modelId
stringlengths
4
112
sha
stringlengths
40
40
lastModified
stringlengths
24
24
tags
sequence
pipeline_tag
stringclasses
29 values
private
bool
1 class
author
stringlengths
2
38
config
null
id
stringlengths
4
112
downloads
float64
0
36.8M
likes
float64
0
712
library_name
stringclasses
17 values
__index_level_0__
int64
0
38.5k
readme
stringlengths
0
186k
jhonparra18/distilbert-base-multilingual-cased-cv-studio_name-pooler
d9962ec33f58cf75e7da5d305eb758eccabae817
2022-07-26T21:05:44.000Z
[ "pytorch", "distilbert", "text-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
jhonparra18
null
jhonparra18/distilbert-base-multilingual-cased-cv-studio_name-pooler
1
null
transformers
33,500
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: distilbert-base-multilingual-cased-cv-studio_name-pooler results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-multilingual-cased-cv-studio_name-pooler This model is a fine-tuned version of [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.3751 - Accuracy: 0.6846 - F1 Micro: 0.6846 - F1 Macro: 0.4355 - Precision Micro: 0.6846 - Recall Micro: 0.6846 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 12 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 20 - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 Micro | F1 Macro | Precision Micro | Recall Micro | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:--------:|:--------:|:---------------:|:------------:| | 1.881 | 1.19 | 1000 | 1.6365 | 0.4948 | 0.4948 | 0.1438 | 0.4948 | 0.4948 | | 1.2071 | 2.39 | 2000 | 1.2566 | 0.6444 | 0.6444 | 0.3257 | 0.6444 | 0.6444 | | 0.9068 | 3.58 | 3000 | 1.1112 | 0.6945 | 0.6945 | 0.3995 | 0.6945 | 0.6945 | | 0.7168 | 4.77 | 4000 | 1.0952 | 0.7053 | 0.7053 | 0.4334 | 0.7053 | 0.7053 | | 0.5928 | 5.97 | 5000 | 1.1416 | 0.7116 | 0.7116 | 0.4505 | 0.7116 | 0.7116 | | 0.4373 | 7.16 | 6000 | 1.2468 | 0.7064 | 0.7064 | 0.4499 | 0.7064 | 0.7064 | | 0.2941 | 8.35 | 7000 | 1.4017 | 0.6997 | 0.6997 | 0.4473 | 0.6997 | 0.6997 | | 0.2139 | 9.55 | 8000 | 1.5695 | 0.6973 | 0.6973 | 0.4433 | 0.6973 | 0.6973 | | 0.1437 | 10.74 | 9000 | 1.7535 | 0.6953 | 0.6953 | 0.4387 | 0.6953 | 0.6953 | | 0.1273 | 11.93 | 10000 | 1.9145 | 0.6937 | 0.6937 | 0.4405 | 0.6937 | 0.6937 | | 0.1042 | 13.13 | 11000 | 2.0205 | 0.6893 | 0.6893 | 0.4370 | 0.6893 | 0.6893 | | 0.07 | 14.32 | 12000 | 2.1489 | 0.6881 | 0.6881 | 0.4372 | 0.6881 | 0.6881 | | 0.0526 | 15.51 | 13000 | 2.2252 | 0.6874 | 0.6874 | 0.4349 | 0.6874 | 0.6874 | | 0.0427 | 16.71 | 14000 | 2.3141 | 0.6877 | 0.6877 | 0.4360 | 0.6877 | 0.6877 | | 0.0482 | 17.9 | 15000 | 2.3349 | 0.6810 | 0.6810 | 0.4320 | 0.6810 | 0.6810 | | 0.042 | 19.09 | 16000 | 2.3751 | 0.6846 | 0.6846 | 0.4355 | 0.6846 | 0.6846 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.8.1+cu111 - Datasets 1.6.2 - Tokenizers 0.12.1
huggingtweets/rubberpomade
ac0e75bace40fe8fb131f15d3e5fa18b7d6a5b3a
2022-07-26T20:54:43.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/rubberpomade
1
null
transformers
33,501
--- language: en thumbnail: http://www.huggingtweets.com/rubberpomade/1658868837178/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1533674187302346752/ZMkiX-8g_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Rocco (Comms 2/2)</div> <div style="text-align: center; font-size: 14px;">@rubberpomade</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Rocco (Comms 2/2). | Data | Rocco (Comms 2/2) | | --- | --- | | Tweets downloaded | 986 | | Retweets | 59 | | Short tweets | 75 | | Tweets kept | 852 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/f3r1i1wf/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @rubberpomade's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/53sh5gts) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/53sh5gts/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/rubberpomade') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
JoAmps/xlm-roberta-base-finetuned-panx-de
583610ec72d087883e870a68a7bd08e0b1057d0d
2022-07-26T21:36:51.000Z
[ "pytorch", "tensorboard", "xlm-roberta", "token-classification", "dataset:xtreme", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
token-classification
false
JoAmps
null
JoAmps/xlm-roberta-base-finetuned-panx-de
1
null
transformers
33,502
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme args: PAN-X.de metrics: - name: F1 type: f1 value: 0.8616051071591427 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.1378 - F1: 0.8616 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2569 | 1.0 | 525 | 0.1617 | 0.8228 | | 0.1295 | 2.0 | 1050 | 0.1326 | 0.8514 | | 0.0816 | 3.0 | 1575 | 0.1378 | 0.8616 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0 - Datasets 2.4.0 - Tokenizers 0.12.1
Jmolano/bert-finetuned-ner
7a24ceb6843f0c1cc5c3c1abdac922a56ad13ca7
2022-07-28T02:51:07.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "dataset:conll2003", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
token-classification
false
Jmolano
null
Jmolano/bert-finetuned-ner
1
null
transformers
33,503
--- license: apache-2.0 tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: bert-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 config: conll2003 split: train args: conll2003 metrics: - name: Precision type: precision value: 0.9327383903487027 - name: Recall type: recall value: 0.9498485358465163 - name: F1 type: f1 value: 0.9412157091636788 - name: Accuracy type: accuracy value: 0.9860923058809677 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-ner This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0617 - Precision: 0.9327 - Recall: 0.9498 - F1: 0.9412 - Accuracy: 0.9861 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0868 | 1.0 | 1756 | 0.0697 | 0.9204 | 0.9297 | 0.9250 | 0.9807 | | 0.0342 | 2.0 | 3512 | 0.0647 | 0.9273 | 0.9465 | 0.9368 | 0.9853 | | 0.0175 | 3.0 | 5268 | 0.0617 | 0.9327 | 0.9498 | 0.9412 | 0.9861 | ### Framework versions - Transformers 4.21.0 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
ultra-coder54732/MiniLM-prop-16-train-set
dbff5509ce18f343c7dd445f96297b8470ded24a
2022-07-27T00:45:54.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers", "generated_from_trainer", "license:mit", "model-index" ]
text-classification
false
ultra-coder54732
null
ultra-coder54732/MiniLM-prop-16-train-set
1
null
transformers
33,504
--- license: mit tags: - generated_from_trainer model-index: - name: MiniLM-prop-16-train-set results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # MiniLM-prop-16-train-set This model is a fine-tuned version of [microsoft/MiniLM-L12-H384-uncased](https://huggingface.co/microsoft/MiniLM-L12-H384-uncased) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
rosicast/hubert-base-ls960-korean-zeroth-kspon-jamo
522b3350e646dda67581bd5eea24b2d3b80a9827
2022-07-29T00:00:30.000Z
[ "pytorch", "hubert", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
rosicast
null
rosicast/hubert-base-ls960-korean-zeroth-kspon-jamo
1
null
transformers
33,505
Entry not found
rosicast/hubert-large-ll60k-korean-zeroth-kspon-jamo
b451e28eb4f7ef70c373c439cb6fad98f0cc90c2
2022-07-29T04:07:24.000Z
[ "pytorch", "hubert", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
rosicast
null
rosicast/hubert-large-ll60k-korean-zeroth-kspon-jamo
1
null
transformers
33,506
Entry not found
voidful/phoneme-longt5-local
ce23e358c71151dae37c3b0b18d3d72b83f09730
2022-07-27T03:09:41.000Z
[ "pytorch", "longt5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
voidful
null
voidful/phoneme-longt5-local
1
null
transformers
33,507
Entry not found
Atif-Memon/tRAINING-DATASET-All-files-final
42484edf75f97293493e939adddd00871e4d4d03
2022-07-29T19:43:49.000Z
[ "pytorch", "distilbert", "text-classification", "transformers" ]
text-classification
false
Atif-Memon
null
Atif-Memon/tRAINING-DATASET-All-files-final
1
null
transformers
33,508
Entry not found
SummerChiam/pond_image_classification_8
c0954f45620807f9cee4e4f835d3215614b7615a
2022-07-27T05:26:02.000Z
[ "pytorch", "tensorboard", "vit", "image-classification", "transformers", "huggingpics", "model-index" ]
image-classification
false
SummerChiam
null
SummerChiam/pond_image_classification_8
1
null
transformers
33,509
--- tags: - image-classification - pytorch - huggingpics metrics: - accuracy model-index: - name: pond_image_classification_2 results: - task: name: Image Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 0.9948979616165161 --- # pond_image_classification_2 Autogenerated by HuggingPics🤗🖼️ Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb). Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics). ## Example Images #### Algae ![Algae](images/Algae.png) #### Boiling ![Boiling](images/Boiling.png) #### BoilingNight ![BoilingNight](images/BoilingNight.png) #### Normal ![Normal](images/Normal.png) #### NormalCement ![NormalCement](images/NormalCement.png) #### NormalNight ![NormalNight](images/NormalNight.png) #### NormalRain ![NormalRain](images/NormalRain.png)
IDEA-CCNL/Erlangshen-ZEN2-668M-Chinese
d4a2ddc12635a4fc6bd4756dbce2e5872d9c8162
2022-07-27T09:32:12.000Z
[ "pytorch", "zh", "arxiv:2105.01279", "transformers", "ZEN", "chinese", "license:apache-2.0" ]
null
false
IDEA-CCNL
null
IDEA-CCNL/Erlangshen-ZEN2-668M-Chinese
1
null
transformers
33,510
--- language: - zh license: apache-2.0 tags: - ZEN - chinese inference: false --- # Erlangshen-ZEN2-668M-Chinese, one model of [Fengshenbang-LM](https://github.com/IDEA-CCNL/Fengshenbang-LM). Erlangshen-ZEN2-668M-Chinese is an open-source Chinese pre-training model of the ZEN team on the [Fengshenbang-LM](https://github.com/IDEA-CCNL/Fengshenbang-LM). IDEA-CCNL refers to the [source code of ZEN2.0](https://github.com/sinovation/ZEN2) and the [paper of ZEN2.0](https://arxiv.org/abs/2105.01279), and provides the Chinese classification task and extraction task of ZEN2.0 effects and code samples. In the future, we will work with the ZEN team to explore the optimization direction of the pre-training model and continue to improve the effect of the pre-training model on classification and extraction tasks. ## Usage There is no structure of ZEN2 in [Transformers](https://github.com/huggingface/transformers), you can run follow code to get structure of ZEN2 from [Fengshenbang-LM](https://github.com/IDEA-CCNL/Fengshenbang-LM) ```shell git clone https://github.com/IDEA-CCNL/Fengshenbang-LM.git ``` ## load model ```python from fengshen.models.zen2.ngram_utils import ZenNgramDict from fengshen.models.zen2.tokenization import BertTokenizer from fengshen.models.zen2.modeling import ZenModel pretrain_path = 'IDEA-CCNL/Erlangshen-ZEN2-668M-Chinese' tokenizer = BertTokenizer.from_pretrained(pretrain_path) model = ZenForSequenceClassification.from_pretrained(pretrain_path) # model = ZenForTokenClassification.from_pretrained(pretrain_path) ngram_dict = ZenNgramDict.from_pretrained(pretrain_path, tokenizer=tokenizer) ``` You can get classification and extraction examples below. [classification example on fengshen]() [extraction example on fengshen]() ## Evaluation ### Classification | Model(Acc) | afqmc | tnews | iflytek | ocnli | cmnli | | :--------: | :-----: | :----: | :-----: | :----: | :----: | | Erlangshen-ZEN2-345M-Chinese | 0.741 | 0.584 | 0.599 | 0.788 | 0.80 | | Erlangshen-ZEN2-668M-Chinese | 0.75 | 0.60 | 0.589 | 0.81 | 0.82 | ### Extraction | Model(F1) | WEIBO(test) | Resume(test) | MSRA(test) | OntoNote4.0(test) | CMeEE(dev) | CLUENER(dev) | | :--------: | :-----: | :----: | :-----: | :----: | :----: | :----: | | Erlangshen-ZEN2-345M-Chinese | 65.26 | 96.03 | 95.15 | 78.93 | 62.81 | 79.27 | | Erlangshen-ZEN2-668M-Chinese | 70.02 | 96.08 | 95.13 | 80.89 | 63.37 | 79.22 | ## Citation If you find the resource is useful, please cite the following website in your paper. ``` @article{Sinovation2021ZEN2, title="{ZEN 2.0: Continue Training and Adaption for N-gram Enhanced Text Encoders}", author={Yan Song, Tong Zhang, Yonggang Wang, Kai-Fu Lee}, journal={arXiv preprint arXiv:2105.01279}, year={2021}, } ```
PGT/graphnystromformer-artificial-balanced-max500-210000-1
55e746110f19f8a35180f0a114868cc1b8ce4222
2022-07-27T11:15:12.000Z
[ "pytorch", "graph_nystromformer", "text-classification", "transformers" ]
text-classification
false
PGT
null
PGT/graphnystromformer-artificial-balanced-max500-210000-1
1
null
transformers
33,511
Entry not found
Billwzl/20split_dataset_version3
1499b785d996196ede81499f152afd0d6e1600f1
2022-07-28T16:20:35.000Z
[ "pytorch", "distilbert", "fill-mask", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
fill-mask
false
Billwzl
null
Billwzl/20split_dataset_version3
1
null
transformers
33,512
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: 20split_dataset_version3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # 20split_dataset_version3 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.8310 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 16 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 3.1679 | 1.0 | 313 | 2.9768 | | 2.9869 | 2.0 | 626 | 2.9299 | | 2.8528 | 3.0 | 939 | 2.9176 | | 2.7435 | 4.0 | 1252 | 2.9104 | | 2.6458 | 5.0 | 1565 | 2.8863 | | 2.5865 | 6.0 | 1878 | 2.8669 | | 2.5218 | 7.0 | 2191 | 2.8802 | | 2.4647 | 8.0 | 2504 | 2.8639 | | 2.3933 | 9.0 | 2817 | 2.8543 | | 2.3687 | 10.0 | 3130 | 2.8573 | | 2.3221 | 11.0 | 3443 | 2.8398 | | 2.276 | 12.0 | 3756 | 2.8415 | | 2.2379 | 13.0 | 4069 | 2.8471 | | 2.2427 | 14.0 | 4382 | 2.8318 | | 2.1741 | 15.0 | 4695 | 2.8356 | | 2.1652 | 16.0 | 5008 | 2.8310 | ### Framework versions - Transformers 4.21.0 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
domenicrosati/deberta-v3-large-finetuned-synthetic-paraphrase-only
6388a91011a915cb3459a1338c4c41c28857c9ad
2022-07-28T21:38:33.000Z
[ "pytorch", "tensorboard", "deberta-v2", "text-classification", "transformers", "generated_from_trainer", "license:mit", "model-index" ]
text-classification
false
domenicrosati
null
domenicrosati/deberta-v3-large-finetuned-synthetic-paraphrase-only
1
null
transformers
33,513
--- license: mit tags: - text-classification - generated_from_trainer metrics: - f1 - precision - recall model-index: - name: deberta-v3-large-finetuned-synthetic-paraphrase-only results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # deberta-v3-large-finetuned-synthetic-paraphrase-only This model is a fine-tuned version of [microsoft/deberta-v3-large](https://huggingface.co/microsoft/deberta-v3-large) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0120 - F1: 0.9768 - Precision: 0.9961 - Recall: 0.9583 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 6e-06 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 50 - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | Precision | Recall | |:-------------:|:-----:|:-----:|:---------------:|:------:|:---------:|:------:| | 0.0086 | 1.0 | 10205 | 0.0114 | 0.9642 | 0.9846 | 0.9446 | | 0.0059 | 2.0 | 20410 | 0.0143 | 0.9658 | 0.9961 | 0.9373 | | 0.0 | 3.0 | 30615 | 0.0141 | 0.9716 | 0.9961 | 0.9483 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.12.1
ibm/re2g-generation-nq
60ba54b61fa68c49b9de6ea45a3bcf6f657cb547
2022-07-29T16:03:57.000Z
[ "pytorch", "rag", "transformers", "license:apache-2.0" ]
null
false
ibm
null
ibm/re2g-generation-nq
1
null
transformers
33,514
--- license: apache-2.0 ---
schnell/gpt2-xl-japanese
c692bb85d76751b2faeae4e10786ca0b40036cbf
2022-07-27T23:33:29.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
schnell
null
schnell/gpt2-xl-japanese
1
null
transformers
33,515
Entry not found
AykeeSalazar/vc-bantai-vit-withoutAMBI-adunest-trial
daa714f61d757611eb20c0d85867064527bb3518
2022-07-28T01:02:09.000Z
[ "pytorch", "tensorboard", "vit", "image-classification", "dataset:imagefolder", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
image-classification
false
AykeeSalazar
null
AykeeSalazar/vc-bantai-vit-withoutAMBI-adunest-trial
1
null
transformers
33,516
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: vc-bantai-vit-withoutAMBI-adunest-trial results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder args: Violation-Classification---Raw-9 metrics: - name: Accuracy type: accuracy value: 0.7797741273100616 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vc-bantai-vit-withoutAMBI-adunest-trial This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.4289 - Accuracy: 0.7798 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 0.4 | 100 | 1.0782 | 0.4451 | | No log | 0.8 | 200 | 0.5634 | 0.7156 | | No log | 1.2 | 300 | 0.7181 | 0.6684 | | No log | 1.61 | 400 | 0.4289 | 0.7798 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
huggingtweets/penguinnnno
c7ce29629a3d452ff45968ebcd71bacbdd4297dc
2022-07-28T01:35:06.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/penguinnnno
1
null
transformers
33,517
--- language: en thumbnail: http://www.huggingtweets.com/penguinnnno/1658971968390/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1452082178741968901/oERkhKFL_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">penguino</div> <div style="text-align: center; font-size: 14px;">@penguinnnno</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from penguino. | Data | penguino | | --- | --- | | Tweets downloaded | 1865 | | Retweets | 839 | | Short tweets | 377 | | Tweets kept | 649 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2hb9ovan/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @penguinnnno's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/4k058458) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/4k058458/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/penguinnnno') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
razhan/codeqmul-tokenizer
7bcab7cd893f37066f4bd52b8fedb753f67b8dd1
2022-07-28T12:28:17.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
razhan
null
razhan/codeqmul-tokenizer
1
null
transformers
33,518
Entry not found
Lvxue/finetuned-mt5-base
b16fdfee186d119492a59df677c58072e37b113f
2022-07-30T10:02:58.000Z
[ "pytorch", "mt5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
Lvxue
null
Lvxue/finetuned-mt5-base
1
null
transformers
33,519
Entry not found
razhan/codeqmul-large
84fb157a53d01f388790b45fb1941f53dfa04f1b
2022-07-28T02:07:59.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
razhan
null
razhan/codeqmul-large
1
null
transformers
33,520
Entry not found
AnonymousSub/recipes-roberta-base-tokenwise-token-and-step-losses_no_ingr
a8556cae93d3acd499d5bd49df5d980ef387d467
2022-07-28T02:12:20.000Z
[ "pytorch", "roberta", "feature-extraction", "transformers" ]
feature-extraction
false
AnonymousSub
null
AnonymousSub/recipes-roberta-base-tokenwise-token-and-step-losses_no_ingr
1
null
transformers
33,521
Entry not found
Jmolano/bert-finetuned-ner-accelerate
a6bd4c3c93895afb5d5578707d641dcf00ec7e7a
2022-07-28T03:15:12.000Z
[ "pytorch", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
Jmolano
null
Jmolano/bert-finetuned-ner-accelerate
1
null
transformers
33,522
Entry not found
amartyobanerjee/distilbert-base-uncased-finetuned-imdb
96379aa5271a42eed8600d52b692ff85bcb96f32
2022-07-28T09:45:35.000Z
[ "pytorch", "tensorboard", "distilbert", "fill-mask", "dataset:imdb", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
fill-mask
false
amartyobanerjee
null
amartyobanerjee/distilbert-base-uncased-finetuned-imdb
1
null
transformers
33,523
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb model-index: - name: distilbert-base-uncased-finetuned-imdb results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-imdb This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 2.4721 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.7086 | 1.0 | 157 | 2.4898 | | 2.5796 | 2.0 | 314 | 2.4230 | | 2.5269 | 3.0 | 471 | 2.4354 | ### Framework versions - Transformers 4.21.0 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
jaeyeon/korean-aihub-learning-math-16batch
5937917ca56b08d03980e92e0842a62f9ab8f7cb
2022-07-28T08:13:59.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
jaeyeon
null
jaeyeon/korean-aihub-learning-math-16batch
1
null
transformers
33,524
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: korean-aihub-learning-math-16batch results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # korean-aihub-learning-math-16batch This model is a fine-tuned version of [kresnik/wav2vec2-large-xlsr-korean](https://huggingface.co/kresnik/wav2vec2-large-xlsr-korean) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.1497 - Wer: 0.5260 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | No log | 1.0 | 20 | 32.0718 | 1.0 | | No log | 2.0 | 40 | 24.7403 | 1.0808 | | No log | 3.0 | 60 | 5.8389 | 1.0 | | No log | 4.0 | 80 | 4.8543 | 1.0 | | 19.6583 | 5.0 | 100 | 4.4453 | 1.0 | | 19.6583 | 6.0 | 120 | 4.3923 | 1.0 | | 19.6583 | 7.0 | 140 | 4.2902 | 1.0 | | 19.6583 | 8.0 | 160 | 3.9026 | 0.9959 | | 19.6583 | 9.0 | 180 | 3.0616 | 0.9740 | | 3.7358 | 10.0 | 200 | 2.2049 | 0.8534 | | 3.7358 | 11.0 | 220 | 1.6666 | 0.7288 | | 3.7358 | 12.0 | 240 | 1.4123 | 0.6603 | | 3.7358 | 13.0 | 260 | 1.3113 | 0.6164 | | 3.7358 | 14.0 | 280 | 1.2269 | 0.6356 | | 0.8398 | 15.0 | 300 | 1.2349 | 0.5945 | | 0.8398 | 16.0 | 320 | 1.1970 | 0.5658 | | 0.8398 | 17.0 | 340 | 1.2144 | 0.5562 | | 0.8398 | 18.0 | 360 | 1.2551 | 0.5658 | | 0.8398 | 19.0 | 380 | 1.1971 | 0.5493 | | 0.2649 | 20.0 | 400 | 1.1967 | 0.5247 | | 0.2649 | 21.0 | 420 | 1.2796 | 0.5849 | | 0.2649 | 22.0 | 440 | 1.2156 | 0.5521 | | 0.2649 | 23.0 | 460 | 1.2118 | 0.5425 | | 0.2649 | 24.0 | 480 | 1.1637 | 0.5384 | | 0.1801 | 25.0 | 500 | 1.1846 | 0.5562 | | 0.1801 | 26.0 | 520 | 1.1927 | 0.5534 | | 0.1801 | 27.0 | 540 | 1.2015 | 0.5384 | | 0.1801 | 28.0 | 560 | 1.2077 | 0.5397 | | 0.1801 | 29.0 | 580 | 1.1554 | 0.5260 | | 0.1364 | 30.0 | 600 | 1.1497 | 0.5260 | ### Framework versions - Transformers 4.22.0.dev0 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
amartyobanerjee/distilbert-base-uncased-whole-word-word-ids-finetuned-imdb
7db323fe6e616d9b2b97918f05df9de5fb2f7360
2022-07-28T10:01:48.000Z
[ "pytorch", "tensorboard", "distilbert", "fill-mask", "dataset:imdb", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
fill-mask
false
amartyobanerjee
null
amartyobanerjee/distilbert-base-uncased-whole-word-word-ids-finetuned-imdb
1
null
transformers
33,525
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb model-index: - name: distilbert-base-uncased-whole-word-word-ids-finetuned-imdb results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-whole-word-word-ids-finetuned-imdb This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 0.6573 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.7261 | 1.0 | 157 | 0.6532 | | 0.6766 | 2.0 | 314 | 0.6514 | | 0.6677 | 3.0 | 471 | 0.6555 | ### Framework versions - Transformers 4.21.0 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
Atharvgarg/bert-small2bert-small-finetuned-cnn_daily_mail-summarization-finetuned-bbc-news
a40504b3140d80a6eb64a7c7524d55fca156f654
2022-07-28T15:22:19.000Z
[ "pytorch", "tensorboard", "encoder-decoder", "text2text-generation", "transformers", "summarisation", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
text2text-generation
false
Atharvgarg
null
Atharvgarg/bert-small2bert-small-finetuned-cnn_daily_mail-summarization-finetuned-bbc-news
1
null
transformers
33,526
--- license: apache-2.0 tags: - summarisation - generated_from_trainer metrics: - rouge model-index: - name: bert-small2bert-small-finetuned-cnn_daily_mail-summarization-finetuned-bbc-news results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-small2bert-small-finetuned-cnn_daily_mail-summarization-finetuned-bbc-news This model is a fine-tuned version of [mrm8488/bert-small2bert-small-finetuned-cnn_daily_mail-summarization](https://huggingface.co/mrm8488/bert-small2bert-small-finetuned-cnn_daily_mail-summarization) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.6835 - Rouge1: 58.9345 - Rouge2: 47.1037 - Rougel: 40.9839 - Rougelsum: 57.6981 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5.6e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:| | 0.8246 | 1.0 | 223 | 0.7050 | 55.7882 | 42.9793 | 38.4511 | 54.3125 | | 0.6414 | 2.0 | 446 | 0.6834 | 55.149 | 42.664 | 38.3864 | 53.7712 | | 0.5603 | 3.0 | 669 | 0.6815 | 56.9756 | 44.8057 | 39.1377 | 55.5815 | | 0.5079 | 4.0 | 892 | 0.6749 | 57.7397 | 45.6267 | 40.0509 | 56.3886 | | 0.4622 | 5.0 | 1115 | 0.6781 | 58.07 | 45.9102 | 40.2704 | 56.7008 | | 0.4263 | 6.0 | 1338 | 0.6798 | 58.1215 | 45.976 | 40.256 | 56.8203 | | 0.399 | 7.0 | 1561 | 0.6798 | 58.5486 | 46.6901 | 40.8045 | 57.2947 | | 0.3815 | 8.0 | 1784 | 0.6835 | 58.9345 | 47.1037 | 40.9839 | 57.6981 | ### Framework versions - Transformers 4.21.0 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
Vlasta/DNADebertaSentencepiece10k
30a2398fc69654482e85b875ae4d64a14fe1053a
2022-07-28T16:12:43.000Z
[ "pytorch", "deberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
Vlasta
null
Vlasta/DNADebertaSentencepiece10k
1
null
transformers
33,527
Entry not found
qinzhen4/finetuning-sentiment-model-3000-samples
bb1dd45f1c89291cb82f54ecc2659a7c3d2bfcc8
2022-07-29T18:57:03.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:imdb", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
qinzhen4
null
qinzhen4/finetuning-sentiment-model-3000-samples
1
null
transformers
33,528
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb metrics: - accuracy - f1 model-index: - name: finetuning-sentiment-model-3000-samples results: - task: name: Text Classification type: text-classification dataset: name: imdb type: imdb config: plain_text split: train args: plain_text metrics: - name: Accuracy type: accuracy value: 0.8833333333333333 - name: F1 type: f1 value: 0.8844884488448845 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuning-sentiment-model-3000-samples This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 0.3200 - Accuracy: 0.8833 - F1: 0.8845 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.21.0 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
Atharvgarg/bert-small2bert-small-finetuned-cnn_daily_mail-summarization-finetuned-bbc-news-Sumy
dc9cdcf435be23f4f557bd587d79abf8fb8170de
2022-07-28T23:32:03.000Z
[ "pytorch", "tensorboard", "encoder-decoder", "text2text-generation", "transformers", "summarisation", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
text2text-generation
false
Atharvgarg
null
Atharvgarg/bert-small2bert-small-finetuned-cnn_daily_mail-summarization-finetuned-bbc-news-Sumy
1
null
transformers
33,529
--- license: apache-2.0 tags: - summarisation - generated_from_trainer metrics: - rouge model-index: - name: bert-small2bert-small-finetuned-cnn_daily_mail-summarization-finetuned-bbc-news-Sumy results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-small2bert-small-finetuned-cnn_daily_mail-summarization-finetuned-bbc-news-Sumy This model is a fine-tuned version of [mrm8488/bert-small2bert-small-finetuned-cnn_daily_mail-summarization](https://huggingface.co/mrm8488/bert-small2bert-small-finetuned-cnn_daily_mail-summarization) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.5583 - Rouge1: 55.2899 - Rouge2: 43.2426 - Rougel: 38.5056 - Rougelsum: 53.8807 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5.6e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:| | 1.7407 | 1.0 | 223 | 1.5900 | 51.3058 | 38.3952 | 35.7343 | 49.7129 | | 1.4813 | 2.0 | 446 | 1.5500 | 53.8089 | 41.2455 | 37.3864 | 52.3387 | | 1.3517 | 3.0 | 669 | 1.5429 | 53.4914 | 40.907 | 37.1428 | 52.0338 | | 1.2432 | 4.0 | 892 | 1.5472 | 54.1139 | 41.3589 | 37.6392 | 52.711 | | 1.1748 | 5.0 | 1115 | 1.5426 | 55.3482 | 43.312 | 38.0625 | 54.0424 | | 1.1108 | 6.0 | 1338 | 1.5529 | 55.4752 | 43.3561 | 38.5813 | 54.1141 | | 1.0745 | 7.0 | 1561 | 1.5539 | 55.705 | 43.6772 | 38.7629 | 54.3892 | | 1.0428 | 8.0 | 1784 | 1.5583 | 55.2899 | 43.2426 | 38.5056 | 53.8807 | ### Framework versions - Transformers 4.21.0 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
platzi/platzi-vit_model
5a87b9520561f6050f7b96bcb7271983ebfaffbe
2022-07-29T15:42:58.000Z
[ "pytorch", "tensorboard", "vit", "image-classification", "dataset:beans", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
image-classification
false
platzi
null
platzi/platzi-vit_model
1
null
transformers
33,530
--- license: apache-2.0 tags: - generated_from_trainer datasets: - beans metrics: - accuracy model-index: - name: platzi-vit_model results: - task: name: Image Classification type: image-classification dataset: name: beans type: beans config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.9924812030075187 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # platzi-vit_model This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the beans dataset. It achieves the following results on the evaluation set: - Loss: 0.0174 - Accuracy: 0.9925 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.132 | 3.85 | 500 | 0.0174 | 0.9925 | ### Framework versions - Transformers 4.21.0 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
rosicast/hubert-base-ls960-korean-zeroth-char
d1335dacf8d2db1aa2d280a7e49536b5021df15d
2022-07-30T10:03:01.000Z
[ "pytorch", "hubert", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
rosicast
null
rosicast/hubert-base-ls960-korean-zeroth-char
1
null
transformers
33,531
Entry not found
eclat12450/fine-tuned-NSPKcBert-v3-10
25f2d6963c9f48c30dfb8ec807a8d0c7415ce319
2022-07-29T02:59:42.000Z
[ "pytorch", "bert", "next-sentence-prediction", "transformers" ]
null
false
eclat12450
null
eclat12450/fine-tuned-NSPKcBert-v3-10
1
null
transformers
33,532
Entry not found
ArnavL/roberta-10M-imdb-0
e456c11aa194384987f95cd4df8c9fb4e597d17c
2022-07-29T03:42:02.000Z
[ "pytorch", "roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
ArnavL
null
ArnavL/roberta-10M-imdb-0
1
null
transformers
33,533
Entry not found
rosicast/hubert-large-ll60k-korean-zeroth-char
0f325735c802b5a7cc224b134b56af2fbe682755
2022-07-30T09:25:43.000Z
[ "pytorch", "hubert", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
rosicast
null
rosicast/hubert-large-ll60k-korean-zeroth-char
1
null
transformers
33,534
Entry not found
chintagunta85/test_ner_5
1c51c6f319a8c3f0cc0171cfb99e43680f1b5c89
2022-07-29T06:19:35.000Z
[ "pytorch", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
chintagunta85
null
chintagunta85/test_ner_5
1
null
transformers
33,535
Entry not found
Doohae/lassl-koelectra-small
620ab9ad76849e86e4094afa17af0f4486123bc4
2022-07-29T07:28:48.000Z
[ "pytorch", "electra", "pretraining", "transformers" ]
null
false
Doohae
null
Doohae/lassl-koelectra-small
1
null
transformers
33,536
# ELECTRA discriminator small - pretrained with large Korean corpus datasets (30GB) - 13.7M model parameters (followed google/electra-small-discriminator config) - 32,000 vocab size - trained for 1,000,000 steps - build with [lassl](https://github.com/lassl/lassl) framework pretrain-data ┣ korean_corpus.txt ┣ kowiki_latest.txt ┣ modu_dialogue_v1.2.txt ┣ modu_news_v1.1.txt ┣ modu_news_v2.0.txt ┣ modu_np_2021_v1.0.txt ┣ modu_np_v1.1.txt ┣ modu_spoken_v1.2.txt ┗ modu_written_v1.0.txt
SummerChiam/pond_image_classification_4
54a2e9d120f326f67f9a180b347a22fef5bbe980
2022-07-29T07:25:50.000Z
[ "pytorch", "tensorboard", "vit", "image-classification", "transformers", "huggingpics", "model-index" ]
image-classification
false
SummerChiam
null
SummerChiam/pond_image_classification_4
1
null
transformers
33,537
--- tags: - image-classification - pytorch - huggingpics metrics: - accuracy model-index: - name: pond_image_classification_4 results: - task: name: Image Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 0.9783163070678711 --- # pond_image_classification_4 Autogenerated by HuggingPics🤗🖼️ Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb). Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics). ## Example Images #### Algae ![Algae](images/Algae.png) #### Boiling ![Boiling](images/Boiling.png) #### BoilingNight ![BoilingNight](images/BoilingNight.png) #### Normal ![Normal](images/Normal.png) #### NormalCement ![NormalCement](images/NormalCement.png) #### NormalNight ![NormalNight](images/NormalNight.png) #### NormalRain ![NormalRain](images/NormalRain.png)
BramVanroy/bert-base-multilingual-cased-hebban-reviews5
e05688eafadd08b0495dba2184f4643e39386563
2022-07-29T09:54:28.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "nl", "dataset:BramVanroy/hebban-reviews", "transformers", "sentiment-analysis", "dutch", "text", "license:mit", "model-index" ]
text-classification
false
BramVanroy
null
BramVanroy/bert-base-multilingual-cased-hebban-reviews5
1
null
transformers
33,538
--- datasets: - BramVanroy/hebban-reviews language: - nl license: mit metrics: - accuracy - f1 - precision - qwk - recall model-index: - name: bert-base-multilingual-cased-hebban-reviews5 results: - dataset: config: filtered_rating name: BramVanroy/hebban-reviews - filtered_rating - 2.0.0 revision: 2.0.0 split: test type: BramVanroy/hebban-reviews metrics: - name: Test accuracy type: accuracy value: 0.5898668639053254 - name: Test f1 type: f1 value: 0.5899204480029937 - name: Test precision type: precision value: 0.5971431895675179 - name: Test qwk type: qwk value: 0.7050840079198698 - name: Test recall type: recall value: 0.5898668639053254 task: name: sentiment analysis type: text-classification tags: - sentiment-analysis - dutch - text widget: - text: Wauw, wat een leuk boek! Ik heb me er er goed mee vermaakt. - text: Nee, deze vond ik niet goed. De auteur doet zijn best om je als lezer mee te trekken in het verhaal maar mij overtuigt het alleszins niet. - text: Ik vind het niet slecht maar de schrijfstijl trekt me ook niet echt aan. Het wordt een beetje saai vanaf het vijfde hoofdstuk --- # bert-base-multilingual-cased-hebban-reviews5 # Dataset - dataset_name: BramVanroy/hebban-reviews - dataset_config: filtered_rating - dataset_revision: 2.0.0 - labelcolumn: review_rating0 - textcolumn: review_text_without_quotes # Training - optim: adamw_hf - learning_rate: 5e-05 - per_device_train_batch_size: 64 - per_device_eval_batch_size: 64 - gradient_accumulation_steps: 1 - max_steps: 5001 - save_steps: 500 - metric_for_best_model: qwk # Best checkedpoint based on validation - best_metric: 0.697825193570947 - best_model_checkpoint: trained/hebban-reviews5/bert-base-multilingual-cased/checkpoint-4500 # Test results of best checkpoint - accuracy: 0.5898668639053254 - f1: 0.5899204480029937 - precision: 0.5971431895675179 - qwk: 0.7050840079198698 - recall: 0.5898668639053254 ## Confusion matric ![cfm](fig/test_confusion_matrix.png) ## Normalized confusion matrix ![norm cfm](fig/test_confusion_matrix_norm.png) # Environment - cuda_capabilities: 8.0; 8.0 - cuda_device_count: 2 - cuda_devices: NVIDIA A100-SXM4-80GB; NVIDIA A100-SXM4-80GB - finetuner_commit: 8159b4c1d5e66b36f68dd263299927ffb8670ebd - platform: Linux-4.18.0-305.49.1.el8_4.x86_64-x86_64-with-glibc2.28 - python_version: 3.9.5 - toch_version: 1.10.0 - transformers_version: 4.21.0
SummerChiam/pond_image_classification_6
03d323b7d34822aa9ffa2a31aab365184a19fa76
2022-07-29T08:19:54.000Z
[ "pytorch", "tensorboard", "vit", "image-classification", "transformers", "huggingpics", "model-index" ]
image-classification
false
SummerChiam
null
SummerChiam/pond_image_classification_6
1
null
transformers
33,539
--- tags: - image-classification - pytorch - huggingpics metrics: - accuracy model-index: - name: pond_image_classification_6 results: - task: name: Image Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 0.9948979616165161 --- # pond_image_classification_6 Autogenerated by HuggingPics🤗🖼️ Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb). Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics). ## Example Images #### Algae ![Algae](images/Algae.png) #### Boiling ![Boiling](images/Boiling.png) #### BoilingNight ![BoilingNight](images/BoilingNight.png) #### Normal ![Normal](images/Normal.png) #### NormalCement ![NormalCement](images/NormalCement.png) #### NormalNight ![NormalNight](images/NormalNight.png) #### NormalRain ![NormalRain](images/NormalRain.png)
SummerChiam/pond_image_classification_7
5d523877316b46a9d595ff2f3d47cba8872d438d
2022-07-29T08:32:46.000Z
[ "pytorch", "tensorboard", "vit", "image-classification", "transformers", "huggingpics", "model-index" ]
image-classification
false
SummerChiam
null
SummerChiam/pond_image_classification_7
1
null
transformers
33,540
--- tags: - image-classification - pytorch - huggingpics metrics: - accuracy model-index: - name: pond_image_classification_7 results: - task: name: Image Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 0.9936224222183228 --- # pond_image_classification_7 Autogenerated by HuggingPics🤗🖼️ Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb). Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics). ## Example Images #### Algae ![Algae](images/Algae.png) #### Boiling ![Boiling](images/Boiling.png) #### BoilingNight ![BoilingNight](images/BoilingNight.png) #### Normal ![Normal](images/Normal.png) #### NormalCement ![NormalCement](images/NormalCement.png) #### NormalNight ![NormalNight](images/NormalNight.png) #### NormalRain ![NormalRain](images/NormalRain.png)
RRajesh27/finetuning-sentiment-model-3000-samples
268bfcdffd7631904c91d9857576c3266c45c70b
2022-07-29T08:51:28.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:imdb", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
RRajesh27
null
RRajesh27/finetuning-sentiment-model-3000-samples
1
null
transformers
33,541
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb metrics: - accuracy - f1 model-index: - name: finetuning-sentiment-model-3000-samples results: - task: name: Text Classification type: text-classification dataset: name: imdb type: imdb config: plain_text split: train args: plain_text metrics: - name: Accuracy type: accuracy value: 0.8666666666666667 - name: F1 type: f1 value: 0.8666666666666667 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuning-sentiment-model-3000-samples This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 0.3236 - Accuracy: 0.8667 - F1: 0.8667 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.21.0 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
SummerChiam/pond_image_classification_9
c560f05c7d11e898991f13ab999a6bc6d359e98b
2022-07-29T09:13:48.000Z
[ "pytorch", "tensorboard", "vit", "image-classification", "transformers", "huggingpics", "model-index" ]
image-classification
false
SummerChiam
null
SummerChiam/pond_image_classification_9
1
null
transformers
33,542
--- tags: - image-classification - pytorch - huggingpics metrics: - accuracy model-index: - name: pond_image_classification_9 results: - task: name: Image Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 0.9974489808082581 --- # pond_image_classification_9 Autogenerated by HuggingPics🤗🖼️ Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb). Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics). ## Example Images #### Algae ![Algae](images/Algae.png) #### Boiling ![Boiling](images/Boiling.png) #### BoilingNight ![BoilingNight](images/BoilingNight.png) #### Normal ![Normal](images/Normal.png) #### NormalCement ![NormalCement](images/NormalCement.png) #### NormalNight ![NormalNight](images/NormalNight.png) #### NormalRain ![NormalRain](images/NormalRain.png)
olemeyer/zero_shot_issue_classification_bart-base-32-d
af05b44a414e00508fb2a29b30c72746370ed92a
2022-07-29T23:46:30.000Z
[ "pytorch", "tensorboard", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
olemeyer
null
olemeyer/zero_shot_issue_classification_bart-base-32-d
1
null
transformers
33,543
Entry not found
raisin2402/marian-finetuned-kde4-en-to-fr
7403053653cb381758c409ee4f72fb0db3bce1d0
2022-07-29T12:59:05.000Z
[ "pytorch", "tensorboard", "marian", "text2text-generation", "dataset:kde4", "transformers", "translation", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
translation
false
raisin2402
null
raisin2402/marian-finetuned-kde4-en-to-fr
1
null
transformers
33,544
--- license: apache-2.0 tags: - translation - generated_from_trainer datasets: - kde4 metrics: - bleu model-index: - name: marian-finetuned-kde4-en-to-fr results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: kde4 type: kde4 config: en-fr split: train args: en-fr metrics: - name: Bleu type: bleu value: 52.83113187001415 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # marian-finetuned-kde4-en-to-fr This model is a fine-tuned version of [Helsinki-NLP/opus-mt-en-fr](https://huggingface.co/Helsinki-NLP/opus-mt-en-fr) on the kde4 dataset. It achieves the following results on the evaluation set: - Loss: 0.8560 - Bleu: 52.8311 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.21.0 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
Amine007/distilgpt2-finetuned-wikitext2
246e363e2f2ac29ec4096cc1ef3cefea1f180c47
2022-07-29T14:15:42.000Z
[ "pytorch", "tensorboard", "gpt2", "text-generation", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-generation
false
Amine007
null
Amine007/distilgpt2-finetuned-wikitext2
1
null
transformers
33,545
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distilgpt2-finetuned-wikitext2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilgpt2-finetuned-wikitext2 This model is a fine-tuned version of [distilgpt2](https://huggingface.co/distilgpt2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.6421 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 3.7602 | 1.0 | 2334 | 3.6669 | | 3.653 | 2.0 | 4668 | 3.6472 | | 3.6006 | 3.0 | 7002 | 3.6421 | ### Framework versions - Transformers 4.21.0 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
platzi/platzi-bert-base-mrpc-glue-omar-espejel
2dbce0925c2328d5da873d4eb029af397e21a217
2022-07-29T13:50:27.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "dataset:glue", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
platzi
null
platzi/platzi-bert-base-mrpc-glue-omar-espejel
1
null
transformers
33,546
--- license: apache-2.0 tags: - text-classification - generated_from_trainer datasets: - glue metrics: - accuracy - f1 model-index: - name: platzi-bert-base-mrpc-glue-omar-espejel results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue config: mrpc split: train args: mrpc metrics: - name: Accuracy type: accuracy value: 0.8578431372549019 - name: F1 type: f1 value: 0.8941605839416058 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # platzi-bert-base-mrpc-glue-omar-espejel This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the glue and the mrpc datasets. It achieves the following results on the evaluation set: - Loss: 0.4366 - Accuracy: 0.8578 - F1: 0.8942 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.5221 | 1.09 | 500 | 0.4366 | 0.8578 | 0.8942 | | 0.3114 | 2.18 | 1000 | 0.6581 | 0.8725 | 0.9113 | ### Framework versions - Transformers 4.21.0 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
sumba/covid-twitter-bert-v2-no_description-stance
73aab0210a4b18392c29998c978afa54417bc73e
2022-07-29T17:11:45.000Z
[ "pytorch", "bert", "text-classification", "transformers", "generated_from_trainer", "license:mit", "model-index" ]
text-classification
false
sumba
null
sumba/covid-twitter-bert-v2-no_description-stance
1
null
transformers
33,547
--- license: mit tags: - generated_from_trainer metrics: - accuracy model-index: - name: covid-twitter-bert-v2-no_description-stance results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # covid-twitter-bert-v2-no_description-stance This model is a fine-tuned version of [digitalepidemiologylab/covid-twitter-bert-v2](https://huggingface.co/digitalepidemiologylab/covid-twitter-bert-v2) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.5898 - Accuracy: 0.1814 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.8009 | 1.0 | 632 | 0.5898 | 0.1814 | | 0.5663 | 2.0 | 1264 | 0.5613 | 0.0750 | | 0.394 | 3.0 | 1896 | 0.6726 | 0.0347 | | 0.1677 | 4.0 | 2528 | 0.8051 | 0.0269 | | 0.08 | 5.0 | 3160 | 0.8690 | 0.0202 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu102 - Datasets 2.2.1 - Tokenizers 0.12.1
ArthurZ/opt-350m-dummy-sc
d95ac8ae641f4f364688a6bda9754a5996e4f536
2022-07-29T15:53:54.000Z
[ "pytorch", "opt", "text-classification", "transformers" ]
text-classification
false
ArthurZ
null
ArthurZ/opt-350m-dummy-sc
1
null
transformers
33,548
Entry not found
natalierobbins/pos_test_model_1
e3f3b1b2c4c9c1662193295137ce90f2445ab3f2
2022-07-29T19:21:52.000Z
[ "pytorch", "distilbert", "token-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
token-classification
false
natalierobbins
null
natalierobbins/pos_test_model_1
1
null
transformers
33,549
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: pos_test_model_1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # pos_test_model_1 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1521 - Accuracy: 0.9530 - F1: 0.9523 - Precision: 0.9576 - Recall: 0.9530 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | 0.1882 | 1.0 | 1744 | 0.1521 | 0.9530 | 0.9523 | 0.9576 | 0.9530 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.2 - Datasets 2.2.2 - Tokenizers 0.12.1
schnell/bert-small-spm
705a3ae6f0dacbae4f755568a066175dcf357969
2022-07-30T06:10:06.000Z
[ "pytorch", "tensorboard", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
schnell
null
schnell/bert-small-spm
1
null
transformers
33,550
Entry not found
ibm/re2g-reranker-nq
40c10898c7f5af5efff0beebc5633739be68bcd1
2022-07-29T16:08:35.000Z
[ "pytorch", "bert", "text-classification", "transformers", "license:apache-2.0" ]
text-classification
false
ibm
null
ibm/re2g-reranker-nq
1
null
transformers
33,551
--- license: apache-2.0 ---
eduagarcia/r_j_v2_checkpoint_36_48000
21d58740e46dbd3b9f730c9a61d990c76334828e
2022-07-29T16:22:27.000Z
[ "pytorch", "roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
eduagarcia
null
eduagarcia/r_j_v2_checkpoint_36_48000
1
null
transformers
33,552
Entry not found
jungjongho/wav2vec2-large-xlsr-korean-demo-colab_epoch15
d20ec977df62c0701ff0a3b4880f497cd8e562e5
2022-07-29T21:25:56.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
jungjongho
null
jungjongho/wav2vec2-large-xlsr-korean-demo-colab_epoch15
1
null
transformers
33,553
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-large-xlsr-korean-demo-colab_epoch15 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xlsr-korean-demo-colab_epoch15 This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4133 - Wer: 0.3801 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 15 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 16.9017 | 0.8 | 400 | 4.6273 | 1.0 | | 4.4633 | 1.6 | 800 | 4.4419 | 1.0 | | 4.2262 | 2.4 | 1200 | 3.8477 | 0.9994 | | 2.4402 | 3.21 | 1600 | 1.3564 | 0.8111 | | 1.3499 | 4.01 | 2000 | 0.9070 | 0.6664 | | 0.9922 | 4.81 | 2400 | 0.7496 | 0.6131 | | 0.8271 | 5.61 | 2800 | 0.6240 | 0.5408 | | 0.6918 | 6.41 | 3200 | 0.5506 | 0.5026 | | 0.6015 | 7.21 | 3600 | 0.5303 | 0.4935 | | 0.5435 | 8.02 | 4000 | 0.4951 | 0.4696 | | 0.4584 | 8.82 | 4400 | 0.4677 | 0.4432 | | 0.4258 | 9.62 | 4800 | 0.4602 | 0.4307 | | 0.3906 | 10.42 | 5200 | 0.4456 | 0.4195 | | 0.3481 | 11.22 | 5600 | 0.4265 | 0.4062 | | 0.3216 | 12.02 | 6000 | 0.4241 | 0.4046 | | 0.2908 | 12.83 | 6400 | 0.4106 | 0.3941 | | 0.2747 | 13.63 | 6800 | 0.4146 | 0.3855 | | 0.2633 | 14.43 | 7200 | 0.4133 | 0.3801 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.12.0+cu113 - Datasets 1.18.3 - Tokenizers 0.12.1
sumba/covid-twitter-bert-v2-no_description-stance-processed
bf84c59292656e8af987bbe170fa867c087f81db
2022-07-29T17:17:24.000Z
[ "pytorch", "bert", "text-classification", "transformers", "generated_from_trainer", "license:mit", "model-index" ]
text-classification
false
sumba
null
sumba/covid-twitter-bert-v2-no_description-stance-processed
1
null
transformers
33,554
--- license: mit tags: - generated_from_trainer metrics: - accuracy model-index: - name: covid-twitter-bert-v2-no_description-stance-processed results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # covid-twitter-bert-v2-no_description-stance-processed This model is a fine-tuned version of [digitalepidemiologylab/covid-twitter-bert-v2](https://huggingface.co/digitalepidemiologylab/covid-twitter-bert-v2) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.7178 - Accuracy: 0.3158 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.8419 | 1.0 | 632 | 0.7178 | 0.3158 | | 0.6041 | 2.0 | 1264 | 0.5969 | 0.1041 | | 0.4775 | 3.0 | 1896 | 0.5881 | 0.0829 | | 0.2344 | 4.0 | 2528 | 0.8113 | 0.0470 | | 0.15 | 5.0 | 3160 | 0.9235 | 0.0347 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu102 - Datasets 2.2.1 - Tokenizers 0.12.1
Migga/ViT-BERT-Chess-V4
e151dc069281e5bf471d1c46d1cddf28ce65b7b9
2022-07-30T04:26:03.000Z
[ "pytorch", "vision-encoder-decoder", "transformers", "generated_from_trainer", "model-index" ]
null
false
Migga
null
Migga/ViT-BERT-Chess-V4
1
null
transformers
33,555
--- tags: - generated_from_trainer model-index: - name: ViT-BERT-Chess-V4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ViT-BERT-Chess-V4 This model is a fine-tuned version of [](https://huggingface.co/) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 3.3213 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 3.705 | 1.0 | 3895 | 3.5686 | | 3.5139 | 2.0 | 7790 | 3.4288 | | 3.4156 | 3.0 | 11685 | 3.3663 | | 3.3661 | 4.0 | 15580 | 3.3331 | | 3.3352 | 5.0 | 19475 | 3.3213 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu116 - Datasets 2.3.2 - Tokenizers 0.12.1
clefourrier/graphnystromformer-large-cf-artificial-balanced-max500-105000-1
7c749b02b1537e6c3dfbdaab7c461a442bdb7bed
2022-07-29T17:03:39.000Z
[ "pytorch", "graph_nystromformer", "text-classification", "transformers" ]
text-classification
false
clefourrier
null
clefourrier/graphnystromformer-large-cf-artificial-balanced-max500-105000-1
1
null
transformers
33,556
Entry not found
Atharvgarg/bert-small2bert-small-finetuned-cnn_daily_mail-summarization-finetuned-bbc-news-extracted-sumy
96004db5e98c827d9bd0c01226042c548a0b1d43
2022-07-29T17:50:17.000Z
[ "pytorch", "tensorboard", "encoder-decoder", "text2text-generation", "transformers", "summarisation", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
text2text-generation
false
Atharvgarg
null
Atharvgarg/bert-small2bert-small-finetuned-cnn_daily_mail-summarization-finetuned-bbc-news-extracted-sumy
1
null
transformers
33,557
--- license: apache-2.0 tags: - summarisation - generated_from_trainer metrics: - rouge model-index: - name: bert-small2bert-small-finetuned-cnn_daily_mail-summarization-finetuned-bbc-news-extracted-sumy results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-small2bert-small-finetuned-cnn_daily_mail-summarization-finetuned-bbc-news-extracted-sumy This model is a fine-tuned version of [mrm8488/bert-small2bert-small-finetuned-cnn_daily_mail-summarization](https://huggingface.co/mrm8488/bert-small2bert-small-finetuned-cnn_daily_mail-summarization) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3228 - Rouge1: 56.5706 - Rouge2: 43.0906 - Rougel: 47.9957 - Rougelsum: 53.417 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5.6e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:| | 0.3226 | 1.0 | 223 | 0.3225 | 55.7639 | 41.9414 | 46.9804 | 52.5639 | | 0.262 | 2.0 | 446 | 0.3198 | 55.7522 | 42.0929 | 46.8388 | 52.6659 | | 0.2153 | 3.0 | 669 | 0.3195 | 55.7091 | 42.2111 | 47.2641 | 52.5765 | | 0.1805 | 4.0 | 892 | 0.3164 | 55.8115 | 42.5536 | 47.3529 | 52.7672 | | 0.1527 | 5.0 | 1115 | 0.3203 | 56.8658 | 43.4238 | 48.2268 | 53.8136 | | 0.14 | 6.0 | 1338 | 0.3234 | 55.7138 | 41.8562 | 46.8362 | 52.5201 | | 0.1252 | 7.0 | 1561 | 0.3228 | 56.5706 | 43.0906 | 47.9957 | 53.417 | | 0.1229 | 8.0 | 1784 | 0.3228 | 56.5706 | 43.0906 | 47.9957 | 53.417 | ### Framework versions - Transformers 4.21.0 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
ibm/re2g-generation-trex
bf2ac30ac727cd02ad9a4acc12826753731daf45
2022-07-29T18:06:05.000Z
[ "pytorch", "rag", "transformers", "license:apache-2.0" ]
null
false
ibm
null
ibm/re2g-generation-trex
1
null
transformers
33,558
--- license: apache-2.0 ---
ibm/re2g-reranker-trex
b8ccc5d5be594d9569fd0eb57ce3a4e2bfe6acd8
2022-07-29T18:10:28.000Z
[ "pytorch", "bert", "text-classification", "transformers", "license:apache-2.0" ]
text-classification
false
ibm
null
ibm/re2g-reranker-trex
1
null
transformers
33,559
--- license: apache-2.0 ---
sumba/covid-twitter-bert-v2-with_description-stance
57b5a319b733d0913f13bdaa83430110216b38e8
2022-07-29T18:50:26.000Z
[ "pytorch", "bert", "text-classification", "transformers", "generated_from_trainer", "license:mit", "model-index" ]
text-classification
false
sumba
null
sumba/covid-twitter-bert-v2-with_description-stance
1
null
transformers
33,560
--- license: mit tags: - generated_from_trainer metrics: - accuracy model-index: - name: covid-twitter-bert-v2-with_description-stance results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # covid-twitter-bert-v2-with_description-stance This model is a fine-tuned version of [digitalepidemiologylab/covid-twitter-bert-v2](https://huggingface.co/digitalepidemiologylab/covid-twitter-bert-v2) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.6433 - Accuracy: 0.2486 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.9001 | 1.0 | 632 | 0.6433 | 0.2486 | | 0.6247 | 2.0 | 1264 | 0.5531 | 0.0829 | | 0.4811 | 3.0 | 1896 | 0.6068 | 0.0694 | | 0.2546 | 4.0 | 2528 | 0.7426 | 0.0414 | | 0.1365 | 5.0 | 3160 | 0.8197 | 0.0392 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0 - Datasets 2.4.0 - Tokenizers 0.12.1
ibm/re2g-ctx-encoder-triviaqa
52c28d387d659c8d4941a7676f289444e9cab225
2022-07-29T19:03:55.000Z
[ "pytorch", "dpr", "transformers", "license:apache-2.0" ]
null
false
ibm
null
ibm/re2g-ctx-encoder-triviaqa
1
null
transformers
33,561
--- license: apache-2.0 ---
clefourrier/graphnystromformer-small-cf-artificial-unbalanced-nodes-468000-0
e9b615ff564054f34bc4e1dcc2890f6cd61044f4
2022-07-29T19:48:22.000Z
[ "pytorch", "graph_nystromformer", "text-classification", "transformers" ]
text-classification
false
clefourrier
null
clefourrier/graphnystromformer-small-cf-artificial-unbalanced-nodes-468000-0
1
null
transformers
33,562
Entry not found
clefourrier/nystromformer-large-cf-artificial-balanced-max500-105000-1
37d033841122df2de1b991df4513be9366818524
2022-07-29T21:13:05.000Z
[ "pytorch", "graph_nystromformer", "text-classification", "transformers" ]
text-classification
false
clefourrier
null
clefourrier/nystromformer-large-cf-artificial-balanced-max500-105000-1
1
null
transformers
33,563
Entry not found
clefourrier/graphnystromformer-cf-artificial-balanced-max500-490000-1
09197236044430e871c3540a9a4efa3f0329fe87
2022-07-29T23:07:03.000Z
[ "pytorch", "graph_nystromformer", "text-classification", "transformers" ]
text-classification
false
clefourrier
null
clefourrier/graphnystromformer-cf-artificial-balanced-max500-490000-1
1
null
transformers
33,564
Entry not found
muhtasham/tiny-bert-finetuned-ner-accelerate-gpu
33ebd025a38d5440841ad0cce2f05b65184798d4
2022-07-30T00:51:09.000Z
[ "pytorch", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
muhtasham
null
muhtasham/tiny-bert-finetuned-ner-accelerate-gpu
1
null
transformers
33,565
Entry not found
sophiestein/experiment-finetuned-ner
7f97bca8f8e552967a728ffe20095c1cc32cbb2d
2022-07-30T04:37:44.000Z
[ "pytorch", "tensorboard", "distilbert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
sophiestein
null
sophiestein/experiment-finetuned-ner
1
null
transformers
33,566
Entry not found
fzwd6666/dummy-model
8c358aa8597d6a6147efdd92ba8142ad2b954026
2022-07-30T00:52:28.000Z
[ "pytorch", "camembert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
fzwd6666
null
fzwd6666/dummy-model
1
null
transformers
33,567
Entry not found
eclat12450/fine-tuned-NSPKcBert-v4-10
67949b19faf98ea938c4c6b00c24ab92c3ecd633
2022-07-30T03:14:48.000Z
[ "pytorch", "bert", "next-sentence-prediction", "transformers" ]
null
false
eclat12450
null
eclat12450/fine-tuned-NSPKcBert-v4-10
1
null
transformers
33,568
Entry not found
clefourrier/nystromformer-small-cf-artificial-unbalanced-nodes-468000-0
ef9331a2f17fe8a0e184f116ccc2af7282e2ac0b
2022-07-30T03:33:44.000Z
[ "pytorch", "graph_nystromformer", "text-classification", "transformers" ]
text-classification
false
clefourrier
null
clefourrier/nystromformer-small-cf-artificial-unbalanced-nodes-468000-0
1
null
transformers
33,569
Entry not found
CurtisBowser/DialoGPT-medium-sora-two
f0997b102f566d3e0cd66084092a3c6a3208994b
2021-11-04T03:31:02.000Z
[ "pytorch", "conversational" ]
conversational
false
CurtisBowser
null
CurtisBowser/DialoGPT-medium-sora-two
0
null
null
33,570
--- tags: - conversational --- # Sora DialoGPT Model
Darren/darren
a0a7f41ba55077fb255e60484e663f7e765f4464
2022-01-14T13:14:04.000Z
[ "pytorch" ]
null
false
Darren
null
Darren/darren
0
null
null
33,571
Entry not found
JihyukKim/cbert-aleqd-s100-b36-g2-ib-hn
96c749b1072f9089e440f7f0404d54fabfa2b438
2022-01-05T21:03:04.000Z
[ "pytorch" ]
null
false
JihyukKim
null
JihyukKim/cbert-aleqd-s100-b36-g2-ib-hn
0
null
null
33,572
Entry not found
JihyukKim/cbert-b36-g2-ib-hn
457718f963e08033eef4462d2be226ac6bb6839b
2022-01-05T20:56:08.000Z
[ "pytorch" ]
null
false
JihyukKim
null
JihyukKim/cbert-b36-g2-ib-hn
0
null
null
33,573
Entry not found
LysandreJik/metnet-test
139cacb71093961d28fa81a53560aded435b92a4
2021-09-07T19:34:52.000Z
[ "pytorch" ]
null
false
LysandreJik
null
LysandreJik/metnet-test
0
null
null
33,574
Entry not found
NovelAI/genji-python-6B-split
890390be84051bcdb60036e0af158a47dad96f8a
2021-08-06T18:57:56.000Z
[ "en", "dataset:the Pile", "arxiv:2104.09864", "pytorch", "causal-lm", "license:apache-2.0" ]
null
false
NovelAI
null
NovelAI/genji-python-6B-split
0
null
null
33,575
--- language: - en tags: - pytorch - causal-lm license: apache-2.0 datasets: - the Pile --- # Genji-python 6B For example usage or to easily use the model you can check our colab notebook: [Notebook](https://colab.research.google.com/drive/1PnWpx02IEUkY8jhLKd_NewUGEXahAska?usp=sharing) ## Model Description Genji is a transformer model finetuned on EleutherAI's GPT-J 6B model. This particular model is trained on python only code approaching 4GB in size. Split model has the checkpoints splitted, which makes it use less system RAM while loading and makes it faster to load. This model needs more effort to set up as you need to install git-lfs and pull the repo. | Hyperparameter | Value | |-------------------|--------| | n_parameters | 6,053,381,344 | | n_layers | 28* | | d_model | 4,096 | | d_ff | 16,384 | | n_heads | 16 | | d_head | 256 | | n_ctx | 2,048 | | n_vocab | 50,400 (same tokenizer as GPT-2/3) | | position encoding | [Rotary position encodings (RoPE)](https://arxiv.org/abs/2104.09864) | | RoPE dimensions | [64](https://github.com/kingoflolz/mesh-transformer-jax/blob/f2aa66e0925de6593dcbb70e72399b97b4130482/mesh_transformer/layers.py#L223) | `*` each layer consists of one feedforward block and one self attention block The model consists of 28 layers with a model dimension of 4096, and a feedforward dimension of 16384. The model dimension is split into 16 heads, each with a dimension of 256. Rotary position encodings (RoPE) was applied to 64 dimensions of each head. The model is trained with a tokenization vocabulary of 50257, using the same set of BPEs as GPT-2/GPT-3. ## Training data GPT-J 6B was pretrained on the [Pile](pile.eleuther.ai), a large scale curated dataset created by EleutherAI for the purpose of training this model. After the pre-training, it's finetuned on the python code that was taken from the Pile. ## Training procedure Genji-python-6B is trained for 20k steps on around 655 million tokens with learning rate of 2e-06 ## Intended Use This model is trained for assistence on writing python code and having fun trying weird stuff with it. ### How to use This model is only usable with our fork because GPT-J is not merged to the main transformers repo yet. When it's merged, we will make this model easily loadable. For now, you need to use this fork: [Fork](https://github.com/finetuneanon/transformers) to install with pip: ```bash pip install git+https://github.com/finetuneanon/transformers@gpt-neo-localattention3-rp-b ``` **git-lfs** also needs to be installed, on ubuntu: ```bash apt install git-lfs ``` after it's installed, initialize git-lfs: ```bash git lfs install ``` then clone this repo: ```bash git clone https://huggingface.co/NovelAI/genji-python-6B-split ``` Now we can load the model. We recommend the usage of the model as FP16. That way, it fits in 16GB VRAM cards. How to use: ```python from transformers import ( AutoTokenizer, AutoModelForCausalLM, GPTNeoForCausalLM, ) model = AutoModelForCausalLM.from_pretrained("genji-python-6B-split/model").half().eval().cuda() tokenizer = AutoTokenizer.from_pretrained("EleutherAI/gpt-neo-2.7B") text = '''def print_customer_name''' tokens = tokenizer(text, return_tensors="pt").input_ids generated_tokens = model.generate(tokens.long().cuda(), use_cache=True, do_sample=True, top_k=50, temperature=0.3, top_p=0.9, repetition_penalty=1.125, min_length=1, max_length=len(tokens[0]) + 400, pad_token_id=tokenizer.eos_token_id) last_tokens = generated_tokens[0][len(tokens[0]):] generated_text = tokenizer.decode(last_tokens) print("Generation:\n" + generated_text) ``` When ran, this code generates: ```python Prompt: def print_customer_name Generation: (self, customer): """Print the name of a customer.""" if not self.is_valid(): return print("Customer: {}".format(customer)) ``` For example usage, you can see our colab notebook as well: [Notebook](https://colab.research.google.com/drive/1PnWpx02IEUkY8jhLKd_NewUGEXahAska?usp=sharing) ## Eval results TBD ## Acknowledgements This project was possible because of the compute provided by the [TPU Research Cloud](https://sites.research.google/trc/) and [EleutherAI](https://eleuther.ai/) for pretraining of the GPT-J 6B. Thanks to everyone who contributed to this project: - [Aero](https://github.com/AeroScripts) - [Finetune](https://github.com/finetuneanon) - [Kurumuz](https://github.com/kurumuz)
SauravMaheshkar/rembert-maxseq-384-docstride-128-chaii
dc33fcdc3beef40c79454e675303451a8af49572
2021-10-23T04:03:28.000Z
[ "multilingual", "dataset:Commonlit-Readibility", "kaggle", "rembert", "pytorch", "question-answering", "license:cc0-1.0" ]
question-answering
false
SauravMaheshkar
null
SauravMaheshkar/rembert-maxseq-384-docstride-128-chaii
0
null
null
33,576
--- thumbnail: https://github.com/SauravMaheshkar/chaii-Hindi-Tamil-QA/blob/main/assets/Coffee%20Banner.png?raw=true tags: - kaggle - rembert - pytorch - question-answering language: multilingual license: cc0-1.0 inference: false datasets: - Commonlit-Readibility --- <div align = "center"> <img src = "https://github.com/SauravMaheshkar/chaii-Hindi-Tamil-QA/blob/main/assets/Coffee%20Banner.png?raw=true"> </div> This dataset contains the [**google/rembert**](https://huggingface.co/transformers/model_doc/rembert.html) model weights according to my team's experimentation strategy during the [**chaii - Hindi and Tamil Question Answering**](https://www.kaggle.com/c/chaii-hindi-and-tamil-question-answering) competition. They are listed below with their corresponding public LB score:- | Huggingface Hub Link | Public LB Score | | :---: | :---: | | [**SauravMaheshkar/rembert-maxseq-400-docstride-128-chaii**](https://huggingface.co/SauravMaheshkar/rembert-maxseq-400-docstride-128-chaii) | 0.724 | | [**SauravMaheshkar/rembert-maxseq-384-docstride-135-chaii**](https://huggingface.co/SauravMaheshkar/rembert-maxseq-384-docstride-135-chaii) | 0.723 | | [**SauravMaheshkar/rembert-maxseq-400-docstride-135-chaii**](https://huggingface.co/SauravMaheshkar/rembert-maxseq-400-docstride-135-chaii) | 0.737 | | [**SauravMaheshkar/rembert-maxseq-384-docstride-128-chaii**](https://huggingface.co/SauravMaheshkar/rembert-maxseq-384-docstride-128-chaii) | 0.725 |
SauravMaheshkar/rembert-maxseq-384-docstride-135-chaii
347358604cb5ffe24adc7fb1cebaa6ad865b57aa
2021-10-23T04:03:12.000Z
[ "multilingual", "dataset:Commonlit-Readibility", "kaggle", "rembert", "pytorch", "question-answering", "license:cc0-1.0" ]
question-answering
false
SauravMaheshkar
null
SauravMaheshkar/rembert-maxseq-384-docstride-135-chaii
0
null
null
33,577
--- thumbnail: https://github.com/SauravMaheshkar/chaii-Hindi-Tamil-QA/blob/main/assets/Coffee%20Banner.png?raw=true tags: - kaggle - rembert - pytorch - question-answering language: multilingual license: cc0-1.0 inference: false datasets: - Commonlit-Readibility --- <div align = "center"> <img src = "https://github.com/SauravMaheshkar/chaii-Hindi-Tamil-QA/blob/main/assets/Coffee%20Banner.png?raw=true"> </div> This dataset contains the [**google/rembert**](https://huggingface.co/transformers/model_doc/rembert.html) model weights according to my team's experimentation strategy during the [**chaii - Hindi and Tamil Question Answering**](https://www.kaggle.com/c/chaii-hindi-and-tamil-question-answering) competition. They are listed below with their corresponding public LB score:- | Huggingface Hub Link | Public LB Score | | :---: | :---: | | [**SauravMaheshkar/rembert-maxseq-400-docstride-128-chaii**](https://huggingface.co/SauravMaheshkar/rembert-maxseq-400-docstride-128-chaii) | 0.724 | | [**SauravMaheshkar/rembert-maxseq-384-docstride-135-chaii**](https://huggingface.co/SauravMaheshkar/rembert-maxseq-384-docstride-135-chaii) | 0.723 | | [**SauravMaheshkar/rembert-maxseq-400-docstride-135-chaii**](https://huggingface.co/SauravMaheshkar/rembert-maxseq-400-docstride-135-chaii) | 0.737 | | [**SauravMaheshkar/rembert-maxseq-384-docstride-128-chaii**](https://huggingface.co/SauravMaheshkar/rembert-maxseq-384-docstride-128-chaii) | 0.725 |
SauravMaheshkar/rembert-maxseq-400-docstride-128-chaii
e9355ecff169434b7072299a28e86f80ed868a00
2021-10-23T04:03:04.000Z
[ "multilingual", "dataset:Commonlit-Readibility", "kaggle", "rembert", "pytorch", "question-answering", "license:cc0-1.0" ]
question-answering
false
SauravMaheshkar
null
SauravMaheshkar/rembert-maxseq-400-docstride-128-chaii
0
null
null
33,578
--- thumbnail: https://github.com/SauravMaheshkar/chaii-Hindi-Tamil-QA/blob/main/assets/Coffee%20Banner.png?raw=true tags: - kaggle - rembert - pytorch - question-answering language: multilingual license: cc0-1.0 inference: false datasets: - Commonlit-Readibility --- <div align = "center"> <img src = "https://github.com/SauravMaheshkar/chaii-Hindi-Tamil-QA/blob/main/assets/Coffee%20Banner.png?raw=true"> </div> This dataset contains the [**google/rembert**](https://huggingface.co/transformers/model_doc/rembert.html) model weights according to my team's experimentation strategy during the [**chaii - Hindi and Tamil Question Answering**](https://www.kaggle.com/c/chaii-hindi-and-tamil-question-answering) competition. They are listed below with their corresponding public LB score:- | Huggingface Hub Link | Public LB Score | | :---: | :---: | | [**SauravMaheshkar/rembert-maxseq-400-docstride-128-chaii**](https://huggingface.co/SauravMaheshkar/rembert-maxseq-400-docstride-128-chaii) | 0.724 | | [**SauravMaheshkar/rembert-maxseq-384-docstride-135-chaii**](https://huggingface.co/SauravMaheshkar/rembert-maxseq-384-docstride-135-chaii) | 0.723 | | [**SauravMaheshkar/rembert-maxseq-400-docstride-135-chaii**](https://huggingface.co/SauravMaheshkar/rembert-maxseq-400-docstride-135-chaii) | 0.737 | | [**SauravMaheshkar/rembert-maxseq-384-docstride-128-chaii**](https://huggingface.co/SauravMaheshkar/rembert-maxseq-384-docstride-128-chaii) | 0.725 |
SauravMaheshkar/rembert-maxseq-400-docstride-135-chaii
7f7402b700b965285ba86d4b5f3d72bfaf3600a0
2021-10-23T04:02:43.000Z
[ "multilingual", "dataset:Commonlit-Readibility", "kaggle", "rembert", "pytorch", "question-answering", "license:cc0-1.0" ]
question-answering
false
SauravMaheshkar
null
SauravMaheshkar/rembert-maxseq-400-docstride-135-chaii
0
null
null
33,579
--- thumbnail: https://github.com/SauravMaheshkar/chaii-Hindi-Tamil-QA/blob/main/assets/Coffee%20Banner.png?raw=true tags: - kaggle - rembert - pytorch - question-answering language: multilingual license: cc0-1.0 inference: false datasets: - Commonlit-Readibility --- <div align = "center"> <img src = "https://github.com/SauravMaheshkar/chaii-Hindi-Tamil-QA/blob/main/assets/Coffee%20Banner.png?raw=true"> </div> This dataset contains the [**google/rembert**](https://huggingface.co/transformers/model_doc/rembert.html) model weights according to my team's experimentation strategy during the [**chaii - Hindi and Tamil Question Answering**](https://www.kaggle.com/c/chaii-hindi-and-tamil-question-answering) competition. They are listed below with their corresponding public LB score:- | Huggingface Hub Link | Public LB Score | | :---: | :---: | | [**SauravMaheshkar/rembert-maxseq-400-docstride-128-chaii**](https://huggingface.co/SauravMaheshkar/rembert-maxseq-400-docstride-128-chaii) | 0.724 | | [**SauravMaheshkar/rembert-maxseq-384-docstride-135-chaii**](https://huggingface.co/SauravMaheshkar/rembert-maxseq-384-docstride-135-chaii) | 0.723 | | [**SauravMaheshkar/rembert-maxseq-400-docstride-135-chaii**](https://huggingface.co/SauravMaheshkar/rembert-maxseq-400-docstride-135-chaii) | 0.737 | | [**SauravMaheshkar/rembert-maxseq-384-docstride-128-chaii**](https://huggingface.co/SauravMaheshkar/rembert-maxseq-384-docstride-128-chaii) | 0.725 |
Souvikcmsa/LogFiBER
90932316952537cc4357a45de92e0a0c0416b3cc
2021-12-17T10:05:05.000Z
[ "pytorch" ]
null
false
Souvikcmsa
null
Souvikcmsa/LogFiBER
0
null
null
33,580
Log FiBER This model is able to sentence embedding.
TaahaKazi/joke-generator
781fa53d7ebe5456fe442f95a9f7edc8c010dd41
2021-04-12T09:19:07.000Z
[ "pytorch" ]
null
false
TaahaKazi
null
TaahaKazi/joke-generator
0
null
null
33,581
Entry not found
alanakbik/test-serialization
6f8587f7475d01683dd0fd03d386916c3b3e99b1
2021-03-15T21:26:58.000Z
[ "pytorch" ]
null
false
alanakbik
null
alanakbik/test-serialization
0
null
null
33,582
Entry not found
lmqg/bart-base-squad-default
1cc9ce592c2b82e6cda3c17235e54d0bfef8a7af
2022-05-31T23:55:18.000Z
[ "pytorch", "bart", "text2text-generation", "en", "dataset:squad", "transformers", "question generation", "question answer generation", "license:mit", "autotrain_compatible" ]
text2text-generation
false
lmqg
null
lmqg/bart-base-squad-default
0
null
transformers
33,583
--- language: - en tags: - question generation - question answer generation license: mit datasets: - squad metrics: - bleu - meteor - rouge widget: - text: "<hl> Beyonce <hl> further expanded her acting career, starring as blues singer Etta James in the 2008 musical biopic, Cadillac Records." example_title: "Example 1" - text: "Beyonce further expanded her acting career, starring as blues singer <hl> Etta James <hl> in the 2008 musical biopic, Cadillac Records." example_title: "Example 2" - text: "Beyonce further expanded her acting career, starring as blues singer Etta James in the 2008 musical biopic, <hl> Cadillac Records <hl> ." example_title: "Example 3" --- # T5 finetuned on Question Generation T5 model for question generation. Please visit [our repository](https://github.com/asahi417/t5-question-generation) for more detail.
lmqg/bart-base-squad-no-answer
f3a496de87e1cb94d6f79c61bfafb49d8e6f5b9b
2022-06-01T00:17:53.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
lmqg
null
lmqg/bart-base-squad-no-answer
0
null
transformers
33,584
Entry not found
lmqg/bart-base-squad-no-paragraph
dca517dc5d6a9a2ba8fd127a9fe0546f2d0a29a9
2022-06-01T00:21:02.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
lmqg
null
lmqg/bart-base-squad-no-paragraph
0
null
transformers
33,585
Entry not found
lmqg/bart-large-squad-no-answer
45c9b1577c1d1dfd1f039be78759591d1d55e947
2022-06-01T00:21:20.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
lmqg
null
lmqg/bart-large-squad-no-answer
0
null
transformers
33,586
Entry not found
lmqg/bart-large-squad-no-paragraph
6fa3379f620c683fde6cfd0f28a40e06754e75cb
2022-06-01T00:21:29.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
lmqg
null
lmqg/bart-large-squad-no-paragraph
0
null
transformers
33,587
Entry not found
lmqg/t5-base-squad-no-paragraph
e0152584479af5a3def2f999346b3af0786ddcf7
2022-06-01T00:24:27.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
lmqg
null
lmqg/t5-base-squad-no-paragraph
0
null
transformers
33,588
Entry not found
lmqg/t5-large-squad-no-answer
83ef7f8a79aaf1d2f81012c770ac7fc27a8a648b
2022-06-01T00:24:45.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
lmqg
null
lmqg/t5-large-squad-no-answer
0
null
transformers
33,589
Entry not found
lmqg/t5-large-squad-no-paragraph
23ee7d53d11ff76d0bf11f58e877e76ccf03de49
2022-06-01T00:24:55.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
lmqg
null
lmqg/t5-large-squad-no-paragraph
0
null
transformers
33,590
Entry not found
lmqg/t5-small-squad-default
dab42386cb12bff432443607187f9fc90627d6cd
2022-06-01T00:25:11.000Z
[ "pytorch", "t5", "text2text-generation", "en", "dataset:squad", "transformers", "question generation", "question answer generation", "license:mit", "autotrain_compatible" ]
text2text-generation
false
lmqg
null
lmqg/t5-small-squad-default
0
null
transformers
33,591
--- language: - en tags: - question generation - question answer generation license: mit datasets: - squad metrics: - bleu - meteor - rouge widget: - text: "generate question: <hl> Beyonce <hl> further expanded her acting career, starring as blues singer Etta James in the 2008 musical biopic, Cadillac Records." example_title: "Example 1" - text: "generate question: Beyonce further expanded her acting career, starring as blues singer <hl> Etta James <hl> in the 2008 musical biopic, Cadillac Records." example_title: "Example 2" - text: "generate question: Beyonce further expanded her acting career, starring as blues singer Etta James in the 2008 musical biopic, <hl> Cadillac Records <hl> ." example_title: "Example 3" --- # T5 finetuned on Question Generation T5 model for question generation. Please visit [our repository](https://github.com/asahi417/t5-question-generation) for more detail.
lmqg/t5-small-squad-no-answer
9187781b7d5510fab0c752ad0b86dd66a2ef8c7c
2022-06-01T00:25:20.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
lmqg
null
lmqg/t5-small-squad-no-answer
0
null
transformers
33,592
Entry not found
tner/xlm-roberta-base-bc5cdr
6933d1e8269bf51d988d0ec39060b639648390fa
2021-02-13T00:06:56.000Z
[ "pytorch", "xlm-roberta", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
tner
null
tner/xlm-roberta-base-bc5cdr
0
null
transformers
33,593
# XLM-RoBERTa for NER XLM-RoBERTa finetuned on NER. Check more detail at [TNER repository](https://github.com/asahi417/tner). ## Usage ``` from transformers import AutoTokenizer, AutoModelForTokenClassification tokenizer = AutoTokenizer.from_pretrained("asahi417/tner-xlm-roberta-base-bc5cdr") model = AutoModelForTokenClassification.from_pretrained("asahi417/tner-xlm-roberta-base-bc5cdr") ```
tner/xlm-roberta-base-fin
d7d10d01cbda0f67b200ff41d5d1b0efd6ffe8c3
2021-02-12T23:33:59.000Z
[ "pytorch", "xlm-roberta", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
tner
null
tner/xlm-roberta-base-fin
0
null
transformers
33,594
# XLM-RoBERTa for NER XLM-RoBERTa finetuned on NER. Check more detail at [TNER repository](https://github.com/asahi417/tner). ## Usage ``` from transformers import AutoTokenizer, AutoModelForTokenClassification tokenizer = AutoTokenizer.from_pretrained("asahi417/tner-xlm-roberta-base-fin") model = AutoModelForTokenClassification.from_pretrained("asahi417/tner-xlm-roberta-base-fin") ```
tner/xlm-roberta-base-panx-dataset-ar
bf61279d9ffb72fdb1a0cc2b0ab555a38abef46f
2021-02-12T23:34:15.000Z
[ "pytorch", "xlm-roberta", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
tner
null
tner/xlm-roberta-base-panx-dataset-ar
0
null
transformers
33,595
# XLM-RoBERTa for NER XLM-RoBERTa finetuned on NER. Check more detail at [TNER repository](https://github.com/asahi417/tner). ## Usage ``` from transformers import AutoTokenizer, AutoModelForTokenClassification tokenizer = AutoTokenizer.from_pretrained("asahi417/tner-xlm-roberta-base-panx-dataset-ar") model = AutoModelForTokenClassification.from_pretrained("asahi417/tner-xlm-roberta-base-panx-dataset-ar") ```
tner/xlm-roberta-base-panx-dataset-en
21a5c5b2488171f063dd565b3d38ddd1cb1433f7
2021-02-13T00:07:38.000Z
[ "pytorch", "xlm-roberta", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
tner
null
tner/xlm-roberta-base-panx-dataset-en
0
null
transformers
33,596
# XLM-RoBERTa for NER XLM-RoBERTa finetuned on NER. Check more detail at [TNER repository](https://github.com/asahi417/tner). ## Usage ``` from transformers import AutoTokenizer, AutoModelForTokenClassification tokenizer = AutoTokenizer.from_pretrained("asahi417/tner-xlm-roberta-base-panx-dataset-en") model = AutoModelForTokenClassification.from_pretrained("asahi417/tner-xlm-roberta-base-panx-dataset-en") ```
tner/xlm-roberta-base-panx-dataset-es
89b2ab786debdc0bbfa03cd82802524de413bed5
2021-02-12T23:34:35.000Z
[ "pytorch", "xlm-roberta", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
tner
null
tner/xlm-roberta-base-panx-dataset-es
0
null
transformers
33,597
# XLM-RoBERTa for NER XLM-RoBERTa finetuned on NER. Check more detail at [TNER repository](https://github.com/asahi417/tner). ## Usage ``` from transformers import AutoTokenizer, AutoModelForTokenClassification tokenizer = AutoTokenizer.from_pretrained("asahi417/tner-xlm-roberta-base-panx-dataset-es") model = AutoModelForTokenClassification.from_pretrained("asahi417/tner-xlm-roberta-base-panx-dataset-es") ```
tner/xlm-roberta-base-panx-dataset-ja
928240f47cd7269a928ccdb6c349225984fd6e68
2021-02-13T00:08:40.000Z
[ "pytorch", "xlm-roberta", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
tner
null
tner/xlm-roberta-base-panx-dataset-ja
0
null
transformers
33,598
# XLM-RoBERTa for NER XLM-RoBERTa finetuned on NER. Check more detail at [TNER repository](https://github.com/asahi417/tner). ## Usage ``` from transformers import AutoTokenizer, AutoModelForTokenClassification tokenizer = AutoTokenizer.from_pretrained("asahi417/tner-xlm-roberta-base-panx-dataset-ja") model = AutoModelForTokenClassification.from_pretrained("asahi417/tner-xlm-roberta-base-panx-dataset-ja") ```
tner/xlm-roberta-base-panx-dataset-ko
e5be8a06aa3e1f5503abff7217b4648a23b2e4da
2021-02-12T23:34:47.000Z
[ "pytorch", "xlm-roberta", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
tner
null
tner/xlm-roberta-base-panx-dataset-ko
0
null
transformers
33,599
# XLM-RoBERTa for NER XLM-RoBERTa finetuned on NER. Check more detail at [TNER repository](https://github.com/asahi417/tner). ## Usage ``` from transformers import AutoTokenizer, AutoModelForTokenClassification tokenizer = AutoTokenizer.from_pretrained("asahi417/tner-xlm-roberta-base-panx-dataset-ko") model = AutoModelForTokenClassification.from_pretrained("asahi417/tner-xlm-roberta-base-panx-dataset-ko") ```