modelId
stringlengths
4
112
sha
stringlengths
40
40
lastModified
stringlengths
24
24
tags
sequence
pipeline_tag
stringclasses
29 values
private
bool
1 class
author
stringlengths
2
38
config
null
id
stringlengths
4
112
downloads
float64
0
36.8M
likes
float64
0
712
library_name
stringclasses
17 values
__index_level_0__
int64
0
38.5k
readme
stringlengths
0
186k
obokkkk/wav2vec2-base-960h-finetuned_common_voice3
2b1027d2b574296631e619ce5d0393a4fa6fc10d
2022-04-29T00:37:29.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
obokkkk
null
obokkkk/wav2vec2-base-960h-finetuned_common_voice3
1
null
transformers
31,500
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base-960h-finetuned_common_voice3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-960h-finetuned_common_voice3 This model is a fine-tuned version of [facebook/wav2vec2-base-960h](https://huggingface.co/facebook/wav2vec2-base-960h) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 64 - total_train_batch_size: 1024 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.1.0 - Tokenizers 0.12.1
bdickson/electra-small-discriminator-finetuned-squad-finetuned-squad
0704c5b8a7608ac57442d0c4f66c109728047eac
2022-04-28T06:40:32.000Z
[ "pytorch", "electra", "question-answering", "dataset:squad", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
question-answering
false
bdickson
null
bdickson/electra-small-discriminator-finetuned-squad-finetuned-squad
1
null
transformers
31,501
--- tags: - generated_from_trainer datasets: - squad model-index: - name: electra-small-discriminator-finetuned-squad-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # electra-small-discriminator-finetuned-squad-finetuned-squad This model is a fine-tuned version of [bdickson/electra-small-discriminator-finetuned-squad](https://huggingface.co/bdickson/electra-small-discriminator-finetuned-squad) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.1.0 - Tokenizers 0.12.1
inhee/mbart-large-cc25-finetuned-ko-to-en2
2d63541c51153a7225c92b92c53508a7e08faa9f
2022-04-28T22:55:27.000Z
[ "pytorch", "tensorboard", "mbart", "text2text-generation", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
text2text-generation
false
inhee
null
inhee/mbart-large-cc25-finetuned-ko-to-en2
1
null
transformers
31,502
--- tags: - generated_from_trainer metrics: - bleu model-index: - name: mbart-large-cc25-finetuned-ko-to-en results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mbart-large-cc25-finetuned-ko-to-en This model is a fine-tuned version of [facebook/mbart-large-cc25](https://huggingface.co/facebook/mbart-large-cc25) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.9388 - Bleu: 20.301 - Gen Len: 114.7908 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 32 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:--------:| | 2.253 | 1.0 | 664 | 1.1693 | 20.073 | 5.8056 | | 1.1747 | 2.0 | 1328 | 0.9898 | 25.8761 | 7.1737 | | 0.8827 | 3.0 | 1992 | 0.9286 | 25.4729 | 12.5726 | | 0.5698 | 4.0 | 2656 | 0.9299 | 18.5817 | 33.1697 | | 0.4985 | 5.0 | 3320 | 0.9388 | 20.301 | 114.7908 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.1.0 - Tokenizers 0.12.1
Hyperspace/DialoGPT-small-Hyperdrive
ef24779e86e0fd9bd09bf6a458526055df09e633
2022-04-28T16:09:29.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
Hyperspace
null
Hyperspace/DialoGPT-small-Hyperdrive
1
null
transformers
31,503
--- tags: - conversational --- # Hyperdrive DialoGPT Model
PSW/mixed_sim_seed1
f7de62fe0c2a747681cc009f06124e901f88c7c0
2022-04-28T07:22:34.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
PSW
null
PSW/mixed_sim_seed1
1
null
transformers
31,504
Entry not found
hyerin/m2m100_418M-finetuned-en-to-ko
832881556825c888ef7c1fa0596e3ce822202540
2022-04-29T09:40:12.000Z
[ "pytorch", "tensorboard", "m2m_100", "text2text-generation", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
text2text-generation
false
hyerin
null
hyerin/m2m100_418M-finetuned-en-to-ko
1
null
transformers
31,505
--- license: mit tags: - generated_from_trainer model-index: - name: m2m100_418M-finetuned-en-to-ko results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # m2m100_418M-finetuned-en-to-ko This model is a fine-tuned version of [facebook/m2m100_418M](https://huggingface.co/facebook/m2m100_418M) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 256 - total_train_batch_size: 2048 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------:|:-------:| | No log | 0.98 | 36 | 1.9465 | 6.0644 | 21.3279 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.1.0 - Tokenizers 0.12.1
PSW/mixed_sim_seed27
8403865050b4afa277ee551645e8dca1c2848ff0
2022-04-28T08:10:55.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
PSW
null
PSW/mixed_sim_seed27
1
null
transformers
31,506
Entry not found
PSW/mixed_sim_seed42
56bbbabd58bb09d35c7e56be4619449a3abdcc5b
2022-04-28T08:58:31.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
PSW
null
PSW/mixed_sim_seed42
1
null
transformers
31,507
Entry not found
MuhammadAhmad/question-model
abfe07839335b6efba4415b8f658f4b265775168
2022-04-28T09:06:22.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
MuhammadAhmad
null
MuhammadAhmad/question-model
1
null
transformers
31,508
Entry not found
lilitket/20220428-094209
3a2a36798a56df8d3c6ae87bf759c831d2f1a9a7
2022-05-01T16:44:36.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
lilitket
null
lilitket/20220428-094209
1
null
transformers
31,509
Entry not found
PSW/mixed_sim2_seed1
d1aa4a34ae6e6e5d81a9a0b9a30de7e0047f59f2
2022-04-28T10:01:18.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
PSW
null
PSW/mixed_sim2_seed1
1
null
transformers
31,510
Entry not found
PSW/mixed_sim2_seed27
dfabc97c288ca10b30bb58adebc046eb04c92c13
2022-04-28T10:50:12.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
PSW
null
PSW/mixed_sim2_seed27
1
null
transformers
31,511
Entry not found
Barkavi/totto-t5-base-bleurt-121K
cd572d6f34a448befb2fb197d67abb73ea3d109a
2022-04-28T17:41:21.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
Barkavi
null
Barkavi/totto-t5-base-bleurt-121K
1
null
transformers
31,512
Entry not found
PSW/mixed_sim2_seed42
5d10e4f4d6df87debb449f51a49c02b924e7b39d
2022-04-28T11:38:09.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
PSW
null
PSW/mixed_sim2_seed42
1
null
transformers
31,513
Entry not found
asahi417/tner-roberta-large-tweet-st
a8760e9ebd057f26f1cc66404167ed87f22928fa
2022-04-28T12:37:50.000Z
[ "pytorch", "roberta", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
asahi417
null
asahi417/tner-roberta-large-tweet-st
1
null
transformers
31,514
Entry not found
Azuris/DialoGPT-medium-ekidona
70017232770e8d8971c495937a692f3e20540f47
2022-04-28T14:36:53.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
Azuris
null
Azuris/DialoGPT-medium-ekidona
1
null
transformers
31,515
--- tags: - conversational --- # Echidona DialoGPT-Medium Model
princeton-nlp/efficient_mlm_m0.60
8bcc7f964620932f5d8f84f96290f46a5a9c7c8f
2022-04-28T18:58:03.000Z
[ "pytorch", "roberta", "fill-mask", "arxiv:2202.08005", "transformers", "autotrain_compatible" ]
fill-mask
false
princeton-nlp
null
princeton-nlp/efficient_mlm_m0.60
1
null
transformers
31,516
--- inference: false --- This is a model checkpoint for ["Should You Mask 15% in Masked Language Modeling"](https://arxiv.org/abs/2202.08005) [(code)](https://github.com/princeton-nlp/DinkyTrain.git). We use pre layer norm, which is not supported by HuggingFace. To use our model, go to our [github repo](https://github.com/princeton-nlp/DinkyTrain.git), download our code, and import the RoBERTa class from `huggingface/modeling_roberta_prelayernorm.py`. For example, ``` bash from huggingface.modeling_roberta_prelayernorm import RobertaForMaskedLM, RobertaForSequenceClassification ```
princeton-nlp/efficient_mlm_m0.80
890fc0c4ebd4b04f2e12a6338f0f7be09d2d3e17
2022-04-28T18:57:52.000Z
[ "pytorch", "roberta", "fill-mask", "arxiv:2202.08005", "transformers", "autotrain_compatible" ]
fill-mask
false
princeton-nlp
null
princeton-nlp/efficient_mlm_m0.80
1
null
transformers
31,517
--- inference: false --- This is a model checkpoint for ["Should You Mask 15% in Masked Language Modeling"](https://arxiv.org/abs/2202.08005) [(code)](https://github.com/princeton-nlp/DinkyTrain.git). We use pre layer norm, which is not supported by HuggingFace. To use our model, go to our [github repo](https://github.com/princeton-nlp/DinkyTrain.git), download our code, and import the RoBERTa class from `huggingface/modeling_roberta_prelayernorm.py`. For example, ``` bash from huggingface.modeling_roberta_prelayernorm import RobertaForMaskedLM, RobertaForSequenceClassification ```
123tarunanand/albert-xlarge-finetuned
a6f1db9f3f3c9b555e01701d87562f9e457919ae
2022-04-28T15:34:39.000Z
[ "pytorch", "albert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
123tarunanand
null
123tarunanand/albert-xlarge-finetuned
1
null
transformers
31,518
### Model **[`albert-xlarge-v2`](https://huggingface.co/albert-xlarge-v2)** fine-tuned on **[`SQuAD V2`](https://rajpurkar.github.io/SQuAD-explorer/)** using **[`run_squad.py`](https://github.com/huggingface/transformers/blob/master/examples/question-answering/run_squad.py)** ### Training Parameters Trained on 4 NVIDIA GeForce RTX 2080 Ti 11Gb ```bash BASE_MODEL=albert-xlarge-v2 python run_squad.py \ --version_2_with_negative \ --model_type albert \ --model_name_or_path $BASE_MODEL \ --output_dir $OUTPUT_MODEL \ --do_eval \ --do_lower_case \ --train_file $SQUAD_DIR/train-v2.0.json \ --predict_file $SQUAD_DIR/dev-v2.0.json \ --per_gpu_train_batch_size 3 \ --per_gpu_eval_batch_size 64 \ --learning_rate 3e-5 \ --num_train_epochs 3.0 \ --max_seq_length 384 \ --doc_stride 128 \ --save_steps 2000 \ --threads 24 \ --warmup_steps 814 \ --gradient_accumulation_steps 4 \ --fp16 \ --do_train ``` ### Evaluation Evaluation on the dev set. I did not sweep for best threshold. | | val | |-------------------|-------------------| | exact | 84.41842836688285 | | f1 | 87.4628460501696 | | total | 11873.0 | | HasAns_exact | 80.68488529014844 | | HasAns_f1 | 86.78245127423482 | | HasAns_total | 5928.0 | | NoAns_exact | 88.1412952060555 | | NoAns_f1 | 88.1412952060555 | | NoAns_total | 5945.0 | | best_exact | 84.41842836688285 | | best_exact_thresh | 0.0 | | best_f1 | 87.46284605016956 | | best_f1_thresh | 0.0 | ### Usage See [huggingface documentation](https://huggingface.co/transformers/model_doc/albert.html#albertforquestionanswering). Training on `SQuAD V2` allows the model to score if a paragraph contains an answer: ```python start_scores, end_scores = model(input_ids) span_scores = start_scores.softmax(dim=1).log()[:,:,None] + end_scores.softmax(dim=1).log()[:,None,:] ignore_score = span_scores[:,0,0] #no answer scores ```
davidenam/xlm-roberta-base-finetuned-panx-de
81d2f4971a463bc6321f8b54f1d66c06e2734081
2022-04-28T21:56:19.000Z
[ "pytorch", "xlm-roberta", "token-classification", "dataset:xtreme", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
token-classification
false
davidenam
null
davidenam/xlm-roberta-base-finetuned-panx-de
1
null
transformers
31,519
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme args: PAN-X.de metrics: - name: F1 type: f1 value: 0.862635800011376 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.1391 - F1: 0.8626 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | No log | 1.0 | 525 | 0.1675 | 0.8188 | | No log | 2.0 | 1050 | 0.1388 | 0.8399 | | No log | 3.0 | 1575 | 0.1391 | 0.8626 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cpu - Datasets 2.1.0 - Tokenizers 0.12.1
Bistolero/it_es_80k
f35378a44e211f4011c425a7850e9fca454ae4d3
2022-04-28T21:31:24.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
Bistolero
null
Bistolero/it_es_80k
1
null
transformers
31,520
Entry not found
awvik360/UncleRuckus
3fdb535110c6ec5a427887c596ab842ba8f43ca0
2022-04-29T01:11:21.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
awvik360
null
awvik360/UncleRuckus
1
null
transformers
31,521
--- tags: - conversational --- # My Awesome Model
Nausheen/bert-finetuned-squad-accelerate
61e516f18cc09196681c9f0f41d9f2888f50b7ea
2022-04-30T21:28:37.000Z
[ "pytorch", "bert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
Nausheen
null
Nausheen/bert-finetuned-squad-accelerate
1
null
transformers
31,522
Entry not found
bkh6722/xlsr-vorarlbergerisch
b0d4518b8cb93a52b62184a9301fd70554aa9611
2022-04-29T04:45:04.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
bkh6722
null
bkh6722/xlsr-vorarlbergerisch
1
null
transformers
31,523
--- license: apache-2.0 tags: - generated_from_trainer model-index: name: wav2vec2-xlsr-vorarlbergerisch --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-xlsr-vorarlbergerisch This model is a fine-tuned version of [jonatasgrosman/wav2vec2-large-xlsr-53-german](https://huggingface.co/jonatasgrosman/wav2vec2-large-xlsr-53-german) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.3193 - Wer: 0.3235 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 62 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 15.6717 | 3.83 | 100 | 3.0247 | 1.0 | | 2.485 | 7.68 | 200 | 1.5937 | 0.9046 | | 0.784 | 11.53 | 300 | 1.2664 | 0.5 | | 0.3689 | 15.38 | 400 | 1.2046 | 0.4696 | | 0.2618 | 19.23 | 500 | 1.1289 | 0.4155 | | 0.2088 | 23.08 | 600 | 0.9339 | 0.3623 | | 0.1388 | 26.91 | 700 | 1.1448 | 0.3573 | | 0.1042 | 30.75 | 800 | 1.1411 | 0.3606 | | 0.0784 | 34.6 | 900 | 1.2046 | 0.3547 | | 0.0607 | 38.45 | 1000 | 1.2243 | 0.3488 | | 0.0459 | 42.3 | 1100 | 1.2387 | 0.3226 | | 0.0273 | 46.15 | 1200 | 1.2123 | 0.3387 | | 0.0195 | 49.98 | 1300 | 1.2232 | 0.3345 | | 0.0188 | 53.83 | 1400 | 1.2656 | 0.3235 | | 0.0132 | 57.68 | 1500 | 1.3377 | 0.3285 | | 0.0089 | 61.53 | 1600 | 1.3193 | 0.3235 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu113 - Datasets 1.18.3 - Tokenizers 0.10.3
obokkkk/mt5-base_2
cff4bf57f7583c20ab8d533be864ef93d12133a1
2022-04-30T05:52:12.000Z
[ "pytorch", "tensorboard", "mt5", "text2text-generation", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
text2text-generation
false
obokkkk
null
obokkkk/mt5-base_2
1
null
transformers
31,524
--- tags: - generated_from_trainer metrics: - bleu model-index: - name: mt5-base_2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mt5-base_2 This model is a fine-tuned version of [obokkkk/mt5-base](https://huggingface.co/obokkkk/mt5-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.1742 - Bleu: 9.479 - Gen Len: 16.9226 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 256 - total_train_batch_size: 2048 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------:|:-------:| | No log | 1.0 | 183 | 1.1834 | 9.3761 | 16.9129 | | No log | 2.0 | 366 | 1.1791 | 9.422 | 16.9334 | | 1.3969 | 3.0 | 549 | 1.1764 | 9.4432 | 16.9082 | | 1.3969 | 4.0 | 732 | 1.1749 | 9.461 | 16.9157 | | 1.3969 | 5.0 | 915 | 1.1742 | 9.479 | 16.9226 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.1.0 - Tokenizers 0.12.1
phosseini/atomic-roberta-large
363638aabe4487b91fdb07a677c56e97f91d93b7
2022-04-29T07:19:39.000Z
[ "pytorch", "roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
phosseini
null
phosseini/atomic-roberta-large
1
null
transformers
31,525
Entry not found
dbmdz/flair-hipe-2022-ajmc-all
1bdfa084db7ae31c034ba24717d32a1373c2f12f
2022-05-04T13:43:34.000Z
[ "pytorch", "multilingual", "flair", "token-classification", "sequence-tagger-model", "license:mit" ]
token-classification
false
dbmdz
null
dbmdz/flair-hipe-2022-ajmc-all
1
null
flair
31,526
--- tags: - flair - token-classification - sequence-tagger-model language: multilingual widget: - text: "In editing the Fragments , I have availed myself of Mr . R . Ellis ’ acute remarks on them in the Cambridge Journal of Philology , Vol . IV , and that I am largely indebted , as every editor must now be , to the edition of the Tragic Fragments by A . Nauck , Leipzig , 1856 ." - text: "459 . Skyros klang dem Athener etwa wie Pholegandros und Sikinos bei Solon Eleg . 1 , 4 , dem Römer Ulubrae , Butunti ." - text: "Celles d ’ Ajax et des siens occupaient l ' extrême aile gauche , vers le promontoire Rhétée , et confinaient tout à la fois au retranchement et à la mer ( // . XIT1 , 681 ; Heynce , excursns cité ) ," license: mit ---
astrojihye/opus-mt-ko-en-finetuned-ko-to-en4
893cdef68a17574590c8a1010a59c75af7827001
2022-04-29T22:02:40.000Z
[ "pytorch", "tensorboard", "marian", "text2text-generation", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
text2text-generation
false
astrojihye
null
astrojihye/opus-mt-ko-en-finetuned-ko-to-en4
1
null
transformers
31,527
--- license: apache-2.0 tags: - generated_from_trainer metrics: - bleu model-index: - name: opus-mt-ko-en-finetuned-ko-to-en4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # opus-mt-ko-en-finetuned-ko-to-en4 This model is a fine-tuned version of [Helsinki-NLP/opus-mt-ko-en](https://huggingface.co/Helsinki-NLP/opus-mt-ko-en) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.9824 - Bleu: 0.5767 - Gen Len: 13.1529 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 512 - total_train_batch_size: 2048 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------:|:-------:| | No log | 0.99 | 52 | 2.9824 | 0.5767 | 13.1529 | | No log | 1.99 | 104 | 2.9824 | 0.5767 | 13.1529 | | No log | 2.99 | 156 | 2.9824 | 0.5767 | 13.1529 | | No log | 3.99 | 208 | 2.9824 | 0.5767 | 13.1529 | | No log | 4.99 | 260 | 2.9824 | 0.5767 | 13.1529 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.1.0 - Tokenizers 0.12.1
Kutay/fine_tuned_tweetqa_aip
e82c90fb397d594df51bd01507089b879b3cfc63
2022-04-29T15:10:16.000Z
[ "pytorch", "bert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
Kutay
null
Kutay/fine_tuned_tweetqa_aip
1
null
transformers
31,528
Entry not found
AvengingPrime/Reddit_and_Procon
647ad45bfe106b33be2d335e38079f1823776f7c
2022-04-29T18:14:46.000Z
[ "pytorch", "encoder-decoder", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
AvengingPrime
null
AvengingPrime/Reddit_and_Procon
1
null
transformers
31,529
Entry not found
umarkhalid96/t5-small-trainings
a930dc6754cceea26483d503929a2149e5c06862
2022-04-29T18:36:13.000Z
[ "pytorch", "tensorboard", "t5", "text2text-generation", "transformers", "summarization", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
summarization
false
umarkhalid96
null
umarkhalid96/t5-small-trainings
1
null
transformers
31,530
--- license: apache-2.0 tags: - summarization - generated_from_trainer metrics: - rouge model-index: - name: t5-small-trainings results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-trainings This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.2580 - Rouge1: 41.5251 - Rouge2: 19.8842 - Rougel: 36.4895 - Rougelsum: 37.2565 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5.6e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:| | 3.1338 | 1.0 | 51 | 2.5825 | 35.4169 | 15.379 | 30.8859 | 31.524 | | 2.5905 | 2.0 | 102 | 2.3975 | 38.4266 | 17.2571 | 33.5912 | 34.312 | | 2.3881 | 3.0 | 153 | 2.3329 | 39.8082 | 19.1925 | 34.8269 | 35.5295 | | 2.3167 | 4.0 | 204 | 2.2938 | 41.3488 | 20.1513 | 35.6879 | 36.5864 | | 2.2357 | 5.0 | 255 | 2.2727 | 41.2457 | 19.5358 | 36.0033 | 36.8405 | | 2.232 | 6.0 | 306 | 2.2645 | 41.2746 | 20.0345 | 35.9226 | 36.7001 | | 2.1986 | 7.0 | 357 | 2.2595 | 41.7542 | 19.9428 | 36.6819 | 37.4718 | | 2.1457 | 8.0 | 408 | 2.2580 | 41.5251 | 19.8842 | 36.4895 | 37.2565 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.1.0 - Tokenizers 0.12.1
Siddhart/t5-small-finetuned-xsum
de928d97fb61710b1bde6f9dca1172a81645b4ea
2022-04-30T00:04:50.000Z
[ "pytorch", "tensorboard", "t5", "text2text-generation", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
text2text-generation
false
Siddhart
null
Siddhart/t5-small-finetuned-xsum
1
null
transformers
31,531
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: t5-small-finetuned-xsum results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-xsum This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | No log | 1.0 | 23 | 2.7230 | 33.2094 | 14.0331 | 28.4433 | 29.4644 | 18.8947 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.1.0 - Tokenizers 0.12.1
moaiz237/wav2vec2-base-timit-demo-colab
e1de82e360c4ae201d56939d66b5ae25b54a04ee
2022-04-30T07:51:57.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
moaiz237
null
moaiz237/wav2vec2-base-timit-demo-colab
1
null
transformers
31,532
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base-timit-demo-colab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-timit-demo-colab This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4769 - Wer: 0.4305 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 5.2022 | 13.89 | 500 | 2.9267 | 0.9995 | | 0.834 | 27.78 | 1000 | 0.4769 | 0.4305 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.11.0+cu113 - Datasets 1.18.3 - Tokenizers 0.10.3
charityking2358/taglish-electra-50K
337402be67c7c5a9c637c70adc2fda5765915f2d
2022-04-30T01:57:01.000Z
[ "pytorch", "transformers" ]
null
false
charityking2358
null
charityking2358/taglish-electra-50K
1
null
transformers
31,533
Entry not found
ChrisZeng/t5-v1_1-base-detox
c226e6232ce93df1d9e01cafc4925738716bc3b9
2022-04-30T05:23:33.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
ChrisZeng
null
ChrisZeng/t5-v1_1-base-detox
1
null
transformers
31,534
Entry not found
huggingtweets/itstomrobinson
8119235db46bba7be64a0f5ab0ea16f6f5b3cdf8
2022-04-30T07:06:15.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/itstomrobinson
1
null
transformers
31,535
--- language: en thumbnail: http://www.huggingtweets.com/itstomrobinson/1651302371165/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1388470365723168770/irz46Ykl_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Tom Robinson</div> <div style="text-align: center; font-size: 14px;">@itstomrobinson</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Tom Robinson. | Data | Tom Robinson | | --- | --- | | Tweets downloaded | 733 | | Retweets | 40 | | Short tweets | 52 | | Tweets kept | 641 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3bluc7sk/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @itstomrobinson's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2ryc26oz) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2ryc26oz/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/itstomrobinson') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
learningdude/wav2vec2-base-finetuned-ks
941fd143f7791abc086f821f8ce1d0a65c6e35c5
2022-04-30T13:35:56.000Z
[ "pytorch", "tensorboard", "wav2vec2", "audio-classification", "dataset:superb", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
audio-classification
false
learningdude
null
learningdude/wav2vec2-base-finetuned-ks
1
null
transformers
31,536
--- license: apache-2.0 tags: - generated_from_trainer datasets: - superb metrics: - accuracy model-index: - name: wav2vec2-base-finetuned-ks results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-finetuned-ks This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the superb dataset. It achieves the following results on the evaluation set: - Loss: 0.0834 - Accuracy: 0.9840 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6111 | 1.0 | 399 | 0.5123 | 0.9388 | | 0.2901 | 2.0 | 798 | 0.1725 | 0.9782 | | 0.1916 | 3.0 | 1197 | 0.1060 | 0.9834 | | 0.1754 | 4.0 | 1596 | 0.0891 | 0.9829 | | 0.1384 | 5.0 | 1995 | 0.0834 | 0.9840 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 1.14.0 - Tokenizers 0.12.1
lsanochkin/distilelectra-base
df04b7a65fb7ce5977c78cde717a024380a2e9dd
2022-04-30T09:47:08.000Z
[ "pytorch", "electra", "pretraining", "transformers" ]
null
false
lsanochkin
null
lsanochkin/distilelectra-base
1
1
transformers
31,537
Entry not found
doddle124578/wav2vec2-base-timit-demo-colab
be91568829e7600315aacf766528a7b917303d29
2022-04-30T14:40:55.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
doddle124578
null
doddle124578/wav2vec2-base-timit-demo-colab
1
null
transformers
31,538
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base-timit-demo-colab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-timit-demo-colab This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6574 - Wer: 0.5652 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 10 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 5.6258 | 8.77 | 500 | 3.1693 | 1.0 | | 1.4137 | 17.54 | 1000 | 0.6574 | 0.5652 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.11.0+cu113 - Datasets 1.18.3 - Tokenizers 0.10.3
charityking2358/taglish-electra-55K
cadcd4ba35234dd1a82d487991e55c07debdd92f
2022-04-30T14:04:04.000Z
[ "pytorch", "transformers" ]
null
false
charityking2358
null
charityking2358/taglish-electra-55K
1
null
transformers
31,539
Entry not found
Davincilee/closure_system_door_inne-bert-base-uncased
251f7d4ffdf8da9de7f19a3bcfc7ab65f821b26e
2022-05-10T13:49:44.000Z
[ "pytorch", "tensorboard", "bert", "fill-mask", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
fill-mask
false
Davincilee
null
Davincilee/closure_system_door_inne-bert-base-uncased
1
null
transformers
31,540
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: closure_system_door_inne-bert-base-uncased results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # closure_system_door_inne-bert-base-uncased This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.7907 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 7 - eval_batch_size: 7 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.7321 | 1.0 | 2 | 2.5801 | | 2.6039 | 2.0 | 4 | 2.0081 | | 2.4556 | 3.0 | 6 | 2.3329 | | 2.3587 | 4.0 | 8 | 2.4156 | | 2.2565 | 5.0 | 10 | 2.0009 | | 2.3489 | 6.0 | 12 | 1.7774 | | 2.2622 | 7.0 | 14 | 2.2064 | | 2.415 | 8.0 | 16 | 1.9671 | | 2.1873 | 9.0 | 18 | 2.0729 | | 2.2377 | 10.0 | 20 | 2.0052 | | 2.352 | 11.0 | 22 | 1.9614 | | 2.2347 | 12.0 | 24 | 2.2437 | | 2.1113 | 13.0 | 26 | 1.7145 | | 2.1939 | 14.0 | 28 | 1.5418 | | 2.0645 | 15.0 | 30 | 2.1882 | | 2.1499 | 16.0 | 32 | 2.0266 | | 2.1432 | 17.0 | 34 | 2.3583 | | 2.0656 | 18.0 | 36 | 2.3147 | | 2.0348 | 19.0 | 38 | 2.2807 | | 2.0502 | 20.0 | 40 | 1.7122 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.1.0 - Tokenizers 0.12.1
ahmad573/wav2vec2-base-timit-demo-colab2
c4f10b1301f09a138cac058b44f3ee65536fdec2
2022-04-30T19:12:53.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
ahmad573
null
ahmad573/wav2vec2-base-timit-demo-colab2
1
null
transformers
31,541
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base-timit-demo-colab2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-timit-demo-colab2 This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.1914 - Wer: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 700 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:---:| | 3.8196 | 7.04 | 500 | 3.2201 | 1.0 | | 3.1517 | 14.08 | 1000 | 3.1876 | 1.0 | | 3.1493 | 21.13 | 1500 | 3.1837 | 1.0 | | 3.1438 | 28.17 | 2000 | 3.1914 | 1.0 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.11.0+cu113 - Datasets 1.18.3 - Tokenizers 0.10.3
tahazakir/wav2vec2-base-timit-demo-colab0
71bcfedece2a8b7f1366935f50039776f07eac93
2022-04-30T18:01:33.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
tahazakir
null
tahazakir/wav2vec2-base-timit-demo-colab0
1
null
transformers
31,542
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base-timit-demo-colab0 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-timit-demo-colab0 This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.8768 - Wer: 0.6089 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 5.1121 | 13.89 | 500 | 2.9931 | 1.0 | | 1.1475 | 27.78 | 1000 | 0.8768 | 0.6089 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.11.0+cu113 - Datasets 1.18.3 - Tokenizers 0.10.3
inhee/m2m100_418M-finetuned-ko-to-en4-finetuned-ko-to-en5
06a76bf5c91991729e7d3a8968472a175a55623d
2022-05-02T05:54:00.000Z
[ "pytorch", "tensorboard", "m2m_100", "text2text-generation", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
text2text-generation
false
inhee
null
inhee/m2m100_418M-finetuned-ko-to-en4-finetuned-ko-to-en5
1
null
transformers
31,543
--- license: mit tags: - generated_from_trainer metrics: - bleu model-index: - name: m2m100_418M-finetuned-ko-to-en4-finetuned-ko-to-en5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # m2m100_418M-finetuned-ko-to-en4-finetuned-ko-to-en5 This model is a fine-tuned version of [inhee/m2m100_418M-finetuned-ko-to-en4](https://huggingface.co/inhee/m2m100_418M-finetuned-ko-to-en4) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2863 - Bleu: 87.4185 - Gen Len: 9.7107 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 256 - total_train_batch_size: 1024 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:| | No log | 1.0 | 105 | 0.3571 | 78.7464 | 9.5775 | | No log | 2.0 | 210 | 0.3410 | 81.9462 | 9.6505 | | No log | 3.0 | 315 | 0.3102 | 84.746 | 9.6732 | | No log | 4.0 | 420 | 0.2929 | 86.5137 | 9.6997 | | 0.2431 | 5.0 | 525 | 0.2863 | 87.4185 | 9.7107 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.1.0 - Tokenizers 0.12.1
tahazakir/wav2vec2-base-timit-demo-colab1
57e2e39152d9e9a293f0ec4e7eb41142c17a8734
2022-04-30T22:47:47.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
tahazakir
null
tahazakir/wav2vec2-base-timit-demo-colab1
1
null
transformers
31,544
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base-timit-demo-colab1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-timit-demo-colab1 This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.1918 - Wer: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.005 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:---:| | 3.7104 | 13.89 | 500 | 3.2161 | 1.0 | | 3.1868 | 27.78 | 1000 | 3.1918 | 1.0 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.11.0+cu113 - Datasets 1.18.3 - Tokenizers 0.10.3
tahazakir/wav2vec2-base-timit-demo-colab2
0ed3f52956c86cf5ed67c96b14573b2effef20fb
2022-04-30T22:54:15.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
tahazakir
null
tahazakir/wav2vec2-base-timit-demo-colab2
1
null
transformers
31,545
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base-timit-demo-colab2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-timit-demo-colab2 This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.1899 - Wer: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:---:| | 8.0486 | 13.89 | 500 | 3.6570 | 1.0 | | 3.2905 | 27.78 | 1000 | 3.1899 | 1.0 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.11.0+cu113 - Datasets 1.18.3 - Tokenizers 0.10.3
kiljos/xlm-roberta-base-finetuned-panx-de
06a68ddb195ec3f59ef4ebeb9cfa5a44576488a1
2022-04-30T20:52:00.000Z
[ "pytorch", "tensorboard", "xlm-roberta", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
kiljos
null
kiljos/xlm-roberta-base-finetuned-panx-de
1
null
transformers
31,546
Entry not found
moaiz237/wav2vec2-base-timit-moaiz_explast
0d2fa142e70e21fb0a242f348fbd6697b7f1b410
2022-04-30T22:11:49.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
moaiz237
null
moaiz237/wav2vec2-base-timit-moaiz_explast
1
null
transformers
31,547
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base-timit-moaiz_explast results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-timit-moaiz_explast This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6714 - Wer: 0.5404 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 40 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 4.034 | 13.89 | 500 | 1.0507 | 0.6871 | | 0.6024 | 27.78 | 1000 | 0.6714 | 0.5404 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.11.0+cu113 - Datasets 1.18.3 - Tokenizers 0.10.3
ChrisZeng/bart-base-detox
c2af80760dc1f51770ba060f7e7ccc751574dfd5
2022-05-01T00:01:11.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
text2text-generation
false
ChrisZeng
null
ChrisZeng/bart-base-detox
1
null
transformers
31,548
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: bart-base-detox results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-base-detox This model is a fine-tuned version of [facebook/bart-base](https://huggingface.co/facebook/bart-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1819 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.5633 | 1.0 | 135 | 0.2524 | | 0.2589 | 2.0 | 270 | 0.2193 | | 0.2307 | 3.0 | 405 | 0.1993 | | 0.2171 | 4.0 | 540 | 0.2002 | | 0.2027 | 5.0 | 675 | 0.1937 | | 0.1946 | 6.0 | 810 | 0.1972 | | 0.1874 | 7.0 | 945 | 0.1917 | | 0.1853 | 8.0 | 1080 | 0.1868 | | 0.1811 | 9.0 | 1215 | 0.1890 | | 0.1776 | 10.0 | 1350 | 0.1871 | | 0.1798 | 11.0 | 1485 | 0.1858 | | 0.1745 | 12.0 | 1620 | 0.1820 | | 0.1689 | 13.0 | 1755 | 0.1827 | | 0.1707 | 14.0 | 1890 | 0.1843 | | 0.1658 | 15.0 | 2025 | 0.1834 | | 0.1647 | 16.0 | 2160 | 0.1820 | | 0.1645 | 17.0 | 2295 | 0.1837 | | 0.1633 | 18.0 | 2430 | 0.1814 | | 0.1612 | 19.0 | 2565 | 0.1815 | | 0.1603 | 20.0 | 2700 | 0.1819 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.12.0.dev20220429 - Datasets 2.1.0 - Tokenizers 0.10.3
zasheza/Part1
a4cf83022c4b069e977fcfeb35160c9095e842a3
2022-05-01T03:09:37.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
zasheza
null
zasheza/Part1
1
null
transformers
31,549
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: Part1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Part1 This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.11.3 - Pytorch 1.11.0+cu113 - Datasets 1.18.3 - Tokenizers 0.10.3
hassnain/wav2vec2-base-timit-demo-colab2
353ef7c858879eacce82996f847c1127b0594320
2022-05-01T06:45:10.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
hassnain
null
hassnain/wav2vec2-base-timit-demo-colab2
1
null
transformers
31,550
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base-timit-demo-colab2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-timit-demo-colab2 This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.2355 - Wer: 0.7320 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 60 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 4.851 | 13.89 | 500 | 3.1260 | 1.0 | | 1.9721 | 27.78 | 1000 | 1.2435 | 0.7992 | | 0.5749 | 41.67 | 1500 | 1.1662 | 0.7374 | | 0.291 | 55.56 | 2000 | 1.2355 | 0.7320 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.11.0+cu113 - Datasets 1.18.3 - Tokenizers 0.10.3
hassnain/wav2vec2-base-timit-demo-colab3
7958347e49f5f48b61d2ababc70a8bfbe0643770
2022-05-01T07:06:20.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
hassnain
null
hassnain/wav2vec2-base-timit-demo-colab3
1
null
transformers
31,551
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base-timit-demo-colab3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-timit-demo-colab3 This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.1016 - Wer: 0.6704 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 60 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 5.0006 | 13.89 | 500 | 3.0706 | 1.0 | | 1.8796 | 27.78 | 1000 | 1.1154 | 0.7414 | | 0.548 | 41.67 | 1500 | 1.0826 | 0.7034 | | 0.2747 | 55.56 | 2000 | 1.1016 | 0.6704 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.11.0+cu113 - Datasets 1.18.3 - Tokenizers 0.10.3
hassnain/wav2vec2-base-timit-demo-colab6
502c6b89c25ccdbc7d06a8db875551dbce44323d
2022-05-01T07:17:08.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
hassnain
null
hassnain/wav2vec2-base-timit-demo-colab6
1
null
transformers
31,552
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base-timit-demo-colab6 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-timit-demo-colab6 This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.9394 - Wer: 0.5282 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 60 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 5.3117 | 7.35 | 500 | 3.1548 | 1.0 | | 1.6732 | 14.71 | 1000 | 0.8857 | 0.6561 | | 0.5267 | 22.06 | 1500 | 0.7931 | 0.6018 | | 0.2951 | 29.41 | 2000 | 0.8152 | 0.5816 | | 0.2013 | 36.76 | 2500 | 0.9060 | 0.5655 | | 0.1487 | 44.12 | 3000 | 0.9201 | 0.5624 | | 0.1189 | 51.47 | 3500 | 0.9394 | 0.5412 | | 0.1004 | 58.82 | 4000 | 0.9394 | 0.5282 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.11.0+cu113 - Datasets 1.18.3 - Tokenizers 0.10.3
sameearif88/wav2vec2-base-timit-demo-colab2
897efe9da3a9448b326f06e46def3ac71c5a8161
2022-05-01T07:02:11.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
sameearif88
null
sameearif88/wav2vec2-base-timit-demo-colab2
1
null
transformers
31,553
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base-timit-demo-colab2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-timit-demo-colab2 This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7414 - Wer: 0.5664 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 5.1999 | 13.89 | 500 | 2.8190 | 1.0 | | 0.986 | 27.78 | 1000 | 0.7414 | 0.5664 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.11.0+cu113 - Datasets 1.18.3 - Tokenizers 0.10.3
sherry7144/wav2vec2-base-timit-demo-colab1
3ddb7b0496fbecb603051f8ad9833c1b63be5f94
2022-05-01T08:08:05.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
sherry7144
null
sherry7144/wav2vec2-base-timit-demo-colab1
1
null
transformers
31,554
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base-timit-demo-colab1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-timit-demo-colab1 This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.0358 - Wer: 0.5729 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 800 - num_epochs: 35 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.3217 | 13.89 | 500 | 0.8951 | 0.5834 | | 0.2263 | 27.78 | 1000 | 1.0358 | 0.5729 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.11.0+cu113 - Datasets 1.18.3 - Tokenizers 0.10.3
sameearif88/wav2vec2-base-timit-demo-colab3
9e8ebcfd2394c25a236d9b45a1e9e973fd7f80eb
2022-05-01T07:50:23.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
sameearif88
null
sameearif88/wav2vec2-base-timit-demo-colab3
1
null
transformers
31,555
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base-timit-demo-colab3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-timit-demo-colab3 This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.8480 - Wer: 0.5608 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 600 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 4.7977 | 13.89 | 500 | 1.6491 | 0.8257 | | 0.7393 | 27.78 | 1000 | 0.8480 | 0.5608 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.11.0+cu113 - Datasets 1.18.3 - Tokenizers 0.10.3
sameearif88/wav2vec2-base-timit-demo-colab4
23e463b8da75a62f7878d97fef365e675b1b34a9
2022-05-01T08:37:50.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
sameearif88
null
sameearif88/wav2vec2-base-timit-demo-colab4
1
null
transformers
31,556
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base-timit-demo-colab4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-timit-demo-colab4 This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.9149 - Wer: 0.5907 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 800 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 4.9363 | 13.89 | 500 | 2.7532 | 1.0 | | 0.9875 | 27.78 | 1000 | 0.9149 | 0.5907 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.11.0+cu113 - Datasets 1.18.3 - Tokenizers 0.10.3
zasheza/wav2vec2-base-timit-demo-colab-1
180c977229ccac67d7de3d107e8dbecdc8135559
2022-05-01T16:08:23.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
zasheza
null
zasheza/wav2vec2-base-timit-demo-colab-1
1
null
transformers
31,557
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base-timit-demo-colab-1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-timit-demo-colab-1 This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.9634 - Wer: 0.4398 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 6 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 800 - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 4.8991 | 5.26 | 500 | 1.4319 | 0.7522 | | 0.8555 | 10.53 | 1000 | 0.7895 | 0.5818 | | 0.4584 | 15.79 | 1500 | 0.7198 | 0.5211 | | 0.3096 | 21.05 | 2000 | 0.7983 | 0.5118 | | 0.2165 | 26.32 | 2500 | 0.7893 | 0.4745 | | 0.163 | 31.58 | 3000 | 0.8779 | 0.4589 | | 0.1144 | 36.84 | 3500 | 0.9256 | 0.4540 | | 0.0886 | 42.11 | 4000 | 0.9184 | 0.4530 | | 0.0668 | 47.37 | 4500 | 0.9634 | 0.4398 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.11.0+cu113 - Datasets 1.18.3 - Tokenizers 0.10.3
hassnain/wav2vec2-base-timit-demo-colab60
e3a88c8c75e3b4d5b1ff9a8086236ac1db80030f
2022-05-01T12:26:16.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
hassnain
null
hassnain/wav2vec2-base-timit-demo-colab60
1
null
transformers
31,558
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base-timit-demo-colab60 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-timit-demo-colab60 This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.1975 - Wer: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 60 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:---:| | 5.5799 | 7.04 | 500 | 3.2484 | 1.0 | | 3.1859 | 14.08 | 1000 | 3.1951 | 1.0 | | 3.1694 | 21.13 | 1500 | 3.1754 | 1.0 | | 3.1637 | 28.17 | 2000 | 3.1818 | 1.0 | | 3.1633 | 35.21 | 2500 | 3.1739 | 1.0 | | 3.16 | 42.25 | 3000 | 3.2030 | 1.0 | | 3.1602 | 49.3 | 3500 | 3.1974 | 1.0 | | 3.1544 | 56.34 | 4000 | 3.1975 | 1.0 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.11.0+cu113 - Datasets 1.18.3 - Tokenizers 0.10.3
hassnain/wav2vec2-base-timit-demo-colab92
28b007555e508268aad459901c6568c6167c3226
2022-05-02T11:09:44.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
hassnain
null
hassnain/wav2vec2-base-timit-demo-colab92
1
null
transformers
31,559
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base-timit-demo-colab92 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-timit-demo-colab92 This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - eval_loss: 0.6596 - eval_wer: 0.4164 - eval_runtime: 55.6472 - eval_samples_per_second: 12.615 - eval_steps_per_second: 1.581 - epoch: 2.85 - step: 1000 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 60 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.11.3 - Pytorch 1.11.0+cu113 - Datasets 1.18.3 - Tokenizers 0.10.3
JBW/da_en_translation
cfebc27ed56668ea9e3f9ddf85521a4c3fa768a3
2022-05-03T20:23:55.000Z
[ "pytorch", "mt5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
JBW
null
JBW/da_en_translation
1
null
transformers
31,560
Entry not found
charityking2358/taglish-electra-60k
8b3f31e0f0083ca4cefaf1601810e81979c113f3
2022-05-01T14:30:10.000Z
[ "pytorch", "transformers" ]
null
false
charityking2358
null
charityking2358/taglish-electra-60k
1
null
transformers
31,561
Entry not found
buidung2004/maialong_model
178e8566e049856a458c87fdb3542c7ea1b6590e
2022-05-01T15:43:57.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
buidung2004
null
buidung2004/maialong_model
1
null
transformers
31,562
Entry not found
dmoz47/DialoGPT-small-peterparker
031548d755746aba0218e0a59d1c304a823bb159
2022-05-01T18:43:22.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
dmoz47
null
dmoz47/DialoGPT-small-peterparker
1
null
transformers
31,563
--- tags: - conversational --- # Peter Parker DialoGPT Model
zoha/wav2vec2-base-common-voice-fa-second-colab
d2615a987c7e88442a9965c45e7b9a140bd6c8b1
2022-05-01T23:51:34.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
zoha
null
zoha/wav2vec2-base-common-voice-fa-second-colab
1
null
transformers
31,564
Entry not found
sherry7144/wav2vec2-base-timit-demo-colab3
26fed870665d026a795b1c8ab89b12a2c22393b1
2022-05-02T04:04:29.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
sherry7144
null
sherry7144/wav2vec2-base-timit-demo-colab3
1
null
transformers
31,565
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base-timit-demo-colab3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-timit-demo-colab3 This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.8344 - Wer: 0.6055 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 800 - num_epochs: 35 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 5.0927 | 13.89 | 500 | 2.7346 | 1.0 | | 0.9983 | 27.78 | 1000 | 0.8344 | 0.6055 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.11.0+cu113 - Datasets 1.18.3 - Tokenizers 0.10.3
creynier/wav2vec2-base-swbd-turn-eos-long_short_utt_removed_5percent
d56bbca3c6ad82b94f7b67f2bfefcfb212cea5bf
2022-05-03T06:35:49.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
creynier
null
creynier/wav2vec2-base-swbd-turn-eos-long_short_utt_removed_5percent
1
null
transformers
31,566
Entry not found
JoanTirant/roberta-base-bne-finetuned-sqac
b3e9769eb3b54c12c26bba823a4a3a4e3091cb1d
2022-05-02T12:52:50.000Z
[ "pytorch", "tensorboard", "roberta", "question-answering", "dataset:sqac", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
question-answering
false
JoanTirant
null
JoanTirant/roberta-base-bne-finetuned-sqac
1
null
transformers
31,567
--- license: apache-2.0 tags: - generated_from_trainer datasets: - sqac model-index: - name: roberta-base-bne-finetuned-sqac results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-bne-finetuned-sqac This model is a fine-tuned version of [BSC-TeMU/roberta-base-bne](https://huggingface.co/BSC-TeMU/roberta-base-bne) on the sqac dataset. It achieves the following results on the evaluation set: - Loss: 1.1857 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.0033 | 1.0 | 1196 | 0.8764 | | 0.4659 | 2.0 | 2392 | 0.8998 | | 0.152 | 3.0 | 3588 | 1.1857 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.1.0 - Tokenizers 0.12.1
jhoonk/bert-base-uncased-finetuned-swag
c3950da4849178efb11f08fe41c0d60706f7e729
2022-05-09T10:41:40.000Z
[ "pytorch", "tensorboard", "bert", "multiple-choice", "dataset:swag", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
multiple-choice
false
jhoonk
null
jhoonk/bert-base-uncased-finetuned-swag
1
null
transformers
31,568
--- license: apache-2.0 tags: - generated_from_trainer datasets: - swag metrics: - accuracy model-index: - name: bert-base-uncased-finetuned-swag results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-finetuned-swag This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the swag dataset. It achieves the following results on the evaluation set: - Loss: 1.0337 - Accuracy: 0.7888 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.7451 | 1.0 | 4597 | 0.5944 | 0.7696 | | 0.3709 | 2.0 | 9194 | 0.6454 | 0.7803 | | 0.1444 | 3.0 | 13791 | 1.0337 | 0.7888 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.1.0 - Tokenizers 0.12.1
Paleontolog/bart_rus_summarizer
3c53122b99b9d827f609665ee381835e095c1061
2022-05-11T14:51:54.000Z
[ "pytorch", "mbart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
Paleontolog
null
Paleontolog/bart_rus_summarizer
1
null
transformers
31,569
Entry not found
shiemn/bigdatageo-gelectra-base-new-embeddings
9dc15fe4c6cd67166393fe57bf3291b15c7ab462
2022-05-02T11:38:40.000Z
[ "pytorch", "electra", "feature-extraction", "transformers" ]
feature-extraction
false
shiemn
null
shiemn/bigdatageo-gelectra-base-new-embeddings
1
null
transformers
31,570
Entry not found
charityking2358/taglish-electra-65k
86545bc5585b5e217dcec98ec27c1f19c94a24cc
2022-05-02T13:59:49.000Z
[ "pytorch", "transformers" ]
null
false
charityking2358
null
charityking2358/taglish-electra-65k
1
null
transformers
31,571
Entry not found
spasis/mt5-small-finetuned-amazon-en-es
8fd15d033a8175cc186c7bec3e856ec704aead6a
2022-05-03T13:30:22.000Z
[ "pytorch", "mt5", "text2text-generation", "transformers", "summarization", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
summarization
false
spasis
null
spasis/mt5-small-finetuned-amazon-en-es
1
null
transformers
31,572
--- license: apache-2.0 tags: - summarization - generated_from_trainer metrics: - rouge model-index: - name: mt5-small-finetuned-amazon-en-es results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mt5-small-finetuned-amazon-en-es This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.1185 - Rouge1: 17.2081 - Rouge2: 8.8374 - Rougel: 16.8033 - Rougelsum: 16.663 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5.6e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:-------:|:---------:| | No log | 1.0 | 303 | 3.9821 | 8.3993 | 2.0894 | 8.1427 | 8.135 | | No log | 2.0 | 606 | 3.3511 | 13.1381 | 5.7193 | 12.8494 | 12.8375 | | No log | 3.0 | 909 | 3.2235 | 15.2502 | 6.5903 | 14.728 | 14.612 | | 5.8943 | 4.0 | 1212 | 3.1695 | 16.1725 | 8.1638 | 15.7655 | 15.6068 | | 5.8943 | 5.0 | 1515 | 3.1579 | 16.3126 | 7.9727 | 15.8308 | 15.7236 | | 5.8943 | 6.0 | 1818 | 3.1346 | 16.8323 | 8.088 | 16.3863 | 16.3343 | | 5.8943 | 7.0 | 2121 | 3.1181 | 16.965 | 8.5799 | 16.6418 | 16.5064 | | 3.7097 | 8.0 | 2424 | 3.1185 | 17.2081 | 8.8374 | 16.8033 | 16.663 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.1 - Datasets 1.17.0 - Tokenizers 0.10.3
Dizzykong/gpt2-quests-100
589f4928a686b8c75a1a6f8a63ad500f903a427a
2022-05-02T20:54:38.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
Dizzykong
null
Dizzykong/gpt2-quests-100
1
null
transformers
31,573
Entry not found
masakhane/afri-mt5-base
fc72d2fd1bf66f620ed8668b1b65a12cf2b94d5a
2022-05-12T13:51:08.000Z
[ "pytorch", "mt5", "text2text-generation", "transformers", "license:afl-3.0", "autotrain_compatible" ]
text2text-generation
false
masakhane
null
masakhane/afri-mt5-base
1
null
transformers
31,574
--- license: afl-3.0 ---
masakhane/afri-byt5-base
66e56aa6c92e314021839cf33e3af8299317d363
2022-05-12T13:51:00.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "license:afl-3.0", "autotrain_compatible" ]
text2text-generation
false
masakhane
null
masakhane/afri-byt5-base
1
null
transformers
31,575
--- license: afl-3.0 ---
masakhane/afri-mbart50
0d0948d56f9c30d43d322f3a115a2f53519e73ae
2022-05-12T13:50:56.000Z
[ "pytorch", "mbart", "text2text-generation", "transformers", "license:afl-3.0", "autotrain_compatible" ]
text2text-generation
false
masakhane
null
masakhane/afri-mbart50
1
null
transformers
31,576
--- license: afl-3.0 ---
masakhane/m2m100_418M-EN-NEWS
3e39e9662b2c2c5c9aa7d4108416f0117cc74124
2022-05-12T13:43:31.000Z
[ "pytorch", "m2m_100", "text2text-generation", "transformers", "license:afl-3.0", "autotrain_compatible" ]
text2text-generation
false
masakhane
null
masakhane/m2m100_418M-EN-NEWS
1
null
transformers
31,577
--- license: afl-3.0 ---
lilitket/20220503-001553
761eb884181921e55ccf6c59c005e69dd4eb3860
2022-05-03T01:50:58.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
lilitket
null
lilitket/20220503-001553
1
null
transformers
31,578
Entry not found
charityking2358/taglish-electra-70k
c83330a34e8edb1fc63278bcbf5ce27e056bef70
2022-05-03T04:28:15.000Z
[ "pytorch", "transformers" ]
null
false
charityking2358
null
charityking2358/taglish-electra-70k
1
null
transformers
31,579
Entry not found
Nonegom/klue-roberta-large
ac6130989460aa5f1ab8fe73fa15df66756358bc
2022-05-03T09:23:18.000Z
[ "pytorch", "roberta", "question-answering", "transformers", "license:apache-2.0", "autotrain_compatible" ]
question-answering
false
Nonegom
null
Nonegom/klue-roberta-large
1
1
transformers
31,580
--- license: apache-2.0 ---
DioLiu/distilroberta-base-Shake-Taylor
afd7a8a9ec6b4464c4ebdbcd9bfe0fcf276f3162
2022-05-03T12:17:01.000Z
[ "pytorch", "tensorboard", "roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
DioLiu
null
DioLiu/distilroberta-base-Shake-Taylor
1
null
transformers
31,581
Entry not found
efederici/it5-efficient-small-fanpage
bdb608bc31def75d3ed9ec2eed4728a15ee74f27
2022-05-03T13:14:00.000Z
[ "pytorch", "t5", "text2text-generation", "it", "dataset:ARTeLab/fanpage", "transformers", "summarization", "license:apache-2.0", "autotrain_compatible" ]
summarization
false
efederici
null
efederici/it5-efficient-small-fanpage
1
null
transformers
31,582
--- license: apache-2.0 tags: - summarization language: - it datasets: - ARTeLab/fanpage --- # it5-efficient-small-fanpage It is a T5 ([IT5](https://huggingface.co/stefan-it/it5-efficient-small-el32)) efficient small model trained on [Fanpage](https://huggingface.co/datasets/ARTeLab/fanpage). <p align="center"> <img src="https://compass-media.vogue.it/photos/61e574067f70d15c08312807/master/w_1600%2Cc_limit/DavideBalliano_UNTITLED_0215_%25206060_2021_1_Crop.jpeg" width="400"> </br> Davide Balliano, Untitled </p> ## Usage and Performance ```python from transformers import AutoTokenizer, AutoModelForSeq2SeqLM tokenizer = T5Tokenizer.from_pretrained("efederici/it5-efficient-small-fanpage") model = T5ForConditionalGeneration.from_pretrained("efederici/it5-efficient-small-fanpage") ``` ### Framework versions - Transformers 4.19.0.dev0 - Pytorch 1.11.0+cu113 - Datasets 2.1.0 - Tokenizers 0.12.1
lilitket/20220503-123021
da4085ac190712e10946011f63ad6e1c255e1666
2022-05-03T14:04:29.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
lilitket
null
lilitket/20220503-123021
1
null
transformers
31,583
Entry not found
masakhane/m2m100_418M_en_hau_news
14cb0af3b2b84d57e3fde75da28d4bb4b7f96df7
2022-05-03T13:37:01.000Z
[ "pytorch", "m2m_100", "text2text-generation", "transformers", "license:afl-3.0", "autotrain_compatible" ]
text2text-generation
false
masakhane
null
masakhane/m2m100_418M_en_hau_news
1
null
transformers
31,584
--- license: afl-3.0 ---
masakhane/m2m100_418M_hau_en_news
255f81695625976bffa18cfbcb1771703004d3b8
2022-05-03T13:37:07.000Z
[ "pytorch", "m2m_100", "text2text-generation", "transformers", "license:afl-3.0", "autotrain_compatible" ]
text2text-generation
false
masakhane
null
masakhane/m2m100_418M_hau_en_news
1
null
transformers
31,585
--- license: afl-3.0 ---
masakhane/m2m100_418M_en_hau_rel_news
d6b7a78cad8cbf630bdccd6a89241a50ea1e23ff
2022-05-03T13:37:11.000Z
[ "pytorch", "m2m_100", "text2text-generation", "transformers", "license:afl-3.0", "autotrain_compatible" ]
text2text-generation
false
masakhane
null
masakhane/m2m100_418M_en_hau_rel_news
1
null
transformers
31,586
--- license: afl-3.0 ---
chebmarcel/sun2
d7499b299db64861539bcf6957e01d9b1cdecddc
2022-05-03T14:42:36.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
chebmarcel
null
chebmarcel/sun2
1
null
transformers
31,587
Entry not found
InSaiyan/DialoGPT-small-harrypotter
809dab630a9ca0546c2986d16868ca76e258f48e
2022-05-03T13:48:30.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
InSaiyan
null
InSaiyan/DialoGPT-small-harrypotter
1
null
transformers
31,588
--- tags: - conversational --- # Harry Potter DialoGPT-small Model
spasis/test-bert-finetuned-squad-accelerate
10f3fd0be7ed463d0822d818393d942b3c935210
2022-05-03T14:47:47.000Z
[ "pytorch", "mt5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
spasis
null
spasis/test-bert-finetuned-squad-accelerate
1
null
transformers
31,589
Entry not found
stevemobs/quales-iberlef
121f86d98ec3be999b8b827cc8582c093aacc8a4
2022-05-06T09:53:05.000Z
[ "pytorch", "tensorboard", "roberta", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
stevemobs
null
stevemobs/quales-iberlef
1
null
transformers
31,590
Entry not found
netoass/xlm-roberta-base-finetuned-panx-de
aa6dfb6d54c953f9f72fc345b60486a626c62a38
2022-05-03T15:26:11.000Z
[ "pytorch", "tensorboard", "xlm-roberta", "token-classification", "dataset:xtreme", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
token-classification
false
netoass
null
netoass/xlm-roberta-base-finetuned-panx-de
1
null
transformers
31,591
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme args: PAN-X.de metrics: - name: F1 type: f1 value: 0.8654425558524246 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.1334 - F1: 0.8654 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2541 | 1.0 | 525 | 0.1596 | 0.8242 | | 0.1284 | 2.0 | 1050 | 0.1360 | 0.8499 | | 0.0827 | 3.0 | 1575 | 0.1334 | 0.8654 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.11.0+cu113 - Datasets 1.16.1 - Tokenizers 0.10.3
PSW/min_senttrm_del_seed42
71de4be5fc74158268028b2b95a16c24923a81cb
2022-05-03T15:16:31.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
PSW
null
PSW/min_senttrm_del_seed42
1
null
transformers
31,592
Entry not found
theojolliffe/bart-large-cnn-finetuned-roundup-2
3d92c73f23a09c91dd19e95a80b409aef323c916
2022-05-03T16:07:55.000Z
[ "pytorch", "tensorboard", "bart", "text2text-generation", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
text2text-generation
false
theojolliffe
null
theojolliffe/bart-large-cnn-finetuned-roundup-2
1
null
transformers
31,593
--- license: mit tags: - generated_from_trainer metrics: - rouge model-index: - name: bart-large-cnn-finetuned-roundup-2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-large-cnn-finetuned-roundup-2 This model is a fine-tuned version of [facebook/bart-large-cnn](https://huggingface.co/facebook/bart-large-cnn) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.2605 - Rouge1: 49.3582 - Rouge2: 29.7017 - Rougel: 30.6996 - Rougelsum: 46.3736 - Gen Len: 142.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | No log | 1.0 | 132 | 1.3168 | 49.5253 | 30.0497 | 31.3982 | 46.9568 | 142.0 | | No log | 2.0 | 264 | 1.2605 | 49.3582 | 29.7017 | 30.6996 | 46.3736 | 142.0 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.1.0 - Tokenizers 0.12.1
PSW/max_senttrm_del_seed1
aed3cfb71330c739f7d150a270534120d8410038
2022-05-03T16:00:04.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
PSW
null
PSW/max_senttrm_del_seed1
1
null
transformers
31,594
Entry not found
enimai/opus-mt-en-it-finetuned-en-to-it
db5e69415baf5e9dc5a2c20e83446c56829c3bac
2022-05-03T16:45:26.000Z
[ "pytorch", "marian", "text2text-generation", "transformers", "license:apache-2.0", "autotrain_compatible" ]
text2text-generation
false
enimai
null
enimai/opus-mt-en-it-finetuned-en-to-it
1
null
transformers
31,595
--- license: apache-2.0 ---
PSW/max_senttrm_del_seed27
918cb6284e352bdd3d710a13c26fb44045298909
2022-05-03T16:43:33.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
PSW
null
PSW/max_senttrm_del_seed27
1
null
transformers
31,596
Entry not found
ebonazza2910/model
612bb8d65a652c2dc9fd2ae00845c4f668891f2e
2022-05-08T23:12:15.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "dataset:common_voice", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
ebonazza2910
null
ebonazza2910/model
1
null
transformers
31,597
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice model-index: - name: model results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # model This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.2220 - Wer: 0.1301 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 5.9743 | 0.18 | 400 | 2.1457 | 1.0000 | | 0.5747 | 0.36 | 800 | 0.3415 | 0.3456 | | 0.3383 | 0.54 | 1200 | 0.2797 | 0.3095 | | 0.2967 | 0.72 | 1600 | 0.2464 | 0.2568 | | 0.2747 | 0.9 | 2000 | 0.2341 | 0.2466 | | 0.2501 | 1.08 | 2400 | 0.2299 | 0.2317 | | 0.2309 | 1.26 | 2800 | 0.2306 | 0.2328 | | 0.2273 | 1.44 | 3200 | 0.2212 | 0.2375 | | 0.225 | 1.62 | 3600 | 0.2193 | 0.2267 | | 0.2204 | 1.8 | 4000 | 0.2157 | 0.2295 | | 0.2256 | 1.98 | 4400 | 0.2165 | 0.2260 | | 0.1941 | 2.17 | 4800 | 0.2105 | 0.2163 | | 0.1925 | 2.35 | 5200 | 0.2098 | 0.2153 | | 0.1925 | 2.53 | 5600 | 0.2120 | 0.2148 | | 0.1952 | 2.71 | 6000 | 0.2063 | 0.2178 | | 0.1971 | 2.89 | 6400 | 0.2100 | 0.2158 | | 0.1888 | 3.07 | 6800 | 0.2131 | 0.2172 | | 0.1702 | 3.25 | 7200 | 0.2155 | 0.2203 | | 0.173 | 3.43 | 7600 | 0.2141 | 0.2254 | | 0.174 | 3.61 | 8000 | 0.2017 | 0.2100 | | 0.1802 | 3.79 | 8400 | 0.1998 | 0.2043 | | 0.1717 | 3.97 | 8800 | 0.2070 | 0.2110 | | 0.162 | 4.15 | 9200 | 0.2082 | 0.2157 | | 0.154 | 4.33 | 9600 | 0.2163 | 0.2161 | | 0.1598 | 4.51 | 10000 | 0.2070 | 0.2171 | | 0.1576 | 4.69 | 10400 | 0.2034 | 0.2116 | | 0.1601 | 4.87 | 10800 | 0.1990 | 0.2009 | | 0.152 | 5.05 | 11200 | 0.1994 | 0.2039 | | 0.1395 | 5.23 | 11600 | 0.2013 | 0.2046 | | 0.1407 | 5.41 | 12000 | 0.2009 | 0.2022 | | 0.1449 | 5.59 | 12400 | 0.1982 | 0.1961 | | 0.1483 | 5.77 | 12800 | 0.2082 | 0.2054 | | 0.1514 | 5.95 | 13200 | 0.1953 | 0.1985 | | 0.138 | 6.13 | 13600 | 0.2046 | 0.1965 | | 0.1322 | 6.31 | 14000 | 0.2076 | 0.1948 | | 0.1372 | 6.5 | 14400 | 0.1968 | 0.1944 | | 0.136 | 6.68 | 14800 | 0.1971 | 0.1963 | | 0.1382 | 6.86 | 15200 | 0.2001 | 0.1990 | | 0.1335 | 7.04 | 15600 | 0.2026 | 0.1935 | | 0.1206 | 7.22 | 16000 | 0.1986 | 0.1938 | | 0.1239 | 7.4 | 16400 | 0.2054 | 0.1919 | | 0.1254 | 7.58 | 16800 | 0.1918 | 0.1939 | | 0.1262 | 7.76 | 17200 | 0.1960 | 0.1947 | | 0.126 | 7.94 | 17600 | 0.1932 | 0.1906 | | 0.1169 | 8.12 | 18000 | 0.2037 | 0.1916 | | 0.1142 | 8.3 | 18400 | 0.1999 | 0.1900 | | 0.1151 | 8.48 | 18800 | 0.1920 | 0.1855 | | 0.1121 | 8.66 | 19200 | 0.2007 | 0.1859 | | 0.1135 | 8.84 | 19600 | 0.1932 | 0.1879 | | 0.1158 | 9.02 | 20000 | 0.1916 | 0.1859 | | 0.105 | 9.2 | 20400 | 0.1961 | 0.1831 | | 0.1023 | 9.38 | 20800 | 0.1914 | 0.1791 | | 0.1004 | 9.56 | 21200 | 0.1881 | 0.1787 | | 0.1023 | 9.74 | 21600 | 0.1963 | 0.1817 | | 0.1075 | 9.92 | 22000 | 0.1889 | 0.1861 | | 0.103 | 10.1 | 22400 | 0.1975 | 0.1791 | | 0.0952 | 10.28 | 22800 | 0.1979 | 0.1787 | | 0.0957 | 10.46 | 23200 | 0.1922 | 0.1817 | | 0.0966 | 10.65 | 23600 | 0.1953 | 0.1857 | | 0.0997 | 10.83 | 24000 | 0.1902 | 0.1783 | | 0.0981 | 11.01 | 24400 | 0.1959 | 0.1780 | | 0.0868 | 11.19 | 24800 | 0.2056 | 0.1783 | | 0.0905 | 11.37 | 25200 | 0.1958 | 0.1777 | | 0.0892 | 11.55 | 25600 | 0.1935 | 0.1796 | | 0.0891 | 11.73 | 26000 | 0.1968 | 0.1763 | | 0.0888 | 11.91 | 26400 | 0.2043 | 0.1804 | | 0.0842 | 12.09 | 26800 | 0.2043 | 0.1733 | | 0.0828 | 12.27 | 27200 | 0.1964 | 0.1715 | | 0.0827 | 12.45 | 27600 | 0.1991 | 0.1749 | | 0.0844 | 12.63 | 28000 | 0.2014 | 0.1695 | | 0.0837 | 12.81 | 28400 | 0.1973 | 0.1759 | | 0.0872 | 12.99 | 28800 | 0.1975 | 0.1689 | | 0.0778 | 13.17 | 29200 | 0.1979 | 0.1740 | | 0.0759 | 13.35 | 29600 | 0.2093 | 0.1753 | | 0.076 | 13.53 | 30000 | 0.1990 | 0.1731 | | 0.0762 | 13.71 | 30400 | 0.2024 | 0.1690 | | 0.0764 | 13.89 | 30800 | 0.2037 | 0.1709 | | 0.0756 | 14.07 | 31200 | 0.2007 | 0.1716 | | 0.0702 | 14.25 | 31600 | 0.2011 | 0.1680 | | 0.0694 | 14.43 | 32000 | 0.2061 | 0.1683 | | 0.0713 | 14.61 | 32400 | 0.2014 | 0.1687 | | 0.0693 | 14.79 | 32800 | 0.1961 | 0.1658 | | 0.071 | 14.98 | 33200 | 0.1921 | 0.1645 | | 0.0659 | 15.16 | 33600 | 0.2079 | 0.1682 | | 0.0659 | 15.34 | 34000 | 0.2046 | 0.1649 | | 0.0685 | 15.52 | 34400 | 0.1994 | 0.1660 | | 0.0663 | 15.7 | 34800 | 0.1970 | 0.1652 | | 0.0678 | 15.88 | 35200 | 0.1961 | 0.1634 | | 0.0644 | 16.06 | 35600 | 0.2141 | 0.1644 | | 0.0596 | 16.24 | 36000 | 0.2098 | 0.1628 | | 0.0629 | 16.42 | 36400 | 0.1969 | 0.1616 | | 0.0598 | 16.6 | 36800 | 0.2026 | 0.1604 | | 0.0628 | 16.78 | 37200 | 0.2050 | 0.1620 | | 0.0616 | 16.96 | 37600 | 0.1958 | 0.1618 | | 0.0538 | 17.14 | 38000 | 0.2093 | 0.1588 | | 0.0573 | 17.32 | 38400 | 0.1995 | 0.1588 | | 0.0555 | 17.5 | 38800 | 0.2077 | 0.1608 | | 0.0555 | 17.68 | 39200 | 0.2036 | 0.1571 | | 0.0578 | 17.86 | 39600 | 0.2045 | 0.1572 | | 0.056 | 18.04 | 40000 | 0.2065 | 0.1593 | | 0.0525 | 18.22 | 40400 | 0.2093 | 0.1580 | | 0.0527 | 18.4 | 40800 | 0.2141 | 0.1585 | | 0.0529 | 18.58 | 41200 | 0.2137 | 0.1585 | | 0.0533 | 18.76 | 41600 | 0.2021 | 0.1558 | | 0.0529 | 18.94 | 42000 | 0.2108 | 0.1535 | | 0.05 | 19.12 | 42400 | 0.2114 | 0.1555 | | 0.0479 | 19.31 | 42800 | 0.2091 | 0.1549 | | 0.0509 | 19.49 | 43200 | 0.2145 | 0.1554 | | 0.0486 | 19.67 | 43600 | 0.2061 | 0.1536 | | 0.049 | 19.85 | 44000 | 0.2132 | 0.1548 | | 0.0484 | 20.03 | 44400 | 0.2077 | 0.1523 | | 0.0449 | 20.21 | 44800 | 0.2177 | 0.1529 | | 0.0452 | 20.39 | 45200 | 0.2204 | 0.1517 | | 0.0477 | 20.57 | 45600 | 0.2132 | 0.1517 | | 0.048 | 20.75 | 46000 | 0.2119 | 0.1532 | | 0.0469 | 20.93 | 46400 | 0.2109 | 0.1524 | | 0.0439 | 21.11 | 46800 | 0.2118 | 0.1503 | | 0.044 | 21.29 | 47200 | 0.2033 | 0.1474 | | 0.0435 | 21.47 | 47600 | 0.2066 | 0.1485 | | 0.0418 | 21.65 | 48000 | 0.2125 | 0.1491 | | 0.0417 | 21.83 | 48400 | 0.2139 | 0.1487 | | 0.0446 | 22.01 | 48800 | 0.2054 | 0.1493 | | 0.039 | 22.19 | 49200 | 0.2179 | 0.1459 | | 0.0414 | 22.37 | 49600 | 0.2118 | 0.1466 | | 0.0394 | 22.55 | 50000 | 0.2104 | 0.1444 | | 0.0381 | 22.73 | 50400 | 0.2095 | 0.1458 | | 0.0382 | 22.91 | 50800 | 0.2193 | 0.1471 | | 0.0391 | 23.09 | 51200 | 0.2143 | 0.1455 | | 0.0365 | 23.27 | 51600 | 0.2198 | 0.1445 | | 0.0368 | 23.46 | 52000 | 0.2151 | 0.1444 | | 0.038 | 23.64 | 52400 | 0.2094 | 0.1439 | | 0.038 | 23.82 | 52800 | 0.2137 | 0.1422 | | 0.0374 | 24.0 | 53200 | 0.2180 | 0.1425 | | 0.0352 | 24.18 | 53600 | 0.2207 | 0.1422 | | 0.0343 | 24.36 | 54000 | 0.2269 | 0.1445 | | 0.0353 | 24.54 | 54400 | 0.2222 | 0.1438 | | 0.0348 | 24.72 | 54800 | 0.2224 | 0.1413 | | 0.0342 | 24.9 | 55200 | 0.2146 | 0.1401 | | 0.0337 | 25.08 | 55600 | 0.2246 | 0.1408 | | 0.0327 | 25.26 | 56000 | 0.2161 | 0.1401 | | 0.0339 | 25.44 | 56400 | 0.2212 | 0.1402 | | 0.0324 | 25.62 | 56800 | 0.2203 | 0.1394 | | 0.0319 | 25.8 | 57200 | 0.2145 | 0.1376 | | 0.0317 | 25.98 | 57600 | 0.2147 | 0.1375 | | 0.0302 | 26.16 | 58000 | 0.2213 | 0.1362 | | 0.0309 | 26.34 | 58400 | 0.2218 | 0.1365 | | 0.0308 | 26.52 | 58800 | 0.2167 | 0.1362 | | 0.0294 | 26.7 | 59200 | 0.2169 | 0.1368 | | 0.0297 | 26.88 | 59600 | 0.2163 | 0.1350 | | 0.0289 | 27.06 | 60000 | 0.2188 | 0.1348 | | 0.0284 | 27.24 | 60400 | 0.2172 | 0.1338 | | 0.0278 | 27.42 | 60800 | 0.2230 | 0.1342 | | 0.0283 | 27.6 | 61200 | 0.2233 | 0.1342 | | 0.0292 | 27.79 | 61600 | 0.2238 | 0.1335 | | 0.0286 | 27.97 | 62000 | 0.2218 | 0.1327 | | 0.0262 | 28.15 | 62400 | 0.2220 | 0.1324 | | 0.0274 | 28.33 | 62800 | 0.2182 | 0.1323 | | 0.0279 | 28.51 | 63200 | 0.2170 | 0.1314 | | 0.0269 | 28.69 | 63600 | 0.2228 | 0.1313 | | 0.0264 | 28.87 | 64000 | 0.2209 | 0.1313 | | 0.0254 | 29.05 | 64400 | 0.2224 | 0.1304 | | 0.026 | 29.23 | 64800 | 0.2220 | 0.1302 | | 0.0253 | 29.41 | 65200 | 0.2229 | 0.1304 | | 0.0244 | 29.59 | 65600 | 0.2217 | 0.1298 | | 0.025 | 29.77 | 66000 | 0.2223 | 0.1303 | | 0.0255 | 29.95 | 66400 | 0.2220 | 0.1301 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.9.1+cu102 - Datasets 1.18.3 - Tokenizers 0.10.3
gbennett/xlm-roberta-base-finetuned-panx-de
886feb94f8198653bd1b78bf1a652da6e24d810a
2022-05-03T17:15:29.000Z
[ "pytorch", "tensorboard", "xlm-roberta", "token-classification", "dataset:xtreme", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
token-classification
false
gbennett
null
gbennett/xlm-roberta-base-finetuned-panx-de
1
null
transformers
31,598
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme args: PAN-X.de metrics: - name: F1 type: f1 value: 0.8654425558524246 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.1334 - F1: 0.8654 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2541 | 1.0 | 525 | 0.1596 | 0.8242 | | 0.1284 | 2.0 | 1050 | 0.1360 | 0.8499 | | 0.0827 | 3.0 | 1575 | 0.1334 | 0.8654 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.11.0+cu113 - Datasets 1.16.1 - Tokenizers 0.10.3
laituan245/molt5-large
1ad0b044adde4a7d11b9429427c97626945abbe1
2022-05-03T18:06:08.000Z
[ "pytorch", "t5", "text2text-generation", "arxiv:2204.11817", "transformers", "license:apache-2.0", "autotrain_compatible" ]
text2text-generation
false
laituan245
null
laituan245/molt5-large
1
null
transformers
31,599
--- license: apache-2.0 --- ## Example Usage ```python from transformers import AutoTokenizer, T5ForConditionalGeneration tokenizer = AutoTokenizer.from_pretrained("laituan245/molt5-large", model_max_length=512) model = T5ForConditionalGeneration.from_pretrained('laituan245/molt5-large') ``` ## Paper For more information, please take a look at our paper. Paper: [Translation between Molecules and Natural Language](https://arxiv.org/abs/2204.11817) Authors: *Carl Edwards\*, Tuan Lai\*, Kevin Ros, Garrett Honke, Heng Ji*