modelId
stringlengths
4
112
sha
stringlengths
40
40
lastModified
stringlengths
24
24
tags
sequence
pipeline_tag
stringclasses
29 values
private
bool
1 class
author
stringlengths
2
38
βŒ€
config
null
id
stringlengths
4
112
downloads
float64
0
36.8M
βŒ€
likes
float64
0
712
βŒ€
library_name
stringclasses
17 values
__index_level_0__
int64
0
38.5k
readme
stringlengths
0
186k
xingqiang/nezha-zh-address-match-wwm-base
8cca1ad008364fd9ff1a168bfcf1833dd2f7bbfe
2022-05-06T03:24:16.000Z
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
false
xingqiang
null
xingqiang/nezha-zh-address-match-wwm-base
1
null
transformers
31,700
Entry not found
xingqiang/nezha-zh-address-match-wwm-finetuned
6be2113b764e52451eaefbc407c70e0ee66c1061
2022-05-06T05:52:09.000Z
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
false
xingqiang
null
xingqiang/nezha-zh-address-match-wwm-finetuned
1
null
transformers
31,701
Entry not found
yhavinga/t5-eff-large-8l-dutch-english-cased
52203847bfe1f1ae08ecf7158f5fe5294228d9ca
2022-06-14T10:29:32.000Z
[ "pytorch", "jax", "t5", "text2text-generation", "nl", "en", "dataset:yhavinga/mc4_nl_cleaned", "arxiv:1910.10683", "arxiv:2109.10686", "transformers", "seq2seq", "license:apache-2.0", "autotrain_compatible" ]
text2text-generation
false
yhavinga
null
yhavinga/t5-eff-large-8l-dutch-english-cased
1
null
transformers
31,702
--- language: - nl - en datasets: - yhavinga/mc4_nl_cleaned tags: - t5 - seq2seq inference: false license: apache-2.0 --- # t5-eff-large-8l-dutch-english-cased A [T5](https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html) sequence to sequence model pre-trained from scratch on [cleaned Dutch πŸ‡³πŸ‡±πŸ‡§πŸ‡ͺ mC4 and cleaned English πŸ‡¬πŸ‡§ C4](https://huggingface.co/datasets/yhavinga/mc4_nl_cleaned). This **t5 eff** model has **334M** parameters. It was pre-trained with the masked language modeling objective on the dataset `mc4_nl_cleaned` config `large_en_nl` for **1** epoch(s) and a duration of **3d 23h**, with a sequence length of **512**, batch size **128** and **851850** total steps (**56B** tokens). Pre-training evaluation loss and accuracy are **1,15** and **0,74**. Refer to the evaluation section below for a comparison of the pre-trained models on summarization and translation. * Pre-trained T5 models need to be finetuned before they can be used for downstream tasks, therefore the inference widget on the right has been turned off. * For a demo of the Dutch CNN summarization models, head over to the Hugging Face Spaces for the **[Netherformer πŸ“°](https://huggingface.co/spaces/flax-community/netherformer)** example application! Please refer to the original T5 papers and Scale Efficiently papers for more information about the T5 architecture and configs, though it must be noted that this model (t5-eff-large-8l-dutch-english-cased) is unrelated to these projects and not an 'official' checkpoint. * **[Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer](https://arxiv.org/pdf/1910.10683.pdf)** by *Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei Li, Peter J. Liu*. * **[Scale Efficiently: Insights from Pre-training and Fine-tuning Transformers](https://arxiv.org/abs/2109.10686)** by *Yi Tay, Mostafa Dehghani, Jinfeng Rao, William Fedus, Samira Abnar, Hyung Won Chung, Sharan Narang, Dani Yogatama, Ashish Vaswani, Donald Metzler*. ## Tokenizer The model uses a cased SentencePiece tokenizer configured with the `Nmt, NFKC, Replace multi-space to single-space` normalizers and has 32003 tokens. It was trained on Dutch and English with scripts from the Huggingface Transformers [Flax examples](https://github.com/huggingface/transformers/tree/master/examples/flax/language-modeling). See [./raw/main/tokenizer.json](tokenizer.json) for details. ## Dataset(s) All models listed below are pre-trained on [cleaned Dutch mC4](https://huggingface.co/datasets/yhavinga/mc4_nl_cleaned), which is the original mC4, except * Documents that contained words from a selection of the Dutch and English [List of Dirty Naught Obscene and Otherwise Bad Words](https://github.com/LDNOOBW/List-of-Dirty-Naughty-Obscene-and-Otherwise-Bad-Words) are removed * Sentences with less than 3 words are removed * Sentences with a word of more than 1000 characters are removed * Documents with less than 5 sentences are removed * Documents with "javascript", "lorum ipsum", "terms of use", "privacy policy", "cookie policy", "uses cookies", "use of cookies", "use cookies", "elementen ontbreken", "deze printversie" are removed. The Dutch and English models are pre-trained on a 50/50% mix of Dutch mC4 and English C4. The translation models are fine-tuned on [CCMatrix](https://huggingface.co/datasets/yhavinga/ccmatrix). ## Dutch T5 Models Three types of [Dutch T5 models have been trained (blog)](https://huggingface.co/spaces/yhavinga/pre-training-dutch-t5-models). `t5-base-dutch` is the only model with an original T5 config. The other model types t5-v1.1 and t5-eff have `gated-relu` instead of `relu` as activation function, and trained with a drop-out of `0.0` unless training would diverge (`t5-v1.1-large-dutch-cased`). The T5-eff models are models that differ in their number of layers. The table will list the several dimensions of these models. Not all t5-eff models are efficient, the best example being the inefficient `t5-xl-4L-dutch-english-cased`. | | [t5-base-dutch](https://huggingface.co/yhavinga/t5-base-dutch) | [t5-v1.1-base-dutch-uncased](https://huggingface.co/yhavinga/t5-v1.1-base-dutch-uncased) | [t5-v1.1-base-dutch-cased](https://huggingface.co/yhavinga/t5-v1.1-base-dutch-cased) | [t5-v1.1-large-dutch-cased](https://huggingface.co/yhavinga/t5-v1.1-large-dutch-cased) | [t5-v1_1-base-dutch-english-cased](https://huggingface.co/yhavinga/t5-v1_1-base-dutch-english-cased) | [t5-v1_1-base-dutch-english-cased-1024](https://huggingface.co/yhavinga/t5-v1_1-base-dutch-english-cased-1024) | [t5-small-24L-dutch-english](https://huggingface.co/yhavinga/t5-small-24L-dutch-english) | [t5-xl-4L-dutch-english-cased](https://huggingface.co/yhavinga/t5-xl-4L-dutch-english-cased) | [t5-base-36L-dutch-english-cased](https://huggingface.co/yhavinga/t5-base-36L-dutch-english-cased) | [t5-eff-xl-8l-dutch-english-cased](https://huggingface.co/yhavinga/t5-eff-xl-8l-dutch-english-cased) | [t5-eff-large-8l-dutch-english-cased](https://huggingface.co/yhavinga/t5-eff-large-8l-dutch-english-cased) | |:------------------|:----------------|:-----------------------------|:---------------------------|:----------------------------|:-----------------------------------|:----------------------------------------|:-----------------------------|:-------------------------------|:----------------------------------|:-----------------------------------|:--------------------------------------| | *type* | t5 | t5-v1.1 | t5-v1.1 | t5-v1.1 | t5-v1.1 | t5-v1.1 | t5 eff | t5 eff | t5 eff | t5 eff | t5 eff | | *d_model* | 768 | 768 | 768 | 1024 | 768 | 768 | 512 | 2048 | 768 | 1024 | 1024 | | *d_ff* | 3072 | 2048 | 2048 | 2816 | 2048 | 2048 | 1920 | 5120 | 2560 | 16384 | 4096 | | *num_heads* | 12 | 12 | 12 | 16 | 12 | 12 | 8 | 32 | 12 | 32 | 16 | | *d_kv* | 64 | 64 | 64 | 64 | 64 | 64 | 64 | 64 | 64 | 128 | 64 | | *num_layers* | 12 | 12 | 12 | 24 | 12 | 12 | 24 | 4 | 36 | 8 | 8 | | *num parameters* | 223M | 248M | 248M | 783M | 248M | 248M | 250M | 585M | 729M | 1241M | 335M | | *feed_forward_proj* | relu | gated-gelu | gated-gelu | gated-gelu | gated-gelu | gated-gelu | gated-gelu | gated-gelu | gated-gelu | gated-gelu | gated-gelu | | *dropout* | 0.1 | 0.0 | 0.0 | 0.1 | 0.0 | 0.0 | 0.0 | 0.1 | 0.0 | 0.0 | 0.0 | | *dataset* | mc4_nl_cleaned | mc4_nl_cleaned full | mc4_nl_cleaned full | mc4_nl_cleaned | mc4_nl_cleaned small_en_nl | mc4_nl_cleaned large_en_nl | mc4_nl_cleaned large_en_nl | mc4_nl_cleaned large_en_nl | mc4_nl_cleaned large_en_nl | mc4_nl_cleaned large_en_nl | mc4_nl_cleaned large_en_nl | | *tr. seq len* | 512 | 1024 | 1024 | 512 | 512 | 1024 | 512 | 512 | 512 | 512 | 512 | | *batch size* | 128 | 64 | 64 | 64 | 128 | 64 | 128 | 512 | 512 | 64 | 128 | | *total steps* | 527500 | 1014525 | 1210154 | 1120k/2427498 | 2839630 | 1520k/3397024 | 851852 | 212963 | 212963 | 538k/1703705 | 851850 | | *epochs* | 1 | 2 | 2 | 2 | 10 | 4 | 1 | 1 | 1 | 1 | 1 | | *duration* | 2d9h | 5d5h | 6d6h | 8d13h | 11d18h | 9d1h | 4d10h | 6d1h | 17d15h | 4d 19h | 3d 23h | | *optimizer* | adafactor | adafactor | adafactor | adafactor | adafactor | adafactor | adafactor | adafactor | adafactor | adafactor | adafactor | | *lr* | 0.005 | 0.005 | 0.005 | 0.005 | 0.005 | 0.005 | 0.005 | 0.005 | 0.009 | 0.005 | 0.005 | | *warmup* | 10000.0 | 10000.0 | 10000.0 | 10000.0 | 10000.0 | 5000.0 | 20000.0 | 2500.0 | 1000.0 | 1500.0 | 1500.0 | | *eval loss* | 1,38 | 1,20 | 0,96 | 1,07 | 1,11 | 1,13 | 1,18 | 1,27 | 1,05 | 1,3019 | 1,15 | | *eval acc* | 0,70 | 0,73 | 0,78 | 0,76 | 0,75 | 0,74 | 0,74 | 0,72 | 0,76 | 0,71 | 0,74 | ## Evaluation Most models from the list above have been evaluated on summarization and translation. The figure below shows the evaluation scores, where the x-axis shows the translation Bleu score (higher is better) and y-axis the summarization Rouge1 translation score (higher is better). Point size is proportional to the model size. Models with faster inference speed are green, slower inference speed is plotted as bleu. ![Evaluation T5 Dutch English](evaluation_t5_dutch_english.png) The next two sections provide more information on how the evaluation was performed. ## Evaluation on summarization The models below have been evaluated for summarization on 50K samples from the CNN Dailymail dataset. All models were fine-tuned with the AdamW optimizer with a batch size of 128 and constant learning rate of 1e-3 after a warmup of 32 steps, with a label smoothing factor of 0.05. Article and summary token lengths were set to 1024 and 142. NB: the evaluation checkpoints are not saved, since they were trained for comparison of pre-trained models only. The numbers reported are the Rouge scores on 1000 documents from the test split. The rouge1 score is visualized in the | | [t5-base-dutch](https://huggingface.co/yhavinga/t5-base-dutch) | [t5-v1.1-base-dutch-uncased](https://huggingface.co/yhavinga/t5-v1.1-base-dutch-uncased) | [t5-v1.1-base-dutch-cased](https://huggingface.co/yhavinga/t5-v1.1-base-dutch-cased) | [t5-v1_1-base-dutch-english-cased](https://huggingface.co/yhavinga/t5-v1_1-base-dutch-english-cased) | [t5-v1_1-base-dutch-english-cased-1024](https://huggingface.co/yhavinga/t5-v1_1-base-dutch-english-cased-1024) | [t5-small-24L-dutch-english](https://huggingface.co/yhavinga/t5-small-24L-dutch-english) | [t5-xl-4L-dutch-english-cased](https://huggingface.co/yhavinga/t5-xl-4L-dutch-english-cased) | [t5-base-36L-dutch-english-cased](https://huggingface.co/yhavinga/t5-base-36L-dutch-english-cased) | [t5-eff-large-8l-dutch-english-cased](https://huggingface.co/yhavinga/t5-eff-large-8l-dutch-english-cased) | mt5-base | |:------------------------|----------------:|-----------------------------:|---------------------------:|-----------------------------------:|----------------------------------------:|-----------------------------:|-------------------------------:|----------------------------------:|--------------------------------------:|-----------:| | *rouge1* | 33.38 | 33.97 | 34.39 | 33.38 | 34.97 | 34.38 | 30.35 | **35.04** | 34.04 | 33.25 | | *rouge2* | 13.32 | 13.85 | 13.98 | 13.47 | 14.01 | 13.89 | 11.57 | **14.23** | 13.76 | 12.74 | | *rougeL* | 24.22 | 24.72 | 25.1 | 24.34 | 24.99 | **25.25** | 22.69 | 25.05 | 24.75 | 23.5 | | *rougeLsum* | 30.23 | 30.9 | 31.44 | 30.51 | 32.01 | 31.38 | 27.5 | **32.12** | 31.12 | 30.15 | | *samples_per_second* | 3.18 | 3.02 | 2.99 | 3.22 | 2.97 | 1.57 | 2.8 | 0.61 | **3.27** | 1.22 | ## Evaluation on translation The models below have been evaluated for English to Dutch translation on 50K samples from the CCMatrix dataset. Note that the first four models are pre-trained on Dutch only. That they still perform adequate is probably because the translation direction is English to Dutch. All models were fine-tuned with the AdamW optimizer with a batch size of 128 and constant learning rate of 5e-5 after a warmup of 32 steps, with a label smoothing factor of 0.1 and maximum sequence length of 128 tokens. The numbers reported are the Bleu scores on 1000 documents from the test split. NB: the evaluation checkpoints are not saved, since they were trained for comparison of pre-trained models only. | | [t5-base-dutch](https://huggingface.co/yhavinga/t5-base-dutch) | [t5-v1.1-base-dutch-uncased](https://huggingface.co/yhavinga/t5-v1.1-base-dutch-uncased) | [t5-v1.1-base-dutch-cased](https://huggingface.co/yhavinga/t5-v1.1-base-dutch-cased) | [t5-v1.1-large-dutch-cased](https://huggingface.co/yhavinga/t5-v1.1-large-dutch-cased) | [t5-v1_1-base-dutch-english-cased](https://huggingface.co/yhavinga/t5-v1_1-base-dutch-english-cased) | [t5-v1_1-base-dutch-english-cased-1024](https://huggingface.co/yhavinga/t5-v1_1-base-dutch-english-cased-1024) | [t5-small-24L-dutch-english](https://huggingface.co/yhavinga/t5-small-24L-dutch-english) | [t5-xl-4L-dutch-english-cased](https://huggingface.co/yhavinga/t5-xl-4L-dutch-english-cased) | [t5-base-36L-dutch-english-cased](https://huggingface.co/yhavinga/t5-base-36L-dutch-english-cased) | [t5-eff-large-8l-dutch-english-cased](https://huggingface.co/yhavinga/t5-eff-large-8l-dutch-english-cased) | mt5-base | |:-------------------------------|----------------:|-----------------------------:|---------------------------:|----------------------------:|-----------------------------------:|----------------------------------------:|-----------------------------:|-------------------------------:|----------------------------------:|--------------------------------------:|-----------:| | *precision_ng1* | 74.17 | 78.09 | 77.08 | 72.12 | 77.19 | 78.76 | 78.59 | 77.3 | **79.75** | 78.88 | 73.47 | | *precision_ng2* | 52.42 | 57.52 | 55.31 | 48.7 | 55.39 | 58.01 | 57.83 | 55.27 | **59.89** | 58.27 | 50.12 | | *precision_ng3* | 39.55 | 45.2 | 42.54 | 35.54 | 42.25 | 45.13 | 45.02 | 42.06 | **47.4** | 45.95 | 36.59 | | *precision_ng4* | 30.23 | 36.04 | 33.26 | 26.27 | 32.74 | 35.72 | 35.41 | 32.61 | **38.1** | 36.91 | 27.26 | | *bp* | 0.99 | 0.98 | 0.97 | 0.98 | 0.98 | 0.98 | 0.98 | 0.97 | 0.98 | 0.98 | 0.98 | | *score* | 45.88 | 51.21 | 48.31 | 41.59 | 48.17 | 51.31 | 50.82 | 47.83 | **53** | 51.79 | 42.74 | | *samples_per_second* | **45.19** | 45.05 | 38.67 | 10.12 | 42.19 | 42.61 | 12.85 | 33.74 | 9.07 | 37.86 | 9.03 | ## Translation models The models `t5-small-24L-dutch-english` and `t5-base-36L-dutch-english` have been fine-tuned for both language directions on the first 25M samples from CCMatrix, giving a total of 50M training samples. Evaluation is performed on out-of-sample CCMatrix and also on Tatoeba and Opus Books. The `_bp` columns list the *brevity penalty*. The `avg_bleu` score is the bleu score averaged over all three evaluation datasets. The best scores displayed in bold for both translation directions. | | [t5-base-36L-ccmatrix-multi](https://huggingface.co/yhavinga/t5-base-36L-ccmatrix-multi) | [t5-base-36L-ccmatrix-multi](https://huggingface.co/yhavinga/t5-base-36L-ccmatrix-multi) | [t5-small-24L-ccmatrix-multi](https://huggingface.co/yhavinga/t5-small-24L-ccmatrix-multi) | [t5-small-24L-ccmatrix-multi](https://huggingface.co/yhavinga/t5-small-24L-ccmatrix-multi) | |:-----------------------|:-----------------------------|:-----------------------------|:------------------------------|:------------------------------| | *source_lang* | en | nl | en | nl | | *target_lang* | nl | en | nl | en | | *source_prefix* | translate English to Dutch: | translate Dutch to English: | translate English to Dutch: | translate Dutch to English: | | *ccmatrix_bleu* | **56.8** | 62.8 | 57.4 | **63.1** | | *tatoeba_bleu* | **46.6** | **52.8** | 46.4 | 51.7 | | *opus_books_bleu* | **13.5** | **24.9** | 12.9 | 23.4 | | *ccmatrix_bp* | 0.95 | 0.96 | 0.95 | 0.96 | | *tatoeba_bp* | 0.97 | 0.94 | 0.98 | 0.94 | | *opus_books_bp* | 0.8 | 0.94 | 0.77 | 0.89 | | *avg_bleu* | **38.96** | **46.86** | 38.92 | 46.06 | | *max_source_length* | 128 | 128 | 128 | 128 | | *max_target_length* | 128 | 128 | 128 | 128 | | *adam_beta1* | 0.9 | 0.9 | 0.9 | 0.9 | | *adam_beta2* | 0.997 | 0.997 | 0.997 | 0.997 | | *weight_decay* | 0.05 | 0.05 | 0.002 | 0.002 | | *lr* | 5e-05 | 5e-05 | 0.0005 | 0.0005 | | *label_smoothing_factor* | 0.15 | 0.15 | 0.1 | 0.1 | | *train_batch_size* | 128 | 128 | 128 | 128 | | *warmup_steps* | 2000 | 2000 | 2000 | 2000 | | *total steps* | 390625 | 390625 | 390625 | 390625 | | *duration* | 4d 5h | 4d 5h | 3d 2h | 3d 2h | | *num parameters* | 729M | 729M | 250M | 250M | ## Acknowledgements This project would not have been possible without compute generously provided by Google through the [TPU Research Cloud](https://sites.research.google/trc/). The HuggingFace πŸ€— ecosystem was instrumental in all parts of the training. Weights & Biases made it possible to keep track of many training sessions and orchestrate hyper-parameter sweeps with insightful visualizations. The following repositories where helpful in setting up the TPU-VM, and getting an idea what sensible hyper-parameters are for training gpt2 from scratch: * [Gsarti's Pretrain and Fine-tune a T5 model with Flax on GCP](https://github.com/gsarti/t5-flax-gcp) * [Flax/Jax Community week t5-base-dutch](https://huggingface.co/flax-community/t5-base-dutch) Created by [Yeb Havinga](https://www.linkedin.com/in/yeb-havinga-86530825/)
theojolliffe/bart-large-cnn-finetuned-roundup-4-4
1afdfe005d3c58db45f0c955593ad41b16a7bff6
2022-05-06T13:00:06.000Z
[ "pytorch", "tensorboard", "bart", "text2text-generation", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
text2text-generation
false
theojolliffe
null
theojolliffe/bart-large-cnn-finetuned-roundup-4-4
1
null
transformers
31,703
--- license: mit tags: - generated_from_trainer metrics: - rouge model-index: - name: bart-large-cnn-finetuned-roundup-4-4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-large-cnn-finetuned-roundup-4-4 This model is a fine-tuned version of [facebook/bart-large-cnn](https://huggingface.co/facebook/bart-large-cnn) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.7912 - Rouge1: 53.8175 - Rouge2: 35.1335 - Rougel: 38.0823 - Rougelsum: 51.2925 - Gen Len: 142.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | No log | 1.0 | 398 | 0.9455 | 52.8137 | 33.4924 | 35.5866 | 50.7208 | 142.0 | | 1.1309 | 2.0 | 796 | 0.8397 | 54.0923 | 35.0799 | 37.4609 | 51.5914 | 142.0 | | 0.6902 | 3.0 | 1194 | 0.7932 | 53.5752 | 35.0842 | 37.9295 | 51.0356 | 142.0 | | 0.4951 | 4.0 | 1592 | 0.7912 | 53.8175 | 35.1335 | 38.0823 | 51.2925 | 142.0 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.1.0 - Tokenizers 0.12.1
lilitket/20220506-092616
97518242f1beeae45f37bb02a8d26acbea692b28
2022-05-06T21:15:24.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
lilitket
null
lilitket/20220506-092616
1
null
transformers
31,704
Entry not found
crabz/exp2
ae64d245862c35d5180e65690ea5833c2c1763c5
2022-05-06T09:56:16.000Z
[ "pytorch", "roberta", "transformers" ]
null
false
crabz
null
crabz/exp2
1
null
transformers
31,705
Entry not found
chrisvinsen/xlsr-wav2vec2-final
bac1d77d8a812d2c0096c43b9f77da84893b4fc6
2022-05-29T01:09:13.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
chrisvinsen
null
chrisvinsen/xlsr-wav2vec2-final
1
null
transformers
31,706
CommonVoice Dataset 8.0 --> Train + Others WER : 0.216 WER with LM: 0.147
theojolliffe/distilbart-cnn-12-6-finetuned-roundup-4-8
4a26af304e7efdd50220d3162d893dc902e5f4dd
2022-05-06T11:45:37.000Z
[ "pytorch", "tensorboard", "bart", "text2text-generation", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
text2text-generation
false
theojolliffe
null
theojolliffe/distilbart-cnn-12-6-finetuned-roundup-4-8
1
null
transformers
31,707
--- license: apache-2.0 tags: - generated_from_trainer metrics: - rouge model-index: - name: distilbart-cnn-12-6-finetuned-roundup-4-8 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbart-cnn-12-6-finetuned-roundup-4-8 This model is a fine-tuned version of [sshleifer/distilbart-cnn-12-6](https://huggingface.co/sshleifer/distilbart-cnn-12-6) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.8447 - Rouge1: 54.3326 - Rouge2: 36.1031 - Rougel: 38.842 - Rougelsum: 51.7632 - Gen Len: 142.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:--------:| | No log | 1.0 | 398 | 1.1572 | 51.6618 | 32.7542 | 34.8631 | 49.2691 | 141.3333 | | 1.405 | 2.0 | 796 | 1.0039 | 52.2029 | 32.6704 | 34.4948 | 50.1141 | 142.0 | | 0.9039 | 3.0 | 1194 | 0.9300 | 53.2839 | 34.3928 | 36.8971 | 51.1148 | 142.0 | | 0.6705 | 4.0 | 1592 | 0.8708 | 52.5229 | 33.8116 | 36.9664 | 50.0067 | 142.0 | | 0.6705 | 5.0 | 1990 | 0.8508 | 53.4468 | 35.1394 | 38.4144 | 50.794 | 142.0 | | 0.5205 | 6.0 | 2388 | 0.8347 | 53.8859 | 35.1182 | 38.1126 | 51.3089 | 142.0 | | 0.3898 | 7.0 | 2786 | 0.8406 | 54.2293 | 36.1189 | 38.7127 | 51.6878 | 142.0 | | 0.3468 | 8.0 | 3184 | 0.8447 | 54.3326 | 36.1031 | 38.842 | 51.7632 | 142.0 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.1.0 - Tokenizers 0.12.1
guhuawuli/gpt2-imdb
1584e1854f035b996d67537b61bf75205a1058a6
2022-05-06T23:35:42.000Z
[ "pytorch", "tensorboard", "gpt2", "text-generation", "transformers", "generated_from_trainer", "license:mit", "model-index" ]
text-generation
false
guhuawuli
null
guhuawuli/gpt2-imdb
1
null
transformers
31,708
--- license: mit tags: - generated_from_trainer model-index: - name: gpt2-imdb results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt2-imdb This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.6155 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 3.7476 | 1.0 | 2904 | 3.6428 | | 3.6877 | 2.0 | 5808 | 3.6215 | | 3.6595 | 3.0 | 8712 | 3.6155 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.0a0+3fd9dcf - Datasets 2.1.0 - Tokenizers 0.12.1
davidlekve/distilroberta-base-finetuned-bruno-mars
5e7ed5ffb3a33aba99d9e6277edacb2908c03ff3
2022-05-06T16:18:48.000Z
[ "pytorch", "tensorboard", "roberta", "fill-mask", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
fill-mask
false
davidlekve
null
davidlekve/distilroberta-base-finetuned-bruno-mars
1
null
transformers
31,709
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distilroberta-base-finetuned-bruno-mars results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilroberta-base-finetuned-bruno-mars This model is a fine-tuned version of [distilroberta-base](https://huggingface.co/distilroberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.4055 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 62 | 2.5992 | | No log | 2.0 | 124 | 2.4069 | | No log | 3.0 | 186 | 2.4055 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cpu - Datasets 2.1.0 - Tokenizers 0.12.1
theojolliffe/bart-cnn-v3-e16
c85ce8feebd342b539422a71df38943cd921652c
2022-05-06T17:55:32.000Z
[ "pytorch", "tensorboard", "bart", "text2text-generation", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
text2text-generation
false
theojolliffe
null
theojolliffe/bart-cnn-v3-e16
1
null
transformers
31,710
--- license: mit tags: - generated_from_trainer metrics: - rouge model-index: - name: bart-large-cnn-finetuned-roundup-4-16 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-large-cnn-finetuned-roundup-4-16 This model is a fine-tuned version of [facebook/bart-large-cnn](https://huggingface.co/facebook/bart-large-cnn) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.8760 - Rouge1: 56.3338 - Rouge2: 42.4032 - Rougel: 45.9455 - Rougelsum: 54.6488 - Gen Len: 142.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 16 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:--------:| | No log | 1.0 | 398 | 0.9325 | 52.7796 | 33.0802 | 34.8217 | 50.2211 | 142.0 | | 1.1317 | 2.0 | 796 | 0.8313 | 53.6274 | 35.3235 | 37.7077 | 51.0888 | 141.2963 | | 0.6757 | 3.0 | 1194 | 0.7893 | 54.1449 | 34.7532 | 36.3211 | 51.781 | 142.0 | | 0.4511 | 4.0 | 1592 | 0.7647 | 52.2694 | 34.2286 | 36.5736 | 49.7078 | 142.0 | | 0.4511 | 5.0 | 1990 | 0.7596 | 55.1986 | 37.5865 | 41.406 | 53.1897 | 141.8333 | | 0.3037 | 6.0 | 2388 | 0.7688 | 53.9367 | 36.8729 | 39.9456 | 51.5108 | 142.0 | | 0.209 | 7.0 | 2786 | 0.7590 | 54.6867 | 37.6415 | 41.2602 | 52.746 | 142.0 | | 0.1452 | 8.0 | 3184 | 0.7744 | 53.5374 | 36.3666 | 40.0432 | 51.3461 | 142.0 | | 0.11 | 9.0 | 3582 | 0.8042 | 56.6623 | 40.4702 | 44.0028 | 54.5138 | 142.0 | | 0.11 | 10.0 | 3980 | 0.8105 | 55.6002 | 40.5663 | 43.8119 | 53.9117 | 142.0 | | 0.0833 | 11.0 | 4378 | 0.8230 | 56.2517 | 40.8567 | 44.0009 | 54.3271 | 142.0 | | 0.0634 | 12.0 | 4776 | 0.8329 | 55.9228 | 40.6443 | 43.6161 | 54.0975 | 142.0 | | 0.0474 | 13.0 | 5174 | 0.8570 | 55.4923 | 40.3683 | 43.4675 | 53.404 | 142.0 | | 0.0349 | 14.0 | 5572 | 0.8658 | 56.4454 | 41.8069 | 44.2922 | 54.464 | 142.0 | | 0.0349 | 15.0 | 5970 | 0.8754 | 56.3837 | 42.2025 | 45.7817 | 54.4912 | 142.0 | | 0.0304 | 16.0 | 6368 | 0.8760 | 56.3338 | 42.4032 | 45.9455 | 54.6488 | 142.0 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.1.0 - Tokenizers 0.12.1
huggingtweets/trancentrall
80efaa913b295ee5b2d29323d3bd717163e20216
2022-05-06T18:17:57.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/trancentrall
1
null
transformers
31,711
--- language: en thumbnail: http://www.huggingtweets.com/trancentrall/1651861073034/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1439718913286328324/BWMkSlFf_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">πŸ€– AI BOT πŸ€–</div> <div style="text-align: center; font-size: 16px; font-weight: 800">jotchua</div> <div style="text-align: center; font-size: 14px;">@trancentrall</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from jotchua. | Data | jotchua | | --- | --- | | Tweets downloaded | 3197 | | Retweets | 165 | | Short tweets | 937 | | Tweets kept | 2095 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2cfuds5z/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @trancentrall's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/37rzneux) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/37rzneux/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/trancentrall') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
Satyamatury/wav2vec2-large-xls-r-300m-turkish-colab
38c14a36751aa28924991a054eedf8c83b7876e3
2022-05-27T16:28:53.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "dataset:common_voice", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
Satyamatury
null
Satyamatury/wav2vec2-large-xls-r-300m-turkish-colab
1
null
transformers
31,712
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice model-index: - name: wav2vec2-large-xls-r-300m-turkish-colab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-turkish-colab This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 ### Training results ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu113 - Datasets 1.18.3 - Tokenizers 0.10.3
Santiagot1105/wav2vec2-large-xlsr-es-col-test
91240d4a54e3fca0e9c5805e57af58b4173b5790
2022-05-06T21:35:56.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
Santiagot1105
null
Santiagot1105/wav2vec2-large-xlsr-es-col-test
1
1
transformers
31,713
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-large-xlsr-es-col-test results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xlsr-es-col-test This model is a fine-tuned version of [jonatasgrosman/wav2vec2-large-xlsr-53-spanish](https://huggingface.co/jonatasgrosman/wav2vec2-large-xlsr-53-spanish) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0923 - Wer: 0.0886 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.0905 | 18.18 | 400 | 0.0923 | 0.0886 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.1+cu102 - Datasets 1.13.3 - Tokenizers 0.10.3
theojolliffe/fb-bart-large-finetuned-trade-the-event-finance-summarizer-finetuned-roundup-1-4
b1dbf15817773528a9464135b21763e8bdba3ce3
2022-05-06T19:32:56.000Z
[ "pytorch", "tensorboard", "bart", "text2text-generation", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
text2text-generation
false
theojolliffe
null
theojolliffe/fb-bart-large-finetuned-trade-the-event-finance-summarizer-finetuned-roundup-1-4
1
null
transformers
31,714
--- tags: - generated_from_trainer metrics: - rouge model-index: - name: fb-bart-large-finetuned-trade-the-event-finance-summarizer-finetuned-roundup-1-4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # fb-bart-large-finetuned-trade-the-event-finance-summarizer-finetuned-roundup-1-4 This model is a fine-tuned version of [nickmuchi/fb-bart-large-finetuned-trade-the-event-finance-summarizer](https://huggingface.co/nickmuchi/fb-bart-large-finetuned-trade-the-event-finance-summarizer) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.8305 - Rouge1: 54.122 - Rouge2: 35.2787 - Rougel: 37.6989 - Rougelsum: 51.4679 - Gen Len: 142.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:--------:| | 1.7158 | 1.0 | 795 | 0.9986 | 53.1755 | 33.3503 | 35.235 | 50.6513 | 142.0 | | 0.7643 | 2.0 | 1590 | 0.8622 | 53.3646 | 34.429 | 36.7998 | 51.0487 | 141.1852 | | 0.5894 | 3.0 | 2385 | 0.8345 | 54.2777 | 35.0495 | 37.8567 | 51.7937 | 142.0 | | 0.4039 | 4.0 | 3180 | 0.8305 | 54.122 | 35.2787 | 37.6989 | 51.4679 | 142.0 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.1.0 - Tokenizers 0.12.1
huggingtweets/csbible
0513d1b3596f30cf1e1984b57959785a82774187
2022-05-06T19:26:43.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/csbible
1
null
transformers
31,715
--- language: en thumbnail: http://www.huggingtweets.com/csbible/1651865198723/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/818891995057946624/2mUjD9A4_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">πŸ€– AI BOT πŸ€–</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Christian Standard Bible</div> <div style="text-align: center; font-size: 14px;">@csbible</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Christian Standard Bible. | Data | Christian Standard Bible | | --- | --- | | Tweets downloaded | 3250 | | Retweets | 29 | | Short tweets | 31 | | Tweets kept | 3190 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/89bp2qgq/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @csbible's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/196rw0mt) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/196rw0mt/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/csbible') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
davidlekve/distilroberta-base-finetuned-billy-ray-cyrus
b38ed3bdb411ed4fecb44c54654a0c8640a31c3c
2022-05-06T20:05:17.000Z
[ "pytorch", "tensorboard", "roberta", "fill-mask", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
fill-mask
false
davidlekve
null
davidlekve/distilroberta-base-finetuned-billy-ray-cyrus
1
null
transformers
31,716
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distilroberta-base-finetuned-billy-ray-cyrus results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilroberta-base-finetuned-billy-ray-cyrus This model is a fine-tuned version of [distilroberta-base](https://huggingface.co/distilroberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.6282 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 47 | 2.5714 | | No log | 2.0 | 94 | 2.5574 | | No log | 3.0 | 141 | 2.6282 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cpu - Datasets 2.1.0 - Tokenizers 0.12.1
Khalsuu/english-filipino-wav2vec2-l-xls-r-test-05
fbd7c9935c20280f028f8fd6d4200450ebc95239
2022-05-28T05:23:04.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "dataset:filipino_voice", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
Khalsuu
null
Khalsuu/english-filipino-wav2vec2-l-xls-r-test-05
1
1
transformers
31,717
--- license: apache-2.0 tags: - generated_from_trainer datasets: - filipino_voice model-index: - name: english-filipino-wav2vec2-l-xls-r-test-05 results: [] --- # english-filipino-wav2vec2-l-xls-r-test-05 ## Model description This model is a fine-tuned version of [jonatasgrosman/wav2vec2-large-xlsr-53-english](https://huggingface.co/jonatasgrosman/wav2vec2-large-xlsr-53-english) on the filipino_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.4738 - Wer: 0.2684 ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.3328 | 2.09 | 400 | 2.2174 | 0.9733 | | 0.6432 | 4.19 | 800 | 0.3735 | 0.3896 | | 0.2741 | 6.28 | 1200 | 0.3639 | 0.3425 | | 0.1877 | 8.38 | 1600 | 0.3506 | 0.3425 | | 0.1408 | 10.47 | 2000 | 0.3644 | 0.3181 | | 0.1133 | 12.57 | 2400 | 0.3837 | 0.3047 | | 0.0953 | 14.66 | 2800 | 0.4415 | 0.3103 | | 0.0814 | 16.75 | 3200 | 0.3940 | 0.3092 | | 0.0707 | 18.85 | 3600 | 0.4164 | 0.3013 | | 0.059 | 20.94 | 4000 | 0.4488 | 0.2983 | | 0.0545 | 23.04 | 4400 | 0.4803 | 0.3028 | | 0.0482 | 25.13 | 4800 | 0.4731 | 0.2811 | | 0.0426 | 27.23 | 5200 | 0.4606 | 0.2757 | | 0.0395 | 29.32 | 5600 | 0.4738 | 0.2684 | ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu113 - Datasets 1.18.3 - Tokenizers 0.10.3
vuiseng9/nncf-qat-kd-bert-l-squadv1.1-sl384
5a8b3a2d6afa505c386ed5aed40b2fa123991360
2022-05-07T00:09:14.000Z
[ "pytorch", "onnx", "bert", "dataset:squad", "transformers", "license:apache-2.0", "model-index" ]
null
false
vuiseng9
null
vuiseng9/nncf-qat-kd-bert-l-squadv1.1-sl384
1
null
transformers
31,718
--- license: apache-2.0 datasets: - squad model-index: - name: nncf-qat-kd-bert-l-squadv1.1-sl384 results: [] --- This model is quantized version of ```vuiseng9/bert-l-squadv1.1-sl384``` using OpenVINO NNCF. ### Training ```bash # used 4xV100 GPUS # --fp16 for lower turnaround and resource requirement python run_qa.py \ --model_name_or_path bert-large-uncased-whole-word-masking-finetuned-squad \ --dataset_name squad \ --do_eval \ --do_train \ --evaluation_strategy steps \ --eval_steps 250 \ --learning_rate 3e-5 \ --fp16 \ --num_train_epochs 2 \ --per_device_eval_batch_size 64 \ --per_device_train_batch_size 8 \ --max_seq_length 384 \ --doc_stride 128 \ --save_steps 500 \ --logging_steps 1 \ --overwrite_output_dir \ --nncf_config nncf_bert_config_squad_kd.json \ #stock config which is also enclosed here --run_name $RUNID \ --output_dir $OUTDIR ``` ### Evaluation Require ```vuiseng9/transformers (fork)``` , commit: ```ff24569b```, NNCF v2.1+ commit (```8e26365```) ```bash git clone https://huggingface.co/vuiseng9/nncf-qat-kd-bert-l-squadv1.1-sl384 python run_qa.py \ --model_name_or_path ./nncf-qat-kd-bert-l-squadv1.1-sl384 \ --dataset_name squad \ --nncf_config nncf-qat-kd-bert-l-squadv1.1-sl384/nncf_bert_config_squad_kd.json \ --nncf_ckpt ./nncf-qat-kd-bert-l-squadv1.1-sl384 \ --do_eval \ --per_device_eval_batch_size 128 \ --max_seq_length 384 \ --doc_stride 128 \ --output_dir /tmp/eval-nncf-qat-kd-bert-l-squadv1.1-sl384 \ --overwrite_output_dir ``` ### Results ``` eval_exact_match = 87.1523 eval_f1 = 93.2668 eval_samples = 10784 ```
lilitket/20220507-052144
8679ae9fd3cbb44d2a18d970fd6e69ed596eb689
2022-05-07T06:16:36.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
lilitket
null
lilitket/20220507-052144
1
null
transformers
31,719
Entry not found
crystina-z/mdpr-passage-msmarco
1f2528679ff705ae08bd8d3fb2261545c06e3b92
2022-05-07T07:49:09.000Z
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
false
crystina-z
null
crystina-z/mdpr-passage-msmarco
1
null
transformers
31,720
Entry not found
retextly/autotrain-test-831226565
c9f01e824cad5bc7abb8f4e7265835c0c7b7cfb4
2022-05-07T09:28:04.000Z
[ "pytorch", "pegasus", "text2text-generation", "en", "dataset:retextly/autotrain-data-test", "transformers", "autotrain", "co2_eq_emissions", "autotrain_compatible" ]
text2text-generation
false
retextly
null
retextly/autotrain-test-831226565
1
null
transformers
31,721
--- tags: autotrain language: en widget: - text: "I love AutoTrain πŸ€—" datasets: - retextly/autotrain-data-test co2_eq_emissions: 134.3402063080293 --- # Model Trained Using AutoTrain - Problem type: Summarization - Model ID: 831226565 - CO2 Emissions (in grams): 134.3402063080293 ## Validation Metrics - Loss: 0.33837366104125977 - Rouge1: 89.9891 - Rouge2: 85.7247 - RougeL: 89.7421 - RougeLsum: 89.4872 - Gen Len: 30.1818 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_HUGGINGFACE_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/retextly/autotrain-test-831226565 ```
xraychen/mqa-baseline
26005c1234eb3b6e9c9c09b9d1ed85f2e771bcbe
2022-05-07T09:16:36.000Z
[ "pytorch", "bert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
xraychen
null
xraychen/mqa-baseline
1
null
transformers
31,722
Entry not found
xraychen/squad-baseline
d079d34fa92eabb5033355c25300faacae43190f
2022-05-07T10:01:37.000Z
[ "pytorch", "bert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
xraychen
null
xraychen/squad-baseline
1
null
transformers
31,723
Entry not found
xugenpeng/xlm-roberta-base-finetuned-panx-de
3ed40002d2a83f84094abcbc0c51698236763669
2022-05-07T11:01:26.000Z
[ "pytorch", "tensorboard", "xlm-roberta", "token-classification", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
token-classification
false
xugenpeng
null
xugenpeng/xlm-roberta-base-finetuned-panx-de
1
null
transformers
31,724
--- license: mit tags: - generated_from_trainer metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1350 - F1: 0.8609 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2684 | 1.0 | 394 | 0.1598 | 0.8261 | | 0.13 | 2.0 | 788 | 0.1318 | 0.8528 | | 0.0852 | 3.0 | 1182 | 0.1350 | 0.8609 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.9.1 - Datasets 1.16.1 - Tokenizers 0.10.3
huggingtweets/spacecatssgb
7d00f47dc1d7ac35e9d05fd973826a7590a8b4e9
2022-05-07T11:14:25.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/spacecatssgb
1
null
transformers
31,725
--- language: en thumbnail: http://www.huggingtweets.com/spacecatssgb/1651922060699/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1517568585333637122/_wEfCpgw_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">πŸ€– AI BOT πŸ€–</div> <div style="text-align: center; font-size: 16px; font-weight: 800">SpaceCats NFTs</div> <div style="text-align: center; font-size: 14px;">@spacecatssgb</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from SpaceCats NFTs. | Data | SpaceCats NFTs | | --- | --- | | Tweets downloaded | 249 | | Retweets | 44 | | Short tweets | 10 | | Tweets kept | 195 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1gdsjxjx/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @spacecatssgb's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3aq9f1hp) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3aq9f1hp/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/spacecatssgb') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
theojolliffe/bart-large-cnn-finetuned-pubmed-finetuned-roundup-e1
9ce03b28bf7ae4042554bc277ce09ceb9d2aa7a9
2022-05-07T11:40:08.000Z
[ "pytorch", "tensorboard", "bart", "text2text-generation", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
text2text-generation
false
theojolliffe
null
theojolliffe/bart-large-cnn-finetuned-pubmed-finetuned-roundup-e1
1
null
transformers
31,726
--- license: mit tags: - generated_from_trainer model-index: - name: bart-large-cnn-finetuned-pubmed-finetuned-roundup-e1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-large-cnn-finetuned-pubmed-finetuned-roundup-e1 This model is a fine-tuned version of [theojolliffe/bart-large-cnn-finetuned-pubmed](https://huggingface.co/theojolliffe/bart-large-cnn-finetuned-pubmed) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | No log | 1.0 | 25 | 1.4393 | 48.2616 | 31.3629 | 35.4175 | 46.251 | 140.0 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.1.0 - Tokenizers 0.12.1
theojolliffe/bart-large-cnn-finetuned-pubmed-finetuned-roundup-e16
8685653fc8dff4287d4626a3f4fefc43ed28187c
2022-05-07T12:07:36.000Z
[ "pytorch", "tensorboard", "bart", "text2text-generation", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
text2text-generation
false
theojolliffe
null
theojolliffe/bart-large-cnn-finetuned-pubmed-finetuned-roundup-e16
1
null
transformers
31,727
--- license: mit tags: - generated_from_trainer metrics: - rouge model-index: - name: bart-large-cnn-finetuned-pubmed-finetuned-roundup-e16 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-large-cnn-finetuned-pubmed-finetuned-roundup-e16 This model is a fine-tuned version of [theojolliffe/bart-large-cnn-finetuned-pubmed](https://huggingface.co/theojolliffe/bart-large-cnn-finetuned-pubmed) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.6815 - Rouge1: 48.7608 - Rouge2: 29.554 - Rougel: 30.5554 - Rougelsum: 46.4001 - Gen Len: 142.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 16 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | No log | 1.0 | 25 | 1.4287 | 46.5701 | 28.6267 | 34.7827 | 45.0622 | 142.0 | | No log | 2.0 | 50 | 1.4419 | 46.6171 | 27.4276 | 31.0085 | 43.1797 | 142.0 | | No log | 3.0 | 75 | 1.5418 | 50.1144 | 29.3433 | 32.0144 | 46.9217 | 142.0 | | No log | 4.0 | 100 | 1.7125 | 49.1395 | 28.611 | 30.9759 | 46.8346 | 142.0 | | No log | 5.0 | 125 | 1.8978 | 43.9629 | 24.1224 | 26.0032 | 41.2272 | 142.0 | | No log | 6.0 | 150 | 2.0990 | 49.0579 | 29.5182 | 31.5829 | 46.0207 | 142.0 | | No log | 7.0 | 175 | 2.2380 | 48.8754 | 27.7691 | 28.8597 | 45.3281 | 142.0 | | No log | 8.0 | 200 | 2.2922 | 48.311 | 29.2517 | 33.8241 | 46.6099 | 142.0 | | No log | 9.0 | 225 | 2.3820 | 45.4663 | 23.9904 | 27.5497 | 41.9446 | 142.0 | | No log | 10.0 | 250 | 2.4856 | 48.2224 | 27.7455 | 28.159 | 45.4726 | 142.0 | | No log | 11.0 | 275 | 2.4731 | 46.1799 | 22.1941 | 26.8254 | 43.9986 | 142.0 | | No log | 12.0 | 300 | 2.5278 | 47.8623 | 27.6514 | 26.6377 | 42.9255 | 142.0 | | No log | 13.0 | 325 | 2.6229 | 45.573 | 25.4966 | 27.7158 | 42.2306 | 142.0 | | No log | 14.0 | 350 | 2.6032 | 48.1972 | 27.0387 | 28.336 | 45.0293 | 142.0 | | No log | 15.0 | 375 | 2.6600 | 47.7301 | 27.3567 | 29.3389 | 44.3516 | 142.0 | | No log | 16.0 | 400 | 2.6815 | 48.7608 | 29.554 | 30.5554 | 46.4001 | 142.0 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.1.0 - Tokenizers 0.12.1
KoichiYasuoka/roberta-small-coptic-upos
3c0c29b98144e78c83057de4e9040ee08670c1a5
2022-05-08T03:01:24.000Z
[ "pytorch", "roberta", "token-classification", "cop", "dataset:universal_dependencies", "transformers", "coptic", "pos", "dependency-parsing", "license:cc-by-sa-4.0", "autotrain_compatible" ]
token-classification
false
KoichiYasuoka
null
KoichiYasuoka/roberta-small-coptic-upos
1
null
transformers
31,728
--- language: - "cop" tags: - "coptic" - "token-classification" - "pos" - "dependency-parsing" datasets: - "universal_dependencies" license: "cc-by-sa-4.0" pipeline_tag: "token-classification" widget: - text: "β²§β²‰β²›β²Ÿβ²©β²‡β²‰β²›Μ„β²Ÿβ²©β²Ÿβ²‰β²“β²›Ο©οΈ€β²™οΈ₯β²‘Ο«β²Ÿβ²‰β²“β²₯Β·" - text: "β²™β²Ÿβ²ŸΟ£β²‰Ο©β²±β²₯Ο£β²β²£β²‰β²™Μ„β²‘β²Ÿβ²©β²Ÿβ²‰β²“β²›Β·" --- # roberta-small-coptic-upos ## Model Description This is a RoBERTa model pre-trained with [UD_Coptic](https://universaldependencies.org/cop/) for POS-tagging and dependency-parsing, derived from [roberta-small-coptic](https://huggingface.co/KoichiYasuoka/roberta-small-coptic). Every word is tagged by [UPOS](https://universaldependencies.org/u/pos/) (Universal Part-Of-Speech). ## How to Use ```py from transformers import AutoTokenizer,AutoModelForTokenClassification tokenizer=AutoTokenizer.from_pretrained("KoichiYasuoka/roberta-small-coptic-upos") model=AutoModelForTokenClassification.from_pretrained("KoichiYasuoka/roberta-small-coptic-upos") ``` or ``` import esupar nlp=esupar.load("KoichiYasuoka/roberta-small-coptic-upos") ``` ## See Also [esupar](https://github.com/KoichiYasuoka/esupar): Tokenizer POS-tagger and Dependency-parser with BERT/RoBERTa models
bilelomrani/lilt-camembert-base-title-classifier
78f765335916c65c297ca8081f69f347b8502e43
2022-05-07T14:45:12.000Z
[ "pytorch", "tensorboard", "liltrobertalike", "transformers" ]
null
false
bilelomrani
null
bilelomrani/lilt-camembert-base-title-classifier
1
null
transformers
31,729
Entry not found
retextly/t5-small-finetuned-xsum
7709cb1c78ecfcec0a95a2481dc024a9870a4588
2022-05-07T15:44:43.000Z
[ "pytorch", "tensorboard", "t5", "text2text-generation", "dataset:xsum", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
text2text-generation
false
retextly
null
retextly/t5-small-finetuned-xsum
1
null
transformers
31,730
--- license: apache-2.0 tags: - generated_from_trainer datasets: - xsum model-index: - name: t5-small-finetuned-xsum results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-xsum This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the xsum dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.1.0 - Tokenizers 0.12.1
theojolliffe/bart-cnn-pubmed-arxiv-v3-e4
30def238b723eb7a6e150a9a0bba89a54cfcc68d
2022-05-07T16:53:55.000Z
[ "pytorch", "tensorboard", "bart", "text2text-generation", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
text2text-generation
false
theojolliffe
null
theojolliffe/bart-cnn-pubmed-arxiv-v3-e4
1
null
transformers
31,731
--- license: mit tags: - generated_from_trainer metrics: - rouge model-index: - name: bart-cnn-pubmed-arxiv-v3-e4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-cnn-pubmed-arxiv-v3-e4 This model is a fine-tuned version of [theojolliffe/bart-cnn-pubmed-arxiv](https://huggingface.co/theojolliffe/bart-cnn-pubmed-arxiv) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.7934 - Rouge1: 54.2624 - Rouge2: 35.6024 - Rougel: 37.1697 - Rougelsum: 51.5144 - Gen Len: 141.9815 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:--------:| | No log | 1.0 | 398 | 0.9533 | 52.3191 | 32.4576 | 33.2016 | 49.6502 | 142.0 | | 1.1154 | 2.0 | 796 | 0.8407 | 53.6639 | 34.3433 | 36.1893 | 50.9077 | 142.0 | | 0.6856 | 3.0 | 1194 | 0.7978 | 54.4723 | 36.1315 | 37.7891 | 51.902 | 142.0 | | 0.4943 | 4.0 | 1592 | 0.7934 | 54.2624 | 35.6024 | 37.1697 | 51.5144 | 141.9815 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.1.0 - Tokenizers 0.12.1
crystina-z/xdpr-tied-msmarco-10epoch
f8e7f782a3a13fa4e5c388afcba11e8463d3eb00
2022-05-07T16:41:05.000Z
[ "pytorch", "xlm-roberta", "feature-extraction", "transformers" ]
feature-extraction
false
crystina-z
null
crystina-z/xdpr-tied-msmarco-10epoch
1
null
transformers
31,732
Entry not found
Khalsuu/english-filipino-wav2vec2-l-xls-r-test-08
939839e41f5bf55a7e3441da39f91912f7e1ffb8
2022-05-08T01:35:51.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "dataset:filipino_voice", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
Khalsuu
null
Khalsuu/english-filipino-wav2vec2-l-xls-r-test-08
1
null
transformers
31,733
--- license: apache-2.0 tags: - generated_from_trainer datasets: - filipino_voice model-index: - name: english-filipino-wav2vec2-l-xls-r-test-08 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # english-filipino-wav2vec2-l-xls-r-test-08 This model is a fine-tuned version of [jonatasgrosman/wav2vec2-large-xlsr-53-english](https://huggingface.co/jonatasgrosman/wav2vec2-large-xlsr-53-english) on the filipino_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.5968 - Wer: 0.4255 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.3434 | 2.09 | 400 | 2.2857 | 0.9625 | | 1.6304 | 4.19 | 800 | 1.1547 | 0.7268 | | 0.9231 | 6.28 | 1200 | 1.0252 | 0.6186 | | 0.6098 | 8.38 | 1600 | 0.9371 | 0.5494 | | 0.4922 | 10.47 | 2000 | 0.7092 | 0.5478 | | 0.3652 | 12.57 | 2400 | 0.7358 | 0.5149 | | 0.2735 | 14.66 | 2800 | 0.6270 | 0.4646 | | 0.2038 | 16.75 | 3200 | 0.5717 | 0.4506 | | 0.1552 | 18.85 | 3600 | 0.5968 | 0.4255 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu113 - Datasets 1.18.3 - Tokenizers 0.10.3
huggingtweets/brutedeforce
a6be1634032da08f5e06be8e7130989f2c3a990a
2022-05-08T00:31:49.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/brutedeforce
1
null
transformers
31,734
--- language: en thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1481651838717808654/9UjpARw0_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">πŸ€– AI BOT πŸ€–</div> <div style="text-align: center; font-size: 16px; font-weight: 800">brute de force</div> <div style="text-align: center; font-size: 14px;">@brutedeforce</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from brute de force. | Data | brute de force | | --- | --- | | Tweets downloaded | 3087 | | Retweets | 497 | | Short tweets | 229 | | Tweets kept | 2361 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/njvklep4/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @brutedeforce's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2oxvamkp) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2oxvamkp/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/brutedeforce') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
jimregan/wav2vec-awb
c62b96fbe0a0429a6d662ebba965dd17750bd4b0
2022-05-15T15:58:16.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "license:apache-2.0" ]
automatic-speech-recognition
false
jimregan
null
jimregan/wav2vec-awb
1
null
transformers
31,735
--- license: apache-2.0 ---
vinaykudari/bart-acled-t2s
a7b0e9b462c0f1a73ab0a29bd4edbabe8001a8a5
2022-05-08T03:31:13.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
vinaykudari
null
vinaykudari/bart-acled-t2s
1
null
transformers
31,736
Entry not found
vinaykudari/pegasus-acled-t2s
260c58fcf912ef4ad9b727a282803e2a0f750712
2022-05-09T08:34:31.000Z
[ "pytorch", "pegasus", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
vinaykudari
null
vinaykudari/pegasus-acled-t2s
1
null
transformers
31,737
Entry not found
Jiexing/sparc_add_depen_t5_3b-1344
f5acd77c5cc6f724cbdbe767f0f834d02bb5d440
2022-05-08T04:58:28.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
Jiexing
null
Jiexing/sparc_add_depen_t5_3b-1344
1
null
transformers
31,738
Entry not found
theojolliffe/bart-cnn-pubmed-arxiv-pubmed-v3-e16
0b911b823a6dc83f235a439abef2edfee8d81bcd
2022-05-08T15:16:32.000Z
[ "pytorch", "tensorboard", "bart", "text2text-generation", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
text2text-generation
false
theojolliffe
null
theojolliffe/bart-cnn-pubmed-arxiv-pubmed-v3-e16
1
null
transformers
31,739
--- license: mit tags: - generated_from_trainer metrics: - rouge model-index: - name: bart-cnn-pubmed-arxiv-pubmed-v3-e16 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-cnn-pubmed-arxiv-pubmed-v3-e16 This model is a fine-tuned version of [theojolliffe/bart-cnn-pubmed-arxiv-pubmed](https://huggingface.co/theojolliffe/bart-cnn-pubmed-arxiv-pubmed) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.8702 - Rouge1: 56.1421 - Rouge2: 41.3514 - Rougel: 44.5146 - Rougelsum: 54.3477 - Gen Len: 142.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 16 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:--------:| | No log | 1.0 | 398 | 0.9532 | 53.1932 | 32.9882 | 35.3852 | 50.6138 | 142.0 | | 1.1219 | 2.0 | 796 | 0.8252 | 54.1306 | 35.3774 | 37.4334 | 51.6652 | 142.0 | | 0.6698 | 3.0 | 1194 | 0.7828 | 53.8766 | 35.2945 | 39.2662 | 51.3239 | 142.0 | | 0.4435 | 4.0 | 1592 | 0.7744 | 53.9029 | 35.2716 | 37.5502 | 51.1179 | 142.0 | | 0.4435 | 5.0 | 1990 | 0.7644 | 53.8132 | 36.3643 | 39.9548 | 51.5348 | 141.4815 | | 0.3001 | 6.0 | 2388 | 0.7996 | 53.7376 | 36.2289 | 39.063 | 51.7514 | 142.0 | | 0.2045 | 7.0 | 2786 | 0.8009 | 54.4924 | 37.3594 | 40.033 | 52.1405 | 142.0 | | 0.1416 | 8.0 | 3184 | 0.7578 | 55.2039 | 39.0907 | 42.171 | 53.2835 | 142.0 | | 0.1058 | 9.0 | 3582 | 0.8030 | 54.6634 | 38.2708 | 42.232 | 52.6619 | 142.0 | | 0.1058 | 10.0 | 3980 | 0.8057 | 53.8692 | 37.943 | 41.1825 | 51.7243 | 142.0 | | 0.0803 | 11.0 | 4378 | 0.8182 | 56.5077 | 41.5916 | 44.1933 | 54.8699 | 142.0 | | 0.0599 | 12.0 | 4776 | 0.8261 | 56.9709 | 42.1438 | 45.5351 | 55.0701 | 142.0 | | 0.0458 | 13.0 | 5174 | 0.8469 | 56.5208 | 42.0329 | 44.4172 | 54.7958 | 142.0 | | 0.0346 | 14.0 | 5572 | 0.8583 | 56.9187 | 42.4072 | 46.1096 | 55.3656 | 142.0 | | 0.0346 | 15.0 | 5970 | 0.8653 | 56.503 | 42.047 | 45.8598 | 54.9676 | 141.8519 | | 0.0293 | 16.0 | 6368 | 0.8702 | 56.1421 | 41.3514 | 44.5146 | 54.3477 | 142.0 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.1.0 - Tokenizers 0.12.1
vinaykudari/t5-acled-ie-a
77e12ad7a2c5c4f366d5fd5895e3bc079a58fcaf
2022-05-09T05:31:01.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
vinaykudari
null
vinaykudari/t5-acled-ie-a
1
null
transformers
31,740
Entry not found
theojolliffe/bart-cnn-pubmed-arxiv-pubmed-v3-e64
455bce5ce0d2d335c1746598d00e9dd966eb34fa
2022-05-09T02:03:17.000Z
[ "pytorch", "tensorboard", "bart", "text2text-generation", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
text2text-generation
false
theojolliffe
null
theojolliffe/bart-cnn-pubmed-arxiv-pubmed-v3-e64
1
null
transformers
31,741
--- license: mit tags: - generated_from_trainer metrics: - rouge model-index: - name: bart-cnn-pubmed-arxiv-pubmed-v3-e64 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-cnn-pubmed-arxiv-pubmed-v3-e64 This model is a fine-tuned version of [theojolliffe/bart-cnn-pubmed-arxiv-pubmed](https://huggingface.co/theojolliffe/bart-cnn-pubmed-arxiv-pubmed) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.0630 - Rouge1: 58.7 - Rouge2: 47.8042 - Rougel: 50.6967 - Rougelsum: 57.5543 - Gen Len: 142.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 64 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:--------:| | No log | 1.0 | 398 | 0.9499 | 53.8396 | 34.0954 | 35.6734 | 51.3453 | 142.0 | | 1.1219 | 2.0 | 796 | 0.8223 | 53.0414 | 33.3193 | 35.7448 | 50.1675 | 142.0 | | 0.6681 | 3.0 | 1194 | 0.7689 | 53.6684 | 35.3651 | 37.7087 | 51.1441 | 142.0 | | 0.4393 | 4.0 | 1592 | 0.7694 | 53.9066 | 35.3925 | 38.8917 | 51.6172 | 142.0 | | 0.4393 | 5.0 | 1990 | 0.7597 | 54.0746 | 36.1026 | 39.1318 | 51.9272 | 142.0 | | 0.2947 | 6.0 | 2388 | 0.8284 | 53.1168 | 34.7428 | 38.0573 | 50.9563 | 142.0 | | 0.2016 | 7.0 | 2786 | 0.7951 | 55.7222 | 39.0458 | 42.5265 | 53.5359 | 142.0 | | 0.1422 | 8.0 | 3184 | 0.7793 | 56.2376 | 40.3348 | 43.435 | 54.3228 | 142.0 | | 0.1096 | 9.0 | 3582 | 0.8260 | 55.0372 | 39.0552 | 42.5403 | 53.0694 | 142.0 | | 0.1096 | 10.0 | 3980 | 0.8397 | 53.849 | 37.519 | 40.674 | 52.1357 | 141.7037 | | 0.0881 | 11.0 | 4378 | 0.8504 | 56.4835 | 41.0484 | 44.9407 | 54.3557 | 142.0 | | 0.0693 | 12.0 | 4776 | 0.8285 | 55.7705 | 39.8585 | 43.722 | 53.7607 | 142.0 | | 0.0572 | 13.0 | 5174 | 0.8327 | 57.932 | 43.5378 | 46.8233 | 55.8739 | 142.0 | | 0.0461 | 14.0 | 5572 | 0.8720 | 57.6733 | 42.9742 | 45.8698 | 56.018 | 142.0 | | 0.0461 | 15.0 | 5970 | 0.8723 | 57.6072 | 42.6946 | 45.2551 | 55.8486 | 142.0 | | 0.0416 | 16.0 | 6368 | 0.8764 | 57.1973 | 43.1931 | 46.4492 | 55.3842 | 142.0 | | 0.0343 | 17.0 | 6766 | 0.8638 | 57.4474 | 43.3544 | 46.3026 | 55.7863 | 142.0 | | 0.03 | 18.0 | 7164 | 0.9234 | 57.9166 | 43.8551 | 46.6473 | 56.3895 | 142.0 | | 0.0252 | 19.0 | 7562 | 0.9393 | 58.2908 | 45.2321 | 47.1398 | 56.6618 | 142.0 | | 0.0252 | 20.0 | 7960 | 0.8966 | 59.2798 | 46.381 | 49.3514 | 57.6061 | 142.0 | | 0.024 | 21.0 | 8358 | 0.9056 | 57.8409 | 44.2048 | 47.3329 | 56.2568 | 142.0 | | 0.0195 | 22.0 | 8756 | 0.9424 | 57.551 | 44.6847 | 47.2771 | 56.2391 | 142.0 | | 0.0182 | 23.0 | 9154 | 0.9361 | 59.1078 | 46.4704 | 49.4178 | 57.6796 | 142.0 | | 0.0169 | 24.0 | 9552 | 0.9456 | 56.7966 | 43.3135 | 46.4208 | 55.4646 | 142.0 | | 0.0169 | 25.0 | 9950 | 0.9867 | 59.5561 | 47.4638 | 50.0725 | 58.2388 | 141.8519 | | 0.0147 | 26.0 | 10348 | 0.9727 | 58.2574 | 44.9904 | 47.2701 | 56.4274 | 142.0 | | 0.0125 | 27.0 | 10746 | 0.9589 | 58.6792 | 45.8465 | 48.0781 | 57.0755 | 142.0 | | 0.0117 | 28.0 | 11144 | 0.9635 | 59.1118 | 46.6614 | 50.0552 | 57.6153 | 142.0 | | 0.0103 | 29.0 | 11542 | 0.9623 | 58.2517 | 45.6401 | 48.5888 | 56.7733 | 142.0 | | 0.0103 | 30.0 | 11940 | 0.9752 | 59.0707 | 47.203 | 49.7992 | 57.6216 | 142.0 | | 0.0096 | 31.0 | 12338 | 0.9610 | 57.6781 | 44.0504 | 47.6718 | 56.1201 | 142.0 | | 0.0089 | 32.0 | 12736 | 0.9705 | 58.5592 | 45.7397 | 48.681 | 57.0302 | 142.0 | | 0.008 | 33.0 | 13134 | 0.9989 | 58.1997 | 45.6345 | 48.2551 | 56.8571 | 141.7778 | | 0.0075 | 34.0 | 13532 | 0.9880 | 57.9632 | 44.7845 | 47.8763 | 56.3979 | 142.0 | | 0.0075 | 35.0 | 13930 | 1.0041 | 58.1316 | 46.2737 | 49.5986 | 56.8263 | 142.0 | | 0.0061 | 36.0 | 14328 | 0.9923 | 58.4686 | 46.1735 | 49.1299 | 57.0331 | 142.0 | | 0.0066 | 37.0 | 14726 | 1.0157 | 58.4277 | 45.6559 | 49.1739 | 56.8198 | 141.6481 | | 0.0052 | 38.0 | 15124 | 1.0220 | 58.5166 | 46.3883 | 50.0964 | 57.0104 | 142.0 | | 0.0049 | 39.0 | 15522 | 0.9949 | 59.3697 | 47.0609 | 50.2733 | 58.1388 | 142.0 | | 0.0049 | 40.0 | 15920 | 1.0368 | 59.9537 | 48.4059 | 51.8185 | 58.8002 | 142.0 | | 0.0039 | 41.0 | 16318 | 1.0228 | 58.2093 | 46.4807 | 49.54 | 56.9994 | 142.0 | | 0.0041 | 42.0 | 16716 | 1.0218 | 57.6376 | 45.4951 | 49.003 | 56.4606 | 142.0 | | 0.0035 | 43.0 | 17114 | 1.0381 | 57.2845 | 43.9593 | 46.779 | 55.6106 | 142.0 | | 0.0059 | 44.0 | 17512 | 1.0316 | 58.5506 | 46.2111 | 49.4844 | 56.9506 | 142.0 | | 0.0059 | 45.0 | 17910 | 1.0388 | 58.8383 | 47.6053 | 50.6187 | 57.7125 | 142.0 | | 0.0028 | 46.0 | 18308 | 1.0068 | 59.3198 | 47.6888 | 50.2478 | 58.0 | 142.0 | | 0.0028 | 47.0 | 18706 | 1.0446 | 58.8938 | 46.7524 | 49.5642 | 57.3659 | 142.0 | | 0.0022 | 48.0 | 19104 | 1.0347 | 59.8253 | 48.3871 | 51.3949 | 58.5652 | 142.0 | | 0.0024 | 49.0 | 19502 | 1.0294 | 60.655 | 50.2339 | 53.1662 | 59.3333 | 142.0 | | 0.0024 | 50.0 | 19900 | 1.0225 | 58.5131 | 47.3009 | 50.1642 | 57.2287 | 142.0 | | 0.0022 | 51.0 | 20298 | 1.0320 | 59.6101 | 47.4104 | 50.5291 | 58.075 | 142.0 | | 0.0018 | 52.0 | 20696 | 1.0507 | 58.7957 | 46.8893 | 50.2996 | 57.3662 | 142.0 | | 0.0015 | 53.0 | 21094 | 1.0599 | 58.9064 | 47.9433 | 51.3082 | 57.6871 | 142.0 | | 0.0015 | 54.0 | 21492 | 1.0636 | 59.6607 | 48.5737 | 51.2361 | 58.333 | 142.0 | | 0.0013 | 55.0 | 21890 | 1.0452 | 58.7026 | 46.5286 | 49.9672 | 57.2521 | 142.0 | | 0.0012 | 56.0 | 22288 | 1.0418 | 58.9452 | 47.7209 | 50.657 | 57.7103 | 142.0 | | 0.0011 | 57.0 | 22686 | 1.0578 | 58.485 | 46.0691 | 49.811 | 57.2591 | 142.0 | | 0.0009 | 58.0 | 23084 | 1.0561 | 59.2268 | 48.1987 | 50.1948 | 57.8871 | 142.0 | | 0.0009 | 59.0 | 23482 | 1.0548 | 59.6307 | 48.1778 | 50.9934 | 58.2098 | 142.0 | | 0.0009 | 60.0 | 23880 | 1.0498 | 59.5054 | 48.8866 | 51.5977 | 58.1868 | 142.0 | | 0.0008 | 61.0 | 24278 | 1.0583 | 60.0232 | 49.2518 | 52.2297 | 58.6774 | 142.0 | | 0.0007 | 62.0 | 24676 | 1.0659 | 59.1755 | 48.4144 | 51.5157 | 58.0416 | 142.0 | | 0.0007 | 63.0 | 25074 | 1.0622 | 59.1023 | 47.74 | 50.5188 | 57.9707 | 142.0 | | 0.0007 | 64.0 | 25472 | 1.0630 | 58.7 | 47.8042 | 50.6967 | 57.5543 | 142.0 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.1.0 - Tokenizers 0.12.1
HarmlessTarget/DialoGPT-medium-Bender
481d94a4a4c8c2dd092f0c0666740d9ee2928b84
2022-05-09T16:46:11.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
HarmlessTarget
null
HarmlessTarget/DialoGPT-medium-Bender
1
null
transformers
31,742
--- tags: - conversational --- #Bender DialoGPT Model
Xikun/greaselm-csqa
1d90a41f975f4db9e56075201850df49a1be1895
2022-05-09T04:29:28.000Z
[ "pytorch", "greaselm", "transformers" ]
null
false
Xikun
null
Xikun/greaselm-csqa
1
null
transformers
31,743
huggingtweets/malnote
28cb709ccf12c5ab0e44a1ac0dac898d7299f771
2022-05-09T05:36:36.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/malnote
1
null
transformers
31,744
--- language: en thumbnail: http://www.huggingtweets.com/malnote/1652074591822/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1475058675626561537/bI19TTid_400x400.png&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">πŸ€– AI BOT πŸ€–</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Arantxa Ε tefan</div> <div style="text-align: center; font-size: 14px;">@malnote</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Arantxa Ε tefan. | Data | Arantxa Ε tefan | | --- | --- | | Tweets downloaded | 3250 | | Retweets | 6 | | Short tweets | 218 | | Tweets kept | 3026 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/ow72fqyd/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @malnote's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/33l50h31) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/33l50h31/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/malnote') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
ntcuong777/electra-iu-answer-retrieval
31a4f070a06ce3d184474ee5aa92172b82b9ede3
2022-05-13T15:31:50.000Z
[ "pytorch", "electra", "transformers" ]
null
false
ntcuong777
null
ntcuong777/electra-iu-answer-retrieval
1
null
transformers
31,745
This is a model for International University VNU-HCMC use cases only.
subhasisj/zh-Pretrained-squad-qa-minilmv2-32
aff50118b71ff81324b9b052bdce31780b3671e9
2022-05-28T20:12:43.000Z
[ "pytorch", "bert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
subhasisj
null
subhasisj/zh-Pretrained-squad-qa-minilmv2-32
1
null
transformers
31,746
Entry not found
theojolliffe/distilbart-cnn-arxiv-pubmed-pubmed
bd049f10ea31d4215d8bae0f2fda46484601137f
2022-05-10T00:28:07.000Z
[ "pytorch", "tensorboard", "bart", "text2text-generation", "dataset:scientific_papers", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
text2text-generation
false
theojolliffe
null
theojolliffe/distilbart-cnn-arxiv-pubmed-pubmed
1
null
transformers
31,747
--- license: apache-2.0 tags: - generated_from_trainer datasets: - scientific_papers metrics: - rouge model-index: - name: distilbart-cnn-arxiv-pubmed-pubmed results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: scientific_papers type: scientific_papers args: pubmed metrics: - name: Rouge1 type: rouge value: 36.6704 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbart-cnn-arxiv-pubmed-pubmed This model is a fine-tuned version of [theojolliffe/distilbart-cnn-arxiv-pubmed](https://huggingface.co/theojolliffe/distilbart-cnn-arxiv-pubmed) on the scientific_papers dataset. It achieves the following results on the evaluation set: - Loss: 2.1171 - Rouge1: 36.6704 - Rouge2: 14.9713 - Rougel: 22.6149 - Rougelsum: 33.3591 - Gen Len: 136.8372 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:--------:| | 2.2556 | 1.0 | 14991 | 2.1171 | 36.6704 | 14.9713 | 22.6149 | 33.3591 | 136.8372 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.1.0 - Tokenizers 0.12.1
captainswiftfox/DialoGPT-small-rick
acdaa4aa9c08b6af3614b6b341e85dc1cfcb448f
2022-05-09T13:16:17.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
captainswiftfox
null
captainswiftfox/DialoGPT-small-rick
1
null
transformers
31,748
--- tags: - conversational --- # Rick Sanchez DialoGPT Model
masakhane/afrimbart_pcm_en_news
0f8ffe87174459667f0be7df4f7369689de56386
2022-05-10T11:17:35.000Z
[ "pytorch", "mbart", "text2text-generation", "transformers", "license:afl-3.0", "autotrain_compatible" ]
text2text-generation
false
masakhane
null
masakhane/afrimbart_pcm_en_news
1
null
transformers
31,749
--- license: afl-3.0 ---
phanidhar/model-imdb-finetuned
30a1fe3ecf5b76d9d41c09ab705649d2fd76136f
2022-05-09T16:42:43.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
phanidhar
null
phanidhar/model-imdb-finetuned
1
null
transformers
31,750
Entry not found
IljaSamoilov/MBART-estonian-subtitles-with-seconds
b0f2f2d278cdd5e03bae61080405316ea36c9777
2022-05-12T12:34:45.000Z
[ "pytorch", "mbart", "text2text-generation", "et", "transformers", "autotrain_compatible" ]
text2text-generation
false
IljaSamoilov
null
IljaSamoilov/MBART-estonian-subtitles-with-seconds
1
null
transformers
31,751
--- language: - et widget: - text: "te olete ka noh, noh, pÀris korralikult ka RahvusringhÀÀlingu teatud máttes sellisesse keerulisse olukorda pannud," - text: "Et, et, et miks mitte olla siis tasakaalus, ma noh, hüpoteetiliselt viskan selle palli üles," --- Dataset must be processed as following: ``` def preprocess_function_with_seconds(ds): inputs = ds['generated'] targets = ds['subtitle'] model_inputs = tokenizer(inputs, truncation=True, max_length=128, padding=True, return_tensors="np") secs = list(map(lambda x: "{:.1f}".format(x), ds["seconds"])) sec_inputs = tokenizer(secs, truncation=True, max_length=128, padding=True, return_tensors="np") model_inputs['input_ids'] = np.concatenate((sec_inputs['input_ids'][:,1:2], model_inputs['input_ids']), 1) model_inputs['attention_mask'] = np.concatenate((sec_inputs['attention_mask'][:,1:2], model_inputs['attention_mask']), 1) with tokenizer.as_target_tokenizer(): labels = tokenizer(targets, truncation=True, max_length=128, padding=True, return_tensors="np") model_inputs["labels"] = labels["input_ids"] return model_inputs ``` Importing the model and tokenizer: ``` tokenizer = MBart50Tokenizer.from_pretrained("IljaSamoilov/MBART-estonian-subtitles-with-seconds", src_lang="et_EE", tgt_lang="et_EE") model = MBartForConditionalGeneration.from_pretrained("IljaSamoilov/MBART-estonian-subtitles-with-seconds") ```
subhasisj/MiniLMv2-qa-encoder
13a00c23112b69092903a29a55117b8b7cc31f37
2022-05-09T19:33:47.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
subhasisj
null
subhasisj/MiniLMv2-qa-encoder
1
null
transformers
31,752
Entry not found
murdockthedude/wav2vec2-base-timit-demo-colab
ddbfb1bc6e94479103a6972f83f774632ce56eef
2022-05-10T02:31:15.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
murdockthedude
null
murdockthedude/wav2vec2-base-timit-demo-colab
1
null
transformers
31,753
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base-timit-demo-colab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-timit-demo-colab This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4627 - Wer: 0.3518 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.4716 | 4.0 | 500 | 1.3023 | 0.9254 | | 0.5958 | 8.0 | 1000 | 0.4582 | 0.4399 | | 0.2223 | 12.0 | 1500 | 0.4477 | 0.3886 | | 0.1373 | 16.0 | 2000 | 0.4791 | 0.3630 | | 0.101 | 20.0 | 2500 | 0.4676 | 0.3561 | | 0.0724 | 24.0 | 3000 | 0.4539 | 0.3510 | | 0.0513 | 28.0 | 3500 | 0.4627 | 0.3518 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 1.17.0 - Tokenizers 0.12.1
dfsj/xlm-roberta-base-finetuned-panx-de
c6a5eb27309d5d7bb3d9bb62373f574f6719fc64
2022-05-10T03:20:57.000Z
[ "pytorch", "xlm-roberta", "token-classification", "dataset:xtreme", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
token-classification
false
dfsj
null
dfsj/xlm-roberta-base-finetuned-panx-de
1
null
transformers
31,754
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme args: PAN-X.de metrics: - name: F1 type: f1 value: 0.8674931756141947 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.1326 - F1: 0.8675 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2654 | 1.0 | 525 | 0.1745 | 0.8133 | | 0.1317 | 2.0 | 1050 | 0.1428 | 0.8427 | | 0.0823 | 3.0 | 1575 | 0.1326 | 0.8675 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.0+cu102 - Datasets 2.0.0 - Tokenizers 0.12.1
hsiehpinghan/dummy-model
d5259925506dd6d836c08c3aac39dbc1a0e5696b
2022-05-10T06:46:53.000Z
[ "pytorch", "albert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
hsiehpinghan
null
hsiehpinghan/dummy-model
1
null
transformers
31,755
Entry not found
naomiyjchen/xlm-roberta-base-finetuned-panx-de
0a7e15bff047fb52de0b3199870d0eea67976e3f
2022-05-10T08:47:46.000Z
[ "pytorch", "tensorboard", "xlm-roberta", "token-classification", "dataset:xtreme", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
token-classification
false
naomiyjchen
null
naomiyjchen/xlm-roberta-base-finetuned-panx-de
1
null
transformers
31,756
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme args: PAN-X.de metrics: - name: F1 type: f1 value: 0.8620945214069894 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.1372 - F1: 0.8621 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2575 | 1.0 | 525 | 0.1621 | 0.8292 | | 0.1287 | 2.0 | 1050 | 0.1378 | 0.8526 | | 0.0831 | 3.0 | 1575 | 0.1372 | 0.8621 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.11.0+cu113 - Datasets 1.16.1 - Tokenizers 0.10.3
ebonazza2910/model-1h
fef7a26e3788ec8bf43c9e93e313e2f182a0e87a
2022-05-10T11:13:54.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "dataset:common_voice", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
ebonazza2910
null
ebonazza2910/model-1h
1
null
transformers
31,757
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice model-index: - name: model-1h results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # model-1h This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 1.8317 - Wer: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 5 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 11.4106 | 1.24 | 10 | 7.1597 | 1.0 | | 4.777 | 2.47 | 20 | 3.9782 | 1.0 | | 3.6585 | 3.71 | 30 | 3.3961 | 1.0 | | 3.3143 | 4.94 | 40 | 3.1481 | 1.0 | | 3.3318 | 6.24 | 50 | 3.0596 | 1.0 | | 3.1368 | 7.47 | 60 | 2.9751 | 1.0 | | 3.1058 | 8.71 | 70 | 2.9510 | 1.0 | | 3.0605 | 9.94 | 80 | 2.9479 | 1.0 | | 3.2043 | 11.24 | 90 | 2.9270 | 1.0 | | 3.0424 | 12.47 | 100 | 2.9349 | 1.0 | | 3.0374 | 13.71 | 110 | 2.9316 | 1.0 | | 3.0256 | 14.94 | 120 | 2.9165 | 1.0 | | 3.1724 | 16.24 | 130 | 2.9076 | 1.0 | | 3.0119 | 17.47 | 140 | 2.9034 | 1.0 | | 2.9937 | 18.71 | 150 | 2.8812 | 1.0 | | 2.9775 | 19.94 | 160 | 2.8674 | 1.0 | | 3.0826 | 21.24 | 170 | 2.8147 | 1.0 | | 2.8717 | 22.47 | 180 | 2.7212 | 1.0 | | 2.7714 | 23.71 | 190 | 2.6149 | 0.9952 | | 2.634 | 24.94 | 200 | 2.4611 | 0.9984 | | 2.5637 | 26.24 | 210 | 2.2734 | 1.0 | | 2.237 | 27.47 | 220 | 2.0705 | 1.0 | | 2.0381 | 28.71 | 230 | 1.9216 | 1.0 | | 1.8788 | 29.94 | 240 | 1.8317 | 1.0 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.9.1+cu102 - Datasets 1.18.3 - Tokenizers 0.10.3
masakhane/m2m100_418M_en_swa_rel_news
dad4574c07921803246439f660f52c428220e04f
2022-05-10T14:24:45.000Z
[ "pytorch", "m2m_100", "text2text-generation", "transformers", "license:afl-3.0", "autotrain_compatible" ]
text2text-generation
false
masakhane
null
masakhane/m2m100_418M_en_swa_rel_news
1
null
transformers
31,758
--- license: afl-3.0 ---
masakhane/m2m100_418M_swa_en_rel_news_ft
9c78bf85fe75ce3c9a52ef88357bdddfe349ae10
2022-05-10T14:34:37.000Z
[ "pytorch", "m2m_100", "text2text-generation", "transformers", "license:afl-3.0", "autotrain_compatible" ]
text2text-generation
false
masakhane
null
masakhane/m2m100_418M_swa_en_rel_news_ft
1
null
transformers
31,759
--- license: afl-3.0 ---
huggingtweets/marcfriedrich7
3484465efd1c5ba35a2f569a7b92fcba6e876bad
2022-05-10T10:39:29.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/marcfriedrich7
1
null
transformers
31,760
--- language: en thumbnail: http://www.huggingtweets.com/marcfriedrich7/1652179164370/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1418445526375223297/XdAgs-rW_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">πŸ€– AI BOT πŸ€–</div> <div style="text-align: center; font-size: 16px; font-weight: 800">marc friedrich</div> <div style="text-align: center; font-size: 14px;">@marcfriedrich7</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from marc friedrich. | Data | marc friedrich | | --- | --- | | Tweets downloaded | 3249 | | Retweets | 705 | | Short tweets | 672 | | Tweets kept | 1872 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2p2smtko/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @marcfriedrich7's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2ly8l45f) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2ly8l45f/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/marcfriedrich7') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/broductmanager
63a52a6af686988241fa6dcaa974f01224437d5e
2022-05-10T11:36:53.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/broductmanager
1
null
transformers
31,761
--- language: en thumbnail: http://www.huggingtweets.com/broductmanager/1652182609331/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1522425562895044608/H93gVhPH_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">πŸ€– AI BOT πŸ€–</div> <div style="text-align: center; font-size: 16px; font-weight: 800">rahul</div> <div style="text-align: center; font-size: 14px;">@broductmanager</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from rahul. | Data | rahul | | --- | --- | | Tweets downloaded | 3244 | | Retweets | 85 | | Short tweets | 1164 | | Tweets kept | 1995 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1r967jne/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @broductmanager's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2zx676ih) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2zx676ih/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/broductmanager') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
masakhane/byt5_yor_en_news
c1f59eaa5d2b61f8b466ef81dc6760d3822f4d50
2022-05-10T12:50:15.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "license:afl-3.0", "autotrain_compatible" ]
text2text-generation
false
masakhane
null
masakhane/byt5_yor_en_news
1
null
transformers
31,762
--- license: afl-3.0 ---
masakhane/m2m100_418M_yor_en_rel
6bb6aad6815d8aa79bb6e9a271812286148ba96d
2022-05-10T13:38:25.000Z
[ "pytorch", "m2m_100", "text2text-generation", "transformers", "license:afl-3.0", "autotrain_compatible" ]
text2text-generation
false
masakhane
null
masakhane/m2m100_418M_yor_en_rel
1
null
transformers
31,763
--- license: afl-3.0 ---
husnu/wav2vec2-large-xls-r-300m-turkish-colab_common_voice-8_5
9febefec57da227e41199dd46c3e4ec1dddfb243
2022-05-10T17:22:15.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "dataset:common_voice", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
husnu
null
husnu/wav2vec2-large-xls-r-300m-turkish-colab_common_voice-8_5
1
null
transformers
31,764
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice model-index: - name: wav2vec2-large-xls-r-300m-turkish-colab_common_voice-8_5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-turkish-colab_common_voice-8_5 This model is a fine-tuned version of [husnu/wav2vec2-large-xls-r-300m-turkish-colab_common_voice-8_4](https://huggingface.co/husnu/wav2vec2-large-xls-r-300m-turkish-colab_common_voice-8_4) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.3439 - Wer: 0.3634 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.1243 | 0.51 | 400 | 0.4312 | 0.4202 | | 0.1956 | 1.02 | 800 | 0.4421 | 0.4498 | | 0.1816 | 1.53 | 1200 | 0.4012 | 0.4285 | | 0.1548 | 2.04 | 1600 | 0.3720 | 0.3845 | | 0.1171 | 2.55 | 2000 | 0.3439 | 0.3634 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu113 - Datasets 2.1.0 - Tokenizers 0.10.3
sanchit-gandhi/xtreme_s_xlsr_2_mbart_covost2_fr_en_2
2fe9464e48b649e34993150c7d53f8e286cbb2aa
2022-05-13T08:42:36.000Z
[ "pytorch", "tensorboard", "speech-encoder-decoder", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
sanchit-gandhi
null
sanchit-gandhi/xtreme_s_xlsr_2_mbart_covost2_fr_en_2
1
null
transformers
31,765
Entry not found
Xuandong/HPD-MiniLM-F128
a24b508e4920ccd4907d1d51f333cceac3f88338
2022-05-10T17:54:43.000Z
[ "pytorch", "bert", "feature-extraction", "arxiv:2203.07687", "transformers", "license:apache-2.0" ]
feature-extraction
false
Xuandong
null
Xuandong/HPD-MiniLM-F128
1
null
transformers
31,766
--- license: apache-2.0 --- # HPD-MiniLM-F128 This repository contains the pre-trained models for our paper [Compressing Sentence Representation for Semantic Retrieval via Homomorphic Projective Distillation](https://arxiv.org/abs/2203.07687). The sentence embedding model contains only 23M parameters and the model size is only 87MB. ## Overview We propose **H**omomorphic **P**rojective **D**istillation (HPD) to learn compressed sentence embeddings. Our method augments a small Transformer encoder model with learnable projection layers to produce compact representations while mimicking a large pre-trained language model to retain the sentence representation quality. ## Details This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 128 dimensional dense vector space and can be used for tasks like clustering or semantic search. The teacher model is [`princeton-nlp/sup-simcse-roberta-large`](https://huggingface.co/princeton-nlp/sup-simcse-bert-base-uncased) and the student model is [`nreimers/MiniLM-L6-H384-uncased`](https://huggingface.co/nreimers/MiniLM-L6-H384-uncased). ## Usage Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` After installing the package, you can simply load our model ```python from sentence_transformers import SentenceTransformer model = SentenceTransformer('Xuandong/HPD-MiniLM-F128') ``` Then you can use our model for **encoding sentences into embeddings** ```python sentences = ['He plays guitar.', 'A street vendor is outside.'] sentence_embeddings = model.encode(sentences) for sentence, embedding in zip(sentences, sentence_embeddings): print("Sentence:", sentence) print("Embedding:", embedding) print("") ``` ## Evaluation Results We evaluate our model on semantic textual similarity (STS) tasks. The results are: | STS12 | STS13 | STS14 | STS15 | STS16 | STS-B | SICK-R | Avg. | |-------|-------|-------|-------|-------|--------------|-----------------|-------| | 74.94 | 84.52 | 80.25 | 84.87 | 81.90 | 84.98 | 81.15 | 81.80 | ## Training Please refer to the github repo (https://github.com/XuandongZhao/HPD) for the details about the training. ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) (2): Dense({'in_features': 384, 'out_features': 128, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'}) ) ``` ## Citation Please cite our paper if you use HPD in your work: ```bibtex @article{zhao2022compressing, title={Compressing Sentence Representation for Semantic Retrieval via Homomorphic Projective Distillation}, author={Zhao, Xuandong and Yu, Zhiguo and Wu, Ming and Li, Lei}, journal={arXiv preprint arXiv:2203.07687}, year={2022} } ```
Xuandong/HPD-TinyBERT-F128
28e49638354a308425ba4c2ad1b1fe678dfff07d
2022-05-10T17:55:05.000Z
[ "pytorch", "bert", "feature-extraction", "arxiv:2203.07687", "transformers", "license:apache-2.0" ]
feature-extraction
false
Xuandong
null
Xuandong/HPD-TinyBERT-F128
1
null
transformers
31,767
--- license: apache-2.0 --- # HPD-TinyBERT-F128 This repository contains the pre-trained models for our paper [Compressing Sentence Representation for Semantic Retrieval via Homomorphic Projective Distillation](https://arxiv.org/abs/2203.07687). The sentence embedding model contains only 14M parameters and the model size is only 55MB. ## Overview We propose **H**omomorphic **P**rojective **D**istillation (HPD) to learn compressed sentence embeddings. Our method augments a small Transformer encoder model with learnable projection layers to produce compact representations while mimicking a large pre-trained language model to retain the sentence representation quality. ## Details This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 128 dimensional dense vector space and can be used for tasks like clustering or semantic search. The teacher model is [`princeton-nlp/sup-simcse-roberta-large`](https://huggingface.co/princeton-nlp/sup-simcse-bert-base-uncased) and the student model is [`nreimers/TinyBERT_L-4_H-312_v2`](https://huggingface.co/nreimers/TinyBERT_L-4_H-312_v2). ## Usage Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` After installing the package, you can simply load our model ```python from sentence_transformers import SentenceTransformer model = SentenceTransformer('Xuandong/HPD-TinyBERT-F128') ``` Then you can use our model for **encoding sentences into embeddings** ```python sentences = ['He plays guitar.', 'A street vendor is outside.'] sentence_embeddings = model.encode(sentences) for sentence, embedding in zip(sentences, sentence_embeddings): print("Sentence:", sentence) print("Embedding:", embedding) print("") ``` ## Evaluation Results We evaluate our model on semantic textual similarity (STS) tasks. The results are: | STS12 | STS13 | STS14 | STS15 | STS16 | STS-B | SICK-R | Avg. | |-------|-------|-------|-------|-------|--------------|-----------------|-------| | 74.29 | 83.05 | 78.80 | 84.62 | 81.17 | 84.36 | 80.83 | 81.02 | ## Training Please refer to the github repo (https://github.com/XuandongZhao/HPD) for the details about the training. ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 312, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) (2): Dense({'in_features': 312, 'out_features': 128, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'}) ) ``` ## Citation Please cite our paper if you use HPD in your work: ```bibtex @article{zhao2022compressing, title={Compressing Sentence Representation for Semantic Retrieval via Homomorphic Projective Distillation}, author={Zhao, Xuandong and Yu, Zhiguo and Wu, Ming and Li, Lei}, journal={arXiv preprint arXiv:2203.07687}, year={2022} } ```
huxxx657/roberta-base-finetuned-scrambled-squad-10
36d2ffb4f71fd70df69b36688e2f5faa0e545b85
2022-05-10T19:05:14.000Z
[ "pytorch", "tensorboard", "roberta", "question-answering", "dataset:squad", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
question-answering
false
huxxx657
null
huxxx657/roberta-base-finetuned-scrambled-squad-10
1
null
transformers
31,768
--- license: mit tags: - generated_from_trainer datasets: - squad model-index: - name: roberta-base-finetuned-scrambled-squad-10 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-finetuned-scrambled-squad-10 This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the squad dataset. It achieves the following results on the evaluation set: - Loss: 1.7200 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.7482 | 1.0 | 5532 | 1.7200 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.1.0 - Tokenizers 0.12.1
subhasisj/ar-TAPT-MLM-MiniLM
55decf779fccd83afe6729ed7e595930c741ef6b
2022-05-10T21:18:40.000Z
[ "pytorch", "tensorboard", "bert", "fill-mask", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
fill-mask
false
subhasisj
null
subhasisj/ar-TAPT-MLM-MiniLM
1
null
transformers
31,769
--- tags: - generated_from_trainer model-index: - name: ar-TAPT-MLM-MiniLM results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ar-TAPT-MLM-MiniLM This model is a fine-tuned version of [subhasisj/MiniLMv2-qa-encoder](https://huggingface.co/subhasisj/MiniLMv2-qa-encoder) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.2.0 - Tokenizers 0.12.1
enoriega/kw_pubmed_1000_0.000006
b53f6385bd4a329b82d8e73232395fcf9da2dad7
2022-05-12T05:54:58.000Z
[ "pytorch", "tensorboard", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
enoriega
null
enoriega/kw_pubmed_1000_0.000006
1
null
transformers
31,770
Entry not found
huxxx657/roberta-base-finetuned-scrambled-squad-15-new
b69490d8b093b68e040c4ccd748b94880f46c8af
2022-05-11T03:06:01.000Z
[ "pytorch", "tensorboard", "roberta", "question-answering", "dataset:squad", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
question-answering
false
huxxx657
null
huxxx657/roberta-base-finetuned-scrambled-squad-15-new
1
null
transformers
31,771
--- license: mit tags: - generated_from_trainer datasets: - squad model-index: - name: roberta-base-finetuned-scrambled-squad-15-new results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-finetuned-scrambled-squad-15-new This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the squad dataset. It achieves the following results on the evaluation set: - Loss: 1.0283 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.0269 | 1.0 | 5536 | 1.0283 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.2.0 - Tokenizers 0.12.1
ablam/distilgpt2_fine_tuned_gcode
34da97162901db4bd6faf450d49788e71f372135
2022-06-11T03:52:00.000Z
[ "pytorch", "tensorboard", "gpt2", "text-generation", "transformers", "generated_from_trainer", "model-index" ]
text-generation
false
ablam
null
ablam/distilgpt2_fine_tuned_gcode
1
null
transformers
31,772
--- tags: - generated_from_trainer model-index: - name: distilgpt2_fine_tuned_gcode results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilgpt2_fine_tuned_gcode This model is a fine-tuned version of [congcongwang/distilgpt2_fine_tuned_coder](https://huggingface.co/congcongwang/distilgpt2_fine_tuned_coder) on the None dataset. It achieves the following results on the evaluation set: - Loss: 4.1670 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.1 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 4.1754 | 1.0 | 52144 | 4.1670 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.1 - Datasets 2.1.0 - Tokenizers 0.10.3
yomexa/xlm-roberta-base-finetuned-panx-de
ee8c3993333e5db3b686a80bdd5e2cdd3a929780
2022-05-11T02:42:06.000Z
[ "pytorch", "tensorboard", "xlm-roberta", "token-classification", "dataset:xtreme", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
token-classification
false
yomexa
null
yomexa/xlm-roberta-base-finetuned-panx-de
1
null
transformers
31,773
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme args: PAN-X.de metrics: - name: F1 type: f1 value: 0.8620945214069894 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.1372 - F1: 0.8621 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2575 | 1.0 | 525 | 0.1621 | 0.8292 | | 0.1287 | 2.0 | 1050 | 0.1378 | 0.8526 | | 0.0831 | 3.0 | 1575 | 0.1372 | 0.8621 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.11.0+cu113 - Datasets 1.16.1 - Tokenizers 0.10.3
ceggian/bert_post_trained_reddit_batch256
0aa34a9eadc3b2052d456c7bb31b81aa363dacbc
2022-05-11T05:50:42.000Z
[ "pytorch", "bert", "pretraining", "transformers" ]
null
false
ceggian
null
ceggian/bert_post_trained_reddit_batch256
1
null
transformers
31,774
Entry not found
ceggian/bert_post_trained_reddit_batch32
7abff010e0ce4cf7ab4c531c371c1ba462296185
2022-05-11T07:12:04.000Z
[ "pytorch", "bert", "pretraining", "transformers" ]
null
false
ceggian
null
ceggian/bert_post_trained_reddit_batch32
1
null
transformers
31,775
Entry not found
tau/False_large_pmi_para0_sent1_span2_itTrue_sargmax_rrFalse_8_1024_0.3_epoch1
f732b39aa96efdcdf7fa9de936d2bb9db31bd7bb
2022-05-11T08:55:54.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
tau
null
tau/False_large_pmi_para0_sent1_span2_itTrue_sargmax_rrFalse_8_1024_0.3_epoch1
1
null
transformers
31,776
Entry not found
masakhane/afrimt5_en_zul_news
b6cbd3e7ffe04176a8ed4a4b16dc373e5ed97b73
2022-05-12T12:51:47.000Z
[ "pytorch", "mt5", "text2text-generation", "transformers", "license:afl-3.0", "autotrain_compatible" ]
text2text-generation
false
masakhane
null
masakhane/afrimt5_en_zul_news
1
null
transformers
31,777
--- license: afl-3.0 ---
masakhane/afrimbart_twi_en_news
86af6ffd8d992f0102050bd731045e3edd55cc21
2022-05-12T11:55:53.000Z
[ "pytorch", "mbart", "text2text-generation", "transformers", "license:afl-3.0", "autotrain_compatible" ]
text2text-generation
false
masakhane
null
masakhane/afrimbart_twi_en_news
1
null
transformers
31,778
--- license: afl-3.0 ---
masakhane/afrimbart_en_twi_news
629607af748d886af5189fa13f529ff865f284f8
2022-05-12T11:55:50.000Z
[ "pytorch", "mbart", "text2text-generation", "transformers", "license:afl-3.0", "autotrain_compatible" ]
text2text-generation
false
masakhane
null
masakhane/afrimbart_en_twi_news
1
null
transformers
31,779
--- license: afl-3.0 ---
masakhane/afrimbart_zul_en_news
4011c880cc25ca9b14a993507f573e623e69d7db
2022-05-12T12:51:51.000Z
[ "pytorch", "mbart", "text2text-generation", "transformers", "license:afl-3.0", "autotrain_compatible" ]
text2text-generation
false
masakhane
null
masakhane/afrimbart_zul_en_news
1
null
transformers
31,780
--- license: afl-3.0 ---
masakhane/afribyt5_en_zul_news
e34c779a773b56f8ed6dbd3472479824f5435d99
2022-05-12T12:59:06.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "license:afl-3.0", "autotrain_compatible" ]
text2text-generation
false
masakhane
null
masakhane/afribyt5_en_zul_news
1
null
transformers
31,781
--- license: afl-3.0 ---
masakhane/byt5_twi_en_news
e17252746d4040efdec164f89b49cc1202d669e5
2022-05-12T12:07:40.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "license:afl-3.0", "autotrain_compatible" ]
text2text-generation
false
masakhane
null
masakhane/byt5_twi_en_news
1
null
transformers
31,782
--- license: afl-3.0 ---
masakhane/byt5_zul_en_news
a785374920d5e3814c5f70d063a950763fd041aa
2022-05-12T12:59:13.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "license:afl-3.0", "autotrain_compatible" ]
text2text-generation
false
masakhane
null
masakhane/byt5_zul_en_news
1
null
transformers
31,783
--- license: afl-3.0 ---
masakhane/mbart50_en_twi_news
f2c4fe632f690ae86c6260af5595fee93bb0222d
2022-05-12T12:15:58.000Z
[ "pytorch", "mbart", "text2text-generation", "transformers", "license:afl-3.0", "autotrain_compatible" ]
text2text-generation
false
masakhane
null
masakhane/mbart50_en_twi_news
1
null
transformers
31,784
--- license: afl-3.0 ---
masakhane/mbart50_twi_en_news
221b09d8a059c763b2afdc2a6a1182726c1bc602
2022-05-12T12:16:01.000Z
[ "pytorch", "mbart", "text2text-generation", "transformers", "license:afl-3.0", "autotrain_compatible" ]
text2text-generation
false
masakhane
null
masakhane/mbart50_twi_en_news
1
null
transformers
31,785
--- license: afl-3.0 ---
masakhane/m2m100_418M_en_twi_news
ac52828a47e83e9243c01e5090d112408720815d
2022-05-12T12:27:51.000Z
[ "pytorch", "m2m_100", "text2text-generation", "transformers", "license:afl-3.0", "autotrain_compatible" ]
text2text-generation
false
masakhane
null
masakhane/m2m100_418M_en_twi_news
1
null
transformers
31,786
--- license: afl-3.0 ---
masakhane/m2m100_418M_en_zul_news
eda4b2bd2dfb270697bf6b322f80c974fb95d18f
2022-05-12T13:14:44.000Z
[ "pytorch", "m2m_100", "text2text-generation", "transformers", "license:afl-3.0", "autotrain_compatible" ]
text2text-generation
false
masakhane
null
masakhane/m2m100_418M_en_zul_news
1
null
transformers
31,787
--- license: afl-3.0 ---
PSW/min2_sim_swap_seed1
1ba19bab0033f85f40e193666c3257e18983a48a
2022-05-12T01:58:58.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
PSW
null
PSW/min2_sim_swap_seed1
1
null
transformers
31,788
Entry not found
masakhane/m2m100_418M_zul_en_rel_ft
faf372852fb8e368dced548ae8d6f1043389eec8
2022-05-12T13:36:18.000Z
[ "pytorch", "m2m_100", "text2text-generation", "transformers", "license:afl-3.0", "autotrain_compatible" ]
text2text-generation
false
masakhane
null
masakhane/m2m100_418M_zul_en_rel_ft
1
null
transformers
31,789
--- license: afl-3.0 ---
masakhane/m2m100_418M_en_zul_rel
eafb3f777204eea261c39033d556efd2f5951ec9
2022-05-12T13:43:24.000Z
[ "pytorch", "m2m_100", "text2text-generation", "transformers", "license:afl-3.0", "autotrain_compatible" ]
text2text-generation
false
masakhane
null
masakhane/m2m100_418M_en_zul_rel
1
null
transformers
31,790
--- license: afl-3.0 ---
masakhane/m2m100_418M_zul_en_rel
2bac700c108fd6c1c79b90806a0d299f87789cbe
2022-05-12T13:43:27.000Z
[ "pytorch", "m2m_100", "text2text-generation", "transformers", "license:afl-3.0", "autotrain_compatible" ]
text2text-generation
false
masakhane
null
masakhane/m2m100_418M_zul_en_rel
1
null
transformers
31,791
--- license: afl-3.0 ---
PSW/max2_sim_swap_seed1
3001c3b746446ecaaeb5bb1fd52b63785d5b8a72
2022-05-12T04:11:00.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
PSW
null
PSW/max2_sim_swap_seed1
1
null
transformers
31,792
Entry not found
Nonegom/roberta_curriculum_learn
216b4f1bb426eb66959c8e81bf2c5b9c1eadfe0e
2022-05-11T12:43:06.000Z
[ "pytorch", "roberta", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
Nonegom
null
Nonegom/roberta_curriculum_learn
1
1
transformers
31,793
Entry not found
orenpereg/paraphrase-mpnet-base-v2_sst2_4samps
5f42358947628bf4f8e0f23550e51336617e0c7f
2022-05-11T13:32:25.000Z
[ "pytorch", "mpnet", "feature-extraction", "sentence-transformers", "sentence-similarity", "transformers" ]
sentence-similarity
false
orenpereg
null
orenpereg/paraphrase-mpnet-base-v2_sst2_4samps
1
null
sentence-transformers
31,794
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # orenpereg/paraphrase-mpnet-base-v2_sst2_4samps This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('orenpereg/paraphrase-mpnet-base-v2_sst2_4samps') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('orenpereg/paraphrase-mpnet-base-v2_sst2_4samps') model = AutoModel.from_pretrained('orenpereg/paraphrase-mpnet-base-v2_sst2_4samps') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=orenpereg/paraphrase-mpnet-base-v2_sst2_4samps) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 5 with parameters: ``` {'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 3, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: MPNetModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
lilitket/20220511-173140
41b7455102a4209cae51ce1922cc324741233726
2022-05-11T21:07:12.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
lilitket
null
lilitket/20220511-173140
1
null
transformers
31,795
Entry not found
PSW/min2_sim_swap_seed27
c9503f2c06f103c6e20cedc4d6a41f4123621469
2022-05-12T02:43:04.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
PSW
null
PSW/min2_sim_swap_seed27
1
null
transformers
31,796
Entry not found
huggingtweets/alice_lbl-lotrbookquotes
1dda8a1091f3ce81a0a207b5a19872fe6d1ced49
2022-05-11T14:44:26.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/alice_lbl-lotrbookquotes
1
null
transformers
31,797
--- language: en thumbnail: http://www.huggingtweets.com/alice_lbl-lotrbookquotes/1652280261416/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1424546909104926720/g4pTa5BS_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1047569624693465089/0yKYd-Xl_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">πŸ€– AI CYBORG πŸ€–</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Alice in Wonderland & Looking-Glass (line by line) & Lord of the Rings quotes</div> <div style="text-align: center; font-size: 14px;">@alice_lbl-lotrbookquotes</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Alice in Wonderland & Looking-Glass (line by line) & Lord of the Rings quotes. | Data | Alice in Wonderland & Looking-Glass (line by line) | Lord of the Rings quotes | | --- | --- | --- | | Tweets downloaded | 3050 | 3250 | | Retweets | 0 | 0 | | Short tweets | 38 | 0 | | Tweets kept | 3012 | 3250 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/14brvkjr/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @alice_lbl-lotrbookquotes's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/tzmzyo79) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/tzmzyo79/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/alice_lbl-lotrbookquotes') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
PSW/low_resource_percent1_min2swap_seed42
475b23911d4bd1c80c5c13a583835321b3db8c3c
2022-05-12T06:14:12.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
PSW
null
PSW/low_resource_percent1_min2swap_seed42
1
null
transformers
31,798
Entry not found
subhasisj/vi-TAPT-MLM-MiniLM
eb4112e742594878359ffd1ec714229b942cf463
2022-05-11T19:17:47.000Z
[ "pytorch", "tensorboard", "bert", "fill-mask", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
fill-mask
false
subhasisj
null
subhasisj/vi-TAPT-MLM-MiniLM
1
null
transformers
31,799
--- tags: - generated_from_trainer model-index: - name: vi-TAPT-MLM-MiniLM results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vi-TAPT-MLM-MiniLM This model is a fine-tuned version of [subhasisj/MiniLMv2-qa-encoder](https://huggingface.co/subhasisj/MiniLMv2-qa-encoder) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.2.0 - Tokenizers 0.12.1