modelId
stringlengths
4
112
sha
stringlengths
40
40
lastModified
stringlengths
24
24
tags
sequence
pipeline_tag
stringclasses
29 values
private
bool
1 class
author
stringlengths
2
38
config
null
id
stringlengths
4
112
downloads
float64
0
36.8M
likes
float64
0
712
library_name
stringclasses
17 values
__index_level_0__
int64
0
38.5k
readme
stringlengths
0
186k
tner/xlm-roberta-base-panx-dataset-ru
e70931cf283091559ff1606d640c91326730986c
2021-02-13T00:08:30.000Z
[ "pytorch", "xlm-roberta", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
tner
null
tner/xlm-roberta-base-panx-dataset-ru
0
null
transformers
33,600
# XLM-RoBERTa for NER XLM-RoBERTa finetuned on NER. Check more detail at [TNER repository](https://github.com/asahi417/tner). ## Usage ``` from transformers import AutoTokenizer, AutoModelForTokenClassification tokenizer = AutoTokenizer.from_pretrained("asahi417/tner-xlm-roberta-base-panx-dataset-ru") model = AutoModelForTokenClassification.from_pretrained("asahi417/tner-xlm-roberta-base-panx-dataset-ru") ```
tner/xlm-roberta-base-uncased-bc5cdr
a94f829854c121c128531f628b068547b7528a63
2021-02-13T00:08:23.000Z
[ "pytorch", "xlm-roberta", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
tner
null
tner/xlm-roberta-base-uncased-bc5cdr
0
null
transformers
33,601
# XLM-RoBERTa for NER XLM-RoBERTa finetuned on NER. Check more detail at [TNER repository](https://github.com/asahi417/tner). ## Usage ``` from transformers import AutoTokenizer, AutoModelForTokenClassification tokenizer = AutoTokenizer.from_pretrained("asahi417/tner-xlm-roberta-base-uncased-bc5cdr") model = AutoModelForTokenClassification.from_pretrained("asahi417/tner-xlm-roberta-base-uncased-bc5cdr") ```
tner/xlm-roberta-large-panx-dataset-en
5a9a00b3df08682bd91282e17af7e7ffd8875529
2021-02-13T00:11:22.000Z
[ "pytorch", "xlm-roberta", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
tner
null
tner/xlm-roberta-large-panx-dataset-en
0
null
transformers
33,602
# XLM-RoBERTa for NER XLM-RoBERTa finetuned on NER. Check more detail at [TNER repository](https://github.com/asahi417/tner). ## Usage ``` from transformers import AutoTokenizer, AutoModelForTokenClassification tokenizer = AutoTokenizer.from_pretrained("asahi417/tner-xlm-roberta-large-panx-dataset-en") model = AutoModelForTokenClassification.from_pretrained("asahi417/tner-xlm-roberta-large-panx-dataset-en") ```
tner/xlm-roberta-large-panx-dataset-ru
c928186c245847850aa748400bddd6893995eeec
2021-02-13T00:11:34.000Z
[ "pytorch", "xlm-roberta", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
tner
null
tner/xlm-roberta-large-panx-dataset-ru
0
null
transformers
33,603
# XLM-RoBERTa for NER XLM-RoBERTa finetuned on NER. Check more detail at [TNER repository](https://github.com/asahi417/tner). ## Usage ``` from transformers import AutoTokenizer, AutoModelForTokenClassification tokenizer = AutoTokenizer.from_pretrained("asahi417/tner-xlm-roberta-large-panx-dataset-ru") model = AutoModelForTokenClassification.from_pretrained("asahi417/tner-xlm-roberta-large-panx-dataset-ru") ```
tner/xlm-roberta-large-uncased-bc5cdr
973e4f0fac04e6e73374ec5023a3a2505406fd13
2021-02-13T00:11:43.000Z
[ "pytorch", "xlm-roberta", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
tner
null
tner/xlm-roberta-large-uncased-bc5cdr
0
null
transformers
33,604
# XLM-RoBERTa for NER XLM-RoBERTa finetuned on NER. Check more detail at [TNER repository](https://github.com/asahi417/tner). ## Usage ``` from transformers import AutoTokenizer, AutoModelForTokenClassification tokenizer = AutoTokenizer.from_pretrained("asahi417/tner-xlm-roberta-large-uncased-bc5cdr") model = AutoModelForTokenClassification.from_pretrained("asahi417/tner-xlm-roberta-large-uncased-bc5cdr") ```
tner/xlm-roberta-large-uncased-fin
92eb88f13a760c1524fe6c6faacc95e7a30aead0
2021-02-13T00:05:55.000Z
[ "pytorch", "xlm-roberta", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
tner
null
tner/xlm-roberta-large-uncased-fin
0
null
transformers
33,605
# XLM-RoBERTa for NER XLM-RoBERTa finetuned on NER. Check more detail at [TNER repository](https://github.com/asahi417/tner). ## Usage ``` from transformers import AutoTokenizer, AutoModelForTokenClassification tokenizer = AutoTokenizer.from_pretrained("asahi417/tner-xlm-roberta-large-uncased-fin") model = AutoModelForTokenClassification.from_pretrained("asahi417/tner-xlm-roberta-large-uncased-fin") ```
bgfruna/double-bart-ensemble-squad2
1bb9a0f44dd99ec7c27738cd70112647badc8716
2021-07-21T22:47:12.000Z
[ "pytorch", "en", "dataset:squad_v2", "dataset:squad2", "question-answering", "license:cc-by-4.0" ]
question-answering
false
bgfruna
null
bgfruna/double-bart-ensemble-squad2
0
null
null
33,606
--- language: en tags: - pytorch - question-answering datasets: - squad_v2 - squad2 license: cc-by-4.0 metrics: - squad_v2 - exact - f1 widget: - text: "By what main attribute are computational problems classified utilizing computational complexity theory?" context: "Computational complexity theory is a branch of the theory of computation in theoretical computer science that focuses on classifying computational problems according to their inherent difficulty, and relating those classes to each other. A computational problem is understood to be a task that is in principle amenable to being solved by a computer, which is equivalent to stating that the problem may be solved by mechanical application of mathematical steps, such as an algorithm." --- # Performance This ensemble was evaluated on [SQuAD 2.0](https://huggingface.co/datasets/squad_v2) with the following results: ``` {'HasAns_exact': 52.5472334682861, 'HasAns_f1': 67.94939813758602, 'HasAns_total': 5928, 'NoAns_exact': 91.75777964676199, 'NoAns_f1': 91.75777964676199, 'NoAns_total': 5945, 'best_exact': 72.16373283921503, 'best_exact_thresh': 0.0, 'best_f1': 79.85378860941708, 'best_f1_thresh': 0.0, 'exact': 72.1805777815211, 'f1': 79.87063355172326, 'total': 11873 } ```
bluebalam/paper-rec
8ed91678a65abd9e178f930150cfb2c7136b8f5f
2022-02-04T21:37:35.000Z
[ "en", "arxiv:2109.03955", "arxiv:1908.10084", "recsys", "pytorch", "sentence_transformers", "license:mit" ]
null
false
bluebalam
null
bluebalam/paper-rec
0
3
null
33,607
--- language: - en license: mit tags: - recsys - pytorch - sentence_transformers #datasets: #- {dataset_0} # Example: common_voice. Use dataset id from https://hf.co/datasets #metrics: #- {metric_0} # Example: wer. Use metric id from https://hf.co/metrics --- # `paper-rec` Model Card Last updated: 2022-02-04 ## Model Details `paper-rec` goal is to recommend users what scientific papers to read next based on their preferences. This is a test model used to explore Hugging Face Hub capabilities and identify requirements to enable support for recommendation task in the ecosystem. ### Model date 2022-02-04 ### Model type Recommender System model with support of a Language Model for feature extraction. ### Paper & samples The overall idea for `paper-rec` test model is inspired by this work: [NU:BRIEF – A Privacy-aware Newsletter Personalization Engine for Publishers](https://arxiv.org/abs/2109.03955). However, for `paper-rec`, we use a different language model more suitable for longer text, namely *Sentence Transformers*: [Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks](https://arxiv.org/abs/1908.10084), in particular: [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2). ## Model Use The intended direct users are recommender systems' practitioners and enthusiasts that would like to experiment with the task of scientific paper recommendation. ## Data, Performance, and Limitations ### Data The data used for this model corresponds to the [RSS news feeds for arXiv updates](https://arxiv.org/help/rss) accessed on 2022-02-04. In particular to the ones related to Machine Learning and AI: 1. [Artificial Intelligence](http://arxiv.org/rss/cs.AI) 1. [Computation and Language](http://arxiv.org/rss/cs.CL) 1. [Computer Vision and Pattern Recognition](http://arxiv.org/rss/cs.CV) 1. [Information Retrieval](http://arxiv.org/rss/cs.IR) 1. [Machine Learning (cs)](http://arxiv.org/rss/cs.LG) 1. [Machine Learning (stat)](http://arxiv.org/rss/stat.ML) ### Performance N/A ## Limitations The model is limited to the papers fetched on 2022-02-04, that is, those papers are the only ones it can recommend.
cross/words
d2097c5faa2c8db9d4e905059369c9bc5edf30e8
2021-03-19T12:05:58.000Z
[ "pytorch" ]
null
false
cross
null
cross/words
0
null
null
33,608
Entry not found
cyou/bert-base-jp1
b2b0a3e484cc3ffc3a3c533aa8fe66312b61299d
2021-11-01T21:15:25.000Z
[ "pytorch" ]
null
false
cyou
null
cyou/bert-base-jp1
0
null
null
33,609
drcod/DagaareBERTa
552f8cae48ba2ea1ebdaed209b58b40aa5cabd56
2021-08-24T22:23:45.000Z
[ "pytorch", "tf", "dataset:Bible", "arxiv:1907.11692" ]
null
false
drcod
null
drcod/DagaareBERTa
0
null
null
33,610
--- datasets: - Bible --- Pretrained model on Dagaare language using a masked language modeling (MLM) objective first introduced in [this paper](https://arxiv.org/abs/1907.11692) and first released in [this repository](https://github.com/pytorch/fairseq/tree/master/examples/roberta)\
facebook/wav2vec2-base-10k-voxpopuli-ft-de
1cbaf198475e1af97cc479ca081ce4ddd2d6b5cf
2021-07-06T01:48:44.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "de", "arxiv:2101.00390", "transformers", "audio", "voxpopuli", "license:cc-by-nc-4.0" ]
automatic-speech-recognition
false
facebook
null
facebook/wav2vec2-base-10k-voxpopuli-ft-de
0
1
transformers
33,611
--- language: de tags: - audio - automatic-speech-recognition - voxpopuli license: cc-by-nc-4.0 --- # Wav2Vec2-Base-VoxPopuli-Finetuned [Facebook's Wav2Vec2](https://ai.facebook.com/blog/wav2vec-20-learning-the-structure-of-speech-from-raw-audio/) base model pretrained on the 10K unlabeled subset of [VoxPopuli corpus](https://arxiv.org/abs/2101.00390) and fine-tuned on the transcribed data in de (refer to Table 1 of paper for more information). **Paper**: *[VoxPopuli: A Large-Scale Multilingual Speech Corpus for Representation Learning, Semi-Supervised Learning and Interpretation](https://arxiv.org/abs/2101.00390)* **Authors**: *Changhan Wang, Morgane Riviere, Ann Lee, Anne Wu, Chaitanya Talnikar, Daniel Haziza, Mary Williamson, Juan Pino, Emmanuel Dupoux* from *Facebook AI* See the official website for more information, [here](https://github.com/facebookresearch/voxpopuli/) # Usage for inference In the following it is shown how the model can be used in inference on a sample of the [Common Voice dataset](https://commonvoice.mozilla.org/en/datasets) ```python #!/usr/bin/env python3 from transformers import Wav2Vec2Processor, Wav2Vec2ForCTC from datasets import load_dataset import torchaudio import torch # resample audio # load model & processor model = Wav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-base-10k-voxpopuli-ft-de") processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-base-10k-voxpopuli-ft-de") # load dataset ds = load_dataset("common_voice", "de", split="validation[:1%]") # common voice does not match target sampling rate common_voice_sample_rate = 48000 target_sample_rate = 16000 resampler = torchaudio.transforms.Resample(common_voice_sample_rate, target_sample_rate) # define mapping fn to read in sound file and resample def map_to_array(batch): speech, _ = torchaudio.load(batch["path"]) speech = resampler(speech) batch["speech"] = speech[0] return batch # load all audio files ds = ds.map(map_to_array) # run inference on the first 5 data samples inputs = processor(ds[:5]["speech"], sampling_rate=target_sample_rate, return_tensors="pt", padding=True) # inference logits = model(**inputs).logits predicted_ids = torch.argmax(logits, axis=-1) print(processor.batch_decode(predicted_ids)) ```
facebook/wav2vec2-base-10k-voxpopuli-ft-hu
fd70fe41f6e7b7dc71bc952a9cd4b4e23ed7e17f
2021-07-06T01:50:56.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "hu", "arxiv:2101.00390", "transformers", "audio", "voxpopuli", "license:cc-by-nc-4.0" ]
automatic-speech-recognition
false
facebook
null
facebook/wav2vec2-base-10k-voxpopuli-ft-hu
0
null
transformers
33,612
--- language: hu tags: - audio - automatic-speech-recognition - voxpopuli license: cc-by-nc-4.0 --- # Wav2Vec2-Base-VoxPopuli-Finetuned [Facebook's Wav2Vec2](https://ai.facebook.com/blog/wav2vec-20-learning-the-structure-of-speech-from-raw-audio/) base model pretrained on the 10K unlabeled subset of [VoxPopuli corpus](https://arxiv.org/abs/2101.00390) and fine-tuned on the transcribed data in hu (refer to Table 1 of paper for more information). **Paper**: *[VoxPopuli: A Large-Scale Multilingual Speech Corpus for Representation Learning, Semi-Supervised Learning and Interpretation](https://arxiv.org/abs/2101.00390)* **Authors**: *Changhan Wang, Morgane Riviere, Ann Lee, Anne Wu, Chaitanya Talnikar, Daniel Haziza, Mary Williamson, Juan Pino, Emmanuel Dupoux* from *Facebook AI* See the official website for more information, [here](https://github.com/facebookresearch/voxpopuli/) # Usage for inference In the following it is shown how the model can be used in inference on a sample of the [Common Voice dataset](https://commonvoice.mozilla.org/en/datasets) ```python #!/usr/bin/env python3 from transformers import Wav2Vec2Processor, Wav2Vec2ForCTC from datasets import load_dataset import torchaudio import torch # resample audio # load model & processor model = Wav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-base-10k-voxpopuli-ft-hu") processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-base-10k-voxpopuli-ft-hu") # load dataset ds = load_dataset("common_voice", "hu", split="validation[:1%]") # common voice does not match target sampling rate common_voice_sample_rate = 48000 target_sample_rate = 16000 resampler = torchaudio.transforms.Resample(common_voice_sample_rate, target_sample_rate) # define mapping fn to read in sound file and resample def map_to_array(batch): speech, _ = torchaudio.load(batch["path"]) speech = resampler(speech) batch["speech"] = speech[0] return batch # load all audio files ds = ds.map(map_to_array) # run inference on the first 5 data samples inputs = processor(ds[:5]["speech"], sampling_rate=target_sample_rate, return_tensors="pt", padding=True) # inference logits = model(**inputs).logits predicted_ids = torch.argmax(logits, axis=-1) print(processor.batch_decode(predicted_ids)) ```
facebook/wav2vec2-base-10k-voxpopuli-ft-it
653b3c789c7d83134924bda6fabe0c6bb84f579c
2021-07-06T01:51:18.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "it", "arxiv:2101.00390", "transformers", "audio", "voxpopuli", "license:cc-by-nc-4.0" ]
automatic-speech-recognition
false
facebook
null
facebook/wav2vec2-base-10k-voxpopuli-ft-it
0
null
transformers
33,613
--- language: it tags: - audio - automatic-speech-recognition - voxpopuli license: cc-by-nc-4.0 --- # Wav2Vec2-Base-VoxPopuli-Finetuned [Facebook's Wav2Vec2](https://ai.facebook.com/blog/wav2vec-20-learning-the-structure-of-speech-from-raw-audio/) base model pretrained on the 10K unlabeled subset of [VoxPopuli corpus](https://arxiv.org/abs/2101.00390) and fine-tuned on the transcribed data in it (refer to Table 1 of paper for more information). **Paper**: *[VoxPopuli: A Large-Scale Multilingual Speech Corpus for Representation Learning, Semi-Supervised Learning and Interpretation](https://arxiv.org/abs/2101.00390)* **Authors**: *Changhan Wang, Morgane Riviere, Ann Lee, Anne Wu, Chaitanya Talnikar, Daniel Haziza, Mary Williamson, Juan Pino, Emmanuel Dupoux* from *Facebook AI* See the official website for more information, [here](https://github.com/facebookresearch/voxpopuli/) # Usage for inference In the following it is shown how the model can be used in inference on a sample of the [Common Voice dataset](https://commonvoice.mozilla.org/en/datasets) ```python #!/usr/bin/env python3 from transformers import Wav2Vec2Processor, Wav2Vec2ForCTC from datasets import load_dataset import torchaudio import torch # resample audio # load model & processor model = Wav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-base-10k-voxpopuli-ft-it") processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-base-10k-voxpopuli-ft-it") # load dataset ds = load_dataset("common_voice", "it", split="validation[:1%]") # common voice does not match target sampling rate common_voice_sample_rate = 48000 target_sample_rate = 16000 resampler = torchaudio.transforms.Resample(common_voice_sample_rate, target_sample_rate) # define mapping fn to read in sound file and resample def map_to_array(batch): speech, _ = torchaudio.load(batch["path"]) speech = resampler(speech) batch["speech"] = speech[0] return batch # load all audio files ds = ds.map(map_to_array) # run inference on the first 5 data samples inputs = processor(ds[:5]["speech"], sampling_rate=target_sample_rate, return_tensors="pt", padding=True) # inference logits = model(**inputs).logits predicted_ids = torch.argmax(logits, axis=-1) print(processor.batch_decode(predicted_ids)) ```
facebook/wav2vec2-xlsr-53-phon-cv-babel-ft
2598051121aed794d856e0edac36df88613724ba
2021-11-10T12:02:20.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
facebook
null
facebook/wav2vec2-xlsr-53-phon-cv-babel-ft
0
null
transformers
33,614
Entry not found
fadhilarkan/t5_paw_global
de340fecbdad839e4cb967aad569361929509139
2021-08-23T15:42:54.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
fadhilarkan
null
fadhilarkan/t5_paw_global
0
null
transformers
33,615
Entry not found
fadhilarkan/tmpvqruuuz0
6477d617cef8553baa2eb1a4088c427cc16fc2f5
2021-08-23T17:06:39.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
fadhilarkan
null
fadhilarkan/tmpvqruuuz0
0
null
transformers
33,616
Entry not found
faketermz/DialoGPT
5c1c9ab8d18265c98d4ea73cc6b4f84a5bc5790c
2021-12-05T13:02:46.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
faketermz
null
faketermz/DialoGPT
0
null
transformers
33,617
--- tags: - conversational --- # test DialoGPT Model
famodde/optimizer-ner-fineTune-lst2021
b7c5561849ab201f82e58b0442e954e82484ab71
2022-02-18T05:01:27.000Z
[ "pytorch", "camembert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
famodde
null
famodde/optimizer-ner-fineTune-lst2021
0
null
transformers
33,618
Entry not found
famodde/optimizer-ner-fineTune
9711ce205f254d30f581a73fb57c7053b811ab1d
2022-02-16T18:41:51.000Z
[ "pytorch", "camembert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
famodde
null
famodde/optimizer-ner-fineTune
0
null
transformers
33,619
Entry not found
famodde/wangchanberta-ner-fineTune
748a4cc18ff673826965a3b409d38de1fc0a4cf1
2022-02-16T08:08:19.000Z
[ "pytorch", "camembert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
famodde
null
famodde/wangchanberta-ner-fineTune
0
null
transformers
33,620
Entry not found
fatemaMeem98/DialoGPT-medium-HermioneGrangerBot
ae7a18a3e2bdf2b41f27661d2cea38143e526ad7
2021-12-20T05:35:09.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
fatemaMeem98
null
fatemaMeem98/DialoGPT-medium-HermioneGrangerBot
0
null
transformers
33,621
--- tags: - conversational --- # Hermione Granger DialoGPT Model
fav-kky/FERNET-News_sk
81e1bf2f8ad90f7f38a171a924f839276bae1217
2021-09-09T14:02:40.000Z
[ "pytorch", "tf", "roberta", "fill-mask", "sk", "arxiv:2107.10042", "transformers", "Slovak", "KKY", "FAV", "license:cc-by-nc-sa-4.0", "autotrain_compatible" ]
fill-mask
false
fav-kky
null
fav-kky/FERNET-News_sk
0
null
transformers
33,622
--- language: "sk" tags: - Slovak - KKY - FAV license: "cc-by-nc-sa-4.0" --- # FERNET-News_sk FERNET-News_sk is a monolingual Slovak RoBERTa-base model pre-trained from 4.5GB of thoroughly cleaned Slovak news corpus. It is a Slovak version of our Czech [FERNET-News](https://huggingface.co/fav-kky/FERNET-News) model. Preprint of our paper is available at https://arxiv.org/abs/2107.10042.
felixai/distilmbart-9-3
a4499e41be9451ef8c471f44ab5c51875acefe25
2021-07-16T14:41:20.000Z
[ "pytorch", "mbart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
felixai
null
felixai/distilmbart-9-3
0
null
transformers
33,623
# mbart for 9-3
ffrmns/t5-small_XSum-finetuned
9f783d62ef4b9eafd0a82deae62cbef11da85cee
2021-04-20T00:59:58.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
ffrmns
null
ffrmns/t5-small_XSum-finetuned
0
null
transformers
33,624
Entry not found
ffsouza/tiny-mbart-length-96-learning_rate-2e-05-weight_decay-0.005-finetuned-en-to-ro
119229529e68cec6e0bd457227c9d1d64fca142a
2021-11-30T19:57:36.000Z
[ "pytorch", "tensorboard", "mbart", "text2text-generation", "dataset:wmt16_en_ro_pre_processed", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
text2text-generation
false
ffsouza
null
ffsouza/tiny-mbart-length-96-learning_rate-2e-05-weight_decay-0.005-finetuned-en-to-ro
0
null
transformers
33,625
--- tags: - generated_from_trainer datasets: - wmt16_en_ro_pre_processed metrics: - bleu model-index: - name: tiny-mbart-length-96-learning_rate-2e-05-weight_decay-0.005-finetuned-en-to-ro results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: wmt16_en_ro_pre_processed type: wmt16_en_ro_pre_processed args: enro metrics: - name: Bleu type: bleu value: 0.0 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # tiny-mbart-length-96-learning_rate-2e-05-weight_decay-0.005-finetuned-en-to-ro This model is a fine-tuned version of [sshleifer/tiny-mbart](https://huggingface.co/sshleifer/tiny-mbart) on the wmt16_en_ro_pre_processed dataset. It achieves the following results on the evaluation set: - Loss: 8.5983 - Bleu: 0.0 - Gen Len: 20.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:----:|:-------:| | 8.3753 | 1.0 | 76290 | 8.5983 | 0.0 | 20.0 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.10.0+cu102 - Datasets 1.15.1 - Tokenizers 0.10.3
ffsouza/tiny-mbart-length-96-learning_rate-2e-05-weight_decay-0.02-finetuned-en-to-ro
6da962a68f0deab4ea27c59dbbaaefd973af78fb
2021-11-30T20:10:38.000Z
[ "pytorch", "tensorboard", "mbart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
ffsouza
null
ffsouza/tiny-mbart-length-96-learning_rate-2e-05-weight_decay-0.02-finetuned-en-to-ro
0
null
transformers
33,626
Entry not found
fgaim/t5-small-squad-v2
dcbbdbea810d304e270c8a6ab12c475bc0b1f151
2022-01-30T21:35:54.000Z
[ "pytorch", "t5", "text2text-generation", "en", "dataset:c4", "dataset:squad", "transformers", "license:apache-2.0", "autotrain_compatible" ]
text2text-generation
false
fgaim
null
fgaim/t5-small-squad-v2
0
null
transformers
33,627
--- language: - en datasets: - c4 - squad tags: - text2text-generation widget: - text: "question: What is the atomic number for oxygen? context: Oxygen is a chemical element with symbol O and atomic number 8." - text: "question: What is the chemical symbol of Oxygen? context: Oxygen is a chemical element with symbol O and atomic number 8." license: apache-2.0 --- T5-small for QA --- [Google's T5-small](https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html) pre-trained on the [C4](https://huggingface.co/datasets/c4) dataset, fine-tuned for Question-Answering on [SQuAD v2](https://huggingface.co/datasets/squad_v2) with the following hyperparameters: ``` optimizer=adamw_hf learning_rate=3e-5 adam_beta1=0.9 adam_beta2=0.999 adam_epsilon=1e-08 num_train_epochs=2 per_device_train_batch_size=12 ``` Usage --- The input [context and question] has to be prepared in a specific way as follows: ```python from transformers import pipeline def prep_input(_context, _question): return " ".join(["question:", _question.strip(), "context:", _context.strip()]) t5qa = pipeline("text2text-generation", "fgaim/t5-small-squad-v2") context = """ Oxygen is a chemical element with symbol O and atomic number 8. It is a member of the chalcogen group on the periodic table and is a highly reactive nonmetal and oxidizing agent that readily forms compounds (notably oxides) with most elements. By mass, oxygen is the third-most abundant element in the universe, after hydrogen and helium. At standard temperature and pressure, two atoms of the element bind to form dioxygen, a colorless and odorless diatomic gas with the formula O. """ t5qa(prep_input(context, "How many atoms combine to form dioxygen?")) # [{'generated_text': 'two'}] t5qa(prep_input(context, "What element makes up almost half of the earth's crust by mass?")) # [{'generated_text': 'oxygen'}] t5qa(prep_input(context, "What are the most abundent elements of the universe by mass?")) # [{'generated_text': 'hydrogen and helium'}] ```
fgua/bert-base-uncased-wikitext2
95764d9cfa4dc9ae7291451ddd4e690de53b3b22
2022-04-26T15:04:36.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
fgua
null
fgua/bert-base-uncased-wikitext2
0
null
transformers
33,628
Entry not found
fibruh/DialoGPT-small-harrypotter
46acbb31b70e79dc53b646daee1714fb41bcdc3f
2021-12-15T04:18:11.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
fibruh
null
fibruh/DialoGPT-small-harrypotter
0
null
transformers
33,629
--- tags: - conversational --- # Fibruh Bot Model
finiteautomata/bert-non-contextualized-hate-category-es
09ecb41256785c2c7cfe8706431c77c54598959b
2021-05-19T16:51:52.000Z
[ "pytorch", "bert", "transformers" ]
null
false
finiteautomata
null
finiteautomata/bert-non-contextualized-hate-category-es
0
null
transformers
33,630
Entry not found
finiteautomata/beto-fine-grained-hatespeech-news
f4a730bd8173344c79513e47a92ac20cc3cc9d6d
2021-06-24T14:54:12.000Z
[ "pytorch", "bert", "transformers" ]
null
false
finiteautomata
null
finiteautomata/beto-fine-grained-hatespeech-news
0
null
transformers
33,631
## Fine Grained Hate Speech in News ### WARNING: Work in progress Model trained on news comments.
finiteautomata/betonews-bodycontext
efccfffb07da8ad1143d183e8062b37bc39c6cdb
2021-10-08T14:53:18.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
finiteautomata
null
finiteautomata/betonews-bodycontext
0
null
transformers
33,632
Entry not found
finiteautomata/betonews-nonecontext
444990c470e160583943cabe30d304ddcee642f4
2021-10-01T21:32:37.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
finiteautomata
null
finiteautomata/betonews-nonecontext
0
null
transformers
33,633
Entry not found
fkHug/modelFromWav2vec
d778372ac925e17981e14547b93dc47b313c3075
2021-12-03T17:35:19.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
fkHug
null
fkHug/modelFromWav2vec
0
null
transformers
33,634
this is my model card
flairbook/flairmodel
5966905c3b083679ba6d327261d1ce73074e6341
2022-01-08T18:06:53.000Z
[ "pytorch", "flair", "token-classification" ]
token-classification
false
flairbook
null
flairbook/flairmodel
0
null
flair
33,635
--- tags: - flair - token-classification widget: - text: "does this work" --- ## Test model README Some test README description
flakje/DialoGPT-small-Marty
2e8d61849608dda317dc7f069914b2b4ef30a599
2021-11-20T18:34:54.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
flakje
null
flakje/DialoGPT-small-Marty
0
null
transformers
33,636
--- tags: - conversational --- # Marty DialoGPT Model
flavio-nakasato/deeppolicytracker_500k
aa3c41c375fe846894cd19ffd4088876788b3c5b
2021-08-14T22:14:07.000Z
[ "pytorch", "tensorboard", "roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
flavio-nakasato
null
flavio-nakasato/deeppolicytracker_500k
0
null
transformers
33,637
RoBERTa model pretrained on the Brazilian Federal Official Gazette (500k instances).
flax-community/gpt-code-clippy-125M-bs2048-raw
39fa8caa315e1524b9302e094262888e342b9188
2021-07-16T10:29:45.000Z
[ "pytorch", "jax", "gpt_neo", "text-generation", "transformers" ]
text-generation
false
flax-community
null
flax-community/gpt-code-clippy-125M-bs2048-raw
0
null
transformers
33,638
Entry not found
flax-community/gpt-neo-1.3B-resized-embed
b75d14484ef2e569ef6ef10dd60f6a4e8829b674
2021-07-16T11:25:41.000Z
[ "pytorch", "jax", "gpt_neo", "text-generation", "transformers" ]
text-generation
false
flax-community
null
flax-community/gpt-neo-1.3B-resized-embed
0
null
transformers
33,639
Entry not found
flax-sentence-embeddings/all_datasets_v4_MiniLM-L12
70c1ce7853189f5b4cb094ff364dc1f0869c11be
2021-07-23T16:01:01.000Z
[ "pytorch", "bert", "en", "arxiv:2104.08727", "arxiv:1810.09305", "arxiv:2102.07033", "arxiv:1904.06472", "sentence-transformers", "feature-extraction", "sentence-similarity" ]
sentence-similarity
false
flax-sentence-embeddings
null
flax-sentence-embeddings/all_datasets_v4_MiniLM-L12
0
2
sentence-transformers
33,640
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity language: en --- # Model description The project aims to train sentence embedding models on very large sentence level datasets using a self-supervised contrastive learning objective. We used the pretrained ['MiniLM-L12'](https://huggingface.co/microsoft/MiniLM-L12-H384-uncased) model and fine-tuned in on a 1B sentence pairs dataset. We use a contrastive learning objective: given a sentence from the pair, the model should predict which out of a set of randomly sampled other sentences, was actually paired with it in our dataset. We developped this model during the [Community week using JAX/Flax for NLP & CV](https://discuss.huggingface.co/t/open-to-the-community-community-week-using-jax-flax-for-nlp-cv/7104), organized by Hugging Face. We developped this model as part of the project: [Train the Best Sentence Embedding Model Ever with 1B Training Pairs](https://discuss.huggingface.co/t/train-the-best-sentence-embedding-model-ever-with-1b-training-pairs/7354). We benefited from efficient hardware infrastructure to run the project: 7 TPUs v3-8, as well as intervention from Google’s Flax, JAX, and Cloud team member about efficient deep learning frameworks. ## Intended uses Our model is intented to be used as a sentence encoder. Given an input sentence, it ouptuts a vector which captures the sentence semantic information. The sentence vector may be used for information retrieval, clustering or sentence similarity tasks. ## How to use Here is how to use this model to get the features of a given text using [SentenceTransformers](https://github.com/UKPLab/sentence-transformers) library: ```python from sentence_transformers import SentenceTransformer model = SentenceTransformer('flax-sentence-embeddings/all_datasets_v4_MiniLM-L12') text = "Replace me by any text you'd like." text_embbedding = model.encode(text) # array([-0.01559514, 0.04046123, 0.1317083 , 0.00085931, 0.04585106, # -0.05607086, 0.0138078 , 0.03569756, 0.01420381, 0.04266302 ...], # dtype=float32) ``` # Training procedure ## Pre-training We use the pretrained ['MiniLM-L12'](https://huggingface.co/microsoft/MiniLM-L12-H384-uncased). Please refer to the model card for more detailed information about the pre-training procedure. ## Fine-tuning We fine-tune the model using a contrastive objective. Formally, we compute the cosine similarity from each possible sentence pairs from the batch. We then apply the cross entropy loss by comparing with true pairs. ### Hyper parameters We trained ou model on a TPU v3-8. We train the model during 540k steps using a batch size of 1024 (128 per TPU core). We use a learning rate warm up of 500. The sequence length was limited to 128 tokens. We used the AdamW optimizer with a 2e-5 learning rate. The full training script is accessible in this current repository. ### Training data We use the concatenation from multiple datasets to fine-tune our model. The total number of sentence pairs is above 1 billion sentences. We sampled each dataset given a weighted probability which configuration is detailed in the `data_config.json` file. | Dataset | Paper | Number of training tuples | |:--------------------------------------------------------:|:----------------------------------------:|:--------------------------:| | [GOOAQ: Open Question Answering with Diverse Answer Types](https://github.com/allenai/gooaq) | [paper](https://arxiv.org/pdf/2104.08727.pdf) | 3,012,496 | | [Stack Exchange](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_title_body_jsonl) | - | 364,001 | | [Flickr 30k](https://shannon.cs.illinois.edu/DenotationGraph/) | [paper](https://transacl.org/ojs/index.php/tacl/article/view/229/33) | 317,695 | | [COCO 2020](COCO 2020) | [paper](https://link.springer.com/chapter/10.1007%2F978-3-319-10602-1_48) | 828,395| | [Code Search](https://huggingface.co/datasets/code_search_net) | - | 1,151,414 | | [TriviaqQA](https://huggingface.co/datasets/trivia_qa) | - | 73,346 | | [SQuAD2.0](https://rajpurkar.github.io/SQuAD-explorer/) | [paper](https://aclanthology.org/P18-2124.pdf) | 87,599 | | [Natural Questions (NQ)](https://ai.google.com/research/NaturalQuestions) | [paper](https://transacl.org/ojs/index.php/tacl/article/view/1455) | 100,231 | | [Simple Wikipedia](https://cs.pomona.edu/~dkauchak/simplification/) | [paper](https://www.aclweb.org/anthology/P11-2117/) | 102,225 | | [Quora Question Pairs](https://quoradata.quora.com/First-Quora-Dataset-Release-Question-Pairs) | - | 103,663 | | [Altlex](https://github.com/chridey/altlex/) | [paper](https://aclanthology.org/P16-1135.pdf) | 112,696 | | [Wikihow](https://github.com/pvl/wikihow_pairs_dataset) | [paper](https://arxiv.org/abs/1810.09305) | 128,542 | | [Sentence Compression](https://github.com/google-research-datasets/sentence-compression) | [paper](https://www.aclweb.org/anthology/D13-1155/) | 180,000 | | AllNLI ([SNLI](https://nlp.stanford.edu/projects/snli/) and [MultiNLI](https://cims.nyu.edu/~sbowman/multinli/) | [paper SNLI](https://doi.org/10.18653/v1/d15-1075), [paper MultiNLI](https://doi.org/10.18653/v1/n18-1101) | 277,230 | | [Eli5](https://huggingface.co/datasets/eli5) | [paper](https://doi.org/10.18653/v1/p19-1346) | 325,475 | | [SPECTER](https://github.com/allenai/specter) | [paper](https://doi.org/10.18653/v1/2020.acl-main.207) | 684,100 | | [S2ORC](https://github.com/allenai/s2orc) Title/Abstract | [paper](https://aclanthology.org/2020.acl-main.447/) | 41,769,185 | | [S2ORC](https://github.com/allenai/s2orc) Citation/Citation | [paper](https://aclanthology.org/2020.acl-main.447/) | 52,603,982 | | [S2ORC](https://github.com/allenai/s2orc) Citation/Abstract | [paper](https://aclanthology.org/2020.acl-main.447/) | 116,288,806 | | [PAQ](https://github.com/facebookresearch/PAQ) | [paper](https://arxiv.org/abs/2102.07033) | 64,371,441 | | [WikiAnswers](https://github.com/afader/oqa#wikianswers-corpus) | [paper](https://doi.org/10.1145/2623330.2623677) | 77,427,422 | | SearchQA | - | 582,261 | | [Yahoo Answers](https://www.kaggle.com/soumikrakshit/yahoo-answers-dataset) Title/Answer | [paper](https://proceedings.neurips.cc/paper/2015/hash/250cf8b51c773f3f8dc8b4be867a9a02-Abstract.html) | 1,198,260 | | [Yahoo Answers](https://www.kaggle.com/soumikrakshit/yahoo-answers-dataset) Title/Question | [paper](https://proceedings.neurips.cc/paper/2015/hash/250cf8b51c773f3f8dc8b4be867a9a02-Abstract.html) | 659,896 | | [Yahoo Answers](https://www.kaggle.com/soumikrakshit/yahoo-answers-dataset) Question/Answer | [paper](https://proceedings.neurips.cc/paper/2015/hash/250cf8b51c773f3f8dc8b4be867a9a02-Abstract.html) | 681,164 | | [MS MARCO](https://microsoft.github.io/msmarco/) | [paper](https://doi.org/10.1145/3404835.3462804) | 9,144,553 | | [Reddit conversationnal](https://github.com/PolyAI-LDN/conversational-datasets/tree/master/reddit) | [paper](https://arxiv.org/abs/1904.06472) | 726,484,430 | | total | | 1,097,953,922 |
flboehm/reddit-bert-text2
e65bd2cef8e20a463711d1ae957444761012de89
2021-12-07T14:45:38.000Z
[ "pytorch", "tensorboard", "bert", "fill-mask", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
fill-mask
false
flboehm
null
flboehm/reddit-bert-text2
0
null
transformers
33,641
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: reddit-bert-text2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # reddit-bert-text2 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.4969 - Perplexity: 12.14 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.8378 | 1.0 | 1007 | 2.6379 | | 2.6493 | 2.0 | 2014 | 2.5655 | | 2.5561 | 3.0 | 3021 | 2.5382 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.10.0+cu113 - Datasets 1.16.1 - Tokenizers 0.10.3
flboehm/reddit-bert-text3
ad988e5ed57aa5368c34d6c5202aeddf458b7e78
2021-12-08T15:32:43.000Z
[ "pytorch", "tensorboard", "bert", "fill-mask", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
fill-mask
false
flboehm
null
flboehm/reddit-bert-text3
0
null
transformers
33,642
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: reddit-bert-text3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # reddit-bert-text3 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.5346 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 3.1924 | 1.0 | 981 | 2.6541 | | 2.7158 | 2.0 | 1962 | 2.5480 | | 2.6583 | 3.0 | 2943 | 2.5072 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.10.0+cu113 - Datasets 1.16.1 - Tokenizers 0.10.3
flboehm/reddit-bert-text4
51b7eff9331ea63931d73c1b68120bf5269403c3
2021-12-15T08:41:48.000Z
[ "pytorch", "tensorboard", "bert", "fill-mask", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
fill-mask
false
flboehm
null
flboehm/reddit-bert-text4
0
null
transformers
33,643
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: reddit-bert-text4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # reddit-bert-text4 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.4763 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 3.1071 | 1.0 | 978 | 2.6170 | | 2.6788 | 2.0 | 1956 | 2.5332 | | 2.6112 | 3.0 | 2934 | 2.4844 | ### Framework versions - Transformers 4.13.0 - Pytorch 1.10.0+cu113 - Datasets 1.16.1 - Tokenizers 0.10.3
flymushroom/model1
3e012e3c0682fd818e16f8b9255fac04851d9539
2021-11-02T05:07:30.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
flymushroom
null
flymushroom/model1
0
null
transformers
33,644
Entry not found
formermagic/codet5-small
770eff8c18ee77115cfade8021030072dfe495ab
2021-09-21T23:20:48.000Z
[ "pytorch", "jax", "tensorboard", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
formermagic
null
formermagic/codet5-small
0
1
transformers
33,645
Entry not found
formermagic/codet5x-small
921f2c65cd0919588882387818dc57e9073659f9
2021-10-08T02:51:31.000Z
[ "pytorch", "jax", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
formermagic
null
formermagic/codet5x-small
0
null
transformers
33,646
Entry not found
francoMG/sara-qa
2baf25628af770dc41eeca1c0dbd252aa5faf954
2021-10-08T02:45:39.000Z
[ "pytorch", "bert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
francoMG
null
francoMG/sara-qa
0
null
transformers
33,647
Entry not found
fznmhmmd/gpt2-wikitext2
848acc2279df64fd4d77f0b21cc88727b0312d66
2022-02-09T15:44:05.000Z
[ "pytorch", "tensorboard", "gpt2", "text-generation", "transformers", "generated_from_trainer", "license:mit", "model-index" ]
text-generation
false
fznmhmmd
null
fznmhmmd/gpt2-wikitext2
0
null
transformers
33,648
--- license: mit tags: - generated_from_trainer model-index: - name: gpt2-wikitext2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt2-wikitext2 This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 6.1112 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 6.5571 | 1.0 | 2249 | 6.4684 | | 6.1921 | 2.0 | 4498 | 6.1984 | | 6.0016 | 3.0 | 6747 | 6.1112 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
gabtan99/dialogpt-tagalog-medium-10
62ec78049ea2dcc6442ed4e487c3b9e872f85c45
2021-07-26T10:19:09.000Z
[ "pytorch", "gpt2", "text-generation", "tl", "transformers", "conversational", "tagalog", "filipino" ]
conversational
false
gabtan99
null
gabtan99/dialogpt-tagalog-medium-10
0
null
transformers
33,649
--- tags: - conversational - tagalog - filipino language: - tl --- # Tagalog DialoGPT This is an extension of the base Tagalog DialoGPT model (https://huggingface.co/gabtan99/dialogpt-tagalog-medium). This model is trained on 52K original conversations and 52K synthetic conversations, where 10% of tokens in each utterance in the synthetic conversation are machine-generated tokens.
gabtan99/dialogpt-tagalog-medium-20
1c1c4a011e106f4b37d3811a8be49d7c064bbcfa
2021-08-18T03:04:51.000Z
[ "pytorch", "gpt2", "text-generation", "tl", "transformers", "conversational", "tagalog", "filipino" ]
conversational
false
gabtan99
null
gabtan99/dialogpt-tagalog-medium-20
0
null
transformers
33,650
--- tags: - conversational - tagalog - filipino inference: false language: - tl --- # Tagalog DialoGPT This is an extension of the base Tagalog DialoGPT model (https://huggingface.co/gabtan99/dialogpt-tagalog-medium). This model is trained on 52K original conversations and 52K synthetic conversations, where 20% of tokens in each utterance in the synthetic conversation are machine-generated tokens.
gabtan99/dialogpt-tagalog-medium-30
a40da3ce9ff019535b8ae2da4e97c24644b28f28
2021-08-18T03:05:00.000Z
[ "pytorch", "gpt2", "text-generation", "tl", "transformers", "conversational", "tagalog", "filipino" ]
conversational
false
gabtan99
null
gabtan99/dialogpt-tagalog-medium-30
0
null
transformers
33,651
--- tags: - conversational - tagalog - filipino inference: false language: - tl --- # Tagalog DialoGPT This is an extension of the base Tagalog DialoGPT model (https://huggingface.co/gabtan99/dialogpt-tagalog-medium). This model is trained on 52K original conversations and 52K synthetic conversations, where 30% of tokens in each utterance in the synthetic conversation are machine-generated tokens.
gagan3012/wav2vec2-xlsr-chuvash
d08849c6cfdee971e326ced6e4d35ad52369f8ee
2021-07-06T03:45:55.000Z
[ "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "cv", "dataset:common_voice", "transformers", "audio", "speech", "xlsr-fine-tuning-week", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
gagan3012
null
gagan3012/wav2vec2-xlsr-chuvash
0
null
transformers
33,652
--- language: cv datasets: - common_voice metrics: - wer tags: - audio - automatic-speech-recognition - speech - xlsr-fine-tuning-week license: apache-2.0 model-index: - name: wav2vec2-xlsr-chuvash by Gagan Bhatia results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice cv type: common_voice args: cv metrics: - name: Test WER type: wer value: 48.40 --- # Wav2Vec2-Large-XLSR-53-Chuvash Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Chuvash using the [Common Voice](https://huggingface.co/datasets/common_voice) When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "cv", split="test") processor = Wav2Vec2Processor.from_pretrained("gagan3012/wav2vec2-xlsr-chuvash") model = Wav2Vec2ForCTC.from_pretrained("gagan3012/wav2vec2-xlsr-chuvash") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): \\tspeech_array, sampling_rate = torchaudio.load(batch["path"]) \\tbatch["speech"] = resampler(speech_array).squeeze().numpy() \\treturn batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): \\tlogits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` #### Results: Prediction: ['проектпа килӗшӳллӗн тӗлӗ мероприяти иртермелле', 'твăра çак планета минтӗ пуяни калленнана'] Reference: ['Проектпа килӗшӳллӗн, тӗрлӗ мероприяти ирттермелле.', 'Çак планета питĕ пуян иккен.'] ## Evaluation The model can be evaluated as follows on the Chuvash test data of Common Voice. ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re !mkdir cer !wget -O cer/cer.py https://huggingface.co/ctl/wav2vec2-large-xlsr-cantonese/raw/main/cer.py test_dataset = load_dataset("common_voice", "cv", split="test") #TODO: replace {lang_id} in your language code here. Make sure the code is one of the *ISO codes* of [this](https://huggingface.co/languages) site. wer = load_metric("wer") cer = load_metric("cer") processor = Wav2Vec2Processor.from_pretrained("gagan3012/wav2vec2-xlsr-chuvash") model = Wav2Vec2ForCTC.from_pretrained("gagan3012/wav2vec2-xlsr-chuvash") model.to("cuda") chars_to_ignore_regex = '[\\\\,\\\\?\\\\.\\\\!\\\\-\\\\;\\\\:\\\\"\\\\“]' # TODO: adapt this list to include all special characters you removed from the data resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): \\tbatch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() \\tspeech_array, sampling_rate = torchaudio.load(batch["path"]) \\tbatch["speech"] = resampler(speech_array).squeeze().numpy() \\treturn batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the aduio files as arrays def evaluate(batch): \\tinputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) \\twith torch.no_grad(): \\t\\tlogits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits \\tpred_ids = torch.argmax(logits, dim=-1) \\tbatch["pred_strings"] = processor.batch_decode(pred_ids) \\treturn batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) print("CER: {:2f}".format(100 * cer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ``` **Test Result**: 48.40 % ## Training The script used for training can be found [here](https://colab.research.google.com/drive/1A7Y20c1QkSHfdOmLXPMiOEpwlTjDZ7m5?usp=sharing)
gagan3012/wav2vec2-xlsr-punjabi
d37bc866ee1867595d13bbb20b4031cda0adf98a
2021-07-06T04:21:10.000Z
[ "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "pa-IN", "dataset:common_voice", "transformers", "audio", "speech", "xlsr-fine-tuning-week", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
gagan3012
null
gagan3012/wav2vec2-xlsr-punjabi
0
null
transformers
33,653
--- language: pa-IN datasets: - common_voice metrics: - wer tags: - audio - automatic-speech-recognition - speech - xlsr-fine-tuning-week license: apache-2.0 model-index: - name: wav2vec2-xlsr-punjabi results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice pa type: common_voice args: pa-IN metrics: - name: Test WER type: wer value: 58.06 --- # Wav2Vec2-Large-XLSR-53-Punjabi Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Punjabi using the [Common Voice](https://huggingface.co/datasets/common_voice) When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "pa-IN", split="test") processor = Wav2Vec2Processor.from_pretrained("gagan3012/wav2vec2-xlsr-punjabi") model = Wav2Vec2ForCTC.from_pretrained("gagan3012/wav2vec2-xlsr-punjabi") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): \\\\tspeech_array, sampling_rate = torchaudio.load(batch["path"]) \\\\tbatch["speech"] = resampler(speech_array).squeeze().numpy() \\\\treturn batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): \\\\tlogits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` #### Results: Prediction: ['ਹਵਾ ਲਾਤ ਵਿੱਚ ਪੰਦ ਛੇ ਇਖਲਾਟਕੀ ਮੁਜਰਮ ਸਨ', 'ਮੈ ਇ ਹਾ ਪੈਸੇ ਲੇਹੜ ਨਹੀਂ ਸੀ ਚੌਨਾ'] Reference: ['ਹਵਾਲਾਤ ਵਿੱਚ ਪੰਜ ਛੇ ਇਖ਼ਲਾਕੀ ਮੁਜਰਮ ਸਨ', 'ਮੈਂ ਇਹ ਪੈਸੇ ਲੈਣੇ ਨਹੀਂ ਸੀ ਚਾਹੁੰਦਾ'] ## Evaluation The model can be evaluated as follows on the {language} test data of Common Voice. # TODO: replace #TODO: replace language with your {language}, *e.g.* French ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re test_dataset = load_dataset("common_voice", "pa-IN", split="test") #TODO: replace {lang_id} in your language code here. Make sure the code is one of the *ISO codes* of [this](https://huggingface.co/languages) site. wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("gagan3012/wav2vec2-xlsr-punjabi") model = Wav2Vec2ForCTC.from_pretrained("gagan3012/wav2vec2-xlsr-punjabi") model.to("cuda") chars_to_ignore_regex = '[\\\\\\\\\\\\\\\\,\\\\\\\\\\\\\\\\?\\\\\\\\\\\\\\\\.\\\\\\\\\\\\\\\\!\\\\\\\\\\\\\\\\-\\\\\\\\\\\\\\\\;\\\\\\\\\\\\\\\\:\\\\\\\\\\\\\\\\"\\\\\\\\\\\\\\\\“]' # TODO: adapt this list to include all special characters you removed from the data resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): \\\\\\\\tbatch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() \\\\\\\\tspeech_array, sampling_rate = torchaudio.load(batch["path"]) \\\\\\\\tbatch["speech"] = resampler(speech_array).squeeze().numpy() \\\\\\\\treturn batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the aduio files as arrays def evaluate(batch): \\\\\\\\tinputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) \\\\\\\\twith torch.no_grad(): \\\\\\\\t\\\\\\\\tlogits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits \\\\\\\\tpred_ids = torch.argmax(logits, dim=-1) \\\\\\\\tbatch["pred_strings"] = processor.batch_decode(pred_ids) \\\\\\\\treturn batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ``` **Test Result**: 58.05 % ## Training The script used for training can be found [here](https://colab.research.google.com/drive/1A7Y20c1QkSHfdOmLXPMiOEpwlTjDZ7m5?usp=sharing)
gagan3012/xls-r-300m-pa
cf684782f31901700be698d8649c8b26608251e0
2022-01-31T15:27:47.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "pa-IN", "dataset:common_voice", "transformers", "mozilla-foundation/common_voice_8_0", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
gagan3012
null
gagan3012/xls-r-300m-pa
0
null
transformers
33,654
--- language: - pa-IN license: apache-2.0 tags: - automatic-speech-recognition - mozilla-foundation/common_voice_8_0 - generated_from_trainer datasets: - common_voice model-index: - name: xls-r-300m-pa results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xls-r-300m-pa This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - PA-IN dataset. It achieves the following results on the evaluation set: - Loss: 1.0443 - Wer: 0.5715 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7.5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2000 - num_epochs: 500.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:-----:|:---------------:|:------:| | 4.6694 | 19.22 | 500 | 4.0455 | 1.0 | | 3.3907 | 38.45 | 1000 | 3.2836 | 1.0 | | 2.0866 | 57.67 | 1500 | 1.2788 | 0.7715 | | 1.4106 | 76.9 | 2000 | 0.7866 | 0.6891 | | 1.1711 | 96.15 | 2500 | 0.6556 | 0.6272 | | 1.038 | 115.37 | 3000 | 0.6195 | 0.5680 | | 0.8989 | 134.6 | 3500 | 0.6563 | 0.5602 | | 0.8021 | 153.82 | 4000 | 0.6644 | 0.5327 | | 0.7161 | 173.07 | 4500 | 0.6844 | 0.5253 | | 0.6449 | 192.3 | 5000 | 0.7018 | 0.5331 | | 0.5659 | 211.52 | 5500 | 0.7451 | 0.5465 | | 0.5118 | 230.75 | 6000 | 0.7857 | 0.5386 | | 0.4385 | 249.97 | 6500 | 0.8062 | 0.5382 | | 0.3984 | 269.22 | 7000 | 0.8316 | 0.5621 | | 0.3666 | 288.45 | 7500 | 0.8736 | 0.5504 | | 0.3256 | 307.67 | 8000 | 0.9133 | 0.5688 | | 0.289 | 326.9 | 8500 | 0.9556 | 0.5684 | | 0.2663 | 346.15 | 9000 | 0.9344 | 0.5708 | | 0.2445 | 365.37 | 9500 | 0.9472 | 0.5590 | | 0.2289 | 384.6 | 10000 | 0.9713 | 0.5672 | | 0.2048 | 403.82 | 10500 | 0.9978 | 0.5762 | | 0.1857 | 423.07 | 11000 | 1.0230 | 0.5798 | | 0.1751 | 442.3 | 11500 | 1.0409 | 0.5755 | | 0.1688 | 461.52 | 12000 | 1.0445 | 0.5727 | | 0.1633 | 480.75 | 12500 | 1.0484 | 0.5739 | | 0.1488 | 499.97 | 13000 | 1.0443 | 0.5715 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2.dev0 - Tokenizers 0.11.0
gaotianyu1350/unsup-simcse-bert-large-uncased
c4294b4e7c593ed61814accee7e4837045ea7474
2021-05-19T17:11:09.000Z
[ "pytorch", "jax", "bert", "feature-extraction", "transformers" ]
feature-extraction
false
gaotianyu1350
null
gaotianyu1350/unsup-simcse-bert-large-uncased
0
null
transformers
33,655
Entry not found
gaotianyu1350/unsup-simcse-roberta-large
c0abe3578e9554542f25b4a0da9ed19188ec7a51
2021-05-20T16:29:43.000Z
[ "pytorch", "jax", "roberta", "feature-extraction", "transformers" ]
feature-extraction
false
gaotianyu1350
null
gaotianyu1350/unsup-simcse-roberta-large
0
null
transformers
33,656
Entry not found
gaussfer/test_simcse_new
d44790f8bce80e98087ce050bcfcf5d84f5791b1
2022-01-05T09:03:36.000Z
[ "pytorch", "bert", "feature-extraction", "sentence-transformers", "sentence-similarity", "transformers" ]
sentence-similarity
false
gaussfer
null
gaussfer/test_simcse_new
0
null
sentence-transformers
33,657
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # gaussfer/test_simcse_new This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('gaussfer/test_simcse_new') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('gaussfer/test_simcse_new') model = AutoModel.from_pretrained('gaussfer/test_simcse_new') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=gaussfer/test_simcse_new) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 875 with parameters: ``` {'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters: ``` {'scale': 20.0, 'similarity_fct': 'cos_sim'} ``` Parameters of the fit()-Method: ``` { "epochs": 40, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 10000, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
gayanin/bart-mlm-pubmed-15
f8380e42baed492b6960f730b5d9b88f1030e8d1
2021-11-22T20:33:06.000Z
[ "pytorch", "tensorboard", "bart", "text2text-generation", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
text2text-generation
false
gayanin
null
gayanin/bart-mlm-pubmed-15
0
null
transformers
33,658
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: bart-mlm-pubmed-15 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-mlm-pubmed-15 This model is a fine-tuned version of [facebook/bart-base](https://huggingface.co/facebook/bart-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.4822 - Rouge2 Precision: 0.7578 - Rouge2 Recall: 0.5933 - Rouge2 Fmeasure: 0.6511 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge2 Precision | Rouge2 Recall | Rouge2 Fmeasure | |:-------------:|:-----:|:----:|:---------------:|:----------------:|:-------------:|:---------------:| | 0.7006 | 1.0 | 663 | 0.5062 | 0.7492 | 0.5855 | 0.6434 | | 0.5709 | 2.0 | 1326 | 0.4811 | 0.7487 | 0.5879 | 0.6447 | | 0.5011 | 3.0 | 1989 | 0.4734 | 0.7541 | 0.5906 | 0.6483 | | 0.4164 | 4.0 | 2652 | 0.4705 | 0.7515 | 0.5876 | 0.6452 | | 0.3888 | 5.0 | 3315 | 0.4703 | 0.7555 | 0.5946 | 0.6515 | | 0.3655 | 6.0 | 3978 | 0.4725 | 0.7572 | 0.5943 | 0.6516 | | 0.319 | 7.0 | 4641 | 0.4733 | 0.7557 | 0.5911 | 0.6491 | | 0.3089 | 8.0 | 5304 | 0.4792 | 0.7577 | 0.5936 | 0.6513 | | 0.2907 | 9.0 | 5967 | 0.4799 | 0.7577 | 0.5931 | 0.6509 | | 0.275 | 10.0 | 6630 | 0.4822 | 0.7578 | 0.5933 | 0.6511 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.10.0+cu111 - Datasets 1.15.1 - Tokenizers 0.10.3
gayanin/bart-mlm-pubmed-35
429403835be043886f4d3c8bf2afc4ead6191f96
2021-11-22T21:16:10.000Z
[ "pytorch", "tensorboard", "bart", "text2text-generation", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
text2text-generation
false
gayanin
null
gayanin/bart-mlm-pubmed-35
0
null
transformers
33,659
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: bart-mlm-pubmed-35 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-mlm-pubmed-35 This model is a fine-tuned version of [facebook/bart-base](https://huggingface.co/facebook/bart-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.9359 - Rouge2 Precision: 0.5451 - Rouge2 Recall: 0.4232 - Rouge2 Fmeasure: 0.4666 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge2 Precision | Rouge2 Recall | Rouge2 Fmeasure | |:-------------:|:-----:|:----:|:---------------:|:----------------:|:-------------:|:---------------:| | 1.4156 | 1.0 | 663 | 1.0366 | 0.5165 | 0.3967 | 0.4394 | | 1.1773 | 2.0 | 1326 | 0.9841 | 0.5354 | 0.4168 | 0.4589 | | 1.0894 | 3.0 | 1989 | 0.9554 | 0.5346 | 0.4133 | 0.4563 | | 0.9359 | 4.0 | 2652 | 0.9440 | 0.5357 | 0.4163 | 0.4587 | | 0.8758 | 5.0 | 3315 | 0.9340 | 0.5428 | 0.4226 | 0.465 | | 0.8549 | 6.0 | 3978 | 0.9337 | 0.5385 | 0.422 | 0.4634 | | 0.7743 | 7.0 | 4641 | 0.9330 | 0.542 | 0.422 | 0.4647 | | 0.7465 | 8.0 | 5304 | 0.9315 | 0.5428 | 0.4231 | 0.4654 | | 0.7348 | 9.0 | 5967 | 0.9344 | 0.5462 | 0.4244 | 0.4674 | | 0.7062 | 10.0 | 6630 | 0.9359 | 0.5451 | 0.4232 | 0.4666 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.10.0+cu111 - Datasets 1.15.1 - Tokenizers 0.10.3
gayanin/bart-mlm-pubmed-45
92b87fe381d769a93361abedaaedf33e4cdfdea5
2021-11-22T21:54:14.000Z
[ "pytorch", "tensorboard", "bart", "text2text-generation", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
text2text-generation
false
gayanin
null
gayanin/bart-mlm-pubmed-45
0
null
transformers
33,660
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: bart-mlm-pubmed-45 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-mlm-pubmed-45 This model is a fine-tuned version of [facebook/bart-base](https://huggingface.co/facebook/bart-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.1797 - Rouge2 Precision: 0.4333 - Rouge2 Recall: 0.3331 - Rouge2 Fmeasure: 0.3684 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge2 Precision | Rouge2 Recall | Rouge2 Fmeasure | |:-------------:|:-----:|:----:|:---------------:|:----------------:|:-------------:|:---------------:| | 1.7989 | 1.0 | 663 | 1.3385 | 0.4097 | 0.3086 | 0.3444 | | 1.5072 | 2.0 | 1326 | 1.2582 | 0.4218 | 0.3213 | 0.3569 | | 1.4023 | 3.0 | 1989 | 1.2236 | 0.4207 | 0.3211 | 0.3562 | | 1.2205 | 4.0 | 2652 | 1.2025 | 0.4359 | 0.3331 | 0.3696 | | 1.1584 | 5.0 | 3315 | 1.1910 | 0.4304 | 0.3307 | 0.3658 | | 1.1239 | 6.0 | 3978 | 1.1830 | 0.4247 | 0.3279 | 0.3618 | | 1.0384 | 7.0 | 4641 | 1.1761 | 0.4308 | 0.3325 | 0.367 | | 1.0168 | 8.0 | 5304 | 1.1762 | 0.4314 | 0.3336 | 0.368 | | 0.9966 | 9.0 | 5967 | 1.1773 | 0.4335 | 0.3341 | 0.369 | | 0.961 | 10.0 | 6630 | 1.1797 | 0.4333 | 0.3331 | 0.3684 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.10.0+cu111 - Datasets 1.15.1 - Tokenizers 0.10.3
gayanin/t5-small-finetuned-pubmed
7d519c1f7334e135a9b7877b02322b6d9dccb294
2021-11-04T03:22:48.000Z
[ "pytorch", "tensorboard", "t5", "text2text-generation", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
text2text-generation
false
gayanin
null
gayanin/t5-small-finetuned-pubmed
0
null
transformers
33,661
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: t5-small-finetuned-pubmed results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-pubmed This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.6131 - Rouge2 Precision: 0.3 - Rouge2 Recall: 0.2152 - Rouge2 Fmeasure: 0.2379 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge2 Precision | Rouge2 Recall | Rouge2 Fmeasure | |:-------------:|:-----:|:----:|:---------------:|:----------------:|:-------------:|:---------------:| | 2.1335 | 1.0 | 563 | 1.7632 | 0.2716 | 0.1936 | 0.2135 | | 1.9373 | 2.0 | 1126 | 1.7037 | 0.2839 | 0.2068 | 0.2265 | | 1.8827 | 3.0 | 1689 | 1.6723 | 0.2901 | 0.2118 | 0.2316 | | 1.8257 | 4.0 | 2252 | 1.6503 | 0.2938 | 0.2115 | 0.2332 | | 1.8152 | 5.0 | 2815 | 1.6386 | 0.2962 | 0.2139 | 0.2357 | | 1.7939 | 6.0 | 3378 | 1.6284 | 0.2976 | 0.212 | 0.2354 | | 1.7845 | 7.0 | 3941 | 1.6211 | 0.2991 | 0.2155 | 0.2383 | | 1.7468 | 8.0 | 4504 | 1.6167 | 0.2994 | 0.217 | 0.239 | | 1.7464 | 9.0 | 5067 | 1.6137 | 0.3007 | 0.2154 | 0.2382 | | 1.744 | 10.0 | 5630 | 1.6131 | 0.3 | 0.2152 | 0.2379 | ### Framework versions - Transformers 4.12.3 - Pytorch 1.9.0+cu111 - Datasets 1.15.1 - Tokenizers 0.10.3
gayanin/t5-small-mlm-pubmed-15
f070f21ba96b8e9012919dc3d6ac42ca61777939
2021-11-22T21:10:30.000Z
[ "pytorch", "tensorboard", "t5", "text2text-generation", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
text2text-generation
false
gayanin
null
gayanin/t5-small-mlm-pubmed-15
0
null
transformers
33,662
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: t5-small-mlm-pubmed-15 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-mlm-pubmed-15 This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.5389 - Rouge2 Precision: 0.7165 - Rouge2 Recall: 0.5375 - Rouge2 Fmeasure: 0.5981 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 40 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge2 Precision | Rouge2 Recall | Rouge2 Fmeasure | |:-------------:|:-----:|:-----:|:---------------:|:----------------:|:-------------:|:---------------:| | 1.1024 | 0.75 | 500 | 0.7890 | 0.6854 | 0.4813 | 0.5502 | | 0.8788 | 1.51 | 1000 | 0.7176 | 0.6906 | 0.4989 | 0.5638 | | 0.8086 | 2.26 | 1500 | 0.6830 | 0.6872 | 0.5052 | 0.5663 | | 0.7818 | 3.02 | 2000 | 0.6650 | 0.6912 | 0.5104 | 0.5711 | | 0.7466 | 3.77 | 2500 | 0.6458 | 0.6965 | 0.5167 | 0.5774 | | 0.731 | 4.52 | 3000 | 0.6355 | 0.6955 | 0.5161 | 0.5763 | | 0.7126 | 5.28 | 3500 | 0.6249 | 0.6924 | 0.517 | 0.576 | | 0.6998 | 6.03 | 4000 | 0.6166 | 0.6995 | 0.5207 | 0.5809 | | 0.6855 | 6.79 | 4500 | 0.6076 | 0.6981 | 0.5215 | 0.5813 | | 0.676 | 7.54 | 5000 | 0.6015 | 0.7003 | 0.5242 | 0.5836 | | 0.6688 | 8.3 | 5500 | 0.5962 | 0.7004 | 0.5235 | 0.583 | | 0.6569 | 9.05 | 6000 | 0.5900 | 0.6997 | 0.5234 | 0.5827 | | 0.6503 | 9.8 | 6500 | 0.5880 | 0.703 | 0.5257 | 0.5856 | | 0.6455 | 10.56 | 7000 | 0.5818 | 0.7008 | 0.5259 | 0.5849 | | 0.635 | 11.31 | 7500 | 0.5796 | 0.7017 | 0.5271 | 0.5861 | | 0.6323 | 12.07 | 8000 | 0.5769 | 0.7053 | 0.5276 | 0.5877 | | 0.6241 | 12.82 | 8500 | 0.5730 | 0.7011 | 0.5243 | 0.5838 | | 0.6224 | 13.57 | 9000 | 0.5696 | 0.7046 | 0.5286 | 0.5879 | | 0.6139 | 14.33 | 9500 | 0.5685 | 0.7047 | 0.5295 | 0.5886 | | 0.6118 | 15.08 | 10000 | 0.5653 | 0.704 | 0.5297 | 0.5886 | | 0.6089 | 15.84 | 10500 | 0.5633 | 0.703 | 0.5272 | 0.5865 | | 0.598 | 16.59 | 11000 | 0.5613 | 0.7059 | 0.5293 | 0.5889 | | 0.6003 | 17.35 | 11500 | 0.5602 | 0.7085 | 0.532 | 0.5918 | | 0.5981 | 18.1 | 12000 | 0.5587 | 0.7106 | 0.5339 | 0.5938 | | 0.5919 | 18.85 | 12500 | 0.5556 | 0.708 | 0.5319 | 0.5914 | | 0.5897 | 19.61 | 13000 | 0.5556 | 0.7106 | 0.5327 | 0.5931 | | 0.5899 | 20.36 | 13500 | 0.5526 | 0.7114 | 0.534 | 0.5939 | | 0.5804 | 21.12 | 14000 | 0.5521 | 0.7105 | 0.5328 | 0.5928 | | 0.5764 | 21.87 | 14500 | 0.5520 | 0.715 | 0.537 | 0.5976 | | 0.5793 | 22.62 | 15000 | 0.5506 | 0.713 | 0.5346 | 0.5951 | | 0.5796 | 23.38 | 15500 | 0.5492 | 0.7124 | 0.5352 | 0.5952 | | 0.5672 | 24.13 | 16000 | 0.5482 | 0.7124 | 0.5346 | 0.5948 | | 0.5737 | 24.89 | 16500 | 0.5470 | 0.7134 | 0.5352 | 0.5956 | | 0.5685 | 25.64 | 17000 | 0.5463 | 0.7117 | 0.5346 | 0.5946 | | 0.5658 | 26.4 | 17500 | 0.5457 | 0.7145 | 0.5359 | 0.5965 | | 0.5657 | 27.15 | 18000 | 0.5447 | 0.7145 | 0.5367 | 0.597 | | 0.5645 | 27.9 | 18500 | 0.5441 | 0.7141 | 0.5362 | 0.5964 | | 0.565 | 28.66 | 19000 | 0.5436 | 0.7151 | 0.5367 | 0.5972 | | 0.5579 | 29.41 | 19500 | 0.5426 | 0.7162 | 0.5378 | 0.5982 | | 0.563 | 30.17 | 20000 | 0.5424 | 0.7155 | 0.5373 | 0.5977 | | 0.556 | 30.92 | 20500 | 0.5418 | 0.7148 | 0.536 | 0.5966 | | 0.5576 | 31.67 | 21000 | 0.5411 | 0.7141 | 0.5356 | 0.5961 | | 0.5546 | 32.43 | 21500 | 0.5409 | 0.7149 | 0.5364 | 0.5967 | | 0.556 | 33.18 | 22000 | 0.5405 | 0.7143 | 0.5356 | 0.596 | | 0.5536 | 33.94 | 22500 | 0.5401 | 0.7165 | 0.5377 | 0.5982 | | 0.5527 | 34.69 | 23000 | 0.5397 | 0.7188 | 0.5389 | 0.5999 | | 0.5531 | 35.44 | 23500 | 0.5395 | 0.7172 | 0.538 | 0.5989 | | 0.5508 | 36.2 | 24000 | 0.5392 | 0.7166 | 0.538 | 0.5985 | | 0.5495 | 36.95 | 24500 | 0.5391 | 0.7176 | 0.5387 | 0.5993 | | 0.5539 | 37.71 | 25000 | 0.5391 | 0.7169 | 0.5372 | 0.598 | | 0.5452 | 38.46 | 25500 | 0.5390 | 0.7179 | 0.5384 | 0.5991 | | 0.5513 | 39.22 | 26000 | 0.5390 | 0.717 | 0.5377 | 0.5984 | | 0.5506 | 39.97 | 26500 | 0.5389 | 0.7165 | 0.5375 | 0.5981 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.10.0+cu111 - Datasets 1.15.1 - Tokenizers 0.10.3
gayanin/t5-small-mlm-pubmed-35
65b895e8e4aee48cc576ca045ff4f6be27029654
2021-11-22T22:24:30.000Z
[ "pytorch", "tensorboard", "t5", "text2text-generation", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
text2text-generation
false
gayanin
null
gayanin/t5-small-mlm-pubmed-35
0
null
transformers
33,663
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: t5-small-mlm-pubmed-35 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-mlm-pubmed-35 This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.1101 - Rouge2 Precision: 0.4758 - Rouge2 Recall: 0.3498 - Rouge2 Fmeasure: 0.3927 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 40 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge2 Precision | Rouge2 Recall | Rouge2 Fmeasure | |:-------------:|:-----:|:-----:|:---------------:|:----------------:|:-------------:|:---------------:| | 1.8404 | 0.75 | 500 | 1.5005 | 0.4265 | 0.2786 | 0.3273 | | 1.6858 | 1.51 | 1000 | 1.4216 | 0.4318 | 0.2946 | 0.3404 | | 1.6071 | 2.26 | 1500 | 1.3777 | 0.4472 | 0.3148 | 0.3598 | | 1.5551 | 3.02 | 2000 | 1.3360 | 0.4406 | 0.3168 | 0.3586 | | 1.5116 | 3.77 | 2500 | 1.3128 | 0.4523 | 0.3234 | 0.3671 | | 1.4837 | 4.52 | 3000 | 1.2937 | 0.4477 | 0.3215 | 0.3645 | | 1.4513 | 5.28 | 3500 | 1.2766 | 0.4511 | 0.3262 | 0.3689 | | 1.4336 | 6.03 | 4000 | 1.2626 | 0.4548 | 0.3283 | 0.3718 | | 1.4149 | 6.79 | 4500 | 1.2449 | 0.4495 | 0.3274 | 0.3687 | | 1.3977 | 7.54 | 5000 | 1.2349 | 0.4507 | 0.3305 | 0.3712 | | 1.3763 | 8.3 | 5500 | 1.2239 | 0.4519 | 0.3266 | 0.3688 | | 1.371 | 9.05 | 6000 | 1.2171 | 0.4546 | 0.3305 | 0.3727 | | 1.3501 | 9.8 | 6500 | 1.2080 | 0.4575 | 0.3329 | 0.3755 | | 1.3443 | 10.56 | 7000 | 1.2017 | 0.4576 | 0.3314 | 0.3742 | | 1.326 | 11.31 | 7500 | 1.1926 | 0.4578 | 0.333 | 0.3757 | | 1.3231 | 12.07 | 8000 | 1.1866 | 0.4606 | 0.3357 | 0.3782 | | 1.3089 | 12.82 | 8500 | 1.1816 | 0.4591 | 0.3338 | 0.3765 | | 1.3007 | 13.57 | 9000 | 1.1764 | 0.4589 | 0.3361 | 0.3777 | | 1.2943 | 14.33 | 9500 | 1.1717 | 0.4641 | 0.3382 | 0.3811 | | 1.2854 | 15.08 | 10000 | 1.1655 | 0.4617 | 0.3378 | 0.38 | | 1.2777 | 15.84 | 10500 | 1.1612 | 0.464 | 0.3401 | 0.3823 | | 1.2684 | 16.59 | 11000 | 1.1581 | 0.4608 | 0.3367 | 0.3789 | | 1.2612 | 17.35 | 11500 | 1.1554 | 0.4623 | 0.3402 | 0.3818 | | 1.2625 | 18.1 | 12000 | 1.1497 | 0.4613 | 0.3381 | 0.3802 | | 1.2529 | 18.85 | 12500 | 1.1465 | 0.4671 | 0.3419 | 0.3848 | | 1.2461 | 19.61 | 13000 | 1.1431 | 0.4646 | 0.3399 | 0.3824 | | 1.2415 | 20.36 | 13500 | 1.1419 | 0.4659 | 0.341 | 0.3835 | | 1.2375 | 21.12 | 14000 | 1.1377 | 0.4693 | 0.3447 | 0.3873 | | 1.2315 | 21.87 | 14500 | 1.1353 | 0.4672 | 0.3433 | 0.3855 | | 1.2263 | 22.62 | 15000 | 1.1333 | 0.467 | 0.3433 | 0.3854 | | 1.2214 | 23.38 | 15500 | 1.1305 | 0.4682 | 0.3446 | 0.3869 | | 1.2202 | 24.13 | 16000 | 1.1291 | 0.4703 | 0.3465 | 0.3888 | | 1.2155 | 24.89 | 16500 | 1.1270 | 0.472 | 0.348 | 0.3903 | | 1.2064 | 25.64 | 17000 | 1.1261 | 0.4724 | 0.3479 | 0.3905 | | 1.2173 | 26.4 | 17500 | 1.1236 | 0.4734 | 0.3485 | 0.3912 | | 1.1994 | 27.15 | 18000 | 1.1220 | 0.4739 | 0.3486 | 0.3915 | | 1.2018 | 27.9 | 18500 | 1.1217 | 0.4747 | 0.3489 | 0.3921 | | 1.2045 | 28.66 | 19000 | 1.1194 | 0.4735 | 0.3488 | 0.3916 | | 1.1949 | 29.41 | 19500 | 1.1182 | 0.4732 | 0.3484 | 0.3911 | | 1.19 | 30.17 | 20000 | 1.1166 | 0.4724 | 0.3479 | 0.3904 | | 1.1932 | 30.92 | 20500 | 1.1164 | 0.4753 | 0.3494 | 0.3924 | | 1.1952 | 31.67 | 21000 | 1.1147 | 0.4733 | 0.3485 | 0.3911 | | 1.1922 | 32.43 | 21500 | 1.1146 | 0.475 | 0.3494 | 0.3923 | | 1.1889 | 33.18 | 22000 | 1.1132 | 0.4765 | 0.3499 | 0.3933 | | 1.1836 | 33.94 | 22500 | 1.1131 | 0.4768 | 0.351 | 0.3939 | | 1.191 | 34.69 | 23000 | 1.1127 | 0.4755 | 0.3495 | 0.3926 | | 1.1811 | 35.44 | 23500 | 1.1113 | 0.4748 | 0.349 | 0.3919 | | 1.1864 | 36.2 | 24000 | 1.1107 | 0.4751 | 0.3494 | 0.3921 | | 1.1789 | 36.95 | 24500 | 1.1103 | 0.4756 | 0.3499 | 0.3927 | | 1.1819 | 37.71 | 25000 | 1.1101 | 0.4758 | 0.35 | 0.3932 | | 1.1862 | 38.46 | 25500 | 1.1099 | 0.4755 | 0.3497 | 0.3926 | | 1.1764 | 39.22 | 26000 | 1.1101 | 0.4759 | 0.3498 | 0.3928 | | 1.1819 | 39.97 | 26500 | 1.1101 | 0.4758 | 0.3498 | 0.3927 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.10.0+cu111 - Datasets 1.15.1 - Tokenizers 0.10.3
gchhablani/wav2vec2-large-xlsr-or
bdeb0c534df834da1ba679b1dbacef9a1bc6042c
2021-07-06T05:17:20.000Z
[ "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "or", "dataset:common_voice", "transformers", "audio", "speech", "xlsr-fine-tuning-week", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
gchhablani
null
gchhablani/wav2vec2-large-xlsr-or
0
null
transformers
33,664
--- language: or datasets: - common_voice metrics: - wer tags: - audio - automatic-speech-recognition - speech - xlsr-fine-tuning-week license: apache-2.0 model-index: - name: XLSR Wav2Vec2 Large 53 Odia by Gunjan Chhablani results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice or type: common_voice args: or metrics: - name: Test WER type: wer value: 52.64 --- # Wav2Vec2-Large-XLSR-53-Odia Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Odia using the [Common Voice](https://huggingface.co/datasets/common_voice). When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "or", split="test[:2%]") processor = Wav2Vec2Processor.from_pretrained("gchhablani/wav2vec2-large-xlsr-or") model = Wav2Vec2ForCTC.from_pretrained("gchhablani/wav2vec2-large-xlsr-or") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` ## Evaluation The model can be evaluated as follows on the Odia test data of Common Voice. ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re test_dataset = load_dataset("common_voice", "or", split="test") wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("gchhablani/wav2vec2-large-xlsr-or") model = Wav2Vec2ForCTC.from_pretrained("gchhablani/wav2vec2-large-xlsr-or") model.to("cuda") chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“\%\‘\”\�\–\…\'\_\’\।\|]' resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the aduio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ``` **Test Result**: 52.64 % ## Training The Common Voice `train` and `validation` datasets were used for training.The colab notebook used can be found [here](https://colab.research.google.com/drive/1s8DrwgB5y4Z7xXIrPXo1rQA5_1OZ8WD5?usp=sharing).
gchhablani/wav2vec2-large-xlsr-rm-sursilv
5a7ae7b5e63a5c837829a986345481e225591929
2021-07-06T05:27:40.000Z
[ "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "rm-sursilv", "dataset:common_voice", "transformers", "audio", "speech", "xlsr-fine-tuning-week", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
gchhablani
null
gchhablani/wav2vec2-large-xlsr-rm-sursilv
0
null
transformers
33,665
--- language: rm-sursilv datasets: - common_voice metrics: - wer tags: - audio - automatic-speech-recognition - speech - xlsr-fine-tuning-week license: apache-2.0 model-index: - name: Wav2Vec2 Large 53 Romansh Sursilvan by Gunjan Chhablani results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice rm-sursilv type: common_voice args: rm-sursilv metrics: - name: Test WER type: wer value: 25.16 --- # Wav2Vec2-Large-XLSR-53-Romansh-Sursilvan Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Romansh Sursilvan using the [Common Voice](https://huggingface.co/datasets/common_voice) dataset. When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "rm-sursilv", split="test[:2%]") processor = Wav2Vec2Processor.from_pretrained("gchhablani/wav2vec2-large-xlsr-rm-sursilv") model = Wav2Vec2ForCTC.from_pretrained("gchhablani/wav2vec2-large-xlsr-rm-sursilv") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` ## Evaluation The model can be evaluated as follows on the Portuguese test data of Common Voice. ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re test_dataset = load_dataset("common_voice", "rm-sursilv", split="test") wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("gchhablani/wav2vec2-large-xlsr-rm-sursilv") model = Wav2Vec2ForCTC.from_pretrained("gchhablani/wav2vec2-large-xlsr-rm-sursilv") model.to("cuda") chars_to_ignore_regex = '[\\,\\?\\.\\!\\-\\;\\:\\"\\“\\%\\‘\\”\\�\\…\\«\\»\\–]' resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the aduio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ``` **Test Result**: 25.16 % ## Training The Common Voice `train` and `validation` datasets were used for training. The code can be found [here](https://colab.research.google.com/drive/1dpZr_GzRowCciUbzM3GnW04TNKnB7vrP?usp=sharing).
gfdream/dialogpt-small-familyguy
a39cb4a7dd8581c0e61a64c3d376c88251be86ea
2021-09-14T23:33:22.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
gfdream
null
gfdream/dialogpt-small-familyguy
0
null
transformers
33,666
--- tags: - conversational --- # Family Guy (Peter) DialoGPT Model
ggosline/t5-small-herblabels
3101a2ebbeb2ea824a7d70c9151074311354bb3d
2021-12-08T00:16:57.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
text2text-generation
false
ggosline
null
ggosline/t5-small-herblabels
0
null
transformers
33,667
--- license: apache-2.0 tags: - generated_from_trainer metrics: - rouge model-index: - name: t5-small-herblabels results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-herblabels This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.4823 - Rouge1: 3.0759 - Rouge2: 1.0495 - Rougel: 3.0758 - Rougelsum: 3.0431 - Gen Len: 18.9716 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:| | No log | 1.0 | 264 | 1.6010 | 2.4276 | 0.5658 | 2.3546 | 2.3099 | 18.9091 | | 2.5052 | 2.0 | 528 | 1.0237 | 2.9016 | 0.3395 | 2.8221 | 2.783 | 18.9673 | | 2.5052 | 3.0 | 792 | 0.7793 | 2.962 | 0.3091 | 2.9375 | 2.8786 | 18.9588 | | 1.1552 | 4.0 | 1056 | 0.6530 | 2.98 | 0.4375 | 2.9584 | 2.8711 | 18.9588 | | 1.1552 | 5.0 | 1320 | 0.5863 | 3.0023 | 0.5882 | 2.987 | 2.9155 | 18.9588 | | 0.8659 | 6.0 | 1584 | 0.5428 | 3.0576 | 0.8019 | 3.0494 | 2.9989 | 18.9716 | | 0.8659 | 7.0 | 1848 | 0.5145 | 3.0808 | 0.9476 | 3.0719 | 3.0237 | 18.9716 | | 0.747 | 8.0 | 2112 | 0.4962 | 3.0748 | 1.0032 | 3.0683 | 3.0359 | 18.9716 | | 0.747 | 9.0 | 2376 | 0.4856 | 3.0702 | 1.0196 | 3.0665 | 3.0328 | 18.9716 | | 0.6987 | 10.0 | 2640 | 0.4823 | 3.0759 | 1.0495 | 3.0758 | 3.0431 | 18.9716 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.10.0 - Datasets 1.16.1 - Tokenizers 0.10.3
ghadeermobasher/BC5CDR-Chemical_Modified_BioM-ELECTRA-Base-Discriminator
7b9cd74e3b0ba39ce6adf12024f57805d29b2be3
2022-01-22T23:47:01.000Z
[ "pytorch", "electra", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
ghadeermobasher
null
ghadeermobasher/BC5CDR-Chemical_Modified_BioM-ELECTRA-Base-Discriminator
0
null
transformers
33,668
Entry not found
ghadeermobasher/CRAFT-Chem_ImbalancedBioM-ELECTRA-Base-Discriminator
c8ed19fd0bef8890cf8f49a6cc19d44fe2a728b5
2022-01-23T01:55:20.000Z
[ "pytorch", "electra", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
ghadeermobasher
null
ghadeermobasher/CRAFT-Chem_ImbalancedBioM-ELECTRA-Base-Discriminator
0
null
transformers
33,669
Entry not found
ghazikhanihamed/TCDB-BERT
36cf782d1496a5b40aaa4113fcf89af0d615679b
2022-02-19T16:20:12.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
ghazikhanihamed
null
ghazikhanihamed/TCDB-BERT
0
null
transformers
33,670
Entry not found
ghazikhanihamed/TransportersBERT
84488b26da5828cd5d9a94154e8d3419bc471a01
2022-02-18T11:39:32.000Z
[ "pytorch", "bert", "transformers" ]
null
false
ghazikhanihamed
null
ghazikhanihamed/TransportersBERT
0
null
transformers
33,671
This repository belongs to TransportersBERT from ActTrans publication. Taju, Semmy Wellem, Syed Muazzam Ali Shah, and Yu-Yen Ou. “ActTRANS: Functional Classification in Active Transport Proteins Based on Transfer Learning and Contextual Representations.” Computational Biology and Chemistry 93 (August 1, 2021): 107537. https://doi.org/10.1016/j.compbiolchem.2021.107537.
ghhostboy/DialoGPT-medium-connorDBH3-21
5ba7b65a620fd29bb50f65d8fbef67f26cb2841e
2021-11-27T04:29:16.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
ghhostboy
null
ghhostboy/DialoGPT-medium-connorDBH3-21
0
null
transformers
33,672
--- tags: - conversational --- # Connor
giacomomiolo/electramed_base_scivocab_750
aac2aa9460031bb894b52caa39d6529de28bdcf8
2020-09-30T11:47:57.000Z
[ "pytorch", "tf", "electra", "pretraining", "transformers" ]
null
false
giacomomiolo
null
giacomomiolo/electramed_base_scivocab_750
0
null
transformers
33,673
Entry not found
gizmo-dev/DialoGPT-small-jake
b3885bdae8312001dcd5da5b40576656d7b7c8d7
2021-08-28T10:16:41.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
gizmo-dev
null
gizmo-dev/DialoGPT-small-jake
0
null
transformers
33,674
--- tags: - conversational --- # Jake Peralta DialoGPT model
glasses/deit_base_patch16_224
8c4d6fb2a2506f481d7273e69d8f6e43dc5efdab
2021-04-22T18:44:42.000Z
[ "pytorch", "arxiv:2010.11929", "transformers" ]
null
false
glasses
null
glasses/deit_base_patch16_224
0
null
transformers
33,675
# deit_base_patch16_224 Implementation of DeiT proposed in [Training data-efficient image transformers & distillation through attention](https://arxiv.org/pdf/2010.11929.pdf) An attention based distillation is proposed where a new token is added to the model, the [dist]{.title-ref} token. ![image](https://github.com/FrancescoSaverioZuppichini/glasses/blob/develop/docs/_static/images/DeiT.png?raw=true) ``` {.sourceCode .} DeiT.deit_tiny_patch16_224() DeiT.deit_small_patch16_224() DeiT.deit_base_patch16_224() DeiT.deit_base_patch16_384() ```
glasses/deit_base_patch16_384
a160baa533a2c7b7b87d14f6ea97f4626da8639c
2021-04-22T18:44:58.000Z
[ "pytorch", "arxiv:2010.11929", "transformers" ]
null
false
glasses
null
glasses/deit_base_patch16_384
0
null
transformers
33,676
# deit_base_patch16_384 Implementation of DeiT proposed in [Training data-efficient image transformers & distillation through attention](https://arxiv.org/pdf/2010.11929.pdf) An attention based distillation is proposed where a new token is added to the model, the [dist]{.title-ref} token. ![image](https://github.com/FrancescoSaverioZuppichini/glasses/blob/develop/docs/_static/images/DeiT.png?raw=true) ``` {.sourceCode .} DeiT.deit_tiny_patch16_224() DeiT.deit_small_patch16_224() DeiT.deit_base_patch16_224() DeiT.deit_base_patch16_384() ```
glasses/deit_small_patch16_224
a2b6964107f0eb4afaee873969f7fe0f1ee79ea4
2021-04-22T18:44:25.000Z
[ "pytorch", "arxiv:2010.11929", "transformers" ]
null
false
glasses
null
glasses/deit_small_patch16_224
0
null
transformers
33,677
# deit_small_patch16_224 Implementation of DeiT proposed in [Training data-efficient image transformers & distillation through attention](https://arxiv.org/pdf/2010.11929.pdf) An attention based distillation is proposed where a new token is added to the model, the [dist]{.title-ref} token. ![image](https://github.com/FrancescoSaverioZuppichini/glasses/blob/develop/docs/_static/images/DeiT.png?raw=true) ``` {.sourceCode .} DeiT.deit_tiny_patch16_224() DeiT.deit_small_patch16_224() DeiT.deit_base_patch16_224() DeiT.deit_base_patch16_384() ```
glasses/eca_resnet50d
13bd25b5877737d0f1695d112cdd9d4c98893bae
2021-11-30T20:23:56.000Z
[ "pytorch", "transformers" ]
null
false
glasses
null
glasses/eca_resnet50d
0
null
transformers
33,678
Entry not found
glasses/regnetx_016
cf66d97a7ad317998015fbb985143e1546832d53
2021-11-30T20:26:57.000Z
[ "pytorch", "arxiv:2003.13678", "transformers" ]
null
false
glasses
null
glasses/regnetx_016
0
null
transformers
33,679
# regnetx_016 Implementation of RegNet proposed in [Designing Network Design Spaces](https://arxiv.org/abs/2003.13678) The main idea is to start with a high dimensional search space and iteratively reduce the search space by empirically apply constrains based on the best performing models sampled by the current search space. The resulting models are light, accurate, and faster than EfficientNets (up to 5x times!) For example, to go from $AnyNet_A$ to $AnyNet_B$ they fixed the bottleneck ratio $b_i$ for all stage $i$. The following table shows all the restrictions applied from one search space to the next one. ![image](https://github.com/FrancescoSaverioZuppichini/glasses/blob/develop/docs/_static/images/RegNetDesignSpaceTable.png?raw=true) The paper is really well written and very interesting, I highly recommended read it. ``` python ResNet.regnetx_002() ResNet.regnetx_004() ResNet.regnetx_006() ResNet.regnetx_008() ResNet.regnetx_016() ResNet.regnetx_040() ResNet.regnetx_064() ResNet.regnetx_080() ResNet.regnetx_120() ResNet.regnetx_160() ResNet.regnetx_320() # Y variants (with SE) ResNet.regnety_002() # ... ResNet.regnetx_320() You can easily customize your model ``` Examples: ``` python # change activation RegNet.regnetx_004(activation = nn.SELU) # change number of classes (default is 1000 ) RegNet.regnetx_004(n_classes=100) # pass a different block RegNet.regnetx_004(block=RegNetYBotteneckBlock) # change the steam model = RegNet.regnetx_004(stem=ResNetStemC) change shortcut model = RegNet.regnetx_004(block=partial(RegNetYBotteneckBlock, shortcut=ResNetShorcutD)) # store each feature x = torch.rand((1, 3, 224, 224)) # get features model = RegNet.regnetx_004() # first call .features, this will activate the forward hooks and tells the model you'll like to get the features model.encoder.features model(torch.randn((1,3,224,224))) # get the features from the encoder features = model.encoder.features print([x.shape for x in features]) #[torch.Size([1, 32, 112, 112]), torch.Size([1, 32, 56, 56]), torch.Size([1, 64, 28, 28]), torch.Size([1, 160, 14, 14])] ```
glasses/regnety_006
0a70fe056933af6649c2a22731b5aaf43012b896
2021-12-01T07:46:05.000Z
[ "pytorch", "arxiv:2003.13678", "transformers" ]
null
false
glasses
null
glasses/regnety_006
0
null
transformers
33,680
# regnety_006 Implementation of RegNet proposed in [Designing Network Design Spaces](https://arxiv.org/abs/2003.13678) The main idea is to start with a high dimensional search space and iteratively reduce the search space by empirically apply constrains based on the best performing models sampled by the current search space. The resulting models are light, accurate, and faster than EfficientNets (up to 5x times!) For example, to go from $AnyNet_A$ to $AnyNet_B$ they fixed the bottleneck ratio $b_i$ for all stage $i$. The following table shows all the restrictions applied from one search space to the next one. ![image](https://github.com/FrancescoSaverioZuppichini/glasses/blob/develop/docs/_static/images/RegNetDesignSpaceTable.png?raw=true) The paper is really well written and very interesting, I highly recommended read it. ``` python ResNet.regnetx_002() ResNet.regnetx_004() ResNet.regnetx_006() ResNet.regnetx_008() ResNet.regnetx_016() ResNet.regnetx_040() ResNet.regnetx_064() ResNet.regnetx_080() ResNet.regnetx_120() ResNet.regnetx_160() ResNet.regnetx_320() # Y variants (with SE) ResNet.regnety_002() # ... ResNet.regnetx_320() You can easily customize your model ``` Examples: ``` python # change activation RegNet.regnetx_004(activation = nn.SELU) # change number of classes (default is 1000 ) RegNet.regnetx_004(n_classes=100) # pass a different block RegNet.regnetx_004(block=RegNetYBotteneckBlock) # change the steam model = RegNet.regnetx_004(stem=ResNetStemC) change shortcut model = RegNet.regnetx_004(block=partial(RegNetYBotteneckBlock, shortcut=ResNetShorcutD)) # store each feature x = torch.rand((1, 3, 224, 224)) # get features model = RegNet.regnetx_004() # first call .features, this will activate the forward hooks and tells the model you'll like to get the features model.encoder.features model(torch.randn((1,3,224,224))) # get the features from the encoder features = model.encoder.features print([x.shape for x in features]) #[torch.Size([1, 32, 112, 112]), torch.Size([1, 32, 56, 56]), torch.Size([1, 64, 28, 28]), torch.Size([1, 160, 14, 14])] ```
glasses/resnext101_32x8d
72729573dbbeaf1bd692695ac1d1f4102de02ad1
2021-11-30T20:15:04.000Z
[ "pytorch", "arxiv:1611.05431", "transformers" ]
null
false
glasses
null
glasses/resnext101_32x8d
0
null
transformers
33,681
# resnext101_32x8d Implementation of ResNetXt proposed in [\"Aggregated Residual Transformation for Deep Neural Networks\"](https://arxiv.org/pdf/1611.05431.pdf) Create a default model ``` python ResNetXt.resnext50_32x4d() ResNetXt.resnext101_32x8d() # create a resnetxt18_32x4d ResNetXt.resnet18(block=ResNetXtBottleNeckBlock, groups=32, base_width=4) ``` Examples: : ``` python # change activation ResNetXt.resnext50_32x4d(activation = nn.SELU) # change number of classes (default is 1000 ) ResNetXt.resnext50_32x4d(n_classes=100) # pass a different block ResNetXt.resnext50_32x4d(block=SENetBasicBlock) # change the initial convolution model = ResNetXt.resnext50_32x4d model.encoder.gate.conv1 = nn.Conv2d(3, 64, kernel_size=3) # store each feature x = torch.rand((1, 3, 224, 224)) model = ResNetXt.resnext50_32x4d() # first call .features, this will activate the forward hooks and tells the model you'll like to get the features model.encoder.features model(torch.randn((1,3,224,224))) # get the features from the encoder features = model.encoder.features print([x.shape for x in features]) #[torch.Size([1, 64, 112, 112]), torch.Size([1, 64, 56, 56]), torch.Size([1, 128, 28, 28]), torch.Size([1, 256, 14, 14])] ```
glasses/vgg13_bn
e09a0a7152c3925e6fafbabfaeb3839019a3be0b
2021-12-01T08:02:05.000Z
[ "pytorch", "transformers" ]
null
false
glasses
null
glasses/vgg13_bn
0
null
transformers
33,682
# vgg13_bn Implementation of VGG proposed in [Very Deep Convolutional Networks For Large-Scale Image Recognition](https://arxiv.org/pdf/1409.1556.pdf) ``` python VGG.vgg11() VGG.vgg13() VGG.vgg16() VGG.vgg19() VGG.vgg11_bn() VGG.vgg13_bn() VGG.vgg16_bn() VGG.vgg19_bn() ``` Please be aware that the [bn]{.title-ref} models uses BatchNorm but they are very old and people back then don\'t know the bias is superfluous in a conv followed by a batchnorm. Examples: ``` python # change activation VGG.vgg11(activation = nn.SELU) # change number of classes (default is 1000 ) VGG.vgg11(n_classes=100) # pass a different block from nn.models.classification.senet import SENetBasicBlock VGG.vgg11(block=SENetBasicBlock) # store the features tensor after every block ```
glasses/vit_base_patch16_384
eed350bba31b52e44b7d19bc64d546ec824a823a
2021-12-01T08:26:46.000Z
[ "pytorch", "arxiv:2010.11929", "transformers" ]
null
false
glasses
null
glasses/vit_base_patch16_384
0
null
transformers
33,683
# vit_base_patch16_384 Implementation of Vision Transformer (ViT) proposed in [An Image Is Worth 16x16 Words: Transformers For Image Recognition At Scale](https://arxiv.org/pdf/2010.11929.pdf) The following image from the authors shows the architecture. ![image](https://github.com/FrancescoSaverioZuppichini/glasses/blob/develop/docs/_static/images/ViT.png?raw=true) ``` python ViT.vit_small_patch16_224() ViT.vit_base_patch16_224() ViT.vit_base_patch16_384() ViT.vit_base_patch32_384() ViT.vit_huge_patch16_224() ViT.vit_huge_patch32_384() ViT.vit_large_patch16_224() ViT.vit_large_patch16_384() ViT.vit_large_patch32_384() ``` Examples: ``` python # change activation ViT.vit_base_patch16_224(activation = nn.SELU) # change number of classes (default is 1000 ) ViT.vit_base_patch16_224(n_classes=100) # pass a different block, default is TransformerEncoderBlock ViT.vit_base_patch16_224(block=MyCoolTransformerBlock) # get features model = ViT.vit_base_patch16_224 # first call .features, this will activate the forward hooks and tells the model you'll like to get the features model.encoder.features model(torch.randn((1,3,224,224))) # get the features from the encoder features = model.encoder.features print([x.shape for x in features]) #[[torch.Size([1, 197, 768]), torch.Size([1, 197, 768]), ...] # change the tokens, you have to subclass ViTTokens class MyTokens(ViTTokens): def __init__(self, emb_size: int): super().__init__(emb_size) self.my_new_token = nn.Parameter(torch.randn(1, 1, emb_size)) ViT(tokens=MyTokens) ```
glasses/vit_large_patch16_224
a975743fb7b441be565d7532b9fd2fda8635e4bd
2021-04-22T18:42:35.000Z
[ "pytorch", "arxiv:2010.11929", "transformers" ]
null
false
glasses
null
glasses/vit_large_patch16_224
0
null
transformers
33,684
# vit_large_patch16_224 Implementation of Vision Transformer (ViT) proposed in [An Image Is Worth 16x16 Words: Transformers For Image Recognition At Scale](https://arxiv.org/pdf/2010.11929.pdf) The following image from the authors shows the architecture. ![image](https://github.com/FrancescoSaverioZuppichini/glasses/blob/develop/docs/_static/images/ViT.png?raw=true) ``` python ViT.vit_small_patch16_224() ViT.vit_base_patch16_224() ViT.vit_base_patch16_384() ViT.vit_base_patch32_384() ViT.vit_huge_patch16_224() ViT.vit_huge_patch32_384() ViT.vit_large_patch16_224() ViT.vit_large_patch16_384() ViT.vit_large_patch32_384() ``` Examples: ``` python # change activation ViT.vit_base_patch16_224(activation = nn.SELU) # change number of classes (default is 1000 ) ViT.vit_base_patch16_224(n_classes=100) # pass a different block, default is TransformerEncoderBlock ViT.vit_base_patch16_224(block=MyCoolTransformerBlock) # get features model = ViT.vit_base_patch16_224 # first call .features, this will activate the forward hooks and tells the model you'll like to get the features model.encoder.features model(torch.randn((1,3,224,224))) # get the features from the encoder features = model.encoder.features print([x.shape for x in features]) #[[torch.Size([1, 197, 768]), torch.Size([1, 197, 768]), ...] # change the tokens, you have to subclass ViTTokens class MyTokens(ViTTokens): def __init__(self, emb_size: int): super().__init__(emb_size) self.my_new_token = nn.Parameter(torch.randn(1, 1, emb_size)) ViT(tokens=MyTokens) ```
glasses/vit_large_patch16_384
193c63a7c3aeff06b8a47495faad33a83ad1e364
2021-04-22T18:43:25.000Z
[ "pytorch", "arxiv:2010.11929", "transformers" ]
null
false
glasses
null
glasses/vit_large_patch16_384
0
null
transformers
33,685
# vit_large_patch16_384 Implementation of Vision Transformer (ViT) proposed in [An Image Is Worth 16x16 Words: Transformers For Image Recognition At Scale](https://arxiv.org/pdf/2010.11929.pdf) The following image from the authors shows the architecture. ![image](https://github.com/FrancescoSaverioZuppichini/glasses/blob/develop/docs/_static/images/ViT.png?raw=true) ``` python ViT.vit_small_patch16_224() ViT.vit_base_patch16_224() ViT.vit_base_patch16_384() ViT.vit_base_patch32_384() ViT.vit_huge_patch16_224() ViT.vit_huge_patch32_384() ViT.vit_large_patch16_224() ViT.vit_large_patch16_384() ViT.vit_large_patch32_384() ``` Examples: ``` python # change activation ViT.vit_base_patch16_224(activation = nn.SELU) # change number of classes (default is 1000 ) ViT.vit_base_patch16_224(n_classes=100) # pass a different block, default is TransformerEncoderBlock ViT.vit_base_patch16_224(block=MyCoolTransformerBlock) # get features model = ViT.vit_base_patch16_224 # first call .features, this will activate the forward hooks and tells the model you'll like to get the features model.encoder.features model(torch.randn((1,3,224,224))) # get the features from the encoder features = model.encoder.features print([x.shape for x in features]) #[[torch.Size([1, 197, 768]), torch.Size([1, 197, 768]), ...] # change the tokens, you have to subclass ViTTokens class MyTokens(ViTTokens): def __init__(self, emb_size: int): super().__init__(emb_size) self.my_new_token = nn.Parameter(torch.randn(1, 1, emb_size)) ViT(tokens=MyTokens) ```
glob-asr/test-asr-sp-model
06a12ac26c85f73aaf1e2e8e93ef0ee25604aed5
2022-01-28T20:46:59.000Z
[ "pytorch", "wav2vec2", "feature-extraction", "transformers" ]
feature-extraction
false
glob-asr
null
glob-asr/test-asr-sp-model
0
null
transformers
33,686
Entry not found
gngpostalsrvc/BERiTmodel2
4b0d0418776894a2483ba5b7534322a10b3da95b
2021-12-22T17:25:25.000Z
[ "pytorch", "tensorboard", "roberta", "fill-mask", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
fill-mask
false
gngpostalsrvc
null
gngpostalsrvc/BERiTmodel2
0
null
transformers
33,687
--- license: mit tags: - generated_from_trainer model-index: - name: BERiTmodel2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # BERiTmodel2 This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 3.1508 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 280 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 3.1924 | 1.0 | 2854 | 3.4329 | | 3.0936 | 2.0 | 5708 | 3.5036 | | 2.9998 | 3.0 | 8562 | 3.1906 | | 2.9064 | 4.0 | 11416 | 3.4867 | | 2.8493 | 5.0 | 14270 | 3.2027 | | 2.7538 | 6.0 | 17124 | 2.9772 | | 2.7273 | 7.0 | 19978 | 2.9950 | | 2.7399 | 8.0 | 22832 | 2.9690 | | 2.67 | 9.0 | 25686 | 3.0311 | | 2.6388 | 10.0 | 28540 | 3.1508 | ### Framework versions - Transformers 4.14.1 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
gokulkarthik/distilbert-base-uncased-finetuned-squad
8de82646b339fc7f3a67bc032ff0c1467e145dc0
2021-09-29T15:13:52.000Z
[ "pytorch", "tensorboard", "distilbert", "question-answering", "dataset:squad", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
question-answering
false
gokulkarthik
null
gokulkarthik/distilbert-base-uncased-finetuned-squad
0
null
transformers
33,688
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: distilbert-base-uncased-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-squad This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Framework versions - Transformers 4.11.0 - Pytorch 1.9.0+cu102 - Datasets 1.12.1 - Tokenizers 0.10.3
goodjw/klue-bert-mlm
451afde04a32165ed465df79fdbed0f5c75473c9
2021-10-02T05:18:01.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
goodjw
null
goodjw/klue-bert-mlm
0
1
transformers
33,689
Entry not found
goodjw/klue-roberta-large-tapt
4311c1c3cd555818ec2b84a4a30fe3ec7cb3ca45
2021-10-06T06:22:40.000Z
[ "pytorch", "roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
goodjw
null
goodjw/klue-roberta-large-tapt
0
null
transformers
33,690
Entry not found
goodjw/klue-roberta-mlm
af64935da25fab9997064cdd9b4f18e9baa60400
2021-10-05T04:17:02.000Z
[ "pytorch", "roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
goodjw
null
goodjw/klue-roberta-mlm
0
1
transformers
33,691
Entry not found
goodjw/koelectra-mlm
1668a75be7d81a60f132293f5d1764be51cdd9f6
2021-10-06T01:17:58.000Z
[ "pytorch", "electra", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
goodjw
null
goodjw/koelectra-mlm
0
null
transformers
33,692
Entry not found
google/multiberts-seed_0-step_120k
0cf4a460cb80f7054f426a34f1e430a9de19a9cc
2021-11-05T23:47:25.000Z
[ "pytorch", "tf", "bert", "pretraining", "en", "arxiv:2106.16163", "arxiv:1908.08962", "transformers", "multiberts", "multiberts-seed_0", "multiberts-seed_0-step_120k", "license:apache-2.0" ]
null
false
google
null
google/multiberts-seed_0-step_120k
0
null
transformers
33,693
--- language: en tags: - multiberts - multiberts-seed_0 - multiberts-seed_0-step_120k license: apache-2.0 --- # MultiBERTs, Intermediate Checkpoint - Seed 0, Step 120k MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as [the original BERT model](https://github.com/google-research/bert) but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through [http://goo.gle/multiberts](http://goo.gle/multiberts). We describe them in our paper [The MultiBERTs: BERT Reproductions for Robustness Analysis](https://arxiv.org/abs/2106.16163). This is model #0, captured at step 120k (max: 2000k, i.e., 2M steps). ## Model Description This model was captured during a reproduction of [BERT-base uncased](https://github.com/google-research/bert), for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure for the fully trained model are similar to [BERT-base uncased](https://github.com/google-research/bert). Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for [Turc et al., 2019](https://arxiv.org/abs/1908.08962). This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our [technical report](https://arxiv.org/abs/2106.16163) for more details. ### How to use Using code from [BERT-base uncased](https://huggingface.co/bert-base-uncased), here is an example based on Tensorflow: ``` from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_0-step_120k') model = TFBertModel.from_pretrained("google/multiberts-seed_0-step_120k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` PyTorch version: ``` from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_0-step_120k') model = BertModel.from_pretrained("google/multiberts-seed_0-step_120k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` ## Citation info ```bibtex @article{sellam2021multiberts, title={The MultiBERTs: BERT Reproductions for Robustness Analysis}, author={Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick}, journal={arXiv preprint arXiv:2106.16163}, year={2021} } ```
google/multiberts-seed_0-step_140k
e6f8f170bf6295091ff2cfce1723b3b3329b9fec
2021-11-05T23:49:02.000Z
[ "pytorch", "tf", "bert", "pretraining", "en", "arxiv:2106.16163", "arxiv:1908.08962", "transformers", "multiberts", "multiberts-seed_0", "multiberts-seed_0-step_140k", "license:apache-2.0" ]
null
false
google
null
google/multiberts-seed_0-step_140k
0
null
transformers
33,694
--- language: en tags: - multiberts - multiberts-seed_0 - multiberts-seed_0-step_140k license: apache-2.0 --- # MultiBERTs, Intermediate Checkpoint - Seed 0, Step 140k MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as [the original BERT model](https://github.com/google-research/bert) but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through [http://goo.gle/multiberts](http://goo.gle/multiberts). We describe them in our paper [The MultiBERTs: BERT Reproductions for Robustness Analysis](https://arxiv.org/abs/2106.16163). This is model #0, captured at step 140k (max: 2000k, i.e., 2M steps). ## Model Description This model was captured during a reproduction of [BERT-base uncased](https://github.com/google-research/bert), for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure for the fully trained model are similar to [BERT-base uncased](https://github.com/google-research/bert). Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for [Turc et al., 2019](https://arxiv.org/abs/1908.08962). This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our [technical report](https://arxiv.org/abs/2106.16163) for more details. ### How to use Using code from [BERT-base uncased](https://huggingface.co/bert-base-uncased), here is an example based on Tensorflow: ``` from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_0-step_140k') model = TFBertModel.from_pretrained("google/multiberts-seed_0-step_140k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` PyTorch version: ``` from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_0-step_140k') model = BertModel.from_pretrained("google/multiberts-seed_0-step_140k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` ## Citation info ```bibtex @article{sellam2021multiberts, title={The MultiBERTs: BERT Reproductions for Robustness Analysis}, author={Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick}, journal={arXiv preprint arXiv:2106.16163}, year={2021} } ```
google/multiberts-seed_0-step_1500k
1aac894fd46ed128076db103a331475420a04767
2021-11-06T00:16:49.000Z
[ "pytorch", "tf", "bert", "pretraining", "en", "arxiv:2106.16163", "arxiv:1908.08962", "transformers", "multiberts", "multiberts-seed_0", "multiberts-seed_0-step_1500k", "license:apache-2.0" ]
null
false
google
null
google/multiberts-seed_0-step_1500k
0
null
transformers
33,695
--- language: en tags: - multiberts - multiberts-seed_0 - multiberts-seed_0-step_1500k license: apache-2.0 --- # MultiBERTs, Intermediate Checkpoint - Seed 0, Step 1500k MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as [the original BERT model](https://github.com/google-research/bert) but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through [http://goo.gle/multiberts](http://goo.gle/multiberts). We describe them in our paper [The MultiBERTs: BERT Reproductions for Robustness Analysis](https://arxiv.org/abs/2106.16163). This is model #0, captured at step 1500k (max: 2000k, i.e., 2M steps). ## Model Description This model was captured during a reproduction of [BERT-base uncased](https://github.com/google-research/bert), for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure for the fully trained model are similar to [BERT-base uncased](https://github.com/google-research/bert). Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for [Turc et al., 2019](https://arxiv.org/abs/1908.08962). This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our [technical report](https://arxiv.org/abs/2106.16163) for more details. ### How to use Using code from [BERT-base uncased](https://huggingface.co/bert-base-uncased), here is an example based on Tensorflow: ``` from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_0-step_1500k') model = TFBertModel.from_pretrained("google/multiberts-seed_0-step_1500k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` PyTorch version: ``` from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_0-step_1500k') model = BertModel.from_pretrained("google/multiberts-seed_0-step_1500k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` ## Citation info ```bibtex @article{sellam2021multiberts, title={The MultiBERTs: BERT Reproductions for Robustness Analysis}, author={Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick}, journal={arXiv preprint arXiv:2106.16163}, year={2021} } ```
google/multiberts-seed_0-step_300k
ba194e26ef19c2ac7a22c2c1142ed8c2b2f271c5
2021-11-05T23:56:05.000Z
[ "pytorch", "tf", "bert", "pretraining", "en", "arxiv:2106.16163", "arxiv:1908.08962", "transformers", "multiberts", "multiberts-seed_0", "multiberts-seed_0-step_300k", "license:apache-2.0" ]
null
false
google
null
google/multiberts-seed_0-step_300k
0
null
transformers
33,696
--- language: en tags: - multiberts - multiberts-seed_0 - multiberts-seed_0-step_300k license: apache-2.0 --- # MultiBERTs, Intermediate Checkpoint - Seed 0, Step 300k MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as [the original BERT model](https://github.com/google-research/bert) but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through [http://goo.gle/multiberts](http://goo.gle/multiberts). We describe them in our paper [The MultiBERTs: BERT Reproductions for Robustness Analysis](https://arxiv.org/abs/2106.16163). This is model #0, captured at step 300k (max: 2000k, i.e., 2M steps). ## Model Description This model was captured during a reproduction of [BERT-base uncased](https://github.com/google-research/bert), for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure for the fully trained model are similar to [BERT-base uncased](https://github.com/google-research/bert). Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for [Turc et al., 2019](https://arxiv.org/abs/1908.08962). This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our [technical report](https://arxiv.org/abs/2106.16163) for more details. ### How to use Using code from [BERT-base uncased](https://huggingface.co/bert-base-uncased), here is an example based on Tensorflow: ``` from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_0-step_300k') model = TFBertModel.from_pretrained("google/multiberts-seed_0-step_300k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` PyTorch version: ``` from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_0-step_300k') model = BertModel.from_pretrained("google/multiberts-seed_0-step_300k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` ## Citation info ```bibtex @article{sellam2021multiberts, title={The MultiBERTs: BERT Reproductions for Robustness Analysis}, author={Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick}, journal={arXiv preprint arXiv:2106.16163}, year={2021} } ```
google/multiberts-seed_0-step_400k
5e9c41a7458165ad3230c44bb53efdfc79796c29
2021-11-05T23:57:51.000Z
[ "pytorch", "tf", "bert", "pretraining", "en", "arxiv:2106.16163", "arxiv:1908.08962", "transformers", "multiberts", "multiberts-seed_0", "multiberts-seed_0-step_400k", "license:apache-2.0" ]
null
false
google
null
google/multiberts-seed_0-step_400k
0
null
transformers
33,697
--- language: en tags: - multiberts - multiberts-seed_0 - multiberts-seed_0-step_400k license: apache-2.0 --- # MultiBERTs, Intermediate Checkpoint - Seed 0, Step 400k MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as [the original BERT model](https://github.com/google-research/bert) but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through [http://goo.gle/multiberts](http://goo.gle/multiberts). We describe them in our paper [The MultiBERTs: BERT Reproductions for Robustness Analysis](https://arxiv.org/abs/2106.16163). This is model #0, captured at step 400k (max: 2000k, i.e., 2M steps). ## Model Description This model was captured during a reproduction of [BERT-base uncased](https://github.com/google-research/bert), for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure for the fully trained model are similar to [BERT-base uncased](https://github.com/google-research/bert). Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for [Turc et al., 2019](https://arxiv.org/abs/1908.08962). This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our [technical report](https://arxiv.org/abs/2106.16163) for more details. ### How to use Using code from [BERT-base uncased](https://huggingface.co/bert-base-uncased), here is an example based on Tensorflow: ``` from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_0-step_400k') model = TFBertModel.from_pretrained("google/multiberts-seed_0-step_400k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` PyTorch version: ``` from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_0-step_400k') model = BertModel.from_pretrained("google/multiberts-seed_0-step_400k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` ## Citation info ```bibtex @article{sellam2021multiberts, title={The MultiBERTs: BERT Reproductions for Robustness Analysis}, author={Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick}, journal={arXiv preprint arXiv:2106.16163}, year={2021} } ```
google/multiberts-seed_1-step_1100k
4c6ea4453f497729d2308ff565d41dd64e2276c2
2021-11-06T01:05:05.000Z
[ "pytorch", "tf", "bert", "pretraining", "en", "arxiv:2106.16163", "arxiv:1908.08962", "transformers", "multiberts", "multiberts-seed_1", "multiberts-seed_1-step_1100k", "license:apache-2.0" ]
null
false
google
null
google/multiberts-seed_1-step_1100k
0
null
transformers
33,698
--- language: en tags: - multiberts - multiberts-seed_1 - multiberts-seed_1-step_1100k license: apache-2.0 --- # MultiBERTs, Intermediate Checkpoint - Seed 1, Step 1100k MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as [the original BERT model](https://github.com/google-research/bert) but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through [http://goo.gle/multiberts](http://goo.gle/multiberts). We describe them in our paper [The MultiBERTs: BERT Reproductions for Robustness Analysis](https://arxiv.org/abs/2106.16163). This is model #1, captured at step 1100k (max: 2000k, i.e., 2M steps). ## Model Description This model was captured during a reproduction of [BERT-base uncased](https://github.com/google-research/bert), for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure for the fully trained model are similar to [BERT-base uncased](https://github.com/google-research/bert). Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for [Turc et al., 2019](https://arxiv.org/abs/1908.08962). This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our [technical report](https://arxiv.org/abs/2106.16163) for more details. ### How to use Using code from [BERT-base uncased](https://huggingface.co/bert-base-uncased), here is an example based on Tensorflow: ``` from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_1-step_1100k') model = TFBertModel.from_pretrained("google/multiberts-seed_1-step_1100k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` PyTorch version: ``` from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_1-step_1100k') model = BertModel.from_pretrained("google/multiberts-seed_1-step_1100k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` ## Citation info ```bibtex @article{sellam2021multiberts, title={The MultiBERTs: BERT Reproductions for Robustness Analysis}, author={Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick}, journal={arXiv preprint arXiv:2106.16163}, year={2021} } ```
google/multiberts-seed_1-step_120k
7a41b87e6d9246dcd586b59f83cd151f06552b77
2021-11-06T00:43:27.000Z
[ "pytorch", "tf", "bert", "pretraining", "en", "arxiv:2106.16163", "arxiv:1908.08962", "transformers", "multiberts", "multiberts-seed_1", "multiberts-seed_1-step_120k", "license:apache-2.0" ]
null
false
google
null
google/multiberts-seed_1-step_120k
0
null
transformers
33,699
--- language: en tags: - multiberts - multiberts-seed_1 - multiberts-seed_1-step_120k license: apache-2.0 --- # MultiBERTs, Intermediate Checkpoint - Seed 1, Step 120k MultiBERTs is a collection of checkpoints and a statistical library to support robust research on BERT. We provide 25 BERT-base models trained with similar hyper-parameters as [the original BERT model](https://github.com/google-research/bert) but with different random seeds, which causes variations in the initial weights and order of training instances. The aim is to distinguish findings that apply to a specific artifact (i.e., a particular instance of the model) from those that apply to the more general procedure. We also provide 140 intermediate checkpoints captured during the course of pre-training (we saved 28 checkpoints for the first 5 runs). The models were originally released through [http://goo.gle/multiberts](http://goo.gle/multiberts). We describe them in our paper [The MultiBERTs: BERT Reproductions for Robustness Analysis](https://arxiv.org/abs/2106.16163). This is model #1, captured at step 120k (max: 2000k, i.e., 2M steps). ## Model Description This model was captured during a reproduction of [BERT-base uncased](https://github.com/google-research/bert), for English: it is a Transformers model pretrained on a large corpus of English data, using the Masked Language Modelling (MLM) and the Next Sentence Prediction (NSP) objectives. The intended uses, limitations, training data and training procedure for the fully trained model are similar to [BERT-base uncased](https://github.com/google-research/bert). Two major differences with the original model: * We pre-trained the MultiBERTs models for 2 million steps using sequence length 512 (instead of 1 million steps using sequence length 128 then 512). * We used an alternative version of Wikipedia and Books Corpus, initially collected for [Turc et al., 2019](https://arxiv.org/abs/1908.08962). This is a best-effort reproduction, and so it is probable that differences with the original model have gone unnoticed. The performance of MultiBERTs on GLUE after full training is oftentimes comparable to that of original BERT, but we found significant differences on the dev set of SQuAD (MultiBERTs outperforms original BERT). See our [technical report](https://arxiv.org/abs/2106.16163) for more details. ### How to use Using code from [BERT-base uncased](https://huggingface.co/bert-base-uncased), here is an example based on Tensorflow: ``` from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_1-step_120k') model = TFBertModel.from_pretrained("google/multiberts-seed_1-step_120k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` PyTorch version: ``` from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('google/multiberts-seed_1-step_120k') model = BertModel.from_pretrained("google/multiberts-seed_1-step_120k") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` ## Citation info ```bibtex @article{sellam2021multiberts, title={The MultiBERTs: BERT Reproductions for Robustness Analysis}, author={Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick}, journal={arXiv preprint arXiv:2106.16163}, year={2021} } ```