b77 | 2022-05-10T16:15:03.000Z | [
"pytorch",
"t5",
"text2text-generation",
"transformers",
"license:afl-3.0",
"autotrain_compatible"
] | text2text-generation | false | masakhane | null | masakhane/byt5_tsn_en_news | 0 | null | transformers | 37,449 | ---
license: afl-3.0
---
|
masakhane/mt5_tsn_en_news | da8cb90d429cd7e0c0611d0c1172ebe9942b1a68 | 2022-05-10T16:25:23.000Z | [
"pytorch",
"mt5",
"text2text-generation",
"transformers",
"license:afl-3.0",
"autotrain_compatible"
] | text2text-generation | false | masakhane | null | masakhane/mt5_tsn_en_news | 0 | null | transformers | 37,450 | ---
license: afl-3.0
---
|
masakhane/mt5_en_tsn_news | 4fa67ef4ee8ac2baecb7af933bfd59e26d037bba | 2022-05-10T16:25:21.000Z | [
"pytorch",
"mt5",
"text2text-generation",
"transformers",
"license:afl-3.0",
"autotrain_compatible"
] | text2text-generation | false | masakhane | null | masakhane/mt5_en_tsn_news | 0 | null | transformers | 37,451 | ---
license: afl-3.0
---
|
masakhane/mbart50_en_tsn_news | 7f1f82bd3f4d4fd7fec0e69d7a975ac371cc22b9 | 2022-05-10T16:25:19.000Z | [
"pytorch",
"mbart",
"text2text-generation",
"transformers",
"license:afl-3.0",
"autotrain_compatible"
] | text2text-generation | false | masakhane | null | masakhane/mbart50_en_tsn_news | 0 | null | transformers | 37,452 | ---
license: afl-3.0
---
|
masakhane/mbart50_tsn_en_news | fdd9a61592051d3549daf8d0c39e69e6a24f82cd | 2022-05-10T16:25:25.000Z | [
"pytorch",
"mbart",
"text2text-generation",
"transformers",
"license:afl-3.0",
"autotrain_compatible"
] | text2text-generation | false | masakhane | null | masakhane/mbart50_tsn_en_news | 0 | null | transformers | 37,453 | ---
license: afl-3.0
---
|
huxxx657/roberta-base-finetuned-scrambled-squad-5 | 44fcc845adbaa9a6c81a69640adbefcaa1dae057 | 2022-05-10T16:43:15.000Z | [
"pytorch",
"tensorboard",
"roberta",
"question-answering",
"dataset:squad",
"transformers",
"generated_from_trainer",
"license:mit",
"model-index",
"autotrain_compatible"
] | question-answering | false | huxxx657 | null | huxxx657/roberta-base-finetuned-scrambled-squad-5 | 0 | null | transformers | 37,454 | ---
license: mit
tags:
- generated_from_trainer
datasets:
- squad
model-index:
- name: roberta-base-finetuned-scrambled-squad-5
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# roberta-base-finetuned-scrambled-squad-5
This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the squad dataset.
It achieves the following results on the evaluation set:
- Loss: 1.7078
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 7e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 1.7695 | 1.0 | 5532 | 1.7078 |
### Framework versions
- Transformers 4.18.0
- Pytorch 1.11.0+cu113
- Datasets 2.1.0
- Tokenizers 0.12.1
|
masakhane/m2m100_418M_en_tsn_news | ee0dba7751223c74280cb4cca13049bba1c4ec1b | 2022-05-10T16:32:31.000Z | [
"pytorch",
"m2m_100",
"text2text-generation",
"transformers",
"license:afl-3.0",
"autotrain_compatible"
] | text2text-generation | false | masakhane | null | masakhane/m2m100_418M_en_tsn_news | 0 | null | transformers | 37,455 | ---
license: afl-3.0
---
|
masakhane/m2m100_418M_tsn_en_news | d920bad02448c53ea43959de2dca3971873f71c4 | 2022-05-10T16:32:34.000Z | [
"pytorch",
"m2m_100",
"text2text-generation",
"transformers",
"license:afl-3.0",
"autotrain_compatible"
] | text2text-generation | false | masakhane | null | masakhane/m2m100_418M_tsn_en_news | 0 | null | transformers | 37,456 | ---
license: afl-3.0
---
|
masakhane/m2m100_418M_tsn_en_rel_news | f9ae74a2263e17c88ebc4cde25902ea139d85622 | 2022-05-10T16:32:41.000Z | [
"pytorch",
"m2m_100",
"text2text-generation",
"transformers",
"license:afl-3.0",
"autotrain_compatible"
] | text2text-generation | false | masakhane | null | masakhane/m2m100_418M_tsn_en_rel_news | 0 | null | transformers | 37,457 | ---
license: afl-3.0
---
|
masakhane/m2m100_418M_en_tsn_rel_news | d2ad774e541b0bde8d486b9e3ba65b621fc902fc | 2022-05-10T16:32:38.000Z | [
"pytorch",
"m2m_100",
"text2text-generation",
"transformers",
"license:afl-3.0",
"autotrain_compatible"
] | text2text-generation | false | masakhane | null | masakhane/m2m100_418M_en_tsn_rel_news | 0 | null | transformers | 37,458 | ---
license: afl-3.0
---
|
masakhane/m2m100_418M_en_tsn_rel_ft | fc60cc683e029ad0589781598c8cad3e11c70a14 | 2022-05-10T16:43:42.000Z | [
"pytorch",
"m2m_100",
"text2text-generation",
"transformers",
"license:afl-3.0",
"autotrain_compatible"
] | text2text-generation | false | masakhane | null | masakhane/m2m100_418M_en_tsn_rel_ft | 0 | null | transformers | 37,459 | ---
license: afl-3.0
---
|
masakhane/m2m100_418M_tsn_en_rel_ft | 454da39ce31c457851916fa2ad32c10077bb6191 | 2022-05-10T16:43:45.000Z | [
"pytorch",
"m2m_100",
"text2text-generation",
"transformers",
"license:afl-3.0",
"autotrain_compatible"
] | text2text-generation | false | masakhane | null | masakhane/m2m100_418M_tsn_en_rel_ft | 0 | null | transformers | 37,460 | ---
license: afl-3.0
---
|
masakhane/m2m100_418M_en_tsn_rel_news_ft | fc18956d2f543afe10b103a9903ab986b9a3d018 | 2022-05-10T16:43:37.000Z | [
"pytorch",
"m2m_100",
"text2text-generation",
"transformers",
"license:afl-3.0",
"autotrain_compatible"
] | text2text-generation | false | masakhane | null | masakhane/m2m100_418M_en_tsn_rel_news_ft | 0 | null | transformers | 37,461 | ---
license: afl-3.0
---
|
masakhane/m2m100_418M_tsn_en_rel_news_ft | 9d8d32051cde29765d73c50b9cf9d45a340a7a2d | 2022-05-10T16:43:40.000Z | [
"pytorch",
"m2m_100",
"text2text-generation",
"transformers",
"license:afl-3.0",
"autotrain_compatible"
] | text2text-generation | false | masakhane | null | masakhane/m2m100_418M_tsn_en_rel_news_ft | 0 | null | transformers | 37,462 | ---
license: afl-3.0
---
|
masakhane/m2m100_418M_tsn_en_rel | 42bc944d3d076214f367258c3b8a7d259e2db351 | 2022-05-10T16:50:25.000Z | [
"pytorch",
"m2m_100",
"text2text-generation",
"transformers",
"license:afl-3.0",
"autotrain_compatible"
] | text2text-generation | false | masakhane | null | masakhane/m2m100_418M_tsn_en_rel | 0 | null | transformers | 37,463 | ---
license: afl-3.0
---
|
masakhane/m2m100_418M_en_tsn_rel | f761abcdc74e00f0cf9a02c7a50c102b8274fbd6 | 2022-05-10T16:50:27.000Z | [
"pytorch",
"m2m_100",
"text2text-generation",
"transformers",
"license:afl-3.0",
"autotrain_compatible"
] | text2text-generation | false | masakhane | null | masakhane/m2m100_418M_en_tsn_rel | 0 | null | transformers | 37,464 | ---
license: afl-3.0
---
|
husnu/wav2vec2-large-xls-r-300m-turkish-colab_common_voice-8_6 | 894be4059e821f91b73853a7346692699c20b337 | 2022-05-11T01:56:24.000Z | [
"pytorch",
"tensorboard",
"wav2vec2",
"automatic-speech-recognition",
"dataset:common_voice",
"transformers",
"generated_from_trainer",
"license:apache-2.0",
"model-index"
] | automatic-speech-recognition | false | husnu | null | husnu/wav2vec2-large-xls-r-300m-turkish-colab_common_voice-8_6 | 0 | null | transformers | 37,465 | ---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- common_voice
model-index:
- name: wav2vec2-large-xls-r-300m-turkish-colab_common_voice-8_6
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-large-xls-r-300m-turkish-colab_common_voice-8_6
This model is a fine-tuned version of [husnu/wav2vec2-large-xls-r-300m-turkish-colab_common_voice-8_5](https://huggingface.co/husnu/wav2vec2-large-xls-r-300m-turkish-colab_common_voice-8_5) on the common_voice dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3646
- Wer: 0.3478
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 6
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 0.1024 | 0.51 | 400 | 0.4030 | 0.4171 |
| 0.1533 | 1.02 | 800 | 0.4733 | 0.4570 |
| 0.1584 | 1.53 | 1200 | 0.4150 | 0.4371 |
| 0.1538 | 2.04 | 1600 | 0.4104 | 0.4390 |
| 0.1395 | 2.55 | 2000 | 0.3891 | 0.4133 |
| 0.1415 | 3.07 | 2400 | 0.3877 | 0.4015 |
| 0.1261 | 3.58 | 2800 | 0.3685 | 0.3899 |
| 0.1149 | 4.09 | 3200 | 0.3791 | 0.3881 |
| 0.1003 | 4.6 | 3600 | 0.3642 | 0.3626 |
| 0.0934 | 5.11 | 4000 | 0.3755 | 0.3516 |
| 0.0805 | 5.62 | 4400 | 0.3646 | 0.3478 |
### Framework versions
- Transformers 4.11.3
- Pytorch 1.10.0+cu113
- Datasets 2.1.0
- Tokenizers 0.10.3
|
theojolliffe/distilbart-cnn-arxiv-pubmed-pubmed-v3-e16 | 7704dd633264ecff26869252d0695ca4e02de462 | 2022-05-11T14:04:06.000Z | [
"pytorch",
"tensorboard",
"bart",
"text2text-generation",
"transformers",
"generated_from_trainer",
"license:apache-2.0",
"model-index",
"autotrain_compatible"
] | text2text-generation | false | theojolliffe | null | theojolliffe/distilbart-cnn-arxiv-pubmed-pubmed-v3-e16 | 0 | null | transformers | 37,466 | ---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: distilbart-cnn-arxiv-pubmed-pubmed-v3-e16
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbart-cnn-arxiv-pubmed-pubmed-v3-e16
This model is a fine-tuned version of [theojolliffe/distilbart-cnn-arxiv-pubmed-pubmed](https://huggingface.co/theojolliffe/distilbart-cnn-arxiv-pubmed-pubmed) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8306
- Rouge1: 56.4519
- Rouge2: 41.6818
- Rougel: 44.7833
- Rougelsum: 54.6359
- Gen Len: 141.9815
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 16
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:--------:|
| No log | 1.0 | 398 | 1.1157 | 50.9487 | 31.3005 | 34.0145 | 48.6057 | 141.8519 |
| 1.3569 | 2.0 | 796 | 0.9688 | 53.0653 | 34.1855 | 37.0759 | 50.5942 | 141.2963 |
| 0.8704 | 3.0 | 1194 | 0.9053 | 53.9684 | 36.0388 | 38.6674 | 51.9604 | 142.0 |
| 0.6287 | 4.0 | 1592 | 0.8515 | 54.2379 | 36.4915 | 39.1393 | 51.6991 | 141.4074 |
| 0.6287 | 5.0 | 1990 | 0.8274 | 53.6806 | 34.8373 | 37.7369 | 51.239 | 141.6481 |
| 0.465 | 6.0 | 2388 | 0.8486 | 55.2534 | 39.1757 | 41.6366 | 53.2989 | 141.9259 |
| 0.3432 | 7.0 | 2786 | 0.8116 | 54.539 | 37.6314 | 40.5531 | 52.1997 | 141.3889 |
| 0.2577 | 8.0 | 3184 | 0.7976 | 54.8212 | 36.8347 | 40.6768 | 52.7785 | 142.0 |
| 0.204 | 9.0 | 3582 | 0.8010 | 53.9302 | 37.3523 | 40.135 | 52.139 | 141.7778 |
| 0.204 | 10.0 | 3980 | 0.8168 | 54.3151 | 38.0665 | 42.4112 | 52.4682 | 142.0 |
| 0.1663 | 11.0 | 4378 | 0.8171 | 54.7027 | 38.3117 | 42.0196 | 52.8821 | 142.0 |
| 0.135 | 12.0 | 4776 | 0.8202 | 54.1035 | 37.9154 | 40.7676 | 52.2509 | 142.0 |
| 0.1102 | 13.0 | 5174 | 0.8204 | 56.223 | 41.0947 | 44.0131 | 54.3353 | 142.0 |
| 0.0928 | 14.0 | 5572 | 0.8280 | 56.1637 | 41.0408 | 44.2931 | 54.5488 | 142.0 |
| 0.0928 | 15.0 | 5970 | 0.8273 | 56.2608 | 41.3855 | 44.4432 | 54.5778 | 142.0 |
| 0.0847 | 16.0 | 6368 | 0.8306 | 56.4519 | 41.6818 | 44.7833 | 54.6359 | 141.9815 |
### Framework versions
- Transformers 4.18.0
- Pytorch 1.11.0+cu113
- Datasets 2.2.0
- Tokenizers 0.12.1
|
huxxx657/roberta-base-finetuned-scrambled-squad-15 | 24ffd28c0a60a8201f41739591c90f9a92b1e9c5 | 2022-05-10T21:13:58.000Z | [
"pytorch",
"tensorboard",
"roberta",
"question-answering",
"dataset:squad",
"transformers",
"generated_from_trainer",
"license:mit",
"model-index",
"autotrain_compatible"
] | question-answering | false | huxxx657 | null | huxxx657/roberta-base-finetuned-scrambled-squad-15 | 0 | null | transformers | 37,467 | ---
license: mit
tags:
- generated_from_trainer
datasets:
- squad
model-index:
- name: roberta-base-finetuned-scrambled-squad-15
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# roberta-base-finetuned-scrambled-squad-15
This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the squad dataset.
It achieves the following results on the evaluation set:
- Loss: 1.8722
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 7e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 1.8944 | 1.0 | 5590 | 1.8722 |
### Framework versions
- Transformers 4.18.0
- Pytorch 1.11.0+cu113
- Datasets 2.1.0
- Tokenizers 0.12.1
|
subhasisj/zh-finetuned-squad-qa-minilmv2-32 | 5410b4aa997a95d1c193323f4d4d645f351943d1 | 2022-05-10T21:58:09.000Z | [
"pytorch",
"tensorboard",
"bert",
"question-answering",
"transformers",
"generated_from_trainer",
"model-index",
"autotrain_compatible"
] | question-answering | false | subhasisj | null | subhasisj/zh-finetuned-squad-qa-minilmv2-32 | 0 | null | transformers | 37,468 | ---
tags:
- generated_from_trainer
model-index:
- name: zh-finetuned-squad-qa-minilmv2-32
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# zh-finetuned-squad-qa-minilmv2-32
This model is a fine-tuned version of [subhasisj/zh-TAPT-MLM-MiniLM](https://huggingface.co/subhasisj/zh-TAPT-MLM-MiniLM) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.4311
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 256
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 5
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| No log | 1.0 | 338 | 2.3706 |
| 3.1254 | 2.0 | 676 | 1.7422 |
| 1.6449 | 3.0 | 1014 | 1.5323 |
| 1.6449 | 4.0 | 1352 | 1.4375 |
| 1.3122 | 5.0 | 1690 | 1.4311 |
### Framework versions
- Transformers 4.18.0
- Pytorch 1.11.0+cu113
- Datasets 2.2.0
- Tokenizers 0.12.1
|
huxxx657/roberta-base-finetuned-scrambled-squad-5-new | b40a9f360dddc2147ffd4fcf068ef649c4a464d3 | 2022-05-10T22:48:00.000Z | [
"pytorch",
"tensorboard",
"roberta",
"question-answering",
"dataset:squad",
"transformers",
"generated_from_trainer",
"license:mit",
"model-index",
"autotrain_compatible"
] | question-answering | false | huxxx657 | null | huxxx657/roberta-base-finetuned-scrambled-squad-5-new | 0 | null | transformers | 37,469 | ---
license: mit
tags:
- generated_from_trainer
datasets:
- squad
model-index:
- name: roberta-base-finetuned-scrambled-squad-5-new
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# roberta-base-finetuned-scrambled-squad-5-new
This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the squad dataset.
It achieves the following results on the evaluation set:
- Loss: 0.9098
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 7e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 0.941 | 1.0 | 5536 | 0.9098 |
### Framework versions
- Transformers 4.18.0
- Pytorch 1.11.0+cu113
- Datasets 2.2.0
- Tokenizers 0.12.1
|
theojolliffe/distilbart-cnn-arxiv-pubmed-pubmed-v3-e8 | 20c3e323d1e1c4136e9f007d595b911396f24f88 | 2022-05-11T12:17:20.000Z | [
"pytorch",
"tensorboard",
"bart",
"text2text-generation",
"transformers",
"generated_from_trainer",
"license:apache-2.0",
"model-index",
"autotrain_compatible"
] | text2text-generation | false | theojolliffe | null | theojolliffe/distilbart-cnn-arxiv-pubmed-pubmed-v3-e8 | 0 | null | transformers | 37,470 | ---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: distilbart-cnn-arxiv-pubmed-pubmed-v3-e8
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbart-cnn-arxiv-pubmed-pubmed-v3-e8
This model is a fine-tuned version of [theojolliffe/distilbart-cnn-arxiv-pubmed-pubmed](https://huggingface.co/theojolliffe/distilbart-cnn-arxiv-pubmed-pubmed) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8422
- Rouge1: 54.9328
- Rouge2: 36.7154
- Rougel: 39.5674
- Rougelsum: 52.4889
- Gen Len: 142.0
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 8
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:--------:|
| No log | 1.0 | 398 | 1.1158 | 50.9754 | 30.9416 | 33.9908 | 48.4925 | 142.0 |
| 1.3585 | 2.0 | 796 | 0.9733 | 52.7954 | 33.8196 | 36.7836 | 50.4929 | 141.9259 |
| 0.8785 | 3.0 | 1194 | 0.9142 | 53.5548 | 35.3954 | 37.4787 | 51.1024 | 142.0 |
| 0.6485 | 4.0 | 1592 | 0.8666 | 52.6449 | 34.0018 | 37.5391 | 50.428 | 141.4074 |
| 0.6485 | 5.0 | 1990 | 0.8458 | 53.8913 | 35.4481 | 38.1552 | 51.3737 | 141.8889 |
| 0.4993 | 6.0 | 2388 | 0.8571 | 54.7333 | 36.8173 | 40.228 | 52.5574 | 141.9444 |
| 0.3957 | 7.0 | 2786 | 0.8455 | 54.9826 | 37.9674 | 40.5786 | 52.5968 | 141.9815 |
| 0.328 | 8.0 | 3184 | 0.8422 | 54.9328 | 36.7154 | 39.5674 | 52.4889 | 142.0 |
### Framework versions
- Transformers 4.18.0
- Pytorch 1.11.0+cu113
- Datasets 2.2.0
- Tokenizers 0.12.1
|
huxxx657/roberta-base-finetuned-scrambled-squad-10-new | fd7f0c5d95889a1dbdfa2480414ec2d86896c7b4 | 2022-05-11T00:56:16.000Z | [
"pytorch",
"tensorboard",
"roberta",
"question-answering",
"dataset:squad",
"transformers",
"generated_from_trainer",
"license:mit",
"model-index",
"autotrain_compatible"
] | question-answering | false | huxxx657 | null | huxxx657/roberta-base-finetuned-scrambled-squad-10-new | 0 | null | transformers | 37,471 | ---
license: mit
tags:
- generated_from_trainer
datasets:
- squad
model-index:
- name: roberta-base-finetuned-scrambled-squad-10-new
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# roberta-base-finetuned-scrambled-squad-10-new
This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the squad dataset.
It achieves the following results on the evaluation set:
- Loss: 0.9721
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 7e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 0.9984 | 1.0 | 5536 | 0.9721 |
### Framework versions
- Transformers 4.18.0
- Pytorch 1.11.0+cu113
- Datasets 2.2.0
- Tokenizers 0.12.1
|
mcurmei/flat_N_max | db7f186a638054b3ed0b2108c701e373b32b5aed | 2022-05-11T03:33:16.000Z | [
"pytorch",
"tensorboard",
"distilbert",
"question-answering",
"transformers",
"generated_from_trainer",
"license:apache-2.0",
"model-index",
"autotrain_compatible"
] | question-answering | false | mcurmei | null | mcurmei/flat_N_max | 0 | null | transformers | 37,472 | ---
license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: flat_N_max
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# flat_N_max
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.8536
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 1.2462 | 1.0 | 2213 | 1.7958 |
| 0.9293 | 2.0 | 4426 | 1.8093 |
| 0.7249 | 3.0 | 6639 | 1.8536 |
### Framework versions
- Transformers 4.18.0
- Pytorch 1.11.0+cu113
- Datasets 2.2.0
- Tokenizers 0.12.1
|
mcurmei/single_label_N_max | 8e835a9b0c57580bb351420aa9d1955595e5523e | 2022-05-11T04:49:29.000Z | [
"pytorch",
"tensorboard",
"distilbert",
"question-answering",
"dataset:squad",
"transformers",
"generated_from_trainer",
"license:apache-2.0",
"model-index",
"autotrain_compatible"
] | question-answering | false | mcurmei | null | mcurmei/single_label_N_max | 0 | null | transformers | 37,473 | ---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- squad
model-index:
- name: single_label_N_max
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# single_label_N_max
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the squad dataset.
It achieves the following results on the evaluation set:
- Loss: 1.9326
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 2.9746 | 1.0 | 674 | 2.0265 |
| 1.6756 | 2.0 | 1348 | 1.9134 |
| 1.1333 | 3.0 | 2022 | 1.9326 |
### Framework versions
- Transformers 4.18.0
- Pytorch 1.11.0+cu113
- Datasets 2.2.0
- Tokenizers 0.12.1
|
mcurmei/unique_N_max | 8f16ca5a07d01a9e70bcf2725a7e3cc5d67d5766 | 2022-05-11T06:19:57.000Z | [
"pytorch",
"tensorboard",
"distilbert",
"question-answering",
"transformers",
"generated_from_trainer",
"license:apache-2.0",
"model-index",
"autotrain_compatible"
] | question-answering | false | mcurmei | null | mcurmei/unique_N_max | 0 | null | transformers | 37,474 | ---
license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: unique_N_max
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# unique_N_max
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.7409
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 2.0901 | 1.0 | 1162 | 1.8326 |
| 1.5479 | 2.0 | 2324 | 1.7201 |
| 1.2903 | 3.0 | 3486 | 1.7409 |
### Framework versions
- Transformers 4.18.0
- Pytorch 1.11.0+cu113
- Datasets 2.2.0
- Tokenizers 0.12.1
|
kathywu/DialoGPT-small-kathy | 12aadc9ada0900ae05069852d9550366d77cd5be | 2022-05-12T05:14:40.000Z | [
"pytorch",
"gpt2",
"text-generation",
"transformers",
"conversational"
] | conversational | false | kathywu | null | kathywu/DialoGPT-small-kathy | 0 | null | transformers | 37,475 | ---
tags:
- conversational
--- |
huggingtweets/elonmusk-kimkardashian | 6f24ba7c0f73e3573992ff66a39d97bfeff817b3 | 2022-05-11T07:03:54.000Z | [
"pytorch",
"gpt2",
"text-generation",
"en",
"transformers",
"huggingtweets"
] | text-generation | false | huggingtweets | null | huggingtweets/elonmusk-kimkardashian | 0 | null | transformers | 37,476 | ---
language: en
thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1521957986335297536/itVSA7l0_400x400.jpg')">
</div>
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1446623190252343301/qIJAwo9I_400x400.jpg')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">Elon Musk & Kim Kardashian</div>
<div style="text-align: center; font-size: 14px;">@elonmusk-kimkardashian</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from Elon Musk & Kim Kardashian.
| Data | Elon Musk | Kim Kardashian |
| --- | --- | --- |
| Tweets downloaded | 222 | 3241 |
| Retweets | 16 | 715 |
| Short tweets | 47 | 667 |
| Tweets kept | 159 | 1859 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/17bd0o7t/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @elonmusk-kimkardashian's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2g9hft2n) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2g9hft2n/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/elonmusk-kimkardashian')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
theojolliffe/bart-cnn-pubmed-arxiv-pubmed-arxiv-arxiv | 806c5e145bbbf3ab70e9570ca85fe9b1d8fd5c44 | 2022-05-11T13:55:48.000Z | [
"pytorch",
"tensorboard",
"bart",
"text2text-generation",
"transformers",
"generated_from_trainer",
"license:mit",
"model-index",
"autotrain_compatible"
] | text2text-generation | false | theojolliffe | null | theojolliffe/bart-cnn-pubmed-arxiv-pubmed-arxiv-arxiv | 0 | null | transformers | 37,477 | ---
license: mit
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: bart-cnn-pubmed-arxiv-pubmed-arxiv-arxiv
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bart-cnn-pubmed-arxiv-pubmed-arxiv-arxiv
This model is a fine-tuned version of [theojolliffe/bart-cnn-pubmed-arxiv-pubmed-arxiv](https://huggingface.co/theojolliffe/bart-cnn-pubmed-arxiv-pubmed-arxiv) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8065
- Rouge1: 54.5916
- Rouge2: 36.7817
- Rougel: 40.4708
- Rougelsum: 52.5754
- Gen Len: 142.0
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:--------:|
| 1.2945 | 1.0 | 795 | 0.9555 | 51.91 | 32.0926 | 33.6727 | 49.5306 | 142.0 |
| 0.7153 | 2.0 | 1590 | 0.8317 | 52.4708 | 34.1035 | 35.2968 | 50.2966 | 141.963 |
| 0.5398 | 3.0 | 2385 | 0.8133 | 52.4603 | 33.497 | 36.4227 | 50.2513 | 141.8704 |
| 0.3568 | 4.0 | 3180 | 0.8091 | 52.3993 | 34.2424 | 37.7819 | 50.2069 | 142.0 |
| 0.2842 | 5.0 | 3975 | 0.8065 | 54.5916 | 36.7817 | 40.4708 | 52.5754 | 142.0 |
### Framework versions
- Transformers 4.18.0
- Pytorch 1.11.0+cu113
- Datasets 2.2.0
- Tokenizers 0.12.1
|
masakhane/afrimt5_en_twi_news | 45eccd6d401769818c7f7983ca794935d4a7e2f4 | 2022-05-12T11:55:30.000Z | [
"pytorch",
"mt5",
"text2text-generation",
"transformers",
"license:afl-3.0",
"autotrain_compatible"
] | text2text-generation | false | masakhane | null | masakhane/afrimt5_en_twi_news | 0 | null | transformers | 37,478 | ---
license: afl-3.0
---
|
masakhane/afrimt5_twi_en_news | 872285c9175e4e6d470a96348cc70e850955ed61 | 2022-05-12T11:55:47.000Z | [
"pytorch",
"mt5",
"text2text-generation",
"transformers",
"license:afl-3.0",
"autotrain_compatible"
] | text2text-generation | false | masakhane | null | masakhane/afrimt5_twi_en_news | 0 | null | transformers | 37,479 | ---
license: afl-3.0
---
|
masakhane/afrimt5_zul_en_news | 39ea55cc4095b85a226a81c763018324ed7cae72 | 2022-05-12T12:51:45.000Z | [
"pytorch",
"mt5",
"text2text-generation",
"transformers",
"license:afl-3.0",
"autotrain_compatible"
] | text2text-generation | false | masakhane | null | masakhane/afrimt5_zul_en_news | 0 | null | transformers | 37,480 | ---
license: afl-3.0
---
|
masakhane/afrimbart_en_zul_news | 0b4389b70b17eb0e10b633c0106074a3a2c45d3b | 2022-05-12T12:51:49.000Z | [
"pytorch",
"mbart",
"text2text-generation",
"transformers",
"license:afl-3.0",
"autotrain_compatible"
] | text2text-generation | false | masakhane | null | masakhane/afrimbart_en_zul_news | 0 | null | transformers | 37,481 | ---
license: afl-3.0
---
|
masakhane/afribyt5_twi_en_news | 5bc4ed934d97c928439f0c73b1e8ac2620ef4a65 | 2022-05-12T12:07:35.000Z | [
"pytorch",
"t5",
"text2text-generation",
"transformers",
"license:afl-3.0",
"autotrain_compatible"
] | text2text-generation | false | masakhane | null | masakhane/afribyt5_twi_en_news | 0 | null | transformers | 37,482 | ---
license: afl-3.0
---
|
masakhane/afribyt5_en_twi_news | c2074a74a1ef1916b3d0dce432fcd456bc864569 | 2022-05-12T12:07:32.000Z | [
"pytorch",
"t5",
"text2text-generation",
"transformers",
"license:afl-3.0",
"autotrain_compatible"
] | text2text-generation | false | masakhane | null | masakhane/afribyt5_en_twi_news | 0 | null | transformers | 37,483 | ---
license: afl-3.0
---
|
masakhane/afribyt5_zul_en_news | af94d5014988f24f5ed30b0b72fea3d85e5e8e05 | 2022-05-12T12:59:08.000Z | [
"pytorch",
"t5",
"text2text-generation",
"transformers",
"license:afl-3.0",
"autotrain_compatible"
] | text2text-generation | false | masakhane | null | masakhane/afribyt5_zul_en_news | 0 | null | transformers | 37,484 | ---
license: afl-3.0
---
|
masakhane/byt5_en_twi_news | 5f1fc04f243bf27bc9944b8d21510883a066e07e | 2022-05-12T12:07:37.000Z | [
"pytorch",
"t5",
"text2text-generation",
"transformers",
"license:afl-3.0",
"autotrain_compatible"
] | text2text-generation | false | masakhane | null | masakhane/byt5_en_twi_news | 0 | null | transformers | 37,485 | ---
license: afl-3.0
---
|
masakhane/byt5_en_zul_news | 1740c75e08da71a06e8aae6c53a3b46fc4a950e6 | 2022-05-12T12:59:10.000Z | [
"pytorch",
"t5",
"text2text-generation",
"transformers",
"license:afl-3.0",
"autotrain_compatible"
] | text2text-generation | false | masakhane | null | masakhane/byt5_en_zul_news | 0 | null | transformers | 37,486 | ---
license: afl-3.0
---
|
masakhane/mt5_twi_en_news | 21041431db90a40fa4efd3c7ac61cdf7303d0e5a | 2022-05-12T12:16:04.000Z | [
"pytorch",
"mt5",
"text2text-generation",
"transformers",
"license:afl-3.0",
"autotrain_compatible"
] | text2text-generation | false | masakhane | null | masakhane/mt5_twi_en_news | 0 | null | transformers | 37,487 | ---
license: afl-3.0
---
|
masakhane/mt5_en_twi_news | 9404feb8904f00262b5a73e6b9036e2f2cb91b21 | 2022-05-12T12:16:07.000Z | [
"pytorch",
"mt5",
"text2text-generation",
"transformers",
"license:afl-3.0",
"autotrain_compatible"
] | text2text-generation | false | masakhane | null | masakhane/mt5_en_twi_news | 0 | null | transformers | 37,488 | ---
license: afl-3.0
---
|
masakhane/mt5_zul_en_news | e8980f16f1be056679c1cea885042b1554bc2016 | 2022-05-12T13:06:22.000Z | [
"pytorch",
"mt5",
"text2text-generation",
"transformers",
"license:afl-3.0",
"autotrain_compatible"
] | text2text-generation | false | masakhane | null | masakhane/mt5_zul_en_news | 0 | null | transformers | 37,489 | ---
license: afl-3.0
---
|
masakhane/mt5_en_zul_news | c0a588b3d1a386eed70946e792fe509fc81d091d | 2022-05-12T13:06:25.000Z | [
"pytorch",
"mt5",
"text2text-generation",
"transformers",
"license:afl-3.0",
"autotrain_compatible"
] | text2text-generation | false | masakhane | null | masakhane/mt5_en_zul_news | 0 | null | transformers | 37,490 | ---
license: afl-3.0
---
|
masakhane/m2m100_418M_twi_en_news | 7eeb65dfce7dc881bd03f9a63c89cb97a277cd84 | 2022-05-12T12:27:55.000Z | [
"pytorch",
"m2m_100",
"text2text-generation",
"transformers",
"license:afl-3.0",
"autotrain_compatible"
] | text2text-generation | false | masakhane | null | masakhane/m2m100_418M_twi_en_news | 0 | null | transformers | 37,491 | ---
license: afl-3.0
---
|
masakhane/m2m100_418M_zul_en_news | 2e29100ba570d9bcbdd553c4d81300b7f9e54a5f | 2022-05-12T13:14:49.000Z | [
"pytorch",
"m2m_100",
"text2text-generation",
"transformers",
"license:afl-3.0",
"autotrain_compatible"
] | text2text-generation | false | masakhane | null | masakhane/m2m100_418M_zul_en_news | 0 | null | transformers | 37,492 | ---
license: afl-3.0
---
|
masakhane/m2m100_418M_en_zul_rel_news | 4c0674d688fd8ff20a42afe13820efbf241b7fed | 2022-05-12T13:14:46.000Z | [
"pytorch",
"m2m_100",
"text2text-generation",
"transformers",
"license:afl-3.0",
"autotrain_compatible"
] | text2text-generation | false | masakhane | null | masakhane/m2m100_418M_en_zul_rel_news | 0 | null | transformers | 37,493 | ---
license: afl-3.0
---
|
masakhane/m2m100_418M_zul_en_rel_news | ae7c02b72bfa6c8dd27b19d6bc9d31d0784ffd98 | 2022-05-12T13:29:50.000Z | [
"pytorch",
"m2m_100",
"text2text-generation",
"transformers",
"license:afl-3.0",
"autotrain_compatible"
] | text2text-generation | false | masakhane | null | masakhane/m2m100_418M_zul_en_rel_news | 0 | null | transformers | 37,494 | ---
license: afl-3.0
---
|
masakhane/m2m100_418M_twi_en_rel_news | 9cc90b51d8f3c91925373ac1eee2812efbf2eca1 | 2022-05-12T12:28:03.000Z | [
"pytorch",
"m2m_100",
"text2text-generation",
"transformers",
"license:afl-3.0",
"autotrain_compatible"
] | text2text-generation | false | masakhane | null | masakhane/m2m100_418M_twi_en_rel_news | 0 | null | transformers | 37,495 | ---
license: afl-3.0
---
|
masakhane/m2m100_418M_en_twi_rel_news | a479412305190f3a18c918fb4043af8260f53fb8 | 2022-05-12T12:27:59.000Z | [
"pytorch",
"m2m_100",
"text2text-generation",
"transformers",
"license:afl-3.0",
"autotrain_compatible"
] | text2text-generation | false | masakhane | null | masakhane/m2m100_418M_en_twi_rel_news | 0 | null | transformers | 37,496 | ---
license: afl-3.0
---
|
masakhane/m2m100_418M_en_twi_rel_news_ft | 437133cfff246407570b304251e9628f7993ab57 | 2022-05-12T12:35:31.000Z | [
"pytorch",
"m2m_100",
"text2text-generation",
"transformers",
"license:afl-3.0",
"autotrain_compatible"
] | text2text-generation | false | masakhane | null | masakhane/m2m100_418M_en_twi_rel_news_ft | 0 | null | transformers | 37,497 | ---
license: afl-3.0
---
|
masakhane/m2m100_418M_twi_en_rel_news_ft | 50be240022d7a74fa73980408c525d96c44deab6 | 2022-05-12T12:35:34.000Z | [
"pytorch",
"m2m_100",
"text2text-generation",
"transformers",
"license:afl-3.0",
"autotrain_compatible"
] | text2text-generation | false | masakhane | null | masakhane/m2m100_418M_twi_en_rel_news_ft | 0 | null | transformers | 37,498 | ---
license: afl-3.0
---
|
masakhane/m2m100_418M_zul_en_rel_news_ft | 1f2aa786a231443a1017f5a200c307f590a44aca | 2022-05-12T13:36:14.000Z | [
"pytorch",
"m2m_100",
"text2text-generation",
"transformers",
"license:afl-3.0",
"autotrain_compatible"
] | text2text-generation | false | masakhane | null | masakhane/m2m100_418M_zul_en_rel_news_ft | 0 | null | transformers | 37,499 | ---
license: afl-3.0
---
|
Subsets and Splits