modelId
stringlengths
4
112
sha
stringlengths
40
40
lastModified
stringlengths
24
24
tags
sequence
pipeline_tag
stringclasses
29 values
private
bool
1 class
author
stringlengths
2
38
config
null
id
stringlengths
4
112
downloads
float64
0
36.8M
likes
float64
0
712
library_name
stringclasses
17 values
__index_level_0__
int64
0
38.5k
readme
stringlengths
0
186k
gary109/wav2vec2-common_voice-tr-demo-dist
91dfca7f8dcae286fb46a155a3a8fe31c3e90e5d
2022-04-12T09:12:48.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "tr", "dataset:common_voice", "transformers", "common_voice", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
gary109
null
gary109/wav2vec2-common_voice-tr-demo-dist
1
null
transformers
31,200
--- language: - tr license: apache-2.0 tags: - automatic-speech-recognition - common_voice - generated_from_trainer datasets: - common_voice model-index: - name: wav2vec2-common_voice-tr-demo-dist results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-common_voice-tr-demo-dist This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the COMMON_VOICE - TR dataset. It achieves the following results on the evaluation set: - Loss: 0.3934 - Wer: 0.3305 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 2 - total_train_batch_size: 8 - total_eval_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 15.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.5459 | 0.23 | 100 | 3.6773 | 1.0 | | 3.2247 | 0.46 | 200 | 3.1491 | 0.9999 | | 2.3457 | 0.69 | 300 | 2.4236 | 1.0041 | | 0.9149 | 0.92 | 400 | 0.9471 | 0.7684 | | 0.6622 | 1.15 | 500 | 0.7518 | 0.6863 | | 0.7205 | 1.38 | 600 | 0.6387 | 0.6402 | | 0.6978 | 1.61 | 700 | 0.5611 | 0.5739 | | 0.5317 | 1.84 | 800 | 0.5061 | 0.5418 | | 0.5222 | 2.07 | 900 | 0.4839 | 0.5344 | | 0.4467 | 2.3 | 1000 | 0.5060 | 0.5339 | | 0.3196 | 2.53 | 1100 | 0.4619 | 0.5213 | | 0.276 | 2.76 | 1200 | 0.4595 | 0.5020 | | 0.3569 | 2.99 | 1300 | 0.4339 | 0.4901 | | 0.2236 | 3.22 | 1400 | 0.4602 | 0.4887 | | 0.293 | 3.45 | 1500 | 0.4376 | 0.4639 | | 0.1677 | 3.68 | 1600 | 0.4371 | 0.4605 | | 0.1838 | 3.91 | 1700 | 0.4116 | 0.4589 | | 0.1225 | 4.14 | 1800 | 0.4144 | 0.4495 | | 0.2301 | 4.37 | 1900 | 0.4250 | 0.4567 | | 0.1931 | 4.6 | 2000 | 0.4081 | 0.4470 | | 0.1427 | 4.83 | 2100 | 0.4295 | 0.4482 | | 0.361 | 5.06 | 2200 | 0.4374 | 0.4445 | | 0.3272 | 5.29 | 2300 | 0.4088 | 0.4258 | | 0.3686 | 5.52 | 2400 | 0.4087 | 0.4258 | | 0.3087 | 5.75 | 2500 | 0.4100 | 0.4371 | | 0.4637 | 5.98 | 2600 | 0.4038 | 0.4219 | | 0.1485 | 6.21 | 2700 | 0.4361 | 0.4197 | | 0.1341 | 6.44 | 2800 | 0.4217 | 0.4132 | | 0.1185 | 6.67 | 2900 | 0.4244 | 0.4097 | | 0.1588 | 6.9 | 3000 | 0.4212 | 0.4181 | | 0.0697 | 7.13 | 3100 | 0.3981 | 0.4073 | | 0.0491 | 7.36 | 3200 | 0.3992 | 0.4010 | | 0.088 | 7.59 | 3300 | 0.4206 | 0.4022 | | 0.0731 | 7.82 | 3400 | 0.3998 | 0.3841 | | 0.2767 | 8.05 | 3500 | 0.4195 | 0.3829 | | 0.1725 | 8.28 | 3600 | 0.4167 | 0.3946 | | 0.1242 | 8.51 | 3700 | 0.4177 | 0.3821 | | 0.1133 | 8.74 | 3800 | 0.3993 | 0.3802 | | 0.1952 | 8.97 | 3900 | 0.4132 | 0.3904 | | 0.1399 | 9.2 | 4000 | 0.4010 | 0.3795 | | 0.047 | 9.43 | 4100 | 0.4128 | 0.3703 | | 0.049 | 9.66 | 4200 | 0.4319 | 0.3670 | | 0.0994 | 9.89 | 4300 | 0.4118 | 0.3631 | | 0.1209 | 10.11 | 4400 | 0.4296 | 0.3722 | | 0.0484 | 10.34 | 4500 | 0.4130 | 0.3615 | | 0.2065 | 10.57 | 4600 | 0.3958 | 0.3668 | | 0.133 | 10.8 | 4700 | 0.4102 | 0.3679 | | 0.0622 | 11.03 | 4800 | 0.4137 | 0.3585 | | 0.0999 | 11.26 | 4900 | 0.4042 | 0.3583 | | 0.0346 | 11.49 | 5000 | 0.4183 | 0.3573 | | 0.072 | 11.72 | 5100 | 0.4060 | 0.3530 | | 0.0365 | 11.95 | 5200 | 0.3968 | 0.3483 | | 0.0615 | 12.18 | 5300 | 0.3958 | 0.3485 | | 0.1067 | 12.41 | 5400 | 0.3987 | 0.3453 | | 0.0253 | 12.64 | 5500 | 0.4182 | 0.3405 | | 0.0636 | 12.87 | 5600 | 0.4199 | 0.3458 | | 0.0506 | 13.1 | 5700 | 0.4056 | 0.3412 | | 0.0944 | 13.33 | 5800 | 0.4061 | 0.3381 | | 0.1187 | 13.56 | 5900 | 0.4113 | 0.3381 | | 0.0237 | 13.79 | 6000 | 0.3973 | 0.3343 | | 0.0166 | 14.02 | 6100 | 0.4001 | 0.3357 | | 0.1189 | 14.25 | 6200 | 0.3931 | 0.3315 | | 0.0375 | 14.48 | 6300 | 0.3944 | 0.3329 | | 0.0537 | 14.71 | 6400 | 0.3953 | 0.3308 | | 0.045 | 14.94 | 6500 | 0.3933 | 0.3303 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.9.1+cu102 - Datasets 1.13.3 - Tokenizers 0.11.6
Kuray107/ls-timit-wsj0-swbd-100percent-supervised-meta
664dc6b74aef16d2d7bfc7ed1b4d25c04b13cfde
2022-04-13T06:27:53.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
Kuray107
null
Kuray107/ls-timit-wsj0-swbd-100percent-supervised-meta
1
null
transformers
31,201
Entry not found
mrm8488/vit-base-patch16-224-pretrained-cifar10
02ef24354b739a7aa0ada5dd752dd3a69c8d21b4
2022-04-19T15:10:58.000Z
[ "pytorch", "tensorboard", "vit", "dataset:cifar10", "transformers", "masked-image-modeling", "generated_from_trainer", "model-index" ]
null
false
mrm8488
null
mrm8488/vit-base-patch16-224-pretrained-cifar10
1
1
transformers
31,202
--- tags: - masked-image-modeling - generated_from_trainer datasets: - cifar10 model-index: - name: vit-cifar10 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ViT pre-trained from scratch on CIFAR10 This model is a ViT (with the same arch as Google's [vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) pre-trained from scratch on the cifar10 dataset for masked image modeling. It achieves the following results on the evaluation set: - Loss: 0.0891 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 1337 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 100.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:------:|:---------------:| | 0.289 | 1.0 | 2657 | 0.2941 | | 0.2858 | 2.0 | 5314 | 0.2809 | | 0.2693 | 3.0 | 7971 | 0.2738 | | 0.2578 | 4.0 | 10628 | 0.2546 | | 0.2211 | 5.0 | 13285 | 0.2153 | | 0.1799 | 6.0 | 15942 | 0.1795 | | 0.158 | 7.0 | 18599 | 0.1623 | | 0.1481 | 8.0 | 21256 | 0.1453 | | 0.1391 | 9.0 | 23913 | 0.1368 | | 0.1348 | 10.0 | 26570 | 0.1354 | | 0.129 | 11.0 | 29227 | 0.1249 | | 0.126 | 12.0 | 31884 | 0.1229 | | 0.1216 | 13.0 | 34541 | 0.1184 | | 0.1175 | 14.0 | 37198 | 0.1185 | | 0.1137 | 15.0 | 39855 | 0.1146 | | 0.1125 | 16.0 | 42512 | 0.1117 | | 0.1112 | 17.0 | 45169 | 0.1100 | | 0.1108 | 18.0 | 47826 | 0.1089 | | 0.1061 | 19.0 | 50483 | 0.1070 | | 0.1073 | 20.0 | 53140 | 0.1076 | | 0.1066 | 21.0 | 55797 | 0.1061 | | 0.1065 | 22.0 | 58454 | 0.1056 | | 0.1045 | 23.0 | 61111 | 0.1037 | | 0.1052 | 24.0 | 63768 | 0.1055 | | 0.102 | 25.0 | 66425 | 0.1028 | | 0.1025 | 26.0 | 69082 | 0.1034 | | 0.1037 | 27.0 | 71739 | 0.1025 | | 0.1022 | 28.0 | 74396 | 0.1014 | | 0.1026 | 29.0 | 77053 | 0.1011 | | 0.1022 | 30.0 | 79710 | 0.1001 | | 0.0997 | 31.0 | 82367 | 0.1007 | | 0.0998 | 32.0 | 85024 | 0.1016 | | 0.1019 | 33.0 | 87681 | 0.1008 | | 0.0999 | 34.0 | 90338 | 0.1000 | | 0.0998 | 35.0 | 92995 | 0.0993 | | 0.0994 | 36.0 | 95652 | 0.0992 | | 0.0966 | 37.0 | 98309 | 0.0991 | | 0.0997 | 38.0 | 100966 | 0.0970 | | 0.0991 | 39.0 | 103623 | 0.0979 | | 0.099 | 40.0 | 106280 | 0.0983 | | 0.0974 | 41.0 | 108937 | 0.0980 | | 0.0974 | 42.0 | 111594 | 0.0971 | | 0.0972 | 43.0 | 114251 | 0.0970 | | 0.0991 | 44.0 | 116908 | 0.0970 | | 0.0979 | 45.0 | 119565 | 0.0972 | | 0.097 | 46.0 | 122222 | 0.0970 | | 0.0936 | 47.0 | 124879 | 0.0967 | | 0.0948 | 48.0 | 127536 | 0.0967 | | 0.0974 | 49.0 | 130193 | 0.0954 | | 0.0958 | 50.0 | 132850 | 0.0954 | | 0.0948 | 51.0 | 135507 | 0.0955 | | 0.095 | 52.0 | 138164 | 0.0953 | | 0.0939 | 53.0 | 140821 | 0.0945 | | 0.0961 | 54.0 | 143478 | 0.0948 | | 0.0964 | 55.0 | 146135 | 0.0955 | | 0.0934 | 56.0 | 148792 | 0.0948 | | 0.0965 | 57.0 | 151449 | 0.0943 | | 0.0966 | 58.0 | 154106 | 0.0941 | | 0.0926 | 59.0 | 156763 | 0.0938 | | 0.0928 | 60.0 | 159420 | 0.0942 | | 0.093 | 61.0 | 162077 | 0.0936 | | 0.0939 | 62.0 | 164734 | 0.0939 | | 0.0936 | 63.0 | 167391 | 0.0936 | | 0.093 | 64.0 | 170048 | 0.0929 | | 0.0929 | 65.0 | 172705 | 0.0930 | | 0.0917 | 66.0 | 175362 | 0.0925 | | 0.0948 | 67.0 | 178019 | 0.0932 | | 0.0931 | 68.0 | 180676 | 0.0927 | | 0.0911 | 69.0 | 183333 | 0.0922 | | 0.0923 | 70.0 | 185990 | 0.0924 | | 0.0923 | 71.0 | 188647 | 0.0923 | | 0.0929 | 72.0 | 191304 | 0.0919 | | 0.0916 | 73.0 | 193961 | 0.0923 | | 0.0927 | 74.0 | 196618 | 0.0921 | | 0.0907 | 75.0 | 199275 | 0.0922 | | 0.0927 | 76.0 | 201932 | 0.0919 | | 0.0925 | 77.0 | 204589 | 0.0913 | | 0.0921 | 78.0 | 207246 | 0.0917 | | 0.0895 | 79.0 | 209903 | 0.0912 | | 0.0916 | 80.0 | 212560 | 0.0914 | | 0.09 | 81.0 | 215217 | 0.0909 | | 0.0916 | 82.0 | 217874 | 0.0908 | | 0.0902 | 83.0 | 220531 | 0.0907 | | 0.0911 | 84.0 | 223188 | 0.0910 | | 0.091 | 85.0 | 225845 | 0.0903 | | 0.0903 | 86.0 | 228502 | 0.0905 | | 0.0907 | 87.0 | 231159 | 0.0901 | | 0.0908 | 88.0 | 233816 | 0.0907 | | 0.0911 | 89.0 | 236473 | 0.0902 | | 0.0905 | 90.0 | 239130 | 0.0906 | | 0.089 | 91.0 | 241787 | 0.0901 | | 0.0908 | 92.0 | 244444 | 0.0896 | | 0.0894 | 93.0 | 247101 | 0.0892 | | 0.0899 | 94.0 | 249758 | 0.0893 | | 0.0899 | 95.0 | 252415 | 0.0897 | | 0.0904 | 96.0 | 255072 | 0.0898 | | 0.0906 | 97.0 | 257729 | 0.0894 | | 0.0892 | 98.0 | 260386 | 0.0894 | | 0.0881 | 99.0 | 263043 | 0.0892 | | 0.09 | 100.0 | 265700 | 0.0894 | ### Framework versions - Transformers 4.19.0.dev0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
smeoni/nbme-roberta-base
35539a99f6b7e24d4ec66fedc541d3614921c587
2022-04-12T15:18:41.000Z
[ "pytorch", "roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
smeoni
null
smeoni/nbme-roberta-base
1
null
transformers
31,203
Entry not found
McGill-NLP/bart-qg-mlquestions-selftraining
d0f68605d6ae69576dbd0f33f12e43994360544b
2022-04-12T22:22:52.000Z
[ "pytorch", "bart", "text2text-generation", "arxiv:1910.13461", "arxiv:2104.08801", "transformers", "license:cc-by-4.0", "autotrain_compatible" ]
text2text-generation
false
McGill-NLP
null
McGill-NLP/bart-qg-mlquestions-selftraining
1
null
transformers
31,204
--- license: cc-by-4.0 --- # BART-base fine-tuned on NaturalQuestions for **Question Generation** [BART Model](https://arxiv.org/pdf/1910.13461.pdf) trained for Question Generation in an unsupervised manner using [Self-Training](https://arxiv.org/pdf/2104.08801.pdf) algorithm (Kulshreshtha et al, EMNLP 2021). The dataset used are unaligned questions and passages from [MLQuestions dataset](https://github.com/McGill-NLP/MLQuestions/tree/main/data). ## Details of Self-Training The Self-Training algorithm was presented as a baseline algorithm to compete with proposed Back-Training in [Back-Training excels Self-Training at Unsupervised Domain Adaptation of Question Generation and Passage Retrieval](https://arxiv.org/pdf/2104.08801.pdf) by *Devang Kulshreshtha, Robert Belfer, Iulian Vlad Serban, Siva Reddy* in Here the abstract: In this work, we introduce back-training, an alternative to self-training for unsupervised domain adaptation (UDA) from source to target domain. While self-training generates synthetic training data where natural inputs are aligned with noisy outputs, back-training results in natural outputs aligned with noisy inputs. This significantly reduces the gap between the target domain and synthetic data distribution, and reduces model overfitting to the source domain. We run UDA experiments on question generation and passage retrieval from the Natural Questions domain to machine learning and biomedical domains. We find that back-training vastly outperforms self-training by a mean improvement of 7.8 BLEU4 points on generation, and 17.6% top-20 retrieval accuracy across both domains. We further propose consistency filters to remove low-quality synthetic data before training. We also release a new domain-adaptation datasetMLQuestions containing 35K unaligned questions, 50K unaligned passages, and 3K aligned question-passage pairs. ## Model training 🏋️‍ The training script can be found [here](https://github.com/McGill-NLP/MLQuestions/blob/main/UDA-SelfTraining.sh) ## Model in Action 🚀 ```python from transformers import AutoTokenizer, AutoModelForSeq2SeqLM #Load the tokenizer tokenizer = AutoTokenizer.from_pretrained("geekydevu/bart-qg-mlquestions-selftraining") #Load the model model = AutoModelForSeq2SeqLM.from_pretrained("geekydevu/bart-qg-mlquestions-selftraining") ``` ## Citation If you want to cite this model you can use this: ```bibtex @inproceedings{kulshreshtha-etal-2021-back, title = "Back-Training excels Self-Training at Unsupervised Domain Adaptation of Question Generation and Passage Retrieval", author = "Kulshreshtha, Devang and Belfer, Robert and Serban, Iulian Vlad and Reddy, Siva", booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing", month = nov, year = "2021", address = "Online and Punta Cana, Dominican Republic", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.emnlp-main.566", pages = "7064--7078", abstract = "In this work, we introduce back-training, an alternative to self-training for unsupervised domain adaptation (UDA). While self-training generates synthetic training data where natural inputs are aligned with noisy outputs, back-training results in natural outputs aligned with noisy inputs. This significantly reduces the gap between target domain and synthetic data distribution, and reduces model overfitting to source domain. We run UDA experiments on question generation and passage retrieval from the Natural Questions domain to machine learning and biomedical domains. We find that back-training vastly outperforms self-training by a mean improvement of 7.8 BLEU-4 points on generation, and 17.6{\%} top-20 retrieval accuracy across both domains. We further propose consistency filters to remove low-quality synthetic data before training. We also release a new domain-adaptation dataset - MLQuestions containing 35K unaligned questions, 50K unaligned passages, and 3K aligned question-passage pairs.", } ``` > Created by [Devang Kulshreshtha](https://geekydevu.netlify.app/) > Made with <span style="color: #e25555;">&hearts;</span> in Spain
Kuray107/ls-timit-wsj0-swbd-100percent-supervised-aug
4027670834db5364e22135b4a1f079bbe56c9cf9
2022-04-14T07:42:13.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
Kuray107
null
Kuray107/ls-timit-wsj0-swbd-100percent-supervised-aug
1
null
transformers
31,205
Entry not found
CenIA/albert-tiny-spanish-finetuned-qa-sqac
13ebf761e69ed9d9ee08da1a8e931041229cc571
2022-04-13T02:14:52.000Z
[ "pytorch", "albert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
CenIA
null
CenIA/albert-tiny-spanish-finetuned-qa-sqac
1
null
transformers
31,206
Entry not found
CenIA/albert-base-spanish-finetuned-qa-sqac
cd6c5a750b476c816712bfc633a5d7bf92ba972d
2022-04-13T02:20:07.000Z
[ "pytorch", "albert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
CenIA
null
CenIA/albert-base-spanish-finetuned-qa-sqac
1
null
transformers
31,207
Entry not found
Wizounovziki/t5-small-devices-sum-ver3
80236f5b0fab14ea99dc1aa506e8596abc6ca426
2022-04-13T03:52:55.000Z
[ "pytorch", "tensorboard", "t5", "text2text-generation", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
text2text-generation
false
Wizounovziki
null
Wizounovziki/t5-small-devices-sum-ver3
1
null
transformers
31,208
--- license: apache-2.0 tags: - generated_from_trainer metrics: - rouge model-index: - name: t5-small-devices-sum-ver3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-devices-sum-ver3 This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1325 - Rouge1: 95.6631 - Rouge2: 83.6149 - Rougel: 95.6622 - Rougelsum: 95.6632 - Gen Len: 4.9279 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | No log | 1.0 | 467 | 0.3307 | 90.9817 | 74.3762 | 90.9596 | 90.9781 | 4.7527 | | 1.0254 | 2.0 | 934 | 0.2365 | 92.6761 | 78.1252 | 92.6664 | 92.6682 | 4.8004 | | 0.3526 | 3.0 | 1401 | 0.1904 | 93.8503 | 80.4523 | 93.8286 | 93.8338 | 4.8221 | | 0.2643 | 4.0 | 1868 | 0.1638 | 94.8079 | 82.1779 | 94.7815 | 94.7853 | 4.917 | | 0.2075 | 5.0 | 2335 | 0.1503 | 95.1619 | 82.6284 | 95.1533 | 95.1578 | 4.9263 | | 0.1831 | 6.0 | 2802 | 0.1408 | 95.2357 | 82.8152 | 95.2261 | 95.2263 | 4.9287 | | 0.161 | 7.0 | 3269 | 0.1386 | 95.4993 | 83.2609 | 95.4935 | 95.4933 | 4.9269 | | 0.1589 | 8.0 | 3736 | 0.1344 | 95.6363 | 83.4727 | 95.6304 | 95.632 | 4.9309 | | 0.1517 | 9.0 | 4203 | 0.1330 | 95.6702 | 83.6329 | 95.6669 | 95.6736 | 4.9301 | | 0.1436 | 10.0 | 4670 | 0.1325 | 95.6631 | 83.6149 | 95.6622 | 95.6632 | 4.9279 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
gary109/wav2vec2-base-mirst500-ac
1f1d6307645715effc0701f201cdf9c773a4178f
2022-04-13T07:30:40.000Z
[ "pytorch", "tensorboard", "wav2vec2", "audio-classification", "dataset:mir_st500", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
audio-classification
false
gary109
null
gary109/wav2vec2-base-mirst500-ac
1
null
transformers
31,209
--- license: apache-2.0 tags: - audio-classification - generated_from_trainer datasets: - mir_st500 metrics: - accuracy model-index: - name: wav2vec2-base-mirst500-ac results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-mirst500-ac This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the /workspace/datasets/datasets/MIR_ST500/MIR_ST500.py dataset. It achieves the following results on the evaluation set: - Loss: 0.7566 - Accuracy: 0.7570 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 1 - seed: 0 - distributed_type: multi-GPU - num_devices: 2 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - total_eval_batch_size: 2 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 15.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 1.3718 | 1.0 | 1304 | 1.4422 | 0.4255 | | 1.1285 | 2.0 | 2608 | 1.1061 | 0.5869 | | 1.0275 | 3.0 | 3912 | 0.8825 | 0.6724 | | 0.9982 | 4.0 | 5216 | 0.9181 | 0.6713 | | 0.9482 | 5.0 | 6520 | 0.8717 | 0.6971 | | 0.8687 | 6.0 | 7824 | 0.8041 | 0.7164 | | 0.8841 | 7.0 | 9128 | 0.8869 | 0.7034 | | 0.8094 | 8.0 | 10432 | 0.8216 | 0.7172 | | 0.7733 | 9.0 | 11736 | 0.8018 | 0.7298 | | 0.7892 | 10.0 | 13040 | 0.7517 | 0.7426 | | 0.8736 | 11.0 | 14344 | 0.7482 | 0.7482 | | 0.7035 | 12.0 | 15648 | 0.7730 | 0.7488 | | 0.7361 | 13.0 | 16952 | 0.7677 | 0.7510 | | 0.7808 | 14.0 | 18256 | 0.7765 | 0.7512 | | 0.7359 | 15.0 | 19560 | 0.7566 | 0.7570 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.9.1+cu102 - Datasets 2.0.0 - Tokenizers 0.11.6
Davlan/afro-xlmr-mini
ef581abbc893df85e8b7f8037e713eceb94233ab
2022-04-15T14:33:50.000Z
[ "pytorch", "xlm-roberta", "fill-mask", "arxiv:2204.06487", "transformers", "license:afl-3.0", "autotrain_compatible" ]
fill-mask
false
Davlan
null
Davlan/afro-xlmr-mini
1
null
transformers
31,210
--- license: afl-3.0 --- # afro-xlmr-mini AfroXLMR-mini was created by MLM adaptation of [XLM-R-miniLM](https://huggingface.co/nreimers/mMiniLMv2-L12-H384-distilled-from-XLMR-Large) model on 17 African languages (Afrikaans, Amharic, Hausa, Igbo, Malagasy, Chichewa, Oromo, Naija, Kinyarwanda, Kirundi, Shona, Somali, Sesotho, Swahili, isiXhosa, Yoruba, and isiZulu) covering the major African language families and 3 high resource languages (Arabic, French, and English). ## Eval results on MasakhaNER (F-score) language| XLM-R-miniLM| XLM-R-base |XLM-R-large| afro-xlmr-base | afro-xlmr-small | afro-xlmr-mini -|-|-|-|-|-|- amh |69.5|70.6|76.2|76.1|70.1|69.7 hau |74.5|89.5|90.5|91.2|91.4|87.7 ibo |81.9|84.8|84.1|87.4|86.6|83.5 kin |68.6|73.3|73.8|78.0|77.5|74.1 lug |64.7|79.7|81.6|82.9|83.2|77.4 luo |11.7|74.9|73.6|75.1|75.4|17.5 pcm |83.2|87.3|89.0|89.6|89.0|85.5 swa |86.3|87.4|89.4|88.6|88.7|86.0 wol |51.7|63.9|67.9|67.4|65.9|59.0 yor |72.0|78.3|78.9|82.1|81.3|75.1 ### BibTeX entry and citation info ``` @misc{afro_maft, doi = {10.48550/ARXIV.2204.06487}, url = {https://arxiv.org/abs/2204.06487}, author = {Alabi, Jesujoba O. and Adelani, David Ifeoluwa and Mosbach, Marius and Klakow, Dietrich}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Multilingual Language Model Adaptive Fine-Tuning: A Study on African Languages}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```
cosmo/distilbert-base-uncased-finetuned-squad
411133867a353d70556fb210645d5aa2b770d126
2022-04-22T07:14:22.000Z
[ "pytorch", "tensorboard", "distilbert", "question-answering", "dataset:squad", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
question-answering
false
cosmo
null
cosmo/distilbert-base-uncased-finetuned-squad
1
null
transformers
31,211
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: distilbert-base-uncased-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-squad This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.0+cu111 - Datasets 2.1.0 - Tokenizers 0.12.1
veddm/all-distilroberta-v1-finetuned-DIT-10_epochs
b00eaa8e4297c1a9ef191f3a0f239051863b20b9
2022-04-13T16:31:00.000Z
[ "pytorch", "tensorboard", "roberta", "fill-mask", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
fill-mask
false
veddm
null
veddm/all-distilroberta-v1-finetuned-DIT-10_epochs
1
null
transformers
31,212
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: all-distilroberta-v1-finetuned-DIT-10_epochs results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # all-distilroberta-v1-finetuned-DIT-10_epochs This model is a fine-tuned version of [sentence-transformers/all-distilroberta-v1](https://huggingface.co/sentence-transformers/all-distilroberta-v1) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0044 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 358 | 0.0196 | | 0.3013 | 2.0 | 716 | 0.0092 | | 0.0073 | 3.0 | 1074 | 0.0065 | | 0.0073 | 4.0 | 1432 | 0.0054 | | 0.0021 | 5.0 | 1790 | 0.0051 | | 0.0007 | 6.0 | 2148 | 0.0047 | | 0.0004 | 7.0 | 2506 | 0.0047 | | 0.0004 | 8.0 | 2864 | 0.0046 | | 0.0004 | 9.0 | 3222 | 0.0044 | | 0.0003 | 10.0 | 3580 | 0.0044 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.2+cpu - Datasets 2.0.0 - Tokenizers 0.11.6
Gam/roberta-base-finetuned-cuad
75368cf50a7a8640bc5eb48e5753aeb618f5c67e
2022-04-13T13:11:38.000Z
[ "pytorch", "tensorboard", "roberta", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
Gam
null
Gam/roberta-base-finetuned-cuad
1
null
transformers
31,213
Entry not found
ales/wav2vec2-cv-be
2d73dd6d07fd1438e7ecf0fe8ee1cbfd326e5184
2022-04-13T21:33:15.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "be", "dataset:mozilla-foundation/common_voice_8_0", "transformers", "audio", "speech", "license:gpl-3.0", "model-index" ]
automatic-speech-recognition
false
ales
null
ales/wav2vec2-cv-be
1
null
transformers
31,214
--- license: gpl-3.0 language: - be tags: - audio - speech - automatic-speech-recognition datasets: - mozilla-foundation/common_voice_8_0 metrics: - wer model-index: - name: wav2vec2 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: be metrics: - name: Dev WER type: wer value: 17.61 - name: Test WER type: wer value: 18.7 - name: Dev WER (with LM) type: wer value: 11.5 - name: Test WER (with LM) type: wer value: 12.4 --- # Automatic Speech Recognition for Belarusian language Fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on `mozilla-foundation/common_voice_8_0 be` dataset. `Train`, `Dev`, `Test` splits were used as they are present in the dataset. No additional data was used from `Validated` split, only 1 voicing of each sentence was used - the way the data was split by [CommonVoice CorporaCreator](https://github.com/common-voice/CorporaCreator). To build a better model **one can use additional voicings from `Validated` split** for sentences already present in `Train`, `Dev`, `Test` splits, i.e. enlarge mentioned splits. Language model was built using [KenLM](https://kheafield.com/code/kenlm/estimation/). 5-gram Language model was built on sentences from `Train + (Other - Dev - Test)` splits of `mozilla-foundation/common_voice_8_0 be` dataset. Source code is available [here](https://github.com/yks72p/stt_be). ## Run model in a browser This page contains interactive demo widget that lets you test this model right in a browser. However, this widget uses Acoustic model only **without** Language model that significantly improves overall performance. You can play with **full pipeline of Acoustic model + Language model** on the following [spaces page](https://huggingface.co/spaces/ales/wav2vec2-cv-be-lm) (also works from browser).
Chikashi/t5-small-finetuned-cnndm_wikihow_test_on_cnndm
4f1049c65a5d5af5395130ca5d204a1e4d98e87d
2022-04-13T13:57:08.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
text2text-generation
false
Chikashi
null
Chikashi/t5-small-finetuned-cnndm_wikihow_test_on_cnndm
1
null
transformers
31,215
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: t5-small-finetuned-cnndm_wikihow_test_on_cnndm results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-cnndm_wikihow_test_on_cnndm This model is a fine-tuned version of [Chikashi/t5-small-finetuned-cnndm-wikihow](https://huggingface.co/Chikashi/t5-small-finetuned-cnndm-wikihow) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.12.1
Helsinki-NLP/opus-mt-tc-big-en-bg
153a411055fbe771cf5930d1faf0e1bd3426baa4
2022-06-01T13:04:25.000Z
[ "pytorch", "marian", "text2text-generation", "bg", "en", "transformers", "translation", "opus-mt-tc", "license:cc-by-4.0", "model-index", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-tc-big-en-bg
1
null
transformers
31,216
--- language: - bg - en tags: - translation - opus-mt-tc license: cc-by-4.0 model-index: - name: opus-mt-tc-big-en-bg results: - task: name: Translation eng-bul type: translation args: eng-bul dataset: name: flores101-devtest type: flores_101 args: eng bul devtest metrics: - name: BLEU type: bleu value: 44.9 - task: name: Translation eng-bul type: translation args: eng-bul dataset: name: tatoeba-test-v2021-08-07 type: tatoeba_mt args: eng-bul metrics: - name: BLEU type: bleu value: 51.5 --- # opus-mt-tc-big-en-bg Neural machine translation model for translating from English (en) to Bulgarian (bg). This model is part of the [OPUS-MT project](https://github.com/Helsinki-NLP/Opus-MT), an effort to make neural machine translation models widely available and accessible for many languages in the world. All models are originally trained using the amazing framework of [Marian NMT](https://marian-nmt.github.io/), an efficient NMT implementation written in pure C++. The models have been converted to pyTorch using the transformers library by huggingface. Training data is taken from [OPUS](https://opus.nlpl.eu/) and training pipelines use the procedures of [OPUS-MT-train](https://github.com/Helsinki-NLP/Opus-MT-train). * Publications: [OPUS-MT – Building open translation services for the World](https://aclanthology.org/2020.eamt-1.61/) and [The Tatoeba Translation Challenge – Realistic Data Sets for Low Resource and Multilingual MT](https://aclanthology.org/2020.wmt-1.139/) (Please, cite if you use this model.) ``` @inproceedings{tiedemann-thottingal-2020-opus, title = "{OPUS}-{MT} {--} Building open translation services for the World", author = {Tiedemann, J{\"o}rg and Thottingal, Santhosh}, booktitle = "Proceedings of the 22nd Annual Conference of the European Association for Machine Translation", month = nov, year = "2020", address = "Lisboa, Portugal", publisher = "European Association for Machine Translation", url = "https://aclanthology.org/2020.eamt-1.61", pages = "479--480", } @inproceedings{tiedemann-2020-tatoeba, title = "The Tatoeba Translation Challenge {--} Realistic Data Sets for Low Resource and Multilingual {MT}", author = {Tiedemann, J{\"o}rg}, booktitle = "Proceedings of the Fifth Conference on Machine Translation", month = nov, year = "2020", address = "Online", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2020.wmt-1.139", pages = "1174--1182", } ``` ## Model info * Release: 2022-02-25 * source language(s): eng * target language(s): bul * model: transformer-big * data: opusTCv20210807+bt ([source](https://github.com/Helsinki-NLP/Tatoeba-Challenge)) * tokenization: SentencePiece (spm32k,spm32k) * original model: [opusTCv20210807+bt_transformer-big_2022-02-25.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/eng-bul/opusTCv20210807+bt_transformer-big_2022-02-25.zip) * more information released models: [OPUS-MT eng-bul README](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/eng-bul/README.md) ## Usage A short example code: ```python from transformers import MarianMTModel, MarianTokenizer src_text = [ "2001 is the year when the 21st century begins.", "This is Copacabana!" ] model_name = "pytorch-models/opus-mt-tc-big-en-bg" tokenizer = MarianTokenizer.from_pretrained(model_name) model = MarianMTModel.from_pretrained(model_name) translated = model.generate(**tokenizer(src_text, return_tensors="pt", padding=True)) for t in translated: print( tokenizer.decode(t, skip_special_tokens=True) ) # expected output: # 2001 е годината, в която започва 21-ви век. # Това е Копакабана! ``` You can also use OPUS-MT models with the transformers pipelines, for example: ```python from transformers import pipeline pipe = pipeline("translation", model="Helsinki-NLP/opus-mt-tc-big-en-bg") print(pipe("2001 is the year when the 21st century begins.")) # expected output: 2001 е годината, в която започва 21-ви век. ``` ## Benchmarks * test set translations: [opusTCv20210807+bt_transformer-big_2022-02-25.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/eng-bul/opusTCv20210807+bt_transformer-big_2022-02-25.test.txt) * test set scores: [opusTCv20210807+bt_transformer-big_2022-02-25.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/eng-bul/opusTCv20210807+bt_transformer-big_2022-02-25.eval.txt) * benchmark results: [benchmark_results.txt](benchmark_results.txt) * benchmark output: [benchmark_translations.zip](benchmark_translations.zip) | langpair | testset | chr-F | BLEU | #sent | #words | |----------|---------|-------|-------|-------|--------| | eng-bul | tatoeba-test-v2021-08-07 | 0.68987 | 51.5 | 10000 | 69504 | | eng-bul | flores101-devtest | 0.69891 | 44.9 | 1012 | 24700 | ## Acknowledgements The work is supported by the [European Language Grid](https://www.european-language-grid.eu/) as [pilot project 2866](https://live.european-language-grid.eu/catalogue/#/resource/projects/2866), by the [FoTran project](https://www.helsinki.fi/en/researchgroups/natural-language-understanding-with-cross-lingual-grounding), funded by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 771113), and the [MeMAD project](https://memad.eu/), funded by the European Union’s Horizon 2020 Research and Innovation Programme under grant agreement No 780069. We are also grateful for the generous computational resources and IT infrastructure provided by [CSC -- IT Center for Science](https://www.csc.fi/), Finland. ## Model conversion info * transformers version: 4.16.2 * OPUS-MT git hash: 3405783 * port time: Wed Apr 13 16:29:32 EEST 2022 * port machine: LM0-400-22516.local
CenIA/albert-xlarge-spanish-finetuned-qa-sqac
d6d477d51ac36d8d5105c537979d7194671e93a7
2022-04-13T13:55:08.000Z
[ "pytorch", "albert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
CenIA
null
CenIA/albert-xlarge-spanish-finetuned-qa-sqac
1
null
transformers
31,217
Entry not found
Helsinki-NLP/opus-mt-tc-big-en-et
de9f19aa1c172bc4e56a07ed639ffc66505e0801
2022-06-01T13:02:46.000Z
[ "pytorch", "marian", "text2text-generation", "en", "et", "transformers", "translation", "opus-mt-tc", "license:cc-by-4.0", "model-index", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-tc-big-en-et
1
null
transformers
31,218
--- language: - en - et tags: - translation - opus-mt-tc license: cc-by-4.0 model-index: - name: opus-mt-tc-big-en-et results: - task: name: Translation eng-est type: translation args: eng-est dataset: name: flores101-devtest type: flores_101 args: eng est devtest metrics: - name: BLEU type: bleu value: 28.3 - task: name: Translation eng-est type: translation args: eng-est dataset: name: newsdev2018 type: newsdev2018 args: eng-est metrics: - name: BLEU type: bleu value: 25.2 - task: name: Translation eng-est type: translation args: eng-est dataset: name: tatoeba-test-v2021-08-07 type: tatoeba_mt args: eng-est metrics: - name: BLEU type: bleu value: 53.4 - task: name: Translation eng-est type: translation args: eng-est dataset: name: newstest2018 type: wmt-2018-news args: eng-est metrics: - name: BLEU type: bleu value: 26.7 --- # opus-mt-tc-big-en-et Neural machine translation model for translating from English (en) to Estonian (et). This model is part of the [OPUS-MT project](https://github.com/Helsinki-NLP/Opus-MT), an effort to make neural machine translation models widely available and accessible for many languages in the world. All models are originally trained using the amazing framework of [Marian NMT](https://marian-nmt.github.io/), an efficient NMT implementation written in pure C++. The models have been converted to pyTorch using the transformers library by huggingface. Training data is taken from [OPUS](https://opus.nlpl.eu/) and training pipelines use the procedures of [OPUS-MT-train](https://github.com/Helsinki-NLP/Opus-MT-train). * Publications: [OPUS-MT – Building open translation services for the World](https://aclanthology.org/2020.eamt-1.61/) and [The Tatoeba Translation Challenge – Realistic Data Sets for Low Resource and Multilingual MT](https://aclanthology.org/2020.wmt-1.139/) (Please, cite if you use this model.) ``` @inproceedings{tiedemann-thottingal-2020-opus, title = "{OPUS}-{MT} {--} Building open translation services for the World", author = {Tiedemann, J{\"o}rg and Thottingal, Santhosh}, booktitle = "Proceedings of the 22nd Annual Conference of the European Association for Machine Translation", month = nov, year = "2020", address = "Lisboa, Portugal", publisher = "European Association for Machine Translation", url = "https://aclanthology.org/2020.eamt-1.61", pages = "479--480", } @inproceedings{tiedemann-2020-tatoeba, title = "The Tatoeba Translation Challenge {--} Realistic Data Sets for Low Resource and Multilingual {MT}", author = {Tiedemann, J{\"o}rg}, booktitle = "Proceedings of the Fifth Conference on Machine Translation", month = nov, year = "2020", address = "Online", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2020.wmt-1.139", pages = "1174--1182", } ``` ## Model info * Release: 2022-03-13 * source language(s): eng * target language(s): est * model: transformer-big * data: opusTCv20210807+bt ([source](https://github.com/Helsinki-NLP/Tatoeba-Challenge)) * tokenization: SentencePiece (spm32k,spm32k) * original model: [opusTCv20210807+bt_transformer-big_2022-03-13.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/eng-est/opusTCv20210807+bt_transformer-big_2022-03-13.zip) * more information released models: [OPUS-MT eng-est README](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/eng-est/README.md) ## Usage A short example code: ```python from transformers import MarianMTModel, MarianTokenizer src_text = [ ">>est<< A cab is waiting.", ">>vro<< Where do you live?" ] model_name = "pytorch-models/opus-mt-tc-big-en-et" tokenizer = MarianTokenizer.from_pretrained(model_name) model = MarianMTModel.from_pretrained(model_name) translated = model.generate(**tokenizer(src_text, return_tensors="pt", padding=True)) for t in translated: print( tokenizer.decode(t, skip_special_tokens=True) ) # expected output: # Takso ootab. # Kus sa elad? ``` You can also use OPUS-MT models with the transformers pipelines, for example: ```python from transformers import pipeline pipe = pipeline("translation", model="Helsinki-NLP/opus-mt-tc-big-en-et") print(pipe(">>est<< A cab is waiting.")) # expected output: Takso ootab. ``` ## Benchmarks * test set translations: [opusTCv20210807+bt_transformer-big_2022-03-13.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/eng-est/opusTCv20210807+bt_transformer-big_2022-03-13.test.txt) * test set scores: [opusTCv20210807+bt_transformer-big_2022-03-13.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/eng-est/opusTCv20210807+bt_transformer-big_2022-03-13.eval.txt) * benchmark results: [benchmark_results.txt](benchmark_results.txt) * benchmark output: [benchmark_translations.zip](benchmark_translations.zip) | langpair | testset | chr-F | BLEU | #sent | #words | |----------|---------|-------|-------|-------|--------| | eng-est | tatoeba-test-v2021-08-07 | 0.71255 | 53.4 | 1359 | 7992 | | eng-est | flores101-devtest | 0.61306 | 28.3 | 1012 | 19788 | | eng-est | newsdev2018 | 0.57225 | 25.2 | 2000 | 34492 | | eng-est | newstest2018 | 0.58540 | 26.7 | 2000 | 36269 | ## Acknowledgements The work is supported by the [European Language Grid](https://www.european-language-grid.eu/) as [pilot project 2866](https://live.european-language-grid.eu/catalogue/#/resource/projects/2866), by the [FoTran project](https://www.helsinki.fi/en/researchgroups/natural-language-understanding-with-cross-lingual-grounding), funded by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 771113), and the [MeMAD project](https://memad.eu/), funded by the European Union’s Horizon 2020 Research and Innovation Programme under grant agreement No 780069. We are also grateful for the generous computational resources and IT infrastructure provided by [CSC -- IT Center for Science](https://www.csc.fi/), Finland. ## Model conversion info * transformers version: 4.16.2 * OPUS-MT git hash: 3405783 * port time: Wed Apr 13 17:00:19 EEST 2022 * port machine: LM0-400-22516.local
Gam/roberta-base-finetuned-cuad-gam
93721767dccf4dc83e9b2acb7e34814d6cc6bee8
2022-04-13T15:21:51.000Z
[ "pytorch", "tensorboard", "roberta", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
Gam
null
Gam/roberta-base-finetuned-cuad-gam
1
null
transformers
31,219
Entry not found
Helsinki-NLP/opus-mt-tc-big-en-gmq
ad0ea37d1c8081d4c65da7f5a3ab1b3b7f85fa11
2022-06-01T13:03:00.000Z
[ "pytorch", "marian", "text2text-generation", "tc", "big", "en", "gmq", "transformers", "translation", "opus-mt-tc", "license:cc-by-4.0", "model-index", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-tc-big-en-gmq
1
1
transformers
31,220
--- language: - da - en - fo - gmq - is - nb - nn - false - sv tags: - translation - opus-mt-tc license: cc-by-4.0 model-index: - name: opus-mt-tc-big-en-gmq results: - task: name: Translation eng-dan type: translation args: eng-dan dataset: name: flores101-devtest type: flores_101 args: eng dan devtest metrics: - name: BLEU type: bleu value: 47.7 - task: name: Translation eng-isl type: translation args: eng-isl dataset: name: flores101-devtest type: flores_101 args: eng isl devtest metrics: - name: BLEU type: bleu value: 24.1 - task: name: Translation eng-nob type: translation args: eng-nob dataset: name: flores101-devtest type: flores_101 args: eng nob devtest metrics: - name: BLEU type: bleu value: 34.5 - task: name: Translation eng-swe type: translation args: eng-swe dataset: name: flores101-devtest type: flores_101 args: eng swe devtest metrics: - name: BLEU type: bleu value: 46.9 - task: name: Translation eng-isl type: translation args: eng-isl dataset: name: newsdev2021.en-is type: newsdev2021.en-is args: eng-isl metrics: - name: BLEU type: bleu value: 22.6 - task: name: Translation eng-dan type: translation args: eng-dan dataset: name: tatoeba-test-v2021-08-07 type: tatoeba_mt args: eng-dan metrics: - name: BLEU type: bleu value: 61.6 - task: name: Translation eng-isl type: translation args: eng-isl dataset: name: tatoeba-test-v2021-08-07 type: tatoeba_mt args: eng-isl metrics: - name: BLEU type: bleu value: 39.9 - task: name: Translation eng-nno type: translation args: eng-nno dataset: name: tatoeba-test-v2021-08-07 type: tatoeba_mt args: eng-nno metrics: - name: BLEU type: bleu value: 40.1 - task: name: Translation eng-nob type: translation args: eng-nob dataset: name: tatoeba-test-v2021-08-07 type: tatoeba_mt args: eng-nob metrics: - name: BLEU type: bleu value: 57.3 - task: name: Translation eng-swe type: translation args: eng-swe dataset: name: tatoeba-test-v2021-08-07 type: tatoeba_mt args: eng-swe metrics: - name: BLEU type: bleu value: 60.9 - task: name: Translation eng-isl type: translation args: eng-isl dataset: name: newstest2021.en-is type: wmt-2021-news args: eng-isl metrics: - name: BLEU type: bleu value: 21.5 --- # opus-mt-tc-big-en-gmq Neural machine translation model for translating from English (en) to North Germanic languages (gmq). This model is part of the [OPUS-MT project](https://github.com/Helsinki-NLP/Opus-MT), an effort to make neural machine translation models widely available and accessible for many languages in the world. All models are originally trained using the amazing framework of [Marian NMT](https://marian-nmt.github.io/), an efficient NMT implementation written in pure C++. The models have been converted to pyTorch using the transformers library by huggingface. Training data is taken from [OPUS](https://opus.nlpl.eu/) and training pipelines use the procedures of [OPUS-MT-train](https://github.com/Helsinki-NLP/Opus-MT-train). * Publications: [OPUS-MT – Building open translation services for the World](https://aclanthology.org/2020.eamt-1.61/) and [The Tatoeba Translation Challenge – Realistic Data Sets for Low Resource and Multilingual MT](https://aclanthology.org/2020.wmt-1.139/) (Please, cite if you use this model.) ``` @inproceedings{tiedemann-thottingal-2020-opus, title = "{OPUS}-{MT} {--} Building open translation services for the World", author = {Tiedemann, J{\"o}rg and Thottingal, Santhosh}, booktitle = "Proceedings of the 22nd Annual Conference of the European Association for Machine Translation", month = nov, year = "2020", address = "Lisboa, Portugal", publisher = "European Association for Machine Translation", url = "https://aclanthology.org/2020.eamt-1.61", pages = "479--480", } @inproceedings{tiedemann-2020-tatoeba, title = "The Tatoeba Translation Challenge {--} Realistic Data Sets for Low Resource and Multilingual {MT}", author = {Tiedemann, J{\"o}rg}, booktitle = "Proceedings of the Fifth Conference on Machine Translation", month = nov, year = "2020", address = "Online", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2020.wmt-1.139", pages = "1174--1182", } ``` ## Model info * Release: 2022-03-17 * source language(s): eng * target language(s): dan fao isl nno nob nor swe * valid target language labels: >>dan<< >>fao<< >>isl<< >>nno<< >>nob<< >>nor<< >>swe<< * model: transformer-big * data: opusTCv20210807+bt ([source](https://github.com/Helsinki-NLP/Tatoeba-Challenge)) * tokenization: SentencePiece (spm32k,spm32k) * original model: [opusTCv20210807+bt_transformer-big_2022-03-17.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/eng-gmq/opusTCv20210807+bt_transformer-big_2022-03-17.zip) * more information released models: [OPUS-MT eng-gmq README](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/eng-gmq/README.md) * more information about the model: [MarianMT](https://huggingface.co/docs/transformers/model_doc/marian) This is a multilingual translation model with multiple target languages. A sentence initial language token is required in the form of `>>id<<` (id = valid target language ID), e.g. `>>dan<<` ## Usage A short example code: ```python from transformers import MarianMTModel, MarianTokenizer src_text = [ ">>nno<< The United States borders Canada.", ">>nob<< This is the biggest hotel in this city." ] model_name = "pytorch-models/opus-mt-tc-big-en-gmq" tokenizer = MarianTokenizer.from_pretrained(model_name) model = MarianMTModel.from_pretrained(model_name) translated = model.generate(**tokenizer(src_text, return_tensors="pt", padding=True)) for t in translated: print( tokenizer.decode(t, skip_special_tokens=True) ) # expected output: # USA grensar til Canada. # Dette er det største hotellet i denne byen. ``` You can also use OPUS-MT models with the transformers pipelines, for example: ```python from transformers import pipeline pipe = pipeline("translation", model="Helsinki-NLP/opus-mt-tc-big-en-gmq") print(pipe(">>nno<< The United States borders Canada.")) # expected output: USA grensar til Canada. ``` ## Benchmarks * test set translations: [opusTCv20210807+bt_transformer-big_2022-03-17.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/eng-gmq/opusTCv20210807+bt_transformer-big_2022-03-17.test.txt) * test set scores: [opusTCv20210807+bt_transformer-big_2022-03-17.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/eng-gmq/opusTCv20210807+bt_transformer-big_2022-03-17.eval.txt) * benchmark results: [benchmark_results.txt](benchmark_results.txt) * benchmark output: [benchmark_translations.zip](benchmark_translations.zip) | langpair | testset | chr-F | BLEU | #sent | #words | |----------|---------|-------|-------|-------|--------| | eng-dan | tatoeba-test-v2021-08-07 | 0.75165 | 61.6 | 10795 | 79385 | | eng-fao | tatoeba-test-v2021-08-07 | 0.40395 | 18.3 | 294 | 1933 | | eng-isl | tatoeba-test-v2021-08-07 | 0.59731 | 39.9 | 2503 | 19023 | | eng-nno | tatoeba-test-v2021-08-07 | 0.61271 | 40.1 | 460 | 3428 | | eng-nob | tatoeba-test-v2021-08-07 | 0.72380 | 57.3 | 4539 | 36119 | | eng-swe | tatoeba-test-v2021-08-07 | 0.74197 | 60.9 | 10362 | 68067 | | eng-dan | flores101-devtest | 0.70810 | 47.7 | 1012 | 24638 | | eng-isl | flores101-devtest | 0.52076 | 24.1 | 1012 | 22834 | | eng-nob | flores101-devtest | 0.62760 | 34.5 | 1012 | 23873 | | eng-swe | flores101-devtest | 0.70129 | 46.9 | 1012 | 23121 | | eng-isl | newsdev2021.en-is | 0.50376 | 22.6 | 2004 | 43721 | | eng-isl | newstest2021.en-is | 0.50516 | 21.5 | 1000 | 25233 | ## Acknowledgements The work is supported by the [European Language Grid](https://www.european-language-grid.eu/) as [pilot project 2866](https://live.european-language-grid.eu/catalogue/#/resource/projects/2866), by the [FoTran project](https://www.helsinki.fi/en/researchgroups/natural-language-understanding-with-cross-lingual-grounding), funded by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 771113), and the [MeMAD project](https://memad.eu/), funded by the European Union’s Horizon 2020 Research and Innovation Programme under grant agreement No 780069. We are also grateful for the generous computational resources and IT infrastructure provided by [CSC -- IT Center for Science](https://www.csc.fi/), Finland. ## Model conversion info * transformers version: 4.16.2 * OPUS-MT git hash: 3405783 * port time: Wed Apr 13 17:14:46 EEST 2022 * port machine: LM0-400-22516.local
Gam/distilbert-base-uncased-finetuned-cuad-distilbert
16a6f8e61a121c3958fd35b2586cb74d96095096
2022-04-13T16:42:58.000Z
[ "pytorch", "tensorboard", "distilbert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
Gam
null
Gam/distilbert-base-uncased-finetuned-cuad-distilbert
1
null
transformers
31,221
Entry not found
huggingtweets/notthatsuperman
e37d43452f4c183eb97de36aedc5470f7d207c8b
2022-04-24T22:13:21.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/notthatsuperman
1
null
transformers
31,222
--- language: en thumbnail: http://www.huggingtweets.com/notthatsuperman/1650838396576/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1518349985649246211/cSRbyu-Y_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">NotThatSuperman</div> <div style="text-align: center; font-size: 14px;">@notthatsuperman</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from NotThatSuperman. | Data | NotThatSuperman | | --- | --- | | Tweets downloaded | 3198 | | Retweets | 288 | | Short tweets | 851 | | Tweets kept | 2059 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2le2bshi/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @notthatsuperman's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3jdmiehf) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3jdmiehf/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/notthatsuperman') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
DioLiu/distilroberta-base-Ctr3
10692bbebe5bfac124167d505d397bd167121df8
2022-04-14T03:48:04.000Z
[ "pytorch", "tensorboard", "roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
DioLiu
null
DioLiu/distilroberta-base-Ctr3
1
null
transformers
31,223
Entry not found
eleldar/marian-finetuned-kde4-en-to-fr
351534b11054661cdc0f2713d74b607e2b6fe5a3
2022-04-13T17:28:00.000Z
[ "pytorch", "marian", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
eleldar
null
eleldar/marian-finetuned-kde4-en-to-fr
1
null
transformers
31,224
Entry not found
masakhane/afrimt5_fr_bbj_news
20cfadf04b005f858995e00f8ac597a1ecae39c9
2022-04-13T18:28:29.000Z
[ "pytorch", "mt5", "text2text-generation", "transformers", "license:afl-3.0", "autotrain_compatible" ]
text2text-generation
false
masakhane
null
masakhane/afrimt5_fr_bbj_news
1
null
transformers
31,225
--- license: afl-3.0 ---
masakhane/afrimbart_fr_bbj_news
8043139a4614c28b14db81d3f96a5052ec1fbad5
2022-04-13T18:28:36.000Z
[ "pytorch", "mbart", "text2text-generation", "transformers", "license:afl-3.0", "autotrain_compatible" ]
text2text-generation
false
masakhane
null
masakhane/afrimbart_fr_bbj_news
1
null
transformers
31,226
--- license: afl-3.0 ---
masakhane/afribyt5_fr_bbj_news
afcd8f6b0d2afe553d060b7287c4262901d7a394
2022-04-13T19:29:52.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "license:afl-3.0", "autotrain_compatible" ]
text2text-generation
false
masakhane
null
masakhane/afribyt5_fr_bbj_news
1
null
transformers
31,227
--- license: afl-3.0 ---
masakhane/mbart50_fr_bbj_news
2fb9a87175e477e8deca70020cc7aab2a4373256
2022-04-13T20:41:10.000Z
[ "pytorch", "mbart", "text2text-generation", "transformers", "license:afl-3.0", "autotrain_compatible" ]
text2text-generation
false
masakhane
null
masakhane/mbart50_fr_bbj_news
1
null
transformers
31,228
--- license: afl-3.0 ---
masakhane/m2m100_418M_bbj_fr_news
37c26c1e843a4b49b2bd9777ba5970e615c0a538
2022-04-13T21:40:11.000Z
[ "pytorch", "m2m_100", "text2text-generation", "transformers", "license:afl-3.0", "autotrain_compatible" ]
text2text-generation
false
masakhane
null
masakhane/m2m100_418M_bbj_fr_news
1
null
transformers
31,229
--- license: afl-3.0 ---
masakhane/m2m100_418M_bbj_fr_rel_news_ft
02122732b8df4f8d7f9830c34841fa50c98cae3f
2022-04-14T08:42:42.000Z
[ "pytorch", "m2m_100", "text2text-generation", "transformers", "license:afl-3.0", "autotrain_compatible" ]
text2text-generation
false
masakhane
null
masakhane/m2m100_418M_bbj_fr_rel_news_ft
1
null
transformers
31,230
--- license: afl-3.0 ---
masakhane/m2m100_418M_bbj_fr_rel
6bc1d62a701ff3be9fb27b0cabfd2b0c5d64b59d
2022-04-14T08:42:52.000Z
[ "pytorch", "m2m_100", "text2text-generation", "transformers", "license:afl-3.0", "autotrain_compatible" ]
text2text-generation
false
masakhane
null
masakhane/m2m100_418M_bbj_fr_rel
1
null
transformers
31,231
--- license: afl-3.0 ---
atomsspawn/DialoGPT-medium-dumbledore
ebd0db71affe006197971331c37280de35cbdedc
2022-04-13T17:33:10.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
atomsspawn
null
atomsspawn/DialoGPT-medium-dumbledore
1
null
transformers
31,232
--- tags: - conversational --- # Harry Potter DialoGPT Model
Gam/distilbert-base-uncased-finetuned-CUAD-IE
d0511f147434385de3690f9e139657f79e630588
2022-04-13T19:25:28.000Z
[ "pytorch", "tensorboard", "distilbert", "question-answering", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
question-answering
false
Gam
null
Gam/distilbert-base-uncased-finetuned-CUAD-IE
1
0
transformers
31,233
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distilbert-base-uncased-finetuned-CUAD-IE results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-CUAD-IE This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0108 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 0.0149 | 1.0 | 33737 | 0.0108 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.0+cu111 - Tokenizers 0.12.1
flood/xlm-roberta-base-finetuned-panx-de
38cbf8155777e9254196c2e9ff174e7602f41551
2022-06-10T04:39:15.000Z
[ "pytorch", "tensorboard", "xlm-roberta", "token-classification", "dataset:xtreme", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
token-classification
false
flood
null
flood/xlm-roberta-base-finetuned-panx-de
1
null
transformers
31,234
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme args: PAN-X.de metrics: - name: F1 type: f1 value: 0.8633935674508466 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.1344 - F1: 0.8634 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2588 | 1.0 | 525 | 0.1676 | 0.8194 | | 0.1318 | 2.0 | 1050 | 0.1326 | 0.8513 | | 0.084 | 3.0 | 1575 | 0.1344 | 0.8634 | ### Framework versions - Transformers 4.19.3 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
Tianle/distilbert-base-uncased-finetuned-squad
80d97b2c043772d1a1b5145bf1b7e44f227bed03
2022-04-14T18:59:38.000Z
[ "pytorch", "tensorboard", "distilbert", "question-answering", "dataset:squad", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
question-answering
false
Tianle
null
Tianle/distilbert-base-uncased-finetuned-squad
1
null
transformers
31,235
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: distilbert-base-uncased-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-squad This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the squad dataset. It achieves the following results on the evaluation set: - Loss: 1.2169 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.2631 | 1.0 | 5533 | 1.2169 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.0+cu111 - Datasets 2.1.0 - Tokenizers 0.12.1
Adrian/distilbert-base-uncased-finetuned-squad
969ac093161bdb75c8bf1bf9d7344be1295c4621
2022-04-16T18:28:34.000Z
[ "pytorch", "tensorboard", "distilbert", "question-answering", "dataset:squad", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
question-answering
false
Adrian
null
Adrian/distilbert-base-uncased-finetuned-squad
1
null
transformers
31,236
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: distilbert-base-uncased-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-squad This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the squad dataset. It achieves the following results on the evaluation set: - Loss: 1.1484 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 1.2114 | 1.0 | 5533 | 1.1509 | | 0.9537 | 2.0 | 11066 | 1.1229 | | 0.7459 | 3.0 | 16599 | 1.1484 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.12.1
jekdoieao/wav2vec2-large-xls-r-300m-turkish-colab
95942e31ac545f87ebe3bcca531e402a01212903
2022-04-14T02:33:42.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "dataset:common_voice", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
jekdoieao
null
jekdoieao/wav2vec2-large-xls-r-300m-turkish-colab
1
null
transformers
31,237
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice model-index: - name: wav2vec2-large-xls-r-300m-turkish-colab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-turkish-colab This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.3731 - Wer: 0.3635 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.967 | 3.67 | 400 | 0.6661 | 0.6756 | | 0.3882 | 7.34 | 800 | 0.4310 | 0.4755 | | 0.1828 | 11.01 | 1200 | 0.4146 | 0.4485 | | 0.126 | 14.68 | 1600 | 0.4014 | 0.4254 | | 0.0955 | 18.35 | 2000 | 0.4125 | 0.4040 | | 0.0749 | 22.02 | 2400 | 0.3912 | 0.3960 | | 0.0606 | 25.69 | 2800 | 0.3707 | 0.3771 | | 0.0477 | 29.36 | 3200 | 0.3731 | 0.3635 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.10.3
gary109/wav2vec2-large-xlsr-53-MIR_ST500_ASR
4b501dfda3389ab69be95f2a7a89cda44a2e05e9
2022-04-14T11:05:02.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "dataset:mir_st500", "transformers", "/workspace/datasets/datasets/MIR_ST500/MIR_ST500.py", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
gary109
null
gary109/wav2vec2-large-xlsr-53-MIR_ST500_ASR
1
null
transformers
31,238
--- license: apache-2.0 tags: - automatic-speech-recognition - /workspace/datasets/datasets/MIR_ST500/MIR_ST500.py - generated_from_trainer datasets: - mir_st500 model-index: - name: wav2vec2-large-xlsr-53-MIR_ST500_ASR results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xlsr-53-MIR_ST500_ASR This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the /WORKSPACE/DATASETS/DATASETS/MIR_ST500/MIR_ST500.PY - ASR dataset. It achieves the following results on the evaluation set: - Loss: 0.5180 - Wer: 0.5824 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 2 - total_train_batch_size: 8 - total_eval_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 15.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 56.764 | 0.13 | 100 | 24.4254 | 0.9990 | | 7.5081 | 0.27 | 200 | 2.9111 | 1.0 | | 3.4899 | 0.4 | 300 | 2.1361 | 1.0 | | 2.4094 | 0.53 | 400 | 1.9088 | 1.0 | | 2.6764 | 0.67 | 500 | 1.8543 | 1.0 | | 3.3107 | 0.8 | 600 | 1.7979 | 1.0 | | 2.2856 | 0.93 | 700 | 1.7571 | 1.0 | | 1.856 | 1.07 | 800 | 1.7351 | 0.9648 | | 1.8882 | 1.2 | 900 | 1.7181 | 0.9654 | | 2.1731 | 1.33 | 1000 | 1.6736 | 0.9637 | | 1.8252 | 1.46 | 1100 | 1.3468 | 0.9647 | | 1.9092 | 1.6 | 1200 | 1.3302 | 0.9627 | | 1.9435 | 1.73 | 1300 | 1.2428 | 0.9634 | | 1.3027 | 1.86 | 1400 | 1.2133 | 0.9644 | | 1.3438 | 2.0 | 1500 | 1.2002 | 0.9635 | | 1.2161 | 2.13 | 1600 | 1.1901 | 0.9636 | | 1.203 | 2.26 | 1700 | 1.1620 | 0.9616 | | 1.1159 | 2.4 | 1800 | 1.1660 | 0.9598 | | 1.1466 | 2.53 | 1900 | 1.2089 | 0.9605 | | 1.0563 | 2.66 | 2000 | 1.1732 | 0.9603 | | 1.1019 | 2.8 | 2100 | 1.1468 | 0.9612 | | 1.029 | 2.93 | 2200 | 1.1188 | 0.9622 | | 1.0079 | 3.06 | 2300 | 1.0604 | 0.9617 | | 1.0483 | 3.2 | 2400 | 1.0499 | 0.9612 | | 0.9892 | 3.33 | 2500 | 1.0292 | 0.9606 | | 0.9556 | 3.46 | 2600 | 1.0228 | 0.9604 | | 0.9626 | 3.6 | 2700 | 1.0028 | 0.9617 | | 1.0537 | 3.73 | 2800 | 1.0051 | 0.9608 | | 1.0648 | 3.86 | 2900 | 0.9723 | 0.9604 | | 0.8657 | 3.99 | 3000 | 0.9620 | 0.9605 | | 0.8964 | 4.13 | 3100 | 1.0432 | 0.9612 | | 0.9639 | 4.26 | 3200 | 0.9322 | 0.9589 | | 0.8965 | 4.39 | 3300 | 0.9091 | 0.9559 | | 0.8257 | 4.53 | 3400 | 0.8999 | 0.9499 | | 0.8002 | 4.66 | 3500 | 0.8754 | 0.9554 | | 0.7335 | 4.79 | 3600 | 0.8608 | 0.9572 | | 0.936 | 4.93 | 3700 | 0.8564 | 0.9510 | | 0.8185 | 5.06 | 3800 | 0.8890 | 0.9517 | | 0.7422 | 5.19 | 3900 | 0.8262 | 0.9392 | | 0.7784 | 5.33 | 4000 | 0.8292 | 0.9259 | | 0.8123 | 5.46 | 4100 | 0.8180 | 0.9374 | | 0.7256 | 5.59 | 4200 | 0.8158 | 0.9077 | | 0.7638 | 5.73 | 4300 | 0.8423 | 0.9170 | | 0.6737 | 5.86 | 4400 | 0.7818 | 0.9182 | | 0.7644 | 5.99 | 4500 | 0.7692 | 0.8934 | | 0.7911 | 6.13 | 4600 | 0.7627 | 0.8978 | | 0.6922 | 6.26 | 4700 | 0.7627 | 0.8906 | | 0.7369 | 6.39 | 4800 | 0.7570 | 0.8838 | | 0.6642 | 6.52 | 4900 | 0.9476 | 0.8953 | | 0.7502 | 6.66 | 5000 | 0.7336 | 0.8955 | | 0.6243 | 6.79 | 5100 | 0.7583 | 0.8896 | | 0.6912 | 6.92 | 5200 | 0.7764 | 0.8761 | | 0.7744 | 7.06 | 5300 | 0.7615 | 0.8790 | | 0.6195 | 7.19 | 5400 | 0.7114 | 0.8712 | | 0.7418 | 7.32 | 5500 | 0.8314 | 0.8864 | | 0.7658 | 7.46 | 5600 | 0.8531 | 0.8718 | | 0.6821 | 7.59 | 5700 | 0.9068 | 0.8786 | | 0.6931 | 7.72 | 5800 | 0.7549 | 0.8645 | | 0.6771 | 7.86 | 5900 | 0.7138 | 0.8442 | | 0.6735 | 7.99 | 6000 | 0.6947 | 0.8493 | | 0.6427 | 8.12 | 6100 | 0.6997 | 0.8475 | | 0.6988 | 8.26 | 6200 | 0.6814 | 0.8098 | | 0.6726 | 8.39 | 6300 | 0.6656 | 0.8259 | | 0.6247 | 8.52 | 6400 | 0.6438 | 0.8314 | | 0.5101 | 8.66 | 6500 | 0.6323 | 0.8446 | | 0.5325 | 8.79 | 6600 | 0.6305 | 0.8413 | | 0.5918 | 8.92 | 6700 | 0.6353 | 0.8076 | | 0.617 | 9.05 | 6800 | 0.6544 | 0.8118 | | 0.4861 | 9.19 | 6900 | 0.6174 | 0.8429 | | 0.6396 | 9.32 | 7000 | 0.6140 | 0.8117 | | 0.436 | 9.45 | 7100 | 0.6148 | 0.7887 | | 0.6141 | 9.59 | 7200 | 0.6133 | 0.8007 | | 0.5781 | 9.72 | 7300 | 0.6135 | 0.8211 | | 0.52 | 9.85 | 7400 | 0.6155 | 0.8042 | | 0.6681 | 9.99 | 7500 | 0.6074 | 0.7843 | | 0.5004 | 10.12 | 7600 | 0.5950 | 0.8035 | | 0.4993 | 10.25 | 7700 | 0.5888 | 0.7710 | | 0.4768 | 10.39 | 7800 | 0.5922 | 0.7633 | | 0.4535 | 10.52 | 7900 | 0.5906 | 0.8030 | | 0.517 | 10.65 | 8000 | 0.5875 | 0.7823 | | 0.5894 | 10.79 | 8100 | 0.5882 | 0.7932 | | 0.6005 | 10.92 | 8200 | 0.5798 | 0.7922 | | 0.4284 | 11.05 | 8300 | 0.5775 | 0.7701 | | 0.5163 | 11.19 | 8400 | 0.5715 | 0.7592 | | 0.4701 | 11.32 | 8500 | 0.5955 | 0.7485 | | 0.5152 | 11.45 | 8600 | 0.6041 | 0.6914 | | 0.4442 | 11.58 | 8700 | 0.5614 | 0.7439 | | 0.4451 | 11.72 | 8800 | 0.5619 | 0.7033 | | 0.4433 | 11.85 | 8900 | 0.5562 | 0.7246 | | 0.4799 | 11.98 | 9000 | 0.5834 | 0.7040 | | 0.4832 | 12.12 | 9100 | 0.5902 | 0.7349 | | 0.523 | 12.25 | 9200 | 0.5562 | 0.7326 | | 0.4419 | 12.38 | 9300 | 0.5472 | 0.7326 | | 0.437 | 12.52 | 9400 | 0.5466 | 0.7100 | | 0.4797 | 12.65 | 9500 | 0.5470 | 0.6698 | | 0.3971 | 12.78 | 9600 | 0.5437 | 0.6835 | | 0.5254 | 12.92 | 9700 | 0.5385 | 0.6747 | | 0.5046 | 13.05 | 9800 | 0.5330 | 0.6554 | | 0.4692 | 13.18 | 9900 | 0.5305 | 0.6527 | | 0.4305 | 13.32 | 10000 | 0.5292 | 0.6314 | | 0.6132 | 13.45 | 10100 | 0.5405 | 0.6028 | | 0.4741 | 13.58 | 10200 | 0.5311 | 0.6207 | | 0.398 | 13.72 | 10300 | 0.5320 | 0.6261 | | 0.458 | 13.85 | 10400 | 0.5240 | 0.6242 | | 0.4154 | 13.98 | 10500 | 0.5262 | 0.6215 | | 0.3702 | 14.11 | 10600 | 0.5206 | 0.6136 | | 0.427 | 14.25 | 10700 | 0.5231 | 0.6289 | | 0.4307 | 14.38 | 10800 | 0.5210 | 0.5908 | | 0.4738 | 14.51 | 10900 | 0.5211 | 0.5826 | | 0.5522 | 14.65 | 11000 | 0.5193 | 0.5886 | | 0.4717 | 14.78 | 11100 | 0.5194 | 0.5907 | | 0.4819 | 14.91 | 11200 | 0.5178 | 0.5870 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.9.1+cu102 - Datasets 2.0.0 - Tokenizers 0.11.6
pitiwat/argument_wangchanberta2
52749037b6c9e51fc3600b316db406541a0335fc
2022-04-17T02:59:58.000Z
[ "pytorch", "camembert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
pitiwat
null
pitiwat/argument_wangchanberta2
1
null
transformers
31,239
--- widget: - text: "ฉัน ชอบ หมา เพราะ มัน น่ารัก" ---
florentiino/DialoGPT-small-rick
a60d607dedf5c98de60c11afacf89a779299ef5e
2022-04-14T15:24:54.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
florentiino
null
florentiino/DialoGPT-small-rick
1
null
transformers
31,240
--- tags: - conversational --- # My Awesome Model that talks like Rick but thinks that your name is Morty
NeuralNotwork/gpt2-baseline
73da02758a1ecb69c5d957450f0b9f38288cc912
2022-04-14T14:42:10.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
NeuralNotwork
null
NeuralNotwork/gpt2-baseline
1
null
transformers
31,241
Entry not found
lilitket/20220414-150333
214b1694655aa34b87414c8fd8cff1e6421e6a45
2022-04-14T15:16:43.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
lilitket
null
lilitket/20220414-150333
1
null
transformers
31,242
Entry not found
Chikashi/t5-small-finetuned-cnndm1-wikihow0
c1f9b57a4c2ba75074597059b9a354a3ff63d4ab
2022-04-14T23:28:23.000Z
[ "pytorch", "tensorboard", "t5", "text2text-generation", "dataset:cnn_dailymail", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
text2text-generation
false
Chikashi
null
Chikashi/t5-small-finetuned-cnndm1-wikihow0
1
null
transformers
31,243
--- license: apache-2.0 tags: - generated_from_trainer datasets: - cnn_dailymail metrics: - rouge model-index: - name: t5-small-finetuned-cnndm1-wikihow0 results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: cnn_dailymail type: cnn_dailymail args: 3.0.0 metrics: - name: Rouge1 type: rouge value: 24.6116 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-cnndm1-wikihow0 This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the cnn_dailymail dataset. It achieves the following results on the evaluation set: - Loss: 1.6436 - Rouge1: 24.6116 - Rouge2: 11.8788 - Rougel: 20.3665 - Rougelsum: 23.2474 - Gen Len: 18.9998 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | 1.8208 | 1.0 | 71779 | 1.6436 | 24.6116 | 11.8788 | 20.3665 | 23.2474 | 18.9998 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.0+cu111 - Datasets 2.1.0 - Tokenizers 0.12.1
mizoru/wav2vec2-large-xls-r-300m-chuvash-colab
5db8bed8c12567bf401540983dc86868c3a680d1
2022-06-09T00:19:07.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "dataset:common_voice", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
mizoru
null
mizoru/wav2vec2-large-xls-r-300m-chuvash-colab
1
null
transformers
31,244
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice model-index: - name: wav2vec2-large-xls-r-300m-chuvash-colab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-chuvash-colab This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - eval_loss: 0.6998 - eval_wer: 0.7356 - eval_runtime: 233.6193 - eval_samples_per_second: 3.373 - eval_steps_per_second: 0.424 - epoch: 9.75 - step: 400 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu113 - Datasets 1.18.3 - Tokenizers 0.10.3
milyiyo/stog-t5-small
eb42b873d4f47e465d845783791f5c486293ec36
2022-04-14T20:32:23.000Z
[ "pytorch", "tensorboard", "t5", "text2text-generation", "dataset:web_nlg", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
text2text-generation
false
milyiyo
null
milyiyo/stog-t5-small
1
null
transformers
31,245
--- license: apache-2.0 tags: - generated_from_trainer datasets: - web_nlg model-index: - name: stog-t5-small results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # stog-t5-small This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the web_nlg dataset. It achieves the following results on the evaluation set: - Loss: 0.1414 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 0.12 | 100 | 0.4625 | | No log | 0.24 | 200 | 0.3056 | | No log | 0.36 | 300 | 0.2393 | | No log | 0.48 | 400 | 0.1999 | | No log | 0.61 | 500 | 0.1740 | | No log | 0.73 | 600 | 0.1562 | | No log | 0.85 | 700 | 0.1467 | | No log | 0.97 | 800 | 0.1418 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.0+cu111 - Datasets 2.1.0 - Tokenizers 0.12.1
omicron1100/dummy-model
12cedd9be492b4f401bad13d6f8ea899cbcd010c
2022-04-14T22:50:01.000Z
[ "pytorch", "roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
omicron1100
null
omicron1100/dummy-model
1
null
transformers
31,246
Entry not found
repro-rights-amicus-briefs/bert-base-uncased-2-finetuned-RRamicus
bfce8bfef84ffc03cf900038aa6691c32dcb64a3
2022-04-15T02:04:28.000Z
[ "pytorch", "tensorboard", "bert", "fill-mask", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
fill-mask
false
repro-rights-amicus-briefs
null
repro-rights-amicus-briefs/bert-base-uncased-2-finetuned-RRamicus
1
null
transformers
31,247
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: bert-base-uncased-2-finetuned-RRamicus results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-2-finetuned-RRamicus This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.4784 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 928 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 2.0341 | 1.0 | 1113 | 1.7515 | | 1.7881 | 2.0 | 2226 | 1.6616 | | 1.697 | 3.0 | 3339 | 1.6061 | | 1.6328 | 4.0 | 4452 | 1.5662 | | 1.5919 | 5.0 | 5565 | 1.5362 | | 1.5602 | 6.0 | 6678 | 1.5193 | | 1.5221 | 7.0 | 7791 | 1.4984 | | 1.5135 | 8.0 | 8904 | 1.4898 | | 1.4917 | 9.0 | 10017 | 1.4755 | | 1.4859 | 10.0 | 11130 | 1.4671 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.0+cu111 - Datasets 2.1.0 - Tokenizers 0.12.1
Chikashi/t5-small-finetuned-cnndm1-wikihow1
eb69a11b38b19333bb5dcb8449526f2e5bf9c094
2022-04-15T03:46:59.000Z
[ "pytorch", "tensorboard", "t5", "text2text-generation", "dataset:wikihow", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
text2text-generation
false
Chikashi
null
Chikashi/t5-small-finetuned-cnndm1-wikihow1
1
null
transformers
31,248
--- license: apache-2.0 tags: - generated_from_trainer datasets: - wikihow metrics: - rouge model-index: - name: t5-small-finetuned-cnndm1-wikihow1 results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: wikihow type: wikihow args: all metrics: - name: Rouge1 type: rouge value: 26.6881 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-cnndm1-wikihow1 This model is a fine-tuned version of [Chikashi/t5-small-finetuned-cnndm1-wikihow0](https://huggingface.co/Chikashi/t5-small-finetuned-cnndm1-wikihow0) on the wikihow dataset. It achieves the following results on the evaluation set: - Loss: 2.3727 - Rouge1: 26.6881 - Rouge2: 9.9589 - Rougel: 22.6828 - Rougelsum: 26.0203 - Gen Len: 18.4813 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:------:|:-------:|:---------:|:-------:| | 2.56 | 1.0 | 39313 | 2.3727 | 26.6881 | 9.9589 | 22.6828 | 26.0203 | 18.4813 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.0+cu111 - Datasets 2.1.0 - Tokenizers 0.12.1
mikeluck/gpt2-wikitext2
7d5137191af421953e55bcc9ed39aa9c319cc649
2022-04-15T19:03:07.000Z
[ "pytorch", "tensorboard", "gpt2", "text-generation", "transformers" ]
text-generation
false
mikeluck
null
mikeluck/gpt2-wikitext2
1
null
transformers
31,249
Entry not found
Kuray107/3-datasets-100h-supervised-aug
ecb0dce6869d9e5f3b3c33683b4f4dfc92919495
2022-04-18T03:27:36.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
Kuray107
null
Kuray107/3-datasets-100h-supervised-aug
1
null
transformers
31,250
Entry not found
Tuffy/DialoGPT-small-harrypotter
b4a807c3f9ee9fea674ca74eac7788c5925cf5c7
2022-04-15T04:43:47.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
Tuffy
null
Tuffy/DialoGPT-small-harrypotter
1
null
transformers
31,251
--- tags: - conversational --- # small-harrypotter
PSW/bart-last-ut-pred
b239245076e47066e8327aa8ef9f0a5151dcc9fc
2022-04-15T06:42:30.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
PSW
null
PSW/bart-last-ut-pred
1
null
transformers
31,252
Entry not found
masakhane/afrimbart_ewe_fr_news
13946992010e660836ee0add6aaffb419d011c65
2022-04-15T09:01:33.000Z
[ "pytorch", "mbart", "text2text-generation", "transformers", "license:afl-3.0", "autotrain_compatible" ]
text2text-generation
false
masakhane
null
masakhane/afrimbart_ewe_fr_news
1
null
transformers
31,253
--- license: afl-3.0 ---
masakhane/m2m100_418M_fr_ewe_news
70bf5fa2bbb46f167956d204dd0f011f3af54dd2
2022-04-15T13:28:03.000Z
[ "pytorch", "m2m_100", "text2text-generation", "transformers", "license:afl-3.0", "autotrain_compatible" ]
text2text-generation
false
masakhane
null
masakhane/m2m100_418M_fr_ewe_news
1
null
transformers
31,254
--- license: afl-3.0 ---
masakhane/m2m100_418M_fr_ewe_rel_news
bb96aaef587310ae1b408275351d832fd53fe5aa
2022-04-15T13:28:06.000Z
[ "pytorch", "m2m_100", "text2text-generation", "transformers", "license:afl-3.0", "autotrain_compatible" ]
text2text-generation
false
masakhane
null
masakhane/m2m100_418M_fr_ewe_rel_news
1
null
transformers
31,255
--- license: afl-3.0 ---
masakhane/m2m100_418M_fr_ewe_rel_ft
ee7340a2e2c38c1db7590e66d1e57a45ec1fbb5c
2022-04-15T16:27:54.000Z
[ "pytorch", "m2m_100", "text2text-generation", "transformers", "license:afl-3.0", "autotrain_compatible" ]
text2text-generation
false
masakhane
null
masakhane/m2m100_418M_fr_ewe_rel_ft
1
null
transformers
31,256
--- license: afl-3.0 ---
masakhane/m2m100_418M_fr_ewe_rel
2aa7ea0de330ba6bb542231f8c8f6b1c992bfda1
2022-04-15T17:39:07.000Z
[ "pytorch", "m2m_100", "text2text-generation", "transformers", "license:afl-3.0", "autotrain_compatible" ]
text2text-generation
false
masakhane
null
masakhane/m2m100_418M_fr_ewe_rel
1
null
transformers
31,257
--- license: afl-3.0 ---
creynier/wav2vec2-base-swbd-turn-eos-long_utt_removed
8fa7794bea7d12158e06324219e5f1bb1c439b2c
2022-04-16T23:34:50.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
creynier
null
creynier/wav2vec2-base-swbd-turn-eos-long_utt_removed
1
null
transformers
31,258
Entry not found
LenaSchmidt/no_need_to_name_this
1fc66f121a8c8ea29d32ae059ee1eb538d0c2c13
2022-04-15T13:16:42.000Z
[ "pytorch", "bert", "question-answering", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
question-answering
false
LenaSchmidt
null
LenaSchmidt/no_need_to_name_this
1
null
transformers
31,259
--- tags: - generated_from_trainer model-index: - name: no_need_to_name_this results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # no_need_to_name_this This model was trained from scratch on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.0+cu111 - Datasets 2.1.0 - Tokenizers 0.12.1
darkie01213/tunixx.20
6adbff5246ba274d640af187e203f1a9a14e87ab
2022-04-15T13:29:46.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
text2text-generation
false
darkie01213
null
darkie01213/tunixx.20
1
null
transformers
31,260
--- license: apache-2.0 tags: - generated_from_trainer metrics: - bleu model-index: - name: tunixx.20 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # tunixx.20 This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6492 - Bleu: 62.3581 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 420 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | |:-------------:|:-----:|:----:|:---------------:|:-------:| | No log | 0.6 | 100 | 2.1821 | 14.2209 | | No log | 1.19 | 200 | 1.9019 | 17.6606 | | No log | 1.79 | 300 | 1.6948 | 19.7423 | | No log | 2.38 | 400 | 1.5505 | 23.6162 | | 1.9238 | 2.98 | 500 | 1.4374 | 27.3088 | | 1.9238 | 3.57 | 600 | 1.3460 | 31.0185 | | 1.9238 | 4.17 | 700 | 1.2517 | 33.3477 | | 1.9238 | 4.76 | 800 | 1.1763 | 33.9847 | | 1.9238 | 5.36 | 900 | 1.1152 | 34.1613 | | 1.3121 | 5.95 | 1000 | 1.0539 | 35.4759 | | 1.3121 | 6.55 | 1100 | 1.0081 | 36.6102 | | 1.3121 | 7.14 | 1200 | 0.9568 | 37.5106 | | 1.3121 | 7.74 | 1300 | 0.9156 | 38.0362 | | 1.3121 | 8.33 | 1400 | 0.8857 | 38.4678 | | 1.0132 | 8.93 | 1500 | 0.8527 | 38.8540 | | 1.0132 | 9.52 | 1600 | 0.8216 | 39.4236 | | 1.0132 | 10.12 | 1700 | 0.7954 | 39.3181 | | 1.0132 | 10.71 | 1800 | 0.7741 | 39.7601 | | 1.0132 | 11.31 | 1900 | 0.7551 | 40.0916 | | 0.8567 | 11.9 | 2000 | 0.7386 | 41.1072 | | 0.8567 | 12.5 | 2100 | 0.7231 | 41.3821 | | 0.8567 | 13.1 | 2200 | 0.7103 | 41.8838 | | 0.8567 | 13.69 | 2300 | 0.6982 | 42.0218 | | 0.8567 | 14.29 | 2400 | 0.6870 | 41.7599 | | 0.7764 | 14.88 | 2500 | 0.6786 | 42.3989 | | 0.7764 | 15.48 | 2600 | 0.6709 | 42.7624 | | 0.7764 | 16.07 | 2700 | 0.6634 | 42.9174 | | 0.7764 | 16.67 | 2800 | 0.6567 | 42.9174 | | 0.7764 | 17.26 | 2900 | 0.6525 | 43.4440 | | 0.7282 | 17.86 | 3000 | 0.6492 | 43.4440 | | 0.7282 | 18.45 | 3100 | 0.6468 | 43.6901 | | 0.7282 | 19.05 | 3200 | 0.6445 | 43.5582 | | 0.7282 | 19.64 | 3300 | 0.6435 | 43.5582 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu102 - Datasets 2.1.0 - Tokenizers 0.12.1
theResearchNinja/Cybonto-distilbert-base-uncased-finetuned-ner-FewNerd
3c3defa86689860f2fda5abed42d582494d1a7b5
2022-04-15T18:49:40.000Z
[ "pytorch", "tensorboard", "distilbert", "token-classification", "dataset:few_nerd", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
token-classification
false
theResearchNinja
null
theResearchNinja/Cybonto-distilbert-base-uncased-finetuned-ner-FewNerd
1
null
transformers
31,261
--- license: apache-2.0 tags: - generated_from_trainer datasets: - few_nerd metrics: - precision - recall - f1 - accuracy model-index: - name: Cybonto-distilbert-base-uncased-finetuned-ner-FewNerd results: - task: name: Token Classification type: token-classification dataset: name: few_nerd type: few_nerd args: supervised metrics: - name: Precision type: precision value: 0.7422259388187705 - name: Recall type: recall value: 0.7830368683449253 - name: F1 type: f1 value: 0.7620854216169805 - name: Accuracy type: accuracy value: 0.9386106950200795 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Cybonto-distilbert-base-uncased-finetuned-ner-FewNerd This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the few_nerd dataset. It achieves the following results on the evaluation set: - Loss: 0.2091 - Precision: 0.7422 - Recall: 0.7830 - F1: 0.7621 - Accuracy: 0.9386 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.1964 | 1.0 | 4118 | 0.1946 | 0.7302 | 0.7761 | 0.7525 | 0.9366 | | 0.1685 | 2.0 | 8236 | 0.1907 | 0.7414 | 0.7776 | 0.7591 | 0.9384 | | 0.145 | 3.0 | 12354 | 0.1967 | 0.7454 | 0.7816 | 0.7631 | 0.9388 | | 0.1263 | 4.0 | 16472 | 0.2021 | 0.7402 | 0.7845 | 0.7617 | 0.9384 | | 0.1114 | 5.0 | 20590 | 0.2091 | 0.7422 | 0.7830 | 0.7621 | 0.9386 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.0+cu111 - Datasets 2.1.0 - Tokenizers 0.12.1
enelpol/evalatin2022-pos-open
5974883fd945b61ea8028e54b89b6011e15f5fb3
2022-04-15T21:01:46.000Z
[ "pytorch", "xlm-roberta", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
enelpol
null
enelpol/evalatin2022-pos-open
1
null
transformers
31,262
Entry not found
lilitket/20220415-210530
202d2a5b4e65ddb45abf0f2d8cdf80f10f72337b
2022-04-18T15:33:06.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "dataset:common_voice", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
lilitket
null
lilitket/20220415-210530
1
null
transformers
31,263
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice model-index: - name: 20220415-210530 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # 20220415-210530 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-2b](https://huggingface.co/facebook/wav2vec2-xls-r-2b) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.6544 - Wer: 0.3881 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 1 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 400 - num_epochs: 1200 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-------:|:------:|:---------------:|:------:| | 6.1495 | 2.27 | 200 | 2.4098 | 1.0 | | 0.4347 | 4.54 | 400 | 1.4211 | 0.9914 | | 0.2295 | 6.82 | 600 | 1.0229 | 0.9349 | | 0.1349 | 9.09 | 800 | 1.0063 | 0.9228 | | 0.1001 | 11.36 | 1000 | 1.0333 | 0.9197 | | 0.0847 | 13.63 | 1200 | 0.9021 | 0.8725 | | 0.0697 | 15.91 | 1400 | 0.9117 | 0.8779 | | 0.0634 | 18.18 | 1600 | 0.9550 | 0.8725 | | 0.0607 | 20.45 | 1800 | 0.9063 | 0.8303 | | 0.0551 | 22.73 | 2000 | 0.8163 | 0.7956 | | 0.0536 | 25.0 | 2200 | 0.7385 | 0.7235 | | 0.0511 | 27.27 | 2400 | 0.7917 | 0.7215 | | 0.0449 | 29.54 | 2600 | 0.7508 | 0.6938 | | 0.0417 | 31.82 | 2800 | 0.6892 | 0.6775 | | 0.0415 | 34.09 | 3000 | 0.7029 | 0.6790 | | 0.0384 | 36.36 | 3200 | 0.6839 | 0.6895 | | 0.0392 | 38.63 | 3400 | 0.7067 | 0.6872 | | 0.0358 | 40.91 | 3600 | 0.7310 | 0.6763 | | 0.0337 | 43.18 | 3800 | 0.7139 | 0.6548 | | 0.0362 | 45.45 | 4000 | 0.6975 | 0.6427 | | 0.0311 | 47.73 | 4200 | 0.7054 | 0.6412 | | 0.0327 | 50.0 | 4400 | 0.6530 | 0.6151 | | 0.0286 | 52.27 | 4600 | 0.6565 | 0.6076 | | 0.0304 | 54.54 | 4800 | 0.6931 | 0.6283 | | 0.0285 | 56.82 | 5000 | 0.6966 | 0.6108 | | 0.0279 | 59.09 | 5200 | 0.6473 | 0.5854 | | 0.0276 | 61.36 | 5400 | 0.6497 | 0.5920 | | 0.0238 | 63.63 | 5600 | 0.6283 | 0.5846 | | 0.0237 | 65.91 | 5800 | 0.6871 | 0.5885 | | 0.0221 | 68.18 | 6000 | 0.6518 | 0.5593 | | 0.0221 | 70.45 | 6200 | 0.6676 | 0.5601 | | 0.0215 | 72.73 | 6400 | 0.6299 | 0.5550 | | 0.022 | 75.0 | 6600 | 0.6719 | 0.5636 | | 0.0198 | 77.27 | 6800 | 0.6082 | 0.5569 | | 0.0222 | 79.54 | 7000 | 0.6156 | 0.5589 | | 0.0172 | 81.82 | 7200 | 0.6414 | 0.5636 | | 0.0188 | 84.09 | 7400 | 0.5874 | 0.5347 | | 0.0202 | 86.36 | 7600 | 0.6320 | 0.5421 | | 0.0165 | 88.63 | 7800 | 0.6345 | 0.5304 | | 0.0164 | 90.91 | 8000 | 0.6243 | 0.5289 | | 0.0167 | 93.18 | 8200 | 0.6237 | 0.5285 | | 0.015 | 95.45 | 8400 | 0.5937 | 0.5203 | | 0.0169 | 97.73 | 8600 | 0.6171 | 0.5343 | | 0.0147 | 100.0 | 8800 | 0.6857 | 0.5476 | | 0.0164 | 102.27 | 9000 | 0.6099 | 0.5160 | | 0.0152 | 104.54 | 9200 | 0.6319 | 0.5285 | | 0.0149 | 106.82 | 9400 | 0.6133 | 0.5296 | | 0.0155 | 109.09 | 9600 | 0.6237 | 0.5285 | | 0.0149 | 111.36 | 9800 | 0.6127 | 0.5012 | | 0.0142 | 113.63 | 10000 | 0.6119 | 0.4836 | | 0.013 | 115.91 | 10200 | 0.5974 | 0.4746 | | 0.012 | 118.18 | 10400 | 0.6296 | 0.5016 | | 0.0137 | 120.45 | 10600 | 0.5990 | 0.5023 | | 0.0146 | 122.73 | 10800 | 0.5784 | 0.4875 | | 0.0117 | 125.0 | 11000 | 0.5436 | 0.4766 | | 0.0133 | 127.27 | 11200 | 0.5890 | 0.5020 | | 0.0133 | 129.54 | 11400 | 0.6028 | 0.4895 | | 0.0119 | 131.82 | 11600 | 0.5483 | 0.4840 | | 0.0133 | 134.09 | 11800 | 0.5638 | 0.4934 | | 0.0108 | 136.36 | 12000 | 0.5750 | 0.4758 | | 0.0098 | 138.63 | 12200 | 0.5978 | 0.4891 | | 0.012 | 140.91 | 12400 | 0.5524 | 0.4805 | | 0.01 | 143.18 | 12600 | 0.5731 | 0.4895 | | 0.0125 | 145.45 | 12800 | 0.5583 | 0.4579 | | 0.0102 | 147.73 | 13000 | 0.5806 | 0.5035 | | 0.01 | 150.0 | 13200 | 0.5721 | 0.4711 | | 0.0113 | 152.27 | 13400 | 0.5351 | 0.4602 | | 0.011 | 154.54 | 13600 | 0.5472 | 0.4551 | | 0.0078 | 156.82 | 13800 | 0.6011 | 0.4610 | | 0.0105 | 159.09 | 14000 | 0.5702 | 0.4672 | | 0.0081 | 161.36 | 14200 | 0.5643 | 0.4454 | | 0.0088 | 163.63 | 14400 | 0.5084 | 0.4536 | | 0.0094 | 165.91 | 14600 | 0.5320 | 0.4680 | | 0.0083 | 168.18 | 14800 | 0.5175 | 0.4423 | | 0.0095 | 170.45 | 15000 | 0.5213 | 0.4583 | | 0.0097 | 172.73 | 15200 | 0.5242 | 0.4590 | | 0.0092 | 175.0 | 15400 | 0.5680 | 0.4587 | | 0.0081 | 177.27 | 15600 | 0.5668 | 0.4579 | | 0.0075 | 179.54 | 15800 | 0.5602 | 0.4489 | | 0.0094 | 181.82 | 16000 | 0.5540 | 0.4485 | | 0.0083 | 184.09 | 16200 | 0.5367 | 0.4278 | | 0.0084 | 186.36 | 16400 | 0.5376 | 0.4583 | | 0.0093 | 188.63 | 16600 | 0.5599 | 0.4310 | | 0.0085 | 190.91 | 16800 | 0.5356 | 0.4317 | | 0.0066 | 193.18 | 17000 | 0.5517 | 0.4419 | | 0.0074 | 195.45 | 17200 | 0.5401 | 0.4329 | | 0.0094 | 197.73 | 17400 | 0.5067 | 0.4415 | | 0.0078 | 200.0 | 17600 | 0.5410 | 0.4466 | | 0.0085 | 202.27 | 17800 | 0.5157 | 0.4321 | | 0.0081 | 204.54 | 18000 | 0.5390 | 0.4255 | | 0.0068 | 206.82 | 18200 | 0.5566 | 0.4415 | | 0.0069 | 209.09 | 18400 | 0.5693 | 0.4341 | | 0.0089 | 211.36 | 18600 | 0.5588 | 0.4438 | | 0.0086 | 213.63 | 18800 | 0.5656 | 0.4470 | | 0.008 | 215.91 | 19000 | 0.5712 | 0.4438 | | 0.0083 | 218.18 | 19200 | 0.5627 | 0.4423 | | 0.0078 | 220.45 | 19400 | 0.5905 | 0.4298 | | 0.0059 | 222.73 | 19600 | 0.5746 | 0.4228 | | 0.0072 | 225.0 | 19800 | 0.5362 | 0.4275 | | 0.006 | 227.27 | 20000 | 0.5909 | 0.4220 | | 0.0074 | 229.54 | 20200 | 0.5863 | 0.4224 | | 0.0079 | 231.82 | 20400 | 0.5366 | 0.4306 | | 0.0066 | 234.09 | 20600 | 0.5128 | 0.4302 | | 0.0068 | 236.36 | 20800 | 0.5436 | 0.4228 | | 0.0073 | 238.63 | 21000 | 0.5731 | 0.4325 | | 0.0081 | 240.91 | 21200 | 0.5189 | 0.4177 | | 0.0061 | 243.18 | 21400 | 0.5593 | 0.4236 | | 0.0061 | 245.45 | 21600 | 0.5553 | 0.4267 | | 0.0044 | 247.73 | 21800 | 0.5763 | 0.4286 | | 0.0064 | 250.0 | 22000 | 0.5360 | 0.4321 | | 0.006 | 252.27 | 22200 | 0.5577 | 0.4372 | | 0.0052 | 254.54 | 22400 | 0.5387 | 0.4122 | | 0.0054 | 256.82 | 22600 | 0.5117 | 0.4239 | | 0.0057 | 259.09 | 22800 | 0.5498 | 0.4232 | | 0.0069 | 261.36 | 23000 | 0.5263 | 0.4353 | | 0.005 | 263.63 | 23200 | 0.5147 | 0.4177 | | 0.0058 | 265.91 | 23400 | 0.5273 | 0.4173 | | 0.006 | 268.18 | 23600 | 0.5879 | 0.4380 | | 0.0059 | 270.45 | 23800 | 0.5377 | 0.4349 | | 0.0055 | 272.73 | 24000 | 0.6061 | 0.4364 | | 0.0058 | 275.0 | 24200 | 0.5977 | 0.4353 | | 0.0051 | 277.27 | 24400 | 0.5847 | 0.4208 | | 0.0046 | 279.54 | 24600 | 0.5728 | 0.4333 | | 0.006 | 281.82 | 24800 | 0.5392 | 0.4204 | | 0.0074 | 284.09 | 25000 | 0.5618 | 0.4232 | | 0.0058 | 286.36 | 25200 | 0.5449 | 0.4197 | | 0.0057 | 288.63 | 25400 | 0.5635 | 0.4169 | | 0.0054 | 290.91 | 25600 | 0.5313 | 0.4173 | | 0.0044 | 293.18 | 25800 | 0.5544 | 0.4306 | | 0.0039 | 295.45 | 26000 | 0.5392 | 0.4247 | | 0.0054 | 297.73 | 26200 | 0.5395 | 0.4271 | | 0.0044 | 300.0 | 26400 | 0.5489 | 0.4228 | | 0.0042 | 302.27 | 26600 | 0.5414 | 0.4173 | | 0.0051 | 304.54 | 26800 | 0.5198 | 0.4193 | | 0.005 | 306.82 | 27000 | 0.5297 | 0.4146 | | 0.0051 | 309.09 | 27200 | 0.5414 | 0.4212 | | 0.0057 | 311.36 | 27400 | 0.5204 | 0.4228 | | 0.0049 | 313.63 | 27600 | 0.5806 | 0.4239 | | 0.0036 | 315.91 | 27800 | 0.5771 | 0.4173 | | 0.0045 | 318.18 | 28000 | 0.5517 | 0.4239 | | 0.0051 | 320.45 | 28200 | 0.5498 | 0.4173 | | 0.0043 | 322.73 | 28400 | 0.5791 | 0.4181 | | 0.0044 | 325.0 | 28600 | 0.6030 | 0.4200 | | 0.0067 | 327.27 | 28800 | 0.5799 | 0.4208 | | 0.0041 | 329.54 | 29000 | 0.5871 | 0.4134 | | 0.0048 | 331.82 | 29200 | 0.5471 | 0.4158 | | 0.0031 | 334.09 | 29400 | 0.5977 | 0.4220 | | 0.0042 | 336.36 | 29600 | 0.5813 | 0.4181 | | 0.0045 | 338.63 | 29800 | 0.6167 | 0.4306 | | 0.0044 | 340.91 | 30000 | 0.5661 | 0.4173 | | 0.0029 | 343.18 | 30200 | 0.5680 | 0.4158 | | 0.0037 | 345.45 | 30400 | 0.5747 | 0.4204 | | 0.005 | 347.73 | 30600 | 0.5883 | 0.4349 | | 0.0037 | 350.0 | 30800 | 0.6187 | 0.4189 | | 0.0044 | 352.27 | 31000 | 0.5834 | 0.4431 | | 0.0047 | 354.54 | 31200 | 0.5567 | 0.4247 | | 0.0039 | 356.82 | 31400 | 0.5900 | 0.4314 | | 0.0044 | 359.09 | 31600 | 0.5879 | 0.4216 | | 0.0042 | 361.36 | 31800 | 0.5639 | 0.4220 | | 0.0046 | 363.63 | 32000 | 0.5292 | 0.4185 | | 0.0043 | 365.91 | 32200 | 0.5640 | 0.4353 | | 0.0033 | 368.18 | 32400 | 0.5468 | 0.4208 | | 0.002 | 370.45 | 32600 | 0.5836 | 0.4220 | | 0.0043 | 372.73 | 32800 | 0.5692 | 0.4142 | | 0.0038 | 375.0 | 33000 | 0.5739 | 0.4177 | | 0.0039 | 377.27 | 33200 | 0.5824 | 0.4103 | | 0.0028 | 379.54 | 33400 | 0.6069 | 0.4111 | | 0.0038 | 381.82 | 33600 | 0.5868 | 0.4185 | | 0.0041 | 384.09 | 33800 | 0.5169 | 0.4126 | | 0.0037 | 386.36 | 34000 | 0.5395 | 0.4275 | | 0.0063 | 388.63 | 34200 | 0.5293 | 0.4294 | | 0.0042 | 390.91 | 34400 | 0.5472 | 0.4165 | | 0.0039 | 393.18 | 34600 | 0.5391 | 0.4091 | | 0.0036 | 395.45 | 34800 | 0.5360 | 0.4239 | | 0.0036 | 397.73 | 35000 | 0.5511 | 0.4177 | | 0.0019 | 400.0 | 35200 | 0.5775 | 0.4115 | | 0.0038 | 402.27 | 35400 | 0.5376 | 0.4087 | | 0.0035 | 404.54 | 35600 | 0.5755 | 0.4130 | | 0.0042 | 406.82 | 35800 | 0.5443 | 0.4087 | | 0.0036 | 409.09 | 36000 | 0.6091 | 0.4200 | | 0.004 | 411.36 | 36200 | 0.5817 | 0.4247 | | 0.0039 | 413.63 | 36400 | 0.5779 | 0.4255 | | 0.003 | 415.91 | 36600 | 0.5804 | 0.4224 | | 0.0031 | 418.18 | 36800 | 0.5467 | 0.4138 | | 0.0044 | 420.45 | 37000 | 0.5628 | 0.4212 | | 0.0036 | 422.73 | 37200 | 0.5613 | 0.4267 | | 0.0035 | 425.0 | 37400 | 0.5537 | 0.4224 | | 0.0028 | 427.27 | 37600 | 0.6016 | 0.4161 | | 0.004 | 429.54 | 37800 | 0.5711 | 0.4216 | | 0.0041 | 431.82 | 38000 | 0.5510 | 0.4165 | | 0.0035 | 434.09 | 38200 | 0.5487 | 0.4181 | | 0.0034 | 436.36 | 38400 | 0.5392 | 0.4056 | | 0.003 | 438.63 | 38600 | 0.5255 | 0.4083 | | 0.0035 | 440.91 | 38800 | 0.5511 | 0.4138 | | 0.0031 | 443.18 | 39000 | 0.5464 | 0.4146 | | 0.0032 | 445.45 | 39200 | 0.5514 | 0.4134 | | 0.0017 | 447.73 | 39400 | 0.5664 | 0.4064 | | 0.0024 | 450.0 | 39600 | 0.5966 | 0.4220 | | 0.0021 | 452.27 | 39800 | 0.5780 | 0.4122 | | 0.0035 | 454.54 | 40000 | 0.5612 | 0.4341 | | 0.002 | 456.82 | 40200 | 0.5954 | 0.4247 | | 0.0018 | 459.09 | 40400 | 0.6006 | 0.4251 | | 0.0026 | 461.36 | 40600 | 0.6119 | 0.4232 | | 0.0023 | 463.63 | 40800 | 0.6051 | 0.4306 | | 0.003 | 465.91 | 41000 | 0.5872 | 0.4267 | | 0.0036 | 468.18 | 41200 | 0.5602 | 0.4095 | | 0.0029 | 470.45 | 41400 | 0.5877 | 0.4189 | | 0.0034 | 472.73 | 41600 | 0.5918 | 0.4337 | | 0.0025 | 475.0 | 41800 | 0.6101 | 0.4337 | | 0.0023 | 477.27 | 42000 | 0.5936 | 0.4239 | | 0.0017 | 479.54 | 42200 | 0.6257 | 0.4275 | | 0.0029 | 481.82 | 42400 | 0.6265 | 0.4251 | | 0.0035 | 484.09 | 42600 | 0.6035 | 0.4271 | | 0.0036 | 486.36 | 42800 | 0.5954 | 0.4243 | | 0.0028 | 488.63 | 43000 | 0.5810 | 0.4259 | | 0.0027 | 490.91 | 43200 | 0.6093 | 0.4228 | | 0.0025 | 493.18 | 43400 | 0.6241 | 0.4302 | | 0.0019 | 495.45 | 43600 | 0.6143 | 0.4290 | | 0.0025 | 497.73 | 43800 | 0.5729 | 0.4189 | | 0.0028 | 500.0 | 44000 | 0.5725 | 0.4165 | | 0.0023 | 502.27 | 44200 | 0.5888 | 0.4263 | | 0.0034 | 504.54 | 44400 | 0.5771 | 0.4337 | | 0.0022 | 506.82 | 44600 | 0.5888 | 0.4216 | | 0.0028 | 509.09 | 44800 | 0.5598 | 0.4181 | | 0.0024 | 511.36 | 45000 | 0.6114 | 0.4392 | | 0.0037 | 513.63 | 45200 | 0.5855 | 0.4236 | | 0.0018 | 515.91 | 45400 | 0.5885 | 0.4232 | | 0.0025 | 518.18 | 45600 | 0.5845 | 0.4255 | | 0.0029 | 520.45 | 45800 | 0.5862 | 0.4380 | | 0.0034 | 522.73 | 46000 | 0.5807 | 0.4329 | | 0.0025 | 525.0 | 46200 | 0.5959 | 0.4189 | | 0.0025 | 527.27 | 46400 | 0.5939 | 0.4216 | | 0.0022 | 529.54 | 46600 | 0.5964 | 0.4232 | | 0.003 | 531.82 | 46800 | 0.5664 | 0.4173 | | 0.0021 | 534.09 | 47000 | 0.5670 | 0.4138 | | 0.0025 | 536.36 | 47200 | 0.5611 | 0.4247 | | 0.0024 | 538.63 | 47400 | 0.5691 | 0.4321 | | 0.0019 | 540.91 | 47600 | 0.5992 | 0.4224 | | 0.0037 | 543.18 | 47800 | 0.5790 | 0.4181 | | 0.0025 | 545.45 | 48000 | 0.5650 | 0.4294 | | 0.0025 | 547.73 | 48200 | 0.5732 | 0.4189 | | 0.0025 | 550.0 | 48400 | 0.5566 | 0.4220 | | 0.0023 | 552.27 | 48600 | 0.5646 | 0.4236 | | 0.0027 | 554.54 | 48800 | 0.5437 | 0.4263 | | 0.0026 | 556.82 | 49000 | 0.5993 | 0.4239 | | 0.0017 | 559.09 | 49200 | 0.6158 | 0.4212 | | 0.002 | 561.36 | 49400 | 0.6104 | 0.4064 | | 0.0028 | 563.63 | 49600 | 0.5689 | 0.4021 | | 0.0025 | 565.91 | 49800 | 0.5760 | 0.4029 | | 0.0024 | 568.18 | 50000 | 0.5700 | 0.4037 | | 0.0024 | 570.45 | 50200 | 0.5509 | 0.3935 | | 0.0018 | 572.73 | 50400 | 0.5562 | 0.4048 | | 0.0018 | 575.0 | 50600 | 0.5786 | 0.3955 | | 0.0023 | 577.27 | 50800 | 0.5855 | 0.3959 | | 0.0017 | 579.54 | 51000 | 0.5988 | 0.3939 | | 0.0021 | 581.82 | 51200 | 0.6132 | 0.4064 | | 0.0017 | 584.09 | 51400 | 0.6202 | 0.4099 | | 0.0019 | 586.36 | 51600 | 0.6118 | 0.4048 | | 0.0023 | 588.63 | 51800 | 0.6114 | 0.4158 | | 0.0019 | 590.91 | 52000 | 0.5808 | 0.4126 | | 0.0025 | 593.18 | 52200 | 0.5906 | 0.4037 | | 0.0016 | 595.45 | 52400 | 0.5965 | 0.4056 | | 0.0021 | 597.73 | 52600 | 0.6126 | 0.4099 | | 0.0019 | 600.0 | 52800 | 0.5913 | 0.4060 | | 0.0014 | 602.27 | 53000 | 0.6450 | 0.4076 | | 0.0021 | 604.54 | 53200 | 0.6500 | 0.4189 | | 0.002 | 606.82 | 53400 | 0.6026 | 0.4111 | | 0.0022 | 609.09 | 53600 | 0.6318 | 0.4099 | | 0.003 | 611.36 | 53800 | 0.6038 | 0.4111 | | 0.0022 | 613.63 | 54000 | 0.6086 | 0.4083 | | 0.0013 | 615.91 | 54200 | 0.6320 | 0.4025 | | 0.0016 | 618.18 | 54400 | 0.6159 | 0.3974 | | 0.0018 | 620.45 | 54600 | 0.6266 | 0.3998 | | 0.002 | 622.73 | 54800 | 0.5920 | 0.3994 | | 0.001 | 625.0 | 55000 | 0.6196 | 0.3935 | | 0.0018 | 627.27 | 55200 | 0.6468 | 0.4009 | | 0.002 | 629.54 | 55400 | 0.6505 | 0.4052 | | 0.002 | 631.82 | 55600 | 0.6362 | 0.4072 | | 0.0018 | 634.09 | 55800 | 0.6430 | 0.3963 | | 0.0017 | 636.36 | 56000 | 0.6434 | 0.3966 | | 0.0014 | 638.63 | 56200 | 0.6473 | 0.4080 | | 0.0021 | 640.91 | 56400 | 0.6272 | 0.4115 | | 0.0026 | 643.18 | 56600 | 0.6343 | 0.4099 | | 0.0023 | 645.45 | 56800 | 0.6223 | 0.4025 | | 0.0016 | 647.73 | 57000 | 0.5879 | 0.4025 | | 0.001 | 650.0 | 57200 | 0.6274 | 0.4005 | | 0.0019 | 652.27 | 57400 | 0.6517 | 0.4044 | | 0.0011 | 654.54 | 57600 | 0.6571 | 0.4080 | | 0.002 | 656.82 | 57800 | 0.6377 | 0.4087 | | 0.0024 | 659.09 | 58000 | 0.6013 | 0.4146 | | 0.0021 | 661.36 | 58200 | 0.5985 | 0.4185 | | 0.0018 | 663.63 | 58400 | 0.6148 | 0.4150 | | 0.0015 | 665.91 | 58600 | 0.6318 | 0.4013 | | 0.0016 | 668.18 | 58800 | 0.6109 | 0.4025 | | 0.002 | 670.45 | 59000 | 0.5823 | 0.4029 | | 0.0013 | 672.73 | 59200 | 0.5800 | 0.4146 | | 0.0018 | 675.0 | 59400 | 0.5794 | 0.4080 | | 0.0012 | 677.27 | 59600 | 0.5997 | 0.4037 | | 0.0016 | 679.54 | 59800 | 0.6111 | 0.4005 | | 0.0019 | 681.82 | 60000 | 0.6112 | 0.4099 | | 0.0022 | 684.09 | 60200 | 0.6030 | 0.4068 | | 0.0013 | 686.36 | 60400 | 0.6247 | 0.4115 | | 0.0017 | 688.63 | 60600 | 0.5981 | 0.4111 | | 0.0016 | 690.91 | 60800 | 0.5773 | 0.4122 | | 0.0016 | 693.18 | 61000 | 0.6019 | 0.4068 | | 0.0014 | 695.45 | 61200 | 0.5931 | 0.4021 | | 0.0015 | 697.73 | 61400 | 0.6391 | 0.4083 | | 0.0015 | 700.0 | 61600 | 0.6148 | 0.4021 | | 0.0013 | 702.27 | 61800 | 0.6143 | 0.4138 | | 0.0009 | 704.54 | 62000 | 0.6203 | 0.4115 | | 0.0015 | 706.82 | 62200 | 0.6452 | 0.4115 | | 0.0011 | 709.09 | 62400 | 0.6323 | 0.4107 | | 0.0025 | 711.36 | 62600 | 0.6248 | 0.4243 | | 0.001 | 713.63 | 62800 | 0.6225 | 0.4189 | | 0.0013 | 715.91 | 63000 | 0.6328 | 0.4161 | | 0.0011 | 718.18 | 63200 | 0.6299 | 0.4130 | | 0.0016 | 720.45 | 63400 | 0.6110 | 0.4072 | | 0.0012 | 722.73 | 63600 | 0.6095 | 0.4064 | | 0.0017 | 725.0 | 63800 | 0.6205 | 0.4033 | | 0.0009 | 727.27 | 64000 | 0.6330 | 0.4099 | | 0.0011 | 729.54 | 64200 | 0.6184 | 0.3974 | | 0.0016 | 731.82 | 64400 | 0.6147 | 0.4052 | | 0.0014 | 734.09 | 64600 | 0.6271 | 0.4068 | | 0.0013 | 736.36 | 64800 | 0.6157 | 0.4091 | | 0.0017 | 738.63 | 65000 | 0.6157 | 0.4072 | | 0.0022 | 740.91 | 65200 | 0.5888 | 0.4177 | | 0.0017 | 743.18 | 65400 | 0.6002 | 0.4134 | | 0.0017 | 745.45 | 65600 | 0.5989 | 0.4161 | | 0.0016 | 747.73 | 65800 | 0.6069 | 0.4185 | | 0.0019 | 750.0 | 66000 | 0.5962 | 0.4212 | | 0.0011 | 752.27 | 66200 | 0.6044 | 0.4161 | | 0.0014 | 754.54 | 66400 | 0.5978 | 0.4197 | | 0.0008 | 756.82 | 66600 | 0.6291 | 0.4146 | | 0.0009 | 759.09 | 66800 | 0.6203 | 0.4181 | | 0.0009 | 761.36 | 67000 | 0.6124 | 0.4138 | | 0.0013 | 763.63 | 67200 | 0.6191 | 0.4138 | | 0.0017 | 765.91 | 67400 | 0.6061 | 0.4087 | | 0.001 | 768.18 | 67600 | 0.6233 | 0.4111 | | 0.0014 | 770.45 | 67800 | 0.6189 | 0.4080 | | 0.0013 | 772.73 | 68000 | 0.6493 | 0.4056 | | 0.0013 | 775.0 | 68200 | 0.6454 | 0.4037 | | 0.0013 | 777.27 | 68400 | 0.6373 | 0.4095 | | 0.0011 | 779.54 | 68600 | 0.6563 | 0.4041 | | 0.0013 | 781.82 | 68800 | 0.6622 | 0.4122 | | 0.0012 | 784.09 | 69000 | 0.6858 | 0.4220 | | 0.0019 | 786.36 | 69200 | 0.6658 | 0.4126 | | 0.001 | 788.63 | 69400 | 0.6650 | 0.4068 | | 0.0007 | 790.91 | 69600 | 0.6777 | 0.4107 | | 0.0011 | 793.18 | 69800 | 0.6772 | 0.4158 | | 0.001 | 795.45 | 70000 | 0.6820 | 0.4173 | | 0.0007 | 797.73 | 70200 | 0.6870 | 0.4138 | | 0.0011 | 800.0 | 70400 | 0.6732 | 0.4115 | | 0.0011 | 802.27 | 70600 | 0.6755 | 0.4154 | | 0.0009 | 804.54 | 70800 | 0.6707 | 0.4224 | | 0.0014 | 806.82 | 71000 | 0.6733 | 0.4134 | | 0.0009 | 809.09 | 71200 | 0.6690 | 0.4142 | | 0.0011 | 811.36 | 71400 | 0.6875 | 0.4169 | | 0.0019 | 813.63 | 71600 | 0.6471 | 0.4138 | | 0.0006 | 815.91 | 71800 | 0.6599 | 0.4099 | | 0.0014 | 818.18 | 72000 | 0.6543 | 0.4052 | | 0.0011 | 820.45 | 72200 | 0.6699 | 0.4052 | | 0.0014 | 822.73 | 72400 | 0.6626 | 0.4080 | | 0.0014 | 825.0 | 72600 | 0.6601 | 0.4142 | | 0.0007 | 827.27 | 72800 | 0.6686 | 0.4115 | | 0.0007 | 829.54 | 73000 | 0.6657 | 0.4134 | | 0.0009 | 831.82 | 73200 | 0.6810 | 0.4056 | | 0.0013 | 834.09 | 73400 | 0.6734 | 0.4060 | | 0.0005 | 836.36 | 73600 | 0.6815 | 0.4033 | | 0.0026 | 838.63 | 73800 | 0.6607 | 0.4056 | | 0.001 | 840.91 | 74000 | 0.6700 | 0.4041 | | 0.0008 | 843.18 | 74200 | 0.6871 | 0.4041 | | 0.0006 | 845.45 | 74400 | 0.6910 | 0.4099 | | 0.0009 | 847.73 | 74600 | 0.7027 | 0.4064 | | 0.0009 | 850.0 | 74800 | 0.7108 | 0.4017 | | 0.0005 | 852.27 | 75000 | 0.7122 | 0.3986 | | 0.001 | 854.54 | 75200 | 0.7051 | 0.3982 | | 0.0007 | 856.82 | 75400 | 0.7266 | 0.3978 | | 0.0015 | 859.09 | 75600 | 0.7051 | 0.4017 | | 0.0007 | 861.36 | 75800 | 0.7038 | 0.3970 | | 0.001 | 863.63 | 76000 | 0.6847 | 0.4037 | | 0.0013 | 865.91 | 76200 | 0.6823 | 0.4033 | | 0.001 | 868.18 | 76400 | 0.6926 | 0.4060 | | 0.0018 | 870.45 | 76600 | 0.7035 | 0.4025 | | 0.0007 | 872.73 | 76800 | 0.6993 | 0.4048 | | 0.0006 | 875.0 | 77000 | 0.7083 | 0.4048 | | 0.001 | 877.27 | 77200 | 0.7217 | 0.4083 | | 0.0014 | 879.54 | 77400 | 0.7013 | 0.4076 | | 0.0009 | 881.82 | 77600 | 0.6874 | 0.4083 | | 0.0012 | 884.09 | 77800 | 0.6966 | 0.4103 | | 0.0008 | 886.36 | 78000 | 0.6989 | 0.3982 | | 0.001 | 888.63 | 78200 | 0.7000 | 0.4115 | | 0.0011 | 890.91 | 78400 | 0.7105 | 0.4107 | | 0.0008 | 893.18 | 78600 | 0.7103 | 0.4068 | | 0.0022 | 895.45 | 78800 | 0.6641 | 0.4033 | | 0.0006 | 897.73 | 79000 | 0.6635 | 0.4048 | | 0.0009 | 900.0 | 79200 | 0.6535 | 0.4072 | | 0.0009 | 902.27 | 79400 | 0.6598 | 0.4048 | | 0.0007 | 904.54 | 79600 | 0.6684 | 0.4017 | | 0.0008 | 906.82 | 79800 | 0.6752 | 0.4009 | | 0.0008 | 909.09 | 80000 | 0.6820 | 0.4037 | | 0.0009 | 911.36 | 80200 | 0.6672 | 0.3986 | | 0.0007 | 913.63 | 80400 | 0.6692 | 0.4025 | | 0.001 | 915.91 | 80600 | 0.6676 | 0.4056 | | 0.0012 | 918.18 | 80800 | 0.6484 | 0.4002 | | 0.0008 | 920.45 | 81000 | 0.6541 | 0.4002 | | 0.0005 | 922.73 | 81200 | 0.6626 | 0.3990 | | 0.0013 | 925.0 | 81400 | 0.6688 | 0.3994 | | 0.0015 | 927.27 | 81600 | 0.6472 | 0.4048 | | 0.0011 | 929.54 | 81800 | 0.6432 | 0.4041 | | 0.0012 | 931.82 | 82000 | 0.6374 | 0.3939 | | 0.0005 | 934.09 | 82200 | 0.6519 | 0.4005 | | 0.001 | 936.36 | 82400 | 0.6281 | 0.3998 | | 0.0007 | 938.63 | 82600 | 0.6621 | 0.4048 | | 0.0005 | 940.91 | 82800 | 0.6670 | 0.3990 | | 0.0009 | 943.18 | 83000 | 0.6707 | 0.3982 | | 0.0006 | 945.45 | 83200 | 0.6592 | 0.3924 | | 0.0006 | 947.73 | 83400 | 0.6772 | 0.4002 | | 0.0017 | 950.0 | 83600 | 0.6786 | 0.4068 | | 0.0004 | 952.27 | 83800 | 0.6849 | 0.4052 | | 0.0002 | 954.54 | 84000 | 0.6914 | 0.4044 | | 0.0009 | 956.82 | 84200 | 0.6806 | 0.4002 | | 0.0006 | 959.09 | 84400 | 0.6621 | 0.4013 | | 0.0004 | 961.36 | 84600 | 0.6712 | 0.4029 | | 0.0007 | 963.63 | 84800 | 0.6775 | 0.4052 | | 0.0004 | 965.91 | 85000 | 0.6769 | 0.4080 | | 0.001 | 968.18 | 85200 | 0.6470 | 0.4029 | | 0.0009 | 970.45 | 85400 | 0.6505 | 0.4002 | | 0.0011 | 972.73 | 85600 | 0.6543 | 0.4041 | | 0.0003 | 975.0 | 85800 | 0.6568 | 0.4009 | | 0.0004 | 977.27 | 86000 | 0.6627 | 0.3990 | | 0.0014 | 979.54 | 86200 | 0.6564 | 0.4021 | | 0.0012 | 981.82 | 86400 | 0.6535 | 0.3982 | | 0.0007 | 984.09 | 86600 | 0.6443 | 0.4009 | | 0.0008 | 986.36 | 86800 | 0.6466 | 0.4005 | | 0.0004 | 988.63 | 87000 | 0.6538 | 0.4017 | | 0.0008 | 990.91 | 87200 | 0.6485 | 0.3998 | | 0.0004 | 993.18 | 87400 | 0.6504 | 0.3951 | | 0.0008 | 995.45 | 87600 | 0.6410 | 0.3970 | | 0.0004 | 997.73 | 87800 | 0.6420 | 0.3986 | | 0.0005 | 1000.0 | 88000 | 0.6507 | 0.3998 | | 0.0005 | 1002.27 | 88200 | 0.6540 | 0.3998 | | 0.0006 | 1004.54 | 88400 | 0.6531 | 0.3978 | | 0.0015 | 1006.82 | 88600 | 0.6411 | 0.3986 | | 0.0007 | 1009.09 | 88800 | 0.6411 | 0.3990 | | 0.0003 | 1011.36 | 89000 | 0.6432 | 0.3998 | | 0.0004 | 1013.63 | 89200 | 0.6546 | 0.4021 | | 0.0004 | 1015.91 | 89400 | 0.6542 | 0.4002 | | 0.0006 | 1018.18 | 89600 | 0.6622 | 0.4009 | | 0.0008 | 1020.45 | 89800 | 0.6674 | 0.3963 | | 0.0008 | 1022.73 | 90000 | 0.6563 | 0.3935 | | 0.0003 | 1025.0 | 90200 | 0.6638 | 0.3955 | | 0.0004 | 1027.27 | 90400 | 0.6667 | 0.3951 | | 0.001 | 1029.54 | 90600 | 0.6462 | 0.3943 | | 0.0007 | 1031.82 | 90800 | 0.6462 | 0.3920 | | 0.0006 | 1034.09 | 91000 | 0.6477 | 0.3947 | | 0.0005 | 1036.36 | 91200 | 0.6500 | 0.3955 | | 0.0006 | 1038.63 | 91400 | 0.6461 | 0.3955 | | 0.0007 | 1040.91 | 91600 | 0.6526 | 0.4002 | | 0.0004 | 1043.18 | 91800 | 0.6514 | 0.4021 | | 0.0003 | 1045.45 | 92000 | 0.6610 | 0.4025 | | 0.0007 | 1047.73 | 92200 | 0.6583 | 0.3966 | | 0.0004 | 1050.0 | 92400 | 0.6413 | 0.3955 | | 0.0009 | 1052.27 | 92600 | 0.6411 | 0.3951 | | 0.0008 | 1054.54 | 92800 | 0.6374 | 0.3978 | | 0.0003 | 1056.82 | 93000 | 0.6359 | 0.3955 | | 0.0006 | 1059.09 | 93200 | 0.6400 | 0.3955 | | 0.0007 | 1061.36 | 93400 | 0.6363 | 0.3974 | | 0.0002 | 1063.63 | 93600 | 0.6413 | 0.3959 | | 0.0006 | 1065.91 | 93800 | 0.6428 | 0.3927 | | 0.0007 | 1068.18 | 94000 | 0.6388 | 0.3912 | | 0.0007 | 1070.45 | 94200 | 0.6371 | 0.3920 | | 0.0005 | 1072.73 | 94400 | 0.6449 | 0.3904 | | 0.0015 | 1075.0 | 94600 | 0.6415 | 0.3916 | | 0.0005 | 1077.27 | 94800 | 0.6355 | 0.3920 | | 0.0005 | 1079.54 | 95000 | 0.6362 | 0.3920 | | 0.0004 | 1081.82 | 95200 | 0.6303 | 0.3931 | | 0.0011 | 1084.09 | 95400 | 0.6255 | 0.3955 | | 0.0003 | 1086.36 | 95600 | 0.6314 | 0.3959 | | 0.0005 | 1088.63 | 95800 | 0.6353 | 0.3943 | | 0.0007 | 1090.91 | 96000 | 0.6398 | 0.3931 | | 0.0003 | 1093.18 | 96200 | 0.6472 | 0.3963 | | 0.0007 | 1095.45 | 96400 | 0.6479 | 0.3947 | | 0.0005 | 1097.73 | 96600 | 0.6520 | 0.3947 | | 0.0005 | 1100.0 | 96800 | 0.6569 | 0.3963 | | 0.0007 | 1102.27 | 97000 | 0.6551 | 0.3982 | | 0.0004 | 1104.54 | 97200 | 0.6554 | 0.3966 | | 0.0013 | 1106.82 | 97400 | 0.6404 | 0.3963 | | 0.0008 | 1109.09 | 97600 | 0.6421 | 0.3963 | | 0.0007 | 1111.36 | 97800 | 0.6379 | 0.3931 | | 0.0003 | 1113.63 | 98000 | 0.6403 | 0.3931 | | 0.0003 | 1115.91 | 98200 | 0.6443 | 0.3916 | | 0.0004 | 1118.18 | 98400 | 0.6461 | 0.3986 | | 0.0003 | 1120.45 | 98600 | 0.6440 | 0.3978 | | 0.0001 | 1122.73 | 98800 | 0.6480 | 0.4002 | | 0.0006 | 1125.0 | 99000 | 0.6497 | 0.4005 | | 0.0004 | 1127.27 | 99200 | 0.6533 | 0.4009 | | 0.0007 | 1129.54 | 99400 | 0.6461 | 0.3978 | | 0.0006 | 1131.82 | 99600 | 0.6453 | 0.3986 | | 0.0001 | 1134.09 | 99800 | 0.6478 | 0.4002 | | 0.0005 | 1136.36 | 100000 | 0.6508 | 0.3978 | | 0.0004 | 1138.63 | 100200 | 0.6500 | 0.3955 | | 0.0006 | 1140.91 | 100400 | 0.6521 | 0.3924 | | 0.0004 | 1143.18 | 100600 | 0.6543 | 0.3931 | | 0.0004 | 1145.45 | 100800 | 0.6552 | 0.3935 | | 0.0006 | 1147.73 | 101000 | 0.6550 | 0.3931 | | 0.0002 | 1150.0 | 101200 | 0.6567 | 0.3924 | | 0.0002 | 1152.27 | 101400 | 0.6585 | 0.3912 | | 0.0006 | 1154.54 | 101600 | 0.6588 | 0.3900 | | 0.0006 | 1156.82 | 101800 | 0.6583 | 0.3892 | | 0.0007 | 1159.09 | 102000 | 0.6579 | 0.3916 | | 0.0003 | 1161.36 | 102200 | 0.6588 | 0.3908 | | 0.0004 | 1163.63 | 102400 | 0.6603 | 0.3912 | | 0.0004 | 1165.91 | 102600 | 0.6602 | 0.3916 | | 0.0004 | 1168.18 | 102800 | 0.6596 | 0.3916 | | 0.0007 | 1170.45 | 103000 | 0.6577 | 0.3924 | | 0.0003 | 1172.73 | 103200 | 0.6593 | 0.3900 | | 0.0004 | 1175.0 | 103400 | 0.6577 | 0.3900 | | 0.0006 | 1177.27 | 103600 | 0.6554 | 0.3900 | | 0.0004 | 1179.54 | 103800 | 0.6554 | 0.3885 | | 0.0005 | 1181.82 | 104000 | 0.6545 | 0.3873 | | 0.0003 | 1184.09 | 104200 | 0.6545 | 0.3885 | | 0.0002 | 1186.36 | 104400 | 0.6546 | 0.3888 | | 0.0006 | 1188.63 | 104600 | 0.6547 | 0.3892 | | 0.0007 | 1190.91 | 104800 | 0.6542 | 0.3885 | | 0.0002 | 1193.18 | 105000 | 0.6543 | 0.3885 | | 0.0003 | 1195.45 | 105200 | 0.6544 | 0.3881 | | 0.0004 | 1197.73 | 105400 | 0.6544 | 0.3881 | | 0.0009 | 1200.0 | 105600 | 0.6544 | 0.3881 | ### Framework versions - Transformers 4.18.0.dev0 - Pytorch 1.10.0+cu113 - Datasets 1.18.3 - Tokenizers 0.11.6
enelpol/evalatin2022-feats-open
40c9ad8e5686a28c8439c35ad33c08ef2fe04194
2022-04-15T21:22:56.000Z
[ "pytorch", "xlm-roberta", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
enelpol
null
enelpol/evalatin2022-feats-open
1
null
transformers
31,264
Entry not found
adnankhawaja/B_T_FB_LM
4a5037c335f52ef031c43a18294a8979e2e616be
2022-04-16T06:39:39.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
adnankhawaja
null
adnankhawaja/B_T_FB_LM
1
null
transformers
31,265
Entry not found
chrisvinsen/wav2vec2-base-commonvoice-demo-colab-2
4af967b2e5fd8905c9968f30f8b76a866dfab004
2022-04-16T10:54:34.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
chrisvinsen
null
chrisvinsen/wav2vec2-base-commonvoice-demo-colab-2
1
null
transformers
31,266
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base-commonvoice-demo-colab-2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-commonvoice-demo-colab-2 This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: nan - Wer: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:---:| | 4.7784 | 2.58 | 500 | 2.9962 | 1.0 | | 3.0067 | 5.15 | 1000 | 3.0303 | 1.0 | | 3.0098 | 7.73 | 1500 | 3.0305 | 1.0 | | 3.0015 | 10.31 | 2000 | 3.0308 | 1.0 | | 3.0062 | 12.89 | 2500 | 3.0310 | 1.0 | | 3.0074 | 15.46 | 3000 | 3.0311 | 1.0 | | 3.0085 | 18.04 | 3500 | 3.0313 | 1.0 | | 3.0046 | 20.62 | 4000 | 3.0314 | 1.0 | | 3.0065 | 23.2 | 4500 | nan | 1.0 | | 0.0 | 25.77 | 5000 | nan | 1.0 | | 0.0 | 28.35 | 5500 | nan | 1.0 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.10.3
jackh1995/bert-finetuned
957c8e16094042e7c88c939791f3624b55d57c65
2022-04-16T09:09:24.000Z
[ "pytorch", "bert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
jackh1995
null
jackh1995/bert-finetuned
1
null
transformers
31,267
Entry not found
masakhane/afrimt5_fon_fr_news
2dcce5961e39d72c03535517abb47dd14f8defa6
2022-04-16T13:06:17.000Z
[ "pytorch", "mt5", "text2text-generation", "transformers", "license:afl-3.0", "autotrain_compatible" ]
text2text-generation
false
masakhane
null
masakhane/afrimt5_fon_fr_news
1
null
transformers
31,268
--- license: afl-3.0 ---
masakhane/mbart50_fon_fr_news
6fe1269c20065594b0034c4a635d45e271b3a782
2022-04-16T14:01:57.000Z
[ "pytorch", "mbart", "text2text-generation", "transformers", "license:afl-3.0", "autotrain_compatible" ]
text2text-generation
false
masakhane
null
masakhane/mbart50_fon_fr_news
1
null
transformers
31,269
--- license: afl-3.0 ---
masakhane/afrimbart_fon_fr_news
a599297124e3e3e3cb2e0c4c127529cb9df12a9c
2022-04-16T14:02:01.000Z
[ "pytorch", "mbart", "text2text-generation", "transformers", "license:afl-3.0", "autotrain_compatible" ]
text2text-generation
false
masakhane
null
masakhane/afrimbart_fon_fr_news
1
null
transformers
31,270
--- license: afl-3.0 ---
masakhane/m2m100_418M_fr_fon_news
9f051a504751eca8e8986367f74da62eca4ccbf5
2022-04-16T17:53:18.000Z
[ "pytorch", "m2m_100", "text2text-generation", "transformers", "license:afl-3.0", "autotrain_compatible" ]
text2text-generation
false
masakhane
null
masakhane/m2m100_418M_fr_fon_news
1
null
transformers
31,271
--- license: afl-3.0 ---
masakhane/m2m100_418M_fon_fr_rel_news_ft
8dbe48bb6cc9c0da83e43cf4333852c3cea3e351
2022-04-16T17:53:25.000Z
[ "pytorch", "m2m_100", "text2text-generation", "transformers", "license:afl-3.0", "autotrain_compatible" ]
text2text-generation
false
masakhane
null
masakhane/m2m100_418M_fon_fr_rel_news_ft
1
null
transformers
31,272
--- license: afl-3.0 ---
masakhane/m2m100_418M_fr_fon_rel_ft
ab86fac0e987464aa77ea211f3058a54caa2c4ee
2022-04-16T18:51:46.000Z
[ "pytorch", "m2m_100", "text2text-generation", "transformers", "license:afl-3.0", "autotrain_compatible" ]
text2text-generation
false
masakhane
null
masakhane/m2m100_418M_fr_fon_rel_ft
1
null
transformers
31,273
--- license: afl-3.0 ---
masakhane/m2m100_418M_fon_fr_rel_ft
b04373c940f4cd5f04c3dae4ea0bd6756aa82c3c
2022-04-16T18:51:43.000Z
[ "pytorch", "m2m_100", "text2text-generation", "transformers", "license:afl-3.0", "autotrain_compatible" ]
text2text-generation
false
masakhane
null
masakhane/m2m100_418M_fon_fr_rel_ft
1
null
transformers
31,274
--- license: afl-3.0 ---
masakhane/m2m100_418M_fon_fr_rel
abd26bb8c1a7b1af9c2b9b965c0b6b9b10821daf
2022-04-16T18:51:53.000Z
[ "pytorch", "m2m_100", "text2text-generation", "transformers", "license:afl-3.0", "autotrain_compatible" ]
text2text-generation
false
masakhane
null
masakhane/m2m100_418M_fon_fr_rel
1
null
transformers
31,275
--- license: afl-3.0 ---
masakhane/m2m100_418M_fr_fon_rel
fc9ba13621137f1a2a29703db058db1badd3c843
2022-04-16T18:51:50.000Z
[ "pytorch", "m2m_100", "text2text-generation", "transformers", "license:afl-3.0", "autotrain_compatible" ]
text2text-generation
false
masakhane
null
masakhane/m2m100_418M_fr_fon_rel
1
null
transformers
31,276
--- license: afl-3.0 ---
haryoaw/id-recigen-bart
ec17889bda186bdb2dccdf16e843c3aa64f6fde1
2022-04-17T10:19:27.000Z
[ "pytorch", "mbart", "text2text-generation", "id", "transformers", "bart", "license:mit", "autotrain_compatible" ]
text2text-generation
false
haryoaw
null
haryoaw/id-recigen-bart
1
1
transformers
31,277
--- language: id tags: - bart - id license: mit --- # Indonesia Recipe Ingredients Generator Model **WARNING: inference on Huggingface might not run since the tokenizer used is not transformers's tokenizer.** Feel free to test the model [in this space](https://huggingface.co/spaces/haryoaw/id-recigen) 😎 **Have fun on generating ingredients** 😎 This is a fine-tuned model to generate the Indonesian food ingredients. One of my personal project that I did in my free time. Basically, you give the name of the food and it will produce the ingredients of the food. ## Model Data: [Indonesian Recipe Data on Kaggle](https://www.kaggle.com/datasets/canggih/indonesian-food-recipes) Pre-trained Model: [IndoBART-v2](https://huggingface.co/indobenchmark/indobart-v2) ## How to use We will specify the usage of the tokenizer and the model. ### Tokenizer Since we use `indobart-v2`, we need to use their tokenizer. First, install the tokenizer by doing `pip install indobenchmark-toolkit`. After that, you can load the tokenizer: ```python from indobenchmark.tokenization_indonlg import IndoNLGTokenizer tokenizer = IndoNLGTokenizer.from_pretrained("haryoaw/id-recigen-bart") ``` **EDIT**: Seems like the tokenizer in the package is not the same as the one that I use to finetune the model. There are some noticeable bug such as some subword tokens are not considered as subword. Nevertheless, it stil works! ### Model The model can be loaded by using AutoModel. ```python from transformers import AutoModelForSeq2SeqLM model = AutoModelForSeq2SeqLM.from_pretrained("haryoaw/id-recigen-bart") ``` ## Input Example Make sure to input a **LOWERCASE** food name. The tokenizer is case-sensitive! ``` sayur asam ``` ``` nasi goreng ayam ``` ~To be continued..
masakhane/afrimt5_fr_mos_news
8e962e355b2fa72065bc19b3f727918a7585e3c3
2022-04-17T06:42:42.000Z
[ "pytorch", "mt5", "text2text-generation", "transformers", "license:afl-3.0", "autotrain_compatible" ]
text2text-generation
false
masakhane
null
masakhane/afrimt5_fr_mos_news
1
null
transformers
31,278
--- license: afl-3.0 ---
clapika2010/hospital_finetuned2
d678fe2a235bd0bdc9c55d2135dc4723ad3e1d5d
2022-04-16T23:56:32.000Z
[ "pytorch", "roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
clapika2010
null
clapika2010/hospital_finetuned2
1
null
transformers
31,279
Entry not found
crystina-z/mdpr-tied-msmarco-pyserini
d98dd05c2b937b33a1a5cd05b3535b3ef8464dae
2022-04-19T20:52:36.000Z
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
false
crystina-z
null
crystina-z/mdpr-tied-msmarco-pyserini
1
null
transformers
31,280
Entry not found
MrBananaHuman/kogpt_medium_wiki
65eb38d097ce4bc457de91fd4789ecd68fd0ce25
2022-04-17T02:06:02.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
MrBananaHuman
null
MrBananaHuman/kogpt_medium_wiki
1
null
transformers
31,281
Entry not found
speydach/layoutlmv2-finetuned-cord
70d06c90e14d80204a1f2d47ae33b02356bd22a4
2022-04-17T02:14:14.000Z
[ "pytorch", "layoutlmv2", "token-classification", "transformers", "generated_from_trainer", "license:cc-by-nc-sa-4.0", "model-index", "autotrain_compatible" ]
token-classification
false
speydach
null
speydach/layoutlmv2-finetuned-cord
1
null
transformers
31,282
--- license: cc-by-nc-sa-4.0 tags: - generated_from_trainer model-index: - name: layoutlmv2-finetuned-cord results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # layoutlmv2-finetuned-cord This model is a fine-tuned version of [microsoft/layoutlmv2-base-uncased](https://huggingface.co/microsoft/layoutlmv2-base-uncased) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 15 ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cpu - Datasets 2.1.0 - Tokenizers 0.12.1
MrBananaHuman/engpt_medium_to_kogpt_medium_w_freezing
ce0c8271f205b169b897b75a5275dd762a540f6c
2022-04-17T02:10:07.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
MrBananaHuman
null
MrBananaHuman/engpt_medium_to_kogpt_medium_w_freezing
1
null
transformers
31,283
Entry not found
adnankhawaja/R_T_SMS_LM
0731e023c05768a05315a60648228f1a7fafcab9
2022-04-17T07:19:47.000Z
[ "pytorch", "roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
adnankhawaja
null
adnankhawaja/R_T_SMS_LM
1
null
transformers
31,284
Entry not found
masakhane/m2m100_418M_fr_mos_news
61d3d03d6964922b2ac6f71c8abd8bc31ffcc2a0
2022-04-17T08:15:32.000Z
[ "pytorch", "m2m_100", "text2text-generation", "transformers", "license:afl-3.0", "autotrain_compatible" ]
text2text-generation
false
masakhane
null
masakhane/m2m100_418M_fr_mos_news
1
null
transformers
31,285
--- license: afl-3.0 ---
masakhane/m2m100_418M_mos_fr_rel_news_ft
38433a5d36b52b98b189d735cf2280646a6adf36
2022-04-17T11:50:10.000Z
[ "pytorch", "m2m_100", "text2text-generation", "transformers", "license:afl-3.0", "autotrain_compatible" ]
text2text-generation
false
masakhane
null
masakhane/m2m100_418M_mos_fr_rel_news_ft
1
null
transformers
31,286
--- license: afl-3.0 ---
scasutt/wav2vec2-large-xlsr-53_toy_train_augment_random_noise
b512dcbc2146148c5d139e7023748fe4187f4cdc
2022-04-17T13:09:25.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
scasutt
null
scasutt/wav2vec2-large-xlsr-53_toy_train_augment_random_noise
1
null
transformers
31,287
Entry not found
surafelkindu/AmBERT
ef7fe43be6c962dc8ed448955cb429bd6b9e1a68
2022-04-17T20:16:29.000Z
[ "pytorch", "tensorboard", "roberta", "fill-mask", "transformers", "license:mit", "autotrain_compatible" ]
fill-mask
false
surafelkindu
null
surafelkindu/AmBERT
1
1
transformers
31,288
--- license: mit --- Amharic Language Language Model #Trained in Roberta architecture
masakhane/m2m100_418M_mos_fr_rel_ft
6517438b1df31240dd96d2c007478becc2620f66
2022-04-17T11:50:15.000Z
[ "pytorch", "m2m_100", "text2text-generation", "transformers", "license:afl-3.0", "autotrain_compatible" ]
text2text-generation
false
masakhane
null
masakhane/m2m100_418M_mos_fr_rel_ft
1
null
transformers
31,289
--- license: afl-3.0 ---
bhagyarana/t5_squad_v1
d64e0eae3feed3d57ed39314f41e0c0c39c2a8c1
2022-04-17T11:09:45.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
bhagyarana
null
bhagyarana/t5_squad_v1
1
null
transformers
31,290
Entry not found
stevems1/distilroberta-base-SmithsModel2
b1d737ea256e2ca48de758400792dad98f8e4238
2022-04-17T11:53:54.000Z
[ "pytorch", "tensorboard", "roberta", "fill-mask", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
fill-mask
false
stevems1
null
stevems1/distilroberta-base-SmithsModel2
1
null
transformers
31,291
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distilroberta-base-SmithsModel2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilroberta-base-SmithsModel2 This model is a fine-tuned version of [distilroberta-base](https://huggingface.co/distilroberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.4012 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 1.8736 | 1.0 | 3632 | 1.6643 | | 1.5808 | 2.0 | 7264 | 1.4663 | | 1.498 | 3.0 | 10896 | 1.4090 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.0+cu111 - Datasets 2.1.0 - Tokenizers 0.12.1
scasutt/wav2vec2-large-xlsr-53_toy_train_fast_masked_audio
a750d206f0cf1d30fc180aded2281834f55dd606
2022-04-17T19:03:46.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
scasutt
null
scasutt/wav2vec2-large-xlsr-53_toy_train_fast_masked_audio
1
null
transformers
31,292
Entry not found
leung233/opus-mt-en-zh-finetuned-0-to-1
5acef0e2e264ebbc7d6015e490f12a53e87c34ea
2022-04-18T05:56:25.000Z
[ "pytorch", "tensorboard", "marian", "text2text-generation", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
text2text-generation
false
leung233
null
leung233/opus-mt-en-zh-finetuned-0-to-1
1
null
transformers
31,293
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: opus-mt-en-zh-finetuned-0-to-1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # opus-mt-en-zh-finetuned-0-to-1 This model is a fine-tuned version of [Helsinki-NLP/opus-mt-en-zh](https://huggingface.co/Helsinki-NLP/opus-mt-en-zh) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.0+cu111 - Datasets 2.1.0 - Tokenizers 0.12.1
aaaacash/DialoGPT-large-michaelscott
9b7c881f4e6c78d481f781757577c2ebfdd40a1f
2022-04-17T19:47:49.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
aaaacash
null
aaaacash/DialoGPT-large-michaelscott
1
null
transformers
31,294
--- tags: - conversational --- # Michael Scott DialoGPT Model
creynier/wav2vec2-base-swbd-turn-eos-long_utt_removed3
59022e465326a2be5ef2fca7a57c0420ad9d5b3c
2022-04-18T16:24:17.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
creynier
null
creynier/wav2vec2-base-swbd-turn-eos-long_utt_removed3
1
null
transformers
31,295
Entry not found
AntoDono/DialoGPT-Harry
e987de58f1e966af2ff764e84880d3adb201c7a9
2022-04-17T21:33:32.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
AntoDono
null
AntoDono/DialoGPT-Harry
1
null
transformers
31,296
--- tags: - conversational ---
danhsf/pegasus-samsum
567205057a2d5ca4f518f78620db98528b389b58
2022-04-17T23:29:38.000Z
[ "pytorch", "tensorboard", "pegasus", "text2text-generation", "dataset:samsum", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
text2text-generation
false
danhsf
null
danhsf/pegasus-samsum
1
null
transformers
31,297
--- tags: - generated_from_trainer datasets: - samsum model-index: - name: pegasus-samsum results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # pegasus-samsum This model is a fine-tuned version of [google/pegasus-cnn_dailymail](https://huggingface.co/google/pegasus-cnn_dailymail) on the samsum dataset. It achieves the following results on the evaluation set: - Loss: 1.4844 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.6936 | 0.54 | 500 | 1.4844 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3
PSW/baseline-for-porting-test
a6da863c48285da2f42fb0f9f4a6c520dc74e0d9
2022-04-18T01:35:56.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
PSW
null
PSW/baseline-for-porting-test
1
null
transformers
31,298
Entry not found
BigSalmon/InformalToFormalLincoln38
44f47555399d91cd2b1c6cf071886ab252e78e7d
2022-04-18T03:12:14.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
BigSalmon
null
BigSalmon/InformalToFormalLincoln38
1
null
transformers
31,299
``` from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("BigSalmon/InformalToFormalLincoln38") model = AutoModelForCausalLM.from_pretrained("BigSalmon/InformalToFormalLincoln38") ``` ``` How To Make Prompt: informal english: i am very ready to do that just that. Translated into the Style of Abraham Lincoln: you can assure yourself of my readiness to work toward this end. Translated into the Style of Abraham Lincoln: please be assured that i am most ready to undertake this laborious task. *** informal english: space is huge and needs to be explored. Translated into the Style of Abraham Lincoln: space awaits traversal, a new world whose boundaries are endless. Translated into the Style of Abraham Lincoln: space is a ( limitless / boundless ) expanse, a vast virgin domain awaiting exploration. *** informal english: corn fields are all across illinois, visible once you leave chicago. Translated into the Style of Abraham Lincoln: corn fields ( permeate illinois / span the state of illinois / ( occupy / persist in ) all corners of illinois / line the horizon of illinois / envelop the landscape of illinois ), manifesting themselves visibly as one ventures beyond chicago. informal english: ``` ``` infill: chrome extensions [MASK] accomplish everyday tasks. Translated into the Style of Abraham Lincoln: chrome extensions ( expedite the ability to / unlock the means to more readily ) accomplish everyday tasks. infill: at a time when nintendo has become inflexible, [MASK] consoles that are tethered to a fixed iteration, sega diligently curates its legacy of classic video games on handheld devices. Translated into the Style of Abraham Lincoln: at a time when nintendo has become inflexible, ( stubbornly [MASK] on / firmly set on / unyielding in its insistence on ) consoles that are tethered to a fixed iteration, sega diligently curates its legacy of classic video games on handheld devices. infill: ``` ``` Essay Intro (Warriors vs. Rockets in Game 7): text: eagerly anticipated by fans, game 7's are the highlight of the post-season. text: ever-building in suspense, game 7's have the crowd captivated. *** Essay Intro (South Korean TV Is Becoming Popular): text: maturing into a bona fide paragon of programming, south korean television ( has much to offer / entertains without fail / never disappoints ). text: increasingly held in critical esteem, south korean television continues to impress. text: at the forefront of quality content, south korea is quickly achieving celebrity status. *** Essay Intro ( ``` ``` Search: What is the definition of Checks and Balances? https://en.wikipedia.org/wiki/Checks_and_balances Checks and Balances is the idea of having a system where each and every action in government should be subject to one or more checks that would not allow one branch or the other to overly dominate. https://www.harvard.edu/glossary/Checks_and_Balances Checks and Balances is a system that allows each branch of government to limit the powers of the other branches in order to prevent abuse of power https://www.law.cornell.edu/library/constitution/Checks_and_Balances Checks and Balances is a system of separation through which branches of government can control the other, thus preventing excess power. *** Search: What is the definition of Separation of Powers? https://en.wikipedia.org/wiki/Separation_of_powers The separation of powers is a principle in government, whereby governmental powers are separated into different branches, each with their own set of powers, that are prevent one branch from aggregating too much power. https://www.yale.edu/tcf/Separation_of_Powers.html Separation of Powers is the division of governmental functions between the executive, legislative and judicial branches, clearly demarcating each branch's authority, in the interest of ensuring that individual liberty or security is not undermined. *** Search: What is the definition of Connection of Powers? https://en.wikipedia.org/wiki/Connection_of_powers Connection of Powers is a feature of some parliamentary forms of government where different branches of government are intermingled, typically the executive and legislative branches. https://simple.wikipedia.org/wiki/Connection_of_powers The term Connection of Powers describes a system of government in which there is overlap between different parts of the government. *** Search: What is the definition of ``` ``` Search: What are phrase synonyms for "second-guess"? https://www.powerthesaurus.org/second-guess/synonyms Shortest to Longest: - feel dubious about - raise an eyebrow at - wrinkle their noses at - cast a jaundiced eye at - teeter on the fence about *** Search: What are phrase synonyms for "mean to newbies"? https://www.powerthesaurus.org/mean_to_newbies/synonyms Shortest to Longest: - readiness to balk at rookies - absence of tolerance for novices - hostile attitude toward newcomers *** Search: What are phrase synonyms for "make use of"? https://www.powerthesaurus.org/make_use_of/synonyms Shortest to Longest: - call upon - glean value from - reap benefits from - derive utility from - seize on the merits of - draw on the strength of - tap into the potential of *** Search: What are phrase synonyms for "hurting itself"? https://www.powerthesaurus.org/hurting_itself/synonyms Shortest to Longest: - erring - slighting itself - forfeiting its integrity - doing itself a disservice - evincing a lack of backbone *** Search: What are phrase synonyms for " ``` ``` - declining viewership facing the nba. - does not have to be this way. - in fact, many solutions exist. - the four point line would surely draw in eyes. text: failing to draw in the masses, the nba has ( fallen into / succumb to / bowed to ) disrepair. such does not have to be the case, however. in fact, a myriad of simple, relatively cheap ( solutions / interventions / enhancements ) could revive the league. the addition of the much-hyped four-point line would surely juice viewership. *** - ``` ``` original: sports teams are profitable for owners. [MASK], their valuations experience a dramatic uptick. infill: sports teams are profitable for owners. ( accumulating vast sums / stockpiling treasure / realizing benefits / cashing in / registering robust financials / scoring on balance sheets ), their valuations experience a dramatic uptick. *** original: ``` ``` wordy: classical music is becoming less popular more and more. Translate into Concise Text: interest in classic music is fading. *** wordy: ``` ``` sweet: savvy voters ousted him. longer: voters who were informed delivered his defeat. *** sweet: ``` ``` 1: commercial space company spacex plans to launch a whopping 52 flights in 2022. 2: spacex, a commercial space company, intends to undertake a total of 52 flights in 2022. 3: in 2022, commercial space company spacex has its sights set on undertaking 52 flights. 4: 52 flights are in the pipeline for 2022, according to spacex, a commercial space company. 5: a commercial space company, spacex aims to conduct 52 flights in 2022. *** 1: ``` Keywords to sentences or sentence.