modelId
stringlengths
4
112
sha
stringlengths
40
40
lastModified
stringlengths
24
24
tags
sequence
pipeline_tag
stringclasses
29 values
private
bool
1 class
author
stringlengths
2
38
config
null
id
stringlengths
4
112
downloads
float64
0
36.8M
likes
float64
0
712
library_name
stringclasses
17 values
__index_level_0__
int64
0
38.5k
readme
stringlengths
0
186k
Gantenbein/ADDI-IT-XLM-R
8d4f6d0740f0e84d0eae8eb2db9827b1a1964f86
2021-06-01T14:24:52.000Z
[ "pytorch", "xlm-roberta", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
Gantenbein
null
Gantenbein/ADDI-IT-XLM-R
1
null
transformers
28,000
Entry not found
Gayathri/distilbert-base-uncased-finetuned-squad
122ce3e48ce5930049916267a7869fea3085e0b1
2021-10-19T20:36:57.000Z
[ "pytorch", "tensorboard", "distilbert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
Gayathri
null
Gayathri/distilbert-base-uncased-finetuned-squad
1
null
transformers
28,001
Entry not found
Geotrend/bert-base-en-es-zh-cased
dd304cb33d875efd464a610ff175c4e47ef1166b
2021-05-18T19:13:08.000Z
[ "pytorch", "tf", "jax", "bert", "fill-mask", "multilingual", "dataset:wikipedia", "transformers", "license:apache-2.0", "autotrain_compatible" ]
fill-mask
false
Geotrend
null
Geotrend/bert-base-en-es-zh-cased
1
null
transformers
28,002
--- language: multilingual datasets: wikipedia license: apache-2.0 --- # bert-base-en-es-zh-cased We are sharing smaller versions of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) that handle a custom number of languages. Unlike [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased), our versions give exactly the same representations produced by the original model which preserves the original accuracy. For more information please visit our paper: [Load What You Need: Smaller Versions of Multilingual BERT](https://www.aclweb.org/anthology/2020.sustainlp-1.16.pdf). ## How to use ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("Geotrend/bert-base-en-es-zh-cased") model = AutoModel.from_pretrained("Geotrend/bert-base-en-es-zh-cased") ``` To generate other smaller versions of multilingual transformers please visit [our Github repo](https://github.com/Geotrend-research/smaller-transformers). ### How to cite ```bibtex @inproceedings{smallermbert, title={Load What You Need: Smaller Versions of Mutlilingual BERT}, author={Abdaoui, Amine and Pradel, Camille and Sigel, Grégoire}, booktitle={SustaiNLP / EMNLP}, year={2020} } ``` ## Contact Please contact [email protected] for any question, feedback or request.
Geotrend/bert-base-en-uk-cased
dff56ad31b0f69e898476326eaf204c28d434629
2021-05-18T19:49:13.000Z
[ "pytorch", "tf", "jax", "bert", "fill-mask", "multilingual", "dataset:wikipedia", "transformers", "license:apache-2.0", "autotrain_compatible" ]
fill-mask
false
Geotrend
null
Geotrend/bert-base-en-uk-cased
1
null
transformers
28,003
--- language: multilingual datasets: wikipedia license: apache-2.0 --- # bert-base-en-uk-cased We are sharing smaller versions of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) that handle a custom number of languages. Unlike [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased), our versions give exactly the same representations produced by the original model which preserves the original accuracy. For more information please visit our paper: [Load What You Need: Smaller Versions of Multilingual BERT](https://www.aclweb.org/anthology/2020.sustainlp-1.16.pdf). ## How to use ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("Geotrend/bert-base-en-uk-cased") model = AutoModel.from_pretrained("Geotrend/bert-base-en-uk-cased") ``` To generate other smaller versions of multilingual transformers please visit [our Github repo](https://github.com/Geotrend-research/smaller-transformers). ### How to cite ```bibtex @inproceedings{smallermbert, title={Load What You Need: Smaller Versions of Mutlilingual BERT}, author={Abdaoui, Amine and Pradel, Camille and Sigel, Grégoire}, booktitle={SustaiNLP / EMNLP}, year={2020} } ``` ## Contact Please contact [email protected] for any question, feedback or request.
Geotrend/distilbert-base-en-es-zh-cased
4e9dd372190a093a13a8f1fe1452f120dcff2f5a
2021-07-29T11:41:00.000Z
[ "pytorch", "distilbert", "fill-mask", "multilingual", "dataset:wikipedia", "transformers", "license:apache-2.0", "autotrain_compatible" ]
fill-mask
false
Geotrend
null
Geotrend/distilbert-base-en-es-zh-cased
1
null
transformers
28,004
--- language: multilingual datasets: wikipedia license: apache-2.0 --- # distilbert-base-en-es-zh-cased We are sharing smaller versions of [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased) that handle a custom number of languages. Our versions give exactly the same representations produced by the original model which preserves the original accuracy. For more information please visit our paper: [Load What You Need: Smaller Versions of Multilingual BERT](https://www.aclweb.org/anthology/2020.sustainlp-1.16.pdf). ## How to use ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("Geotrend/distilbert-base-en-es-zh-cased") model = AutoModel.from_pretrained("Geotrend/distilbert-base-en-es-zh-cased") ``` To generate other smaller versions of multilingual transformers please visit [our Github repo](https://github.com/Geotrend-research/smaller-transformers). ### How to cite ```bibtex @inproceedings{smallermdistilbert, title={Load What You Need: Smaller Versions of Mutlilingual BERT}, author={Abdaoui, Amine and Pradel, Camille and Sigel, Grégoire}, booktitle={SustaiNLP / EMNLP}, year={2020} } ``` ## Contact Please contact [email protected] for any question, feedback or request.
Geotrend/distilbert-base-en-fr-da-ja-vi-cased
f911d3100b79e11a98f297968457f136aa2ab779
2021-07-27T16:28:47.000Z
[ "pytorch", "distilbert", "fill-mask", "multilingual", "dataset:wikipedia", "transformers", "license:apache-2.0", "autotrain_compatible" ]
fill-mask
false
Geotrend
null
Geotrend/distilbert-base-en-fr-da-ja-vi-cased
1
null
transformers
28,005
--- language: multilingual datasets: wikipedia license: apache-2.0 --- # distilbert-base-en-fr-da-ja-vi-cased We are sharing smaller versions of [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased) that handle a custom number of languages. Our versions give exactly the same representations produced by the original model which preserves the original accuracy. For more information please visit our paper: [Load What You Need: Smaller Versions of Multilingual BERT](https://www.aclweb.org/anthology/2020.sustainlp-1.16.pdf). ## How to use ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("Geotrend/distilbert-base-en-fr-da-ja-vi-cased") model = AutoModel.from_pretrained("Geotrend/distilbert-base-en-fr-da-ja-vi-cased") ``` To generate other smaller versions of multilingual transformers please visit [our Github repo](https://github.com/Geotrend-research/smaller-transformers). ### How to cite ```bibtex @inproceedings{smallermdistilbert, title={Load What You Need: Smaller Versions of Mutlilingual BERT}, author={Abdaoui, Amine and Pradel, Camille and Sigel, Grégoire}, booktitle={SustaiNLP / EMNLP}, year={2020} } ``` ## Contact Please contact [email protected] for any question, feedback or request.
Geotrend/distilbert-base-en-fr-de-no-da-cased
966ca694f8e3d5696a2840e070324403b1458fe9
2021-07-28T07:52:56.000Z
[ "pytorch", "distilbert", "fill-mask", "multilingual", "dataset:wikipedia", "transformers", "license:apache-2.0", "autotrain_compatible" ]
fill-mask
false
Geotrend
null
Geotrend/distilbert-base-en-fr-de-no-da-cased
1
null
transformers
28,006
--- language: multilingual datasets: wikipedia license: apache-2.0 --- # distilbert-base-en-fr-de-no-da-cased We are sharing smaller versions of [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased) that handle a custom number of languages. Our versions give exactly the same representations produced by the original model which preserves the original accuracy. For more information please visit our paper: [Load What You Need: Smaller Versions of Multilingual BERT](https://www.aclweb.org/anthology/2020.sustainlp-1.16.pdf). ## How to use ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("Geotrend/distilbert-base-en-fr-de-no-da-cased") model = AutoModel.from_pretrained("Geotrend/distilbert-base-en-fr-de-no-da-cased") ``` To generate other smaller versions of multilingual transformers please visit [our Github repo](https://github.com/Geotrend-research/smaller-transformers). ### How to cite ```bibtex @inproceedings{smallermdistilbert, title={Load What You Need: Smaller Versions of Mutlilingual BERT}, author={Abdaoui, Amine and Pradel, Camille and Sigel, Grégoire}, booktitle={SustaiNLP / EMNLP}, year={2020} } ``` ## Contact Please contact [email protected] for any question, feedback or request.
Geotrend/distilbert-base-en-fr-zh-ja-vi-cased
070841e12448f54da5f91900a40a39fc2ba48a90
2021-07-27T15:01:32.000Z
[ "pytorch", "distilbert", "fill-mask", "multilingual", "dataset:wikipedia", "transformers", "license:apache-2.0", "autotrain_compatible" ]
fill-mask
false
Geotrend
null
Geotrend/distilbert-base-en-fr-zh-ja-vi-cased
1
null
transformers
28,007
--- language: multilingual datasets: wikipedia license: apache-2.0 --- # distilbert-base-en-fr-zh-ja-vi-cased We are sharing smaller versions of [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased) that handle a custom number of languages. Our versions give exactly the same representations produced by the original model which preserves the original accuracy. For more information please visit our paper: [Load What You Need: Smaller Versions of Multilingual BERT](https://www.aclweb.org/anthology/2020.sustainlp-1.16.pdf). ## How to use ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("Geotrend/distilbert-base-en-fr-zh-ja-vi-cased") model = AutoModel.from_pretrained("Geotrend/distilbert-base-en-fr-zh-ja-vi-cased") ``` To generate other smaller versions of multilingual transformers please visit [our Github repo](https://github.com/Geotrend-research/smaller-transformers). ### How to cite ```bibtex @inproceedings{smallermdistilbert, title={Load What You Need: Smaller Versions of Mutlilingual BERT}, author={Abdaoui, Amine and Pradel, Camille and Sigel, Grégoire}, booktitle={SustaiNLP / EMNLP}, year={2020} } ``` ## Contact Please contact [email protected] for any question, feedback or request.
Geotrend/distilbert-base-en-hi-cased
4a1ce1871cc70d80f67ab45da5bc686865e272d6
2021-08-16T13:57:40.000Z
[ "pytorch", "distilbert", "fill-mask", "multilingual", "dataset:wikipedia", "transformers", "license:apache-2.0", "autotrain_compatible" ]
fill-mask
false
Geotrend
null
Geotrend/distilbert-base-en-hi-cased
1
null
transformers
28,008
--- language: multilingual datasets: wikipedia license: apache-2.0 --- # distilbert-base-en-hi-cased We are sharing smaller versions of [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased) that handle a custom number of languages. Our versions give exactly the same representations produced by the original model which preserves the original accuracy. For more information please visit our paper: [Load What You Need: Smaller Versions of Multilingual BERT](https://www.aclweb.org/anthology/2020.sustainlp-1.16.pdf). ## How to use ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("Geotrend/distilbert-base-en-hi-cased") model = AutoModel.from_pretrained("Geotrend/distilbert-base-en-hi-cased") ``` To generate other smaller versions of multilingual transformers please visit [our Github repo](https://github.com/Geotrend-research/smaller-transformers). ### How to cite ```bibtex @inproceedings{smallermdistilbert, title={Load What You Need: Smaller Versions of Mutlilingual BERT}, author={Abdaoui, Amine and Pradel, Camille and Sigel, Grégoire}, booktitle={SustaiNLP / EMNLP}, year={2020} } ``` ## Contact Please contact [email protected] for any question, feedback or request.
Geotrend/distilbert-base-en-lt-cased
766965f3802cd987e004b8428ac705828d49d2f8
2021-07-27T18:28:58.000Z
[ "pytorch", "distilbert", "fill-mask", "multilingual", "dataset:wikipedia", "transformers", "license:apache-2.0", "autotrain_compatible" ]
fill-mask
false
Geotrend
null
Geotrend/distilbert-base-en-lt-cased
1
null
transformers
28,009
--- language: multilingual datasets: wikipedia license: apache-2.0 --- # distilbert-base-en-lt-cased We are sharing smaller versions of [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased) that handle a custom number of languages. Our versions give exactly the same representations produced by the original model which preserves the original accuracy. For more information please visit our paper: [Load What You Need: Smaller Versions of Multilingual BERT](https://www.aclweb.org/anthology/2020.sustainlp-1.16.pdf). ## How to use ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("Geotrend/distilbert-base-en-lt-cased") model = AutoModel.from_pretrained("Geotrend/distilbert-base-en-lt-cased") ``` To generate other smaller versions of multilingual transformers please visit [our Github repo](https://github.com/Geotrend-research/smaller-transformers). ### How to cite ```bibtex @inproceedings{smallermdistilbert, title={Load What You Need: Smaller Versions of Mutlilingual BERT}, author={Abdaoui, Amine and Pradel, Camille and Sigel, Grégoire}, booktitle={SustaiNLP / EMNLP}, year={2020} } ``` ## Contact Please contact [email protected] for any question, feedback or request.
Geotrend/distilbert-base-en-no-cased
8e11d417dd5d88f0d7d1bbd074f206cb5daca94e
2021-07-27T09:27:31.000Z
[ "pytorch", "distilbert", "fill-mask", "multilingual", "dataset:wikipedia", "transformers", "license:apache-2.0", "autotrain_compatible" ]
fill-mask
false
Geotrend
null
Geotrend/distilbert-base-en-no-cased
1
null
transformers
28,010
--- language: multilingual datasets: wikipedia license: apache-2.0 --- # distilbert-base-en-no-cased We are sharing smaller versions of [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased) that handle a custom number of languages. Our versions give exactly the same representations produced by the original model which preserves the original accuracy. For more information please visit our paper: [Load What You Need: Smaller Versions of Multilingual BERT](https://www.aclweb.org/anthology/2020.sustainlp-1.16.pdf). ## How to use ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("Geotrend/distilbert-base-en-no-cased") model = AutoModel.from_pretrained("Geotrend/distilbert-base-en-no-cased") ``` To generate other smaller versions of multilingual transformers please visit [our Github repo](https://github.com/Geotrend-research/smaller-transformers). ### How to cite ```bibtex @inproceedings{smallermdistilbert, title={Load What You Need: Smaller Versions of Mutlilingual BERT}, author={Abdaoui, Amine and Pradel, Camille and Sigel, Grégoire}, booktitle={SustaiNLP / EMNLP}, year={2020} } ``` ## Contact Please contact [email protected] for any question, feedback or request.
Geotrend/distilbert-base-en-th-cased
2662b3afa2aeef4c8568a4da706758833444528a
2021-08-16T13:47:56.000Z
[ "pytorch", "distilbert", "fill-mask", "multilingual", "dataset:wikipedia", "transformers", "license:apache-2.0", "autotrain_compatible" ]
fill-mask
false
Geotrend
null
Geotrend/distilbert-base-en-th-cased
1
null
transformers
28,011
--- language: multilingual datasets: wikipedia license: apache-2.0 --- # distilbert-base-en-th-cased We are sharing smaller versions of [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased) that handle a custom number of languages. Our versions give exactly the same representations produced by the original model which preserves the original accuracy. For more information please visit our paper: [Load What You Need: Smaller Versions of Multilingual BERT](https://www.aclweb.org/anthology/2020.sustainlp-1.16.pdf). ## How to use ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("Geotrend/distilbert-base-en-th-cased") model = AutoModel.from_pretrained("Geotrend/distilbert-base-en-th-cased") ``` To generate other smaller versions of multilingual transformers please visit [our Github repo](https://github.com/Geotrend-research/smaller-transformers). ### How to cite ```bibtex @inproceedings{smallermdistilbert, title={Load What You Need: Smaller Versions of Mutlilingual BERT}, author={Abdaoui, Amine and Pradel, Camille and Sigel, Grégoire}, booktitle={SustaiNLP / EMNLP}, year={2020} } ``` ## Contact Please contact [email protected] for any question, feedback or request.
Geotrend/distilbert-base-en-tr-cased
96654f2964f1c9ff9ab2debf5fb2e5dd9192c601
2021-08-16T14:05:00.000Z
[ "pytorch", "distilbert", "fill-mask", "multilingual", "dataset:wikipedia", "transformers", "license:apache-2.0", "autotrain_compatible" ]
fill-mask
false
Geotrend
null
Geotrend/distilbert-base-en-tr-cased
1
null
transformers
28,012
--- language: multilingual datasets: wikipedia license: apache-2.0 --- # distilbert-base-en-tr-cased We are sharing smaller versions of [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased) that handle a custom number of languages. Our versions give exactly the same representations produced by the original model which preserves the original accuracy. For more information please visit our paper: [Load What You Need: Smaller Versions of Multilingual BERT](https://www.aclweb.org/anthology/2020.sustainlp-1.16.pdf). ## How to use ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("Geotrend/distilbert-base-en-tr-cased") model = AutoModel.from_pretrained("Geotrend/distilbert-base-en-tr-cased") ``` To generate other smaller versions of multilingual transformers please visit [our Github repo](https://github.com/Geotrend-research/smaller-transformers). ### How to cite ```bibtex @inproceedings{smallermdistilbert, title={Load What You Need: Smaller Versions of Mutlilingual BERT}, author={Abdaoui, Amine and Pradel, Camille and Sigel, Grégoire}, booktitle={SustaiNLP / EMNLP}, year={2020} } ``` ## Contact Please contact [email protected] for any question, feedback or request.
Geotrend/distilbert-base-en-ur-cased
45e5aa7aa90f8bf6cb47a20e1617358d2ddc0ec9
2021-08-16T14:03:37.000Z
[ "pytorch", "distilbert", "fill-mask", "multilingual", "dataset:wikipedia", "transformers", "license:apache-2.0", "autotrain_compatible" ]
fill-mask
false
Geotrend
null
Geotrend/distilbert-base-en-ur-cased
1
null
transformers
28,013
--- language: multilingual datasets: wikipedia license: apache-2.0 --- # distilbert-base-en-ur-cased We are sharing smaller versions of [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased) that handle a custom number of languages. Our versions give exactly the same representations produced by the original model which preserves the original accuracy. For more information please visit our paper: [Load What You Need: Smaller Versions of Multilingual BERT](https://www.aclweb.org/anthology/2020.sustainlp-1.16.pdf). ## How to use ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("Geotrend/distilbert-base-en-ur-cased") model = AutoModel.from_pretrained("Geotrend/distilbert-base-en-ur-cased") ``` To generate other smaller versions of multilingual transformers please visit [our Github repo](https://github.com/Geotrend-research/smaller-transformers). ### How to cite ```bibtex @inproceedings{smallermdistilbert, title={Load What You Need: Smaller Versions of Mutlilingual BERT}, author={Abdaoui, Amine and Pradel, Camille and Sigel, Grégoire}, booktitle={SustaiNLP / EMNLP}, year={2020} } ``` ## Contact Please contact [email protected] for any question, feedback or request.
GleamEyeBeast/Mandarin
f5d41759ff14f770ea5db2c7244140144b588162
2022-02-07T04:25:26.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "dataset:common_voice", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
GleamEyeBeast
null
GleamEyeBeast/Mandarin
1
null
transformers
28,014
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice model-index: - name: Mandarin results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Mandarin This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the common_voice dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 1 ### Training results ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.13.3 - Tokenizers 0.10.3
GleamEyeBeast/Mandarin_char
923e318a188d4b7de42bb331ca379f1814e5a2bc
2022-02-16T07:07:54.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
GleamEyeBeast
null
GleamEyeBeast/Mandarin_char
1
null
transformers
28,015
Entry not found
GleamEyeBeast/Mandarin_naive
8ae059209b6f8fa168d5913a5cd9835c9f05c002
2022-02-15T13:44:34.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "dataset:common_voice", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
GleamEyeBeast
null
GleamEyeBeast/Mandarin_naive
1
null
transformers
28,016
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice model-index: - name: Mandarin_naive results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Mandarin_naive This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.4584 - Wer: 0.3999 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 4.8963 | 3.67 | 400 | 1.0645 | 0.8783 | | 0.5506 | 7.34 | 800 | 0.5032 | 0.5389 | | 0.2111 | 11.01 | 1200 | 0.4765 | 0.4712 | | 0.1336 | 14.68 | 1600 | 0.4815 | 0.4511 | | 0.0974 | 18.35 | 2000 | 0.4956 | 0.4370 | | 0.0748 | 22.02 | 2400 | 0.4881 | 0.4235 | | 0.0584 | 25.69 | 2800 | 0.4732 | 0.4193 | | 0.0458 | 29.36 | 3200 | 0.4584 | 0.3999 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
GleamEyeBeast/test
476bf111d45c570fb964875f09530ea0c617b5c5
2022-01-26T04:38:42.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
GleamEyeBeast
null
GleamEyeBeast/test
1
null
transformers
28,017
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: test results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # test This model is a fine-tuned version of [facebook/wav2vec2-base-960h](https://huggingface.co/facebook/wav2vec2-base-960h) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1761 - Wer: 0.2161 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 5.5828 | 4.0 | 500 | 3.0263 | 1.0 | | 1.8657 | 8.0 | 1000 | 0.2213 | 0.2650 | | 0.332 | 12.0 | 1500 | 0.2095 | 0.2413 | | 0.2037 | 16.0 | 2000 | 0.1906 | 0.2222 | | 0.1282 | 20.0 | 2500 | 0.1761 | 0.2161 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.13.3 - Tokenizers 0.10.3
GnomeX/mt5-small-finetuned-amazon-en-es
a23a4224234abe7df78017ec08362dddaba98738
2021-12-07T02:44:47.000Z
[ "pytorch", "mt5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
GnomeX
null
GnomeX/mt5-small-finetuned-amazon-en-es
1
null
transformers
28,018
Entry not found
Greysan/DialoGPT-medium-TOH
3b696c69b2d04c3fcd9485f470450053814831ea
2021-08-27T08:53:29.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
Greysan
null
Greysan/DialoGPT-medium-TOH
1
null
transformers
28,019
--- tags: - conversational --- # The Owl House DialoGPT Model
GrumpyFinch/DialoGPT-large-rick2
8ead8499550c05865c82461ace7bed965f899750
2021-09-11T07:05:26.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
GrumpyFinch
null
GrumpyFinch/DialoGPT-large-rick2
1
null
transformers
28,020
--- tags: - conversational --- # Rick Dialo GPT Model
Guard-SK/DialoGPT-medium-ricksanchez
8a2ff4672e7e5721ce715e5d5ffddde07331cd83
2021-09-01T11:09:15.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
Guard-SK
null
Guard-SK/DialoGPT-medium-ricksanchez
1
null
transformers
28,021
--- tags: - conversational --- # Rick Sanchez DialoGPT Model
Guard-SK/DialoGPT-small-ricksanchez
2637d0dae9e8eeb945193d00366366dadb830e5c
2021-08-31T21:10:38.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
Guard-SK
null
Guard-SK/DialoGPT-small-ricksanchez
1
null
transformers
28,022
--- tags: - conversational --- #Rick Sanchez DialoGPT Model
GusNicho/roberta-base-finetuned
17390ee07d00fc763d1a280432eaaadf2d4df1a6
2022-01-12T08:31:17.000Z
[ "pytorch", "tensorboard", "roberta", "fill-mask", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
fill-mask
false
GusNicho
null
GusNicho/roberta-base-finetuned
1
null
transformers
28,023
--- license: mit tags: - generated_from_trainer model-index: - name: roberta-base-finetuned results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-finetuned This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - eval_loss: 1.4057 - eval_runtime: 3.7087 - eval_samples_per_second: 167.712 - eval_steps_per_second: 2.696 - epoch: 2.11 - step: 2053 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.12.5 - Pytorch 1.9.1 - Datasets 1.16.1 - Tokenizers 0.10.3
Hadron/DialoGPT-medium-nino
ed521ace99688b86aba15a7693dde959bcd38534
2021-06-04T20:30:21.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
Hadron
null
Hadron/DialoGPT-medium-nino
1
null
transformers
28,024
--- tags: - conversational --- # My Awesome Model
Hamas/DialoGPT-large-jake3
107aad35b7415748baaf3eefb69be8c8fddbfa11
2021-09-30T19:12:43.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
Hamas
null
Hamas/DialoGPT-large-jake3
1
null
transformers
28,025
--- tags: - conversational --- # Jake DialoGPT-large-jake
HarryPuttar/HarryPotterDC
66c824ccf06515d948d5402961e6a1128885a9b8
2022-01-28T16:39:22.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
HarryPuttar
null
HarryPuttar/HarryPotterDC
1
null
transformers
28,026
--- tags: - conversational --- # Harry Potter DailogGPT Model
Harshal6927/Jack_Sparrow_GPT
e1b8d8a3cdb4a09375a8ddac5880e5bfed35bee2
2021-08-29T15:30:11.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
Harshal6927
null
Harshal6927/Jack_Sparrow_GPT
1
null
transformers
28,027
--- tags: - conversational --- # Jack Sparrow GPT
Harshal6927/Tony_Stark_GPT
adaee44120d9520e143b52e8ef642cc7b8998b67
2021-08-29T07:39:33.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
Harshal6927
null
Harshal6927/Tony_Stark_GPT
1
null
transformers
28,028
--- tags: - conversational --- # Tony Stark GPT My first AI model still learning, used small dataset so don't expect much
Harveenchadha/vakyansh_hindi_base_pretrained
76b4384e54e25f9f5b2629574fb536f68e8ff891
2022-03-23T18:33:38.000Z
[ "pytorch", "wav2vec2", "pretraining", "hi", "arxiv:2107.07402", "transformers", "hf-asr-leaderboard", "model_for_talk", "pretrained", "robust-speech-event", "speech", "license:apache-2.0" ]
null
false
Harveenchadha
null
Harveenchadha/vakyansh_hindi_base_pretrained
1
1
transformers
28,029
--- language: hi tags: - hf-asr-leaderboard - hi - model_for_talk - pretrained - robust-speech-event - speech license: apache-2.0 --- Hindi Pretrained model on 4200 hours. [Link](https://arxiv.org/abs/2107.07402)
HashireSoriYo/Lelouch_Chatbot
e49a200eced6849efcae2c932ab942bdf5b09866
2021-09-28T15:23:26.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
HashireSoriYo
null
HashireSoriYo/Lelouch_Chatbot
1
null
transformers
28,030
--- tags: - conversational --- #All hail Lelouch
Helsinki-NLP/opus-mt-el-eo
9d88bc79fce33f9ac7dad25b9859d042705c9ef2
2021-01-18T08:03:59.000Z
[ "pytorch", "marian", "text2text-generation", "el", "eo", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-el-eo
1
null
transformers
28,031
--- language: - el - eo tags: - translation license: apache-2.0 --- ### ell-epo * source group: Modern Greek (1453-) * target group: Esperanto * OPUS readme: [ell-epo](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/ell-epo/README.md) * model: transformer-align * source language(s): ell * target language(s): epo * model: transformer-align * pre-processing: normalization + SentencePiece (spm4k,spm4k) * download original weights: [opus-2020-06-16.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/ell-epo/opus-2020-06-16.zip) * test set translations: [opus-2020-06-16.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/ell-epo/opus-2020-06-16.test.txt) * test set scores: [opus-2020-06-16.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/ell-epo/opus-2020-06-16.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba-test.ell.epo | 32.4 | 0.517 | ### System Info: - hf_name: ell-epo - source_languages: ell - target_languages: epo - opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/ell-epo/README.md - original_repo: Tatoeba-Challenge - tags: ['translation'] - languages: ['el', 'eo'] - src_constituents: {'ell'} - tgt_constituents: {'epo'} - src_multilingual: False - tgt_multilingual: False - prepro: normalization + SentencePiece (spm4k,spm4k) - url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/ell-epo/opus-2020-06-16.zip - url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/ell-epo/opus-2020-06-16.test.txt - src_alpha3: ell - tgt_alpha3: epo - short_pair: el-eo - chrF2_score: 0.517 - bleu: 32.4 - brevity_penalty: 0.9790000000000001 - ref_len: 3807.0 - src_name: Modern Greek (1453-) - tgt_name: Esperanto - train_date: 2020-06-16 - src_alpha2: el - tgt_alpha2: eo - prefer_old: False - long_pair: ell-epo - helsinki_git_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535 - transformers_git_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b - port_machine: brutasse - port_time: 2020-08-21-14:41
Helsinki-NLP/opus-mt-en-bnt
6cf36e027b779fff16066d57c0cee1d4cba88d1a
2021-01-18T08:05:36.000Z
[ "pytorch", "marian", "text2text-generation", "en", "sn", "zu", "rw", "lg", "ts", "ln", "ny", "xh", "rn", "bnt", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-en-bnt
1
null
transformers
28,032
--- language: - en - sn - zu - rw - lg - ts - ln - ny - xh - rn - bnt tags: - translation license: apache-2.0 --- ### eng-bnt * source group: English * target group: Bantu languages * OPUS readme: [eng-bnt](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/eng-bnt/README.md) * model: transformer * source language(s): eng * target language(s): kin lin lug nya run sna swh toi_Latn tso umb xho zul * model: transformer * pre-processing: normalization + SentencePiece (spm32k,spm32k) * a sentence initial language token is required in the form of `>>id<<` (id = valid target language ID) * download original weights: [opus-2020-07-26.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/eng-bnt/opus-2020-07-26.zip) * test set translations: [opus-2020-07-26.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/eng-bnt/opus-2020-07-26.test.txt) * test set scores: [opus-2020-07-26.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/eng-bnt/opus-2020-07-26.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba-test.eng-kin.eng.kin | 12.5 | 0.519 | | Tatoeba-test.eng-lin.eng.lin | 1.1 | 0.277 | | Tatoeba-test.eng-lug.eng.lug | 4.8 | 0.415 | | Tatoeba-test.eng.multi | 12.1 | 0.449 | | Tatoeba-test.eng-nya.eng.nya | 22.1 | 0.616 | | Tatoeba-test.eng-run.eng.run | 13.2 | 0.492 | | Tatoeba-test.eng-sna.eng.sna | 32.1 | 0.669 | | Tatoeba-test.eng-swa.eng.swa | 1.7 | 0.180 | | Tatoeba-test.eng-toi.eng.toi | 10.7 | 0.266 | | Tatoeba-test.eng-tso.eng.tso | 26.9 | 0.631 | | Tatoeba-test.eng-umb.eng.umb | 5.2 | 0.295 | | Tatoeba-test.eng-xho.eng.xho | 22.6 | 0.615 | | Tatoeba-test.eng-zul.eng.zul | 41.1 | 0.769 | ### System Info: - hf_name: eng-bnt - source_languages: eng - target_languages: bnt - opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/eng-bnt/README.md - original_repo: Tatoeba-Challenge - tags: ['translation'] - languages: ['en', 'sn', 'zu', 'rw', 'lg', 'ts', 'ln', 'ny', 'xh', 'rn', 'bnt'] - src_constituents: {'eng'} - tgt_constituents: {'sna', 'zul', 'kin', 'lug', 'tso', 'lin', 'nya', 'xho', 'swh', 'run', 'toi_Latn', 'umb'} - src_multilingual: False - tgt_multilingual: True - prepro: normalization + SentencePiece (spm32k,spm32k) - url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/eng-bnt/opus-2020-07-26.zip - url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/eng-bnt/opus-2020-07-26.test.txt - src_alpha3: eng - tgt_alpha3: bnt - short_pair: en-bnt - chrF2_score: 0.449 - bleu: 12.1 - brevity_penalty: 1.0 - ref_len: 9989.0 - src_name: English - tgt_name: Bantu languages - train_date: 2020-07-26 - src_alpha2: en - tgt_alpha2: bnt - prefer_old: False - long_pair: eng-bnt - helsinki_git_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535 - transformers_git_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b - port_machine: brutasse - port_time: 2020-08-21-14:41
Helsinki-NLP/opus-mt-en-sal
fdfe44baddc675f371c596891535f76b118af7d8
2021-01-18T08:15:34.000Z
[ "pytorch", "marian", "text2text-generation", "en", "sal", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-en-sal
1
null
transformers
28,033
--- language: - en - sal tags: - translation license: apache-2.0 --- ### eng-sal * source group: English * target group: Salishan languages * OPUS readme: [eng-sal](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/eng-sal/README.md) * model: transformer * source language(s): eng * target language(s): shs_Latn * model: transformer * pre-processing: normalization + SentencePiece (spm32k,spm32k) * download original weights: [opus-2020-07-14.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/eng-sal/opus-2020-07-14.zip) * test set translations: [opus-2020-07-14.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/eng-sal/opus-2020-07-14.test.txt) * test set scores: [opus-2020-07-14.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/eng-sal/opus-2020-07-14.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba-test.eng.multi | 32.6 | 0.585 | | Tatoeba-test.eng.shs | 1.1 | 0.072 | | Tatoeba-test.eng-shs.eng.shs | 1.2 | 0.065 | ### System Info: - hf_name: eng-sal - source_languages: eng - target_languages: sal - opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/eng-sal/README.md - original_repo: Tatoeba-Challenge - tags: ['translation'] - languages: ['en', 'sal'] - src_constituents: {'eng'} - tgt_constituents: {'shs_Latn'} - src_multilingual: False - tgt_multilingual: True - prepro: normalization + SentencePiece (spm32k,spm32k) - url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/eng-sal/opus-2020-07-14.zip - url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/eng-sal/opus-2020-07-14.test.txt - src_alpha3: eng - tgt_alpha3: sal - short_pair: en-sal - chrF2_score: 0.07200000000000001 - bleu: 1.1 - brevity_penalty: 1.0 - ref_len: 199.0 - src_name: English - tgt_name: Salishan languages - train_date: 2020-07-14 - src_alpha2: en - tgt_alpha2: sal - prefer_old: False - long_pair: eng-sal - helsinki_git_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535 - transformers_git_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b - port_machine: brutasse - port_time: 2020-08-21-14:41
Helsinki-NLP/opus-mt-eu-de
d08a98a1081a793069898243eb4dbd5bce86fecc
2021-01-18T08:31:02.000Z
[ "pytorch", "marian", "text2text-generation", "eu", "de", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-eu-de
1
1
transformers
28,034
--- language: - eu - de tags: - translation license: apache-2.0 --- ### eus-deu * source group: Basque * target group: German * OPUS readme: [eus-deu](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/eus-deu/README.md) * model: transformer-align * source language(s): eus * target language(s): deu * model: transformer-align * pre-processing: normalization + SentencePiece (spm12k,spm12k) * download original weights: [opus-2020-06-16.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/eus-deu/opus-2020-06-16.zip) * test set translations: [opus-2020-06-16.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/eus-deu/opus-2020-06-16.test.txt) * test set scores: [opus-2020-06-16.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/eus-deu/opus-2020-06-16.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba-test.eus.deu | 36.3 | 0.562 | ### System Info: - hf_name: eus-deu - source_languages: eus - target_languages: deu - opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/eus-deu/README.md - original_repo: Tatoeba-Challenge - tags: ['translation'] - languages: ['eu', 'de'] - src_constituents: {'eus'} - tgt_constituents: {'deu'} - src_multilingual: False - tgt_multilingual: False - prepro: normalization + SentencePiece (spm12k,spm12k) - url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/eus-deu/opus-2020-06-16.zip - url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/eus-deu/opus-2020-06-16.test.txt - src_alpha3: eus - tgt_alpha3: deu - short_pair: eu-de - chrF2_score: 0.562 - bleu: 36.3 - brevity_penalty: 0.953 - ref_len: 3315.0 - src_name: Basque - tgt_name: German - train_date: 2020-06-16 - src_alpha2: eu - tgt_alpha2: de - prefer_old: False - long_pair: eus-deu - helsinki_git_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535 - transformers_git_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b - port_machine: brutasse - port_time: 2020-08-21-14:41
Helsinki-NLP/opus-mt-guw-fr
a3f8b98f0b8e869ed5101d2e24718fc28e9681ba
2021-09-09T21:59:46.000Z
[ "pytorch", "marian", "text2text-generation", "guw", "fr", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-guw-fr
1
null
transformers
28,035
--- tags: - translation license: apache-2.0 --- ### opus-mt-guw-fr * source languages: guw * target languages: fr * OPUS readme: [guw-fr](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/guw-fr/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-09.zip](https://object.pouta.csc.fi/OPUS-MT-models/guw-fr/opus-2020-01-09.zip) * test set translations: [opus-2020-01-09.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/guw-fr/opus-2020-01-09.test.txt) * test set scores: [opus-2020-01-09.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/guw-fr/opus-2020-01-09.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.guw.fr | 29.7 | 0.479 |
Helsinki-NLP/opus-mt-ru-eu
b4556820ca38d66b4ab8fe7535b3e156e42b78f1
2020-08-21T14:42:49.000Z
[ "pytorch", "marian", "text2text-generation", "ru", "eu", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-ru-eu
1
null
transformers
28,036
--- language: - ru - eu tags: - translation license: apache-2.0 --- ### rus-eus * source group: Russian * target group: Basque * OPUS readme: [rus-eus](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/rus-eus/README.md) * model: transformer-align * source language(s): rus * target language(s): eus * model: transformer-align * pre-processing: normalization + SentencePiece (spm4k,spm4k) * download original weights: [opus-2020-06-16.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/rus-eus/opus-2020-06-16.zip) * test set translations: [opus-2020-06-16.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/rus-eus/opus-2020-06-16.test.txt) * test set scores: [opus-2020-06-16.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/rus-eus/opus-2020-06-16.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba-test.rus.eus | 29.7 | 0.539 | ### System Info: - hf_name: rus-eus - source_languages: rus - target_languages: eus - opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/rus-eus/README.md - original_repo: Tatoeba-Challenge - tags: ['translation'] - languages: ['ru', 'eu'] - src_constituents: {'rus'} - tgt_constituents: {'eus'} - src_multilingual: False - tgt_multilingual: False - prepro: normalization + SentencePiece (spm4k,spm4k) - url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/rus-eus/opus-2020-06-16.zip - url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/rus-eus/opus-2020-06-16.test.txt - src_alpha3: rus - tgt_alpha3: eus - short_pair: ru-eu - chrF2_score: 0.539 - bleu: 29.7 - brevity_penalty: 0.9440000000000001 - ref_len: 2373.0 - src_name: Russian - tgt_name: Basque - train_date: 2020-06-16 - src_alpha2: ru - tgt_alpha2: eu - prefer_old: False - long_pair: rus-eus - helsinki_git_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535 - transformers_git_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b - port_machine: brutasse - port_time: 2020-08-21-14:41
Helsinki-NLP/opus-mt-uk-pt
3523c0b971808c8b0ccebd7ac6a001b8457c7a49
2020-08-21T14:42:51.000Z
[ "pytorch", "marian", "text2text-generation", "uk", "pt", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-uk-pt
1
null
transformers
28,037
--- language: - uk - pt tags: - translation license: apache-2.0 --- ### ukr-por * source group: Ukrainian * target group: Portuguese * OPUS readme: [ukr-por](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/ukr-por/README.md) * model: transformer-align * source language(s): ukr * target language(s): por * model: transformer-align * pre-processing: normalization + SentencePiece (spm32k,spm32k) * download original weights: [opus-2020-06-17.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/ukr-por/opus-2020-06-17.zip) * test set translations: [opus-2020-06-17.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/ukr-por/opus-2020-06-17.test.txt) * test set scores: [opus-2020-06-17.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/ukr-por/opus-2020-06-17.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba-test.ukr.por | 38.1 | 0.601 | ### System Info: - hf_name: ukr-por - source_languages: ukr - target_languages: por - opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/ukr-por/README.md - original_repo: Tatoeba-Challenge - tags: ['translation'] - languages: ['uk', 'pt'] - src_constituents: {'ukr'} - tgt_constituents: {'por'} - src_multilingual: False - tgt_multilingual: False - prepro: normalization + SentencePiece (spm32k,spm32k) - url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/ukr-por/opus-2020-06-17.zip - url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/ukr-por/opus-2020-06-17.test.txt - src_alpha3: ukr - tgt_alpha3: por - short_pair: uk-pt - chrF2_score: 0.601 - bleu: 38.1 - brevity_penalty: 0.981 - ref_len: 21315.0 - src_name: Ukrainian - tgt_name: Portuguese - train_date: 2020-06-17 - src_alpha2: uk - tgt_alpha2: pt - prefer_old: False - long_pair: ukr-por - helsinki_git_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535 - transformers_git_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b - port_machine: brutasse - port_time: 2020-08-21-14:41
Helsinki-NLP/opus-mt-zls-zls
d239210ac43b2ee609f3eff49984a9075d96515a
2020-08-21T14:42:52.000Z
[ "pytorch", "marian", "text2text-generation", "hr", "mk", "bg", "sl", "zls", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-zls-zls
1
null
transformers
28,038
--- language: - hr - mk - bg - sl - zls tags: - translation license: apache-2.0 --- ### zls-zls * source group: South Slavic languages * target group: South Slavic languages * OPUS readme: [zls-zls](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/zls-zls/README.md) * model: transformer * source language(s): bul mkd srp_Cyrl * target language(s): bul mkd srp_Cyrl * model: transformer * pre-processing: normalization + SentencePiece (spm32k,spm32k) * a sentence initial language token is required in the form of `>>id<<` (id = valid target language ID) * download original weights: [opus-2020-07-27.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/zls-zls/opus-2020-07-27.zip) * test set translations: [opus-2020-07-27.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/zls-zls/opus-2020-07-27.test.txt) * test set scores: [opus-2020-07-27.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/zls-zls/opus-2020-07-27.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba-test.bul-hbs.bul.hbs | 19.3 | 0.514 | | Tatoeba-test.bul-mkd.bul.mkd | 31.9 | 0.669 | | Tatoeba-test.hbs-bul.hbs.bul | 18.0 | 0.636 | | Tatoeba-test.hbs-mkd.hbs.mkd | 19.4 | 0.322 | | Tatoeba-test.mkd-bul.mkd.bul | 44.6 | 0.679 | | Tatoeba-test.mkd-hbs.mkd.hbs | 5.5 | 0.152 | | Tatoeba-test.multi.multi | 26.5 | 0.563 | ### System Info: - hf_name: zls-zls - source_languages: zls - target_languages: zls - opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/zls-zls/README.md - original_repo: Tatoeba-Challenge - tags: ['translation'] - languages: ['hr', 'mk', 'bg', 'sl', 'zls'] - src_constituents: {'hrv', 'mkd', 'srp_Latn', 'srp_Cyrl', 'bul_Latn', 'bul', 'bos_Latn', 'slv'} - tgt_constituents: {'hrv', 'mkd', 'srp_Latn', 'srp_Cyrl', 'bul_Latn', 'bul', 'bos_Latn', 'slv'} - src_multilingual: True - tgt_multilingual: True - prepro: normalization + SentencePiece (spm32k,spm32k) - url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/zls-zls/opus-2020-07-27.zip - url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/zls-zls/opus-2020-07-27.test.txt - src_alpha3: zls - tgt_alpha3: zls - short_pair: zls-zls - chrF2_score: 0.563 - bleu: 26.5 - brevity_penalty: 1.0 - ref_len: 58.0 - src_name: South Slavic languages - tgt_name: South Slavic languages - train_date: 2020-07-27 - src_alpha2: zls - tgt_alpha2: zls - prefer_old: False - long_pair: zls-zls - helsinki_git_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535 - transformers_git_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b - port_machine: brutasse - port_time: 2020-08-21-14:41
Helsinki-NLP/opus-tatoeba-he-fr
273a5e82420efe16ff6da209dd4b8bed69e78ded
2020-12-11T14:18:12.000Z
[ "pytorch", "marian", "text2text-generation", "he", "fr", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-tatoeba-he-fr
1
null
transformers
28,039
--- language: - he - fr tags: - translation license: apache-2.0 --- ### he-fr * source group: Hebrew * target group: French * OPUS readme: [heb-fra](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/heb-fra/README.md) * model: transformer * source language(s): heb * target language(s): fra * model: transformer * pre-processing: normalization + SentencePiece (spm32k,spm32k) * download original weights: [opus-2020-12-10.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/heb-fra/opus-2020-12-10.zip) * test set translations: [opus-2020-12-10.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/heb-fra/opus-2020-12-10.test.txt) * test set scores: [opus-2020-12-10.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/heb-fra/opus-2020-12-10.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba-test.heb.fra | 47.3 | 0.644 | ### System Info: - hf_name: he-fr - source_languages: heb - target_languages: fra - opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/heb-fra/README.md - original_repo: Tatoeba-Challenge - tags: ['translation'] - languages: ['he', 'fr'] - src_constituents: ('Hebrew', {'heb'}) - tgt_constituents: ('French', {'fra'}) - src_multilingual: False - tgt_multilingual: False - long_pair: heb-fra - prepro: normalization + SentencePiece (spm32k,spm32k) - url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/heb-fra/opus-2020-12-10.zip - url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/heb-fra/opus-2020-12-10.test.txt - src_alpha3: heb - tgt_alpha3: fra - chrF2_score: 0.644 - bleu: 47.3 - brevity_penalty: 0.9740000000000001 - ref_len: 26123.0 - src_name: Hebrew - tgt_name: French - train_date: 2020-12-10 00:00:00 - src_alpha2: he - tgt_alpha2: fr - prefer_old: False - short_pair: he-fr - helsinki_git_sha: b317f78a3ec8a556a481b6a53dc70dc11769ca96 - transformers_git_sha: 1310e1a758edc8e89ec363db76863c771fbeb1de - port_machine: LM0-400-22516.local - port_time: 2020-12-11-16:03
Helsinki-NLP/opus-tatoeba-he-it
b91cac2928be4f0572352b7b6b4e9c17efbefbd8
2020-12-11T14:20:59.000Z
[ "pytorch", "marian", "text2text-generation", "he", "it", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-tatoeba-he-it
1
null
transformers
28,040
--- language: - he - it tags: - translation license: apache-2.0 --- ### he-it * source group: Hebrew * target group: Italian * OPUS readme: [heb-ita](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/heb-ita/README.md) * model: transformer * source language(s): heb * target language(s): ita * model: transformer * pre-processing: normalization + SentencePiece (spm32k,spm32k) * download original weights: [opus-2020-12-10.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/heb-ita/opus-2020-12-10.zip) * test set translations: [opus-2020-12-10.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/heb-ita/opus-2020-12-10.test.txt) * test set scores: [opus-2020-12-10.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/heb-ita/opus-2020-12-10.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba-test.heb.ita | 41.1 | 0.643 | ### System Info: - hf_name: he-it - source_languages: heb - target_languages: ita - opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/heb-ita/README.md - original_repo: Tatoeba-Challenge - tags: ['translation'] - languages: ['he', 'it'] - src_constituents: ('Hebrew', {'heb'}) - tgt_constituents: ('Italian', {'ita'}) - src_multilingual: False - tgt_multilingual: False - long_pair: heb-ita - prepro: normalization + SentencePiece (spm32k,spm32k) - url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/heb-ita/opus-2020-12-10.zip - url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/heb-ita/opus-2020-12-10.test.txt - src_alpha3: heb - tgt_alpha3: ita - chrF2_score: 0.643 - bleu: 41.1 - brevity_penalty: 0.997 - ref_len: 11464.0 - src_name: Hebrew - tgt_name: Italian - train_date: 2020-12-10 00:00:00 - src_alpha2: he - tgt_alpha2: it - prefer_old: False - short_pair: he-it - helsinki_git_sha: b317f78a3ec8a556a481b6a53dc70dc11769ca96 - transformers_git_sha: 1310e1a758edc8e89ec363db76863c771fbeb1de - port_machine: LM0-400-22516.local - port_time: 2020-12-11-16:01
Helsinki-NLP/opus-tatoeba-it-he
b80b664f8167225e608603d75400b0e1798fd7f2
2020-12-11T14:25:24.000Z
[ "pytorch", "marian", "text2text-generation", "it", "he", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-tatoeba-it-he
1
null
transformers
28,041
--- language: - it - he tags: - translation license: apache-2.0 --- ### it-he * source group: Italian * target group: Hebrew * OPUS readme: [ita-heb](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/ita-heb/README.md) * model: transformer * source language(s): ita * target language(s): heb * model: transformer * pre-processing: normalization + SentencePiece (spm32k,spm32k) * download original weights: [opus-2020-12-10.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/ita-heb/opus-2020-12-10.zip) * test set translations: [opus-2020-12-10.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/ita-heb/opus-2020-12-10.test.txt) * test set scores: [opus-2020-12-10.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/ita-heb/opus-2020-12-10.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba-test.ita.heb | 38.5 | 0.593 | ### System Info: - hf_name: it-he - source_languages: ita - target_languages: heb - opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/ita-heb/README.md - original_repo: Tatoeba-Challenge - tags: ['translation'] - languages: ['it', 'he'] - src_constituents: ('Italian', {'ita'}) - tgt_constituents: ('Hebrew', {'heb'}) - src_multilingual: False - tgt_multilingual: False - long_pair: ita-heb - prepro: normalization + SentencePiece (spm32k,spm32k) - url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/ita-heb/opus-2020-12-10.zip - url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/ita-heb/opus-2020-12-10.test.txt - src_alpha3: ita - tgt_alpha3: heb - chrF2_score: 0.593 - bleu: 38.5 - brevity_penalty: 0.985 - ref_len: 9796.0 - src_name: Italian - tgt_name: Hebrew - train_date: 2020-12-10 00:00:00 - src_alpha2: it - tgt_alpha2: he - prefer_old: False - short_pair: it-he - helsinki_git_sha: b317f78a3ec8a556a481b6a53dc70dc11769ca96 - transformers_git_sha: 1310e1a758edc8e89ec363db76863c771fbeb1de - port_machine: LM0-400-22516.local - port_time: 2020-12-11-16:02
HenryAI/KerasBERTv1
926606ccf88f02751d9784533e78a144c97c83f3
2021-12-17T03:20:18.000Z
[ "pytorch", "roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
HenryAI
null
HenryAI/KerasBERTv1
1
7
transformers
28,042
Thanks for checking this out! <br /> This video explains the ideas behind KerasBERT (still very much a work in progress) https://www.youtube.com/watch?v=J3P8WLAELqk
HieuLV3/QA_UIT_xlm_roberta_large
86dbe60e37c40c971f21cee3bce1b7ad93f803d1
2021-10-18T07:48:26.000Z
[ "pytorch", "roberta", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
HieuLV3
null
HieuLV3/QA_UIT_xlm_roberta_large
1
null
transformers
28,043
Entry not found
Htenn/DialoGPT-small-spongebob
f94e48816e5eb54bdae169793820ad8675b403b1
2022-02-18T09:13:38.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
Htenn
null
Htenn/DialoGPT-small-spongebob
1
null
transformers
28,044
--- tags: - conversational --- # SpongeBob DialoGPT Model
HueJanus/DialoGPT-small-ricksanchez
cc030aec9364bb415b0cead09f6880eff7c1885c
2021-09-25T18:46:02.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
HueJanus
null
HueJanus/DialoGPT-small-ricksanchez
1
null
transformers
28,045
--- tags: - conversational --- #Rick Sanchez DiaoloGPT Model
HungChau/distilbert-base-cased-concept-extraction-wikipedia-v1.0-concept-extraction-iir-v1.0
4698f4668410638a47a35e62b16eefbc7171f305
2021-11-12T20:54:33.000Z
[ "pytorch", "distilbert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
HungChau
null
HungChau/distilbert-base-cased-concept-extraction-wikipedia-v1.0-concept-extraction-iir-v1.0
1
null
transformers
28,046
Entry not found
HungChau/distilbert-base-cased-concept-extraction-wikipedia-v1.0-concept-extraction-iir-v1.3
00093eb3d273bb21b9cb029f18e9d1ac265bd4fa
2021-11-18T03:51:56.000Z
[ "pytorch", "distilbert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
HungChau
null
HungChau/distilbert-base-cased-concept-extraction-wikipedia-v1.0-concept-extraction-iir-v1.3
1
null
transformers
28,047
Entry not found
HungChau/distilbert-base-cased-concept-extraction-wikipedia-v1.0
4f0052833bb3c3aaa562fb735544e71984d08a31
2021-11-12T19:00:24.000Z
[ "pytorch", "distilbert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
HungChau
null
HungChau/distilbert-base-cased-concept-extraction-wikipedia-v1.0
1
null
transformers
28,048
Entry not found
HungChau/distilbert-base-uncased-concept-extraction-iir-v1.0-concept-extraction-truncated-3edbbc
98c28b5d42ab07c9322033daa1471e7796d59c87
2021-11-02T18:53:48.000Z
[ "pytorch", "distilbert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
HungChau
null
HungChau/distilbert-base-uncased-concept-extraction-iir-v1.0-concept-extraction-truncated-3edbbc
1
null
transformers
28,049
Entry not found
HungChau/distilbert-base-uncased-concept-extraction-kp20k-v1.0-concept-extracti-truncated-435523
f876d9494a9d985eff4b4d8864234ca28f63b8ed
2021-11-02T10:28:50.000Z
[ "pytorch", "distilbert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
HungChau
null
HungChau/distilbert-base-uncased-concept-extraction-kp20k-v1.0-concept-extracti-truncated-435523
1
null
transformers
28,050
Entry not found
HungChau/distilbert-base-uncased-concept-extraction-kp20k-v1.0-concept-extracti-truncated-7d1e33
a4486ec94147b607d5fb8d8b5925805226566d9c
2021-11-02T23:57:47.000Z
[ "pytorch", "distilbert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
HungChau
null
HungChau/distilbert-base-uncased-concept-extraction-kp20k-v1.0-concept-extracti-truncated-7d1e33
1
null
transformers
28,051
Entry not found
HungChau/distilbert-base-uncased-concept-extraction-kp20k-v1.2
0f1d380f406f7374c55811ea3070f601d7b40ac7
2021-11-16T14:00:16.000Z
[ "pytorch", "distilbert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
HungChau
null
HungChau/distilbert-base-uncased-concept-extraction-kp20k-v1.2
1
null
transformers
28,052
Entry not found
HungChau/distilbert-base-uncased-concept-extraction-wikipedia-v1.1-concept-extraction-iir-v1.0
bd42346cd230e8192480a22a8b1d38b95e8e1ecb
2021-11-12T15:55:53.000Z
[ "pytorch", "distilbert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
HungChau
null
HungChau/distilbert-base-uncased-concept-extraction-wikipedia-v1.1-concept-extraction-iir-v1.0
1
null
transformers
28,053
Entry not found
HungChau/distilbert-base-uncased-concept-extraction-wikipedia-v1.2-concept-extraction-iir-v1.2
737f93875577e2ebbbf7fcfdb6f47299aaabe8c3
2021-11-18T02:44:09.000Z
[ "pytorch", "distilbert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
HungChau
null
HungChau/distilbert-base-uncased-concept-extraction-wikipedia-v1.2-concept-extraction-iir-v1.2
1
null
transformers
28,054
Entry not found
ILoveThatLady/DialoGPT-small-rickandmorty
387212ed49fd19750cfa81044cb582c8d627f3a4
2021-10-01T21:53:25.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
ILoveThatLady
null
ILoveThatLady/DialoGPT-small-rickandmorty
1
null
transformers
28,055
--- tags: - conversational --- # Rick And Morty DialoGPT Model
Icemiser/chat-test
eed77232040dc83568bc7a942d26234a2942b49c
2021-09-22T02:59:22.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
Icemiser
null
Icemiser/chat-test
1
null
transformers
28,056
--- tags: - conversational --- # Hank Hill DialoGPT Model
Ife/BM-FR
7379d87dc7f22ad44b882d0f435c1decbc2a3283
2021-09-16T04:54:56.000Z
[ "pytorch", "marian", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
Ife
null
Ife/BM-FR
1
null
transformers
28,057
Entry not found
Ife/CA-ES
840a97fa77ce6e80129daaee9ac257044c6dc2f1
2021-09-16T02:24:20.000Z
[ "pytorch", "marian", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
Ife
null
Ife/CA-ES
1
null
transformers
28,058
# Similar-Languages-MT
Ife/FR-BM
0c8fe9f5fafafc935a6adfd166f54e7942d952bd
2021-09-16T04:48:41.000Z
[ "pytorch", "marian", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
Ife
null
Ife/FR-BM
1
null
transformers
28,059
Entry not found
Ife/PT-ES
d6a349ebd5c92e6f7163f1104c0b9837065e4bb1
2021-09-16T04:32:07.000Z
[ "pytorch", "marian", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
Ife
null
Ife/PT-ES
1
null
transformers
28,060
Entry not found
Insun/wav2vec2_large_xlsr_53_VTCK_16K
c796d1e37bdc3a6c87a542435e1309b4c40e906c
2021-12-04T05:12:48.000Z
[ "pytorch" ]
null
false
Insun
null
Insun/wav2vec2_large_xlsr_53_VTCK_16K
1
null
null
28,061
Entry not found
Invincible/Chat_bot-Harrypotter-small
bd316cec24b723a3d4ded1ff1db0be6cf990deb1
2021-09-01T13:36:47.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
Invincible
null
Invincible/Chat_bot-Harrypotter-small
1
null
transformers
28,062
--- tags: - conversational --- #harry potter Model
Istiaque190515/harry_bot_discord
e8b565bbfddabd98cabe406a16466dbc619d7278
2021-09-19T11:47:36.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
Istiaque190515
null
Istiaque190515/harry_bot_discord
1
null
transformers
28,063
--- tags: - conversational --- #harry_bot
ItzJorinoPlays/DialoGPT-small-PickleRick
095546c43c2423415d2ca1192ed39d620806640a
2021-08-31T12:18:55.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
ItzJorinoPlays
null
ItzJorinoPlays/DialoGPT-small-PickleRick
1
null
transformers
28,064
--- tags: - conversational --- # Pickle Rick DialoGPT Model
Jeevesh8/DA-bert
3d8f2bedbe688f956f1116daf9c0dfcd495d6dc8
2021-11-12T11:43:19.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
Jeevesh8
null
Jeevesh8/DA-bert
1
null
transformers
28,065
Entry not found
Jeevesh8/sMLM-bert
c1d5c31b2674612eea5549ec05c5cbc0a44781d9
2021-11-12T10:28:46.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
Jeevesh8
null
Jeevesh8/sMLM-bert
1
null
transformers
28,066
Entry not found
Jeska/BertjeWDialData
c957e9c2411fdd85ee75b7b54a1edfade4d6ad63
2021-11-16T18:04:08.000Z
[ "pytorch", "tensorboard", "bert", "fill-mask", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
fill-mask
false
Jeska
null
Jeska/BertjeWDialData
1
null
transformers
28,067
--- tags: - generated_from_trainer model-index: - name: BertjeWDialData results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # BertjeWDialData This model is a fine-tuned version of [GroNLP/bert-base-dutch-cased](https://huggingface.co/GroNLP/bert-base-dutch-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.2608 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 297 | 2.2419 | ### Framework versions - Transformers 4.13.0.dev0 - Pytorch 1.10.0+cu111 - Datasets 1.15.1 - Tokenizers 0.10.3
Jeska/BertjeWDialDataALL02
86d7e3bb3c0f04d910fd55b8ad8c85acb75f2e14
2021-12-15T01:40:55.000Z
[ "pytorch", "tensorboard", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
Jeska
null
Jeska/BertjeWDialDataALL02
1
null
transformers
28,068
Entry not found
Jeska/BertjeWDialDataALL03
dab531e6136470b57757c697b267fb7f9220fc9c
2021-12-16T19:19:56.000Z
[ "pytorch", "tensorboard", "bert", "fill-mask", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
fill-mask
false
Jeska
null
Jeska/BertjeWDialDataALL03
1
null
transformers
28,069
--- tags: - generated_from_trainer model-index: - name: BertjeWDialDataALL03 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # BertjeWDialDataALL03 This model is a fine-tuned version of [GroNLP/bert-base-dutch-cased](https://huggingface.co/GroNLP/bert-base-dutch-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.9459 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 8.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 2.1951 | 1.0 | 1542 | 2.0285 | | 2.0918 | 2.0 | 3084 | 1.9989 | | 2.0562 | 3.0 | 4626 | 2.0162 | | 2.0012 | 4.0 | 6168 | 1.9330 | | 1.9705 | 5.0 | 7710 | 1.9151 | | 1.9571 | 6.0 | 9252 | 1.9419 | | 1.9113 | 7.0 | 10794 | 1.9175 | | 1.8988 | 8.0 | 12336 | 1.9143 | ### Framework versions - Transformers 4.13.0.dev0 - Pytorch 1.10.0 - Datasets 1.16.1 - Tokenizers 0.10.3
Jeska/BertjeWDialDataALL04
84a5bf2afb717c88c4ed493715ff61a8da69255d
2021-12-22T02:47:07.000Z
[ "pytorch", "tensorboard", "bert", "fill-mask", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
fill-mask
false
Jeska
null
Jeska/BertjeWDialDataALL04
1
null
transformers
28,070
--- tags: - generated_from_trainer model-index: - name: BertjeWDialDataALL04 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # BertjeWDialDataALL04 This model is a fine-tuned version of [GroNLP/bert-base-dutch-cased](https://huggingface.co/GroNLP/bert-base-dutch-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.9717 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 2.2954 | 1.0 | 1542 | 2.0372 | | 2.2015 | 2.0 | 3084 | 2.0104 | | 2.1661 | 3.0 | 4626 | 2.0372 | | 2.1186 | 4.0 | 6168 | 1.9549 | | 2.0939 | 5.0 | 7710 | 1.9438 | | 2.0867 | 6.0 | 9252 | 1.9648 | | 2.0462 | 7.0 | 10794 | 1.9465 | | 2.0315 | 8.0 | 12336 | 1.9412 | ### Framework versions - Transformers 4.13.0.dev0 - Pytorch 1.10.0 - Datasets 1.16.1 - Tokenizers 0.10.3
Jeska/BertjeWDialDataALLQonly
4286279b69967d287ef7192511fbd30e547a8b3c
2021-12-04T21:58:51.000Z
[ "pytorch", "tensorboard", "bert", "fill-mask", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
fill-mask
false
Jeska
null
Jeska/BertjeWDialDataALLQonly
1
null
transformers
28,071
--- tags: - generated_from_trainer model-index: - name: BertjeWDialDataALLQonly results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # BertjeWDialDataALLQonly This model is a fine-tuned version of [GroNLP/bert-base-dutch-cased](https://huggingface.co/GroNLP/bert-base-dutch-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.9438 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 15.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 2.2122 | 1.0 | 871 | 2.0469 | | 2.0961 | 2.0 | 1742 | 2.0117 | | 2.0628 | 3.0 | 2613 | 2.0040 | | 2.0173 | 4.0 | 3484 | 1.9901 | | 1.9772 | 5.0 | 4355 | 1.9711 | | 1.9455 | 6.0 | 5226 | 1.9785 | | 1.917 | 7.0 | 6097 | 1.9380 | | 1.8933 | 8.0 | 6968 | 1.9651 | | 1.8708 | 9.0 | 7839 | 1.9915 | | 1.862 | 10.0 | 8710 | 1.9310 | | 1.8545 | 11.0 | 9581 | 1.9422 | | 1.8231 | 12.0 | 10452 | 1.9310 | | 1.8141 | 13.0 | 11323 | 1.9362 | | 1.7939 | 14.0 | 12194 | 1.9334 | | 1.8035 | 15.0 | 13065 | 1.9197 | ### Framework versions - Transformers 4.13.0.dev0 - Pytorch 1.10.0 - Datasets 1.16.1 - Tokenizers 0.10.3
Jeska/BertjeWDialDataALLQonly02
e4177ab4e305b1131f4e84d797f0f51d695ae6c4
2021-12-08T21:40:27.000Z
[ "pytorch", "tensorboard", "bert", "fill-mask", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
fill-mask
false
Jeska
null
Jeska/BertjeWDialDataALLQonly02
1
null
transformers
28,072
--- tags: - generated_from_trainer model-index: - name: BertjeWDialDataALLQonly02 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # BertjeWDialDataALLQonly02 This model is a fine-tuned version of [GroNLP/bert-base-dutch-cased](https://huggingface.co/GroNLP/bert-base-dutch-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.9043 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 12.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 2.2438 | 1.0 | 871 | 2.1122 | | 2.1235 | 2.0 | 1742 | 2.0784 | | 2.0712 | 3.0 | 2613 | 2.0679 | | 2.0034 | 4.0 | 3484 | 2.0546 | | 1.9375 | 5.0 | 4355 | 2.0277 | | 1.8911 | 6.0 | 5226 | 2.0364 | | 1.8454 | 7.0 | 6097 | 1.9812 | | 1.808 | 8.0 | 6968 | 2.0175 | | 1.7716 | 9.0 | 7839 | 2.0286 | | 1.7519 | 10.0 | 8710 | 1.9653 | | 1.7358 | 11.0 | 9581 | 1.9817 | | 1.7084 | 12.0 | 10452 | 1.9633 | ### Framework versions - Transformers 4.13.0.dev0 - Pytorch 1.10.0 - Datasets 1.16.1 - Tokenizers 0.10.3
Jeska/BertjeWDialDataALLQonly05
ab17d63b6f4ef33f15834c485e4bf9ab9673e7b7
2021-12-10T07:54:00.000Z
[ "pytorch", "tensorboard", "bert", "fill-mask", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
fill-mask
false
Jeska
null
Jeska/BertjeWDialDataALLQonly05
1
null
transformers
28,073
--- tags: - generated_from_trainer model-index: - name: BertjeWDialDataALLQonly05 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # BertjeWDialDataALLQonly05 This model is a fine-tuned version of [GroNLP/bert-base-dutch-cased](https://huggingface.co/GroNLP/bert-base-dutch-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.3921 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 12.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 2.9349 | 1.0 | 871 | 2.9642 | | 2.9261 | 2.0 | 1742 | 2.9243 | | 2.8409 | 3.0 | 2613 | 2.8895 | | 2.7308 | 4.0 | 3484 | 2.8394 | | 2.6042 | 5.0 | 4355 | 2.7703 | | 2.4671 | 6.0 | 5226 | 2.7522 | | 2.3481 | 7.0 | 6097 | 2.6339 | | 2.2493 | 8.0 | 6968 | 2.6224 | | 2.1233 | 9.0 | 7839 | 2.5637 | | 2.0194 | 10.0 | 8710 | 2.4896 | | 1.9178 | 11.0 | 9581 | 2.4689 | | 1.8588 | 12.0 | 10452 | 2.4663 | ### Framework versions - Transformers 4.13.0.dev0 - Pytorch 1.10.0 - Datasets 1.16.1 - Tokenizers 0.10.3
Jeska/BertjeWDialDataALLQonly06
9310ce567f268d840a800c4d7d84d59ba3febd8e
2021-12-10T13:02:59.000Z
[ "pytorch", "tensorboard", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
Jeska
null
Jeska/BertjeWDialDataALLQonly06
1
null
transformers
28,074
Entry not found
Jeska/BertjeWDialDataALLQonly09
560b9ab2bed4a4eef6b6ebe38d869142753c1c2a
2021-12-13T22:05:20.000Z
[ "pytorch", "tensorboard", "bert", "fill-mask", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
fill-mask
false
Jeska
null
Jeska/BertjeWDialDataALLQonly09
1
null
transformers
28,075
--- tags: - generated_from_trainer model-index: - name: BertjeWDialDataALLQonly09 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # BertjeWDialDataALLQonly09 This model is a fine-tuned version of [GroNLP/bert-base-dutch-cased](https://huggingface.co/GroNLP/bert-base-dutch-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.9043 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 12.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 2.2439 | 1.0 | 871 | 2.1102 | | 2.1235 | 2.0 | 1742 | 2.0785 | | 2.0709 | 3.0 | 2613 | 2.0689 | | 2.0033 | 4.0 | 3484 | 2.0565 | | 1.9386 | 5.0 | 4355 | 2.0290 | | 1.8909 | 6.0 | 5226 | 2.0366 | | 1.8449 | 7.0 | 6097 | 1.9809 | | 1.8078 | 8.0 | 6968 | 2.0177 | | 1.7709 | 9.0 | 7839 | 2.0289 | | 1.7516 | 10.0 | 8710 | 1.9645 | | 1.7354 | 11.0 | 9581 | 1.9810 | | 1.7073 | 12.0 | 10452 | 1.9631 | ### Framework versions - Transformers 4.13.0.dev0 - Pytorch 1.10.0 - Datasets 1.16.1 - Tokenizers 0.10.3
Jisu/HanBART_base
a88b4c8aba41aec3d7b6b31e11c5c7c927cf3f9e
2021-11-22T08:38:11.000Z
[ "pytorch", "bart", "feature-extraction", "transformers" ]
feature-extraction
false
Jisu
null
Jisu/HanBART_base
1
null
transformers
28,076
Entry not found
Jodsa/camembert_mlm
4893c930b4febfbbecca335edd954705f1f15731
2021-05-17T13:06:25.000Z
[ "pytorch", "camembert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
Jodsa
null
Jodsa/camembert_mlm
1
null
transformers
28,077
Entry not found
JorgeSarry/est5base
c6cb2ca438340e3916c978751e252118e31dd9a3
2021-09-13T12:14:38.000Z
[ "pytorch", "t5", "text2text-generation", "es", "transformers", "autotrain_compatible" ]
text2text-generation
false
JorgeSarry
null
JorgeSarry/est5base
1
null
transformers
28,078
--- language: es --- This is a smaller version of the google/mt5-base model with only Spanish and some English embeddings left following the procedure outlined here https://towardsdatascience.com/how-to-adapt-a-multilingual-t5-model-for-a-single-language-b9f94f3d9c90 The original model has 582M parameters, with 384M of them being input and output embeddings. After shrinking the sentencepiece vocabulary from 250K to 30K (top 10K English and top 20K Spanish tokens) the number of model parameters reduced to 244M parameters, resulting on a model size reduced from 2.2GB to 0.9GB - 42% of the original one.
Julianqll/DialoGPT-small-finalmorty
5c0b71f0d9b5e546b8b68c8ac0677353400da9b2
2021-08-30T18:17:49.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
Julianqll
null
Julianqll/DialoGPT-small-finalmorty
1
null
transformers
28,079
--- tags: - conversational --- # Morty DialoGPT Model
Junmai/klue-roberta-large-boolq-finetuned-v1
fb6aca4d015c24502bc537fd1b645009cb945d47
2021-12-08T01:56:14.000Z
[ "pytorch", "roberta", "feature-extraction", "transformers" ]
feature-extraction
false
Junmai
null
Junmai/klue-roberta-large-boolq-finetuned-v1
1
null
transformers
28,080
Entry not found
KBLab/electra-small-swedish-cased-discriminator
fe42404c3238a1fccb8e8d8119f3721eb4ac7792
2020-10-21T08:17:53.000Z
[ "pytorch", "tf", "electra", "pretraining", "transformers" ]
null
false
KBLab
null
KBLab/electra-small-swedish-cased-discriminator
1
null
transformers
28,081
Entry not found
KBLab/asr-voxrex-bart-base
220091024fa797591aec330bb739898f5ee45980
2022-01-10T13:38:13.000Z
[ "pytorch", "speech-encoder-decoder", "automatic-speech-recognition", "transformers", "generated_from_trainer", "asr_seq2seq" ]
automatic-speech-recognition
false
KBLab
null
KBLab/asr-voxrex-bart-base
1
null
transformers
28,082
--- tags: - automatic-speech-recognition - generated_from_trainer - asr_seq2seq --- Test
KK/DialoGPT-small-Rick
229d44bbffbc4e526d994beb3d55d114ef731e43
2021-06-11T03:07:42.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
KK
null
KK/DialoGPT-small-Rick
1
null
transformers
28,083
Entry not found
KP2500/KPBot
873375b41e20122cdfc71bae33e6364b69a95a74
2021-08-27T06:53:22.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
KP2500
null
KP2500/KPBot
1
null
transformers
28,084
--- tags: - conversational --- # RickBot built for [Chai](https://chai.ml/) Make your own [here](https://colab.research.google.com/drive/1o5LxBspm-C28HQvXN-PRQavapDbm5WjG?usp=sharing)
KY/KY_test_model
220a913bef4639589d645e7e824f88d44049e604
2021-06-15T08:08:44.000Z
[ "pytorch", "distilbert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
KY
null
KY/KY_test_model
1
null
transformers
28,085
Entry not found
KY/modeling_test_II
dcca4a7868b6da31a19fbe14630cae0d32bb9b5a
2021-06-17T02:18:08.000Z
[ "pytorch", "distilbert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
KY
null
KY/modeling_test_II
1
null
transformers
28,086
Entry not found
Kairu/DialoGPT-small-Rick
7fef122236c961764e0680de71b1d29afd2d79af
2021-11-11T04:23:46.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
Kairu
null
Kairu/DialoGPT-small-Rick
1
null
transformers
28,087
--- tags: - conversational --- # Rick DialoGPT model
Kairu/RICKBOT
79f0f5cb1478925bd65c072845c614fb561999f4
2021-11-12T07:50:13.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
Kairu
null
Kairu/RICKBOT
1
null
transformers
28,088
--- tags: - conversational --- # Rick bot chat
KaydenSou/Joshua
38458f6667fd30ab14582dbf6316af416fb70280
2021-08-27T04:30:25.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
KaydenSou
null
KaydenSou/Joshua
1
null
transformers
28,089
--- tags : - conversational --- # Joshua Dialogue Model
Khanh/bert-base-multilingual-cased-finetuned-viquad
26b09b57bb59e3518619326d29ce5b1b120820ad
2022-01-04T19:07:54.000Z
[ "pytorch", "tensorboard", "bert", "question-answering", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
question-answering
false
Khanh
null
Khanh/bert-base-multilingual-cased-finetuned-viquad
1
null
transformers
28,090
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: bert-base-multilingual-cased-finetuned-viquad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-multilingual-cased-finetuned-viquad This model is a fine-tuned version of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.9815 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 65 | 2.5534 | | No log | 2.0 | 130 | 2.1165 | | No log | 3.0 | 195 | 1.9815 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
Khanh/distilbert-base-multilingual-cased-finetuned-squad
934394d83468bba7100a4a8247dc2ffa3b5a3696
2022-01-04T15:53:15.000Z
[ "pytorch", "tensorboard", "distilbert", "question-answering", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
question-answering
false
Khanh
null
Khanh/distilbert-base-multilingual-cased-finetuned-squad
1
null
transformers
28,091
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distilbert-base-multilingual-cased-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-multilingual-cased-finetuned-squad This model is a fine-tuned version of [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6587 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.923 | 1.0 | 579 | 0.8439 | | 0.8479 | 2.0 | 1158 | 0.6784 | | 0.6148 | 3.0 | 1737 | 0.6587 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
Khanh/distilbert-base-multilingual-cased-finetuned-viquad
0712fbfbf51e6533a01d524c99a53c29cdc7eb09
2022-01-04T19:19:15.000Z
[ "pytorch", "tensorboard", "distilbert", "question-answering", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
question-answering
false
Khanh
null
Khanh/distilbert-base-multilingual-cased-finetuned-viquad
1
null
transformers
28,092
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distilbert-base-multilingual-cased-finetuned-viquad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-multilingual-cased-finetuned-viquad This model is a fine-tuned version of [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.4241 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 65 | 4.0975 | | No log | 2.0 | 130 | 3.9315 | | No log | 3.0 | 195 | 3.6742 | | No log | 4.0 | 260 | 3.4878 | | No log | 5.0 | 325 | 3.4241 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
KheireddineDaouadi/arsent
2a3262a158cd070cbca6c486c3131486ce83c648
2022-02-09T18:32:42.000Z
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
false
KheireddineDaouadi
null
KheireddineDaouadi/arsent
1
null
transformers
28,093
Entry not found
KnutZuidema/DialoGPT-small-morty
6f6bc58a8b78111c955981296a90bdd66d672353
2021-08-31T20:38:04.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
KnutZuidema
null
KnutZuidema/DialoGPT-small-morty
1
null
transformers
28,094
--- tags: - conversational --- # MORTY!!!
Koriyy/DialoGPT-medium-gf
fbed186a8ed2c378db1df14686f6faad7b4aab02
2022-02-11T03:57:51.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
Koriyy
null
Koriyy/DialoGPT-medium-gf
1
null
transformers
28,095
--- tags: - conversational --- I'm dumb
KrispyIChris/DialoGPT-small-harrypotter
a27e3bd3b2fb82c94f60c70c8857873fa9cea979
2021-09-16T02:36:47.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
KrispyIChris
null
KrispyIChris/DialoGPT-small-harrypotter
1
null
transformers
28,096
--- tags: - conversational --- # Harry Potter DialoGPTModel
Krystalan/mdialbart_de
347b2a7a48a03006923e9a952d1ef08b4fc45d58
2022-02-24T11:33:13.000Z
[ "pytorch", "mbart", "text2text-generation", "arxiv:2202.05599", "transformers", "license:cc-by-nc-sa-4.0", "autotrain_compatible" ]
text2text-generation
false
Krystalan
null
Krystalan/mdialbart_de
1
null
transformers
28,097
--- license: cc-by-nc-sa-4.0 --- ## mDialBART: A Cross-Lingual Dialogue Summarization Model This model is introduced by [*ClidSum: A Benchmark Dataset for Cross-Lingual Dialogue Summarization*](https://arxiv.org/abs/2202.05599).
Kyuyoung11/haremotions-v5
b53ebee2ca1f540e6f51e5131a65d0bfc84b946d
2021-09-12T04:32:10.000Z
[ "pytorch", "electra", "transformers" ]
null
false
Kyuyoung11
null
Kyuyoung11/haremotions-v5
1
null
transformers
28,098
Entry not found
LactoseLegend/DialoGPT-small-Rick
340aaf4e99714990b2e3e5509f35f6d55213d40d
2021-08-28T21:14:49.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
LactoseLegend
null
LactoseLegend/DialoGPT-small-Rick
1
null
transformers
28,099
--- tags: - conversational --- # Rick DioloGPT Model