modelId
stringlengths
4
112
sha
stringlengths
40
40
lastModified
stringlengths
24
24
tags
sequence
pipeline_tag
stringclasses
29 values
private
bool
1 class
author
stringlengths
2
38
config
null
id
stringlengths
4
112
downloads
float64
0
36.8M
likes
float64
0
712
library_name
stringclasses
17 values
__index_level_0__
int64
0
38.5k
readme
stringlengths
0
186k
ABBHISHEK/DialoGPT-small-harrypotter
55264c63ce90e4221506aff8f18075fa821416eb
2021-09-19T10:23:22.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
ABBHISHEK
null
ABBHISHEK/DialoGPT-small-harrypotter
1
null
transformers
27,700
--- tags: - conversational --- @Harry Potter DialoGPT model
AG/pretraining
a2457008a315d393619c17efc0cd096516404608
2022-03-06T12:27:50.000Z
[ "pytorch", "roberta", "feature-extraction", "transformers" ]
feature-extraction
false
AG
null
AG/pretraining
1
null
transformers
27,701
Pre trained on clus_ chapter only.
AIDynamics/DialoGPT-medium-MentorDealerGuy
e9b9b778eb51765576c4cc022be27bd052ff3c30
2021-11-17T22:23:49.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
AIDynamics
null
AIDynamics/DialoGPT-medium-MentorDealerGuy
1
null
transformers
27,702
--- tags: - conversational --- # tests
AKulk/wav2vec2-base-timit-epochs15
28dfe31d272d9414d6255f703b4e6d7f45c6ea74
2022-02-15T14:26:13.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
AKulk
null
AKulk/wav2vec2-base-timit-epochs15
1
null
transformers
27,703
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base-timit-epochs15 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-timit-epochs15 This model is a fine-tuned version of [AKulk/wav2vec2-base-timit-epochs10](https://huggingface.co/AKulk/wav2vec2-base-timit-epochs10) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 5 - total_train_batch_size: 80 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.10.3
AKulk/wav2vec2-base-timit-epochs5
cfb1249637b3a8d58b2ef26168635d220d58fd1a
2022-02-11T16:48:06.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
AKulk
null
AKulk/wav2vec2-base-timit-epochs5
1
null
transformers
27,704
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base-timit-epochs5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-timit-epochs5 This model is a fine-tuned version of [facebook/wav2vec2-lv-60-espeak-cv-ft](https://huggingface.co/facebook/wav2vec2-lv-60-espeak-cv-ft) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 5 - total_train_batch_size: 80 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.10.3
Aastha/wav2vec2-large-xls-r-1b-hi-v2
127bfd203619d0b22064aa35dd2180c006d7bc08
2022-02-09T23:22:37.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
Aastha
null
Aastha/wav2vec2-large-xls-r-1b-hi-v2
1
null
transformers
27,705
Entry not found
Aastha/wav2vec2-large-xls-r-1b-hindi
e351458256f10d285b89393dcf6fa2fdca1538ae
2022-02-11T20:20:37.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
Aastha
null
Aastha/wav2vec2-large-xls-r-1b-hindi
1
null
transformers
27,706
Entry not found
Aastha/wav2vec2-large-xls-r-300m-50-hi
2739d33b5a1a128050c2a85a3bf32d676940f996
2022-02-09T22:59:16.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
Aastha
null
Aastha/wav2vec2-large-xls-r-300m-50-hi
1
null
transformers
27,707
Entry not found
Aastha/wav2vec2-large-xls-r-300m-hi-v2
e1092bbdfe84b07d44d0bc14637a4b64bc961c56
2022-02-09T10:24:50.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
Aastha
null
Aastha/wav2vec2-large-xls-r-300m-hi-v2
1
null
transformers
27,708
Entry not found
Aastha/wav2vec2-large-xls-r-300m-hi
cb6253499d14516f1cd3d9257ecae27d51a7efad
2022-02-06T13:04:22.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
Aastha
null
Aastha/wav2vec2-large-xls-r-300m-hi
1
null
transformers
27,709
Entry not found
Aastha/wav2vec2-large-xlsr-53-hi
bdb6f40c0b858ff6d83bc8eb0d01f9937aa69655
2022-02-07T09:59:35.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
Aastha
null
Aastha/wav2vec2-large-xlsr-53-hi
1
null
transformers
27,710
Entry not found
AbderrahimRezki/HarryPotterBot
53718f8988201cce701c94831eb1f019fe54faac
2021-09-01T16:12:33.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
AbderrahimRezki
null
AbderrahimRezki/HarryPotterBot
1
null
transformers
27,711
Entry not found
AbhinavSaiTheGreat/DialoGPT-small-harrypotter
159497eacaa099a2be9406d68740edc3e7ee70dd
2021-08-31T05:39:57.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
AbhinavSaiTheGreat
null
AbhinavSaiTheGreat/DialoGPT-small-harrypotter
1
null
transformers
27,712
--- tags: - conversational --- #HarryPotter DialoGPT Model
AccurateIsaiah/DialoGPT-small-jefftastic
52f1de48b2d8a26aa2f78e9fd4092c66441fb2c2
2021-11-23T19:45:20.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
AccurateIsaiah
null
AccurateIsaiah/DialoGPT-small-jefftastic
1
null
transformers
27,713
--- tags: - conversational --- # jeff's 100% authorized brain scan
AccurateIsaiah/DialoGPT-small-mozark
f2276aa0c48937f9abb37d42ab5e3830a5bf1114
2021-11-22T21:24:40.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
AccurateIsaiah
null
AccurateIsaiah/DialoGPT-small-mozark
1
null
transformers
27,714
--- tags: - conversational --- # Mozark's Brain Uploaded to Hugging Face
Adil617/wav2vec2-base-timit-demo-colab
f2c00e7516d847126ff6cae27609776a28bae77a
2022-01-29T21:05:59.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
Adil617
null
Adil617/wav2vec2-base-timit-demo-colab
1
null
transformers
27,715
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base-timit-demo-colab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-timit-demo-colab This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.9314 - Wer: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:---:| | 8.686 | 0.16 | 20 | 13.6565 | 1.0 | | 8.0711 | 0.32 | 40 | 12.5379 | 1.0 | | 6.9967 | 0.48 | 60 | 9.7215 | 1.0 | | 5.2368 | 0.64 | 80 | 5.8459 | 1.0 | | 3.4499 | 0.8 | 100 | 3.3413 | 1.0 | | 3.1261 | 0.96 | 120 | 3.2858 | 1.0 | | 3.0654 | 1.12 | 140 | 3.1945 | 1.0 | | 3.0421 | 1.28 | 160 | 3.1296 | 1.0 | | 3.0035 | 1.44 | 180 | 3.1172 | 1.0 | | 3.0067 | 1.6 | 200 | 3.1217 | 1.0 | | 2.9867 | 1.76 | 220 | 3.0715 | 1.0 | | 2.9653 | 1.92 | 240 | 3.0747 | 1.0 | | 2.9629 | 2.08 | 260 | 2.9984 | 1.0 | | 2.9462 | 2.24 | 280 | 2.9991 | 1.0 | | 2.9391 | 2.4 | 300 | 3.0391 | 1.0 | | 2.934 | 2.56 | 320 | 2.9682 | 1.0 | | 2.9193 | 2.72 | 340 | 2.9701 | 1.0 | | 2.8985 | 2.88 | 360 | 2.9314 | 1.0 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.13.3 - Tokenizers 0.10.3
AdrianGzz/DialoGPT-small-harrypotter
3e2781dc40e8779c3a6ee0367de4baf038efdbdb
2021-10-11T21:52:30.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
AdrianGzz
null
AdrianGzz/DialoGPT-small-harrypotter
1
null
transformers
27,716
--- tags: - conversational --- # Harry Potter DialoGPT model
Ajaykannan6/autonlp-manthan-16122692
8c1bc189faf33ae5f75c1274611c60e178da0fe5
2021-10-08T13:52:19.000Z
[ "pytorch", "bart", "text2text-generation", "unk", "dataset:Ajaykannan6/autonlp-data-manthan", "transformers", "autonlp", "autotrain_compatible" ]
text2text-generation
false
Ajaykannan6
null
Ajaykannan6/autonlp-manthan-16122692
1
null
transformers
27,717
--- tags: autonlp language: unk widget: - text: "I love AutoNLP 🤗" datasets: - Ajaykannan6/autonlp-data-manthan --- # Model Trained Using AutoNLP - Problem type: Summarization - Model ID: 16122692 ## Validation Metrics - Loss: 1.1877621412277222 - Rouge1: 42.0713 - Rouge2: 23.3043 - RougeL: 37.3755 - RougeLsum: 37.8961 - Gen Len: 60.7117 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_HUGGINGFACE_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/Ajaykannan6/autonlp-manthan-16122692 ```
Al-Kohollik/DialoGPT-medium-chloeprice
c668193d5c90214a8a5b8df6a0b6fb94015381e9
2021-09-13T06:44:34.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
Al-Kohollik
null
Al-Kohollik/DialoGPT-medium-chloeprice
1
null
transformers
27,718
--- tags: - conversational --- # AI Chatbot model trained for Chloe Price from Life is Strange EP 1.
AlbertHSU/BertTEST
d2f33bbfb1afeb8bfe3a8af327e0129483fda679
2022-01-10T13:58:47.000Z
[ "pytorch" ]
null
false
AlbertHSU
null
AlbertHSU/BertTEST
1
1
null
27,719
Entry not found
Aleksandar/electra-srb-oscar
87ff9dd00d22c1c465d22ecb7dae766c4150a191
2021-09-22T12:19:35.000Z
[ "pytorch", "electra", "fill-mask", "transformers", "generated_from_trainer", "autotrain_compatible" ]
fill-mask
false
Aleksandar
null
Aleksandar/electra-srb-oscar
1
null
transformers
27,720
--- tags: - generated_from_trainer model_index: - name: electra-srb-oscar results: - task: name: Masked Language Modeling type: fill-mask --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # electra-srb-oscar This model is a fine-tuned version of [](https://huggingface.co/) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results ### Framework versions - Transformers 4.9.2 - Pytorch 1.9.0 - Datasets 1.11.0 - Tokenizers 0.10.1
Aleksandar1932/distilgpt2-rock
4ad093643be264cd4e98efa3be0ffd320026bb84
2022-03-18T21:22:46.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
Aleksandar1932
null
Aleksandar1932/distilgpt2-rock
1
null
transformers
27,721
Entry not found
Aleksandar1932/gpt2-country
8d3a67d18ff80d6435a2d8c23f44afe5cb053ce7
2022-03-18T23:38:09.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
Aleksandar1932
null
Aleksandar1932/gpt2-country
1
null
transformers
27,722
Entry not found
Aleksandar1932/gpt2-hip-hop
2d24bf965958dcdb2bc948c7e697de373c4a8b62
2022-03-18T23:23:04.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
Aleksandar1932
null
Aleksandar1932/gpt2-hip-hop
1
null
transformers
27,723
Entry not found
Alireza1044/dwight_bert_lm
8869ddafc6f3899e5584aee95495930a54affd01
2021-07-08T16:54:30.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
Alireza1044
null
Alireza1044/dwight_bert_lm
1
null
transformers
27,724
Entry not found
Amirosein/distilbert_v1
382004181c6c1560886773d6b87286fdbf071ed6
2021-09-13T16:37:16.000Z
[ "pytorch", "distilbert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
Amirosein
null
Amirosein/distilbert_v1
1
null
transformers
27,725
Entry not found
Andranik/TestQA2
3ba460f2c28577c35381a60a281f9a6c22c9820c
2022-02-17T16:43:26.000Z
[ "pytorch", "electra", "question-answering", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
question-answering
false
Andranik
null
Andranik/TestQA2
1
null
transformers
27,726
--- tags: - generated_from_trainer model-index: - name: electra_large_discriminator_squad2_512 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # electra_large_discriminator_squad2_512 This model is a fine-tuned version of [ahotrod/electra_large_discriminator_squad2_512](https://huggingface.co/ahotrod/electra_large_discriminator_squad2_512) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2 - Datasets 1.18.3 - Tokenizers 0.11.0
Andranik/TestQaV1
10ad36dd0a247f61e3f2ce3de340e0a7ce5115e9
2022-02-17T13:50:04.000Z
[ "pytorch", "rust", "roberta", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
Andranik
null
Andranik/TestQaV1
1
null
transformers
27,727
Entry not found
AndreLiu1225/t5-news
687ebc613881f80d2dbf047080a4629793f303c4
2021-10-26T02:49:39.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
AndreLiu1225
null
AndreLiu1225/t5-news
1
null
transformers
27,728
This is a pretrained model that was loaded from t5-base. It has been adapted and changed by changing the max_length and summary_length.
Anonymous/ReasonBERT-TAPAS
628f58a46dfa6feeacc084608e3dd3bc11b3688a
2021-05-23T02:34:38.000Z
[ "pytorch", "tapas", "feature-extraction", "transformers" ]
feature-extraction
false
Anonymous
null
Anonymous/ReasonBERT-TAPAS
1
null
transformers
27,729
Pre-trained to have better reasoning ability, try this if you are working with task like QA. For more details please see https://openreview.net/forum?id=cGB7CMFtrSx This is based on tapas-base(no_reset) model and pre-trained for table input
AnonymousSub/AR_cline
1d20e3384b8135523ca500eca7315332f0781440
2022-01-12T11:50:55.000Z
[ "pytorch", "roberta", "feature-extraction", "transformers" ]
feature-extraction
false
AnonymousSub
null
AnonymousSub/AR_cline
1
null
transformers
27,730
Entry not found
AnonymousSub/AR_consert
e561e0a3a07658d1cc4e9bf2faa0d403d2c8709b
2022-01-12T12:04:53.000Z
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
false
AnonymousSub
null
AnonymousSub/AR_consert
1
null
transformers
27,731
Entry not found
AnonymousSub/AR_declutr
b1883cec21bb64c39956b45b14ed3855333451c4
2022-01-12T12:09:19.000Z
[ "pytorch", "roberta", "feature-extraction", "transformers" ]
feature-extraction
false
AnonymousSub
null
AnonymousSub/AR_declutr
1
null
transformers
27,732
Entry not found
AnonymousSub/AR_rule_based_bert_quadruplet_epochs_1_shard_1
fa2dc9306ac53153f270a5c5d80daf6c98b2402c
2022-01-11T00:05:10.000Z
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
false
AnonymousSub
null
AnonymousSub/AR_rule_based_bert_quadruplet_epochs_1_shard_1
1
null
transformers
27,733
Entry not found
AnonymousSub/AR_rule_based_roberta_bert_quadruplet_epochs_1_shard_10
3927a27d749dcd5efcfd729af528f2da71cf5f53
2022-01-06T14:29:39.000Z
[ "pytorch", "roberta", "feature-extraction", "transformers" ]
feature-extraction
false
AnonymousSub
null
AnonymousSub/AR_rule_based_roberta_bert_quadruplet_epochs_1_shard_10
1
null
transformers
27,734
Entry not found
AnonymousSub/AR_rule_based_roberta_bert_triplet_epochs_1_shard_1
90188296c9d1f51250b09b9000a7c31865d48f53
2022-01-06T09:06:26.000Z
[ "pytorch", "roberta", "feature-extraction", "transformers" ]
feature-extraction
false
AnonymousSub
null
AnonymousSub/AR_rule_based_roberta_bert_triplet_epochs_1_shard_1
1
null
transformers
27,735
Entry not found
AnonymousSub/AR_rule_based_roberta_hier_quadruplet_epochs_1_shard_1
b328ec8902d806e0e0841df4b08efb59cf7c3fcf
2022-01-06T11:30:34.000Z
[ "pytorch", "roberta", "feature-extraction", "transformers" ]
feature-extraction
false
AnonymousSub
null
AnonymousSub/AR_rule_based_roberta_hier_quadruplet_epochs_1_shard_1
1
null
transformers
27,736
Entry not found
AnonymousSub/AR_rule_based_roberta_only_classfn_epochs_1_shard_10
2e44605ea8291b2df8e55b61b08226935a540d53
2022-01-06T21:33:16.000Z
[ "pytorch", "roberta", "feature-extraction", "transformers" ]
feature-extraction
false
AnonymousSub
null
AnonymousSub/AR_rule_based_roberta_only_classfn_epochs_1_shard_10
1
null
transformers
27,737
Entry not found
AnonymousSub/AR_rule_based_roberta_twostage_quadruplet_epochs_1_shard_1
0f50edfad6517ac5bd600ffd95fc31e6cb080dbb
2022-01-06T07:32:53.000Z
[ "pytorch", "roberta", "feature-extraction", "transformers" ]
feature-extraction
false
AnonymousSub
null
AnonymousSub/AR_rule_based_roberta_twostage_quadruplet_epochs_1_shard_1
1
null
transformers
27,738
Entry not found
AnonymousSub/AR_rule_based_roberta_twostagetriplet_epochs_1_shard_10
9f710878a3da340c138882be210889ee30bec1b8
2022-01-06T08:31:00.000Z
[ "pytorch", "roberta", "feature-extraction", "transformers" ]
feature-extraction
false
AnonymousSub
null
AnonymousSub/AR_rule_based_roberta_twostagetriplet_epochs_1_shard_10
1
null
transformers
27,739
Entry not found
AnonymousSub/AR_rule_based_roberta_twostagetriplet_hier_epochs_1_shard_1
d812b1c51540c154f12cbf07575283e35314513a
2022-01-06T21:52:13.000Z
[ "pytorch", "roberta", "feature-extraction", "transformers" ]
feature-extraction
false
AnonymousSub
null
AnonymousSub/AR_rule_based_roberta_twostagetriplet_hier_epochs_1_shard_1
1
null
transformers
27,740
Entry not found
AnonymousSub/AR_rule_based_roberta_twostagetriplet_hier_epochs_1_shard_10
6f4652189992d91a6c58676cfdb7ce835ece6a42
2022-01-06T22:10:59.000Z
[ "pytorch", "roberta", "feature-extraction", "transformers" ]
feature-extraction
false
AnonymousSub
null
AnonymousSub/AR_rule_based_roberta_twostagetriplet_hier_epochs_1_shard_10
1
null
transformers
27,741
Entry not found
AnonymousSub/AR_rule_based_twostagequadruplet_hier_epochs_1_shard_1
70ff9d4126f56f132a2e1fada4ed1ca13183bf16
2022-01-10T22:38:39.000Z
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
false
AnonymousSub
null
AnonymousSub/AR_rule_based_twostagequadruplet_hier_epochs_1_shard_1
1
null
transformers
27,742
Entry not found
AnonymousSub/AR_rule_based_twostagetriplet_epochs_1_shard_1
1aa5ff2888bee156be2490045a296fc7d54373a0
2022-01-11T00:57:57.000Z
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
false
AnonymousSub
null
AnonymousSub/AR_rule_based_twostagetriplet_epochs_1_shard_1
1
null
transformers
27,743
Entry not found
AnonymousSub/EManuals_BERT_squad2.0
ab0f71e2cf7467fbb123d28cadfdda89790112b3
2022-01-17T16:38:05.000Z
[ "pytorch", "bert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
AnonymousSub
null
AnonymousSub/EManuals_BERT_squad2.0
1
null
transformers
27,744
Entry not found
AnonymousSub/SR_SDR_HF_model_base
ee668cf39d7f2d7de0227f78b3b1f681844d9b36
2022-01-12T15:00:44.000Z
[ "pytorch", "roberta", "feature-extraction", "transformers" ]
feature-extraction
false
AnonymousSub
null
AnonymousSub/SR_SDR_HF_model_base
1
null
transformers
27,745
Entry not found
AnonymousSub/SR_consert
8acbfab79730b3a1c157f44a397c6d50f52a3b70
2022-01-12T10:50:12.000Z
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
false
AnonymousSub
null
AnonymousSub/SR_consert
1
null
transformers
27,746
Entry not found
AnonymousSub/SR_declutr
26ae0332551cc682a426f4a824efe6eefcde4851
2022-01-12T10:53:08.000Z
[ "pytorch", "roberta", "feature-extraction", "transformers" ]
feature-extraction
false
AnonymousSub
null
AnonymousSub/SR_declutr
1
null
transformers
27,747
Entry not found
AnonymousSub/SR_rule_based_roberta_hier_quadruplet_epochs_1_shard_10
cdbd45e8cdc9456c8f94d79b6f3a1aa84fc1e621
2022-01-06T02:10:33.000Z
[ "pytorch", "roberta", "feature-extraction", "transformers" ]
feature-extraction
false
AnonymousSub
null
AnonymousSub/SR_rule_based_roberta_hier_quadruplet_epochs_1_shard_10
1
null
transformers
27,748
Entry not found
AnonymousSub/SR_rule_based_roberta_only_classfn_epochs_1_shard_1
fe7f25c8cf57cbe6d3debb53930e43d4f19f5bb9
2022-01-06T09:57:07.000Z
[ "pytorch", "roberta", "feature-extraction", "transformers" ]
feature-extraction
false
AnonymousSub
null
AnonymousSub/SR_rule_based_roberta_only_classfn_epochs_1_shard_1
1
null
transformers
27,749
Entry not found
AnonymousSub/SR_rule_based_roberta_twostage_quadruplet_epochs_1_shard_1
d7260925c1f50cf0a8c4e45439590dc37649da96
2022-01-06T07:26:49.000Z
[ "pytorch", "roberta", "feature-extraction", "transformers" ]
feature-extraction
false
AnonymousSub
null
AnonymousSub/SR_rule_based_roberta_twostage_quadruplet_epochs_1_shard_1
1
null
transformers
27,750
Entry not found
AnonymousSub/SR_rule_based_roberta_twostagequadruplet_hier_epochs_1_shard_1
c2f16a8f83ed73b98e56abd810430e62b37f6bab
2022-01-06T10:54:28.000Z
[ "pytorch", "roberta", "feature-extraction", "transformers" ]
feature-extraction
false
AnonymousSub
null
AnonymousSub/SR_rule_based_roberta_twostagequadruplet_hier_epochs_1_shard_1
1
null
transformers
27,751
Entry not found
AnonymousSub/SR_rule_based_roberta_twostagequadruplet_hier_epochs_1_shard_10
7a0221de8daf3709a9c25ad586608c93c868bf05
2022-01-06T03:05:03.000Z
[ "pytorch", "roberta", "feature-extraction", "transformers" ]
feature-extraction
false
AnonymousSub
null
AnonymousSub/SR_rule_based_roberta_twostagequadruplet_hier_epochs_1_shard_10
1
null
transformers
27,752
Entry not found
AnonymousSub/SR_rule_based_roberta_twostagetriplet_hier_epochs_1_shard_1
b2a88d6f15591f74ecd896a7592e50abf212582d
2022-01-06T09:20:04.000Z
[ "pytorch", "roberta", "feature-extraction", "transformers" ]
feature-extraction
false
AnonymousSub
null
AnonymousSub/SR_rule_based_roberta_twostagetriplet_hier_epochs_1_shard_1
1
null
transformers
27,753
Entry not found
AnonymousSub/SR_rule_based_roberta_twostagetriplet_hier_epochs_1_shard_10
c34e3db9b07f1f6616546beae39aee7edab493fc
2022-01-06T01:34:33.000Z
[ "pytorch", "roberta", "feature-extraction", "transformers" ]
feature-extraction
false
AnonymousSub
null
AnonymousSub/SR_rule_based_roberta_twostagetriplet_hier_epochs_1_shard_10
1
null
transformers
27,754
Entry not found
AnonymousSub/SR_rule_based_twostagetriplet_hier_epochs_1_shard_1
f8d3c97bc4d36642648303e06ff9b2e88ff3a0af
2022-01-10T23:44:32.000Z
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
false
AnonymousSub
null
AnonymousSub/SR_rule_based_twostagetriplet_hier_epochs_1_shard_1
1
null
transformers
27,755
Entry not found
AnonymousSub/SR_specter
a119e780c0009e2e41ddcaf014c7411d5ce1515a
2022-01-12T11:04:57.000Z
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
false
AnonymousSub
null
AnonymousSub/SR_specter
1
null
transformers
27,756
Entry not found
AnonymousSub/SciFive_pubmedqa_question_generation
25c3bcb03664af0deebc264ebc1b6dce4d6ccc81
2022-01-06T12:17:14.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
AnonymousSub
null
AnonymousSub/SciFive_pubmedqa_question_generation
1
null
transformers
27,757
Entry not found
AnonymousSub/bert_hier_diff_equal_wts_epochs_1_shard_1
54a462feffdd1e42c3b6f300a819ae7ff68e34d4
2021-12-22T16:55:55.000Z
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
false
AnonymousSub
null
AnonymousSub/bert_hier_diff_equal_wts_epochs_1_shard_1
1
null
transformers
27,758
Entry not found
AnonymousSub/bert_mean_diff_epochs_1_shard_1
b7a4144c64b565b3ff7441c4bfc748f5cf5a03f9
2021-12-22T16:54:18.000Z
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
false
AnonymousSub
null
AnonymousSub/bert_mean_diff_epochs_1_shard_1
1
null
transformers
27,759
Entry not found
AnonymousSub/bert_mean_diff_epochs_1_shard_10
b5bef73e4015b0efb6ebd58176cbeb431e7829ae
2022-01-04T08:11:51.000Z
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
false
AnonymousSub
null
AnonymousSub/bert_mean_diff_epochs_1_shard_10
1
null
transformers
27,760
Entry not found
AnonymousSub/bert_snips
22c3f2dd98dbb8672a8d9a9b07114e6a98a4ab0e
2022-01-01T07:15:23.000Z
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
false
AnonymousSub
null
AnonymousSub/bert_snips
1
null
transformers
27,761
Entry not found
AnonymousSub/cline-papers-biomed-0.618
e72631e96b236f80eaf1e066ce2d3803b76d3496
2021-10-26T03:45:42.000Z
[ "pytorch", "roberta", "transformers" ]
null
false
AnonymousSub
null
AnonymousSub/cline-papers-biomed-0.618
1
null
transformers
27,762
Entry not found
AnonymousSub/cline-papers-roberta-0.585
16a3ef9482295777b28c4882a6be201f63dbb50e
2021-10-26T03:48:30.000Z
[ "pytorch", "roberta", "transformers" ]
null
false
AnonymousSub
null
AnonymousSub/cline-papers-roberta-0.585
1
null
transformers
27,763
Entry not found
AnonymousSub/cline_emanuals
d732f01390cb48af1a2d4d54feabfe50bb7378ef
2021-09-28T21:11:52.000Z
[ "pytorch", "roberta", "transformers" ]
null
false
AnonymousSub
null
AnonymousSub/cline_emanuals
1
null
transformers
27,764
Entry not found
AnonymousSub/declutr-emanuals-techqa
16e610c48074e5f06b4d378680e812d9e3245e3b
2021-09-30T19:15:25.000Z
[ "pytorch", "roberta", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
AnonymousSub
null
AnonymousSub/declutr-emanuals-techqa
1
null
transformers
27,765
Entry not found
AnonymousSub/declutr-model
1a49723e09e85472d08304aeade175438c44b9bd
2021-09-04T17:52:50.000Z
[ "pytorch", "roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
AnonymousSub
null
AnonymousSub/declutr-model
1
null
transformers
27,766
Entry not found
AnonymousSub/dummy_2_parent
78508eaa4b0df1228f7aebf58f51399201343234
2021-11-03T05:47:57.000Z
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
false
AnonymousSub
null
AnonymousSub/dummy_2_parent
1
null
transformers
27,767
Entry not found
AnonymousSub/rule_based_bert_hier_diff_equal_wts_epochs_1_shard_10
d25af6591d3f05f39fdd7298efd0df7075303b24
2022-01-04T08:17:58.000Z
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
false
AnonymousSub
null
AnonymousSub/rule_based_bert_hier_diff_equal_wts_epochs_1_shard_10
1
null
transformers
27,768
Entry not found
AnonymousSub/rule_based_bert_quadruplet_epochs_1_shard_1
2211e91adae3e8a13fc4848c31df1e74f02ae10f
2022-01-20T18:24:10.000Z
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
false
AnonymousSub
null
AnonymousSub/rule_based_bert_quadruplet_epochs_1_shard_1
1
null
transformers
27,769
Entry not found
AnonymousSub/rule_based_bert_quadruplet_epochs_1_shard_1_squad2.0
b22f6db2268a638e0d4d797d140b006fb36c1686
2022-01-20T19:48:03.000Z
[ "pytorch", "bert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
AnonymousSub
null
AnonymousSub/rule_based_bert_quadruplet_epochs_1_shard_1_squad2.0
1
null
transformers
27,770
Entry not found
AnonymousSub/rule_based_hier_quadruplet_0.1_epochs_1_shard_1
c210ba8ed2db6d49c0492064a6ff02e59b3d259a
2022-01-18T22:38:37.000Z
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
false
AnonymousSub
null
AnonymousSub/rule_based_hier_quadruplet_0.1_epochs_1_shard_1
1
null
transformers
27,771
Entry not found
AnonymousSub/rule_based_hier_quadruplet_epochs_1_shard_1
dbacd8b3c444f7b40e3f4c907a103551e21ad9d5
2022-01-20T18:23:25.000Z
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
false
AnonymousSub
null
AnonymousSub/rule_based_hier_quadruplet_epochs_1_shard_1
1
null
transformers
27,772
Entry not found
AnonymousSub/rule_based_hier_quadruplet_epochs_1_shard_1_squad2.0
f9fdfa990e517a37af48fb1f4996e2fd2f9a9c9c
2022-01-20T20:43:23.000Z
[ "pytorch", "bert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
AnonymousSub
null
AnonymousSub/rule_based_hier_quadruplet_epochs_1_shard_1_squad2.0
1
null
transformers
27,773
Entry not found
AnonymousSub/rule_based_hier_triplet_0.1_epochs_1_shard_1
bf25b81d4cd7c086818c854a6777a87af550e47a
2022-01-18T22:39:23.000Z
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
false
AnonymousSub
null
AnonymousSub/rule_based_hier_triplet_0.1_epochs_1_shard_1
1
null
transformers
27,774
Entry not found
AnonymousSub/rule_based_hier_triplet_epochs_1_shard_1_wikiqa_copy
c16655efd908ec28139a8169cf3268b72f1862f8
2022-01-23T17:59:31.000Z
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
false
AnonymousSub
null
AnonymousSub/rule_based_hier_triplet_epochs_1_shard_1_wikiqa_copy
1
null
transformers
27,775
Entry not found
AnonymousSub/rule_based_only_classfn_epochs_1_shard_1_squad2.0
f41e7e6afca97e4c073aab31d8f5735bbc05eeca
2022-01-17T19:32:12.000Z
[ "pytorch", "bert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
AnonymousSub
null
AnonymousSub/rule_based_only_classfn_epochs_1_shard_1_squad2.0
1
null
transformers
27,776
Entry not found
AnonymousSub/rule_based_roberta_bert_quadruplet_epochs_1_shard_1_squad2.0
582a9f0ca9a19fcd5ed7d1a47a920243df0dc1aa
2022-01-20T19:51:12.000Z
[ "pytorch", "roberta", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
AnonymousSub
null
AnonymousSub/rule_based_roberta_bert_quadruplet_epochs_1_shard_1_squad2.0
1
null
transformers
27,777
Entry not found
AnonymousSub/rule_based_roberta_bert_triplet_epochs_1_shard_1_wikiqa_copy
5cf1541d638a988dfc6e2b39ad649db3665577b3
2022-01-23T17:33:16.000Z
[ "pytorch", "roberta", "feature-extraction", "transformers" ]
feature-extraction
false
AnonymousSub
null
AnonymousSub/rule_based_roberta_bert_triplet_epochs_1_shard_1_wikiqa_copy
1
null
transformers
27,778
Entry not found
AnonymousSub/rule_based_roberta_hier_quadruplet_0.1_epochs_1_shard_1
f53db9f1e36ab20e2c4a44ad7a14d240f3b4987a
2022-01-18T22:33:35.000Z
[ "pytorch", "roberta", "feature-extraction", "transformers" ]
feature-extraction
false
AnonymousSub
null
AnonymousSub/rule_based_roberta_hier_quadruplet_0.1_epochs_1_shard_1
1
null
transformers
27,779
Entry not found
AnonymousSub/rule_based_roberta_hier_quadruplet_0.1_epochs_1_shard_1_squad2.0
99508dc8baa15545cafa89e0d50ef7d1f37167b7
2022-01-19T02:14:58.000Z
[ "pytorch", "roberta", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
AnonymousSub
null
AnonymousSub/rule_based_roberta_hier_quadruplet_0.1_epochs_1_shard_1_squad2.0
1
null
transformers
27,780
Entry not found
AnonymousSub/rule_based_roberta_hier_quadruplet_epochs_1_shard_1
1db868a4b7c8df5246911cf67f7833646ce3e148
2022-01-20T18:25:56.000Z
[ "pytorch", "roberta", "feature-extraction", "transformers" ]
feature-extraction
false
AnonymousSub
null
AnonymousSub/rule_based_roberta_hier_quadruplet_epochs_1_shard_1
1
null
transformers
27,781
Entry not found
AnonymousSub/rule_based_roberta_hier_triplet_0.1_epochs_1_shard_1
70a7f8a340d181870f882c8213f15296da72446a
2022-01-18T22:36:19.000Z
[ "pytorch", "roberta", "feature-extraction", "transformers" ]
feature-extraction
false
AnonymousSub
null
AnonymousSub/rule_based_roberta_hier_triplet_0.1_epochs_1_shard_1
1
null
transformers
27,782
Entry not found
AnonymousSub/rule_based_roberta_hier_triplet_epochs_1_shard_1_wikiqa_copy
6424c8ded0a1568b5ec2c985a3fe50a22fe3e561
2022-01-23T16:34:51.000Z
[ "pytorch", "roberta", "feature-extraction", "transformers" ]
feature-extraction
false
AnonymousSub
null
AnonymousSub/rule_based_roberta_hier_triplet_epochs_1_shard_1_wikiqa_copy
1
null
transformers
27,783
Entry not found
AnonymousSub/rule_based_roberta_only_classfn_epochs_1_shard_1
56263e305c4b03222b5a3daf016aa5aa257c2376
2022-01-04T22:03:17.000Z
[ "pytorch", "roberta", "feature-extraction", "transformers" ]
feature-extraction
false
AnonymousSub
null
AnonymousSub/rule_based_roberta_only_classfn_epochs_1_shard_1
1
null
transformers
27,784
Entry not found
AnonymousSub/rule_based_roberta_only_classfn_epochs_1_shard_1_squad2.0
ab623607b3e02ba479b04e23638cc53801af9559
2022-01-17T21:32:09.000Z
[ "pytorch", "roberta", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
AnonymousSub
null
AnonymousSub/rule_based_roberta_only_classfn_epochs_1_shard_1_squad2.0
1
null
transformers
27,785
Entry not found
AnonymousSub/rule_based_roberta_twostage_quadruplet_epochs_1_shard_1
242d9382811378ada6304ed4bf965c3db61d385a
2022-01-05T10:17:20.000Z
[ "pytorch", "roberta", "feature-extraction", "transformers" ]
feature-extraction
false
AnonymousSub
null
AnonymousSub/rule_based_roberta_twostage_quadruplet_epochs_1_shard_1
1
null
transformers
27,786
Entry not found
AnonymousSub/rule_based_roberta_twostagetriplet_hier_epochs_1_shard_1_squad2.0
1db81207357bdf1f4cbdc2528e984527b50ece0b
2022-01-18T04:52:51.000Z
[ "pytorch", "roberta", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
AnonymousSub
null
AnonymousSub/rule_based_roberta_twostagetriplet_hier_epochs_1_shard_1_squad2.0
1
null
transformers
27,787
Entry not found
AnonymousSub/rule_based_twostagetriplet_epochs_1_shard_1
253f461fcbd74d4bccec0261c5b75f330b64af27
2022-01-10T21:10:20.000Z
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
false
AnonymousSub
null
AnonymousSub/rule_based_twostagetriplet_epochs_1_shard_1
1
null
transformers
27,788
Entry not found
AnonymousSub/specter-bert-model_copy
5d336bdc5d4d43e5ef5ffcac57fb3a42a7012929
2022-01-23T04:51:38.000Z
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
false
AnonymousSub
null
AnonymousSub/specter-bert-model_copy
1
null
transformers
27,789
Entry not found
AnonymousSub/specter-bert-model_squad2.0
c02c2e304a4899073c1a72449c9dae5cabb6865b
2022-01-17T18:33:40.000Z
[ "pytorch", "bert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
AnonymousSub
null
AnonymousSub/specter-bert-model_squad2.0
1
null
transformers
27,790
Entry not found
ArBert/albert-base-v2-finetuned-ner-agglo-twitter
08569e2b95bf40fe5d8a2168200d3ce9791e32ce
2022-02-12T09:09:50.000Z
[ "pytorch", "tensorboard", "albert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
ArBert
null
ArBert/albert-base-v2-finetuned-ner-agglo-twitter
1
null
transformers
27,791
Entry not found
ArBert/albert-base-v2-finetuned-ner-agglo
7f33618a9d6f97f37047f5e9d044cbf233b67bf4
2022-02-12T11:30:15.000Z
[ "pytorch", "tensorboard", "albert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
ArBert
null
ArBert/albert-base-v2-finetuned-ner-agglo
1
null
transformers
27,792
Entry not found
ArBert/albert-base-v2-finetuned-ner-gmm
f875b11e09bb9a5c554894aab0fbc1e3d58a5254
2022-02-12T11:51:06.000Z
[ "pytorch", "tensorboard", "albert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
ArBert
null
ArBert/albert-base-v2-finetuned-ner-gmm
1
null
transformers
27,793
Entry not found
ArBert/albert-base-v2-finetuned-ner-kmeans-twitter
7e27c8753a6d84f13a35a29c46130ab4cc129535
2022-02-12T08:00:32.000Z
[ "pytorch", "tensorboard", "albert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
ArBert
null
ArBert/albert-base-v2-finetuned-ner-kmeans-twitter
1
null
transformers
27,794
Entry not found
ArBert/albert-base-v2-finetuned-ner-kmeans
86ad1237753c4ed85307f7a278e83f4b0851ff40
2022-02-12T11:10:41.000Z
[ "pytorch", "tensorboard", "albert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
ArBert
null
ArBert/albert-base-v2-finetuned-ner-kmeans
1
null
transformers
27,795
Entry not found
ArBert/roberta-base-finetuned-ner-agglo-twitter
01a94157ee8409aa660d44dc216181a161725fe2
2022-02-12T11:40:08.000Z
[ "pytorch", "tensorboard", "roberta", "token-classification", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
token-classification
false
ArBert
null
ArBert/roberta-base-finetuned-ner-agglo-twitter
1
null
transformers
27,796
--- license: mit tags: - generated_from_trainer metrics: - precision - recall - f1 model-index: - name: roberta-base-finetuned-ner-agglo-twitter results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-finetuned-ner-agglo-twitter This model is a fine-tuned version of [ArBert/roberta-base-finetuned-ner](https://huggingface.co/ArBert/roberta-base-finetuned-ner) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6645 - Precision: 0.6885 - Recall: 0.7665 - F1: 0.7254 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:| | No log | 1.0 | 245 | 0.2820 | 0.6027 | 0.7543 | 0.6700 | | No log | 2.0 | 490 | 0.2744 | 0.6308 | 0.7864 | 0.7000 | | 0.2301 | 3.0 | 735 | 0.2788 | 0.6433 | 0.7637 | 0.6984 | | 0.2301 | 4.0 | 980 | 0.3255 | 0.6834 | 0.7221 | 0.7022 | | 0.1153 | 5.0 | 1225 | 0.3453 | 0.6686 | 0.7439 | 0.7043 | | 0.1153 | 6.0 | 1470 | 0.3988 | 0.6797 | 0.7420 | 0.7094 | | 0.0617 | 7.0 | 1715 | 0.4711 | 0.6702 | 0.7259 | 0.6969 | | 0.0617 | 8.0 | 1960 | 0.4904 | 0.6904 | 0.7505 | 0.7192 | | 0.0328 | 9.0 | 2205 | 0.5088 | 0.6591 | 0.7713 | 0.7108 | | 0.0328 | 10.0 | 2450 | 0.5709 | 0.6468 | 0.7788 | 0.7067 | | 0.019 | 11.0 | 2695 | 0.5570 | 0.6642 | 0.7533 | 0.7059 | | 0.019 | 12.0 | 2940 | 0.5574 | 0.6899 | 0.7656 | 0.7258 | | 0.0131 | 13.0 | 3185 | 0.5858 | 0.6952 | 0.7609 | 0.7265 | | 0.0131 | 14.0 | 3430 | 0.6239 | 0.6556 | 0.7826 | 0.7135 | | 0.0074 | 15.0 | 3675 | 0.5931 | 0.6825 | 0.7599 | 0.7191 | | 0.0074 | 16.0 | 3920 | 0.6364 | 0.6785 | 0.7580 | 0.7161 | | 0.005 | 17.0 | 4165 | 0.6437 | 0.6855 | 0.7580 | 0.7199 | | 0.005 | 18.0 | 4410 | 0.6610 | 0.6779 | 0.7599 | 0.7166 | | 0.0029 | 19.0 | 4655 | 0.6625 | 0.6853 | 0.7656 | 0.7232 | | 0.0029 | 20.0 | 4900 | 0.6645 | 0.6885 | 0.7665 | 0.7254 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
ArJakusz/DialoGPT-small-stark
e152eedfa6a9d60deb89219bc2eb8b22bce5dc07
2021-11-16T02:52:15.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
ArJakusz
null
ArJakusz/DialoGPT-small-stark
1
null
transformers
27,797
--- tags: - conversational --- # Stark DialoGPT Model
Aran/DialoGPT-small-harrypotter
32392e47f1eba53e2fa7eaa644e3d91e7b883481
2021-11-21T15:02:02.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
Aran
null
Aran/DialoGPT-small-harrypotter
1
null
transformers
27,798
--- tags: - conversational --- # Harry Potter DialoGPT Model
Arnold/wav2vec2-large-xlsr-hausa2-demo-colab
3ca4066f24fcbd7c359bfb9027c83126f7878ab2
2022-02-14T23:42:35.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "dataset:common_voice", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
Arnold
null
Arnold/wav2vec2-large-xlsr-hausa2-demo-colab
1
null
transformers
27,799
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice model-index: - name: wav2vec2-large-xlsr-hausa2-demo-colab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xlsr-hausa2-demo-colab This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.2993 - Wer: 0.4826 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 9.6e-05 - train_batch_size: 12 - eval_batch_size: 8 - seed: 13 - gradient_accumulation_steps: 3 - total_train_batch_size: 36 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 400 - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 6.1549 | 12.5 | 400 | 2.7289 | 1.0 | | 2.0566 | 25.0 | 800 | 0.4582 | 0.6768 | | 0.4423 | 37.5 | 1200 | 0.3037 | 0.5138 | | 0.2991 | 50.0 | 1600 | 0.2993 | 0.4826 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0