modelId
stringlengths
4
112
sha
stringlengths
40
40
lastModified
stringlengths
24
24
tags
sequence
pipeline_tag
stringclasses
29 values
private
bool
1 class
author
stringlengths
2
38
config
null
id
stringlengths
4
112
downloads
float64
0
36.8M
likes
float64
0
712
library_name
stringclasses
17 values
__index_level_0__
int64
0
38.5k
readme
stringlengths
0
186k
huggingtweets/spideythefifth
ab8d2397fda8276b59f4b0860c1af15da6f6cfef
2022-04-26T02:13:34.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/spideythefifth
0
null
transformers
37,100
--- language: en thumbnail: http://www.huggingtweets.com/spideythefifth/1650939169930/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1505089505757384712/M9ehrLtd_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">🏹🏳️‍⚧️🏳️‍🌈 Gandalf the Gay🏳️‍⚧️🏳️‍🌈♠️</div> <div style="text-align: center; font-size: 14px;">@spideythefifth</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from 🏹🏳️‍⚧️🏳️‍🌈 Gandalf the Gay🏳️‍⚧️🏳️‍🌈♠️. | Data | 🏹🏳️‍⚧️🏳️‍🌈 Gandalf the Gay🏳️‍⚧️🏳️‍🌈♠️ | | --- | --- | | Tweets downloaded | 3244 | | Retweets | 289 | | Short tweets | 1301 | | Tweets kept | 1654 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/og5nwknk/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @spideythefifth's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2trdlzgq) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2trdlzgq/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/spideythefifth') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/lustfulliberal-pg13scottwatson
1eef86a128b72631e6dbece1da82fac2ff122c49
2022-04-26T02:59:49.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/lustfulliberal-pg13scottwatson
0
null
transformers
37,101
--- language: en thumbnail: http://www.huggingtweets.com/lustfulliberal-pg13scottwatson/1650941946890/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1231999409916764162/mo9U0uNT_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1114620037300654082/KcWDPQsE_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">(18+ ONLY) The Lustful Liberal - Scorny on Main & The Loony Liberal - Too Old for These Bulltweets</div> <div style="text-align: center; font-size: 14px;">@lustfulliberal-pg13scottwatson</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from (18+ ONLY) The Lustful Liberal - Scorny on Main & The Loony Liberal - Too Old for These Bulltweets. | Data | (18+ ONLY) The Lustful Liberal - Scorny on Main | The Loony Liberal - Too Old for These Bulltweets | | --- | --- | --- | | Tweets downloaded | 3242 | 3240 | | Retweets | 696 | 749 | | Short tweets | 333 | 294 | | Tweets kept | 2213 | 2197 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/r02ekev3/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @lustfulliberal-pg13scottwatson's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/29dxdiwg) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/29dxdiwg/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/lustfulliberal-pg13scottwatson') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
negfir/bert_uncased_L-10_H-128_A-2wiki103
7b07db6e95a74473dcc7abe040fdff2dc6b70cdc
2022-04-26T07:49:52.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
negfir
null
negfir/bert_uncased_L-10_H-128_A-2wiki103
0
null
transformers
37,102
Entry not found
peggyhuang/t5-base-canard
ca5abd2b7f31ade290002fe0f3cefc6d7afc3390
2022-04-26T09:45:46.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
peggyhuang
null
peggyhuang/t5-base-canard
0
null
transformers
37,103
Entry not found
negfir/bert_uncased_L-6_H-128_A-2wiki103
c485941bdf136683d985e7b791c419fd974cb44a
2022-04-26T10:19:39.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
negfir
null
negfir/bert_uncased_L-6_H-128_A-2wiki103
0
null
transformers
37,104
Entry not found
sameearif88/wav2vec2-base-timit-demo-colab
7c978d9a11e6cfee6ed2c6a4cb592cb0edaf9815
2022-04-30T13:08:28.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
sameearif88
null
sameearif88/wav2vec2-base-timit-demo-colab
0
null
transformers
37,105
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base-timit-demo-colab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-timit-demo-colab This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.11.3 - Pytorch 1.11.0+cu113 - Datasets 1.18.3 - Tokenizers 0.10.3
nz/RITA_s
b98e56e26c4a9d63d4ab92490155e7108f5b6c2a
2022-04-26T14:13:19.000Z
[ "pytorch", "rita", "transformers" ]
null
false
nz
null
nz/RITA_s
0
null
transformers
37,106
Entry not found
negfir/bert_uncased_L-4_H-768_A-12wiki103
3657fe61daede3aaaa3896a85c7884181daf7213
2022-04-26T12:54:31.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
negfir
null
negfir/bert_uncased_L-4_H-768_A-12wiki103
0
null
transformers
37,107
Entry not found
hbruce11216/april26-finetuned-mlm
d3aa9a3e43b984344d31716366955146a0d8c1ec
2022-04-26T13:14:25.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
hbruce11216
null
hbruce11216/april26-finetuned-mlm
0
null
transformers
37,108
Entry not found
Saisam/Inquirer_ner
896a0da2add37b60196cd8a9da218fe12f8a3718
2022-04-26T14:51:41.000Z
[ "pytorch", "en", "dataset:conll2003", "flair", "license:afl-3.0" ]
null
false
Saisam
null
Saisam/Inquirer_ner
0
null
flair
37,109
--- tags: - flair language: en datasets: - conll2003 license: afl-3.0 --- Requires: **[Flair](https://github.com/flairNLP/flair/)** (`pip install flair`) ```python from flair.data import Sentence from flair.models import SequenceTagger # load tagger tagger = SequenceTagger.load("Saisam/Inquirer_ner") # make example sentence sentence = Sentence("George Washington went to Washington") # predict NER tags tagger.predict(sentence) # print sentence print(sentence) # print predicted NER spans print('The following NER tags are found:') # iterate over entities and print for entity in sentence.get_spans('ner'): print(entity) ```
Saisam/Inquirer_ner_loc
1f6b6a2aaa28696557ef83450fcaa8b50a7e7d1b
2022-04-28T14:01:12.000Z
[ "pytorch", "en", "dataset:conll2003", "flair" ]
null
false
Saisam
null
Saisam/Inquirer_ner_loc
0
null
flair
37,110
--- tags: - flair language: en datasets: - conll2003 --- # Flair NER fine-tuned on Private Dataset This is specifically Designed on locations. the tag is <unk> ```python from flair.data import Sentence from flair.models import SequenceTagger # load tagger tagger = SequenceTagger.load("Saisam/Inquirer_ner_loc") # make example sentence sentence = Sentence("George Washington went to Washington") # predict NER tags tagger.predict(sentence) # print sentence print(sentence) # print predicted NER spans print('The following NER tags are found:') # iterate over entities and print for entity in sentence.get_spans('ner'): print(entity) ``` ``` @inproceedings{akbik2018coling, title={Contextual String Embeddings for Sequence Labeling}, author={Akbik, Alan and Blythe, Duncan and Vollgraf, Roland}, booktitle = {{COLING} 2018, 27th International Conference on Computational Linguistics}, pages = {1638--1649}, year = {2018} } ```
negfir/bert_uncased_L-4_H-512_A-8wiki103
c384556956d2bea89cacb94bed58e2ffa6826a26
2022-04-26T14:38:44.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
negfir
null
negfir/bert_uncased_L-4_H-512_A-8wiki103
0
null
transformers
37,111
Entry not found
negfir/bert_uncased_L-4_H-256_A-4wiki103
d55c87b9b4da2dc229198df54d4d1a2b3d3e90e2
2022-04-26T15:46:47.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
negfir
null
negfir/bert_uncased_L-4_H-256_A-4wiki103
0
null
transformers
37,112
Entry not found
negfir/bert_uncased_L-4_H-128_A-2wiki103
8c6118291e98181553081915c28e9f6cf36c7457
2022-04-26T16:41:24.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
negfir
null
negfir/bert_uncased_L-4_H-128_A-2wiki103
0
null
transformers
37,113
Entry not found
lsb/wav2vec2-base-pem23-oldvocab-la
4231c90505a3ff4eb024023e43698ff3e4b02eca
2022-04-26T22:22:34.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
lsb
null
lsb/wav2vec2-base-pem23-oldvocab-la
0
null
transformers
37,114
Entry not found
ofirzaf/bert-large-uncased-squad
57953ddeaa2307e97a82ece0f361d892fc938cb3
2022-04-26T23:10:06.000Z
[ "pytorch", "bert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
ofirzaf
null
ofirzaf/bert-large-uncased-squad
0
null
transformers
37,115
Entry not found
nizamudma/t5-small-finetuned-cnn-3
c68f1be9c6a73ed37e1e0a68d94c479448ade540
2022-04-27T08:55:11.000Z
[ "pytorch", "tensorboard", "t5", "text2text-generation", "dataset:cnn_dailymail", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
text2text-generation
false
nizamudma
null
nizamudma/t5-small-finetuned-cnn-3
0
null
transformers
37,116
--- license: apache-2.0 tags: - generated_from_trainer datasets: - cnn_dailymail metrics: - rouge model-index: - name: t5-small-finetuned-cnn-3 results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: cnn_dailymail type: cnn_dailymail args: 3.0.0 metrics: - name: Rouge1 type: rouge value: 24.5495 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-cnn-3 This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the cnn_dailymail dataset. It achieves the following results on the evaluation set: - Loss: 1.6633 - Rouge1: 24.5495 - Rouge2: 11.8286 - Rougel: 20.2968 - Rougelsum: 23.1682 - Gen Len: 18.9993 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-06 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | 1.7951 | 1.0 | 35890 | 1.6633 | 24.5495 | 11.8286 | 20.2968 | 23.1682 | 18.9993 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.2+cu102 - Datasets 1.18.3 - Tokenizers 0.11.0
rahulgkatre/DialoGPT-homer
dd2771d187da22af38c3d00239853fcea5686ee9
2022-04-27T02:55:51.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
rahulgkatre
null
rahulgkatre/DialoGPT-homer
0
null
transformers
37,117
Entry not found
rahulgkatre/DialoGPT-bart
636495665f64302e2386197bf7ce2c2479436455
2022-04-27T03:45:21.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
rahulgkatre
null
rahulgkatre/DialoGPT-bart
0
null
transformers
37,118
Entry not found
faisalahmad/summarizer1
aa087032f064e18b70a35fdc4fe34da594049ba8
2022-04-27T15:53:08.000Z
[ "pytorch", "bart", "text2text-generation", "en", "dataset:faisalahmad/autotrain-data-nsut-nlp-project-textsummarization", "transformers", "autotrain", "co2_eq_emissions", "autotrain_compatible" ]
text2text-generation
false
faisalahmad
null
faisalahmad/summarizer1
0
null
transformers
37,119
--- tags: autotrain language: en widget: - text: "I love AutoTrain 🤗" datasets: - faisalahmad/autotrain-data-nsut-nlp-project-textsummarization co2_eq_emissions: 736.9366247330848 --- # Model Trained Using AutoTrain - Problem type: Summarization - Model ID: 791824379 - CO2 Emissions (in grams): 736.9366247330848 ## Validation Metrics - Loss: 1.7805895805358887 - Rouge1: 37.8222 - Rouge2: 16.7598 - RougeL: 31.2959 - RougeLsum: 31.3048 - Gen Len: 19.7213 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_HUGGINGFACE_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/faisalahmad/autotrain-nsut-nlp-project-textsummarization-791824379 ```
faisalahmad/summarizer2
3088d5fa10a312c52d9d7eb1d8118c08e2ffc51e
2022-04-28T17:48:14.000Z
[ "pytorch", "pegasus", "text2text-generation", "en", "dataset:faisalahmad/autotrain-data-nsut-nlp-project-textsummarization", "transformers", "autotrain", "co2_eq_emissions", "autotrain_compatible" ]
text2text-generation
false
faisalahmad
null
faisalahmad/summarizer2
0
null
transformers
37,120
--- tags: autotrain language: en widget: - text: "I love AutoTrain 🤗" datasets: - faisalahmad/autotrain-data-nsut-nlp-project-textsummarization co2_eq_emissions: 4444.804304528572 --- # Model Trained Using AutoTrain - Problem type: Summarization - Model ID: 791824381 - CO2 Emissions (in grams): 4444.804304528572 ## Validation Metrics - Loss: 1.4599040746688843 - Rouge1: 46.5461 - Rouge2: 23.8595 - RougeL: 38.526 - RougeLsum: 38.5219 - Gen Len: 23.468 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_HUGGINGFACE_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/faisalahmad/autotrain-nsut-nlp-project-textsummarization-791824381 ```
huggingtweets/pollinations_ai
144da4869e18909febbac2d87d3680842ce583e1
2022-04-27T09:18:51.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/pollinations_ai
0
null
transformers
37,121
--- language: en thumbnail: http://www.huggingtweets.com/pollinations_ai/1651051095670/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1417602105192468480/UZFqVCxA_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Pollinations</div> <div style="text-align: center; font-size: 14px;">@pollinations_ai</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Pollinations. | Data | Pollinations | | --- | --- | | Tweets downloaded | 3250 | | Retweets | 32 | | Short tweets | 783 | | Tweets kept | 2435 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3663gbqn/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @pollinations_ai's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1ds23cvg) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1ds23cvg/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/pollinations_ai') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
nz/RITA_xl
78dcfeabecbcbe9146823030874370e6b721ef15
2022-04-27T16:32:43.000Z
[ "pytorch", "rita", "transformers" ]
null
false
nz
null
nz/RITA_xl
0
null
transformers
37,122
Entry not found
dbmdz/flair-hipe-2022-ajmc-de-64k
4741a4f6208bb9afa3ef76b63065378e59ffe6e6
2022-04-27T13:07:45.000Z
[ "pytorch", "license:mit" ]
null
false
dbmdz
null
dbmdz/flair-hipe-2022-ajmc-de-64k
0
null
null
37,123
--- license: mit ---
kvnaraya/DialoGPT-small-michael
e277c9ffb0a58c1b22cb68d3f23b88b3587c0ece
2022-04-27T14:05:16.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
kvnaraya
null
kvnaraya/DialoGPT-small-michael
0
null
transformers
37,124
--- tags: - conversational --- #Michael Scott DialoGPT Model
dbmdz/flair-hipe-2022-ajmc-en-64k
1bb4b88f059731561a58989b7fc3085233a0ea68
2022-04-27T14:03:04.000Z
[ "pytorch", "license:mit" ]
null
false
dbmdz
null
dbmdz/flair-hipe-2022-ajmc-en-64k
0
null
null
37,125
--- license: mit ---
kvnaraya/DialoGPT-small-jim
717cf5cebce75b47240fdaaf0a2546112ab43a00
2022-04-27T15:22:46.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
kvnaraya
null
kvnaraya/DialoGPT-small-jim
0
null
transformers
37,126
Entry not found
stevems1/bert-base-uncased-French123
7ec127167519e7c14df284f32d0f887f4408f373
2022-04-27T14:55:35.000Z
[ "pytorch", "tensorboard", "bert", "fill-mask", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
fill-mask
false
stevems1
null
stevems1/bert-base-uncased-French123
0
null
transformers
37,127
--- tags: - generated_from_trainer model-index: - name: bert-base-uncased-French123 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-French123 This model is a fine-tuned version of [](https://huggingface.co/) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.1.0 - Tokenizers 0.12.1
obokkkk/mbart-large-cc25-finetuned-en-to-ko2
913fd60d91c2f4c1820ca069d8dd4bf5fcd35b2d
2022-04-27T17:49:20.000Z
[ "pytorch", "tensorboard", "mbart", "text2text-generation", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
text2text-generation
false
obokkkk
null
obokkkk/mbart-large-cc25-finetuned-en-to-ko2
0
null
transformers
37,128
--- tags: - generated_from_trainer model-index: - name: mbart-large-cc25-finetuned-en-to-ko2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mbart-large-cc25-finetuned-en-to-ko2 This model is a fine-tuned version of [facebook/mbart-large-cc25](https://huggingface.co/facebook/mbart-large-cc25) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 128 - total_train_batch_size: 2048 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.1.0 - Tokenizers 0.12.1
obokkkk/wav2vec2-base-960h-finetuned_common_voice2
53d5b71135ac105a0217e7388fce3c21feb5b028
2022-04-27T18:42:54.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
obokkkk
null
obokkkk/wav2vec2-base-960h-finetuned_common_voice2
0
null
transformers
37,129
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base-960h-finetuned_common_voice2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-960h-finetuned_common_voice2 This model is a fine-tuned version of [facebook/wav2vec2-base-960h](https://huggingface.co/facebook/wav2vec2-base-960h) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 64 - total_train_batch_size: 1024 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.1.0 - Tokenizers 0.12.1
dbmdz/flair-hipe-2022-ajmc-fr-64k
18d8999cf6fc9ecddfc1bc7add36590b982a954e
2022-04-27T18:48:55.000Z
[ "pytorch", "license:mit" ]
null
false
dbmdz
null
dbmdz/flair-hipe-2022-ajmc-fr-64k
0
null
null
37,130
--- license: mit ---
SerdarHelli/Brain-MRI-GAN
fb54244836038e5489116bbd56e282b10fd320d8
2022-04-27T20:32:07.000Z
[ "brainMRI", "GAN", "medicalimaging", "pytorch" ]
null
false
SerdarHelli
null
SerdarHelli/Brain-MRI-GAN
0
null
null
37,131
--- tags: - brainMRI - GAN - medicalimaging - pytorch metrics: - fid50k --- The model's kernels etc. source code ==> https://github.com/NVlabs/stylegan3
zasheza/wav2vec2-base-timit-demo-colab
ef7b7b356e7440dc45f4a4e1fc05a78e281e13ad
2022-04-30T00:09:46.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
zasheza
null
zasheza/wav2vec2-base-timit-demo-colab
0
null
transformers
37,132
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base-timit-demo-colab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-timit-demo-colab This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.11.3 - Pytorch 1.11.0+cu113 - Datasets 1.18.3 - Tokenizers 0.10.3
jiobiala24/wav2vec2-large-cv
7c73042f93e1dc07f73c3bd435d0c1f8d3dd5744
2022-04-30T01:32:35.000Z
[ "pytorch" ]
null
false
jiobiala24
null
jiobiala24/wav2vec2-large-cv
0
null
null
37,133
inhee/opus-mt-ko-en-finetuned-ko-to-en
693c48f8c436edcc845ef8f92720608a2a2d2b2c
2022-04-28T04:20:08.000Z
[ "pytorch", "tensorboard", "marian", "text2text-generation", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
text2text-generation
false
inhee
null
inhee/opus-mt-ko-en-finetuned-ko-to-en
0
null
transformers
37,134
--- license: apache-2.0 tags: - generated_from_trainer metrics: - bleu model-index: - name: opus-mt-ko-en-finetuned-ko-to-en results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # opus-mt-ko-en-finetuned-ko-to-en This model is a fine-tuned version of [Helsinki-NLP/opus-mt-ko-en](https://huggingface.co/Helsinki-NLP/opus-mt-ko-en) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.2159 - Bleu: 43.3502 - Gen Len: 3.5474 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 128 - total_train_batch_size: 2048 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:| | No log | 0.96 | 20 | 1.3139 | 37.8375 | 3.5612 | | No log | 1.96 | 40 | 1.2849 | 40.9049 | 3.5566 | | No log | 2.96 | 60 | 1.2653 | 40.3399 | 3.565 | | No log | 3.96 | 80 | 1.2516 | 42.7497 | 3.5563 | | No log | 4.96 | 100 | 1.2395 | 42.5064 | 3.5478 | | No log | 5.96 | 120 | 1.2311 | 43.2749 | 3.5477 | | No log | 6.96 | 140 | 1.2232 | 42.0691 | 3.5472 | | No log | 7.96 | 160 | 1.2193 | 43.5797 | 3.5525 | | No log | 8.96 | 180 | 1.2169 | 43.2313 | 3.547 | | No log | 9.96 | 200 | 1.2159 | 43.3502 | 3.5474 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.1.0 - Tokenizers 0.12.1
juierror/thai-news-summarization
93287aed749b3d54f88476b215586c178b01cdaf
2022-05-06T14:39:25.000Z
[ "pytorch", "mt5", "text2text-generation", "transformers", "license:mit", "autotrain_compatible" ]
text2text-generation
false
juierror
null
juierror/thai-news-summarization
0
null
transformers
37,135
--- license: mit --- # How to use ```python3 from transformers import MT5Tokenizer, MT5ForConditionalGeneration tokenizer = MT5Tokenizer.from_pretrained('juierror/thai-news-summarization') model = MT5ForConditionalGeneration.from_pretrained('juierror/thai-news-summarization') text = "some news with head line" tokenized_text = tokenizer(text, truncation=True, padding=True, return_tensors='pt') source_ids = tokenized_text['input_ids'].to("cpu", dtype = torch.long) source_mask = tokenized_text['attention_mask'].to("cpu", dtype = torch.long) generated_ids = model.generate( input_ids = source_ids, attention_mask = source_mask, max_length=512, num_beams=5, repetition_penalty=1, length_penalty=1, early_stopping=True, no_repeat_ngram_size=2 ) pred = tokenizer.decode(generated_ids[0], skip_special_tokens=True, clean_up_tokenization_spaces=True) ```
pfactorial/checkpoint-50-epoch-2
00ce62284063e75156ed49757e8f0c3c2b4bcabe
2022-04-29T13:04:55.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
pfactorial
null
pfactorial/checkpoint-50-epoch-2
0
null
transformers
37,136
--- |- Model card metadata documentation and specifications moved to https://github.com/huggingface/huggingface_hub/ The canonical documentation about model cards is now located at https://huggingface.co/docs/hub/model-repos and you can open a PR to improve the docs in the same repository https://github.com/huggingface/huggingface_hub/tree/main/docs/hub You can also find a spec of the metadata at https://github.com/huggingface/huggingface_hub/blob/main/README.md.
moma1820/xxmlr
40193b918b89ebe11a2dccf471a776d3427e86dc
2022-04-28T17:45:46.000Z
[ "pytorch", "xlm-roberta-xl", "feature-extraction", "transformers" ]
feature-extraction
false
moma1820
null
moma1820/xxmlr
0
null
transformers
37,137
Entry not found
it5/it5-efficient-small-el32-formal-to-informal
32f9b4ae22aca13119dfb7a947042d7c3e718712
2022-04-29T14:19:40.000Z
[ "pytorch", "tf", "jax", "tensorboard", "t5", "text2text-generation", "it", "dataset:yahoo/xformal_it", "arxiv:2203.03759", "arxiv:2109.10686", "transformers", "italian", "sequence-to-sequence", "style-transfer", "efficient", "formality-style-transfer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
text2text-generation
false
it5
null
it5/it5-efficient-small-el32-formal-to-informal
0
null
transformers
37,138
--- language: - it license: apache-2.0 tags: - italian - sequence-to-sequence - style-transfer - efficient - formality-style-transfer datasets: - yahoo/xformal_it widget: - text: "Questa performance è a dir poco spiacevole." - text: "In attesa di un Suo cortese riscontro, Le auguriamo un piacevole proseguimento di giornata." - text: "Questa visione mi procura una goduria indescrivibile." - text: "qualora ciò possa interessarti, ti pregherei di contattarmi." metrics: - rouge - bertscore model-index: - name: it5-efficient-small-el32-formal-to-informal results: - task: type: formality-style-transfer name: "Formal-to-informal Style Transfer" dataset: type: xformal_it name: "XFORMAL (Italian Subset)" metrics: - type: rouge1 value: 0.459 name: "Avg. Test Rouge1" - type: rouge2 value: 0.244 name: "Avg. Test Rouge2" - type: rougeL value: 0.435 name: "Avg. Test RougeL" - type: bertscore value: 0.739 name: "Avg. Test BERTScore" args: - model_type: "dbmdz/bert-base-italian-xxl-uncased" - lang: "it" - num_layers: 10 - rescale_with_baseline: True - baseline_path: "bertscore_baseline_ita.tsv" --- # IT5 Cased Small Efficient EL32 for Formal-to-informal Style Transfer 🤗 *Shout-out to [Stefan Schweter](https://github.com/stefan-it) for contributing the pre-trained efficient model!* This repository contains the checkpoint for the [IT5 Cased Small Efficient EL32](https://huggingface.co/it5/it5-efficient-small-el32) model fine-tuned on Formal-to-informal style transfer on the Italian subset of the XFORMAL dataset as part of the experiments of the paper [IT5: Large-scale Text-to-text Pretraining for Italian Language Understanding and Generation](https://arxiv.org/abs/2203.03759) by [Gabriele Sarti](https://gsarti.com) and [Malvina Nissim](https://malvinanissim.github.io). Efficient IT5 models differ from the standard ones by adopting a different vocabulary that enables cased text generation and an [optimized model architecture](https://arxiv.org/abs/2109.10686) to improve performances while reducing parameter count. The Small-EL32 replaces the original encoder from the T5 Small architecture with a 32-layer deep encoder, showing improved performances over the base model. A comprehensive overview of other released materials is provided in the [gsarti/it5](https://github.com/gsarti/it5) repository. Refer to the paper for additional details concerning the reported scores and the evaluation approach. ## Using the model Model checkpoints are available for usage in Tensorflow, Pytorch and JAX. They can be used directly with pipelines as: ```python from transformers import pipelines f2i = pipeline("text2text-generation", model='it5/it5-efficient-small-el32-formal-to-informal') f2i("Vi ringrazio infinitamente per vostra disponibilità") >>> [{"generated_text": "e grazie per la vostra disponibilità!"}] ``` or loaded using autoclasses: ```python from transformers import AutoTokenizer, AutoModelForSeq2SeqLM tokenizer = AutoTokenizer.from_pretrained("it5-efficient-small-el32-formal-to-informal") model = AutoModelForSeq2SeqLM.from_pretrained("it5-efficient-small-el32-formal-to-informal") ``` If you use this model in your research, please cite our work as: ```bibtex @article{sarti-nissim-2022-it5, title={{IT5}: Large-scale Text-to-text Pretraining for Italian Language Understanding and Generation}, author={Sarti, Gabriele and Nissim, Malvina}, journal={ArXiv preprint 2203.03759}, url={https://arxiv.org/abs/2203.03759}, year={2022}, month={mar} } ``` ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10.0 ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
it5/it5-efficient-small-el32-news-summarization
b2bbc59818a75fdabd0fd41368b956241631965d
2022-04-29T15:18:38.000Z
[ "pytorch", "tf", "jax", "tensorboard", "t5", "text2text-generation", "it", "dataset:ARTeLab/fanpage", "dataset:ARTeLab/ilpost", "arxiv:2203.03759", "arxiv:2109.10686", "transformers", "italian", "sequence-to-sequence", "fanpage", "efficient", "ilpost", "summarization", "license:apache-2.0", "model-index", "autotrain_compatible" ]
summarization
false
it5
null
it5/it5-efficient-small-el32-news-summarization
0
1
transformers
37,139
--- language: - it license: apache-2.0 datasets: - ARTeLab/fanpage - ARTeLab/ilpost tags: - italian - sequence-to-sequence - fanpage - efficient - ilpost - summarization widget: - text: "Non lo vuole sposare. E’ quanto emerge all’interno dell’ultima intervista di Raffaella Fico che, ringraziando Mancini per i buoni consigli elargiti al suo fidanzato, rimanda l’idea del matrimonio per qualche anno ancora. La soubrette, che è stata recentemente protagonista di una dedica di Supermario, non ha ancora intenzione di accasarsi perché è sicura che per mettersi la fede al dito ci sia ancora tempo. Nonostante il suo Mario sia uno degli sportivi più desiderati al mondo, l’ex protagonista del Grande Fratello non ha alcuna intenzione di cedere seriamente alla sua corte. Solo qualche giorno fa, infatti, dopo l’ultima bravata di Balotelli, Mancini gli aveva consigliato di sposare la sua Raffaella e di mettere la testa a posto. Chi pensava che sarebbe stato Mario a rispondere, però, si è sbagliato. A mettere le cose bene in chiaro è la Fico che, intervistata dall’emittente radiofonica Rtl 102.5, dice: È presto per sposarsi, siamo ancora molto giovani. È giusto che prima uno si realizzi nel proprio lavoro. E poi successivamente perché no, ci si può anche pensare. Quando si è giovani capita di fare qualche pazzia, quindi ci sta. Comunque i tabloid inglesi sono totalmente accaniti sulla sua vita privata quando poi dovrebbero interessarsi di più di quello che fa sul campo. Lui non fa le cose con cattiveria, ma quando si è giovani si fanno determinate cose senza stare a pensare se sono giuste o sbagliate. Mario ha gli obiettivi puntati addosso: più per la sua vita privata che come giocatore. Per me può anche andare in uno strip club, se non fa niente di male, con gli amici, però devo dire che alla fine torna sempre da me, sono la sua preferita." - text: "Valerio è giovanissimo ma già una star. Fuori dall’Ariston ragazzine e meno ragazzine passano ore anche sotto la pioggia per vederlo. Lui è forte del suo talento e sicuro. Partecipa in gara tra i “big” di diritto, per essere arrivato in finalissima nel programma Amici di Maria De Filippi e presenta il brano Per tutte le volte che scritta per lui da Pierdavide Carone. Valerio Scanu è stato eliminato. Ma non è detta l'ultima parola: il duetto di questa sera con Alessandra Amoroso potrebbe risollevarlo e farlo rientrare in gara. Che cosa è successo alla giuria visto che sei stato eliminato anche se l’esibizione era perfetta? Nn lo so. Sono andate bene le esibizioni, ero emozionato ma tranquillo. Ero contento ma ho cantato bene. Non sono passato e stasera ci sarà il ballottaggio… Quali sono le differenze tra Amici e Sanremo? Sono due cose diverse. Amici ti prepara a salire sul palco di amici. A Sanremo ci devi arrivare… ho fatto più di sessanta serate nel tour estivo, poi promozione del secondo disco. Una bella palestra. Sono cresciuto anche umanamente. Sono riuscito a percepire quello che il pubblico trasmette. L’umiltà? Prima di tutto. Sennò non sarei qui." - text: "L’azienda statunitense Broadcom, uno dei più grandi produttori di semiconduttori al mondo, ha presentato un’offerta per acquisire Qualcomm, altra grande società degli Stati Uniti conosciuta soprattutto per la sua produzione di microprocessori Snapdragon (ARM), utilizzati in centinaia di milioni di smartphone in giro per il mondo. Broadcom ha proposto di acquistare ogni azione di Qualcomm al prezzo di 70 dollari, per un valore complessivo di circa 105 miliardi di dollari (130 miliardi se si comprendono 25 miliardi di debiti netti) . Se l’operazione dovesse essere approvata, sarebbe una delle più grandi acquisizioni di sempre nella storia del settore tecnologico degli Stati Uniti. Broadcom ha perfezionato per mesi la sua proposta di acquisto e, secondo i media statunitensi, avrebbe già preso contatti con Qualcomm per trovare un accordo. Secondo gli analisti, Qualcomm potrebbe comunque opporsi all’acquisizione perché il prezzo offerto è di poco superiore a quello dell’attuale valore delle azioni dell’azienda. Ci potrebbero essere inoltre complicazioni sul piano dell’antitrust da valutare, prima di un’eventuale acquisizione." - text: "Dal 31 maggio è infine partita la piattaforma ITsART, a più di un anno da quando – durante il primo lockdown – il ministro della Cultura Dario Franceschini ne aveva parlato come di «una sorta di Netflix della cultura», pensata per «offrire a tutto il mondo la cultura italiana a pagamento». È presto per dare giudizi definitivi sulla piattaforma, e di certo sarà difficile farlo anche più avanti senza numeri precisi. Al momento, l’unica cosa che si può fare è guardare com’è fatto il sito, contare quanti contenuti ci sono (circa 700 “titoli”, tra film, documentari, spettacoli teatrali e musicali e altri eventi) e provare a dare un giudizio sul loro valore e sulla loro varietà. Intanto, una cosa notata da più parti è che diversi contenuti di ITsART sono a pagamento sulla piattaforma sebbene altrove, per esempio su RaiPlay, siano invece disponibili gratuitamente." metrics: - rouge - bertscore model-index: - name: it5-efficient-small-el32-news-summarization results: - task: type: news-summarization name: "News Summarization" dataset: type: newssum-it name: "NewsSum-IT" metrics: - type: rouge1 value: 0.354 name: "Test Rouge1" - type: rouge2 value: 0.172 name: "Test Rouge2" - type: rougeL value: 0.278 name: "Test RougeL" - type: bertscore value: 0.410 name: "Avg. Test BERTScore" args: - model_type: "dbmdz/bert-base-italian-xxl-uncased" - lang: "it" - num_layers: 10 - rescale_with_baseline: True - baseline_path: "bertscore_baseline_ita.tsv" thumbnail: https://gsarti.com/publication/it5/featured.png --- # IT5 Cased Small Efficient EL32 for News Summarization ✂️🗞️ 🇮🇹 *Shout-out to [Stefan Schweter](https://github.com/stefan-it) for contributing the pre-trained efficient model!* This repository contains the checkpoint for the [IT5 Cased Small Efficient EL32](https://huggingface.co/it5/it5-efficient-small-el32) model fine-tuned on news summarization on the [Fanpage](https://huggingface.co/datasets/ARTeLab/fanpage) and [Il Post](https://huggingface.co/datasets/ARTeLab/ilpost) corpora as part of the experiments of the paper [IT5: Large-scale Text-to-text Pretraining for Italian Language Understanding and Generation](https://arxiv.org/abs/2203.03759) by [Gabriele Sarti](https://gsarti.com) and [Malvina Nissim](https://malvinanissim.github.io). Efficient IT5 models differ from the standard ones by adopting a different vocabulary that enables cased text generation and an [optimized model architecture](https://arxiv.org/abs/2109.10686) to improve performances while reducing parameter count. The Small-EL32 replaces the original encoder from the T5 Small architecture with a 32-layer deep encoder, showing improved performances over the base model. A comprehensive overview of other released materials is provided in the [gsarti/it5](https://github.com/gsarti/it5) repository. Refer to the paper for additional details concerning the reported scores and the evaluation approach. ## Using the model Model checkpoints are available for usage in Tensorflow, Pytorch and JAX. They can be used directly with pipelines as: ```python from transformers import pipelines newsum = pipeline("summarization", model='it5/it5-efficient-small-el32-news-summarization') newsum("Dal 31 maggio è infine partita la piattaforma ITsART, a più di un anno da quando – durante il primo lockdown – il ministro della Cultura Dario Franceschini ne aveva parlato come di «una sorta di Netflix della cultura», pensata per «offrire a tutto il mondo la cultura italiana a pagamento». È presto per dare giudizi definitivi sulla piattaforma, e di certo sarà difficile farlo anche più avanti senza numeri precisi. Al momento, l’unica cosa che si può fare è guardare com’è fatto il sito, contare quanti contenuti ci sono (circa 700 “titoli”, tra film, documentari, spettacoli teatrali e musicali e altri eventi) e provare a dare un giudizio sul loro valore e sulla loro varietà. Intanto, una cosa notata da più parti è che diversi contenuti di ITsART sono a pagamento sulla piattaforma sebbene altrove, per esempio su RaiPlay, siano invece disponibili gratuitamente.") >>> [{"generated_text": "ITsART, la Netflix della cultura italiana, parte da maggio. Film, documentari, spettacoli teatrali e musicali disponibili sul nuovo sito a pagamento."}] ``` or loaded using autoclasses: ```python from transformers import AutoTokenizer, AutoModelForSeq2SeqLM tokenizer = AutoTokenizer.from_pretrained("it5/it5-efficient-small-el32-news-summarization") model = AutoModelForSeq2SeqLM.from_pretrained("it5/it5-efficient-small-el32-news-summarization") ``` If you use this model in your research, please cite our work as: ```bibtex @article{sarti-nissim-2022-it5, title={{IT5}: Large-scale Text-to-text Pretraining for Italian Language Understanding and Generation}, author={Sarti, Gabriele and Nissim, Malvina}, journal={ArXiv preprint 2203.03759}, url={https://arxiv.org/abs/2203.03759}, year={2022}, month={mar} } ```
it5/it5-efficient-small-el32-question-generation
54a1566817defee9c8cab4617ef5a0125a82bd0d
2022-04-29T14:34:01.000Z
[ "pytorch", "tf", "jax", "tensorboard", "t5", "text2text-generation", "it", "dataset:squad_it", "arxiv:2203.03759", "arxiv:2109.10686", "transformers", "Italian", "efficient", "sequence-to-sequence", "question-generation", "squad_it", "license:apache-2.0", "model-index", "autotrain_compatible" ]
text2text-generation
false
it5
null
it5/it5-efficient-small-el32-question-generation
0
null
transformers
37,140
--- language: - it license: apache-2.0 datasets: - squad_it tags: - Italian - efficient - sequence-to-sequence - question-generation - squad_it - text2text-generation widget: - text: "Le conoscenze mediche erano stagnanti durante il Medioevo. Il resoconto più autorevole di allora è venuto dalla facoltà di medicina di Parigi in un rapporto al re di Francia che ha incolpato i cieli, sotto forma di una congiunzione di tre pianeti nel 1345 che causò una \"grande pestilenza nell' aria\". Questa relazione è diventata la prima e più diffusa di una serie di casi di peste che cercava di dare consigli ai malati. Che la peste fosse causata dalla cattiva aria divenne la teoria più accettata. Oggi, questo è conosciuto come la teoria di Miasma. La parola \"peste\" non aveva un significato particolare in questo momento, e solo la ricorrenza dei focolai durante il Medioevo gli diede il nome che è diventato il termine medico. Risposta: re di Francia" - text: "Il 14 aprile 2011, ABC ha annullato le lunghe opere di sapone All My Children e One Life to Live dopo 41 e 43 anni in onda, rispettivamente (in seguito al contraccolpo dei tifosi, ABC ha venduto i diritti ad entrambi gli spettacoli a Prospect Park, che alla fine ha rilanciato i saponi su Hulu per un' ulteriore stagione nel 2013 e con entrambe le società che si citano in giudizio per accuse di interferenza con il processo di rilancio degli spettacoli, mancato pagamento delle tasse di licenza. Il talk/lifestyle show che ha sostituito One Life to Live, The Revolution, non è riuscito a generare giudizi soddisfacenti ed è stato a sua volta annullato dopo soli sette mesi. La stagione 2011-12 ha visto l' ABC cadere al quarto posto nel 18-49 demografico nonostante rinnovando una manciata di nuovi spettacoli (compresi i drammi matricole Scandal, Revenge e Once Upon a Time) per la seconda stagione. Risposta: Hulu" - text: "L' American Broadcasting Company (ABC) (stlized nel suo logo come abc dal 1957) è una rete televisiva commerciale americana trasmissione televisiva che è di proprietà del Disney-ABC Television Group, una controllata della divisione Disney Media Networks di The Walt Disney Company. La rete fa parte delle grandi reti televisive Big Three. La rete ha sede a Columbus Avenue e West 66th Street a Manhattan, con ulteriori uffici e stabilimenti di produzione a New York City, Los Angeles e Burbank, California. Risposta: Manhattan" - text: "La disobbedienza civile non rivoluzionaria è una semplice disobbedienza delle leggi sulla base del fatto che sono giudicate \"sbagliate\" da una coscienza individuale, o come parte di uno sforzo per rendere alcune leggi inefficaci, per causarne l' abrogazione, o per esercitare pressioni per ottenere i propri desideri politici su qualche altra questione. La disobbedienza civile rivoluzionaria è più che altro un tentativo attivo di rovesciare un governo (o di cambiare le tradizioni culturali, i costumi sociali, le credenze religiose, ecc. La rivoluzione non deve necessariamente essere politica, cioè \"rivoluzione culturale\", implica semplicemente un cambiamento radicale e diffuso in una sezione del tessuto sociale). Gli atti di Gandhi sono stati descritti come disobbedienza civile rivoluzionaria. È stato affermato che gli ungheresi sotto Ferenc Deák hanno diretto una disobbedienza civile rivoluzionaria contro il governo austriaco. Thoreau ha anche scritto di disobbedienza civile realizzando \"rivoluzione pacifica\". Howard Zinn, Harvey Wheeler e altri hanno identificato il diritto sposato nella Dichiarazione d' Indipendenza di \"alterare o abolire\" un governo ingiusto come principio di disobbedienza civile. Risposta: Ferenc Deák" metrics: - rouge - bertscore model-index: - name: it5-efficient-small-el32-question-generation results: - task: type: question-generation name: "Question generation" dataset: type: squad_it name: "SQuAD-IT" metrics: - type: rouge1 value: 0.382 name: "Test Rouge1" - type: rouge2 value: 0.201 name: "Test Rouge2" - type: rougeL value: 0.357 name: "Test RougeL" - type: bertscore value: 0.517 name: "Test BERTScore" args: - model_type: "dbmdz/bert-base-italian-xxl-uncased" - lang: "it" - num_layers: 10 - rescale_with_baseline: True - baseline_path: "bertscore_baseline_ita.tsv" --- # IT5 Cased Small Efficient EL32 for Question Generation 💭 🇮🇹 *Shout-out to [Stefan Schweter](https://github.com/stefan-it) for contributing the pre-trained efficient model!* This repository contains the checkpoint for the [IT5 Cased Small Efficient EL32](https://huggingface.co/it5/it5-efficient-small-el32) model fine-tuned on question generation on the [SQuAD-IT corpus](https://huggingface.co/datasets/squad_it) as part of the experiments of the paper [IT5: Large-scale Text-to-text Pretraining for Italian Language Understanding and Generation](https://arxiv.org/abs/2203.03759) by [Gabriele Sarti](https://gsarti.com) and [Malvina Nissim](https://malvinanissim.github.io). Efficient IT5 models differ from the standard ones by adopting a different vocabulary that enables cased text generation and an [optimized model architecture](https://arxiv.org/abs/2109.10686) to improve performances while reducing parameter count. The Small-EL32 replaces the original encoder from the T5 Small architecture with a 32-layer deep encoder, showing improved performances over the base model. A comprehensive overview of other released materials is provided in the [gsarti/it5](https://github.com/gsarti/it5) repository. Refer to the paper for additional details concerning the reported scores and the evaluation approach. ## Using the model Model checkpoints are available for usage in Tensorflow, Pytorch and JAX. They can be used directly with pipelines as: ```python from transformers import pipelines qg = pipeline("text2text-generation", model='it5/it5-efficient-small-el32-question-generation') qg("Le conoscenze mediche erano stagnanti durante il Medioevo. Il resoconto più autorevole di allora è venuto dalla facoltà di medicina di Parigi in un rapporto al re di Francia che ha incolpato i cieli, sotto forma di una congiunzione di tre pianeti nel 1345 che causò una "grande pestilenza nell\' aria". Questa relazione è diventata la prima e più diffusa di una serie di casi di peste che cercava di dare consigli ai malati. Che la peste fosse causata dalla cattiva aria divenne la teoria più accettata. Oggi, questo è conosciuto come la teoria di Miasma. La parola "peste" non aveva un significato particolare in questo momento, e solo la ricorrenza dei focolai durante il Medioevo gli diede il nome che è diventato il termine medico. Risposta: re di Francia") >>> [{"generated_text": "Per chi è stato redatto il referto medico?"}] ``` or loaded using autoclasses: ```python from transformers import AutoTokenizer, AutoModelForSeq2SeqLM tokenizer = AutoTokenizer.from_pretrained("it5/it5-efficient-small-el32-question-generation") model = AutoModelForSeq2SeqLM.from_pretrained("it5/it5-efficient-small-el32-question-generation") ``` If you use this model in your research, please cite our work as: ```bibtex @article{sarti-nissim-2022-it5, title={{IT5}: Large-scale Text-to-text Pretraining for Italian Language Understanding and Generation}, author={Sarti, Gabriele and Nissim, Malvina}, journal={ArXiv preprint 2203.03759}, url={https://arxiv.org/abs/2203.03759}, year={2022}, month={mar} } ``` ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 7.0 ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
it5/it5-efficient-small-el32-ilgiornale-to-repubblica
d1daa4a17f3c89ca6119b66a969126051cff5847
2022-04-29T14:43:32.000Z
[ "pytorch", "tf", "jax", "tensorboard", "t5", "text2text-generation", "it", "dataset:gsarti/change_it", "arxiv:2203.03759", "arxiv:2109.10686", "transformers", "italian", "sequence-to-sequence", "newspaper", "efficient", "ilgiornale", "repubblica", "style-transfer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
text2text-generation
false
it5
null
it5/it5-efficient-small-el32-ilgiornale-to-repubblica
0
null
transformers
37,141
--- language: - it license: apache-2.0 datasets: - gsarti/change_it tags: - italian - sequence-to-sequence - newspaper - efficient - ilgiornale - repubblica - style-transfer widget: - text: "WASHINGTON - La Corea del Nord torna dopo nove anni nella blacklist Usa degli Stati considerati sponsor del terrorismo. Come Iran, Siria e Sudan. Lo ha deciso Donald Trump , che ha preferito dare l'annuncio non durante il suo recente viaggio in Asia ma ieri, in una riunione del governo alla Casa Bianca. 'Oggi gli Stati Uniti designeranno la Corea del nord come uno stato sponsor del terrorismo', ha tuonato il tycoon, anticipando che sarà formalizzata oggi dal dipartimento di stato e sarà accompagnata da nuove e più severe sanzioni. 'Il livello più alto' mai imposto a Pyongyang, ha promesso. 'Avrebbe dovuto succedere molto tempo fa', ha aggiunto, scaricando per l'ennesima volta la responsabilità dell'attuale crisi sull'amministrazione Obama. Poi si è scagliato contro un 'regime assassino' che 'deve mettere fine allo sviluppo del suo programma illegale nucleare e balistico'. Per giustificare la svolta, Trump ha accusato Pyongyang non solo di 'minacciare il mondo con una devastazione nucleare' ma anche di aver 'ripetutamente sostenuto atti di terrorismo internazionale', compreso omicidi in suolo straniero. Il riferimento è all' uccisione all'aeroporto della capitale malese di Kim Jong Nam , il fratellastro del leader nordcoreano Kim Jong Un , ma non ci sono altri episodi noti. Tanto che alcuni esperti, come pure dirigenti Usa coperti dall'anonimato, dubitano che Pyongyang risponda ai criteri per una tale designazione. La mossa appare altamente simbolica, dato che la Corea del Nord è già pesantemente sanzionata a livello internazionale. Per il segretario di stato Rex Tillerson è solo l'ultima di una serie di passi per rafforzare la pressione su Pyongyang e costringerla a sedersi ad un tavolo perché gli Usa hanno sempre 'speranza nella diplomazia'. Ma nello stesso tempo è un monito per 'fermare e dissuadere' altri Paesi dal sostenere la Corea del Nord, finita nella blacklist 'anche per l'uso di armi chimiche'. Ma la mossa potrebbe anche essere controproducente, provocando una risposta di Kim o minando gli sforzi per sollecitare Pechino ad una maggiore pressione su Pyongyang. In ogni caso non aiuta il dialogo diretto tra Usa e Corea del Nord, che sembrava essere stato avviato in modo riservato. Come non aiutano gli scambi di insulti fra Trump e Kim. Nord Corea, Trump: 'Cerco di essere amico di Kim, sarebbe una bella cosa per il mondo'. Pyongyang era stata messa nella lista Usa degli Stati sponsor del terrorismo per aver fatto esplodere nel 1987 un volo della Korean Air uccidendo tutti i 115 passeggeri a bordo. Ma l'amministrazione di George W. Bush l'aveva rimossa sperando di far avanzare i negoziati sulla denuclearizzazione della penisola coreana. Il governo giapponese sostiene la decisione degli Stati Uniti di inserire la Corea del Nord nella lista degli stati che sponsorizzano il terrorismo, pur riconoscendo che l'annuncio potrebbe provocare una reazione immediata del regime di Pyongyang. Il premier Shinzo Abe ha accolto con consenso il comunicato Usa e ha detto alla stampa che servirà a incrementare la pressione sulla Corea del Nord. Il ministro della Difesa Itsunori Onodera , pur valutando positivamente la notifica, ha spiegato che si attendono azioni provocatorie dallo stato eremita, ribadendo che è vitale rimanere vigili. Secondo la stampa nipponica Abe aveva richiesto al dipartimento di Stato Usa di mettere la Corea del Nord sulla lista durante l'incontro col presidente Usa Donald Trump a Tokyo a inizio mese. L'ultimo lancio di missile balistico condotto da Pyongyang nell'oceano Pacifico, sorvolando il mare del Giappone, risale allo scorso settembre." - text: "ROMA - Una nuova droga killer è stata sequestrata per la prima volta in Europa dagli investigatori del Nas. Si tratta di una nuova \"miscela psicoattiva altamente tossica\" per la prima volta individuata da forze di polizia, simile all'eroina sintetica, ma molto più economica e letale. Tanto che i 20 grammi scoperti sarebbero stati sufficienti per fabbricare ben 20.000 dosi e lo stesso contatto attraverso la pelle può provocare intossicazione. Individuata per la prima volta, la nuova droga presenta una struttura simile al farmaco sedativo Fentanyl ma con effetti molto più devastanti per l'organismo. Proveniva dell'estero ed era contenuta in un plico postale indirizzato in una città del centro Italia: è stata intercettata tramite accertamenti sul web grazie a un'operazione di intelligence che ha visto come protagonisti i militari della Sezione operativa centrale del Comando carabinieri per la Tutela della salute (Nas). Economica e letale, secondo gli investigatori \"in confronto l'eroina è quasi 'acqua fresca', anzi, proprio per la sua economicità, in alcuni casi viene venduta dai pusher a giovani conviti di comprare eroina\". La diffusione di nuove droghe sintetiche che continuamente appaiono sui mercati necessita di un'attività investigativa costante e complessa. Si tratta infatti di sostanze dalla struttura molecolare molto simile a quella del Fentanyl ma ogni volta leggermente diversa. Di qui la difficoltà di individuarle e l'importanza del nuovo sequestro. \"La chiamano impropriamente 'eroina sintetica' - spiega il comandante dei Nas, generale Adelmo Lusi - per il tipo di effetto psicotropo simile, ma dal punto di vista della tossicità è molto peggio: con 25 milligrammi di eroina ci si sballa, con 25mg di simil-fentanyl, come quello appena sequestrato, si muore\". Le indagini sono partite da ricoveri per overdose in ospedale, in cui arrivavano ragazzi che non rispondevano al trattamento disintossicante per l'eroina. La nuova sostanza verrà ora segnalata per l'inserimento tra le tabelle ministeriali degli stupefacenti prevista dal Dpr 309/1990." - text: "Fragile come il burro. Il nostro territorio è precario. Ne sanno qualcosa i comuni che sono stati investititi dal maltempo . Il dissesto idrogeologico imperversa su tutto il territorio. Infatti, oltre 6.600 comuni , pari all’82% del totale, sono in aree ad elevato rischio idrogeologico, pari al 10% della sua superficie. La popolazione potenzialmente esposta è stimata in 5,8 milioni di persone. I dati emergono dalle recenti analisi fatte da Legambiente e Protezione civile, che mettono in evidenza come in 10 anni in Italia sia raddoppiata l’area dei territori colpiti da alluvioni e frane , passando da una media di quattro regioni all’anno a otto regioni. Nella classifica delle regioni a maggior rischio idrogeologico prima è la Calabria con il 100% dei comuni esposti; al 100% ci sono anche la provincia di Trento, il Molise, la Basilicata, l’Umbria, la Valle d’Aosta. Poi Marche, Liguria al 99%; Lazio, Toscana al 98%; Abruzzo (96%), Emilia-Romagna (95%), Campania e Friuli Venezia Giulia al 92%, Piemonte (87%), Sardegna (81%), Puglia (78%), Sicilia (71%), Lombardia (60%), provincia di Bolzano (59%), Veneto (56%). Tra le cause che condizionano ed amplificano il rischio idrogeologico c’è l’azione dell’uomo (abbandono e degrado, cementificazione, consumo di suolo, abusivismo, disboscamento e incendi). Ma anche e soprattutto la mancanza di una seria manutenzione ordinaria e non ad una organica politica di prevenzione." - text: "Arriva dal Partito nazionalista basco (Pnv) la conferma che i cinque deputati che siedono in parlamento voteranno la sfiducia al governo guidato da Mariano Rajoy. Pochi voti, ma significativi quelli della formazione politica di Aitor Esteban, che interverrà nel pomeriggio. Pur con dimensioni molto ridotte, il partito basco si è trovato a fare da ago della bilancia in aula. E il sostegno alla mozione presentata dai Socialisti potrebbe significare per il primo ministro non trovare quei 176 voti che gli servono per continuare a governare. \" Perché dovrei dimettermi io che per il momento ho la fiducia della Camera e quella che mi è stato data alle urne \", ha detto oggi Rajoy nel suo intervento in aula, mentre procedeva la discussione sulla mozione di sfiducia. Il voto dei baschi ora cambia le carte in tavola e fa crescere ulteriormente la pressione sul premier perché rassegni le sue dimissioni. La sfiducia al premier, o un'eventuale scelta di dimettersi, porterebbe alle estreme conseguenze lo scandalo per corruzione che ha investito il Partito popolare. Ma per ora sembra pensare a tutt'altro. \"Non ha intenzione di dimettersi - ha detto il segretario generale del Partito popolare , María Dolores de Cospedal - Non gioverebbe all'interesse generale o agli interessi del Pp\"." metrics: - rouge - bertscore - headline-headline-consistency-classifier - headline-article-consistency-classifier model-index: - name: it5-efficient-small-el32-ilgiornale-to-repubblica results: - task: type: headline-style-transfer-ilgiornale-to-repubblica name: "Headline style transfer (Il Giornale to Repubblica)" dataset: type: gsarti/change_it name: "CHANGE-IT" metrics: - type: rouge1 value: 0.286 name: "Test Rouge1" - type: rouge2 value: 0.099 name: "Test Rouge2" - type: rougeL value: 0.253 name: "Test RougeL" - type: bertscore value: 0.422 name: "Test BERTScore" args: - model_type: "dbmdz/bert-base-italian-xxl-uncased" - lang: "it" - num_layers: 10 - rescale_with_baseline: True - baseline_path: "bertscore_baseline_ita.tsv" - type: headline-headline-consistency-classifier value: 0.836 name: "Test Headline-Headline Consistency Accuracy" - type: headline-article-consistency-classifier value: 0.763 name: "Test Headline-Article Consistency Accuracy" thumbnail: https://gsarti.com/publication/it5/featured.png --- # IT5 Cased Small Efficient EL32 for News Headline Style Transfer (Il Giornale to Repubblica) 🗞️➡️🗞️ 🇮🇹 *Shout-out to [Stefan Schweter](https://github.com/stefan-it) for contributing the pre-trained efficient model!* This repository contains the checkpoint for the [IT5 Cased Small Efficient EL32](https://huggingface.co/it5/it5-efficient-small-el32) model fine-tuned on news headline style transfer in the Il Giornale to Repubblica direction on the Italian CHANGE-IT dataset as part of the experiments of the paper [IT5: Large-scale Text-to-text Pretraining for Italian Language Understanding and Generation](https://arxiv.org/abs/2203.03759) by [Gabriele Sarti](https://gsarti.com) and [Malvina Nissim](https://malvinanissim.github.io). Efficient IT5 models differ from the standard ones by adopting a different vocabulary that enables cased text generation and an [optimized model architecture](https://arxiv.org/abs/2109.10686) to improve performances while reducing parameter count. The Small-EL32 replaces the original encoder from the T5 Small architecture with a 32-layer deep encoder, showing improved performances over the base model. A comprehensive overview of other released materials is provided in the [gsarti/it5](https://github.com/gsarti/it5) repository. Refer to the paper for additional details concerning the reported scores and the evaluation approach. ## Using the model The model is trained to generate a headline in the style of Repubblica from the full body of an article written in the style of Il Giornale. Model checkpoints are available for usage in Tensorflow, Pytorch and JAX. They can be used directly with pipelines as: ```python from transformers import pipelines g2r = pipeline("text2text-generation", model='it5/it5-efficient-small-el32-ilgiornale-to-repubblica') g2r("Arriva dal Partito nazionalista basco (Pnv) la conferma che i cinque deputati che siedono in parlamento voteranno la sfiducia al governo guidato da Mariano Rajoy. Pochi voti, ma significativi quelli della formazione politica di Aitor Esteban, che interverrà nel pomeriggio. Pur con dimensioni molto ridotte, il partito basco si è trovato a fare da ago della bilancia in aula. E il sostegno alla mozione presentata dai Socialisti potrebbe significare per il primo ministro non trovare quei 176 voti che gli servono per continuare a governare. \" Perché dovrei dimettermi io che per il momento ho la fiducia della Camera e quella che mi è stato data alle urne \", ha detto oggi Rajoy nel suo intervento in aula, mentre procedeva la discussione sulla mozione di sfiducia. Il voto dei baschi ora cambia le carte in tavola e fa crescere ulteriormente la pressione sul premier perché rassegni le sue dimissioni. La sfiducia al premier, o un'eventuale scelta di dimettersi, porterebbe alle estreme conseguenze lo scandalo per corruzione che ha investito il Partito popolare. Ma per ora sembra pensare a tutt'altro. \"Non ha intenzione di dimettersi - ha detto il segretario generale del Partito popolare , María Dolores de Cospedal - Non gioverebbe all'interesse generale o agli interessi del Pp\".") >>> [{"generated_text": "il nazionalista rajoy: 'voteremo la sfiducia'"}] ``` or loaded using autoclasses: ```python from transformers import AutoTokenizer, AutoModelForSeq2SeqLM tokenizer = AutoTokenizer.from_pretrained("it5/it5-efficient-small-el32-ilgiornale-to-repubblica") model = AutoModelForSeq2SeqLM.from_pretrained("it5/it5-efficient-small-el32-ilgiornale-to-repubblica") ``` If you use this model in your research, please cite our work as: ```bibtex @article{sarti-nissim-2022-it5, title={{IT5}: Large-scale Text-to-text Pretraining for Italian Language Understanding and Generation}, author={Sarti, Gabriele and Nissim, Malvina}, journal={ArXiv preprint 2203.03759}, url={https://arxiv.org/abs/2203.03759}, year={2022}, month={mar} } ``` ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10.0 ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
stevems1/bert-base-uncased-ShreeGanesh
08414391b08667dd05043fbb66ab169b5deb483e
2022-04-28T15:16:26.000Z
[ "pytorch", "tensorboard", "bert", "fill-mask", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
fill-mask
false
stevems1
null
stevems1/bert-base-uncased-ShreeGanesh
0
null
transformers
37,142
--- tags: - generated_from_trainer model-index: - name: bert-base-uncased-ShreeGanesh results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-ShreeGanesh This model is a fine-tuned version of [](https://huggingface.co/) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.1.0 - Tokenizers 0.12.1
dbmdz/flair-hipe-2022-ajmc-de
1d2a58da0bf07de9d2862981f47cc298fef0b6f4
2022-04-28T14:28:45.000Z
[ "pytorch", "license:mit" ]
null
false
dbmdz
null
dbmdz/flair-hipe-2022-ajmc-de
0
null
null
37,143
--- license: mit ---
princeton-nlp/efficient_mlm_m0.30
e3ad93a3a8b53a50e38ac007282e865d5162c0cb
2022-04-28T18:57:39.000Z
[ "pytorch", "roberta", "fill-mask", "arxiv:2202.08005", "transformers", "autotrain_compatible" ]
fill-mask
false
princeton-nlp
null
princeton-nlp/efficient_mlm_m0.30
0
null
transformers
37,144
--- inference: false --- This is a model checkpoint for ["Should You Mask 15% in Masked Language Modeling"](https://arxiv.org/abs/2202.08005) [(code)](https://github.com/princeton-nlp/DinkyTrain.git). We use pre layer norm, which is not supported by HuggingFace. To use our model, go to our [github repo](https://github.com/princeton-nlp/DinkyTrain.git), download our code, and import the RoBERTa class from `huggingface/modeling_roberta_prelayernorm.py`. For example, ``` bash from huggingface.modeling_roberta_prelayernorm import RobertaForMaskedLM, RobertaForSequenceClassification ```
huggingtweets/inversebrah
2800ff0ae48c29bc3c241bcdfdcd7f1b5baf273a
2022-04-28T20:06:16.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/inversebrah
0
null
transformers
37,145
--- language: en thumbnail: http://www.huggingtweets.com/inversebrah/1651176371994/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1497137019880804355/71KiqAN1_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">smolting (wassie, verse)</div> <div style="text-align: center; font-size: 14px;">@inversebrah</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from smolting (wassie, verse). | Data | smolting (wassie, verse) | | --- | --- | | Tweets downloaded | 3229 | | Retweets | 1700 | | Short tweets | 816 | | Tweets kept | 713 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/540r5fzt/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @inversebrah's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2oz9x9co) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2oz9x9co/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/inversebrah') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
phosseini/atomic-bert-large-full
829c3607d790efd4b4270ae9f4fa410c54b3bcd2
2022-04-28T21:56:46.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
phosseini
null
phosseini/atomic-bert-large-full
0
null
transformers
37,146
Entry not found
huggingtweets/usmnt
bb1bffc21c43f292853a572b6ff22865c2676667
2022-05-04T16:09:08.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/usmnt
0
null
transformers
37,147
--- language: en thumbnail: http://www.huggingtweets.com/usmnt/1651680543545/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1410587808666955776/mWkKWw1U_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">USMNT</div> <div style="text-align: center; font-size: 14px;">@usmnt</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from USMNT. | Data | USMNT | | --- | --- | | Tweets downloaded | 3250 | | Retweets | 600 | | Short tweets | 215 | | Tweets kept | 2435 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/22ipg0a6/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @usmnt's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2nbn1lat) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2nbn1lat/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/usmnt') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
mT0/mt0_large_translated_t0_ckpt_1012500
919b87869b58b10056ca1d2d98a6d6e7aed81160
2022-04-29T05:17:12.000Z
[ "pytorch", "mt5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
mT0
null
mT0/mt0_large_translated_t0_ckpt_1012500
0
null
transformers
37,148
Entry not found
norefly/opus-mt-ko-en-finetuned-ko-to-en3
bb42420bb23f483bdbc632bef6f11173b2e7ef2c
2022-04-29T11:48:26.000Z
[ "pytorch", "tensorboard", "marian", "text2text-generation", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
text2text-generation
false
norefly
null
norefly/opus-mt-ko-en-finetuned-ko-to-en3
0
null
transformers
37,149
--- license: apache-2.0 tags: - generated_from_trainer metrics: - bleu model-index: - name: opus-mt-ko-en-finetuned-ko-to-en3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # opus-mt-ko-en-finetuned-ko-to-en3 This model is a fine-tuned version of [Helsinki-NLP/opus-mt-ko-en](https://huggingface.co/Helsinki-NLP/opus-mt-ko-en) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.1864 - Bleu: 0.7037 - Gen Len: 11.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 256 - total_train_batch_size: 2048 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------:|:-------:| | No log | 0.99 | 119 | 4.4541 | 0.0 | 5.0 | | No log | 1.99 | 238 | 2.4214 | 0.3414 | 16.0 | | No log | 2.99 | 357 | 2.2158 | 0.3212 | 15.0 | | No log | 3.99 | 476 | 2.1737 | 0.3283 | 12.0 | | 3.2958 | 4.99 | 595 | 2.1864 | 0.7037 | 11.0 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.1.0 - Tokenizers 0.12.1
mT0/mt0_large_translated_t0_ckpt_1025000
21b2dcd4898fe36ba301b351ac6f8730ec2f1a4f
2022-04-29T05:48:55.000Z
[ "pytorch", "mt5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
mT0
null
mT0/mt0_large_translated_t0_ckpt_1025000
0
null
transformers
37,150
Entry not found
momo/MOTOD-large
9397c29aa60f660267f920040cd5d61d6160b636
2022-04-29T07:06:12.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
momo
null
momo/MOTOD-large
0
null
transformers
37,151
Entry not found
inhee/m2m100_418M-finetuned-ko-to-en3
e8fa94c8a6e884d7a78e66ad718472eacf3e8ea9
2022-04-29T14:42:44.000Z
[ "pytorch", "tensorboard", "m2m_100", "text2text-generation", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
text2text-generation
false
inhee
null
inhee/m2m100_418M-finetuned-ko-to-en3
0
null
transformers
37,152
--- license: mit tags: - generated_from_trainer metrics: - bleu model-index: - name: m2m100_418M-finetuned-ko-to-en3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # m2m100_418M-finetuned-ko-to-en3 This model is a fine-tuned version of [facebook/m2m100_418M](https://huggingface.co/facebook/m2m100_418M) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5175 - Bleu: 75.215 - Gen Len: 9.726 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 256 - total_train_batch_size: 1024 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:| | No log | 0.99 | 103 | 2.7756 | 8.9955 | 9.425 | | No log | 1.99 | 206 | 0.7248 | 63.7645 | 9.6421 | | No log | 2.99 | 309 | 0.5175 | 75.215 | 9.726 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.1.0 - Tokenizers 0.12.1
huggingtweets/cokedupoptions-greg16676935420-parikpatelcfa
3873f7ade7f6743c9506cd5a4798ef77e9cd7f68
2022-04-29T15:09:43.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/cokedupoptions-greg16676935420-parikpatelcfa
0
null
transformers
37,153
--- language: en thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1514648481281056772/ACunKh0I_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1484924573032148993/qdB7hbSU_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1341030286386192386/TzEiVCaJ_400x400.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">greg & John W. Rich (Fake Tech Exec) & Dr. Parik Patel, BA, CFA, ACCA Esq. (drpatel.eth)</div> <div style="text-align: center; font-size: 14px;">@cokedupoptions-greg16676935420-parikpatelcfa</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from greg & John W. Rich (Fake Tech Exec) & Dr. Parik Patel, BA, CFA, ACCA Esq. (drpatel.eth). | Data | greg | John W. Rich (Fake Tech Exec) | Dr. Parik Patel, BA, CFA, ACCA Esq. (drpatel.eth) | | --- | --- | --- | --- | | Tweets downloaded | 3247 | 3247 | 3250 | | Retweets | 27 | 202 | 22 | | Short tweets | 664 | 331 | 719 | | Tweets kept | 2556 | 2714 | 2509 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/snhk0760/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @cokedupoptions-greg16676935420-parikpatelcfa's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/iresidwo) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/iresidwo/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/cokedupoptions-greg16676935420-parikpatelcfa') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
dbmdz/flair-hipe-2022-ajmc-all-64k
002b8dd69ffbc578fd53c53972fb2e9a511a58c0
2022-04-29T08:54:47.000Z
[ "pytorch", "license:mit" ]
null
false
dbmdz
null
dbmdz/flair-hipe-2022-ajmc-all-64k
0
null
null
37,154
--- license: mit ---
usama4512/out
329a949efd217b02e972dffc2710e8033a414cce
2022-04-29T09:37:48.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
usama4512
null
usama4512/out
0
null
transformers
37,155
Entry not found
oceanpty/mbert-squad
66d9eef1737fcb8e2aa2f424087d18f2444eeb09
2022-04-29T13:27:37.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
oceanpty
null
oceanpty/mbert-squad
0
null
transformers
37,156
Entry not found
hassnain/wav2vec2-base-timit-demo-colab
5ee2e73e356cdbbd6fcb66b0c45097cb80666bf7
2022-04-30T20:20:34.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
hassnain
null
hassnain/wav2vec2-base-timit-demo-colab
0
null
transformers
37,157
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base-timit-demo-colab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-timit-demo-colab This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.11.3 - Pytorch 1.11.0+cu113 - Datasets 1.18.3 - Tokenizers 0.10.3
lsb/wav2vec2-large-pem123-960h-la
a856e0c1fad6205d6e1822906a4d82ec167b6a29
2022-05-01T16:12:22.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
lsb
null
lsb/wav2vec2-large-pem123-960h-la
0
null
transformers
37,158
Entry not found
sameearif88/wav2vec2-base-timit-demo-colab1
a715c2e18c34346f4f9f210a195a72145d0b3443
2022-05-01T06:15:44.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
sameearif88
null
sameearif88/wav2vec2-base-timit-demo-colab1
0
null
transformers
37,159
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base-timit-demo-colab1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-timit-demo-colab1 This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7411 - Wer: 0.5600 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 5.0773 | 13.89 | 500 | 3.1073 | 1.0 | | 1.2444 | 27.78 | 1000 | 0.7411 | 0.5600 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.11.0+cu113 - Datasets 1.18.3 - Tokenizers 0.10.3
inhee/m2m100_418M-finetuned-ko-to-en4
2036ea606111fda03c96c58319b31f27e4e5d4c5
2022-04-30T12:30:56.000Z
[ "pytorch", "tensorboard", "m2m_100", "text2text-generation", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
text2text-generation
false
inhee
null
inhee/m2m100_418M-finetuned-ko-to-en4
0
null
transformers
37,160
--- license: mit tags: - generated_from_trainer metrics: - bleu model-index: - name: m2m100_418M-finetuned-ko-to-en4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # m2m100_418M-finetuned-ko-to-en4 This model is a fine-tuned version of [facebook/m2m100_418M](https://huggingface.co/facebook/m2m100_418M) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4598 - Bleu: 85.3745 - Gen Len: 9.7522 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 256 - total_train_batch_size: 1024 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:| | No log | 1.0 | 105 | 1.8667 | 24.5072 | 9.523 | | No log | 2.0 | 210 | 0.8581 | 57.9973 | 9.2779 | | No log | 3.0 | 315 | 0.6587 | 69.4588 | 9.7399 | | No log | 4.0 | 420 | 0.5762 | 74.5636 | 9.6775 | | 1.4539 | 5.0 | 525 | 0.5254 | 78.8897 | 9.6946 | | 1.4539 | 6.0 | 630 | 0.4952 | 81.0054 | 9.7073 | | 1.4539 | 7.0 | 735 | 0.4773 | 83.0792 | 9.7233 | | 1.4539 | 8.0 | 840 | 0.4669 | 84.4309 | 9.7429 | | 1.4539 | 9.0 | 945 | 0.4616 | 85.0965 | 9.749 | | 0.144 | 10.0 | 1050 | 0.4598 | 85.3745 | 9.7522 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.1.0 - Tokenizers 0.12.1
moma1820/new_sen_xlmr
d5595e5dbfbfb9b2dc34ae9308c3f45154b31915
2022-04-29T16:43:02.000Z
[ "pytorch", "xlm-roberta", "feature-extraction", "transformers" ]
feature-extraction
false
moma1820
null
moma1820/new_sen_xlmr
0
null
transformers
37,161
Entry not found
mkarthik/distilbert-base-uncased-finetuned-product
a1f60af838df87314b5dc444e2728f90464db0dc
2022-05-02T04:28:39.000Z
[ "pytorch", "distilbert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
mkarthik
null
mkarthik/distilbert-base-uncased-finetuned-product
0
null
transformers
37,162
Entry not found
snowood1/ConfliBERT-scr-cased
ee6f9a95eddb30b375d79855bbe6a75262973a84
2022-05-11T16:53:30.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "license:gpl-3.0", "autotrain_compatible" ]
fill-mask
false
snowood1
null
snowood1/ConfliBERT-scr-cased
0
null
transformers
37,163
--- license: gpl-3.0 --- ConfliBERT is a pre-trained language model for political conflict and violence. We provided four versions of ConfliBERT: <ol> <li>ConfliBERT-scr-uncased: &nbsp;&nbsp;&nbsp;&nbsp; Pretraining from scratch with our own uncased vocabulary (preferred)</li> <li>ConfliBERT-scr-cased: &nbsp;&nbsp;&nbsp;&nbsp; Pretraining from scratch with our own cased vocabulary</li> <li>ConfliBERT-cont-uncased: &nbsp;&nbsp;&nbsp;&nbsp; Continual pretraining with original BERT's uncased vocabulary</li> <li>ConfliBERT-cont-cased: &nbsp;&nbsp;&nbsp;&nbsp; Continual pretraining with original BERT's cased vocabulary</li> </ol> See more details in https://github.com/eventdata/ConfliBERT/
snowood1/ConfliBERT-cont-cased
403596ab1f479c6d2a226015904dc1e65ce2df02
2022-05-11T16:52:54.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "license:gpl-3.0", "autotrain_compatible" ]
fill-mask
false
snowood1
null
snowood1/ConfliBERT-cont-cased
0
null
transformers
37,164
--- license: gpl-3.0 --- ConfliBERT is a pre-trained language model for political conflict and violence. We provided four versions of ConfliBERT: <ol> <li>ConfliBERT-scr-uncased: &nbsp;&nbsp;&nbsp;&nbsp; Pretraining from scratch with our own uncased vocabulary (preferred)</li> <li>ConfliBERT-scr-cased: &nbsp;&nbsp;&nbsp;&nbsp; Pretraining from scratch with our own cased vocabulary</li> <li>ConfliBERT-cont-uncased: &nbsp;&nbsp;&nbsp;&nbsp; Continual pretraining with original BERT's uncased vocabulary</li> <li>ConfliBERT-cont-cased: &nbsp;&nbsp;&nbsp;&nbsp; Continual pretraining with original BERT's cased vocabulary</li> </ol> See more details in https://github.com/eventdata/ConfliBERT/
tonydiana1/distilgpt2-finetuned-wikitext2
f5dd58ce4073266f2c7fd4a05f5b2b01d5956f8f
2022-04-30T01:00:42.000Z
[ "pytorch", "tensorboard", "gpt2", "text-generation", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-generation
false
tonydiana1
null
tonydiana1/distilgpt2-finetuned-wikitext2
0
null
transformers
37,165
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distilgpt2-finetuned-wikitext2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilgpt2-finetuned-wikitext2 This model is a fine-tuned version of [distilgpt2](https://huggingface.co/distilgpt2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.6425 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 3.76 | 1.0 | 2334 | 3.6658 | | 3.6526 | 2.0 | 4668 | 3.6468 | | 3.6004 | 3.0 | 7002 | 3.6425 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.1.0 - Tokenizers 0.12.1
mdroth/dummy-model_R91m
e217793081581bd6a21eb0737b7ea854be6084d4
2022-04-30T01:15:10.000Z
[ "pytorch", "camembert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
mdroth
null
mdroth/dummy-model_R91m
0
null
transformers
37,166
Entry not found
phosseini/atomic-roberta-large-full
b91263cab6c6c089e6a512e9ed297e135de2d07c
2022-04-30T06:12:27.000Z
[ "pytorch", "roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
phosseini
null
phosseini/atomic-roberta-large-full
0
null
transformers
37,167
Entry not found
tmabraham/selfie2anime_cyclegan
f8663c6e9639be70f3c8755856320e96ab94e2a5
2022-04-30T09:40:05.000Z
[ "pytorch" ]
null
false
tmabraham
null
tmabraham/selfie2anime_cyclegan
0
null
null
37,168
Entry not found
rankarusu/AnonI
d6c64e6ce2b959f0d44dafb7e38d03ade2e600bb
2022-05-15T11:21:58.000Z
[ "pytorch", "gpt_neo", "text-generation", "transformers" ]
text-generation
false
rankarusu
null
rankarusu/AnonI
0
null
transformers
37,169
Entry not found
moaiz237/wav2vec2-base-timit-moaiz_exp1
8bf322656202e7156424fbeccc3a2fd32ecb50d1
2022-04-30T15:13:12.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
moaiz237
null
moaiz237/wav2vec2-base-timit-moaiz_exp1
0
null
transformers
37,170
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base-timit-moaiz_exp1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-timit-moaiz_exp1 This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6910 - Wer: 0.5549 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 4.7261 | 13.89 | 500 | 2.4864 | 0.9942 | | 1.0036 | 27.78 | 1000 | 0.6910 | 0.5549 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.11.0+cu113 - Datasets 1.18.3 - Tokenizers 0.10.3
sameearif88/wav2vec2-base-timit-demo-colab0
8b764eeb1f9febe492c27303f3cb04ac86641020
2022-04-30T21:06:14.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
sameearif88
null
sameearif88/wav2vec2-base-timit-demo-colab0
0
null
transformers
37,171
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base-timit-demo-colab0 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-timit-demo-colab0 This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7798 - Wer: 0.5194 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 5.0731 | 13.89 | 500 | 3.1154 | 1.0 | | 1.2294 | 27.78 | 1000 | 0.7017 | 0.5466 | | 0.3404 | 41.67 | 1500 | 0.7798 | 0.5194 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.11.0+cu113 - Datasets 1.18.3 - Tokenizers 0.10.3
moaiz237/wav2vec2-base-timit-moaiz_exp2
62201f57b9d62065431bb8a03d3b6f95c24c62d1
2022-04-30T16:23:24.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
moaiz237
null
moaiz237/wav2vec2-base-timit-moaiz_exp2
0
null
transformers
37,172
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base-timit-moaiz_exp2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-timit-moaiz_exp2 This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.1884 - Wer: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0004 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:---:| | 4.15 | 13.89 | 500 | 3.2020 | 1.0 | | 3.1522 | 27.78 | 1000 | 3.1884 | 1.0 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.11.0+cu113 - Datasets 1.18.3 - Tokenizers 0.10.3
rickySaka/en-md
eab56ad0a875744d5218c346ab99a9a86f190161
2022-04-30T16:25:51.000Z
[ "pytorch", "marian", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
rickySaka
null
rickySaka/en-md
0
null
transformers
37,173
Entry not found
hassnain/wav2vec2-base-timit-demo-colab0
f55f537fd0300dbe84e1243e79f1a9d9cf4af32a
2022-04-30T21:39:56.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
hassnain
null
hassnain/wav2vec2-base-timit-demo-colab0
0
null
transformers
37,174
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base-timit-demo-colab0 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-timit-demo-colab0 This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.1808 - Wer: 0.7734 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 4.8077 | 7.04 | 500 | 3.1554 | 1.0 | | 2.8549 | 14.08 | 1000 | 2.0683 | 1.0846 | | 1.3297 | 21.13 | 1500 | 1.2084 | 0.7984 | | 0.6725 | 28.17 | 2000 | 1.1808 | 0.7734 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.11.0+cu113 - Datasets 1.18.3 - Tokenizers 0.10.3
hli/distilbert-base-uncased-finetuned-imdb
cb2ab1ccf2f019be4b83d296dcfbfab742e76732
2022-05-01T04:59:19.000Z
[ "pytorch", "tensorboard", "distilbert", "fill-mask", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
fill-mask
false
hli
null
hli/distilbert-base-uncased-finetuned-imdb
0
null
transformers
37,175
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distilbert-base-uncased-finetuned-imdb results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-imdb This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.4721 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.7086 | 1.0 | 157 | 2.4897 | | 2.5796 | 2.0 | 314 | 2.4230 | | 2.5269 | 3.0 | 471 | 2.4354 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Tokenizers 0.12.1
huggingtweets/chubbiverse
9c92a3901a6494af66b4643eea43d4fed6293517
2022-05-01T05:19:40.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/chubbiverse
0
null
transformers
37,176
--- language: en thumbnail: http://www.huggingtweets.com/chubbiverse/1651382374986/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1479680767261229056/JH8LZA4w_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Chubbiverse</div> <div style="text-align: center; font-size: 14px;">@chubbiverse</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Chubbiverse. | Data | Chubbiverse | | --- | --- | | Tweets downloaded | 3220 | | Retweets | 881 | | Short tweets | 559 | | Tweets kept | 1780 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1ywslmnc/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @chubbiverse's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/34yoo9j7) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/34yoo9j7/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/chubbiverse') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
mriggs/tgb_old
62b1f103bb08532a4ed83472d54386e64178d929
2022-05-01T06:19:46.000Z
[ "pytorch", "flaubert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
mriggs
null
mriggs/tgb_old
0
null
transformers
37,177
Entry not found
hassnain/wav2vec2-base-timit-demo-colab7
da41ad8f69e62b36e4e484c0338165bb2d315225
2022-05-01T09:02:18.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
hassnain
null
hassnain/wav2vec2-base-timit-demo-colab7
0
null
transformers
37,178
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base-timit-demo-colab7 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-timit-demo-colab7 This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.1687 - Wer: 0.6478 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 60 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 4.8409 | 7.04 | 500 | 3.1487 | 1.0 | | 2.6259 | 14.08 | 1000 | 1.5598 | 0.8730 | | 1.083 | 21.13 | 1500 | 1.0600 | 0.7347 | | 0.6061 | 28.17 | 2000 | 1.0697 | 0.7006 | | 0.4022 | 35.21 | 2500 | 1.0617 | 0.6913 | | 0.2884 | 42.25 | 3000 | 1.1962 | 0.6768 | | 0.225 | 49.3 | 3500 | 1.1753 | 0.6567 | | 0.1852 | 56.34 | 4000 | 1.1687 | 0.6478 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.11.0+cu113 - Datasets 1.18.3 - Tokenizers 0.10.3
sameearif88/wav2vec2-base-timit-demo-colab6
44eda9b9cefd32bc3e7283c74298fd39ab3767ec
2022-05-01T10:12:26.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
sameearif88
null
sameearif88/wav2vec2-base-timit-demo-colab6
0
null
transformers
37,179
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base-timit-demo-colab6 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-timit-demo-colab6 This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6532 - Wer: 0.5394 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1200 - num_epochs: 40 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 5.2874 | 13.89 | 500 | 3.1571 | 1.0 | | 1.3896 | 27.78 | 1000 | 0.6532 | 0.5394 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.11.0+cu113 - Datasets 1.18.3 - Tokenizers 0.10.3
sameearif88/wav2vec2-base-timit-demo-colab10
75ebd14dc09b4b37577760b048b3cc2201f841b8
2022-05-01T11:00:20.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
sameearif88
null
sameearif88/wav2vec2-base-timit-demo-colab10
0
null
transformers
37,180
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base-timit-demo-colab10 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-timit-demo-colab10 This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4460 - Wer: 0.3425 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 4.9891 | 3.52 | 500 | 3.1554 | 1.0 | | 1.71 | 7.04 | 1000 | 0.7122 | 0.5811 | | 0.6164 | 10.56 | 1500 | 0.5149 | 0.4880 | | 0.4188 | 14.08 | 2000 | 0.4726 | 0.4344 | | 0.3038 | 17.61 | 2500 | 0.4765 | 0.4092 | | 0.2312 | 21.13 | 3000 | 0.4387 | 0.3765 | | 0.1867 | 24.65 | 3500 | 0.4411 | 0.3583 | | 0.1582 | 28.17 | 4000 | 0.4460 | 0.3425 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.11.0+cu113 - Datasets 1.18.3 - Tokenizers 0.10.3
hassnain/wav2vec2-base-timit-demo-colab9
d7d9dafb6127a0b8cd68fb7797e7c963241e90e5
2022-05-01T15:58:30.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
hassnain
null
hassnain/wav2vec2-base-timit-demo-colab9
0
null
transformers
37,181
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base-timit-demo-colab9 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-timit-demo-colab9 This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.1922 - Wer: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:---:| | 5.0683 | 1.42 | 500 | 3.2471 | 1.0 | | 3.1349 | 2.85 | 1000 | 3.2219 | 1.0 | | 3.1317 | 4.27 | 1500 | 3.2090 | 1.0 | | 3.1262 | 5.7 | 2000 | 3.2152 | 1.0 | | 3.1307 | 7.12 | 2500 | 3.2147 | 1.0 | | 3.1264 | 8.55 | 3000 | 3.2072 | 1.0 | | 3.1279 | 9.97 | 3500 | 3.2158 | 1.0 | | 3.1287 | 11.4 | 4000 | 3.2190 | 1.0 | | 3.1256 | 12.82 | 4500 | 3.2069 | 1.0 | | 3.1254 | 14.25 | 5000 | 3.2134 | 1.0 | | 3.1259 | 15.67 | 5500 | 3.2231 | 1.0 | | 3.1269 | 17.09 | 6000 | 3.2005 | 1.0 | | 3.1279 | 18.52 | 6500 | 3.1988 | 1.0 | | 3.1246 | 19.94 | 7000 | 3.1929 | 1.0 | | 3.128 | 21.37 | 7500 | 3.1864 | 1.0 | | 3.1245 | 22.79 | 8000 | 3.1868 | 1.0 | | 3.1266 | 24.22 | 8500 | 3.1852 | 1.0 | | 3.1239 | 25.64 | 9000 | 3.1855 | 1.0 | | 3.125 | 27.07 | 9500 | 3.1917 | 1.0 | | 3.1233 | 28.49 | 10000 | 3.1929 | 1.0 | | 3.1229 | 29.91 | 10500 | 3.1922 | 1.0 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.11.0+cu113 - Datasets 1.18.3 - Tokenizers 0.10.3
hassnain/wav2vec2-base-timit-demo-colab11
340659b9221149af85daa6b844a274798ac978bf
2022-05-01T10:54:00.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
hassnain
null
hassnain/wav2vec2-base-timit-demo-colab11
0
null
transformers
37,182
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base-timit-demo-colab11 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-timit-demo-colab11 This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.6269 - Wer: 0.7418 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 5.6439 | 7.04 | 500 | 3.3083 | 1.0 | | 2.3763 | 14.08 | 1000 | 1.5059 | 0.8146 | | 1.0161 | 21.13 | 1500 | 1.5101 | 0.7488 | | 0.6195 | 28.17 | 2000 | 1.6269 | 0.7418 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.11.0+cu113 - Datasets 1.18.3 - Tokenizers 0.10.3
sameearif88/wav2vec2-base-timit-demo-colab7
65bc38291a6ee75c61c53d060580fbc31fa77239
2022-05-01T11:12:28.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
sameearif88
null
sameearif88/wav2vec2-base-timit-demo-colab7
0
null
transformers
37,183
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base-timit-demo-colab7 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-timit-demo-colab7 This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6917 - Wer: 0.5426 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1400 - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 5.1854 | 13.89 | 500 | 3.1687 | 1.0 | | 1.7033 | 27.78 | 1000 | 0.7289 | 0.5659 | | 0.4208 | 41.67 | 1500 | 0.6917 | 0.5426 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.11.0+cu113 - Datasets 1.18.3 - Tokenizers 0.10.3
hassnain/wav2vec2-base-timit-demo-colab30
7b756680fd8555704f0100d08144f47eeaadcf68
2022-05-01T12:46:21.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
hassnain
null
hassnain/wav2vec2-base-timit-demo-colab30
0
null
transformers
37,184
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base-timit-demo-colab30 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-timit-demo-colab30 This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.8496 - Wer: 0.6534 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 5.2705 | 14.71 | 500 | 3.1073 | 1.0 | | 1.3631 | 29.41 | 1000 | 0.8496 | 0.6534 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.11.0+cu113 - Datasets 1.18.3 - Tokenizers 0.10.3
huggingtweets/sandspiel_feed
eb5d0954adc263abd6e08220170426bc94514f04
2022-05-01T11:28:20.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/sandspiel_feed
0
null
transformers
37,185
--- language: en thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1073861926097117184/FB3bBgcN_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">sandspiel</div> <div style="text-align: center; font-size: 14px;">@sandspiel_feed</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from sandspiel. | Data | sandspiel | | --- | --- | | Tweets downloaded | 3200 | | Retweets | 2 | | Short tweets | 1506 | | Tweets kept | 1692 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3fvrcwe0/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @sandspiel_feed's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/24l7h3az) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/24l7h3az/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/sandspiel_feed') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
hassnain/wav2vec2-base-timit-demo-colab40
5867386a076822a5af398f7cefb7bd8f26c9b09b
2022-05-01T12:54:20.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
hassnain
null
hassnain/wav2vec2-base-timit-demo-colab40
0
null
transformers
37,186
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base-timit-demo-colab40 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-timit-demo-colab40 This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7341 - Wer: 0.5578 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 5.0438 | 13.89 | 500 | 3.0671 | 1.0 | | 1.0734 | 27.78 | 1000 | 0.7341 | 0.5578 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.11.0+cu113 - Datasets 1.18.3 - Tokenizers 0.10.3
hassnain/wav2vec2-base-timit-demo-colab50
216b3f34494d11ecebfa6c05c786479e3c9a5042
2022-05-01T13:32:25.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
hassnain
null
hassnain/wav2vec2-base-timit-demo-colab50
0
null
transformers
37,187
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base-timit-demo-colab50 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-timit-demo-colab50 This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.2257 - Wer: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:---:| | 5.4568 | 7.04 | 500 | 3.3002 | 1.0 | | 3.1795 | 14.08 | 1000 | 3.2170 | 1.0 | | 3.1607 | 21.13 | 1500 | 3.2119 | 1.0 | | 3.1537 | 28.17 | 2000 | 3.2257 | 1.0 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.11.0+cu113 - Datasets 1.18.3 - Tokenizers 0.10.3
nepp1d0/prot_bert-finetuned-smiles-bindingDB
1f3c0ff7eb4b3b15f4a75da3225bb000f68e0a62
2022-05-05T23:43:43.000Z
[ "pytorch", "tensorboard", "bert", "fill-mask", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
fill-mask
false
nepp1d0
null
nepp1d0/prot_bert-finetuned-smiles-bindingDB
0
null
transformers
37,188
--- tags: - generated_from_trainer model-index: - name: prot_bert-finetuned-smiles-bindingDB results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # prot_bert-finetuned-smiles-bindingDB This model is a fine-tuned version of [Rostlab/prot_bert](https://huggingface.co/Rostlab/prot_bert) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.2250 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-06 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 1.6942 | 1.0 | 10000 | 1.4153 | | 1.3261 | 2.0 | 20000 | 1.2679 | | 1.2467 | 3.0 | 30000 | 1.2300 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.1.0 - Tokenizers 0.12.1
sameearif88/wav2vec2-base-timit-demo-colab11
c145e87a35b4c8ee86a1dfe9eda35ff538e1ff73
2022-05-01T11:54:05.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
sameearif88
null
sameearif88/wav2vec2-base-timit-demo-colab11
0
null
transformers
37,189
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base-timit-demo-colab11 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-timit-demo-colab11 This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4922 - Wer: 0.4348 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 15 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 4.2269 | 3.52 | 500 | 1.1191 | 0.7121 | | 0.8297 | 7.04 | 1000 | 0.6064 | 0.5228 | | 0.4988 | 10.56 | 1500 | 0.5057 | 0.4627 | | 0.3635 | 14.08 | 2000 | 0.4922 | 0.4348 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.11.0+cu113 - Datasets 1.18.3 - Tokenizers 0.10.3
huggingtweets/fana
95873f928477691fd4c90d360d48e75d4fd28532
2022-05-01T11:23:40.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/fana
0
null
transformers
37,190
--- language: en thumbnail: http://www.huggingtweets.com/fana/1651404215785/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1498253613105299456/QOtx4xi-_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Maria Confusão</div> <div style="text-align: center; font-size: 14px;">@fana</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Maria Confusão. | Data | Maria Confusão | | --- | --- | | Tweets downloaded | 3244 | | Retweets | 207 | | Short tweets | 985 | | Tweets kept | 2052 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1jyz1j51/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @fana's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/13zcy7x6) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/13zcy7x6/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/fana') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
hassnain/wav2vec2-base-timit-demo-colab51
0fd29e499242245ff069cdff0059c24b1827b364
2022-05-01T11:59:55.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
hassnain
null
hassnain/wav2vec2-base-timit-demo-colab51
0
null
transformers
37,191
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base-timit-demo-colab51 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-timit-demo-colab51 This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.8395 - Wer: 0.7480 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 5.481 | 7.04 | 500 | 3.2834 | 1.0 | | 2.2521 | 14.08 | 1000 | 1.6333 | 0.8093 | | 0.9467 | 21.13 | 1500 | 1.7458 | 0.7560 | | 0.5888 | 28.17 | 2000 | 1.8395 | 0.7480 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.11.0+cu113 - Datasets 1.18.3 - Tokenizers 0.10.3
hassnain/wav2vec2-base-timit-demo-colab70
b931fb1501357b79614b6c92abd38413417179ff
2022-05-01T14:11:56.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
hassnain
null
hassnain/wav2vec2-base-timit-demo-colab70
0
null
transformers
37,192
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base-timit-demo-colab70 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-timit-demo-colab70 This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7439 - Wer: 0.5149 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 4.8646 | 7.04 | 500 | 3.1467 | 1.0 | | 1.678 | 14.08 | 1000 | 0.8738 | 0.6511 | | 0.5083 | 21.13 | 1500 | 0.7404 | 0.5504 | | 0.2923 | 28.17 | 2000 | 0.7439 | 0.5149 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.11.0+cu113 - Datasets 1.18.3 - Tokenizers 0.10.3
hassnain/wav2vec2-base-timit-demo-colab52
17bd5317a526b052922f7bf968d9f50234570270
2022-05-01T12:59:06.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
hassnain
null
hassnain/wav2vec2-base-timit-demo-colab52
0
null
transformers
37,193
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base-timit-demo-colab52 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-timit-demo-colab52 This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.7941 - Wer: 0.7501 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 5.3424 | 7.04 | 500 | 3.3225 | 1.0 | | 2.518 | 14.08 | 1000 | 1.5884 | 0.8300 | | 1.0217 | 21.13 | 1500 | 1.6643 | 0.7719 | | 0.6074 | 28.17 | 2000 | 1.7941 | 0.7501 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.11.0+cu113 - Datasets 1.18.3 - Tokenizers 0.10.3
sameearif88/wav2vec2-base-timit-demo-colab12
0a6c6468ea3f09e93dca1a3cbe80642df02fff76
2022-05-01T14:25:58.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
sameearif88
null
sameearif88/wav2vec2-base-timit-demo-colab12
0
null
transformers
37,194
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base-timit-demo-colab12 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-timit-demo-colab12 This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4831 - Wer: 0.3546 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 420 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 4.1683 | 3.52 | 500 | 1.3684 | 0.7364 | | 0.7614 | 7.04 | 1000 | 0.6008 | 0.5218 | | 0.4721 | 10.56 | 1500 | 0.5319 | 0.4614 | | 0.3376 | 14.08 | 2000 | 0.5234 | 0.4308 | | 0.2508 | 17.61 | 2500 | 0.5109 | 0.3998 | | 0.1978 | 21.13 | 3000 | 0.5037 | 0.3721 | | 0.1645 | 24.65 | 3500 | 0.4918 | 0.3622 | | 0.1449 | 28.17 | 4000 | 0.4831 | 0.3546 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.11.0+cu113 - Datasets 1.18.3 - Tokenizers 0.10.3
hassnain/wav2vec2-base-timit-demo-colab90
f99889d4d7ecda6f0060c22ab55320903645ee32
2022-05-01T17:08:06.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
hassnain
null
hassnain/wav2vec2-base-timit-demo-colab90
0
null
transformers
37,195
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base-timit-demo-colab90 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-timit-demo-colab90 This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6766 - Wer: 0.4479 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 60 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 5.0217 | 7.04 | 500 | 3.2571 | 1.0 | | 1.271 | 14.08 | 1000 | 0.6501 | 0.5874 | | 0.4143 | 21.13 | 1500 | 0.5943 | 0.5360 | | 0.2446 | 28.17 | 2000 | 0.6285 | 0.5028 | | 0.1653 | 35.21 | 2500 | 0.6553 | 0.4992 | | 0.1295 | 42.25 | 3000 | 0.6735 | 0.4705 | | 0.1033 | 49.3 | 3500 | 0.6792 | 0.4539 | | 0.0886 | 56.34 | 4000 | 0.6766 | 0.4479 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.11.0+cu113 - Datasets 1.18.3 - Tokenizers 0.10.3
fahadtouseef/wav2vec2-base-timit-demo-colab_1
34a35012f2eb2a5e7ac36443c692ae2ebd693e3c
2022-05-01T23:57:32.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
fahadtouseef
null
fahadtouseef/wav2vec2-base-timit-demo-colab_1
0
null
transformers
37,196
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base-timit-demo-colab_1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-timit-demo-colab_1 This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3233 - Wer: 0.2574 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 4.0949 | 3.52 | 500 | 1.1140 | 0.7136 | | 0.7584 | 7.04 | 1000 | 0.5312 | 0.5154 | | 0.4254 | 10.56 | 1500 | 0.4489 | 0.4401 | | 0.2708 | 14.08 | 2000 | 0.4108 | 0.3770 | | 0.1855 | 17.61 | 2500 | 0.3881 | 0.3257 | | 0.139 | 21.13 | 3000 | 0.3666 | 0.2958 | | 0.1057 | 24.65 | 3500 | 0.3351 | 0.2748 | | 0.0855 | 28.17 | 4000 | 0.3233 | 0.2574 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.11.0+cu113 - Datasets 1.18.3 - Tokenizers 0.10.3
hassnain/wav2vec2-base-timit-demo-colab53
d201b3a7b9dfaa74529bf2025e37b9ba54c4cf83
2022-05-01T17:13:03.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
hassnain
null
hassnain/wav2vec2-base-timit-demo-colab53
0
null
transformers
37,197
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base-timit-demo-colab53 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-timit-demo-colab53 This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.2003 - Wer: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:---:| | 5.619 | 7.04 | 500 | 3.2338 | 1.0 | | 3.1855 | 14.08 | 1000 | 3.1968 | 1.0 | | 3.1669 | 21.13 | 1500 | 3.1796 | 1.0 | | 3.1586 | 28.17 | 2000 | 3.2003 | 1.0 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.11.0+cu113 - Datasets 1.18.3 - Tokenizers 0.10.3
kompactss/JeBERT_je_ko
244d7c3d647e10803f9dbec2b8bed1562e98c66b
2022-05-16T06:11:10.000Z
[ "pytorch", "encoder-decoder", "text2text-generation", "transformers", "license:afl-3.0", "autotrain_compatible" ]
text2text-generation
false
kompactss
null
kompactss/JeBERT_je_ko
0
0
transformers
37,198
--- license: afl-3.0 --- # 🍊 제주 방언 번역 모델 🍊 - 제주어 -> 표준어 - Made by. 구름 자연어처리 과정 3기 3조!! - github link : https://github.com/Goormnlpteam3/JeBERT ## 1. Seq2Seq Transformer Model - encoder : BertConfig - decoder : BertConfig - Tokenizer : WordPiece Tokenizer ## 2. Dataset - Jit Dataset - AI HUB(+아래아 문자) ## 3. Hyper Parameters - Epoch : 10 epochs(best at 8 epoch) - Random Seed : 42 - Learning Rate : 5e-5 - Warm up Ratio : 0.1 - Batch Size : 32 ## 4. BLEU Score - Jit + AI HUB(+아래아 문자) Dataset : 79.0 --- ### CREDIT - 주형준 : [email protected] - 강가람 : [email protected] - 고광연 : [email protected] - 김수연 : [email protected] - 이원경 : [email protected] - 조성은 : [email protected]
jcai1/distilbert-base-uncased-finetuned-imdb
9fadc53627db4e1fea7eb91588bf25d9808c0ad5
2022-05-01T15:16:59.000Z
[ "pytorch", "tensorboard", "distilbert", "fill-mask", "dataset:imdb", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
fill-mask
false
jcai1
null
jcai1/distilbert-base-uncased-finetuned-imdb
0
null
transformers
37,199
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb model-index: - name: distilbert-base-uncased-finetuned-imdb results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-imdb This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 2.4721 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.7086 | 1.0 | 157 | 2.4897 | | 2.5796 | 2.0 | 314 | 2.4230 | | 2.5269 | 3.0 | 471 | 2.4354 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.1.0 - Tokenizers 0.12.1