modelId
stringlengths
4
112
sha
stringlengths
40
40
lastModified
stringlengths
24
24
tags
sequence
pipeline_tag
stringclasses
29 values
private
bool
1 class
author
stringlengths
2
38
config
null
id
stringlengths
4
112
downloads
float64
0
36.8M
likes
float64
0
712
library_name
stringclasses
17 values
__index_level_0__
int64
0
38.5k
readme
stringlengths
0
186k
PSW/last-ut-pred-pre-train
ee1ffa8307e3eaffd85224088a2673876ed8bfcb
2022-04-18T03:11:33.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
PSW
null
PSW/last-ut-pred-pre-train
1
null
transformers
31,300
Entry not found
csikasote/xls-r-300m-bemba-10hrs
7ac202baf8c32cf17a60e51c71eab8e7c1fbacc6
2022-04-18T15:05:29.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
csikasote
null
csikasote/xls-r-300m-bemba-10hrs
1
null
transformers
31,301
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: xls-r-300m-bemba-10hrs results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xls-r-300m-bemba-10hrs This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3022 - Wer: 0.3976 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.4544 | 1.07 | 400 | 0.4912 | 0.6813 | | 0.662 | 2.14 | 800 | 0.3667 | 0.5690 | | 0.4601 | 3.22 | 1200 | 0.2792 | 0.4819 | | 0.3816 | 4.29 | 1600 | 0.2828 | 0.4608 | | 0.3012 | 5.36 | 2000 | 0.2881 | 0.4651 | | 0.2427 | 6.43 | 2400 | 0.2758 | 0.4219 | | 0.1888 | 7.51 | 2800 | 0.2743 | 0.4094 | | 0.1559 | 8.58 | 3200 | 0.2893 | 0.4021 | | 0.1203 | 9.65 | 3600 | 0.3022 | 0.3976 | ### Framework versions - Transformers 4.19.0.dev0 - Pytorch 1.10.0+cu111 - Datasets 2.1.0 - Tokenizers 0.12.1
ajaypyatha/sdsqna
7cb0f8c1595708e0c1c92ed0b2e322604d0586d6
2022-04-27T04:24:57.000Z
[ "pytorch", "distilbert", "question-answering", "transformers", "license:afl-3.0", "autotrain_compatible" ]
question-answering
false
ajaypyatha
null
ajaypyatha/sdsqna
1
null
transformers
31,302
--- license: afl-3.0 ---
eslamxm/AraBART-finetuned-ar-wikilingua
d392f1b9ba7ee8a34dde221d2e4ec7a4a02933b6
2022-04-18T10:01:00.000Z
[ "pytorch", "mbart", "text2text-generation", "dataset:wiki_lingua", "transformers", "summarization", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
summarization
false
eslamxm
null
eslamxm/AraBART-finetuned-ar-wikilingua
1
null
transformers
31,303
--- license: apache-2.0 tags: - summarization - generated_from_trainer datasets: - wiki_lingua model-index: - name: AraBART-finetuned-ar-wikilingua results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # AraBART-finetuned-ar-wikilingua This model is a fine-tuned version of [moussaKam/AraBART](https://huggingface.co/moussaKam/AraBART) on the wiki_lingua dataset. It achieves the following results on the evaluation set: - Loss: 3.9990 - Rouge-1: 23.82 - Rouge-2: 8.97 - Rouge-l: 21.05 - Gen Len: 19.06 - Bertscore: 72.08 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 250 - num_epochs: 8 - label_smoothing_factor: 0.1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge-1 | Rouge-2 | Rouge-l | Gen Len | Bertscore | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|:-------:|:-------:|:---------:| | 4.2331 | 1.0 | 5111 | 4.0713 | 21.42 | 7.69 | 19.08 | 18.79 | 71.22 | | 3.9438 | 2.0 | 10222 | 4.0251 | 23.1 | 8.63 | 20.59 | 18.41 | 71.86 | | 3.7372 | 3.0 | 15333 | 3.9744 | 22.98 | 8.47 | 20.3 | 19.2 | 71.74 | | 3.5782 | 4.0 | 20444 | 3.9680 | 23.37 | 8.67 | 20.79 | 18.93 | 71.85 | | 3.4509 | 5.0 | 25555 | 3.9643 | 23.42 | 8.85 | 20.71 | 19.33 | 71.88 | | 3.3471 | 6.0 | 30666 | 3.9831 | 23.41 | 8.75 | 20.69 | 19.18 | 71.97 | | 3.2673 | 7.0 | 35777 | 3.9917 | 23.93 | 9.13 | 21.16 | 19.0 | 72.11 | | 3.214 | 8.0 | 40888 | 3.9990 | 23.94 | 9.1 | 21.21 | 19.13 | 72.11 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.0+cu111 - Datasets 2.1.0 - Tokenizers 0.12.1
BFMeriem/model
337427975d539d95c1fd7ada5bcb7aea797745e8
2022-04-18T04:46:51.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
BFMeriem
null
BFMeriem/model
1
null
transformers
31,304
--- tags: - conversational --- #Michael Scott Chatbot
huggingtweets/buckeshot-onlinepete
806d8446dadb2aa262a0a6e42dc0256fa0518734
2022-04-18T07:25:28.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/buckeshot-onlinepete
1
null
transformers
31,305
--- language: en thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/456958582731603969/QZKpv6eI_400x400.jpeg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1492494175849353223/nhm3MajO_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">im pete online & BUCKSHOT</div> <div style="text-align: center; font-size: 14px;">@buckeshot-onlinepete</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from im pete online & BUCKSHOT. | Data | im pete online | BUCKSHOT | | --- | --- | --- | | Tweets downloaded | 3190 | 211 | | Retweets | 94 | 52 | | Short tweets | 1003 | 28 | | Tweets kept | 2093 | 131 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/my5myk60/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @buckeshot-onlinepete's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/b9ea5prx) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/b9ea5prx/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/buckeshot-onlinepete') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
PrajwalS/wav2vec2-large-960h-lv60-self-timit-fine-tuned
9d11d10da6b1bbf0ea19bbb8df1cc385209ed8c2
2022-04-21T07:17:16.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
PrajwalS
null
PrajwalS/wav2vec2-large-960h-lv60-self-timit-fine-tuned
1
null
transformers
31,306
Entry not found
rmihaylov/roberta-base-use-qa-bg
d141e8bbfce0d35906764659cd559659e92e9f44
2022-04-18T09:10:52.000Z
[ "pytorch", "xlm-roberta", "feature-extraction", "bg", "dataset:oscar", "dataset:chitanka", "dataset:wikipedia", "arxiv:2004.09813", "transformers", "torch", "license:mit", "sentence-similarity" ]
sentence-similarity
false
rmihaylov
null
rmihaylov/roberta-base-use-qa-bg
1
null
transformers
31,307
--- inference: false pipeline_tag: sentence-similarity language: - bg license: mit datasets: - oscar - chitanka - wikipedia tags: - torch --- # ROBERTA BASE (cased) trained on private Bulgarian-English parallel data This is a Multilingual Roberta model. It could be used for creating embeddings of Bulgarian sentences. Using the ideas from [Sentence-BERT](https://arxiv.org/abs/2004.09813), the training is based on the idea that a translated sentence should be mapped to the same location in the vector space as the original sentence. The teacher model is the [USE model by Google](https://aclanthology.org/D18-2029/). This model is cased: it does make a difference between bulgarian and Bulgarian. It was trained on private Bulgarian-English parallel data. ### How to use Here is how to use this model in PyTorch: ```python >>> import scipy >>> import torch >>> from transformers import AutoModel, AutoTokenizer >>> >>> model = AutoModel.from_pretrained('rmihaylov/roberta-base-use-qa-bg') >>> tokenizer = AutoTokenizer.from_pretrained('rmihaylov/roberta-base-use-qa-bg') >>> >>> query = "Какви са съставките на бисквитките?" >>> >>> answers = [ >>> "Бисквитката е печена или варена храна, която обикновено е малка, плоска и сладка.", >>> "Бисквитките обикновено съдържат брашно, захар и някакъв вид масло или мазнини. Те могат да включват други съставки като стафиди, овес, шоколадов чипс, ядки и др.", >>> "В повечето англоговорящи страни, с изключение на САЩ и Канада, хрупкавите бисквитки се наричат ​​бисквити.", >>> "Бисквитите Chewier понякога се наричат ​​бисквитки дори в Обединеното кралство. Някои бисквитки могат също да бъдат назовавани според формата им, като квадратчета с дата или барове.", >>> "Бисквитките или бисквитите могат да се произвеждат масово във фабрики, направени в малки пекарни или домашно приготвени.", >>> "Вариантите за бисквити или бисквити включват сандвич бисквити, като крем крем, Jammie Dodgers, Bourbons и Oreos, с пълнеж от ружа или конфитюр и понякога потопени в шоколад или друго сладко покритие.", >>> "Бисквитките често се сервират с напитки като мляко, кафе или чай.", >>> "Фабричните бисквитки се продават в магазини за хранителни стоки, магазини за удобство и автомати.", >>> "Американската употреба произлиза от холандското koekje „малка торта“, което е умалително от „koek“ („торта“), което произлиза от средно холандската дума „koke“.", >>> "Cookie Monster е Muppet в дългогодишното детско телевизионно шоу Sesame Street, който е най-известен с ненаситния си апетит към бисквитките и известните си фрази за ядене, като „Me want cookie!“, „Me eat cookie!“ (или просто „COOKIE!“) и „Om nom nom nom“ (казано през уста, пълна с храна).", >>> "Домашните бисквитки обикновено се правят от тесто, оформено на малки топчета и пуснато върху лист с бисквитки. След това се пекат във фурна за 5 до 15 минути, в зависимост от рецептата. Температурата на фурната варира от 250 до 350 градуса.", >>> "Повечето бисквитки със среден размер, ако са направени със захар, брашно и скъсяване, ще съдържат между 100 и 200 калории.", >>> ] >>> >>> query_embedding = model.question(**tokenizer.encode_plus(query, return_tensors='pt')).detach().numpy()[0] >>> >>> corpus, corpus_embeddings = [], [] >>> for answer in answers: >>> value_inputs = tokenizer.encode_plus(answer, answer, return_tensors='pt') >>> embedding = model.answer(**value_inputs).detach().numpy()[0] >>> corpus.append(answer) >>> corpus_embeddings.append(embedding) >>> >>> distances = scipy.spatial.distance.cdist([query_embedding], corpus_embeddings, "cosine")[0] >>> >>> results = zip(range(len(distances)), distances) >>> results = sorted(results, key=lambda x: x[1]) >>> >>> print([[corpus[idx].strip(), (1.0 - distance)] for idx, distance in results]) [['Бисквитките обикновено съдържат брашно, захар и някакъв вид масло или мазнини. Те могат да включват други съставки като стафиди, овес, шоколадов чипс, ядки и др.', 0.620301064877746], ['Бисквитката е печена или варена храна, която обикновено е малка, плоска и сладка.', 0.5696434424179133], ['Повечето бисквитки със среден размер, ако са направени със захар, брашно и скъсяване, ще съдържат между 100 и 200 калории.', 0.5496458499598336], ['Бисквитките или бисквитите могат да се произвеждат масово във фабрики, направени в малки пекарни или домашно приготвени.', 0.5365738121336622], ['Бисквитите Chewier понякога се наричат \u200b\u200bбисквитки дори в Обединеното кралство. Някои бисквитки могат също да бъдат назовавани според формата им, като квадратчета с дата или барове.', 0.5278547550921155], ['Вариантите за бисквити или бисквити включват сандвич бисквити, като крем крем, Jammie Dodgers, Bourbons и Oreos, с пълнеж от ружа или конфитюр и понякога потопени в шоколад или друго сладко покритие.', 0.5231947553588652], ['Фабричните бисквитки се продават в магазини за хранителни стоки, магазини за удобство и автомати.', 0.5222493948012543], ['В повечето англоговорящи страни, с изключение на САЩ и Канада, хрупкавите бисквитки се наричат \u200b\u200bбисквити.', 0.5185776999549867], ['Домашните бисквитки обикновено се правят от тесто, оформено на малки топчета и пуснато върху лист с бисквитки. След това се пекат във фурна за 5 до 15 минути, в зависимост от рецептата. Температурата на фурната варира от 250 до 350 градуса.', 0.5113299248563532], ['Cookie Monster е Muppet в дългогодишното детско телевизионно шоу Sesame Street, който е най-известен с ненаситния си апетит към бисквитките и известните си фрази за ядене, като „Me want cookie!“, „Me eat cookie!“ (или просто „COOKIE!“) и „Om nom nom nom“ (казано през уста, пълна с храна).', 0.4642001162793412], ['Бисквитките често се сервират с напитки като мляко, кафе или чай.', 0.44902199326988135], ['Американската употреба произлиза от холандското koekje „малка торта“, което е умалително от „koek“ („торта“), което произлиза от средно холандската дума „koke“.', 0.25256183690274214]] ```
orendar/en_he_roberta_shared
4b32ac5aa9f567c3dbab8a44441044a3c0c704af
2022-04-18T12:58:23.000Z
[ "pytorch", "encoder-decoder", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
orendar
null
orendar/en_he_roberta_shared
1
null
transformers
31,308
Entry not found
4m1g0/wav2vec2-large-xls-r-300m-gl-jupyter3
14a99f176151d42535d8f315bf5359be495765f5
2022-04-18T12:10:03.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
4m1g0
null
4m1g0/wav2vec2-large-xls-r-300m-gl-jupyter3
1
null
transformers
31,309
Entry not found
npleshkanov/dannysmirnov_toxicity_model
1b284645f954e98f713457117a943b735e06581d
2022-04-18T12:54:20.000Z
[ "pytorch", "bert", "transformers" ]
null
false
npleshkanov
null
npleshkanov/dannysmirnov_toxicity_model
1
null
transformers
31,310
Entry not found
ucabqfe/bigBird_AAE_bio
a5dde8c43f5122e0ebdc66cbb59a1986e753468d
2022-04-18T15:32:25.000Z
[ "pytorch", "big_bird", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
ucabqfe
null
ucabqfe/bigBird_AAE_bio
1
null
transformers
31,311
Entry not found
Tianle/bert-base-uncased-finetuned-squad
1b8b1c2456b7270049c5517b0fa89c54a0607e9a
2022-04-18T20:25:14.000Z
[ "pytorch", "tensorboard", "bert", "question-answering", "dataset:squad", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
question-answering
false
Tianle
null
Tianle/bert-base-uncased-finetuned-squad
1
null
transformers
31,312
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: bert-base-uncased-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-finetuned-squad This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the squad dataset. It achieves the following results on the evaluation set: - Loss: 1.1006 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.0275 | 1.0 | 5533 | 1.1006 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.0+cu111 - Datasets 2.1.0 - Tokenizers 0.12.1
StringCheese/Dialog-small-bigbang
1a38cef9485f666d45ff44f1745209dde5434c8b
2022-04-18T17:59:21.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
StringCheese
null
StringCheese/Dialog-small-bigbang
1
null
transformers
31,313
--- tags: - conversational --- # Big Bang Theory Dialog Model
ucabqfe/bigBird_AAE_bieo
6721406fb275217d976fe8dc60782045e6a6c4c2
2022-04-18T18:09:50.000Z
[ "pytorch", "big_bird", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
ucabqfe
null
ucabqfe/bigBird_AAE_bieo
1
null
transformers
31,314
Entry not found
ucabqfe/bigBird_AAE_io
bbb7a271f992583d2e89ea76954a09409937a394
2022-04-18T18:11:18.000Z
[ "pytorch", "big_bird", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
ucabqfe
null
ucabqfe/bigBird_AAE_io
1
null
transformers
31,315
Entry not found
ucabqfe/bigBird_PER_bieo
2d7c2b7ccf945de57394dac10bf1589e12bf2fb8
2022-04-18T18:16:30.000Z
[ "pytorch", "big_bird", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
ucabqfe
null
ucabqfe/bigBird_PER_bieo
1
null
transformers
31,316
Entry not found
zoha/wav2vec2-base-common-voice-fa-demo-colab
399f053bb802d6413c5af61d0350ac4912263c4d
2022-04-29T21:09:20.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
zoha
null
zoha/wav2vec2-base-common-voice-fa-demo-colab
1
null
transformers
31,317
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base-common-voice-fa-demo-colab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-common-voice-fa-demo-colab This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.0558 - Wer: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:---:| | 5.1626 | 0.3 | 100 | 4.0692 | 1.0 | | 5.1776 | 0.6 | 200 | 3.6640 | 1.0 | | 3.6628 | 0.9 | 300 | 3.3832 | 1.0 | | 3.2022 | 1.2 | 400 | 3.3492 | 1.0 | | 3.1714 | 1.5 | 500 | 3.3215 | 1.0 | | 3.0689 | 1.8 | 600 | 3.0806 | 1.0 | | 3.1478 | 2.1 | 700 | 3.0624 | 1.0 | | 3.1818 | 2.4 | 800 | 3.0777 | 1.0 | | 3.159 | 2.7 | 900 | 3.0558 | 1.0 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu113 - Datasets 1.18.3 - Tokenizers 0.10.3
TJKlein/distilbert-base-uncased-finetuned-ner
647ec4a158c4d2745ad4df4da6d76cd91687c8a6
2022-04-18T23:32:29.000Z
[ "pytorch", "tensorboard", "distilbert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
TJKlein
null
TJKlein/distilbert-base-uncased-finetuned-ner
1
null
transformers
31,318
Entry not found
samwell/marian-finetuned-kde4-en-to-fr
d752c764a2adc4f77d44488cdf2550f8bc9d2448
2022-04-18T23:53:11.000Z
[ "pytorch", "tensorboard", "marian", "text2text-generation", "transformers", "translation", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
translation
false
samwell
null
samwell/marian-finetuned-kde4-en-to-fr
1
null
transformers
31,319
--- license: apache-2.0 tags: - translation - generated_from_trainer metrics: - bleu model-index: - name: marian-finetuned-kde4-en-to-fr results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # marian-finetuned-kde4-en-to-fr This model is a fine-tuned version of [Helsinki-NLP/opus-mt-en-fr](https://huggingface.co/Helsinki-NLP/opus-mt-en-fr) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.2663 - Bleu: 0.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.0+cu111 - Datasets 2.1.0 - Tokenizers 0.12.1
KevinChoi/bert-finetuned-squad
74b32411460f85ad338f740b5e3dd4a987e800be
2022-04-19T09:27:21.000Z
[ "pytorch", "bert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
KevinChoi
null
KevinChoi/bert-finetuned-squad
1
null
transformers
31,320
Entry not found
KevinChoi/bert-finetuned-squad-accelerate
f356e0224a4546bc42e3521e2e5e5015b74b288f
2022-04-19T13:05:47.000Z
[ "pytorch", "bert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
KevinChoi
null
KevinChoi/bert-finetuned-squad-accelerate
1
null
transformers
31,321
Entry not found
PSW/max_sim_del
fb4ed4960def1b150d503daf54f6c66bca7846ef
2022-04-19T12:27:14.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
PSW
null
PSW/max_sim_del
1
null
transformers
31,322
Entry not found
rmihaylov/pegasus-base-qag-bg
04c853ec47297b4a62504caa267c7160713ddea6
2022-04-19T14:54:31.000Z
[ "pytorch", "pegasus", "text2text-generation", "bg", "dataset:oscar", "dataset:chitanka", "dataset:wikipedia", "arxiv:1912.08777", "transformers", "torch", "license:mit", "autotrain_compatible" ]
text2text-generation
false
rmihaylov
null
rmihaylov/pegasus-base-qag-bg
1
null
transformers
31,323
--- inference: false language: - bg license: mit datasets: - oscar - chitanka - wikipedia tags: - torch --- # PEGASUS BASE This model was pretrained on Bulgarian language. It was intorduced in [this paper](https://arxiv.org/pdf/1912.08777.pdf). ## Model description The training data is private Bulgarian squad data. ## Intended uses & limitations You can use the raw model for generation of question-answer pairs related with given Bulgarian text. ### How to use Here is how to use this model in PyTorch: ```python >>> from transformers import PegasusForConditionalGeneration, AlbertTokenizer >>> >>> model_id = "rmihaylov/pegasus-base-qag-bg" >>> model = PegasusForConditionalGeneration.from_pretrained(model_id) >>> tokenizer = AlbertTokenizer.from_pretrained(model_id) >>> >>> text = """Това, че някой може да заяви на най-силен глас исканията си, не означава те да бъдат удовлетворени, заяви Костадин Ангелов. Той допълни, че приоритетите на властите са здравето, образование и спорта, давайки знак, че се търси разхлабване на мерките в болничните заведения, връщането на учениците в класните стаи и отварянето на обектите за масов спорт. """ >>> >>> inputs = tokenizer.encode_plus( >>> text, >>> return_tensors='pt', >>> truncation=True, >>> max_length=512, >>> return_token_type_ids=False, >>> return_attention_mask=True) >>> >>> outputs = model.generate(**inputs, >>> max_length=150, >>> top_p=0.95, >>> top_k=20, >>> do_sample=True, >>> num_return_sequences=10, >>> num_beams=1, >>> eos_token_id=50259, >>> decoder_start_token_id=50257, >>> return_dict_in_generate=True, >>> output_scores=True) >>> >>> for g in outputs.sequences: >>> text_gen = tokenizer.decode(g, skip_special_tokens=False) >>> >>> if ('[SEP]' not in text_gen) or ('[MASK]' not in text_gen) or ('[CLS]' not in text_gen): >>> continue >>> >>> question, answer = text_gen.replace('[CLS]', '').strip().split('[SEP]') >>> answer = answer.split('[MASK]')[0].strip() >>> >>> if (not answer) or (answer not in text) or (len(answer) <= 1): >>> continue >>> >>> print(f'{question.strip()}\n{answer.strip()}', '\n\n') Какво трябва да се предприеме, за да се случи? разхлабване Какви са приоритетите на управляващите? здравето, образование и спорта, Какви усилия има правителството за стимулиране на раждаемостта? разхлабване на мерките Какъв е основният проблем, който може да реши? образование ```
PSW/min_sim_del
d00227f9c376e5986ea008ecbe6be72df5bf6296
2022-04-19T13:18:08.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
PSW
null
PSW/min_sim_del
1
null
transformers
31,324
Entry not found
jamie613/xlm-roberta-base-finetuned-panx-de
485545e8ecc330c743750418467b2a433c02e8a8
2022-05-13T07:27:12.000Z
[ "pytorch", "tensorboard", "xlm-roberta", "token-classification", "dataset:xtreme", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
token-classification
false
jamie613
null
jamie613/xlm-roberta-base-finetuned-panx-de
1
null
transformers
31,325
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme args: PAN-X.de metrics: - name: F1 type: f1 value: 0.8654425558524246 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.1334 - F1: 0.8654 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2541 | 1.0 | 525 | 0.1596 | 0.8242 | | 0.1284 | 2.0 | 1050 | 0.1360 | 0.8499 | | 0.0827 | 3.0 | 1575 | 0.1334 | 0.8654 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.11.0+cu113 - Datasets 1.16.1 - Tokenizers 0.10.3
PBusienei/Nashville_Analytics_Summit_conference_helper
b6b7060dc673b117920eac21a6be1d94832f4119
2022-04-19T13:58:57.000Z
[ "pytorch", "bert", "feature-extraction", "sentence-transformers", "sentence-similarity" ]
sentence-similarity
false
PBusienei
null
PBusienei/Nashville_Analytics_Summit_conference_helper
1
null
sentence-transformers
31,326
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity --- # Conference Helper This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 384 dimensional dense vector space and was designed for **semantic search**. It has been trained on 215M (question, answer) pairs from diverse sources. ## Usage (Sentence-Transformers) The usage of this model is easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Thus the model can be used as: ```python from sentence_transformers import SentenceTransformer, util query = "Health Analytics?" docs = ["The output is 3 top most similar sessions from the summit"] #Load the model model = SentenceTransformer('sentence-transformers/multi-qa-MiniLM-L6-cos-v1') #Encode query and documents query_emb = model.encode(query) doc_emb = model.encode(docs) #Compute dot score between query and all document embeddings scores = util.dot_score(query_emb, doc_emb)[0].cpu().tolist() #Combine docs & scores doc_score_pairs = list(zip(docs, scores)) #Sort by decreasing score doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True) #Output passages & scores for doc, score in doc_score_pairs: print(score, doc) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can take the following steps: 1. Pass input through the transformer model, 2. Apply the correct pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch import torch.nn.functional as F #Mean Pooling - Take average of all tokens def mean_pooling(model_output, attention_mask): token_embeddings = model_output.last_hidden_state #The first element of model_output containing all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) #Encode text def encode(texts): # Tokenize sentences encoded_input = tokenizer(texts, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input, return_dict=True) # Perform pooling embeddings = mean_pooling(model_output, encoded_input['attention_mask']) # Normalize embeddings embeddings = F.normalize(embeddings, p=2, dim=1) return embeddings # Sentences we want sentence embeddings for query = "Health Analytics?" docs = ["The output is 3 top most similar sessions from the summit"] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained("sentence-transformers/multi-qa-MiniLM-L6-cos-v1") model = AutoModel.from_pretrained("sentence-transformers/multi-qa-MiniLM-L6-cos-v1") #Encode query and docs query_emb = encode(query) doc_emb = encode(docs) #Compute dot score between query and all document embeddings scores = torch.mm(query_emb, doc_emb.transpose(0, 1))[0].cpu().tolist() #Combine docs & scores doc_score_pairs = list(zip(docs, scores)) #Sort by decreasing score doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True) #Output passages & scores for doc, score in doc_score_pairs: print(score, doc) ``` ## Technical Details In the following some technical details how this model must be used: | Setting | Value | | --- | :---: | | Dimensions | 384 | | Produces normalized embeddings | Yes | | Pooling-Method | Mean pooling | | Suitable score functions | dot-product (`util.dot_score`), cosine-similarity (`util.cos_sim`), or euclidean distance | Note: When loaded with `sentence-transformers`, this model produces normalized embeddings with length 1. In that case, dot-product and cosine-similarity are equivalent. dot-product is preferred as it is faster. Euclidean distance is proportional to dot-product and can also be used. ---- ## Background The project aims to train sentence embedding models on very large sentence level datasets using a self-supervised contrastive learning objective. We use a contrastive learning objective: given a sentence from the pair, the model should predict which out of a set of randomly sampled other sentences, was actually paired with it in our dataset. ## Intended uses The model is intended to be used for semantic search at Nashville Analytics Summit: It encodes queries / questions and text paragraphs in a dense vector space. It finds relevant documents for the given passages. Note that there is a limit of 512 word pieces: Text longer than that will be truncated. Further note that the model was just trained on input text up to 250 word pieces. It might not work well for longer text. ## Training procedure The full training script is accessible in: `train_script.py`. ### Pre-training The pretrained [`nreimers/MiniLM-L6-H384-uncased`](https://huggingface.co/nreimers/MiniLM-L6-H384-uncased) model. #### Training We use the concatenation from multiple datasets to fine-tune our model. In total we have about 215M (question, answer) pairs. We sampled each dataset given a weighted probability which configuration is detailed in the `data_config.json` file. The model was trained with [MultipleNegativesRankingLoss](https://www.sbert.net/docs/package_reference/losses.html#multiplenegativesrankingloss) using Mean-pooling, cosine-similarity as similarity function, and a scale of 20.
tartuNLP/est-roberta-hist-ner
7cfffaf8114f34025ffd4e8b4dc143c2a66098ce
2022-06-29T08:48:58.000Z
[ "pytorch", "camembert", "token-classification", "et", "transformers", "license:cc-by-sa-4.0", "autotrain_compatible" ]
token-classification
false
tartuNLP
null
tartuNLP/est-roberta-hist-ner
1
null
transformers
31,327
--- language: et license: cc-by-sa-4.0 inference: false --- # est-roberta-hist-ner ## Model description est-roberta-hist-ner is an [Est-RoBERTa](https://huggingface.co/EMBEDDIA/est-roberta) based model fine-tuned for named entity recognition in Estonian 19th century parish court records (for details, see [this repository](https://github.com/soras/vk_ner_lrec_2022)). The following types of entities are recognized: person names (PER), ambiguous locations-organizations (LOC_ORG), locations (LOC), organizations (ORG) and MISC (miscellaneous names). ## How to use Recommended usage of the model is with approriate pre- and postprocessing by EstNLTK. For an usage example, see this tutorial: [https://github.com/soras/vk\_ner\_lrec\_2022/blob/main/using\_bert\_ner\_tagger.ipynb](https://github.com/soras/vk_ner_lrec_2022/blob/main/using_bert_ner_tagger.ipynb) ## Citation If you use this model in your work, please cite us as follows: @InProceedings{orasmaa-EtAl:2022:LREC, author = {Orasmaa, Siim and Muischnek, Kadri and Poska, Kristjan and Edela, Anna}, title = {Named Entity Recognition in Estonian 19th Century Parish Court Records}, booktitle = {Proceedings of the Language Resources and Evaluation Conference}, month = {June}, year = {2022}, address = {Marseille, France}, publisher = {European Language Resources Association}, pages = {5304--5313}, url = {https://aclanthology.org/2022.lrec-1.568} }
PSW/min_sim_del_seed1
3c88c1269c1c0e60a2af1b1a5167938303d933eb
2022-04-19T14:15:07.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
PSW
null
PSW/min_sim_del_seed1
1
null
transformers
31,328
Entry not found
GPL/newsqa-msmarco-distilbert-gpl
9322db85ca404ea49623675d4b50ba832fdbf0a0
2022-04-19T15:14:23.000Z
[ "pytorch", "distilbert", "feature-extraction", "sentence-transformers", "sentence-similarity", "transformers" ]
sentence-similarity
false
GPL
null
GPL/newsqa-msmarco-distilbert-gpl
1
null
sentence-transformers
31,329
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 140000 with parameters: ``` {'batch_size': 32, 'sampler': 'torch.utils.data.sampler.SequentialSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `gpl.toolkit.loss.MarginDistillationLoss` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": 140000, "warmup_steps": 1000, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 350, 'do_lower_case': False}) with Transformer model: DistilBertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
GPL/nq-msmarco-distilbert-gpl
50f21a6219c7565c1323b7ef1d95f084b7761ae7
2022-04-19T15:15:00.000Z
[ "pytorch", "distilbert", "feature-extraction", "sentence-transformers", "sentence-similarity", "transformers" ]
sentence-similarity
false
GPL
null
GPL/nq-msmarco-distilbert-gpl
1
null
sentence-transformers
31,330
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 140000 with parameters: ``` {'batch_size': 32, 'sampler': 'torch.utils.data.sampler.SequentialSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `gpl.toolkit.loss.MarginDistillationLoss` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": 140000, "warmup_steps": 1000, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 350, 'do_lower_case': False}) with Transformer model: DistilBertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
GPL/signal1m-msmarco-distilbert-gpl
be2a6c5783a9afc0dfdf4b2308a8ec21cad151fc
2022-04-19T15:15:37.000Z
[ "pytorch", "distilbert", "feature-extraction", "sentence-transformers", "sentence-similarity", "transformers" ]
sentence-similarity
false
GPL
null
GPL/signal1m-msmarco-distilbert-gpl
1
null
sentence-transformers
31,331
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 140000 with parameters: ``` {'batch_size': 32, 'sampler': 'torch.utils.data.sampler.SequentialSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `gpl.toolkit.loss.MarginDistillationLoss` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": 140000, "warmup_steps": 1000, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 350, 'do_lower_case': False}) with Transformer model: DistilBertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
GPL/scidocs-msmarco-distilbert-gpl
9ed45cb4912339b5dad97c0a022f9a8d234b822b
2022-04-19T15:16:34.000Z
[ "pytorch", "distilbert", "feature-extraction", "sentence-transformers", "sentence-similarity", "transformers" ]
sentence-similarity
false
GPL
null
GPL/scidocs-msmarco-distilbert-gpl
1
null
sentence-transformers
31,332
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 140000 with parameters: ``` {'batch_size': 32, 'sampler': 'torch.utils.data.sampler.SequentialSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `gpl.toolkit.loss.MarginDistillationLoss` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": 140000, "warmup_steps": 1000, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 350, 'do_lower_case': False}) with Transformer model: DistilBertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
GPL/dbpedia-entity-tsdae-msmarco-distilbert-margin-mse
d6124db76758ea4c9de6547c8a22270989cf057f
2022-04-19T16:43:18.000Z
[ "pytorch", "distilbert", "feature-extraction", "transformers" ]
feature-extraction
false
GPL
null
GPL/dbpedia-entity-tsdae-msmarco-distilbert-margin-mse
1
null
transformers
31,333
Entry not found
GPL/nq-tsdae-msmarco-distilbert-margin-mse
44ae3ed343790853afcb68efe3d9e858164e60ea
2022-04-19T16:44:50.000Z
[ "pytorch", "distilbert", "feature-extraction", "transformers" ]
feature-extraction
false
GPL
null
GPL/nq-tsdae-msmarco-distilbert-margin-mse
1
null
transformers
31,334
Entry not found
GPL/signal1m-tsdae-msmarco-distilbert-margin-mse
fe18a5eed63f0903399e2e06e9ae98ecb7f6b755
2022-04-19T16:46:08.000Z
[ "pytorch", "distilbert", "feature-extraction", "transformers" ]
feature-extraction
false
GPL
null
GPL/signal1m-tsdae-msmarco-distilbert-margin-mse
1
null
transformers
31,335
Entry not found
GPL/bioasq-tsdae-msmarco-distilbert-margin-mse
eafe1fb1ac2d6c35da757addc3443a28c8e0e75a
2022-04-19T16:48:37.000Z
[ "pytorch", "distilbert", "feature-extraction", "transformers" ]
feature-extraction
false
GPL
null
GPL/bioasq-tsdae-msmarco-distilbert-margin-mse
1
null
transformers
31,336
Entry not found
robkayinto/xlm-roberta-base-finetuned-panx-de-fr
b9b5e946b7808e1589e6db297d68f8c9b2d5e9f8
2022-07-13T17:45:25.000Z
[ "pytorch", "xlm-roberta", "token-classification", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
token-classification
false
robkayinto
null
robkayinto/xlm-roberta-base-finetuned-panx-de-fr
1
null
transformers
31,337
--- license: mit tags: - generated_from_trainer metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de-fr results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de-fr This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1654 - F1: 0.8590 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2845 | 1.0 | 715 | 0.1831 | 0.8249 | | 0.1449 | 2.0 | 1430 | 0.1643 | 0.8479 | | 0.0929 | 3.0 | 2145 | 0.1654 | 0.8590 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.12.0+cu113 - Datasets 1.16.1 - Tokenizers 0.10.3
crystina-z/mdpr-tied-nq
6d2f749155429e4738afd191b86bb4594e1528cb
2022-04-19T18:39:42.000Z
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
false
crystina-z
null
crystina-z/mdpr-tied-nq
1
null
transformers
31,338
Entry not found
kniemiec/test
b29d144181bc8eb1e28bbb0969e8344c7d1c6beb
2022-04-19T20:39:56.000Z
[ "pytorch", "segformer", "transformers" ]
null
false
kniemiec
null
kniemiec/test
1
null
transformers
31,339
Entry not found
jqsl2012/layoutlmv2-cord-test
591fac28f32b9f7cb551ec9a344218b7b8a4bc50
2022-04-20T07:00:26.000Z
[ "pytorch", "layoutlmv2", "token-classification", "transformers", "license:apache-2.0", "autotrain_compatible" ]
token-classification
false
jqsl2012
null
jqsl2012/layoutlmv2-cord-test
1
null
transformers
31,340
--- license: apache-2.0 ---
PSW/max_sim_del_seed1
6eb9168411cbfdb5a289175965dec87f32cfcfd9
2022-04-20T03:58:25.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
PSW
null
PSW/max_sim_del_seed1
1
null
transformers
31,341
Entry not found
scasutt/wav2vec2-large-xlsr-53_toy_train_fast_masked_augment_random_noise_slow_fast_high_low
7f07aae8f7f98ffc25a607c44960a79b46fe5730
2022-04-20T13:35:58.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
scasutt
null
scasutt/wav2vec2-large-xlsr-53_toy_train_fast_masked_augment_random_noise_slow_fast_high_low
1
null
transformers
31,342
Entry not found
PSW/half_sim_del_seed1
0dacc106ac56a88fa943d708bb01fa81d60d0617
2022-04-20T06:55:56.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
PSW
null
PSW/half_sim_del_seed1
1
null
transformers
31,343
Entry not found
PSW/half_sim_del
1b85bebfa6b2ec254432ea7d39b22e530cf3e84b
2022-04-20T08:28:34.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
PSW
null
PSW/half_sim_del
1
null
transformers
31,344
Entry not found
DongHyoungLee/bluebert-base-uncased-tokenclassification-2layers
43fe96c8b244690509b069e7223b937d9a6c2e24
2022-04-20T08:25:49.000Z
[ "pytorch", "bert", "transformers" ]
null
false
DongHyoungLee
null
DongHyoungLee/bluebert-base-uncased-tokenclassification-2layers
1
null
transformers
31,345
Entry not found
MeshalAlamr/wav2vec2-large-xls-r-300m-ar-2
0d207a74c3302e149492fdf26af2d451b740afb1
2022-04-21T06:54:05.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "dataset:common_voice", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
MeshalAlamr
null
MeshalAlamr/wav2vec2-large-xls-r-300m-ar-2
1
null
transformers
31,346
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice model-index: - name: wav2vec2-large-xls-r-300m-ar-2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-ar-2 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.4764 - Wer: 0.3073 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 1.0851 | 1.18 | 400 | 0.5614 | 0.4888 | | 0.691 | 2.35 | 800 | 0.6557 | 0.5558 | | 0.6128 | 3.53 | 1200 | 0.5852 | 0.5070 | | 0.543 | 4.71 | 1600 | 0.5591 | 0.4838 | | 0.5185 | 5.88 | 2000 | 0.6649 | 0.5514 | | 0.4816 | 7.06 | 2400 | 0.5598 | 0.4689 | | 0.4336 | 8.24 | 2800 | 0.5384 | 0.4515 | | 0.405 | 9.41 | 3200 | 0.4987 | 0.4138 | | 0.3811 | 10.59 | 3600 | 0.5427 | 0.4644 | | 0.3539 | 11.76 | 4000 | 0.4881 | 0.4159 | | 0.3299 | 12.94 | 4400 | 0.5160 | 0.4198 | | 0.3096 | 14.12 | 4800 | 0.5019 | 0.4077 | | 0.2881 | 15.29 | 5200 | 0.5146 | 0.4140 | | 0.2894 | 16.47 | 5600 | 0.4861 | 0.4026 | | 0.2461 | 17.65 | 6000 | 0.4765 | 0.3742 | | 0.2371 | 18.82 | 6400 | 0.4679 | 0.3672 | | 0.2182 | 20.0 | 6800 | 0.4699 | 0.3603 | | 0.1942 | 21.18 | 7200 | 0.4769 | 0.3519 | | 0.1823 | 22.35 | 7600 | 0.4719 | 0.3497 | | 0.1682 | 23.53 | 8000 | 0.4876 | 0.3456 | | 0.1526 | 24.71 | 8400 | 0.4591 | 0.3300 | | 0.137 | 25.88 | 8800 | 0.4819 | 0.3314 | | 0.1283 | 27.06 | 9200 | 0.4823 | 0.3213 | | 0.1174 | 28.24 | 9600 | 0.4879 | 0.3174 | | 0.1104 | 29.41 | 10000 | 0.4764 | 0.3073 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.11.0 - Datasets 1.18.4 - Tokenizers 0.11.6
4m1g0/wav2vec2-large-xls-r-53m-gl-jupyter2
d1e75f1fb17582e064d240fc1d7aecfa112d00bf
2022-04-20T16:27:03.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
4m1g0
null
4m1g0/wav2vec2-large-xls-r-53m-gl-jupyter2
1
null
transformers
31,347
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-large-xls-r-53m-gl-jupyter2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-53m-gl-jupyter2 This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0941 - Wer: 0.0615 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 45 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.7298 | 3.36 | 400 | 0.2477 | 0.2493 | | 0.1507 | 6.72 | 800 | 0.1294 | 0.1264 | | 0.066 | 10.08 | 1200 | 0.1235 | 0.1161 | | 0.0456 | 13.44 | 1600 | 0.1011 | 0.1001 | | 0.0347 | 16.8 | 2000 | 0.1033 | 0.0909 | | 0.0284 | 20.17 | 2400 | 0.1083 | 0.0861 | | 0.0221 | 23.53 | 2800 | 0.1010 | 0.0761 | | 0.0199 | 26.89 | 3200 | 0.0911 | 0.0754 | | 0.0155 | 30.25 | 3600 | 0.1026 | 0.0743 | | 0.0142 | 33.61 | 4000 | 0.1024 | 0.0719 | | 0.0125 | 36.97 | 4400 | 0.0977 | 0.0676 | | 0.0104 | 40.33 | 4800 | 0.0945 | 0.0664 | | 0.0089 | 43.69 | 5200 | 0.0941 | 0.0615 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.9.1+cu111 - Datasets 1.18.3 - Tokenizers 0.10.3
masakhane/m2m100_418M_fr_wol_rel_news
d7e435de479c282d4f6913d66110e4b5114344ec
2022-04-20T17:34:57.000Z
[ "pytorch", "m2m_100", "text2text-generation", "transformers", "license:afl-3.0", "autotrain_compatible" ]
text2text-generation
false
masakhane
null
masakhane/m2m100_418M_fr_wol_rel_news
1
null
transformers
31,348
--- license: afl-3.0 ---
masakhane/m2m100_418M_wol_fr_rel_news_ft
4e48e6b372fcbdb30f540e0545d66dec1ffa62c2
2022-04-20T18:36:02.000Z
[ "pytorch", "m2m_100", "text2text-generation", "transformers", "license:afl-3.0", "autotrain_compatible" ]
text2text-generation
false
masakhane
null
masakhane/m2m100_418M_wol_fr_rel_news_ft
1
null
transformers
31,349
--- license: afl-3.0 ---
masakhane/m2m100_418M_wol_fr_rel
4fc87c6fcc66c748db7504fedccd57989de3126a
2022-04-20T19:20:17.000Z
[ "pytorch", "m2m_100", "text2text-generation", "transformers", "license:afl-3.0", "autotrain_compatible" ]
text2text-generation
false
masakhane
null
masakhane/m2m100_418M_wol_fr_rel
1
null
transformers
31,350
--- license: afl-3.0 ---
4m1g0/wav2vec2-large-xls-r-300m-gl-jupyter5
d0b687219d144d1ad81188b20566865d3345e014
2022-04-20T16:10:50.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
4m1g0
null
4m1g0/wav2vec2-large-xls-r-300m-gl-jupyter5
1
null
transformers
31,351
Entry not found
frozenwalker/T5_pubmedqa_question_generation_preTrained_MedQuad_modified
9bedc2473cb94487ec94274f6be3ea72fddeb12c
2022-04-20T13:48:46.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
frozenwalker
null
frozenwalker/T5_pubmedqa_question_generation_preTrained_MedQuad_modified
1
null
transformers
31,352
Entry not found
csikasote/xls-r-1b-bemba-15hrs
e02444e784111effb0cb94b61b191379c9d883db
2022-04-24T17:47:51.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
csikasote
null
csikasote/xls-r-1b-bemba-15hrs
1
null
transformers
31,353
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: xls-r-1b-bemba-15hrs results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xls-r-1b-bemba-15hrs This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2134 - Wer: 0.3485 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 400 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 2.3016 | 0.36 | 400 | 0.6032 | 0.9932 | | 0.5196 | 0.71 | 800 | 0.3089 | 0.5020 | | 0.4397 | 1.07 | 1200 | 0.2562 | 0.4223 | | 0.3617 | 1.43 | 1600 | 0.2269 | 0.4009 | | 0.36 | 1.79 | 2000 | 0.2106 | 0.3896 | | 0.3404 | 2.14 | 2400 | 0.2079 | 0.3681 | | 0.2915 | 2.5 | 2800 | 0.2024 | 0.3488 | | 0.2869 | 2.86 | 3200 | 0.2068 | 0.3550 | | 0.2492 | 3.22 | 3600 | 0.1925 | 0.3273 | | 0.2542 | 3.57 | 4000 | 0.2041 | 0.3446 | | 0.2333 | 3.93 | 4400 | 0.1985 | 0.3386 | | 0.2023 | 4.29 | 4800 | 0.2134 | 0.3485 | ### Framework versions - Transformers 4.19.0.dev0 - Pytorch 1.10.0+cu111 - Datasets 2.1.0 - Tokenizers 0.12.1
mnazari/delete_this_later
8990fad660ac092682fbad422a8fcc30cd04407f
2022-04-23T00:06:41.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
mnazari
null
mnazari/delete_this_later
1
null
transformers
31,354
Entry not found
shkim/distilbert-base-uncased-finetuned-imdb-accelerate
068bdae154b14a10ab16df4c96c8de3eaae532eb
2022-04-20T14:35:34.000Z
[ "pytorch", "distilbert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
shkim
null
shkim/distilbert-base-uncased-finetuned-imdb-accelerate
1
null
transformers
31,355
Entry not found
ffalcao/pegasus-samsum
21441de6cb3408c7031cff2281026e0f9e04b18e
2022-04-27T13:09:17.000Z
[ "pytorch", "tensorboard", "pegasus", "text2text-generation", "dataset:samsum", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
text2text-generation
false
ffalcao
null
ffalcao/pegasus-samsum
1
null
transformers
31,356
--- tags: - generated_from_trainer datasets: - samsum model-index: - name: pegasus-samsum results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # pegasus-samsum This model is a fine-tuned version of [google/pegasus-cnn_dailymail](https://huggingface.co/google/pegasus-cnn_dailymail) on the samsum dataset. It achieves the following results on the evaluation set: - Loss: 1.4874 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.702 | 0.54 | 500 | 1.4874 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.9.1 - Datasets 1.16.1 - Tokenizers 0.10.3
4m1g0/wav2vec2-large-xls-r-53m-gl-jupyter3
8ab722626d9233219beb0cc6689dd316962b312a
2022-04-20T17:05:08.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
4m1g0
null
4m1g0/wav2vec2-large-xls-r-53m-gl-jupyter3
1
null
transformers
31,357
Entry not found
Tejas21/Totto_t5_base_BERT_Score_20k_steps
990c260dcc98a5fb8a669574f128c7a6d8aee127
2022-04-21T18:47:18.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "license:apache-2.0", "autotrain_compatible" ]
text2text-generation
false
Tejas21
null
Tejas21/Totto_t5_base_BERT_Score_20k_steps
1
null
transformers
31,358
--- license: apache-2.0 --- language: - en tags: - Table to text - Data to text ## Dataset: - [ToTTo](https://github.com/google-research-datasets/ToTTo) A Controlled Table-to-Text Dataset. Totto is an open-source table-to-text dataset with over 1,20,000 examples in the English language. It defines a controlled generation task as: given a Wikipedia table and a set of highlighted cells, generate a one-sentence description. ## Base Model - T5-Base [Google's T5](https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html) The T5 was built by the Google team in order to create a general-purpose model that can understand the text. The basic idea behind t5 was to deal with the text processing problem as a “text-to-text” problem, i.e. taking the text as input and producing new text as output. ## Baseline Preprocessing [Baseline Preprocessing](https://github.com/google-research/language/tree/master/language/totto) This code repository serves as a supplementary for the main repository, which can be used to do basic preprocessing of the Totto dataset. ## Fine-tuning On the Totto dataset, we used the T5 for the conditional generation model and fine-tuned it with 10000 steps BLEU and then 20000 steps [BERT-SCORE](https://github.com/Tiiiger/bert_score) as a metric.
negfir/bert_uncased_L-2_H-768_A-12wiki103
11391e8e5dcc155f48612a6514a3ed63da7e3c30
2022-04-20T20:53:22.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
negfir
null
negfir/bert_uncased_L-2_H-768_A-12wiki103
1
null
transformers
31,359
Entry not found
dlu66061/wav2vec2-base-timit-demo
b79a0a94975f78c4af0290a810b04d51e62cc80f
2022-04-21T03:16:11.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
dlu66061
null
dlu66061/wav2vec2-base-timit-demo
1
null
transformers
31,360
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base-timit-demo results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-timit-demo This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4094 - Wer: 0.2825 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.5419 | 3.45 | 500 | 1.2376 | 0.8772 | | 0.5393 | 6.9 | 1000 | 0.4489 | 0.3894 | | 0.1916 | 10.34 | 1500 | 0.3777 | 0.3185 | | 0.1139 | 13.79 | 2000 | 0.4041 | 0.3058 | | 0.0798 | 17.24 | 2500 | 0.3742 | 0.2988 | | 0.0602 | 20.69 | 3000 | 0.3751 | 0.2897 | | 0.0463 | 24.14 | 3500 | 0.4067 | 0.2865 | | 0.0388 | 27.59 | 4000 | 0.4094 | 0.2825 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu102 - Datasets 1.18.3 - Tokenizers 0.11.6
4m1g0/wav2vec2-large-xls-r-53m-gl-jupyter5
db41901ca72856f504d71d566dc4c7aacebbeb59
2022-04-21T05:58:07.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
4m1g0
null
4m1g0/wav2vec2-large-xls-r-53m-gl-jupyter5
1
null
transformers
31,361
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-large-xls-r-53m-gl-jupyter5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-53m-gl-jupyter5 This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1025 - Wer: 0.0625 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 60 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.6862 | 3.36 | 400 | 0.2455 | 0.2344 | | 0.1517 | 6.72 | 800 | 0.1195 | 0.1233 | | 0.0772 | 10.08 | 1200 | 0.1219 | 0.1155 | | 0.0472 | 13.44 | 1600 | 0.1162 | 0.1034 | | 0.0357 | 16.8 | 2000 | 0.1070 | 0.1006 | | 0.0307 | 20.17 | 2400 | 0.1131 | 0.1013 | | 0.0258 | 23.53 | 2800 | 0.1163 | 0.0847 | | 0.0229 | 26.89 | 3200 | 0.1100 | 0.0858 | | 0.0183 | 30.25 | 3600 | 0.1062 | 0.0810 | | 0.0182 | 33.61 | 4000 | 0.1068 | 0.0800 | | 0.0151 | 36.97 | 4400 | 0.1088 | 0.0780 | | 0.0138 | 40.33 | 4800 | 0.1062 | 0.0737 | | 0.0121 | 43.69 | 5200 | 0.1061 | 0.0722 | | 0.0088 | 47.06 | 5600 | 0.1055 | 0.0670 | | 0.008 | 50.42 | 6000 | 0.1059 | 0.0646 | | 0.007 | 53.78 | 6400 | 0.1020 | 0.0634 | | 0.0065 | 57.14 | 6800 | 0.1025 | 0.0625 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.9.1+cu111 - Datasets 1.18.3 - Tokenizers 0.10.3
negfir/bert_uncased_L-2_H-512_A-8wiki103
622d7913e9067bbdac4663c92587433f3f25fe2a
2022-04-21T01:17:41.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
negfir
null
negfir/bert_uncased_L-2_H-512_A-8wiki103
1
null
transformers
31,362
Entry not found
obokkkk/wav2vec2-base-timit-demo-colab3
3946e18144660bc1cd65c5cbd7231a5fab503ce9
2022-04-21T04:10:35.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
obokkkk
null
obokkkk/wav2vec2-base-timit-demo-colab3
1
null
transformers
31,363
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base-timit-demo-colab3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-timit-demo-colab3 This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4832 - Wer: 0.3419 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 2.292 | 4.0 | 500 | 0.7903 | 0.6305 | | 0.5022 | 8.0 | 1000 | 0.4497 | 0.4332 | | 0.2129 | 12.0 | 1500 | 0.4998 | 0.3940 | | 0.1251 | 16.0 | 2000 | 0.4728 | 0.3667 | | 0.0861 | 20.0 | 2500 | 0.4663 | 0.3644 | | 0.0594 | 24.0 | 3000 | 0.4773 | 0.3497 | | 0.0446 | 28.0 | 3500 | 0.4832 | 0.3419 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.10.3
ToToKr/wav2vec2-base-timit-demo-colab
447fde3d3f13e82aa47ba51c81c62255fc7945d7
2022-04-27T07:50:31.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
ToToKr
null
ToToKr/wav2vec2-base-timit-demo-colab
1
null
transformers
31,364
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base-timit-demo-colab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-timit-demo-colab This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4520 - Wer: 0.2286 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.3811 | 4.0 | 500 | 1.1887 | 0.8528 | | 0.5798 | 8.0 | 1000 | 0.4544 | 0.3357 | | 0.2197 | 12.0 | 1500 | 0.4424 | 0.2699 | | 0.1279 | 16.0 | 2000 | 0.4388 | 0.2559 | | 0.0855 | 20.0 | 2500 | 0.4572 | 0.2450 | | 0.062 | 24.0 | 3000 | 0.4385 | 0.2353 | | 0.0469 | 28.0 | 3500 | 0.4520 | 0.2286 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.10.3
negfir/bert_uncased_L-2_H-256_A-4wiki103
da9f334409f11bbc38fb634b81077f23475896bd
2022-04-21T02:25:12.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
negfir
null
negfir/bert_uncased_L-2_H-256_A-4wiki103
1
null
transformers
31,365
Entry not found
negfir/bert_uncased_L-2_H-128_A-2wiki103
d84479ebc3280b0a3631d1bab1464790b94243dd
2022-04-21T03:14:53.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
negfir
null
negfir/bert_uncased_L-2_H-128_A-2wiki103
1
null
transformers
31,366
Entry not found
DongHyoungLee/oubiobert-tokenclassification-2layers-init
753c98c096738130156a7d617b9e8f27fe594a1b
2022-04-21T08:55:38.000Z
[ "pytorch", "bert", "transformers" ]
null
false
DongHyoungLee
null
DongHyoungLee/oubiobert-tokenclassification-2layers-init
1
null
transformers
31,367
Entry not found
umanlp/TOD-XLMR
2aaeb95e444bc679dd922502996f8fff8eae9a65
2022-05-02T14:16:51.000Z
[ "pytorch", "xlm-roberta", "fill-mask", "multilingual", "transformers", "exbert", "license:mit", "autotrain_compatible" ]
fill-mask
false
umanlp
null
umanlp/TOD-XLMR
1
2
transformers
31,368
--- tags: - exbert language: multilingual license: mit --- # TOD-XLMR TOD-XLMR is a conversationally specialized multilingual version based on [XLM-RoBERTa](https://huggingface.co/xlm-roberta-base). It is pre-trained on English conversational corpora consisting of nine human-to-human multi-turn task-oriented dialog (TOD) datasets as proposed in the paper [TOD-BERT: Pre-trained Natural Language Understanding for Task-Oriented Dialogue](https://aclanthology.org/2020.emnlp-main.66.pdf) by Wu et al. and first released in [this repository](https://huggingface.co/TODBERT). The model is jointly trained with two objectives as proposed in TOD-BERT, including masked language modeling (MLM) and response contrastive loss (RCL). Masked language modeling is a common pretraining strategy utilized for BERT-based architectures, where a random sample of tokens in the input sequence is replaced with the special token [MASK] for predicting the original masked tokens. To further encourage the model to capture dialogic structure (i.e., dialog sequential order), response contrastive loss is implemented by using in-batch negative training with contrastive learning. ### How to use Here is how to use this model to get the features of a given text in PyTorch: ``` from transformers import AutoTokenizer, AutoModelForMaskedLM tokenizer = AutoTokenizer.from_pretrained("umanlp/TOD-XLMR") model = AutoModelForMaskedLM.from_pretrained("umanlp/TOD-XLMR") # prepare input text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') # forward pass output = model(**encoded_input) ``` Or you can also use `AutoModel` to load the pretrained model and further apply to downstream tasks: ``` from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("umanlp/TOD-XLMR") model = AutoModel("umanlp/TOD-XLMR") # prepare input text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') # forward pass output = model(**encoded_input) ```
lamyae/distilroberta-base-finetuned-wikitext2
afd343178237cef73d24917d7180d843b11e2219
2022-04-21T12:48:59.000Z
[ "pytorch", "tensorboard", "roberta", "fill-mask", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
fill-mask
false
lamyae
null
lamyae/distilroberta-base-finetuned-wikitext2
1
null
transformers
31,369
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distilroberta-base-finetuned-wikitext2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilroberta-base-finetuned-wikitext2 This model is a fine-tuned version of [distilroberta-base](https://huggingface.co/distilroberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.0917 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 9 | 3.3324 | | No log | 2.0 | 18 | 3.1066 | | No log | 3.0 | 27 | 3.2930 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.0+cu111 - Datasets 2.1.0 - Tokenizers 0.12.1
huggingtweets/kfc_uki
63587bae2bf8e940be0dfa91a268ee140cda6ff1
2022-04-21T13:52:15.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/kfc_uki
1
null
transformers
31,370
--- language: en thumbnail: http://www.huggingtweets.com/kfc_uki/1650549131420/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1062716172418699265/ObupAaDb_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">KFC UK</div> <div style="text-align: center; font-size: 14px;">@kfc_uki</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from KFC UK. | Data | KFC UK | | --- | --- | | Tweets downloaded | 3250 | | Retweets | 4 | | Short tweets | 596 | | Tweets kept | 2650 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1x91e62j/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @kfc_uki's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3auxmk8k) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3auxmk8k/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/kfc_uki') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
Onlydrinkwater/T5-small-de-en
687360587c344dd24f160b7c89ee11bc0ef4bab7
2022-04-21T16:52:00.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
Onlydrinkwater
null
Onlydrinkwater/T5-small-de-en
1
null
transformers
31,371
Entry not found
negfir/bert_uncased_L-8_H-768_A-12wiki103
5b08990331ddecb50e381a466491768ed1033672
2022-04-21T17:24:12.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
negfir
null
negfir/bert_uncased_L-8_H-768_A-12wiki103
1
null
transformers
31,372
Entry not found
negfir/bert_uncased_L-8_H-512_A-8wiki103
637979d201a719dff8e79253ca35e5d266e001f2
2022-04-21T20:07:07.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
negfir
null
negfir/bert_uncased_L-8_H-512_A-8wiki103
1
null
transformers
31,373
Entry not found
surajnair/r3m-34
ae6d653f2ab737c79be68f705c30f4fbd645d782
2022-04-21T20:32:46.000Z
[ "pytorch", "r3m", "transformers" ]
null
false
surajnair
null
surajnair/r3m-34
1
null
transformers
31,374
This model contains the pre-trained ResNet34 R3M model from the paper "R3M: A Universal Visual Representation for Robot Manipulation" (Nair et al.) The model is trained on the Ego4D dataset using time-contrastive learning, video-language alignment, and sparsity objectives. It is used for efficient downstream robotic learning.
surajnair/r3m-18
1a4f077fe01db52c8f5d9f8d6641b6e03f688420
2022-04-21T20:32:32.000Z
[ "pytorch", "r3m", "transformers" ]
null
false
surajnair
null
surajnair/r3m-18
1
null
transformers
31,375
This model contains the pre-trained ResNet18 R3M model from the paper "R3M: A Universal Visual Representation for Robot Manipulation" (Nair et al.) The model is trained on the Ego4D dataset using time-contrastive learning, video-language alignment, and sparsity objectives. It is used for efficient downstream robotic learning.
masakhane/afrimt5_en_ibo_news
fa320c776ce021828967c899ba731132186be989
2022-04-22T09:40:53.000Z
[ "pytorch", "mt5", "text2text-generation", "transformers", "license:afl-3.0", "autotrain_compatible" ]
text2text-generation
false
masakhane
null
masakhane/afrimt5_en_ibo_news
1
null
transformers
31,376
--- license: afl-3.0 ---
masakhane/afrimt5_ibo_en_news
acb7de78a9e450ee8736ad2c23a2d889467e308e
2022-04-22T09:40:56.000Z
[ "pytorch", "mt5", "text2text-generation", "transformers", "license:afl-3.0", "autotrain_compatible" ]
text2text-generation
false
masakhane
null
masakhane/afrimt5_ibo_en_news
1
null
transformers
31,377
--- license: afl-3.0 ---
masakhane/afribyt5_en_ibo_news
4c77ffe12790ef25dfba38f97fd90ed1546b12ee
2022-04-22T10:50:19.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "license:afl-3.0", "autotrain_compatible" ]
text2text-generation
false
masakhane
null
masakhane/afribyt5_en_ibo_news
1
null
transformers
31,378
--- license: afl-3.0 ---
masakhane/mbart50_en_ibo_news
042cd9a8119f24a5f037409ed712543b2e04a009
2022-04-22T10:50:25.000Z
[ "pytorch", "mbart", "text2text-generation", "transformers", "license:afl-3.0", "autotrain_compatible" ]
text2text-generation
false
masakhane
null
masakhane/mbart50_en_ibo_news
1
null
transformers
31,379
--- license: afl-3.0 ---
masakhane/m2m100_418M_ibo_en_news
51ace50ecd1d8312b727294687016bdd8ba0682a
2022-04-22T12:45:19.000Z
[ "pytorch", "m2m_100", "text2text-generation", "transformers", "license:afl-3.0", "autotrain_compatible" ]
text2text-generation
false
masakhane
null
masakhane/m2m100_418M_ibo_en_news
1
null
transformers
31,380
--- license: afl-3.0 ---
masakhane/m2m100_418M_en_ibo_rel_news_ft
48c2e9917fc68ed89ac131eb59b720d2bcec176c
2022-04-22T13:49:32.000Z
[ "pytorch", "m2m_100", "text2text-generation", "transformers", "license:afl-3.0", "autotrain_compatible" ]
text2text-generation
false
masakhane
null
masakhane/m2m100_418M_en_ibo_rel_news_ft
1
null
transformers
31,381
--- license: afl-3.0 ---
masakhane/m2m100_418M_ibo_en_rel_ft
db01073cdb7a9cbf2451b4d7f45e67d2a8e1bb86
2022-04-22T13:49:24.000Z
[ "pytorch", "m2m_100", "text2text-generation", "transformers", "license:afl-3.0", "autotrain_compatible" ]
text2text-generation
false
masakhane
null
masakhane/m2m100_418M_ibo_en_rel_ft
1
null
transformers
31,382
--- license: afl-3.0 ---
jjezabek/roberta-base-imdb
f93ff302737e204616b7b2020821bd61cc9ca417
2022-04-21T23:02:27.000Z
[ "pytorch" ]
null
false
jjezabek
null
jjezabek/roberta-base-imdb
1
null
null
31,383
Entry not found
negfir/bert_uncased_L-8_H-128_A-2wiki103
64ab85572447822611637d3b7ad19591156efb65
2022-04-21T23:06:20.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
negfir
null
negfir/bert_uncased_L-8_H-128_A-2wiki103
1
null
transformers
31,384
Entry not found
Scaprod/DialoGPT-small-arbiter
94130be2e3403f7c5fbd6d8a28665535825f1ff6
2022-04-23T23:18:21.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
Scaprod
null
Scaprod/DialoGPT-small-arbiter
1
null
transformers
31,385
--- tags: - conversational --- # Arbiter DialoGPT Model
obokkkk/wav2vec2-base-960h-timit-demo-colab
e0d91c4ba9bf9444ad4ec98db98b809b29580328
2022-04-22T04:45:54.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
obokkkk
null
obokkkk/wav2vec2-base-960h-timit-demo-colab
1
1
transformers
31,386
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base-960h-timit-demo-colab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-960h-timit-demo-colab This model is a fine-tuned version of [facebook/wav2vec2-base-960h](https://huggingface.co/facebook/wav2vec2-base-960h) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2002 - Wer: 0.2160 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 5.7805 | 4.0 | 500 | 3.0558 | 1.0 | | 2.2936 | 8.0 | 1000 | 0.2937 | 0.3479 | | 0.4155 | 12.0 | 1500 | 0.2108 | 0.2473 | | 0.2439 | 16.0 | 2000 | 0.2313 | 0.2391 | | 0.1617 | 20.0 | 2500 | 0.2003 | 0.2255 | | 0.1443 | 24.0 | 3000 | 0.2175 | 0.2207 | | 0.119 | 28.0 | 3500 | 0.2002 | 0.2160 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.10.3
obokkkk/hubert-large-ls960-ft-timit
b0ee8ea5cdf2aaf82bfa02dedb9c86fcf0dec4f2
2022-04-22T08:44:25.000Z
[ "pytorch", "tensorboard", "hubert", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
obokkkk
null
obokkkk/hubert-large-ls960-ft-timit
1
null
transformers
31,387
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: hubert-large-ls960-ft-timit results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # hubert-large-ls960-ft-timit This model is a fine-tuned version of [facebook/hubert-large-ls960-ft](https://huggingface.co/facebook/hubert-large-ls960-ft) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1074 - Wer: 0.1708 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 6.2278 | 4.0 | 500 | 2.6282 | 0.9999 | | 0.9389 | 8.0 | 1000 | 0.1154 | 0.2096 | | 0.2005 | 12.0 | 1500 | 0.0951 | 0.1732 | | 0.1985 | 16.0 | 2000 | 0.0974 | 0.1759 | | 0.124 | 20.0 | 2500 | 0.0951 | 0.1728 | | 0.0797 | 24.0 | 3000 | 0.1064 | 0.1713 | | 0.1047 | 28.0 | 3500 | 0.1074 | 0.1708 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.10.3
proseph/ctrlv-speechrecognition-model
094e5a53c778f4777d41da7fcee4e785b60fb9b1
2022-05-19T09:59:57.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
proseph
null
proseph/ctrlv-speechrecognition-model
1
1
transformers
31,388
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: ctrlv-speechrecognition-model results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ctrlv-speechrecognition-model This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the TIMIT dataset. It achieves the following results on the evaluation set: - Loss: 0.4730 - Wer: 0.3031 ## Test WER in TIMIT dataset - Wer: 0.189 [Google Colab Notebook](https://colab.research.google.com/drive/1M9ZbqvoRqshEccIlpTQGsgptpiGVgauH) ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 60 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.53 | 3.45 | 500 | 1.4021 | 0.9307 | | 0.6077 | 6.9 | 1000 | 0.4255 | 0.4353 | | 0.2331 | 10.34 | 1500 | 0.3887 | 0.3650 | | 0.1436 | 13.79 | 2000 | 0.3579 | 0.3393 | | 0.1021 | 17.24 | 2500 | 0.4447 | 0.3440 | | 0.0797 | 20.69 | 3000 | 0.4041 | 0.3291 | | 0.0657 | 24.14 | 3500 | 0.4262 | 0.3368 | | 0.0525 | 27.59 | 4000 | 0.4937 | 0.3429 | | 0.0454 | 31.03 | 4500 | 0.4449 | 0.3244 | | 0.0373 | 34.48 | 5000 | 0.4363 | 0.3288 | | 0.0321 | 37.93 | 5500 | 0.4519 | 0.3204 | | 0.0288 | 41.38 | 6000 | 0.4440 | 0.3145 | | 0.0259 | 44.83 | 6500 | 0.4691 | 0.3182 | | 0.0203 | 48.28 | 7000 | 0.5062 | 0.3162 | | 0.0171 | 51.72 | 7500 | 0.4762 | 0.3129 | | 0.0166 | 55.17 | 8000 | 0.4772 | 0.3090 | | 0.0147 | 58.62 | 8500 | 0.4730 | 0.3031 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.10.3
Khalsuu/filipino-wav2vec2-l-xls-r-300m-test
024952b9b990b6609be5bd85bb9cfbe6e37019c4
2022-04-23T08:27:45.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "dataset:filipino_voice", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
Khalsuu
null
Khalsuu/filipino-wav2vec2-l-xls-r-300m-test
1
null
transformers
31,389
--- license: apache-2.0 tags: - generated_from_trainer datasets: - filipino_voice model-index: - name: filipino-wav2vec2-l-xls-r-300m-test results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # filipino-wav2vec2-l-xls-r-300m-test This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the filipino_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.7753 - Wer: 0.4831 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 2.7314 | 2.09 | 400 | 0.7541 | 0.7262 | | 0.6065 | 4.19 | 800 | 0.6738 | 0.6314 | | 0.4063 | 6.28 | 1200 | 0.6310 | 0.5992 | | 0.2986 | 8.38 | 1600 | 0.6301 | 0.5340 | | 0.2263 | 10.47 | 2000 | 0.6598 | 0.5391 | | 0.1714 | 12.57 | 2400 | 0.7778 | 0.5593 | | 0.1303 | 14.66 | 2800 | 0.7231 | 0.4907 | | 0.1056 | 16.75 | 3200 | 0.8031 | 0.4885 | | 0.0851 | 18.85 | 3600 | 0.7753 | 0.4831 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.10.3
stevems1/bert-base-uncased-Ganesh123
fcea1a7026eb341123610d0c1bbfa2a494fb4006
2022-04-22T07:46:54.000Z
[ "pytorch", "tensorboard", "bert", "fill-mask", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
fill-mask
false
stevems1
null
stevems1/bert-base-uncased-Ganesh123
1
null
transformers
31,390
--- tags: - generated_from_trainer model-index: - name: bert-base-uncased-Ganesh123 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-Ganesh123 This model is a fine-tuned version of [](https://huggingface.co/) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.0+cu111 - Datasets 2.1.0 - Tokenizers 0.12.1
Vishfeb27/wav2vec2-base-timit-demo-colab
843bf4520279d9036d0df3917a1e0d1924f8e49d
2022-04-22T11:31:09.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
Vishfeb27
null
Vishfeb27/wav2vec2-base-timit-demo-colab
1
null
transformers
31,391
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base-timit-demo-colab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-timit-demo-colab This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.10.3
spuun/kekbot-beta-1
c710f76dfbef650e1e32989b36b29d8ad5791379
2022-04-22T14:32:20.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational", "license:cc-by-nc-sa-4.0" ]
conversational
false
spuun
null
spuun/kekbot-beta-1
1
null
transformers
31,392
--- tags: - conversational license: cc-by-nc-sa-4.0 ---
alifabdulR/nn
9d3edf6c053d57e63d349f409088dca125e72a15
2022-04-22T15:48:52.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
alifabdulR
null
alifabdulR/nn
1
null
transformers
31,393
Entry not found
mimicheng/codeparrot-ds-sample-2ep-batchsize32
9ae34042702f9975f8688a91d6d000ddff5c2b2a
2022-04-23T01:54:26.000Z
[ "pytorch", "tensorboard", "gpt2", "text-generation", "transformers", "generated_from_trainer", "license:mit", "model-index" ]
text-generation
false
mimicheng
null
mimicheng/codeparrot-ds-sample-2ep-batchsize32
1
null
transformers
31,394
--- license: mit tags: - generated_from_trainer model-index: - name: codeparrot-ds-sample-2ep-batchsize32 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # codeparrot-ds-sample-2ep-batchsize32 This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.5721 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - distributed_type: tpu - gradient_accumulation_steps: 8 - total_train_batch_size: 256 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 1000 - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 4.3529 | 0.19 | 1000 | 2.8073 | | 2.4602 | 0.37 | 2000 | 2.2907 | | 2.1127 | 0.56 | 3000 | 2.0745 | | 1.9187 | 0.74 | 4000 | 1.9287 | | 1.782 | 0.93 | 5000 | 1.8234 | | 1.639 | 1.11 | 6000 | 1.7456 | | 1.5519 | 1.3 | 7000 | 1.6738 | | 1.489 | 1.49 | 8000 | 1.6235 | | 1.4372 | 1.67 | 9000 | 1.5874 | | 1.4122 | 1.86 | 10000 | 1.5721 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu102 - Datasets 2.1.0 - Tokenizers 0.12.1
negfir/bert_uncased_L-6_H-768_A-12wiki103
8c800f03dc1a873d62c4eeade3398246b14fbb98
2022-04-22T18:11:42.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
negfir
null
negfir/bert_uncased_L-6_H-768_A-12wiki103
1
null
transformers
31,395
Entry not found
princeton-nlp/efficient_mlm_m0.15
f0bc11138f73eccefadb049194e01744836e6a5c
2022-04-27T18:54:34.000Z
[ "pytorch", "roberta", "fill-mask", "arxiv:2202.08005", "transformers", "autotrain_compatible" ]
fill-mask
false
princeton-nlp
null
princeton-nlp/efficient_mlm_m0.15
1
null
transformers
31,396
--- inference: false --- This is a model checkpoint for ["Should You Mask 15% in Masked Language Modeling"](https://arxiv.org/abs/2202.08005) [(code)](https://github.com/princeton-nlp/DinkyTrain.git). We use pre layer norm, which is not supported by HuggingFace. To use our model, go to our [github repo](https://github.com/princeton-nlp/DinkyTrain.git), download our code, and import the RoBERTa class from `huggingface/modeling_roberta_prelayernorm.py`. For example, ``` bash from huggingface.modeling_roberta_prelayernorm import RobertaForMaskedLM, RobertaForSequenceClassification ```
princeton-nlp/efficient_mlm_m0.40
08e44702760ae2ed21cf92d100a82bce4f72f13b
2022-04-27T18:54:13.000Z
[ "pytorch", "roberta", "fill-mask", "arxiv:2202.08005", "transformers", "autotrain_compatible" ]
fill-mask
false
princeton-nlp
null
princeton-nlp/efficient_mlm_m0.40
1
null
transformers
31,397
--- inference: false --- This is a model checkpoint for ["Should You Mask 15% in Masked Language Modeling"](https://arxiv.org/abs/2202.08005) [(code)](https://github.com/princeton-nlp/DinkyTrain.git). We use pre layer norm, which is not supported by HuggingFace. To use our model, go to our [github repo](https://github.com/princeton-nlp/DinkyTrain.git), download our code, and import the RoBERTa class from `huggingface/modeling_roberta_prelayernorm.py`. For example, ``` bash from huggingface.modeling_roberta_prelayernorm import RobertaForMaskedLM, RobertaForSequenceClassification ```
princeton-nlp/efficient_mlm_m0.15-801010
490aba78955a05e7139921646d2bfc48cad555bc
2022-04-27T18:54:45.000Z
[ "pytorch", "roberta", "fill-mask", "arxiv:2202.08005", "transformers", "autotrain_compatible" ]
fill-mask
false
princeton-nlp
null
princeton-nlp/efficient_mlm_m0.15-801010
1
null
transformers
31,398
--- inference: false --- This is a model checkpoint for ["Should You Mask 15% in Masked Language Modeling"](https://arxiv.org/abs/2202.08005) [(code)](https://github.com/princeton-nlp/DinkyTrain.git). We use pre layer norm, which is not supported by HuggingFace. To use our model, go to our [github repo](https://github.com/princeton-nlp/DinkyTrain.git), download our code, and import the RoBERTa class from `huggingface/modeling_roberta_prelayernorm.py`. For example, ``` bash from huggingface.modeling_roberta_prelayernorm import RobertaForMaskedLM, RobertaForSequenceClassification ```
AntoDono/DialoGPT-Bopy
83d24c33c97f89a0f4c4e3bb1eeb7659d8e980d0
2022-04-22T19:02:06.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
AntoDono
null
AntoDono/DialoGPT-Bopy
1
null
transformers
31,399
Entry not found