modelId
stringlengths
4
112
sha
stringlengths
40
40
lastModified
stringlengths
24
24
tags
sequence
pipeline_tag
stringclasses
29 values
private
bool
1 class
author
stringlengths
2
38
config
null
id
stringlengths
4
112
downloads
float64
0
36.8M
likes
float64
0
712
library_name
stringclasses
17 values
__index_level_0__
int64
0
38.5k
readme
stringlengths
0
186k
evolvingstuff/gpt2-wikitext2
bec9b2c214931645046578cf01ce9902828a6ac6
2022-05-16T21:25:11.000Z
[ "pytorch", "tensorboard", "gpt2", "text-generation", "transformers", "generated_from_trainer", "license:mit", "model-index" ]
text-generation
false
evolvingstuff
null
evolvingstuff/gpt2-wikitext2
1
null
transformers
32,000
--- license: mit tags: - generated_from_trainer model-index: - name: gpt2-wikitext2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt2-wikitext2 This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 6.1128 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 6.5628 | 1.0 | 2249 | 6.4705 | | 6.1956 | 2.0 | 4498 | 6.2012 | | 6.021 | 3.0 | 6747 | 6.1128 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.1 - Tokenizers 0.12.1
crystina-z/mdpr-tied-mmarco-ar
53c083ca3d6b433810cdc430d2baf78ee064ae71
2022-05-16T22:58:09.000Z
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
false
crystina-z
null
crystina-z/mdpr-tied-mmarco-ar
1
null
transformers
32,001
Entry not found
crystina-z/mdpr-tied-mmarco-id
696d54d545aec5e6e83cfcc3d85afaf55df46389
2022-05-16T22:59:15.000Z
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
false
crystina-z
null
crystina-z/mdpr-tied-mmarco-id
1
null
transformers
32,002
Entry not found
crystina-z/mdpr-tied-mmarco-ja
d9cfce197d9b09bea55ba40ab07cb9238817317b
2022-05-16T22:54:52.000Z
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
false
crystina-z
null
crystina-z/mdpr-tied-mmarco-ja
1
null
transformers
32,003
Entry not found
PSW/cnndm_0.5percent_maxsimdel_seed42
d9fb785f664077f1254b9d194ace6519938172e9
2022-05-16T23:52:53.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
PSW
null
PSW/cnndm_0.5percent_maxsimdel_seed42
1
null
transformers
32,004
Entry not found
atgarcia/wav2vec2-base-timit-demo-google-colab
7f1969c317e45aa93456342a6fd54b7b884ad88b
2022-05-21T07:26:10.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
atgarcia
null
atgarcia/wav2vec2-base-timit-demo-google-colab
1
null
transformers
32,005
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base-timit-demo-google-colab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-timit-demo-google-colab This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5255 - Wer: 0.3330 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 3.5942 | 1.0 | 500 | 2.3849 | 1.0011 | | 0.9765 | 2.01 | 1000 | 0.5907 | 0.5202 | | 0.4424 | 3.01 | 1500 | 0.4547 | 0.4661 | | 0.3008 | 4.02 | 2000 | 0.4194 | 0.4228 | | 0.2316 | 5.02 | 2500 | 0.3933 | 0.4099 | | 0.1921 | 6.02 | 3000 | 0.4532 | 0.3965 | | 0.1561 | 7.03 | 3500 | 0.4315 | 0.3777 | | 0.1378 | 8.03 | 4000 | 0.4463 | 0.3847 | | 0.1222 | 9.04 | 4500 | 0.4402 | 0.3784 | | 0.1076 | 10.04 | 5000 | 0.4253 | 0.3735 | | 0.0924 | 11.04 | 5500 | 0.4844 | 0.3732 | | 0.0866 | 12.05 | 6000 | 0.4758 | 0.3646 | | 0.086 | 13.05 | 6500 | 0.6395 | 0.4594 | | 0.0763 | 14.06 | 7000 | 0.4951 | 0.3647 | | 0.0684 | 15.06 | 7500 | 0.4870 | 0.3577 | | 0.0616 | 16.06 | 8000 | 0.5442 | 0.3591 | | 0.0594 | 17.07 | 8500 | 0.5305 | 0.3606 | | 0.0613 | 18.07 | 9000 | 0.5434 | 0.3546 | | 0.0473 | 19.08 | 9500 | 0.4818 | 0.3532 | | 0.0463 | 20.08 | 10000 | 0.5086 | 0.3514 | | 0.042 | 21.08 | 10500 | 0.5017 | 0.3484 | | 0.0365 | 22.09 | 11000 | 0.5129 | 0.3536 | | 0.0336 | 23.09 | 11500 | 0.5411 | 0.3433 | | 0.0325 | 24.1 | 12000 | 0.5307 | 0.3424 | | 0.0282 | 25.1 | 12500 | 0.5261 | 0.3404 | | 0.0245 | 26.1 | 13000 | 0.5306 | 0.3388 | | 0.0257 | 27.11 | 13500 | 0.5242 | 0.3369 | | 0.0234 | 28.11 | 14000 | 0.5216 | 0.3359 | | 0.0221 | 29.12 | 14500 | 0.5255 | 0.3330 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.11.0+cu113 - Datasets 1.18.3 - Tokenizers 0.12.1
LinkTheSinger/DialoGPT-small-Kannav4
9bf4ec815e54f52a389f319e3ec7f0251a3bfa8a
2022-05-17T03:24:55.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
LinkTheSinger
null
LinkTheSinger/DialoGPT-small-Kannav4
1
null
transformers
32,006
--- tags: - conversational --- # Kanna Kamui DialoGPT Model
Datasaur/distilbert-base-uncased-finetuned-conll2003
7010f421172cb46ec7deb22093ad8ae3f41b7554
2022-07-14T14:18:28.000Z
[ "pytorch", "distilbert", "token-classification", "en", "dataset:conll2003", "transformers", "license:apache-2.0", "autotrain_compatible" ]
token-classification
false
Datasaur
null
Datasaur/distilbert-base-uncased-finetuned-conll2003
1
null
transformers
32,007
--- language: en license: apache-2.0 datasets: - conll2003 ---
malay-huggingface/wav2vec2-xls-r-1b-mixed
64f095ea56aa59bf10dcff430a9d46d10c75cf9a
2022-05-27T12:37:23.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_keras_callback", "model-index" ]
automatic-speech-recognition
false
malay-huggingface
null
malay-huggingface/wav2vec2-xls-r-1b-mixed
1
null
transformers
32,008
--- tags: - generated_from_keras_callback model-index: - name: wav2vec2-xls-r-1b-mixed results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-xls-r-1b-mixed Finetuned https://huggingface.co/facebook/wav2vec2-xls-r-1b on https://github.com/huseinzol05/malaya-speech/tree/master/data/mixed-stt This model was finetuned on 3 languages, 1. Malay 2. Singlish 3. Mandarin **This model trained on a single Tesla V100 32GB VRAM, provided by https://keyreply.com/**.
SreyanG-NVIDIA/wav2vec2-base-demo-colab
163d5c2d34fe8c0a304419277b3cfe42b551ef92
2022-05-25T11:57:42.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
SreyanG-NVIDIA
null
SreyanG-NVIDIA/wav2vec2-base-demo-colab
1
null
transformers
32,009
Entry not found
negfir/bert_uncased_L-2_H-128_A-2_wiki103
2502a8bfdf709df3ddd680d7c7b5b63535cf0fdb
2022-05-17T07:33:54.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
negfir
null
negfir/bert_uncased_L-2_H-128_A-2_wiki103
1
null
transformers
32,010
Entry not found
subhasisj/es-kd-XLM-minilmv2-32
dea4381de34ccc7fca024f05751f066ed9aac13a
2022-05-17T10:48:36.000Z
[ "pytorch", "tensorboard", "bert", "question-answering", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
question-answering
false
subhasisj
null
subhasisj/es-kd-XLM-minilmv2-32
1
null
transformers
32,011
--- tags: - generated_from_trainer model-index: - name: es-kd-XLM-minilmv2-32 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # es-kd-XLM-minilmv2-32 This model is a fine-tuned version of [subhasisj/es-TAPT-MLM-MiniLM](https://huggingface.co/subhasisj/es-TAPT-MLM-MiniLM) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 256 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.2.1 - Tokenizers 0.12.1
SomeRandomGuy/tony
2eabcc8936326b54ac46c4dcf87cc21838b5ab57
2022-05-17T10:25:53.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
SomeRandomGuy
null
SomeRandomGuy/tony
1
null
transformers
32,012
--- tags: - conversational --- #Tony DialoGPT Model
tau/False_large_pmi_para0_sent1_span2_itTrue_sargmax_rrFalse_7_1024_0.3_best
f82d4a538b9825e26de673f9f1f8259e2fa50c8a
2022-05-17T11:26:46.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
tau
null
tau/False_large_pmi_para0_sent1_span2_itTrue_sargmax_rrFalse_7_1024_0.3_best
1
null
transformers
32,013
Entry not found
mertyrgn/xlm-roberta-base-finetuned-panx-de
16ee73c8e4d7ea0ac6dff95dbf56d91092ac6d5b
2022-05-18T05:47:03.000Z
[ "pytorch", "tensorboard", "xlm-roberta", "token-classification", "dataset:xtreme", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
token-classification
false
mertyrgn
null
mertyrgn/xlm-roberta-base-finetuned-panx-de
1
null
transformers
32,014
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme args: PAN-X.de metrics: - name: F1 type: f1 value: 0.861372046683746 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.1390 - F1: 0.8614 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2617 | 1.0 | 525 | 0.1550 | 0.8199 | | 0.1271 | 2.0 | 1050 | 0.1389 | 0.8470 | | 0.0802 | 3.0 | 1575 | 0.1390 | 0.8614 | ### Framework versions - Transformers 4.20.0.dev0 - Pytorch 1.11.0+cu102 - Datasets 2.2.1 - Tokenizers 0.12.1
roshnir/bert-base-multi-uncased-en-hi
3d51aa1b47644ecba190a2bc1383369e1e1fdf1c
2022-05-17T16:56:12.000Z
[ "pytorch", "bert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
roshnir
null
roshnir/bert-base-multi-uncased-en-hi
1
null
transformers
32,015
Entry not found
tau/False_large_pmi_para0_sent1_span2_itTrue_sargmax_rrFalse_8_1024_0.3_best
f1620a37328bd38ae083c7ff246308b41f5b8716
2022-05-17T17:38:58.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
tau
null
tau/False_large_pmi_para0_sent1_span2_itTrue_sargmax_rrFalse_8_1024_0.3_best
1
null
transformers
32,016
Entry not found
huggingtweets/lulaoficial-ptbrasil
11e3c4949bb9c21ffc0256a2ad27bd7dce15c7bf
2022-05-17T18:46:33.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/lulaoficial-ptbrasil
1
null
transformers
32,017
--- language: en thumbnail: http://www.huggingtweets.com/lulaoficial-ptbrasil/1652813188143/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1410721079383969795/28HNul1J_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1518543225933512705/T4r0T3SE_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">PT Brasil & Lula</div> <div style="text-align: center; font-size: 14px;">@lulaoficial-ptbrasil</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from PT Brasil & Lula. | Data | PT Brasil | Lula | | --- | --- | --- | | Tweets downloaded | 3250 | 3247 | | Retweets | 535 | 705 | | Short tweets | 116 | 191 | | Tweets kept | 2599 | 2351 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3n5vn7b0/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @lulaoficial-ptbrasil's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1dh0f8u4) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1dh0f8u4/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/lulaoficial-ptbrasil') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
Tazar/distilgpt2-finetuned-tazar
661ce87f97d31679a5a61e7045ce05fe4b106d58
2022-05-18T09:53:50.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-generation
false
Tazar
null
Tazar/distilgpt2-finetuned-tazar
1
null
transformers
32,018
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distilgpt2-finetuned-tazar results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilgpt2-finetuned-tazar This model is a fine-tuned version of [distilgpt2](https://huggingface.co/distilgpt2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.7272 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 330 | 1.7004 | | 1.3379 | 2.0 | 660 | 1.7295 | | 1.3379 | 3.0 | 990 | 1.7272 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.11.0 - Datasets 2.2.1 - Tokenizers 0.11.6
CEBaB/gpt2.CEBaB.absa.exclusive.seed_42
decc333ecfbfa92eb4ae8675b4e6831df204451a
2022-05-17T20:02:34.000Z
[ "pytorch", "gpt2", "transformers" ]
null
false
CEBaB
null
CEBaB/gpt2.CEBaB.absa.exclusive.seed_42
1
null
transformers
32,019
Entry not found
CEBaB/gpt2.CEBaB.absa.exclusive.seed_66
44f1fc09be4b1d2b97bf6c1fdf163e76fa6327c5
2022-05-17T20:14:31.000Z
[ "pytorch", "gpt2", "transformers" ]
null
false
CEBaB
null
CEBaB/gpt2.CEBaB.absa.exclusive.seed_66
1
null
transformers
32,020
Entry not found
CEBaB/gpt2.CEBaB.absa.exclusive.seed_77
3fffd3508124ba177144acf1adafa1161f3c516d
2022-05-17T20:26:09.000Z
[ "pytorch", "gpt2", "transformers" ]
null
false
CEBaB
null
CEBaB/gpt2.CEBaB.absa.exclusive.seed_77
1
null
transformers
32,021
Entry not found
marcoperez/DialoGPT-small-rickandmorty
cc49445fadce13c9864e63932bd7fee9624328a3
2022-05-17T22:01:49.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
marcoperez
null
marcoperez/DialoGPT-small-rickandmorty
1
null
transformers
32,022
--- tags: - conversational --- # Rick and Morty DialoGPT Model
gary109/ai-light-dance_singing_ft_wav2vec2-large-lv60-v2
0941ec7c441d6ad7fcba18c54a0d50e4001014b6
2022-05-28T05:50:54.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "../AI_Light_Dance.py", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
gary109
null
gary109/ai-light-dance_singing_ft_wav2vec2-large-lv60-v2
1
1
transformers
32,023
--- license: apache-2.0 tags: - automatic-speech-recognition - ../AI_Light_Dance.py - generated_from_trainer model-index: - name: ai-light-dance_singing_ft_wav2vec2-large-lv60-v2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ai-light-dance_singing_ft_wav2vec2-large-lv60-v2 This model is a fine-tuned version of [gary109/ai-light-dance_singing_ft_wav2vec2-large-lv60](https://huggingface.co/gary109/ai-light-dance_singing_ft_wav2vec2-large-lv60) on the ../AI_LIGHT_DANCE.PY - ONSET-SINGING dataset. It achieves the following results on the evaluation set: - Loss: 0.4285 - Wer: 0.1858 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 10.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 0.2775 | 1.0 | 1106 | 0.4372 | 0.2117 | | 0.2154 | 2.0 | 2212 | 0.4474 | 0.2044 | | 0.2023 | 3.0 | 3318 | 0.4372 | 0.1920 | | 0.186 | 4.0 | 4424 | 0.4285 | 0.1858 | | 0.1856 | 5.0 | 5530 | 0.4589 | 0.1826 | | 0.1537 | 6.0 | 6636 | 0.4658 | 0.1774 | | 0.1337 | 7.0 | 7742 | 0.4769 | 0.1744 | | 0.108 | 8.0 | 8848 | 0.4604 | 0.1724 | | 0.1593 | 9.0 | 9954 | 0.4731 | 0.1694 | | 0.0904 | 10.0 | 11060 | 0.4843 | 0.1683 | ### Framework versions - Transformers 4.20.0.dev0 - Pytorch 1.11.0+cu102 - Datasets 2.2.2.dev0 - Tokenizers 0.12.1
miyagawaorj/xlm-roberta-base-finetuned-panx-de
c9f50f4562d944ec21178d3f4cfb45196aa6518c
2022-06-07T07:03:42.000Z
[ "pytorch", "tensorboard", "xlm-roberta", "token-classification", "dataset:xtreme", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
token-classification
false
miyagawaorj
null
miyagawaorj/xlm-roberta-base-finetuned-panx-de
1
null
transformers
32,024
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme args: PAN-X.de metrics: - name: F1 type: f1 value: 0.8620945214069894 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.1372 - F1: 0.8621 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2575 | 1.0 | 525 | 0.1621 | 0.8292 | | 0.1287 | 2.0 | 1050 | 0.1378 | 0.8526 | | 0.0831 | 3.0 | 1575 | 0.1372 | 0.8621 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.11.0+cu113 - Datasets 1.16.1 - Tokenizers 0.10.3
CEBaB/bert-base-uncased.CEBaB.absa.inclusive.seed_88
15df91833c2559eb18f56b4217ff851f6cf9461f
2022-05-18T00:44:37.000Z
[ "pytorch", "bert", "transformers" ]
null
false
CEBaB
null
CEBaB/bert-base-uncased.CEBaB.absa.inclusive.seed_88
1
null
transformers
32,025
Entry not found
EddieChen372/JESTest
409d207ebd4165b462a9e4c6b74bac1815526d69
2022-06-24T13:11:32.000Z
[ "pytorch", "encoder-decoder", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
EddieChen372
null
EddieChen372/JESTest
1
null
transformers
32,026
Entry not found
Rivenatte/summarize_ruby_codet5_base
1fa24a50069ec5ca96166ade62cce6f1e004dfd4
2022-05-19T03:45:18.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
Rivenatte
null
Rivenatte/summarize_ruby_codet5_base
1
null
transformers
32,027
Entry not found
MeshalAlamr/wav2vec2-xls-r-300m-ar-8
c7593ce851577874704bf81d389db09dbd486555
2022-05-19T09:22:24.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "dataset:common_voice", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
MeshalAlamr
null
MeshalAlamr/wav2vec2-xls-r-300m-ar-8
1
null
transformers
32,028
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice model-index: - name: wav2vec2-xls-r-300m-ar-8 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-xls-r-300m-ar-8 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 76.6942 - Wer: 0.2108 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 64 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 256 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 60 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 6295.0487 | 4.71 | 400 | 615.8572 | 1.0 | | 1464.0058 | 9.41 | 800 | 111.7187 | 0.5361 | | 425.6333 | 14.12 | 1200 | 80.7770 | 0.3446 | | 280.069 | 18.82 | 1600 | 74.0422 | 0.2980 | | 213.0118 | 23.53 | 2000 | 78.4876 | 0.2783 | | 175.6819 | 28.24 | 2400 | 70.4845 | 0.2491 | | 148.5846 | 32.94 | 2800 | 70.5758 | 0.2443 | | 131.1029 | 37.65 | 3200 | 75.3770 | 0.2371 | | 116.7131 | 42.35 | 3600 | 78.7061 | 0.2268 | | 105.369 | 47.06 | 4000 | 76.4783 | 0.2210 | | 97.0829 | 51.76 | 4400 | 76.6051 | 0.2153 | | 90.4009 | 56.47 | 4800 | 76.6942 | 0.2108 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.11.0 - Datasets 1.18.4 - Tokenizers 0.11.6
negfir/bert_uncased_L-10_H-256_A-4_wiki103
8dfe7683f48669dc9d8cbd74d47e719c2f365c68
2022-05-18T12:11:55.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
negfir
null
negfir/bert_uncased_L-10_H-256_A-4_wiki103
1
null
transformers
32,029
Entry not found
airi/bert-finetuned-protagonist-english
adbbe7cf65611d9ae21356b79c72de2eb2a6cd45
2022-05-18T15:28:39.000Z
[ "pytorch", "roberta", "token-classification", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
token-classification
false
airi
null
airi/bert-finetuned-protagonist-english
1
null
transformers
32,030
--- tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: bert-finetuned-protagonist-english results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-protagonist-english This model is a fine-tuned version of [Jean-Baptiste/roberta-large-ner-english](https://huggingface.co/Jean-Baptiste/roberta-large-ner-english) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0630 - Precision: 0.8646 - Recall: 0.8839 - F1: 0.8742 - Accuracy: 0.9876 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 25 | 0.0659 | 0.8860 | 0.9018 | 0.8938 | 0.9862 | | No log | 2.0 | 50 | 0.0583 | 0.8553 | 0.8705 | 0.8628 | 0.9860 | | No log | 3.0 | 75 | 0.0593 | 0.8728 | 0.8884 | 0.8805 | 0.9876 | | No log | 4.0 | 100 | 0.0622 | 0.8559 | 0.875 | 0.8653 | 0.9871 | | No log | 5.0 | 125 | 0.0630 | 0.8646 | 0.8839 | 0.8742 | 0.9876 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.2+cu102 - Datasets 2.2.1 - Tokenizers 0.11.0
cromz22/wav2vec2-common_voice-tr-demo-dist
b48c255a4ccbc64b3b3ba5fa5633c623bad8d4fa
2022-05-18T15:25:11.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "tr", "dataset:common_voice", "transformers", "common_voice", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
cromz22
null
cromz22/wav2vec2-common_voice-tr-demo-dist
1
null
transformers
32,031
--- language: - tr license: apache-2.0 tags: - automatic-speech-recognition - common_voice - generated_from_trainer datasets: - common_voice model-index: - name: wav2vec2-common_voice-tr-demo-dist results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-common_voice-tr-demo-dist This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the COMMON_VOICE - TR dataset. It achieves the following results on the evaluation set: - Loss: 0.3848 - Wer: 0.3242 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - total_train_batch_size: 16 - total_eval_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 15.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.5279 | 0.46 | 100 | 3.6260 | 1.0 | | 3.1065 | 0.92 | 200 | 3.0854 | 0.9999 | | 1.4111 | 1.38 | 300 | 1.3343 | 0.8839 | | 0.8468 | 1.83 | 400 | 0.6920 | 0.6826 | | 0.6242 | 2.29 | 500 | 0.6001 | 0.5996 | | 0.4181 | 2.75 | 600 | 0.5655 | 0.5680 | | 0.4311 | 3.21 | 700 | 0.4478 | 0.5003 | | 0.3601 | 3.67 | 800 | 0.4548 | 0.5011 | | 0.2756 | 4.13 | 900 | 0.4444 | 0.4682 | | 0.2373 | 4.59 | 1000 | 0.4111 | 0.4432 | | 0.1831 | 5.05 | 1100 | 0.4178 | 0.4447 | | 0.2423 | 5.5 | 1200 | 0.3881 | 0.4277 | | 0.2128 | 5.96 | 1300 | 0.3865 | 0.4018 | | 0.1256 | 6.42 | 1400 | 0.3818 | 0.4137 | | 0.1038 | 6.88 | 1500 | 0.3739 | 0.3942 | | 0.1662 | 7.34 | 1600 | 0.3938 | 0.3929 | | 0.198 | 7.8 | 1700 | 0.3831 | 0.3837 | | 0.0728 | 8.26 | 1800 | 0.3910 | 0.3867 | | 0.123 | 8.72 | 1900 | 0.3722 | 0.3735 | | 0.0776 | 9.17 | 2000 | 0.3938 | 0.3725 | | 0.1597 | 9.63 | 2100 | 0.3786 | 0.3697 | | 0.1124 | 10.09 | 2200 | 0.3947 | 0.3590 | | 0.0965 | 10.55 | 2300 | 0.3952 | 0.3562 | | 0.0612 | 11.01 | 2400 | 0.3810 | 0.3476 | | 0.0764 | 11.47 | 2500 | 0.3734 | 0.3507 | | 0.0973 | 11.93 | 2600 | 0.3935 | 0.3472 | | 0.0649 | 12.39 | 2700 | 0.3672 | 0.3413 | | 0.0542 | 12.84 | 2800 | 0.3732 | 0.3369 | | 0.087 | 13.3 | 2900 | 0.3833 | 0.3458 | | 0.0196 | 13.76 | 3000 | 0.3761 | 0.3303 | | 0.0548 | 14.22 | 3100 | 0.3855 | 0.3274 | | 0.0577 | 14.68 | 3200 | 0.3893 | 0.3238 | ### Framework versions - Transformers 4.20.0.dev0 - Pytorch 1.11.0+cu102 - Datasets 2.2.1 - Tokenizers 0.12.1
airi/bert-finetuned-protagonist-english-pc
7c080d74e09815bf74e556b18a73ce4dbf7c6cb2
2022-05-18T18:01:04.000Z
[ "pytorch", "roberta", "token-classification", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
token-classification
false
airi
null
airi/bert-finetuned-protagonist-english-pc
1
null
transformers
32,032
--- tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: bert-finetuned-protagonist-english-pc results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-protagonist-english-pc This model is a fine-tuned version of [Jean-Baptiste/roberta-large-ner-english](https://huggingface.co/Jean-Baptiste/roberta-large-ner-english) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0351 - Precision: 0.9513 - Recall: 0.9598 - F1: 0.9556 - Accuracy: 0.9919 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 100 | 0.0407 | 0.9254 | 0.9420 | 0.9336 | 0.9908 | | No log | 2.0 | 200 | 0.0351 | 0.9513 | 0.9598 | 0.9556 | 0.9919 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.10.1+cu113 - Datasets 2.2.1 - Tokenizers 0.12.1
PSW/cnndm_0.1percent_baseline_seed27
516ac855ba154d695775fd6f1a6fe883e50bd8a7
2022-05-18T15:56:00.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
PSW
null
PSW/cnndm_0.1percent_baseline_seed27
1
null
transformers
32,033
Entry not found
zakria/wav2vec2-base-timit-demo-google-colab
515b2d64fd17cf6ac42bc7ca296666daff95ca32
2022-05-18T20:44:02.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
zakria
null
zakria/wav2vec2-base-timit-demo-google-colab
1
null
transformers
32,034
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base-timit-demo-google-colab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-timit-demo-google-colab This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5093 - Wer: 0.3413 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 3.5009 | 1.0 | 500 | 1.6207 | 0.9471 | | 0.8414 | 2.01 | 1000 | 0.5128 | 0.5033 | | 0.4366 | 3.01 | 1500 | 0.4449 | 0.4450 | | 0.3015 | 4.02 | 2000 | 0.3835 | 0.4108 | | 0.2281 | 5.02 | 2500 | 0.3989 | 0.4109 | | 0.1914 | 6.02 | 3000 | 0.4286 | 0.3982 | | 0.1555 | 7.03 | 3500 | 0.4547 | 0.3889 | | 0.1349 | 8.03 | 4000 | 0.3876 | 0.3779 | | 0.1252 | 9.04 | 4500 | 0.4460 | 0.3810 | | 0.1066 | 10.04 | 5000 | 0.3905 | 0.3772 | | 0.0979 | 11.04 | 5500 | 0.4469 | 0.3646 | | 0.0883 | 12.05 | 6000 | 0.4547 | 0.3612 | | 0.0801 | 13.05 | 6500 | 0.4741 | 0.3645 | | 0.0709 | 14.06 | 7000 | 0.4682 | 0.3592 | | 0.0665 | 15.06 | 7500 | 0.4689 | 0.3647 | | 0.0579 | 16.06 | 8000 | 0.5330 | 0.3622 | | 0.0556 | 17.07 | 8500 | 0.4885 | 0.3575 | | 0.0547 | 18.07 | 9000 | 0.4936 | 0.3543 | | 0.0462 | 19.08 | 9500 | 0.4928 | 0.3524 | | 0.0475 | 20.08 | 10000 | 0.5286 | 0.3525 | | 0.0426 | 21.08 | 10500 | 0.5100 | 0.3550 | | 0.0364 | 22.09 | 11000 | 0.5372 | 0.3493 | | 0.0306 | 23.09 | 11500 | 0.5049 | 0.3443 | | 0.0314 | 24.1 | 12000 | 0.5223 | 0.3519 | | 0.0261 | 25.1 | 12500 | 0.5380 | 0.3486 | | 0.0257 | 26.1 | 13000 | 0.5326 | 0.3484 | | 0.0252 | 27.11 | 13500 | 0.5299 | 0.3446 | | 0.0226 | 28.11 | 14000 | 0.5174 | 0.3424 | | 0.0232 | 29.12 | 14500 | 0.5093 | 0.3413 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.11.0+cu113 - Datasets 1.18.3 - Tokenizers 0.12.1
Dizzykong/gpt2-medium-chunked-eos
67d90d69960804c456d86c7de921c49d664d85d0
2022-05-18T20:06:34.000Z
[ "pytorch", "tensorboard", "gpt2", "text-generation", "transformers", "generated_from_trainer", "model-index" ]
text-generation
false
Dizzykong
null
Dizzykong/gpt2-medium-chunked-eos
1
null
transformers
32,035
--- tags: - generated_from_trainer model-index: - name: gpt2-medium-chunked-eos results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt2-medium-chunked-eos This model is a fine-tuned version of [gpt2-medium](https://huggingface.co/gpt2-medium) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.1 - Tokenizers 0.12.1
cromz22/wav2vec2-2-bart-base
3665b3976e6fdcc370ae428800a64989bff249dd
2022-05-19T03:52:16.000Z
[ "pytorch", "speech-encoder-decoder", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
cromz22
null
cromz22/wav2vec2-2-bart-base
1
null
transformers
32,036
Entry not found
imamnurby/rob2rand_chen
cdad439904b250768a09f089873de31b7082e78d
2022-05-19T05:45:18.000Z
[ "pytorch", "encoder-decoder", "text2text-generation", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
text2text-generation
false
imamnurby
null
imamnurby/rob2rand_chen
1
null
transformers
32,037
--- tags: - generated_from_trainer model-index: - name: rob2rand_chen results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # rob2rand_chen This model was trained from scratch on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 50 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.18.0 - Pytorch 1.7.1 - Datasets 2.1.0 - Tokenizers 0.12.1
GiordanoB/mT5_multilingual_XLSum-finetuned-summarization
d97a48211a8c1a02f7a857565b8f4ab56c2a471b
2022-05-19T05:50:45.000Z
[ "pytorch", "tensorboard", "mt5", "text2text-generation", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
text2text-generation
false
GiordanoB
null
GiordanoB/mT5_multilingual_XLSum-finetuned-summarization
1
null
transformers
32,038
--- tags: - generated_from_trainer model-index: - name: mT5_multilingual_XLSum-finetuned-summarization results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mT5_multilingual_XLSum-finetuned-summarization This model is a fine-tuned version of [csebuetnlp/mT5_multilingual_XLSum](https://huggingface.co/csebuetnlp/mT5_multilingual_XLSum) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.12.1
Gunulhona/tbqgmodel_wiki
c2d53073e2c66daa166fdc6617db3afcc9a266dc
2022-05-19T06:44:16.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
Gunulhona
null
Gunulhona/tbqgmodel_wiki
1
null
transformers
32,039
Entry not found
dyyyyyyyy/XTREME_squad_XLM-RoBERTa-base
b3cd3e2c87809714fe4f05c8ceb133e3b01728db
2022-05-19T07:30:52.000Z
[ "pytorch", "roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
dyyyyyyyy
null
dyyyyyyyy/XTREME_squad_XLM-RoBERTa-base
1
null
transformers
32,040
Entry not found
ZQ/Model
9a0e7388a2ba3e2b877eb5c1722020dabda17f21
2022-05-19T08:52:33.000Z
[ "pytorch", "roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
ZQ
null
ZQ/Model
1
null
transformers
32,041
Entry not found
ViktorDo/distilbert-base-uncased-finetuned-powo_mgh_pt
352bd0e939ee026632886f2b62081db073d1cdec
2022-05-30T09:41:59.000Z
[ "pytorch", "tensorboard", "distilbert", "fill-mask", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
fill-mask
false
ViktorDo
null
ViktorDo/distilbert-base-uncased-finetuned-powo_mgh_pt
1
null
transformers
32,042
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distilbert-base-uncased-finetuned-powo_mgh_pt results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-powo_mgh_pt This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.0128 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.8895 | 1.0 | 119 | 1.2509 | | 1.2538 | 2.0 | 238 | 1.0763 | | 1.126 | 3.0 | 357 | 0.9910 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
LaplacesDemon/t5-small-finetuned-xsum
f826c26d2ab600cc8a5a53b67953c6d0d260e8a3
2022-05-31T06:26:05.000Z
[ "pytorch", "tensorboard", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
LaplacesDemon
null
LaplacesDemon/t5-small-finetuned-xsum
1
null
transformers
32,043
Entry not found
PSW/cnndm_0.5percent_baseline_seed42
047e86c6c9c3bd10289faa2801ebcf43161cc92e
2022-05-19T10:37:11.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
PSW
null
PSW/cnndm_0.5percent_baseline_seed42
1
null
transformers
32,044
Entry not found
dyyyyyyyy/XTREME_squad_BERT-base-multilingual-cased
555f2386d0900429179df1c76594d440dfc47401
2022-05-19T15:35:40.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
dyyyyyyyy
null
dyyyyyyyy/XTREME_squad_BERT-base-multilingual-cased
1
null
transformers
32,045
Entry not found
negfir/bert_uncased_L-8_H-128_A-2_wiki103
cbd25f501045414ee667c7914578f52e264176c1
2022-05-19T14:33:45.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
negfir
null
negfir/bert_uncased_L-8_H-128_A-2_wiki103
1
null
transformers
32,046
Entry not found
ruselkomp/deep-pavlov-framebank-5epochs
8e18fb74d24031bdc9e9458ae371e35724689e31
2022-05-19T20:26:00.000Z
[ "pytorch", "tensorboard", "bert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
ruselkomp
null
ruselkomp/deep-pavlov-framebank-5epochs
1
null
transformers
32,047
Entry not found
dyyyyyyyy/XTREME_panx_XLM-RoBERTa-large
b346b36eaac6ad0e9390f957cc81c6c3a00cd5ae
2022-05-19T15:45:57.000Z
[ "pytorch", "xlm-roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
dyyyyyyyy
null
dyyyyyyyy/XTREME_panx_XLM-RoBERTa-large
1
null
transformers
32,048
Entry not found
dyyyyyyyy/XTREME_panx_XLM-RoBERTa-base
6bcdb7df28afd4f5b314c6a369bbeabf1b0106cb
2022-05-19T15:45:17.000Z
[ "pytorch", "xlm-roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
dyyyyyyyy
null
dyyyyyyyy/XTREME_panx_XLM-RoBERTa-base
1
null
transformers
32,049
Entry not found
dyyyyyyyy/XTREME_panx_BERT-base-multilingual-cased
6eaf8f7cef777ac973de1f378cb53a2f0899a307
2022-05-19T15:43:56.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
dyyyyyyyy
null
dyyyyyyyy/XTREME_panx_BERT-base-multilingual-cased
1
null
transformers
32,050
Entry not found
prodm93/t5_sum1_modelchkpnt1
53538fe9d4e930d0412d4fb33be4ab9fbb6fba94
2022-05-20T03:39:24.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
prodm93
null
prodm93/t5_sum1_modelchkpnt1
1
null
transformers
32,051
Entry not found
dyyyyyyyy/XTREME_udpos_XLM-RoBERTa-base
cad8310a5add0c3223169081d0fae0723ec57ebc
2022-05-20T04:49:29.000Z
[ "pytorch", "xlm-roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
dyyyyyyyy
null
dyyyyyyyy/XTREME_udpos_XLM-RoBERTa-base
1
null
transformers
32,052
Entry not found
dyyyyyyyy/XTREME_udpos_XLM-RoBERTa-large
5af1b480b2233e6a1506ab118f8a300ca1356e98
2022-05-20T04:50:04.000Z
[ "pytorch", "xlm-roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
dyyyyyyyy
null
dyyyyyyyy/XTREME_udpos_XLM-RoBERTa-large
1
null
transformers
32,053
Entry not found
dyyyyyyyy/XTREME_udpos_BERT-base-multilingual-cased
843327dd7d3a14c38ed9066ec3b0cef2428fbc90
2022-05-20T04:48:54.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
dyyyyyyyy
null
dyyyyyyyy/XTREME_udpos_BERT-base-multilingual-cased
1
null
transformers
32,054
Entry not found
leonweber/biomuppet_base
551ebb62bcf2fcd51f04e76b9b13a5ca550417ec
2022-05-20T06:17:55.000Z
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
false
leonweber
null
leonweber/biomuppet_base
1
null
transformers
32,055
Entry not found
PSW/cnndm_5percent_minsimdel_seed1
3ea9b29d2e7e61a3a89841bdf748d1513543ce1a
2022-05-20T06:43:57.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
PSW
null
PSW/cnndm_5percent_minsimdel_seed1
1
null
transformers
32,056
Entry not found
imamnurby/rob2rand_chen_w_prefix
d9f1753622228ca19fe2c73ea220386c51e628b3
2022-05-20T08:11:12.000Z
[ "pytorch", "encoder-decoder", "text2text-generation", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
text2text-generation
false
imamnurby
null
imamnurby/rob2rand_chen_w_prefix
1
null
transformers
32,057
--- tags: - generated_from_trainer model-index: - name: rob2rand_chen_w_prefix results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # rob2rand_chen_w_prefix This model was trained from scratch on the None dataset. It achieves the following results on the evaluation set: - eval_loss: 0.0686 - eval_bleu: 84.3905 - eval_em: 50.0650 - eval_bleu_em: 67.2278 - eval_runtime: 20.8187 - eval_samples_per_second: 36.938 - eval_steps_per_second: 0.624 - step: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 50 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.18.0 - Pytorch 1.7.1 - Datasets 2.1.0 - Tokenizers 0.12.1
PSW/cnndm_5percent_minsimdel_seed42
9627e83bb3a16393c2a54d9f8d12f8be7aeed861
2022-05-20T10:00:31.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
PSW
null
PSW/cnndm_5percent_minsimdel_seed42
1
null
transformers
32,058
Entry not found
ejembere/opus-mt-en-ro-finetuned-en-to-ro
106857f28275554bf6f35eefd8bf4f4a5199b256
2022-05-20T10:32:09.000Z
[ "pytorch", "marian", "text2text-generation", "dataset:wmt16", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
text2text-generation
false
ejembere
null
ejembere/opus-mt-en-ro-finetuned-en-to-ro
1
null
transformers
32,059
--- license: apache-2.0 tags: - generated_from_trainer datasets: - wmt16 model-index: - name: opus-mt-en-ro-finetuned-en-to-ro results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # opus-mt-en-ro-finetuned-en-to-ro This model is a fine-tuned version of [Helsinki-NLP/opus-mt-en-ro](https://huggingface.co/Helsinki-NLP/opus-mt-en-ro) on the wmt16 dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.1 - Tokenizers 0.12.1
PSW/cnndm_5percent_maxsimdel_seed42
902ce3868764991b6e4197ad994cb5e6869291ce
2022-05-20T12:18:34.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
PSW
null
PSW/cnndm_5percent_maxsimdel_seed42
1
null
transformers
32,060
Entry not found
Santiagot1105/wav2vec2-large-xlsr-es-col-pro-noise
cc7c185299250e7429c02cb4352392ccca80f4c1
2022-05-21T15:11:43.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
Santiagot1105
null
Santiagot1105/wav2vec2-large-xlsr-es-col-pro-noise
1
null
transformers
32,061
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-large-xlsr-es-col-pro-noise results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xlsr-es-col-pro-noise This model is a fine-tuned version of [jonatasgrosman/wav2vec2-large-xlsr-53-spanish](https://huggingface.co/jonatasgrosman/wav2vec2-large-xlsr-53-spanish) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0683 - Wer: 0.0601 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.118 | 3.88 | 400 | 0.0591 | 0.0633 | | 0.0838 | 7.77 | 800 | 0.0935 | 0.0936 | | 0.0583 | 11.65 | 1200 | 0.0765 | 0.0716 | | 0.0392 | 15.53 | 1600 | 0.0843 | 0.0738 | | 0.0346 | 19.42 | 2000 | 0.0763 | 0.0603 | | 0.0262 | 23.3 | 2400 | 0.0718 | 0.0610 | | 0.0208 | 27.18 | 2800 | 0.0683 | 0.0601 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.1+cu102 - Datasets 1.13.3 - Tokenizers 0.10.3
PSW/cnndm_5percent_randomsimdel_seed42
b779ebcd654755fa5410d17c54cf88b87a868ea5
2022-05-20T14:37:15.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
PSW
null
PSW/cnndm_5percent_randomsimdel_seed42
1
null
transformers
32,062
Entry not found
HueyNemud/das22-44-camembert_finetuned_pero
bdd207b1d956712dfacd0843240c3d153f4238e6
2022-05-20T16:17:33.000Z
[ "pytorch", "camembert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
HueyNemud
null
HueyNemud/das22-44-camembert_finetuned_pero
1
null
transformers
32,063
Entry not found
ruselkomp/deep-pavlov-framebank-5epochs-3
cd016565966650070c5debac1c69bb7809242e88
2022-05-20T23:45:45.000Z
[ "pytorch", "tensorboard", "bert", "question-answering", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
question-answering
false
ruselkomp
null
ruselkomp/deep-pavlov-framebank-5epochs-3
1
null
transformers
32,064
--- tags: - generated_from_trainer model-index: - name: deep-pavlov-framebank-5epochs-3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # deep-pavlov-framebank-5epochs-3 This model is a fine-tuned version of [DeepPavlov/rubert-base-cased](https://huggingface.co/DeepPavlov/rubert-base-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.4532 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 1.0722 | 1.0 | 2827 | 1.0156 | | 0.797 | 2.0 | 5654 | 1.0431 | | 0.587 | 3.0 | 8481 | 1.1751 | | 0.4144 | 4.0 | 11308 | 1.2978 | | 0.3173 | 5.0 | 14135 | 1.4532 | ### Framework versions - Transformers 4.19.0.dev0 - Pytorch 1.11.0+cu113 - Datasets 2.2.2.dev0 - Tokenizers 0.12.1
HueyNemud/das22-42-camembert_finetuned_ref
b570bdb8e0d9d86125508af3a9f1ffc6d43ce3b7
2022-05-20T16:25:01.000Z
[ "pytorch", "camembert", "token-classification", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
token-classification
false
HueyNemud
null
HueyNemud/das22-42-camembert_finetuned_ref
1
null
transformers
32,065
--- tags: - generated_from_trainer model-index: - name: CamemBERT pretrained on french trade directories from the XIXth century results: [] --- # CamemBERT trained for NER on french trade directories from the XIXth century [GOLD training set] This mdoel is part of the material of the paper > Abadie, N., Carlinet, E., Chazalon, J., Duménieu, B. (2022). A > Benchmark of Named Entity Recognition Approaches in Historical > Documents Application to 19𝑡ℎ Century French Directories. In: Uchida, > S., Barney, E., Eglin, V. (eds) Document Analysis Systems. DAS 2022. > Lecture Notes in Computer Science, vol 13237. Springer, Cham. > https://doi.org/10.1007/978-3-031-06555-2_30 The source code to train this model is available on the [GitHub repository](https://github.com/soduco/paper-ner-bench-das22) of the paper as a Jupyter notebook in `src/ner/40_experiment_2.ipynb`. ## Model description This model adapts the model [Jean-Baptiste/camembert-ner](https://huggingface.co/Jean-Baptiste/camembert-ner) for NER on 6004 manually annotated directory entries referred as the "reference dataset" in the paper. Trade directory entries are short and strongly structured texts that giving the name, activity and location of a person or business, e.g: ``` Peynaud, R. de la Vieille Bouclerie, 18. Richard, Joullain et comp., (commission- —Phéâtre Français. naire, (entrepôt), au port de la Rapée- ``` ## Intended uses & limitations This model is intended for reproducibility of the NER evaluation published in the DAS2022 paper. Several derived models trained for NER on trade directories are available on HuggingFace, each trained on a different dataset : - [das22-10-camembert_pretrained_finetuned_ref](): trained for NER on ~6000 directory entries manually corrected. - [das22-10-camembert_pretrained_finetuned_pero](): trained for NER on ~6000 directory entries extracted with PERO-OCR. - [das22-10-camembert_pretrained_finetuned_tess](): trained for NER on ~6000 directory entries extracted with Tesseract. ### Training hyperparameters ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
PSW/cnndm_5percent_minsimins_seed42
d53d36d52334fd10508ead8a7d7ad74891c42abc
2022-05-20T16:58:28.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
PSW
null
PSW/cnndm_5percent_minsimins_seed42
1
null
transformers
32,066
Entry not found
anas-awadalla/albert-xl-v2-finetuned-squad
5a07e60af8c3986104c94c6f37d33a7d381a7dc5
2022-05-20T23:29:59.000Z
[ "pytorch", "albert", "question-answering", "dataset:squad", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
question-answering
false
anas-awadalla
null
anas-awadalla/albert-xl-v2-finetuned-squad
1
null
transformers
32,067
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: albert-xl-v2-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # albert-xl-v2-finetuned-squad This model is a fine-tuned version of [albert-xlarge-v2](https://huggingface.co/albert-xlarge-v2) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2.0 ### Training results ### Framework versions - Transformers 4.17.0 - Pytorch 1.11.0+cu113 - Datasets 2.0.0 - Tokenizers 0.11.6
PSW/cnndm_5percent_maxsimins_seed42
2cc59cdcd564b8878b3307f7b6e5a76396f74201
2022-05-20T19:18:38.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
PSW
null
PSW/cnndm_5percent_maxsimins_seed42
1
null
transformers
32,068
Entry not found
rongina/DialoGPT-small-cartman
15c3be3d767c31118a9d422200e4ce2c519fb0eb
2022-05-21T03:43:07.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
rongina
null
rongina/DialoGPT-small-cartman
1
null
transformers
32,069
--- tags: - conversational --- # South Park Dialog
remotejob/bert2bertv4_v3
ae29c052717f2483efc557fd9c225880d8ca2ce5
2022-06-07T19:39:07.000Z
[ "pytorch", "encoder-decoder", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
remotejob
null
remotejob/bert2bertv4_v3
1
null
transformers
32,070
hello
PSW/cnndm_5percent_randomsimins_seed42
46ba6bf5e1fd06550b4d0349a2edacbecbfa24e0
2022-05-20T21:39:28.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
PSW
null
PSW/cnndm_5percent_randomsimins_seed42
1
null
transformers
32,071
Entry not found
Dizzykong/gpt2-medium-final
a5ef674631955af8a18316eaff69aff9833fba96
2022-05-21T02:40:27.000Z
[ "pytorch", "tensorboard", "gpt2", "text-generation", "transformers", "generated_from_trainer", "model-index" ]
text-generation
false
Dizzykong
null
Dizzykong/gpt2-medium-final
1
null
transformers
32,072
--- tags: - generated_from_trainer model-index: - name: gpt2-medium-final results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt2-medium-final This model is a fine-tuned version of [gpt2-medium](https://huggingface.co/gpt2-medium) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 6 - eval_batch_size: 12 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
PSW/cnndm_5percent_minmaxswap_seed42
0072af27a88c1162b4d7651d558b7e2446815a36
2022-05-21T00:18:05.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
PSW
null
PSW/cnndm_5percent_minmaxswap_seed42
1
null
transformers
32,073
Entry not found
PSW/cnndm_5percent_min2swap_seed42
9425fa7c90b0e34e89c6d4f798c0502e08a76b53
2022-05-21T03:00:28.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
PSW
null
PSW/cnndm_5percent_min2swap_seed42
1
null
transformers
32,074
Entry not found
leonweber/electra_small
1875006beb56130e5b6dc6dc8b17bce7d5a0f979
2022-05-21T03:47:45.000Z
[ "pytorch", "electra", "feature-extraction", "transformers" ]
feature-extraction
false
leonweber
null
leonweber/electra_small
1
null
transformers
32,075
Entry not found
PSW/cnndm_5percent_max2swap_seed42
dd3045cc0c8d138484e7aefc93b14fe12fd792a7
2022-05-21T05:37:10.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
PSW
null
PSW/cnndm_5percent_max2swap_seed42
1
null
transformers
32,076
Entry not found
PSW/cnndm_5percent_randomswap_seed42
b537c48c3327419952f97785a874e04e1fbc63aa
2022-05-21T08:01:52.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
PSW
null
PSW/cnndm_5percent_randomswap_seed42
1
null
transformers
32,077
Entry not found
marksverdhei/pegasus-large-reddit-syac
34e60498bb8165e75185d5170b3bb38d576b2743
2022-07-10T13:18:02.000Z
[ "pytorch", "pegasus", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
marksverdhei
null
marksverdhei/pegasus-large-reddit-syac
1
null
transformers
32,078
Entry not found
PSW/cnndm_5percent_baseline_seed42
e6a1fa4ccbe75e69072391654193e7b2604e0520
2022-05-21T09:45:11.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
PSW
null
PSW/cnndm_5percent_baseline_seed42
1
null
transformers
32,079
Entry not found
Splend1dchan/wav2vec2-large-lv60_t5lephone-small_lna_bs64
eba87e54ba360191e9c262e677e56831e69ceca0
2022-05-23T01:57:45.000Z
[ "pytorch", "speechmix", "transformers" ]
null
false
Splend1dchan
null
Splend1dchan/wav2vec2-large-lv60_t5lephone-small_lna_bs64
1
null
transformers
32,080
Entry not found
moghis/xlm-roberta-base-finetuned-panx-de-data
a41b4090b814e20d986f15cecb24594ab4627d46
2022-05-21T11:08:29.000Z
[ "pytorch", "tensorboard", "xlm-roberta", "token-classification", "dataset:xtreme", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
token-classification
false
moghis
null
moghis/xlm-roberta-base-finetuned-panx-de-data
1
null
transformers
32,081
--- license: mit tags: - generated_from_trainer datasets: - xtreme model-index: - name: xlm-roberta-base-finetuned-panx-de-data results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de-data This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.1372 - F1 Score: 0.8621 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 Score | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.2575 | 1.0 | 525 | 0.1621 | 0.8292 | | 0.1287 | 2.0 | 1050 | 0.1378 | 0.8526 | | 0.0831 | 3.0 | 1575 | 0.1372 | 0.8621 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
north/t5_xl_NCC
c99b489192a64975b35eef4d573dd4c4fa223655
2022-06-01T19:42:05.000Z
[ "pytorch", "jax", "tensorboard", "t5", "text2text-generation", "no", "nn", "sv", "dk", "is", "en", "dataset:nbailab/NCC", "dataset:mc4", "dataset:wikipedia", "arxiv:2104.09617", "arxiv:1910.10683", "transformers", "license:apache-2.0", "autotrain_compatible" ]
text2text-generation
false
north
null
north/t5_xl_NCC
1
null
transformers
32,082
--- language: - no - nn - sv - dk - is - en datasets: - nbailab/NCC - mc4 - wikipedia widget: - text: <extra_id_0> hver uke samles Regjeringens medlemmer til Statsråd på <extra_id_1>. Dette organet er øverste <extra_id_2> i Norge. For at møtet skal være <extra_id_3>, må over halvparten av regjeringens <extra_id_4> være til stede. - text: På <extra_id_0> kan man <extra_id_1> en bok, og man kan også <extra_id_2> seg ned og lese den. license: apache-2.0 --- -T5 The North-T5-models are a set of Norwegian sequence-to-sequence-models. It builds upon the flexible [T5](https://github.com/google-research/text-to-text-transfer-transformer) and [T5X](https://github.com/google-research/t5x) and can be used for a variety of NLP tasks ranging from classification to translation. | |**Small** <br />_60M_|**Base** <br />_220M_|**Large** <br />_770M_|**XL** <br />_3B_|**XXL** <br />_11B_| |:-----------|:------------:|:------------:|:------------:|:------------:|:------------:| |North-T5&#8209;NCC|[🤗](https://huggingface.co/north/t5_small_NCC)|[🤗](https://huggingface.co/north/t5_base_NCC)|[🤗](https://huggingface.co/north/t5_large_NCC)|✔|[🤗](https://huggingface.co/north/t5_xxl_NCC)|| |North-T5&#8209;NCC&#8209;lm|[🤗](https://huggingface.co/north/t5_small_NCC_lm)|[🤗](https://huggingface.co/north/t5_base_NCC_lm)|[🤗](https://huggingface.co/north/t5_large_NCC_lm)|[🤗](https://huggingface.co/north/t5_xl_NCC_lm)|[🤗](https://huggingface.co/north/t5_xxl_NCC_lm)|| ## T5X Checkpoint The original T5X checkpoint is also available for this model in the [Google Cloud Bucket](gs://north-t5x/pretrained_models/xl/norwegian_NCC_plus_English_t5x_xl/). ## Performance A thorough evaluation of the North-T5 models is planned, and I strongly recommend external researchers to make their own evaluation. The main advantage with the T5-models are their flexibility. Traditionally, encoder-only models (like BERT) excels in classification tasks, while seq-2-seq models are easier to train for tasks like translation and Q&A. Despite this, here are the results from using North-T5 on the political classification task explained [here](https://arxiv.org/abs/2104.09617). |**Model:** | **F1** | |:-----------|:------------| |mT5-base|73.2 | |mBERT-base|78.4 | |NorBERT-base|78.2 | |North-T5-small|80.5 | |nb-bert-base|81.8 | |North-T5-base|85.3 | |North-T5-large|86.7 | |North-T5-xl|88.7 | |North-T5-xxl|91.8| These are preliminary results. The [results](https://arxiv.org/abs/2104.09617) from the BERT-models are based on the test-results from the best model after 10 runs with early stopping and a decaying learning rate. The T5-results are the average of five runs on the evaluation set. The small-model was trained for 10.000 steps, while the rest for 5.000 steps. A fixed learning rate was used (no decay), and no early stopping. Neither was the recommended rank classification used. We use a max sequence length of 512. This method simplifies the test setup and gives results that are easy to interpret. However, the results from the T5 model might actually be a bit sub-optimal. ## Sub-versions of North-T5 The following sub-versions are available. More versions will be available shorter. |**Model** | **Description** | |:-----------|:-------| |**North&#8209;T5&#8209;NCC** |This is the main version. It is trained an additonal 500.000 steps on from the mT5 checkpoint. The training corpus is based on [the Norwegian Colossal Corpus (NCC)](https://huggingface.co/datasets/NbAiLab/NCC). In addition there are added data from MC4 and English Wikipedia.| |**North&#8209;T5&#8209;NCC&#8209;lm**|The model is pretrained for an addtional 100k steps on the LM objective discussed in the [T5 paper](https://arxiv.org/pdf/1910.10683.pdf). In a way this turns a masked language model into an autoregressive model. It also prepares the model for some tasks. When for instance doing translation and NLI, it is well documented that there is a clear benefit to do a step of unsupervised LM-training before starting the finetuning.| ## Fine-tuned versions As explained below, the model really needs to be fine-tuned for specific tasks. This procedure is relatively simple, and the models are not very sensitive to the hyper-parameters used. Usually a decent result can be obtained by using a fixed learning rate of 1e-3. Smaller versions of the model typically needs to be trained for a longer time. It is easy to train the base-models in a Google Colab. Since some people really want to see what the models are capable of, without going through the training procedure, I provide a couple of test models. These models are by no means optimised, and are just for demonstrating how the North-T5 models can be used. * Nynorsk Translator. Translates any text from Norwegian Bokmål to Norwegian Nynorsk. Please test the [Streamlit-demo](https://huggingface.co/spaces/north/Nynorsk) and the [HuggingFace repo](https://huggingface.co/north/demo-nynorsk-base) * DeUnCaser. The model adds punctation, spaces and capitalisation back into the text. The input needs to be in Norwegian but does not have to be divided into sentences or have proper capitalisation of words. You can even remove the spaces from the text, and make the model reconstruct it. It can be tested with the [Streamlit-demo](https://huggingface.co/spaces/north/DeUnCaser) and directly on the [HuggingFace repo](https://huggingface.co/north/demo-deuncaser-base) ## Training details All models are built using the Flax-based T5X codebase, and all models are initiated with the mT5 pretrained weights. The models are trained using the T5.1.1 training regime, where they are only trained on an unsupervised masking-task. This also means that the models (contrary to the original T5) needs to be finetuned to solve specific tasks. This finetuning is however usually not very compute intensive, and in most cases it can be performed even with free online training resources. All the main model model versions are trained for 500.000 steps after the mT5 checkpoint (1.000.000 steps). They are trained mainly on a 75GB corpus, consisting of NCC, Common Crawl and some additional high quality English text (Wikipedia). The corpus is roughly 80% Norwegian text. Additional languages are added to retain some of the multilingual capabilities, making the model both more robust to new words/concepts and also more suited as a basis for translation tasks. While the huge models almost always will give the best results, they are also both more difficult and more expensive to finetune. I will strongly recommended to start with finetuning a base-models. The base-models can easily be finetuned on a standard graphic card or a free TPU through Google Colab. All models were trained on TPUs. The largest XXL model was trained on a TPU v4-64, the XL model on a TPU v4-32, the Large model on a TPU v4-16 and the rest on TPU v4-8. Since it is possible to reduce the batch size during fine-tuning, it is also possible to finetune on slightly smaller hardware. The rule of thumb is that you can go "one step down" when finetuning. The large models still rewuire access to significant hardware, even for finetuning. ## Formats All models are trained using the Flax-based T5X library. The original checkpoints are available in T5X format and can be used for both finetuning or interference. All models, except the XXL-model, are also converted to Transformers/HuggingFace. In this framework, the models can be loaded for finetuning or inference both in Flax, PyTorch and TensorFlow format. ## Future I will continue to train and release additional models to this set. What models that are added is dependent upon the feedbacki from the users ## Thanks This release would not have been possible without getting support and hardware from the [TPU Research Cloud](https://sites.research.google/trc/about/) at Google Research. Both the TPU Research Cloud Team and the T5X Team has provided extremely useful support for getting this running. Freddy Wetjen at the National Library of Norway has been of tremendous help in generating the original NCC corpus, and has also contributed to generate the collated coprus used for this training. In addition he has been a dicussion partner in the creation of these models. Also thanks to Stefan Schweter for writing the [script](https://github.com/huggingface/transformers/blob/main/src/transformers/models/t5/convert_t5x_checkpoint_to_flax.py) for converting these models from T5X to HuggingFace and to Javier de la Rosa for writing the dataloader for reading the HuggingFace Datasets in T5X. ## Warranty Use at your own risk. The models have not yet been thougroughly tested, and may contain both errors and biases. ## Contact/About These models were trained by Per E Kummervold. Please contact me on [email protected].
imamnurby/rob2rand_chen_w_prefix_tc
4b0f28554100b388a75a442b4d4771989e5c8f6a
2022-05-21T12:14:38.000Z
[ "pytorch", "encoder-decoder", "text2text-generation", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
text2text-generation
false
imamnurby
null
imamnurby/rob2rand_chen_w_prefix_tc
1
null
transformers
32,083
--- tags: - generated_from_trainer metrics: - bleu model-index: - name: rob2rand_chen_w_prefix_tc results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # rob2rand_chen_w_prefix_tc This model is a fine-tuned version of [imamnurby/rob2rand_chen_w_prefix](https://huggingface.co/imamnurby/rob2rand_chen_w_prefix) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2749 - Bleu: 83.9120 - Em: 86.2159 - Bleu Em: 85.0639 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Em | Bleu Em | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|:-------:| | 0.6922 | 0.71 | 500 | 0.2425 | 68.5819 | 79.7927 | 74.1873 | | 0.086 | 1.42 | 1000 | 0.2480 | 70.9791 | 79.5855 | 75.2823 | | 0.0865 | 2.13 | 1500 | 0.2567 | 68.7037 | 78.8256 | 73.7646 | | 0.0758 | 2.84 | 2000 | 0.2483 | 69.4605 | 80.2418 | 74.8512 | | 0.0683 | 3.55 | 2500 | 0.2662 | 68.3732 | 78.4456 | 73.4094 | | 0.0643 | 4.26 | 3000 | 0.2700 | 66.5413 | 78.3765 | 72.4589 | | 0.0596 | 4.97 | 3500 | 0.2611 | 67.4313 | 78.9637 | 73.1975 | | 0.0519 | 5.68 | 4000 | 0.2697 | 68.3717 | 79.1019 | 73.7368 | | 0.0478 | 6.39 | 4500 | 0.2914 | 69.7507 | 77.7202 | 73.7354 | | 0.0461 | 7.1 | 5000 | 0.2776 | 68.5387 | 79.1019 | 73.8203 | | 0.04 | 7.81 | 5500 | 0.2975 | 67.6316 | 78.1693 | 72.9004 | | 0.0373 | 8.52 | 6000 | 0.2922 | 68.0161 | 79.4473 | 73.7317 | | 0.0345 | 9.23 | 6500 | 0.3032 | 69.4580 | 79.2401 | 74.3490 | | 0.032 | 9.94 | 7000 | 0.3104 | 67.2595 | 79.0328 | 73.1462 | | 0.0294 | 10.65 | 7500 | 0.3077 | 65.8142 | 78.4801 | 72.1472 | | 0.0269 | 11.36 | 8000 | 0.3092 | 70.2072 | 78.8601 | 74.5337 | | 0.026 | 12.07 | 8500 | 0.3117 | 70.4504 | 79.4473 | 74.9489 | | 0.0229 | 12.78 | 9000 | 0.3114 | 69.4635 | 79.2401 | 74.3518 | | 0.0215 | 13.49 | 9500 | 0.3143 | 67.3601 | 79.3092 | 73.3346 | | 0.0205 | 14.2 | 10000 | 0.3176 | 68.4031 | 78.9983 | 73.7007 | | 0.0195 | 14.91 | 10500 | 0.3253 | 66.5673 | 78.9637 | 72.7655 | | 0.0173 | 15.62 | 11000 | 0.3377 | 68.7553 | 78.7219 | 73.7386 | | 0.0164 | 16.34 | 11500 | 0.3377 | 69.2474 | 79.1364 | 74.1919 | | 0.0161 | 17.05 | 12000 | 0.3371 | 69.0846 | 79.6200 | 74.3523 | | 0.0148 | 17.76 | 12500 | 0.3457 | 70.8330 | 79.3782 | 75.1056 | | 0.0137 | 18.47 | 13000 | 0.3516 | 69.5576 | 79.2401 | 74.3988 | | 0.0135 | 19.18 | 13500 | 0.3573 | 70.3232 | 79.1364 | 74.7298 | | 0.0127 | 19.89 | 14000 | 0.3574 | 70.2481 | 79.1019 | 74.6750 | | 0.0115 | 20.6 | 14500 | 0.3694 | 65.7587 | 78.3765 | 72.0676 | | 0.0107 | 21.31 | 15000 | 0.3696 | 68.7923 | 78.5838 | 73.6880 | | 0.0107 | 22.02 | 15500 | 0.3607 | 69.4452 | 78.8256 | 74.1354 | | 0.0101 | 22.73 | 16000 | 0.3770 | 68.6731 | 78.5492 | 73.6112 | | 0.0095 | 23.44 | 16500 | 0.3648 | 69.8402 | 79.7237 | 74.7819 | | 0.0088 | 24.15 | 17000 | 0.3822 | 69.6238 | 79.0328 | 74.3283 | | 0.0088 | 24.86 | 17500 | 0.3816 | 68.5422 | 79.1364 | 73.8393 | | 0.0079 | 25.57 | 18000 | 0.3822 | 69.1359 | 79.2401 | 74.1880 | | 0.0073 | 26.28 | 18500 | 0.3742 | 69.8331 | 79.6891 | 74.7611 | | 0.007 | 26.99 | 19000 | 0.3849 | 69.5048 | 79.2746 | 74.3897 | | 0.0072 | 27.7 | 19500 | 0.3881 | 69.6135 | 79.2055 | 74.4095 | | 0.0059 | 28.41 | 20000 | 0.3922 | 70.2656 | 79.2746 | 74.7701 | | 0.0069 | 29.12 | 20500 | 0.3936 | 68.2044 | 78.7910 | 73.4977 | | 0.0059 | 29.83 | 21000 | 0.3983 | 69.6257 | 79.4473 | 74.5365 | | 0.0055 | 30.54 | 21500 | 0.3973 | 70.4039 | 79.5509 | 74.9774 | | 0.0057 | 31.25 | 22000 | 0.3960 | 70.3015 | 79.6546 | 74.9780 | | 0.0056 | 31.96 | 22500 | 0.3945 | 69.9785 | 79.5855 | 74.7820 | | 0.0049 | 32.67 | 23000 | 0.3947 | 70.1822 | 79.6546 | 74.9184 | | 0.0049 | 33.38 | 23500 | 0.3957 | 69.1207 | 79.3437 | 74.2322 | | 0.0048 | 34.09 | 24000 | 0.4097 | 68.8815 | 78.9292 | 73.9053 | | 0.0043 | 34.8 | 24500 | 0.4039 | 70.0982 | 79.4473 | 74.7727 | | 0.0044 | 35.51 | 25000 | 0.4080 | 69.3472 | 79.5164 | 74.4318 | | 0.0042 | 36.22 | 25500 | 0.4066 | 69.0213 | 79.0674 | 74.0443 | | 0.0038 | 36.93 | 26000 | 0.4128 | 69.1452 | 79.3092 | 74.2272 | | 0.0037 | 37.64 | 26500 | 0.4134 | 69.2672 | 79.5164 | 74.3918 | | 0.0034 | 38.35 | 27000 | 0.4161 | 69.7751 | 79.5509 | 74.6630 | | 0.0038 | 39.06 | 27500 | 0.4037 | 69.4092 | 79.6546 | 74.5319 | | 0.0031 | 39.77 | 28000 | 0.4041 | 69.3912 | 79.6546 | 74.5229 | | 0.0032 | 40.48 | 28500 | 0.4185 | 69.1159 | 79.4473 | 74.2816 | | 0.0031 | 41.19 | 29000 | 0.4245 | 68.6867 | 78.9983 | 73.8425 | | 0.003 | 41.9 | 29500 | 0.4202 | 69.4091 | 79.3092 | 74.3591 | | 0.0027 | 42.61 | 30000 | 0.4249 | 68.7400 | 79.0328 | 73.8864 | | 0.0026 | 43.32 | 30500 | 0.4175 | 69.9729 | 79.8273 | 74.9001 | | 0.0027 | 44.03 | 31000 | 0.4189 | 69.6688 | 79.5855 | 74.6271 | | 0.0027 | 44.74 | 31500 | 0.4203 | 69.4071 | 79.5855 | 74.4963 | | 0.0025 | 45.45 | 32000 | 0.4265 | 69.3197 | 79.1019 | 74.2108 | | 0.0023 | 46.16 | 32500 | 0.4255 | 69.7513 | 79.3437 | 74.5475 | | 0.0023 | 46.88 | 33000 | 0.4227 | 69.2893 | 79.5509 | 74.4201 | | 0.0023 | 47.59 | 33500 | 0.4233 | 69.6060 | 79.5509 | 74.5785 | | 0.002 | 48.3 | 34000 | 0.4239 | 69.0113 | 79.4819 | 74.2466 | | 0.0024 | 49.01 | 34500 | 0.4239 | 68.9754 | 79.4128 | 74.1941 | | 0.0019 | 49.72 | 35000 | 0.4228 | 68.9220 | 79.3782 | 74.1501 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.7.1 - Datasets 2.1.0 - Tokenizers 0.12.1
huggingtweets/morrowind_rtf
5390dacbfa5b0606ffe98cbaa4245be04dd92348
2022-05-21T18:30:32.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/morrowind_rtf
1
null
transformers
32,084
--- language: en thumbnail: http://www.huggingtweets.com/morrowind_rtf/1653157827665/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1260443885102411779/DMPXS0hi_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">morrowind.rtf</div> <div style="text-align: center; font-size: 14px;">@morrowind_rtf</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from morrowind.rtf. | Data | morrowind.rtf | | --- | --- | | Tweets downloaded | 3250 | | Retweets | 0 | | Short tweets | 26 | | Tweets kept | 3224 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3sgyg1y6/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @morrowind_rtf's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3hz9ik0o) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3hz9ik0o/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/morrowind_rtf') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
chrisvinsen/wav2vec2-large-xlsr-53
2012680cb88dda4472a68a2601a98ff8a2e413e7
2022-05-21T22:40:29.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
chrisvinsen
null
chrisvinsen/wav2vec2-large-xlsr-53
1
null
transformers
32,085
Entry not found
drscotthawley/wav2vec2-base-timit-demo-google-colab
1b186264674c06d50cd242462f0b242d4c72b869
2022-05-21T23:41:05.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
drscotthawley
null
drscotthawley/wav2vec2-base-timit-demo-google-colab
1
null
transformers
32,086
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base-timit-demo-google-colab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-timit-demo-google-colab This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5436 - Wer: 0.3401 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 3.5276 | 1.0 | 500 | 1.9983 | 1.0066 | | 0.8606 | 2.01 | 1000 | 0.5323 | 0.5220 | | 0.4339 | 3.01 | 1500 | 0.4697 | 0.4512 | | 0.3026 | 4.02 | 2000 | 0.4342 | 0.4266 | | 0.2297 | 5.02 | 2500 | 0.5001 | 0.4135 | | 0.1939 | 6.02 | 3000 | 0.4350 | 0.3897 | | 0.1613 | 7.03 | 3500 | 0.4740 | 0.3883 | | 0.1452 | 8.03 | 4000 | 0.4289 | 0.3825 | | 0.1362 | 9.04 | 4500 | 0.4721 | 0.3927 | | 0.1146 | 10.04 | 5000 | 0.4707 | 0.3730 | | 0.1061 | 11.04 | 5500 | 0.4470 | 0.3701 | | 0.0947 | 12.05 | 6000 | 0.4694 | 0.3722 | | 0.0852 | 13.05 | 6500 | 0.5222 | 0.3733 | | 0.0741 | 14.06 | 7000 | 0.4881 | 0.3657 | | 0.069 | 15.06 | 7500 | 0.4957 | 0.3677 | | 0.0679 | 16.06 | 8000 | 0.5241 | 0.3634 | | 0.0618 | 17.07 | 8500 | 0.5091 | 0.3564 | | 0.0576 | 18.07 | 9000 | 0.5055 | 0.3557 | | 0.0493 | 19.08 | 9500 | 0.5013 | 0.3515 | | 0.0469 | 20.08 | 10000 | 0.5506 | 0.3530 | | 0.044 | 21.08 | 10500 | 0.5564 | 0.3528 | | 0.0368 | 22.09 | 11000 | 0.5213 | 0.3509 | | 0.0355 | 23.09 | 11500 | 0.5707 | 0.3495 | | 0.0357 | 24.1 | 12000 | 0.5558 | 0.3483 | | 0.0285 | 25.1 | 12500 | 0.5613 | 0.3455 | | 0.0285 | 26.1 | 13000 | 0.5533 | 0.3480 | | 0.0266 | 27.11 | 13500 | 0.5526 | 0.3462 | | 0.0249 | 28.11 | 14000 | 0.5488 | 0.3429 | | 0.0237 | 29.12 | 14500 | 0.5436 | 0.3401 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.11.0+cu115 - Datasets 1.18.3 - Tokenizers 0.12.1
chrisvinsen/wav2vec2-1
ba1bc10b4931f0b007482057b24ce4f16d4326fb
2022-05-22T04:53:44.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
chrisvinsen
null
chrisvinsen/wav2vec2-1
1
null
transformers
32,087
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-1 This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5980 - Wer: 0.4949 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 400 - num_epochs: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 4.2691 | 1.37 | 200 | 2.9045 | 1.0 | | 1.6356 | 2.74 | 400 | 0.9277 | 0.8678 | | 0.8062 | 4.11 | 600 | 0.8200 | 0.7776 | | 0.5983 | 5.48 | 800 | 0.6829 | 0.7161 | | 0.4863 | 6.85 | 1000 | 0.6205 | 0.6507 | | 0.407 | 8.22 | 1200 | 0.6519 | 0.6763 | | 0.3641 | 9.59 | 1400 | 0.5771 | 0.6088 | | 0.3291 | 10.96 | 1600 | 0.6548 | 0.6202 | | 0.2905 | 12.33 | 1800 | 0.6538 | 0.5828 | | 0.2613 | 13.7 | 2000 | 0.6281 | 0.5864 | | 0.2354 | 15.07 | 2200 | 0.5936 | 0.5630 | | 0.2145 | 16.44 | 2400 | 0.5877 | 0.5699 | | 0.2008 | 17.81 | 2600 | 0.5469 | 0.5488 | | 0.1751 | 19.18 | 2800 | 0.6453 | 0.5584 | | 0.169 | 20.55 | 3000 | 0.5871 | 0.5357 | | 0.1521 | 21.92 | 3200 | 0.6063 | 0.5318 | | 0.1426 | 23.29 | 3400 | 0.5609 | 0.5171 | | 0.1287 | 24.66 | 3600 | 0.6056 | 0.5126 | | 0.1236 | 26.03 | 3800 | 0.5994 | 0.5074 | | 0.1138 | 27.4 | 4000 | 0.5980 | 0.4944 | | 0.1083 | 28.77 | 4200 | 0.5980 | 0.4949 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
PeritusDux/DialoGPT-small-rick
f4d4296412803f26ee9b7523e5a9c91643e5df9c
2022-05-22T05:58:04.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
PeritusDux
null
PeritusDux/DialoGPT-small-rick
1
null
transformers
32,088
--- tags: - conversational --- # Rick DialoGPT Model
chrisvinsen/wav2vec2-2
463264a1fca27bf2ae62d8f6aee39352a9bc8595
2022-05-22T09:19:16.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
chrisvinsen
null
chrisvinsen/wav2vec2-2
1
null
transformers
32,089
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-2 This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.9253 - Wer: 0.8133 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 400 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 8.4469 | 0.34 | 200 | 3.7440 | 1.0 | | 3.1152 | 0.69 | 400 | 3.3755 | 1.0 | | 2.9228 | 1.03 | 600 | 3.0427 | 1.0 | | 2.8661 | 1.38 | 800 | 2.9406 | 1.0 | | 2.8402 | 1.72 | 1000 | 2.9034 | 1.0 | | 2.8301 | 2.07 | 1200 | 2.8850 | 1.0 | | 2.8088 | 2.41 | 1400 | 2.8479 | 1.0 | | 2.6892 | 2.75 | 1600 | 2.5800 | 1.0 | | 2.3249 | 3.1 | 1800 | 2.1310 | 1.0 | | 1.9687 | 3.44 | 2000 | 1.7652 | 0.9982 | | 1.7338 | 3.79 | 2200 | 1.5430 | 0.9974 | | 1.5698 | 4.13 | 2400 | 1.3927 | 0.9985 | | 1.4475 | 4.48 | 2600 | 1.3186 | 0.9911 | | 1.3764 | 4.82 | 2800 | 1.2406 | 0.9647 | | 1.3022 | 5.16 | 3000 | 1.1954 | 0.9358 | | 1.2409 | 5.51 | 3200 | 1.1450 | 0.8990 | | 1.1989 | 5.85 | 3400 | 1.1107 | 0.8794 | | 1.1478 | 6.2 | 3600 | 1.0839 | 0.8667 | | 1.106 | 6.54 | 3800 | 1.0507 | 0.8573 | | 1.0792 | 6.88 | 4000 | 1.0179 | 0.8463 | | 1.0636 | 7.23 | 4200 | 0.9974 | 0.8355 | | 1.0224 | 7.57 | 4400 | 0.9757 | 0.8343 | | 1.0166 | 7.92 | 4600 | 0.9641 | 0.8261 | | 0.9925 | 8.26 | 4800 | 0.9553 | 0.8183 | | 0.9934 | 8.61 | 5000 | 0.9466 | 0.8199 | | 0.9741 | 8.95 | 5200 | 0.9353 | 0.8172 | | 0.9613 | 9.29 | 5400 | 0.9331 | 0.8133 | | 0.9714 | 9.64 | 5600 | 0.9272 | 0.8144 | | 0.9593 | 9.98 | 5800 | 0.9253 | 0.8133 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
versae/roberta-base-bne-finetuned-recores2
382fd992890fedd5ba3c226422a07c3c119a8a82
2022-05-22T08:32:49.000Z
[ "pytorch", "tensorboard", "roberta", "multiple-choice", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
multiple-choice
false
versae
null
versae/roberta-base-bne-finetuned-recores2
1
null
transformers
32,090
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: roberta-base-bne-finetuned-recores2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-bne-finetuned-recores2 This model is a fine-tuned version of [PlanTL-GOB-ES/roberta-base-bne](https://huggingface.co/PlanTL-GOB-ES/roberta-base-bne) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 8.9761 - Accuracy: 0.3113 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 25 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 1.6094 | 1.0 | 1047 | 1.6094 | 0.2259 | | 1.6094 | 2.0 | 2094 | 1.6094 | 0.2121 | | 1.6094 | 3.0 | 3141 | 1.6094 | 0.2314 | | 1.6094 | 4.0 | 4188 | 1.6094 | 0.1956 | | 1.6094 | 5.0 | 5235 | 1.6094 | 0.2121 | | 1.6121 | 6.0 | 6282 | 1.6094 | 0.1818 | | 1.6094 | 7.0 | 7329 | 1.6094 | 0.2259 | | 1.6092 | 8.0 | 8376 | 1.6094 | 0.1736 | | 1.6094 | 9.0 | 9423 | 1.6094 | 0.1956 | | 1.6094 | 10.0 | 10470 | 1.6094 | 0.1736 | | 1.6094 | 11.0 | 11517 | 1.6094 | 0.1983 | | 1.6094 | 12.0 | 12564 | 1.6094 | 0.2176 | | 1.6094 | 13.0 | 13611 | 1.6094 | 0.1928 | | 1.6096 | 14.0 | 14658 | 1.6094 | 0.1846 | | 1.6145 | 15.0 | 15705 | 1.6094 | 0.2066 | | 1.6094 | 16.0 | 16752 | 1.6022 | 0.2121 | | 1.8471 | 17.0 | 17799 | 1.6101 | 0.1763 | | 2.8148 | 18.0 | 18846 | 2.7585 | 0.2452 | | 2.5445 | 19.0 | 19893 | 2.4576 | 0.2920 | | 1.9972 | 20.0 | 20940 | 3.6002 | 0.2865 | | 1.9844 | 21.0 | 21987 | 5.3809 | 0.3168 | | 2.849 | 22.0 | 23034 | 7.2230 | 0.3140 | | 1.4208 | 23.0 | 24081 | 8.0602 | 0.2975 | | 0.4045 | 24.0 | 25128 | 8.2947 | 0.3058 | | 0.3052 | 25.0 | 26175 | 8.9761 | 0.3113 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
ak987/distilbert-base-uncased-finetuned-squad
9e343df85f923b1c28f9f140001b1b828e0292b0
2022-05-22T13:07:19.000Z
[ "pytorch", "tensorboard", "distilbert", "question-answering", "dataset:squad", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
question-answering
false
ak987
null
ak987/distilbert-base-uncased-finetuned-squad
1
null
transformers
32,091
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: distilbert-base-uncased-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-squad This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the squad dataset. It achieves the following results on the evaluation set: - Loss: 1.1576 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 1.2253 | 1.0 | 5533 | 1.1728 | | 0.9685 | 2.0 | 11066 | 1.1400 | | 0.7604 | 3.0 | 16599 | 1.1576 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
abhilashawasthi/bert-base-uncased_dish_descriptions_128
5ba365d571ae822a60f8f31a6cd310ce017bbfe6
2022-05-22T12:14:38.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
abhilashawasthi
null
abhilashawasthi/bert-base-uncased_dish_descriptions_128
1
null
transformers
32,092
Entry not found
chrisvinsen/wav2vec2-3
c46db718f8d008dd8ba3457112a72df18b4719e5
2022-05-22T13:15:00.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
chrisvinsen
null
chrisvinsen/wav2vec2-3
1
null
transformers
32,093
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-3 This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.1124 - Wer: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 400 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:---:| | 3.7797 | 0.34 | 200 | 3.0703 | 1.0 | | 2.8701 | 0.69 | 400 | 3.3128 | 1.0 | | 2.8695 | 1.03 | 600 | 3.1333 | 1.0 | | 2.8634 | 1.38 | 800 | 3.1634 | 1.0 | | 2.8629 | 1.72 | 1000 | 3.0432 | 1.0 | | 2.8652 | 2.07 | 1200 | 3.0300 | 1.0 | | 2.8602 | 2.41 | 1400 | 3.1894 | 1.0 | | 2.8622 | 2.75 | 1600 | 3.1950 | 1.0 | | 2.8606 | 3.1 | 1800 | 3.0656 | 1.0 | | 2.8605 | 3.44 | 2000 | 3.0614 | 1.0 | | 2.8595 | 3.79 | 2200 | 3.0697 | 1.0 | | 2.8504 | 4.13 | 2400 | 3.1404 | 1.0 | | 2.8553 | 4.48 | 2600 | 3.0682 | 1.0 | | 2.8585 | 4.82 | 2800 | 3.1393 | 1.0 | | 2.8567 | 5.16 | 3000 | 3.1013 | 1.0 | | 2.8539 | 5.51 | 3200 | 3.0740 | 1.0 | | 2.8588 | 5.85 | 3400 | 3.0616 | 1.0 | | 2.8509 | 6.2 | 3600 | 3.1032 | 1.0 | | 2.8589 | 6.54 | 3800 | 3.1348 | 1.0 | | 2.8505 | 6.88 | 4000 | 3.1514 | 1.0 | | 2.8548 | 7.23 | 4200 | 3.1319 | 1.0 | | 2.8466 | 7.57 | 4400 | 3.1412 | 1.0 | | 2.8549 | 7.92 | 4600 | 3.1235 | 1.0 | | 2.8532 | 8.26 | 4800 | 3.0751 | 1.0 | | 2.8548 | 8.61 | 5000 | 3.0946 | 1.0 | | 2.8513 | 8.95 | 5200 | 3.0840 | 1.0 | | 2.845 | 9.29 | 5400 | 3.0896 | 1.0 | | 2.8592 | 9.64 | 5600 | 3.1055 | 1.0 | | 2.8453 | 9.98 | 5800 | 3.1124 | 1.0 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
moghis/xlm-roberta-base-finetuned-panx-it
de733f40e22bea6f31d08b9cecc0ba3bdc1b4f3d
2022-05-22T12:33:39.000Z
[ "pytorch", "xlm-roberta", "token-classification", "dataset:xtreme", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
token-classification
false
moghis
null
moghis/xlm-roberta-base-finetuned-panx-it
1
null
transformers
32,094
--- license: mit tags: - generated_from_trainer datasets: - xtreme model-index: - name: xlm-roberta-base-finetuned-panx-it results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-it This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.2380 - F1 Score: 0.8289 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 Score | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.7058 | 1.0 | 70 | 0.3183 | 0.7480 | | 0.2808 | 2.0 | 140 | 0.2647 | 0.8070 | | 0.1865 | 3.0 | 210 | 0.2380 | 0.8289 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
abhilashawasthi/bert-base-uncased_dish_descriptions_128_0.5M
07fe3104e47b094ccdee0e426440ba6c9d011278
2022-05-22T15:39:27.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
abhilashawasthi
null
abhilashawasthi/bert-base-uncased_dish_descriptions_128_0.5M
1
null
transformers
32,095
Entry not found
Leizhang/xlm-roberta-base-finetuned-panx-de-fr
a0b662643bfcacd9d19afd942cc1034dfa68c950
2022-05-22T13:45:12.000Z
[ "pytorch", "xlm-roberta", "token-classification", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
token-classification
false
Leizhang
null
Leizhang/xlm-roberta-base-finetuned-panx-de-fr
1
null
transformers
32,096
--- license: mit tags: - generated_from_trainer metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de-fr results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de-fr This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1631 - F1: 0.8579 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2878 | 1.0 | 715 | 0.1840 | 0.8247 | | 0.1456 | 2.0 | 1430 | 0.1596 | 0.8473 | | 0.0925 | 3.0 | 2145 | 0.1631 | 0.8579 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.11.0+cu113 - Datasets 1.16.1 - Tokenizers 0.10.3
chrisvinsen/wav2vec2-4
9a3e87f51c05ff8061ea986df39a1d9021dd2b55
2022-05-22T16:29:51.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
chrisvinsen
null
chrisvinsen/wav2vec2-4
1
null
transformers
32,097
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-4 This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.1442 - Wer: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 400 - num_epochs: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:---:| | 5.1303 | 1.37 | 200 | 3.2783 | 1.0 | | 2.8798 | 2.74 | 400 | 3.1233 | 1.0 | | 2.8586 | 4.11 | 600 | 3.1612 | 1.0 | | 2.8613 | 5.48 | 800 | 3.1354 | 1.0 | | 2.8588 | 6.85 | 1000 | 3.2634 | 1.0 | | 2.8572 | 8.22 | 1200 | 3.0905 | 1.0 | | 2.8573 | 9.59 | 1400 | 3.2315 | 1.0 | | 2.8532 | 10.96 | 1600 | 3.0999 | 1.0 | | 2.8567 | 12.33 | 1800 | 3.1496 | 1.0 | | 2.8556 | 13.7 | 2000 | 3.1081 | 1.0 | | 2.8551 | 15.07 | 2200 | 3.1139 | 1.0 | | 2.8545 | 16.44 | 2400 | 3.1621 | 1.0 | | 2.8547 | 17.81 | 2600 | 3.1124 | 1.0 | | 2.8551 | 19.18 | 2800 | 3.1612 | 1.0 | | 2.854 | 20.55 | 3000 | 3.1052 | 1.0 | | 2.8542 | 21.92 | 3200 | 3.1558 | 1.0 | | 2.8544 | 23.29 | 3400 | 3.1370 | 1.0 | | 2.8546 | 24.66 | 3600 | 3.1616 | 1.0 | | 2.8563 | 26.03 | 3800 | 3.1366 | 1.0 | | 2.8514 | 27.4 | 4000 | 3.1434 | 1.0 | | 2.8543 | 28.77 | 4200 | 3.1442 | 1.0 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
fujiki/t5-v1_1-base-en2ja
2fb89098c6e7d312ce250551cd2ac561fb662388
2022-05-22T14:04:33.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
fujiki
null
fujiki/t5-v1_1-base-en2ja
1
null
transformers
32,098
Entry not found
spasis/bert-finetuned-squad
021a26ac11dd209dcc1805e83ed46f8b86f73cb3
2022-05-22T15:56:08.000Z
[ "pytorch", "bert", "question-answering", "dataset:squad", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
question-answering
false
spasis
null
spasis/bert-finetuned-squad
1
null
transformers
32,099
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: bert-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-squad This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.1 - Datasets 1.17.0 - Tokenizers 0.10.3