modelId
stringlengths
4
112
sha
stringlengths
40
40
lastModified
stringlengths
24
24
tags
sequence
pipeline_tag
stringclasses
29 values
private
bool
1 class
author
stringlengths
2
38
config
null
id
stringlengths
4
112
downloads
float64
0
36.8M
likes
float64
0
712
library_name
stringclasses
17 values
__index_level_0__
int64
0
38.5k
readme
stringlengths
0
186k
cottonlove/dummy-model
c8eb5a94874fb4c000bab7f6ace0009b1e73f7d0
2022-07-20T05:31:33.000Z
[ "pytorch", "camembert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
cottonlove
null
cottonlove/dummy-model
2
null
transformers
27,600
Entry not found
glory20h/jbspeechrec_scz
cbffc4b354a74f0c0739c1843c0017c4eddfc61b
2022-07-20T08:18:17.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
glory20h
null
glory20h/jbspeechrec_scz
2
null
transformers
27,601
Entry not found
WYHu/cve2cpe_bert
8b8a981de0909aaee60ae2f897af8eda214495fc
2022-07-20T09:20:42.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
WYHu
null
WYHu/cve2cpe_bert
2
null
transformers
27,602
Entry not found
chiendvhust/bert-finetuned-squad
e25ec1eaa198a1132786ae62e0f4e5304314a997
2022-07-20T13:41:21.000Z
[ "pytorch", "bert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
chiendvhust
null
chiendvhust/bert-finetuned-squad
2
null
transformers
27,603
Entry not found
gemasphi/laprador_mmarco
4eb10c42c89d61bd9b96d94c7a7a44a1eea8e32c
2022-07-20T11:02:19.000Z
[ "pytorch", "bert", "feature-extraction", "sentence-transformers", "sentence-similarity", "transformers" ]
sentence-similarity
false
gemasphi
null
gemasphi/laprador_mmarco
2
null
sentence-transformers
27,604
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # gemasphi/laprador_mmarco This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('gemasphi/laprador_mmarco') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('gemasphi/laprador_mmarco') model = AutoModel.from_pretrained('gemasphi/laprador_mmarco') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=gemasphi/laprador_mmarco) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 6653 with parameters: ``` {'batch_size': 75, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters: ``` {'scale': 20.0, 'similarity_fct': 'cos_sim'} ``` Parameters of the fit()-Method: ``` { "epochs": 10, "evaluation_steps": 10000, "evaluator": "sentence_transformers.evaluation.SequentialEvaluator.SequentialEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "correct_bias": false, "eps": 1e-06, "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 1000, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 350, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
shila/distilbert-base-uncased-finetuned-squad
5b3c15c2dc1bbbd1b03a2f6cd290c84d875e3190
2022-07-21T09:44:02.000Z
[ "pytorch", "tensorboard", "distilbert", "question-answering", "dataset:squad_v2_loading_script", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
question-answering
false
shila
null
shila/distilbert-base-uncased-finetuned-squad
2
null
transformers
27,605
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad_v2_loading_script model-index: - name: distilbert-base-uncased-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-squad This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the squad_v2_loading_script dataset. It achieves the following results on the evaluation set: - Loss: 4.9348 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 15 | 5.4661 | | No log | 2.0 | 30 | 5.0915 | | No log | 3.0 | 45 | 4.9348 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
huggingtweets/kchonyc
7c9ead179943724cdcacfc3253d0d09b16739b2d
2022-07-20T18:49:05.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/kchonyc
2
null
transformers
27,606
--- language: en thumbnail: http://www.huggingtweets.com/kchonyc/1658342940411/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1485997480089108483/yi4s4d5F_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Kyunghyun Cho</div> <div style="text-align: center; font-size: 14px;">@kchonyc</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Kyunghyun Cho. | Data | Kyunghyun Cho | | --- | --- | | Tweets downloaded | 3236 | | Retweets | 774 | | Short tweets | 298 | | Tweets kept | 2164 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2cu6z57w/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @kchonyc's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/m6pgno8m) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/m6pgno8m/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/kchonyc') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
duchung17/vivos-base-cmv
b928d97361763647537609a4a5ad62f0e16646a1
2022-07-21T07:16:17.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
duchung17
null
duchung17/vivos-base-cmv
2
null
transformers
27,607
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: vivos-base-cmv results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vivos-base-cmv This model is a fine-tuned version of [duchung17/wav2vec2-base-cmv-featured](https://huggingface.co/duchung17/wav2vec2-base-cmv-featured) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5293 - Wer: 0.3322 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 10 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 20 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 0.8653 | 1.25 | 500 | 0.4774 | 0.4997 | | 0.5745 | 2.49 | 1000 | 0.4670 | 0.4687 | | 0.4888 | 3.74 | 1500 | 0.4393 | 0.4375 | | 0.4309 | 4.99 | 2000 | 0.4268 | 0.4179 | | 0.379 | 6.23 | 2500 | 0.4294 | 0.4074 | | 0.3491 | 7.48 | 3000 | 0.4398 | 0.3942 | | 0.3191 | 8.73 | 3500 | 0.4467 | 0.3858 | | 0.3001 | 9.98 | 4000 | 0.4249 | 0.3701 | | 0.2716 | 11.22 | 4500 | 0.4533 | 0.3726 | | 0.2624 | 12.47 | 5000 | 0.4465 | 0.3713 | | 0.2383 | 13.72 | 5500 | 0.4536 | 0.3666 | | 0.2223 | 14.96 | 6000 | 0.4484 | 0.3585 | | 0.2036 | 16.21 | 6500 | 0.4728 | 0.3617 | | 0.1937 | 17.46 | 7000 | 0.4786 | 0.3585 | | 0.1834 | 18.7 | 7500 | 0.4724 | 0.3494 | | 0.1726 | 19.95 | 8000 | 0.4831 | 0.3462 | | 0.1649 | 21.2 | 8500 | 0.4896 | 0.3412 | | 0.153 | 22.44 | 9000 | 0.4899 | 0.3416 | | 0.1454 | 23.69 | 9500 | 0.4917 | 0.3366 | | 0.1377 | 24.94 | 10000 | 0.5095 | 0.3392 | | 0.1312 | 26.18 | 10500 | 0.5265 | 0.3354 | | 0.1268 | 27.43 | 11000 | 0.5322 | 0.3307 | | 0.1212 | 28.68 | 11500 | 0.5407 | 0.3346 | | 0.1187 | 29.93 | 12000 | 0.5293 | 0.3322 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.12.0+cu113 - Datasets 1.18.3 - Tokenizers 0.12.1
keepitreal/bert-finetuned-squad
d1e4eb5ef2d5dc55704ef29c4125c257148664d6
2022-07-21T05:37:07.000Z
[ "pytorch", "tensorboard", "bert", "question-answering", "dataset:squad", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
question-answering
false
keepitreal
null
keepitreal/bert-finetuned-squad
2
null
transformers
27,608
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: bert-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-squad This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
huggingtweets/evetixx
18668a831f06421f8ead898e6200cc12b40254f0
2022-07-21T05:36:00.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/evetixx
2
null
transformers
27,609
--- language: en thumbnail: http://www.huggingtweets.com/evetixx/1658381755785/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1480525219177500675/wKTMg3gl_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">eve</div> <div style="text-align: center; font-size: 14px;">@evetixx</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from eve. | Data | eve | | --- | --- | | Tweets downloaded | 185 | | Retweets | 25 | | Short tweets | 55 | | Tweets kept | 105 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2o14y995/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @evetixx's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2r3der0q) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2r3der0q/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/evetixx') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
jh1/distilbert-base-uncased-finetuned-chunk
04850e0f22b88d49d34fb77972a93f304ac96d05
2022-07-21T07:45:52.000Z
[ "pytorch", "distilbert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
jh1
null
jh1/distilbert-base-uncased-finetuned-chunk
2
null
transformers
27,610
Entry not found
pannaga/wav2vec2-base-timit-demo-google-colab-testing
bedbc066ed735e56096a4755235f9ae3ade47410
2022-07-27T04:18:24.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
pannaga
null
pannaga/wav2vec2-base-timit-demo-google-colab-testing
2
null
transformers
27,611
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base-timit-demo-google-colab-testing results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-timit-demo-google-colab-testing This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.3080 - Wer: 0.9994 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.6292 | 20.83 | 500 | 3.5570 | 0.9994 | | 2.8237 | 41.67 | 1000 | 3.3080 | 0.9994 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.12.0+cu113 - Datasets 1.18.3 - Tokenizers 0.12.1
cjvt/legacy-t5-sl-small
5063a1cbd9021159db629a5f3224f7cadd4e22d9
2022-07-21T11:14:51.000Z
[ "pytorch", "t5", "text2text-generation", "sl", "transformers", "license:cc-by-sa-4.0", "autotrain_compatible" ]
text2text-generation
false
cjvt
null
cjvt/legacy-t5-sl-small
2
null
transformers
27,612
--- language: - sl license: cc-by-sa-4.0 --- # [legacy] t5-sl-small This is the first version of the t5-sl-small model, which has since been replaced by an updated model (cjvt/t5-sl-small). The architecture of the two models is the same, but the legacy version was trained for about 6 times less (i.e. the model has seen 6 times less data during the training). This version remains here due to reproducibility reasons. ## Corpora The following corpora were used for training the model: * Gigafida 2.0 * Kas 1.0 * Janes 1.0 (only Janes-news, Janes-forum, Janes-blog, Janes-wiki subcorpora) * Slovenian parliamentary corpus siParl 2.0 * slWaC
huggingtweets/lpachter
47710f687afb1ad5511c362e029460cabf8d459f
2022-07-21T12:11:55.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/lpachter
2
null
transformers
27,613
--- language: en thumbnail: http://www.huggingtweets.com/lpachter/1658405511004/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1257000705761525760/R7Pphmei_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Lior Pachter</div> <div style="text-align: center; font-size: 14px;">@lpachter</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Lior Pachter. | Data | Lior Pachter | | --- | --- | | Tweets downloaded | 3232 | | Retweets | 1213 | | Short tweets | 245 | | Tweets kept | 1774 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3rt1wriv/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @lpachter's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/23sx643q) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/23sx643q/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/lpachter') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
myvision/scibert-uncased-synthetic-50k
a32337266ddc985a219775efbcef7c23e66525fd
2022-07-21T15:04:59.000Z
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
false
myvision
null
myvision/scibert-uncased-synthetic-50k
2
null
transformers
27,614
Entry not found
Ammonsh/wav2vec2-common_voice-tr-demo
b985ebfcdf69c2ddce59fc750e67b3dc1370cf95
2022-07-22T00:38:13.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
Ammonsh
null
Ammonsh/wav2vec2-common_voice-tr-demo
2
null
transformers
27,615
Entry not found
danhsf/m2m100_418M-finetuned-kde4-en-to-pt_BR
1b54a8512c8b2928b7cc7a99f70cb6d8b439d83a
2022-07-22T12:47:59.000Z
[ "pytorch", "tensorboard", "m2m_100", "text2text-generation", "dataset:kde4", "transformers", "translation", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
translation
false
danhsf
null
danhsf/m2m100_418M-finetuned-kde4-en-to-pt_BR
2
null
transformers
27,616
--- license: mit tags: - translation - generated_from_trainer datasets: - kde4 metrics: - bleu model-index: - name: m2m100_418M-finetuned-kde4-en-to-pt_BR results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: kde4 type: kde4 args: en-pt_BR metrics: - name: Bleu type: bleu value: 58.31959113813223 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # m2m100_418M-finetuned-kde4-en-to-pt_BR This model is a fine-tuned version of [facebook/m2m100_418M](https://huggingface.co/facebook/m2m100_418M) on the kde4 dataset. It achieves the following results on the evaluation set: - Loss: 0.5150 - Bleu: 58.3196 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
Lvxue/distilled_test_0.99_delete_metric
00a290c08865ff4145294a0bae8e9ccc853e1b85
2022-07-22T03:23:25.000Z
[ "pytorch", "mt5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
Lvxue
null
Lvxue/distilled_test_0.99_delete_metric
2
null
transformers
27,617
Entry not found
Lvxue/distilled_test_0.9_delete_metric
56656a3fbb7c01c1f5e2487c76041e3343d04aec
2022-07-22T04:10:01.000Z
[ "pytorch", "mt5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
Lvxue
null
Lvxue/distilled_test_0.9_delete_metric
2
null
transformers
27,618
Entry not found
RupE/xlm-roberta-base-finetuned-panx-de
eaddd1311b23675408c3faa91335796cd5339100
2022-07-22T05:15:36.000Z
[ "pytorch", "tensorboard", "xlm-roberta", "token-classification", "dataset:xtreme", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
token-classification
false
RupE
null
RupE/xlm-roberta-base-finetuned-panx-de
2
null
transformers
27,619
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme config: PAN-X.de split: train args: PAN-X.de metrics: - name: F1 type: f1 value: 0.8503293209175562 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.1354 - F1: 0.8503 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 96 - eval_batch_size: 96 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | No log | 1.0 | 132 | 0.1757 | 0.8055 | | No log | 2.0 | 264 | 0.1372 | 0.8424 | | No log | 3.0 | 396 | 0.1354 | 0.8503 | ### Framework versions - Transformers 4.21.0.dev0 - Pytorch 1.12.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
Lvxue/distilled_test_0.5_delete_metric
1253ae074acaf8e41b5236bdea13393d6bf3956e
2022-07-22T05:43:01.000Z
[ "pytorch", "mt5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
Lvxue
null
Lvxue/distilled_test_0.5_delete_metric
2
null
transformers
27,620
Entry not found
RupE/xlm-roberta-base-finetuned-panx-de-fr
71be54fa202bb51cb9c5ea1fa63b75b89a976c29
2022-07-22T05:37:41.000Z
[ "pytorch", "xlm-roberta", "token-classification", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
token-classification
false
RupE
null
RupE/xlm-roberta-base-finetuned-panx-de-fr
2
null
transformers
27,621
--- license: mit tags: - generated_from_trainer metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de-fr results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de-fr This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1632 - F1: 0.8505 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 96 - eval_batch_size: 96 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | No log | 1.0 | 179 | 0.1842 | 0.8256 | | No log | 2.0 | 358 | 0.1720 | 0.8395 | | No log | 3.0 | 537 | 0.1632 | 0.8505 | ### Framework versions - Transformers 4.21.0.dev0 - Pytorch 1.12.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
RupE/xlm-roberta-base-finetuned-panx-fr
0c25e8c02a010fae54920fcf43b3e7296c3d7943
2022-07-22T05:43:37.000Z
[ "pytorch", "xlm-roberta", "token-classification", "dataset:xtreme", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
token-classification
false
RupE
null
RupE/xlm-roberta-base-finetuned-panx-fr
2
null
transformers
27,622
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-fr results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme config: PAN-X.fr split: train args: PAN-X.fr metrics: - name: F1 type: f1 value: 0.8151120026746907 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-fr This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.2880 - F1: 0.8151 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 96 - eval_batch_size: 96 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | No log | 1.0 | 48 | 0.3642 | 0.7463 | | No log | 2.0 | 96 | 0.3007 | 0.7975 | | No log | 3.0 | 144 | 0.2880 | 0.8151 | ### Framework versions - Transformers 4.21.0.dev0 - Pytorch 1.12.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
RupE/xlm-roberta-base-finetuned-panx-it
6b38ace314b4240ead194fe61441a3347c4e4805
2022-07-22T05:47:13.000Z
[ "pytorch", "xlm-roberta", "token-classification", "dataset:xtreme", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
token-classification
false
RupE
null
RupE/xlm-roberta-base-finetuned-panx-it
2
null
transformers
27,623
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-it results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme config: PAN-X.it split: train args: PAN-X.it metrics: - name: F1 type: f1 value: 0.7434973989595838 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-it This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.3355 - F1: 0.7435 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 96 - eval_batch_size: 96 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | No log | 1.0 | 18 | 0.6871 | 0.4648 | | No log | 2.0 | 36 | 0.3901 | 0.6932 | | No log | 3.0 | 54 | 0.3355 | 0.7435 | ### Framework versions - Transformers 4.21.0.dev0 - Pytorch 1.12.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
RupE/xlm-roberta-base-finetuned-panx-en
2eeddb62403321020a26dbc5fe0564854add2fee
2022-07-22T05:50:25.000Z
[ "pytorch", "xlm-roberta", "token-classification", "dataset:xtreme", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
token-classification
false
RupE
null
RupE/xlm-roberta-base-finetuned-panx-en
2
null
transformers
27,624
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-en results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme config: PAN-X.en split: train args: PAN-X.en metrics: - name: F1 type: f1 value: 0.5541666666666666 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-en This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.6380 - F1: 0.5542 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 96 - eval_batch_size: 96 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | No log | 1.0 | 13 | 1.0388 | 0.1801 | | No log | 2.0 | 26 | 0.7545 | 0.5053 | | No log | 3.0 | 39 | 0.6380 | 0.5542 | ### Framework versions - Transformers 4.21.0.dev0 - Pytorch 1.12.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
RupE/xlm-roberta-base-finetuned-panx-all
89642c3e2cceeeee9b90aa266da7d958315abca9
2022-07-22T06:04:25.000Z
[ "pytorch", "xlm-roberta", "token-classification", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
token-classification
false
RupE
null
RupE/xlm-roberta-base-finetuned-panx-all
2
null
transformers
27,625
--- license: mit tags: - generated_from_trainer metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-all results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-all This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1748 - F1: 0.8467 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 96 - eval_batch_size: 96 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | No log | 1.0 | 209 | 0.1990 | 0.8088 | | No log | 2.0 | 418 | 0.1748 | 0.8426 | | No log | 3.0 | 627 | 0.1748 | 0.8467 | ### Framework versions - Transformers 4.21.0.dev0 - Pytorch 1.12.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
sudo-s/exper1_mesum5
ac48cf5fe57fbdcaa5be68b209923dbd331d361b
2022-07-22T11:23:22.000Z
[ "pytorch", "tensorboard", "vit", "image-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
image-classification
false
sudo-s
null
sudo-s/exper1_mesum5
2
null
transformers
27,626
--- license: apache-2.0 tags: - image-classification - generated_from_trainer metrics: - accuracy model-index: - name: exper1_mesum5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # exper1_mesum5 This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the sudo-s/herbier_mesuem5 dataset. It achieves the following results on the evaluation set: - Loss: 0.6401 - Accuracy: 0.8278 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 3.9352 | 0.23 | 100 | 3.8550 | 0.1959 | | 3.1536 | 0.47 | 200 | 3.1755 | 0.2888 | | 2.6937 | 0.7 | 300 | 2.6332 | 0.4272 | | 2.3748 | 0.93 | 400 | 2.2833 | 0.4970 | | 1.5575 | 1.16 | 500 | 1.8712 | 0.5888 | | 1.4063 | 1.4 | 600 | 1.6048 | 0.6314 | | 1.1841 | 1.63 | 700 | 1.4109 | 0.6621 | | 1.0857 | 1.86 | 800 | 1.1832 | 0.7112 | | 0.582 | 2.09 | 900 | 1.0371 | 0.7479 | | 0.5971 | 2.33 | 1000 | 0.9839 | 0.7462 | | 0.4617 | 2.56 | 1100 | 0.9233 | 0.7657 | | 0.4621 | 2.79 | 1200 | 0.8417 | 0.7828 | | 0.2128 | 3.02 | 1300 | 0.7644 | 0.7970 | | 0.1883 | 3.26 | 1400 | 0.7001 | 0.8183 | | 0.1501 | 3.49 | 1500 | 0.6826 | 0.8201 | | 0.1626 | 3.72 | 1600 | 0.6568 | 0.8254 | | 0.1053 | 3.95 | 1700 | 0.6401 | 0.8278 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
sudo-s/exper2_mesum5
aded307255831b7b742183195fbfe0cd57bef09f
2022-07-22T11:39:11.000Z
[ "pytorch", "tensorboard", "vit", "image-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
image-classification
false
sudo-s
null
sudo-s/exper2_mesum5
2
null
transformers
27,627
--- license: apache-2.0 tags: - image-classification - generated_from_trainer metrics: - accuracy model-index: - name: exper2_mesum5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # exper2_mesum5 This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the sudo-s/herbier_mesuem5 dataset. It achieves the following results on the evaluation set: - Loss: 3.4589 - Accuracy: 0.1308 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.002 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 4.4265 | 0.23 | 100 | 4.3676 | 0.0296 | | 4.1144 | 0.47 | 200 | 4.1606 | 0.0544 | | 4.0912 | 0.7 | 300 | 4.1071 | 0.0509 | | 4.0361 | 0.93 | 400 | 4.0625 | 0.0669 | | 4.0257 | 1.16 | 500 | 3.9682 | 0.0822 | | 3.8846 | 1.4 | 600 | 3.9311 | 0.0834 | | 3.9504 | 1.63 | 700 | 3.9255 | 0.0698 | | 3.9884 | 1.86 | 800 | 3.9404 | 0.0722 | | 3.7191 | 2.09 | 900 | 3.8262 | 0.0935 | | 3.7952 | 2.33 | 1000 | 3.8236 | 0.0734 | | 3.8085 | 2.56 | 1100 | 3.7694 | 0.0964 | | 3.7535 | 2.79 | 1200 | 3.6757 | 0.1059 | | 3.4218 | 3.02 | 1300 | 3.6474 | 0.1095 | | 3.5172 | 3.26 | 1400 | 3.5621 | 0.1166 | | 3.5173 | 3.49 | 1500 | 3.5579 | 0.1207 | | 3.4346 | 3.72 | 1600 | 3.4817 | 0.1249 | | 3.3995 | 3.95 | 1700 | 3.4589 | 0.1308 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
sudo-s/exper3_mesum5
cb127fb5725018772a63e6bbba1e295e1bf923c4
2022-07-22T12:10:49.000Z
[ "pytorch", "tensorboard", "vit", "image-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
image-classification
false
sudo-s
null
sudo-s/exper3_mesum5
2
null
transformers
27,628
--- license: apache-2.0 tags: - image-classification - generated_from_trainer metrics: - accuracy model-index: - name: exper3_mesum5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # exper3_mesum5 This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the sudo-s/herbier_mesuem5 dataset. It achieves the following results on the evaluation set: - Loss: 0.6366 - Accuracy: 0.8367 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 3.895 | 0.23 | 100 | 3.8276 | 0.1935 | | 3.1174 | 0.47 | 200 | 3.1217 | 0.3107 | | 2.6 | 0.7 | 300 | 2.5399 | 0.4207 | | 2.256 | 0.93 | 400 | 2.1767 | 0.5160 | | 1.5441 | 1.16 | 500 | 1.8086 | 0.5852 | | 1.3834 | 1.4 | 600 | 1.5565 | 0.6325 | | 1.1995 | 1.63 | 700 | 1.3339 | 0.6763 | | 1.0845 | 1.86 | 800 | 1.3299 | 0.6533 | | 0.6472 | 2.09 | 900 | 1.0679 | 0.7219 | | 0.5948 | 2.33 | 1000 | 1.0286 | 0.7124 | | 0.5565 | 2.56 | 1100 | 0.9595 | 0.7284 | | 0.4879 | 2.79 | 1200 | 0.8915 | 0.7420 | | 0.2816 | 3.02 | 1300 | 0.8159 | 0.7763 | | 0.2412 | 3.26 | 1400 | 0.7766 | 0.7911 | | 0.2015 | 3.49 | 1500 | 0.7850 | 0.7828 | | 0.274 | 3.72 | 1600 | 0.7361 | 0.7935 | | 0.1244 | 3.95 | 1700 | 0.7299 | 0.7911 | | 0.0794 | 4.19 | 1800 | 0.7441 | 0.7846 | | 0.0915 | 4.42 | 1900 | 0.7614 | 0.7941 | | 0.0817 | 4.65 | 2000 | 0.7310 | 0.8012 | | 0.0561 | 4.88 | 2100 | 0.7222 | 0.8065 | | 0.0165 | 5.12 | 2200 | 0.7515 | 0.8059 | | 0.0168 | 5.35 | 2300 | 0.6687 | 0.8213 | | 0.0212 | 5.58 | 2400 | 0.6671 | 0.8249 | | 0.0389 | 5.81 | 2500 | 0.6893 | 0.8278 | | 0.0087 | 6.05 | 2600 | 0.6839 | 0.8260 | | 0.0087 | 6.28 | 2700 | 0.6412 | 0.8320 | | 0.0077 | 6.51 | 2800 | 0.6366 | 0.8367 | | 0.0065 | 6.74 | 2900 | 0.6697 | 0.8272 | | 0.0061 | 6.98 | 3000 | 0.6510 | 0.8349 | | 0.0185 | 7.21 | 3100 | 0.6452 | 0.8367 | | 0.0059 | 7.44 | 3200 | 0.6426 | 0.8379 | | 0.0062 | 7.67 | 3300 | 0.6398 | 0.8379 | | 0.0315 | 7.91 | 3400 | 0.6397 | 0.8385 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
sudo-s/exper4_mesum5
3413581cafd958b6808cf5b755a79bd9b69bb0fb
2022-07-22T12:10:07.000Z
[ "pytorch", "tensorboard", "vit", "image-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
image-classification
false
sudo-s
null
sudo-s/exper4_mesum5
2
null
transformers
27,629
--- license: apache-2.0 tags: - image-classification - generated_from_trainer metrics: - accuracy model-index: - name: exper4_mesum5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # exper4_mesum5 This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the sudo-s/herbier_mesuem5 dataset. It achieves the following results on the evaluation set: - Loss: 3.4389 - Accuracy: 0.1331 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 3.3793 | 0.23 | 100 | 3.4527 | 0.1308 | | 3.2492 | 0.47 | 200 | 3.4501 | 0.1331 | | 3.3847 | 0.7 | 300 | 3.4500 | 0.1272 | | 3.3739 | 0.93 | 400 | 3.4504 | 0.1320 | | 3.4181 | 1.16 | 500 | 3.4452 | 0.1320 | | 3.214 | 1.4 | 600 | 3.4503 | 0.1320 | | 3.282 | 1.63 | 700 | 3.4444 | 0.1325 | | 3.5308 | 1.86 | 800 | 3.4473 | 0.1337 | | 3.2251 | 2.09 | 900 | 3.4415 | 0.1361 | | 3.4385 | 2.33 | 1000 | 3.4408 | 0.1343 | | 3.3702 | 2.56 | 1100 | 3.4406 | 0.1325 | | 3.366 | 2.79 | 1200 | 3.4411 | 0.1355 | | 3.2022 | 3.02 | 1300 | 3.4403 | 0.1308 | | 3.2768 | 3.26 | 1400 | 3.4394 | 0.1320 | | 3.3444 | 3.49 | 1500 | 3.4394 | 0.1314 | | 3.2981 | 3.72 | 1600 | 3.4391 | 0.1331 | | 3.3349 | 3.95 | 1700 | 3.4389 | 0.1331 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
sudo-s/exper6_mesum5
527a31ecd9abac8bc8a0a6fdf39f17275ea1bb47
2022-07-22T13:30:23.000Z
[ "pytorch", "tensorboard", "vit", "image-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
image-classification
false
sudo-s
null
sudo-s/exper6_mesum5
2
null
transformers
27,630
--- license: apache-2.0 tags: - image-classification - generated_from_trainer metrics: - accuracy model-index: - name: exper6_mesum5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # exper6_mesum5 This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the sudo-s/herbier_mesuem5 dataset. It achieves the following results on the evaluation set: - Loss: 0.8241 - Accuracy: 0.8036 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 16 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 3.9276 | 0.23 | 100 | 3.8550 | 0.2089 | | 3.0853 | 0.47 | 200 | 3.1106 | 0.3414 | | 2.604 | 0.7 | 300 | 2.5732 | 0.4379 | | 2.3183 | 0.93 | 400 | 2.2308 | 0.4882 | | 1.5326 | 1.16 | 500 | 1.7903 | 0.5828 | | 1.3367 | 1.4 | 600 | 1.5524 | 0.6349 | | 1.1544 | 1.63 | 700 | 1.3167 | 0.6645 | | 1.0788 | 1.86 | 800 | 1.3423 | 0.6385 | | 0.6762 | 2.09 | 900 | 1.0780 | 0.7124 | | 0.6483 | 2.33 | 1000 | 1.0090 | 0.7284 | | 0.6321 | 2.56 | 1100 | 1.0861 | 0.7024 | | 0.5558 | 2.79 | 1200 | 0.9933 | 0.7183 | | 0.342 | 3.02 | 1300 | 0.8871 | 0.7462 | | 0.2964 | 3.26 | 1400 | 0.9330 | 0.7408 | | 0.1959 | 3.49 | 1500 | 0.9367 | 0.7343 | | 0.368 | 3.72 | 1600 | 0.8472 | 0.7550 | | 0.1821 | 3.95 | 1700 | 0.8937 | 0.7568 | | 0.1851 | 4.19 | 1800 | 0.9546 | 0.7485 | | 0.1648 | 4.42 | 1900 | 0.9790 | 0.7355 | | 0.172 | 4.65 | 2000 | 0.8947 | 0.7627 | | 0.0928 | 4.88 | 2100 | 1.0093 | 0.7462 | | 0.0699 | 5.12 | 2200 | 0.8374 | 0.7639 | | 0.0988 | 5.35 | 2300 | 0.9189 | 0.7645 | | 0.0822 | 5.58 | 2400 | 0.9512 | 0.7580 | | 0.1223 | 5.81 | 2500 | 1.0809 | 0.7349 | | 0.0509 | 6.05 | 2600 | 0.9297 | 0.7769 | | 0.0511 | 6.28 | 2700 | 0.8981 | 0.7822 | | 0.0596 | 6.51 | 2800 | 0.9468 | 0.7704 | | 0.0494 | 6.74 | 2900 | 0.9045 | 0.7870 | | 0.0643 | 6.98 | 3000 | 1.1559 | 0.7391 | | 0.0158 | 7.21 | 3100 | 0.8450 | 0.7899 | | 0.0129 | 7.44 | 3200 | 0.8241 | 0.8036 | | 0.0441 | 7.67 | 3300 | 0.9679 | 0.7751 | | 0.0697 | 7.91 | 3400 | 1.0387 | 0.7751 | | 0.0084 | 8.14 | 3500 | 0.9441 | 0.7947 | | 0.0182 | 8.37 | 3600 | 0.8967 | 0.7994 | | 0.0042 | 8.6 | 3700 | 0.8750 | 0.8041 | | 0.0028 | 8.84 | 3800 | 0.9349 | 0.8041 | | 0.0053 | 9.07 | 3900 | 0.9403 | 0.7982 | | 0.0266 | 9.3 | 4000 | 0.9966 | 0.7959 | | 0.0022 | 9.53 | 4100 | 0.9472 | 0.8018 | | 0.0018 | 9.77 | 4200 | 0.8717 | 0.8136 | | 0.0018 | 10.0 | 4300 | 0.8964 | 0.8083 | | 0.0046 | 10.23 | 4400 | 0.8623 | 0.8160 | | 0.0037 | 10.47 | 4500 | 0.8762 | 0.8172 | | 0.0013 | 10.7 | 4600 | 0.9028 | 0.8142 | | 0.0013 | 10.93 | 4700 | 0.9084 | 0.8178 | | 0.0013 | 11.16 | 4800 | 0.8733 | 0.8213 | | 0.001 | 11.4 | 4900 | 0.8823 | 0.8207 | | 0.0009 | 11.63 | 5000 | 0.8769 | 0.8213 | | 0.0282 | 11.86 | 5100 | 0.8791 | 0.8219 | | 0.001 | 12.09 | 5200 | 0.8673 | 0.8249 | | 0.0016 | 12.33 | 5300 | 0.8633 | 0.8225 | | 0.0008 | 12.56 | 5400 | 0.8766 | 0.8195 | | 0.0008 | 12.79 | 5500 | 0.8743 | 0.8225 | | 0.0008 | 13.02 | 5600 | 0.8752 | 0.8231 | | 0.0008 | 13.26 | 5700 | 0.8676 | 0.8237 | | 0.0007 | 13.49 | 5800 | 0.8677 | 0.8237 | | 0.0008 | 13.72 | 5900 | 0.8703 | 0.8237 | | 0.0007 | 13.95 | 6000 | 0.8725 | 0.8237 | | 0.0006 | 14.19 | 6100 | 0.8741 | 0.8231 | | 0.0006 | 14.42 | 6200 | 0.8758 | 0.8237 | | 0.0008 | 14.65 | 6300 | 0.8746 | 0.8243 | | 0.0007 | 14.88 | 6400 | 0.8759 | 0.8243 | | 0.0007 | 15.12 | 6500 | 0.8803 | 0.8231 | | 0.0007 | 15.35 | 6600 | 0.8808 | 0.8237 | | 0.0007 | 15.58 | 6700 | 0.8798 | 0.8243 | | 0.0007 | 15.81 | 6800 | 0.8805 | 0.8243 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
sudo-s/exper7_mesum5
fe55181b981a9b7eb7fb2319036686f572311c54
2022-07-22T14:31:45.000Z
[ "pytorch", "tensorboard", "vit", "image-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
image-classification
false
sudo-s
null
sudo-s/exper7_mesum5
2
null
transformers
27,631
--- license: apache-2.0 tags: - image-classification - generated_from_trainer metrics: - accuracy model-index: - name: exper7_mesum5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # exper7_mesum5 This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the sudo-s/herbier_mesuem5 dataset. It achieves the following results on the evaluation set: - Loss: 0.5889 - Accuracy: 0.8538 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 4.2072 | 0.23 | 100 | 4.1532 | 0.1923 | | 3.5433 | 0.47 | 200 | 3.5680 | 0.2888 | | 3.1388 | 0.7 | 300 | 3.1202 | 0.3911 | | 2.7924 | 0.93 | 400 | 2.7434 | 0.4787 | | 2.1269 | 1.16 | 500 | 2.3262 | 0.5781 | | 1.8589 | 1.4 | 600 | 1.9754 | 0.6272 | | 1.7155 | 1.63 | 700 | 1.7627 | 0.6840 | | 1.4689 | 1.86 | 800 | 1.5937 | 0.6994 | | 1.0149 | 2.09 | 900 | 1.3168 | 0.7497 | | 0.8148 | 2.33 | 1000 | 1.1630 | 0.7615 | | 0.7159 | 2.56 | 1100 | 1.0869 | 0.7675 | | 0.7257 | 2.79 | 1200 | 0.9607 | 0.7893 | | 0.4171 | 3.02 | 1300 | 0.8835 | 0.7935 | | 0.2969 | 3.26 | 1400 | 0.8259 | 0.8130 | | 0.2405 | 3.49 | 1500 | 0.7711 | 0.8142 | | 0.2948 | 3.72 | 1600 | 0.7629 | 0.8112 | | 0.1765 | 3.95 | 1700 | 0.7117 | 0.8124 | | 0.1603 | 4.19 | 1800 | 0.6946 | 0.8237 | | 0.0955 | 4.42 | 1900 | 0.6597 | 0.8349 | | 0.0769 | 4.65 | 2000 | 0.6531 | 0.8266 | | 0.0816 | 4.88 | 2100 | 0.6335 | 0.8337 | | 0.0315 | 5.12 | 2200 | 0.6087 | 0.8402 | | 0.0368 | 5.35 | 2300 | 0.6026 | 0.8444 | | 0.0377 | 5.58 | 2400 | 0.6450 | 0.8278 | | 0.0603 | 5.81 | 2500 | 0.6564 | 0.8343 | | 0.0205 | 6.05 | 2600 | 0.6119 | 0.8467 | | 0.019 | 6.28 | 2700 | 0.6070 | 0.8479 | | 0.0249 | 6.51 | 2800 | 0.6002 | 0.8538 | | 0.0145 | 6.74 | 2900 | 0.6012 | 0.8497 | | 0.0134 | 6.98 | 3000 | 0.5991 | 0.8521 | | 0.0271 | 7.21 | 3100 | 0.5972 | 0.8503 | | 0.0128 | 7.44 | 3200 | 0.5911 | 0.8521 | | 0.0123 | 7.67 | 3300 | 0.5889 | 0.8538 | | 0.0278 | 7.91 | 3400 | 0.6135 | 0.8491 | | 0.0106 | 8.14 | 3500 | 0.5934 | 0.8533 | | 0.0109 | 8.37 | 3600 | 0.5929 | 0.8533 | | 0.0095 | 8.6 | 3700 | 0.5953 | 0.8550 | | 0.009 | 8.84 | 3800 | 0.5933 | 0.8574 | | 0.009 | 9.07 | 3900 | 0.5948 | 0.8550 | | 0.0089 | 9.3 | 4000 | 0.5953 | 0.8556 | | 0.0086 | 9.53 | 4100 | 0.5956 | 0.8544 | | 0.0085 | 9.77 | 4200 | 0.5955 | 0.8556 | | 0.0087 | 10.0 | 4300 | 0.5954 | 0.8538 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
relbert/relbert-roberta-large-semeval2012-average-no-mask-prompt-a-triplet
8760f1e7fa63fd9921adfcb26d36cce7b87b5e9b
2022-07-24T15:52:49.000Z
[ "pytorch", "roberta", "feature-extraction", "transformers" ]
feature-extraction
false
relbert
null
relbert/relbert-roberta-large-semeval2012-average-no-mask-prompt-a-triplet
2
null
transformers
27,632
Entry not found
relbert/relbert-roberta-large-semeval2012-average-no-mask-prompt-b-triplet
38448eeea7fb5f70005213a67f231f8ae59eb4a3
2022-07-24T17:01:38.000Z
[ "pytorch", "roberta", "feature-extraction", "transformers" ]
feature-extraction
false
relbert
null
relbert/relbert-roberta-large-semeval2012-average-no-mask-prompt-b-triplet
2
null
transformers
27,633
Entry not found
relbert/relbert-roberta-large-semeval2012-average-no-mask-prompt-c-triplet
26557d20e4204a84f6454610944d6d521bf4775d
2022-07-24T18:24:44.000Z
[ "pytorch", "roberta", "feature-extraction", "transformers" ]
feature-extraction
false
relbert
null
relbert/relbert-roberta-large-semeval2012-average-no-mask-prompt-c-triplet
2
null
transformers
27,634
Entry not found
relbert/relbert-roberta-large-semeval2012-average-no-mask-prompt-d-triplet
84b69e8c9ea6922a9fe34d2b554643d6bfbf4aa8
2022-07-24T19:37:52.000Z
[ "pytorch", "roberta", "feature-extraction", "transformers" ]
feature-extraction
false
relbert
null
relbert/relbert-roberta-large-semeval2012-average-no-mask-prompt-d-triplet
2
null
transformers
27,635
Entry not found
relbert/relbert-roberta-large-semeval2012-average-no-mask-prompt-e-triplet
3b231cae6c60cd47794fb316bcbb9ad52c56f46a
2022-07-24T21:02:47.000Z
[ "pytorch", "roberta", "feature-extraction", "transformers" ]
feature-extraction
false
relbert
null
relbert/relbert-roberta-large-semeval2012-average-no-mask-prompt-e-triplet
2
null
transformers
27,636
Entry not found
huggingtweets/deepleffen-tsm_leffen
1ef65227da30da9acf06c1bc01f3844274a02b2d
2022-07-22T17:50:36.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/deepleffen-tsm_leffen
2
null
transformers
27,637
--- language: en thumbnail: http://www.huggingtweets.com/deepleffen-tsm_leffen/1658512231427/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1241879678455078914/e2EdZIrr_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1547974425718300675/wvQuPBGR_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Deep Leffen Bot & TSM FTX Leffen</div> <div style="text-align: center; font-size: 14px;">@deepleffen-tsm_leffen</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Deep Leffen Bot & TSM FTX Leffen. | Data | Deep Leffen Bot | TSM FTX Leffen | | --- | --- | --- | | Tweets downloaded | 591 | 3249 | | Retweets | 14 | 291 | | Short tweets | 27 | 283 | | Tweets kept | 550 | 2675 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3lq4lpvp/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @deepleffen-tsm_leffen's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1v9tktg9) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1v9tktg9/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/deepleffen-tsm_leffen') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
tsrivatsav/wav2vec2-large-xls-r-300m-en-libri-more-steps
0626af327e3f0fa3c4c747ff62706966181a582a
2022-07-24T17:57:10.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "dataset:librispeech_asr", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
tsrivatsav
null
tsrivatsav/wav2vec2-large-xls-r-300m-en-libri-more-steps
2
null
transformers
27,638
--- license: apache-2.0 tags: - generated_from_trainer datasets: - librispeech_asr model-index: - name: wav2vec2-large-xls-r-300m-en-libri-more-steps results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-en-libri-more-steps This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the librispeech_asr dataset. It achieves the following results on the evaluation set: - Loss: 1.7624 - Wer: 0.8772 - Cer: 0.3762 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:| | No log | 1.94 | 33 | 2.9987 | 1.0 | 1.0 | | No log | 3.88 | 66 | 2.8951 | 1.0 | 1.0 | | No log | 5.82 | 99 | 2.8732 | 1.0 | 1.0 | | 3.781 | 7.76 | 132 | 2.6057 | 1.0 | 1.0 | | 3.781 | 9.71 | 165 | 1.9015 | 1.0154 | 0.5616 | | 3.781 | 11.65 | 198 | 1.5226 | 0.9263 | 0.4462 | | 2.2258 | 13.59 | 231 | 1.5116 | 0.8913 | 0.3967 | | 2.2258 | 15.53 | 264 | 1.5634 | 0.8922 | 0.3842 | | 2.2258 | 17.47 | 297 | 1.7016 | 0.8876 | 0.3796 | | 0.7946 | 19.41 | 330 | 1.7624 | 0.8772 | 0.3762 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cpu - Datasets 1.18.3 - Tokenizers 0.12.1
techsword/wav2vec-large-xlsr-53-frisian-fame
eb4ea70c34983127e36970e06d1b5a3b546c0e6e
2022-07-23T20:23:55.000Z
[ "pytorch", "wav2vec2", "feature-extraction", "transformers" ]
feature-extraction
false
techsword
null
techsword/wav2vec-large-xlsr-53-frisian-fame
2
null
transformers
27,639
Entry not found
relbert/relbert-roberta-large-semeval2012-average-prompt-a-triplet
db433ae22f4d34387fd693b64191f1a8f1d62ac8
2022-07-24T15:34:31.000Z
[ "pytorch", "roberta", "feature-extraction", "transformers" ]
feature-extraction
false
relbert
null
relbert/relbert-roberta-large-semeval2012-average-prompt-a-triplet
2
null
transformers
27,640
Entry not found
relbert/relbert-roberta-large-semeval2012-average-prompt-b-triplet
aadb0b35f47502eceaee464e02aefdccc6b84bf3
2022-07-24T16:41:49.000Z
[ "pytorch", "roberta", "feature-extraction", "transformers" ]
feature-extraction
false
relbert
null
relbert/relbert-roberta-large-semeval2012-average-prompt-b-triplet
2
null
transformers
27,641
Entry not found
relbert/relbert-roberta-large-semeval2012-average-prompt-c-triplet
a2a95f91728d4703c4f50140be9b2e4fa2fb3f72
2022-07-24T18:05:07.000Z
[ "pytorch", "roberta", "feature-extraction", "transformers" ]
feature-extraction
false
relbert
null
relbert/relbert-roberta-large-semeval2012-average-prompt-c-triplet
2
null
transformers
27,642
Entry not found
relbert/relbert-roberta-large-semeval2012-average-prompt-d-triplet
d8b81d0c55c46382b34f4eca8b1119b97177cabd
2022-07-24T19:15:24.000Z
[ "pytorch", "roberta", "feature-extraction", "transformers" ]
feature-extraction
false
relbert
null
relbert/relbert-roberta-large-semeval2012-average-prompt-d-triplet
2
null
transformers
27,643
Entry not found
relbert/relbert-roberta-large-semeval2012-mask-prompt-a-triplet
94eec0a698dd3601218682f4e8035e3cba341e06
2022-07-24T15:13:46.000Z
[ "pytorch", "roberta", "feature-extraction", "transformers" ]
feature-extraction
false
relbert
null
relbert/relbert-roberta-large-semeval2012-mask-prompt-a-triplet
2
null
transformers
27,644
Entry not found
relbert/relbert-roberta-large-semeval2012-mask-prompt-b-triplet
e4c1cca41e721c1348a3ca3f1e3885a19f533bfa
2022-07-24T16:22:36.000Z
[ "pytorch", "roberta", "feature-extraction", "transformers" ]
feature-extraction
false
relbert
null
relbert/relbert-roberta-large-semeval2012-mask-prompt-b-triplet
2
null
transformers
27,645
Entry not found
relbert/relbert-roberta-large-semeval2012-mask-prompt-c-triplet
e5f73184d758fe4b9037bc6b1c42c113359a4618
2022-07-24T17:43:51.000Z
[ "pytorch", "roberta", "feature-extraction", "transformers" ]
feature-extraction
false
relbert
null
relbert/relbert-roberta-large-semeval2012-mask-prompt-c-triplet
2
null
transformers
27,646
Entry not found
relbert/relbert-roberta-large-semeval2012-mask-prompt-d-triplet
c9cad930450da6339ee92d23edda20b7ad6cb5a5
2022-07-24T18:53:37.000Z
[ "pytorch", "roberta", "feature-extraction", "transformers" ]
feature-extraction
false
relbert
null
relbert/relbert-roberta-large-semeval2012-mask-prompt-d-triplet
2
null
transformers
27,647
Entry not found
relbert/relbert-roberta-large-semeval2012-mask-prompt-e-triplet
c7d6e2a87c020b8d434eed99da616db944dff628
2022-07-24T20:16:17.000Z
[ "pytorch", "roberta", "feature-extraction", "transformers" ]
feature-extraction
false
relbert
null
relbert/relbert-roberta-large-semeval2012-mask-prompt-e-triplet
2
null
transformers
27,648
Entry not found
affahrizain/distilbert-base-uncased-finetuned-emotion
7fa547bca29e264b809cc75bcf14dcfdaa1876d7
2022-07-24T16:10:36.000Z
[ "pytorch", "distilbert", "text-classification", "dataset:emotion", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
affahrizain
null
affahrizain/distilbert-base-uncased-finetuned-emotion
2
null
transformers
27,649
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: default metrics: - name: Accuracy type: accuracy value: 0.936 - name: F1 type: f1 value: 0.936054890104025 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.1858 - Accuracy: 0.936 - F1: 0.9361 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.4279 | 1.0 | 2000 | 0.2058 | 0.9345 | 0.9347 | | 0.1603 | 2.0 | 4000 | 0.1858 | 0.936 | 0.9361 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
tsrivatsav/wav2vec2-large-xls-r-300m-en-libri-even-more-steps
317a68952bdc9788cedcc7b99620525a2691169c
2022-07-25T14:09:14.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
tsrivatsav
null
tsrivatsav/wav2vec2-large-xls-r-300m-en-libri-even-more-steps
2
null
transformers
27,650
Entry not found
jslowik/xlm-roberta-base-finetuned-panx-de
c920449b94d66bef0ae3f162305cbb2b514a4e0a
2022-07-25T11:04:21.000Z
[ "pytorch", "xlm-roberta", "token-classification", "dataset:xtreme", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
token-classification
false
jslowik
null
jslowik/xlm-roberta-base-finetuned-panx-de
2
null
transformers
27,651
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme args: PAN-X.de metrics: - name: F1 type: f1 value: 0.8641580540170158 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.1634 - F1: 0.8642 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2624 | 1.0 | 1573 | 0.1790 | 0.8286 | | 0.1395 | 2.0 | 3146 | 0.1491 | 0.8463 | | 0.0815 | 3.0 | 4719 | 0.1634 | 0.8642 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu102 - Datasets 2.3.2 - Tokenizers 0.12.1
jonatasgrosman/exp_w2v2r_de_xls-r_accent_germany-0_austria-10_s350
a36e80fb818f68fd81dc40df9bf36ffd8732145a
2022-07-25T13:06:58.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "de", "dataset:mozilla-foundation/common_voice_7_0", "transformers", "license:apache-2.0" ]
automatic-speech-recognition
false
jonatasgrosman
null
jonatasgrosman/exp_w2v2r_de_xls-r_accent_germany-0_austria-10_s350
2
null
transformers
27,652
--- language: - de license: apache-2.0 tags: - automatic-speech-recognition - de datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2r_de_xls-r_accent_germany-0_austria-10_s350 Fine-tuned [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) for speech recognition using the train split of [Common Voice 7.0 (de)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
SummerChiam/rust_image_classification_10
0e93f85379b09c7b3aed402c188faf6ef35de348
2022-07-26T14:07:46.000Z
[ "pytorch", "tensorboard", "vit", "image-classification", "transformers", "huggingpics", "model-index" ]
image-classification
false
SummerChiam
null
SummerChiam/rust_image_classification_10
2
null
transformers
27,653
--- tags: - image-classification - pytorch - huggingpics metrics: - accuracy model-index: - name: rust_image_classification_4 results: - task: name: Image Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 0.9417721629142761 --- # rust_image_classification_4 Autogenerated by HuggingPics🤗🖼️ Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb). Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics). ## Example Images #### nonrust ![nonrust](images/nonrust.png) #### rust ![rust](images/rust.png)
swtx/ernie-2.0-base-chinese
5b6eb368877a0f180d95744b56f88f5b8ceef992
2022-07-26T15:02:37.000Z
[ "pytorch", "transformers", "license:apache-2.0" ]
null
false
swtx
null
swtx/ernie-2.0-base-chinese
2
null
transformers
27,654
--- license: apache-2.0 ---
fourthbrain-demo/demo
6569d541bbdb445e25bf0a19e9dd31c5472dbf5a
2022-07-26T16:08:23.000Z
[ "pytorch", "distilbert", "text-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
fourthbrain-demo
null
fourthbrain-demo/demo
2
null
transformers
27,655
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: demo results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # demo This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu102 - Datasets 2.3.2 - Tokenizers 0.12.1
zeaksi/bert-finetuned-ner
4dc7e3a07aef96fc0affc3bae1bbe4410282aad7
2022-07-27T08:03:00.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
zeaksi
null
zeaksi/bert-finetuned-ner
2
null
transformers
27,656
Entry not found
wooihen/xlm-roberta-base-finetuned-panx-de-fr
3e4304aa752b1639ff32a040dc7b4337e0d3a3da
2022-07-27T07:25:02.000Z
[ "pytorch", "xlm-roberta", "token-classification", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
token-classification
false
wooihen
null
wooihen/xlm-roberta-base-finetuned-panx-de-fr
2
null
transformers
27,657
--- license: mit tags: - generated_from_trainer metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de-fr results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de-fr This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1608 - F1: 0.8593 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2888 | 1.0 | 715 | 0.1779 | 0.8233 | | 0.1437 | 2.0 | 1430 | 0.1570 | 0.8497 | | 0.0931 | 3.0 | 2145 | 0.1608 | 0.8593 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.12.0+cu113 - Datasets 1.16.1 - Tokenizers 0.10.3
AlphaNinja27/wav2vec2-large-xls-r-300m-panjabi-colab
5e68968a77f5aa3316006c08ef5b911787c0cc03
2022-07-27T12:14:30.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "dataset:common_voice", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
AlphaNinja27
null
AlphaNinja27/wav2vec2-large-xls-r-300m-panjabi-colab
2
null
transformers
27,658
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice model-index: - name: wav2vec2-large-xls-r-300m-panjabi-colab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-panjabi-colab This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu113 - Datasets 1.18.3 - Tokenizers 0.10.3
huggingtweets/jordo4today-paddedpossum-wrenfing
c0f55e573aa23f696a434163e2ba974da3b5f39d
2022-07-27T10:16:23.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/jordo4today-paddedpossum-wrenfing
2
null
transformers
27,659
--- language: en thumbnail: http://www.huggingtweets.com/jordo4today-paddedpossum-wrenfing/1658916978297/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1538409928943083526/gilLk6Ju_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1381760254799716353/bNTnf-3w_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1546006810754260992/Dk6vMJU3_400x400.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Mr. Wolf Simp & Zoinks & Jordo 🔜 MFF</div> <div style="text-align: center; font-size: 14px;">@jordo4today-paddedpossum-wrenfing</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Mr. Wolf Simp & Zoinks & Jordo 🔜 MFF. | Data | Mr. Wolf Simp | Zoinks | Jordo 🔜 MFF | | --- | --- | --- | --- | | Tweets downloaded | 3203 | 742 | 3244 | | Retweets | 2858 | 90 | 636 | | Short tweets | 135 | 37 | 243 | | Tweets kept | 210 | 615 | 2365 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2e01we01/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @jordo4today-paddedpossum-wrenfing's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2wh0na3g) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2wh0na3g/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/jordo4today-paddedpossum-wrenfing') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
sudo-s/modeversion28_7
1e5a4dea7fe054ad14d6bbc92a2cfe5b15148e5a
2022-07-27T18:22:15.000Z
[ "pytorch", "tensorboard", "vit", "image-classification", "transformers" ]
image-classification
false
sudo-s
null
sudo-s/modeversion28_7
2
null
transformers
27,660
Entry not found
curtsmith/distilbert-base-uncased-finetuned-cola
4a581106a28cf4b035fb3b19bc4da1307da7f5ce
2022-07-27T18:41:43.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:glue", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
curtsmith
null
curtsmith/distilbert-base-uncased-finetuned-cola
2
null
transformers
27,661
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - matthews_correlation model-index: - name: distilbert-base-uncased-finetuned-cola results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue config: cola split: train args: cola metrics: - name: Matthews Correlation type: matthews_correlation value: 0.5363967157085073 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-cola This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.8123 - Matthews Correlation: 0.5364 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.5227 | 1.0 | 535 | 0.5222 | 0.4210 | | 0.3466 | 2.0 | 1070 | 0.5048 | 0.4832 | | 0.2335 | 3.0 | 1605 | 0.5641 | 0.5173 | | 0.1812 | 4.0 | 2140 | 0.7638 | 0.5200 | | 0.1334 | 5.0 | 2675 | 0.8123 | 0.5364 | ### Framework versions - Transformers 4.21.0 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
victorcosta/bert-finetuned-ner
dea3bb35b6febdf36b6f0d22c1dd91f9622d05e3
2022-07-27T22:04:51.000Z
[ "pytorch", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
victorcosta
null
victorcosta/bert-finetuned-ner
2
null
transformers
27,662
Entry not found
mughalk4/mBERT-Turkish-Mono
a6edba043b414be1cf8ffb98575bac3ed9a4c989
2022-07-28T08:28:45.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
mughalk4
null
mughalk4/mBERT-Turkish-Mono
2
null
transformers
27,663
Entry not found
jinghan/bert-base-uncased-finetuned-wnli
1ba537eda30dd620d30884159e563971ca773314
2022-07-28T13:04:56.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "dataset:glue", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
jinghan
null
jinghan/bert-base-uncased-finetuned-wnli
2
null
transformers
27,664
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: bert-base-uncased-finetuned-wnli results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue config: wnli split: train args: wnli metrics: - name: Accuracy type: accuracy value: 0.5633802816901409 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-finetuned-wnli This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.6917 - Accuracy: 0.5634 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 10 | 0.6925 | 0.5493 | | No log | 2.0 | 20 | 0.6917 | 0.5634 | | No log | 3.0 | 30 | 0.6971 | 0.3239 | | No log | 4.0 | 40 | 0.6999 | 0.2958 | | No log | 5.0 | 50 | 0.6998 | 0.2676 | ### Framework versions - Transformers 4.21.0 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
jperezv/distilbert-base-uncased-finetuned-imdb
8d41fa77d3a616a096b4bc16cec96a81ad1c095b
2022-07-28T17:14:39.000Z
[ "pytorch", "tensorboard", "distilbert", "fill-mask", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
fill-mask
false
jperezv
null
jperezv/distilbert-base-uncased-finetuned-imdb
2
null
transformers
27,665
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distilbert-base-uncased-finetuned-imdb results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-imdb This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.4721 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.7086 | 1.0 | 157 | 2.4898 | | 2.5796 | 2.0 | 314 | 2.4230 | | 2.5269 | 3.0 | 471 | 2.4354 | ### Framework versions - Transformers 4.21.0 - Pytorch 1.12.0+cu113 - Tokenizers 0.12.1
Vlasta/DNADebertaSentencepiece30k
8628a56ffbe56e240b310d2c9a098a2d17dee2d4
2022-07-30T10:12:11.000Z
[ "pytorch", "deberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
Vlasta
null
Vlasta/DNADebertaSentencepiece30k
2
null
transformers
27,666
Entry not found
commanderstrife/ADE-Bio_ClinicalBERT-NER
1b2419d0dc87b9d7c3c458c2e7a8d4eb128703cc
2022-07-29T01:39:43.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
token-classification
false
commanderstrife
null
commanderstrife/ADE-Bio_ClinicalBERT-NER
2
null
transformers
27,667
--- license: mit tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: ADE-Bio_ClinicalBERT-NER results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ADE-Bio_ClinicalBERT-NER This model is a fine-tuned version of [emilyalsentzer/Bio_ClinicalBERT](https://huggingface.co/emilyalsentzer/Bio_ClinicalBERT) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1926 - Precision: 0.7830 - Recall: 0.8811 - F1: 0.8291 - Accuracy: 0.9437 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.2389 | 1.0 | 201 | 0.2100 | 0.7155 | 0.8292 | 0.7681 | 0.9263 | | 0.0648 | 2.0 | 402 | 0.1849 | 0.7716 | 0.8711 | 0.8183 | 0.9392 | | 0.2825 | 3.0 | 603 | 0.1856 | 0.7834 | 0.8788 | 0.8284 | 0.9422 | | 0.199 | 4.0 | 804 | 0.1875 | 0.7796 | 0.8781 | 0.8259 | 0.9430 | | 0.0404 | 5.0 | 1005 | 0.1926 | 0.7830 | 0.8811 | 0.8291 | 0.9437 | ### Framework versions - Transformers 4.21.0 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
chintagunta85/test_ner3
76be0e08ff7b02e80444ba7380f4bca10ef54cfa
2022-07-29T04:40:30.000Z
[ "pytorch", "tensorboard", "distilbert", "token-classification", "dataset:pv_dataset", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
token-classification
false
chintagunta85
null
chintagunta85/test_ner3
2
null
transformers
27,668
--- license: apache-2.0 tags: - generated_from_trainer datasets: - pv_dataset metrics: - precision - recall - f1 - accuracy model-index: - name: test_ner3 results: - task: name: Token Classification type: token-classification dataset: name: pv_dataset type: pv_dataset config: PVDatasetCorpus split: train args: PVDatasetCorpus metrics: - name: Precision type: precision value: 0.6698151950718686 - name: Recall type: recall value: 0.6499117663801446 - name: F1 type: f1 value: 0.6597133941985438 - name: Accuracy type: accuracy value: 0.9606609586670052 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # test_ner3 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the pv_dataset dataset. It achieves the following results on the evaluation set: - Loss: 0.2983 - Precision: 0.6698 - Recall: 0.6499 - F1: 0.6597 - Accuracy: 0.9607 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.1106 | 1.0 | 1813 | 0.1128 | 0.6050 | 0.5949 | 0.5999 | 0.9565 | | 0.0705 | 2.0 | 3626 | 0.1190 | 0.6279 | 0.6122 | 0.6200 | 0.9585 | | 0.0433 | 3.0 | 5439 | 0.1458 | 0.6342 | 0.5983 | 0.6157 | 0.9574 | | 0.0301 | 4.0 | 7252 | 0.1453 | 0.6305 | 0.6818 | 0.6552 | 0.9594 | | 0.0196 | 5.0 | 9065 | 0.1672 | 0.6358 | 0.6871 | 0.6605 | 0.9594 | | 0.0133 | 6.0 | 10878 | 0.1931 | 0.6427 | 0.6138 | 0.6279 | 0.9587 | | 0.0104 | 7.0 | 12691 | 0.1948 | 0.6657 | 0.6511 | 0.6583 | 0.9607 | | 0.0081 | 8.0 | 14504 | 0.2243 | 0.6341 | 0.6574 | 0.6455 | 0.9586 | | 0.0054 | 9.0 | 16317 | 0.2432 | 0.6547 | 0.6318 | 0.6431 | 0.9588 | | 0.0041 | 10.0 | 18130 | 0.2422 | 0.6717 | 0.6397 | 0.6553 | 0.9605 | | 0.0041 | 11.0 | 19943 | 0.2415 | 0.6571 | 0.6420 | 0.6495 | 0.9601 | | 0.0027 | 12.0 | 21756 | 0.2567 | 0.6560 | 0.6590 | 0.6575 | 0.9601 | | 0.0023 | 13.0 | 23569 | 0.2609 | 0.6640 | 0.6495 | 0.6566 | 0.9606 | | 0.002 | 14.0 | 25382 | 0.2710 | 0.6542 | 0.6670 | 0.6606 | 0.9598 | | 0.0012 | 15.0 | 27195 | 0.2766 | 0.6692 | 0.6539 | 0.6615 | 0.9610 | | 0.001 | 16.0 | 29008 | 0.2938 | 0.6692 | 0.6415 | 0.6551 | 0.9603 | | 0.0007 | 17.0 | 30821 | 0.2969 | 0.6654 | 0.6490 | 0.6571 | 0.9604 | | 0.0007 | 18.0 | 32634 | 0.3035 | 0.6628 | 0.6456 | 0.6541 | 0.9601 | | 0.0007 | 19.0 | 34447 | 0.2947 | 0.6730 | 0.6489 | 0.6607 | 0.9609 | | 0.0004 | 20.0 | 36260 | 0.2983 | 0.6698 | 0.6499 | 0.6597 | 0.9607 | ### Framework versions - Transformers 4.21.0 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
relbert/relbert-roberta-large-conceptnet-hc-average-prompt-b-nce
49140c1465ac0213c4ff2cfe37f1bd63aa128e4d
2022-07-29T03:35:47.000Z
[ "pytorch", "roberta", "feature-extraction", "transformers" ]
feature-extraction
false
relbert
null
relbert/relbert-roberta-large-conceptnet-hc-average-prompt-b-nce
2
null
transformers
27,669
Entry not found
keithanpai/swin-tiny-patch4-window7-224-finetuned-eurosat
872ce39c1f33596c2da003ccc9e9f37b88124d0a
2022-07-29T22:22:54.000Z
[ "pytorch", "tensorboard", "swin", "image-classification", "dataset:imagefolder", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
image-classification
false
keithanpai
null
keithanpai/swin-tiny-patch4-window7-224-finetuned-eurosat
2
null
transformers
27,670
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: swin-tiny-patch4-window7-224-finetuned-eurosat results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.8083832335329342 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # swin-tiny-patch4-window7-224-finetuned-eurosat This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.5765 - Accuracy: 0.8084 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.731 | 0.99 | 70 | 0.7428 | 0.7405 | | 0.6044 | 1.99 | 140 | 0.6433 | 0.7735 | | 0.5525 | 2.99 | 210 | 0.5765 | 0.8084 | ### Framework versions - Transformers 4.21.0 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
BramVanroy/xlm-roberta-base-hebban-reviews5
fb89e59f1e0f9001fa1ba2d4ea3e6893e131099c
2022-07-29T09:56:23.000Z
[ "pytorch", "tensorboard", "xlm-roberta", "text-classification", "nl", "dataset:BramVanroy/hebban-reviews", "transformers", "sentiment-analysis", "dutch", "text", "license:mit", "model-index" ]
text-classification
false
BramVanroy
null
BramVanroy/xlm-roberta-base-hebban-reviews5
2
null
transformers
27,671
--- datasets: - BramVanroy/hebban-reviews language: - nl license: mit metrics: - accuracy - f1 - precision - qwk - recall model-index: - name: xlm-roberta-base-hebban-reviews5 results: - dataset: config: filtered_rating name: BramVanroy/hebban-reviews - filtered_rating - 2.0.0 revision: 2.0.0 split: test type: BramVanroy/hebban-reviews metrics: - name: Test accuracy type: accuracy value: 0.4125246548323471 - name: Test f1 type: f1 value: 0.25056861304587985 - name: Test precision type: precision value: 0.3248910707548293 - name: Test qwk type: qwk value: 0.11537886275015763 - name: Test recall type: recall value: 0.4125246548323471 task: name: sentiment analysis type: text-classification tags: - sentiment-analysis - dutch - text widget: - text: Wauw, wat een leuk boek! Ik heb me er er goed mee vermaakt. - text: Nee, deze vond ik niet goed. De auteur doet zijn best om je als lezer mee te trekken in het verhaal maar mij overtuigt het alleszins niet. - text: Ik vind het niet slecht maar de schrijfstijl trekt me ook niet echt aan. Het wordt een beetje saai vanaf het vijfde hoofdstuk --- # xlm-roberta-base-hebban-reviews5 *This model should not be used*, it would seem that it converged poorly. It may be updated in the future. # Dataset - dataset_name: BramVanroy/hebban-reviews - dataset_config: filtered_rating - dataset_revision: 2.0.0 - labelcolumn: review_rating0 - textcolumn: review_text_without_quotes # Training - optim: adamw_hf - learning_rate: 5e-05 - per_device_train_batch_size: 64 - per_device_eval_batch_size: 64 - gradient_accumulation_steps: 1 - max_steps: 5001 - save_steps: 500 - metric_for_best_model: qwk # Best checkedpoint based on validation - best_metric: 0.10318187882131191 - best_model_checkpoint: trained/hebban-reviews5/xlm-roberta-base/checkpoint-3000 # Test results of best checkpoint - accuracy: 0.4125246548323471 - f1: 0.25056861304587985 - precision: 0.3248910707548293 - qwk: 0.11537886275015763 - recall: 0.4125246548323471 ## Confusion matric ![cfm](fig/test_confusion_matrix.png) ## Normalized confusion matrix ![norm cfm](fig/test_confusion_matrix_norm.png) # Environment - cuda_capabilities: 8.0; 8.0 - cuda_device_count: 2 - cuda_devices: NVIDIA A100-SXM4-80GB; NVIDIA A100-SXM4-80GB - finetuner_commit: 8159b4c1d5e66b36f68dd263299927ffb8670ebd - platform: Linux-4.18.0-305.49.1.el8_4.x86_64-x86_64-with-glibc2.28 - python_version: 3.9.5 - toch_version: 1.10.0 - transformers_version: 4.21.0
AkmalAshirmatov/first_try
278c8a060c42b5c0ead8d3174d5430600b1d73e7
2022-07-29T09:14:52.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "dataset:common_voice_7_0", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
AkmalAshirmatov
null
AkmalAshirmatov/first_try
2
null
transformers
27,672
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice_7_0 model-index: - name: first_try results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # first_try This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice_7_0 dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu113 - Datasets 2.4.0 - Tokenizers 0.10.3
psroy/wav2vec2-base-timit-demo-colab
70d74f272f1e04850bb7a2f4c034fc8c528c147e
2022-07-30T07:08:18.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
psroy
null
psroy/wav2vec2-base-timit-demo-colab
2
null
transformers
27,673
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base-timit-demo-colab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-timit-demo-colab This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4772 - Wer: 0.2821 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 3.6949 | 0.87 | 500 | 2.4599 | 0.9999 | | 0.9858 | 1.73 | 1000 | 0.5249 | 0.4674 | | 0.4645 | 2.6 | 1500 | 0.4604 | 0.3900 | | 0.3273 | 3.46 | 2000 | 0.3939 | 0.3612 | | 0.2474 | 4.33 | 2500 | 0.4150 | 0.3560 | | 0.2191 | 5.19 | 3000 | 0.3855 | 0.3344 | | 0.1662 | 6.06 | 3500 | 0.3779 | 0.3258 | | 0.1669 | 6.92 | 4000 | 0.4841 | 0.3286 | | 0.151 | 7.79 | 4500 | 0.4182 | 0.3219 | | 0.1175 | 8.65 | 5000 | 0.4194 | 0.3107 | | 0.1103 | 9.52 | 5500 | 0.4256 | 0.3129 | | 0.1 | 10.38 | 6000 | 0.4352 | 0.3089 | | 0.0949 | 11.25 | 6500 | 0.4649 | 0.3160 | | 0.0899 | 12.11 | 7000 | 0.4472 | 0.3065 | | 0.0787 | 12.98 | 7500 | 0.4763 | 0.3128 | | 0.0742 | 13.84 | 8000 | 0.4321 | 0.3034 | | 0.067 | 14.71 | 8500 | 0.4562 | 0.3076 | | 0.063 | 15.57 | 9000 | 0.4541 | 0.3102 | | 0.0624 | 16.44 | 9500 | 0.5113 | 0.3040 | | 0.0519 | 17.3 | 10000 | 0.4925 | 0.3008 | | 0.0525 | 18.17 | 10500 | 0.4710 | 0.2987 | | 0.046 | 19.03 | 11000 | 0.4781 | 0.2977 | | 0.0455 | 19.9 | 11500 | 0.4572 | 0.2969 | | 0.0394 | 20.76 | 12000 | 0.5256 | 0.2966 | | 0.0373 | 21.63 | 12500 | 0.4723 | 0.2921 | | 0.0375 | 22.49 | 13000 | 0.4640 | 0.2847 | | 0.0334 | 23.36 | 13500 | 0.4740 | 0.2917 | | 0.0304 | 24.22 | 14000 | 0.4817 | 0.2874 | | 0.0291 | 25.09 | 14500 | 0.4722 | 0.2896 | | 0.0247 | 25.95 | 15000 | 0.4765 | 0.2870 | | 0.0223 | 26.82 | 15500 | 0.4728 | 0.2821 | | 0.0223 | 27.68 | 16000 | 0.4690 | 0.2834 | | 0.0207 | 28.55 | 16500 | 0.4706 | 0.2825 | | 0.0186 | 29.41 | 17000 | 0.4772 | 0.2821 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.12.0+cu113 - Datasets 1.18.3 - Tokenizers 0.12.1
huggingtweets/onlythesexiest_
a02a8ac65532ce03c92e0b10bbd02495803ed3cb
2022-07-29T13:28:49.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/onlythesexiest_
2
null
transformers
27,674
--- language: en thumbnail: http://www.huggingtweets.com/onlythesexiest_/1659101307927/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1399411396140535812/UwTllUci_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Only The Sexiest 18+</div> <div style="text-align: center; font-size: 14px;">@onlythesexiest_</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Only The Sexiest 18+. | Data | Only The Sexiest 18+ | | --- | --- | | Tweets downloaded | 2986 | | Retweets | 2785 | | Short tweets | 36 | | Tweets kept | 165 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3oqup13u/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @onlythesexiest_'s tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1ajjfffk) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1ajjfffk/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/onlythesexiest_') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
phjhk/hklegal-xlm-r-large
d9e584d0a8cbaab80e58f5b9b82456a6506d2d94
2022-07-29T14:51:34.000Z
[ "pytorch", "xlm-roberta", "fill-mask", "multilingual", "af", "am", "ar", "as", "az", "be", "bg", "bn", "br", "bs", "ca", "cs", "cy", "da", "de", "el", "en", "eo", "es", "et", "eu", "fa", "fi", "fr", "fy", "ga", "gd", "gl", "gu", "ha", "he", "hi", "hr", "hu", "hy", "id", "is", "it", "ja", "jv", "ka", "kk", "km", "kn", "ko", "ku", "ky", "la", "lo", "lt", "lv", "mg", "mk", "ml", "mn", "mr", "ms", "my", "ne", "nl", "no", "om", "or", "pa", "pl", "ps", "pt", "ro", "ru", "sa", "sd", "si", "sk", "sl", "so", "sq", "sr", "su", "sv", "sw", "ta", "te", "th", "tl", "tr", "ug", "uk", "ur", "uz", "vi", "xh", "yi", "zh", "arxiv:1911.02116", "transformers", "autotrain_compatible" ]
fill-mask
false
phjhk
null
phjhk/hklegal-xlm-r-large
2
null
transformers
27,675
--- language: - multilingual - af - am - ar - as - az - be - bg - bn - br - bs - ca - cs - cy - da - de - el - en - eo - es - et - eu - fa - fi - fr - fy - ga - gd - gl - gu - ha - he - hi - hr - hu - hy - id - is - it - ja - jv - ka - kk - km - kn - ko - ku - ky - la - lo - lt - lv - mg - mk - ml - mn - mr - ms - my - ne - nl - no - om - or - pa - pl - ps - pt - ro - ru - sa - sd - si - sk - sl - so - sq - sr - su - sv - sw - ta - te - th - tl - tr - ug - uk - ur - uz - vi - xh - yi - zh --- # Model Description The XLM-RoBERTa model was proposed in [Unsupervised Cross-lingual Representation Learning at Scale](https://arxiv.org/abs/1911.02116) by Alexis Conneau, Kartikay Khandelwal, Naman Goyal, Vishrav Chaudhary, Guillaume Wenzek, Francisco Guzmán, Edouard Grave, Myle Ott, Luke Zettlemoyer and Veselin Stoyanov. It is based on Facebook's RoBERTa model released in 2019. It is a large multi-lingual language model, trained on 2.5TB of filtered CommonCrawl data. This model is [XLM-RoBERTa-large](https://huggingface.co/xlm-roberta-large) fine-tuned with the [conll2003](https://huggingface.co/datasets/conll2003) dataset in English. - **Developed by:** See [associated paper](https://arxiv.org/abs/1911.02116) - **Model type:** Multi-lingual language model - **Language(s) (NLP) or Countries (images):** XLM-RoBERTa is a multilingual model trained on 100 different languages; see [GitHub Repo](https://github.com/facebookresearch/fairseq/tree/main/examples/xlmr) for full list; model is fine-tuned on a dataset in English - **Related Models:** [RoBERTa](https://huggingface.co/roberta-base), [XLM](https://huggingface.co/docs/transformers/model_doc/xlm) - **Parent Model:** [XLM-RoBERTa-large](https://huggingface.co/xlm-roberta-large) Hong Kong Legal Information Institute [HKILL](https://www.hklii.hk/eng/) is a free, independent, non-profit document database providing the public with legal information relating to Hong Kong. We finetune the XLM-RoBERTa on the HKILL datasets. It contains docments # Uses The model is a pretrained-finetuned language model. The model can be used for document classification, Named Entity Recognition (NER), especially on legal domain. ```python >>> from transformers import pipeline,AutoTokenizer,AutoModelForTokenClassification >>> tokenizer = AutoTokenizer.from_pretrained("hklegal-xlm-r-large") >>> model = AutoModelForTokenClassification.from_pretrained("hklegal-xlm-r-large") >>> classifier = pipeline("ner", model=model, tokenizer=tokenizer) >>> classifier("Alya told Jasmine that Andrew could pay with cash..") ``` # Citation **BibTeX:** ```bibtex @article{conneau2019unsupervised, title={Unsupervised Cross-lingual Representation Learning at Scale}, author={Conneau, Alexis and Khandelwal, Kartikay and Goyal, Naman and Chaudhary, Vishrav and Wenzek, Guillaume and Guzm{\'a}n, Francisco and Grave, Edouard and Ott, Myle and Zettlemoyer, Luke and Stoyanov, Veselin}, journal={arXiv preprint arXiv:1911.02116}, year={2019} } ```
ibm/re2g-qry-encoder-nq
bef754be7b733d854c7462dfb2afa5f6eab039b0
2022-07-29T16:13:36.000Z
[ "pytorch", "dpr", "feature-extraction", "transformers", "license:apache-2.0" ]
feature-extraction
false
ibm
null
ibm/re2g-qry-encoder-nq
2
null
transformers
27,676
--- license: apache-2.0 ---
ibm/re2g-ctx-encoder-nq
d7fae8fbc2e6c5e14d4cb17bc13e90eb3c339c0c
2022-07-29T16:16:10.000Z
[ "pytorch", "dpr", "transformers", "license:apache-2.0" ]
null
false
ibm
null
ibm/re2g-ctx-encoder-nq
2
null
transformers
27,677
--- license: apache-2.0 ---
simecek/DNADebertaK7b
43d547bed0f009481692c74a614623664c38fa83
2022-07-30T08:22:07.000Z
[ "pytorch", "deberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
simecek
null
simecek/DNADebertaK7b
2
null
transformers
27,678
Entry not found
ibm/re2g-qry-encoder-trex
ba4eecb1d041d2c575247ae7858d30f7d68d1561
2022-07-29T18:12:19.000Z
[ "pytorch", "dpr", "feature-extraction", "transformers", "license:apache-2.0" ]
feature-extraction
false
ibm
null
ibm/re2g-qry-encoder-trex
2
null
transformers
27,679
--- license: apache-2.0 ---
ibm/re2g-ctx-encoder-trex
7b660665cb43621cb6ec8c0c7ad3e2ba40b1a9b8
2022-07-29T18:17:37.000Z
[ "pytorch", "dpr", "transformers", "license:apache-2.0" ]
null
false
ibm
null
ibm/re2g-ctx-encoder-trex
2
null
transformers
27,680
--- license: apache-2.0 ---
ibm/re2g-generation-triviaqa
7c1866da07c91d82c98972078080dac61b49c9df
2022-07-29T18:21:30.000Z
[ "pytorch", "rag", "transformers", "license:apache-2.0" ]
null
false
ibm
null
ibm/re2g-generation-triviaqa
2
null
transformers
27,681
--- license: apache-2.0 ---
ibm/re2g-reranker-triviaqa
da788d4e156f28eca100544c0aa178a4af6fdbb3
2022-07-29T18:24:23.000Z
[ "pytorch", "bert", "text-classification", "transformers", "license:apache-2.0" ]
text-classification
false
ibm
null
ibm/re2g-reranker-triviaqa
2
null
transformers
27,682
--- license: apache-2.0 ---
ibm/re2g-qry-encoder-triviaqa
24d8410c02dba0967dc486850e07252c8a2a762b
2022-07-29T18:26:20.000Z
[ "pytorch", "dpr", "feature-extraction", "transformers", "license:apache-2.0" ]
feature-extraction
false
ibm
null
ibm/re2g-qry-encoder-triviaqa
2
null
transformers
27,683
--- license: apache-2.0 ---
ibm/re2g-generation-wow
f7049eef62e49c8a4ce3b61220fa38b285fcec14
2022-07-29T20:22:56.000Z
[ "pytorch", "rag", "transformers", "license:apache-2.0" ]
null
false
ibm
null
ibm/re2g-generation-wow
2
null
transformers
27,684
--- license: apache-2.0 ---
platzi/platzi-vit-model-omar-espejel
ce0b733302dcce351585e6110024b21608b68528
2022-07-29T19:32:18.000Z
[ "pytorch", "tensorboard", "vit", "image-classification", "dataset:beans", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
image-classification
false
platzi
null
platzi/platzi-vit-model-omar-espejel
2
null
transformers
27,685
--- license: apache-2.0 tags: - generated_from_trainer datasets: - beans metrics: - accuracy model-index: - name: platzi-vit-model-omar-espejel results: - task: name: Image Classification type: image-classification dataset: name: beans type: beans config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 1.0 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # platzi-vit-model-omar-espejel This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the beans dataset. It achieves the following results on the evaluation set: - Loss: 0.0091 - Accuracy: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.1372 | 3.85 | 500 | 0.0091 | 1.0 | ### Framework versions - Transformers 4.21.0 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
asparius/combined-distil
1616fbdc956894ab868fd7d218cd92c00613cb4a
2022-07-29T20:29:46.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "transformers", "generated_from_trainer", "license:mit", "model-index" ]
text-classification
false
asparius
null
asparius/combined-distil
2
null
transformers
27,686
--- license: mit tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: combined-distil results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # combined-distil This model is a fine-tuned version of [dbmdz/distilbert-base-turkish-cased](https://huggingface.co/dbmdz/distilbert-base-turkish-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.9342 - Accuracy: 0.8566 - F1: 0.8615 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 ### Training results ### Framework versions - Transformers 4.21.0 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
romainlhardy/finetuned-ner
2837a109804f87d6ba4ff3675f61b4231c0b4044
2022-07-29T20:28:44.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "dataset:conll2003", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
token-classification
false
romainlhardy
null
romainlhardy/finetuned-ner
2
null
transformers
27,687
--- license: apache-2.0 tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 config: conll2003 split: train args: conll2003 metrics: - name: Precision type: precision value: 0.9048086359175662 - name: Recall type: recall value: 0.9309996634129922 - name: F1 type: f1 value: 0.9177173191771731 - name: Accuracy type: accuracy value: 0.9816918820274327 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuned-ner This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0712 - Precision: 0.9048 - Recall: 0.9310 - F1: 0.9177 - Accuracy: 0.9817 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0849 | 1.0 | 1756 | 0.0712 | 0.9048 | 0.9310 | 0.9177 | 0.9817 | ### Framework versions - Transformers 4.21.0 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
ibm/re2g-reranker-wow
daacf639c3bcab9bfd395d5cfb58c46efb542391
2022-07-29T20:25:30.000Z
[ "pytorch", "bert", "text-classification", "transformers", "license:apache-2.0" ]
text-classification
false
ibm
null
ibm/re2g-reranker-wow
2
null
transformers
27,688
--- license: apache-2.0 ---
ibm/re2g-qry-encoder-wow
46e3f2e1cec76405380499475a93eb31c66a5909
2022-07-29T20:27:32.000Z
[ "pytorch", "dpr", "feature-extraction", "transformers", "license:apache-2.0" ]
feature-extraction
false
ibm
null
ibm/re2g-qry-encoder-wow
2
null
transformers
27,689
--- license: apache-2.0 ---
ibm/re2g-ctx-encoder-wow
3853c9fe09d3c3334ac40a6a4a6d92a8d0200721
2022-07-29T20:29:04.000Z
[ "pytorch", "dpr", "transformers", "license:apache-2.0" ]
null
false
ibm
null
ibm/re2g-ctx-encoder-wow
2
null
transformers
27,690
--- license: apache-2.0 ---
huggingtweets/zk_faye
b1914ace7cbe6a8f26a789bb9243bfe0955509d7
2022-07-29T22:03:30.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/zk_faye
2
null
transformers
27,691
--- language: en thumbnail: http://www.huggingtweets.com/zk_faye/1659132206531/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1544789753639436289/_nNZ-fpO_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">❤️ ANGEL FAYE ❤️</div> <div style="text-align: center; font-size: 14px;">@zk_faye</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from ❤️ ANGEL FAYE ❤️. | Data | ❤️ ANGEL FAYE ❤️ | | --- | --- | | Tweets downloaded | 422 | | Retweets | 152 | | Short tweets | 119 | | Tweets kept | 151 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1w29di03/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @zk_faye's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1klggdh2) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1klggdh2/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/zk_faye') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
relbert/relbert-roberta-large-conceptnet-hc-average-prompt-c-nce
3afa44e39f34be0d9508df66234fdf39008e3a81
2022-07-29T23:52:23.000Z
[ "pytorch", "roberta", "feature-extraction", "transformers" ]
feature-extraction
false
relbert
null
relbert/relbert-roberta-large-conceptnet-hc-average-prompt-c-nce
2
null
transformers
27,692
Entry not found
huggingtweets/dags
b1ddb60d6dfbe3f5370e8cc94ce6d2014918d2cb
2022-07-30T01:32:18.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/dags
2
null
transformers
27,693
--- language: en thumbnail: http://www.huggingtweets.com/dags/1659144733206/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/722815128501026817/IMWCRzEn_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">DAGs</div> <div style="text-align: center; font-size: 14px;">@dags</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from DAGs. | Data | DAGs | | --- | --- | | Tweets downloaded | 3003 | | Retweets | 31 | | Short tweets | 158 | | Tweets kept | 2814 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3qyk6uzo/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @dags's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/18qzuqjb) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/18qzuqjb/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/dags') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
123www/test_model
6881f4988ef8eaa1d33d9cd3ea39b748a0654ddc
2022-01-10T06:01:01.000Z
[ "pytorch", "wav2vec2", "transformers" ]
null
false
123www
null
123www/test_model
1
null
transformers
27,694
Entry not found
13048909972/wav2vec2-large-xls-r-300m-tr-colab
40c06d2135b1ce044d045f0ee54e88e24f81b7d6
2021-12-09T10:24:47.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
13048909972
null
13048909972/wav2vec2-large-xls-r-300m-tr-colab
1
null
transformers
27,695
Entry not found
13048909972/wav2vec2-large-xlsr-53_common_voice_20211211085606
79e73cd04aaeec5f8c9b0aa5590926cdec954e0f
2021-12-11T02:05:13.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
13048909972
null
13048909972/wav2vec2-large-xlsr-53_common_voice_20211211085606
1
null
transformers
27,696
Entry not found
275Gameplay/test
010e28a139a4b30eee211c45df77c18c8fcf52ed
2021-12-17T15:17:31.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
275Gameplay
null
275Gameplay/test
1
null
transformers
27,697
Entry not found
2early4coffee/DialoGPT-small-deadpool
10864634bcddcd66acf8981037ad486ae34ad1f2
2021-10-28T17:14:26.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
2early4coffee
null
2early4coffee/DialoGPT-small-deadpool
1
null
transformers
27,698
--- tags: - conversational --- # Deadpool DialoGPT Model
3koozy/gpt2-HxH
c23b81bc97590e0963cae8ad29a6c92a378c1be4
2021-08-25T11:31:49.000Z
[ "pytorch", "gpt2", "feature-extraction", "transformers" ]
feature-extraction
false
3koozy
null
3koozy/gpt2-HxH
1
null
transformers
27,699
this is a fine tuned GPT2 text generation model on a Hunter x Hunter TV anime series dataset.\ you can find a link to the used dataset here : https://www.kaggle.com/bkoozy/hunter-x-hunter-subtitles you can find a colab notebook for fine-tuning the gpt2 model here : https://github.com/3koozy/fine-tune-gpt2-HxH/