modelId
stringlengths
4
112
sha
stringlengths
40
40
lastModified
stringlengths
24
24
tags
sequence
pipeline_tag
stringclasses
29 values
private
bool
1 class
author
stringlengths
2
38
config
null
id
stringlengths
4
112
downloads
float64
0
36.8M
likes
float64
0
712
library_name
stringclasses
17 values
__index_level_0__
int64
0
38.5k
readme
stringlengths
0
186k
google/multiberts-seed_1-step_1300k
28b3f72993adf1630ea00eb7349c38475ec96fa0
2021-11-06T01:09:00.000Z
[ "pytorch", "tf", "bert", "pretraining", "en", "arxiv:2106.16163", "arxiv:1908.08962", "transformers", "multiberts", "multiberts-seed_1", "multiberts-seed_1-step_1300k", "license:apache-2.0" ]
null
false
google
null
google/multiberts-seed_1-step_1300k
0
null
transformers
33,700
--- language: en tags: - multiberts - multiberts-seed_1 - multiberts-seed_1-step_1300k license: apache-2.0 --- # MultiBERTs, Intermediate Checkpoint - Seed 1, Step 1300k MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as [the original BERT model](https://github.com/google-research/bert) but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through [http://goo.gle/multiberts](http://goo.gle/multiberts). We describe them in our paper [The MultiBERTs: BERT Reproductions for Robustness Analysis](https://arxiv.org/abs/2106.16163). This is model #1, captured at step 1300k (max: 2000k, i.e., 2M steps). ## Model Description This model was captured during a reproduction of [BERT-base uncased](https://github.com/google-research/bert), for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure for the fully trained model are similar to [BERT-base uncased](https://github.com/google-research/bert). Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for [Turc et al., 2019](https://arxiv.org/abs/1908.08962). This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our [technical report](https://arxiv.org/abs/2106.16163) for more details. ### How to use Using code from [BERT-base uncased](https://huggingface.co/bert-base-uncased), here is an example based on Tensorflow: ``` from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_1-step_1300k') model = TFBertModel.from_pretrained("google/multiberts-seed_1-step_1300k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` PyTorch version: ``` from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_1-step_1300k') model = BertModel.from_pretrained("google/multiberts-seed_1-step_1300k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` ## Citation info ```bibtex @article{sellam2021multiberts, title={The MultiBERTs: BERT Reproductions for Robustness Analysis}, author={Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick}, journal={arXiv preprint arXiv:2106.16163}, year={2021} } ```
google/multiberts-seed_1-step_1400k
7e065fe8433972b2ddf3cd6071fe5d514e8dc05f
2021-11-06T01:10:37.000Z
[ "pytorch", "tf", "bert", "pretraining", "en", "arxiv:2106.16163", "arxiv:1908.08962", "transformers", "multiberts", "multiberts-seed_1", "multiberts-seed_1-step_1400k", "license:apache-2.0" ]
null
false
google
null
google/multiberts-seed_1-step_1400k
0
null
transformers
33,701
--- language: en tags: - multiberts - multiberts-seed_1 - multiberts-seed_1-step_1400k license: apache-2.0 --- # MultiBERTs, Intermediate Checkpoint - Seed 1, Step 1400k MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as [the original BERT model](https://github.com/google-research/bert) but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through [http://goo.gle/multiberts](http://goo.gle/multiberts). We describe them in our paper [The MultiBERTs: BERT Reproductions for Robustness Analysis](https://arxiv.org/abs/2106.16163). This is model #1, captured at step 1400k (max: 2000k, i.e., 2M steps). ## Model Description This model was captured during a reproduction of [BERT-base uncased](https://github.com/google-research/bert), for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure for the fully trained model are similar to [BERT-base uncased](https://github.com/google-research/bert). Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for [Turc et al., 2019](https://arxiv.org/abs/1908.08962). This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our [technical report](https://arxiv.org/abs/2106.16163) for more details. ### How to use Using code from [BERT-base uncased](https://huggingface.co/bert-base-uncased), here is an example based on Tensorflow: ``` from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_1-step_1400k') model = TFBertModel.from_pretrained("google/multiberts-seed_1-step_1400k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` PyTorch version: ``` from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_1-step_1400k') model = BertModel.from_pretrained("google/multiberts-seed_1-step_1400k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` ## Citation info ```bibtex @article{sellam2021multiberts, title={The MultiBERTs: BERT Reproductions for Robustness Analysis}, author={Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick}, journal={arXiv preprint arXiv:2106.16163}, year={2021} } ```
google/multiberts-seed_1-step_160k
02a32d57955d4cf3e44ec91a6fd9962a9ff16ea9
2021-11-06T00:46:51.000Z
[ "pytorch", "tf", "bert", "pretraining", "en", "arxiv:2106.16163", "arxiv:1908.08962", "transformers", "multiberts", "multiberts-seed_1", "multiberts-seed_1-step_160k", "license:apache-2.0" ]
null
false
google
null
google/multiberts-seed_1-step_160k
0
null
transformers
33,702
--- language: en tags: - multiberts - multiberts-seed_1 - multiberts-seed_1-step_160k license: apache-2.0 --- # MultiBERTs, Intermediate Checkpoint - Seed 1, Step 160k MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as [the original BERT model](https://github.com/google-research/bert) but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through [http://goo.gle/multiberts](http://goo.gle/multiberts). We describe them in our paper [The MultiBERTs: BERT Reproductions for Robustness Analysis](https://arxiv.org/abs/2106.16163). This is model #1, captured at step 160k (max: 2000k, i.e., 2M steps). ## Model Description This model was captured during a reproduction of [BERT-base uncased](https://github.com/google-research/bert), for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure for the fully trained model are similar to [BERT-base uncased](https://github.com/google-research/bert). Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for [Turc et al., 2019](https://arxiv.org/abs/1908.08962). This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our [technical report](https://arxiv.org/abs/2106.16163) for more details. ### How to use Using code from [BERT-base uncased](https://huggingface.co/bert-base-uncased), here is an example based on Tensorflow: ``` from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_1-step_160k') model = TFBertModel.from_pretrained("google/multiberts-seed_1-step_160k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` PyTorch version: ``` from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_1-step_160k') model = BertModel.from_pretrained("google/multiberts-seed_1-step_160k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` ## Citation info ```bibtex @article{sellam2021multiberts, title={The MultiBERTs: BERT Reproductions for Robustness Analysis}, author={Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick}, journal={arXiv preprint arXiv:2106.16163}, year={2021} } ```
google/multiberts-seed_1-step_2000k
dfafd03933d611663dec5a61d30a737f7e5faad1
2021-11-06T01:20:40.000Z
[ "pytorch", "tf", "bert", "pretraining", "en", "arxiv:2106.16163", "arxiv:1908.08962", "transformers", "multiberts", "multiberts-seed_1", "multiberts-seed_1-step_2000k", "license:apache-2.0" ]
null
false
google
null
google/multiberts-seed_1-step_2000k
0
null
transformers
33,703
--- language: en tags: - multiberts - multiberts-seed_1 - multiberts-seed_1-step_2000k license: apache-2.0 --- # MultiBERTs, Intermediate Checkpoint - Seed 1, Step 2000k MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as [the original BERT model](https://github.com/google-research/bert) but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through [http://goo.gle/multiberts](http://goo.gle/multiberts). We describe them in our paper [The MultiBERTs: BERT Reproductions for Robustness Analysis](https://arxiv.org/abs/2106.16163). This is model #1, captured at step 2000k (max: 2000k, i.e., 2M steps). ## Model Description This model was captured during a reproduction of [BERT-base uncased](https://github.com/google-research/bert), for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure for the fully trained model are similar to [BERT-base uncased](https://github.com/google-research/bert). Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for [Turc et al., 2019](https://arxiv.org/abs/1908.08962). This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our [technical report](https://arxiv.org/abs/2106.16163) for more details. ### How to use Using code from [BERT-base uncased](https://huggingface.co/bert-base-uncased), here is an example based on Tensorflow: ``` from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_1-step_2000k') model = TFBertModel.from_pretrained("google/multiberts-seed_1-step_2000k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` PyTorch version: ``` from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_1-step_2000k') model = BertModel.from_pretrained("google/multiberts-seed_1-step_2000k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` ## Citation info ```bibtex @article{sellam2021multiberts, title={The MultiBERTs: BERT Reproductions for Robustness Analysis}, author={Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick}, journal={arXiv preprint arXiv:2106.16163}, year={2021} } ```
google/multiberts-seed_1-step_20k
f8c877a826d02d8f22f59ea95c77aff185291f2b
2021-11-06T00:35:00.000Z
[ "pytorch", "tf", "bert", "pretraining", "en", "arxiv:2106.16163", "arxiv:1908.08962", "transformers", "multiberts", "multiberts-seed_1", "multiberts-seed_1-step_20k", "license:apache-2.0" ]
null
false
google
null
google/multiberts-seed_1-step_20k
0
null
transformers
33,704
--- language: en tags: - multiberts - multiberts-seed_1 - multiberts-seed_1-step_20k license: apache-2.0 --- # MultiBERTs, Intermediate Checkpoint - Seed 1, Step 20k MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as [the original BERT model](https://github.com/google-research/bert) but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through [http://goo.gle/multiberts](http://goo.gle/multiberts). We describe them in our paper [The MultiBERTs: BERT Reproductions for Robustness Analysis](https://arxiv.org/abs/2106.16163). This is model #1, captured at step 20k (max: 2000k, i.e., 2M steps). ## Model Description This model was captured during a reproduction of [BERT-base uncased](https://github.com/google-research/bert), for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure for the fully trained model are similar to [BERT-base uncased](https://github.com/google-research/bert). Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for [Turc et al., 2019](https://arxiv.org/abs/1908.08962). This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our [technical report](https://arxiv.org/abs/2106.16163) for more details. ### How to use Using code from [BERT-base uncased](https://huggingface.co/bert-base-uncased), here is an example based on Tensorflow: ``` from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_1-step_20k') model = TFBertModel.from_pretrained("google/multiberts-seed_1-step_20k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` PyTorch version: ``` from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_1-step_20k') model = BertModel.from_pretrained("google/multiberts-seed_1-step_20k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` ## Citation info ```bibtex @article{sellam2021multiberts, title={The MultiBERTs: BERT Reproductions for Robustness Analysis}, author={Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick}, journal={arXiv preprint arXiv:2106.16163}, year={2021} } ```
google/multiberts-seed_1-step_300k
5dddb088d8b24fa9013422f39d3887c0384366f6
2021-11-06T00:51:52.000Z
[ "pytorch", "tf", "bert", "pretraining", "en", "arxiv:2106.16163", "arxiv:1908.08962", "transformers", "multiberts", "multiberts-seed_1", "multiberts-seed_1-step_300k", "license:apache-2.0" ]
null
false
google
null
google/multiberts-seed_1-step_300k
0
null
transformers
33,705
--- language: en tags: - multiberts - multiberts-seed_1 - multiberts-seed_1-step_300k license: apache-2.0 --- # MultiBERTs, Intermediate Checkpoint - Seed 1, Step 300k MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as [the original BERT model](https://github.com/google-research/bert) but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through [http://goo.gle/multiberts](http://goo.gle/multiberts). We describe them in our paper [The MultiBERTs: BERT Reproductions for Robustness Analysis](https://arxiv.org/abs/2106.16163). This is model #1, captured at step 300k (max: 2000k, i.e., 2M steps). ## Model Description This model was captured during a reproduction of [BERT-base uncased](https://github.com/google-research/bert), for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure for the fully trained model are similar to [BERT-base uncased](https://github.com/google-research/bert). Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for [Turc et al., 2019](https://arxiv.org/abs/1908.08962). This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our [technical report](https://arxiv.org/abs/2106.16163) for more details. ### How to use Using code from [BERT-base uncased](https://huggingface.co/bert-base-uncased), here is an example based on Tensorflow: ``` from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_1-step_300k') model = TFBertModel.from_pretrained("google/multiberts-seed_1-step_300k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` PyTorch version: ``` from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_1-step_300k') model = BertModel.from_pretrained("google/multiberts-seed_1-step_300k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` ## Citation info ```bibtex @article{sellam2021multiberts, title={The MultiBERTs: BERT Reproductions for Robustness Analysis}, author={Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick}, journal={arXiv preprint arXiv:2106.16163}, year={2021} } ```
google/multiberts-seed_1-step_400k
645ec8c20712555148257eb8afff0875365d34f1
2021-11-06T00:53:30.000Z
[ "pytorch", "tf", "bert", "pretraining", "en", "arxiv:2106.16163", "arxiv:1908.08962", "transformers", "multiberts", "multiberts-seed_1", "multiberts-seed_1-step_400k", "license:apache-2.0" ]
null
false
google
null
google/multiberts-seed_1-step_400k
0
null
transformers
33,706
--- language: en tags: - multiberts - multiberts-seed_1 - multiberts-seed_1-step_400k license: apache-2.0 --- # MultiBERTs, Intermediate Checkpoint - Seed 1, Step 400k MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as [the original BERT model](https://github.com/google-research/bert) but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through [http://goo.gle/multiberts](http://goo.gle/multiberts). We describe them in our paper [The MultiBERTs: BERT Reproductions for Robustness Analysis](https://arxiv.org/abs/2106.16163). This is model #1, captured at step 400k (max: 2000k, i.e., 2M steps). ## Model Description This model was captured during a reproduction of [BERT-base uncased](https://github.com/google-research/bert), for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure for the fully trained model are similar to [BERT-base uncased](https://github.com/google-research/bert). Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for [Turc et al., 2019](https://arxiv.org/abs/1908.08962). This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our [technical report](https://arxiv.org/abs/2106.16163) for more details. ### How to use Using code from [BERT-base uncased](https://huggingface.co/bert-base-uncased), here is an example based on Tensorflow: ``` from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_1-step_400k') model = TFBertModel.from_pretrained("google/multiberts-seed_1-step_400k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` PyTorch version: ``` from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_1-step_400k') model = BertModel.from_pretrained("google/multiberts-seed_1-step_400k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` ## Citation info ```bibtex @article{sellam2021multiberts, title={The MultiBERTs: BERT Reproductions for Robustness Analysis}, author={Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick}, journal={arXiv preprint arXiv:2106.16163}, year={2021} } ```
google/multiberts-seed_1-step_500k
8c684b92e68ef2d96200a79645ed71f638dffb9d
2021-11-06T00:55:08.000Z
[ "pytorch", "tf", "bert", "pretraining", "en", "arxiv:2106.16163", "arxiv:1908.08962", "transformers", "multiberts", "multiberts-seed_1", "multiberts-seed_1-step_500k", "license:apache-2.0" ]
null
false
google
null
google/multiberts-seed_1-step_500k
0
null
transformers
33,707
--- language: en tags: - multiberts - multiberts-seed_1 - multiberts-seed_1-step_500k license: apache-2.0 --- # MultiBERTs, Intermediate Checkpoint - Seed 1, Step 500k MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as [the original BERT model](https://github.com/google-research/bert) but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through [http://goo.gle/multiberts](http://goo.gle/multiberts). We describe them in our paper [The MultiBERTs: BERT Reproductions for Robustness Analysis](https://arxiv.org/abs/2106.16163). This is model #1, captured at step 500k (max: 2000k, i.e., 2M steps). ## Model Description This model was captured during a reproduction of [BERT-base uncased](https://github.com/google-research/bert), for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure for the fully trained model are similar to [BERT-base uncased](https://github.com/google-research/bert). Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for [Turc et al., 2019](https://arxiv.org/abs/1908.08962). This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our [technical report](https://arxiv.org/abs/2106.16163) for more details. ### How to use Using code from [BERT-base uncased](https://huggingface.co/bert-base-uncased), here is an example based on Tensorflow: ``` from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_1-step_500k') model = TFBertModel.from_pretrained("google/multiberts-seed_1-step_500k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` PyTorch version: ``` from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_1-step_500k') model = BertModel.from_pretrained("google/multiberts-seed_1-step_500k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` ## Citation info ```bibtex @article{sellam2021multiberts, title={The MultiBERTs: BERT Reproductions for Robustness Analysis}, author={Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick}, journal={arXiv preprint arXiv:2106.16163}, year={2021} } ```
google/multiberts-seed_2-step_120k
d1ec7b1c61149bdd8885a41f64dfb79620778130
2021-11-06T01:32:10.000Z
[ "pytorch", "tf", "bert", "pretraining", "en", "arxiv:2106.16163", "arxiv:1908.08962", "transformers", "multiberts", "multiberts-seed_2", "multiberts-seed_2-step_120k", "license:apache-2.0" ]
null
false
google
null
google/multiberts-seed_2-step_120k
0
null
transformers
33,708
--- language: en tags: - multiberts - multiberts-seed_2 - multiberts-seed_2-step_120k license: apache-2.0 --- # MultiBERTs, Intermediate Checkpoint - Seed 2, Step 120k MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as [the original BERT model](https://github.com/google-research/bert) but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through [http://goo.gle/multiberts](http://goo.gle/multiberts). We describe them in our paper [The MultiBERTs: BERT Reproductions for Robustness Analysis](https://arxiv.org/abs/2106.16163). This is model #2, captured at step 120k (max: 2000k, i.e., 2M steps). ## Model Description This model was captured during a reproduction of [BERT-base uncased](https://github.com/google-research/bert), for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure for the fully trained model are similar to [BERT-base uncased](https://github.com/google-research/bert). Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for [Turc et al., 2019](https://arxiv.org/abs/1908.08962). This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our [technical report](https://arxiv.org/abs/2106.16163) for more details. ### How to use Using code from [BERT-base uncased](https://huggingface.co/bert-base-uncased), here is an example based on Tensorflow: ``` from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_2-step_120k') model = TFBertModel.from_pretrained("google/multiberts-seed_2-step_120k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` PyTorch version: ``` from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_2-step_120k') model = BertModel.from_pretrained("google/multiberts-seed_2-step_120k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` ## Citation info ```bibtex @article{sellam2021multiberts, title={The MultiBERTs: BERT Reproductions for Robustness Analysis}, author={Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick}, journal={arXiv preprint arXiv:2106.16163}, year={2021} } ```
google/multiberts-seed_2-step_1500k
ad90294d5e639e76152ead1be37eb0c3c2e5635e
2021-11-06T02:01:10.000Z
[ "pytorch", "tf", "bert", "pretraining", "en", "arxiv:2106.16163", "arxiv:1908.08962", "transformers", "multiberts", "multiberts-seed_2", "multiberts-seed_2-step_1500k", "license:apache-2.0" ]
null
false
google
null
google/multiberts-seed_2-step_1500k
0
null
transformers
33,709
--- language: en tags: - multiberts - multiberts-seed_2 - multiberts-seed_2-step_1500k license: apache-2.0 --- # MultiBERTs, Intermediate Checkpoint - Seed 2, Step 1500k MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as [the original BERT model](https://github.com/google-research/bert) but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through [http://goo.gle/multiberts](http://goo.gle/multiberts). We describe them in our paper [The MultiBERTs: BERT Reproductions for Robustness Analysis](https://arxiv.org/abs/2106.16163). This is model #2, captured at step 1500k (max: 2000k, i.e., 2M steps). ## Model Description This model was captured during a reproduction of [BERT-base uncased](https://github.com/google-research/bert), for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure for the fully trained model are similar to [BERT-base uncased](https://github.com/google-research/bert). Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for [Turc et al., 2019](https://arxiv.org/abs/1908.08962). This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our [technical report](https://arxiv.org/abs/2106.16163) for more details. ### How to use Using code from [BERT-base uncased](https://huggingface.co/bert-base-uncased), here is an example based on Tensorflow: ``` from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_2-step_1500k') model = TFBertModel.from_pretrained("google/multiberts-seed_2-step_1500k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` PyTorch version: ``` from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_2-step_1500k') model = BertModel.from_pretrained("google/multiberts-seed_2-step_1500k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` ## Citation info ```bibtex @article{sellam2021multiberts, title={The MultiBERTs: BERT Reproductions for Robustness Analysis}, author={Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick}, journal={arXiv preprint arXiv:2106.16163}, year={2021} } ```
google/multiberts-seed_2-step_1700k
afeffdf077c00c9d409ae953c4d65d0b4ad7d094
2021-11-06T02:04:32.000Z
[ "pytorch", "tf", "bert", "pretraining", "en", "arxiv:2106.16163", "arxiv:1908.08962", "transformers", "multiberts", "multiberts-seed_2", "multiberts-seed_2-step_1700k", "license:apache-2.0" ]
null
false
google
null
google/multiberts-seed_2-step_1700k
0
null
transformers
33,710
--- language: en tags: - multiberts - multiberts-seed_2 - multiberts-seed_2-step_1700k license: apache-2.0 --- # MultiBERTs, Intermediate Checkpoint - Seed 2, Step 1700k MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as [the original BERT model](https://github.com/google-research/bert) but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through [http://goo.gle/multiberts](http://goo.gle/multiberts). We describe them in our paper [The MultiBERTs: BERT Reproductions for Robustness Analysis](https://arxiv.org/abs/2106.16163). This is model #2, captured at step 1700k (max: 2000k, i.e., 2M steps). ## Model Description This model was captured during a reproduction of [BERT-base uncased](https://github.com/google-research/bert), for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure for the fully trained model are similar to [BERT-base uncased](https://github.com/google-research/bert). Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for [Turc et al., 2019](https://arxiv.org/abs/1908.08962). This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our [technical report](https://arxiv.org/abs/2106.16163) for more details. ### How to use Using code from [BERT-base uncased](https://huggingface.co/bert-base-uncased), here is an example based on Tensorflow: ``` from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_2-step_1700k') model = TFBertModel.from_pretrained("google/multiberts-seed_2-step_1700k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` PyTorch version: ``` from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_2-step_1700k') model = BertModel.from_pretrained("google/multiberts-seed_2-step_1700k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` ## Citation info ```bibtex @article{sellam2021multiberts, title={The MultiBERTs: BERT Reproductions for Robustness Analysis}, author={Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick}, journal={arXiv preprint arXiv:2106.16163}, year={2021} } ```
google/multiberts-seed_2-step_40k
7dc384d97d7abf996dce73b40997f954bc4852c8
2021-11-06T01:25:19.000Z
[ "pytorch", "tf", "bert", "pretraining", "en", "arxiv:2106.16163", "arxiv:1908.08962", "transformers", "multiberts", "multiberts-seed_2", "multiberts-seed_2-step_40k", "license:apache-2.0" ]
null
false
google
null
google/multiberts-seed_2-step_40k
0
null
transformers
33,711
--- language: en tags: - multiberts - multiberts-seed_2 - multiberts-seed_2-step_40k license: apache-2.0 --- # MultiBERTs, Intermediate Checkpoint - Seed 2, Step 40k MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as [the original BERT model](https://github.com/google-research/bert) but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through [http://goo.gle/multiberts](http://goo.gle/multiberts). We describe them in our paper [The MultiBERTs: BERT Reproductions for Robustness Analysis](https://arxiv.org/abs/2106.16163). This is model #2, captured at step 40k (max: 2000k, i.e., 2M steps). ## Model Description This model was captured during a reproduction of [BERT-base uncased](https://github.com/google-research/bert), for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure for the fully trained model are similar to [BERT-base uncased](https://github.com/google-research/bert). Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for [Turc et al., 2019](https://arxiv.org/abs/1908.08962). This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our [technical report](https://arxiv.org/abs/2106.16163) for more details. ### How to use Using code from [BERT-base uncased](https://huggingface.co/bert-base-uncased), here is an example based on Tensorflow: ``` from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_2-step_40k') model = TFBertModel.from_pretrained("google/multiberts-seed_2-step_40k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` PyTorch version: ``` from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_2-step_40k') model = BertModel.from_pretrained("google/multiberts-seed_2-step_40k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` ## Citation info ```bibtex @article{sellam2021multiberts, title={The MultiBERTs: BERT Reproductions for Robustness Analysis}, author={Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick}, journal={arXiv preprint arXiv:2106.16163}, year={2021} } ```
google/multiberts-seed_2-step_700k
e777305c5c65394cce343ba54b278ad085a0c14a
2021-11-06T01:47:40.000Z
[ "pytorch", "tf", "bert", "pretraining", "en", "arxiv:2106.16163", "arxiv:1908.08962", "transformers", "multiberts", "multiberts-seed_2", "multiberts-seed_2-step_700k", "license:apache-2.0" ]
null
false
google
null
google/multiberts-seed_2-step_700k
0
null
transformers
33,712
--- language: en tags: - multiberts - multiberts-seed_2 - multiberts-seed_2-step_700k license: apache-2.0 --- # MultiBERTs, Intermediate Checkpoint - Seed 2, Step 700k MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as [the original BERT model](https://github.com/google-research/bert) but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through [http://goo.gle/multiberts](http://goo.gle/multiberts). We describe them in our paper [The MultiBERTs: BERT Reproductions for Robustness Analysis](https://arxiv.org/abs/2106.16163). This is model #2, captured at step 700k (max: 2000k, i.e., 2M steps). ## Model Description This model was captured during a reproduction of [BERT-base uncased](https://github.com/google-research/bert), for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure for the fully trained model are similar to [BERT-base uncased](https://github.com/google-research/bert). Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for [Turc et al., 2019](https://arxiv.org/abs/1908.08962). This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our [technical report](https://arxiv.org/abs/2106.16163) for more details. ### How to use Using code from [BERT-base uncased](https://huggingface.co/bert-base-uncased), here is an example based on Tensorflow: ``` from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_2-step_700k') model = TFBertModel.from_pretrained("google/multiberts-seed_2-step_700k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` PyTorch version: ``` from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_2-step_700k') model = BertModel.from_pretrained("google/multiberts-seed_2-step_700k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` ## Citation info ```bibtex @article{sellam2021multiberts, title={The MultiBERTs: BERT Reproductions for Robustness Analysis}, author={Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick}, journal={arXiv preprint arXiv:2106.16163}, year={2021} } ```
google/multiberts-seed_2-step_900k
61454e2e9d8c976a51ff1bb5bf1642ee16820407
2021-11-06T01:50:59.000Z
[ "pytorch", "tf", "bert", "pretraining", "en", "arxiv:2106.16163", "arxiv:1908.08962", "transformers", "multiberts", "multiberts-seed_2", "multiberts-seed_2-step_900k", "license:apache-2.0" ]
null
false
google
null
google/multiberts-seed_2-step_900k
0
null
transformers
33,713
--- language: en tags: - multiberts - multiberts-seed_2 - multiberts-seed_2-step_900k license: apache-2.0 --- # MultiBERTs, Intermediate Checkpoint - Seed 2, Step 900k MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as [the original BERT model](https://github.com/google-research/bert) but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through [http://goo.gle/multiberts](http://goo.gle/multiberts). We describe them in our paper [The MultiBERTs: BERT Reproductions for Robustness Analysis](https://arxiv.org/abs/2106.16163). This is model #2, captured at step 900k (max: 2000k, i.e., 2M steps). ## Model Description This model was captured during a reproduction of [BERT-base uncased](https://github.com/google-research/bert), for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure for the fully trained model are similar to [BERT-base uncased](https://github.com/google-research/bert). Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for [Turc et al., 2019](https://arxiv.org/abs/1908.08962). This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our [technical report](https://arxiv.org/abs/2106.16163) for more details. ### How to use Using code from [BERT-base uncased](https://huggingface.co/bert-base-uncased), here is an example based on Tensorflow: ``` from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_2-step_900k') model = TFBertModel.from_pretrained("google/multiberts-seed_2-step_900k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` PyTorch version: ``` from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_2-step_900k') model = BertModel.from_pretrained("google/multiberts-seed_2-step_900k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` ## Citation info ```bibtex @article{sellam2021multiberts, title={The MultiBERTs: BERT Reproductions for Robustness Analysis}, author={Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick}, journal={arXiv preprint arXiv:2106.16163}, year={2021} } ```
google/multiberts-seed_3-step_0k
79af0d6725e8655289ffc1c2c0df08b6a6d6bb87
2021-11-06T02:11:21.000Z
[ "pytorch", "tf", "bert", "pretraining", "en", "arxiv:2106.16163", "arxiv:1908.08962", "transformers", "multiberts", "multiberts-seed_3", "multiberts-seed_3-step_0k", "license:apache-2.0" ]
null
false
google
null
google/multiberts-seed_3-step_0k
0
null
transformers
33,714
--- language: en tags: - multiberts - multiberts-seed_3 - multiberts-seed_3-step_0k license: apache-2.0 --- # MultiBERTs, Intermediate Checkpoint - Seed 3, Step 0k MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as [the original BERT model](https://github.com/google-research/bert) but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through [http://goo.gle/multiberts](http://goo.gle/multiberts). We describe them in our paper [The MultiBERTs: BERT Reproductions for Robustness Analysis](https://arxiv.org/abs/2106.16163). This is model #3, captured at step 0k (max: 2000k, i.e., 2M steps). ## Model Description This model was captured during a reproduction of [BERT-base uncased](https://github.com/google-research/bert), for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure for the fully trained model are similar to [BERT-base uncased](https://github.com/google-research/bert). Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for [Turc et al., 2019](https://arxiv.org/abs/1908.08962). This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our [technical report](https://arxiv.org/abs/2106.16163) for more details. ### How to use Using code from [BERT-base uncased](https://huggingface.co/bert-base-uncased), here is an example based on Tensorflow: ``` from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_3-step_0k') model = TFBertModel.from_pretrained("google/multiberts-seed_3-step_0k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` PyTorch version: ``` from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_3-step_0k') model = BertModel.from_pretrained("google/multiberts-seed_3-step_0k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` ## Citation info ```bibtex @article{sellam2021multiberts, title={The MultiBERTs: BERT Reproductions for Robustness Analysis}, author={Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick}, journal={arXiv preprint arXiv:2106.16163}, year={2021} } ```
google/multiberts-seed_3-step_1000k
90a64816745fa9552a986b551ceb8526ae9257f6
2021-11-06T02:42:38.000Z
[ "pytorch", "tf", "bert", "pretraining", "en", "arxiv:2106.16163", "arxiv:1908.08962", "transformers", "multiberts", "multiberts-seed_3", "multiberts-seed_3-step_1000k", "license:apache-2.0" ]
null
false
google
null
google/multiberts-seed_3-step_1000k
0
null
transformers
33,715
--- language: en tags: - multiberts - multiberts-seed_3 - multiberts-seed_3-step_1000k license: apache-2.0 --- # MultiBERTs, Intermediate Checkpoint - Seed 3, Step 1000k MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as [the original BERT model](https://github.com/google-research/bert) but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through [http://goo.gle/multiberts](http://goo.gle/multiberts). We describe them in our paper [The MultiBERTs: BERT Reproductions for Robustness Analysis](https://arxiv.org/abs/2106.16163). This is model #3, captured at step 1000k (max: 2000k, i.e., 2M steps). ## Model Description This model was captured during a reproduction of [BERT-base uncased](https://github.com/google-research/bert), for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure for the fully trained model are similar to [BERT-base uncased](https://github.com/google-research/bert). Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for [Turc et al., 2019](https://arxiv.org/abs/1908.08962). This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our [technical report](https://arxiv.org/abs/2106.16163) for more details. ### How to use Using code from [BERT-base uncased](https://huggingface.co/bert-base-uncased), here is an example based on Tensorflow: ``` from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_3-step_1000k') model = TFBertModel.from_pretrained("google/multiberts-seed_3-step_1000k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` PyTorch version: ``` from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_3-step_1000k') model = BertModel.from_pretrained("google/multiberts-seed_3-step_1000k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` ## Citation info ```bibtex @article{sellam2021multiberts, title={The MultiBERTs: BERT Reproductions for Robustness Analysis}, author={Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick}, journal={arXiv preprint arXiv:2106.16163}, year={2021} } ```
google/multiberts-seed_3-step_100k
8c48fb8df6c0c9bf6c61868ca5cf0ae7582cebba
2021-11-06T02:19:57.000Z
[ "pytorch", "tf", "bert", "pretraining", "en", "arxiv:2106.16163", "arxiv:1908.08962", "transformers", "multiberts", "multiberts-seed_3", "multiberts-seed_3-step_100k", "license:apache-2.0" ]
null
false
google
null
google/multiberts-seed_3-step_100k
0
null
transformers
33,716
--- language: en tags: - multiberts - multiberts-seed_3 - multiberts-seed_3-step_100k license: apache-2.0 --- # MultiBERTs, Intermediate Checkpoint - Seed 3, Step 100k MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as [the original BERT model](https://github.com/google-research/bert) but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through [http://goo.gle/multiberts](http://goo.gle/multiberts). We describe them in our paper [The MultiBERTs: BERT Reproductions for Robustness Analysis](https://arxiv.org/abs/2106.16163). This is model #3, captured at step 100k (max: 2000k, i.e., 2M steps). ## Model Description This model was captured during a reproduction of [BERT-base uncased](https://github.com/google-research/bert), for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure for the fully trained model are similar to [BERT-base uncased](https://github.com/google-research/bert). Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for [Turc et al., 2019](https://arxiv.org/abs/1908.08962). This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our [technical report](https://arxiv.org/abs/2106.16163) for more details. ### How to use Using code from [BERT-base uncased](https://huggingface.co/bert-base-uncased), here is an example based on Tensorflow: ``` from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_3-step_100k') model = TFBertModel.from_pretrained("google/multiberts-seed_3-step_100k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` PyTorch version: ``` from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_3-step_100k') model = BertModel.from_pretrained("google/multiberts-seed_3-step_100k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` ## Citation info ```bibtex @article{sellam2021multiberts, title={The MultiBERTs: BERT Reproductions for Robustness Analysis}, author={Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick}, journal={arXiv preprint arXiv:2106.16163}, year={2021} } ```
google/multiberts-seed_3-step_1400k
9bc709c9a0447f5fedc4e395e8e6c40f292239ff
2021-11-06T02:49:26.000Z
[ "pytorch", "tf", "bert", "pretraining", "en", "arxiv:2106.16163", "arxiv:1908.08962", "transformers", "multiberts", "multiberts-seed_3", "multiberts-seed_3-step_1400k", "license:apache-2.0" ]
null
false
google
null
google/multiberts-seed_3-step_1400k
0
null
transformers
33,717
--- language: en tags: - multiberts - multiberts-seed_3 - multiberts-seed_3-step_1400k license: apache-2.0 --- # MultiBERTs, Intermediate Checkpoint - Seed 3, Step 1400k MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as [the original BERT model](https://github.com/google-research/bert) but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through [http://goo.gle/multiberts](http://goo.gle/multiberts). We describe them in our paper [The MultiBERTs: BERT Reproductions for Robustness Analysis](https://arxiv.org/abs/2106.16163). This is model #3, captured at step 1400k (max: 2000k, i.e., 2M steps). ## Model Description This model was captured during a reproduction of [BERT-base uncased](https://github.com/google-research/bert), for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure for the fully trained model are similar to [BERT-base uncased](https://github.com/google-research/bert). Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for [Turc et al., 2019](https://arxiv.org/abs/1908.08962). This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our [technical report](https://arxiv.org/abs/2106.16163) for more details. ### How to use Using code from [BERT-base uncased](https://huggingface.co/bert-base-uncased), here is an example based on Tensorflow: ``` from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_3-step_1400k') model = TFBertModel.from_pretrained("google/multiberts-seed_3-step_1400k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` PyTorch version: ``` from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_3-step_1400k') model = BertModel.from_pretrained("google/multiberts-seed_3-step_1400k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` ## Citation info ```bibtex @article{sellam2021multiberts, title={The MultiBERTs: BERT Reproductions for Robustness Analysis}, author={Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick}, journal={arXiv preprint arXiv:2106.16163}, year={2021} } ```
google/multiberts-seed_3-step_1500k
45faee9c1a4ad8f99fcc21332a9fb37ac65303ac
2021-11-06T02:51:12.000Z
[ "pytorch", "tf", "bert", "pretraining", "en", "arxiv:2106.16163", "arxiv:1908.08962", "transformers", "multiberts", "multiberts-seed_3", "multiberts-seed_3-step_1500k", "license:apache-2.0" ]
null
false
google
null
google/multiberts-seed_3-step_1500k
0
null
transformers
33,718
--- language: en tags: - multiberts - multiberts-seed_3 - multiberts-seed_3-step_1500k license: apache-2.0 --- # MultiBERTs, Intermediate Checkpoint - Seed 3, Step 1500k MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as [the original BERT model](https://github.com/google-research/bert) but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through [http://goo.gle/multiberts](http://goo.gle/multiberts). We describe them in our paper [The MultiBERTs: BERT Reproductions for Robustness Analysis](https://arxiv.org/abs/2106.16163). This is model #3, captured at step 1500k (max: 2000k, i.e., 2M steps). ## Model Description This model was captured during a reproduction of [BERT-base uncased](https://github.com/google-research/bert), for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure for the fully trained model are similar to [BERT-base uncased](https://github.com/google-research/bert). Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for [Turc et al., 2019](https://arxiv.org/abs/1908.08962). This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our [technical report](https://arxiv.org/abs/2106.16163) for more details. ### How to use Using code from [BERT-base uncased](https://huggingface.co/bert-base-uncased), here is an example based on Tensorflow: ``` from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_3-step_1500k') model = TFBertModel.from_pretrained("google/multiberts-seed_3-step_1500k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` PyTorch version: ``` from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_3-step_1500k') model = BertModel.from_pretrained("google/multiberts-seed_3-step_1500k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` ## Citation info ```bibtex @article{sellam2021multiberts, title={The MultiBERTs: BERT Reproductions for Robustness Analysis}, author={Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick}, journal={arXiv preprint arXiv:2106.16163}, year={2021} } ```
google/multiberts-seed_3-step_1700k
6a8b8a359eece85ea7ed6266fe15a32abf8e0e53
2021-11-06T02:54:41.000Z
[ "pytorch", "tf", "bert", "pretraining", "en", "arxiv:2106.16163", "arxiv:1908.08962", "transformers", "multiberts", "multiberts-seed_3", "multiberts-seed_3-step_1700k", "license:apache-2.0" ]
null
false
google
null
google/multiberts-seed_3-step_1700k
0
null
transformers
33,719
--- language: en tags: - multiberts - multiberts-seed_3 - multiberts-seed_3-step_1700k license: apache-2.0 --- # MultiBERTs, Intermediate Checkpoint - Seed 3, Step 1700k MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as [the original BERT model](https://github.com/google-research/bert) but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through [http://goo.gle/multiberts](http://goo.gle/multiberts). We describe them in our paper [The MultiBERTs: BERT Reproductions for Robustness Analysis](https://arxiv.org/abs/2106.16163). This is model #3, captured at step 1700k (max: 2000k, i.e., 2M steps). ## Model Description This model was captured during a reproduction of [BERT-base uncased](https://github.com/google-research/bert), for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure for the fully trained model are similar to [BERT-base uncased](https://github.com/google-research/bert). Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for [Turc et al., 2019](https://arxiv.org/abs/1908.08962). This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our [technical report](https://arxiv.org/abs/2106.16163) for more details. ### How to use Using code from [BERT-base uncased](https://huggingface.co/bert-base-uncased), here is an example based on Tensorflow: ``` from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_3-step_1700k') model = TFBertModel.from_pretrained("google/multiberts-seed_3-step_1700k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` PyTorch version: ``` from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_3-step_1700k') model = BertModel.from_pretrained("google/multiberts-seed_3-step_1700k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` ## Citation info ```bibtex @article{sellam2021multiberts, title={The MultiBERTs: BERT Reproductions for Robustness Analysis}, author={Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick}, journal={arXiv preprint arXiv:2106.16163}, year={2021} } ```
google/multiberts-seed_3-step_180k
1ccb42e14b4de3b38a48bee9477d91cb2beeab36
2021-11-06T02:26:56.000Z
[ "pytorch", "tf", "bert", "pretraining", "en", "arxiv:2106.16163", "arxiv:1908.08962", "transformers", "multiberts", "multiberts-seed_3", "multiberts-seed_3-step_180k", "license:apache-2.0" ]
null
false
google
null
google/multiberts-seed_3-step_180k
0
null
transformers
33,720
--- language: en tags: - multiberts - multiberts-seed_3 - multiberts-seed_3-step_180k license: apache-2.0 --- # MultiBERTs, Intermediate Checkpoint - Seed 3, Step 180k MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as [the original BERT model](https://github.com/google-research/bert) but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through [http://goo.gle/multiberts](http://goo.gle/multiberts). We describe them in our paper [The MultiBERTs: BERT Reproductions for Robustness Analysis](https://arxiv.org/abs/2106.16163). This is model #3, captured at step 180k (max: 2000k, i.e., 2M steps). ## Model Description This model was captured during a reproduction of [BERT-base uncased](https://github.com/google-research/bert), for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure for the fully trained model are similar to [BERT-base uncased](https://github.com/google-research/bert). Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for [Turc et al., 2019](https://arxiv.org/abs/1908.08962). This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our [technical report](https://arxiv.org/abs/2106.16163) for more details. ### How to use Using code from [BERT-base uncased](https://huggingface.co/bert-base-uncased), here is an example based on Tensorflow: ``` from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_3-step_180k') model = TFBertModel.from_pretrained("google/multiberts-seed_3-step_180k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` PyTorch version: ``` from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_3-step_180k') model = BertModel.from_pretrained("google/multiberts-seed_3-step_180k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` ## Citation info ```bibtex @article{sellam2021multiberts, title={The MultiBERTs: BERT Reproductions for Robustness Analysis}, author={Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick}, journal={arXiv preprint arXiv:2106.16163}, year={2021} } ```
google/multiberts-seed_3-step_2000k
7e7ed87d44b939b02cc84e9232232a11932d6d0d
2021-11-06T02:59:57.000Z
[ "pytorch", "tf", "bert", "pretraining", "en", "arxiv:2106.16163", "arxiv:1908.08962", "transformers", "multiberts", "multiberts-seed_3", "multiberts-seed_3-step_2000k", "license:apache-2.0" ]
null
false
google
null
google/multiberts-seed_3-step_2000k
0
null
transformers
33,721
--- language: en tags: - multiberts - multiberts-seed_3 - multiberts-seed_3-step_2000k license: apache-2.0 --- # MultiBERTs, Intermediate Checkpoint - Seed 3, Step 2000k MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as [the original BERT model](https://github.com/google-research/bert) but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through [http://goo.gle/multiberts](http://goo.gle/multiberts). We describe them in our paper [The MultiBERTs: BERT Reproductions for Robustness Analysis](https://arxiv.org/abs/2106.16163). This is model #3, captured at step 2000k (max: 2000k, i.e., 2M steps). ## Model Description This model was captured during a reproduction of [BERT-base uncased](https://github.com/google-research/bert), for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure for the fully trained model are similar to [BERT-base uncased](https://github.com/google-research/bert). Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for [Turc et al., 2019](https://arxiv.org/abs/1908.08962). This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our [technical report](https://arxiv.org/abs/2106.16163) for more details. ### How to use Using code from [BERT-base uncased](https://huggingface.co/bert-base-uncased), here is an example based on Tensorflow: ``` from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_3-step_2000k') model = TFBertModel.from_pretrained("google/multiberts-seed_3-step_2000k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` PyTorch version: ``` from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_3-step_2000k') model = BertModel.from_pretrained("google/multiberts-seed_3-step_2000k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` ## Citation info ```bibtex @article{sellam2021multiberts, title={The MultiBERTs: BERT Reproductions for Robustness Analysis}, author={Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick}, journal={arXiv preprint arXiv:2106.16163}, year={2021} } ```
google/multiberts-seed_3-step_20k
3431b4bd3d0677b9913e05d682ec77d306ed7005
2021-11-06T02:12:56.000Z
[ "pytorch", "tf", "bert", "pretraining", "en", "arxiv:2106.16163", "arxiv:1908.08962", "transformers", "multiberts", "multiberts-seed_3", "multiberts-seed_3-step_20k", "license:apache-2.0" ]
null
false
google
null
google/multiberts-seed_3-step_20k
0
null
transformers
33,722
--- language: en tags: - multiberts - multiberts-seed_3 - multiberts-seed_3-step_20k license: apache-2.0 --- # MultiBERTs, Intermediate Checkpoint - Seed 3, Step 20k MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as [the original BERT model](https://github.com/google-research/bert) but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through [http://goo.gle/multiberts](http://goo.gle/multiberts). We describe them in our paper [The MultiBERTs: BERT Reproductions for Robustness Analysis](https://arxiv.org/abs/2106.16163). This is model #3, captured at step 20k (max: 2000k, i.e., 2M steps). ## Model Description This model was captured during a reproduction of [BERT-base uncased](https://github.com/google-research/bert), for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure for the fully trained model are similar to [BERT-base uncased](https://github.com/google-research/bert). Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for [Turc et al., 2019](https://arxiv.org/abs/1908.08962). This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our [technical report](https://arxiv.org/abs/2106.16163) for more details. ### How to use Using code from [BERT-base uncased](https://huggingface.co/bert-base-uncased), here is an example based on Tensorflow: ``` from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_3-step_20k') model = TFBertModel.from_pretrained("google/multiberts-seed_3-step_20k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` PyTorch version: ``` from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_3-step_20k') model = BertModel.from_pretrained("google/multiberts-seed_3-step_20k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` ## Citation info ```bibtex @article{sellam2021multiberts, title={The MultiBERTs: BERT Reproductions for Robustness Analysis}, author={Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick}, journal={arXiv preprint arXiv:2106.16163}, year={2021} } ```
google/multiberts-seed_3-step_400k
8c330c0fbc41dc4dd765443300960cb91a5313cb
2021-11-06T02:32:13.000Z
[ "pytorch", "tf", "bert", "pretraining", "en", "arxiv:2106.16163", "arxiv:1908.08962", "transformers", "multiberts", "multiberts-seed_3", "multiberts-seed_3-step_400k", "license:apache-2.0" ]
null
false
google
null
google/multiberts-seed_3-step_400k
0
null
transformers
33,723
--- language: en tags: - multiberts - multiberts-seed_3 - multiberts-seed_3-step_400k license: apache-2.0 --- # MultiBERTs, Intermediate Checkpoint - Seed 3, Step 400k MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as [the original BERT model](https://github.com/google-research/bert) but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through [http://goo.gle/multiberts](http://goo.gle/multiberts). We describe them in our paper [The MultiBERTs: BERT Reproductions for Robustness Analysis](https://arxiv.org/abs/2106.16163). This is model #3, captured at step 400k (max: 2000k, i.e., 2M steps). ## Model Description This model was captured during a reproduction of [BERT-base uncased](https://github.com/google-research/bert), for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure for the fully trained model are similar to [BERT-base uncased](https://github.com/google-research/bert). Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for [Turc et al., 2019](https://arxiv.org/abs/1908.08962). This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our [technical report](https://arxiv.org/abs/2106.16163) for more details. ### How to use Using code from [BERT-base uncased](https://huggingface.co/bert-base-uncased), here is an example based on Tensorflow: ``` from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_3-step_400k') model = TFBertModel.from_pretrained("google/multiberts-seed_3-step_400k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` PyTorch version: ``` from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_3-step_400k') model = BertModel.from_pretrained("google/multiberts-seed_3-step_400k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` ## Citation info ```bibtex @article{sellam2021multiberts, title={The MultiBERTs: BERT Reproductions for Robustness Analysis}, author={Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick}, journal={arXiv preprint arXiv:2106.16163}, year={2021} } ```
google/multiberts-seed_3-step_40k
625906c7b9a3528bafbea24510e9fbd4c0127956
2021-11-06T02:14:40.000Z
[ "pytorch", "tf", "bert", "pretraining", "en", "arxiv:2106.16163", "arxiv:1908.08962", "transformers", "multiberts", "multiberts-seed_3", "multiberts-seed_3-step_40k", "license:apache-2.0" ]
null
false
google
null
google/multiberts-seed_3-step_40k
0
null
transformers
33,724
--- language: en tags: - multiberts - multiberts-seed_3 - multiberts-seed_3-step_40k license: apache-2.0 --- # MultiBERTs, Intermediate Checkpoint - Seed 3, Step 40k MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as [the original BERT model](https://github.com/google-research/bert) but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through [http://goo.gle/multiberts](http://goo.gle/multiberts). We describe them in our paper [The MultiBERTs: BERT Reproductions for Robustness Analysis](https://arxiv.org/abs/2106.16163). This is model #3, captured at step 40k (max: 2000k, i.e., 2M steps). ## Model Description This model was captured during a reproduction of [BERT-base uncased](https://github.com/google-research/bert), for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure for the fully trained model are similar to [BERT-base uncased](https://github.com/google-research/bert). Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for [Turc et al., 2019](https://arxiv.org/abs/1908.08962). This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our [technical report](https://arxiv.org/abs/2106.16163) for more details. ### How to use Using code from [BERT-base uncased](https://huggingface.co/bert-base-uncased), here is an example based on Tensorflow: ``` from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_3-step_40k') model = TFBertModel.from_pretrained("google/multiberts-seed_3-step_40k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` PyTorch version: ``` from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_3-step_40k') model = BertModel.from_pretrained("google/multiberts-seed_3-step_40k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` ## Citation info ```bibtex @article{sellam2021multiberts, title={The MultiBERTs: BERT Reproductions for Robustness Analysis}, author={Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick}, journal={arXiv preprint arXiv:2106.16163}, year={2021} } ```
google/multiberts-seed_3-step_600k
7525ec30ba323e5cf4423ded1b4b37037a19b71e
2021-11-06T02:35:46.000Z
[ "pytorch", "tf", "bert", "pretraining", "en", "arxiv:2106.16163", "arxiv:1908.08962", "transformers", "multiberts", "multiberts-seed_3", "multiberts-seed_3-step_600k", "license:apache-2.0" ]
null
false
google
null
google/multiberts-seed_3-step_600k
0
null
transformers
33,725
--- language: en tags: - multiberts - multiberts-seed_3 - multiberts-seed_3-step_600k license: apache-2.0 --- # MultiBERTs, Intermediate Checkpoint - Seed 3, Step 600k MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as [the original BERT model](https://github.com/google-research/bert) but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through [http://goo.gle/multiberts](http://goo.gle/multiberts). We describe them in our paper [The MultiBERTs: BERT Reproductions for Robustness Analysis](https://arxiv.org/abs/2106.16163). This is model #3, captured at step 600k (max: 2000k, i.e., 2M steps). ## Model Description This model was captured during a reproduction of [BERT-base uncased](https://github.com/google-research/bert), for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure for the fully trained model are similar to [BERT-base uncased](https://github.com/google-research/bert). Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for [Turc et al., 2019](https://arxiv.org/abs/1908.08962). This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our [technical report](https://arxiv.org/abs/2106.16163) for more details. ### How to use Using code from [BERT-base uncased](https://huggingface.co/bert-base-uncased), here is an example based on Tensorflow: ``` from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_3-step_600k') model = TFBertModel.from_pretrained("google/multiberts-seed_3-step_600k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` PyTorch version: ``` from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_3-step_600k') model = BertModel.from_pretrained("google/multiberts-seed_3-step_600k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` ## Citation info ```bibtex @article{sellam2021multiberts, title={The MultiBERTs: BERT Reproductions for Robustness Analysis}, author={Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick}, journal={arXiv preprint arXiv:2106.16163}, year={2021} } ```
google/multiberts-seed_3-step_700k
9ad38cdff5857eef4f17b771da45873cd342263b
2021-11-06T02:37:35.000Z
[ "pytorch", "tf", "bert", "pretraining", "en", "arxiv:2106.16163", "arxiv:1908.08962", "transformers", "multiberts", "multiberts-seed_3", "multiberts-seed_3-step_700k", "license:apache-2.0" ]
null
false
google
null
google/multiberts-seed_3-step_700k
0
null
transformers
33,726
--- language: en tags: - multiberts - multiberts-seed_3 - multiberts-seed_3-step_700k license: apache-2.0 --- # MultiBERTs, Intermediate Checkpoint - Seed 3, Step 700k MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as [the original BERT model](https://github.com/google-research/bert) but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through [http://goo.gle/multiberts](http://goo.gle/multiberts). We describe them in our paper [The MultiBERTs: BERT Reproductions for Robustness Analysis](https://arxiv.org/abs/2106.16163). This is model #3, captured at step 700k (max: 2000k, i.e., 2M steps). ## Model Description This model was captured during a reproduction of [BERT-base uncased](https://github.com/google-research/bert), for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure for the fully trained model are similar to [BERT-base uncased](https://github.com/google-research/bert). Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for [Turc et al., 2019](https://arxiv.org/abs/1908.08962). This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our [technical report](https://arxiv.org/abs/2106.16163) for more details. ### How to use Using code from [BERT-base uncased](https://huggingface.co/bert-base-uncased), here is an example based on Tensorflow: ``` from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_3-step_700k') model = TFBertModel.from_pretrained("google/multiberts-seed_3-step_700k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` PyTorch version: ``` from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_3-step_700k') model = BertModel.from_pretrained("google/multiberts-seed_3-step_700k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` ## Citation info ```bibtex @article{sellam2021multiberts, title={The MultiBERTs: BERT Reproductions for Robustness Analysis}, author={Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick}, journal={arXiv preprint arXiv:2106.16163}, year={2021} } ```
google/multiberts-seed_3-step_800k
b85b33a307994811a3a524e618d8dc9b5527b0bd
2021-11-06T02:39:21.000Z
[ "pytorch", "tf", "bert", "pretraining", "en", "arxiv:2106.16163", "arxiv:1908.08962", "transformers", "multiberts", "multiberts-seed_3", "multiberts-seed_3-step_800k", "license:apache-2.0" ]
null
false
google
null
google/multiberts-seed_3-step_800k
0
null
transformers
33,727
--- language: en tags: - multiberts - multiberts-seed_3 - multiberts-seed_3-step_800k license: apache-2.0 --- # MultiBERTs, Intermediate Checkpoint - Seed 3, Step 800k MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as [the original BERT model](https://github.com/google-research/bert) but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through [http://goo.gle/multiberts](http://goo.gle/multiberts). We describe them in our paper [The MultiBERTs: BERT Reproductions for Robustness Analysis](https://arxiv.org/abs/2106.16163). This is model #3, captured at step 800k (max: 2000k, i.e., 2M steps). ## Model Description This model was captured during a reproduction of [BERT-base uncased](https://github.com/google-research/bert), for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure for the fully trained model are similar to [BERT-base uncased](https://github.com/google-research/bert). Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for [Turc et al., 2019](https://arxiv.org/abs/1908.08962). This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our [technical report](https://arxiv.org/abs/2106.16163) for more details. ### How to use Using code from [BERT-base uncased](https://huggingface.co/bert-base-uncased), here is an example based on Tensorflow: ``` from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_3-step_800k') model = TFBertModel.from_pretrained("google/multiberts-seed_3-step_800k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` PyTorch version: ``` from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_3-step_800k') model = BertModel.from_pretrained("google/multiberts-seed_3-step_800k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` ## Citation info ```bibtex @article{sellam2021multiberts, title={The MultiBERTs: BERT Reproductions for Robustness Analysis}, author={Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick}, journal={arXiv preprint arXiv:2106.16163}, year={2021} } ```
google/multiberts-seed_3-step_900k
6e43a1edbce15b90c60a9359f87559fb007ff922
2021-11-06T02:40:58.000Z
[ "pytorch", "tf", "bert", "pretraining", "en", "arxiv:2106.16163", "arxiv:1908.08962", "transformers", "multiberts", "multiberts-seed_3", "multiberts-seed_3-step_900k", "license:apache-2.0" ]
null
false
google
null
google/multiberts-seed_3-step_900k
0
null
transformers
33,728
--- language: en tags: - multiberts - multiberts-seed_3 - multiberts-seed_3-step_900k license: apache-2.0 --- # MultiBERTs, Intermediate Checkpoint - Seed 3, Step 900k MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as [the original BERT model](https://github.com/google-research/bert) but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through [http://goo.gle/multiberts](http://goo.gle/multiberts). We describe them in our paper [The MultiBERTs: BERT Reproductions for Robustness Analysis](https://arxiv.org/abs/2106.16163). This is model #3, captured at step 900k (max: 2000k, i.e., 2M steps). ## Model Description This model was captured during a reproduction of [BERT-base uncased](https://github.com/google-research/bert), for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure for the fully trained model are similar to [BERT-base uncased](https://github.com/google-research/bert). Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for [Turc et al., 2019](https://arxiv.org/abs/1908.08962). This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our [technical report](https://arxiv.org/abs/2106.16163) for more details. ### How to use Using code from [BERT-base uncased](https://huggingface.co/bert-base-uncased), here is an example based on Tensorflow: ``` from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_3-step_900k') model = TFBertModel.from_pretrained("google/multiberts-seed_3-step_900k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` PyTorch version: ``` from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_3-step_900k') model = BertModel.from_pretrained("google/multiberts-seed_3-step_900k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` ## Citation info ```bibtex @article{sellam2021multiberts, title={The MultiBERTs: BERT Reproductions for Robustness Analysis}, author={Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick}, journal={arXiv preprint arXiv:2106.16163}, year={2021} } ```
google/realm-orqa-wq-openqa
2f280ce6d6b92847268c1323100be02a24b859da
2022-01-05T17:02:11.000Z
[ "pytorch", "realm", "en", "transformers", "license:apache-2.0" ]
null
false
google
null
google/realm-orqa-wq-openqa
0
null
transformers
33,729
--- language: en license: apache-2.0 --- # realm-orqa-wq-openqa ## Model description The REALM checkpoint finetuned with Web Questions(WQ) dataset, converted from the TF checkpoint provided by Google Language. The original paper, code, and checkpoints can be found [here](https://github.com/google-research/language/tree/master/language/realm). ## Usage ```python from transformers import RealmForOpenQA openqa = RealmForOpenQA.from_pretrained("qqaatw/realm-orqa-wq-openqa") ```
google/t5-efficient-large-nl8
77e362e1e37a050c31add35799663972b14bb17e
2022-02-15T10:56:04.000Z
[ "pytorch", "tf", "jax", "t5", "text2text-generation", "en", "dataset:c4", "arxiv:2109.10686", "transformers", "deep-narrow", "license:apache-2.0", "autotrain_compatible" ]
text2text-generation
false
google
null
google/t5-efficient-large-nl8
0
null
transformers
33,730
--- language: - en datasets: - c4 tags: - deep-narrow inference: false license: apache-2.0 --- # T5-Efficient-LARGE-NL8 (Deep-Narrow version) T5-Efficient-LARGE-NL8 is a variation of [Google's original T5](https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html) following the [T5 model architecture](https://huggingface.co/docs/transformers/model_doc/t5). It is a *pretrained-only* checkpoint and was released with the paper **[Scale Efficiently: Insights from Pre-training and Fine-tuning Transformers](https://arxiv.org/abs/2109.10686)** by *Yi Tay, Mostafa Dehghani, Jinfeng Rao, William Fedus, Samira Abnar, Hyung Won Chung, Sharan Narang, Dani Yogatama, Ashish Vaswani, Donald Metzler*. In a nutshell, the paper indicates that a **Deep-Narrow** model architecture is favorable for **downstream** performance compared to other model architectures of similar parameter count. To quote the paper: > We generally recommend a DeepNarrow strategy where the model’s depth is preferentially increased > before considering any other forms of uniform scaling across other dimensions. This is largely due to > how much depth influences the Pareto-frontier as shown in earlier sections of the paper. Specifically, a > tall small (deep and narrow) model is generally more efficient compared to the base model. Likewise, > a tall base model might also generally more efficient compared to a large model. We generally find > that, regardless of size, even if absolute performance might increase as we continue to stack layers, > the relative gain of Pareto-efficiency diminishes as we increase the layers, converging at 32 to 36 > layers. Finally, we note that our notion of efficiency here relates to any one compute dimension, i.e., > params, FLOPs or throughput (speed). We report all three key efficiency metrics (number of params, > FLOPS and speed) and leave this decision to the practitioner to decide which compute dimension to > consider. To be more precise, *model depth* is defined as the number of transformer blocks that are stacked sequentially. A sequence of word embeddings is therefore processed sequentially by each transformer block. ## Details model architecture This model checkpoint - **t5-efficient-large-nl8** - is of model type **Large** with the following variations: - **nl** is **8** It has **267.84** million parameters and thus requires *ca.* **1071.37 MB** of memory in full precision (*fp32*) or **535.69 MB** of memory in half precision (*fp16* or *bf16*). A summary of the *original* T5 model architectures can be seen here: | Model | nl (el/dl) | ff | dm | kv | nh | #Params| | ----| ---- | ---- | ---- | ---- | ---- | ----| | Tiny | 4/4 | 1024 | 256 | 32 | 4 | 16M| | Mini | 4/4 | 1536 | 384 | 32 | 8 | 31M| | Small | 6/6 | 2048 | 512 | 32 | 8 | 60M| | Base | 12/12 | 3072 | 768 | 64 | 12 | 220M| | Large | 24/24 | 4096 | 1024 | 64 | 16 | 738M| | Xl | 24/24 | 16384 | 1024 | 128 | 32 | 3B| | XXl | 24/24 | 65536 | 1024 | 128 | 128 | 11B| whereas the following abbreviations are used: | Abbreviation | Definition | | ----| ---- | | nl | Number of transformer blocks (depth) | | dm | Dimension of embedding vector (output vector of transformers block) | | kv | Dimension of key/value projection matrix | | nh | Number of attention heads | | ff | Dimension of intermediate vector within transformer block (size of feed-forward projection matrix) | | el | Number of transformer blocks in the encoder (encoder depth) | | dl | Number of transformer blocks in the decoder (decoder depth) | | sh | Signifies that attention heads are shared | | skv | Signifies that key-values projection matrices are tied | If a model checkpoint has no specific, *el* or *dl* than both the number of encoder- and decoder layers correspond to *nl*. ## Pre-Training The checkpoint was pretrained on the [Colossal, Cleaned version of Common Crawl (C4)](https://huggingface.co/datasets/c4) for 524288 steps using the span-based masked language modeling (MLM) objective. ## Fine-Tuning **Note**: This model is a **pretrained** checkpoint and has to be fine-tuned for practical usage. The checkpoint was pretrained in English and is therefore only useful for English NLP tasks. You can follow on of the following examples on how to fine-tune the model: *PyTorch*: - [Summarization](https://github.com/huggingface/transformers/tree/master/examples/pytorch/summarization) - [Question Answering](https://github.com/huggingface/transformers/blob/master/examples/pytorch/question-answering/run_seq2seq_qa.py) - [Text Classification](https://github.com/huggingface/transformers/tree/master/examples/pytorch/text-classification) - *Note*: You will have to slightly adapt the training example here to make it work with an encoder-decoder model. *Tensorflow*: - [Summarization](https://github.com/huggingface/transformers/tree/master/examples/tensorflow/summarization) - [Text Classification](https://github.com/huggingface/transformers/tree/master/examples/tensorflow/text-classification) - *Note*: You will have to slightly adapt the training example here to make it work with an encoder-decoder model. *JAX/Flax*: - [Summarization](https://github.com/huggingface/transformers/tree/master/examples/flax/summarization) - [Text Classification](https://github.com/huggingface/transformers/tree/master/examples/flax/text-classification) - *Note*: You will have to slightly adapt the training example here to make it work with an encoder-decoder model. ## Downstream Performance TODO: Add table if available ## Computational Complexity TODO: Add table if available ## More information We strongly recommend the reader to go carefully through the original paper **[Scale Efficiently: Insights from Pre-training and Fine-tuning Transformers](https://arxiv.org/abs/2109.10686)** to get a more nuanced understanding of this model checkpoint. As explained in the following [issue](https://github.com/google-research/google-research/issues/986#issuecomment-1035051145), checkpoints including the *sh* or *skv* model architecture variations have *not* been ported to Transformers as they are probably of limited practical usage and are lacking a more detailed description. Those checkpoints are kept [here](https://huggingface.co/NewT5SharedHeadsSharedKeyValues) as they might be ported potentially in the future.
google/t5-efficient-small-el2
697793ea51cca730ade7a89d3fe57c5300ba9e95
2022-02-15T10:53:59.000Z
[ "pytorch", "tf", "jax", "t5", "text2text-generation", "en", "dataset:c4", "arxiv:2109.10686", "transformers", "deep-narrow", "license:apache-2.0", "autotrain_compatible" ]
text2text-generation
false
google
null
google/t5-efficient-small-el2
0
null
transformers
33,731
--- language: - en datasets: - c4 tags: - deep-narrow inference: false license: apache-2.0 --- # T5-Efficient-SMALL-EL2 (Deep-Narrow version) T5-Efficient-SMALL-EL2 is a variation of [Google's original T5](https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html) following the [T5 model architecture](https://huggingface.co/docs/transformers/model_doc/t5). It is a *pretrained-only* checkpoint and was released with the paper **[Scale Efficiently: Insights from Pre-training and Fine-tuning Transformers](https://arxiv.org/abs/2109.10686)** by *Yi Tay, Mostafa Dehghani, Jinfeng Rao, William Fedus, Samira Abnar, Hyung Won Chung, Sharan Narang, Dani Yogatama, Ashish Vaswani, Donald Metzler*. In a nutshell, the paper indicates that a **Deep-Narrow** model architecture is favorable for **downstream** performance compared to other model architectures of similar parameter count. To quote the paper: > We generally recommend a DeepNarrow strategy where the model’s depth is preferentially increased > before considering any other forms of uniform scaling across other dimensions. This is largely due to > how much depth influences the Pareto-frontier as shown in earlier sections of the paper. Specifically, a > tall small (deep and narrow) model is generally more efficient compared to the base model. Likewise, > a tall base model might also generally more efficient compared to a large model. We generally find > that, regardless of size, even if absolute performance might increase as we continue to stack layers, > the relative gain of Pareto-efficiency diminishes as we increase the layers, converging at 32 to 36 > layers. Finally, we note that our notion of efficiency here relates to any one compute dimension, i.e., > params, FLOPs or throughput (speed). We report all three key efficiency metrics (number of params, > FLOPS and speed) and leave this decision to the practitioner to decide which compute dimension to > consider. To be more precise, *model depth* is defined as the number of transformer blocks that are stacked sequentially. A sequence of word embeddings is therefore processed sequentially by each transformer block. ## Details model architecture This model checkpoint - **t5-efficient-small-el2** - is of model type **Small** with the following variations: - **el** is **2** It has **47.93** million parameters and thus requires *ca.* **191.72 MB** of memory in full precision (*fp32*) or **95.86 MB** of memory in half precision (*fp16* or *bf16*). A summary of the *original* T5 model architectures can be seen here: | Model | nl (el/dl) | ff | dm | kv | nh | #Params| | ----| ---- | ---- | ---- | ---- | ---- | ----| | Tiny | 4/4 | 1024 | 256 | 32 | 4 | 16M| | Mini | 4/4 | 1536 | 384 | 32 | 8 | 31M| | Small | 6/6 | 2048 | 512 | 32 | 8 | 60M| | Base | 12/12 | 3072 | 768 | 64 | 12 | 220M| | Large | 24/24 | 4096 | 1024 | 64 | 16 | 738M| | Xl | 24/24 | 16384 | 1024 | 128 | 32 | 3B| | XXl | 24/24 | 65536 | 1024 | 128 | 128 | 11B| whereas the following abbreviations are used: | Abbreviation | Definition | | ----| ---- | | nl | Number of transformer blocks (depth) | | dm | Dimension of embedding vector (output vector of transformers block) | | kv | Dimension of key/value projection matrix | | nh | Number of attention heads | | ff | Dimension of intermediate vector within transformer block (size of feed-forward projection matrix) | | el | Number of transformer blocks in the encoder (encoder depth) | | dl | Number of transformer blocks in the decoder (decoder depth) | | sh | Signifies that attention heads are shared | | skv | Signifies that key-values projection matrices are tied | If a model checkpoint has no specific, *el* or *dl* than both the number of encoder- and decoder layers correspond to *nl*. ## Pre-Training The checkpoint was pretrained on the [Colossal, Cleaned version of Common Crawl (C4)](https://huggingface.co/datasets/c4) for 524288 steps using the span-based masked language modeling (MLM) objective. ## Fine-Tuning **Note**: This model is a **pretrained** checkpoint and has to be fine-tuned for practical usage. The checkpoint was pretrained in English and is therefore only useful for English NLP tasks. You can follow on of the following examples on how to fine-tune the model: *PyTorch*: - [Summarization](https://github.com/huggingface/transformers/tree/master/examples/pytorch/summarization) - [Question Answering](https://github.com/huggingface/transformers/blob/master/examples/pytorch/question-answering/run_seq2seq_qa.py) - [Text Classification](https://github.com/huggingface/transformers/tree/master/examples/pytorch/text-classification) - *Note*: You will have to slightly adapt the training example here to make it work with an encoder-decoder model. *Tensorflow*: - [Summarization](https://github.com/huggingface/transformers/tree/master/examples/tensorflow/summarization) - [Text Classification](https://github.com/huggingface/transformers/tree/master/examples/tensorflow/text-classification) - *Note*: You will have to slightly adapt the training example here to make it work with an encoder-decoder model. *JAX/Flax*: - [Summarization](https://github.com/huggingface/transformers/tree/master/examples/flax/summarization) - [Text Classification](https://github.com/huggingface/transformers/tree/master/examples/flax/text-classification) - *Note*: You will have to slightly adapt the training example here to make it work with an encoder-decoder model. ## Downstream Performance TODO: Add table if available ## Computational Complexity TODO: Add table if available ## More information We strongly recommend the reader to go carefully through the original paper **[Scale Efficiently: Insights from Pre-training and Fine-tuning Transformers](https://arxiv.org/abs/2109.10686)** to get a more nuanced understanding of this model checkpoint. As explained in the following [issue](https://github.com/google-research/google-research/issues/986#issuecomment-1035051145), checkpoints including the *sh* or *skv* model architecture variations have *not* been ported to Transformers as they are probably of limited practical usage and are lacking a more detailed description. Those checkpoints are kept [here](https://huggingface.co/NewT5SharedHeadsSharedKeyValues) as they might be ported potentially in the future.
google/t5-efficient-small-nl4
2b287a6794a3504771f03200bda4425f00e47948
2022-02-15T10:49:31.000Z
[ "pytorch", "tf", "jax", "t5", "text2text-generation", "en", "dataset:c4", "arxiv:2109.10686", "transformers", "deep-narrow", "license:apache-2.0", "autotrain_compatible" ]
text2text-generation
false
google
null
google/t5-efficient-small-nl4
0
null
transformers
33,732
--- language: - en datasets: - c4 tags: - deep-narrow inference: false license: apache-2.0 --- # T5-Efficient-SMALL-NL4 (Deep-Narrow version) T5-Efficient-SMALL-NL4 is a variation of [Google's original T5](https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html) following the [T5 model architecture](https://huggingface.co/docs/transformers/model_doc/t5). It is a *pretrained-only* checkpoint and was released with the paper **[Scale Efficiently: Insights from Pre-training and Fine-tuning Transformers](https://arxiv.org/abs/2109.10686)** by *Yi Tay, Mostafa Dehghani, Jinfeng Rao, William Fedus, Samira Abnar, Hyung Won Chung, Sharan Narang, Dani Yogatama, Ashish Vaswani, Donald Metzler*. In a nutshell, the paper indicates that a **Deep-Narrow** model architecture is favorable for **downstream** performance compared to other model architectures of similar parameter count. To quote the paper: > We generally recommend a DeepNarrow strategy where the model’s depth is preferentially increased > before considering any other forms of uniform scaling across other dimensions. This is largely due to > how much depth influences the Pareto-frontier as shown in earlier sections of the paper. Specifically, a > tall small (deep and narrow) model is generally more efficient compared to the base model. Likewise, > a tall base model might also generally more efficient compared to a large model. We generally find > that, regardless of size, even if absolute performance might increase as we continue to stack layers, > the relative gain of Pareto-efficiency diminishes as we increase the layers, converging at 32 to 36 > layers. Finally, we note that our notion of efficiency here relates to any one compute dimension, i.e., > params, FLOPs or throughput (speed). We report all three key efficiency metrics (number of params, > FLOPS and speed) and leave this decision to the practitioner to decide which compute dimension to > consider. To be more precise, *model depth* is defined as the number of transformer blocks that are stacked sequentially. A sequence of word embeddings is therefore processed sequentially by each transformer block. ## Details model architecture This model checkpoint - **t5-efficient-small-nl4** - is of model type **Small** with the following variations: - **nl** is **4** It has **45.83** million parameters and thus requires *ca.* **183.32 MB** of memory in full precision (*fp32*) or **91.66 MB** of memory in half precision (*fp16* or *bf16*). A summary of the *original* T5 model architectures can be seen here: | Model | nl (el/dl) | ff | dm | kv | nh | #Params| | ----| ---- | ---- | ---- | ---- | ---- | ----| | Tiny | 4/4 | 1024 | 256 | 32 | 4 | 16M| | Mini | 4/4 | 1536 | 384 | 32 | 8 | 31M| | Small | 6/6 | 2048 | 512 | 32 | 8 | 60M| | Base | 12/12 | 3072 | 768 | 64 | 12 | 220M| | Large | 24/24 | 4096 | 1024 | 64 | 16 | 738M| | Xl | 24/24 | 16384 | 1024 | 128 | 32 | 3B| | XXl | 24/24 | 65536 | 1024 | 128 | 128 | 11B| whereas the following abbreviations are used: | Abbreviation | Definition | | ----| ---- | | nl | Number of transformer blocks (depth) | | dm | Dimension of embedding vector (output vector of transformers block) | | kv | Dimension of key/value projection matrix | | nh | Number of attention heads | | ff | Dimension of intermediate vector within transformer block (size of feed-forward projection matrix) | | el | Number of transformer blocks in the encoder (encoder depth) | | dl | Number of transformer blocks in the decoder (decoder depth) | | sh | Signifies that attention heads are shared | | skv | Signifies that key-values projection matrices are tied | If a model checkpoint has no specific, *el* or *dl* than both the number of encoder- and decoder layers correspond to *nl*. ## Pre-Training The checkpoint was pretrained on the [Colossal, Cleaned version of Common Crawl (C4)](https://huggingface.co/datasets/c4) for 524288 steps using the span-based masked language modeling (MLM) objective. ## Fine-Tuning **Note**: This model is a **pretrained** checkpoint and has to be fine-tuned for practical usage. The checkpoint was pretrained in English and is therefore only useful for English NLP tasks. You can follow on of the following examples on how to fine-tune the model: *PyTorch*: - [Summarization](https://github.com/huggingface/transformers/tree/master/examples/pytorch/summarization) - [Question Answering](https://github.com/huggingface/transformers/blob/master/examples/pytorch/question-answering/run_seq2seq_qa.py) - [Text Classification](https://github.com/huggingface/transformers/tree/master/examples/pytorch/text-classification) - *Note*: You will have to slightly adapt the training example here to make it work with an encoder-decoder model. *Tensorflow*: - [Summarization](https://github.com/huggingface/transformers/tree/master/examples/tensorflow/summarization) - [Text Classification](https://github.com/huggingface/transformers/tree/master/examples/tensorflow/text-classification) - *Note*: You will have to slightly adapt the training example here to make it work with an encoder-decoder model. *JAX/Flax*: - [Summarization](https://github.com/huggingface/transformers/tree/master/examples/flax/summarization) - [Text Classification](https://github.com/huggingface/transformers/tree/master/examples/flax/text-classification) - *Note*: You will have to slightly adapt the training example here to make it work with an encoder-decoder model. ## Downstream Performance TODO: Add table if available ## Computational Complexity TODO: Add table if available ## More information We strongly recommend the reader to go carefully through the original paper **[Scale Efficiently: Insights from Pre-training and Fine-tuning Transformers](https://arxiv.org/abs/2109.10686)** to get a more nuanced understanding of this model checkpoint. As explained in the following [issue](https://github.com/google-research/google-research/issues/986#issuecomment-1035051145), checkpoints including the *sh* or *skv* model architecture variations have *not* been ported to Transformers as they are probably of limited practical usage and are lacking a more detailed description. Those checkpoints are kept [here](https://huggingface.co/NewT5SharedHeadsSharedKeyValues) as they might be ported potentially in the future.
google/t5-efficient-small-nl8
c6dc278e2d99d838a91115bcda6b3f0507313a2e
2022-02-15T10:54:17.000Z
[ "pytorch", "tf", "jax", "t5", "text2text-generation", "en", "dataset:c4", "arxiv:2109.10686", "transformers", "deep-narrow", "license:apache-2.0", "autotrain_compatible" ]
text2text-generation
false
google
null
google/t5-efficient-small-nl8
0
null
transformers
33,733
--- language: - en datasets: - c4 tags: - deep-narrow inference: false license: apache-2.0 --- # T5-Efficient-SMALL-NL8 (Deep-Narrow version) T5-Efficient-SMALL-NL8 is a variation of [Google's original T5](https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html) following the [T5 model architecture](https://huggingface.co/docs/transformers/model_doc/t5). It is a *pretrained-only* checkpoint and was released with the paper **[Scale Efficiently: Insights from Pre-training and Fine-tuning Transformers](https://arxiv.org/abs/2109.10686)** by *Yi Tay, Mostafa Dehghani, Jinfeng Rao, William Fedus, Samira Abnar, Hyung Won Chung, Sharan Narang, Dani Yogatama, Ashish Vaswani, Donald Metzler*. In a nutshell, the paper indicates that a **Deep-Narrow** model architecture is favorable for **downstream** performance compared to other model architectures of similar parameter count. To quote the paper: > We generally recommend a DeepNarrow strategy where the model’s depth is preferentially increased > before considering any other forms of uniform scaling across other dimensions. This is largely due to > how much depth influences the Pareto-frontier as shown in earlier sections of the paper. Specifically, a > tall small (deep and narrow) model is generally more efficient compared to the base model. Likewise, > a tall base model might also generally more efficient compared to a large model. We generally find > that, regardless of size, even if absolute performance might increase as we continue to stack layers, > the relative gain of Pareto-efficiency diminishes as we increase the layers, converging at 32 to 36 > layers. Finally, we note that our notion of efficiency here relates to any one compute dimension, i.e., > params, FLOPs or throughput (speed). We report all three key efficiency metrics (number of params, > FLOPS and speed) and leave this decision to the practitioner to decide which compute dimension to > consider. To be more precise, *model depth* is defined as the number of transformer blocks that are stacked sequentially. A sequence of word embeddings is therefore processed sequentially by each transformer block. ## Details model architecture This model checkpoint - **t5-efficient-small-nl8** - is of model type **Small** with the following variations: - **nl** is **8** It has **75.21** million parameters and thus requires *ca.* **300.84 MB** of memory in full precision (*fp32*) or **150.42 MB** of memory in half precision (*fp16* or *bf16*). A summary of the *original* T5 model architectures can be seen here: | Model | nl (el/dl) | ff | dm | kv | nh | #Params| | ----| ---- | ---- | ---- | ---- | ---- | ----| | Tiny | 4/4 | 1024 | 256 | 32 | 4 | 16M| | Mini | 4/4 | 1536 | 384 | 32 | 8 | 31M| | Small | 6/6 | 2048 | 512 | 32 | 8 | 60M| | Base | 12/12 | 3072 | 768 | 64 | 12 | 220M| | Large | 24/24 | 4096 | 1024 | 64 | 16 | 738M| | Xl | 24/24 | 16384 | 1024 | 128 | 32 | 3B| | XXl | 24/24 | 65536 | 1024 | 128 | 128 | 11B| whereas the following abbreviations are used: | Abbreviation | Definition | | ----| ---- | | nl | Number of transformer blocks (depth) | | dm | Dimension of embedding vector (output vector of transformers block) | | kv | Dimension of key/value projection matrix | | nh | Number of attention heads | | ff | Dimension of intermediate vector within transformer block (size of feed-forward projection matrix) | | el | Number of transformer blocks in the encoder (encoder depth) | | dl | Number of transformer blocks in the decoder (decoder depth) | | sh | Signifies that attention heads are shared | | skv | Signifies that key-values projection matrices are tied | If a model checkpoint has no specific, *el* or *dl* than both the number of encoder- and decoder layers correspond to *nl*. ## Pre-Training The checkpoint was pretrained on the [Colossal, Cleaned version of Common Crawl (C4)](https://huggingface.co/datasets/c4) for 524288 steps using the span-based masked language modeling (MLM) objective. ## Fine-Tuning **Note**: This model is a **pretrained** checkpoint and has to be fine-tuned for practical usage. The checkpoint was pretrained in English and is therefore only useful for English NLP tasks. You can follow on of the following examples on how to fine-tune the model: *PyTorch*: - [Summarization](https://github.com/huggingface/transformers/tree/master/examples/pytorch/summarization) - [Question Answering](https://github.com/huggingface/transformers/blob/master/examples/pytorch/question-answering/run_seq2seq_qa.py) - [Text Classification](https://github.com/huggingface/transformers/tree/master/examples/pytorch/text-classification) - *Note*: You will have to slightly adapt the training example here to make it work with an encoder-decoder model. *Tensorflow*: - [Summarization](https://github.com/huggingface/transformers/tree/master/examples/tensorflow/summarization) - [Text Classification](https://github.com/huggingface/transformers/tree/master/examples/tensorflow/text-classification) - *Note*: You will have to slightly adapt the training example here to make it work with an encoder-decoder model. *JAX/Flax*: - [Summarization](https://github.com/huggingface/transformers/tree/master/examples/flax/summarization) - [Text Classification](https://github.com/huggingface/transformers/tree/master/examples/flax/text-classification) - *Note*: You will have to slightly adapt the training example here to make it work with an encoder-decoder model. ## Downstream Performance TODO: Add table if available ## Computational Complexity TODO: Add table if available ## More information We strongly recommend the reader to go carefully through the original paper **[Scale Efficiently: Insights from Pre-training and Fine-tuning Transformers](https://arxiv.org/abs/2109.10686)** to get a more nuanced understanding of this model checkpoint. As explained in the following [issue](https://github.com/google-research/google-research/issues/986#issuecomment-1035051145), checkpoints including the *sh* or *skv* model architecture variations have *not* been ported to Transformers as they are probably of limited practical usage and are lacking a more detailed description. Those checkpoints are kept [here](https://huggingface.co/NewT5SharedHeadsSharedKeyValues) as they might be ported potentially in the future.
google/tapas-mini
320846884d4778b2a91a3e6c06869dbfc4c55f5b
2021-11-29T10:11:56.000Z
[ "pytorch", "tf", "tapas", "feature-extraction", "en", "arxiv:2004.02349", "arxiv:2010.00571", "transformers", "TapasModel", "license:apache-2.0" ]
feature-extraction
false
google
null
google/tapas-mini
0
null
transformers
33,734
--- language: en tags: - tapas - TapasModel license: apache-2.0 --- # TAPAS mini model This model has 2 versions which can be used. The latest version, which is the default one, corresponds to the `tapas_inter_masklm_mini_reset` checkpoint of the [original Github repository](https://github.com/google-research/tapas). This model was pre-trained on MLM and an additional step which the authors call intermediate pre-training. It uses relative position embeddings by default (i.e. resetting the position index at every cell of the table). The other (non-default) version which can be used is the one with absolute position embeddings: - `revision="no_reset"`, which corresponds to `tapas_inter_masklm_mini` Disclaimer: The team releasing TAPAS did not write a model card for this model so this model card has been written by the Hugging Face team and contributors. ## Model description TAPAS is a BERT-like transformers model pretrained on a large corpus of English data from Wikipedia in a self-supervised fashion. This means it was pretrained on the raw tables and associated texts only, with no humans labelling them in any way (which is why it can use lots of publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, it was pretrained with two objectives: - Masked language modeling (MLM): taking a (flattened) table and associated context, the model randomly masks 15% of the words in the input, then runs the entire (partially masked) sequence through the model. The model then has to predict the masked words. This is different from traditional recurrent neural networks (RNNs) that usually see the words one after the other, or from autoregressive models like GPT which internally mask the future tokens. It allows the model to learn a bidirectional representation of a table and associated text. - Intermediate pre-training: to encourage numerical reasoning on tables, the authors additionally pre-trained the model by creating a balanced dataset of millions of syntactically created training examples. Here, the model must predict (classify) whether a sentence is supported or refuted by the contents of a table. The training examples are created based on synthetic as well as counterfactual statements. This way, the model learns an inner representation of the English language used in tables and associated texts, which can then be used to extract features useful for downstream tasks such as answering questions about a table, or determining whether a sentence is entailed or refuted by the contents of a table. Fine-tuning is done by adding one or more classification heads on top of the pre-trained model, and then jointly train these randomly initialized classification heads with the base model on a downstream task. ## Intended uses & limitations You can use the raw model for getting hidden representatons about table-question pairs, but it's mostly intended to be fine-tuned on a downstream task such as question answering or sequence classification. See the [model hub](https://huggingface.co/models?filter=tapas) to look for fine-tuned versions on a task that interests you. ## Training procedure ### Preprocessing The texts are lowercased and tokenized using WordPiece and a vocabulary size of 30,000. The inputs of the model are then of the form: ``` [CLS] Sentence [SEP] Flattened table [SEP] ``` ### Pre-training The model was pre-trained on 32 Cloud TPU v3 cores for 1,000,000 steps with maximum sequence length 512 and batch size of 512. In this setup, pre-training on MLM only takes around 3 days. Aditionally, the model has been further pre-trained on a second task (table entailment). See the original TAPAS [paper](https://www.aclweb.org/anthology/2020.acl-main.398/) and the [follow-up paper](https://www.aclweb.org/anthology/2020.findings-emnlp.27/) for more details. The optimizer used is Adam with a learning rate of 5e-5, and a warmup ratio of 0.01. ### BibTeX entry and citation info ```bibtex @misc{herzig2020tapas, title={TAPAS: Weakly Supervised Table Parsing via Pre-training}, author={Jonathan Herzig and Paweł Krzysztof Nowak and Thomas Müller and Francesco Piccinno and Julian Martin Eisenschlos}, year={2020}, eprint={2004.02349}, archivePrefix={arXiv}, primaryClass={cs.IR} } ``` ```bibtex @misc{eisenschlos2020understanding, title={Understanding tables with intermediate pre-training}, author={Julian Martin Eisenschlos and Syrine Krichene and Thomas Müller}, year={2020}, eprint={2010.00571}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
google/tapas-small-masklm
bc1f8ddabd0d30094b6727779326fcbae181dc52
2021-11-29T14:17:10.000Z
[ "pytorch", "tf", "tapas", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
google
null
google/tapas-small-masklm
0
1
transformers
33,735
This model corresponds to **tapas_masklm_small_reset** of the [original repository](https://github.com/google-research/tapas). Here's how you can use it: ```python from transformers import TapasTokenizer, TapasForMaskedLM import pandas as pd import torch tokenizer = TapasTokenizer.from_pretrained("google/tapas-small-masklm") model = TapasForMaskedLM.from_pretrained("google/tapas-small-masklm") data = {'Actors': ["Brad Pitt", "Leonardo Di Caprio", "George Clooney"], 'Age': ["56", "45", "59"], 'Number of movies': ["87", "53", "69"] } table = pd.DataFrame.from_dict(data) query = "How many movies has Leonardo [MASK] Caprio played in?" # prepare inputs inputs = tokenizer(table=table, queries=query, padding="max_length", return_tensors="pt") # forward pass outputs = model(**inputs) # return top 5 values and predictions masked_index = torch.nonzero(inputs.input_ids.squeeze() == tokenizer.mask_token_id, as_tuple=False) logits = outputs.logits[0, masked_index.item(), :] probs = logits.softmax(dim=0) values, predictions = probs.topk(5) for value, pred in zip(values, predictions): print(f"{tokenizer.decode([pred])} with confidence {value}") ```
gorkemgoknar/wav2vec2-base-100h-with-lm-turkish
2ceaea2b2d7e6d9c402fb63ba3beff7bb552d0db
2022-01-13T10:50:18.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
gorkemgoknar
null
gorkemgoknar/wav2vec2-base-100h-with-lm-turkish
0
null
transformers
33,736
Entry not found
graviraja/distilbert-base-uncased-finetuned-squad
38217bb0db47d8cdf74964e882fb5f6fae7c7dd1
2021-12-13T18:14:08.000Z
[ "pytorch", "tensorboard", "distilbert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
graviraja
null
graviraja/distilbert-base-uncased-finetuned-squad
0
null
transformers
33,737
Entry not found
groar/gpt-neo-1.3B-finetuned-escape
320cc1f76a32d1dd824d2ef0405770f2b2c4695e
2022-02-06T18:14:00.000Z
[ "pytorch", "tensorboard", "gpt_neo", "text-generation", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-generation
false
groar
null
groar/gpt-neo-1.3B-finetuned-escape
0
null
transformers
33,738
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: gpt-neo-1.3B-finetuned-escape results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt-neo-1.3B-finetuned-escape This model is a fine-tuned version of [EleutherAI/gpt-neo-1.3B](https://huggingface.co/EleutherAI/gpt-neo-1.3B) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 40 ### Training results ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
grumpy/weights_bert_mlm_epoch50
e9ce4d745aa7eaa9485b4d64794741f190ea1541
2021-05-19T17:41:43.000Z
[ "pytorch", "jax", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
grumpy
null
grumpy/weights_bert_mlm_epoch50
0
null
transformers
33,739
Entry not found
gsliwoski/ketobot
f64d60a00143c7154056e6c3316f5df8f69cd541
2021-06-04T19:59:12.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
gsliwoski
null
gsliwoski/ketobot
0
null
transformers
33,740
--- tags: - conversational --- # My Awesome Model
gumgo91/IUPAC_BERT
771cfc5589838c68ac2577c8e335b688f5208d62
2021-11-29T02:13:44.000Z
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
false
gumgo91
null
gumgo91/IUPAC_BERT
0
null
transformers
33,741
Entry not found
gwkim22/5050_b_disc
9a88716864b9efceb298ce3ebf1d40df6834509f
2021-07-02T05:16:01.000Z
[ "pytorch", "electra", "pretraining", "transformers" ]
null
false
gwkim22
null
gwkim22/5050_b_disc
0
null
transformers
33,742
"5050_base_test"
gwkim22/5050_s_disc
acf97d4563af30ccc6318bf0d8d239b927d7f3fe
2021-06-28T07:10:45.000Z
[ "pytorch", "electra", "pretraining", "transformers" ]
null
false
gwkim22
null
gwkim22/5050_s_disc
0
null
transformers
33,743
"test_5050"
gwkim22/domain_b_disc
60ec13efaee5866580556545f6bf5fce1257a5bc
2021-07-01T07:37:39.000Z
[ "pytorch", "electra", "pretraining", "transformers" ]
null
false
gwkim22
null
gwkim22/domain_b_disc
0
null
transformers
33,744
"domain_base_test"
gwkim22/domain_s_disc
0fd3740014e87f52e94f2c607cec6c285b8fa805
2021-06-28T06:57:14.000Z
[ "pytorch", "electra", "pretraining", "transformers" ]
null
false
gwkim22
null
gwkim22/domain_s_disc
0
null
transformers
33,745
"test_domain_only"
gwkim22/general_s_disc
e15cdaed61af1d822b55a190f5de9d799f74c382
2021-06-28T08:17:11.000Z
[ "pytorch", "electra", "pretraining", "transformers" ]
null
false
gwkim22
null
gwkim22/general_s_disc
0
null
transformers
33,746
"general_test"
hadxu/xlm-roberta-base-finetuned-panx-de
2de23bcc37510441d6da2191b062e8b5059b262d
2022-02-11T07:51:36.000Z
[ "pytorch", "tensorboard", "xlm-roberta", "token-classification", "dataset:xtreme", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
token-classification
false
hadxu
null
hadxu/xlm-roberta-base-finetuned-panx-de
0
null
transformers
33,747
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme args: PAN-X.de metrics: - name: F1 type: f1 value: 0.8591260810195721 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.1352 - F1: 0.8591 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.257 | 1.0 | 525 | 0.1512 | 0.8302 | | 0.1305 | 2.0 | 1050 | 0.1401 | 0.8447 | | 0.0817 | 3.0 | 1575 | 0.1352 | 0.8591 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3
haji2438/bertweet-base-SNS_BRANDS_100k
8ca5da32a2c82197064629b7f35460ef30470b15
2022-01-16T02:23:32.000Z
[ "pytorch", "tensorboard", "roberta", "fill-mask", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
fill-mask
false
haji2438
null
haji2438/bertweet-base-SNS_BRANDS_100k
0
null
transformers
33,748
--- tags: - generated_from_trainer model-index: - name: bertweet-base-SNS_BRANDS_100k results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bertweet-base-SNS_BRANDS_100k This model is a fine-tuned version of [vinai/bertweet-base](https://huggingface.co/vinai/bertweet-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0483 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.0735 | 1.0 | 2928 | 0.0670 | | 0.0574 | 2.0 | 5856 | 0.0529 | | 0.0497 | 3.0 | 8784 | 0.0483 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
haji2438/bertweet-base-SNS_BRANDS_200k
021471fe93f06484d4335e98465ef74e36e33763
2022-01-24T08:55:26.000Z
[ "pytorch", "tensorboard", "roberta", "fill-mask", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
fill-mask
false
haji2438
null
haji2438/bertweet-base-SNS_BRANDS_200k
0
null
transformers
33,749
--- tags: - generated_from_trainer model-index: - name: bertweet-base-SNS_BRANDS_200k results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bertweet-base-SNS_BRANDS_200k This model is a fine-tuned version of [vinai/bertweet-base](https://huggingface.co/vinai/bertweet-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0243 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 0.0428 | 1.0 | 5882 | 0.0336 | | 0.0276 | 2.0 | 11764 | 0.0241 | | 0.0251 | 3.0 | 17646 | 0.0243 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.18.0 - Tokenizers 0.10.3
hama/barney_bot
f2195c206d7634343cddc34300bade0a9ea53c2b
2021-09-05T22:16:26.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
hama
null
hama/barney_bot
0
null
transformers
33,750
--- tags: - conversational --- # BArney DialoGPT Model
hamishs/mBART50-en-az-tr1
57275847da1b7685bc2d8c9789fea239c4cddf70
2021-05-30T13:47:22.000Z
[ "pytorch", "mbart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
hamishs
null
hamishs/mBART50-en-az-tr1
0
null
transformers
33,751
# mBart50 for Zeroshot Azerbaijani-Turkish Translation The mBart50 model is finetuned on English-Azerbaijani-Turkish translation leaving Az<->Tr as zeroshot directions. The method of tied representations is used to enforce alignment between semantically equivalent sentences leading to superior zeroshot performance.
hanmaroo/xlm_roberta_large_korquad_v1
da2939dd41ad7740fd59c7a7d7d029d9652784bf
2021-05-13T13:06:12.000Z
[ "pytorch", "xlm-roberta", "feature-extraction", "transformers" ]
feature-extraction
false
hanmaroo
null
hanmaroo/xlm_roberta_large_korquad_v1
0
null
transformers
33,752
Entry not found
hansgun/model_test2
1cdbb24071cc4afac1ce2e3c477ad91471284601
2021-05-19T18:20:34.000Z
[ "pytorch", "jax", "bert", "feature-extraction", "transformers" ]
feature-extraction
false
hansgun
null
hansgun/model_test2
0
null
transformers
33,753
Entry not found
harish/BERTBaseClone-2-10000
6638287dffe1b9116ab570d1189407ae39322c78
2021-05-19T18:24:51.000Z
[ "pytorch", "jax", "bert", "transformers" ]
null
false
harish
null
harish/BERTBaseClone-2-10000
0
null
transformers
33,754
Entry not found
harish/CxGBERT-2-10000
5c950869d54d284b1bcf48ecab28031ebc7d0660
2021-05-19T18:30:31.000Z
[ "pytorch", "jax", "bert", "transformers" ]
null
false
harish
null
harish/CxGBERT-2-10000
0
null
transformers
33,755
Entry not found
harish/ENAllE5
805b54ced2bda17667367c3a6fae26792c771061
2021-06-19T15:33:21.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
harish
null
harish/ENAllE5
0
null
transformers
33,756
Entry not found
harish/preTrained-xlm-pt-e5-select
d80dae18522cbffa944969156eafbee8da238b8a
2021-05-03T00:12:17.000Z
[ "pytorch", "xlm-roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
harish
null
harish/preTrained-xlm-pt-e5-select
0
null
transformers
33,757
Entry not found
harish/preTrained-xlm-pt-e8-select
7896b4eca42c64e6881be4b3c1c2a4202b6dc206
2021-05-03T12:32:44.000Z
[ "pytorch", "xlm-roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
harish
null
harish/preTrained-xlm-pt-e8-select
0
null
transformers
33,758
Entry not found
harish/xlm-roberta-base-ID
97c295892ac496b4437cfa01c05afc9afad8596f
2021-05-02T23:37:55.000Z
[ "pytorch", "xlm-roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
harish
null
harish/xlm-roberta-base-ID
0
null
transformers
33,759
Entry not found
harislania/urdu-speech-to-text
ed234a2f28fb620f41fa2a55501e89bb7b5ac9e8
2022-02-02T13:52:47.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
harislania
null
harislania/urdu-speech-to-text
0
null
transformers
33,760
Entry not found
hark99/distilbert-base-uncased-finetuned-squad
d9c61a365f071c50419416c49837b4d4c96742d2
2022-02-14T23:05:56.000Z
[ "pytorch", "tensorboard", "distilbert", "question-answering", "dataset:squad", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
question-answering
false
hark99
null
hark99/distilbert-base-uncased-finetuned-squad
0
null
transformers
33,761
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: distilbert-base-uncased-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-squad This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the squad dataset. It achieves the following results on the evaluation set: - Loss: 1.1642 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 1.2251 | 1.0 | 5533 | 1.1707 | | 0.9554 | 2.0 | 11066 | 1.1211 | | 0.7645 | 3.0 | 16599 | 1.1642 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
hdo03/clip-finetune
f0271a758b158639e2cffd813535c7ff65d80c86
2021-10-30T22:31:51.000Z
[ "pytorch", "clip", "feature-extraction", "transformers" ]
feature-extraction
false
hdo03
null
hdo03/clip-finetune
0
null
transformers
33,762
Entry not found
heima/mymodel
5922138ea0abe69d2c64af4578a071c8339cdbed
2021-11-04T07:38:33.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
heima
null
heima/mymodel
0
null
transformers
33,763
Entry not found
heliart/Verdict_Recognizer
1924b3ca64bfed7a12aadc7b563f9e90e3cf1523
2021-08-27T04:33:17.000Z
[ "pytorch", "albert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
heliart
null
heliart/Verdict_Recognizer
0
null
transformers
33,764
Entry not found
hendrixcosta/hendrixcosta
83a18d12a672e17a0fc5a9988ddc5fec0deb307b
2021-05-19T18:59:50.000Z
[ "pytorch", "jax", "bert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
hendrixcosta
null
hendrixcosta/hendrixcosta
0
null
transformers
33,765
Entry not found
henryoce/DialoGPT-small-rick-and-morty
2db96a913352ad6f086b0726e8f44bcf7dadb439
2021-08-25T04:37:09.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
henryoce
null
henryoce/DialoGPT-small-rick-and-morty
0
null
transformers
33,766
--- tags: - conversational --- # Rick and Morty DialoGPT Model
hetpandya/t5-small-quora
3bd598193fe71a61491fefabafe562e768a33b35
2021-07-13T12:37:51.000Z
[ "pytorch", "t5", "text2text-generation", "en", "dataset:quora", "transformers", "autotrain_compatible" ]
text2text-generation
false
hetpandya
null
hetpandya/t5-small-quora
0
null
transformers
33,767
--- language: en datasets: - quora --- # T5-small for paraphrase generation Google's T5-small fine-tuned on [Quora Question Pairs](https://huggingface.co/datasets/quora) dataset for paraphrasing. ## Model in Action 🚀 ```python from transformers import T5ForConditionalGeneration, T5Tokenizer tokenizer = T5Tokenizer.from_pretrained("hetpandya/t5-small-quora") model = T5ForConditionalGeneration.from_pretrained("hetpandya/t5-small-quora") def get_paraphrases(sentence, prefix="paraphrase: ", n_predictions=5, top_k=120, max_length=256,device="cpu"): text = prefix + sentence + " </s>" encoding = tokenizer.encode_plus( text, pad_to_max_length=True, return_tensors="pt" ) input_ids, attention_masks = encoding["input_ids"].to(device), encoding[ "attention_mask" ].to(device) model_output = model.generate( input_ids=input_ids, attention_mask=attention_masks, do_sample=True, max_length=max_length, top_k=top_k, top_p=0.98, early_stopping=True, num_return_sequences=n_predictions, ) outputs = [] for output in model_output: generated_sent = tokenizer.decode( output, skip_special_tokens=True, clean_up_tokenization_spaces=True ) if ( generated_sent.lower() != sentence.lower() and generated_sent not in outputs ): outputs.append(generated_sent) return outputs paraphrases = get_paraphrases("The house will be cleaned by me every Saturday.") for sent in paraphrases: print(sent) ``` ## Output ``` My house is up clean on Saturday morning. Thank you for this email. I'm introducing a new name and name. I'm running my house at home. I'm a taller myself. I'm gonna go with it on Monday. (the house will be up cleaned). Is there anything that will be cleaned every Saturday morning? The house is clean and will be cleaned each Saturday by my wife. I will clean the house for almost a week. I have to clean it all the weekend. I will be able to do it. My house is new. If I clean my house every Monday, I can call it clean. ``` Created by [Het Pandya/@hetpandya](https://github.com/hetpandya) | [LinkedIn](https://www.linkedin.com/in/het-pandya) Made with <span style="color: red;">&hearts;</span> in India
hgharibi/wav2vec2-xls-r-300m-fa-colab
535b08131de858b38335383905a8018a0870cf5e
2022-02-08T05:54:06.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "dataset:common_voice", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
hgharibi
null
hgharibi/wav2vec2-xls-r-300m-fa-colab
0
null
transformers
33,768
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice model-index: - name: wav2vec2-xls-r-300m-fa-colab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-xls-r-300m-fa-colab This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.4404 - Wer: 0.4402 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 7.083 | 0.75 | 300 | 3.0037 | 1.0 | | 1.5795 | 1.5 | 600 | 0.9167 | 0.7638 | | 0.658 | 2.25 | 900 | 0.5737 | 0.5595 | | 0.4213 | 3.0 | 1200 | 0.4404 | 0.4402 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
hgiyt/ar-mbertmodel-monotok
73b23b18a7ebe92eea4da4931089066d805e85b6
2021-05-19T19:26:40.000Z
[ "pytorch", "jax", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
hgiyt
null
hgiyt/ar-mbertmodel-monotok
0
null
transformers
33,769
Entry not found
hgiyt/ko-mbertmodel-monotok
9ba7849f0142b9babe2f3a6d0f441fe0e9ebee9e
2021-05-19T19:47:41.000Z
[ "pytorch", "jax", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
hgiyt
null
hgiyt/ko-mbertmodel-monotok
0
null
transformers
33,770
Entry not found
hgiyt/ko-monomodel-monotok
abe641eece053857f08bcd376f4b3fc33638b85b
2021-05-19T19:49:45.000Z
[ "pytorch", "jax", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
hgiyt
null
hgiyt/ko-monomodel-monotok
0
null
transformers
33,771
Entry not found
himanshu-dutta/pycoder-gpt2
c254eafe4f73bd3cf7eef483ef7076ff9b6a4a18
2021-05-23T11:56:06.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
himanshu-dutta
null
himanshu-dutta/pycoder-gpt2
0
null
transformers
33,772
<br /> <div align="center"> <img src="https://raw.githubusercontent.com/himanshu-dutta/pycoder/master/docs/pycoder-logo-p.png"> <br/> <img alt="Made With Python" src="http://ForTheBadge.com/images/badges/made-with-python.svg" height=28 style="display:inline; height:28px;" /> <img alt="Medium" src="https://img.shields.io/badge/Medium-12100E?style=for-the-badge&logo=medium&logoColor=white" height=28 style="display:inline; height:28px;"/> <a href="https://wandb.ai/himanshu-dutta/pycoder"> <img alt="WandB Dashboard" src="https://raw.githubusercontent.com/wandb/assets/04cfa58cc59fb7807e0423187a18db0c7430bab5/wandb-github-badge-28.svg" height=28 style="display:inline; height:28px;" /> </a> [![PyPI version fury.io](https://badge.fury.io/py/pycoder.svg)](https://pypi.org/project/pycoder/) </div> <div align="justify"> `PyCoder` is a tool to generate python code out of a few given topics and a description. It uses GPT-2 language model as its engine. Pycoder poses writing Python code as a conditional-Causal Language Modelling(c-CLM). It has been trained on millions of lines of Python code written by all of us. At the current stage and state of training, it produces sensible code with few lines of description, but the scope of improvement for the model is limitless. Pycoder has been developed as a Command-Line tool (CLI), an API endpoint, as well as a python package (yet to be deployed to PyPI). This repository acts as a framework for anyone who either wants to try to build Pycoder from scratch or turn Pycoder into maybe a `CPPCoder` or `JSCoder` 😃. A blog post about the development of the project will be released soon. To use `Pycoder` as a CLI utility, clone the repository as normal, and install the package with: ```console foo@bar:❯ pip install pycoder ``` After this the package could be verified and accessed as either a native CLI tool or a python package with: ```console foo@bar:❯ python -m pycoder --version Or directly as: foo@bar:❯ pycoder --version ``` On installation the CLI can be used directly, such as: ```console foo@bar:❯ pycoder -t pytorch -t torch -d "a trainer class to train vision model" -ml 120 ``` The API endpoint is deployed using FastAPI. Once all the requirements have been installed for the project, the API can be accessed with: ```console foo@bar:❯ pycoder --endpoint PORT_NUMBER Or foo@bar:❯ pycoder -e PORT_NUMBER ``` </div> ## Tech Stack <div align="center"> <img alt="Python" src="https://img.shields.io/badge/python-%2314354C.svg?style=for-the-badge&logo=python&logoColor=white" style="display:inline;" /> <img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-%23EE4C2C.svg?style=for-the-badge&logo=PyTorch&logoColor=white" style="display:inline;" /> <img alt="Transformers" src="https://raw.githubusercontent.com/huggingface/transformers/master/docs/source/imgs/transformers_logo_name.png" height=28 width=120 style="display:inline; background-color:white; height:28px; width:120px"/> <img alt="Docker" src="https://img.shields.io/badge/docker-%230db7ed.svg?style=for-the-badge&logo=docker&logoColor=white" style="display:inline;" /> <img src="https://fastapi.tiangolo.com/img/logo-margin/logo-teal.png" alt="FastAPI" height=28 style="display:inline; background-color:black; height:28px;" /> <img src="https://typer.tiangolo.com/img/logo-margin/logo-margin-vector.svg" height=28 style="display:inline; background-color:teal; height:28px;" /> </div> ## Tested Platforms <div align="center"> <img alt="Linux" src="https://img.shields.io/badge/Linux-FCC624?style=for-the-badge&logo=linux&logoColor=black" style="display:inline;" /> <img alt="Windows 10" src="https://img.shields.io/badge/Windows-0078D6?style=for-the-badge&logo=windows&logoColor=white" style="display:inline;" /> </div> ## BibTeX If you want to cite the framework feel free to use this: ```bibtex @article{dutta2021pycoder, title={Pycoder}, author={Dutta, H}, journal={GitHub. Note: https://github.com/himanshu-dutta/pycoder}, year={2021} } ``` <hr /> <div align="center"> <img alt="MIT License" src="https://img.shields.io/github/license/himanshu-dutta/pycoder?style=for-the-badge&logo=appveyor" style="display:inline;" /> <img src="https://img.shields.io/badge/Copyright-Himanshu_Dutta-2ea44f?style=for-the-badge&logo=appveyor" style="display:inline;" /> </div>
hiraki/wav2vec2-base-timit-demo-colab
0077453c26d015e8bfd5bb254c0e0f6c2b3414c0
2021-12-24T10:51:35.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
hiraki
null
hiraki/wav2vec2-base-timit-demo-colab
0
null
transformers
33,773
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base-timit-demo-colab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-timit-demo-colab This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.3780 - Wer: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | No log | 0.08 | 10 | 14.0985 | 1.0 | | No log | 0.16 | 20 | 13.8638 | 1.0004 | | No log | 0.24 | 30 | 13.5135 | 1.0023 | | No log | 0.32 | 40 | 12.8708 | 1.0002 | | No log | 0.4 | 50 | 11.6927 | 1.0 | | No log | 0.48 | 60 | 10.2733 | 1.0 | | No log | 0.56 | 70 | 8.1396 | 1.0 | | No log | 0.64 | 80 | 5.3503 | 1.0 | | No log | 0.72 | 90 | 3.7975 | 1.0 | | No log | 0.8 | 100 | 3.4275 | 1.0 | | No log | 0.88 | 110 | 3.3596 | 1.0 | | No log | 0.96 | 120 | 3.3780 | 1.0 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.13.3 - Tokenizers 0.10.3
hireddivas/DialoGPT-small-scully
fc4f7ad624bc315220473c62bbe84d9002f329fb
2021-10-30T19:15:03.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
hireddivas
null
hireddivas/DialoGPT-small-scully
0
null
transformers
33,774
--- tags: - conversational --- #GPT-2 model trained on Dana Scully's dialog.
hizella/aBERT_test
b57185e7c6cfec78f9d5eaa6c9ec84d3908558a5
2021-11-24T14:41:34.000Z
[ "pytorch", "tensorboard", "albert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
hizella
null
hizella/aBERT_test
0
null
transformers
33,775
Entry not found
hksenpai/DialoGPT-small-rick
f08509488e3036da4364b2ce2728cc1c01329010
2021-08-27T14:12:08.000Z
[ "pytorch", "converstional" ]
null
false
hksenpai
null
hksenpai/DialoGPT-small-rick
0
null
null
33,776
--- tags: - converstional ---
hkunlp/T5_base_finetune_kvret_glmp2
4fb6bb8a8b817d7af86d4cbe153027ed5f1b6a17
2021-12-20T17:11:10.000Z
[ "pytorch", "t5", "transformers" ]
null
false
hkunlp
null
hkunlp/T5_base_finetune_kvret_glmp2
0
null
transformers
33,777
Entry not found
hkunlp/T5_large_prefix_all_tasks_2upsample2
b6a772b134c0b959536928a2800163476f67195c
2022-01-18T07:15:22.000Z
[ "pytorch", "t5", "transformers" ]
null
false
hkunlp
null
hkunlp/T5_large_prefix_all_tasks_2upsample2
0
2
transformers
33,778
This is the ckpt of prefix-tuning model we trained on 21 tasks using a upsampling temp of 2. Note: The prefix module is large due to the fact we keep the re-param weight and didn't compress it to make it more original and extendable for researchers.
hkunlp/from_all_T5_base_prefix_cosql_with_cell_value2
dc823df732e5dd699614ebdb358aceb51d5b6e3f
2021-12-20T08:12:07.000Z
[ "pytorch", "t5", "transformers" ]
null
false
hkunlp
null
hkunlp/from_all_T5_base_prefix_cosql_with_cell_value2
0
null
transformers
33,779
Entry not found
hkunlp/from_all_T5_base_prefix_d2t_2upsample2
b51bba236d66e053a34c7eea7d297f45478ecf2b
2021-12-20T16:59:51.000Z
[ "pytorch", "t5", "transformers" ]
null
false
hkunlp
null
hkunlp/from_all_T5_base_prefix_d2t_2upsample2
0
null
transformers
33,780
Entry not found
hkunlp/from_all_T5_base_prefix_fact_2upsample2
11f0a4f70ea517779b88805e2d0d24227c489867
2021-12-20T16:57:00.000Z
[ "pytorch", "t5", "transformers" ]
null
false
hkunlp
null
hkunlp/from_all_T5_base_prefix_fact_2upsample2
0
null
transformers
33,781
Entry not found
hkunlp/from_all_T5_base_prefix_fetaqa2
1b3f81c7045f018420bbd7b144aab53eb1fab809
2021-12-20T14:49:00.000Z
[ "pytorch", "t5", "transformers" ]
null
false
hkunlp
null
hkunlp/from_all_T5_base_prefix_fetaqa2
0
null
transformers
33,782
Entry not found
hkunlp/from_all_T5_base_prefix_feverous2
fc819dcf733544aa1076e95677622e2da38b8096
2021-12-19T00:01:45.000Z
[ "pytorch", "t5", "transformers" ]
null
false
hkunlp
null
hkunlp/from_all_T5_base_prefix_feverous2
0
null
transformers
33,783
Entry not found
hkunlp/from_all_T5_base_prefix_hybridqa2
040ed4434d758aaf7696616156e90fe581b0571e
2021-12-19T00:09:10.000Z
[ "pytorch", "t5", "transformers" ]
null
false
hkunlp
null
hkunlp/from_all_T5_base_prefix_hybridqa2
0
null
transformers
33,784
Entry not found
hkunlp/from_all_T5_base_prefix_multiwoz2
6dabc72651612863af3b0e3c2f8d0b77b3cc8471
2021-12-20T08:11:11.000Z
[ "pytorch", "t5", "transformers" ]
null
false
hkunlp
null
hkunlp/from_all_T5_base_prefix_multiwoz2
0
null
transformers
33,785
Entry not found
hkunlp/from_all_T5_base_prefix_qa_2upsample2
b3808d42ccb376293abad8bca467bdfe36fcfba9
2021-12-20T16:57:58.000Z
[ "pytorch", "t5", "transformers" ]
null
false
hkunlp
null
hkunlp/from_all_T5_base_prefix_qa_2upsample2
0
null
transformers
33,786
Entry not found
hkunlp/from_all_T5_base_prefix_sparc_with_cell_value2
eb3a545b1596a5a67ce8858d5b307f2ced4fe94f
2021-12-18T23:58:30.000Z
[ "pytorch", "t5", "transformers" ]
null
false
hkunlp
null
hkunlp/from_all_T5_base_prefix_sparc_with_cell_value2
0
null
transformers
33,787
Entry not found
hkunlp/from_all_T5_base_prefix_spider_with_cell_value2
5934fa102da42434f91fd9a76e88d5d57708dacb
2021-12-18T23:50:18.000Z
[ "pytorch", "t5", "transformers" ]
null
false
hkunlp
null
hkunlp/from_all_T5_base_prefix_spider_with_cell_value2
0
null
transformers
33,788
Entry not found
hkunlp/from_all_T5_base_prefix_sqa2
c1d2ca91852bcc380eb119b1da9b4248999386bc
2021-12-19T00:26:48.000Z
[ "pytorch", "t5", "transformers" ]
null
false
hkunlp
null
hkunlp/from_all_T5_base_prefix_sqa2
0
null
transformers
33,789
Entry not found
hkunlp/from_all_T5_base_prefix_tab_fact2
c4798af3133ce4b87ac5eb1fd0ad8ae79ac078b3
2021-12-19T00:03:49.000Z
[ "pytorch", "t5", "transformers" ]
null
false
hkunlp
null
hkunlp/from_all_T5_base_prefix_tab_fact2
0
null
transformers
33,790
Entry not found
hkunlp/from_all_T5_base_prefix_totto2
8f6e300ec2142775de0c004fd7a8833c06b32ebd
2021-12-20T16:57:08.000Z
[ "pytorch", "t5", "transformers" ]
null
false
hkunlp
null
hkunlp/from_all_T5_base_prefix_totto2
0
null
transformers
33,791
Entry not found
hkunlp/from_all_T5_base_prefix_webqsp2
eb273d20dc6ea7c02a9743cf455355c588ed9d8b
2021-12-19T00:04:27.000Z
[ "pytorch", "t5", "transformers" ]
null
false
hkunlp
null
hkunlp/from_all_T5_base_prefix_webqsp2
0
null
transformers
33,792
Entry not found
hkunlp/from_all_T5_base_prefix_wikisql2
e80c6e09898126914b57892c7b03fb4c62eacd6c
2021-12-19T00:58:45.000Z
[ "pytorch", "t5", "transformers" ]
null
false
hkunlp
null
hkunlp/from_all_T5_base_prefix_wikisql2
0
null
transformers
33,793
Entry not found
hkunlp/from_all_T5_base_prefix_wikitq2
f9c7368ddd12fcd91c16fc708970e177ca06c2fb
2021-12-20T08:11:11.000Z
[ "pytorch", "t5", "transformers" ]
null
false
hkunlp
null
hkunlp/from_all_T5_base_prefix_wikitq2
0
1
transformers
33,794
Entry not found
hkunlp/from_all_T5_large_prefix_compwebq2
c43ea314d5db041fa7397bbdb7c30f84c47db35b
2022-01-11T18:17:44.000Z
[ "pytorch", "t5", "transformers" ]
null
false
hkunlp
null
hkunlp/from_all_T5_large_prefix_compwebq2
0
null
transformers
33,795
Entry not found
hkunlp/from_all_T5_large_prefix_dart2
fd25a9d95fbcee2e855e405e161cbd9cb6bc4e04
2022-01-11T16:29:53.000Z
[ "pytorch", "t5", "transformers" ]
null
false
hkunlp
null
hkunlp/from_all_T5_large_prefix_dart2
0
null
transformers
33,796
Entry not found
hkunlp/from_all_T5_large_prefix_fetaqa2
54d5efb357d54d22b949ca3b779159eb7a301a1c
2022-01-11T17:23:27.000Z
[ "pytorch", "t5", "transformers" ]
null
false
hkunlp
null
hkunlp/from_all_T5_large_prefix_fetaqa2
0
null
transformers
33,797
Entry not found
hkunlp/from_all_T5_large_prefix_feverous2
108bdfbe1ac1d2675c87c5221d616f50dc896ea8
2022-01-11T16:30:12.000Z
[ "pytorch", "t5", "transformers" ]
null
false
hkunlp
null
hkunlp/from_all_T5_large_prefix_feverous2
0
null
transformers
33,798
Entry not found
hkunlp/from_all_T5_large_prefix_hybridqa2
ec5da27e36e1db52a96e845f5d894aa8eaf2f8ac
2022-01-11T17:23:31.000Z
[ "pytorch", "t5", "transformers" ]
null
false
hkunlp
null
hkunlp/from_all_T5_large_prefix_hybridqa2
0
null
transformers
33,799
Entry not found