modelId
stringlengths
4
112
sha
stringlengths
40
40
lastModified
stringlengths
24
24
tags
sequence
pipeline_tag
stringclasses
29 values
private
bool
1 class
author
stringlengths
2
38
โŒ€
config
null
id
stringlengths
4
112
downloads
float64
0
36.8M
โŒ€
likes
float64
0
712
โŒ€
library_name
stringclasses
17 values
__index_level_0__
int64
0
38.5k
readme
stringlengths
0
186k
kompactss/JeBERT_ko_je
5e46846eb3efd409d9850a6c22f9ab9447ffb6ae
2022-05-16T06:11:24.000Z
[ "pytorch", "encoder-decoder", "text2text-generation", "transformers", "license:afl-3.0", "autotrain_compatible" ]
text2text-generation
false
kompactss
null
kompactss/JeBERT_ko_je
0
null
transformers
37,200
--- license: afl-3.0 --- # ๐ŸŠ ์ œ์ฃผ ๋ฐฉ์–ธ ๋ฒˆ์—ญ ๋ชจ๋ธ ๐ŸŠ - ํ‘œ์ค€์–ด -> ์ œ์ฃผ์–ด - Made by. ๊ตฌ๋ฆ„ ์ž์—ฐ์–ด์ฒ˜๋ฆฌ ๊ณผ์ • 3๊ธฐ 3์กฐ!! - github link : https://github.com/Goormnlpteam3/JeBERT ## 1. Seq2Seq Transformer Model - encoder : BertConfig - decoder : BertConfig - Tokenizer : WordPiece Tokenizer ## 2. Dataset - Jit Dataset - AI HUB(+์•„๋ž˜์•„ ๋ฌธ์ž) ## 3. Hyper Parameters - Epoch : 10 epochs(best at 7 epoch) - Random Seed : 42 - Learning Rate : 5e-5 - Warm up Ratio : 0.1 - Batch Size : 32 ## 4. BLEU Score - Jit + AI HUB(+์•„๋ž˜์•„ ๋ฌธ์ž) Dataset : 67.3 --- ### CREDIT - ์ฃผํ˜•์ค€ : [email protected] - ๊ฐ•๊ฐ€๋žŒ : [email protected] - ๊ณ ๊ด‘์—ฐ : [email protected] - ๊น€์ˆ˜์—ฐ : [email protected] - ์ด์›๊ฒฝ : [email protected] - ์กฐ์„ฑ์€ : [email protected]
jcai1/distilbert-base-uncased-finetuned-imdb-accelerate
a0d920ff49d404d0e92c68938b0ef697084de1d8
2022-05-01T15:26:09.000Z
[ "pytorch", "distilbert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
jcai1
null
jcai1/distilbert-base-uncased-finetuned-imdb-accelerate
0
null
transformers
37,201
Entry not found
hassnain/wav2vec2-base-timit-demo-colab57
a2f19cd694a4f732b48f0432570ec4bf93024243
2022-05-01T18:17:07.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
hassnain
null
hassnain/wav2vec2-base-timit-demo-colab57
0
null
transformers
37,202
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base-timit-demo-colab57 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-timit-demo-colab57 This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7328 - Wer: 0.4593 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 60 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 4.9876 | 7.04 | 500 | 3.1483 | 1.0 | | 1.4621 | 14.08 | 1000 | 0.6960 | 0.6037 | | 0.4404 | 21.13 | 1500 | 0.6392 | 0.5630 | | 0.2499 | 28.17 | 2000 | 0.6738 | 0.5281 | | 0.1732 | 35.21 | 2500 | 0.6789 | 0.4952 | | 0.1347 | 42.25 | 3000 | 0.7328 | 0.4835 | | 0.1044 | 49.3 | 3500 | 0.7258 | 0.4840 | | 0.0896 | 56.34 | 4000 | 0.7328 | 0.4593 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.11.0+cu113 - Datasets 1.18.3 - Tokenizers 0.10.3
rjuez00/meddocan-flair-spanish-fast-bilstm-crf
a354058108ca3c5cfce208815bc9e1763a52fe51
2022-05-03T14:19:44.000Z
[ "pytorch" ]
null
false
rjuez00
null
rjuez00/meddocan-flair-spanish-fast-bilstm-crf
0
null
null
37,203
The [MEDDOCAN dataset](https://github.com/PlanTL-GOB-ES/SPACCC_MEDDOCAN) has some entities not separated by a space but a dot. For example such is the case of Alicante.Villajoyosa which are two separate entities but with traditional tokenizers are only one Token. Spacy tokenizers also don't work, when I was trying to assign the entities two the tokens on training SpaCy v3 frecuently reported errors that it could not match some entities to tokens due to this problem. That is why I have created a Tokenizer with manual regex rules so that it improves the performance when using the model: ``` from flair.models import SequenceTagger from flair.data import Sentence from flair.data import Tokenizer import re class CustomTokenizer(Tokenizer): def tokenize(self, text): finaltokens = [] tokens = text.split() for token in tokens: for i in list(filter(None, re.split("-|\/" , token))): if len(re.findall("(\w)\.(\w)", i)) > 0: #print(i) for j in filter(None, i.split(".")): finaltokens.append(j) else: #print(i) finaltokens.append(i) #print(finaltokens) return finaltokens flairTagger = SequenceTagger.load("rjuez00/meddocan-flair-spanish-fast-bilstm-crf") ``` For using the model you just have to instanciate it like above and then create a Flair Sentence with the text and the tokenizer like this: ```documentFlair = Sentence(text, use_tokenizer = CustomTokenizer())``` Unfortunately the spans that Flair provides while performing NER on the MEDDOCAN dataset are not correct, I'm not aware if its a bug of my version (0.11). But I've developed a system that corrects the slight deviations of the offsets. ``` documentEntities = [] documentFlair = Sentence(text, use_tokenizer = CustomTokenizer()) flairTagger.predict(documentFlair) predictedEntities = [] for idxentity, entity in enumerate(documentFlair.get_spans("ner")): predictedEntities.append(entity) ``` ``` for idxentity, entity in enumerate(reversed(predictedEntities), start = 1): entityType = entity.get_label("ner").value startEntity = entity.start_position endEntity = entity.end_position while text[startEntity] in [" ", "(", ")", ",", ".", ";", ":", "!", "?", "-", "\n"]: startEntity += 1 while len(text) > endEntity and (text[endEntity].isalpha() or text[endEntity].isnumeric()): #print("ALARGADO FINAL") endEntity += 1 while text[endEntity-1] in [" ", ",", ".", ";", ":", "!", "?", "-", ")", "(", "\\", "/", "\"", "'", "+", "*", "&", "%", "$", "#", "@", "~", "`", "^", "|", "=", ":", ";", ">", "<", "]"]: endEntity -= 1 #print(f"PREDICHO:{entity.text}\t\t\t\tARREGLADO:{text[startEntity:endEntity]}\n") f.write( "T" + str(idxentity) + "\t" + entityType + " " + str(startEntity) + " " + str(endEntity) + "\t" + text[startEntity:endEntity] + "\n" ) ```
hassnain/wav2vec2-base-timit-demo-colab240
744056244f1d5484922e1193f3a4fb26c25f5dbe
2022-05-02T12:31:44.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
hassnain
null
hassnain/wav2vec2-base-timit-demo-colab240
0
null
transformers
37,204
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base-timit-demo-colab240 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-timit-demo-colab240 This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - eval_loss: 0.6367 - eval_wer: 0.5855 - eval_runtime: 20.4889 - eval_samples_per_second: 6.931 - eval_steps_per_second: 0.879 - epoch: 14.08 - step: 1000 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.11.3 - Pytorch 1.11.0+cu113 - Datasets 1.18.3 - Tokenizers 0.10.3
lilitket/20220501-201151
78a8890c1948ba18224ab4ce3bbffdd9e1f0d5bc
2022-05-01T21:44:53.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
lilitket
null
lilitket/20220501-201151
0
null
transformers
37,205
Entry not found
hassnain/wav2vec2-base-timit-demo-colab66
5f367e2f9f9fbba0a30b922d0ce77d2d8eb5f93a
2022-05-02T00:14:06.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
hassnain
null
hassnain/wav2vec2-base-timit-demo-colab66
0
null
transformers
37,206
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base-timit-demo-colab66 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-timit-demo-colab66 This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.2675 - Wer: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 60 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:---:| | 5.3521 | 7.04 | 500 | 3.3666 | 1.0 | | 3.1768 | 14.08 | 1000 | 3.3977 | 1.0 | | 3.1576 | 21.13 | 1500 | 3.2332 | 1.0 | | 3.1509 | 28.17 | 2000 | 3.2686 | 1.0 | | 3.149 | 35.21 | 2500 | 3.2550 | 1.0 | | 3.1478 | 42.25 | 3000 | 3.2689 | 1.0 | | 3.1444 | 49.3 | 3500 | 3.2848 | 1.0 | | 3.1442 | 56.34 | 4000 | 3.2675 | 1.0 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.11.0+cu113 - Datasets 1.18.3 - Tokenizers 0.10.3
sherry7144/wav2vec2-base-timit-demo-colab2
61976a258bbe025480b547ff422fa0b3b7305594
2022-05-01T23:51:54.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
sherry7144
null
sherry7144/wav2vec2-base-timit-demo-colab2
0
null
transformers
37,207
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base-timit-demo-colab2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-timit-demo-colab2 This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7746 - Wer: 0.5855 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 800 - num_epochs: 35 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 5.1452 | 13.89 | 500 | 2.9679 | 1.0 | | 1.075 | 27.78 | 1000 | 0.7746 | 0.5855 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.11.0+cu113 - Datasets 1.18.3 - Tokenizers 0.10.3
vinaykudari/pega-acled-t2s
69e1d146e140fc4babffa29c61cde4bc17cdd96f
2022-05-02T00:47:23.000Z
[ "pytorch", "pegasus", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
vinaykudari
null
vinaykudari/pega-acled-t2s
0
null
transformers
37,208
Entry not found
inhee/opus-mt-ko-en-finetuned-ko-to-en5
d86cf350b94af8177a971e5d03dbe53f14343a22
2022-05-02T08:38:56.000Z
[ "pytorch", "tensorboard", "marian", "text2text-generation", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
text2text-generation
false
inhee
null
inhee/opus-mt-ko-en-finetuned-ko-to-en5
0
null
transformers
37,209
--- license: apache-2.0 tags: - generated_from_trainer metrics: - bleu model-index: - name: opus-mt-ko-en-finetuned-ko-to-en5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # opus-mt-ko-en-finetuned-ko-to-en5 This model is a fine-tuned version of [Helsinki-NLP/opus-mt-ko-en](https://huggingface.co/Helsinki-NLP/opus-mt-ko-en) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.1434 - Bleu: 52.6052 - Gen Len: 8.1982 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 256 - total_train_batch_size: 1024 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:| | No log | 1.0 | 105 | 1.8436 | 35.225 | 8.1735 | | No log | 2.0 | 210 | 1.4106 | 44.7159 | 8.1923 | | No log | 3.0 | 315 | 1.2410 | 49.5117 | 8.2165 | | No log | 4.0 | 420 | 1.1661 | 51.8883 | 8.201 | | 1.8123 | 5.0 | 525 | 1.1434 | 52.6052 | 8.1982 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.1.0 - Tokenizers 0.12.1
lilitket/20220502-070735
de26eab8f530945a79e10fd4ce96a62f782b22f7
2022-05-02T10:13:46.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
lilitket
null
lilitket/20220502-070735
0
null
transformers
37,210
Entry not found
lilitket/20220502-085955
286a496fd5ac96654c219480e2acd9d6b0f63b7f
2022-05-02T10:33:02.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
lilitket
null
lilitket/20220502-085955
0
null
transformers
37,211
Entry not found
nanopass/emotion_test
93e7cc1a1843ebbbb5877c9760d856bf62157069
2022-05-02T10:05:50.000Z
[ "pytorch", "distilbert", "feature-extraction", "transformers" ]
feature-extraction
false
nanopass
null
nanopass/emotion_test
0
null
transformers
37,212
Entry not found
mechanicpanic/bart_github-typo
8a328e8c89d6aaa73d01b5c45b5c091beaad4c59
2022-05-02T11:51:44.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
mechanicpanic
null
mechanicpanic/bart_github-typo
0
null
transformers
37,213
Entry not found
hassnain/wav2vec2-base-timit-demo-colab971
b4a560ae60d0736a62c169c2b8fcc417e55244eb
2022-05-02T14:40:45.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
hassnain
null
hassnain/wav2vec2-base-timit-demo-colab971
0
null
transformers
37,214
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base-timit-demo-colab971 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-timit-demo-colab971 This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6551 - Wer: 0.4448 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 4.9461 | 1.77 | 500 | 3.2175 | 1.0 | | 2.5387 | 3.53 | 1000 | 1.2239 | 0.7851 | | 0.9632 | 5.3 | 1500 | 0.7275 | 0.6352 | | 0.6585 | 7.07 | 2000 | 0.6218 | 0.5896 | | 0.4875 | 8.83 | 2500 | 0.5670 | 0.5651 | | 0.397 | 10.6 | 3000 | 0.5796 | 0.5487 | | 0.3298 | 12.37 | 3500 | 0.5870 | 0.5322 | | 0.2816 | 14.13 | 4000 | 0.5796 | 0.5016 | | 0.2396 | 15.9 | 4500 | 0.5956 | 0.5040 | | 0.2019 | 17.67 | 5000 | 0.5911 | 0.4847 | | 0.1845 | 19.43 | 5500 | 0.6050 | 0.4800 | | 0.1637 | 21.2 | 6000 | 0.6518 | 0.4927 | | 0.1428 | 22.97 | 6500 | 0.6247 | 0.4645 | | 0.1319 | 24.73 | 7000 | 0.6592 | 0.4711 | | 0.1229 | 26.5 | 7500 | 0.6526 | 0.4556 | | 0.1111 | 28.27 | 8000 | 0.6551 | 0.4448 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.11.0+cu113 - Datasets 1.18.3 - Tokenizers 0.10.3
fahadtouseef/wav2vec2-base-timit-demo-colab_2
6d34a47e66955344b4019046bc692ae11533179e
2022-05-02T14:18:38.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
fahadtouseef
null
fahadtouseef/wav2vec2-base-timit-demo-colab_2
0
null
transformers
37,215
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base-timit-demo-colab_2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-timit-demo-colab_2 This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3801 - Wer: 0.3035 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 4.7227 | 3.52 | 500 | 2.6961 | 1.0 | | 1.1237 | 7.04 | 1000 | 0.6088 | 0.5315 | | 0.4886 | 10.56 | 1500 | 0.4709 | 0.4353 | | 0.3148 | 14.08 | 2000 | 0.4341 | 0.3942 | | 0.2229 | 17.61 | 2500 | 0.4035 | 0.3616 | | 0.1693 | 21.13 | 3000 | 0.3868 | 0.3289 | | 0.1393 | 24.65 | 3500 | 0.3993 | 0.3135 | | 0.118 | 28.17 | 4000 | 0.3801 | 0.3035 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.11.0+cu113 - Datasets 1.18.3 - Tokenizers 0.10.3
hassnain/wav2vec2-base-timit-demo-colab3000
d8f73efac93ebe1b0465daea588c3e49faca660b
2022-05-02T17:34:38.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
hassnain
null
hassnain/wav2vec2-base-timit-demo-colab3000
0
null
transformers
37,216
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base-timit-demo-colab3000 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-timit-demo-colab3000 This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - eval_loss: 0.6852 - eval_wer: 0.3845 - eval_runtime: 71.297 - eval_samples_per_second: 9.846 - eval_steps_per_second: 1.234 - epoch: 24.22 - step: 8500 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.11.3 - Pytorch 1.11.0+cu113 - Datasets 1.18.3 - Tokenizers 0.10.3
niprestige/GPT-small-DusabeBot
39ea423ae0a93028b952aeede07eeb2adec9dc3b
2022-05-03T07:58:58.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
niprestige
null
niprestige/GPT-small-DusabeBot
0
null
transformers
37,217
--- tags: - conversational --- # Umutoni DialoGPT Model
fahadtouseef/wav2vec2-base-timit-demo-colab_3
6e59bc2d15554b10404e8ddc44ce4eb648608071
2022-05-02T17:56:34.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
fahadtouseef
null
fahadtouseef/wav2vec2-base-timit-demo-colab_3
0
null
transformers
37,218
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base-timit-demo-colab_3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-timit-demo-colab_3 This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.1942 - Wer: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:---:| | 4.2975 | 3.52 | 500 | 3.1771 | 1.0 | | 3.1468 | 7.04 | 1000 | 3.1917 | 1.0 | | 3.147 | 10.56 | 1500 | 3.1784 | 1.0 | | 3.1467 | 14.08 | 2000 | 3.1850 | 1.0 | | 3.1446 | 17.61 | 2500 | 3.2022 | 1.0 | | 3.1445 | 21.13 | 3000 | 3.2196 | 1.0 | | 3.1445 | 24.65 | 3500 | 3.2003 | 1.0 | | 3.1443 | 28.17 | 4000 | 3.1942 | 1.0 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.11.0+cu113 - Datasets 1.18.3 - Tokenizers 0.10.3
imumtozee/DA-ctrl-bot
6f403cb2b2cfe22617739da156f935caa3e5e9d3
2022-05-02T16:56:29.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
imumtozee
null
imumtozee/DA-ctrl-bot
0
null
transformers
37,219
Entry not found
huggingtweets/wliiyum
7c0129b3c33c94abce5fd4c24776193662cea8e1
2022-05-02T17:02:16.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/wliiyum
0
null
transformers
37,220
--- language: en thumbnail: http://www.huggingtweets.com/wliiyum/1651510930825/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1508957108892581889/eKjVqH0A_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">๐Ÿค– AI BOT ๐Ÿค–</div> <div style="text-align: center; font-size: 16px; font-weight: 800">will i am</div> <div style="text-align: center; font-size: 14px;">@wliiyum</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from will i am. | Data | will i am | | --- | --- | | Tweets downloaded | 3095 | | Retweets | 1040 | | Short tweets | 582 | | Tweets kept | 1473 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/yz2d32iv/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @wliiyum's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2z4gwg3s) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2z4gwg3s/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/wliiyum') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
lilitket/20220502-170601
d2c4aa35171c2c146e3b91d0c55e0148c5c4dbe5
2022-05-02T20:14:03.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
lilitket
null
lilitket/20220502-170601
0
null
transformers
37,221
Entry not found
roshantushar/wav2vec2-base-timit-demo-colab
42e0a4629f30ceaf6f3dcbf6a66722f5f7f4b9a8
2022-05-07T05:33:33.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
roshantushar
null
roshantushar/wav2vec2-base-timit-demo-colab
0
null
transformers
37,222
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base-timit-demo-colab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-timit-demo-colab This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.11.3 - Pytorch 1.11.0+cu113 - Datasets 1.18.3 - Tokenizers 0.10.3
kompactss/JeBERT_ko_je_v2
e3dec1859734b0c8f2dddbfcd9af245dfb7c26bb
2022-05-16T06:10:50.000Z
[ "pytorch", "encoder-decoder", "text2text-generation", "transformers", "license:afl-3.0", "autotrain_compatible" ]
text2text-generation
false
kompactss
null
kompactss/JeBERT_ko_je_v2
0
0
transformers
37,223
--- license: afl-3.0 --- # ๐ŸŠ ์ œ์ฃผ ๋ฐฉ์–ธ ๋ฒˆ์—ญ ๋ชจ๋ธ ๐ŸŠ - ํ‘œ์ค€์–ด -> ์ œ์ฃผ์–ด - Made by. ๊ตฌ๋ฆ„ ์ž์—ฐ์–ด์ฒ˜๋ฆฌ ๊ณผ์ • 3๊ธฐ 3์กฐ!! - github link : https://github.com/Goormnlpteam3/JeBERT ## 1. Seq2Seq Transformer Model - encoder : BertConfig - decoder : BertConfig - Tokenizer : WordPiece Tokenizer ## 2. Dataset - Jit Dataset - AI HUB(+์•„๋ž˜์•„ ๋ฌธ์ž)_v2 ## 3. Hyper Parameters - Epoch : 10 epochs(best at 7 epoch) - Random Seed : 42 - Learning Rate : 5e-5 - Warm up Ratio : 0.1 - Batch Size : 32 ## 4. BLEU Score - Jit + AI HUB(+์•„๋ž˜์•„ ๋ฌธ์ž) Dataset : 67.6 --- ### CREDIT - ์ฃผํ˜•์ค€ : [email protected] - ๊ฐ•๊ฐ€๋žŒ : [email protected] - ๊ณ ๊ด‘์—ฐ : [email protected] - ๊น€์ˆ˜์—ฐ : [email protected] - ์ด์›๊ฒฝ : [email protected] - ์กฐ์„ฑ์€ : [email protected]
huggingtweets/hot_domme
341b19448bc034b3d31249fe5fed0f2891e39653
2022-05-09T02:29:04.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/hot_domme
0
null
transformers
37,224
--- language: en thumbnail: http://www.huggingtweets.com/hot_domme/1652063339945/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1445280995175911425/JkWNc3mK_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">๐Ÿค– AI BOT ๐Ÿค–</div> <div style="text-align: center; font-size: 16px; font-weight: 800">โ„ขSTREET DON ๐Ÿฅฌโ›“๐Ÿฆ‚ุบุนุชุณ ุฏุชุนุฏ๐Ÿฆ‚โ›“ Steamin Hot</div> <div style="text-align: center; font-size: 14px;">@hot_domme</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from โ„ขSTREET DON ๐Ÿฅฌโ›“๐Ÿฆ‚ุบุนุชุณ ุฏุชุนุฏ๐Ÿฆ‚โ›“ Steamin Hot. | Data | โ„ขSTREET DON ๐Ÿฅฌโ›“๐Ÿฆ‚ุบุนุชุณ ุฏุชุนุฏ๐Ÿฆ‚โ›“ Steamin Hot | | --- | --- | | Tweets downloaded | 2733 | | Retweets | 324 | | Short tweets | 371 | | Tweets kept | 2038 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3cv5ajux/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @hot_domme's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2znfpdzh) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2znfpdzh/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/hot_domme') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
maesneako/gpt2-fr_paco-cheese_e1
28ab567e08f9c7bc6af7c7ec3c9ee71c87cabecd
2022-05-02T20:13:39.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
maesneako
null
maesneako/gpt2-fr_paco-cheese_e1
0
null
transformers
37,225
Entry not found
lilitket/20220502-221203
7a0af04ac259d85f05c8c1cada731278f4f92116
2022-05-02T23:45:50.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
lilitket
null
lilitket/20220502-221203
0
null
transformers
37,226
Entry not found
lilitket/20220502-221640
12ebe9a43671b0f4e5e4f567d28842a85b7c7a1c
2022-05-02T23:51:49.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
lilitket
null
lilitket/20220502-221640
0
null
transformers
37,227
Entry not found
huggingtweets/usrsistakenhelp
12d3d7a2c0471cc83d49b7ffdafa9323505ce7b0
2022-05-02T22:26:31.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/usrsistakenhelp
0
null
transformers
37,228
--- language: en thumbnail: http://www.huggingtweets.com/usrsistakenhelp/1651530363067/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1520487753896665088/lO1PwH2q_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">๐Ÿค– AI BOT ๐Ÿค–</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Rosa - I miss tgamm</div> <div style="text-align: center; font-size: 14px;">@usrsistakenhelp</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Rosa - I miss tgamm. | Data | Rosa - I miss tgamm | | --- | --- | | Tweets downloaded | 3244 | | Retweets | 507 | | Short tweets | 1160 | | Tweets kept | 1577 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/jxrwgo01/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @usrsistakenhelp's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1z4w7mpe) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1z4w7mpe/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/usrsistakenhelp') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
lilitket/20220503-001900
b44e0f3b78d5d4deeeb50e8b2a41e8cfcd12c5f1
2022-05-03T02:54:32.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
lilitket
null
lilitket/20220503-001900
0
null
transformers
37,229
Entry not found
huggingtweets/alessandramakes
aeeec3ba668d09b0ca0a9ef56cd0a6741aa54c82
2022-05-03T01:10:45.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/alessandramakes
0
null
transformers
37,230
--- language: en thumbnail: http://www.huggingtweets.com/alessandramakes/1651540241058/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1487593747760103427/KhwkYl5P_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">๐Ÿค– AI BOT ๐Ÿค–</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Alessandra (Taylorโ€™s Version)</div> <div style="text-align: center; font-size: 14px;">@alessandramakes</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Alessandra (Taylorโ€™s Version). | Data | Alessandra (Taylorโ€™s Version) | | --- | --- | | Tweets downloaded | 3156 | | Retweets | 2020 | | Short tweets | 279 | | Tweets kept | 857 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1xfxie26/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @alessandramakes's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2pwrv590) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2pwrv590/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/alessandramakes') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/irenegellar
fb7814fe0cb936e754c0f36012905deff314985c
2022-05-03T05:26:31.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/irenegellar
0
null
transformers
37,231
--- language: en thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1490143959540133891/C-DLhhNQ_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">๐Ÿค– AI BOT ๐Ÿค–</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Random Small Streamer Chick</div> <div style="text-align: center; font-size: 14px;">@irenegellar</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Random Small Streamer Chick. | Data | Random Small Streamer Chick | | --- | --- | | Tweets downloaded | 3241 | | Retweets | 331 | | Short tweets | 472 | | Tweets kept | 2438 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1ns8qkzx/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @irenegellar's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2fvfz3ir) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2fvfz3ir/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/irenegellar') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
tau/false_large_t5_lm_8_1024_0.15_epoch1
7f962c74166743f1760a1f88d9209f30f965e78b
2022-05-03T07:29:40.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
tau
null
tau/false_large_t5_lm_8_1024_0.15_epoch1
0
null
transformers
37,232
Entry not found
lilitket/20220503-095223
9335f4869351f03fe9c9c37ae73469201118fed4
2022-05-03T10:55:20.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
lilitket
null
lilitket/20220503-095223
0
null
transformers
37,233
Entry not found
lilitket/20220503-095247
317928821e205404a60a93b63c75d95d55e2b5d7
2022-05-03T10:55:41.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
lilitket
null
lilitket/20220503-095247
0
null
transformers
37,234
Entry not found
farjvr/DialoGPT-small-Mortyfar
db6525d3163ef344aeaa0f9107c88828b60802e9
2022-05-10T05:45:41.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
farjvr
null
farjvr/DialoGPT-small-Mortyfar
0
null
transformers
37,235
--- tags: - conversational --- # Rick and Morty DialoGPT Model
lilitket/20220503-123019
5ec4f685b71cafe9b28d5b5b308b550c25bb18d6
2022-05-03T14:04:15.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
lilitket
null
lilitket/20220503-123019
0
null
transformers
37,236
Entry not found
osanseviero/test_metrics
7a90079a0b2bc0f8f951cda3f4e0fb55f396f1fd
2022-05-03T13:19:53.000Z
[ "image-classification", "pytorch", "model-index" ]
image-classification
false
osanseviero
null
osanseviero/test_metrics
0
null
null
37,237
--- tags: - image-classification - pytorch metrics: - accuracy model-index: - name: llama-horse-zebra results: - task: name: Image Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 1.0 dataset: name: HumanEval type: openai_humaneval - dataset: name: HumanEval type: openai_humaneval metrics: - name: pass@1 type: code_eval value: 4 task: name: Code Generation type: code-generation - dataset: name: HumanEval type: openai_differenty_type metrics: - name: pass@1 type: code_eval value: 4 task: name: Code Generation type: code-generation --- test
masakhane/afrimbart_en_hau_news
8bc2bf5beed59620a6978404bd3efa54a7cfc4d9
2022-05-03T13:06:54.000Z
[ "pytorch", "mbart", "text2text-generation", "transformers", "license:afl-3.0", "autotrain_compatible" ]
text2text-generation
false
masakhane
null
masakhane/afrimbart_en_hau_news
0
null
transformers
37,238
--- license: afl-3.0 ---
masakhane/afrimbart_hau_en_news
d2cff04df6dd90553321346b4198f9accb8c7d1e
2022-05-03T13:07:06.000Z
[ "pytorch", "mbart", "text2text-generation", "transformers", "license:afl-3.0", "autotrain_compatible" ]
text2text-generation
false
masakhane
null
masakhane/afrimbart_hau_en_news
0
null
transformers
37,239
--- license: afl-3.0 ---
masakhane/afrimt5_hau_en_news
df8a4eba89da253fbd30f733c2171c6c87acc941
2022-05-03T13:07:03.000Z
[ "pytorch", "mt5", "text2text-generation", "transformers", "license:afl-3.0", "autotrain_compatible" ]
text2text-generation
false
masakhane
null
masakhane/afrimt5_hau_en_news
0
null
transformers
37,240
--- license: afl-3.0 ---
masakhane/afrimt5_en_hau_news
a2f28aac3a178a78c9e8139ed75e88424bc59f8c
2022-05-03T13:07:00.000Z
[ "pytorch", "mt5", "text2text-generation", "transformers", "license:afl-3.0", "autotrain_compatible" ]
text2text-generation
false
masakhane
null
masakhane/afrimt5_en_hau_news
0
null
transformers
37,241
--- license: afl-3.0 ---
masakhane/afribyt5_en_hau_news
049d7cfa88558ad2782e76603674f6e4d1bc40b4
2022-05-03T13:15:34.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "license:afl-3.0", "autotrain_compatible" ]
text2text-generation
false
masakhane
null
masakhane/afribyt5_en_hau_news
0
null
transformers
37,242
--- license: afl-3.0 ---
masakhane/afribyt5_hau_en_news
70ebcf66fad8cad38985fb0141f30dbaf4d9cc61
2022-05-03T13:15:36.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "license:afl-3.0", "autotrain_compatible" ]
text2text-generation
false
masakhane
null
masakhane/afribyt5_hau_en_news
0
null
transformers
37,243
--- license: afl-3.0 ---
masakhane/byt5_hau_en_news
62485765293258656b5c554d5f16793a25959345
2022-05-03T13:15:38.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "license:afl-3.0", "autotrain_compatible" ]
text2text-generation
false
masakhane
null
masakhane/byt5_hau_en_news
0
null
transformers
37,244
--- license: afl-3.0 ---
masakhane/byt5_en_hau_news
b60d53d1a71d17ddc0e37bb786829373010480c1
2022-05-03T13:15:40.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "license:afl-3.0", "autotrain_compatible" ]
text2text-generation
false
masakhane
null
masakhane/byt5_en_hau_news
0
null
transformers
37,245
--- license: afl-3.0 ---
masakhane/mt5_en_hau_news
584bfeef283c4d7f0c5a4201099d0b41e6bdc956
2022-05-03T13:24:29.000Z
[ "pytorch", "mt5", "text2text-generation", "transformers", "license:afl-3.0", "autotrain_compatible" ]
text2text-generation
false
masakhane
null
masakhane/mt5_en_hau_news
0
null
transformers
37,246
--- license: afl-3.0 ---
masakhane/mt5_hau_en_news
86df7e8beeed87d00835c3862f843d883160bda8
2022-05-03T13:24:34.000Z
[ "pytorch", "mt5", "text2text-generation", "transformers", "license:afl-3.0", "autotrain_compatible" ]
text2text-generation
false
masakhane
null
masakhane/mt5_hau_en_news
0
null
transformers
37,247
--- license: afl-3.0 ---
masakhane/mbart50_hau_en_news
63ca5562427e837c8e951dac90ee8905a34f1fdd
2022-05-03T13:24:31.000Z
[ "pytorch", "mbart", "text2text-generation", "transformers", "license:afl-3.0", "autotrain_compatible" ]
text2text-generation
false
masakhane
null
masakhane/mbart50_hau_en_news
0
null
transformers
37,248
--- license: afl-3.0 ---
masakhane/mbart50_en_hau_news
0ec0b84972ab53e220b659504fab988b0c154065
2022-05-03T13:24:36.000Z
[ "pytorch", "mbart", "text2text-generation", "transformers", "license:afl-3.0", "autotrain_compatible" ]
text2text-generation
false
masakhane
null
masakhane/mbart50_en_hau_news
0
null
transformers
37,249
--- license: afl-3.0 ---
masakhane/m2m100_418M_hau_en_rel_news
932b996b7da713ad3a2c43d38dd1ff6e9ae2caae
2022-05-03T13:37:04.000Z
[ "pytorch", "m2m_100", "text2text-generation", "transformers", "license:afl-3.0", "autotrain_compatible" ]
text2text-generation
false
masakhane
null
masakhane/m2m100_418M_hau_en_rel_news
0
null
transformers
37,250
--- license: afl-3.0 ---
masakhane/m2m100_418M_en_hau_rel_news_ft
78bef04acda9ac4fcf5efdbb50261bc5386529ac
2022-05-03T13:55:11.000Z
[ "pytorch", "m2m_100", "text2text-generation", "transformers", "license:afl-3.0", "autotrain_compatible" ]
text2text-generation
false
masakhane
null
masakhane/m2m100_418M_en_hau_rel_news_ft
0
null
transformers
37,251
--- license: afl-3.0 ---
masakhane/m2m100_418M_hau_en_rel_news_ft
659f1d44692ee927e015278760196ec01902c079
2022-05-03T13:55:20.000Z
[ "pytorch", "m2m_100", "text2text-generation", "transformers", "license:afl-3.0", "autotrain_compatible" ]
text2text-generation
false
masakhane
null
masakhane/m2m100_418M_hau_en_rel_news_ft
0
null
transformers
37,252
--- license: afl-3.0 ---
masakhane/m2m100_418M_en_hau_rel_ft
81e0aaca9ad15428d4ed152512a5732526d74aaa
2022-05-03T13:55:14.000Z
[ "pytorch", "m2m_100", "text2text-generation", "transformers", "license:afl-3.0", "autotrain_compatible" ]
text2text-generation
false
masakhane
null
masakhane/m2m100_418M_en_hau_rel_ft
0
null
transformers
37,253
--- license: afl-3.0 ---
masakhane/m2m100_418M_en_hau_rel
0b8d598eb09084d19450def0d40b09ec395b7a68
2022-05-03T14:10:30.000Z
[ "pytorch", "m2m_100", "text2text-generation", "transformers", "license:afl-3.0", "autotrain_compatible" ]
text2text-generation
false
masakhane
null
masakhane/m2m100_418M_en_hau_rel
0
null
transformers
37,254
--- license: afl-3.0 ---
masakhane/m2m100_418M_hau_en_rel
90348f43bc91c8bd7584dc03d990426cdb0884e5
2022-05-03T14:10:27.000Z
[ "pytorch", "m2m_100", "text2text-generation", "transformers", "license:afl-3.0", "autotrain_compatible" ]
text2text-generation
false
masakhane
null
masakhane/m2m100_418M_hau_en_rel
0
null
transformers
37,255
--- license: afl-3.0 ---
theojolliffe/bart-large-cnn-finetuned-roundup-4
b37f54a307efae2bd6d7f6bdace85567ee6b2a12
2022-05-03T16:58:47.000Z
[ "pytorch", "tensorboard", "bart", "text2text-generation", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
text2text-generation
false
theojolliffe
null
theojolliffe/bart-large-cnn-finetuned-roundup-4
0
null
transformers
37,256
--- license: mit tags: - generated_from_trainer metrics: - rouge model-index: - name: bart-large-cnn-finetuned-roundup-4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-large-cnn-finetuned-roundup-4 This model is a fine-tuned version of [facebook/bart-large-cnn](https://huggingface.co/facebook/bart-large-cnn) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.2573 - Rouge1: 49.0193 - Rouge2: 28.6311 - Rougel: 31.3363 - Rougelsum: 46.1408 - Gen Len: 142.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | No log | 1.0 | 132 | 1.3178 | 48.4526 | 28.6361 | 30.2875 | 45.4822 | 142.0 | | No log | 2.0 | 264 | 1.2404 | 48.139 | 28.2459 | 29.3584 | 45.0785 | 142.0 | | No log | 3.0 | 396 | 1.2389 | 49.74 | 29.7834 | 33.143 | 46.8147 | 142.0 | | 0.9855 | 4.0 | 528 | 1.2573 | 49.0193 | 28.6311 | 31.3363 | 46.1408 | 142.0 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.1.0 - Tokenizers 0.12.1
sanchit-gandhi/xtreme_s_xlsr_2_bart_covost2_fr_en_2
f6987540b985711a5326a22b328f26fdfff2e14d
2022-05-06T12:38:56.000Z
[ "pytorch", "tensorboard", "speech-encoder-decoder", "automatic-speech-recognition", "dataset:xtreme_s", "transformers", "generated_from_trainer", "model-index" ]
automatic-speech-recognition
false
sanchit-gandhi
null
sanchit-gandhi/xtreme_s_xlsr_2_bart_covost2_fr_en_2
0
null
transformers
37,257
--- tags: - generated_from_trainer datasets: - xtreme_s metrics: - bleu model-index: - name: '' results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model was trained from scratch on the xtreme_s dataset. It achieves the following results on the evaluation set: - Loss: 1.7768 - Bleu: 0.0000 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | |:-------------:|:-----:|:----:|:---------------:|:------:| | 2.5511 | 0.31 | 500 | 5.1039 | 0.0 | | 2.2033 | 0.62 | 1000 | 4.1782 | 0.0000 | | 1.4703 | 0.93 | 1500 | 2.8979 | 0.0000 | | 1.6507 | 1.23 | 2000 | 2.2250 | 0.0000 | | 1.6791 | 1.54 | 2500 | 2.0530 | 0.0000 | | 1.4587 | 1.85 | 3000 | 1.9121 | 0.0000 | | 1.288 | 2.16 | 3500 | 1.8705 | 0.0000 | | 1.2244 | 2.47 | 4000 | 1.7940 | 0.0000 | | 1.0364 | 2.78 | 4500 | 1.7768 | 0.0000 | ### Framework versions - Transformers 4.19.0.dev0 - Pytorch 1.10.2+cu113 - Datasets 2.1.1.dev0 - Tokenizers 0.11.0
lilitket/20220503-174052
9f82d341970debf4c041c31406d66f2bf9fe60c4
2022-05-04T17:08:32.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
lilitket
null
lilitket/20220503-174052
0
null
transformers
37,258
Entry not found
theojolliffe/bart-large-cnn-finetuned-roundup-16
d5a75b3ecefd690bb38b28dabb58b26c8971cb61
2022-05-03T19:21:08.000Z
[ "pytorch", "tensorboard", "bart", "text2text-generation", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
text2text-generation
false
theojolliffe
null
theojolliffe/bart-large-cnn-finetuned-roundup-16
0
null
transformers
37,259
--- license: mit tags: - generated_from_trainer metrics: - rouge model-index: - name: bart-large-cnn-finetuned-roundup-16 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-large-cnn-finetuned-roundup-16 This model is a fine-tuned version of [facebook/bart-large-cnn](https://huggingface.co/facebook/bart-large-cnn) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.8957 - Rouge1: 49.4097 - Rouge2: 29.3516 - Rougel: 31.527 - Rougelsum: 46.4241 - Gen Len: 141.9 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 16 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | No log | 1.0 | 132 | 1.3170 | 48.412 | 29.2017 | 31.6679 | 45.494 | 141.85 | | No log | 2.0 | 264 | 1.2292 | 49.0133 | 29.6645 | 30.7612 | 46.1673 | 142.0 | | No log | 3.0 | 396 | 1.2670 | 49.183 | 29.4104 | 31.573 | 46.7082 | 142.0 | | 0.9596 | 4.0 | 528 | 1.3059 | 47.3854 | 26.6865 | 28.4666 | 44.4934 | 141.8 | | 0.9596 | 5.0 | 660 | 1.3288 | 48.1189 | 26.9242 | 31.2938 | 45.3462 | 142.0 | | 0.9596 | 6.0 | 792 | 1.4084 | 47.5713 | 26.7488 | 29.2959 | 45.1764 | 141.3 | | 0.9596 | 7.0 | 924 | 1.5043 | 46.5407 | 26.0995 | 29.9007 | 43.9335 | 142.0 | | 0.3369 | 8.0 | 1056 | 1.5115 | 49.6891 | 29.0514 | 32.33 | 46.9357 | 142.0 | | 0.3369 | 9.0 | 1188 | 1.6131 | 47.5773 | 27.6348 | 30.5294 | 45.1151 | 142.0 | | 0.3369 | 10.0 | 1320 | 1.6837 | 46.5699 | 26.3805 | 29.8581 | 43.5252 | 142.0 | | 0.3369 | 11.0 | 1452 | 1.7874 | 47.1383 | 26.535 | 30.1724 | 44.2508 | 142.0 | | 0.148 | 12.0 | 1584 | 1.7776 | 49.8061 | 30.1994 | 33.2405 | 47.6102 | 142.0 | | 0.148 | 13.0 | 1716 | 1.8144 | 48.4451 | 28.2949 | 30.9026 | 45.6614 | 142.0 | | 0.148 | 14.0 | 1848 | 1.8646 | 50.1964 | 30.4426 | 32.8156 | 47.4134 | 142.0 | | 0.148 | 15.0 | 1980 | 1.8829 | 48.8129 | 29.2358 | 32.3247 | 46.2233 | 142.0 | | 0.0726 | 16.0 | 2112 | 1.8957 | 49.4097 | 29.3516 | 31.527 | 46.4241 | 141.9 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.1.0 - Tokenizers 0.12.1
simonnedved/bert-seg-v2
d154e560d2236c0237d191c570144dedc4e90383
2022-05-03T18:20:27.000Z
[ "pytorch", "bert", "token-classification", "transformers", "license:apache-2.0", "autotrain_compatible" ]
token-classification
false
simonnedved
null
simonnedved/bert-seg-v2
0
null
transformers
37,260
--- license: apache-2.0 ---
theojolliffe/bart-large-cnn-finetuned-roundup-32
8697a896a26084b0a19576e2e0b364d5604af379
2022-05-03T21:24:20.000Z
[ "pytorch", "tensorboard", "bart", "text2text-generation", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
text2text-generation
false
theojolliffe
null
theojolliffe/bart-large-cnn-finetuned-roundup-32
0
null
transformers
37,261
--- license: mit tags: - generated_from_trainer metrics: - rouge model-index: - name: bart-large-cnn-finetuned-roundup-32 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-large-cnn-finetuned-roundup-32 This model is a fine-tuned version of [facebook/bart-large-cnn](https://huggingface.co/facebook/bart-large-cnn) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.2324 - Rouge1: 46.462 - Rouge2: 25.9506 - Rougel: 29.4584 - Rougelsum: 44.1863 - Gen Len: 142.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 32 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | No log | 1.0 | 132 | 1.3139 | 48.8247 | 29.2173 | 31.7628 | 45.8992 | 142.0 | | No log | 2.0 | 264 | 1.2287 | 47.9398 | 29.4061 | 30.9133 | 44.9142 | 140.9 | | No log | 3.0 | 396 | 1.2676 | 49.2743 | 30.4469 | 32.8893 | 46.6208 | 142.0 | | 0.9578 | 4.0 | 528 | 1.3218 | 47.315 | 26.7303 | 30.5007 | 44.7654 | 142.0 | | 0.9578 | 5.0 | 660 | 1.3173 | 47.1476 | 25.9408 | 29.4257 | 44.4956 | 142.0 | | 0.9578 | 6.0 | 792 | 1.4283 | 47.5836 | 27.1572 | 29.8553 | 44.8858 | 142.0 | | 0.9578 | 7.0 | 924 | 1.5005 | 46.6839 | 26.2214 | 30.1895 | 43.8753 | 140.75 | | 0.3306 | 8.0 | 1056 | 1.5316 | 47.7611 | 27.1105 | 30.8142 | 44.7598 | 142.0 | | 0.3306 | 9.0 | 1188 | 1.6295 | 48.4416 | 27.6912 | 30.3409 | 45.317 | 142.0 | | 0.3306 | 10.0 | 1320 | 1.6564 | 46.5751 | 27.2306 | 29.7265 | 43.7327 | 142.0 | | 0.3306 | 11.0 | 1452 | 1.7471 | 47.9684 | 27.5739 | 30.7018 | 44.6852 | 141.75 | | 0.145 | 12.0 | 1584 | 1.7700 | 47.9274 | 28.5129 | 31.129 | 45.1009 | 142.0 | | 0.145 | 13.0 | 1716 | 1.8391 | 49.8091 | 30.1597 | 33.6004 | 47.2007 | 141.95 | | 0.145 | 14.0 | 1848 | 1.9212 | 45.2195 | 25.033 | 27.4181 | 42.6161 | 142.0 | | 0.145 | 15.0 | 1980 | 1.9267 | 48.4959 | 28.1 | 31.2796 | 46.2758 | 142.0 | | 0.0723 | 16.0 | 2112 | 1.9130 | 47.0765 | 27.4929 | 30.6862 | 44.1458 | 142.0 | | 0.0723 | 17.0 | 2244 | 1.9514 | 48.5354 | 28.4909 | 31.8966 | 45.7116 | 142.0 | | 0.0723 | 18.0 | 2376 | 2.0064 | 47.9339 | 28.6862 | 32.4472 | 45.3704 | 142.0 | | 0.042 | 19.0 | 2508 | 2.0210 | 48.3169 | 28.1579 | 30.2681 | 45.3831 | 141.3 | | 0.042 | 20.0 | 2640 | 2.0377 | 46.8156 | 26.0122 | 28.817 | 43.9383 | 142.0 | | 0.042 | 21.0 | 2772 | 2.0587 | 46.3813 | 27.3555 | 29.875 | 43.6605 | 142.0 | | 0.042 | 22.0 | 2904 | 2.0695 | 45.6728 | 26.0639 | 29.5653 | 42.3772 | 142.0 | | 0.025 | 23.0 | 3036 | 2.1617 | 46.7283 | 26.2082 | 28.52 | 43.3304 | 142.0 | | 0.025 | 24.0 | 3168 | 2.1375 | 48.1347 | 28.3444 | 31.7509 | 45.4907 | 142.0 | | 0.025 | 25.0 | 3300 | 2.1911 | 47.3358 | 27.1479 | 29.4923 | 44.0087 | 142.0 | | 0.025 | 26.0 | 3432 | 2.1806 | 47.2218 | 26.8421 | 30.03 | 44.2417 | 142.0 | | 0.0153 | 27.0 | 3564 | 2.1890 | 46.3745 | 27.0095 | 29.7274 | 43.3372 | 142.0 | | 0.0153 | 28.0 | 3696 | 2.2235 | 50.1274 | 30.8817 | 32.8766 | 46.7486 | 141.5 | | 0.0153 | 29.0 | 3828 | 2.2236 | 50.1785 | 30.8079 | 32.8886 | 46.9888 | 142.0 | | 0.0153 | 30.0 | 3960 | 2.2312 | 46.7468 | 26.4272 | 30.1175 | 43.9132 | 142.0 | | 0.0096 | 31.0 | 4092 | 2.2287 | 47.558 | 26.3933 | 29.9122 | 44.5752 | 142.0 | | 0.0096 | 32.0 | 4224 | 2.2324 | 46.462 | 25.9506 | 29.4584 | 44.1863 | 142.0 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.1.0 - Tokenizers 0.12.1
theojolliffe/bart-large-cnn-finetuned-roundup-64
73abc7471cb3453fa47dd59eb44e81bd24a4c97a
2022-05-04T00:41:04.000Z
[ "pytorch", "tensorboard", "bart", "text2text-generation", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
text2text-generation
false
theojolliffe
null
theojolliffe/bart-large-cnn-finetuned-roundup-64
0
null
transformers
37,262
--- license: mit tags: - generated_from_trainer metrics: - rouge model-index: - name: bart-large-cnn-finetuned-roundup-64 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-large-cnn-finetuned-roundup-64 This model is a fine-tuned version of [facebook/bart-large-cnn](https://huggingface.co/facebook/bart-large-cnn) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.4772 - Rouge1: 46.5444 - Rouge2: 27.4056 - Rougel: 29.6779 - Rougelsum: 44.0905 - Gen Len: 142.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 64 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | No log | 1.0 | 132 | 1.3213 | 48.3389 | 28.6641 | 31.4086 | 45.6679 | 142.0 | | No log | 2.0 | 264 | 1.2325 | 48.798 | 29.3068 | 31.4329 | 45.7945 | 142.0 | | No log | 3.0 | 396 | 1.2791 | 47.1449 | 27.3965 | 30.56 | 44.4704 | 142.0 | | 0.9574 | 4.0 | 528 | 1.3134 | 46.2319 | 25.6249 | 28.7673 | 43.7555 | 140.3 | | 0.9574 | 5.0 | 660 | 1.3187 | 46.7313 | 25.3467 | 29.3873 | 43.9495 | 142.0 | | 0.9574 | 6.0 | 792 | 1.4271 | 48.1638 | 27.8874 | 30.5334 | 45.9944 | 142.0 | | 0.9574 | 7.0 | 924 | 1.4876 | 46.7481 | 25.7259 | 29.7214 | 43.7042 | 140.5 | | 0.3303 | 8.0 | 1056 | 1.5259 | 46.7075 | 26.0716 | 29.5521 | 43.7312 | 142.0 | | 0.3303 | 9.0 | 1188 | 1.6223 | 48.012 | 27.2795 | 30.4989 | 45.4644 | 142.0 | | 0.3303 | 10.0 | 1320 | 1.6842 | 48.0074 | 26.8831 | 29.3396 | 45.1937 | 142.0 | | 0.3303 | 11.0 | 1452 | 1.7317 | 46.52 | 26.5152 | 29.5124 | 43.8797 | 142.0 | | 0.1478 | 12.0 | 1584 | 1.8087 | 47.5887 | 27.0488 | 29.8569 | 44.7318 | 140.8 | | 0.1478 | 13.0 | 1716 | 1.8263 | 46.1251 | 25.8576 | 30.1698 | 42.7228 | 142.0 | | 0.1478 | 14.0 | 1848 | 1.9459 | 46.4034 | 25.7039 | 28.2542 | 43.7254 | 142.0 | | 0.1478 | 15.0 | 1980 | 1.9539 | 44.4666 | 24.5827 | 27.7147 | 41.9769 | 142.0 | | 0.0779 | 16.0 | 2112 | 1.9654 | 47.2267 | 26.4562 | 29.7352 | 44.0823 | 142.0 | | 0.0779 | 17.0 | 2244 | 1.9580 | 48.5086 | 28.0294 | 30.8311 | 45.6336 | 142.0 | | 0.0779 | 18.0 | 2376 | 2.0065 | 48.293 | 28.5678 | 30.0243 | 45.1384 | 142.0 | | 0.0499 | 19.0 | 2508 | 1.9313 | 49.0549 | 28.9695 | 32.0711 | 46.3834 | 142.0 | | 0.0499 | 20.0 | 2640 | 2.0176 | 47.0121 | 25.1606 | 29.0108 | 44.1556 | 142.0 | | 0.0499 | 21.0 | 2772 | 2.0711 | 48.3754 | 28.2221 | 30.772 | 45.8547 | 140.95 | | 0.0499 | 22.0 | 2904 | 2.0848 | 45.7392 | 25.254 | 29.0833 | 43.0381 | 142.0 | | 0.0335 | 23.0 | 3036 | 2.0711 | 47.2931 | 27.4573 | 30.718 | 44.5932 | 142.0 | | 0.0335 | 24.0 | 3168 | 2.1200 | 50.515 | 30.4253 | 33.7045 | 47.6158 | 142.0 | | 0.0335 | 25.0 | 3300 | 2.1097 | 46.4737 | 26.3055 | 29.0148 | 43.2135 | 142.0 | | 0.0335 | 26.0 | 3432 | 2.1695 | 46.9099 | 26.5227 | 29.7757 | 44.0613 | 142.0 | | 0.0249 | 27.0 | 3564 | 2.1494 | 47.8319 | 27.6364 | 31.3593 | 45.065 | 141.95 | | 0.0249 | 28.0 | 3696 | 2.1510 | 47.504 | 26.8971 | 31.7196 | 45.0328 | 142.0 | | 0.0249 | 29.0 | 3828 | 2.1612 | 46.8789 | 27.266 | 30.1009 | 43.8248 | 142.0 | | 0.0249 | 30.0 | 3960 | 2.1579 | 47.7012 | 27.7761 | 30.935 | 44.3686 | 142.0 | | 0.018 | 31.0 | 4092 | 2.1981 | 48.4703 | 29.167 | 31.9815 | 45.8005 | 142.0 | | 0.018 | 32.0 | 4224 | 2.2332 | 45.9512 | 25.8111 | 29.2467 | 42.9234 | 142.0 | | 0.018 | 33.0 | 4356 | 2.1944 | 47.7189 | 28.1413 | 30.9692 | 44.9361 | 142.0 | | 0.018 | 34.0 | 4488 | 2.2589 | 50.9687 | 32.3987 | 36.5644 | 48.3938 | 142.0 | | 0.0132 | 35.0 | 4620 | 2.2269 | 47.8241 | 28.0442 | 31.5535 | 44.9394 | 142.0 | | 0.0132 | 36.0 | 4752 | 2.2865 | 47.4383 | 27.0825 | 30.4109 | 44.194 | 142.0 | | 0.0132 | 37.0 | 4884 | 2.3267 | 49.1786 | 29.6416 | 32.875 | 46.8821 | 142.0 | | 0.0095 | 38.0 | 5016 | 2.2872 | 48.2085 | 28.3304 | 32.1473 | 45.3571 | 142.0 | | 0.0095 | 39.0 | 5148 | 2.3340 | 46.6762 | 26.1637 | 29.0149 | 43.5923 | 142.0 | | 0.0095 | 40.0 | 5280 | 2.3425 | 46.7561 | 26.1645 | 29.6337 | 43.6188 | 142.0 | | 0.0095 | 41.0 | 5412 | 2.3111 | 49.4118 | 29.9761 | 33.4765 | 46.601 | 142.0 | | 0.0076 | 42.0 | 5544 | 2.3892 | 45.3335 | 25.0161 | 28.4124 | 41.9873 | 142.0 | | 0.0076 | 43.0 | 5676 | 2.3808 | 46.2506 | 26.4283 | 29.3841 | 42.7488 | 142.0 | | 0.0076 | 44.0 | 5808 | 2.3825 | 45.6823 | 26.0048 | 29.5501 | 42.6475 | 142.0 | | 0.0076 | 45.0 | 5940 | 2.3592 | 47.9127 | 26.7924 | 30.2353 | 44.791 | 142.0 | | 0.0051 | 46.0 | 6072 | 2.4206 | 46.0415 | 27.0681 | 29.9602 | 43.1225 | 142.0 | | 0.0051 | 47.0 | 6204 | 2.4214 | 48.1229 | 29.0913 | 31.1828 | 45.0022 | 142.0 | | 0.0051 | 48.0 | 6336 | 2.4176 | 47.3825 | 27.7622 | 30.4138 | 43.9047 | 142.0 | | 0.0051 | 49.0 | 6468 | 2.4137 | 48.2544 | 28.277 | 31.5548 | 45.6053 | 142.0 | | 0.0041 | 50.0 | 6600 | 2.4384 | 49.6459 | 30.186 | 33.0059 | 47.0483 | 142.0 | | 0.0041 | 51.0 | 6732 | 2.4433 | 47.7279 | 27.7857 | 30.2982 | 45.0842 | 142.0 | | 0.0041 | 52.0 | 6864 | 2.4068 | 48.6047 | 28.1758 | 31.2744 | 45.8336 | 142.0 | | 0.0041 | 53.0 | 6996 | 2.4362 | 48.7095 | 29.3335 | 31.9509 | 46.4161 | 142.0 | | 0.003 | 54.0 | 7128 | 2.4307 | 48.836 | 29.6069 | 32.4004 | 46.1986 | 142.0 | | 0.003 | 55.0 | 7260 | 2.4292 | 47.2945 | 26.7577 | 28.9719 | 43.8988 | 142.0 | | 0.003 | 56.0 | 7392 | 2.4425 | 45.2261 | 25.6879 | 28.8129 | 42.6474 | 142.0 | | 0.0024 | 57.0 | 7524 | 2.4386 | 47.967 | 28.5415 | 32.2049 | 45.5111 | 142.0 | | 0.0024 | 58.0 | 7656 | 2.4528 | 47.5552 | 27.6397 | 30.9151 | 44.2627 | 142.0 | | 0.0024 | 59.0 | 7788 | 2.4574 | 46.7821 | 27.3368 | 30.6334 | 44.0533 | 142.0 | | 0.0024 | 60.0 | 7920 | 2.4659 | 47.3507 | 26.8371 | 30.4566 | 44.4452 | 142.0 | | 0.0018 | 61.0 | 8052 | 2.4766 | 47.9847 | 28.2678 | 30.0664 | 45.0071 | 142.0 | | 0.0018 | 62.0 | 8184 | 2.4682 | 46.8392 | 27.1275 | 30.144 | 43.6379 | 142.0 | | 0.0018 | 63.0 | 8316 | 2.4754 | 45.6338 | 26.2812 | 29.4831 | 42.8744 | 142.0 | | 0.0018 | 64.0 | 8448 | 2.4772 | 46.5444 | 27.4056 | 29.6779 | 44.0905 | 142.0 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.1.0 - Tokenizers 0.12.1
huggingtweets/dril-nycguidovoice-senn_spud
c3050cc4a8c20962f01dc5de1d9c843821c75ea0
2022-05-04T01:55:26.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/dril-nycguidovoice-senn_spud
0
null
transformers
37,263
--- language: en thumbnail: http://www.huggingtweets.com/dril-nycguidovoice-senn_spud/1651629321136/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1510917391533830145/XW-zSFDJ_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1503095773059244036/xof9dI-A_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1387151448203358209/HKNuKY7L_400x400.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">๐Ÿค– AI CYBORG ๐Ÿค–</div> <div style="text-align: center; font-size: 16px; font-weight: 800">wint & Nick Mullen & Will Sennett</div> <div style="text-align: center; font-size: 14px;">@dril-nycguidovoice-senn_spud</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from wint & Nick Mullen & Will Sennett. | Data | wint | Nick Mullen | Will Sennett | | --- | --- | --- | --- | | Tweets downloaded | 3229 | 1007 | 3231 | | Retweets | 486 | 71 | 314 | | Short tweets | 300 | 41 | 631 | | Tweets kept | 2443 | 895 | 2286 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3dcek2rh/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @dril-nycguidovoice-senn_spud's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2f1xmo4s) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2f1xmo4s/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/dril-nycguidovoice-senn_spud') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
ybkim95/lp-bert-model
0feb2e341932681e2f023c3933adcffa63d9d99f
2022-05-04T06:26:12.000Z
[ "pytorch", "bert", "feature-extraction", "sentence-transformers", "sentence-similarity", "transformers" ]
sentence-similarity
false
ybkim95
null
ybkim95/lp-bert-model
0
null
sentence-transformers
37,264
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # ybkim95/lp-bert-model This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('ybkim95/lp-bert-model') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('ybkim95/lp-bert-model') model = AutoModel.from_pretrained('ybkim95/lp-bert-model') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=ybkim95/lp-bert-model) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 46 with parameters: ``` {'batch_size': 16, 'sampler': 'torch.utils.data.sampler.SequentialSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 10, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 10000, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
ghabin/test_Huxley_Orwell
5752de6d20a59c0e40b4833800c46757640f6b4f
2022-05-04T10:25:22.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "license:afl-3.0" ]
text-generation
false
ghabin
null
ghabin/test_Huxley_Orwell
0
null
transformers
37,265
--- license: afl-3.0 ---
iis2009002/xlm-roberta-base-finetuned-panx-en
43aecee3a992b2712b94063b611c37604cd3f16f
2022-05-12T07:08:50.000Z
[ "pytorch", "xlm-roberta", "token-classification", "dataset:xtreme", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
token-classification
false
iis2009002
null
iis2009002/xlm-roberta-base-finetuned-panx-en
0
null
transformers
37,266
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-en results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme args: PAN-X.en metrics: - name: F1 type: f1 value: 0.692179700499168 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-en This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.3921 - F1: 0.6922 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 1.1465 | 1.0 | 50 | 0.5838 | 0.4777 | | 0.5055 | 2.0 | 100 | 0.4477 | 0.6374 | | 0.3713 | 3.0 | 150 | 0.3921 | 0.6922 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.11.0+cu113 - Datasets 1.16.1 - Tokenizers 0.10.3
iis2009002/xlm-roberta-base-finetuned-panx-all
a5abefed94821920c943f6a4a5e5d0445877862e
2022-05-12T07:17:40.000Z
[ "pytorch", "xlm-roberta", "token-classification", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
token-classification
false
iis2009002
null
iis2009002/xlm-roberta-base-finetuned-panx-all
0
null
transformers
37,267
--- license: mit tags: - generated_from_trainer metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-all results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-all This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1752 - F1: 0.8557 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.3 | 1.0 | 835 | 0.1862 | 0.8114 | | 0.1552 | 2.0 | 1670 | 0.1758 | 0.8426 | | 0.1002 | 3.0 | 2505 | 0.1752 | 0.8557 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.11.0+cu113 - Datasets 1.16.1 - Tokenizers 0.10.3
qgdmonilla/DialoGPT-small-harrypotter
0d536a321a118437a822431f81a5021735bf4693
2022-05-04T11:56:14.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
qgdmonilla
null
qgdmonilla/DialoGPT-small-harrypotter
0
null
transformers
37,268
--- tags: - conversational --- # Harry Potter DialoGPT Model
uhlenbeckmew/distilroberta-base-swift_shake
c2dec21da65f0850bcd1e3b99e74223d9c5e201e
2022-05-04T13:25:06.000Z
[ "pytorch", "tensorboard", "roberta", "fill-mask", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
fill-mask
false
uhlenbeckmew
null
uhlenbeckmew/distilroberta-base-swift_shake
0
null
transformers
37,269
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distilroberta-base-swift_shake results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilroberta-base-swift_shake This model is a fine-tuned version of [distilroberta-base](https://huggingface.co/distilroberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.5309 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 334 | 2.5817 | | 2.7363 | 2.0 | 668 | 2.4499 | | 2.4584 | 3.0 | 1002 | 2.5309 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.1.0 - Tokenizers 0.12.1
kravchenko/uk-t5-compressed-gec
60933636333da2f8a65f83327e497d7b4ee08804
2022-05-04T16:26:43.000Z
[ "pytorch", "mt5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
kravchenko
null
kravchenko/uk-t5-compressed-gec
0
null
transformers
37,270
Entry not found
simonnedved/codet5-large-v2
6726dc185046101a4ca46e22df26243a115a15df
2022-05-04T16:02:52.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "license:apache-2.0", "autotrain_compatible" ]
text2text-generation
false
simonnedved
null
simonnedved/codet5-large-v2
0
null
transformers
37,271
--- license: apache-2.0 ---
huggingtweets/cpulisic_10-usmnt-zacksteffen_
aad6df576654fc58a63d2d3d3a77c8896753077c
2022-05-04T16:00:44.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/cpulisic_10-usmnt-zacksteffen_
0
null
transformers
37,272
--- language: en thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1410587808666955776/mWkKWw1U_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1509644465388105731/dErjQdWT_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1511457717281607680/SuAprf1T_400x400.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">๐Ÿค– AI CYBORG ๐Ÿค–</div> <div style="text-align: center; font-size: 16px; font-weight: 800">USMNT & Zack Steffen & Christian Pulisic</div> <div style="text-align: center; font-size: 14px;">@cpulisic_10-usmnt-zacksteffen_</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from USMNT & Zack Steffen & Christian Pulisic. | Data | USMNT | Zack Steffen | Christian Pulisic | | --- | --- | --- | --- | | Tweets downloaded | 3243 | 3120 | 1159 | | Retweets | 599 | 869 | 629 | | Short tweets | 215 | 523 | 93 | | Tweets kept | 2429 | 1728 | 437 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/395einau/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @cpulisic_10-usmnt-zacksteffen_'s tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1x9olwhx) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1x9olwhx/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/cpulisic_10-usmnt-zacksteffen_') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/andrewf301
cc477fd66db5ba0453bc33d4dce889044ae5e3e1
2022-05-04T16:37:26.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/andrewf301
0
null
transformers
37,273
--- language: en thumbnail: http://www.huggingtweets.com/andrewf301/1651682241128/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1484200123827580931/t1rZx1nN_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">๐Ÿค– AI BOT ๐Ÿค–</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Andrew</div> <div style="text-align: center; font-size: 14px;">@andrewf301</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Andrew. | Data | Andrew | | --- | --- | | Tweets downloaded | 3242 | | Retweets | 1010 | | Short tweets | 328 | | Tweets kept | 1904 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3ap29rsr/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @andrewf301's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/7kehh3u8) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/7kehh3u8/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/andrewf301') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/usmnt-zacksteffen_
90cf59452eb38735c2d9d4835c5608fb59bde182
2022-05-04T17:19:08.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/usmnt-zacksteffen_
0
null
transformers
37,274
--- language: en thumbnail: http://www.huggingtweets.com/usmnt-zacksteffen_/1651684743123/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1410587808666955776/mWkKWw1U_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1509644465388105731/dErjQdWT_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">๐Ÿค– AI CYBORG ๐Ÿค–</div> <div style="text-align: center; font-size: 16px; font-weight: 800">USMNT & Zack Steffen</div> <div style="text-align: center; font-size: 14px;">@usmnt-zacksteffen_</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from USMNT & Zack Steffen. | Data | USMNT | Zack Steffen | | --- | --- | --- | | Tweets downloaded | 3250 | 3120 | | Retweets | 600 | 869 | | Short tweets | 215 | 523 | | Tweets kept | 2435 | 1728 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/34uud8si/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @usmnt-zacksteffen_'s tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2wiyd3kq) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2wiyd3kq/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/usmnt-zacksteffen_') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
theojolliffe/bart-large-cnn-finetuned-roundup-2-4
56082e3986f8b9b6f5761768cc36aceb681dfdbe
2022-05-04T19:31:38.000Z
[ "pytorch", "tensorboard", "bart", "text2text-generation", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
text2text-generation
false
theojolliffe
null
theojolliffe/bart-large-cnn-finetuned-roundup-2-4
0
null
transformers
37,275
--- license: mit tags: - generated_from_trainer metrics: - rouge model-index: - name: bart-large-cnn-finetuned-roundup-2-4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-large-cnn-finetuned-roundup-2-4 This model is a fine-tuned version of [facebook/bart-large-cnn](https://huggingface.co/facebook/bart-large-cnn) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.0908 - Rouge1: 51.9961 - Rouge2: 32.3963 - Rougel: 32.1774 - Rougelsum: 50.1033 - Gen Len: 141.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:--------:| | No log | 1.0 | 167 | 1.2152 | 52.234 | 33.1104 | 33.308 | 49.5516 | 142.0 | | No log | 2.0 | 334 | 1.1054 | 52.7096 | 33.4698 | 33.9595 | 49.8736 | 140.3333 | | 1.0437 | 3.0 | 501 | 1.0796 | 51.699 | 32.4255 | 34.0294 | 49.5276 | 141.7143 | | 1.0437 | 4.0 | 668 | 1.0908 | 51.9961 | 32.3963 | 32.1774 | 50.1033 | 141.0 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.1.0 - Tokenizers 0.12.1
huggingtweets/kanyewest-usmnt
1a9894789a6ec215f77d0d8b0bb0c6cf3b791c86
2022-05-04T18:51:59.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/kanyewest-usmnt
0
null
transformers
37,276
--- language: en thumbnail: http://www.huggingtweets.com/kanyewest-usmnt/1651690314434/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1410587808666955776/mWkKWw1U_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1276461929934942210/cqNhNk6v_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">๐Ÿค– AI CYBORG ๐Ÿค–</div> <div style="text-align: center; font-size: 16px; font-weight: 800">USMNT & ye</div> <div style="text-align: center; font-size: 14px;">@kanyewest-usmnt</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from USMNT & ye. | Data | USMNT | ye | | --- | --- | --- | | Tweets downloaded | 3247 | 1858 | | Retweets | 600 | 188 | | Short tweets | 215 | 573 | | Tweets kept | 2432 | 1097 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/12os8ehp/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @kanyewest-usmnt's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2pwtssam) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2pwtssam/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/kanyewest-usmnt') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
phosseini/glucose-roberta-large
1c71e46cea65447ce81033f9b13e872565f0a357
2022-05-04T18:06:58.000Z
[ "pytorch", "roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
phosseini
null
phosseini/glucose-roberta-large
0
null
transformers
37,277
Entry not found
kravchenko/uk-mt5-gec
ec4c96471d521b1a861f4f1608d6fc3385024524
2022-05-04T18:25:34.000Z
[ "pytorch", "mt5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
kravchenko
null
kravchenko/uk-mt5-gec
0
null
transformers
37,278
Entry not found
theojolliffe/bart-large-cnn-finetuned-roundup-2-8
5ffea8acb5f94ef359813251a0c5fc3566632273
2022-05-05T08:30:11.000Z
[ "pytorch", "tensorboard", "bart", "text2text-generation", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
text2text-generation
false
theojolliffe
null
theojolliffe/bart-large-cnn-finetuned-roundup-2-8
0
null
transformers
37,279
--- license: mit tags: - generated_from_trainer metrics: - rouge model-index: - name: bart-large-cnn-finetuned-roundup-2-8 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-large-cnn-finetuned-roundup-2-8 This model is a fine-tuned version of [facebook/bart-large-cnn](https://huggingface.co/facebook/bart-large-cnn) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.1855 - Rouge1: 53.552 - Rouge2: 34.9077 - Rougel: 38.0158 - Rougelsum: 50.7179 - Gen Len: 142.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:--------:| | No log | 1.0 | 167 | 1.2085 | 50.8706 | 32.0069 | 32.9241 | 47.9805 | 142.0 | | No log | 2.0 | 334 | 1.0897 | 53.2218 | 34.1317 | 34.4827 | 50.4795 | 139.4286 | | 1.0256 | 3.0 | 501 | 1.0535 | 50.8882 | 30.2514 | 31.5051 | 47.9856 | 141.9048 | | 1.0256 | 4.0 | 668 | 1.0515 | 54.9414 | 35.2309 | 36.006 | 52.0331 | 142.0 | | 1.0256 | 5.0 | 835 | 1.0829 | 53.0709 | 33.4587 | 36.4223 | 50.1627 | 140.7619 | | 0.4579 | 6.0 | 1002 | 1.1310 | 51.5274 | 30.7069 | 32.4146 | 48.8851 | 142.0 | | 0.4579 | 7.0 | 1169 | 1.1670 | 52.1536 | 31.7158 | 35.7483 | 49.2678 | 142.0 | | 0.4579 | 8.0 | 1336 | 1.1855 | 53.552 | 34.9077 | 38.0158 | 50.7179 | 142.0 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.1.0 - Tokenizers 0.12.1
jjezabek/bert-base-uncased-sst
3ec25f66388df70c0c40762d91ae5a6c759b3914
2022-05-04T23:12:33.000Z
[ "pytorch" ]
null
false
jjezabek
null
jjezabek/bert-base-uncased-sst
0
null
null
37,280
Entry not found
laituan245/t5-v1_1-base-caption2smiles
89ee91e665b6cc17af8b786e553d82afa78aa0c0
2022-05-05T00:23:11.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "license:apache-2.0", "autotrain_compatible" ]
text2text-generation
false
laituan245
null
laituan245/t5-v1_1-base-caption2smiles
0
null
transformers
37,281
--- license: apache-2.0 ---
maesneako/gpt2-maptask-GF
960a499695dfff9d5cfbe24159798d987b808202
2022-05-08T08:26:23.000Z
[ "pytorch", "tensorboard", "gpt2", "text-generation", "transformers", "generated_from_trainer", "license:mit", "model-index" ]
text-generation
false
maesneako
null
maesneako/gpt2-maptask-GF
0
null
transformers
37,282
--- license: mit tags: - generated_from_trainer model-index: - name: gpt2-maptask-GF results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt2-maptask-GF This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.7116 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-06 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - num_epochs: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 3.0139 | 0.84 | 1000 | 2.9045 | | 2.7923 | 1.67 | 2000 | 2.7825 | | 2.6799 | 2.51 | 3000 | 2.7264 | | 2.607 | 3.34 | 4000 | 2.6917 | | 2.55 | 4.18 | 5000 | 2.6708 | | 2.4988 | 5.01 | 6000 | 2.6570 | | 2.4697 | 5.85 | 7000 | 2.6480 | | 2.426 | 6.68 | 8000 | 2.6452 | | 2.4031 | 7.52 | 9000 | 2.6404 | | 2.3654 | 8.35 | 10000 | 2.6416 | | 2.3471 | 9.19 | 11000 | 2.6418 | | 2.3195 | 10.03 | 12000 | 2.6444 | | 2.2969 | 10.86 | 13000 | 2.6455 | | 2.2767 | 11.7 | 14000 | 2.6489 | | 2.2608 | 12.53 | 15000 | 2.6525 | | 2.2381 | 13.37 | 16000 | 2.6563 | | 2.2228 | 14.2 | 17000 | 2.6602 | | 2.2037 | 15.04 | 18000 | 2.6641 | | 2.1911 | 15.87 | 19000 | 2.6684 | | 2.1742 | 16.71 | 20000 | 2.6739 | | 2.1626 | 17.54 | 21000 | 2.6776 | | 2.1504 | 18.38 | 22000 | 2.6800 | | 2.143 | 19.21 | 23000 | 2.6832 | | 2.1277 | 20.05 | 24000 | 2.6892 | | 2.1178 | 20.89 | 25000 | 2.6924 | | 2.1128 | 21.72 | 26000 | 2.6952 | | 2.1009 | 22.56 | 27000 | 2.6978 | | 2.0957 | 23.39 | 28000 | 2.7006 | | 2.0885 | 24.23 | 29000 | 2.7024 | | 2.0849 | 25.06 | 30000 | 2.7065 | | 2.0794 | 25.9 | 31000 | 2.7075 | | 2.0783 | 26.73 | 32000 | 2.7090 | | 2.0698 | 27.57 | 33000 | 2.7106 | | 2.0718 | 28.4 | 34000 | 2.7109 | | 2.069 | 29.24 | 35000 | 2.7116 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.1.0 - Tokenizers 0.12.1
schorndorfer/distilgpt2-finetuned-wikitext2
caf5ec969b1c18545e21165f6e9ca0e6374f9514
2022-05-05T03:42:12.000Z
[ "pytorch", "tensorboard", "gpt2", "text-generation", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-generation
false
schorndorfer
null
schorndorfer/distilgpt2-finetuned-wikitext2
0
null
transformers
37,283
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distilgpt2-finetuned-wikitext2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilgpt2-finetuned-wikitext2 This model is a fine-tuned version of [distilgpt2](https://huggingface.co/distilgpt2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.6425 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 3.76 | 1.0 | 2334 | 3.6658 | | 3.6526 | 2.0 | 4668 | 3.6468 | | 3.6004 | 3.0 | 7002 | 3.6425 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.1.0 - Tokenizers 0.12.1
maesneako/gpt2-fr-space-paco-cheese
15ac9c33a5ffdcd2755067d04eac5e2f4f47d2e6
2022-05-05T03:43:32.000Z
[ "pytorch", "tensorboard", "gpt2", "text-generation", "transformers", "generated_from_trainer", "model-index" ]
text-generation
false
maesneako
null
maesneako/gpt2-fr-space-paco-cheese
0
null
transformers
37,284
--- tags: - generated_from_trainer model-index: - name: gpt2-fr-space-paco-cheese results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt2-fr-space-paco-cheese This model is a fine-tuned version of [dbddv01/gpt2-french-small](https://huggingface.co/dbddv01/gpt2-french-small) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - num_epochs: 65 ### Training results ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.1.0 - Tokenizers 0.12.1
schorndorfer/distilroberta-base-finetuned-wikitext2
de633356ee76b24b9a081ed374184b48942b8f42
2022-05-05T04:09:37.000Z
[ "pytorch", "tensorboard", "roberta", "fill-mask", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
fill-mask
false
schorndorfer
null
schorndorfer/distilroberta-base-finetuned-wikitext2
0
null
transformers
37,285
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distilroberta-base-finetuned-wikitext2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilroberta-base-finetuned-wikitext2 This model is a fine-tuned version of [distilroberta-base](https://huggingface.co/distilroberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.8347 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.0853 | 1.0 | 2406 | 1.9214 | | 1.986 | 2.0 | 4812 | 1.8799 | | 1.9568 | 3.0 | 7218 | 1.8202 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.1.0 - Tokenizers 0.12.1
maesneako/gpt2-fr-eos-paco-cheese
94ce9fa568ed998ccb62f7078175d4a403231e23
2022-05-05T04:47:13.000Z
[ "pytorch", "tensorboard", "gpt2", "text-generation", "transformers", "generated_from_trainer", "model-index" ]
text-generation
false
maesneako
null
maesneako/gpt2-fr-eos-paco-cheese
0
null
transformers
37,286
--- tags: - generated_from_trainer model-index: - name: gpt2-fr-eos-paco-cheese results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt2-fr-eos-paco-cheese This model is a fine-tuned version of [dbddv01/gpt2-french-small](https://huggingface.co/dbddv01/gpt2-french-small) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - num_epochs: 65 ### Training results ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.1.0 - Tokenizers 0.12.1
maesneako/gpt2-fr-space-orfeo-cid-paco-cheese
8c0adb39a7010820fb67018037ccf08fd1f9b9f4
2022-05-05T08:21:37.000Z
[ "pytorch", "tensorboard", "gpt2", "text-generation", "transformers", "generated_from_trainer", "model-index" ]
text-generation
false
maesneako
null
maesneako/gpt2-fr-space-orfeo-cid-paco-cheese
0
null
transformers
37,287
--- tags: - generated_from_trainer model-index: - name: gpt2-fr-space-orfeo-cid-paco-cheese results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt2-fr-space-orfeo-cid-paco-cheese This model is a fine-tuned version of [dbddv01/gpt2-french-small](https://huggingface.co/dbddv01/gpt2-french-small) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - num_epochs: 20 ### Training results ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.1.0 - Tokenizers 0.12.1
maesneako/gpt2-fr-eos-orfeo-cid-paco-cheese
92013c98c9718737781bed4b3a7a1b1d256bb02e
2022-05-05T11:08:06.000Z
[ "pytorch", "tensorboard", "gpt2", "text-generation", "transformers", "generated_from_trainer", "model-index" ]
text-generation
false
maesneako
null
maesneako/gpt2-fr-eos-orfeo-cid-paco-cheese
0
null
transformers
37,288
--- tags: - generated_from_trainer model-index: - name: gpt2-fr-eos-orfeo-cid-paco-cheese results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt2-fr-eos-orfeo-cid-paco-cheese This model is a fine-tuned version of [dbddv01/gpt2-french-small](https://huggingface.co/dbddv01/gpt2-french-small) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - num_epochs: 20 ### Training results ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.1.0 - Tokenizers 0.12.1
masakhane/afrimbart_lug_en_news
96d31bdae827f33c8a4116bfdd475c501501a240
2022-05-05T13:41:16.000Z
[ "pytorch", "mbart", "text2text-generation", "transformers", "license:afl-3.0", "autotrain_compatible" ]
text2text-generation
false
masakhane
null
masakhane/afrimbart_lug_en_news
0
null
transformers
37,289
--- license: afl-3.0 ---
masakhane/afrimt5_lug_en_news
80adfd97e331ce3cc015f52cb94bf2937dbeaa20
2022-05-05T13:41:20.000Z
[ "pytorch", "mt5", "text2text-generation", "transformers", "license:afl-3.0", "autotrain_compatible" ]
text2text-generation
false
masakhane
null
masakhane/afrimt5_lug_en_news
0
null
transformers
37,290
--- license: afl-3.0 ---
masakhane/afribyt5_en_lug_news
7a6e5ffef26172398f547993b5ffcac3a15136bc
2022-05-05T13:50:15.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "license:afl-3.0", "autotrain_compatible" ]
text2text-generation
false
masakhane
null
masakhane/afribyt5_en_lug_news
0
null
transformers
37,291
--- license: afl-3.0 ---
masakhane/byt5_en_lug_news
dfd8d9a72038aa5b3ec4f63db0ec26339f1ead87
2022-05-05T13:50:24.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "license:afl-3.0", "autotrain_compatible" ]
text2text-generation
false
masakhane
null
masakhane/byt5_en_lug_news
0
null
transformers
37,292
--- license: afl-3.0 ---
masakhane/mt5_en_lug_news
d2b1e38224558dcec10f834030ad6657257e0b85
2022-05-05T14:04:25.000Z
[ "pytorch", "mt5", "text2text-generation", "transformers", "license:afl-3.0", "autotrain_compatible" ]
text2text-generation
false
masakhane
null
masakhane/mt5_en_lug_news
0
null
transformers
37,293
--- license: afl-3.0 ---
masakhane/mbart50_lug_en_news
3383906ddaa3b44844b3c801082e8056a9043ff8
2022-05-05T14:04:31.000Z
[ "pytorch", "mbart", "text2text-generation", "transformers", "license:afl-3.0", "autotrain_compatible" ]
text2text-generation
false
masakhane
null
masakhane/mbart50_lug_en_news
0
null
transformers
37,294
--- license: afl-3.0 ---
masakhane/mbart50_en_lug_news
d774f97102a91b186633fc3811925b485bee4de6
2022-05-05T14:04:36.000Z
[ "pytorch", "mbart", "text2text-generation", "transformers", "license:afl-3.0", "autotrain_compatible" ]
text2text-generation
false
masakhane
null
masakhane/mbart50_en_lug_news
0
null
transformers
37,295
--- license: afl-3.0 ---
masakhane/m2m100_418M_lug_en_rel_news_ft
5e1ff3332af98fb73d467df7ad0d65431cd50f5c
2022-05-05T14:23:00.000Z
[ "pytorch", "m2m_100", "text2text-generation", "transformers", "license:afl-3.0", "autotrain_compatible" ]
text2text-generation
false
masakhane
null
masakhane/m2m100_418M_lug_en_rel_news_ft
0
null
transformers
37,296
--- license: afl-3.0 ---
masakhane/m2m100_418M_lug_en_rel
e90467566fe0e054653ba884ded519aa723a5a58
2022-05-05T14:29:02.000Z
[ "pytorch", "m2m_100", "text2text-generation", "transformers", "license:afl-3.0", "autotrain_compatible" ]
text2text-generation
false
masakhane
null
masakhane/m2m100_418M_lug_en_rel
0
null
transformers
37,297
--- license: afl-3.0 ---
tau/False_large_pmi_para0_sent1_span2_itTrue_sargmax_rrFalse_8_1024_0.15_1
fd4a6ad7e559884a868a6f29669d91a50fe5ebb4
2022-05-05T14:00:16.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
tau
null
tau/False_large_pmi_para0_sent1_span2_itTrue_sargmax_rrFalse_8_1024_0.15_1
0
null
transformers
37,298
Entry not found
tau/False_large_pmi_paraNone_sentNone_span0_itTrue_sargmax_rrFalse_8_1024_0.15_1
07dc77b8cd4ea8e5a4bb1d7a86d47516f10e18dd
2022-05-05T13:59:34.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
tau
null
tau/False_large_pmi_paraNone_sentNone_span0_itTrue_sargmax_rrFalse_8_1024_0.15_1
0
null
transformers
37,299
Entry not found