modelId
stringlengths
4
112
sha
stringlengths
40
40
lastModified
stringlengths
24
24
tags
sequence
pipeline_tag
stringclasses
29 values
private
bool
1 class
author
stringlengths
2
38
config
null
id
stringlengths
4
112
downloads
float64
0
36.8M
likes
float64
0
712
library_name
stringclasses
17 values
__index_level_0__
int64
0
38.5k
readme
stringlengths
0
186k
anas-awadalla/splinter-large-few-shot-k-512-finetuned-squad-seed-0
af181382e7602f86ce00927f6d98c55af7ee0bbf
2022-05-14T22:18:10.000Z
[ "pytorch", "splinter", "question-answering", "dataset:squad", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
question-answering
false
anas-awadalla
null
anas-awadalla/splinter-large-few-shot-k-512-finetuned-squad-seed-0
1
null
transformers
31,900
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: splinter-large-few-shot-k-512-finetuned-squad-seed-0 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # splinter-large-few-shot-k-512-finetuned-squad-seed-0 This model is a fine-tuned version of [tau/splinter-large-qass](https://huggingface.co/tau/splinter-large-qass) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 12 - eval_batch_size: 8 - seed: 0 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10.0 ### Training results ### Framework versions - Transformers 4.20.0.dev0 - Pytorch 1.11.0+cu113 - Datasets 2.0.0 - Tokenizers 0.11.6
prashanth/mbart-large-cc25-ind_finetun-en-to-hi
d5832c9cd7ffffe53208a630cb1192ea23d996d0
2022-05-14T22:51:49.000Z
[ "pytorch", "tensorboard", "mbart", "text2text-generation", "dataset:hindi_english_machine_translation", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
text2text-generation
false
prashanth
null
prashanth/mbart-large-cc25-ind_finetun-en-to-hi
1
null
transformers
31,901
--- tags: - generated_from_trainer datasets: - hindi_english_machine_translation metrics: - bleu model-index: - name: mbart-large-cc25-ind_finetun-en-to-hi results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: hindi_english_machine_translation type: hindi_english_machine_translation args: hi-en metrics: - name: Bleu type: bleu value: 7.8242 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mbart-large-cc25-ind_finetun-en-to-hi This model is a fine-tuned version of [facebook/mbart-large-cc25](https://huggingface.co/facebook/mbart-large-cc25) on the hindi_english_machine_translation dataset. It achieves the following results on the evaluation set: - Loss: 1.8148 - Bleu: 7.8242 - Gen Len: 75.28 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------:|:-------:| | 3.3247 | 1.0 | 620 | 1.8148 | 7.8242 | 75.28 | ### Framework versions - Transformers 4.19.1 - Pytorch 1.11.0+cu102 - Datasets 1.18.0 - Tokenizers 0.12.1
anas-awadalla/roberta-large-few-shot-k-512-finetuned-squad-seed-2
148b7cb387cc19c27f76ccac006de688e368a554
2022-05-14T22:32:52.000Z
[ "pytorch", "roberta", "question-answering", "dataset:squad", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
question-answering
false
anas-awadalla
null
anas-awadalla/roberta-large-few-shot-k-512-finetuned-squad-seed-2
1
null
transformers
31,902
--- license: mit tags: - generated_from_trainer datasets: - squad model-index: - name: roberta-large-few-shot-k-512-finetuned-squad-seed-2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-large-few-shot-k-512-finetuned-squad-seed-2 This model is a fine-tuned version of [roberta-large](https://huggingface.co/roberta-large) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 12 - eval_batch_size: 8 - seed: 2 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10.0 ### Training results ### Framework versions - Transformers 4.20.0.dev0 - Pytorch 1.11.0+cu113 - Datasets 2.0.0 - Tokenizers 0.11.6
anas-awadalla/splinter-large-few-shot-k-512-finetuned-squad-seed-2
4670b2f69569769310458a6083072a9ea14f8dd3
2022-05-14T22:32:48.000Z
[ "pytorch", "splinter", "question-answering", "dataset:squad", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
question-answering
false
anas-awadalla
null
anas-awadalla/splinter-large-few-shot-k-512-finetuned-squad-seed-2
1
null
transformers
31,903
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: splinter-large-few-shot-k-512-finetuned-squad-seed-2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # splinter-large-few-shot-k-512-finetuned-squad-seed-2 This model is a fine-tuned version of [tau/splinter-large-qass](https://huggingface.co/tau/splinter-large-qass) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 12 - eval_batch_size: 8 - seed: 2 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10.0 ### Training results ### Framework versions - Transformers 4.20.0.dev0 - Pytorch 1.11.0+cu113 - Datasets 2.0.0 - Tokenizers 0.11.6
anas-awadalla/roberta-large-few-shot-k-512-finetuned-squad-seed-4
1bf395a709e1ea7d1c76d52cf3aa8515d84ac5cf
2022-05-14T22:47:13.000Z
[ "pytorch", "roberta", "question-answering", "dataset:squad", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
question-answering
false
anas-awadalla
null
anas-awadalla/roberta-large-few-shot-k-512-finetuned-squad-seed-4
1
null
transformers
31,904
--- license: mit tags: - generated_from_trainer datasets: - squad model-index: - name: roberta-large-few-shot-k-512-finetuned-squad-seed-4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-large-few-shot-k-512-finetuned-squad-seed-4 This model is a fine-tuned version of [roberta-large](https://huggingface.co/roberta-large) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 12 - eval_batch_size: 8 - seed: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10.0 ### Training results ### Framework versions - Transformers 4.20.0.dev0 - Pytorch 1.11.0+cu113 - Datasets 2.0.0 - Tokenizers 0.11.6
anas-awadalla/roberta-large-few-shot-k-1024-finetuned-squad-seed-0
a6d4edd4a4ccd97f788678212cd32219dfe65f03
2022-05-14T23:09:42.000Z
[ "pytorch", "roberta", "question-answering", "dataset:squad", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
question-answering
false
anas-awadalla
null
anas-awadalla/roberta-large-few-shot-k-1024-finetuned-squad-seed-0
1
null
transformers
31,905
--- license: mit tags: - generated_from_trainer datasets: - squad model-index: - name: roberta-large-few-shot-k-1024-finetuned-squad-seed-0 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-large-few-shot-k-1024-finetuned-squad-seed-0 This model is a fine-tuned version of [roberta-large](https://huggingface.co/roberta-large) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 12 - eval_batch_size: 8 - seed: 0 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10.0 ### Training results ### Framework versions - Transformers 4.20.0.dev0 - Pytorch 1.11.0+cu113 - Datasets 2.0.0 - Tokenizers 0.11.6
anas-awadalla/splinter-large-few-shot-k-1024-finetuned-squad-seed-0
1ccebc624ef5aa3ebdc8b775945ae0f3173650a4
2022-05-14T23:09:42.000Z
[ "pytorch", "splinter", "question-answering", "dataset:squad", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
question-answering
false
anas-awadalla
null
anas-awadalla/splinter-large-few-shot-k-1024-finetuned-squad-seed-0
1
null
transformers
31,906
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: splinter-large-few-shot-k-1024-finetuned-squad-seed-0 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # splinter-large-few-shot-k-1024-finetuned-squad-seed-0 This model is a fine-tuned version of [tau/splinter-large-qass](https://huggingface.co/tau/splinter-large-qass) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 12 - eval_batch_size: 8 - seed: 0 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10.0 ### Training results ### Framework versions - Transformers 4.20.0.dev0 - Pytorch 1.11.0+cu113 - Datasets 2.0.0 - Tokenizers 0.11.6
anas-awadalla/roberta-large-few-shot-k-1024-finetuned-squad-seed-4
371560b2d4445a64d5e6fb8bfe36c50ed812a6fe
2022-05-14T23:53:15.000Z
[ "pytorch", "roberta", "question-answering", "dataset:squad", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
question-answering
false
anas-awadalla
null
anas-awadalla/roberta-large-few-shot-k-1024-finetuned-squad-seed-4
1
null
transformers
31,907
--- license: mit tags: - generated_from_trainer datasets: - squad model-index: - name: roberta-large-few-shot-k-1024-finetuned-squad-seed-4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-large-few-shot-k-1024-finetuned-squad-seed-4 This model is a fine-tuned version of [roberta-large](https://huggingface.co/roberta-large) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 12 - eval_batch_size: 8 - seed: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10.0 ### Training results ### Framework versions - Transformers 4.20.0.dev0 - Pytorch 1.11.0+cu113 - Datasets 2.0.0 - Tokenizers 0.11.6
anas-awadalla/splinter-large-few-shot-k-1024-finetuned-squad-seed-4
fd57551e3c12db8cf5d6c4dedd0db863e0864449
2022-05-14T23:53:22.000Z
[ "pytorch", "splinter", "question-answering", "dataset:squad", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
question-answering
false
anas-awadalla
null
anas-awadalla/splinter-large-few-shot-k-1024-finetuned-squad-seed-4
1
null
transformers
31,908
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: splinter-large-few-shot-k-1024-finetuned-squad-seed-4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # splinter-large-few-shot-k-1024-finetuned-squad-seed-4 This model is a fine-tuned version of [tau/splinter-large-qass](https://huggingface.co/tau/splinter-large-qass) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 12 - eval_batch_size: 8 - seed: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10.0 ### Training results ### Framework versions - Transformers 4.20.0.dev0 - Pytorch 1.11.0+cu113 - Datasets 2.0.0 - Tokenizers 0.11.6
anas-awadalla/splinter-large-few-shot-k-512-finetuned-squad-seed-4
4a8eb1812f06873830676e4e7c5f1079e0e2aea3
2022-05-15T00:58:56.000Z
[ "pytorch", "splinter", "question-answering", "dataset:squad", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
question-answering
false
anas-awadalla
null
anas-awadalla/splinter-large-few-shot-k-512-finetuned-squad-seed-4
1
null
transformers
31,909
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: splinter-large-few-shot-k-512-finetuned-squad-seed-4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # splinter-large-few-shot-k-512-finetuned-squad-seed-4 This model is a fine-tuned version of [tau/splinter-large-qass](https://huggingface.co/tau/splinter-large-qass) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 12 - eval_batch_size: 8 - seed: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10.0 ### Training results ### Framework versions - Transformers 4.17.0 - Pytorch 1.11.0+cu113 - Datasets 2.0.0 - Tokenizers 0.11.6
dianeshan/dummy-model
36b44284eab00efc0b94103724db63761f5ab255
2022-05-15T07:38:37.000Z
[ "pytorch", "camembert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
dianeshan
null
dianeshan/dummy-model
1
null
transformers
31,910
Entry not found
nandezgarcia/roberta-base-bne-finetuned-recores
758830aeb2c9684d5517b4a5a77a50b1a61e72f8
2022-05-15T10:24:41.000Z
[ "pytorch", "tensorboard", "roberta", "multiple-choice", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
multiple-choice
false
nandezgarcia
null
nandezgarcia/roberta-base-bne-finetuned-recores
1
null
transformers
31,911
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: roberta-base-bne-finetuned-recores results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-bne-finetuned-recores This model is a fine-tuned version of [PlanTL-GOB-ES/roberta-base-bne](https://huggingface.co/PlanTL-GOB-ES/roberta-base-bne) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 3.1113 - Accuracy: 0.4601 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.5294 | 1.0 | 1047 | 1.4094 | 0.4242 | | 0.6886 | 2.0 | 2094 | 2.1629 | 0.4545 | | 0.0779 | 3.0 | 3141 | 2.3083 | 0.4545 | | 0.0103 | 4.0 | 4188 | 3.0327 | 0.4628 | | 0.0019 | 5.0 | 5235 | 3.1113 | 0.4601 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.1+cu102 - Datasets 2.2.1 - Tokenizers 0.12.1
gary109/ai-light-dance_singing_ft_wav2vec2-large-lv60
38c72ce479c79b3854f818867bbc658cd31f739d
2022-05-28T05:25:32.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "dataset:ai_light_dance", "transformers", "AI_Light_Dance.py", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
gary109
null
gary109/ai-light-dance_singing_ft_wav2vec2-large-lv60
1
1
transformers
31,912
--- license: apache-2.0 tags: - automatic-speech-recognition - AI_Light_Dance.py - generated_from_trainer datasets: - ai_light_dance model-index: - name: ai-light-dance_singing_ft_wav2vec2-large-lv60 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ai-light-dance_singing_ft_wav2vec2-large-lv60 This model is a fine-tuned version of [facebook/wav2vec2-large-lv60](https://huggingface.co/facebook/wav2vec2-large-lv60) on the AI_LIGHT_DANCE.PY - ONSET-SINGING dataset. It achieves the following results on the evaluation set: - Loss: 0.4542 - Wer: 0.2088 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 10.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 0.7432 | 1.0 | 4422 | 0.8939 | 0.6323 | | 0.5484 | 2.0 | 8844 | 0.6393 | 0.3557 | | 0.3919 | 3.0 | 13266 | 0.5315 | 0.2833 | | 0.421 | 4.0 | 17688 | 0.5234 | 0.2522 | | 0.3957 | 5.0 | 22110 | 0.5125 | 0.2247 | | 0.3228 | 6.0 | 26532 | 0.4542 | 0.2088 | | 0.346 | 7.0 | 30954 | 0.4673 | 0.1997 | | 0.1637 | 8.0 | 35376 | 0.4583 | 0.1910 | | 0.1508 | 9.0 | 39798 | 0.4623 | 0.1837 | | 0.1564 | 10.0 | 44220 | 0.4717 | 0.1835 | ### Framework versions - Transformers 4.20.0.dev0 - Pytorch 1.11.0+cu113 - Datasets 2.2.2.dev0 - Tokenizers 0.12.1
CEBaB/bert-base-uncased.CEBaB.causalm.ambiance.2-class.exclusive.seed_42
7b5db9b349a6389ac3950ef7605744bc7b1975e3
2022-05-15T11:24:24.000Z
[ "pytorch", "bert_causalm", "transformers" ]
null
false
CEBaB
null
CEBaB/bert-base-uncased.CEBaB.causalm.ambiance.2-class.exclusive.seed_42
1
null
transformers
31,913
Entry not found
anas-awadalla/splinter-base-finetuned-squad
6925320dee7391ea2546fe8b7bfe005dd01d497b
2022-05-15T11:49:58.000Z
[ "pytorch", "splinter", "question-answering", "dataset:squad", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
question-answering
false
anas-awadalla
null
anas-awadalla/splinter-base-finetuned-squad
1
null
transformers
31,914
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: splinter-base-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # splinter-base-finetuned-squad This model is a fine-tuned version of [tau/splinter-base-qass](https://huggingface.co/tau/splinter-base-qass) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 12 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2.0 ### Training results ### Framework versions - Transformers 4.17.0 - Pytorch 1.11.0+cu113 - Datasets 2.0.0 - Tokenizers 0.11.6
TejasARathod/DialoGPT-medium-BatmanBot
2231afd6f69492e2ea8f2fddfb6b22a6f9075a26
2022-05-15T12:14:13.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
TejasARathod
null
TejasARathod/DialoGPT-medium-BatmanBot
1
null
transformers
31,915
--- tags: - conversational --- # Batman DialoGPT Model
ntcuong777/electra-squad-test
552e6a06947508f390ac440c47c3e0a2e1fd82d5
2022-05-15T11:26:27.000Z
[ "pytorch", "electra", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
ntcuong777
null
ntcuong777/electra-squad-test
1
null
transformers
31,916
Entry not found
CEBaB/bert-base-uncased.CEBaB.causalm.food.2-class.exclusive.seed_42
8ad90ec7c3ea42342eed50675eef944a0dc8c5e9
2022-05-15T11:25:38.000Z
[ "pytorch", "bert_causalm", "transformers" ]
null
false
CEBaB
null
CEBaB/bert-base-uncased.CEBaB.causalm.food.2-class.exclusive.seed_42
1
null
transformers
31,917
Entry not found
CEBaB/bert-base-uncased.CEBaB.causalm.service.2-class.exclusive.seed_42
2657e655c26c1f8cc693c9edf0be4b0903903188
2022-05-15T11:26:48.000Z
[ "pytorch", "bert_causalm", "transformers" ]
null
false
CEBaB
null
CEBaB/bert-base-uncased.CEBaB.causalm.service.2-class.exclusive.seed_42
1
null
transformers
31,918
Entry not found
CEBaB/bert-base-uncased.CEBaB.causalm.noise.2-class.exclusive.seed_42
9e932a58ed96c4f54506538999ad14ac2e407e29
2022-05-15T11:27:58.000Z
[ "pytorch", "bert_causalm", "transformers" ]
null
false
CEBaB
null
CEBaB/bert-base-uncased.CEBaB.causalm.noise.2-class.exclusive.seed_42
1
null
transformers
31,919
Entry not found
CEBaB/bert-base-uncased.CEBaB.causalm.ambiance.2-class.exclusive.seed_43
e6558c70b192e96a569bec803b437241261c4220
2022-05-15T11:29:08.000Z
[ "pytorch", "bert_causalm", "transformers" ]
null
false
CEBaB
null
CEBaB/bert-base-uncased.CEBaB.causalm.ambiance.2-class.exclusive.seed_43
1
null
transformers
31,920
Entry not found
CEBaB/bert-base-uncased.CEBaB.causalm.food.2-class.exclusive.seed_43
6fe2e8556aef8ce4a87371c3e6a76bc24889e20d
2022-05-15T11:30:18.000Z
[ "pytorch", "bert_causalm", "transformers" ]
null
false
CEBaB
null
CEBaB/bert-base-uncased.CEBaB.causalm.food.2-class.exclusive.seed_43
1
null
transformers
31,921
Entry not found
CEBaB/bert-base-uncased.CEBaB.causalm.service.2-class.exclusive.seed_43
09d30a0091fd93c6650465f82d527a6ddd93b644
2022-05-15T11:31:29.000Z
[ "pytorch", "bert_causalm", "transformers" ]
null
false
CEBaB
null
CEBaB/bert-base-uncased.CEBaB.causalm.service.2-class.exclusive.seed_43
1
null
transformers
31,922
Entry not found
CEBaB/bert-base-uncased.CEBaB.causalm.noise.2-class.exclusive.seed_43
676d3546ce148731341c43081bd4a490bac8f615
2022-05-15T11:32:39.000Z
[ "pytorch", "bert_causalm", "transformers" ]
null
false
CEBaB
null
CEBaB/bert-base-uncased.CEBaB.causalm.noise.2-class.exclusive.seed_43
1
null
transformers
31,923
Entry not found
CEBaB/bert-base-uncased.CEBaB.causalm.ambiance.2-class.exclusive.seed_44
48a961d96b97a2100a742b32cd4feeb88cf02f98
2022-05-15T11:33:49.000Z
[ "pytorch", "bert_causalm", "transformers" ]
null
false
CEBaB
null
CEBaB/bert-base-uncased.CEBaB.causalm.ambiance.2-class.exclusive.seed_44
1
null
transformers
31,924
Entry not found
CEBaB/bert-base-uncased.CEBaB.causalm.food.2-class.exclusive.seed_44
395d85780319c1ed249d0d643e8b04bcfeb74961
2022-05-15T11:35:00.000Z
[ "pytorch", "bert_causalm", "transformers" ]
null
false
CEBaB
null
CEBaB/bert-base-uncased.CEBaB.causalm.food.2-class.exclusive.seed_44
1
null
transformers
31,925
Entry not found
CEBaB/bert-base-uncased.CEBaB.causalm.service.2-class.exclusive.seed_44
204e6f6c09ac7674fcff1cd3da0288de68049cdd
2022-05-15T11:36:13.000Z
[ "pytorch", "bert_causalm", "transformers" ]
null
false
CEBaB
null
CEBaB/bert-base-uncased.CEBaB.causalm.service.2-class.exclusive.seed_44
1
null
transformers
31,926
Entry not found
CEBaB/bert-base-uncased.CEBaB.causalm.noise.2-class.exclusive.seed_44
fd4b2ac8a1754a01424373c518bc45308e059342
2022-05-15T11:37:24.000Z
[ "pytorch", "bert_causalm", "transformers" ]
null
false
CEBaB
null
CEBaB/bert-base-uncased.CEBaB.causalm.noise.2-class.exclusive.seed_44
1
null
transformers
31,927
Entry not found
CEBaB/bert-base-uncased.CEBaB.causalm.ambiance.2-class.exclusive.seed_45
db3e04a20ea74891203c53fe6ba0a4477a40c359
2022-05-15T11:38:35.000Z
[ "pytorch", "bert_causalm", "transformers" ]
null
false
CEBaB
null
CEBaB/bert-base-uncased.CEBaB.causalm.ambiance.2-class.exclusive.seed_45
1
null
transformers
31,928
Entry not found
CEBaB/bert-base-uncased.CEBaB.causalm.food.2-class.exclusive.seed_45
8a94ab2ff8ff1f24d3d7dc4646884a02298fb960
2022-05-15T11:39:46.000Z
[ "pytorch", "bert_causalm", "transformers" ]
null
false
CEBaB
null
CEBaB/bert-base-uncased.CEBaB.causalm.food.2-class.exclusive.seed_45
1
null
transformers
31,929
Entry not found
CEBaB/bert-base-uncased.CEBaB.causalm.service.2-class.exclusive.seed_45
0045c118b4c7220cbb74f7cc56ea19dcee4e7211
2022-05-15T11:40:57.000Z
[ "pytorch", "bert_causalm", "transformers" ]
null
false
CEBaB
null
CEBaB/bert-base-uncased.CEBaB.causalm.service.2-class.exclusive.seed_45
1
null
transformers
31,930
Entry not found
CEBaB/bert-base-uncased.CEBaB.causalm.noise.2-class.exclusive.seed_45
efaf9205cd9940ab0956e58254958ee65ac4c9f7
2022-05-15T11:42:08.000Z
[ "pytorch", "bert_causalm", "transformers" ]
null
false
CEBaB
null
CEBaB/bert-base-uncased.CEBaB.causalm.noise.2-class.exclusive.seed_45
1
null
transformers
31,931
Entry not found
CEBaB/bert-base-uncased.CEBaB.causalm.ambiance.2-class.exclusive.seed_46
d812156a2237ccbe4ca7cef5886f0c4117e109dc
2022-05-15T11:43:18.000Z
[ "pytorch", "bert_causalm", "transformers" ]
null
false
CEBaB
null
CEBaB/bert-base-uncased.CEBaB.causalm.ambiance.2-class.exclusive.seed_46
1
null
transformers
31,932
Entry not found
CEBaB/bert-base-uncased.CEBaB.causalm.food.2-class.exclusive.seed_46
d2fdfdba8d789ef7e7202e71014c2868aba81b07
2022-05-15T11:44:28.000Z
[ "pytorch", "bert_causalm", "transformers" ]
null
false
CEBaB
null
CEBaB/bert-base-uncased.CEBaB.causalm.food.2-class.exclusive.seed_46
1
null
transformers
31,933
Entry not found
CEBaB/bert-base-uncased.CEBaB.causalm.service.2-class.exclusive.seed_46
b4a98632de3379dced64f7562d8ff87f99737ce9
2022-05-15T11:45:57.000Z
[ "pytorch", "bert_causalm", "transformers" ]
null
false
CEBaB
null
CEBaB/bert-base-uncased.CEBaB.causalm.service.2-class.exclusive.seed_46
1
null
transformers
31,934
Entry not found
CEBaB/bert-base-uncased.CEBaB.causalm.noise.2-class.exclusive.seed_46
e4ef23642446a0f66d73b3410a730fca9dac8b7d
2022-05-15T11:47:07.000Z
[ "pytorch", "bert_causalm", "transformers" ]
null
false
CEBaB
null
CEBaB/bert-base-uncased.CEBaB.causalm.noise.2-class.exclusive.seed_46
1
null
transformers
31,935
Entry not found
CEBaB/bert-base-uncased.CEBaB.causalm.factual.2-class.exclusive.seed_42
5e067786e9a23bcbf8e46746176db0f46192b6d3
2022-05-15T11:55:35.000Z
[ "pytorch", "bert", "transformers" ]
null
false
CEBaB
null
CEBaB/bert-base-uncased.CEBaB.causalm.factual.2-class.exclusive.seed_42
1
null
transformers
31,936
Entry not found
CEBaB/bert-base-uncased.CEBaB.causalm.factual.2-class.exclusive.seed_43
e02835d45dd6d1478fbcc80274d1749a8d2d3a4a
2022-05-15T11:56:43.000Z
[ "pytorch", "bert", "transformers" ]
null
false
CEBaB
null
CEBaB/bert-base-uncased.CEBaB.causalm.factual.2-class.exclusive.seed_43
1
null
transformers
31,937
Entry not found
CEBaB/bert-base-uncased.CEBaB.causalm.factual.2-class.exclusive.seed_44
9970533c147eb0e5ebae155f5b874f3415bddf0c
2022-05-15T11:57:51.000Z
[ "pytorch", "bert", "transformers" ]
null
false
CEBaB
null
CEBaB/bert-base-uncased.CEBaB.causalm.factual.2-class.exclusive.seed_44
1
null
transformers
31,938
Entry not found
CEBaB/bert-base-uncased.CEBaB.causalm.factual.2-class.exclusive.seed_45
d1da796ff4aacf116ec2692f3ca51e225210db62
2022-05-15T11:59:00.000Z
[ "pytorch", "bert", "transformers" ]
null
false
CEBaB
null
CEBaB/bert-base-uncased.CEBaB.causalm.factual.2-class.exclusive.seed_45
1
null
transformers
31,939
Entry not found
CEBaB/bert-base-uncased.CEBaB.causalm.factual.2-class.exclusive.seed_46
68c7eac5216771b9513372b760dfd2ba4efc83f7
2022-05-15T12:00:07.000Z
[ "pytorch", "bert", "transformers" ]
null
false
CEBaB
null
CEBaB/bert-base-uncased.CEBaB.causalm.factual.2-class.exclusive.seed_46
1
null
transformers
31,940
Entry not found
loubnabnl/codeparrot-small-scale
71e9dbdba2f42fc3b273b7f2416b56f6e647d234
2022-05-15T14:34:14.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
loubnabnl
null
loubnabnl/codeparrot-small-scale
1
null
transformers
31,941
Entry not found
PSW/cnndm_0.1percent_maxsimdel_seed42
b33841679fa43b9d391665bafbe4c2fa58ed9324
2022-05-15T14:08:18.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
PSW
null
PSW/cnndm_0.1percent_maxsimdel_seed42
1
null
transformers
31,942
Entry not found
pietrolesci/bart-base-mnli
375c993af1f0d0b87c7d51e7e902284d44687c6f
2022-05-15T14:06:25.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
pietrolesci
null
pietrolesci/bart-base-mnli
1
null
transformers
31,943
Entry not found
PSW/cnndm_0.1percent_randomsimdel_seed27
e82bdc1684e26c5211dec780c9c4f78dcdefcee9
2022-05-15T16:19:50.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
PSW
null
PSW/cnndm_0.1percent_randomsimdel_seed27
1
null
transformers
31,944
Entry not found
nttoanh/t5vi-finetuned-en-to-vi
e04a3b4e83460b26816ca4a4bef4157184fc3623
2022-05-15T22:20:38.000Z
[ "pytorch", "tensorboard", "t5", "text2text-generation", "dataset:mt_eng_vietnamese", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
text2text-generation
false
nttoanh
null
nttoanh/t5vi-finetuned-en-to-vi
1
null
transformers
31,945
--- tags: - generated_from_trainer datasets: - mt_eng_vietnamese metrics: - bleu model-index: - name: t5vi-finetuned-en-to-vi results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: mt_eng_vietnamese type: mt_eng_vietnamese args: iwslt2015-en-vi metrics: - name: Bleu type: bleu value: 13.547 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5vi-finetuned-en-to-vi This model is a fine-tuned version of [imthanhlv/t5vi](https://huggingface.co/imthanhlv/t5vi) on the mt_eng_vietnamese dataset. It achieves the following results on the evaluation set: - Loss: 1.3827 - Bleu: 13.547 - Gen Len: 17.3719 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 20 - eval_batch_size: 20 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:| | 1.8026 | 1.0 | 6666 | 1.5907 | 10.9756 | 17.3231 | | 1.6217 | 2.0 | 13332 | 1.4635 | 12.375 | 17.3444 | | 1.5087 | 3.0 | 19998 | 1.4131 | 13.1828 | 17.3924 | | 1.4446 | 4.0 | 26664 | 1.3915 | 13.5217 | 17.3617 | | 1.4076 | 5.0 | 33330 | 1.3827 | 13.547 | 17.3719 | ### Framework versions - Transformers 4.19.1 - Pytorch 1.11.0+cu113 - Datasets 2.2.1 - Tokenizers 0.12.1
PSW/cnndm_0.1percent_minsimins_seed27
737f3c062b39c09cd665efd114fe9d27b3b7ba2b
2022-05-15T19:39:29.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
PSW
null
PSW/cnndm_0.1percent_minsimins_seed27
1
null
transformers
31,946
Entry not found
CEBaB/t5-base.CEBaB.sa.2-class.inclusive.seed_42
2ae50edfb6935d25f1bfad041e24371bf49c0ba2
2022-05-15T20:26:08.000Z
[ "pytorch", "t5", "transformers" ]
null
false
CEBaB
null
CEBaB/t5-base.CEBaB.sa.2-class.inclusive.seed_42
1
null
transformers
31,947
Entry not found
CEBaB/t5-base.CEBaB.sa.5-class.inclusive.seed_42
d702ca952abb957b1c5a8b8064c9d40545c41d30
2022-05-15T20:44:32.000Z
[ "pytorch", "t5", "transformers" ]
null
false
CEBaB
null
CEBaB/t5-base.CEBaB.sa.5-class.inclusive.seed_42
1
null
transformers
31,948
Entry not found
CEBaB/t5-base.CEBaB.sa.2-class.inclusive.seed_66
a6d24235aece4099964cd8c5acfdb9fabab4fa34
2022-05-15T20:53:54.000Z
[ "pytorch", "t5", "transformers" ]
null
false
CEBaB
null
CEBaB/t5-base.CEBaB.sa.2-class.inclusive.seed_66
1
null
transformers
31,949
Entry not found
CEBaB/t5-base.CEBaB.sa.3-class.inclusive.seed_66
2265dbf64a115c1cb8cba2d5a647dca889ef2aea
2022-05-15T21:03:12.000Z
[ "pytorch", "t5", "transformers" ]
null
false
CEBaB
null
CEBaB/t5-base.CEBaB.sa.3-class.inclusive.seed_66
1
null
transformers
31,950
Entry not found
CEBaB/t5-base.CEBaB.sa.5-class.inclusive.seed_66
708834a8b24af82f1d130b7b7d3470fcd2cf19e5
2022-05-15T21:12:25.000Z
[ "pytorch", "t5", "transformers" ]
null
false
CEBaB
null
CEBaB/t5-base.CEBaB.sa.5-class.inclusive.seed_66
1
null
transformers
31,951
Entry not found
CEBaB/t5-base.CEBaB.sa.2-class.inclusive.seed_77
d3eb22c5529ad50bab8103509ddcbc988439076c
2022-05-15T21:21:36.000Z
[ "pytorch", "t5", "transformers" ]
null
false
CEBaB
null
CEBaB/t5-base.CEBaB.sa.2-class.inclusive.seed_77
1
null
transformers
31,952
Entry not found
CEBaB/t5-base.CEBaB.sa.3-class.inclusive.seed_77
43bf3234fa4d27675e30241f3dae03ee175d8ca1
2022-05-15T21:30:55.000Z
[ "pytorch", "t5", "transformers" ]
null
false
CEBaB
null
CEBaB/t5-base.CEBaB.sa.3-class.inclusive.seed_77
1
null
transformers
31,953
Entry not found
CEBaB/t5-base.CEBaB.sa.5-class.inclusive.seed_77
977299f296257ba6ad9179ad24f44d9561c7bf9e
2022-05-15T21:40:07.000Z
[ "pytorch", "t5", "transformers" ]
null
false
CEBaB
null
CEBaB/t5-base.CEBaB.sa.5-class.inclusive.seed_77
1
null
transformers
31,954
Entry not found
CEBaB/t5-base.CEBaB.sa.2-class.inclusive.seed_88
9000c58df1ecf1bb7b129544d62b4f5513b9f7c8
2022-05-15T21:49:48.000Z
[ "pytorch", "t5", "transformers" ]
null
false
CEBaB
null
CEBaB/t5-base.CEBaB.sa.2-class.inclusive.seed_88
1
null
transformers
31,955
Entry not found
CEBaB/t5-base.CEBaB.sa.3-class.inclusive.seed_88
247ee3071f656e415f5dcfe553cbae572697c510
2022-05-15T21:59:01.000Z
[ "pytorch", "t5", "transformers" ]
null
false
CEBaB
null
CEBaB/t5-base.CEBaB.sa.3-class.inclusive.seed_88
1
null
transformers
31,956
Entry not found
CEBaB/t5-base.CEBaB.sa.2-class.inclusive.seed_99
823ec377ec5d396c68e2a44fb0f529682f8042fd
2022-05-15T22:19:54.000Z
[ "pytorch", "t5", "transformers" ]
null
false
CEBaB
null
CEBaB/t5-base.CEBaB.sa.2-class.inclusive.seed_99
1
null
transformers
31,957
Entry not found
CEBaB/t5-base.CEBaB.sa.3-class.inclusive.seed_99
50cbbc1ee1058470531824ef68b8c67777befe3c
2022-05-15T22:29:49.000Z
[ "pytorch", "t5", "transformers" ]
null
false
CEBaB
null
CEBaB/t5-base.CEBaB.sa.3-class.inclusive.seed_99
1
null
transformers
31,958
Entry not found
CEBaB/t5-base.CEBaB.sa.5-class.inclusive.seed_99
f1f48018688f2eedff3545300782d3a929a8167b
2022-05-15T22:39:05.000Z
[ "pytorch", "t5", "transformers" ]
null
false
CEBaB
null
CEBaB/t5-base.CEBaB.sa.5-class.inclusive.seed_99
1
null
transformers
31,959
Entry not found
CEBaB/t5-base.CEBaB.sa.2-class.exclusive.seed_42
a29e2783f3d3837a9d2c05b9f91b89f8ea12efbb
2022-05-15T22:48:20.000Z
[ "pytorch", "t5", "transformers" ]
null
false
CEBaB
null
CEBaB/t5-base.CEBaB.sa.2-class.exclusive.seed_42
1
null
transformers
31,960
Entry not found
CEBaB/t5-base.CEBaB.sa.3-class.exclusive.seed_42
52ef6210954c64fb6efff19b2814130dcbe907db
2022-05-15T22:57:37.000Z
[ "pytorch", "t5", "transformers" ]
null
false
CEBaB
null
CEBaB/t5-base.CEBaB.sa.3-class.exclusive.seed_42
1
null
transformers
31,961
Entry not found
lilitket/20220516-030558
b95374fd1975321c01f357c36de6b9527f9fa993
2022-05-16T00:59:35.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
lilitket
null
lilitket/20220516-030558
1
null
transformers
31,962
Entry not found
CEBaB/t5-base.CEBaB.sa.2-class.exclusive.seed_66
44b3fa951d56ab85988f3fba3e8a86002861a6d2
2022-05-15T23:16:11.000Z
[ "pytorch", "t5", "transformers" ]
null
false
CEBaB
null
CEBaB/t5-base.CEBaB.sa.2-class.exclusive.seed_66
1
null
transformers
31,963
Entry not found
CEBaB/t5-base.CEBaB.sa.3-class.exclusive.seed_66
9ba847fcdef7ab5a9d587b4ac17f4b1dbecc799c
2022-05-15T23:25:26.000Z
[ "pytorch", "t5", "transformers" ]
null
false
CEBaB
null
CEBaB/t5-base.CEBaB.sa.3-class.exclusive.seed_66
1
null
transformers
31,964
Entry not found
CEBaB/t5-base.CEBaB.sa.5-class.exclusive.seed_66
02b0947ebffefbbeea58a3a5186f576b8da0c0e7
2022-05-15T23:34:50.000Z
[ "pytorch", "t5", "transformers" ]
null
false
CEBaB
null
CEBaB/t5-base.CEBaB.sa.5-class.exclusive.seed_66
1
null
transformers
31,965
Entry not found
CEBaB/t5-base.CEBaB.sa.2-class.exclusive.seed_77
aacb2c02559881dc9f712d202c294a79d488f0a4
2022-05-15T23:44:08.000Z
[ "pytorch", "t5", "transformers" ]
null
false
CEBaB
null
CEBaB/t5-base.CEBaB.sa.2-class.exclusive.seed_77
1
null
transformers
31,966
Entry not found
CEBaB/t5-base.CEBaB.sa.3-class.exclusive.seed_77
f06fb35d7335e22eb3bc4ff37711c189ed4a2139
2022-05-15T23:53:19.000Z
[ "pytorch", "t5", "transformers" ]
null
false
CEBaB
null
CEBaB/t5-base.CEBaB.sa.3-class.exclusive.seed_77
1
null
transformers
31,967
Entry not found
PSW/cnndm_0.1percent_maxsimins_seed42
2c688701611d69d7c5cbfeef57d6ca6dcdadfcc3
2022-05-16T00:05:54.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
PSW
null
PSW/cnndm_0.1percent_maxsimins_seed42
1
null
transformers
31,968
Entry not found
CEBaB/t5-base.CEBaB.sa.5-class.exclusive.seed_77
c096ecbf3af7b5ad7d3a21e8cac0c98a94c3abec
2022-05-16T00:02:45.000Z
[ "pytorch", "t5", "transformers" ]
null
false
CEBaB
null
CEBaB/t5-base.CEBaB.sa.5-class.exclusive.seed_77
1
null
transformers
31,969
Entry not found
CEBaB/t5-base.CEBaB.sa.5-class.exclusive.seed_99
4a0ac98a32a3b58ad3d32f3c5c511acb7a5b93e0
2022-05-16T00:58:58.000Z
[ "pytorch", "t5", "transformers" ]
null
false
CEBaB
null
CEBaB/t5-base.CEBaB.sa.5-class.exclusive.seed_99
1
null
transformers
31,970
Entry not found
CEBaB/t5-base.CEBaB.absa.inclusive.seed_42
b200d8a635db052058c0fd0d6b64bb0022257b64
2022-05-16T01:24:00.000Z
[ "pytorch", "t5", "transformers" ]
null
false
CEBaB
null
CEBaB/t5-base.CEBaB.absa.inclusive.seed_42
1
null
transformers
31,971
Entry not found
CEBaB/t5-base.CEBaB.absa.inclusive.seed_66
2f16e943dcf18b200db6bdbcfaf8a810b4a34fae
2022-05-16T01:33:24.000Z
[ "pytorch", "t5", "transformers" ]
null
false
CEBaB
null
CEBaB/t5-base.CEBaB.absa.inclusive.seed_66
1
null
transformers
31,972
Entry not found
CEBaB/t5-base.CEBaB.absa.inclusive.seed_88
cc348e8da5dd95b5ca037338f70b71effa45860f
2022-05-16T01:54:05.000Z
[ "pytorch", "t5", "transformers" ]
null
false
CEBaB
null
CEBaB/t5-base.CEBaB.absa.inclusive.seed_88
1
null
transformers
31,973
Entry not found
CEBaB/t5-base.CEBaB.absa.inclusive.seed_99
38cf3a5511c8cbffb16c9367da07cc172a95d03d
2022-05-16T02:03:36.000Z
[ "pytorch", "t5", "transformers" ]
null
false
CEBaB
null
CEBaB/t5-base.CEBaB.absa.inclusive.seed_99
1
null
transformers
31,974
Entry not found
CEBaB/t5-base.CEBaB.absa.exclusive.seed_42
fc43b3372799000fa9983f76f3f4add64d425787
2022-05-16T02:12:52.000Z
[ "pytorch", "t5", "transformers" ]
null
false
CEBaB
null
CEBaB/t5-base.CEBaB.absa.exclusive.seed_42
1
null
transformers
31,975
Entry not found
CEBaB/t5-base.CEBaB.absa.exclusive.seed_66
717eb2c9e797c31195eec11b5e0584401f663a92
2022-05-16T02:22:11.000Z
[ "pytorch", "t5", "transformers" ]
null
false
CEBaB
null
CEBaB/t5-base.CEBaB.absa.exclusive.seed_66
1
null
transformers
31,976
Entry not found
CEBaB/t5-base.CEBaB.absa.exclusive.seed_77
ff00b0f997c89f7f91fea19770176ec00d7895a5
2022-05-16T02:31:25.000Z
[ "pytorch", "t5", "transformers" ]
null
false
CEBaB
null
CEBaB/t5-base.CEBaB.absa.exclusive.seed_77
1
null
transformers
31,977
Entry not found
CEBaB/t5-base.CEBaB.absa.exclusive.seed_88
b31d930ba10fb0ba75a3ba93314f9f50e6ed12b0
2022-05-16T02:40:43.000Z
[ "pytorch", "t5", "transformers" ]
null
false
CEBaB
null
CEBaB/t5-base.CEBaB.absa.exclusive.seed_88
1
null
transformers
31,978
Entry not found
CEBaB/t5-base.CEBaB.absa.exclusive.seed_99
fd1402796c27b769a72c417f13a022c985adfb6c
2022-05-16T02:50:01.000Z
[ "pytorch", "t5", "transformers" ]
null
false
CEBaB
null
CEBaB/t5-base.CEBaB.absa.exclusive.seed_99
1
null
transformers
31,979
Entry not found
LDD/MLM
0e039513bc20fa07beb2b030292e57c2a9707e0e
2022-05-16T05:07:44.000Z
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
false
LDD
null
LDD/MLM
1
null
transformers
31,980
Entry not found
PSW/cnndm_0.1percent_minmaxswap_seed27
fc7660d0ae7dd01644b67fcf4f210dc4e2edd3aa
2022-05-16T05:35:39.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
PSW
null
PSW/cnndm_0.1percent_minmaxswap_seed27
1
null
transformers
31,981
Entry not found
Yotta/XpCoDir2
a8b846d72fa3c8cd4dac03cfeaff7069c0303506
2022-05-16T08:42:56.000Z
[ "pytorch", "bert", "feature-extraction", "dataset:XpCo", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
feature-extraction
false
Yotta
null
Yotta/XpCoDir2
1
null
transformers
31,982
--- license: apache-2.0 tags: - generated_from_trainer datasets: - XpCo model-index: - name: XpCoDir2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # XpCoDir2 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the XpCoDataset dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Framework versions - Transformers 4.16.2 - Pytorch 1.9.0 - Datasets 2.0.0 - Tokenizers 0.10.3
mriggs/wikisource_lemmatized_epoch2
4208cebf465610afd50fc4ce01197d2f3f196fa3
2022-05-16T08:15:38.000Z
[ "pytorch", "flaubert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
mriggs
null
mriggs/wikisource_lemmatized_epoch2
1
null
transformers
31,983
Entry not found
subhasisj/vi-kd-XLM-minilmv2-32
92be53966ef09ef7637fea83ae29aad0dd90127f
2022-05-16T13:12:35.000Z
[ "pytorch", "bert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
subhasisj
null
subhasisj/vi-kd-XLM-minilmv2-32
1
null
transformers
31,984
Entry not found
SreyanG-NVIDIA/distilgpt2-finetuned-wikitext2
94932c5d8de6fdd80b9887b2430ccfb943121f39
2022-05-16T11:06:40.000Z
[ "pytorch", "tensorboard", "gpt2", "text-generation", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-generation
false
SreyanG-NVIDIA
null
SreyanG-NVIDIA/distilgpt2-finetuned-wikitext2
1
null
transformers
31,985
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distilgpt2-finetuned-wikitext2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilgpt2-finetuned-wikitext2 This model is a fine-tuned version of [distilgpt2](https://huggingface.co/distilgpt2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.6408 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 3.7592 | 1.0 | 2334 | 3.6646 | | 3.6519 | 2.0 | 4668 | 3.6454 | | 3.601 | 3.0 | 7002 | 3.6408 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.1.0 - Tokenizers 0.12.1
anes-saidi/aragpt2-base-finetuned-wikitext2
b1f3ee43bdb3f046c539acc6837113e748fd7ed7
2022-05-16T11:14:18.000Z
[ "pytorch", "tensorboard", "gpt2", "text-generation", "transformers", "generated_from_trainer", "model-index" ]
text-generation
false
anes-saidi
null
anes-saidi/aragpt2-base-finetuned-wikitext2
1
null
transformers
31,986
--- tags: - generated_from_trainer model-index: - name: aragpt2-base-finetuned-wikitext2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # aragpt2-base-finetuned-wikitext2 This model is a fine-tuned version of [aubmindlab/aragpt2-base](https://huggingface.co/aubmindlab/aragpt2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 5.0307 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 387 | 5.1841 | | 5.9664 | 2.0 | 774 | 5.0627 | | 5.4166 | 3.0 | 1161 | 5.0307 | ### Framework versions - Transformers 4.11.0 - Pytorch 1.11.0+cu113 - Datasets 2.2.1 - Tokenizers 0.10.3
SreyanG-NVIDIA/gpt2-wikitext2
e3cbd490285222074c92a5d30c32e510eb54d1a4
2022-05-16T11:44:23.000Z
[ "pytorch", "tensorboard", "gpt2", "text-generation", "transformers", "generated_from_trainer", "license:mit", "model-index" ]
text-generation
false
SreyanG-NVIDIA
null
SreyanG-NVIDIA/gpt2-wikitext2
1
null
transformers
31,987
--- license: mit tags: - generated_from_trainer model-index: - name: gpt2-wikitext2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt2-wikitext2 This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 6.1085 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 6.5573 | 1.0 | 2249 | 6.4633 | | 6.1893 | 2.0 | 4498 | 6.1993 | | 6.0153 | 3.0 | 6747 | 6.1085 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.1.0 - Tokenizers 0.12.1
lilitket/20220516-152835
3a1234d33fe76aef8f43f18b89ab0b0338556eb2
2022-05-16T15:10:40.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
lilitket
null
lilitket/20220516-152835
1
null
transformers
31,988
Entry not found
Varick/dialo-jarvis
02f5e35f3580cd8f24f72f7ecd91ba7ff0240b2d
2022-05-16T13:58:23.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
Varick
null
Varick/dialo-jarvis
1
null
transformers
31,989
--- tags: - conversational --- # JARVIS DialoGPT Model
NoYo25/BiodivBERT
fc8b57104a6fc66ac8081e5796ac723e8b4c33cb
2022-05-16T13:47:38.000Z
[ "pytorch", "bert", "fill-mask", "en", "transformers", "bert-base-cased", "biodiversity", "license:cc-by-nc-4.0", "autotrain_compatible" ]
fill-mask
false
NoYo25
null
NoYo25/BiodivBERT
1
null
transformers
31,990
--- language: - en thumbnail: "https://www.fusion.uni-jena.de/fusionmedia/fusionpictures/fusion-service/fusion-transp.png?height=383&width=680" tags: - bert-base-cased - biodiversity license: cc-by-nc-4.0 --- # BiodivBERT ## Model description * BiodivBERT is a domain-specific BERT based cased model for the biodiversity literature. * It uses the tokenizer from BERTT base cased model. * BiodivBERT is pre-trained on abstracts and full text from biodiversity literature. * BiodivBERT is fine-tuned on two down stream tasks for Named Entity Recognition and Relation Extraction in the biodiversity domain. * Please visit our [GitHub Repo](https://github.com/fusion-jena/BiodivBERT) for more details. ## How to use * You can use BiodivBERT via huggingface library as follows: 1. Masked Language Model ```` >>> from transformers import AutoTokenizer, AutoModelForMaskedLM >>> tokenizer = AutoTokenizer.from_pretrained("NoYo25/BiodivBERT") >>> model = AutoModelForMaskedLM.from_pretrained("NoYo25/BiodivBERT") ```` 2. Token Classification - Named Entity Recognition ```` >>> from transformers import AutoTokenizer, AutoModelForTokenClassification >>> tokenizer = AutoTokenizer.from_pretrained("NoYo25/BiodivBERT") >>> model = AutoModelForTokenClassification.from_pretrained("NoYo25/BiodivBERT") ```` 3. Sequence Classification - Relation Extraction ```` >>> from transformers import AutoTokenizer, AutoModelForSequenceClassification >>> tokenizer = AutoTokenizer.from_pretrained("NoYo25/BiodivBERT") >>> model = AutoModelForSequenceClassification.from_pretrained("NoYo25/BiodivBERT") ```` ## Training data * BiodivBERT is pre-trained on abstracts and full text from biodiversity domain-related publications. * We used both Elsevier and Springer APIs to crawl such data. * We covered publications over the duration of 1990-2020. ## Evaluation results BiodivBERT overperformed both ``BERT_base_cased``, ``biobert_v1.1``, and ``BiLSTM`` as a baseline approach on the down stream tasks. ## License license: cc-by-nc-4.0
Kontawat/test-model
755357a39f33bc415e5cc3b1c9c8143965555d26
2022-05-16T13:46:28.000Z
[ "pytorch", "mt5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
Kontawat
null
Kontawat/test-model
1
null
transformers
31,991
Entry not found
bartelds/wav2vec2-dutch-large-ft-cgn-3hrs
32d86c3e581eb33f0989914db2c9a08395c2c7d0
2022-05-16T14:58:27.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "nl", "transformers", "speech" ]
automatic-speech-recognition
false
bartelds
null
bartelds/wav2vec2-dutch-large-ft-cgn-3hrs
1
null
transformers
31,992
--- language: nl tags: - speech --- # Wav2Vec2-Dutch-Large-ft-CGN-3hrs A Dutch Wav2Vec2 model. This model is created by fine-tuning [`GroNLP/wav2vec2-dutch-large`](https://huggingface.co/GroNLP/wav2vec2-dutch-large) model on 3 hours of Dutch speech from [Het Corpus Gesproken Nederlands](https://taalmaterialen.ivdnt.org/download/tstc-corpus-gesproken-nederlands/).
Robinsd/HarryBot
468b3ed2cf6f3affe233fbd88ce6c1d454eabd3d
2022-05-16T14:44:57.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
Robinsd
null
Robinsd/HarryBot
1
null
transformers
31,993
--- tags: - conversational --- #harrypotter
bartelds/wav2vec2-large-ft-cgn-3hrs
0cb7f2855081416aced753357cca60025b4b906b
2022-05-16T14:59:59.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "nl", "transformers", "speech" ]
automatic-speech-recognition
false
bartelds
null
bartelds/wav2vec2-large-ft-cgn-3hrs
1
null
transformers
31,994
--- language: nl tags: - speech --- # Wav2Vec2-Large-ft-CGN-3hrs An English Wav2Vec2 model fine-tuned on Dutch. This model is created by fine-tuning [`facebook/wav2vec2-large`](https://huggingface.co/facebook/wav2vec2-large) model on 3 hours of Dutch speech from [Het Corpus Gesproken Nederlands](https://taalmaterialen.ivdnt.org/download/tstc-corpus-gesproken-nederlands/).
huawei-noah/AutoTinyBERT-S1
4abedd192b5fcf1367436089c344c6b3f7335436
2022-05-16T14:47:57.000Z
[ "pytorch", "transformers", "license:other" ]
null
false
huawei-noah
null
huawei-noah/AutoTinyBERT-S1
1
null
transformers
31,995
--- license: other --- Pre-trained language models (PLMs) have achieved great success in natural language processing. Most of PLMs follow the default setting of architecture hyper-parameters (e.g., the hidden dimension is a quarter of the intermediate dimension in feed-forward sub-networks) in BERT. In this paper, we adopt the one-shot Neural Architecture Search (NAS) to automatically search architecture hyper-parameters for efficient pre-trained language models (at least 6x faster than BERT-base). AutoTinyBERT provides a model zoo that can meet different latency requirements.
huawei-noah/AutoTinyBERT-S3
30ed323b98f18f53457098f171886c5a405a19c6
2022-05-16T14:56:13.000Z
[ "pytorch", "transformers", "license:other" ]
null
false
huawei-noah
null
huawei-noah/AutoTinyBERT-S3
1
null
transformers
31,996
--- license: other --- Pre-trained language models (PLMs) have achieved great success in natural language processing. Most of PLMs follow the default setting of architecture hyper-parameters (e.g., the hidden dimension is a quarter of the intermediate dimension in feed-forward sub-networks) in BERT. In this paper, we adopt the one-shot Neural Architecture Search (NAS) to automatically search architecture hyper-parameters for efficient pre-trained language models (at least 6x faster than BERT-base). AutoTinyBERT provides a model zoo that can meet different latency requirements.
PSW/cnndm_0.1percent_randomswap_seed27
e07a9d4fe05041f00acc2ef5418ce7c8600dc219
2022-05-16T15:38:12.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
PSW
null
PSW/cnndm_0.1percent_randomswap_seed27
1
null
transformers
31,997
Entry not found
eglesaks/xlm-roberta-base-finetuned-est
403a0d75147d6b679df89aa7c72d6004e7f10434
2022-05-16T18:49:53.000Z
[ "pytorch", "tensorboard", "xlm-roberta", "question-answering", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
question-answering
false
eglesaks
null
eglesaks/xlm-roberta-base-finetuned-est
1
null
transformers
31,998
--- license: mit tags: - generated_from_trainer model-index: - name: xlm-roberta-base-finetuned-est results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-est This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 3.6781 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 52 | 4.2576 | | No log | 2.0 | 104 | 3.8075 | | No log | 3.0 | 156 | 3.6781 | ### Framework versions - Transformers 4.19.1 - Pytorch 1.11.0+cu113 - Datasets 2.2.1 - Tokenizers 0.12.1
elisabethvonoswald/wav2vec2-large-xls-r-300m
00c32c8adffb91579d771ebde921504fb0e442fe
2022-05-25T14:09:55.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
elisabethvonoswald
null
elisabethvonoswald/wav2vec2-large-xls-r-300m
1
null
transformers
31,999
Entry not found