modelId
stringlengths
4
112
sha
stringlengths
40
40
lastModified
stringlengths
24
24
tags
sequence
pipeline_tag
stringclasses
29 values
private
bool
1 class
author
stringlengths
2
38
โŒ€
config
null
id
stringlengths
4
112
downloads
float64
0
36.8M
โŒ€
likes
float64
0
712
โŒ€
library_name
stringclasses
17 values
__index_level_0__
int64
0
38.5k
readme
stringlengths
0
186k
AvengingPrime/Reddit_Model_2
ce35893dd0ae5edb3a13329671274a143286bbf1
2022-04-22T21:19:34.000Z
[ "pytorch", "encoder-decoder", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
AvengingPrime
null
AvengingPrime/Reddit_Model_2
1
null
transformers
31,400
Entry not found
AntoDono/DialoGPT-Bopy-5k
777a05b4d61993b5b52c8860763cb1389f6008b7
2022-04-23T05:22:33.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
AntoDono
null
AntoDono/DialoGPT-Bopy-5k
1
null
transformers
31,401
Entry not found
negfir/bert_uncased_L-12_H-256_A-4wiki103
8801d169c1acd795c85e60e3f04a7df13178602f
2022-04-23T09:07:55.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
negfir
null
negfir/bert_uncased_L-12_H-256_A-4wiki103
1
null
transformers
31,402
Entry not found
jackh1995/bert-chinese-finetuned
b9ce6ecf449ac701ed7b80ebf496769b201d8ede
2022-04-23T21:23:58.000Z
[ "pytorch", "bert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
jackh1995
null
jackh1995/bert-chinese-finetuned
1
null
transformers
31,403
Entry not found
negfir/bert_uncased_L-12_H-128_A-2wiki103
0fd532469c8d51340a274588cd67b570c6497734
2022-04-25T17:17:06.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
negfir
null
negfir/bert_uncased_L-12_H-128_A-2wiki103
1
null
transformers
31,404
Entry not found
adityay1221/Pixie.30.32
224515a20c8a471da7d2d81c37ede43c12fdc6a2
2022-04-23T11:55:00.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
text2text-generation
false
adityay1221
null
adityay1221/Pixie.30.32
1
null
transformers
31,405
--- license: apache-2.0 tags: - generated_from_trainer metrics: - bleu model-index: - name: Pixie.30.32 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Pixie.30.32 This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.1623 - Bleu: 47.6437 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 121 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | |:-------------:|:-----:|:----:|:---------------:|:-------:| | No log | 9.09 | 100 | 1.5563 | 21.3462 | | No log | 18.18 | 200 | 1.2493 | 29.2353 | | No log | 27.27 | 300 | 1.1670 | 32.5700 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0a0+17540c5 - Datasets 2.1.0 - Tokenizers 0.12.1
Wootang01/roberta-large-finetuned-hkdse-english-paper4
5a5c0f3829330e5f93b3e5c2d90bc147cc7de049
2022-04-23T14:01:05.000Z
[ "pytorch", "roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
Wootang01
null
Wootang01/roberta-large-finetuned-hkdse-english-paper4
1
null
transformers
31,406
Entry not found
allenai/aspire-biencoder-biomed-spec
0bde92228e636dcbbdb43d01d4d2629ae969b471
2022-04-24T19:39:06.000Z
[ "pytorch", "bert", "feature-extraction", "arxiv:2111.08366", "transformers", "license:apache-2.0" ]
feature-extraction
false
allenai
null
allenai/aspire-biencoder-biomed-spec
1
null
transformers
31,407
--- license: apache-2.0 --- ## Overview Model included in a paper for modeling fine grained similarity between documents: **Title**: "Multi-Vector Models with Textual Guidance for Fine-Grained Scientific Document Similarity" **Authors**: Sheshera Mysore, Arman Cohan, Tom Hope **Paper**: https://arxiv.org/abs/2111.08366 **Github**: https://github.com/allenai/aspire **Note**: In the context of the paper, this model is referred to as `Specter-CoCite_Spec` and represents a baseline bi-encoder for scientific document similarity. This model is similar in architecture to the [`allenai/specter`](https://github.com/allenai/specter) model but is trained on co-citation data instead of citation data. ## Model Card ### Model description This model is a BERT bi-encoder model trained for similarity of title-abstract pairs in biomedical scientific papers. The model is **initialized with the SPECTER encoder**. This model inputs the title and abstract of a paper and represents it with a single vector obtained by a scalar mix of the CLS token at every layer of the base encoder. These scalar mix parameters can be important for performance in some datasets. Importantly, these scalar mix weights are not included as part of this HF model, if you wish to use these parameters please download the full model at: [`aspire-biencoder-biomed-spec-full.zip`](https://drive.google.com/file/d/1MDCv9Fc33eP015HTWKi50WYXixh72h5c/view?usp=sharing). ### Training data The model is trained on pairs of co-cited papers in a contrastive learning setup. The model is trained on 1.2 million biomedical paper pairs. In training the model negative examples for the contrastive loss are obtained as random in-batch negatives. Co-citations are obtained from the full text of papers, for example - the papers in brackets below are all co-cited and each pairs title and abstracts would be used as a training pair: > The idea of distant supervision has been proposed and used widely in Relation Extraction (Mintz et al., 2009; Riedel et al., 2010; Hoffmann et al., 2011; Surdeanu et al., 2012) , where the source of labels is an external knowledge base. ### Training procedure The model was trained with the Adam Optimizer and a learning rate of 1e-5 with 1000 warm-up steps followed by linear decay of the learning rate. The model training convergence is checked with the loss on a held out dev set consisting of co-cited paper pairs. ### Intended uses & limitations This model is trained for document similarity tasks in **biomedical** scientific text using a single vector per document. Here, the documents are the title and abstract of a paper. With appropriate fine-tuning the model can also be used for other tasks such as classification. Since the training data comes primarily from biomedicine, performance on other domains may be poorer. ### How to use Follow instructions for use detailed on the model github repo: https://github.com/allenai/aspire#specter-cocite ### Variable and metrics This model is evaluated on information retrieval datasets with document level queries. Here we report performance on RELISH (biomedical/English), and TRECCOVID (biomedical/English). These are detailed on [github](https://github.com/allenai/aspire) and in our [paper](https://arxiv.org/abs/2111.08366). These datasets represent a abstract level retrieval task, where given a query scientific abstract the task requires the retrieval of relevant candidate abstracts. We rank documents by the L2 distance between the query and candidate documents. ### Evaluation results The released model `aspire-biencoder-biomed-spec` (and `aspire-biencoder-biomed-spec-full`) is compared against `allenai/specter`. `aspire-biencoder-biomed-spec-full`<sup>*</sup> is the performance reported in our paper by averaging over 3 re-runs of the model. The released models `aspire-biencoder-biomed-spec` and `aspire-biencoder-biomed-spec-full` are the single best run among the 3 re-runs. | | TRECCOVID | TRECCOVID | RELISH | RELISH | |-------------------------------------------:|:---------:|:-------:|:------:|:-------:| | | MAP | NDCG%20 | MAP | NDCG%20 | | `specter` | 28.24 | 59.28 | 60.62| 77.20 | | `aspire-biencoder-biomed-spec-full`<sup>*</sup> | 28.59 | 60.07 | 61.43| 77.96 | | `aspire-biencoder-biomed-spec` | 26.07 | 54.89 | 61.47| 78.34 | | `aspire-biencoder-biomed-spec-full` | 28.87 | 60.47 | 61.69| 78.22 | Note that the absence of linear mixing parameters in the `aspire-biencoder-biomed-spec` hurts performance substantially compared to `aspire-biencoder-biomed-spec-full` in TRECCOVID - this dataset contains a larger candidate set than RELISH (~9000 vs 60). Consider the more performant Alternative models below for usage. **Alternative models:** Besides the above models consider these alternative models also released in the Aspire paper: [`aspire-biencoder-compsci-spec`](https://huggingface.co/allenai/aspire-biencoder-compsci-spec): If you wanted to run on computer science papers. [`aspire-biencoder-biomed-scib`](https://huggingface.co/allenai/aspire-biencoder-biomed-scib): This is an alternative bi-encoder model identical to the above model, except that it is initialized with SciBERT instead of SPECTER. The above model underperforms this model, `allenai/aspire-biencoder-biomed-scib` (even better, `aspire-biencoder-biomed-scib-full`) is recommended for use.
chrishuber/roberta-retrained-mlni
c1179fea0a7b3b9ef3e005ff7941cf1d8f01983b
2022-04-23T17:28:08.000Z
[ "pytorch", "roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
chrishuber
null
chrishuber/roberta-retrained-mlni
1
null
transformers
31,408
Entry not found
Raffay/org_speech_processing_project_wav2vec2
d8c7637581be72d0412ba6a2f281fd583c030189
2022-04-23T20:44:14.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
Raffay
null
Raffay/org_speech_processing_project_wav2vec2
1
null
transformers
31,409
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: org_speech_processing_project_wav2vec2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # org_speech_processing_project_wav2vec2 This model is a fine-tuned version of [kingabzpro/wav2vec2-urdu](https://huggingface.co/kingabzpro/wav2vec2-urdu) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 ### Training results ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0 - Datasets 2.0.0 - Tokenizers 0.11.6
azizbarank/cst5-base
810352b388fd9647963e8edf3f62e8c0acbef9ac
2022-04-23T18:16:44.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "license:mit", "autotrain_compatible" ]
text2text-generation
false
azizbarank
null
azizbarank/cst5-base
1
null
transformers
31,410
--- license: mit --- ## The T5 base model for the Czech Language This is the t5 base model for the Czech language that is based on the smaller version of the google/mt5-base model (https://huggingface.co/google/mt5-base). To make this model, I retained only the Czech and some of the English embeddings from the original multilingual model. # Modifications to the original multilingual t5 base model: 1- Parameters of the original model were reduced from 582M to 244M parameters. 2- By choosing the top 20K Czech and 10K English tokens, sentencepiece vocabulary was shrinked from 250K to 30K tokens. 3- The original size was reduced from 2.2GB to 0.9GB. Notes: Since this is the base t5 model of the Czech language, before using it for any downstream tasks, it needs to be finetuned with appropriate datasets in the first place. References: The substantial amount of this work to create this model is mostly based on the the post written by David Dale: "How to adapt a multilingual T5 model for a single language" (https://towardsdatascience.com/how-to-adapt-a-multilingual-t5-model-for-a-single-language-b9f94f3d9c90)
Coma/Beter
8430bd6aae622b81366aaa48210a69bfae1e8a56
2022-04-23T20:02:13.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
Coma
null
Coma/Beter
1
null
transformers
31,411
--- tags: - conversational --- #Peter from Your Boyfriend Game
Reproducibility/naacl22_causalDistilBERT_instance_2
d5c414b9b567e8403018fe0a8a0b354ffec2de2f
2022-04-23T19:55:55.000Z
[ "pytorch", "distilbert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
Reproducibility
null
Reproducibility/naacl22_causalDistilBERT_instance_2
1
null
transformers
31,412
Entry not found
Reproducibility/naacl22_causalDistilBERT_instance_3
e45f5a2a29179660134c33583665eb5ffda772ec
2022-04-23T20:00:12.000Z
[ "pytorch", "distilbert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
Reproducibility
null
Reproducibility/naacl22_causalDistilBERT_instance_3
1
null
transformers
31,413
Entry not found
smeoni/nbme-electra-large-discriminator
d5f19ee3b5cbc2cf213fcff6fe7662d840d3d261
2022-04-23T21:44:16.000Z
[ "pytorch", "tensorboard", "electra", "fill-mask", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
fill-mask
false
smeoni
null
smeoni/nbme-electra-large-discriminator
1
null
transformers
31,414
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: nbme-electra-large-discriminator results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # nbme-electra-large-discriminator This model is a fine-tuned version of [google/electra-large-discriminator](https://huggingface.co/google/electra-large-discriminator) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 6.1201 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 6.1704 | 1.0 | 1850 | 6.1313 | | 6.1305 | 2.0 | 3700 | 6.1243 | | 6.1109 | 3.0 | 5550 | 6.1201 | ### Framework versions - Transformers 4.19.0.dev0 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.12.1
dllllb/poetnet-mt5-stihiru-libru
4a63390271c34e8a99e1dad65118c26ad2e04c6f
2022-04-23T23:13:12.000Z
[ "pytorch", "mt5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
dllllb
null
dllllb/poetnet-mt5-stihiru-libru
1
null
transformers
31,415
Entry not found
Lucifermorningstar011/autotrain-ner-778023879
21de8637c406c6cd04e5f1224d4b6663fb03bc71
2022-04-24T00:00:13.000Z
[ "pytorch", "distilbert", "token-classification", "en", "dataset:Lucifermorningstar011/autotrain-data-ner", "transformers", "autotrain", "co2_eq_emissions", "autotrain_compatible" ]
token-classification
false
Lucifermorningstar011
null
Lucifermorningstar011/autotrain-ner-778023879
1
null
transformers
31,416
--- tags: autotrain language: en widget: - text: "I love AutoTrain ๐Ÿค—" datasets: - Lucifermorningstar011/autotrain-data-ner co2_eq_emissions: 43.26533004662002 --- # Model Trained Using AutoTrain - Problem type: Entity Extraction - Model ID: 778023879 - CO2 Emissions (in grams): 43.26533004662002 ## Validation Metrics - Loss: 5.475859779835446e-06 - Accuracy: 0.9999996519918594 - Precision: 0.0 - Recall: 0.0 - F1: 0.0 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/Lucifermorningstar011/autotrain-ner-778023879 ``` Or Python API: ``` from transformers import AutoModelForTokenClassification, AutoTokenizer model = AutoModelForTokenClassification.from_pretrained("Lucifermorningstar011/autotrain-ner-778023879", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("Lucifermorningstar011/autotrain-ner-778023879", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
dllllb/poetnet-rut5-stihiru-libru-finetune
0382a41b9ad84fa37bebe282a9777cd7d1bfb67d
2022-04-24T00:53:42.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
dllllb
null
dllllb/poetnet-rut5-stihiru-libru-finetune
1
null
transformers
31,417
Entry not found
aiface/5500
083d6694bb1ea399bfdaeab4092a8977fbb26cfb
2022-04-24T07:26:20.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
aiface
null
aiface/5500
1
null
transformers
31,418
Entry not found
jackh1995/roberta-base-chinese-extractive-qa
7399394b7e3ca409da021fbee6cc39fa0f67b907
2022-04-24T09:49:31.000Z
[ "pytorch", "bert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
jackh1995
null
jackh1995/roberta-base-chinese-extractive-qa
1
null
transformers
31,419
Entry not found
MachineBabs/RickBot
a58722669ace86eecfdc5494a024c82b65c7ff1e
2022-04-24T09:36:45.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
MachineBabs
null
MachineBabs/RickBot
1
null
transformers
31,420
--- tags: - conversational ---
smeoni/nbme-gpt2
31f002679c535b2c306b6104ed978fae094033b0
2022-04-24T11:02:07.000Z
[ "pytorch", "tensorboard", "gpt2", "text-generation", "transformers", "generated_from_trainer", "license:mit", "model-index" ]
text-generation
false
smeoni
null
smeoni/nbme-gpt2
1
null
transformers
31,421
--- license: mit tags: - generated_from_trainer metrics: - accuracy model-index: - name: nbme-gpt2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # nbme-gpt2 This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.3684 - Accuracy: 0.5070 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 0.99 | 101 | 2.5636 | 0.4809 | | No log | 1.99 | 202 | 2.4075 | 0.5018 | | No log | 2.99 | 303 | 2.3684 | 0.5070 | ### Framework versions - Transformers 4.19.0.dev0 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.12.1
spuun/kekbot-beta-1-medium
29b5bc4d4bb8ff96aa827e635dd4c301fb42cf85
2022-04-24T23:40:49.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "conversational", "license:cc-by-nc-sa-4.0", "co2_eq_emissions" ]
conversational
false
spuun
null
spuun/kekbot-beta-1-medium
1
null
transformers
31,422
--- language: - en tags: - conversational co2_eq_emissions: emissions: "370" source: "mlco2.github.io" training_type: "fine-tuning" geographical_location: "West Java, Indonesia" hardware_used: "1 Tesla P100" license: cc-by-nc-sa-4.0 widget: - text: "Hey kekbot! What's up?" example_title: "Asking what's up" - text: "Hey kekbot! How r u?" example_title: "Asking how he is" --- > THIS MODEL IS IN PUBLIC BETA, PLEASE DO NOT EXPECT ANY FORM OF STABILITY IN ITS CURRENT STATE. # Art Union server chatbot Based on a DialoGPT-medium model, fine-tuned to a small subset (52k< messages) of Art Union's general-chat channel. ### Current issues (Which hopefully will be fixed in future iterations) Include, but not limited to: - Limited turns, after ~11 turns output may break for no apparent reason. - Inconsistent variance, acts like an overfitted model from time to time for no reason whatsoever.
macavaney/monot5-base-msmarco-sim1
62e767c3599593208da35a048487c6382566214a
2022-04-24T15:27:46.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
macavaney
null
macavaney/monot5-base-msmarco-sim1
1
null
transformers
31,423
Entry not found
tosin/dialogpt_afriwoz_wolof
90e9b80708cfb736ace96eee4b50febfbc012f6a
2022-04-25T06:45:15.000Z
[ "pytorch", "gpt2", "text-generation", "en", "dataset:multi_woz_v22 and AfriWOZ", "arxiv:2204.08083", "transformers", "conversational", "license:cc-by-4.0" ]
conversational
false
tosin
null
tosin/dialogpt_afriwoz_wolof
1
null
transformers
31,424
--- thumbnail: https://huggingface.co/front/thumbnails/dialogpt.png language: - en license: cc-by-4.0 tags: - conversational - transformers datasets: - multi_woz_v22 and AfriWOZ metrics: - perplexity widget: - text: "dedet li rek la soxla. jerejef. ba benen yoon." --- ## DialoGPT_AfriWOZ This is a fine-tuned model of DialoGPT (small) on the AfriWOZ dataset. It is intended to be used as a conversational system in Wolof language. The dataset it's trained on is limited in scope, as it covers only certain domains such as restaurants, hotel, taxi, and booking. The perplexity achieved on the test and validation sets are 20.74 and 11.66, respectively. * Generation example from an interactive environment: |Role | Response | |---------|------------| |User | sowwu bi la bรซg | |Bot | waw, ndax mรซn ngan ma jox ay leeral si bรซrรซb buรฑu feetee ak lekkukaay bi | |User | soxla na dem gawu. ngir leeral rek bรซg na joggee peterborough di dem cambridge | |Bot | soxlu na dem ginaw jurrom รฑenti waxtu ak รฑaar fukki simili ak jurrom ben. | |User | waw jiss sal ma ben bu seer si njรซg si toluway | |Bot | jรซnd bi baaxna. jerejef. ba benen yoon. | Please find the information about preprocessing, training and full details of the DialoGPT in the [original DialoGPT repository](https://github.com/microsoft/DialoGPT) The paper for this work can be found on arXiv: [https://arxiv.org/pdf/2204.08083.pdf](https://arxiv.org/pdf/2204.08083.pdf) ### How to use Now we are ready to try out how the model works as a chatting partner! ```python from transformers import AutoModelForCausalLM, AutoTokenizer import torch tokenizer = AutoTokenizer.from_pretrained("tosin/dialogpt_afriwoz_wolof") model = AutoModelForCausalLM.from_pretrained("tosin/dialogpt_afriwoz_wolof") # Let's chat for 5 lines for step in range(5): # encode the new user input, add the eos_token and return a tensor in Pytorch new_user_input_ids = tokenizer.encode(input(">> User:") + tokenizer.eos_token, return_tensors='pt') # append the new user input tokens to the chat history bot_input_ids = torch.cat([chat_history_ids, new_user_input_ids], dim=-1) if step > 0 else new_user_input_ids # generated a response while limiting the total chat history to 1000 tokens, chat_history_ids = model.generate(bot_input_ids, max_length=1000, pad_token_id=tokenizer.eos_token_id) # pretty print last ouput tokens from bot print("DialoGPT_wolof_Bot: {}".format(tokenizer.decode(chat_history_ids[:, bot_input_ids.shape[-1]:][0], skip_special_tokens=True)))
shiyue/wav2vec2-large-xlsr-53-chr-phonetic
78e04a329e502593ddbe5c064a00e6d880a15d9d
2022-04-24T17:40:27.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
shiyue
null
shiyue/wav2vec2-large-xlsr-53-chr-phonetic
1
null
transformers
31,425
Entry not found
shiyue/wav2vec2-large-xlsr-53-chr-syllabary
cea715d42a782338b96a233727b555b6399fe90d
2022-04-24T17:52:23.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
shiyue
null
shiyue/wav2vec2-large-xlsr-53-chr-syllabary
1
null
transformers
31,426
Entry not found
umarkhalid96/t5-small-train
370f95c03fc27f04c1a7ce504b0332651c62dbf4
2022-04-29T12:36:08.000Z
[ "pytorch", "tensorboard", "t5", "text2text-generation", "transformers", "summarization", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
summarization
false
umarkhalid96
null
umarkhalid96/t5-small-train
1
null
transformers
31,427
--- license: apache-2.0 tags: - summarization - generated_from_trainer metrics: - rouge model-index: - name: t5-small-train results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-train This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.2669 - Rouge1: 43.2372 - Rouge2: 21.6755 - Rougel: 38.1637 - Rougelsum: 38.5444 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5.6e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:| | 3.2032 | 1.0 | 45 | 2.6305 | 34.393 | 15.4821 | 30.3601 | 30.5865 | | 2.6291 | 2.0 | 90 | 2.4169 | 38.2327 | 18.4622 | 34.2887 | 34.3385 | | 2.4294 | 3.0 | 135 | 2.3395 | 40.4405 | 19.927 | 36.559 | 36.8095 | | 2.3191 | 4.0 | 180 | 2.3059 | 41.4214 | 20.4534 | 36.6399 | 36.9088 | | 2.2949 | 5.0 | 225 | 2.2857 | 42.6906 | 21.1492 | 37.5557 | 37.8722 | | 2.2591 | 6.0 | 270 | 2.2762 | 43.1598 | 21.6179 | 38.1235 | 38.5053 | | 2.1722 | 7.0 | 315 | 2.2680 | 43.4447 | 21.8048 | 38.4077 | 38.7384 | | 2.1993 | 8.0 | 360 | 2.2669 | 43.2372 | 21.6755 | 38.1637 | 38.5444 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.1.0 - Tokenizers 0.12.1
chrishuber/roberta-retrained-kaggledev
d739e3f0be0a5c4b44fbbbaea65853e719617945
2022-04-24T20:05:12.000Z
[ "pytorch", "roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
chrishuber
null
chrishuber/roberta-retrained-kaggledev
1
null
transformers
31,428
Entry not found
Nadhiya/distilbert-base-uncased-finetuned-squad
8a188aebc04cb8784d0be4a90a37d26d3643bc2d
2022-04-29T18:20:29.000Z
[ "pytorch", "tensorboard", "distilbert", "question-answering", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
question-answering
false
Nadhiya
null
Nadhiya/distilbert-base-uncased-finetuned-squad
1
null
transformers
31,429
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distilbert-base-uncased-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-squad This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 6.6023 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 54 | 5.8535 | | No log | 2.0 | 108 | 6.4469 | | No log | 3.0 | 162 | 6.6023 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.1.0 - Tokenizers 0.12.1
akashsingh123/wav2vec2-base-timit-demo-colab
a0cda0f22c69d80c24bc281a1a725b455ba3cac4
2022-04-24T23:12:28.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
akashsingh123
null
akashsingh123/wav2vec2-base-timit-demo-colab
1
null
transformers
31,430
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base-timit-demo-colab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-timit-demo-colab This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.10.3
lsb/wav2vec2-base-pemlsb-la2
bdb57ac054cc8d50510cd0f5682e0f7497a986cf
2022-04-26T14:56:21.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
lsb
null
lsb/wav2vec2-base-pemlsb-la2
1
null
transformers
31,431
Entry not found
aakhilv/tonystark
7e565dd02985e1eee94f4f2472e3639c566d8796
2022-04-25T01:58:00.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
aakhilv
null
aakhilv/tonystark
1
null
transformers
31,432
--- tags: - conversational --- # Tony Stark DialoGPT Model
PSW/random_sim_del_seed27
46b7ce3053b8fadcd0db5d6e9298ce384d592ddb
2022-04-25T05:27:50.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
PSW
null
PSW/random_sim_del_seed27
1
null
transformers
31,433
Entry not found
LordOfTheSheep/DialoGPT-small-AngelDust
326b07696acc89dbe80a832634ea54808174b9de
2022-04-25T07:28:30.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
LordOfTheSheep
null
LordOfTheSheep/DialoGPT-small-AngelDust
1
null
transformers
31,434
Entry not found
PSW/random_sim_ins_seed27
efacf208dc0a400ec7d74b1529ca867cd60de649
2022-04-25T08:43:26.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
PSW
null
PSW/random_sim_ins_seed27
1
null
transformers
31,435
Entry not found
maryam359/wav2vec-speech-project
74015e842877fbba6fb5a856f767b3cc20cdb57b
2022-04-25T12:31:54.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "model-index" ]
automatic-speech-recognition
false
maryam359
null
maryam359/wav2vec-speech-project
1
null
transformers
31,436
--- tags: - generated_from_trainer model-index: - name: wav2vec-speech-project results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec-speech-project This model was trained from scratch on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.01 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 800 - num_epochs: 120 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.10.3
abhiGOAT/wav2vec2-large-xls-r-300m-turkish-colab
a9f9486b4c54d534b24e957708dbc8428b2891c8
2022-04-25T12:45:08.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "dataset:common_voice", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
abhiGOAT
null
abhiGOAT/wav2vec2-large-xls-r-300m-turkish-colab
1
null
transformers
31,437
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice model-index: - name: wav2vec2-large-xls-r-300m-turkish-colab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-turkish-colab This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.10.3
kittisak612/bias-tagger
a9afe45ad938f0bbeaba8d470ea27d3987371154
2022-04-25T11:29:19.000Z
[ "pytorch", "camembert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
kittisak612
null
kittisak612/bias-tagger
1
null
transformers
31,438
Entry not found
PSW/min_sim_ins_seed1
d1374c3db7a8f0263907cfdc1985db8881703288
2022-04-25T12:50:34.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
PSW
null
PSW/min_sim_ins_seed1
1
null
transformers
31,439
Entry not found
CarlCochet/trajectory-transformer-ant-expert-v2
6f3b87538892ebf583aa92bb5607605b1257215b
2022-05-12T16:55:36.000Z
[ "pytorch", "trajectory_transformer", "feature-extraction", "transformers", "license:mit" ]
feature-extraction
false
CarlCochet
null
CarlCochet/trajectory-transformer-ant-expert-v2
1
null
transformers
31,440
--- license: mit ---
PSW/min_sim_ins_seed42
40c709d725f12eb195db90e742cb62f690cd7f21
2022-04-25T13:46:24.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
PSW
null
PSW/min_sim_ins_seed42
1
null
transformers
31,441
Entry not found
PSW/half_sim_ins_seed1
28d7d20a436ee0d3d8ddfa5c68e5ed88d228c3f9
2022-04-25T14:31:06.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
PSW
null
PSW/half_sim_ins_seed1
1
null
transformers
31,442
Entry not found
Lucifermorningstar011/autotrain-final-784824218
7fd428ee20d2c331f0c740680a1695322cc2a8fa
2022-04-25T17:44:20.000Z
[ "pytorch", "distilbert", "token-classification", "en", "dataset:Lucifermorningstar011/autotrain-data-final", "transformers", "autotrain", "co2_eq_emissions", "autotrain_compatible" ]
token-classification
false
Lucifermorningstar011
null
Lucifermorningstar011/autotrain-final-784824218
1
null
transformers
31,443
--- tags: autotrain language: en widget: - text: "I love AutoTrain ๐Ÿค—" datasets: - Lucifermorningstar011/autotrain-data-final co2_eq_emissions: 237.58504390669626 --- # Model Trained Using AutoTrain - Problem type: Entity Extraction - Model ID: 784824218 - CO2 Emissions (in grams): 237.58504390669626 ## Validation Metrics - Loss: 0.2379177361726761 - Accuracy: 0.9734973172736223 - Precision: 0.0 - Recall: 0.0 - F1: 0.0 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/Lucifermorningstar011/autotrain-final-784824218 ``` Or Python API: ``` from transformers import AutoModelForTokenClassification, AutoTokenizer model = AutoModelForTokenClassification.from_pretrained("Lucifermorningstar011/autotrain-final-784824218", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("Lucifermorningstar011/autotrain-final-784824218", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
Lucifermorningstar011/autotrain-final-784824209
5df23c332da5d7cb4584844837ebdf6895515d66
2022-04-25T17:32:25.000Z
[ "pytorch", "distilbert", "token-classification", "en", "dataset:Lucifermorningstar011/autotrain-data-final", "transformers", "autotrain", "co2_eq_emissions", "autotrain_compatible" ]
token-classification
false
Lucifermorningstar011
null
Lucifermorningstar011/autotrain-final-784824209
1
null
transformers
31,444
--- tags: autotrain language: en widget: - text: "I love AutoTrain ๐Ÿค—" datasets: - Lucifermorningstar011/autotrain-data-final co2_eq_emissions: 0.8282546197737336 --- # Model Trained Using AutoTrain - Problem type: Entity Extraction - Model ID: 784824209 - CO2 Emissions (in grams): 0.8282546197737336 ## Validation Metrics - Loss: 0.18077287077903748 - Accuracy: 0.9639925673427913 - Precision: 0.0 - Recall: 0.0 - F1: 0.0 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/Lucifermorningstar011/autotrain-final-784824209 ``` Or Python API: ``` from transformers import AutoModelForTokenClassification, AutoTokenizer model = AutoModelForTokenClassification.from_pretrained("Lucifermorningstar011/autotrain-final-784824209", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("Lucifermorningstar011/autotrain-final-784824209", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
robinhad/data2vec-large-uk
d2b2ff787a49d5a2b7ced8246dc3e7afb3e0c391
2022-04-25T17:27:44.000Z
[ "pytorch", "tensorboard", "data2vec-audio", "automatic-speech-recognition", "dataset:common_voice", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
robinhad
null
robinhad/data2vec-large-uk
1
2
transformers
31,445
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice model-index: - name: data2vec-large-uk results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # data2vec-large-uk This model is a fine-tuned version of [facebook/data2vec-audio-large-960h](https://huggingface.co/facebook/data2vec-audio-large-960h) on the common_voice dataset. It achieves the following results on the evaluation set: - eval_loss: 0.3472 - eval_wer: 0.3410 - eval_cer: 0.0832 - eval_runtime: 231.0008 - eval_samples_per_second: 25.108 - eval_steps_per_second: 3.139 - epoch: 33.06 - step: 20400 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 6 - total_train_batch_size: 48 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 100 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0 - Datasets 1.18.3 - Tokenizers 0.12.1
obokkkk/wav2vec2-base-960h-finetuned_common_voice
37ce5b3304f0936e83df522008f3a5e5a686ab1b
2022-04-27T05:15:02.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
obokkkk
null
obokkkk/wav2vec2-base-960h-finetuned_common_voice
1
null
transformers
31,446
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base-960h-finetuned_common_voice results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-960h-finetuned_common_voice This model is a fine-tuned version of [facebook/wav2vec2-base-960h](https://huggingface.co/facebook/wav2vec2-base-960h) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 64 - total_train_batch_size: 1024 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.1.0 - Tokenizers 0.12.1
cj-mills/codeparrot-small
e5476e62ce51ed78a6650c8e461a187efba8438b
2022-04-25T23:09:21.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
cj-mills
null
cj-mills/codeparrot-small
1
null
transformers
31,447
Entry not found
huggingtweets/unbridledbot
b5f5d60045048d8e0fb35c5d40b61ffe5af8507d
2022-04-25T20:48:47.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/unbridledbot
1
null
transformers
31,448
--- language: en thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1517600518167842816/OIgwXfB-_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">๐Ÿค– AI BOT ๐Ÿค–</div> <div style="text-align: center; font-size: 16px; font-weight: 800">unbridled_id_bot</div> <div style="text-align: center; font-size: 14px;">@unbridledbot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from unbridled_id_bot. | Data | unbridled_id_bot | | --- | --- | | Tweets downloaded | 62 | | Retweets | 0 | | Short tweets | 0 | | Tweets kept | 62 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1cq0nyq4/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @unbridledbot's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2bj4mq8d) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2bj4mq8d/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/unbridledbot') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
nizamudma/t5-small-finetuned-cnn-2
7477b2e67cc66ec17fed6c5c01960a04a6ee7634
2022-04-26T22:05:50.000Z
[ "pytorch", "tensorboard", "t5", "text2text-generation", "dataset:cnn_dailymail", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
text2text-generation
false
nizamudma
null
nizamudma/t5-small-finetuned-cnn-2
1
null
transformers
31,449
--- license: apache-2.0 tags: - generated_from_trainer datasets: - cnn_dailymail metrics: - rouge model-index: - name: t5-small-finetuned-cnn-2 results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: cnn_dailymail type: cnn_dailymail args: 3.0.0 metrics: - name: Rouge1 type: rouge value: 24.5085 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-cnn-2 This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the cnn_dailymail dataset. It achieves the following results on the evaluation set: - Loss: 1.6620 - Rouge1: 24.5085 - Rouge2: 11.7925 - Rougel: 20.2631 - Rougelsum: 23.1253 - Gen Len: 18.9996 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:------:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | 1.8435 | 1.0 | 35890 | 1.6753 | 24.5387 | 11.7851 | 20.2792 | 23.1595 | 18.999 | | 1.8143 | 2.0 | 71780 | 1.6660 | 24.5268 | 11.7976 | 20.2699 | 23.1384 | 18.9996 | | 1.816 | 3.0 | 107670 | 1.6620 | 24.5085 | 11.7925 | 20.2631 | 23.1253 | 18.9996 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.2+cu102 - Datasets 1.18.3 - Tokenizers 0.11.0
negfir/bert_uncased_L-10_H-768_A-12wiki103
a523be452b3c6a0dcc71b55ded3e387dbadf3e80
2022-04-25T22:06:59.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
negfir
null
negfir/bert_uncased_L-10_H-768_A-12wiki103
1
null
transformers
31,450
Entry not found
PSW/min_sim_ins_seed27
7f632205214c15fad02ae39f649f9ffe09aefc38
2022-04-26T01:37:58.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
PSW
null
PSW/min_sim_ins_seed27
1
null
transformers
31,451
Entry not found
Ghost1/distilbert-base-uncased-finetuned-imdb-accelerate
9b73a42ae5e655a212aa08bc191252220b37669d
2022-04-26T01:43:57.000Z
[ "pytorch", "distilbert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
Ghost1
null
Ghost1/distilbert-base-uncased-finetuned-imdb-accelerate
1
null
transformers
31,452
Entry not found
Jonesy/DialoGPT-small_FG
4112f80d3bc3de3c86d348911e647ddc013b94cd
2022-04-26T15:23:29.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
Jonesy
null
Jonesy/DialoGPT-small_FG
1
null
transformers
31,453
--- tags: - conversational --- # Family Guy DialoGPT Model v2
negfir/bert_uncased_L-10_H-512_A-8wiki103
639bfadcbaef1b993f899923e896fa68620a079c
2022-04-26T04:24:58.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
negfir
null
negfir/bert_uncased_L-10_H-512_A-8wiki103
1
null
transformers
31,454
Entry not found
yellowjs0304/lmv2large
fd2b875cc59352933aba966cd7c4bb720567b915
2022-04-26T05:42:50.000Z
[ "pytorch", "layoutlmv2", "en", "arxiv:2012.14740", "transformers", "license:cc-by-nc-sa-4.0" ]
null
false
yellowjs0304
null
yellowjs0304/lmv2large
1
null
transformers
31,455
--- language: en license: cc-by-nc-sa-4.0 --- # LayoutLMv2 **Multimodal (text + layout/format + image) pre-training for document AI** ## Introduction LayoutLMv2 is an improved version of LayoutLM with new pre-training tasks to model the interaction among text, layout, and image in a single multi-modal framework. It outperforms strong baselines and achieves new state-of-the-art results on a wide variety of downstream visually-rich document understanding tasks, including , including FUNSD (0.7895 โ†’ 0.8420), CORD (0.9493 โ†’ 0.9601), SROIE (0.9524 โ†’ 0.9781), Kleister-NDA (0.834 โ†’ 0.852), RVL-CDIP (0.9443 โ†’ 0.9564), and DocVQA (0.7295 โ†’ 0.8672). [LayoutLMv2: Multi-modal Pre-training for Visually-Rich Document Understanding](https://arxiv.org/abs/2012.14740) Yang Xu, Yiheng Xu, Tengchao Lv, Lei Cui, Furu Wei, Guoxin Wang, Yijuan Lu, Dinei Florencio, Cha Zhang, Wanxiang Che, Min Zhang, Lidong Zhou, [ACL 2021](#)
MSLars/t5-base-ace_en_p_pretrained
d3986c5a4c557aff23e224fca07c7c2b9725ae6f
2022-04-26T08:16:48.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
MSLars
null
MSLars/t5-base-ace_en_p_pretrained
1
null
transformers
31,456
Entry not found
DioLiu/distilroberta-base-horror_shake_head
77ad63cfefc534c4ae97e176b2321567c96ad4be
2022-04-26T08:39:43.000Z
[ "pytorch", "tensorboard", "roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
DioLiu
null
DioLiu/distilroberta-base-horror_shake_head
1
null
transformers
31,457
Entry not found
ntoldalagi/nick_asr_COMBO_v2
009b05e4e2f515819fec791665dfacee92919790
2022-05-03T11:08:04.000Z
[ "pytorch", "tensorboard", "wav2vec2", "transformers", "generated_from_trainer", "model-index" ]
null
false
ntoldalagi
null
ntoldalagi/nick_asr_COMBO_v2
1
null
transformers
31,458
--- tags: - generated_from_trainer model-index: - name: nick_asr_COMBO_v2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # nick_asr_COMBO_v2 This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.4474 - Wer: 0.6535 - Cer: 0.2486 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:| | 0.3049 | 1.0 | 687 | 1.5013 | 0.7015 | 0.2607 | | 0.2294 | 2.0 | 1374 | 1.5933 | 0.6693 | 0.2612 | | 0.261 | 3.0 | 2061 | 1.6275 | 0.6985 | 0.2687 | | 0.2658 | 4.0 | 2748 | 1.5568 | 0.6729 | 0.2581 | | 0.1704 | 5.0 | 3435 | 1.5363 | 0.6650 | 0.2529 | | 0.2537 | 6.0 | 4122 | 1.5764 | 0.6669 | 0.2542 | | 0.2333 | 7.0 | 4809 | 1.5285 | 0.6596 | 0.2519 | | 0.168 | 8.0 | 5496 | 1.4945 | 0.6571 | 0.2500 | | 0.3263 | 9.0 | 6183 | 1.4968 | 0.6547 | 0.2510 | | 0.3238 | 10.0 | 6870 | 1.4474 | 0.6535 | 0.2486 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.1.0 - Tokenizers 0.12.1
hbruce11216/distilbert-base-uncased-finetuned-imdb
9759ea94a84775f18dc890e3f3b91e9c1387b9d8
2022-04-26T13:56:22.000Z
[ "pytorch", "tensorboard", "distilbert", "fill-mask", "dataset:imdb", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
fill-mask
false
hbruce11216
null
hbruce11216/distilbert-base-uncased-finetuned-imdb
1
null
transformers
31,459
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb model-index: - name: distilbert-base-uncased-finetuned-imdb results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-imdb This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 2.4721 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.7086 | 1.0 | 157 | 2.4897 | | 2.5796 | 2.0 | 314 | 2.4230 | | 2.5269 | 3.0 | 471 | 2.4354 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.1.0 - Tokenizers 0.12.1
Isobutylcyclopentane/2022-143326-finetuned-eurosat
cb2fac01574227fd9d325921fa91b8bbe1dc69b3
2022-04-26T17:05:48.000Z
[ "pytorch", "tensorboard", "perceiver", "image-classification", "transformers" ]
image-classification
false
Isobutylcyclopentane
null
Isobutylcyclopentane/2022-143326-finetuned-eurosat
1
null
transformers
31,460
Entry not found
charityking2358/taglish-electra-20K
647abd9b95fa3bd9a86787ac3743c825d2a20496
2022-04-26T14:50:31.000Z
[ "pytorch", "transformers" ]
null
false
charityking2358
null
charityking2358/taglish-electra-20K
1
null
transformers
31,461
Entry not found
Jonesy/DialoGPT-medium_FG
c2f88464410db78cfc8af0ef4dfe650dba94c511
2022-04-26T17:38:52.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
Jonesy
null
Jonesy/DialoGPT-medium_FG
1
null
transformers
31,462
--- tags: - conversational --- # Family Guy DialoGPT Model v3 (Medium output)
charityking2358/taglish-electra-25K
7b46aba57ee009edf823e679b73526cb3279f478
2022-04-27T16:07:20.000Z
[ "pytorch", "transformers" ]
null
false
charityking2358
null
charityking2358/taglish-electra-25K
1
null
transformers
31,463
Entry not found
Amrendra/roberta-tapt-acl-arc
06cbad9d25b879672657a030b7456e6ea5dc79dc
2022-04-26T18:28:54.000Z
[ "pytorch", "roberta", "fill-mask", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
fill-mask
false
Amrendra
null
Amrendra/roberta-tapt-acl-arc
1
null
transformers
31,464
--- license: mit tags: - generated_from_trainer model-index: - name: roberta-tapt-acl-arc results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-tapt-acl-arc This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.3472 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 89 | 2.6476 | | No log | 2.0 | 178 | 2.7191 | | No log | 3.0 | 267 | 2.4195 | | No log | 4.0 | 356 | 2.4680 | | No log | 5.0 | 445 | 2.3363 | | 2.5791 | 6.0 | 534 | 2.1846 | | 2.5791 | 7.0 | 623 | 2.0593 | | 2.5791 | 8.0 | 712 | 1.9373 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.1.0 - Tokenizers 0.12.1
renjithks/expense-ner
4c3ba716c5c94eec2f0f65cd980fd73c7df0825c
2022-04-26T18:28:41.000Z
[ "pytorch", "layoutlmv2", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
renjithks
null
renjithks/expense-ner
1
null
transformers
31,465
Model for itemisation fo receipts
PSW/random_sim_ins2_seed1
c9d6576ad8a683176891f7e27a4b45f304f95c5b
2022-04-27T02:27:13.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
PSW
null
PSW/random_sim_ins2_seed1
1
null
transformers
31,466
Entry not found
PSW/random_sim_ins2_seed42
3b1b64e9f49d9b3e38909e50e0ab5e6508357827
2022-04-27T04:21:51.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
PSW
null
PSW/random_sim_ins2_seed42
1
null
transformers
31,467
Entry not found
0x12/t5small-opus_infopankki-en-zh
87eb8e3e767c13b811a555253fb11ce90a8046c3
2022-04-27T06:23:53.000Z
[ "pytorch", "tensorboard", "t5", "text2text-generation", "dataset:opus_infopankki", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
text2text-generation
false
0x12
null
0x12/t5small-opus_infopankki-en-zh
1
null
transformers
31,468
--- license: apache-2.0 tags: - generated_from_trainer datasets: - opus_infopankki model-index: - name: t5small-opus_infopankki-en-zh results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5small-opus_infopankki-en-zh This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the opus_infopankki dataset. It achieves the following results on the evaluation set: - Loss: 2.0385 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 25 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 3.0853 | 1.0 | 1496 | 2.7074 | | 2.8378 | 2.0 | 2992 | 2.5717 | | 2.7637 | 3.0 | 4488 | 2.4829 | | 2.6622 | 4.0 | 5984 | 2.4156 | | 2.5986 | 5.0 | 7480 | 2.3649 | | 2.5488 | 6.0 | 8976 | 2.3184 | | 2.486 | 7.0 | 10472 | 2.2808 | | 2.4566 | 8.0 | 11968 | 2.2485 | | 2.4413 | 9.0 | 13464 | 2.2181 | | 2.3806 | 10.0 | 14960 | 2.1939 | | 2.3741 | 11.0 | 16456 | 2.1711 | | 2.3419 | 12.0 | 17952 | 2.1511 | | 2.3197 | 13.0 | 19448 | 2.1318 | | 2.3229 | 14.0 | 20944 | 2.1170 | | 2.2885 | 15.0 | 22440 | 2.1032 | | 2.2781 | 16.0 | 23936 | 2.0908 | | 2.2447 | 17.0 | 25432 | 2.0792 | | 2.2589 | 18.0 | 26928 | 2.0695 | | 2.2274 | 19.0 | 28424 | 2.0611 | | 2.2311 | 20.0 | 29920 | 2.0538 | | 2.2263 | 21.0 | 31416 | 2.0482 | | 2.2066 | 22.0 | 32912 | 2.0443 | | 2.2042 | 23.0 | 34408 | 2.0413 | | 2.211 | 24.0 | 35904 | 2.0390 | | 2.1952 | 25.0 | 37400 | 2.0385 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.1.0 - Tokenizers 0.12.1
Wikidepia/byt5-sentfix
de5f1a880937fec1f205da48547e4ccab4ed02a3
2022-04-27T06:52:59.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
Wikidepia
null
Wikidepia/byt5-sentfix
1
null
transformers
31,469
Entry not found
dannytkn/bert-finetuned-squad
4b98a4b703c43a9884f182fd95944d5c11a971ce
2022-04-28T20:12:13.000Z
[ "pytorch", "bert", "question-answering", "dataset:squad", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
question-answering
false
dannytkn
null
dannytkn/bert-finetuned-squad
1
null
transformers
31,470
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: bert-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-squad This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.16.2 - Pytorch 1.8.2 - Datasets 1.18.3 - Tokenizers 0.10.3
nz/RITA_m
7c39abb7043f627ec84d2594099e854a323ddadb
2022-04-27T16:30:27.000Z
[ "pytorch", "codegen", "transformers" ]
null
false
nz
null
nz/RITA_m
1
null
transformers
31,471
Entry not found
nz/RITA_l
1ee6ba4e03372848d009b250574977e688641531
2022-04-27T16:30:09.000Z
[ "pytorch", "rita", "transformers" ]
null
false
nz
null
nz/RITA_l
1
null
transformers
31,472
Entry not found
PSW/random_sim_swap_seed27
8e77228b3c494b94850d692a83dda7943341a258
2022-04-27T10:46:19.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
PSW
null
PSW/random_sim_swap_seed27
1
null
transformers
31,473
Entry not found
emr-se-miniproject/roberta-base-emr
9eff0e48640010c4ad3c1df17dde3cfb6243fc31
2022-04-27T11:17:30.000Z
[ "pytorch", "roberta", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
emr-se-miniproject
null
emr-se-miniproject/roberta-base-emr
1
null
transformers
31,474
PSW/random_sim_swap_seed42
df82c19f4014a516003e87371486b7c527a52bf1
2022-04-27T11:43:01.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
PSW
null
PSW/random_sim_swap_seed42
1
null
transformers
31,475
Entry not found
ahmad573/wav2vec2-base-timit-demo-colab
69c71d3d1bdf48d5ce71b4260887c14d4113ed72
2022-04-30T15:09:32.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
ahmad573
null
ahmad573/wav2vec2-base-timit-demo-colab
1
null
transformers
31,476
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base-timit-demo-colab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-timit-demo-colab This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5827 - Wer: 0.4147 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.4314 | 7.04 | 500 | 0.5453 | 0.4922 | | 0.2357 | 14.08 | 1000 | 0.5573 | 0.4376 | | 0.1283 | 21.13 | 1500 | 0.5827 | 0.4147 | | 0.1169 | 28.17 | 2000 | 0.5827 | 0.4147 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.11.0+cu113 - Datasets 1.18.3 - Tokenizers 0.10.3
PSW/minmax_sim_swap_seed1
c16d97f1fef7a4fe42863a256bd0efbe49f31bc7
2022-04-27T12:40:25.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
PSW
null
PSW/minmax_sim_swap_seed1
1
null
transformers
31,477
Entry not found
ia/segformer-finetuned-sidewalk-10k-steps
d2c8a5a6022a425a66179f26adac38b5e238249b
2022-04-29T00:01:00.000Z
[ "pytorch", "tensorboard", "segformer", "transformers" ]
null
false
ia
null
ia/segformer-finetuned-sidewalk-10k-steps
1
null
transformers
31,478
Entry not found
PSW/minmax_sim_swap_seed27
6dc350ee4d895acfe5b4d9f62ff7530e522f00f2
2022-04-27T13:38:27.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
PSW
null
PSW/minmax_sim_swap_seed27
1
null
transformers
31,479
Entry not found
tau/False_large_pmi_para0_sent1_span2_True_multi_masks_with_types_enum_7_1024_0.3_epoch1
0f772c93fc8762c7806b96cd6a3f9981812ce15f
2022-04-27T13:40:01.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
tau
null
tau/False_large_pmi_para0_sent1_span2_True_multi_masks_with_types_enum_7_1024_0.3_epoch1
1
null
transformers
31,480
Entry not found
PSW/minmax_sim_swap_seed42
d37602e487f2261169bd67964827148cfba0d7b0
2022-04-27T14:41:41.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
PSW
null
PSW/minmax_sim_swap_seed42
1
null
transformers
31,481
Entry not found
kvnaraya/DialoGPT-small-kevin
fd3045ef247f1e9b5172335d6dae155fd791ec6b
2022-04-27T15:04:20.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
kvnaraya
null
kvnaraya/DialoGPT-small-kevin
1
null
transformers
31,482
Entry not found
Das282000Prit/bert-base-uncased-finetuned-wikitext2
adb40dc31211d1ae4dcdb601a5b10d2b62b6379a
2022-04-27T16:11:28.000Z
[ "pytorch", "tensorboard", "bert", "fill-mask", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
fill-mask
false
Das282000Prit
null
Das282000Prit/bert-base-uncased-finetuned-wikitext2
1
null
transformers
31,483
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: bert-base-uncased-finetuned-wikitext2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-finetuned-wikitext2 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.7295 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.9288 | 1.0 | 2319 | 1.7729 | | 1.8208 | 2.0 | 4638 | 1.7398 | | 1.7888 | 3.0 | 6957 | 1.7523 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.1.0 - Tokenizers 0.12.1
YASH312312/distilroberta-base-finetuned-wikitext2
7ce18d309a12cb877f5a3bdb9025213bba3ef403
2022-04-28T10:03:53.000Z
[ "pytorch", "tensorboard", "roberta", "fill-mask", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
fill-mask
false
YASH312312
null
YASH312312/distilroberta-base-finetuned-wikitext2
1
null
transformers
31,484
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distilroberta-base-finetuned-wikitext2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilroberta-base-finetuned-wikitext2 This model is a fine-tuned version of [distilroberta-base](https://huggingface.co/distilroberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.7515 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 3.1203 | 1.0 | 766 | 2.8510 | | 2.9255 | 2.0 | 1532 | 2.8106 | | 2.8669 | 3.0 | 2298 | 2.7515 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.1.0 - Tokenizers 0.12.1
alpaca/wav2vec2-large-xls-r-300m-demo-zhCN
8d9550da5de162407648ff2c928c7af01a5fe117
2022-05-05T01:22:51.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
alpaca
null
alpaca/wav2vec2-large-xls-r-300m-demo-zhCN
1
null
transformers
31,485
Entry not found
PSW/random_sim_ins3_seed42
76d52ab01bf4ceda21ad11fd1977c6ef0beca26e
2022-04-27T17:33:00.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
PSW
null
PSW/random_sim_ins3_seed42
1
null
transformers
31,486
Entry not found
lsb/wav2vec2-base-pem123-960h-la
c7f0a5e91c7a036abc968b5a4f7c937b7a4ba723
2022-05-03T22:06:04.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
lsb
null
lsb/wav2vec2-base-pem123-960h-la
1
null
transformers
31,487
Entry not found
anshr/distilgpt2_trained_policy_model_02
7febd7eea02c60d8468b2b53c1f0981f02517973
2022-04-27T18:32:33.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
anshr
null
anshr/distilgpt2_trained_policy_model_02
1
null
transformers
31,488
Entry not found
PSW/random_sim_swap2_seed27
11eb0dee2ffe7a729babe00263c88aceaecff575
2022-04-27T19:27:09.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
PSW
null
PSW/random_sim_swap2_seed27
1
null
transformers
31,489
Entry not found
iamholmes/english-phrases-bible
3c9e8d771089fbd9e07d11cd086aa6b9ce3477a2
2022-04-27T19:48:58.000Z
[ "pytorch", "distilbert", "feature-extraction", "sentence-transformers", "sentence-similarity", "transformers", "license:apache-2.0" ]
sentence-similarity
false
iamholmes
null
iamholmes/english-phrases-bible
1
null
sentence-transformers
31,490
--- pipeline_tag: sentence-similarity license: apache-2.0 tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # sentence-transformers/msmarco-distilbert-base-tas-b This is a port of the [DistilBert TAS-B Model](https://huggingface.co/sebastian-hofstaetter/distilbert-dot-tas_b-b256-msmarco) to [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and is optimized for the task of semantic search. ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer, util query = "How many people live in London?" docs = ["Around 9 Million people live in London", "London is known for its financial district"] #Load the model model = SentenceTransformer('sentence-transformers/msmarco-distilbert-base-tas-b') #Encode query and documents query_emb = model.encode(query) doc_emb = model.encode(docs) #Compute dot score between query and all document embeddings scores = util.dot_score(query_emb, doc_emb)[0].cpu().tolist() #Combine docs & scores doc_score_pairs = list(zip(docs, scores)) #Sort by decreasing score doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True) #Output passages & scores for doc, score in doc_score_pairs: print(score, doc) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #CLS Pooling - Take output from first token def cls_pooling(model_output): return model_output.last_hidden_state[:,0] #Encode text def encode(texts): # Tokenize sentences encoded_input = tokenizer(texts, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input, return_dict=True) # Perform pooling embeddings = cls_pooling(model_output) return embeddings # Sentences we want sentence embeddings for query = "How many people live in London?" docs = ["Around 9 Million people live in London", "London is known for its financial district"] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained("sentence-transformers/msmarco-distilbert-base-tas-b") model = AutoModel.from_pretrained("sentence-transformers/msmarco-distilbert-base-tas-b") #Encode query and docs query_emb = encode(query) doc_emb = encode(docs) #Compute dot score between query and all document embeddings scores = torch.mm(query_emb, doc_emb.transpose(0, 1))[0].cpu().tolist() #Combine docs & scores doc_score_pairs = list(zip(docs, scores)) #Sort by decreasing score doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True) #Output passages & scores for doc, score in doc_score_pairs: print(score, doc) ``` ## Evaluation Results For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=sentence-transformers/msmarco-distilbert-base-tas-b) ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: DistilBertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors Have a look at: [DistilBert TAS-B Model](https://huggingface.co/sebastian-hofstaetter/distilbert-dot-tas_b-b256-msmarco)
bdickson/distilbert-base-uncased-finetuned-squad
8f5332f0db8082643a2f0e5dbfd62bd184bf927e
2022-04-28T09:59:39.000Z
[ "pytorch", "tensorboard", "distilbert", "question-answering", "dataset:squad", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
question-answering
false
bdickson
null
bdickson/distilbert-base-uncased-finetuned-squad
1
null
transformers
31,491
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: distilbert-base-uncased-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-squad This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the squad dataset. It achieves the following results on the evaluation set: - Loss: 1.1617 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 1.2299 | 1.0 | 5533 | 1.1673 | | 0.9564 | 2.0 | 11066 | 1.1223 | | 0.7572 | 3.0 | 16599 | 1.1617 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.1.0 - Tokenizers 0.12.1
rdchambers/distilbert-base-uncased-finetune
3182a7cfdfe05d135603e633f5790ebe49534d11
2022-04-27T20:48:51.000Z
[ "pytorch", "distilbert", "token-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
token-classification
false
rdchambers
null
rdchambers/distilbert-base-uncased-finetune
1
null
transformers
31,492
--- license: apache-2.0 tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: distilbert-base-uncased-finetune results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetune This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0149 - Precision: 0.8458 - Recall: 0.8060 - F1: 0.8255 - Accuracy: 0.9954 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 48 | 0.0556 | 0.5372 | 0.1902 | 0.2809 | 0.9838 | | No log | 2.0 | 96 | 0.0171 | 0.8320 | 0.8023 | 0.8169 | 0.9951 | | No log | 3.0 | 144 | 0.0149 | 0.8458 | 0.8060 | 0.8255 | 0.9954 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.12.1
PSW/random_sim_swap2_seed42
02b2322005ad26e9e3e51fad276adfdcd0ff693c
2022-04-27T20:24:07.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
PSW
null
PSW/random_sim_swap2_seed42
1
null
transformers
31,493
Entry not found
chv5/t5-small-shuffled_take1
a848a1745b6e756489d28ef880a39cd523fe2fef
2022-04-28T03:36:55.000Z
[ "pytorch", "tensorboard", "t5", "text2text-generation", "dataset:xsum", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
text2text-generation
false
chv5
null
chv5/t5-small-shuffled_take1
1
null
transformers
31,494
--- license: apache-2.0 tags: - generated_from_trainer datasets: - xsum metrics: - rouge model-index: - name: t5-small-shuffled_take1 results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: xsum type: xsum args: default metrics: - name: Rouge1 type: rouge value: 11.9641 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-shuffled_take1 This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the xsum dataset. It achieves the following results on the evaluation set: - Loss: 0.1788 - Rouge1: 11.9641 - Rouge2: 10.5245 - Rougel: 11.5825 - Rougelsum: 11.842 - Gen Len: 18.9838 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 6 - eval_batch_size: 6 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | 0.2238 | 1.0 | 34008 | 0.1788 | 11.9641 | 10.5245 | 11.5825 | 11.842 | 18.9838 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.1.0 - Tokenizers 0.12.1
simonnedved/bert-seg-v1
4ecc008053956f333919aec89cd98a17ab948446
2022-04-28T00:02:35.000Z
[ "pytorch", "bert", "token-classification", "transformers", "license:apache-2.0", "autotrain_compatible" ]
token-classification
false
simonnedved
null
simonnedved/bert-seg-v1
1
null
transformers
31,495
--- license: apache-2.0 ---
ToToKr/mbart-large-cc25-finetuned-en-to-ko2
1f5e06513efdfdb86698b9be58d5d5be141c5d08
2022-04-28T07:10:07.000Z
[ "pytorch", "tensorboard", "mbart", "text2text-generation", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
text2text-generation
false
ToToKr
null
ToToKr/mbart-large-cc25-finetuned-en-to-ko2
1
null
transformers
31,496
--- tags: - generated_from_trainer model-index: - name: mbart-large-cc25-finetuned-en-to-ko2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mbart-large-cc25-finetuned-en-to-ko2 This model is a fine-tuned version of [facebook/mbart-large-cc25](https://huggingface.co/facebook/mbart-large-cc25) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 128 - total_train_batch_size: 1024 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.1.0 - Tokenizers 0.12.1
charityking2358/taglish-electra-30K
1ed4c9212dea803bf5bada4c68acdab6d34142b6
2022-04-28T04:00:56.000Z
[ "pytorch", "transformers" ]
null
false
charityking2358
null
charityking2358/taglish-electra-30K
1
null
transformers
31,497
Entry not found
obokkkk/mt5-base
92003817d907c24d5e1c7f776e46aaa58f788080
2022-04-29T02:04:16.000Z
[ "pytorch", "tensorboard", "mt5", "text2text-generation", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
text2text-generation
false
obokkkk
null
obokkkk/mt5-base
1
null
transformers
31,498
--- tags: - generated_from_trainer metrics: - bleu model-index: - name: mt5-base results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mt5-base This model was trained from scratch on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.2760 - Bleu: 8.6707 - Gen Len: 16.9319 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 256 - total_train_batch_size: 2048 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------:|:-------:| | No log | 1.0 | 183 | 1.4997 | 6.2141 | 17.0073 | | No log | 2.0 | 366 | 1.3718 | 7.4647 | 16.9205 | | 1.9408 | 3.0 | 549 | 1.3184 | 8.1938 | 16.8962 | | 1.9408 | 4.0 | 732 | 1.2857 | 8.5265 | 16.9167 | | 1.9408 | 5.0 | 915 | 1.2760 | 8.6707 | 16.9319 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.1.0 - Tokenizers 0.12.1
A2/kogpt2-taf
a4a74a7da4fe470cf25f02fa866355e8b4818cb8
2022-05-11T21:01:45.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "license:apache-2.0" ]
text-generation
false
A2
null
A2/kogpt2-taf
1
1
transformers
31,499
--- license: apache-2.0 --- Grepp KDT AI 3๊ธฐ ๊ณผ์ • ํ”„๋กœ์ ํŠธ. [SKT-AI/KoGPT2](https://github.com/SKT-AI/KoGPT2) ๋ชจ๋ธ์„ ๊ธฐ๋ฐ˜. ๋ชจ๋‘์˜ ๋ง๋ญ‰์น˜์˜ 2021 ๋‰ด์Šค ๋ง๋ญ‰์น˜๋ฅผ ์ถ”๊ฐ€๋กœ ์–ธ์–ด๋ชจ๋ธ๋ง ํ•™์Šต ํ›„, 5๋Œ€ ์ผ๊ฐ„์ง€(์กฐ์„ ์ผ๋ณด, ์ค‘์•™์ผ๋ณด, ๋™์•„์ผ๋ณด, ํ•œ๊ฒจ๋ ˆ, ๊ฒฝํ–ฅ์‹ ๋ฌธ)๋ณ„ ๊ฐ ๋งŒ์—ฌ๊ฐœ์˜ ์‚ฌ์„ค๋กœ ๋ฏธ์„ธ์กฐ์ •ํ•˜์˜€์Œ. ๋งค์ผ ๋ฐฑ์—ฌ๊ฐœ์˜ ์‚ฌ์„ค๋กœ ์ถ”๊ฐ€ ๋ฏธ์„ธ์กฐ์ •ํ•˜์—ฌ ์ตœ์‹  ์ •์น˜์  ์ด์Šˆ์— ๊ด€ํ•œ ํ…์ŠคํŠธ๋„ ์ž˜ ์ƒ์„ฑํ•จ.