modelId
stringlengths 4
112
| sha
stringlengths 40
40
| lastModified
stringlengths 24
24
| tags
sequence | pipeline_tag
stringclasses 29
values | private
bool 1
class | author
stringlengths 2
38
⌀ | config
null | id
stringlengths 4
112
| downloads
float64 0
36.8M
⌀ | likes
float64 0
712
⌀ | library_name
stringclasses 17
values | __index_level_0__
int64 0
38.5k
| readme
stringlengths 0
186k
|
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
hkunlp/from_all_T5_large_prefix_kvret2 | a1b21cbfa011d0517e76bcdfb5fabd6be211c196 | 2022-01-11T18:19:15.000Z | [
"pytorch",
"t5",
"transformers"
] | null | false | hkunlp | null | hkunlp/from_all_T5_large_prefix_kvret2 | 0 | null | transformers | 33,800 | Entry not found |
hkunlp/from_all_T5_large_prefix_logic2text2 | 0481344521c275a9287bf7369eb532807392bf70 | 2022-01-11T18:19:36.000Z | [
"pytorch",
"t5",
"transformers"
] | null | false | hkunlp | null | hkunlp/from_all_T5_large_prefix_logic2text2 | 0 | null | transformers | 33,801 | Entry not found |
hkunlp/from_all_T5_large_prefix_mmqa2 | 3a26e6875db0fc5dc3fc0faf9e1fc08698747624 | 2022-01-11T17:21:55.000Z | [
"pytorch",
"t5",
"transformers"
] | null | false | hkunlp | null | hkunlp/from_all_T5_large_prefix_mmqa2 | 0 | null | transformers | 33,802 | Entry not found |
hkunlp/from_all_T5_large_prefix_mtop2 | 07d51cb81f691a9ba15a0077687409c17798c93f | 2022-01-11T16:30:16.000Z | [
"pytorch",
"t5",
"transformers"
] | null | false | hkunlp | null | hkunlp/from_all_T5_large_prefix_mtop2 | 0 | null | transformers | 33,803 | Entry not found |
hkunlp/from_all_T5_large_prefix_multiwoz2 | c0a64e6d649dcf7ddfea290db05817e415ad4289 | 2022-01-11T18:20:05.000Z | [
"pytorch",
"t5",
"transformers"
] | null | false | hkunlp | null | hkunlp/from_all_T5_large_prefix_multiwoz2 | 0 | null | transformers | 33,804 | Entry not found |
hkunlp/from_all_T5_large_prefix_sparc_with_cell_value2 | 46c05f6d2b50f3ef8c4d47502e704426d5e26e64 | 2022-01-11T16:28:40.000Z | [
"pytorch",
"t5",
"transformers"
] | null | false | hkunlp | null | hkunlp/from_all_T5_large_prefix_sparc_with_cell_value2 | 0 | null | transformers | 33,805 | Entry not found |
hkunlp/from_all_T5_large_prefix_spider_with_cell_value2 | 92896102abe9729804176a6b3b109d8d4dce6f51 | 2022-01-11T16:29:41.000Z | [
"pytorch",
"t5",
"transformers"
] | null | false | hkunlp | null | hkunlp/from_all_T5_large_prefix_spider_with_cell_value2 | 0 | null | transformers | 33,806 | Entry not found |
hkunlp/from_all_T5_large_prefix_sqa2 | 0e8f1af9bd1e65825bc90a1387bfcc3292d767a4 | 2022-01-11T18:19:49.000Z | [
"pytorch",
"t5",
"transformers"
] | null | false | hkunlp | null | hkunlp/from_all_T5_large_prefix_sqa2 | 0 | null | transformers | 33,807 | Entry not found |
hkunlp/from_all_T5_large_prefix_tab_fact2 | b0834ac57c1670d39bf0cf77ce4f1ba3f5864711 | 2022-01-11T18:19:27.000Z | [
"pytorch",
"t5",
"transformers"
] | null | false | hkunlp | null | hkunlp/from_all_T5_large_prefix_tab_fact2 | 0 | null | transformers | 33,808 | Entry not found |
hkunlp/from_all_T5_large_prefix_totto2 | f979e8b73be50173158bc2aea6c3b0e0e20dae58 | 2022-01-11T17:23:16.000Z | [
"pytorch",
"t5",
"transformers"
] | null | false | hkunlp | null | hkunlp/from_all_T5_large_prefix_totto2 | 0 | null | transformers | 33,809 | Entry not found |
hkunlp/from_all_T5_large_prefix_wikisql2 | 36fc31f9fb16c673cf5945d2488a0a635ae373bf | 2022-01-11T17:23:20.000Z | [
"pytorch",
"t5",
"transformers"
] | null | false | hkunlp | null | hkunlp/from_all_T5_large_prefix_wikisql2 | 0 | null | transformers | 33,810 | Entry not found |
hkunlp/from_all_T5_large_prefix_wikitq2 | ce8969b8c80e18041b601c9e94c234401fad7a2d | 2022-01-11T16:30:56.000Z | [
"pytorch",
"t5",
"transformers"
] | null | false | hkunlp | null | hkunlp/from_all_T5_large_prefix_wikitq2 | 0 | null | transformers | 33,811 | Entry not found |
hogger32/xlmRoberta-for-VietnameseQA | e6ed28b25f096c6566c7ea73f811330a50602543 | 2022-01-12T14:43:00.000Z | [
"pytorch",
"tensorboard",
"xlm-roberta",
"question-answering",
"dataset:squad_v2",
"transformers",
"generated_from_trainer",
"license:mit",
"model-index",
"autotrain_compatible"
] | question-answering | false | hogger32 | null | hogger32/xlmRoberta-for-VietnameseQA | 0 | null | transformers | 33,812 | ---
license: mit
tags:
- generated_from_trainer
datasets:
- squad_v2
model-index:
- name: xlmRoberta-for-VietnameseQA
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# xlmRoberta-for-VietnameseQA
This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the UIT-Viquad_v2 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8315
## Model description
Fine-tuned by Honganh Nguyen (FPTU AI Club).
## Intended uses & limitations
More information needed
## Training and evaluation data
Credits to Viet Nguyen (FPTU AI Club) for the training and evaluation data.
Training data: https://github.com/vietnguyen012/QA_viuit/blob/main/train.json
Evaluation data: https://github.com/vietnguyen012/QA_viuit/blob/main/trial/trial.json
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 12
- eval_batch_size: 12
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 1.5701 | 1.0 | 2534 | 1.2220 |
| 1.2942 | 2.0 | 5068 | 0.9698 |
| 1.0693 | 3.0 | 7602 | 0.8315 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.0+cu111
- Datasets 1.17.0
- Tokenizers 0.10.3
|
honeyd3wy/kobart-titlenaming-v0.2 | 48210d9dc7592ce37722d01b90a3f61124207cd2 | 2021-12-15T11:52:49.000Z | [
"pytorch",
"bart",
"text2text-generation",
"transformers",
"autotrain_compatible"
] | text2text-generation | false | honeyd3wy | null | honeyd3wy/kobart-titlenaming-v0.2 | 0 | null | transformers | 33,813 | Entry not found |
honghungle/Kobart_capstone | 1be8009d0da6c92c41ea4f45f0509e7e060bf173 | 2021-11-16T17:57:14.000Z | [
"pytorch",
"bart",
"text2text-generation",
"transformers",
"autotrain_compatible"
] | text2text-generation | false | honghungle | null | honghungle/Kobart_capstone | 0 | null | transformers | 33,814 | Entry not found |
houssaineamzil/DialoGPT-small-joey | f72d089787a3cbe8df082ef331d112ca56d8c6f0 | 2021-09-09T23:54:51.000Z | [
"pytorch",
"gpt2",
"text-generation",
"transformers",
"conversational"
] | conversational | false | houssaineamzil | null | houssaineamzil/DialoGPT-small-joey | 0 | null | transformers | 33,815 | ---
tags:
- conversational
---
#Joey DialoGPT Model |
hrdipto/wav2vec2-base-timit-demo-colab | 756b6d61e5ae022f43eb7eb7ceedddd125497360 | 2021-12-22T08:25:34.000Z | [
"pytorch",
"tensorboard",
"wav2vec2",
"automatic-speech-recognition",
"transformers",
"generated_from_trainer",
"license:apache-2.0",
"model-index"
] | automatic-speech-recognition | false | hrdipto | null | hrdipto/wav2vec2-base-timit-demo-colab | 0 | null | transformers | 33,816 | ---
license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: wav2vec2-base-timit-demo-colab
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-base-timit-demo-colab
This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4241
- Wer: 0.3381
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 30
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 3.7749 | 4.0 | 500 | 2.0639 | 1.0018 |
| 0.9252 | 8.0 | 1000 | 0.4853 | 0.4821 |
| 0.3076 | 12.0 | 1500 | 0.4507 | 0.4044 |
| 0.1732 | 16.0 | 2000 | 0.4315 | 0.3688 |
| 0.1269 | 20.0 | 2500 | 0.4481 | 0.3559 |
| 0.1087 | 24.0 | 3000 | 0.4354 | 0.3464 |
| 0.0832 | 28.0 | 3500 | 0.4241 | 0.3381 |
### Framework versions
- Transformers 4.11.3
- Pytorch 1.10.0+cu111
- Datasets 1.13.3
- Tokenizers 0.10.3
|
hrdipto/wav2vec2-xls-r-tf-left-right-shuru-word-level | 9d807749c25f42b4d3b5c1e574f0da958b50d496 | 2022-01-28T09:54:27.000Z | [
"pytorch",
"tensorboard",
"wav2vec2",
"automatic-speech-recognition",
"transformers",
"generated_from_trainer",
"license:apache-2.0",
"model-index"
] | automatic-speech-recognition | false | hrdipto | null | hrdipto/wav2vec2-xls-r-tf-left-right-shuru-word-level | 0 | null | transformers | 33,817 | ---
license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: wav2vec2-xls-r-tf-left-right-shuru-word-level
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-xls-r-tf-left-right-shuru-word-level
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.0504
- Wer: 0.6859
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 100
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 23.217 | 23.81 | 500 | 1.3437 | 0.6859 |
| 1.1742 | 47.62 | 1000 | 1.0397 | 0.6859 |
| 1.0339 | 71.43 | 1500 | 1.0155 | 0.6859 |
| 0.9909 | 95.24 | 2000 | 1.0504 | 0.6859 |
### Framework versions
- Transformers 4.11.3
- Pytorch 1.10.0+cu111
- Datasets 1.13.3
- Tokenizers 0.10.3
|
hrdipto/wav2vec2-xls-r-tf-left-right-trainer | cd682ebd859e132ff37d9bdf83a4662018af1277 | 2022-01-19T20:06:38.000Z | [
"pytorch",
"tensorboard",
"wav2vec2",
"automatic-speech-recognition",
"transformers",
"generated_from_trainer",
"license:apache-2.0",
"model-index"
] | automatic-speech-recognition | false | hrdipto | null | hrdipto/wav2vec2-xls-r-tf-left-right-trainer | 0 | null | transformers | 33,818 | ---
license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: wav2vec2-xls-r-tf-left-right-trainer
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-xls-r-tf-left-right-trainer
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the None dataset.
It achieves the following results on the evaluation set:
- eval_loss: 0.0090
- eval_wer: 0.0037
- eval_runtime: 11.2686
- eval_samples_per_second: 71.703
- eval_steps_per_second: 8.963
- epoch: 21.05
- step: 4000
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 30
- mixed_precision_training: Native AMP
### Framework versions
- Transformers 4.11.3
- Pytorch 1.10.0+cu111
- Datasets 1.13.3
- Tokenizers 0.10.3
|
hrdipto/wav2vec2-xls-r-timit-tokenizer-base | e020a6131bb5f662e332e7dc0d1a9ad818a78110 | 2021-12-22T07:19:26.000Z | [
"pytorch",
"tensorboard",
"wav2vec2",
"automatic-speech-recognition",
"transformers",
"generated_from_trainer",
"license:apache-2.0",
"model-index"
] | automatic-speech-recognition | false | hrdipto | null | hrdipto/wav2vec2-xls-r-timit-tokenizer-base | 0 | null | transformers | 33,819 | ---
license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: wav2vec2-xls-r-timit-tokenizer-base
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-xls-r-timit-tokenizer-base
This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 3.0828
- Wer: 1.0
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 30
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:---:|
| 3.3134 | 4.03 | 500 | 3.0814 | 1.0 |
| 2.9668 | 8.06 | 1000 | 3.0437 | 1.0 |
| 2.9604 | 12.1 | 1500 | 3.0337 | 1.0 |
| 2.9619 | 16.13 | 2000 | 3.0487 | 1.0 |
| 2.9588 | 20.16 | 2500 | 3.0859 | 1.0 |
| 2.957 | 24.19 | 3000 | 3.0921 | 1.0 |
| 2.9555 | 28.22 | 3500 | 3.0828 | 1.0 |
### Framework versions
- Transformers 4.11.3
- Pytorch 1.10.0+cu111
- Datasets 1.13.3
- Tokenizers 0.10.3
|
hs788/wav2vec2-base-timit-demo-colab | 67eb1853657ba9838d613cc9a196fae4e4f3a253 | 2022-01-07T13:34:11.000Z | [
"pytorch",
"tensorboard",
"wav2vec2",
"automatic-speech-recognition",
"transformers",
"generated_from_trainer",
"license:apache-2.0",
"model-index"
] | automatic-speech-recognition | false | hs788 | null | hs788/wav2vec2-base-timit-demo-colab | 0 | null | transformers | 33,820 | ---
license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: wav2vec2-base-timit-demo-colab
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-base-timit-demo-colab
This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4125
- Wer: 0.3607
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 64
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 30
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 3.2018 | 7.94 | 500 | 1.3144 | 0.8508 |
| 0.4671 | 15.87 | 1000 | 0.4737 | 0.4160 |
| 0.1375 | 23.81 | 1500 | 0.4125 | 0.3607 |
### Framework versions
- Transformers 4.11.3
- Pytorch 1.10.0+cu111
- Datasets 1.13.3
- Tokenizers 0.10.3
|
huawei-noah/JABER | 48edcf59b0782ccf2b6f7b43fdf084dbfbd75b65 | 2022-01-04T20:19:57.000Z | [
"pytorch",
"arxiv:2112.04329"
] | null | false | huawei-noah | null | huawei-noah/JABER | 0 | 1 | null | 33,821 | # Overview
<p align="center">
<img src="https://avatars.githubusercontent.com/u/12619994?s=200&v=4" width="150">
</p>
<!-- -------------------------------------------------------------------------------- -->
JABER (Junior Arabic BERt) is a 12-layer Arabic pretrained Language Model.
JABER obtained rank one on [ALUE leaderboard](https://www.alue.org/leaderboard) at `01/09/2021`.
This model is **only compatible** with the code in [this github repo](https://github.com/huawei-noah/Pretrained-Language-Model/tree/master/JABER-PyTorch) (not supported by the [Transformers](https://github.com/huggingface/transformers) library)
## Citation
Please cite the following [paper](https://arxiv.org/abs/2112.04329) when using our code and model:
``` bibtex
@misc{ghaddar2021jaber,
title={JABER: Junior Arabic BERt},
author={Abbas Ghaddar and Yimeng Wu and Ahmad Rashid and Khalil Bibi and Mehdi Rezagholizadeh and Chao Xing and Yasheng Wang and Duan Xinyu and Zhefeng Wang and Baoxing Huai and Xin Jiang and Qun Liu and Philippe Langlais},
year={2021},
eprint={2112.04329},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
``` |
huggingartists/5nizza | aee16f8ffb0d3614f48f860cb20ec80ee35bea28 | 2021-09-12T12:34:26.000Z | [
"pytorch",
"jax",
"gpt2",
"text-generation",
"en",
"dataset:huggingartists/5nizza",
"transformers",
"huggingartists",
"lyrics",
"lm-head",
"causal-lm"
] | text-generation | false | huggingartists | null | huggingartists/5nizza | 0 | null | transformers | 33,822 | ---
language: en
datasets:
- huggingartists/5nizza
tags:
- huggingartists
- lyrics
- lm-head
- causal-lm
widget:
- text: "I am"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://images.genius.com/289ded19d51d41798be99217d6059eb3.458x458x1.jpg')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">5’Nizza</div>
<a href="https://genius.com/artists/5nizza">
<div style="text-align: center; font-size: 14px;">@5nizza</div>
</a>
</div>
I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists).
Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)!
## How does it work?
To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist).
## Training data
The model was trained on lyrics from 5’Nizza.
Dataset is available [here](https://huggingface.co/datasets/huggingartists/5nizza).
And can be used with:
```python
from datasets import load_dataset
dataset = load_dataset("huggingartists/5nizza")
```
[Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/1zcp1grf/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on 5’Nizza's lyrics.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/2zg6pzw7) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/2zg6pzw7/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingartists/5nizza')
generator("I am", num_return_sequences=5)
```
Or with Transformers library:
```python
from transformers import AutoTokenizer, AutoModelWithLMHead
tokenizer = AutoTokenizer.from_pretrained("huggingartists/5nizza")
model = AutoModelWithLMHead.from_pretrained("huggingartists/5nizza")
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Aleksey Korshuk*
[](https://github.com/AlekseyKorshuk)
[](https://twitter.com/intent/follow?screen_name=alekseykorshuk)
[](https://t.me/joinchat/_CQ04KjcJ-4yZTky)
For more details, visit the project repository.
[](https://github.com/AlekseyKorshuk/huggingartists)
|
huggingartists/aaron-watson | a839ec6056302e69f468bcefc78469fd62db4145 | 2021-09-10T15:49:57.000Z | [
"pytorch",
"jax",
"gpt2",
"text-generation",
"en",
"dataset:huggingartists/aaron-watson",
"transformers",
"huggingartists",
"lyrics",
"lm-head",
"causal-lm"
] | text-generation | false | huggingartists | null | huggingartists/aaron-watson | 0 | null | transformers | 33,823 | ---
language: en
datasets:
- huggingartists/aaron-watson
tags:
- huggingartists
- lyrics
- lm-head
- causal-lm
widget:
- text: "I am"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://images.genius.com/894021d09a748eef8c6d63ad898b814b.650x430x1.jpg')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">Aaron Watson</div>
<a href="https://genius.com/artists/aaron-watson">
<div style="text-align: center; font-size: 14px;">@aaron-watson</div>
</a>
</div>
I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists).
Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)!
## How does it work?
To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist).
## Training data
The model was trained on lyrics from Aaron Watson.
Dataset is available [here](https://huggingface.co/datasets/huggingartists/aaron-watson).
And can be used with:
```python
from datasets import load_dataset
dataset = load_dataset("huggingartists/aaron-watson")
```
[Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/14ha1tnc/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on Aaron Watson's lyrics.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/34e4zb2v) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/34e4zb2v/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingartists/aaron-watson')
generator("I am", num_return_sequences=5)
```
Or with Transformers library:
```python
from transformers import AutoTokenizer, AutoModelWithLMHead
tokenizer = AutoTokenizer.from_pretrained("huggingartists/aaron-watson")
model = AutoModelWithLMHead.from_pretrained("huggingartists/aaron-watson")
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Aleksey Korshuk*
[](https://github.com/AlekseyKorshuk)
[](https://twitter.com/intent/follow?screen_name=alekseykorshuk)
[](https://t.me/joinchat/_CQ04KjcJ-4yZTky)
For more details, visit the project repository.
[](https://github.com/AlekseyKorshuk/huggingartists)
|
huggingartists/arash | 195823cb410b5ab3f00d40b7c79448950939d1e5 | 2021-09-16T15:18:43.000Z | [
"pytorch",
"jax",
"gpt2",
"text-generation",
"en",
"dataset:huggingartists/arash",
"transformers",
"huggingartists",
"lyrics",
"lm-head",
"causal-lm"
] | text-generation | false | huggingartists | null | huggingartists/arash | 0 | null | transformers | 33,824 | ---
language: en
datasets:
- huggingartists/arash
tags:
- huggingartists
- lyrics
- lm-head
- causal-lm
widget:
- text: "I am"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://images.genius.com/de78420433126e9e426443d10bf22edf.600x600x1.jpg')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">Arash</div>
<a href="https://genius.com/artists/arash">
<div style="text-align: center; font-size: 14px;">@arash</div>
</a>
</div>
I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists).
Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)!
## How does it work?
To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist).
## Training data
The model was trained on lyrics from Arash.
Dataset is available [here](https://huggingface.co/datasets/huggingartists/arash).
And can be used with:
```python
from datasets import load_dataset
dataset = load_dataset("huggingartists/arash")
```
[Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/27u6df87/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on Arash's lyrics.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/3eav8xpf) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/3eav8xpf/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingartists/arash')
generator("I am", num_return_sequences=5)
```
Or with Transformers library:
```python
from transformers import AutoTokenizer, AutoModelWithLMHead
tokenizer = AutoTokenizer.from_pretrained("huggingartists/arash")
model = AutoModelWithLMHead.from_pretrained("huggingartists/arash")
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Aleksey Korshuk*
[](https://github.com/AlekseyKorshuk)
[](https://twitter.com/intent/follow?screen_name=alekseykorshuk)
[](https://t.me/joinchat/_CQ04KjcJ-4yZTky)
For more details, visit the project repository.
[](https://github.com/AlekseyKorshuk/huggingartists)
|
huggingartists/ariya | 383157457fc2bfb7493d8ebaef5fcb940ac86a6c | 2021-11-03T09:21:45.000Z | [
"pytorch",
"jax",
"gpt2",
"text-generation",
"en",
"dataset:huggingartists/ariya",
"transformers",
"huggingartists",
"lyrics",
"lm-head",
"causal-lm"
] | text-generation | false | huggingartists | null | huggingartists/ariya | 0 | null | transformers | 33,825 | ---
language: en
datasets:
- huggingartists/ariya
tags:
- huggingartists
- lyrics
- lm-head
- causal-lm
widget:
- text: "I am"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://images.genius.com/975b03ba317602498bed5321f12caebe.1000x1000x1.jpg')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">Ария (Ariya)</div>
<a href="https://genius.com/artists/ariya">
<div style="text-align: center; font-size: 14px;">@ariya</div>
</a>
</div>
I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists).
Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)!
## How does it work?
To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist).
## Training data
The model was trained on lyrics from Ария (Ariya).
Dataset is available [here](https://huggingface.co/datasets/huggingartists/ariya).
And can be used with:
```python
from datasets import load_dataset
dataset = load_dataset("huggingartists/ariya")
```
[Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/uo73s5z1/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on Ария (Ariya)'s lyrics.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/69c1r7ea) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/69c1r7ea/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingartists/ariya')
generator("I am", num_return_sequences=5)
```
Or with Transformers library:
```python
from transformers import AutoTokenizer, AutoModelWithLMHead
tokenizer = AutoTokenizer.from_pretrained("huggingartists/ariya")
model = AutoModelWithLMHead.from_pretrained("huggingartists/ariya")
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Aleksey Korshuk*
[](https://github.com/AlekseyKorshuk)
[](https://twitter.com/intent/follow?screen_name=alekseykorshuk)
[](https://t.me/joinchat/_CQ04KjcJ-4yZTky)
For more details, visit the project repository.
[](https://github.com/AlekseyKorshuk/huggingartists)
|
huggingartists/as-i-lay-dying | dfe15100081364cbc78a613dacc286a0fd637d2c | 2021-11-11T19:15:18.000Z | [
"pytorch",
"jax",
"gpt2",
"text-generation",
"en",
"dataset:huggingartists/as-i-lay-dying",
"transformers",
"huggingartists",
"lyrics",
"lm-head",
"causal-lm"
] | text-generation | false | huggingartists | null | huggingartists/as-i-lay-dying | 0 | null | transformers | 33,826 | ---
language: en
datasets:
- huggingartists/as-i-lay-dying
tags:
- huggingartists
- lyrics
- lm-head
- causal-lm
widget:
- text: "I am"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://images.genius.com/1584118378f9cfa83c281027ef8b2141.528x528x1.jpg')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">As I Lay Dying</div>
<a href="https://genius.com/artists/as-i-lay-dying">
<div style="text-align: center; font-size: 14px;">@as-i-lay-dying</div>
</a>
</div>
I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists).
Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)!
## How does it work?
To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist).
## Training data
The model was trained on lyrics from As I Lay Dying.
Dataset is available [here](https://huggingface.co/datasets/huggingartists/as-i-lay-dying).
And can be used with:
```python
from datasets import load_dataset
dataset = load_dataset("huggingartists/as-i-lay-dying")
```
[Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/2zq9ub8b/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on As I Lay Dying's lyrics.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/cjg5ac7f) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/cjg5ac7f/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingartists/as-i-lay-dying')
generator("I am", num_return_sequences=5)
```
Or with Transformers library:
```python
from transformers import AutoTokenizer, AutoModelWithLMHead
tokenizer = AutoTokenizer.from_pretrained("huggingartists/as-i-lay-dying")
model = AutoModelWithLMHead.from_pretrained("huggingartists/as-i-lay-dying")
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Aleksey Korshuk*
[](https://github.com/AlekseyKorshuk)
[](https://twitter.com/intent/follow?screen_name=alekseykorshuk)
[](https://t.me/joinchat/_CQ04KjcJ-4yZTky)
For more details, visit the project repository.
[](https://github.com/AlekseyKorshuk/huggingartists)
|
huggingartists/baklan | dcb049586e054c322ae6042ed344358647797b4a | 2021-08-19T14:40:57.000Z | [
"pytorch",
"jax",
"gpt2",
"text-generation",
"en",
"dataset:huggingartists/baklan",
"transformers",
"huggingartists",
"lyrics",
"lm-head",
"causal-lm"
] | text-generation | false | huggingartists | null | huggingartists/baklan | 0 | null | transformers | 33,827 | ---
language: en
datasets:
- huggingartists/baklan
tags:
- huggingartists
- lyrics
- lm-head
- causal-lm
widget:
- text: "I am"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://images.genius.com/7cfde2abc36913387855f84724ec55d0.640x640x1.jpg')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">BAKLAN</div>
<a href="https://genius.com/artists/baklan">
<div style="text-align: center; font-size: 14px;">@baklan</div>
</a>
</div>
I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists).
Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)!
## How does it work?
To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist).
## Training data
The model was trained on lyrics from BAKLAN.
Dataset is available [here](https://huggingface.co/datasets/huggingartists/baklan).
And can be used with:
```python
from datasets import load_dataset
dataset = load_dataset("huggingartists/baklan")
```
[Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/2k5w5yhe/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on BAKLAN's lyrics.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/28fvfef4) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/28fvfef4/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingartists/baklan')
generator("I am", num_return_sequences=5)
```
Or with Transformers library:
```python
from transformers import AutoTokenizer, AutoModelWithLMHead
tokenizer = AutoTokenizer.from_pretrained("huggingartists/baklan")
model = AutoModelWithLMHead.from_pretrained("huggingartists/baklan")
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Aleksey Korshuk*
[](https://github.com/AlekseyKorshuk)
[](https://twitter.com/intent/follow?screen_name=alekseykorshuk)
[](https://t.me/joinchat/_CQ04KjcJ-4yZTky)
For more details, visit the project repository.
[](https://github.com/AlekseyKorshuk/huggingartists)
|
huggingartists/big-baby-tape | df35c33b337185b2ae32cb5625f82650fa3deeb5 | 2021-09-16T21:25:31.000Z | [
"pytorch",
"jax",
"gpt2",
"text-generation",
"en",
"dataset:huggingartists/big-baby-tape",
"transformers",
"huggingartists",
"lyrics",
"lm-head",
"causal-lm"
] | text-generation | false | huggingartists | null | huggingartists/big-baby-tape | 0 | null | transformers | 33,828 | ---
language: en
datasets:
- huggingartists/big-baby-tape
tags:
- huggingartists
- lyrics
- lm-head
- causal-lm
widget:
- text: "I am"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://images.genius.com/d3fc4853f74c35383ec68670bbd292eb.709x709x1.jpg')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">Big Baby Tape</div>
<a href="https://genius.com/artists/big-baby-tape">
<div style="text-align: center; font-size: 14px;">@big-baby-tape</div>
</a>
</div>
I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists).
Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)!
## How does it work?
To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist).
## Training data
The model was trained on lyrics from Big Baby Tape.
Dataset is available [here](https://huggingface.co/datasets/huggingartists/big-baby-tape).
And can be used with:
```python
from datasets import load_dataset
dataset = load_dataset("huggingartists/big-baby-tape")
```
[Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/1mu9ki6z/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on Big Baby Tape's lyrics.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/30qklxvh) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/30qklxvh/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingartists/big-baby-tape')
generator("I am", num_return_sequences=5)
```
Or with Transformers library:
```python
from transformers import AutoTokenizer, AutoModelWithLMHead
tokenizer = AutoTokenizer.from_pretrained("huggingartists/big-baby-tape")
model = AutoModelWithLMHead.from_pretrained("huggingartists/big-baby-tape")
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Aleksey Korshuk*
[](https://github.com/AlekseyKorshuk)
[](https://twitter.com/intent/follow?screen_name=alekseykorshuk)
[](https://t.me/joinchat/_CQ04KjcJ-4yZTky)
For more details, visit the project repository.
[](https://github.com/AlekseyKorshuk/huggingartists)
|
huggingartists/bring-me-the-horizon | 5b68e39479cd8b1babe001d2842078fffe28e13b | 2021-11-12T12:43:09.000Z | [
"pytorch",
"jax",
"gpt2",
"text-generation",
"en",
"dataset:huggingartists/bring-me-the-horizon",
"transformers",
"huggingartists",
"lyrics",
"lm-head",
"causal-lm"
] | text-generation | false | huggingartists | null | huggingartists/bring-me-the-horizon | 0 | null | transformers | 33,829 | ---
language: en
datasets:
- huggingartists/bring-me-the-horizon
tags:
- huggingartists
- lyrics
- lm-head
- causal-lm
widget:
- text: "I am"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://images.genius.com/64c7d35c8d427522574cbf7773084ee3.1000x1000x1.jpg')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">Bring Me The Horizon</div>
<a href="https://genius.com/artists/bring-me-the-horizon">
<div style="text-align: center; font-size: 14px;">@bring-me-the-horizon</div>
</a>
</div>
I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists).
Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)!
## How does it work?
To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist).
## Training data
The model was trained on lyrics from Bring Me The Horizon.
Dataset is available [here](https://huggingface.co/datasets/huggingartists/bring-me-the-horizon).
And can be used with:
```python
from datasets import load_dataset
dataset = load_dataset("huggingartists/bring-me-the-horizon")
```
[Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/1e9181i6/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on Bring Me The Horizon's lyrics.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/3p7pncir) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/3p7pncir/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingartists/bring-me-the-horizon')
generator("I am", num_return_sequences=5)
```
Or with Transformers library:
```python
from transformers import AutoTokenizer, AutoModelWithLMHead
tokenizer = AutoTokenizer.from_pretrained("huggingartists/bring-me-the-horizon")
model = AutoModelWithLMHead.from_pretrained("huggingartists/bring-me-the-horizon")
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Aleksey Korshuk*
[](https://github.com/AlekseyKorshuk)
[](https://twitter.com/intent/follow?screen_name=alekseykorshuk)
[](https://t.me/joinchat/_CQ04KjcJ-4yZTky)
For more details, visit the project repository.
[](https://github.com/AlekseyKorshuk/huggingartists)
|
huggingartists/bruce-springsteen | 2466af3c3f73b1b8318fd303538c38a2a8f489db | 2021-08-22T22:20:09.000Z | [
"pytorch",
"jax",
"gpt2",
"text-generation",
"en",
"dataset:huggingartists/bruce-springsteen",
"transformers",
"huggingartists",
"lyrics",
"lm-head",
"causal-lm"
] | text-generation | false | huggingartists | null | huggingartists/bruce-springsteen | 0 | null | transformers | 33,830 | ---
language: en
datasets:
- huggingartists/bruce-springsteen
tags:
- huggingartists
- lyrics
- lm-head
- causal-lm
widget:
- text: "I am"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://images.genius.com/6dfe4b89b895b331f09c6b136a0705e5.807x807x1.jpg')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">Bruce Springsteen</div>
<a href="https://genius.com/artists/bruce-springsteen">
<div style="text-align: center; font-size: 14px;">@bruce-springsteen</div>
</a>
</div>
I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists).
Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)!
## How does it work?
To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist).
## Training data
The model was trained on lyrics from Bruce Springsteen.
Dataset is available [here](https://huggingface.co/datasets/huggingartists/bruce-springsteen).
And can be used with:
```python
from datasets import load_dataset
dataset = load_dataset("huggingartists/bruce-springsteen")
```
[Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/28yd4w57/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on Bruce Springsteen's lyrics.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/6qq7wbab) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/6qq7wbab/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingartists/bruce-springsteen')
generator("I am", num_return_sequences=5)
```
Or with Transformers library:
```python
from transformers import AutoTokenizer, AutoModelWithLMHead
tokenizer = AutoTokenizer.from_pretrained("huggingartists/bruce-springsteen")
model = AutoModelWithLMHead.from_pretrained("huggingartists/bruce-springsteen")
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Aleksey Korshuk*
[](https://github.com/AlekseyKorshuk)
[](https://twitter.com/intent/follow?screen_name=alekseykorshuk)
[](https://t.me/joinchat/_CQ04KjcJ-4yZTky)
For more details, visit the project repository.
[](https://github.com/AlekseyKorshuk/huggingartists)
|
huggingartists/bushido-zho | 6cebc601bc301dcf6343a257aa417072b224396c | 2021-10-17T16:58:48.000Z | [
"pytorch",
"jax",
"gpt2",
"text-generation",
"en",
"dataset:huggingartists/bushido-zho",
"transformers",
"huggingartists",
"lyrics",
"lm-head",
"causal-lm"
] | text-generation | false | huggingartists | null | huggingartists/bushido-zho | 0 | null | transformers | 33,831 | ---
language: en
datasets:
- huggingartists/bushido-zho
tags:
- huggingartists
- lyrics
- lm-head
- causal-lm
widget:
- text: "I am"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://images.genius.com/6e5b165de8561df37790229c26b25692.959x959x1.jpg')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">BUSHIDO ZHO</div>
<a href="https://genius.com/artists/bushido-zho">
<div style="text-align: center; font-size: 14px;">@bushido-zho</div>
</a>
</div>
I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists).
Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)!
## How does it work?
To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist).
## Training data
The model was trained on lyrics from BUSHIDO ZHO.
Dataset is available [here](https://huggingface.co/datasets/huggingartists/bushido-zho).
And can be used with:
```python
from datasets import load_dataset
dataset = load_dataset("huggingartists/bushido-zho")
```
[Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/vtfjc0qi/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on BUSHIDO ZHO's lyrics.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/iwclgqsj) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/iwclgqsj/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingartists/bushido-zho')
generator("I am", num_return_sequences=5)
```
Or with Transformers library:
```python
from transformers import AutoTokenizer, AutoModelWithLMHead
tokenizer = AutoTokenizer.from_pretrained("huggingartists/bushido-zho")
model = AutoModelWithLMHead.from_pretrained("huggingartists/bushido-zho")
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Aleksey Korshuk*
[](https://github.com/AlekseyKorshuk)
[](https://twitter.com/intent/follow?screen_name=alekseykorshuk)
[](https://t.me/joinchat/_CQ04KjcJ-4yZTky)
For more details, visit the project repository.
[](https://github.com/AlekseyKorshuk/huggingartists)
|
huggingartists/chester-bennington | ebdbb9df0d98191c135b2971af27a851263dbb0a | 2021-08-10T05:47:50.000Z | [
"pytorch",
"jax",
"gpt2",
"text-generation",
"en",
"dataset:huggingartists/chester-bennington",
"transformers",
"huggingartists",
"lyrics",
"lm-head",
"causal-lm"
] | text-generation | false | huggingartists | null | huggingartists/chester-bennington | 0 | null | transformers | 33,832 | ---
language: en
datasets:
- huggingartists/chester-bennington
tags:
- huggingartists
- lyrics
- lm-head
- causal-lm
widget:
- text: "I am"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://images.genius.com/3853f38429e3cd0278c2b5b6307b9e92.752x752x1.jpg')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">Chester Bennington</div>
<a href="https://genius.com/artists/chester-bennington">
<div style="text-align: center; font-size: 14px;">@chester-bennington</div>
</a>
</div>
I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists).
Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)!
## How does it work?
To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist).
## Training data
The model was trained on lyrics from Chester Bennington.
Dataset is available [here](https://huggingface.co/datasets/huggingartists/chester-bennington).
And can be used with:
```python
from datasets import load_dataset
dataset = load_dataset("huggingartists/chester-bennington")
```
[Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/3pq3bd6d/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on Chester Bennington's lyrics.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/1sxpshrc) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/1sxpshrc/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingartists/chester-bennington')
generator("I am", num_return_sequences=5)
```
Or with Transformers library:
```python
from transformers import AutoTokenizer, AutoModelWithLMHead
tokenizer = AutoTokenizer.from_pretrained("huggingartists/chester-bennington")
model = AutoModelWithLMHead.from_pretrained("huggingartists/chester-bennington")
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Aleksey Korshuk*
[](https://github.com/AlekseyKorshuk)
[](https://twitter.com/intent/follow?screen_name=alekseykorshuk)
[](https://t.me/joinchat/_CQ04KjcJ-4yZTky)
For more details, visit the project repository.
[](https://github.com/AlekseyKorshuk/huggingartists)
|
huggingartists/denderty | 54a137204de1e5b286fba8cd240bc9f8e957d19d | 2021-08-10T07:50:29.000Z | [
"pytorch",
"jax",
"gpt2",
"text-generation",
"en",
"dataset:huggingartists/denderty",
"transformers",
"huggingartists",
"lyrics",
"lm-head",
"causal-lm"
] | text-generation | false | huggingartists | null | huggingartists/denderty | 0 | null | transformers | 33,833 | ---
language: en
datasets:
- huggingartists/denderty
tags:
- huggingartists
- lyrics
- lm-head
- causal-lm
widget:
- text: "I am"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://images.genius.com/cc5ab151c2e490b6795919a7838ffdc4.1000x1000x1.jpg')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">DenDerty</div>
<a href="https://genius.com/artists/denderty">
<div style="text-align: center; font-size: 14px;">@denderty</div>
</a>
</div>
I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists).
Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)!
## How does it work?
To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist).
## Training data
The model was trained on lyrics from DenDerty.
Dataset is available [here](https://huggingface.co/datasets/huggingartists/denderty).
And can be used with:
```python
from datasets import load_dataset
dataset = load_dataset("huggingartists/denderty")
```
[Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/gu1nyrga/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on DenDerty's lyrics.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/2hx5b1gk) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/2hx5b1gk/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingartists/denderty')
generator("I am", num_return_sequences=5)
```
Or with Transformers library:
```python
from transformers import AutoTokenizer, AutoModelWithLMHead
tokenizer = AutoTokenizer.from_pretrained("huggingartists/denderty")
model = AutoModelWithLMHead.from_pretrained("huggingartists/denderty")
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Aleksey Korshuk*
[](https://github.com/AlekseyKorshuk)
[](https://twitter.com/intent/follow?screen_name=alekseykorshuk)
[](https://t.me/joinchat/_CQ04KjcJ-4yZTky)
For more details, visit the project repository.
[](https://github.com/AlekseyKorshuk/huggingartists)
|
huggingartists/dua-lipa | c46a6252e3002cdb792b73e71c9333eb6afebc8e | 2021-09-02T19:51:50.000Z | [
"pytorch",
"jax",
"gpt2",
"text-generation",
"en",
"dataset:huggingartists/dua-lipa",
"transformers",
"huggingartists",
"lyrics",
"lm-head",
"causal-lm"
] | text-generation | false | huggingartists | null | huggingartists/dua-lipa | 0 | null | transformers | 33,834 | ---
language: en
datasets:
- huggingartists/dua-lipa
tags:
- huggingartists
- lyrics
- lm-head
- causal-lm
widget:
- text: "I am"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://images.genius.com/dd37b530cf20f2ce699f91e02a476a8a.847x847x1.jpg')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">Dua Lipa</div>
<a href="https://genius.com/artists/dua-lipa">
<div style="text-align: center; font-size: 14px;">@dua-lipa</div>
</a>
</div>
I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists).
Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)!
## How does it work?
To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist).
## Training data
The model was trained on lyrics from Dua Lipa.
Dataset is available [here](https://huggingface.co/datasets/huggingartists/dua-lipa).
And can be used with:
```python
from datasets import load_dataset
dataset = load_dataset("huggingartists/dua-lipa")
```
[Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/2wxz1liw/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on Dua Lipa's lyrics.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/3uj930yj) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/3uj930yj/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingartists/dua-lipa')
generator("I am", num_return_sequences=5)
```
Or with Transformers library:
```python
from transformers import AutoTokenizer, AutoModelWithLMHead
tokenizer = AutoTokenizer.from_pretrained("huggingartists/dua-lipa")
model = AutoModelWithLMHead.from_pretrained("huggingartists/dua-lipa")
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Aleksey Korshuk*
[](https://github.com/AlekseyKorshuk)
[](https://twitter.com/intent/follow?screen_name=alekseykorshuk)
[](https://t.me/joinchat/_CQ04KjcJ-4yZTky)
For more details, visit the project repository.
[](https://github.com/AlekseyKorshuk/huggingartists)
|
huggingartists/ed-sheeran | af98d26996c2a3409d98cc0617056f13dcd98945 | 2021-09-11T15:43:35.000Z | [
"pytorch",
"jax",
"gpt2",
"text-generation",
"en",
"dataset:huggingartists/ed-sheeran",
"transformers",
"huggingartists",
"lyrics",
"lm-head",
"causal-lm"
] | text-generation | false | huggingartists | null | huggingartists/ed-sheeran | 0 | null | transformers | 33,835 | ---
language: en
datasets:
- huggingartists/ed-sheeran
tags:
- huggingartists
- lyrics
- lm-head
- causal-lm
widget:
- text: "I am"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://images.genius.com/b501daeff73d1b17610f47a5668f690a.1000x1000x1.jpg')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">Ed Sheeran</div>
<a href="https://genius.com/artists/ed-sheeran">
<div style="text-align: center; font-size: 14px;">@ed-sheeran</div>
</a>
</div>
I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists).
Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)!
## How does it work?
To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist).
## Training data
The model was trained on lyrics from Ed Sheeran.
Dataset is available [here](https://huggingface.co/datasets/huggingartists/ed-sheeran).
And can be used with:
```python
from datasets import load_dataset
dataset = load_dataset("huggingartists/ed-sheeran")
```
[Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/3nju68bo/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on Ed Sheeran's lyrics.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/3hu7zc76) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/3hu7zc76/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingartists/ed-sheeran')
generator("I am", num_return_sequences=5)
```
Or with Transformers library:
```python
from transformers import AutoTokenizer, AutoModelWithLMHead
tokenizer = AutoTokenizer.from_pretrained("huggingartists/ed-sheeran")
model = AutoModelWithLMHead.from_pretrained("huggingartists/ed-sheeran")
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Aleksey Korshuk*
[](https://github.com/AlekseyKorshuk)
[](https://twitter.com/intent/follow?screen_name=alekseykorshuk)
[](https://t.me/joinchat/_CQ04KjcJ-4yZTky)
For more details, visit the project repository.
[](https://github.com/AlekseyKorshuk/huggingartists)
|
huggingartists/enigma | 6a39d0be63ab4fb746bd7a2bec99f8d9c3cf9822 | 2021-09-10T08:57:05.000Z | [
"pytorch",
"jax",
"gpt2",
"text-generation",
"en",
"dataset:huggingartists/enigma",
"transformers",
"huggingartists",
"lyrics",
"lm-head",
"causal-lm"
] | text-generation | false | huggingartists | null | huggingartists/enigma | 0 | null | transformers | 33,836 | ---
language: en
datasets:
- huggingartists/enigma
tags:
- huggingartists
- lyrics
- lm-head
- causal-lm
widget:
- text: "I am"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://images.genius.com/4b5472082f220eb9c2ca6b22f4d12f45.1000x1000x1.jpg')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">Enigma</div>
<a href="https://genius.com/artists/enigma">
<div style="text-align: center; font-size: 14px;">@enigma</div>
</a>
</div>
I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists).
Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)!
## How does it work?
To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist).
## Training data
The model was trained on lyrics from Enigma.
Dataset is available [here](https://huggingface.co/datasets/huggingartists/enigma).
And can be used with:
```python
from datasets import load_dataset
dataset = load_dataset("huggingartists/enigma")
```
[Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/8bx90lw6/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on Enigma's lyrics.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/1c1t20ji) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/1c1t20ji/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingartists/enigma')
generator("I am", num_return_sequences=5)
```
Or with Transformers library:
```python
from transformers import AutoTokenizer, AutoModelWithLMHead
tokenizer = AutoTokenizer.from_pretrained("huggingartists/enigma")
model = AutoModelWithLMHead.from_pretrained("huggingartists/enigma")
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Aleksey Korshuk*
[](https://github.com/AlekseyKorshuk)
[](https://twitter.com/intent/follow?screen_name=alekseykorshuk)
[](https://t.me/joinchat/_CQ04KjcJ-4yZTky)
For more details, visit the project repository.
[](https://github.com/AlekseyKorshuk/huggingartists)
|
huggingartists/fascinoma | 88be73ef2d29a556930ec9a03caf6f6aeeef890f | 2021-08-04T07:45:42.000Z | [
"pytorch",
"jax",
"gpt2",
"text-generation",
"en",
"dataset:huggingartists/fascinoma",
"transformers",
"huggingartists",
"lyrics",
"lm-head",
"causal-lm"
] | text-generation | false | huggingartists | null | huggingartists/fascinoma | 0 | null | transformers | 33,837 | ---
language: en
datasets:
- huggingartists/fascinoma
tags:
- huggingartists
- lyrics
- lm-head
- causal-lm
widget:
- text: "I am"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://assets.genius.com/images/default_avatar_300.png?1627659427')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">Fascinoma</div>
<a href="https://genius.com/artists/fascinoma">
<div style="text-align: center; font-size: 14px;">@fascinoma</div>
</a>
</div>
I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists).
Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)!
## How does it work?
To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist).
## Training data
The model was trained on lyrics from Fascinoma.
Dataset is available [here](https://huggingface.co/datasets/huggingartists/fascinoma).
And can be used with:
```python
from datasets import load_dataset
dataset = load_dataset("huggingartists/fascinoma")
```
Or with Transformers library:
```python
from transformers import AutoTokenizer, AutoModelWithLMHead
tokenizer = AutoTokenizer.from_pretrained("huggingartists/fascinoma")
model = AutoModelWithLMHead.from_pretrained("huggingartists/fascinoma")
```
[Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/za989b3u/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on Fascinoma's lyrics.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/kklye04t) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/kklye04t/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingartists/fascinoma')
generator("I am", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Aleksey Korshuk*
[](https://github.com/AlekseyKorshuk)
For more details, visit the project repository.
[](https://github.com/AlekseyKorshuk/huggingartists)
|
huggingartists/gorillaz | 45a9cfd7c6a9815738959b360aa281058061e648 | 2021-09-17T21:48:47.000Z | [
"pytorch",
"jax",
"gpt2",
"text-generation",
"en",
"dataset:huggingartists/gorillaz",
"transformers",
"huggingartists",
"lyrics",
"lm-head",
"causal-lm"
] | text-generation | false | huggingartists | null | huggingartists/gorillaz | 0 | null | transformers | 33,838 | ---
language: en
datasets:
- huggingartists/gorillaz
tags:
- huggingartists
- lyrics
- lm-head
- causal-lm
widget:
- text: "I am"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://images.genius.com/c9182b5ecce1ab6d22ba0eaddb635424.400x400x1.jpg')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">Gorillaz</div>
<a href="https://genius.com/artists/gorillaz">
<div style="text-align: center; font-size: 14px;">@gorillaz</div>
</a>
</div>
I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists).
Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)!
## How does it work?
To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist).
## Training data
The model was trained on lyrics from Gorillaz.
Dataset is available [here](https://huggingface.co/datasets/huggingartists/gorillaz).
And can be used with:
```python
from datasets import load_dataset
dataset = load_dataset("huggingartists/gorillaz")
```
[Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/3tuzza9u/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on Gorillaz's lyrics.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/12uilegj) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/12uilegj/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingartists/gorillaz')
generator("I am", num_return_sequences=5)
```
Or with Transformers library:
```python
from transformers import AutoTokenizer, AutoModelWithLMHead
tokenizer = AutoTokenizer.from_pretrained("huggingartists/gorillaz")
model = AutoModelWithLMHead.from_pretrained("huggingartists/gorillaz")
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Aleksey Korshuk*
[](https://github.com/AlekseyKorshuk)
[](https://twitter.com/intent/follow?screen_name=alekseykorshuk)
[](https://t.me/joinchat/_CQ04KjcJ-4yZTky)
For more details, visit the project repository.
[](https://github.com/AlekseyKorshuk/huggingartists)
|
huggingartists/green-day | bcbb6317e552225595fab54872e9d1f1a962790d | 2021-09-17T07:15:56.000Z | [
"pytorch",
"jax",
"gpt2",
"text-generation",
"en",
"dataset:huggingartists/green-day",
"transformers",
"huggingartists",
"lyrics",
"lm-head",
"causal-lm"
] | text-generation | false | huggingartists | null | huggingartists/green-day | 0 | null | transformers | 33,839 | ---
language: en
datasets:
- huggingartists/green-day
tags:
- huggingartists
- lyrics
- lm-head
- causal-lm
widget:
- text: "I am"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://images.genius.com/d7d8da365bad13b7bd5cc89117b697eb.640x640x1.jpg')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">Green Day</div>
<a href="https://genius.com/artists/green-day">
<div style="text-align: center; font-size: 14px;">@green-day</div>
</a>
</div>
I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists).
Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)!
## How does it work?
To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist).
## Training data
The model was trained on lyrics from Green Day.
Dataset is available [here](https://huggingface.co/datasets/huggingartists/green-day).
And can be used with:
```python
from datasets import load_dataset
dataset = load_dataset("huggingartists/green-day")
```
[Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/22eap04b/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on Green Day's lyrics.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/183da0m9) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/183da0m9/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingartists/green-day')
generator("I am", num_return_sequences=5)
```
Or with Transformers library:
```python
from transformers import AutoTokenizer, AutoModelWithLMHead
tokenizer = AutoTokenizer.from_pretrained("huggingartists/green-day")
model = AutoModelWithLMHead.from_pretrained("huggingartists/green-day")
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Aleksey Korshuk*
[](https://github.com/AlekseyKorshuk)
[](https://twitter.com/intent/follow?screen_name=alekseykorshuk)
[](https://t.me/joinchat/_CQ04KjcJ-4yZTky)
For more details, visit the project repository.
[](https://github.com/AlekseyKorshuk/huggingartists)
|
huggingartists/grigory-leps | 42b0b76383c88b63e2366602fe122248ff78b49d | 2021-09-10T08:13:40.000Z | [
"pytorch",
"jax",
"gpt2",
"text-generation",
"en",
"dataset:huggingartists/grigory-leps",
"transformers",
"huggingartists",
"lyrics",
"lm-head",
"causal-lm"
] | text-generation | false | huggingartists | null | huggingartists/grigory-leps | 0 | null | transformers | 33,840 | ---
language: en
datasets:
- huggingartists/grigory-leps
tags:
- huggingartists
- lyrics
- lm-head
- causal-lm
widget:
- text: "I am"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://images.genius.com/f30e8944a06a196868ee4b077a7926a6.1000x1000x1.jpg')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">Григорий Лепс (Grigory Leps)</div>
<a href="https://genius.com/artists/grigory-leps">
<div style="text-align: center; font-size: 14px;">@grigory-leps</div>
</a>
</div>
I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists).
Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)!
## How does it work?
To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist).
## Training data
The model was trained on lyrics from Григорий Лепс (Grigory Leps).
Dataset is available [here](https://huggingface.co/datasets/huggingartists/grigory-leps).
And can be used with:
```python
from datasets import load_dataset
dataset = load_dataset("huggingartists/grigory-leps")
```
[Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/32wqexib/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on Григорий Лепс (Grigory Leps)'s lyrics.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/1j0f6nwb) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/1j0f6nwb/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingartists/grigory-leps')
generator("I am", num_return_sequences=5)
```
Or with Transformers library:
```python
from transformers import AutoTokenizer, AutoModelWithLMHead
tokenizer = AutoTokenizer.from_pretrained("huggingartists/grigory-leps")
model = AutoModelWithLMHead.from_pretrained("huggingartists/grigory-leps")
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Aleksey Korshuk*
[](https://github.com/AlekseyKorshuk)
[](https://twitter.com/intent/follow?screen_name=alekseykorshuk)
[](https://t.me/joinchat/_CQ04KjcJ-4yZTky)
For more details, visit the project repository.
[](https://github.com/AlekseyKorshuk/huggingartists)
|
huggingartists/gspd | bc37edcd16db08da503860921367c508b0112dd6 | 2021-09-10T14:11:09.000Z | [
"pytorch",
"jax",
"gpt2",
"text-generation",
"en",
"dataset:huggingartists/gspd",
"transformers",
"huggingartists",
"lyrics",
"lm-head",
"causal-lm"
] | text-generation | false | huggingartists | null | huggingartists/gspd | 0 | null | transformers | 33,841 | ---
language: en
datasets:
- huggingartists/gspd
tags:
- huggingartists
- lyrics
- lm-head
- causal-lm
widget:
- text: "I am"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://images.genius.com/9409ae2b38424a74b42cb1e4bb66b83a.1000x1000x1.jpg')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">GSPD</div>
<a href="https://genius.com/artists/gspd">
<div style="text-align: center; font-size: 14px;">@gspd</div>
</a>
</div>
I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists).
Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)!
## How does it work?
To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist).
## Training data
The model was trained on lyrics from GSPD.
Dataset is available [here](https://huggingface.co/datasets/huggingartists/gspd).
And can be used with:
```python
from datasets import load_dataset
dataset = load_dataset("huggingartists/gspd")
```
[Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/17su8b0l/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on GSPD's lyrics.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/cnw6rr26) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/cnw6rr26/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingartists/gspd')
generator("I am", num_return_sequences=5)
```
Or with Transformers library:
```python
from transformers import AutoTokenizer, AutoModelWithLMHead
tokenizer = AutoTokenizer.from_pretrained("huggingartists/gspd")
model = AutoModelWithLMHead.from_pretrained("huggingartists/gspd")
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Aleksey Korshuk*
[](https://github.com/AlekseyKorshuk)
[](https://twitter.com/intent/follow?screen_name=alekseykorshuk)
[](https://t.me/joinchat/_CQ04KjcJ-4yZTky)
For more details, visit the project repository.
[](https://github.com/AlekseyKorshuk/huggingartists)
|
huggingartists/hyuna | 677c7a8e34d1abfe2e8b89ea9e3a6686d2cde335 | 2021-11-11T21:31:20.000Z | [
"pytorch",
"jax",
"gpt2",
"text-generation",
"en",
"dataset:huggingartists/hyuna",
"transformers",
"huggingartists",
"lyrics",
"lm-head",
"causal-lm"
] | text-generation | false | huggingartists | null | huggingartists/hyuna | 0 | null | transformers | 33,842 | ---
language: en
datasets:
- huggingartists/hyuna
tags:
- huggingartists
- lyrics
- lm-head
- causal-lm
widget:
- text: "I am"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://images.genius.com/e802afac5a0100ca75e520f954182f73.1000x1000x1.jpg')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">HyunA (현아)</div>
<a href="https://genius.com/artists/hyuna">
<div style="text-align: center; font-size: 14px;">@hyuna</div>
</a>
</div>
I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists).
Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)!
## How does it work?
To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist).
## Training data
The model was trained on lyrics from HyunA (현아).
Dataset is available [here](https://huggingface.co/datasets/huggingartists/hyuna).
And can be used with:
```python
from datasets import load_dataset
dataset = load_dataset("huggingartists/hyuna")
```
[Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/3uo94mxd/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on HyunA (현아)'s lyrics.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/1o8t0mq0) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/1o8t0mq0/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingartists/hyuna')
generator("I am", num_return_sequences=5)
```
Or with Transformers library:
```python
from transformers import AutoTokenizer, AutoModelWithLMHead
tokenizer = AutoTokenizer.from_pretrained("huggingartists/hyuna")
model = AutoModelWithLMHead.from_pretrained("huggingartists/hyuna")
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Aleksey Korshuk*
[](https://github.com/AlekseyKorshuk)
[](https://twitter.com/intent/follow?screen_name=alekseykorshuk)
[](https://t.me/joinchat/_CQ04KjcJ-4yZTky)
For more details, visit the project repository.
[](https://github.com/AlekseyKorshuk/huggingartists)
|
huggingartists/i-dont-know-how-but-they-found-me | 63de0802499cf6c7408421dcbf19760c730bfe4e | 2021-09-20T07:59:50.000Z | [
"pytorch",
"jax",
"gpt2",
"text-generation",
"en",
"dataset:huggingartists/i-dont-know-how-but-they-found-me",
"transformers",
"huggingartists",
"lyrics",
"lm-head",
"causal-lm"
] | text-generation | false | huggingartists | null | huggingartists/i-dont-know-how-but-they-found-me | 0 | null | transformers | 33,843 | ---
language: en
datasets:
- huggingartists/i-dont-know-how-but-they-found-me
tags:
- huggingartists
- lyrics
- lm-head
- causal-lm
widget:
- text: "I am"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://images.genius.com/4683327bb3a8906b18e9af8207c36dc9.645x645x1.png')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">I DONT KNOW HOW BUT THEY FOUND ME</div>
<a href="https://genius.com/artists/i-dont-know-how-but-they-found-me">
<div style="text-align: center; font-size: 14px;">@i-dont-know-how-but-they-found-me</div>
</a>
</div>
I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists).
Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)!
## How does it work?
To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist).
## Training data
The model was trained on lyrics from I DONT KNOW HOW BUT THEY FOUND ME.
Dataset is available [here](https://huggingface.co/datasets/huggingartists/i-dont-know-how-but-they-found-me).
And can be used with:
```python
from datasets import load_dataset
dataset = load_dataset("huggingartists/i-dont-know-how-but-they-found-me")
```
[Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/1j7uofwh/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on I DONT KNOW HOW BUT THEY FOUND ME's lyrics.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/1abhthz2) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/1abhthz2/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingartists/i-dont-know-how-but-they-found-me')
generator("I am", num_return_sequences=5)
```
Or with Transformers library:
```python
from transformers import AutoTokenizer, AutoModelWithLMHead
tokenizer = AutoTokenizer.from_pretrained("huggingartists/i-dont-know-how-but-they-found-me")
model = AutoModelWithLMHead.from_pretrained("huggingartists/i-dont-know-how-but-they-found-me")
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Aleksey Korshuk*
[](https://github.com/AlekseyKorshuk)
[](https://twitter.com/intent/follow?screen_name=alekseykorshuk)
[](https://t.me/joinchat/_CQ04KjcJ-4yZTky)
For more details, visit the project repository.
[](https://github.com/AlekseyKorshuk/huggingartists)
|
huggingartists/john-k-samson | 5ee75cf8ed6862df672b831c30214c5bcd432f3d | 2021-11-09T21:52:53.000Z | [
"pytorch",
"jax",
"gpt2",
"text-generation",
"en",
"dataset:huggingartists/john-k-samson",
"transformers",
"huggingartists",
"lyrics",
"lm-head",
"causal-lm"
] | text-generation | false | huggingartists | null | huggingartists/john-k-samson | 0 | null | transformers | 33,844 | ---
language: en
datasets:
- huggingartists/john-k-samson
tags:
- huggingartists
- lyrics
- lm-head
- causal-lm
widget:
- text: "I am"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://images.genius.com/0af64278d82733c4487d404fd3703ef7.894x894x1.jpg')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">John K. Samson</div>
<a href="https://genius.com/artists/john-k-samson">
<div style="text-align: center; font-size: 14px;">@john-k-samson</div>
</a>
</div>
I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists).
Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)!
## How does it work?
To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist).
## Training data
The model was trained on lyrics from John K. Samson.
Dataset is available [here](https://huggingface.co/datasets/huggingartists/john-k-samson).
And can be used with:
```python
from datasets import load_dataset
dataset = load_dataset("huggingartists/john-k-samson")
```
[Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/2s15m338/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on John K. Samson's lyrics.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/18ill893) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/18ill893/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingartists/john-k-samson')
generator("I am", num_return_sequences=5)
```
Or with Transformers library:
```python
from transformers import AutoTokenizer, AutoModelWithLMHead
tokenizer = AutoTokenizer.from_pretrained("huggingartists/john-k-samson")
model = AutoModelWithLMHead.from_pretrained("huggingartists/john-k-samson")
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Aleksey Korshuk*
[](https://github.com/AlekseyKorshuk)
[](https://twitter.com/intent/follow?screen_name=alekseykorshuk)
[](https://t.me/joinchat/_CQ04KjcJ-4yZTky)
For more details, visit the project repository.
[](https://github.com/AlekseyKorshuk/huggingartists)
|
huggingartists/joni-mitchell | 38b15dc3be295613d779b72dd34a1268936a6e17 | 2021-09-20T04:37:42.000Z | [
"pytorch",
"jax",
"gpt2",
"text-generation",
"en",
"dataset:huggingartists/joni-mitchell",
"transformers",
"huggingartists",
"lyrics",
"lm-head",
"causal-lm"
] | text-generation | false | huggingartists | null | huggingartists/joni-mitchell | 0 | null | transformers | 33,845 | ---
language: en
datasets:
- huggingartists/joni-mitchell
tags:
- huggingartists
- lyrics
- lm-head
- causal-lm
widget:
- text: "I am"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://images.genius.com/ed9a330b2539058076e0c48398599b09.1000x1000x1.jpg')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">Joni Mitchell</div>
<a href="https://genius.com/artists/joni-mitchell">
<div style="text-align: center; font-size: 14px;">@joni-mitchell</div>
</a>
</div>
I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists).
Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)!
## How does it work?
To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist).
## Training data
The model was trained on lyrics from Joni Mitchell.
Dataset is available [here](https://huggingface.co/datasets/huggingartists/joni-mitchell).
And can be used with:
```python
from datasets import load_dataset
dataset = load_dataset("huggingartists/joni-mitchell")
```
[Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/1m5n59kk/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on Joni Mitchell's lyrics.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/34saoh5x) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/34saoh5x/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingartists/joni-mitchell')
generator("I am", num_return_sequences=5)
```
Or with Transformers library:
```python
from transformers import AutoTokenizer, AutoModelWithLMHead
tokenizer = AutoTokenizer.from_pretrained("huggingartists/joni-mitchell")
model = AutoModelWithLMHead.from_pretrained("huggingartists/joni-mitchell")
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Aleksey Korshuk*
[](https://github.com/AlekseyKorshuk)
[](https://twitter.com/intent/follow?screen_name=alekseykorshuk)
[](https://t.me/joinchat/_CQ04KjcJ-4yZTky)
For more details, visit the project repository.
[](https://github.com/AlekseyKorshuk/huggingartists)
|
huggingartists/kipelov | acc5712bab8710402e012d89fe57cb551a131b35 | 2021-09-10T08:40:56.000Z | [
"pytorch",
"jax",
"gpt2",
"text-generation",
"en",
"dataset:huggingartists/kipelov",
"transformers",
"huggingartists",
"lyrics",
"lm-head",
"causal-lm"
] | text-generation | false | huggingartists | null | huggingartists/kipelov | 0 | null | transformers | 33,846 | ---
language: en
datasets:
- huggingartists/kipelov
tags:
- huggingartists
- lyrics
- lm-head
- causal-lm
widget:
- text: "I am"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://images.genius.com/d4ae6ad73ca63bc97b2a10dfefc47b63.1000x1000x1.jpg')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">Кипелов (Kipelov)</div>
<a href="https://genius.com/artists/kipelov">
<div style="text-align: center; font-size: 14px;">@kipelov</div>
</a>
</div>
I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists).
Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)!
## How does it work?
To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist).
## Training data
The model was trained on lyrics from Кипелов (Kipelov).
Dataset is available [here](https://huggingface.co/datasets/huggingartists/kipelov).
And can be used with:
```python
from datasets import load_dataset
dataset = load_dataset("huggingartists/kipelov")
```
[Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/225m5y65/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on Кипелов (Kipelov)'s lyrics.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/38es269x) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/38es269x/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingartists/kipelov')
generator("I am", num_return_sequences=5)
```
Or with Transformers library:
```python
from transformers import AutoTokenizer, AutoModelWithLMHead
tokenizer = AutoTokenizer.from_pretrained("huggingartists/kipelov")
model = AutoModelWithLMHead.from_pretrained("huggingartists/kipelov")
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Aleksey Korshuk*
[](https://github.com/AlekseyKorshuk)
[](https://twitter.com/intent/follow?screen_name=alekseykorshuk)
[](https://t.me/joinchat/_CQ04KjcJ-4yZTky)
For more details, visit the project repository.
[](https://github.com/AlekseyKorshuk/huggingartists)
|
huggingartists/kurt-cobain | 2b2cb11365fdcd63b01b3f47014145336a5dd8ea | 2021-10-07T09:58:16.000Z | [
"pytorch",
"jax",
"gpt2",
"text-generation",
"en",
"dataset:huggingartists/kurt-cobain",
"transformers",
"huggingartists",
"lyrics",
"lm-head",
"causal-lm"
] | text-generation | false | huggingartists | null | huggingartists/kurt-cobain | 0 | null | transformers | 33,847 | ---
language: en
datasets:
- huggingartists/kurt-cobain
tags:
- huggingartists
- lyrics
- lm-head
- causal-lm
widget:
- text: "I am"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://images.genius.com/8c394f5b79ddaa5349e8a4cc10c1ab48.400x400x1.jpg')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">Kurt Cobain</div>
<a href="https://genius.com/artists/kurt-cobain">
<div style="text-align: center; font-size: 14px;">@kurt-cobain</div>
</a>
</div>
I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists).
Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)!
## How does it work?
To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist).
## Training data
The model was trained on lyrics from Kurt Cobain.
Dataset is available [here](https://huggingface.co/datasets/huggingartists/kurt-cobain).
And can be used with:
```python
from datasets import load_dataset
dataset = load_dataset("huggingartists/kurt-cobain")
```
[Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/tjfuj6tr/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on Kurt Cobain's lyrics.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/3enopofm) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/3enopofm/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingartists/kurt-cobain')
generator("I am", num_return_sequences=5)
```
Or with Transformers library:
```python
from transformers import AutoTokenizer, AutoModelWithLMHead
tokenizer = AutoTokenizer.from_pretrained("huggingartists/kurt-cobain")
model = AutoModelWithLMHead.from_pretrained("huggingartists/kurt-cobain")
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Aleksey Korshuk*
[](https://github.com/AlekseyKorshuk)
[](https://twitter.com/intent/follow?screen_name=alekseykorshuk)
[](https://t.me/joinchat/_CQ04KjcJ-4yZTky)
For more details, visit the project repository.
[](https://github.com/AlekseyKorshuk/huggingartists)
|
huggingartists/lil-uzi-vert | 03069157394fdf08dab8897c1c604d815d9ea2e0 | 2022-04-17T18:50:56.000Z | [
"pytorch",
"jax",
"gpt2",
"text-generation",
"en",
"dataset:huggingartists/lil-uzi-vert",
"transformers",
"huggingartists",
"lyrics",
"lm-head",
"causal-lm"
] | text-generation | false | huggingartists | null | huggingartists/lil-uzi-vert | 0 | null | transformers | 33,848 | ---
language: en
datasets:
- huggingartists/lil-uzi-vert
tags:
- huggingartists
- lyrics
- lm-head
- causal-lm
widget:
- text: "I am"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://images.genius.com/3619e57354afa7dd5e65b9c261982ccc.640x640x1.jpg')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">Lil Uzi Vert</div>
<a href="https://genius.com/artists/lil-uzi-vert">
<div style="text-align: center; font-size: 14px;">@lil-uzi-vert</div>
</a>
</div>
I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists).
Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)!
## How does it work?
To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist).
## Training data
The model was trained on lyrics from Lil Uzi Vert.
Dataset is available [here](https://huggingface.co/datasets/huggingartists/lil-uzi-vert).
And can be used with:
```python
from datasets import load_dataset
dataset = load_dataset("huggingartists/lil-uzi-vert")
```
[Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/14mmkidw/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on Lil Uzi Vert's lyrics.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/3s5iqd7v) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/3s5iqd7v/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingartists/lil-uzi-vert')
generator("I am", num_return_sequences=5)
```
Or with Transformers library:
```python
from transformers import AutoTokenizer, AutoModelWithLMHead
tokenizer = AutoTokenizer.from_pretrained("huggingartists/lil-uzi-vert")
model = AutoModelWithLMHead.from_pretrained("huggingartists/lil-uzi-vert")
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Aleksey Korshuk*
[](https://github.com/AlekseyKorshuk)
[](https://twitter.com/intent/follow?screen_name=alekseykorshuk)
[](https://t.me/joinchat/_CQ04KjcJ-4yZTky)
For more details, visit the project repository.
[](https://github.com/AlekseyKorshuk/huggingartists)
|
huggingartists/little-big | aef98854c6f8b838de9d4fb0c6de9a2f82e66d78 | 2021-09-15T18:48:33.000Z | [
"pytorch",
"jax",
"gpt2",
"text-generation",
"en",
"dataset:huggingartists/little-big",
"transformers",
"huggingartists",
"lyrics",
"lm-head",
"causal-lm"
] | text-generation | false | huggingartists | null | huggingartists/little-big | 0 | null | transformers | 33,849 | ---
language: en
datasets:
- huggingartists/little-big
tags:
- huggingartists
- lyrics
- lm-head
- causal-lm
widget:
- text: "I am"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://images.genius.com/32e68b9d7093213fd4c06984ee3ff6aa.900x900x1.jpg')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">Little Big</div>
<a href="https://genius.com/artists/little-big">
<div style="text-align: center; font-size: 14px;">@little-big</div>
</a>
</div>
I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists).
Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)!
## How does it work?
To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist).
## Training data
The model was trained on lyrics from Little Big.
Dataset is available [here](https://huggingface.co/datasets/huggingartists/little-big).
And can be used with:
```python
from datasets import load_dataset
dataset = load_dataset("huggingartists/little-big")
```
[Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/2rjstm9q/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on Little Big's lyrics.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/289c46fn) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/289c46fn/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingartists/little-big')
generator("I am", num_return_sequences=5)
```
Or with Transformers library:
```python
from transformers import AutoTokenizer, AutoModelWithLMHead
tokenizer = AutoTokenizer.from_pretrained("huggingartists/little-big")
model = AutoModelWithLMHead.from_pretrained("huggingartists/little-big")
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Aleksey Korshuk*
[](https://github.com/AlekseyKorshuk)
[](https://twitter.com/intent/follow?screen_name=alekseykorshuk)
[](https://t.me/joinchat/_CQ04KjcJ-4yZTky)
For more details, visit the project repository.
[](https://github.com/AlekseyKorshuk/huggingartists)
|
huggingartists/logic | d4d0a48ce759d4245d7ea5db619d0671ae411419 | 2021-09-23T20:36:21.000Z | [
"pytorch",
"jax",
"gpt2",
"text-generation",
"en",
"dataset:huggingartists/logic",
"transformers",
"huggingartists",
"lyrics",
"lm-head",
"causal-lm"
] | text-generation | false | huggingartists | null | huggingartists/logic | 0 | null | transformers | 33,850 | ---
language: en
datasets:
- huggingartists/logic
tags:
- huggingartists
- lyrics
- lm-head
- causal-lm
widget:
- text: "I am"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://images.genius.com/0f975524d106026e89de983689d007c4.900x900x1.jpg')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">Logic</div>
<a href="https://genius.com/artists/logic">
<div style="text-align: center; font-size: 14px;">@logic</div>
</a>
</div>
I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists).
Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)!
## How does it work?
To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist).
## Training data
The model was trained on lyrics from Logic.
Dataset is available [here](https://huggingface.co/datasets/huggingartists/logic).
And can be used with:
```python
from datasets import load_dataset
dataset = load_dataset("huggingartists/logic")
```
[Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/2rp89nd3/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on Logic's lyrics.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/25a9752b) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/25a9752b/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingartists/logic')
generator("I am", num_return_sequences=5)
```
Or with Transformers library:
```python
from transformers import AutoTokenizer, AutoModelWithLMHead
tokenizer = AutoTokenizer.from_pretrained("huggingartists/logic")
model = AutoModelWithLMHead.from_pretrained("huggingartists/logic")
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Aleksey Korshuk*
[](https://github.com/AlekseyKorshuk)
[](https://twitter.com/intent/follow?screen_name=alekseykorshuk)
[](https://t.me/joinchat/_CQ04KjcJ-4yZTky)
For more details, visit the project repository.
[](https://github.com/AlekseyKorshuk/huggingartists)
|
huggingartists/loverance | 465f9bbca56065d66fbbf3182072fc3e2a45d1d9 | 2021-08-15T07:21:37.000Z | [
"pytorch",
"jax",
"gpt2",
"text-generation",
"en",
"dataset:huggingartists/loverance",
"transformers",
"huggingartists",
"lyrics",
"lm-head",
"causal-lm"
] | text-generation | false | huggingartists | null | huggingartists/loverance | 0 | null | transformers | 33,851 | ---
language: en
datasets:
- huggingartists/loverance
tags:
- huggingartists
- lyrics
- lm-head
- causal-lm
widget:
- text: "I am"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://images.genius.com/a8a06b82765b2451bf65b21cf4384901.291x291x1.jpg')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">LoveRance</div>
<a href="https://genius.com/artists/loverance">
<div style="text-align: center; font-size: 14px;">@loverance</div>
</a>
</div>
I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists).
Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)!
## How does it work?
To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist).
## Training data
The model was trained on lyrics from LoveRance.
Dataset is available [here](https://huggingface.co/datasets/huggingartists/loverance).
And can be used with:
```python
from datasets import load_dataset
dataset = load_dataset("huggingartists/loverance")
```
[Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/2cr3cjd1/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on LoveRance's lyrics.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/18xbgyqf) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/18xbgyqf/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingartists/loverance')
generator("I am", num_return_sequences=5)
```
Or with Transformers library:
```python
from transformers import AutoTokenizer, AutoModelWithLMHead
tokenizer = AutoTokenizer.from_pretrained("huggingartists/loverance")
model = AutoModelWithLMHead.from_pretrained("huggingartists/loverance")
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Aleksey Korshuk*
[](https://github.com/AlekseyKorshuk)
[](https://twitter.com/intent/follow?screen_name=alekseykorshuk)
[](https://t.me/joinchat/_CQ04KjcJ-4yZTky)
For more details, visit the project repository.
[](https://github.com/AlekseyKorshuk/huggingartists)
|
huggingartists/lovv66 | 4b4627f77358234599c8a5fe4a4a95fbc8a2aa45 | 2021-09-11T17:15:54.000Z | [
"pytorch",
"jax",
"gpt2",
"text-generation",
"en",
"dataset:huggingartists/lovv66",
"transformers",
"huggingartists",
"lyrics",
"lm-head",
"causal-lm"
] | text-generation | false | huggingartists | null | huggingartists/lovv66 | 0 | null | transformers | 33,852 | ---
language: en
datasets:
- huggingartists/lovv66
tags:
- huggingartists
- lyrics
- lm-head
- causal-lm
widget:
- text: "I am"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://images.genius.com/73c061dff4e60a751b35fda72ecb6781.881x881x1.png')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">LOVV66</div>
<a href="https://genius.com/artists/lovv66">
<div style="text-align: center; font-size: 14px;">@lovv66</div>
</a>
</div>
I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists).
Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)!
## How does it work?
To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist).
## Training data
The model was trained on lyrics from LOVV66.
Dataset is available [here](https://huggingface.co/datasets/huggingartists/lovv66).
And can be used with:
```python
from datasets import load_dataset
dataset = load_dataset("huggingartists/lovv66")
```
[Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/1t6a2fxs/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on LOVV66's lyrics.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/1de08pf6) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/1de08pf6/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingartists/lovv66')
generator("I am", num_return_sequences=5)
```
Or with Transformers library:
```python
from transformers import AutoTokenizer, AutoModelWithLMHead
tokenizer = AutoTokenizer.from_pretrained("huggingartists/lovv66")
model = AutoModelWithLMHead.from_pretrained("huggingartists/lovv66")
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Aleksey Korshuk*
[](https://github.com/AlekseyKorshuk)
[](https://twitter.com/intent/follow?screen_name=alekseykorshuk)
[](https://t.me/joinchat/_CQ04KjcJ-4yZTky)
For more details, visit the project repository.
[](https://github.com/AlekseyKorshuk/huggingartists)
|
huggingartists/lyapis-trubetskoy | 373569e7f5c56651506ff2e2b825700b4b172c94 | 2021-09-12T12:17:52.000Z | [
"pytorch",
"jax",
"gpt2",
"text-generation",
"en",
"dataset:huggingartists/lyapis-trubetskoy",
"transformers",
"huggingartists",
"lyrics",
"lm-head",
"causal-lm"
] | text-generation | false | huggingartists | null | huggingartists/lyapis-trubetskoy | 0 | null | transformers | 33,853 | ---
language: en
datasets:
- huggingartists/lyapis-trubetskoy
tags:
- huggingartists
- lyrics
- lm-head
- causal-lm
widget:
- text: "I am"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://images.genius.com/452918252959798bad82762cda0dc2d7.340x340x1.jpg')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">Ляпис Трубецкой (Lyapis Trubetskoy)</div>
<a href="https://genius.com/artists/lyapis-trubetskoy">
<div style="text-align: center; font-size: 14px;">@lyapis-trubetskoy</div>
</a>
</div>
I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists).
Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)!
## How does it work?
To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist).
## Training data
The model was trained on lyrics from Ляпис Трубецкой (Lyapis Trubetskoy).
Dataset is available [here](https://huggingface.co/datasets/huggingartists/lyapis-trubetskoy).
And can be used with:
```python
from datasets import load_dataset
dataset = load_dataset("huggingartists/lyapis-trubetskoy")
```
[Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/1ycs0usm/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on Ляпис Трубецкой (Lyapis Trubetskoy)'s lyrics.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/uz1xtq0k) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/uz1xtq0k/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingartists/lyapis-trubetskoy')
generator("I am", num_return_sequences=5)
```
Or with Transformers library:
```python
from transformers import AutoTokenizer, AutoModelWithLMHead
tokenizer = AutoTokenizer.from_pretrained("huggingartists/lyapis-trubetskoy")
model = AutoModelWithLMHead.from_pretrained("huggingartists/lyapis-trubetskoy")
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Aleksey Korshuk*
[](https://github.com/AlekseyKorshuk)
[](https://twitter.com/intent/follow?screen_name=alekseykorshuk)
[](https://t.me/joinchat/_CQ04KjcJ-4yZTky)
For more details, visit the project repository.
[](https://github.com/AlekseyKorshuk/huggingartists)
|
huggingartists/macan | e1cd0c053dd88ade98ee518be8e317c43de1fba4 | 2022-05-15T20:27:52.000Z | [
"pytorch",
"jax",
"gpt2",
"text-generation",
"en",
"dataset:huggingartists/macan",
"transformers",
"huggingartists",
"lyrics",
"lm-head",
"causal-lm"
] | text-generation | false | huggingartists | null | huggingartists/macan | 0 | null | transformers | 33,854 | ---
language: en
datasets:
- huggingartists/macan
tags:
- huggingartists
- lyrics
- lm-head
- causal-lm
widget:
- text: "I am"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://images.genius.com/9c2f93bf9d29964df4d9d5f41089a2b5.976x976x1.jpg')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">MACAN</div>
<a href="https://genius.com/artists/macan">
<div style="text-align: center; font-size: 14px;">@macan</div>
</a>
</div>
I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists).
Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)!
## How does it work?
To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist).
## Training data
The model was trained on lyrics from MACAN.
Dataset is available [here](https://huggingface.co/datasets/huggingartists/macan).
And can be used with:
```python
from datasets import load_dataset
dataset = load_dataset("huggingartists/macan")
```
[Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/3u3vx3xp/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on MACAN's lyrics.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/23krf2tu) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/23krf2tu/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingartists/macan')
generator("I am", num_return_sequences=5)
```
Or with Transformers library:
```python
from transformers import AutoTokenizer, AutoModelWithLMHead
tokenizer = AutoTokenizer.from_pretrained("huggingartists/macan")
model = AutoModelWithLMHead.from_pretrained("huggingartists/macan")
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Aleksey Korshuk*
[](https://github.com/AlekseyKorshuk)
[](https://twitter.com/intent/follow?screen_name=alekseykorshuk)
[](https://t.me/joinchat/_CQ04KjcJ-4yZTky)
For more details, visit the project repository.
[](https://github.com/AlekseyKorshuk/huggingartists)
|
huggingartists/maroon-5 | 3c88d764016d5091c059b2911b75a57a3060449e | 2021-09-19T12:07:21.000Z | [
"pytorch",
"jax",
"gpt2",
"text-generation",
"en",
"dataset:huggingartists/maroon-5",
"transformers",
"huggingartists",
"lyrics",
"lm-head",
"causal-lm"
] | text-generation | false | huggingartists | null | huggingartists/maroon-5 | 0 | null | transformers | 33,855 | ---
language: en
datasets:
- huggingartists/maroon-5
tags:
- huggingartists
- lyrics
- lm-head
- causal-lm
widget:
- text: "I am"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://images.genius.com/6780ce1add3af75c73929a8f6630e099.900x900x1.jpg')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">Maroon 5</div>
<a href="https://genius.com/artists/maroon-5">
<div style="text-align: center; font-size: 14px;">@maroon-5</div>
</a>
</div>
I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists).
Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)!
## How does it work?
To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist).
## Training data
The model was trained on lyrics from Maroon 5.
Dataset is available [here](https://huggingface.co/datasets/huggingartists/maroon-5).
And can be used with:
```python
from datasets import load_dataset
dataset = load_dataset("huggingartists/maroon-5")
```
[Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/38629b22/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on Maroon 5's lyrics.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/2ylk8pym) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/2ylk8pym/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingartists/maroon-5')
generator("I am", num_return_sequences=5)
```
Or with Transformers library:
```python
from transformers import AutoTokenizer, AutoModelWithLMHead
tokenizer = AutoTokenizer.from_pretrained("huggingartists/maroon-5")
model = AutoModelWithLMHead.from_pretrained("huggingartists/maroon-5")
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Aleksey Korshuk*
[](https://github.com/AlekseyKorshuk)
[](https://twitter.com/intent/follow?screen_name=alekseykorshuk)
[](https://t.me/joinchat/_CQ04KjcJ-4yZTky)
For more details, visit the project repository.
[](https://github.com/AlekseyKorshuk/huggingartists)
|
huggingartists/mashina-vremeni | 6b68f96697566713949bbc1ea4a3992351ad9cbc | 2021-09-12T12:25:03.000Z | [
"pytorch",
"jax",
"gpt2",
"text-generation",
"en",
"dataset:huggingartists/mashina-vremeni",
"transformers",
"huggingartists",
"lyrics",
"lm-head",
"causal-lm"
] | text-generation | false | huggingartists | null | huggingartists/mashina-vremeni | 0 | null | transformers | 33,856 | ---
language: en
datasets:
- huggingartists/mashina-vremeni
tags:
- huggingartists
- lyrics
- lm-head
- causal-lm
widget:
- text: "I am"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://images.genius.com/b780335021ab0e732601f25bd7a3d319.380x380x1.png')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">Машина Времени (Mashina Vremeni)</div>
<a href="https://genius.com/artists/mashina-vremeni">
<div style="text-align: center; font-size: 14px;">@mashina-vremeni</div>
</a>
</div>
I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists).
Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)!
## How does it work?
To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist).
## Training data
The model was trained on lyrics from Машина Времени (Mashina Vremeni).
Dataset is available [here](https://huggingface.co/datasets/huggingartists/mashina-vremeni).
And can be used with:
```python
from datasets import load_dataset
dataset = load_dataset("huggingartists/mashina-vremeni")
```
[Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/3r1yxrx7/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on Машина Времени (Mashina Vremeni)'s lyrics.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/1cgaltpc) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/1cgaltpc/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingartists/mashina-vremeni')
generator("I am", num_return_sequences=5)
```
Or with Transformers library:
```python
from transformers import AutoTokenizer, AutoModelWithLMHead
tokenizer = AutoTokenizer.from_pretrained("huggingartists/mashina-vremeni")
model = AutoModelWithLMHead.from_pretrained("huggingartists/mashina-vremeni")
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Aleksey Korshuk*
[](https://github.com/AlekseyKorshuk)
[](https://twitter.com/intent/follow?screen_name=alekseykorshuk)
[](https://t.me/joinchat/_CQ04KjcJ-4yZTky)
For more details, visit the project repository.
[](https://github.com/AlekseyKorshuk/huggingartists)
|
huggingartists/mating-ritual | 57b1f79c1310f8091de60ab40e4dfebd94aacf4f | 2021-09-18T01:00:55.000Z | [
"pytorch",
"jax",
"gpt2",
"text-generation",
"en",
"dataset:huggingartists/mating-ritual",
"transformers",
"huggingartists",
"lyrics",
"lm-head",
"causal-lm"
] | text-generation | false | huggingartists | null | huggingartists/mating-ritual | 0 | null | transformers | 33,857 | ---
language: en
datasets:
- huggingartists/mating-ritual
tags:
- huggingartists
- lyrics
- lm-head
- causal-lm
widget:
- text: "I am"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://images.genius.com/2a5b556758315c192c7b1e6e86634c7d.600x600x1.png')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">Mating Ritual</div>
<a href="https://genius.com/artists/mating-ritual">
<div style="text-align: center; font-size: 14px;">@mating-ritual</div>
</a>
</div>
I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists).
Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)!
## How does it work?
To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist).
## Training data
The model was trained on lyrics from Mating Ritual.
Dataset is available [here](https://huggingface.co/datasets/huggingartists/mating-ritual).
And can be used with:
```python
from datasets import load_dataset
dataset = load_dataset("huggingartists/mating-ritual")
```
[Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/3cljintu/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on Mating Ritual's lyrics.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/dv1g3x3b) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/dv1g3x3b/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingartists/mating-ritual')
generator("I am", num_return_sequences=5)
```
Or with Transformers library:
```python
from transformers import AutoTokenizer, AutoModelWithLMHead
tokenizer = AutoTokenizer.from_pretrained("huggingartists/mating-ritual")
model = AutoModelWithLMHead.from_pretrained("huggingartists/mating-ritual")
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Aleksey Korshuk*
[](https://github.com/AlekseyKorshuk)
[](https://twitter.com/intent/follow?screen_name=alekseykorshuk)
[](https://t.me/joinchat/_CQ04KjcJ-4yZTky)
For more details, visit the project repository.
[](https://github.com/AlekseyKorshuk/huggingartists)
|
huggingartists/mc-ride | 86b0b8eae77afa7d115410b967901af54bf3986c | 2021-10-14T20:14:57.000Z | [
"pytorch",
"jax",
"gpt2",
"text-generation",
"en",
"dataset:huggingartists/mc-ride",
"transformers",
"huggingartists",
"lyrics",
"lm-head",
"causal-lm"
] | text-generation | false | huggingartists | null | huggingartists/mc-ride | 0 | null | transformers | 33,858 | ---
language: en
datasets:
- huggingartists/mc-ride
tags:
- huggingartists
- lyrics
- lm-head
- causal-lm
widget:
- text: "I am"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://images.genius.com/c33b218009a0389e72c6d6628d3c2105.1000x1000x1.jpg')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">MC Ride</div>
<a href="https://genius.com/artists/mc-ride">
<div style="text-align: center; font-size: 14px;">@mc-ride</div>
</a>
</div>
I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists).
Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)!
## How does it work?
To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist).
## Training data
The model was trained on lyrics from MC Ride.
Dataset is available [here](https://huggingface.co/datasets/huggingartists/mc-ride).
And can be used with:
```python
from datasets import load_dataset
dataset = load_dataset("huggingartists/mc-ride")
```
[Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/2ar7kgj5/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on MC Ride's lyrics.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/299iw75q) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/299iw75q/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingartists/mc-ride')
generator("I am", num_return_sequences=5)
```
Or with Transformers library:
```python
from transformers import AutoTokenizer, AutoModelWithLMHead
tokenizer = AutoTokenizer.from_pretrained("huggingartists/mc-ride")
model = AutoModelWithLMHead.from_pretrained("huggingartists/mc-ride")
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Aleksey Korshuk*
[](https://github.com/AlekseyKorshuk)
[](https://twitter.com/intent/follow?screen_name=alekseykorshuk)
[](https://t.me/joinchat/_CQ04KjcJ-4yZTky)
For more details, visit the project repository.
[](https://github.com/AlekseyKorshuk/huggingartists)
|
huggingartists/mikhail-gorshenev | 8e1ca750f6b046e0a5af4131606c9926711471ae | 2021-09-15T12:07:32.000Z | [
"pytorch",
"jax",
"gpt2",
"text-generation",
"en",
"dataset:huggingartists/mikhail-gorshenev",
"transformers",
"huggingartists",
"lyrics",
"lm-head",
"causal-lm"
] | text-generation | false | huggingartists | null | huggingartists/mikhail-gorshenev | 0 | null | transformers | 33,859 | ---
language: en
datasets:
- huggingartists/mikhail-gorshenev
tags:
- huggingartists
- lyrics
- lm-head
- causal-lm
widget:
- text: "I am"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://images.genius.com/713c41590244f597dd6484bb61eacc5a.413x413x1.jpg')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">Михаил Горшенев (Mikhail Gorshenev)</div>
<a href="https://genius.com/artists/mikhail-gorshenev">
<div style="text-align: center; font-size: 14px;">@mikhail-gorshenev</div>
</a>
</div>
I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists).
Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)!
## How does it work?
To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist).
## Training data
The model was trained on lyrics from Михаил Горшенев (Mikhail Gorshenev).
Dataset is available [here](https://huggingface.co/datasets/huggingartists/mikhail-gorshenev).
And can be used with:
```python
from datasets import load_dataset
dataset = load_dataset("huggingartists/mikhail-gorshenev")
```
[Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/3h9endcz/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on Михаил Горшенев (Mikhail Gorshenev)'s lyrics.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/1kdp29bz) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/1kdp29bz/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingartists/mikhail-gorshenev')
generator("I am", num_return_sequences=5)
```
Or with Transformers library:
```python
from transformers import AutoTokenizer, AutoModelWithLMHead
tokenizer = AutoTokenizer.from_pretrained("huggingartists/mikhail-gorshenev")
model = AutoModelWithLMHead.from_pretrained("huggingartists/mikhail-gorshenev")
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Aleksey Korshuk*
[](https://github.com/AlekseyKorshuk)
[](https://twitter.com/intent/follow?screen_name=alekseykorshuk)
[](https://t.me/joinchat/_CQ04KjcJ-4yZTky)
For more details, visit the project repository.
[](https://github.com/AlekseyKorshuk/huggingartists)
|
huggingartists/mnogoznaal | a91cb45992f6844930502d115af5607c053f4bb1 | 2021-10-01T01:27:33.000Z | [
"pytorch",
"jax",
"gpt2",
"text-generation",
"en",
"dataset:huggingartists/mnogoznaal",
"transformers",
"huggingartists",
"lyrics",
"lm-head",
"causal-lm"
] | text-generation | false | huggingartists | null | huggingartists/mnogoznaal | 0 | null | transformers | 33,860 | ---
language: en
datasets:
- huggingartists/mnogoznaal
tags:
- huggingartists
- lyrics
- lm-head
- causal-lm
widget:
- text: "I am"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://images.genius.com/29ca6a878f02979daf772290e6e71f48.1000x1000x1.png')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">Mnogoznaal</div>
<a href="https://genius.com/artists/mnogoznaal">
<div style="text-align: center; font-size: 14px;">@mnogoznaal</div>
</a>
</div>
I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists).
Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)!
## How does it work?
To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist).
## Training data
The model was trained on lyrics from Mnogoznaal.
Dataset is available [here](https://huggingface.co/datasets/huggingartists/mnogoznaal).
And can be used with:
```python
from datasets import load_dataset
dataset = load_dataset("huggingartists/mnogoznaal")
```
[Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/21uo4oav/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on Mnogoznaal's lyrics.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/13v4iqfe) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/13v4iqfe/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingartists/mnogoznaal')
generator("I am", num_return_sequences=5)
```
Or with Transformers library:
```python
from transformers import AutoTokenizer, AutoModelWithLMHead
tokenizer = AutoTokenizer.from_pretrained("huggingartists/mnogoznaal")
model = AutoModelWithLMHead.from_pretrained("huggingartists/mnogoznaal")
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Aleksey Korshuk*
[](https://github.com/AlekseyKorshuk)
[](https://twitter.com/intent/follow?screen_name=alekseykorshuk)
[](https://t.me/joinchat/_CQ04KjcJ-4yZTky)
For more details, visit the project repository.
[](https://github.com/AlekseyKorshuk/huggingartists)
|
huggingartists/nervy | 6aa426beb0eaebaadae2751aef89c01eb7fa72ac | 2021-08-25T19:05:09.000Z | [
"pytorch",
"jax",
"gpt2",
"text-generation",
"en",
"dataset:huggingartists/nervy",
"transformers",
"huggingartists",
"lyrics",
"lm-head",
"causal-lm"
] | text-generation | false | huggingartists | null | huggingartists/nervy | 0 | null | transformers | 33,861 | ---
language: en
datasets:
- huggingartists/nervy
tags:
- huggingartists
- lyrics
- lm-head
- causal-lm
widget:
- text: "I am"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://images.genius.com/690c7ea858696b779e94dc99b204f034.1000x1000x1.jpg')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">Нервы (Nervy)</div>
<a href="https://genius.com/artists/nervy">
<div style="text-align: center; font-size: 14px;">@nervy</div>
</a>
</div>
I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists).
Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)!
## How does it work?
To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist).
## Training data
The model was trained on lyrics from Нервы (Nervy).
Dataset is available [here](https://huggingface.co/datasets/huggingartists/nervy).
And can be used with:
```python
from datasets import load_dataset
dataset = load_dataset("huggingartists/nervy")
```
[Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/34zj7k43/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on Нервы (Nervy)'s lyrics.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/2pd7k5jf) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/2pd7k5jf/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingartists/nervy')
generator("I am", num_return_sequences=5)
```
Or with Transformers library:
```python
from transformers import AutoTokenizer, AutoModelWithLMHead
tokenizer = AutoTokenizer.from_pretrained("huggingartists/nervy")
model = AutoModelWithLMHead.from_pretrained("huggingartists/nervy")
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Aleksey Korshuk*
[](https://github.com/AlekseyKorshuk)
[](https://twitter.com/intent/follow?screen_name=alekseykorshuk)
[](https://t.me/joinchat/_CQ04KjcJ-4yZTky)
For more details, visit the project repository.
[](https://github.com/AlekseyKorshuk/huggingartists)
|
huggingartists/our-last-night | 1b3689655179b0e8f463576a7a9176917cc4c658 | 2021-09-12T07:51:32.000Z | [
"pytorch",
"jax",
"gpt2",
"text-generation",
"en",
"dataset:huggingartists/our-last-night",
"transformers",
"huggingartists",
"lyrics",
"lm-head",
"causal-lm"
] | text-generation | false | huggingartists | null | huggingartists/our-last-night | 0 | null | transformers | 33,862 | ---
language: en
datasets:
- huggingartists/our-last-night
tags:
- huggingartists
- lyrics
- lm-head
- causal-lm
widget:
- text: "I am"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://images.genius.com/03627944481dcdb782595e9d3e351853.959x959x1.jpg')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">Our Last Night</div>
<a href="https://genius.com/artists/our-last-night">
<div style="text-align: center; font-size: 14px;">@our-last-night</div>
</a>
</div>
I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists).
Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)!
## How does it work?
To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist).
## Training data
The model was trained on lyrics from Our Last Night.
Dataset is available [here](https://huggingface.co/datasets/huggingartists/our-last-night).
And can be used with:
```python
from datasets import load_dataset
dataset = load_dataset("huggingartists/our-last-night")
```
[Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/37o66f2j/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on Our Last Night's lyrics.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/1hifralf) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/1hifralf/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingartists/our-last-night')
generator("I am", num_return_sequences=5)
```
Or with Transformers library:
```python
from transformers import AutoTokenizer, AutoModelWithLMHead
tokenizer = AutoTokenizer.from_pretrained("huggingartists/our-last-night")
model = AutoModelWithLMHead.from_pretrained("huggingartists/our-last-night")
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Aleksey Korshuk*
[](https://github.com/AlekseyKorshuk)
[](https://twitter.com/intent/follow?screen_name=alekseykorshuk)
[](https://t.me/joinchat/_CQ04KjcJ-4yZTky)
For more details, visit the project repository.
[](https://github.com/AlekseyKorshuk/huggingartists)
|
huggingartists/post-malone | c97ddd5ca9a87f36827335507dd39ce9fe9f0a6d | 2021-09-12T03:17:01.000Z | [
"pytorch",
"jax",
"gpt2",
"text-generation",
"en",
"dataset:huggingartists/post-malone",
"transformers",
"huggingartists",
"lyrics",
"lm-head",
"causal-lm"
] | text-generation | false | huggingartists | null | huggingartists/post-malone | 0 | null | transformers | 33,863 | ---
language: en
datasets:
- huggingartists/post-malone
tags:
- huggingartists
- lyrics
- lm-head
- causal-lm
widget:
- text: "I am"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://images.genius.com/1010194fa644be099aa2d1329de0b230.448x448x1.jpg')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">Post Malone</div>
<a href="https://genius.com/artists/post-malone">
<div style="text-align: center; font-size: 14px;">@post-malone</div>
</a>
</div>
I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists).
Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)!
## How does it work?
To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist).
## Training data
The model was trained on lyrics from Post Malone.
Dataset is available [here](https://huggingface.co/datasets/huggingartists/post-malone).
And can be used with:
```python
from datasets import load_dataset
dataset = load_dataset("huggingartists/post-malone")
```
[Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/5ig21wpy/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on Post Malone's lyrics.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/2ih9ntzv) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/2ih9ntzv/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingartists/post-malone')
generator("I am", num_return_sequences=5)
```
Or with Transformers library:
```python
from transformers import AutoTokenizer, AutoModelWithLMHead
tokenizer = AutoTokenizer.from_pretrained("huggingartists/post-malone")
model = AutoModelWithLMHead.from_pretrained("huggingartists/post-malone")
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Aleksey Korshuk*
[](https://github.com/AlekseyKorshuk)
[](https://twitter.com/intent/follow?screen_name=alekseykorshuk)
[](https://t.me/joinchat/_CQ04KjcJ-4yZTky)
For more details, visit the project repository.
[](https://github.com/AlekseyKorshuk/huggingartists)
|
huggingartists/pyrokinesis | 13946f692355d0b4450e72df84e3aec85827f47b | 2021-09-10T16:27:05.000Z | [
"pytorch",
"jax",
"gpt2",
"text-generation",
"en",
"dataset:huggingartists/pyrokinesis",
"transformers",
"huggingartists",
"lyrics",
"lm-head",
"causal-lm"
] | text-generation | false | huggingartists | null | huggingartists/pyrokinesis | 0 | null | transformers | 33,864 | ---
language: en
datasets:
- huggingartists/pyrokinesis
tags:
- huggingartists
- lyrics
- lm-head
- causal-lm
widget:
- text: "I am"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://images.genius.com/e701c222dfb8725065dd99c8a43988da.1000x1000x1.jpg')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">pyrokinesis</div>
<a href="https://genius.com/artists/pyrokinesis">
<div style="text-align: center; font-size: 14px;">@pyrokinesis</div>
</a>
</div>
I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists).
Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)!
## How does it work?
To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist).
## Training data
The model was trained on lyrics from pyrokinesis.
Dataset is available [here](https://huggingface.co/datasets/huggingartists/pyrokinesis).
And can be used with:
```python
from datasets import load_dataset
dataset = load_dataset("huggingartists/pyrokinesis")
```
[Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/1s8696f3/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on pyrokinesis's lyrics.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/22hm2utc) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/22hm2utc/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingartists/pyrokinesis')
generator("I am", num_return_sequences=5)
```
Or with Transformers library:
```python
from transformers import AutoTokenizer, AutoModelWithLMHead
tokenizer = AutoTokenizer.from_pretrained("huggingartists/pyrokinesis")
model = AutoModelWithLMHead.from_pretrained("huggingartists/pyrokinesis")
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Aleksey Korshuk*
[](https://github.com/AlekseyKorshuk)
[](https://twitter.com/intent/follow?screen_name=alekseykorshuk)
[](https://t.me/joinchat/_CQ04KjcJ-4yZTky)
For more details, visit the project repository.
[](https://github.com/AlekseyKorshuk/huggingartists)
|
huggingartists/sam-kim | f91d130d65d62c1f946935220444fef90970ac1d | 2021-09-18T00:00:06.000Z | [
"pytorch",
"jax",
"gpt2",
"text-generation",
"en",
"dataset:huggingartists/sam-kim",
"transformers",
"huggingartists",
"lyrics",
"lm-head",
"causal-lm"
] | text-generation | false | huggingartists | null | huggingartists/sam-kim | 0 | null | transformers | 33,865 | ---
language: en
datasets:
- huggingartists/sam-kim
tags:
- huggingartists
- lyrics
- lm-head
- causal-lm
widget:
- text: "I am"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://images.genius.com/03634b3c46e2357fa70d455446936297.800x800x1.jpg')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">Sam Kim (샘김)</div>
<a href="https://genius.com/artists/sam-kim">
<div style="text-align: center; font-size: 14px;">@sam-kim</div>
</a>
</div>
I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists).
Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)!
## How does it work?
To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist).
## Training data
The model was trained on lyrics from Sam Kim (샘김).
Dataset is available [here](https://huggingface.co/datasets/huggingartists/sam-kim).
And can be used with:
```python
from datasets import load_dataset
dataset = load_dataset("huggingartists/sam-kim")
```
[Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/38e0f1wf/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on Sam Kim (샘김)'s lyrics.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/2rke2zbk) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/2rke2zbk/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingartists/sam-kim')
generator("I am", num_return_sequences=5)
```
Or with Transformers library:
```python
from transformers import AutoTokenizer, AutoModelWithLMHead
tokenizer = AutoTokenizer.from_pretrained("huggingartists/sam-kim")
model = AutoModelWithLMHead.from_pretrained("huggingartists/sam-kim")
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Aleksey Korshuk*
[](https://github.com/AlekseyKorshuk)
[](https://twitter.com/intent/follow?screen_name=alekseykorshuk)
[](https://t.me/joinchat/_CQ04KjcJ-4yZTky)
For more details, visit the project repository.
[](https://github.com/AlekseyKorshuk/huggingartists)
|
huggingartists/scriptonite | d6246424633222eaf5066818ecf14334c471b158 | 2021-09-10T13:10:06.000Z | [
"pytorch",
"jax",
"gpt2",
"text-generation",
"en",
"dataset:huggingartists/scriptonite",
"transformers",
"huggingartists",
"lyrics",
"lm-head",
"causal-lm"
] | text-generation | false | huggingartists | null | huggingartists/scriptonite | 0 | null | transformers | 33,866 | ---
language: en
datasets:
- huggingartists/scriptonite
tags:
- huggingartists
- lyrics
- lm-head
- causal-lm
widget:
- text: "I am"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://images.genius.com/411d50392aef867fe0e9dd55a074ecfb.1000x1000x1.jpg')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">Скриптонит (Scriptonite)</div>
<a href="https://genius.com/artists/scriptonite">
<div style="text-align: center; font-size: 14px;">@scriptonite</div>
</a>
</div>
I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists).
Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)!
## How does it work?
To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist).
## Training data
The model was trained on lyrics from Скриптонит (Scriptonite).
Dataset is available [here](https://huggingface.co/datasets/huggingartists/scriptonite).
And can be used with:
```python
from datasets import load_dataset
dataset = load_dataset("huggingartists/scriptonite")
```
[Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/13pxeww0/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on Скриптонит (Scriptonite)'s lyrics.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/1itfp830) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/1itfp830/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingartists/scriptonite')
generator("I am", num_return_sequences=5)
```
Or with Transformers library:
```python
from transformers import AutoTokenizer, AutoModelWithLMHead
tokenizer = AutoTokenizer.from_pretrained("huggingartists/scriptonite")
model = AutoModelWithLMHead.from_pretrained("huggingartists/scriptonite")
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Aleksey Korshuk*
[](https://github.com/AlekseyKorshuk)
[](https://twitter.com/intent/follow?screen_name=alekseykorshuk)
[](https://t.me/joinchat/_CQ04KjcJ-4yZTky)
For more details, visit the project repository.
[](https://github.com/AlekseyKorshuk/huggingartists)
|
huggingartists/sergei-letov | bba58b39b652aba166520fcc4b2dced5f859a967 | 2021-09-11T12:13:08.000Z | [
"pytorch",
"jax",
"gpt2",
"text-generation",
"en",
"dataset:huggingartists/sergei-letov",
"transformers",
"huggingartists",
"lyrics",
"lm-head",
"causal-lm"
] | text-generation | false | huggingartists | null | huggingartists/sergei-letov | 0 | null | transformers | 33,867 | ---
language: en
datasets:
- huggingartists/sergei-letov
tags:
- huggingartists
- lyrics
- lm-head
- causal-lm
widget:
- text: "I am"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://images.genius.com/a5717aec4301e2adfb464d3b85701f74.300x300x1.jpg')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">Сергей Летов (Sergei Letov)</div>
<a href="https://genius.com/artists/sergei-letov">
<div style="text-align: center; font-size: 14px;">@sergei-letov</div>
</a>
</div>
I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists).
Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)!
## How does it work?
To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist).
## Training data
The model was trained on lyrics from Сергей Летов (Sergei Letov).
Dataset is available [here](https://huggingface.co/datasets/huggingartists/sergei-letov).
And can be used with:
```python
from datasets import load_dataset
dataset = load_dataset("huggingartists/sergei-letov")
```
[Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/1chw67j7/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on Сергей Летов (Sergei Letov)'s lyrics.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/my7m2jp6) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/my7m2jp6/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingartists/sergei-letov')
generator("I am", num_return_sequences=5)
```
Or with Transformers library:
```python
from transformers import AutoTokenizer, AutoModelWithLMHead
tokenizer = AutoTokenizer.from_pretrained("huggingartists/sergei-letov")
model = AutoModelWithLMHead.from_pretrained("huggingartists/sergei-letov")
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Aleksey Korshuk*
[](https://github.com/AlekseyKorshuk)
[](https://twitter.com/intent/follow?screen_name=alekseykorshuk)
[](https://t.me/joinchat/_CQ04KjcJ-4yZTky)
For more details, visit the project repository.
[](https://github.com/AlekseyKorshuk/huggingartists)
|
huggingartists/skillet | 095717a04f4180c62e06b7889ce3374fa274930e | 2021-09-10T14:51:47.000Z | [
"pytorch",
"jax",
"gpt2",
"text-generation",
"en",
"dataset:huggingartists/skillet",
"transformers",
"huggingartists",
"lyrics",
"lm-head",
"causal-lm"
] | text-generation | false | huggingartists | null | huggingartists/skillet | 0 | null | transformers | 33,868 | ---
language: en
datasets:
- huggingartists/skillet
tags:
- huggingartists
- lyrics
- lm-head
- causal-lm
widget:
- text: "I am"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://images.genius.com/c42b7baa88dae01013eebc53c0aed177.1000x1000x1.jpg')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">Skillet</div>
<a href="https://genius.com/artists/skillet">
<div style="text-align: center; font-size: 14px;">@skillet</div>
</a>
</div>
I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists).
Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)!
## How does it work?
To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist).
## Training data
The model was trained on lyrics from Skillet.
Dataset is available [here](https://huggingface.co/datasets/huggingartists/skillet).
And can be used with:
```python
from datasets import load_dataset
dataset = load_dataset("huggingartists/skillet")
```
[Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/1wmbkzn8/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on Skillet's lyrics.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/3jke6b6i) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/3jke6b6i/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingartists/skillet')
generator("I am", num_return_sequences=5)
```
Or with Transformers library:
```python
from transformers import AutoTokenizer, AutoModelWithLMHead
tokenizer = AutoTokenizer.from_pretrained("huggingartists/skillet")
model = AutoModelWithLMHead.from_pretrained("huggingartists/skillet")
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Aleksey Korshuk*
[](https://github.com/AlekseyKorshuk)
[](https://twitter.com/intent/follow?screen_name=alekseykorshuk)
[](https://t.me/joinchat/_CQ04KjcJ-4yZTky)
For more details, visit the project repository.
[](https://github.com/AlekseyKorshuk/huggingartists)
|
huggingartists/snoop-dogg | 48763f73e908eff3a3a5c318ddf9b336632de9ab | 2022-05-11T12:30:37.000Z | [
"pytorch",
"jax",
"gpt2",
"text-generation",
"en",
"dataset:huggingartists/snoop-dogg",
"transformers",
"huggingartists",
"lyrics",
"lm-head",
"causal-lm"
] | text-generation | false | huggingartists | null | huggingartists/snoop-dogg | 0 | null | transformers | 33,869 | ---
language: en
datasets:
- huggingartists/snoop-dogg
tags:
- huggingartists
- lyrics
- lm-head
- causal-lm
widget:
- text: "I am"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://images.genius.com/91bd22f5e53a3ea3cb1436de8f4a3722.1000x1000x1.jpg')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">Snoop Dogg</div>
<a href="https://genius.com/artists/snoop-dogg">
<div style="text-align: center; font-size: 14px;">@snoop-dogg</div>
</a>
</div>
I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists).
Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)!
## How does it work?
To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist).
## Training data
The model was trained on lyrics from Snoop Dogg.
Dataset is available [here](https://huggingface.co/datasets/huggingartists/snoop-dogg).
And can be used with:
```python
from datasets import load_dataset
dataset = load_dataset("huggingartists/snoop-dogg")
```
[Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/xru6xdjl/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on Snoop Dogg's lyrics.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/1o72aoie) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/1o72aoie/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingartists/snoop-dogg')
generator("I am", num_return_sequences=5)
```
Or with Transformers library:
```python
from transformers import AutoTokenizer, AutoModelWithLMHead
tokenizer = AutoTokenizer.from_pretrained("huggingartists/snoop-dogg")
model = AutoModelWithLMHead.from_pretrained("huggingartists/snoop-dogg")
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Aleksey Korshuk*
[](https://github.com/AlekseyKorshuk)
[](https://twitter.com/intent/follow?screen_name=alekseykorshuk)
[](https://t.me/joinchat/_CQ04KjcJ-4yZTky)
For more details, visit the project repository.
[](https://github.com/AlekseyKorshuk/huggingartists)
|
huggingartists/sqwore | 543c18ce0e5ad5fa06ccebf50cf712b392b4c292 | 2021-10-24T04:23:45.000Z | [
"pytorch",
"jax",
"gpt2",
"text-generation",
"en",
"dataset:huggingartists/sqwore",
"transformers",
"huggingartists",
"lyrics",
"lm-head",
"causal-lm"
] | text-generation | false | huggingartists | null | huggingartists/sqwore | 0 | null | transformers | 33,870 | ---
language: en
datasets:
- huggingartists/sqwore
tags:
- huggingartists
- lyrics
- lm-head
- causal-lm
widget:
- text: "I am"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://images.genius.com/3557a234d4c5912569afbea078a23eff.1000x1000x1.jpg')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">Sqwore</div>
<a href="https://genius.com/artists/sqwore">
<div style="text-align: center; font-size: 14px;">@sqwore</div>
</a>
</div>
I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists).
Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)!
## How does it work?
To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist).
## Training data
The model was trained on lyrics from Sqwore.
Dataset is available [here](https://huggingface.co/datasets/huggingartists/sqwore).
And can be used with:
```python
from datasets import load_dataset
dataset = load_dataset("huggingartists/sqwore")
```
[Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/3gzd5crq/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on Sqwore's lyrics.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/vzeft23g) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/vzeft23g/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingartists/sqwore')
generator("I am", num_return_sequences=5)
```
Or with Transformers library:
```python
from transformers import AutoTokenizer, AutoModelWithLMHead
tokenizer = AutoTokenizer.from_pretrained("huggingartists/sqwore")
model = AutoModelWithLMHead.from_pretrained("huggingartists/sqwore")
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Aleksey Korshuk*
[](https://github.com/AlekseyKorshuk)
[](https://twitter.com/intent/follow?screen_name=alekseykorshuk)
[](https://t.me/joinchat/_CQ04KjcJ-4yZTky)
For more details, visit the project repository.
[](https://github.com/AlekseyKorshuk/huggingartists)
|
huggingartists/sugar-ray | 9ec28c2843061501ec9b833529a0122f55dbc8a4 | 2021-08-04T07:38:52.000Z | [
"pytorch",
"jax",
"gpt2",
"text-generation",
"en",
"dataset:huggingartists/sugar-ray",
"transformers",
"huggingartists",
"lyrics",
"lm-head",
"causal-lm"
] | text-generation | false | huggingartists | null | huggingartists/sugar-ray | 0 | null | transformers | 33,871 | ---
language: en
datasets:
- huggingartists/sugar-ray
tags:
- huggingartists
- lyrics
- lm-head
- causal-lm
widget:
- text: "I am"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://images.genius.com/8b5c8fe74f6176047b2b5681e0e0e2d4.273x273x1.jpg')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">Sugar Ray</div>
<a href="https://genius.com/artists/sugar-ray">
<div style="text-align: center; font-size: 14px;">@sugar-ray</div>
</a>
</div>
I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists).
Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)!
## How does it work?
To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist).
## Training data
The model was trained on lyrics from Sugar Ray.
Dataset is available [here](https://huggingface.co/datasets/huggingartists/sugar-ray).
And can be used with:
```python
from datasets import load_dataset
dataset = load_dataset("huggingartists/sugar-ray")
```
Or with Transformers library:
```python
from transformers import AutoTokenizer, AutoModelWithLMHead
tokenizer = AutoTokenizer.from_pretrained("huggingartists/sugar-ray")
model = AutoModelWithLMHead.from_pretrained("huggingartists/sugar-ray")
```
[Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/10440qj4/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on Sugar Ray's lyrics.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/2n3xk5nv) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/2n3xk5nv/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingartists/sugar-ray')
generator("I am", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Aleksey Korshuk*
[](https://github.com/AlekseyKorshuk)
For more details, visit the project repository.
[](https://github.com/AlekseyKorshuk/huggingartists)
|
huggingartists/sum-41 | 4ab4ba67d51892504a583705e2e0f5e3a01a9468 | 2022-03-02T10:01:05.000Z | [
"pytorch",
"jax",
"gpt2",
"text-generation",
"en",
"dataset:huggingartists/sum-41",
"transformers",
"huggingartists",
"lyrics",
"lm-head",
"causal-lm"
] | text-generation | false | huggingartists | null | huggingartists/sum-41 | 0 | null | transformers | 33,872 | ---
language: en
datasets:
- huggingartists/sum-41
tags:
- huggingartists
- lyrics
- lm-head
- causal-lm
widget:
- text: "I am"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://images.genius.com/7cf5f61ac4ffe9a0fd1f6a4b235b95eb.320x320x1.jpg')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">Sum 41</div>
<a href="https://genius.com/artists/sum-41">
<div style="text-align: center; font-size: 14px;">@sum-41</div>
</a>
</div>
I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists).
Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)!
## How does it work?
To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist).
## Training data
The model was trained on lyrics from Sum 41.
Dataset is available [here](https://huggingface.co/datasets/huggingartists/sum-41).
And can be used with:
```python
from datasets import load_dataset
dataset = load_dataset("huggingartists/sum-41")
```
[Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/3fy2kvn1/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on Sum 41's lyrics.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/2hgx7kne) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/2hgx7kne/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingartists/sum-41')
generator("I am", num_return_sequences=5)
```
Or with Transformers library:
```python
from transformers import AutoTokenizer, AutoModelWithLMHead
tokenizer = AutoTokenizer.from_pretrained("huggingartists/sum-41")
model = AutoModelWithLMHead.from_pretrained("huggingartists/sum-41")
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Aleksey Korshuk*
[](https://github.com/AlekseyKorshuk)
[](https://twitter.com/intent/follow?screen_name=alekseykorshuk)
[](https://t.me/joinchat/_CQ04KjcJ-4yZTky)
For more details, visit the project repository.
[](https://github.com/AlekseyKorshuk/huggingartists)
|
huggingartists/tanzy-minus | 720a1afa586465ab12b34945853ff4667ccf26b6 | 2021-09-29T08:23:28.000Z | [
"pytorch",
"jax",
"gpt2",
"text-generation",
"en",
"dataset:huggingartists/tanzy-minus",
"transformers",
"huggingartists",
"lyrics",
"lm-head",
"causal-lm"
] | text-generation | false | huggingartists | null | huggingartists/tanzy-minus | 0 | null | transformers | 33,873 | ---
language: en
datasets:
- huggingartists/tanzy-minus
tags:
- huggingartists
- lyrics
- lm-head
- causal-lm
widget:
- text: "I am"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://images.genius.com/73716ad8dca0ea2fd5f02924ffcbcdad.639x639x1.jpg')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">Танцы Минус (Tanzy Minus)</div>
<a href="https://genius.com/artists/tanzy-minus">
<div style="text-align: center; font-size: 14px;">@tanzy-minus</div>
</a>
</div>
I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists).
Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)!
## How does it work?
To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist).
## Training data
The model was trained on lyrics from Танцы Минус (Tanzy Minus).
Dataset is available [here](https://huggingface.co/datasets/huggingartists/tanzy-minus).
And can be used with:
```python
from datasets import load_dataset
dataset = load_dataset("huggingartists/tanzy-minus")
```
[Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/14vmwaxq/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on Танцы Минус (Tanzy Minus)'s lyrics.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/ru5wxieh) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/ru5wxieh/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingartists/tanzy-minus')
generator("I am", num_return_sequences=5)
```
Or with Transformers library:
```python
from transformers import AutoTokenizer, AutoModelWithLMHead
tokenizer = AutoTokenizer.from_pretrained("huggingartists/tanzy-minus")
model = AutoModelWithLMHead.from_pretrained("huggingartists/tanzy-minus")
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Aleksey Korshuk*
[](https://github.com/AlekseyKorshuk)
[](https://twitter.com/intent/follow?screen_name=alekseykorshuk)
[](https://t.me/joinchat/_CQ04KjcJ-4yZTky)
For more details, visit the project repository.
[](https://github.com/AlekseyKorshuk/huggingartists)
|
huggingartists/the-69-eyes | 853339bdd8e846ce937a0d6c26453b68590a80bb | 2021-08-10T07:54:11.000Z | [
"pytorch",
"jax",
"gpt2",
"text-generation",
"en",
"dataset:huggingartists/the-69-eyes",
"transformers",
"huggingartists",
"lyrics",
"lm-head",
"causal-lm"
] | text-generation | false | huggingartists | null | huggingartists/the-69-eyes | 0 | null | transformers | 33,874 | ---
language: en
datasets:
- huggingartists/the-69-eyes
tags:
- huggingartists
- lyrics
- lm-head
- causal-lm
widget:
- text: "I am"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://images.genius.com/9e0451fa9d3f8cf38aa11994dbd934a8.600x600x1.jpg')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">The 69 Eyes</div>
<a href="https://genius.com/artists/the-69-eyes">
<div style="text-align: center; font-size: 14px;">@the-69-eyes</div>
</a>
</div>
I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists).
Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)!
## How does it work?
To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist).
## Training data
The model was trained on lyrics from The 69 Eyes.
Dataset is available [here](https://huggingface.co/datasets/huggingartists/the-69-eyes).
And can be used with:
```python
from datasets import load_dataset
dataset = load_dataset("huggingartists/the-69-eyes")
```
[Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/26sibipb/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on The 69 Eyes's lyrics.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/1mjcdm16) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/1mjcdm16/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingartists/the-69-eyes')
generator("I am", num_return_sequences=5)
```
Or with Transformers library:
```python
from transformers import AutoTokenizer, AutoModelWithLMHead
tokenizer = AutoTokenizer.from_pretrained("huggingartists/the-69-eyes")
model = AutoModelWithLMHead.from_pretrained("huggingartists/the-69-eyes")
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Aleksey Korshuk*
[](https://github.com/AlekseyKorshuk)
[](https://twitter.com/intent/follow?screen_name=alekseykorshuk)
[](https://t.me/joinchat/_CQ04KjcJ-4yZTky)
For more details, visit the project repository.
[](https://github.com/AlekseyKorshuk/huggingartists)
|
huggingartists/the-gazette | b469c7e33019e3625906ce43190e7a7f04e3b588 | 2021-08-10T13:04:22.000Z | [
"pytorch",
"jax",
"gpt2",
"text-generation",
"en",
"dataset:huggingartists/the-gazette",
"transformers",
"huggingartists",
"lyrics",
"lm-head",
"causal-lm"
] | text-generation | false | huggingartists | null | huggingartists/the-gazette | 0 | null | transformers | 33,875 | ---
language: en
datasets:
- huggingartists/the-gazette
tags:
- huggingartists
- lyrics
- lm-head
- causal-lm
widget:
- text: "I am"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://images.genius.com/9793a6d598f68414ca37eb1135e6b0c1.686x686x1.jpg')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">The Gazette</div>
<a href="https://genius.com/artists/the-gazette">
<div style="text-align: center; font-size: 14px;">@the-gazette</div>
</a>
</div>
I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists).
Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)!
## How does it work?
To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist).
## Training data
The model was trained on lyrics from The Gazette.
Dataset is available [here](https://huggingface.co/datasets/huggingartists/the-gazette).
And can be used with:
```python
from datasets import load_dataset
dataset = load_dataset("huggingartists/the-gazette")
```
[Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/3ck1sdfv/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on The Gazette's lyrics.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/m1wevlws) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/m1wevlws/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingartists/the-gazette')
generator("I am", num_return_sequences=5)
```
Or with Transformers library:
```python
from transformers import AutoTokenizer, AutoModelWithLMHead
tokenizer = AutoTokenizer.from_pretrained("huggingartists/the-gazette")
model = AutoModelWithLMHead.from_pretrained("huggingartists/the-gazette")
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Aleksey Korshuk*
[](https://github.com/AlekseyKorshuk)
[](https://twitter.com/intent/follow?screen_name=alekseykorshuk)
[](https://t.me/joinchat/_CQ04KjcJ-4yZTky)
For more details, visit the project repository.
[](https://github.com/AlekseyKorshuk/huggingartists)
|
huggingartists/the-king-and-the-jester | 4c6bd8d77a3c00c2909a5f7bceb2fffb5123003f | 2021-09-29T08:39:16.000Z | [
"pytorch",
"jax",
"gpt2",
"text-generation",
"en",
"dataset:huggingartists/the-king-and-the-jester",
"transformers",
"huggingartists",
"lyrics",
"lm-head",
"causal-lm"
] | text-generation | false | huggingartists | null | huggingartists/the-king-and-the-jester | 0 | null | transformers | 33,876 | ---
language: en
datasets:
- huggingartists/the-king-and-the-jester
tags:
- huggingartists
- lyrics
- lm-head
- causal-lm
widget:
- text: "I am"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://images.genius.com/eab8847b08e686561c3593f987917434.1000x1000x1.jpg')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">Король и Шут (The King and the Jester)</div>
<a href="https://genius.com/artists/the-king-and-the-jester">
<div style="text-align: center; font-size: 14px;">@the-king-and-the-jester</div>
</a>
</div>
I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists).
Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)!
## How does it work?
To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist).
## Training data
The model was trained on lyrics from Король и Шут (The King and the Jester).
Dataset is available [here](https://huggingface.co/datasets/huggingartists/the-king-and-the-jester).
And can be used with:
```python
from datasets import load_dataset
dataset = load_dataset("huggingartists/the-king-and-the-jester")
```
[Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/1qw2ic95/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on Король и Шут (The King and the Jester)'s lyrics.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/hhhj9047) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/hhhj9047/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingartists/the-king-and-the-jester')
generator("I am", num_return_sequences=5)
```
Or with Transformers library:
```python
from transformers import AutoTokenizer, AutoModelWithLMHead
tokenizer = AutoTokenizer.from_pretrained("huggingartists/the-king-and-the-jester")
model = AutoModelWithLMHead.from_pretrained("huggingartists/the-king-and-the-jester")
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Aleksey Korshuk*
[](https://github.com/AlekseyKorshuk)
[](https://twitter.com/intent/follow?screen_name=alekseykorshuk)
[](https://t.me/joinchat/_CQ04KjcJ-4yZTky)
For more details, visit the project repository.
[](https://github.com/AlekseyKorshuk/huggingartists)
|
huggingartists/the-sugarcubes | 4ed414b920879983e0d4d414ccd1a9864523d979 | 2021-10-07T11:16:09.000Z | [
"pytorch",
"jax",
"gpt2",
"text-generation",
"en",
"dataset:huggingartists/the-sugarcubes",
"transformers",
"huggingartists",
"lyrics",
"lm-head",
"causal-lm"
] | text-generation | false | huggingartists | null | huggingartists/the-sugarcubes | 0 | null | transformers | 33,877 | ---
language: en
datasets:
- huggingartists/the-sugarcubes
tags:
- huggingartists
- lyrics
- lm-head
- causal-lm
widget:
- text: "I am"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://images.genius.com/da10eeb7730741736a4f7ac4cc998c4e.1000x1000x1.jpg')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">The Sugarcubes</div>
<a href="https://genius.com/artists/the-sugarcubes">
<div style="text-align: center; font-size: 14px;">@the-sugarcubes</div>
</a>
</div>
I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists).
Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)!
## How does it work?
To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist).
## Training data
The model was trained on lyrics from The Sugarcubes.
Dataset is available [here](https://huggingface.co/datasets/huggingartists/the-sugarcubes).
And can be used with:
```python
from datasets import load_dataset
dataset = load_dataset("huggingartists/the-sugarcubes")
```
[Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/1zrlgv5f/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on The Sugarcubes's lyrics.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/24shllae) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/24shllae/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingartists/the-sugarcubes')
generator("I am", num_return_sequences=5)
```
Or with Transformers library:
```python
from transformers import AutoTokenizer, AutoModelWithLMHead
tokenizer = AutoTokenizer.from_pretrained("huggingartists/the-sugarcubes")
model = AutoModelWithLMHead.from_pretrained("huggingartists/the-sugarcubes")
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Aleksey Korshuk*
[](https://github.com/AlekseyKorshuk)
[](https://twitter.com/intent/follow?screen_name=alekseykorshuk)
[](https://t.me/joinchat/_CQ04KjcJ-4yZTky)
For more details, visit the project repository.
[](https://github.com/AlekseyKorshuk/huggingartists)
|
huggingartists/the-weeknd | c5747860667c60608dec489e21449c1d976e8afa | 2021-10-06T11:02:39.000Z | [
"pytorch",
"jax",
"gpt2",
"text-generation",
"en",
"dataset:huggingartists/the-weeknd",
"transformers",
"huggingartists",
"lyrics",
"lm-head",
"causal-lm"
] | text-generation | false | huggingartists | null | huggingartists/the-weeknd | 0 | null | transformers | 33,878 | ---
language: en
datasets:
- huggingartists/the-weeknd
tags:
- huggingartists
- lyrics
- lm-head
- causal-lm
widget:
- text: "I am"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://images.genius.com/1bab7f9dbd1216febc16d73ae4da9bd0.1000x1000x1.jpg')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">The Weeknd</div>
<a href="https://genius.com/artists/the-weeknd">
<div style="text-align: center; font-size: 14px;">@the-weeknd</div>
</a>
</div>
I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists).
Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)!
## How does it work?
To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist).
## Training data
The model was trained on lyrics from The Weeknd.
Dataset is available [here](https://huggingface.co/datasets/huggingartists/the-weeknd).
And can be used with:
```python
from datasets import load_dataset
dataset = load_dataset("huggingartists/the-weeknd")
```
[Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/34tqtrsm/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on The Weeknd's lyrics.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/1pjby702) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/1pjby702/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingartists/the-weeknd')
generator("I am", num_return_sequences=5)
```
Or with Transformers library:
```python
from transformers import AutoTokenizer, AutoModelWithLMHead
tokenizer = AutoTokenizer.from_pretrained("huggingartists/the-weeknd")
model = AutoModelWithLMHead.from_pretrained("huggingartists/the-weeknd")
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Aleksey Korshuk*
[](https://github.com/AlekseyKorshuk)
[](https://twitter.com/intent/follow?screen_name=alekseykorshuk)
[](https://t.me/joinchat/_CQ04KjcJ-4yZTky)
For more details, visit the project repository.
[](https://github.com/AlekseyKorshuk/huggingartists)
|
huggingartists/tiamat | 160f9e6f4a31b77bdcb3de705d27e53d0fe03e1f | 2021-09-12T11:59:39.000Z | [
"pytorch",
"jax",
"gpt2",
"text-generation",
"en",
"dataset:huggingartists/tiamat",
"transformers",
"huggingartists",
"lyrics",
"lm-head",
"causal-lm"
] | text-generation | false | huggingartists | null | huggingartists/tiamat | 0 | null | transformers | 33,879 | ---
language: en
datasets:
- huggingartists/tiamat
tags:
- huggingartists
- lyrics
- lm-head
- causal-lm
widget:
- text: "I am"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://images.genius.com/9ca13ed308504f6f9ac7c3cabdb54138.556x556x1.jpg')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">Tiamat</div>
<a href="https://genius.com/artists/tiamat">
<div style="text-align: center; font-size: 14px;">@tiamat</div>
</a>
</div>
I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists).
Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)!
## How does it work?
To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist).
## Training data
The model was trained on lyrics from Tiamat.
Dataset is available [here](https://huggingface.co/datasets/huggingartists/tiamat).
And can be used with:
```python
from datasets import load_dataset
dataset = load_dataset("huggingartists/tiamat")
```
[Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/1tqzwb4a/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on Tiamat's lyrics.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/ttkys3mq) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/ttkys3mq/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingartists/tiamat')
generator("I am", num_return_sequences=5)
```
Or with Transformers library:
```python
from transformers import AutoTokenizer, AutoModelWithLMHead
tokenizer = AutoTokenizer.from_pretrained("huggingartists/tiamat")
model = AutoModelWithLMHead.from_pretrained("huggingartists/tiamat")
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Aleksey Korshuk*
[](https://github.com/AlekseyKorshuk)
[](https://twitter.com/intent/follow?screen_name=alekseykorshuk)
[](https://t.me/joinchat/_CQ04KjcJ-4yZTky)
For more details, visit the project repository.
[](https://github.com/AlekseyKorshuk/huggingartists)
|
huggingartists/v-x-v-prince | f1a71c9e8b2a80a08db4ed00c7de6c35335fba97 | 2021-09-11T11:37:19.000Z | [
"pytorch",
"jax",
"gpt2",
"text-generation",
"en",
"dataset:huggingartists/v-x-v-prince",
"transformers",
"huggingartists",
"lyrics",
"lm-head",
"causal-lm"
] | text-generation | false | huggingartists | null | huggingartists/v-x-v-prince | 0 | null | transformers | 33,880 | ---
language: en
datasets:
- huggingartists/v-x-v-prince
tags:
- huggingartists
- lyrics
- lm-head
- causal-lm
widget:
- text: "I am"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://images.genius.com/08ad78acc3e91c45a426390e7524d4e9.853x853x1.jpg')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">V $ X V PRiNCE</div>
<a href="https://genius.com/artists/v-x-v-prince">
<div style="text-align: center; font-size: 14px;">@v-x-v-prince</div>
</a>
</div>
I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists).
Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)!
## How does it work?
To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist).
## Training data
The model was trained on lyrics from V $ X V PRiNCE.
Dataset is available [here](https://huggingface.co/datasets/huggingartists/v-x-v-prince).
And can be used with:
```python
from datasets import load_dataset
dataset = load_dataset("huggingartists/v-x-v-prince")
```
[Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/a6qdzbfe/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on V $ X V PRiNCE's lyrics.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/1rv03n56) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/1rv03n56/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingartists/v-x-v-prince')
generator("I am", num_return_sequences=5)
```
Or with Transformers library:
```python
from transformers import AutoTokenizer, AutoModelWithLMHead
tokenizer = AutoTokenizer.from_pretrained("huggingartists/v-x-v-prince")
model = AutoModelWithLMHead.from_pretrained("huggingartists/v-x-v-prince")
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Aleksey Korshuk*
[](https://github.com/AlekseyKorshuk)
[](https://twitter.com/intent/follow?screen_name=alekseykorshuk)
[](https://t.me/joinchat/_CQ04KjcJ-4yZTky)
For more details, visit the project repository.
[](https://github.com/AlekseyKorshuk/huggingartists)
|
huggingartists/van-morrison | ba48c8788428b0a65df1d588757c650cb721cb48 | 2021-09-10T08:49:51.000Z | [
"pytorch",
"jax",
"gpt2",
"text-generation",
"en",
"dataset:huggingartists/van-morrison",
"transformers",
"huggingartists",
"lyrics",
"lm-head",
"causal-lm"
] | text-generation | false | huggingartists | null | huggingartists/van-morrison | 0 | null | transformers | 33,881 | ---
language: en
datasets:
- huggingartists/van-morrison
tags:
- huggingartists
- lyrics
- lm-head
- causal-lm
widget:
- text: "I am"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://images.genius.com/2f97270cc1d1420867052a6c331d5820.1000x667x1.jpg')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">Van Morrison</div>
<a href="https://genius.com/artists/van-morrison">
<div style="text-align: center; font-size: 14px;">@van-morrison</div>
</a>
</div>
I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists).
Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)!
## How does it work?
To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist).
## Training data
The model was trained on lyrics from Van Morrison.
Dataset is available [here](https://huggingface.co/datasets/huggingartists/van-morrison).
And can be used with:
```python
from datasets import load_dataset
dataset = load_dataset("huggingartists/van-morrison")
```
[Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/2qbna51w/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on Van Morrison's lyrics.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/3c0ah11a) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/3c0ah11a/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingartists/van-morrison')
generator("I am", num_return_sequences=5)
```
Or with Transformers library:
```python
from transformers import AutoTokenizer, AutoModelWithLMHead
tokenizer = AutoTokenizer.from_pretrained("huggingartists/van-morrison")
model = AutoModelWithLMHead.from_pretrained("huggingartists/van-morrison")
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Aleksey Korshuk*
[](https://github.com/AlekseyKorshuk)
[](https://twitter.com/intent/follow?screen_name=alekseykorshuk)
[](https://t.me/joinchat/_CQ04KjcJ-4yZTky)
For more details, visit the project repository.
[](https://github.com/AlekseyKorshuk/huggingartists)
|
huggingartists/vladimir-vysotsky | d94f8c1750e30dd7fc9cf1a8d179eaf565a31fbe | 2021-09-10T07:47:12.000Z | [
"pytorch",
"jax",
"gpt2",
"text-generation",
"en",
"dataset:huggingartists/vladimir-vysotsky",
"transformers",
"huggingartists",
"lyrics",
"lm-head",
"causal-lm"
] | text-generation | false | huggingartists | null | huggingartists/vladimir-vysotsky | 0 | null | transformers | 33,882 | ---
language: en
datasets:
- huggingartists/vladimir-vysotsky
tags:
- huggingartists
- lyrics
- lm-head
- causal-lm
widget:
- text: "I am"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://images.genius.com/18735fe10bace7b3f615b2da9c95ac73.938x938x1.jpg')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">Владимир Высоцкий (Vladimir Vysotsky)</div>
<a href="https://genius.com/artists/vladimir-vysotsky">
<div style="text-align: center; font-size: 14px;">@vladimir-vysotsky</div>
</a>
</div>
I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists).
Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)!
## How does it work?
To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist).
## Training data
The model was trained on lyrics from Владимир Высоцкий (Vladimir Vysotsky).
Dataset is available [here](https://huggingface.co/datasets/huggingartists/vladimir-vysotsky).
And can be used with:
```python
from datasets import load_dataset
dataset = load_dataset("huggingartists/vladimir-vysotsky")
```
[Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/1w1qc649/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on Владимир Высоцкий (Vladimir Vysotsky)'s lyrics.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/1inrl5qe) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/1inrl5qe/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingartists/vladimir-vysotsky')
generator("I am", num_return_sequences=5)
```
Or with Transformers library:
```python
from transformers import AutoTokenizer, AutoModelWithLMHead
tokenizer = AutoTokenizer.from_pretrained("huggingartists/vladimir-vysotsky")
model = AutoModelWithLMHead.from_pretrained("huggingartists/vladimir-vysotsky")
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Aleksey Korshuk*
[](https://github.com/AlekseyKorshuk)
[](https://twitter.com/intent/follow?screen_name=alekseykorshuk)
[](https://t.me/joinchat/_CQ04KjcJ-4yZTky)
For more details, visit the project repository.
[](https://github.com/AlekseyKorshuk/huggingartists)
|
huggingartists/yung-lean | f2c46c403511939decf207e6b59658be4100a13a | 2021-10-08T15:22:16.000Z | [
"pytorch",
"jax",
"gpt2",
"text-generation",
"en",
"dataset:huggingartists/yung-lean",
"transformers",
"huggingartists",
"lyrics",
"lm-head",
"causal-lm"
] | text-generation | false | huggingartists | null | huggingartists/yung-lean | 0 | 1 | transformers | 33,883 | ---
language: en
datasets:
- huggingartists/yung-lean
tags:
- huggingartists
- lyrics
- lm-head
- causal-lm
widget:
- text: "I am"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://images.genius.com/8c898f8c39dbd271b3ccfd5303d423c7.1000x1000x1.jpg')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">Yung Lean</div>
<a href="https://genius.com/artists/yung-lean">
<div style="text-align: center; font-size: 14px;">@yung-lean</div>
</a>
</div>
I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists).
Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)!
## How does it work?
To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist).
## Training data
The model was trained on lyrics from Yung Lean.
Dataset is available [here](https://huggingface.co/datasets/huggingartists/yung-lean).
And can be used with:
```python
from datasets import load_dataset
dataset = load_dataset("huggingartists/yung-lean")
```
[Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/3mtv3swy/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on Yung Lean's lyrics.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/1qh8r5pu) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/1qh8r5pu/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingartists/yung-lean')
generator("I am", num_return_sequences=5)
```
Or with Transformers library:
```python
from transformers import AutoTokenizer, AutoModelWithLMHead
tokenizer = AutoTokenizer.from_pretrained("huggingartists/yung-lean")
model = AutoModelWithLMHead.from_pretrained("huggingartists/yung-lean")
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Aleksey Korshuk*
[](https://github.com/AlekseyKorshuk)
[](https://twitter.com/intent/follow?screen_name=alekseykorshuk)
[](https://t.me/joinchat/_CQ04KjcJ-4yZTky)
For more details, visit the project repository.
[](https://github.com/AlekseyKorshuk/huggingartists)
|
huggingartists/yung-plague | e727eb02c455c5689f4492f9c3d7853fe38938d5 | 2021-09-10T06:49:38.000Z | [
"pytorch",
"jax",
"gpt2",
"text-generation",
"en",
"dataset:huggingartists/yung-plague",
"transformers",
"huggingartists",
"lyrics",
"lm-head",
"causal-lm"
] | text-generation | false | huggingartists | null | huggingartists/yung-plague | 0 | null | transformers | 33,884 | ---
language: en
datasets:
- huggingartists/yung-plague
tags:
- huggingartists
- lyrics
- lm-head
- causal-lm
widget:
- text: "I am"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://images.genius.com/6c0f8e02f467c694379f242ea2897efd.1000x1000x1.jpg')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">Yung Plague</div>
<a href="https://genius.com/artists/yung-plague">
<div style="text-align: center; font-size: 14px;">@yung-plague</div>
</a>
</div>
I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists).
Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)!
## How does it work?
To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist).
## Training data
The model was trained on lyrics from Yung Plague.
Dataset is available [here](https://huggingface.co/datasets/huggingartists/yung-plague).
And can be used with:
```python
from datasets import load_dataset
dataset = load_dataset("huggingartists/yung-plague")
```
[Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/9hz73kye/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on Yung Plague's lyrics.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/28boe4q8) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/28boe4q8/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingartists/yung-plague')
generator("I am", num_return_sequences=5)
```
Or with Transformers library:
```python
from transformers import AutoTokenizer, AutoModelWithLMHead
tokenizer = AutoTokenizer.from_pretrained("huggingartists/yung-plague")
model = AutoModelWithLMHead.from_pretrained("huggingartists/yung-plague")
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Aleksey Korshuk*
[](https://github.com/AlekseyKorshuk)
[](https://twitter.com/intent/follow?screen_name=alekseykorshuk)
[](https://t.me/joinchat/_CQ04KjcJ-4yZTky)
For more details, visit the project repository.
[](https://github.com/AlekseyKorshuk/huggingartists)
|
huggingfaceepita/distilbert-base-uncased-finetuned-squad | 1e4e9eb7d11d5bd5dbdd3452fefb177036ff6b27 | 2021-11-24T15:00:43.000Z | [
"pytorch",
"tensorboard",
"distilbert",
"question-answering",
"transformers",
"autotrain_compatible"
] | question-answering | false | huggingfaceepita | null | huggingfaceepita/distilbert-base-uncased-finetuned-squad | 0 | null | transformers | 33,885 | Entry not found |
huggingtweets/0xtuba-jacksondame-mikedemarais | ccf049c6b054a282eebb8ff4c5c050639b673614 | 2021-09-17T05:18:09.000Z | [
"pytorch",
"gpt2",
"text-generation",
"en",
"transformers",
"huggingtweets"
] | text-generation | false | huggingtweets | null | huggingtweets/0xtuba-jacksondame-mikedemarais | 0 | null | transformers | 33,886 | ---
language: en
thumbnail: https://www.huggingtweets.com/0xtuba-jacksondame-mikedemarais/1631855884132/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1427911499083886600/byWMKtYP_400x400.jpg')">
</div>
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1436414419987222530/oN_cGj8R_400x400.jpg')">
</div>
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1431202462728400903/8Xi5oRDA_400x400.jpg')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">wakaflocka.eth & Dame.eth & tuba 🦈</div>
<div style="text-align: center; font-size: 14px;">@0xtuba-jacksondame-mikedemarais</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from wakaflocka.eth & Dame.eth & tuba 🦈.
| Data | wakaflocka.eth | Dame.eth | tuba 🦈 |
| --- | --- | --- | --- |
| Tweets downloaded | 3247 | 3250 | 3250 |
| Retweets | 418 | 467 | 47 |
| Short tweets | 645 | 651 | 718 |
| Tweets kept | 2184 | 2132 | 2485 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/23otlaa7/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @0xtuba-jacksondame-mikedemarais's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3myotjd3) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3myotjd3/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/0xtuba-jacksondame-mikedemarais')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/12123i123i12345 | 49d91850af0f622e7374f700ac8f7d1126db10ad | 2021-05-21T16:22:22.000Z | [
"pytorch",
"jax",
"gpt2",
"text-generation",
"en",
"transformers",
"huggingtweets"
] | text-generation | false | huggingtweets | null | huggingtweets/12123i123i12345 | 0 | null | transformers | 33,887 | ---
language: en
thumbnail: https://www.huggingtweets.com/12123i123i12345/1617760753400/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1377780722883174400/4gq8ntlP_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">parallellax 🤖 AI Bot </div>
<div style="font-size: 15px">@12123i123i12345 bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@12123i123i12345's tweets](https://twitter.com/12123i123i12345).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 2362 |
| Retweets | 310 |
| Short tweets | 283 |
| Tweets kept | 1769 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/e91cv8fo/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @12123i123i12345's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/ncn8t24f) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/ncn8t24f/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/12123i123i12345')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/12rafiqul | baaffb1ad56a1b296878c4decb38f673cb032f57 | 2021-08-17T08:46:31.000Z | [
"pytorch",
"gpt2",
"text-generation",
"en",
"transformers",
"huggingtweets"
] | text-generation | false | huggingtweets | null | huggingtweets/12rafiqul | 0 | null | transformers | 33,888 | ---
language: en
thumbnail: https://www.huggingtweets.com/12rafiqul/1629189930683/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1292932868121993222/Ifd5yDlG_400x400.jpg')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">Sk Rafiqul Islam 💡</div>
<div style="text-align: center; font-size: 14px;">@12rafiqul</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from Sk Rafiqul Islam 💡.
| Data | Sk Rafiqul Islam 💡 |
| --- | --- |
| Tweets downloaded | 647 |
| Retweets | 221 |
| Short tweets | 17 |
| Tweets kept | 409 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/araiby7y/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @12rafiqul's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1g4o1dj9) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1g4o1dj9/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/12rafiqul')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/14jun1995 | 4c3b1f19c25f4d0d780d4915f737e21df168d494 | 2021-05-21T16:23:35.000Z | [
"pytorch",
"jax",
"gpt2",
"text-generation",
"en",
"transformers",
"huggingtweets"
] | text-generation | false | huggingtweets | null | huggingtweets/14jun1995 | 0 | null | transformers | 33,889 | ---
language: en
thumbnail: https://www.huggingtweets.com/14jun1995/1616669363048/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1236431647576330246/GGaeVBZJ_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">mon nom non-mo 🤖 AI Bot </div>
<div style="font-size: 15px">@14jun1995 bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@14jun1995's tweets](https://twitter.com/14jun1995).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 3249 |
| Retweets | 20 |
| Short tweets | 213 |
| Tweets kept | 3016 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1ppb6sp7/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @14jun1995's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/25pt100s) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/25pt100s/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/14jun1995')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/178kakapo | 48ae65fcaf58921c2154f600686ea98ce8cef844 | 2021-05-21T16:29:51.000Z | [
"pytorch",
"jax",
"gpt2",
"text-generation",
"en",
"transformers",
"huggingtweets"
] | text-generation | false | huggingtweets | null | huggingtweets/178kakapo | 0 | null | transformers | 33,890 | ---
language: en
thumbnail: https://www.huggingtweets.com/178kakapo/1603720462678/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<link rel="stylesheet" href="https://unpkg.com/@tailwindcss/[email protected]/dist/typography.min.css">
<style>
@media (prefers-color-scheme: dark) {
.prose { color: #E2E8F0 !important; }
.prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; }
}
</style>
<section class='prose'>
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/2476808798/p6cqc9mvgsdlhya7nb6p_400x400.jpeg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">KAKAPO➤Endangered 🤖 AI Bot </div>
<div style="font-size: 15px; color: #657786">@178kakapo bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@178kakapo's tweets](https://twitter.com/178kakapo).
<table style='border-width:0'>
<thead style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>
<th style='border-width:0'>Data</th>
<th style='border-width:0'>Quantity</th>
</tr>
</thead>
<tbody style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Tweets downloaded</td>
<td style='border-width:0'>3140</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Retweets</td>
<td style='border-width:0'>2196</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Short tweets</td>
<td style='border-width:0'>56</td>
</tr>
<tr style='border-width:0'>
<td style='border-width:0'>Tweets kept</td>
<td style='border-width:0'>888</td>
</tr>
</tbody>
</table>
[Explore the data](https://app.wandb.ai/wandb/huggingtweets/runs/1r7z36ek/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @178kakapo's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://app.wandb.ai/wandb/huggingtweets/runs/2tp7xvh0) for full transparency and reproducibility.
At the end of training, [the final model](https://app.wandb.ai/wandb/huggingtweets/runs/2tp7xvh0/artifacts) is logged and versioned.
## Intended uses & limitations
### How to use
You can use this model directly with a pipeline for text generation:
<pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline
generator = pipeline(<span style="color:#FF9800">'text-generation'</span>,
model=<span style="color:#FF9800">'huggingtweets/178kakapo'</span>)
generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre>
### Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
</section>
[](https://twitter.com/intent/follow?screen_name=borisdayma)
<section class='prose'>
For more details, visit the project repository.
</section>
[](https://github.com/borisdayma/huggingtweets)
<!--- random size file --> |
huggingtweets/2wyatt2mason | e98efc5cbcc10d3a358db79162ec60f9220622fa | 2021-10-31T23:45:40.000Z | [
"pytorch",
"gpt2",
"text-generation",
"en",
"transformers",
"huggingtweets"
] | text-generation | false | huggingtweets | null | huggingtweets/2wyatt2mason | 0 | null | transformers | 33,891 | ---
language: en
thumbnail: https://www.huggingtweets.com/2wyatt2mason/1635723936956/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1441261735004966923/Slec8aEM_400x400.jpg')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">di!!! 🎮🕹️🎤</div>
<div style="text-align: center; font-size: 14px;">@2wyatt2mason</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from di!!! 🎮🕹️🎤.
| Data | di!!! 🎮🕹️🎤 |
| --- | --- |
| Tweets downloaded | 389 |
| Retweets | 11 |
| Short tweets | 49 |
| Tweets kept | 329 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/26ny09im/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @2wyatt2mason's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1rslzcw9) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1rslzcw9/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/2wyatt2mason')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/3lliethedoll | 490a95df0ceb0e7051460bb316a40b616d695166 | 2021-05-21T16:31:00.000Z | [
"pytorch",
"jax",
"gpt2",
"text-generation",
"en",
"transformers",
"huggingtweets"
] | text-generation | false | huggingtweets | null | huggingtweets/3lliethedoll | 0 | null | transformers | 33,892 | ---
language: en
thumbnail: https://www.huggingtweets.com/3lliethedoll/1617760689416/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1372571751817744388/tQ01SZ4b_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Homo🍄Ludens 🤖 AI Bot </div>
<div style="font-size: 15px">@3lliethedoll bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@3lliethedoll's tweets](https://twitter.com/3lliethedoll).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 3239 |
| Retweets | 376 |
| Short tweets | 851 |
| Tweets kept | 2012 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/112jw8py/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @3lliethedoll's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2t85ry1m) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2t85ry1m/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/3lliethedoll')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/3rbunn1nja | 8fd195736a9f1c39d974b6fe9896be06dea923b0 | 2021-05-21T16:32:07.000Z | [
"pytorch",
"jax",
"gpt2",
"text-generation",
"en",
"transformers",
"huggingtweets"
] | text-generation | false | huggingtweets | null | huggingtweets/3rbunn1nja | 0 | null | transformers | 33,893 | ---
language: en
thumbnail: https://www.huggingtweets.com/3rbunn1nja/1616808238654/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1371476407767957505/xfhZ00Hv_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Jeremy Spradlin 🤖 AI Bot </div>
<div style="font-size: 15px">@3rbunn1nja bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@3rbunn1nja's tweets](https://twitter.com/3rbunn1nja).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 3251 |
| Retweets | 121 |
| Short tweets | 252 |
| Tweets kept | 2878 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2fqh91fk/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @3rbunn1nja's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3lk04zqn) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3lk04zqn/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/3rbunn1nja')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/3thanguy7 | 5909b2449021500ac6e5705f5f58c6ac3e7c5f0a | 2021-05-21T16:35:20.000Z | [
"pytorch",
"jax",
"gpt2",
"text-generation",
"en",
"transformers",
"huggingtweets"
] | text-generation | false | huggingtweets | null | huggingtweets/3thanguy7 | 0 | null | transformers | 33,894 | ---
language: en
thumbnail: https://www.huggingtweets.com/3thanguy7/1614103760144/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1296604630537961476/BGjTffM9_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">🔥3thanguy7 is from chicago 🤖 AI Bot </div>
<div style="font-size: 15px">@3thanguy7 bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@3thanguy7's tweets](https://twitter.com/3thanguy7).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 3147 |
| Retweets | 1790 |
| Short tweets | 296 |
| Tweets kept | 1061 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3n62f684/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @3thanguy7's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/328uo5bx) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/328uo5bx/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/3thanguy7')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/423zb | 42085963ce229b8deeb6842ff6500ab7139fc72e | 2021-05-21T16:38:25.000Z | [
"pytorch",
"jax",
"gpt2",
"text-generation",
"en",
"transformers",
"huggingtweets"
] | text-generation | false | huggingtweets | null | huggingtweets/423zb | 0 | null | transformers | 33,895 | ---
language: en
thumbnail: https://www.huggingtweets.com/423zb/1612221398403/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<link rel="stylesheet" href="https://unpkg.com/@tailwindcss/[email protected]/dist/typography.min.css">
<style>
@media (prefers-color-scheme: dark) {
.prose { color: #E2E8F0 !important; }
.prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; }
}
</style>
<section class='prose'>
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1277051021064392706/wuQS0nyO_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">423ZB 🤖 AI Bot </div>
<div style="font-size: 15px; color: #657786">@423zb bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@423zb's tweets](https://twitter.com/423zb).
<table style='border-width:0'>
<thead style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>
<th style='border-width:0'>Data</th>
<th style='border-width:0'>Quantity</th>
</tr>
</thead>
<tbody style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Tweets downloaded</td>
<td style='border-width:0'>3166</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Retweets</td>
<td style='border-width:0'>2425</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Short tweets</td>
<td style='border-width:0'>144</td>
</tr>
<tr style='border-width:0'>
<td style='border-width:0'>Tweets kept</td>
<td style='border-width:0'>597</td>
</tr>
</tbody>
</table>
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/jnwkepoo/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @423zb's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/29x1ggo7) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/29x1ggo7/artifacts) is logged and versioned.
## Intended uses & limitations
### How to use
You can use this model directly with a pipeline for text generation:
<pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline
generator = pipeline(<span style="color:#FF9800">'text-generation'</span>,
model=<span style="color:#FF9800">'huggingtweets/423zb'</span>)
generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre>
### Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
</section>
[](https://twitter.com/intent/follow?screen_name=borisdayma)
<section class='prose'>
For more details, visit the project repository.
</section>
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/4pfviolet | 849d6c29c8dd1ae0e82988d3f5e4115b3f21a3c2 | 2021-05-21T16:40:36.000Z | [
"pytorch",
"jax",
"gpt2",
"text-generation",
"en",
"transformers",
"huggingtweets"
] | text-generation | false | huggingtweets | null | huggingtweets/4pfviolet | 0 | null | transformers | 33,896 | ---
language: en
thumbnail: https://www.huggingtweets.com/4pfviolet/1618177760300/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1369684381183451136/khVtCHFo_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">violet 🤖 AI Bot </div>
<div style="font-size: 15px">@4pfviolet bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@4pfviolet's tweets](https://twitter.com/4pfviolet).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 3234 |
| Retweets | 491 |
| Short tweets | 903 |
| Tweets kept | 1840 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3ekxu80u/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @4pfviolet's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1dlks43a) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1dlks43a/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/4pfviolet')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/60secondrevit | cb25804825b1f04a0e2167bc55af5cf5d2dd0a4f | 2021-09-23T22:17:30.000Z | [
"pytorch",
"gpt2",
"text-generation",
"en",
"transformers",
"huggingtweets"
] | text-generation | false | huggingtweets | null | huggingtweets/60secondrevit | 0 | null | transformers | 33,897 | ---
language: en
thumbnail: https://www.huggingtweets.com/60secondrevit/1632435423713/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1439946759585812483/S_SxM-Cu_400x400.jpg')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">ʲᵒʰⁿ ᵖⁱᵉʳˢᵒⁿ 🤡🎈</div>
<div style="text-align: center; font-size: 14px;">@60secondrevit</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from ʲᵒʰⁿ ᵖⁱᵉʳˢᵒⁿ 🤡🎈.
| Data | ʲᵒʰⁿ ᵖⁱᵉʳˢᵒⁿ 🤡🎈 |
| --- | --- |
| Tweets downloaded | 3247 |
| Retweets | 1050 |
| Short tweets | 676 |
| Tweets kept | 1521 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1jlkb3t2/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @60secondrevit's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/d6rqhltg) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/d6rqhltg/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/60secondrevit')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/666ouz666 | 125fc95da6fc2dfe183c90044141156dc127c1f7 | 2021-05-21T16:43:13.000Z | [
"pytorch",
"jax",
"gpt2",
"text-generation",
"en",
"transformers",
"huggingtweets"
] | text-generation | false | huggingtweets | null | huggingtweets/666ouz666 | 0 | null | transformers | 33,898 | ---
language: en
thumbnail: https://www.huggingtweets.com/666ouz666/1606428014311/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<link rel="stylesheet" href="https://unpkg.com/@tailwindcss/[email protected]/dist/typography.min.css">
<style>
@media (prefers-color-scheme: dark) {
.prose { color: #E2E8F0 !important; }
.prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; }
}
</style>
<section class='prose'>
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1328826930049789953/EWpTLaQR_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Oğuzhan 🤖 AI Bot </div>
<div style="font-size: 15px; color: #657786">@666ouz666 bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@666ouz666's tweets](https://twitter.com/666ouz666).
<table style='border-width:0'>
<thead style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>
<th style='border-width:0'>Data</th>
<th style='border-width:0'>Quantity</th>
</tr>
</thead>
<tbody style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Tweets downloaded</td>
<td style='border-width:0'>2816</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Retweets</td>
<td style='border-width:0'>63</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Short tweets</td>
<td style='border-width:0'>389</td>
</tr>
<tr style='border-width:0'>
<td style='border-width:0'>Tweets kept</td>
<td style='border-width:0'>2364</td>
</tr>
</tbody>
</table>
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3e6nphcq/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @666ouz666's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/5hsj1s8v) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/5hsj1s8v/artifacts) is logged and versioned.
## Intended uses & limitations
### How to use
You can use this model directly with a pipeline for text generation:
<pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline
generator = pipeline(<span style="color:#FF9800">'text-generation'</span>,
model=<span style="color:#FF9800">'huggingtweets/666ouz666'</span>)
generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre>
### Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
</section>
[](https://twitter.com/intent/follow?screen_name=borisdayma)
<section class='prose'>
For more details, visit the project repository.
</section>
[](https://github.com/borisdayma/huggingtweets)
<!--- random size file --> |
huggingtweets/926stories-farheyraan-theaamirsays | efe947ee4fb8c04111c5840caae3e8b9bf679c8a | 2021-06-08T07:11:08.000Z | [
"pytorch",
"gpt2",
"text-generation",
"en",
"transformers",
"huggingtweets"
] | text-generation | false | huggingtweets | null | huggingtweets/926stories-farheyraan-theaamirsays | 0 | null | transformers | 33,899 | ---
language: en
thumbnail: https://www.huggingtweets.com/926stories-farheyraan-theaamirsays/1623136262928/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1402093786457526273/DCJaU_cD_400x400.jpg')">
</div>
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1401224675632418823/1vrD7kaG_400x400.jpg')">
</div>
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1397095610436575232/qtl25tbM_400x400.jpg')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">Rummyyyy & Farhaan Ahmed & Aamir</div>
<div style="text-align: center; font-size: 14px;">@926stories-farheyraan-theaamirsays</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from Rummyyyy & Farhaan Ahmed & Aamir.
| Data | Rummyyyy | Farhaan Ahmed | Aamir |
| --- | --- | --- | --- |
| Tweets downloaded | 1423 | 1990 | 3127 |
| Retweets | 157 | 31 | 1143 |
| Short tweets | 140 | 132 | 578 |
| Tweets kept | 1126 | 1827 | 1406 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2ud8t13t/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @926stories-farheyraan-theaamirsays's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2356ddv8) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2356ddv8/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/926stories-farheyraan-theaamirsays')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
Subsets and Splits
No saved queries yet
Save your SQL queries to embed, download, and access them later. Queries will appear here once saved.