modelId
stringlengths
4
112
sha
stringlengths
40
40
lastModified
stringlengths
24
24
tags
sequence
pipeline_tag
stringclasses
29 values
private
bool
1 class
author
stringlengths
2
38
config
null
id
stringlengths
4
112
downloads
float64
0
36.8M
likes
float64
0
712
library_name
stringclasses
17 values
__index_level_0__
int64
0
38.5k
readme
stringlengths
0
186k
Declan/CNN_model_v2
d5a8174e55e7fde3f240b77439c02543622bdc89
2021-12-15T11:22:14.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
Declan
null
Declan/CNN_model_v2
1
null
transformers
27,900
Entry not found
Declan/CNN_model_v6
a427f7e856952168b81c43bf181e273db0ab97aa
2021-12-19T11:06:00.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
Declan
null
Declan/CNN_model_v6
1
null
transformers
27,901
Entry not found
Declan/ChicagoTribune_model_v2
c32e7515831b0eeccb4d36113682253442f503d6
2021-12-12T06:24:18.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
Declan
null
Declan/ChicagoTribune_model_v2
1
null
transformers
27,902
Entry not found
Declan/ChicagoTribune_model_v4
92dad9eae4d8be3e2bd3446d95ccbf02d3b88894
2021-12-15T09:02:19.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
Declan
null
Declan/ChicagoTribune_model_v4
1
null
transformers
27,903
Entry not found
Declan/ChicagoTribune_model_v6
5ffeeeacfcf6312fc01f251f654b03b045c0aa41
2021-12-15T10:23:48.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
Declan
null
Declan/ChicagoTribune_model_v6
1
null
transformers
27,904
Entry not found
Declan/FoxNews_model_v5
b5ce9836103ba797733e45257c1aec3426dc308f
2021-12-15T15:59:05.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
Declan
null
Declan/FoxNews_model_v5
1
null
transformers
27,905
Entry not found
Declan/HuffPost_model_v4
df5b93956f7acceebc5ed68adf2830343c164a56
2021-12-15T18:04:12.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
Declan
null
Declan/HuffPost_model_v4
1
null
transformers
27,906
Entry not found
Declan/NPR_model_v4
8c7832568b01d14d775f61488808513814e38323
2021-12-16T02:25:21.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
Declan
null
Declan/NPR_model_v4
1
null
transformers
27,907
Entry not found
Declan/NPR_model_v6
3deb0aa7cc5d3a77c8156cb3d0573038be3aac32
2021-12-19T13:58:50.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
Declan
null
Declan/NPR_model_v6
1
null
transformers
27,908
Entry not found
Declan/NewYorkTimes_model_v6
99997910d35b4fb66b84d11210e22aa03ebb29be
2021-12-19T14:56:06.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
Declan
null
Declan/NewYorkTimes_model_v6
1
null
transformers
27,909
Entry not found
Declan/Reuters_model_v3
7c6b304da9cb376c6edb2a22b6bf807936c85aab
2021-12-16T10:45:52.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
Declan
null
Declan/Reuters_model_v3
1
null
transformers
27,910
Entry not found
Declan/Reuters_model_v4
18701293bceb0fd657739329c6884ea5605c7898
2021-12-16T18:21:25.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
Declan
null
Declan/Reuters_model_v4
1
null
transformers
27,911
Entry not found
Declan/Reuters_model_v6
7e624b0a217cf606043e1e812fff07613937674a
2021-12-19T17:02:16.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
Declan
null
Declan/Reuters_model_v6
1
null
transformers
27,912
Entry not found
Declan/WallStreetJournal_model_v4
a17111519600169856c2885d570713fc169ea9ed
2021-12-18T01:06:27.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
Declan
null
Declan/WallStreetJournal_model_v4
1
null
transformers
27,913
Entry not found
Denny29/DialoGPT-medium-asunayuuki
8796e80932953e58dce830f4d764954cf04edf9f
2021-09-23T09:34:32.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
Denny29
null
Denny29/DialoGPT-medium-asunayuuki
1
null
transformers
27,914
--- tags: - conversational --- # Asuna Yuuki DialoGPT Model
DeskDown/MarianMixFT_en-fil
00578087e074776a0c3f59ad3ccb6df5a90423c7
2022-01-14T21:38:12.000Z
[ "pytorch", "marian", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
DeskDown
null
DeskDown/MarianMixFT_en-fil
1
null
transformers
27,915
Entry not found
DeskDown/MarianMixFT_en-id
6ebc0bfd1152413b615d93b419ab84ddaf53e260
2022-01-14T22:28:11.000Z
[ "pytorch", "marian", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
DeskDown
null
DeskDown/MarianMixFT_en-id
1
null
transformers
27,916
Entry not found
DeskDown/MarianMixFT_en-my
d3f4dff02d7c993e4004b2c192958858a2e8f229
2022-01-14T21:02:20.000Z
[ "pytorch", "marian", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
DeskDown
null
DeskDown/MarianMixFT_en-my
1
null
transformers
27,917
Entry not found
DeskDown/MarianMix_en-ja-10
e566fecb1bb3629347abc830e3f40e0957fcab10
2022-02-09T00:27:05.000Z
[ "pytorch", "tensorboard", "marian", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
DeskDown
null
DeskDown/MarianMix_en-ja-10
1
null
transformers
27,918
Entry not found
DeskDown/MarianMix_en-zh-10
bd264264c3458c09a716c848cb767fdd3160ffa6
2022-01-13T23:56:21.000Z
[ "pytorch", "tensorboard", "marian", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
DeskDown
null
DeskDown/MarianMix_en-zh-10
1
null
transformers
27,919
Entry not found
DicoTiar/wisdomfiy
59491038e914d02d8e887829904dadaa2636e228
2021-09-22T07:07:53.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
DicoTiar
null
DicoTiar/wisdomfiy
1
null
transformers
27,920
Entry not found
Dimedrolza/DialoGPT-small-cyberpunk
924411b46fe0ddbdc1f94d902607e1961af07311
2021-08-29T05:07:53.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
Dimedrolza
null
Dimedrolza/DialoGPT-small-cyberpunk
1
null
transformers
27,921
--- tags: - conversational --- # V DialoGPT Model
Doiman/DialoGPT-medium-harrypotter
f20ada5e54683fa510125c35b17004e590673287
2021-09-03T09:40:14.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
Doiman
null
Doiman/DialoGPT-medium-harrypotter
1
null
transformers
27,922
--- tags: - conversational --- # Harry Potter DialoGPT Medium Model
Doogie/Wayne_summary_ENG
8fe9fe95161540f70c14f6a64fa92923e6b61752
2022-01-18T05:12:00.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
Doogie
null
Doogie/Wayne_summary_ENG
1
null
transformers
27,923
Entry not found
Doohae/p_encoder
d2a2d81ea1a9330ef57afb30aaa6617ce3b13cef
2022-02-09T17:24:29.000Z
[ "pytorch" ]
null
false
Doohae
null
Doohae/p_encoder
1
null
null
27,924
Entry not found
Doohae/q_encoder
f076ce024f921295b48d7822291aed7f3f33d825
2022-02-09T17:30:34.000Z
[ "pytorch" ]
null
false
Doohae
null
Doohae/q_encoder
1
null
null
27,925
Entry not found
Dreyzin/DialoGPT-medium-avatar
17e49735c4f28d09b15e19b9512d850c08d705e5
2022-01-19T04:49:52.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
Dreyzin
null
Dreyzin/DialoGPT-medium-avatar
1
null
transformers
27,926
--- tags: - conversational --- #Uncle Iroh DialoGPT Model
DrishtiSharma/wav2vec2-large-xls-r-300m-ab-CV7
24823294659ff2641ef85521d5485079a1949e23
2022-03-24T11:54:32.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "ab", "dataset:mozilla-foundation/common_voice_7_0", "transformers", "mozilla-foundation/common_voice_7_0", "generated_from_trainer", "robust-speech-event", "model_for_talk", "hf-asr-leaderboard", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
DrishtiSharma
null
DrishtiSharma/wav2vec2-large-xls-r-300m-ab-CV7
1
null
transformers
27,927
--- language: - ab license: apache-2.0 tags: - automatic-speech-recognition - mozilla-foundation/common_voice_7_0 - generated_from_trainer - ab - robust-speech-event - model_for_talk - hf-asr-leaderboard datasets: - mozilla-foundation/common_voice_7_0 model-index: - name: wav2vec2-large-xls-r-300m-ab-CV7 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 7 type: mozilla-foundation/common_voice_7_0 args: ab metrics: - name: Test WER type: wer value: 0.5291160452450775 - name: Test CER type: cer value: 0.10630270750110964 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: ab metrics: - name: Test WER type: wer value: NA - name: Test CER type: cer value: NA --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - AB dataset. It achieves the following results on the evaluation set: - Loss: 0.5620 - Wer: 0.5651 ### Evaluation Commands 1. To evaluate on mozilla-foundation/common_voice_8_0 with test split python eval.py --model_id DrishtiSharma/wav2vec2-large-xls-r-300m-ab-CV7 --dataset mozilla-foundation/common_voice_7_0 --config ab --split test --log_outputs 2. To evaluate on speech-recognition-community-v2/dev_data NA ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7.5e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2000 - num_epochs: 100.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 9.6445 | 13.64 | 300 | 4.3963 | 1.0 | | 3.6459 | 27.27 | 600 | 3.2267 | 1.0 | | 3.0978 | 40.91 | 900 | 3.0927 | 1.0 | | 2.8357 | 54.55 | 1200 | 2.1462 | 1.0029 | | 1.2723 | 68.18 | 1500 | 0.6747 | 0.6996 | | 0.6528 | 81.82 | 1800 | 0.5928 | 0.6422 | | 0.4905 | 95.45 | 2100 | 0.5587 | 0.5681 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.17.1.dev0 - Tokenizers 0.11.0
DrishtiSharma/wav2vec2-large-xls-r-300m-ab-v4
18917b47be1338cdcba9af336df83f54ae148345
2022-01-26T01:35:38.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "ab", "dataset:common_voice", "transformers", "mozilla-foundation/common_voice_7_0", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
DrishtiSharma
null
DrishtiSharma/wav2vec2-large-xls-r-300m-ab-v4
1
null
transformers
27,928
--- language: - ab license: apache-2.0 tags: - automatic-speech-recognition - mozilla-foundation/common_voice_7_0 - generated_from_trainer datasets: - common_voice model-index: - name: '' results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - AB dataset. It achieves the following results on the evaluation set: - Loss: 0.6178 - Wer: 0.5794 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.00025 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 70.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 5.2793 | 27.27 | 300 | 3.0737 | 1.0 | | 1.5348 | 54.55 | 600 | 0.6312 | 0.6334 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.17.1.dev0 - Tokenizers 0.11.0
DrishtiSharma/wav2vec2-large-xls-r-300m-as-g1
ba766d971438f8288e726cff56d640c44d610509
2022-03-24T11:56:37.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "as", "dataset:mozilla-foundation/common_voice_8_0", "transformers", "mozilla-foundation/common_voice_8_0", "generated_from_trainer", "robust-speech-event", "model_for_talk", "hf-asr-leaderboard", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
DrishtiSharma
null
DrishtiSharma/wav2vec2-large-xls-r-300m-as-g1
1
null
transformers
27,929
--- language: - as license: apache-2.0 tags: - automatic-speech-recognition - mozilla-foundation/common_voice_8_0 - generated_from_trainer - as - robust-speech-event - model_for_talk - hf-asr-leaderboard datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: wav2vec2-large-xls-r-300m-as-g1 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: as metrics: - name: Test WER type: wer value: 0.6540934419202743 - name: Test CER type: cer value: 0.21454042646095625 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: as metrics: - name: Test WER type: wer value: NA - name: Test CER type: cer value: NA --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-as-g1 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - AS dataset. It achieves the following results on the evaluation set: - Loss: 1.3327 - Wer: 0.5744 ### Evaluation Commands 1. To evaluate on mozilla-foundation/common_voice_8_0 with test split python eval.py --model_id DrishtiSharma/wav2vec2-large-xls-r-300m-as-g1 --dataset mozilla-foundation/common_voice_8_0 --config as --split test --log_outputs 2. To evaluate on speech-recognition-community-v2/dev_data Assamese language isn't available in speech-recognition-community-v2/dev_data ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 200 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:------:| | 14.1958 | 5.26 | 100 | 7.1919 | 1.0 | | 5.0035 | 10.51 | 200 | 3.9362 | 1.0 | | 3.6193 | 15.77 | 300 | 3.4451 | 1.0 | | 3.4852 | 21.05 | 400 | 3.3536 | 1.0 | | 2.8489 | 26.31 | 500 | 1.6451 | 0.9100 | | 0.9568 | 31.56 | 600 | 1.0514 | 0.7561 | | 0.4865 | 36.82 | 700 | 1.0434 | 0.7184 | | 0.322 | 42.1 | 800 | 1.0825 | 0.7210 | | 0.2383 | 47.36 | 900 | 1.1304 | 0.6897 | | 0.2136 | 52.62 | 1000 | 1.1150 | 0.6854 | | 0.179 | 57.87 | 1100 | 1.2453 | 0.6875 | | 0.1539 | 63.15 | 1200 | 1.2211 | 0.6704 | | 0.1303 | 68.41 | 1300 | 1.2859 | 0.6747 | | 0.1183 | 73.67 | 1400 | 1.2775 | 0.6721 | | 0.0994 | 78.92 | 1500 | 1.2321 | 0.6404 | | 0.0991 | 84.21 | 1600 | 1.2766 | 0.6524 | | 0.0887 | 89.46 | 1700 | 1.3026 | 0.6344 | | 0.0754 | 94.72 | 1800 | 1.3199 | 0.6704 | | 0.0693 | 99.97 | 1900 | 1.3044 | 0.6361 | | 0.0568 | 105.26 | 2000 | 1.3541 | 0.6254 | | 0.0536 | 110.51 | 2100 | 1.3320 | 0.6249 | | 0.0529 | 115.77 | 2200 | 1.3370 | 0.6271 | | 0.048 | 121.05 | 2300 | 1.2757 | 0.6031 | | 0.0419 | 126.31 | 2400 | 1.2661 | 0.6172 | | 0.0349 | 131.56 | 2500 | 1.2897 | 0.6048 | | 0.0309 | 136.82 | 2600 | 1.2688 | 0.5962 | | 0.0278 | 142.1 | 2700 | 1.2885 | 0.5954 | | 0.0254 | 147.36 | 2800 | 1.2988 | 0.5915 | | 0.0223 | 152.62 | 2900 | 1.3153 | 0.5941 | | 0.0216 | 157.87 | 3000 | 1.2936 | 0.5937 | | 0.0186 | 163.15 | 3100 | 1.2906 | 0.5877 | | 0.0156 | 168.41 | 3200 | 1.3476 | 0.5962 | | 0.0158 | 173.67 | 3300 | 1.3363 | 0.5847 | | 0.0142 | 178.92 | 3400 | 1.3367 | 0.5847 | | 0.0153 | 184.21 | 3500 | 1.3105 | 0.5757 | | 0.0119 | 189.46 | 3600 | 1.3255 | 0.5705 | | 0.0115 | 194.72 | 3700 | 1.3340 | 0.5787 | | 0.0103 | 199.97 | 3800 | 1.3327 | 0.5744 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
DrishtiSharma/wav2vec2-large-xls-r-300m-as-v9
7528574eb82e6e9feac9657cd9f404e97302d016
2022-03-24T11:54:35.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "as", "dataset:mozilla-foundation/common_voice_8_0", "transformers", "mozilla-foundation/common_voice_8_0", "generated_from_trainer", "robust-speech-event", "model_for_talk", "hf-asr-leaderboard", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
DrishtiSharma
null
DrishtiSharma/wav2vec2-large-xls-r-300m-as-v9
1
null
transformers
27,930
--- language: - as license: apache-2.0 tags: - automatic-speech-recognition - mozilla-foundation/common_voice_8_0 - generated_from_trainer - as - robust-speech-event - model_for_talk - hf-asr-leaderboard datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: wav2vec2-large-xls-r-300m-as-v9 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: hsb metrics: - name: Test WER type: wer value: 0.6163737676810973 - name: Test CER type: cer value: 0.19496397642093005 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: as metrics: - name: Test WER type: wer value: NA - name: Test CER type: cer value: NA - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8.0 type: mozilla-foundation/common_voice_8_0 args: as metrics: - name: Test WER type: wer value: 61.64 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-as-v9 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 1.1679 - Wer: 0.5761 ### Evaluation Command 1. To evaluate on mozilla-foundation/common_voice_8_0 with test split python eval.py --model_id DrishtiSharma/wav2vec2-large-xls-r-300m-as-v9 --dataset mozilla-foundation/common_voice_8_0 --config as --split test --log_outputs 2. To evaluate on speech-recognition-community-v2/dev_data Assamese (as) language isn't available in speech-recognition-community-v2/dev_data ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.000111 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 300 - num_epochs: 200 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:------:| | 8.3852 | 10.51 | 200 | 3.6402 | 1.0 | | 3.5374 | 21.05 | 400 | 3.3894 | 1.0 | | 2.8645 | 31.56 | 600 | 1.3143 | 0.8303 | | 1.1784 | 42.1 | 800 | 0.9417 | 0.6661 | | 0.7805 | 52.62 | 1000 | 0.9292 | 0.6237 | | 0.5973 | 63.15 | 1200 | 0.9489 | 0.6014 | | 0.4784 | 73.67 | 1400 | 0.9916 | 0.5962 | | 0.4138 | 84.21 | 1600 | 1.0272 | 0.6121 | | 0.3491 | 94.72 | 1800 | 1.0412 | 0.5984 | | 0.3062 | 105.26 | 2000 | 1.0769 | 0.6005 | | 0.2707 | 115.77 | 2200 | 1.0708 | 0.5752 | | 0.2459 | 126.31 | 2400 | 1.1285 | 0.6009 | | 0.2234 | 136.82 | 2600 | 1.1209 | 0.5949 | | 0.2035 | 147.36 | 2800 | 1.1348 | 0.5842 | | 0.1876 | 157.87 | 3000 | 1.1480 | 0.5872 | | 0.1669 | 168.41 | 3200 | 1.1496 | 0.5838 | | 0.1595 | 178.92 | 3400 | 1.1721 | 0.5778 | | 0.1505 | 189.46 | 3600 | 1.1654 | 0.5744 | | 0.1486 | 199.97 | 3800 | 1.1679 | 0.5761 | ### Framework versions - Transformers 4.16.1 - Pytorch 1.10.0+cu111 - Datasets 1.18.2 - Tokenizers 0.11.0
DrishtiSharma/wav2vec2-large-xls-r-300m-bas-v1
c925e00d18e21d7bc2607b4befa7e042545f6095
2022-03-24T11:56:40.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "bas", "dataset:mozilla-foundation/common_voice_8_0", "transformers", "mozilla-foundation/common_voice_8_0", "generated_from_trainer", "robust-speech-event", "model_for_talk", "hf-asr-leaderboard", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
DrishtiSharma
null
DrishtiSharma/wav2vec2-large-xls-r-300m-bas-v1
1
null
transformers
27,931
--- language: - bas license: apache-2.0 tags: - automatic-speech-recognition - mozilla-foundation/common_voice_8_0 - generated_from_trainer - bas - robust-speech-event - model_for_talk - hf-asr-leaderboard datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: wav2vec2-large-xls-r-300m-bas-v1 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: bas metrics: - name: Test WER type: wer value: 0.3566497929130234 - name: Test CER type: cer value: 0.1102657634184471 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: bas metrics: - name: Test WER type: wer value: NA - name: Test CER type: cer value: NA --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-bas-v1 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - BAS dataset. It achieves the following results on the evaluation set: - Loss: 0.5997 - Wer: 0.3870 ### Evaluation Commands 1. To evaluate on mozilla-foundation/common_voice_8_0 with test split python eval.py --model_id DrishtiSharma/wav2vec2-large-xls-r-300m-bas-v1 --dataset mozilla-foundation/common_voice_8_0 --config bas --split test --log_outputs 2. To evaluate on speech-recognition-community-v2/dev_data Basaa (bas) language isn't available in speech-recognition-community-v2/dev_data ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.000111 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 100 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 12.7076 | 5.26 | 200 | 3.6361 | 1.0 | | 3.1657 | 10.52 | 400 | 3.0101 | 1.0 | | 2.3987 | 15.78 | 600 | 0.9125 | 0.6774 | | 1.0079 | 21.05 | 800 | 0.6477 | 0.5352 | | 0.7392 | 26.31 | 1000 | 0.5432 | 0.4929 | | 0.6114 | 31.57 | 1200 | 0.5498 | 0.4639 | | 0.5222 | 36.83 | 1400 | 0.5220 | 0.4561 | | 0.4648 | 42.1 | 1600 | 0.5586 | 0.4289 | | 0.4103 | 47.36 | 1800 | 0.5337 | 0.4082 | | 0.3692 | 52.62 | 2000 | 0.5421 | 0.3861 | | 0.3403 | 57.88 | 2200 | 0.5549 | 0.4096 | | 0.3011 | 63.16 | 2400 | 0.5833 | 0.3925 | | 0.2932 | 68.42 | 2600 | 0.5674 | 0.3815 | | 0.2696 | 73.68 | 2800 | 0.5734 | 0.3889 | | 0.2496 | 78.94 | 3000 | 0.5968 | 0.3985 | | 0.2289 | 84.21 | 3200 | 0.5888 | 0.3893 | | 0.2091 | 89.47 | 3400 | 0.5849 | 0.3852 | | 0.2005 | 94.73 | 3600 | 0.5938 | 0.3875 | | 0.1876 | 99.99 | 3800 | 0.5997 | 0.3870 | ### Framework versions - Transformers 4.16.1 - Pytorch 1.10.0+cu111 - Datasets 1.18.2 - Tokenizers 0.11.0
DrishtiSharma/wav2vec2-large-xls-r-300m-br-d2
1323a1736bc7b0db2c085ad0cde9d3a204a3d0b3
2022-03-24T11:54:37.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "br", "dataset:mozilla-foundation/common_voice_8_0", "transformers", "generated_from_trainer", "robust-speech-event", "hf-asr-leaderboard", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
DrishtiSharma
null
DrishtiSharma/wav2vec2-large-xls-r-300m-br-d2
1
null
transformers
27,932
--- language: - br license: apache-2.0 tags: - generated_from_trainer - robust-speech-event - hf-asr-leaderboard datasets: - mozilla-foundation/common_voice_8_0 metrics: - wer model-index: - name: wav2vec2-large-xls-r-300m-br-d2 results: - task: type: automatic-speech-recognition name: Speech Recognition dataset: type: mozilla-foundation/common_voice_8_0 name: Common Voice 8 args: br metrics: - type: wer value: 0.49770598355954887 name: Test WER - name: Test CER type: cer value: 0.18090500890299605 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: br metrics: - name: Test WER type: wer value: NA - name: Test CER type: cer value: NA --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-br-d2 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - BR dataset. It achieves the following results on the evaluation set: - Loss: 1.1257 - Wer: 0.4631 ### Evaluation Commands 1. To evaluate on mozilla-foundation/common_voice_8_0 with test split python eval.py --model_id DrishtiSharma/wav2vec2-large-xls-r-300m-br-d2 --dataset mozilla-foundation/common_voice_8_0 --config br --split test --log_outputs 2. To evaluate on speech-recognition-community-v2/dev_data Breton language isn't available in speech-recognition-community-v2/dev_data ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.00034 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 750 - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 14.0379 | 0.68 | 100 | 5.6808 | 1.0 | | 3.9145 | 1.35 | 200 | 3.1970 | 1.0 | | 3.0293 | 2.03 | 300 | 2.9513 | 1.0 | | 2.0927 | 2.7 | 400 | 1.4545 | 0.8887 | | 1.1556 | 3.38 | 500 | 1.0966 | 0.7564 | | 0.9628 | 4.05 | 600 | 0.9808 | 0.7364 | | 0.7869 | 4.73 | 700 | 1.0488 | 0.7355 | | 0.703 | 5.41 | 800 | 0.9500 | 0.6881 | | 0.6657 | 6.08 | 900 | 0.9309 | 0.6259 | | 0.5663 | 6.76 | 1000 | 0.9133 | 0.6357 | | 0.496 | 7.43 | 1100 | 0.9890 | 0.6028 | | 0.4748 | 8.11 | 1200 | 0.9469 | 0.5894 | | 0.4135 | 8.78 | 1300 | 0.9270 | 0.6045 | | 0.3579 | 9.46 | 1400 | 0.8818 | 0.5708 | | 0.353 | 10.14 | 1500 | 0.9244 | 0.5781 | | 0.334 | 10.81 | 1600 | 0.9009 | 0.5638 | | 0.2917 | 11.49 | 1700 | 1.0132 | 0.5828 | | 0.29 | 12.16 | 1800 | 0.9696 | 0.5668 | | 0.2691 | 12.84 | 1900 | 0.9811 | 0.5455 | | 0.25 | 13.51 | 2000 | 0.9951 | 0.5624 | | 0.2467 | 14.19 | 2100 | 0.9653 | 0.5573 | | 0.2242 | 14.86 | 2200 | 0.9714 | 0.5378 | | 0.2066 | 15.54 | 2300 | 0.9829 | 0.5394 | | 0.2075 | 16.22 | 2400 | 1.0547 | 0.5520 | | 0.1923 | 16.89 | 2500 | 1.0014 | 0.5397 | | 0.1919 | 17.57 | 2600 | 0.9978 | 0.5477 | | 0.1908 | 18.24 | 2700 | 1.1064 | 0.5397 | | 0.157 | 18.92 | 2800 | 1.0629 | 0.5238 | | 0.159 | 19.59 | 2900 | 1.0642 | 0.5321 | | 0.1652 | 20.27 | 3000 | 1.0207 | 0.5328 | | 0.141 | 20.95 | 3100 | 0.9948 | 0.5312 | | 0.1417 | 21.62 | 3200 | 1.0338 | 0.5328 | | 0.1514 | 22.3 | 3300 | 1.0513 | 0.5313 | | 0.1365 | 22.97 | 3400 | 1.0357 | 0.5291 | | 0.1319 | 23.65 | 3500 | 1.0587 | 0.5167 | | 0.1298 | 24.32 | 3600 | 1.0636 | 0.5236 | | 0.1245 | 25.0 | 3700 | 1.1367 | 0.5280 | | 0.1114 | 25.68 | 3800 | 1.0633 | 0.5200 | | 0.1088 | 26.35 | 3900 | 1.0495 | 0.5210 | | 0.1175 | 27.03 | 4000 | 1.0897 | 0.5095 | | 0.1043 | 27.7 | 4100 | 1.0580 | 0.5309 | | 0.0951 | 28.38 | 4200 | 1.0448 | 0.5067 | | 0.1011 | 29.05 | 4300 | 1.0665 | 0.5137 | | 0.0889 | 29.73 | 4400 | 1.0579 | 0.5026 | | 0.0833 | 30.41 | 4500 | 1.0740 | 0.5037 | | 0.0889 | 31.08 | 4600 | 1.0933 | 0.5083 | | 0.0784 | 31.76 | 4700 | 1.0715 | 0.5089 | | 0.0767 | 32.43 | 4800 | 1.0658 | 0.5049 | | 0.0769 | 33.11 | 4900 | 1.1118 | 0.4979 | | 0.0722 | 33.78 | 5000 | 1.1413 | 0.4986 | | 0.0709 | 34.46 | 5100 | 1.0706 | 0.4885 | | 0.0664 | 35.14 | 5200 | 1.1217 | 0.4884 | | 0.0648 | 35.81 | 5300 | 1.1298 | 0.4941 | | 0.0657 | 36.49 | 5400 | 1.1330 | 0.4920 | | 0.0582 | 37.16 | 5500 | 1.0598 | 0.4835 | | 0.0602 | 37.84 | 5600 | 1.1097 | 0.4943 | | 0.0598 | 38.51 | 5700 | 1.0976 | 0.4876 | | 0.0547 | 39.19 | 5800 | 1.0734 | 0.4825 | | 0.0561 | 39.86 | 5900 | 1.0926 | 0.4850 | | 0.0516 | 40.54 | 6000 | 1.1579 | 0.4751 | | 0.0478 | 41.22 | 6100 | 1.1384 | 0.4706 | | 0.0396 | 41.89 | 6200 | 1.1462 | 0.4739 | | 0.0472 | 42.57 | 6300 | 1.1277 | 0.4732 | | 0.0447 | 43.24 | 6400 | 1.1517 | 0.4752 | | 0.0423 | 43.92 | 6500 | 1.1219 | 0.4784 | | 0.0426 | 44.59 | 6600 | 1.1311 | 0.4724 | | 0.0391 | 45.27 | 6700 | 1.1135 | 0.4692 | | 0.0362 | 45.95 | 6800 | 1.0878 | 0.4645 | | 0.0329 | 46.62 | 6900 | 1.1137 | 0.4668 | | 0.0356 | 47.3 | 7000 | 1.1233 | 0.4687 | | 0.0328 | 47.97 | 7100 | 1.1238 | 0.4653 | | 0.0323 | 48.65 | 7200 | 1.1307 | 0.4646 | | 0.0325 | 49.32 | 7300 | 1.1242 | 0.4645 | | 0.03 | 50.0 | 7400 | 1.1257 | 0.4631 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
DrishtiSharma/wav2vec2-large-xls-r-300m-gn-k1
7b04c0cb51436f317941750fb19c50a9f9b97d32
2022-03-24T11:52:47.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "gn", "dataset:mozilla-foundation/common_voice_8_0", "transformers", "mozilla-foundation/common_voice_8_0", "generated_from_trainer", "robust-speech-event", "hf-asr-leaderboard", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
DrishtiSharma
null
DrishtiSharma/wav2vec2-large-xls-r-300m-gn-k1
1
null
transformers
27,933
--- language: - gn license: apache-2.0 tags: - automatic-speech-recognition - mozilla-foundation/common_voice_8_0 - generated_from_trainer - gn - robust-speech-event - hf-asr-leaderboard datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: wav2vec2-large-xls-r-300m-gn-k1 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: gn metrics: - name: Test WER type: wer value: 0.711890243902439 - name: Test CER type: cer value: 0.13311897106109324 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: gn metrics: - name: Test WER type: wer value: NA - name: Test CER type: cer value: NA --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-gn-k1 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - GN dataset. It achieves the following results on the evaluation set: - Loss: 0.9220 - Wer: 0.6631 ### Evaluation Commands 1. To evaluate on mozilla-foundation/common_voice_8_0 with test split python eval.py --model_id DrishtiSharma/wav2vec2-large-xls-r-300m-gn-k1 --dataset mozilla-foundation/common_voice_8_0 --config gn --split test --log_outputs 2. To evaluate on speech-recognition-community-v2/dev_data NA ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.00018 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 600 - num_epochs: 200 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:------:| | 15.9402 | 8.32 | 100 | 6.9185 | 1.0 | | 4.6367 | 16.64 | 200 | 3.7416 | 1.0 | | 3.4337 | 24.96 | 300 | 3.2581 | 1.0 | | 3.2307 | 33.32 | 400 | 2.8008 | 1.0 | | 1.3182 | 41.64 | 500 | 0.8359 | 0.8171 | | 0.409 | 49.96 | 600 | 0.8470 | 0.8323 | | 0.2573 | 58.32 | 700 | 0.7823 | 0.7576 | | 0.1969 | 66.64 | 800 | 0.8306 | 0.7424 | | 0.1469 | 74.96 | 900 | 0.9225 | 0.7713 | | 0.1172 | 83.32 | 1000 | 0.7903 | 0.6951 | | 0.1017 | 91.64 | 1100 | 0.8519 | 0.6921 | | 0.0851 | 99.96 | 1200 | 0.8129 | 0.6646 | | 0.071 | 108.32 | 1300 | 0.8614 | 0.7043 | | 0.061 | 116.64 | 1400 | 0.8414 | 0.6921 | | 0.0552 | 124.96 | 1500 | 0.8649 | 0.6905 | | 0.0465 | 133.32 | 1600 | 0.8575 | 0.6646 | | 0.0381 | 141.64 | 1700 | 0.8802 | 0.6723 | | 0.0338 | 149.96 | 1800 | 0.8731 | 0.6845 | | 0.0306 | 158.32 | 1900 | 0.9003 | 0.6585 | | 0.0236 | 166.64 | 2000 | 0.9408 | 0.6616 | | 0.021 | 174.96 | 2100 | 0.9353 | 0.6723 | | 0.0212 | 183.32 | 2200 | 0.9269 | 0.6570 | | 0.0191 | 191.64 | 2300 | 0.9277 | 0.6662 | | 0.0161 | 199.96 | 2400 | 0.9220 | 0.6631 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
DrishtiSharma/wav2vec2-large-xls-r-300m-hi-cv8-b2
681a7e9001161918e720cfa4717b7d3e2dafe307
2022-03-24T11:52:52.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "hi", "dataset:mozilla-foundation/common_voice_8_0", "transformers", "robust-speech-event", "hf-asr-leaderboard", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
DrishtiSharma
null
DrishtiSharma/wav2vec2-large-xls-r-300m-hi-cv8-b2
1
null
transformers
27,934
--- language: - hi license: apache-2.0 tags: - automatic-speech-recognition - robust-speech-event - hf-asr-leaderboard datasets: - mozilla-foundation/common_voice_8_0 metrics: - wer model-index: - name: wav2vec2-large-xls-r-300m-hi-cv8-b2 results: - task: type: automatic-speech-recognition name: Speech Recognition dataset: type: mozilla-foundation/common_voice_8_0 name: Common Voice 7 args: hi metrics: - type: wer value: 0.3891350503092403 name: Test WER - name: Test CER type: cer value: 0.13016327327131985 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: hi metrics: - name: Test WER type: wer value: NA - name: Test CER type: cer value: NA --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-hi-cv8-b2 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - HI dataset. It achieves the following results on the evaluation set: - Loss: 0.7322 - Wer: 0.3469 ### Evaluation Commands 1. To evaluate on mozilla-foundation/common_voice_8_0 with test split python eval.py --model_id DrishtiSharma/wav2vec2-large-xls-r-300m-hi-cv8-b2 --dataset mozilla-foundation/common_voice_8_0 --config hi --split test --log_outputs 2. To evaluate on speech-recognition-community-v2/dev_data Hindi language isn't available in speech-recognition-community-v2/dev_data ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.00025 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 700 - num_epochs: 35 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 9.6226 | 1.04 | 200 | 3.8855 | 1.0 | | 3.4678 | 2.07 | 400 | 3.4283 | 1.0 | | 2.3668 | 3.11 | 600 | 1.0743 | 0.7175 | | 0.7308 | 4.15 | 800 | 0.7663 | 0.5498 | | 0.4985 | 5.18 | 1000 | 0.6957 | 0.5001 | | 0.3817 | 6.22 | 1200 | 0.6932 | 0.4866 | | 0.3281 | 7.25 | 1400 | 0.7034 | 0.4983 | | 0.2752 | 8.29 | 1600 | 0.6588 | 0.4606 | | 0.2475 | 9.33 | 1800 | 0.6514 | 0.4328 | | 0.219 | 10.36 | 2000 | 0.6396 | 0.4176 | | 0.2036 | 11.4 | 2200 | 0.6867 | 0.4162 | | 0.1793 | 12.44 | 2400 | 0.6943 | 0.4196 | | 0.1724 | 13.47 | 2600 | 0.6862 | 0.4260 | | 0.1554 | 14.51 | 2800 | 0.7615 | 0.4222 | | 0.151 | 15.54 | 3000 | 0.7058 | 0.4110 | | 0.1335 | 16.58 | 3200 | 0.7172 | 0.3986 | | 0.1326 | 17.62 | 3400 | 0.7182 | 0.3923 | | 0.1225 | 18.65 | 3600 | 0.6995 | 0.3910 | | 0.1146 | 19.69 | 3800 | 0.7075 | 0.3875 | | 0.108 | 20.73 | 4000 | 0.7297 | 0.3858 | | 0.1048 | 21.76 | 4200 | 0.7413 | 0.3850 | | 0.0979 | 22.8 | 4400 | 0.7452 | 0.3793 | | 0.0946 | 23.83 | 4600 | 0.7436 | 0.3759 | | 0.0897 | 24.87 | 4800 | 0.7289 | 0.3754 | | 0.0854 | 25.91 | 5000 | 0.7271 | 0.3667 | | 0.0803 | 26.94 | 5200 | 0.7378 | 0.3656 | | 0.0752 | 27.98 | 5400 | 0.7488 | 0.3680 | | 0.0718 | 29.02 | 5600 | 0.7185 | 0.3619 | | 0.0702 | 30.05 | 5800 | 0.7428 | 0.3554 | | 0.0653 | 31.09 | 6000 | 0.7447 | 0.3559 | | 0.0638 | 32.12 | 6200 | 0.7327 | 0.3523 | | 0.058 | 33.16 | 6400 | 0.7339 | 0.3488 | | 0.0594 | 34.2 | 6600 | 0.7322 | 0.3469 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
DrishtiSharma/wav2vec2-large-xls-r-300m-hi-cv8
e9b231b9ebf74ad7c6fdaa76a6645a08d1bb11d2
2022-03-24T11:54:40.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "hi", "dataset:mozilla-foundation/common_voice_8_0", "transformers", "mozilla-foundation/common_voice_8_0", "generated_from_trainer", "robust-speech-event", "model_for_talk", "hf-asr-leaderboard", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
DrishtiSharma
null
DrishtiSharma/wav2vec2-large-xls-r-300m-hi-cv8
1
null
transformers
27,935
--- language: - hi license: apache-2.0 tags: - automatic-speech-recognition - mozilla-foundation/common_voice_8_0 - generated_from_trainer - hi - robust-speech-event - model_for_talk - hf-asr-leaderboard datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: wav2vec2-large-xls-r-300m-hi-cv8 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: hi metrics: - name: Test WER type: wer value: 0.3628727037755008 - name: Test CER type: cer value: 0.11933724247521164 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: hi metrics: - name: Test WER type: wer value: NA - name: Test CER type: cer value: NA --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-hi-cv8 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - HI dataset. It achieves the following results on the evaluation set: - Loss: 0.6510 - Wer: 0.3179 ### Evaluation Commands 1. To evaluate on mozilla-foundation/common_voice_8_0 with test split python eval.py --model_id DrishtiSharma/wav2vec2-large-xls-r-300m-hi-cv8 --dataset mozilla-foundation/common_voice_8_0 --config hi --split test --log_outputs 2. To evaluate on speech-recognition-community-v2/dev_data python eval.py --model_id DrishtiSharma/wav2vec2-large-xls-r-300m-hi-cv8 --dataset speech-recognition-community-v2/dev_data --config hi --split validation --chunk_length_s 10 --stride_length_s 1 Note: Hindi language not found in speech-recognition-community-v2/dev_data ### Training hyperparameters The following hyperparameters were used during training: - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2000 - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 12.5576 | 1.04 | 200 | 6.6594 | 1.0 | | 4.4069 | 2.07 | 400 | 3.6011 | 1.0 | | 3.4273 | 3.11 | 600 | 3.3370 | 1.0 | | 2.1108 | 4.15 | 800 | 1.0641 | 0.6562 | | 0.8817 | 5.18 | 1000 | 0.7178 | 0.5172 | | 0.6508 | 6.22 | 1200 | 0.6612 | 0.4839 | | 0.5524 | 7.25 | 1400 | 0.6458 | 0.4889 | | 0.4992 | 8.29 | 1600 | 0.5791 | 0.4382 | | 0.4669 | 9.33 | 1800 | 0.6039 | 0.4352 | | 0.4441 | 10.36 | 2000 | 0.6276 | 0.4297 | | 0.4172 | 11.4 | 2200 | 0.6183 | 0.4474 | | 0.3872 | 12.44 | 2400 | 0.5886 | 0.4231 | | 0.3692 | 13.47 | 2600 | 0.6448 | 0.4399 | | 0.3385 | 14.51 | 2800 | 0.6344 | 0.4075 | | 0.3246 | 15.54 | 3000 | 0.5896 | 0.4087 | | 0.3026 | 16.58 | 3200 | 0.6158 | 0.4016 | | 0.284 | 17.62 | 3400 | 0.6038 | 0.3906 | | 0.2682 | 18.65 | 3600 | 0.6165 | 0.3900 | | 0.2577 | 19.69 | 3800 | 0.5754 | 0.3805 | | 0.2509 | 20.73 | 4000 | 0.6028 | 0.3925 | | 0.2426 | 21.76 | 4200 | 0.6335 | 0.4138 | | 0.2346 | 22.8 | 4400 | 0.6128 | 0.3870 | | 0.2205 | 23.83 | 4600 | 0.6223 | 0.3831 | | 0.2104 | 24.87 | 4800 | 0.6122 | 0.3781 | | 0.1992 | 25.91 | 5000 | 0.6467 | 0.3792 | | 0.1916 | 26.94 | 5200 | 0.6277 | 0.3636 | | 0.1835 | 27.98 | 5400 | 0.6317 | 0.3773 | | 0.1776 | 29.02 | 5600 | 0.6124 | 0.3614 | | 0.1751 | 30.05 | 5800 | 0.6475 | 0.3628 | | 0.1662 | 31.09 | 6000 | 0.6266 | 0.3504 | | 0.1584 | 32.12 | 6200 | 0.6347 | 0.3532 | | 0.1494 | 33.16 | 6400 | 0.6636 | 0.3491 | | 0.1457 | 34.2 | 6600 | 0.6334 | 0.3507 | | 0.1427 | 35.23 | 6800 | 0.6397 | 0.3442 | | 0.1397 | 36.27 | 7000 | 0.6468 | 0.3496 | | 0.1283 | 37.31 | 7200 | 0.6291 | 0.3416 | | 0.1255 | 38.34 | 7400 | 0.6652 | 0.3461 | | 0.1195 | 39.38 | 7600 | 0.6587 | 0.3342 | | 0.1169 | 40.41 | 7800 | 0.6478 | 0.3319 | | 0.1126 | 41.45 | 8000 | 0.6280 | 0.3291 | | 0.1112 | 42.49 | 8200 | 0.6434 | 0.3290 | | 0.1069 | 43.52 | 8400 | 0.6542 | 0.3268 | | 0.1027 | 44.56 | 8600 | 0.6536 | 0.3239 | | 0.0993 | 45.6 | 8800 | 0.6622 | 0.3257 | | 0.0973 | 46.63 | 9000 | 0.6572 | 0.3192 | | 0.0911 | 47.67 | 9200 | 0.6522 | 0.3175 | | 0.0897 | 48.7 | 9400 | 0.6521 | 0.3200 | | 0.0905 | 49.74 | 9600 | 0.6510 | 0.3179 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
DrishtiSharma/wav2vec2-large-xls-r-300m-hi-wx1
bbd60cc6db8fd643bb3e6509f1719db2ebcddaf5
2022-03-23T18:35:14.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "hi", "dataset:mozilla-foundation/common_voice_7_0", "transformers", "hf-asr-leaderboard", "robust-speech-event", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
DrishtiSharma
null
DrishtiSharma/wav2vec2-large-xls-r-300m-hi-wx1
1
null
transformers
27,936
--- language: - hi license: apache-2.0 tags: - automatic-speech-recognition - hf-asr-leaderboard - robust-speech-event datasets: - mozilla-foundation/common_voice_7_0 metrics: - wer model-index: - name: wav2vec2-large-xls-r-300m-hi-wx1 results: - task: type: automatic-speech-recognition name: Speech Recognition dataset: type: mozilla-foundation/common_voice_7_0 name: Common Voice 7 args: hi metrics: - type: wer value: 0.3719684845500431 name: Test WER - name: Test CER type: cer value: 0.11763235514672798 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-hi-wx1 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 -HI dataset. It achieves the following results on the evaluation set: - Loss: 0.6552 - Wer: 0.3200 Evaluation Commands 1. To evaluate on mozilla-foundation/common_voice_8_0 with test split python eval.py --model_id DrishtiSharma/wav2vec2-large-xls-r-300m-hi-wx1 --dataset mozilla-foundation/common_voice_7_0 --config hi --split test --log_outputs 2. To evaluate on speech-recognition-community-v2/dev_data NA ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.00024 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1800 - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 12.2663 | 1.36 | 200 | 5.9245 | 1.0 | | 4.1856 | 2.72 | 400 | 3.4968 | 1.0 | | 3.3908 | 4.08 | 600 | 2.9970 | 1.0 | | 1.5444 | 5.44 | 800 | 0.9071 | 0.6139 | | 0.7237 | 6.8 | 1000 | 0.6508 | 0.4862 | | 0.5323 | 8.16 | 1200 | 0.6217 | 0.4647 | | 0.4426 | 9.52 | 1400 | 0.5785 | 0.4288 | | 0.3933 | 10.88 | 1600 | 0.5935 | 0.4217 | | 0.3532 | 12.24 | 1800 | 0.6358 | 0.4465 | | 0.3319 | 13.6 | 2000 | 0.5789 | 0.4118 | | 0.2877 | 14.96 | 2200 | 0.6163 | 0.4056 | | 0.2663 | 16.33 | 2400 | 0.6176 | 0.3893 | | 0.2511 | 17.68 | 2600 | 0.6065 | 0.3999 | | 0.2275 | 19.05 | 2800 | 0.6183 | 0.3842 | | 0.2098 | 20.41 | 3000 | 0.6486 | 0.3864 | | 0.1943 | 21.77 | 3200 | 0.6365 | 0.3885 | | 0.1877 | 23.13 | 3400 | 0.6013 | 0.3677 | | 0.1679 | 24.49 | 3600 | 0.6451 | 0.3795 | | 0.1667 | 25.85 | 3800 | 0.6410 | 0.3635 | | 0.1514 | 27.21 | 4000 | 0.6000 | 0.3577 | | 0.1453 | 28.57 | 4200 | 0.6020 | 0.3518 | | 0.134 | 29.93 | 4400 | 0.6531 | 0.3517 | | 0.1354 | 31.29 | 4600 | 0.6874 | 0.3578 | | 0.1224 | 32.65 | 4800 | 0.6519 | 0.3492 | | 0.1199 | 34.01 | 5000 | 0.6553 | 0.3490 | | 0.1077 | 35.37 | 5200 | 0.6621 | 0.3429 | | 0.0997 | 36.73 | 5400 | 0.6641 | 0.3413 | | 0.0964 | 38.09 | 5600 | 0.6722 | 0.3385 | | 0.0931 | 39.45 | 5800 | 0.6365 | 0.3363 | | 0.0944 | 40.81 | 6000 | 0.6454 | 0.3326 | | 0.0862 | 42.18 | 6200 | 0.6497 | 0.3256 | | 0.0848 | 43.54 | 6400 | 0.6599 | 0.3226 | | 0.0793 | 44.89 | 6600 | 0.6625 | 0.3232 | | 0.076 | 46.26 | 6800 | 0.6463 | 0.3186 | | 0.0749 | 47.62 | 7000 | 0.6559 | 0.3225 | | 0.0663 | 48.98 | 7200 | 0.6552 | 0.3200 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
DrishtiSharma/wav2vec2-large-xls-r-300m-maltese
e29d63b9690d3080c3d9f8e6b6a51f6849a49b73
2022-03-23T18:35:17.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "mt", "dataset:mozilla-foundation/common_voice_8_0", "transformers", "generated_from_trainer", "hf-asr-leaderboard", "model_for_talk", "mozilla-foundation/common_voice_8_0", "robust-speech-event", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
DrishtiSharma
null
DrishtiSharma/wav2vec2-large-xls-r-300m-maltese
1
null
transformers
27,937
--- language: - mt license: apache-2.0 tags: - automatic-speech-recognition - generated_from_trainer - hf-asr-leaderboard - model_for_talk - mozilla-foundation/common_voice_8_0 - mt - robust-speech-event datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: wav2vec2-large-xls-r-300m-maltese results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: mt --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-maltese This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - MT dataset. It achieves the following results on the evaluation set: - Loss: 0.2994 - Wer: 0.2781 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1800 - num_epochs: 100.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 3.0174 | 9.01 | 1000 | 3.0552 | 1.0 | | 1.0446 | 18.02 | 2000 | 0.6708 | 0.7577 | | 0.7995 | 27.03 | 3000 | 0.4202 | 0.4770 | | 0.6978 | 36.04 | 4000 | 0.3054 | 0.3494 | | 0.6189 | 45.05 | 5000 | 0.2878 | 0.3154 | | 0.5667 | 54.05 | 6000 | 0.3114 | 0.3286 | | 0.5173 | 63.06 | 7000 | 0.3085 | 0.3021 | | 0.4682 | 72.07 | 8000 | 0.3058 | 0.2969 | | 0.451 | 81.08 | 9000 | 0.3146 | 0.2907 | | 0.4213 | 90.09 | 10000 | 0.3030 | 0.2881 | | 0.4005 | 99.1 | 11000 | 0.3001 | 0.2789 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2.dev0 - Tokenizers 0.11.0 ### Evaluation Script !python eval.py \ --model_id DrishtiSharma/wav2vec2-large-xls-r-300m-maltese \ --dataset mozilla-foundation/common_voice_8_0 --config mt --split test --log_outputs
DrishtiSharma/wav2vec2-large-xls-r-300m-myv-v1
1eb3e4e3b03f7b6409756681526418d4ee8f11ee
2022-03-24T11:56:53.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "myv", "dataset:mozilla-foundation/common_voice_8_0", "transformers", "mozilla-foundation/common_voice_8_0", "generated_from_trainer", "robust-speech-event", "model_for_talk", "hf-asr-leaderboard", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
DrishtiSharma
null
DrishtiSharma/wav2vec2-large-xls-r-300m-myv-v1
1
null
transformers
27,938
--- language: - myv license: apache-2.0 tags: - automatic-speech-recognition - mozilla-foundation/common_voice_8_0 - generated_from_trainer - myv - robust-speech-event - model_for_talk - hf-asr-leaderboard datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: wav2vec2-large-xls-r-300m-myv-v1 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: myv metrics: - name: Test WER type: wer value: 0.599548532731377 - name: Test CER type: cer value: 0.12953851902597 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: myv metrics: - name: Test WER type: wer value: NA - name: Test CER type: cer value: NA --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-myv-v1 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - MYV dataset. It achieves the following results on the evaluation set: - Loss: 0.8537 - Wer: 0.6160 ### Evaluation Commands 1. To evaluate on mozilla-foundation/common_voice_8_0 with test split python eval.py --model_id DrishtiSharma/wav2vec2-large-xls-r-300m-myv-v1 --dataset mozilla-foundation/common_voice_8_0 --config myv --split test --log_outputs 2. To evaluate on speech-recognition-community-v2/dev_data Erzya language not found in speech-recognition-community-v2/dev_data! ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.000222 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 150 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:------:| | 19.453 | 1.92 | 50 | 16.4001 | 1.0 | | 9.6875 | 3.85 | 100 | 5.4468 | 1.0 | | 4.9988 | 5.77 | 150 | 4.3507 | 1.0 | | 4.1148 | 7.69 | 200 | 3.6753 | 1.0 | | 3.4922 | 9.62 | 250 | 3.3103 | 1.0 | | 3.2443 | 11.54 | 300 | 3.1741 | 1.0 | | 3.164 | 13.46 | 350 | 3.1346 | 1.0 | | 3.0954 | 15.38 | 400 | 3.0428 | 1.0 | | 3.0076 | 17.31 | 450 | 2.9137 | 1.0 | | 2.6883 | 19.23 | 500 | 2.1476 | 0.9978 | | 1.5124 | 21.15 | 550 | 0.8955 | 0.8225 | | 0.8711 | 23.08 | 600 | 0.6948 | 0.7591 | | 0.6695 | 25.0 | 650 | 0.6683 | 0.7636 | | 0.5606 | 26.92 | 700 | 0.6821 | 0.7435 | | 0.503 | 28.85 | 750 | 0.7220 | 0.7516 | | 0.4528 | 30.77 | 800 | 0.6638 | 0.7324 | | 0.4219 | 32.69 | 850 | 0.7120 | 0.7435 | | 0.4109 | 34.62 | 900 | 0.7122 | 0.7511 | | 0.3887 | 36.54 | 950 | 0.7179 | 0.7199 | | 0.3895 | 38.46 | 1000 | 0.7322 | 0.7525 | | 0.391 | 40.38 | 1050 | 0.6850 | 0.7364 | | 0.3537 | 42.31 | 1100 | 0.7571 | 0.7279 | | 0.3267 | 44.23 | 1150 | 0.7575 | 0.7257 | | 0.3195 | 46.15 | 1200 | 0.7580 | 0.6998 | | 0.2891 | 48.08 | 1250 | 0.7452 | 0.7101 | | 0.294 | 50.0 | 1300 | 0.7316 | 0.6945 | | 0.2854 | 51.92 | 1350 | 0.7241 | 0.6757 | | 0.2801 | 53.85 | 1400 | 0.7532 | 0.6887 | | 0.2502 | 55.77 | 1450 | 0.7587 | 0.6811 | | 0.2427 | 57.69 | 1500 | 0.7231 | 0.6851 | | 0.2311 | 59.62 | 1550 | 0.7288 | 0.6632 | | 0.2176 | 61.54 | 1600 | 0.7711 | 0.6664 | | 0.2117 | 63.46 | 1650 | 0.7914 | 0.6940 | | 0.2114 | 65.38 | 1700 | 0.8065 | 0.6918 | | 0.1913 | 67.31 | 1750 | 0.8372 | 0.6945 | | 0.1897 | 69.23 | 1800 | 0.8051 | 0.6869 | | 0.1865 | 71.15 | 1850 | 0.8076 | 0.6740 | | 0.1844 | 73.08 | 1900 | 0.7935 | 0.6708 | | 0.1757 | 75.0 | 1950 | 0.8015 | 0.6610 | | 0.1636 | 76.92 | 2000 | 0.7614 | 0.6414 | | 0.1637 | 78.85 | 2050 | 0.8123 | 0.6592 | | 0.1599 | 80.77 | 2100 | 0.7907 | 0.6566 | | 0.1498 | 82.69 | 2150 | 0.8641 | 0.6757 | | 0.1545 | 84.62 | 2200 | 0.7438 | 0.6682 | | 0.1433 | 86.54 | 2250 | 0.8014 | 0.6624 | | 0.1427 | 88.46 | 2300 | 0.7758 | 0.6646 | | 0.1423 | 90.38 | 2350 | 0.7741 | 0.6423 | | 0.1298 | 92.31 | 2400 | 0.7938 | 0.6414 | | 0.1111 | 94.23 | 2450 | 0.7976 | 0.6467 | | 0.1243 | 96.15 | 2500 | 0.7916 | 0.6481 | | 0.1215 | 98.08 | 2550 | 0.7594 | 0.6392 | | 0.113 | 100.0 | 2600 | 0.8236 | 0.6392 | | 0.1077 | 101.92 | 2650 | 0.7959 | 0.6347 | | 0.0988 | 103.85 | 2700 | 0.8189 | 0.6392 | | 0.0953 | 105.77 | 2750 | 0.8157 | 0.6414 | | 0.0889 | 107.69 | 2800 | 0.7946 | 0.6369 | | 0.0929 | 109.62 | 2850 | 0.8255 | 0.6360 | | 0.0822 | 111.54 | 2900 | 0.8320 | 0.6334 | | 0.086 | 113.46 | 2950 | 0.8539 | 0.6490 | | 0.0825 | 115.38 | 3000 | 0.8438 | 0.6418 | | 0.0727 | 117.31 | 3050 | 0.8568 | 0.6481 | | 0.0717 | 119.23 | 3100 | 0.8447 | 0.6512 | | 0.0815 | 121.15 | 3150 | 0.8470 | 0.6445 | | 0.0689 | 123.08 | 3200 | 0.8264 | 0.6249 | | 0.0726 | 125.0 | 3250 | 0.7981 | 0.6169 | | 0.0648 | 126.92 | 3300 | 0.8237 | 0.6200 | | 0.0632 | 128.85 | 3350 | 0.8416 | 0.6249 | | 0.06 | 130.77 | 3400 | 0.8276 | 0.6173 | | 0.0616 | 132.69 | 3450 | 0.8429 | 0.6209 | | 0.0614 | 134.62 | 3500 | 0.8485 | 0.6271 | | 0.0539 | 136.54 | 3550 | 0.8598 | 0.6218 | | 0.0555 | 138.46 | 3600 | 0.8557 | 0.6169 | | 0.0604 | 140.38 | 3650 | 0.8436 | 0.6186 | | 0.0556 | 142.31 | 3700 | 0.8428 | 0.6178 | | 0.051 | 144.23 | 3750 | 0.8440 | 0.6142 | | 0.0526 | 146.15 | 3800 | 0.8566 | 0.6142 | | 0.052 | 148.08 | 3850 | 0.8544 | 0.6178 | | 0.0519 | 150.0 | 3900 | 0.8537 | 0.6160 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.2 - Tokenizers 0.11.0
DrishtiSharma/wav2vec2-large-xls-r-300m-or-dx12
d54d0f6d1f74e256e39ff01a8a2144e774b1b4ad
2022-03-23T18:33:15.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "or", "dataset:common_voice", "transformers", "generated_from_trainer", "hf-asr-leaderboard", "model_for_talk", "mozilla-foundation/common_voice_8_0", "robust-speech-event", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
DrishtiSharma
null
DrishtiSharma/wav2vec2-large-xls-r-300m-or-dx12
1
null
transformers
27,939
--- language: - or license: apache-2.0 tags: - automatic-speech-recognition - generated_from_trainer - hf-asr-leaderboard - model_for_talk - mozilla-foundation/common_voice_8_0 - or - robust-speech-event datasets: - common_voice model-index: - name: wav2vec2-large-xls-r-300m-or-dx12 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: or metrics: - name: Test WER type: wer value: 0.5947242206235012 - name: Test CER type: cer value: 0.18272388876724327 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: or metrics: - name: Test WER type: wer value: NA - name: Test CER type: cer value: NA --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-or-dx12 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 1.4638 - Wer: 0.5602 ### Evaluation Commands 1. To evaluate on mozilla-foundation/common_voice_8_0 with test split python eval.py --model_id DrishtiSharma/wav2vec2-large-xls-r-300m-or-dx12 --dataset mozilla-foundation/common_voice_8_0 --config or --split test --log_outputs 2. To evaluate on speech-recognition-community-v2/dev_data Oriya language isn't available in speech-recognition-community-v2/dev_data ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0004 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 200 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:------:| | 13.5059 | 4.17 | 100 | 10.3789 | 1.0 | | 4.5964 | 8.33 | 200 | 4.3294 | 1.0 | | 3.4448 | 12.5 | 300 | 3.7903 | 1.0 | | 3.3683 | 16.67 | 400 | 3.5289 | 1.0 | | 2.042 | 20.83 | 500 | 1.1531 | 0.7857 | | 0.5721 | 25.0 | 600 | 1.0267 | 0.7646 | | 0.3274 | 29.17 | 700 | 1.0773 | 0.6938 | | 0.2466 | 33.33 | 800 | 1.0323 | 0.6647 | | 0.2047 | 37.5 | 900 | 1.1255 | 0.6733 | | 0.1847 | 41.67 | 1000 | 1.1194 | 0.6515 | | 0.1453 | 45.83 | 1100 | 1.1215 | 0.6601 | | 0.1367 | 50.0 | 1200 | 1.1898 | 0.6627 | | 0.1334 | 54.17 | 1300 | 1.3082 | 0.6687 | | 0.1041 | 58.33 | 1400 | 1.2514 | 0.6177 | | 0.1024 | 62.5 | 1500 | 1.2055 | 0.6528 | | 0.0919 | 66.67 | 1600 | 1.4125 | 0.6369 | | 0.074 | 70.83 | 1700 | 1.4006 | 0.6634 | | 0.0681 | 75.0 | 1800 | 1.3943 | 0.6131 | | 0.0709 | 79.17 | 1900 | 1.3545 | 0.6296 | | 0.064 | 83.33 | 2000 | 1.2437 | 0.6237 | | 0.0552 | 87.5 | 2100 | 1.3762 | 0.6190 | | 0.056 | 91.67 | 2200 | 1.3763 | 0.6323 | | 0.0514 | 95.83 | 2300 | 1.2897 | 0.6164 | | 0.0409 | 100.0 | 2400 | 1.4257 | 0.6104 | | 0.0379 | 104.17 | 2500 | 1.4219 | 0.5853 | | 0.0367 | 108.33 | 2600 | 1.4361 | 0.6032 | | 0.0412 | 112.5 | 2700 | 1.4713 | 0.6098 | | 0.0353 | 116.67 | 2800 | 1.4132 | 0.6369 | | 0.0336 | 120.83 | 2900 | 1.5210 | 0.6098 | | 0.0302 | 125.0 | 3000 | 1.4686 | 0.5939 | | 0.0398 | 129.17 | 3100 | 1.5456 | 0.6204 | | 0.0291 | 133.33 | 3200 | 1.4111 | 0.5827 | | 0.0247 | 137.5 | 3300 | 1.3866 | 0.6151 | | 0.0196 | 141.67 | 3400 | 1.4513 | 0.5880 | | 0.0218 | 145.83 | 3500 | 1.5100 | 0.5899 | | 0.0196 | 150.0 | 3600 | 1.4936 | 0.5999 | | 0.0164 | 154.17 | 3700 | 1.5012 | 0.5701 | | 0.0168 | 158.33 | 3800 | 1.5601 | 0.5919 | | 0.0151 | 162.5 | 3900 | 1.4891 | 0.5761 | | 0.0137 | 166.67 | 4000 | 1.4839 | 0.5800 | | 0.0143 | 170.83 | 4100 | 1.4826 | 0.5754 | | 0.0114 | 175.0 | 4200 | 1.4950 | 0.5708 | | 0.0092 | 179.17 | 4300 | 1.5008 | 0.5694 | | 0.0104 | 183.33 | 4400 | 1.4774 | 0.5728 | | 0.0096 | 187.5 | 4500 | 1.4948 | 0.5767 | | 0.0105 | 191.67 | 4600 | 1.4557 | 0.5694 | | 0.009 | 195.83 | 4700 | 1.4615 | 0.5628 | | 0.0081 | 200.0 | 4800 | 1.4638 | 0.5602 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
DrishtiSharma/wav2vec2-large-xls-r-300m-sat-a3
37c5eecf02a124f4c94d84de917483ec5b8a816b
2022-03-24T11:56:55.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "sat", "dataset:mozilla-foundation/common_voice_8_0", "transformers", "mozilla-foundation/common_voice_8_0", "generated_from_trainer", "robust-speech-event", "model_for_talk", "hf-asr-leaderboard", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
DrishtiSharma
null
DrishtiSharma/wav2vec2-large-xls-r-300m-sat-a3
1
null
transformers
27,940
--- language: - sat license: apache-2.0 tags: - automatic-speech-recognition - mozilla-foundation/common_voice_8_0 - generated_from_trainer - sat - robust-speech-event - model_for_talk - hf-asr-leaderboard datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: wav2vec2-large-xls-r-300m-sat-a3 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: sat metrics: - name: Test WER type: wer value: 0.357429718875502 - name: Test CER type: cer value: 0.14203730272596843 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: sat metrics: - name: Test WER type: wer value: NA - name: Test CER type: cer value: NA --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-sat-a3 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - SAT dataset. It achieves the following results on the evaluation set: - Loss: 0.8961 - Wer: 0.3976 ### Evaluation Commands 1. To evaluate on mozilla-foundation/common_voice_8_0 with test split python eval.py --model_id DrishtiSharma/wav2vec2-large-xls-r-300m-sat-a3 --dataset mozilla-foundation/common_voice_8_0 --config sat --split test --log_outputs 2. To evaluate on speech-recognition-community-v2/dev_data Note: Santali (Ol Chiki) language not found in speech-recognition-community-v2/dev_data ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0004 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 200 - num_epochs: 200 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:------:| | 11.1266 | 33.29 | 100 | 2.8577 | 1.0 | | 2.1549 | 66.57 | 200 | 1.0799 | 0.5542 | | 0.5628 | 99.86 | 300 | 0.7973 | 0.4016 | | 0.0779 | 133.29 | 400 | 0.8424 | 0.4177 | | 0.0404 | 166.57 | 500 | 0.9048 | 0.4137 | | 0.0212 | 199.86 | 600 | 0.8961 | 0.3976 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
DrishtiSharma/wav2vec2-large-xls-r-300m-sat-final
c7f3841f792b773082cc6efab26c5e3115054de2
2022-03-24T11:56:58.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "sat", "dataset:mozilla-foundation/common_voice_8_0", "transformers", "mozilla-foundation/common_voice_8_0", "generated_from_trainer", "robust-speech-event", "model_for_talk", "hf-asr-leaderboard", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
DrishtiSharma
null
DrishtiSharma/wav2vec2-large-xls-r-300m-sat-final
1
null
transformers
27,941
--- language: - sat license: apache-2.0 tags: - automatic-speech-recognition - mozilla-foundation/common_voice_8_0 - generated_from_trainer - sat - robust-speech-event - model_for_talk - hf-asr-leaderboard datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: wav2vec2-large-xls-r-300m-sat-final results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: sat metrics: - name: Test WER type: wer value: 0.3493975903614458 - name: Test CER type: cer value: 0.13773314203730272 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: sat metrics: - name: Test WER type: wer value: NA - name: Test CER type: cer value: NA --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-sat-final This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - SAT dataset. It achieves the following results on the evaluation set: - Loss: 0.8012 - Wer: 0.3815 ### Evaluation Commands 1. To evaluate on mozilla-foundation/common_voice_8_0 with test split python eval.py --model_id DrishtiSharma/wav2vec2-large-xls-r-300m-sat-final --dataset mozilla-foundation/common_voice_8_0 --config sat --split test --log_outputs 2. To evaluate on speech-recognition-community-v2/dev_data python eval.py --model_id DrishtiSharma/wav2vec2-large-xls-r-300m-sat-final --dataset speech-recognition-community-v2/dev_data --config sat --split validation --chunk_length_s 10 --stride_length_s 1 **Note: Santali (Ol Chiki) language not found in speech-recognition-community-v2/dev_data** ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0004 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 170 - num_epochs: 200 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:------:| | 10.6317 | 33.29 | 100 | 2.8629 | 1.0 | | 2.047 | 66.57 | 200 | 0.9516 | 0.5703 | | 0.4475 | 99.86 | 300 | 0.8539 | 0.3896 | | 0.0716 | 133.29 | 400 | 0.8277 | 0.3454 | | 0.047 | 166.57 | 500 | 0.7597 | 0.3655 | | 0.0249 | 199.86 | 600 | 0.8012 | 0.3815 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
DrishtiSharma/wav2vec2-large-xls-r-300m-sl-with-LM-v1
a374e82f687b503e02b49528b291c7bc934325b3
2022-03-23T18:35:19.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "sl", "dataset:mozilla-foundation/common_voice_8_0", "transformers", "generated_from_trainer", "hf-asr-leaderboard", "model_for_talk", "mozilla-foundation/common_voice_8_0", "robust-speech-event", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
DrishtiSharma
null
DrishtiSharma/wav2vec2-large-xls-r-300m-sl-with-LM-v1
1
null
transformers
27,942
--- language: - sl license: apache-2.0 tags: - automatic-speech-recognition - generated_from_trainer - hf-asr-leaderboard - model_for_talk - mozilla-foundation/common_voice_8_0 - robust-speech-event - sl datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: wav2vec2-large-xls-r-300m-sl-with-LM-v1 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: sl metrics: - name: Test WER type: wer value: 0.20626555409164105 - name: Test CER type: cer value: 0.051648321634392154 - name: Test WER (+LM) type: wer value: 0.13482652613087395 - name: Test CER (+LM) type: cer value: 0.038838663862562475 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: sl metrics: - name: Dev WER type: wer value: 0.5406156320830592 - name: Dev CER type: cer value: 0.22249723590310583 - name: Dev WER (+LM) type: wer value: 0.49783147459727384 - name: Dev CER (+LM) type: cer value: 0.1591062599627158 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: sl metrics: - name: Test WER type: wer value: 46.17 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - SL dataset. It achieves the following results on the evaluation set: - Loss: 0.2756 - Wer: 0.2279 ### Evaluation Commands 1. To evaluate on mozilla-foundation/common_voice_8_0 with test split python eval.py --model_id DrishtiSharma/wav2vec2-large-xls-r-300m-sl-with-LM-v1 --dataset mozilla-foundation/common_voice_8_0 --config sl --split test --log_outputs 2. To evaluate on speech-recognition-community-v2/dev_data python eval.py --model_id DrishtiSharma/wav2vec2-large-xls-r-300m-sl-with-LM-v1 --dataset speech-recognition-community-v2/dev_data --config sl --split validation --chunk_length_s 10 --stride_length_s 1 ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7.1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 100.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.3881 | 6.1 | 500 | 2.9710 | 1.0 | | 2.6401 | 12.2 | 1000 | 1.7677 | 0.9734 | | 1.5152 | 18.29 | 1500 | 0.5564 | 0.6011 | | 1.2191 | 24.39 | 2000 | 0.4319 | 0.4390 | | 1.0237 | 30.49 | 2500 | 0.3141 | 0.3175 | | 0.8892 | 36.59 | 3000 | 0.2748 | 0.2689 | | 0.8296 | 42.68 | 3500 | 0.2680 | 0.2534 | | 0.7602 | 48.78 | 4000 | 0.2820 | 0.2506 | | 0.7186 | 54.88 | 4500 | 0.2672 | 0.2398 | | 0.6887 | 60.98 | 5000 | 0.2729 | 0.2402 | | 0.6507 | 67.07 | 5500 | 0.2767 | 0.2361 | | 0.6226 | 73.17 | 6000 | 0.2817 | 0.2332 | | 0.6024 | 79.27 | 6500 | 0.2679 | 0.2279 | | 0.5787 | 85.37 | 7000 | 0.2837 | 0.2316 | | 0.5744 | 91.46 | 7500 | 0.2838 | 0.2284 | | 0.5556 | 97.56 | 8000 | 0.2763 | 0.2281 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2.dev0 - Tokenizers 0.11.0
DrishtiSharma/wav2vec2-large-xls-r-300m-sl-with-LM-v2
a60641c15fec9390c763597cd26259ad6433bc0b
2022-03-23T18:35:22.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "sl", "dataset:mozilla-foundation/common_voice_8_0", "transformers", "generated_from_trainer", "hf-asr-leaderboard", "model_for_talk", "mozilla-foundation/common_voice_8_0", "robust-speech-event", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
DrishtiSharma
null
DrishtiSharma/wav2vec2-large-xls-r-300m-sl-with-LM-v2
1
null
transformers
27,943
--- language: - sl license: apache-2.0 tags: - automatic-speech-recognition - generated_from_trainer - hf-asr-leaderboard - model_for_talk - mozilla-foundation/common_voice_8_0 - robust-speech-event - sl datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: wav2vec2-large-xls-r-300m-sl-with-LM-v2 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: sl metrics: - name: Test WER type: wer value: 0.21695212999560826 - name: Test CER type: cer value: 0.052850080572474256 - name: Test WER (+LM) type: wer value: 0.14551310203484116 - name: Test CER (+LM) type: cer value: 0.03927566711277415 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: sl metrics: - name: Dev WER type: wer value: 0.560722380639029 - name: Dev CER type: cer value: 0.2279626093074681 - name: Dev WER (+LM) type: wer value: 0.46486802661402354 - name: Dev CER (+LM) type: cer value: 0.21105136194592422 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: sl metrics: - name: Test WER type: wer value: 46.69 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - SL dataset. It achieves the following results on the evaluation set: - Loss: 0.2855 - Wer: 0.2401 ### Evaluation Commands 1. To evaluate on mozilla-foundation/common_voice_8_0 with test split python eval.py --model_id DrishtiSharma/wav2vec2-large-xls-r-300m-sl-with-LM-v2 --dataset mozilla-foundation/common_voice_8_0 --config sl --split test --log_outputs 2. To evaluate on speech-recognition-community-v2/dev_data python eval.py --model_id DrishtiSharma/wav2vec2-large-xls-r-300m-sl-with-LM-v2 --dataset speech-recognition-community-v2/dev_data --config sl --split validation --chunk_length_s 10 --stride_length_s 1 ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 100.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 6.9294 | 6.1 | 500 | 2.9712 | 1.0 | | 2.8305 | 12.2 | 1000 | 1.7073 | 0.9479 | | 1.4795 | 18.29 | 1500 | 0.5756 | 0.6397 | | 1.3433 | 24.39 | 2000 | 0.4968 | 0.5424 | | 1.1766 | 30.49 | 2500 | 0.4185 | 0.4743 | | 1.0017 | 36.59 | 3000 | 0.3303 | 0.3578 | | 0.9358 | 42.68 | 3500 | 0.3003 | 0.3051 | | 0.8358 | 48.78 | 4000 | 0.3045 | 0.2884 | | 0.7647 | 54.88 | 4500 | 0.2866 | 0.2677 | | 0.7482 | 60.98 | 5000 | 0.2829 | 0.2585 | | 0.6943 | 67.07 | 5500 | 0.2782 | 0.2478 | | 0.6586 | 73.17 | 6000 | 0.2911 | 0.2537 | | 0.6425 | 79.27 | 6500 | 0.2817 | 0.2462 | | 0.6067 | 85.37 | 7000 | 0.2910 | 0.2436 | | 0.5974 | 91.46 | 7500 | 0.2875 | 0.2430 | | 0.5812 | 97.56 | 8000 | 0.2852 | 0.2396 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2.dev0 - Tokenizers 0.11.0
DrishtiSharma/wav2vec2-large-xls-r-300m-sr-v20
65fe3279f05bdef2755eb9993b8b1135895b8e78
2022-03-24T11:54:50.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "sr", "dataset:mozilla-foundation/common_voice_8_0", "transformers", "mozilla-foundation/common_voice_8_0", "generated_from_trainer", "robust-speech-event", "model_for_talk", "hf-asr-leaderboard", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
DrishtiSharma
null
DrishtiSharma/wav2vec2-large-xls-r-300m-sr-v20
1
null
transformers
27,944
--- language: - sr license: apache-2.0 tags: - automatic-speech-recognition - mozilla-foundation/common_voice_8_0 - generated_from_trainer - sr - robust-speech-event - model_for_talk - hf-asr-leaderboard datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: wav2vec2-large-xls-r-300m-sr-v20 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: sr metrics: - name: Test WER type: wer value: 0.3313112459169389 - name: Test CER type: cer value: 0.11472902097902098 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: sl metrics: - name: Test WER type: wer value: 0.953810623556582 - name: Test CER type: cer value: 0.8068880824888259 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: sr metrics: - name: Test WER type: wer value: 95.38 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: sr metrics: - name: Test WER type: wer value: 95.14 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-sr-v20 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - SR dataset. It achieves the following results on the evaluation set: - Loss: 0.6695 - Wer: 0.3355 ### Evaluation Commands 1. To evaluate on mozilla-foundation/common_voice_8_0 with test split python eval.py --model_id DrishtiSharma/wav2vec2-large-xls-r-300m-sr-v20 --dataset mozilla-foundation/common_voice_8_0 --config sr --split test --log_outputs 2. To evaluate on speech-recognition-community-v2/dev_data python eval.py --model_id DrishtiSharma/wav2vec2-large-xls-r-300m-sr-v20 --dataset speech-recognition-community-v2/dev_data --config sr --split validation --chunk_length_s 10 --stride_length_s 1 ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 800 - num_epochs: 200 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 8.2198 | 7.5 | 300 | 2.9960 | 1.0 | | 2.0533 | 15.0 | 600 | 0.6508 | 0.6314 | | 0.4176 | 22.5 | 900 | 0.5726 | 0.5170 | | 0.2327 | 30.0 | 1200 | 0.5771 | 0.5296 | | 0.1723 | 37.5 | 1500 | 0.5508 | 0.4377 | | 0.1226 | 45.0 | 1800 | 0.6567 | 0.4363 | | 0.1101 | 52.5 | 2100 | 0.5819 | 0.4452 | | 0.0934 | 60.0 | 2400 | 0.6449 | 0.4354 | | 0.0752 | 67.5 | 2700 | 0.5584 | 0.4162 | | 0.0645 | 75.0 | 3000 | 0.6289 | 0.4162 | | 0.0539 | 82.5 | 3300 | 0.6153 | 0.4232 | | 0.0482 | 90.0 | 3600 | 0.6772 | 0.4811 | | 0.0441 | 97.5 | 3900 | 0.6156 | 0.4582 | | 0.0403 | 105.0 | 4200 | 0.6077 | 0.3971 | | 0.0371 | 112.5 | 4500 | 0.7354 | 0.4148 | | 0.0279 | 120.0 | 4800 | 0.6316 | 0.3598 | | 0.0198 | 127.5 | 5100 | 0.6615 | 0.3626 | | 0.0185 | 135.0 | 5400 | 0.6914 | 0.3658 | | 0.0183 | 142.5 | 5700 | 0.7087 | 0.3742 | | 0.0154 | 150.0 | 6000 | 0.6930 | 0.3542 | | 0.0143 | 157.5 | 6300 | 0.6787 | 0.3383 | | 0.0118 | 165.0 | 6600 | 0.6347 | 0.3476 | | 0.0101 | 172.5 | 6900 | 0.6235 | 0.3434 | | 0.0103 | 180.0 | 7200 | 0.6078 | 0.3434 | | 0.0063 | 187.5 | 7500 | 0.6740 | 0.3411 | | 0.0057 | 195.0 | 7800 | 0.6695 | 0.3355 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
DrishtiSharma/wav2vec2-large-xls-r-300m-sr-v4
1ca06a64973861a02dcb7a6671ebfc1c56a105ba
2022-03-23T18:35:24.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "sr", "dataset:mozilla-foundation/common_voice_8_0", "transformers", "generated_from_trainer", "hf-asr-leaderboard", "model_for_talk", "mozilla-foundation/common_voice_8_0", "robust-speech-event", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
DrishtiSharma
null
DrishtiSharma/wav2vec2-large-xls-r-300m-sr-v4
1
null
transformers
27,945
--- language: - sr license: apache-2.0 tags: - automatic-speech-recognition - generated_from_trainer - hf-asr-leaderboard - model_for_talk - mozilla-foundation/common_voice_8_0 - robust-speech-event - sr datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: wav2vec2-large-xls-r-300m-sr-v4 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: sr metrics: - name: Test WER type: wer value: 0.303313 - name: Test CER type: cer value: 0.1048951 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: sr metrics: - name: Test WER type: wer value: 0.9486784706184245 - name: Test CER type: cer value: 0.8084369606584945 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: sr metrics: - name: Test WER type: wer value: 94.53 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-sr-v4 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - SR dataset. It achieves the following results on the evaluation set: - Loss: 0.5570 - Wer: 0.3038 ### Evaluation Commands 1. To evaluate on mozilla-foundation/common_voice_8_0 with test split python eval.py --model_id DrishtiSharma/wav2vec2-large-xls-r-300m-sr-v4 --dataset mozilla-foundation/common_voice_8_0 --config sr --split test --log_outputs 2. To evaluate on speech-recognition-community-v2/dev_data python eval.py --model_id DrishtiSharma/wav2vec2-large-xls-r-300m-sr-v4 --dataset speech-recognition-community-v2/dev_data --config sr --split validation --chunk_length_s 10 --stride_length_s 1 ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 800 - num_epochs: 200 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 8.2934 | 7.5 | 300 | 2.9777 | 0.9995 | | 1.5049 | 15.0 | 600 | 0.5036 | 0.4806 | | 0.3263 | 22.5 | 900 | 0.5822 | 0.4055 | | 0.2008 | 30.0 | 1200 | 0.5609 | 0.4032 | | 0.1543 | 37.5 | 1500 | 0.5203 | 0.3710 | | 0.1158 | 45.0 | 1800 | 0.6458 | 0.3985 | | 0.0997 | 52.5 | 2100 | 0.6227 | 0.4013 | | 0.0834 | 60.0 | 2400 | 0.6048 | 0.3836 | | 0.0665 | 67.5 | 2700 | 0.6197 | 0.3686 | | 0.0602 | 75.0 | 3000 | 0.5418 | 0.3453 | | 0.0524 | 82.5 | 3300 | 0.5310 | 0.3486 | | 0.0445 | 90.0 | 3600 | 0.5599 | 0.3374 | | 0.0406 | 97.5 | 3900 | 0.5958 | 0.3327 | | 0.0358 | 105.0 | 4200 | 0.6017 | 0.3262 | | 0.0302 | 112.5 | 4500 | 0.5613 | 0.3248 | | 0.0285 | 120.0 | 4800 | 0.5659 | 0.3462 | | 0.0213 | 127.5 | 5100 | 0.5568 | 0.3206 | | 0.0215 | 135.0 | 5400 | 0.6524 | 0.3472 | | 0.0162 | 142.5 | 5700 | 0.6223 | 0.3458 | | 0.0137 | 150.0 | 6000 | 0.6625 | 0.3313 | | 0.0114 | 157.5 | 6300 | 0.5739 | 0.3336 | | 0.0101 | 165.0 | 6600 | 0.5906 | 0.3285 | | 0.008 | 172.5 | 6900 | 0.5982 | 0.3112 | | 0.0076 | 180.0 | 7200 | 0.5399 | 0.3094 | | 0.0071 | 187.5 | 7500 | 0.5387 | 0.2991 | | 0.0057 | 195.0 | 7800 | 0.5570 | 0.3038 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.2 - Tokenizers 0.11.0
DrishtiSharma/wav2vec2-large-xls-r-300m-vot-final-a2
40ea91a10a7c3ed8c40cef54dcabe4b5473126e4
2022-03-24T11:57:00.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "vot", "dataset:mozilla-foundation/common_voice_8_0", "transformers", "mozilla-foundation/common_voice_8_0", "robust-speech-event", "hf-asr-leaderboard", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
DrishtiSharma
null
DrishtiSharma/wav2vec2-large-xls-r-300m-vot-final-a2
1
null
transformers
27,946
--- language: - vot license: apache-2.0 tags: - automatic-speech-recognition - mozilla-foundation/common_voice_8_0 - vot - robust-speech-event - hf-asr-leaderboard datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: wav2vec2-large-xls-r-300m-vot-final-a2 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: vot metrics: - name: Test WER type: wer value: 0.8333333333333334 - name: Test CER type: cer value: 0.48672566371681414 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: vot metrics: - name: Test WER type: wer value: NA - name: Test CER type: cer value: NA --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-vot-final-a2 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - VOT dataset. It achieves the following results on the evaluation set: - Loss: 2.8745 - Wer: 0.8333 ### Evaluation Commands 1. To evaluate on mozilla-foundation/common_voice_8_0 with test split python eval.py --model_id DrishtiSharma/wav2vec2-large-xls-r-300m-vot-final-a2 --dataset mozilla-foundation/common_voice_8_0 --config vot --split test --log_outputs 2. To evaluate on speech-recognition-community-v2/dev_data Votic language isn't available in speech-recognition-community-v2/dev_data ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0004 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 340 - num_epochs: 200 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:------:| | 11.1216 | 33.33 | 100 | 4.2848 | 1.0 | | 2.9982 | 66.67 | 200 | 2.8665 | 1.0 | | 1.5476 | 100.0 | 300 | 2.3022 | 0.8889 | | 0.2776 | 133.33 | 400 | 2.7480 | 0.8889 | | 0.1136 | 166.67 | 500 | 2.5383 | 0.8889 | | 0.0489 | 200.0 | 600 | 2.8745 | 0.8333 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
DueLinx0402/DialoGPT-small-harrypotter
822dcfa71868992db9a939f10d9e1c74e0d91d9d
2021-09-14T13:31:42.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
DueLinx0402
null
DueLinx0402/DialoGPT-small-harrypotter
1
null
transformers
27,947
--- tags: - conversational --- # Harry Potter DialoGPT Model
Dumiiii/wav2vec2-xls-r-300m-romanian
a8857e4671dc5e1eab487a6c2caa9cf63b2a2d8a
2022-01-17T13:34:59.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
Dumiiii
null
Dumiiii/wav2vec2-xls-r-300m-romanian
1
null
transformers
27,948
--- license: apache-2.0 tags: - generated_from_trainer model-index: name: wav2vec2-xls-r-300m-romanian --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> ## This model achieves WER on common-voice ro test split of WER: 12.457178% # wav2vec2-xls-r-300m-romanian This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on an common voice ro and RSS dataset. It achieves the following results on the evaluation set: - eval_loss: 0.0836 - eval_wer: 0.0705 - eval_runtime: 160.4549 - eval_samples_per_second: 11.081 - eval_steps_per_second: 1.39 - epoch: 14.38 - step: 2703 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 50 - num_epochs: 15 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.13.3 - Tokenizers 0.10.3 Used the following code for evaluation: ``` import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re test_dataset = load_dataset("common_voice", "ro", split="test") wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("Dumiiii/wav2vec2-xls-r-300m-romanian") model = Wav2Vec2ForCTC.from_pretrained("Dumiiii/wav2vec2-xls-r-300m-romanian") model.to("cuda") chars_to_ignore_regex = '['+string.punctuation+']' resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the aduio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ``` Credits for evaluation: https://huggingface.co/anton-l
Eagle3ye/DialoGPT-small-PeppaPig
9d5c9a5d1a24e96828b9e76372fce5e7c443648f
2021-08-27T15:03:14.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
Eagle3ye
null
Eagle3ye/DialoGPT-small-PeppaPig
1
null
transformers
27,949
--- tags: - conversational --- # Peppa Pig DialoGPT Model
Ebtihal/AraBertMo_base_V1
b2d6d27bb62d83e27190a814df0a0caab0a69552
2022-03-15T19:14:23.000Z
[ "pytorch", "bert", "fill-mask", "ar", "dataset:OSCAR", "transformers", "Fill-Mask", "autotrain_compatible" ]
fill-mask
false
Ebtihal
null
Ebtihal/AraBertMo_base_V1
1
null
transformers
27,950
--- language: ar tags: Fill-Mask datasets: OSCAR widget: - text: " السلام عليكم ورحمة[MASK] وبركاتة" - text: " اهلا وسهلا بكم في [MASK] من سيربح المليون" - text: " مرحبا بك عزيزي الزائر [MASK] موقعنا " --- # Arabic BERT Model **AraBERTMo** is an Arabic pre-trained language model based on [Google's BERT architechture](https://github.com/google-research/bert). AraBERTMo_base uses the same BERT-Base config. AraBERTMo_base now comes in 10 new variants All models are available on the `HuggingFace` model page under the [Ebtihal](https://huggingface.co/Ebtihal/) name. Checkpoints are available in PyTorch formats. ## Pretraining Corpus `AraBertMo_base_V1' model was pre-trained on ~3 million words: - [OSCAR](https://traces1.inria.fr/oscar/) - Arabic version "unshuffled_deduplicated_ar". ## Training results this model achieves the following results: | Task | Num examples | Num Epochs | Batch Size | steps | Wall time | training loss| |:----:|:----:|:----:|:----:|:-----:|:----:|:-----:| | Fill-Mask| 10010| 1 | 64 | 157 | 2m 2s | 9.0183 | ## Load Pretrained Model You can use this model by installing `torch` or `tensorflow` and Huggingface library `transformers`. And you can use it directly by initializing it like this: ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("Ebtihal/AraBertMo_base_V1") model = AutoModelForMaskedLM.from_pretrained("Ebtihal/AraBertMo_base_V1") ``` ## This model was built for master's degree research in an organization: - [University of kufa](https://uokufa.edu.iq/). - [Faculty of Computer Science and Mathematics](https://mathcomp.uokufa.edu.iq/). - **Department of Computer Science**
Ebtihal/AraBertMo_base_V2
0654a3cfaa744225e51134c23f298125112cd1cb
2022-03-15T19:14:01.000Z
[ "pytorch", "bert", "fill-mask", "ar", "dataset:OSCAR", "transformers", "Fill-Mask", "autotrain_compatible" ]
fill-mask
false
Ebtihal
null
Ebtihal/AraBertMo_base_V2
1
null
transformers
27,951
--- language: ar tags: Fill-Mask datasets: OSCAR widget: - text: " السلام عليكم ورحمة[MASK] وبركاتة" - text: " اهلا وسهلا بكم في [MASK] من سيربح المليون" - text: " مرحبا بك عزيزي الزائر [MASK] موقعنا " --- # Arabic BERT Model **AraBERTMo** is an Arabic pre-trained language model based on [Google's BERT architechture](https://github.com/google-research/bert). AraBERTMo_base uses the same BERT-Base config. AraBERTMo_base now comes in 10 new variants All models are available on the `HuggingFace` model page under the [Ebtihal](https://huggingface.co/Ebtihal/) name. Checkpoints are available in PyTorch formats. ## Pretraining Corpus `AraBertMo_base_V2' model was pre-trained on ~3 million words: - [OSCAR](https://traces1.inria.fr/oscar/) - Arabic version "unshuffled_deduplicated_ar". ## Training results this model achieves the following results: | Task | Num examples | Num Epochs | Batch Size | steps | Wall time | training loss| |:----:|:----:|:----:|:----:|:-----:|:----:|:-----:| | Fill-Mask| 20020| 2 | 64 | 626 | 19m 2s | 8.437 | ## Load Pretrained Model You can use this model by installing `torch` or `tensorflow` and Huggingface library `transformers`. And you can use it directly by initializing it like this: ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("Ebtihal/AraBertMo_base_V2") model = AutoModelForMaskedLM.from_pretrained("Ebtihal/AraBertMo_base_V2") ``` ## This model was built for master's degree research in an organization: - [University of kufa](https://uokufa.edu.iq/). - [Faculty of Computer Science and Mathematics](https://mathcomp.uokufa.edu.iq/). - **Department of Computer Science**
Ebtihal/AraBertMo_base_V5
b2a00bce8f0934f717cd4de2290041390f0a9c96
2022-03-15T19:12:59.000Z
[ "pytorch", "bert", "fill-mask", "ar", "dataset:OSCAR", "transformers", "Fill-Mask", "autotrain_compatible" ]
fill-mask
false
Ebtihal
null
Ebtihal/AraBertMo_base_V5
1
null
transformers
27,952
--- language: ar tags: Fill-Mask datasets: OSCAR widget: - text: " السلام عليكم ورحمة[MASK] وبركاتة" - text: " اهلا وسهلا بكم في [MASK] من سيربح المليون" - text: " مرحبا بك عزيزي الزائر [MASK] موقعنا " --- # Arabic BERT Model **AraBERTMo** is an Arabic pre-trained language model based on [Google's BERT architechture](https://github.com/google-research/bert). AraBERTMo_base uses the same BERT-Base config. AraBERTMo_base now comes in 10 new variants All models are available on the `HuggingFace` model page under the [Ebtihal](https://huggingface.co/Ebtihal/) name. Checkpoints are available in PyTorch formats. ## Pretraining Corpus `AraBertMo_base_V5' model was pre-trained on ~3 million words: - [OSCAR](https://traces1.inria.fr/oscar/) - Arabic version "unshuffled_deduplicated_ar". ## Training results this model achieves the following results: | Task | Num examples | Num Epochs | Batch Size | steps | Wall time | training loss| |:----:|:----:|:----:|:----:|:-----:|:----:|:-----:| | Fill-Mask| 50046| 5 | 64 | 3910 | 6h 49m 59s | 7.4599 | ## Load Pretrained Model You can use this model by installing `torch` or `tensorflow` and Huggingface library `transformers`. And you can use it directly by initializing it like this: ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("Ebtihal/AraBertMo_base_V5") model = AutoModelForMaskedLM.from_pretrained("Ebtihal/AraBertMo_base_V5") ``` ## This model was built for master's degree research in an organization: - [University of kufa](https://uokufa.edu.iq/). - [Faculty of Computer Science and Mathematics](https://mathcomp.uokufa.edu.iq/). - **Department of Computer Science**
Ebtihal/AraDiaBERT
14650766a8cf1ecc31d75f0aea1167c0d75daf86
2021-07-26T14:38:29.000Z
[ "pytorch", "bert", "text-generation", "transformers" ]
text-generation
false
Ebtihal
null
Ebtihal/AraDiaBERT
1
null
transformers
27,953
Entry not found
Ebtihal/AraDiaBERTo
d42d0189866f4ec6a1ec83e7b8ca965c8e1ae678
2021-09-16T16:45:45.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
Ebtihal
null
Ebtihal/AraDiaBERTo
1
null
transformers
27,954
Entry not found
Ebtihal/AraDiaBERTo_V2
4329e3cfbdcb22415f451ca7c9ea8fa17ed9ab06
2021-09-28T15:45:41.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
Ebtihal
null
Ebtihal/AraDiaBERTo_V2
1
null
transformers
27,955
Entry not found
Ebtihal/EsperBERTo
65b6c1eb70c5406fb5c6e45a423d5c26d9804017
2021-07-06T19:17:37.000Z
[ "pytorch", "roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
Ebtihal
null
Ebtihal/EsperBERTo
1
null
transformers
27,956
Entry not found
Ebtihal/bert-ar
1def53c6b8cb0bf614073fa20794cf56be8e5b35
2021-09-30T22:05:15.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
Ebtihal
null
Ebtihal/bert-ar
1
null
transformers
27,957
Entry not found
Ebtihal/bert-en
88b3cb950026a4b308aa3ba1a616e47c17f36b72
2021-11-02T19:35:55.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
Ebtihal
null
Ebtihal/bert-en
1
null
transformers
27,958
Entry not found
Edaiplay/edaiplay-t5model
4a82139a9d8a2aaeb8e5c5be905ec25047f52a34
2021-09-16T14:36:45.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
Edaiplay
null
Edaiplay/edaiplay-t5model
1
1
transformers
27,959
Entry not found
Edomonndo/opus-mt-en-ro-finetuned-en-to-ro
a56c9164886ed5ccb8fc07e8f26a9cc58f70c4ed
2021-07-27T05:34:02.000Z
[ "pytorch", "tensorboard", "marian", "text2text-generation", "dataset:wmt16", "transformers", "generated_from_trainer", "autotrain_compatible" ]
text2text-generation
false
Edomonndo
null
Edomonndo/opus-mt-en-ro-finetuned-en-to-ro
1
null
transformers
27,960
--- tags: - generated_from_trainer datasets: - wmt16 metrics: - bleu model_index: - name: opus-mt-en-ro-finetuned-en-to-ro results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: wmt16 type: wmt16 args: ro-en metric: name: Bleu type: bleu value: 28.1641 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # opus-mt-en-ro-finetuned-en-to-ro This model is a fine-tuned version of [Helsinki-NLP/opus-mt-en-ro](https://huggingface.co/Helsinki-NLP/opus-mt-en-ro) on the wmt16 dataset. It achieves the following results on the evaluation set: - Loss: 1.2886 - Bleu: 28.1641 - Gen Len: 34.1071 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:| | 0.7436 | 1.0 | 38145 | 1.2886 | 28.1641 | 34.1071 | ### Framework versions - Transformers 4.9.1 - Pytorch 1.9.0+cu102 - Datasets 1.10.2 - Tokenizers 0.10.3
Edomonndo/opus-mt-ja-en-finetuned-ja-to-en_xml
00baf107e2e3119e93644934df231d6184de4d37
2021-12-04T10:23:03.000Z
[ "pytorch", "tensorboard", "marian", "text2text-generation", "transformers", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible" ]
text2text-generation
false
Edomonndo
null
Edomonndo/opus-mt-ja-en-finetuned-ja-to-en_xml
1
null
transformers
27,961
--- license: apache-2.0 tags: - generated_from_trainer metrics: - bleu model_index: - name: opus-mt-ja-en-finetuned-ja-to-en_xml results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation metric: name: Bleu type: bleu value: 73.8646 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # opus-mt-ja-en-finetuned-ja-to-en_xml This model is a fine-tuned version of [Helsinki-NLP/opus-mt-ja-en](https://huggingface.co/Helsinki-NLP/opus-mt-ja-en) on an unkown dataset. It achieves the following results on the evaluation set: - Loss: 0.7520 - Bleu: 73.8646 - Gen Len: 27.0884 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:| | 1.0512 | 1.0 | 748 | 0.8333 | 59.8234 | 27.905 | | 0.6076 | 2.0 | 1496 | 0.7817 | 62.5606 | 26.1834 | | 0.4174 | 3.0 | 2244 | 0.7817 | 64.8346 | 28.2918 | | 0.2971 | 4.0 | 2992 | 0.7653 | 67.6013 | 27.2222 | | 0.2172 | 5.0 | 3740 | 0.7295 | 69.4017 | 27.0174 | | 0.1447 | 6.0 | 4488 | 0.7522 | 68.8355 | 28.2865 | | 0.0953 | 7.0 | 5236 | 0.7596 | 71.4743 | 27.1861 | | 0.0577 | 8.0 | 5984 | 0.7469 | 72.0684 | 26.921 | | 0.04 | 9.0 | 6732 | 0.7526 | 73.2821 | 27.1365 | | 0.0213 | 10.0 | 7480 | 0.7520 | 73.8646 | 27.0884 | ### Framework versions - Transformers 4.9.1 - Pytorch 1.10.0+cu111 - Datasets 1.10.2 - Tokenizers 0.10.3
EhsanAghazadeh/electra-base-random-weights
3309752aa61ef2b6d0a4f8f50d6a6b28219dee92
2021-09-04T20:29:50.000Z
[ "pytorch", "electra", "feature-extraction", "transformers" ]
feature-extraction
false
EhsanAghazadeh
null
EhsanAghazadeh/electra-base-random-weights
1
null
transformers
27,962
Entry not found
EhsanAghazadeh/roberta-base-random-weights
8b5969b19f4c031cf55b8dc99ed6fe10595ef7f3
2021-09-04T20:27:13.000Z
[ "pytorch", "roberta", "feature-extraction", "transformers" ]
feature-extraction
false
EhsanAghazadeh
null
EhsanAghazadeh/roberta-base-random-weights
1
null
transformers
27,963
Entry not found
Elbe/RoBERTaforIns
fcdbdbf8e21c4f52fa2c0645bb4e323cbeb0601b
2021-05-20T11:47:50.000Z
[ "pytorch", "jax", "roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
Elbe
null
Elbe/RoBERTaforIns
1
null
transformers
27,964
Entry not found
Elzen7/DialoGPT-medium-harrypotter
840c6f973ad0398b2c6308150baca7a4036923ce
2021-10-19T07:54:41.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
Elzen7
null
Elzen7/DialoGPT-medium-harrypotter
1
null
transformers
27,965
--- tags: - conversational --- # Harry Potter DialoGPT Model
Emanuel/roebrta-base-val-test
ebaec6c4ae89212cd7c1e5c449813f9182f1943a
2022-01-23T15:12:04.000Z
[ "pytorch", "roberta", "fill-mask", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
fill-mask
false
Emanuel
null
Emanuel/roebrta-base-val-test
1
null
transformers
27,966
--- license: mit tags: - generated_from_trainer model-index: - name: language-modeling results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # language-modeling This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.4229 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - distributed_type: tpu - num_devices: 8 - total_train_batch_size: 64 - total_eval_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.8.1+cu102 - Datasets 1.13.3 - Tokenizers 0.10.3
Eunooeh/mnmt_gpt2
5a343a5698e45baa08e0035785012e00e7329cdf
2021-12-13T02:53:13.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
Eunooeh
null
Eunooeh/mnmt_gpt2
1
null
transformers
27,967
Entry not found
ExEngineer/DialoGPT-medium-jdt
ad9147bf49b03f675b760c79ec1b32202e6f0784
2022-01-13T17:40:04.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
ExEngineer
null
ExEngineer/DialoGPT-medium-jdt
1
null
transformers
27,968
--- tags: - conversational --- #jdt chat bot
Eyvaz/wav2vec2-base-russian-demo-kaggle
53e29aa33d4adb96c21ddba943b2ab664c890a7f
2021-12-04T11:00:23.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
Eyvaz
null
Eyvaz/wav2vec2-base-russian-demo-kaggle
1
1
transformers
27,969
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base-russian-demo-kaggle results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-russian-demo-kaggle This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: inf - Wer: 0.9997 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 12 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 24 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 0.0102 | 1.03 | 500 | inf | 0.9997 | | 0.0068 | 2.06 | 1000 | inf | 0.9997 | | 0.0 | 3.09 | 1500 | inf | 0.9997 | | 0.0313 | 4.12 | 2000 | inf | 0.9997 | | 0.0 | 5.15 | 2500 | inf | 0.9997 | | 0.0052 | 6.19 | 3000 | inf | 0.9997 | | 0.0287 | 7.22 | 3500 | inf | 0.9997 | | 0.0 | 8.25 | 4000 | inf | 0.9997 | | 0.01 | 9.28 | 4500 | inf | 0.9997 | | 0.0 | 10.31 | 5000 | inf | 0.9997 | | 0.3919 | 11.34 | 5500 | inf | 0.9997 | | 0.0 | 12.37 | 6000 | inf | 0.9997 | | 0.0 | 13.4 | 6500 | inf | 0.9997 | | 0.0 | 14.43 | 7000 | inf | 0.9997 | | 0.6422 | 15.46 | 7500 | inf | 0.9997 | | 0.0 | 16.49 | 8000 | inf | 0.9997 | | 0.0 | 17.53 | 8500 | inf | 0.9997 | | 0.0 | 18.56 | 9000 | inf | 0.9997 | | 0.0 | 19.59 | 9500 | inf | 0.9997 | | 0.0 | 20.62 | 10000 | inf | 0.9997 | | 0.0427 | 21.65 | 10500 | inf | 0.9997 | | 0.0 | 22.68 | 11000 | inf | 0.9997 | | 0.0 | 23.71 | 11500 | inf | 0.9997 | | 0.0 | 24.74 | 12000 | inf | 0.9997 | | 0.0091 | 25.77 | 12500 | inf | 0.9997 | | 0.1243 | 26.8 | 13000 | inf | 0.9997 | | 0.0 | 27.83 | 13500 | inf | 0.9997 | | 0.0 | 28.87 | 14000 | inf | 0.9997 | | 0.0 | 29.9 | 14500 | inf | 0.9997 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.9.1 - Datasets 1.13.3 - Tokenizers 0.10.3
Eyvaz/wav2vec2-base-russian-modified-kaggle
ef5ef6096c788bbf43851072fc38af0f57b37018
2021-12-17T18:39:50.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
Eyvaz
null
Eyvaz/wav2vec2-base-russian-modified-kaggle
1
1
transformers
27,970
--- license: apache-2.0 tags: - generated_from_trainer model-index: name: wav2vec2-base-russian-modified-kaggle --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-russian-modified-kaggle This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 12 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 24 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.11.3 - Pytorch 1.9.1 - Datasets 1.13.3 - Tokenizers 0.10.3
FAN-L/HM_model001
b73f62cd4cc156f8be3cb699f2c4b35a0344ada8
2021-11-02T04:23:58.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
FAN-L
null
FAN-L/HM_model001
1
null
transformers
27,971
Entry not found
FabianGroeger/HotelBERT-small
367aa3d306b5ddff5e119e1b88fe8e378f178de3
2021-11-18T05:39:47.000Z
[ "pytorch", "tf", "roberta", "fill-mask", "de", "transformers", "autotrain_compatible" ]
fill-mask
false
FabianGroeger
null
FabianGroeger/HotelBERT-small
1
null
transformers
27,972
--- language: de widget: - text: "Das <mask> hat sich toll um uns gekümmert." --- # HotelBERT-small This model was trained on reviews from a well known German hotel platform.
FarisHijazi/wav2vec2-large-xls-r-300m-arabic-colab
9de71c98aa627c5a54c6b1dcc166988da91f533b
2021-12-19T02:47:17.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
FarisHijazi
null
FarisHijazi/wav2vec2-large-xls-r-300m-arabic-colab
1
null
transformers
27,973
Entry not found
Fidlobabovic/beta-kvantorium-simple-small
662e1bb4d63069b4d2cb9a953611d8fa54ecd8e7
2021-05-20T11:50:06.000Z
[ "pytorch", "jax", "roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
Fidlobabovic
null
Fidlobabovic/beta-kvantorium-simple-small
1
null
transformers
27,974
Beta-kavntorium-simple-small is a transformers model RoBerta pretrained on a large corpus of Russion kvantorim data in a self-supervised fashion. This means it was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots of publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, it was pretrained with objective: Automate communication with the Quantorium community and mentors.
FirmanBr/chibibot
5995b8e752438fa06c00340bcece414f3f81900b
2021-05-18T18:39:06.000Z
[ "pytorch", "jax", "bert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
FirmanBr
null
FirmanBr/chibibot
1
null
transformers
27,975
Entry not found
FitoDS/wav2vec2-large-xls-r-300m-guarani-colab
25203e060e87b0c9eff8ae153bb4d1a1dbceb0aa
2022-01-28T16:22:06.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
FitoDS
null
FitoDS/wav2vec2-large-xls-r-300m-guarani-colab
1
null
transformers
27,976
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-large-xls-r-300m-guarani-colab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-guarani-colab This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.2392 - Wer: 1.0743 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 100 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 18.2131 | 49.94 | 400 | 3.2901 | 1.0 | | 2.0496 | 99.94 | 800 | 3.2392 | 1.0743 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.17.1.dev0 - Tokenizers 0.11.0
Flampt/DialoGPT-medium-Sheldon
424d62c7b7f1cc602c38aa1a0303cc5ee08e3137
2021-08-28T14:17:44.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
Flampt
null
Flampt/DialoGPT-medium-Sheldon
1
null
transformers
27,977
--- tags: - conversational --- # Sheldon Cooper from The Big Bang Theory Show DialoGPT Model
Francesco/dummy
31afef9d94e18b3c2c3ba1e3f586e71750c56b93
2021-04-09T14:53:50.000Z
[ "pytorch", "transformers" ]
null
false
Francesco
null
Francesco/dummy
1
null
transformers
27,978
Entry not found
Francesco/resnet152-224-1k
9e19bd89fe359caaa18146108dc193c8fb894d7a
2022-02-23T11:53:02.000Z
[ "pytorch", "resnet", "image-classification", "transformers" ]
image-classification
false
Francesco
null
Francesco/resnet152-224-1k
1
null
transformers
27,979
Entry not found
Francesco/resnet18-224-1k
0b691e7f254db5b1a35788b2722c72e4fbe48820
2022-02-23T11:49:32.000Z
[ "pytorch", "resnet", "image-classification", "transformers" ]
image-classification
false
Francesco
null
Francesco/resnet18-224-1k
1
null
transformers
27,980
Entry not found
Francesco/resnet34-224-1k
6ca0fcd4f17c3ab2f13106c01fafd76e219a8817
2022-02-23T11:50:32.000Z
[ "pytorch", "resnet", "image-classification", "transformers" ]
image-classification
false
Francesco
null
Francesco/resnet34-224-1k
1
null
transformers
27,981
Entry not found
Francesco/resnet50-224-1k
5e8fd13e66c63caadd8f7acabe4a84252999dc51
2022-02-23T11:51:05.000Z
[ "pytorch", "resnet", "image-classification", "transformers" ]
image-classification
false
Francesco
null
Francesco/resnet50-224-1k
1
null
transformers
27,982
Entry not found
GKLMIP/electra-tagalog-base-uncased
19124b0217c2e8a08b6d0729f612603dedd84e34
2021-07-31T02:14:00.000Z
[ "pytorch", "electra", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
GKLMIP
null
GKLMIP/electra-tagalog-base-uncased
1
null
transformers
27,983
https://github.com/GKLMIP/Pretrained-Models-For-Tagalog If you use our model, please consider citing our paper: ``` @InProceedings{, author="Jiang, Shengyi and Fu, Yingwen and Lin, Xiaotian and Lin, Nankai", title="Pre-trained Language models for Tagalog with Multi-source data", booktitle="Natural Language Processing and Chinese Computing", year="2021", publisher="Springer International Publishing", address="Cham", } ```
GPL/bioasq-1m-msmarco-distilbert-gpl
92084c813b36ebb8637dbd8a4b70efff5fa2b823
2022-04-19T15:18:19.000Z
[ "pytorch", "distilbert", "feature-extraction", "sentence-transformers", "sentence-similarity", "transformers" ]
sentence-similarity
false
GPL
null
GPL/bioasq-1m-msmarco-distilbert-gpl
1
null
sentence-transformers
27,984
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 140000 with parameters: ``` {'batch_size': 32, 'sampler': 'torch.utils.data.sampler.SequentialSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `gpl.toolkit.loss.MarginDistillationLoss` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": 140000, "warmup_steps": 1000, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 350, 'do_lower_case': False}) with Transformer model: DistilBertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
GPL/cqadupstack-tsdae-msmarco-distilbert-margin-mse
d8d18b60e43263c848d904fa201737eecaa4c99d
2022-04-19T16:50:27.000Z
[ "pytorch", "distilbert", "feature-extraction", "transformers" ]
feature-extraction
false
GPL
null
GPL/cqadupstack-tsdae-msmarco-distilbert-margin-mse
1
null
transformers
27,985
Entry not found
GPL/fiqa-tsdae-msmarco-distilbert-gpl
a81c04f3a52c0d29dcea52ee3587e27aca60ce55
2022-04-19T15:28:28.000Z
[ "pytorch", "distilbert", "feature-extraction", "sentence-transformers", "sentence-similarity", "transformers" ]
sentence-similarity
false
GPL
null
GPL/fiqa-tsdae-msmarco-distilbert-gpl
1
null
sentence-transformers
27,986
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 140000 with parameters: ``` {'batch_size': 32, 'sampler': 'torch.utils.data.sampler.SequentialSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `gpl.toolkit.loss.MarginDistillationLoss` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": 140000, "warmup_steps": 1000, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 350, 'do_lower_case': False}) with Transformer model: DistilBertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
GPL/robust04-tsdae-msmarco-distilbert-gpl
0f45643680b23cfc1ed38874650cd30f317af952
2022-04-19T16:30:20.000Z
[ "pytorch", "distilbert", "feature-extraction", "sentence-transformers", "sentence-similarity", "transformers" ]
sentence-similarity
false
GPL
null
GPL/robust04-tsdae-msmarco-distilbert-gpl
1
null
sentence-transformers
27,987
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 140000 with parameters: ``` {'batch_size': 32, 'sampler': 'torch.utils.data.sampler.SequentialSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `gpl.toolkit.loss.MarginDistillationLoss` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": 140000, "warmup_steps": 1000, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 350, 'do_lower_case': False}) with Transformer model: DistilBertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
GPL/robust04-tsdae-msmarco-distilbert-margin-mse
869e79fffe5275bedbb1d921212a7dcdfdcd2541
2022-04-19T16:50:54.000Z
[ "pytorch", "distilbert", "feature-extraction", "transformers" ]
feature-extraction
false
GPL
null
GPL/robust04-tsdae-msmarco-distilbert-margin-mse
1
null
transformers
27,988
Entry not found
GPL/trec-covid-v2-msmarco-distilbert-gpl
139f349a8d9cf8bb2b7ef6548e06ea60d83f122e
2022-04-19T15:18:49.000Z
[ "pytorch", "distilbert", "feature-extraction", "sentence-transformers", "sentence-similarity", "transformers" ]
sentence-similarity
false
GPL
null
GPL/trec-covid-v2-msmarco-distilbert-gpl
1
null
sentence-transformers
27,989
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 140000 with parameters: ``` {'batch_size': 32, 'sampler': 'torch.utils.data.sampler.SequentialSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `gpl.toolkit.loss.MarginDistillationLoss` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": 140000, "warmup_steps": 1000, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 350, 'do_lower_case': False}) with Transformer model: DistilBertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
GabbyDaBUNBUN/DialoGPT-medium-PinkiePie
046198fae3aa399819b493633891cf6acc2a0285
2022-02-02T03:24:51.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational", "license:mit" ]
conversational
false
GabbyDaBUNBUN
null
GabbyDaBUNBUN/DialoGPT-medium-PinkiePie
1
null
transformers
27,990
--- tags: - conversational license: mit --- # Pinkie Pie Chatbot used from r3dhummingbird!
GammaPTest/e_bot
ff943ab33d9af7edd356585cfcd2a0dc80234439
2021-11-19T18:29:45.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
GammaPTest
null
GammaPTest/e_bot
1
null
transformers
27,991
This be a test
Gantenbein/ADDI-CH-GPT2
46c71055abbc91afd11bc3673e7ab0e44d6fba5e
2021-06-02T13:58:54.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
Gantenbein
null
Gantenbein/ADDI-CH-GPT2
1
null
transformers
27,992
Gantenbein/ADDI-CH-XLM-R
3f24058f07debc1bdb3868b3e096b9b0d0defffb
2021-06-01T13:55:25.000Z
[ "pytorch", "xlm-roberta", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
Gantenbein
null
Gantenbein/ADDI-CH-XLM-R
1
null
transformers
27,993
Entry not found
Gantenbein/ADDI-DE-GPT2
6b306a810f2691b4e7b43a801925c63d9ca0f470
2021-06-01T14:29:34.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
Gantenbein
null
Gantenbein/ADDI-DE-GPT2
1
null
transformers
27,994
Entry not found
Gantenbein/ADDI-DE-RoBERTa
be7917ef9d473820e583ffcaf992de2acb4a423f
2021-06-01T14:30:17.000Z
[ "pytorch", "roberta", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
Gantenbein
null
Gantenbein/ADDI-DE-RoBERTa
1
null
transformers
27,995
Entry not found
Gantenbein/ADDI-FI-XLM-R
1c41a0ccec9d9c5fd88a1c4c67c942aa932e3999
2021-06-01T14:12:53.000Z
[ "pytorch", "xlm-roberta", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
Gantenbein
null
Gantenbein/ADDI-FI-XLM-R
1
null
transformers
27,996
Entry not found
Gantenbein/ADDI-FR-GPT2
fc2f2020265e84b34612755ae73a37e2c9b893a5
2021-06-01T14:07:50.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
Gantenbein
null
Gantenbein/ADDI-FR-GPT2
1
null
transformers
27,997
Entry not found
Gantenbein/ADDI-FR-RoBERTa
1b9ac13ca64c19bff9fa9ccde085942846bc5468
2021-06-01T14:07:22.000Z
[ "pytorch", "roberta", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
Gantenbein
null
Gantenbein/ADDI-FR-RoBERTa
1
null
transformers
27,998
Entry not found
Gantenbein/ADDI-FR-XLM-R
9c4bf69d2235d91c669f9733cdda32e298a730a8
2021-06-01T14:06:53.000Z
[ "pytorch", "roberta", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
Gantenbein
null
Gantenbein/ADDI-FR-XLM-R
1
null
transformers
27,999
Entry not found