modelId
stringlengths
4
112
sha
stringlengths
40
40
lastModified
stringlengths
24
24
tags
sequence
pipeline_tag
stringclasses
29 values
private
bool
1 class
author
stringlengths
2
38
config
null
id
stringlengths
4
112
downloads
float64
0
36.8M
likes
float64
0
712
library_name
stringclasses
17 values
__index_level_0__
int64
0
38.5k
readme
stringlengths
0
186k
Aktsvigun/bart-base_abssum_debate_3449378
482f4de6a41135d8b6dcd6209efab3835eee5c76
2022-07-16T21:49:43.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
Aktsvigun
null
Aktsvigun/bart-base_abssum_debate_3449378
2
null
transformers
27,500
Entry not found
Aktsvigun/bart-base_abssum_debate_4521825
7861da1f575c071a95b2a48dc544d8629218fccf
2022-07-16T22:01:48.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
Aktsvigun
null
Aktsvigun/bart-base_abssum_debate_4521825
2
null
transformers
27,501
Entry not found
Aktsvigun/bart-base_abssum_debate_9463133
9f5e45ca40369e125f17812babf33e65d1163f37
2022-07-16T22:19:19.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
Aktsvigun
null
Aktsvigun/bart-base_abssum_debate_9463133
2
null
transformers
27,502
Entry not found
Aktsvigun/bart-base_abssum_debate_3198548
fa61f12259060dae5473bf558ed174fbf5f5f8cf
2022-07-16T22:35:49.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
Aktsvigun
null
Aktsvigun/bart-base_abssum_debate_3198548
2
null
transformers
27,503
Entry not found
Aktsvigun/bart-base_abssum_debate_4006598
faf47ec00f9c5666b2b7757e8284add392753849
2022-07-16T22:51:46.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
Aktsvigun
null
Aktsvigun/bart-base_abssum_debate_4006598
2
null
transformers
27,504
Entry not found
Aktsvigun/bart-base_abssum_debate_3982742
6bd540036e2f19e781a761d360c7a3dbbafd03ce
2022-07-16T23:08:19.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
Aktsvigun
null
Aktsvigun/bart-base_abssum_debate_3982742
2
null
transformers
27,505
Entry not found
Aktsvigun/bart-base_abssum_debate_2470973
8bc2592aaacb503d624c287f7c71c83e9e27d697
2022-07-16T23:22:34.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
Aktsvigun
null
Aktsvigun/bart-base_abssum_debate_2470973
2
null
transformers
27,506
Entry not found
Aktsvigun/bart-base_abssum_debate_6864530
ba135f94799f39de3022398745c8bb205dbcda96
2022-07-16T23:37:21.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
Aktsvigun
null
Aktsvigun/bart-base_abssum_debate_6864530
2
null
transformers
27,507
Entry not found
tanfiona/unicausal
61ce1ad8835758209844b56ae43f2dfacd03e5fd
2022-07-17T07:01:02.000Z
[ "pytorch", "bert", "transformers" ]
null
false
tanfiona
null
tanfiona/unicausal
2
null
transformers
27,508
Entry not found
pyronear/rexnet1_3x
2ad4b6847aa3fd71c8699e2707307fb418e8034a
2022-07-17T23:47:30.000Z
[ "pytorch", "onnx", "dataset:pyronear/openfire", "arxiv:2007.00992", "transformers", "image-classification", "license:apache-2.0" ]
image-classification
false
pyronear
null
pyronear/rexnet1_3x
2
null
transformers
27,509
--- license: apache-2.0 tags: - image-classification - pytorch - onnx datasets: - pyronear/openfire --- # ReXNet-1.3x model Pretrained on a dataset for wildfire binary classification (soon to be shared). The ReXNet architecture was introduced in [this paper](https://arxiv.org/pdf/2007.00992.pdf). ## Model description The core idea of the author is to add a customized Squeeze-Excitation layer in the residual blocks that will prevent channel redundancy. ## Installation ### Prerequisites Python 3.6 (or higher) and [pip](https://pip.pypa.io/en/stable/)/[conda](https://docs.conda.io/en/latest/miniconda.html) are required to install PyroVision. ### Latest stable release You can install the last stable release of the package using [pypi](https://pypi.org/project/pyrovision/) as follows: ```shell pip install pyrovision ``` or using [conda](https://anaconda.org/pyronear/pyrovision): ```shell conda install -c pyronear pyrovision ``` ### Developer mode Alternatively, if you wish to use the latest features of the project that haven't made their way to a release yet, you can install the package from source *(install [Git](https://git-scm.com/book/en/v2/Getting-Started-Installing-Git) first)*: ```shell git clone https://github.com/pyronear/pyro-vision.git pip install -e pyro-vision/. ``` ## Usage instructions ```python from PIL import Image from torchvision.transforms import Compose, ConvertImageDtype, Normalize, PILToTensor, Resize from torchvision.transforms.functional import InterpolationMode from pyrovision.models import model_from_hf_hub model = model_from_hf_hub("pyronear/rexnet1_3x").eval() img = Image.open(path_to_an_image).convert("RGB") # Preprocessing config = model.default_cfg transform = Compose([ Resize(config['input_shape'][1:], interpolation=InterpolationMode.BILINEAR), PILToTensor(), ConvertImageDtype(torch.float32), Normalize(config['mean'], config['std']) ]) input_tensor = transform(img).unsqueeze(0) # Inference with torch.inference_mode(): output = model(input_tensor) probs = output.squeeze(0).softmax(dim=0) ``` ## Citation Original paper ```bibtex @article{DBLP:journals/corr/abs-2007-00992, author = {Dongyoon Han and Sangdoo Yun and Byeongho Heo and Young Joon Yoo}, title = {ReXNet: Diminishing Representational Bottleneck on Convolutional Neural Network}, journal = {CoRR}, volume = {abs/2007.00992}, year = {2020}, url = {https://arxiv.org/abs/2007.00992}, eprinttype = {arXiv}, eprint = {2007.00992}, timestamp = {Mon, 06 Jul 2020 15:26:01 +0200}, biburl = {https://dblp.org/rec/journals/corr/abs-2007-00992.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ``` Source of this implementation ```bibtex @software{Fernandez_Holocron_2020, author = {Fernandez, François-Guillaume}, month = {5}, title = {{Holocron}}, url = {https://github.com/frgfm/Holocron}, year = {2020} } ```
pyronear/rexnet1_5x
3c30aad1db06dbff23f9877c20ca5da82d9369f2
2022-07-17T23:47:47.000Z
[ "pytorch", "onnx", "dataset:pyronear/openfire", "arxiv:2007.00992", "transformers", "image-classification", "license:apache-2.0" ]
image-classification
false
pyronear
null
pyronear/rexnet1_5x
2
null
transformers
27,510
--- license: apache-2.0 tags: - image-classification - pytorch - onnx datasets: - pyronear/openfire --- # ReXNet-1.5x model Pretrained on a dataset for wildfire binary classification (soon to be shared). The ReXNet architecture was introduced in [this paper](https://arxiv.org/pdf/2007.00992.pdf). ## Model description The core idea of the author is to add a customized Squeeze-Excitation layer in the residual blocks that will prevent channel redundancy. ## Installation ### Prerequisites Python 3.6 (or higher) and [pip](https://pip.pypa.io/en/stable/)/[conda](https://docs.conda.io/en/latest/miniconda.html) are required to install PyroVision. ### Latest stable release You can install the last stable release of the package using [pypi](https://pypi.org/project/pyrovision/) as follows: ```shell pip install pyrovision ``` or using [conda](https://anaconda.org/pyronear/pyrovision): ```shell conda install -c pyronear pyrovision ``` ### Developer mode Alternatively, if you wish to use the latest features of the project that haven't made their way to a release yet, you can install the package from source *(install [Git](https://git-scm.com/book/en/v2/Getting-Started-Installing-Git) first)*: ```shell git clone https://github.com/pyronear/pyro-vision.git pip install -e pyro-vision/. ``` ## Usage instructions ```python from PIL import Image from torchvision.transforms import Compose, ConvertImageDtype, Normalize, PILToTensor, Resize from torchvision.transforms.functional import InterpolationMode from pyrovision.models import model_from_hf_hub model = model_from_hf_hub("pyronear/rexnet1_5x").eval() img = Image.open(path_to_an_image).convert("RGB") # Preprocessing config = model.default_cfg transform = Compose([ Resize(config['input_shape'][1:], interpolation=InterpolationMode.BILINEAR), PILToTensor(), ConvertImageDtype(torch.float32), Normalize(config['mean'], config['std']) ]) input_tensor = transform(img).unsqueeze(0) # Inference with torch.inference_mode(): output = model(input_tensor) probs = output.squeeze(0).softmax(dim=0) ``` ## Citation Original paper ```bibtex @article{DBLP:journals/corr/abs-2007-00992, author = {Dongyoon Han and Sangdoo Yun and Byeongho Heo and Young Joon Yoo}, title = {ReXNet: Diminishing Representational Bottleneck on Convolutional Neural Network}, journal = {CoRR}, volume = {abs/2007.00992}, year = {2020}, url = {https://arxiv.org/abs/2007.00992}, eprinttype = {arXiv}, eprint = {2007.00992}, timestamp = {Mon, 06 Jul 2020 15:26:01 +0200}, biburl = {https://dblp.org/rec/journals/corr/abs-2007-00992.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ``` Source of this implementation ```bibtex @software{Fernandez_Holocron_2020, author = {Fernandez, François-Guillaume}, month = {5}, title = {{Holocron}}, url = {https://github.com/frgfm/Holocron}, year = {2020} } ```
pyronear/resnet18
a7e4a197a7b582d89ddc1883ab30e39882e3fec1
2022-07-17T23:48:06.000Z
[ "pytorch", "onnx", "dataset:pyronear/openfire", "arxiv:1512.03385", "transformers", "image-classification", "license:apache-2.0" ]
image-classification
false
pyronear
null
pyronear/resnet18
2
null
transformers
27,511
--- license: apache-2.0 tags: - image-classification - pytorch - onnx datasets: - pyronear/openfire --- # ResNet-18 model Pretrained on a dataset for wildfire binary classification (soon to be shared). ## Model description The core idea of the author is to help the gradient propagation through numerous layers by adding a skip connection. ## Installation ### Prerequisites Python 3.6 (or higher) and [pip](https://pip.pypa.io/en/stable/)/[conda](https://docs.conda.io/en/latest/miniconda.html) are required to install PyroVision. ### Latest stable release You can install the last stable release of the package using [pypi](https://pypi.org/project/pyrovision/) as follows: ```shell pip install pyrovision ``` or using [conda](https://anaconda.org/pyronear/pyrovision): ```shell conda install -c pyronear pyrovision ``` ### Developer mode Alternatively, if you wish to use the latest features of the project that haven't made their way to a release yet, you can install the package from source *(install [Git](https://git-scm.com/book/en/v2/Getting-Started-Installing-Git) first)*: ```shell git clone https://github.com/pyronear/pyro-vision.git pip install -e pyro-vision/. ``` ## Usage instructions ```python from PIL import Image from torchvision.transforms import Compose, ConvertImageDtype, Normalize, PILToTensor, Resize from torchvision.transforms.functional import InterpolationMode from pyrovision.models import model_from_hf_hub model = model_from_hf_hub("pyronear/resnet18").eval() img = Image.open(path_to_an_image).convert("RGB") # Preprocessing config = model.default_cfg transform = Compose([ Resize(config['input_shape'][1:], interpolation=InterpolationMode.BILINEAR), PILToTensor(), ConvertImageDtype(torch.float32), Normalize(config['mean'], config['std']) ]) input_tensor = transform(img).unsqueeze(0) # Inference with torch.inference_mode(): output = model(input_tensor) probs = output.squeeze(0).softmax(dim=0) ``` ## Citation Original paper ```bibtex @article{DBLP:journals/corr/HeZRS15, author = {Kaiming He and Xiangyu Zhang and Shaoqing Ren and Jian Sun}, title = {Deep Residual Learning for Image Recognition}, journal = {CoRR}, volume = {abs/1512.03385}, year = {2015}, url = {http://arxiv.org/abs/1512.03385}, eprinttype = {arXiv}, eprint = {1512.03385}, timestamp = {Wed, 17 Apr 2019 17:23:45 +0200}, biburl = {https://dblp.org/rec/journals/corr/HeZRS15.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ``` Source of this implementation ```bibtex @software{chintala_torchvision_2017, author = {Chintala, Soumith}, month = {4}, title = {{Torchvision}}, url = {https://github.com/pytorch/vision}, year = {2017} } ```
pyronear/resnet34
1f22eff410ee84f6af51100df5835435707b2686
2022-07-17T23:48:22.000Z
[ "pytorch", "onnx", "dataset:pyronear/openfire", "arxiv:1512.03385", "transformers", "image-classification", "license:apache-2.0" ]
image-classification
false
pyronear
null
pyronear/resnet34
2
null
transformers
27,512
--- license: apache-2.0 tags: - image-classification - pytorch - onnx datasets: - pyronear/openfire --- # ResNet-34 model Pretrained on a dataset for wildfire binary classification (soon to be shared). ## Model description The core idea of the author is to help the gradient propagation through numerous layers by adding a skip connection. ## Installation ### Prerequisites Python 3.6 (or higher) and [pip](https://pip.pypa.io/en/stable/)/[conda](https://docs.conda.io/en/latest/miniconda.html) are required to install PyroVision. ### Latest stable release You can install the last stable release of the package using [pypi](https://pypi.org/project/pyrovision/) as follows: ```shell pip install pyrovision ``` or using [conda](https://anaconda.org/pyronear/pyrovision): ```shell conda install -c pyronear pyrovision ``` ### Developer mode Alternatively, if you wish to use the latest features of the project that haven't made their way to a release yet, you can install the package from source *(install [Git](https://git-scm.com/book/en/v2/Getting-Started-Installing-Git) first)*: ```shell git clone https://github.com/pyronear/pyro-vision.git pip install -e pyro-vision/. ``` ## Usage instructions ```python from PIL import Image from torchvision.transforms import Compose, ConvertImageDtype, Normalize, PILToTensor, Resize from torchvision.transforms.functional import InterpolationMode from pyrovision.models import model_from_hf_hub model = model_from_hf_hub("pyronear/resnet34").eval() img = Image.open(path_to_an_image).convert("RGB") # Preprocessing config = model.default_cfg transform = Compose([ Resize(config['input_shape'][1:], interpolation=InterpolationMode.BILINEAR), PILToTensor(), ConvertImageDtype(torch.float32), Normalize(config['mean'], config['std']) ]) input_tensor = transform(img).unsqueeze(0) # Inference with torch.inference_mode(): output = model(input_tensor) probs = output.squeeze(0).softmax(dim=0) ``` ## Citation Original paper ```bibtex @article{DBLP:journals/corr/HeZRS15, author = {Kaiming He and Xiangyu Zhang and Shaoqing Ren and Jian Sun}, title = {Deep Residual Learning for Image Recognition}, journal = {CoRR}, volume = {abs/1512.03385}, year = {2015}, url = {http://arxiv.org/abs/1512.03385}, eprinttype = {arXiv}, eprint = {1512.03385}, timestamp = {Wed, 17 Apr 2019 17:23:45 +0200}, biburl = {https://dblp.org/rec/journals/corr/HeZRS15.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ``` Source of this implementation ```bibtex @software{chintala_torchvision_2017, author = {Chintala, Soumith}, month = {4}, title = {{Torchvision}}, url = {https://github.com/pytorch/vision}, year = {2017} } ```
shengnan/visualize-v1-pre10w-preseed1
fe03ea7f8f8cc5c780df8a2228f111f10caf35c3
2022-07-18T02:42:04.000Z
[ "pytorch", "t5", "transformers" ]
null
false
shengnan
null
shengnan/visualize-v1-pre10w-preseed1
2
null
transformers
27,513
Entry not found
shengnan/visualize-cst-v1-pre10w-preseed1
b6191273b3973ca89a14acd8703d90305ca5f8ff
2022-07-18T03:03:19.000Z
[ "pytorch", "t5", "transformers" ]
null
false
shengnan
null
shengnan/visualize-cst-v1-pre10w-preseed1
2
null
transformers
27,514
Entry not found
shengnan/visualize-cst-v2-pre10w-preseed1
0d7ff91b7e07b05c50d2ec481e8ec1a0638a3cad
2022-07-18T03:08:26.000Z
[ "pytorch", "t5", "transformers" ]
null
false
shengnan
null
shengnan/visualize-cst-v2-pre10w-preseed1
2
null
transformers
27,515
Entry not found
MadridMaverick/phobert-base-finetuned-imdb
61321c2b0c53c629baeb4df3a13d8cf463bb8423
2022-07-18T04:04:21.000Z
[ "pytorch", "roberta", "fill-mask", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
fill-mask
false
MadridMaverick
null
MadridMaverick/phobert-base-finetuned-imdb
2
null
transformers
27,516
--- tags: - generated_from_trainer model-index: - name: phobert-base-finetuned-imdb results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # phobert-base-finetuned-imdb This model is a fine-tuned version of [vinai/phobert-base](https://huggingface.co/vinai/phobert-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.2510 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.7146 | 1.0 | 2500 | 1.4245 | | 1.3821 | 2.0 | 5000 | 1.2666 | | 1.3308 | 3.0 | 7500 | 1.2564 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
Aktsvigun/bart-base_debate_3449378
f2e284136b66a5ec31d2db4895a9c38e1877c2f5
2022-07-18T07:43:07.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
Aktsvigun
null
Aktsvigun/bart-base_debate_3449378
2
null
transformers
27,517
Entry not found
Aktsvigun/bart-base_scisummnet_3982742
ba9454b01c0df5b55d242c082b9edc6c35284f01
2022-07-18T07:42:07.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
Aktsvigun
null
Aktsvigun/bart-base_scisummnet_3982742
2
null
transformers
27,518
Entry not found
Aktsvigun/bart-base_scisummnet_3198548
ce341e9eb72cd4984c5aeb253720aebb80571048
2022-07-18T07:44:50.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
Aktsvigun
null
Aktsvigun/bart-base_scisummnet_3198548
2
null
transformers
27,519
Entry not found
Aktsvigun/bart-base_debate_4065329
82a6ab5dcd3f2407fa6d7c3764bf1e3ea91aa94d
2022-07-18T07:45:17.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
Aktsvigun
null
Aktsvigun/bart-base_debate_4065329
2
null
transformers
27,520
Entry not found
Aktsvigun/bart-base_scisummnet_4521825
999d418c417eb5e230cfab4fa912317d44b2cec4
2022-07-18T07:47:22.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
Aktsvigun
null
Aktsvigun/bart-base_scisummnet_4521825
2
null
transformers
27,521
Entry not found
Aktsvigun/bart-base_debate_7629317
15151b819356f54399e6347ebb79d7739c6b08dd
2022-07-18T07:47:49.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
Aktsvigun
null
Aktsvigun/bart-base_debate_7629317
2
null
transformers
27,522
Entry not found
Aktsvigun/bart-base_scisummnet_4006598
fab1516e2a478ab2c513cc3eb74012c39d275e98
2022-07-18T07:59:17.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
Aktsvigun
null
Aktsvigun/bart-base_scisummnet_4006598
2
null
transformers
27,523
Entry not found
Aktsvigun/bart-base_debate_4521825
7c4d0bd6632007b91c87b362712c4bcc927c16b3
2022-07-18T07:59:55.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
Aktsvigun
null
Aktsvigun/bart-base_debate_4521825
2
null
transformers
27,524
Entry not found
Aktsvigun/bart-base_scisummnet_7629317
4bad91b7eb307f376e3fbe6aa5ca0f86ef7b2018
2022-07-18T08:10:21.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
Aktsvigun
null
Aktsvigun/bart-base_scisummnet_7629317
2
null
transformers
27,525
Entry not found
Aktsvigun/bart-base_debate_3198548
d8dfd3ce6b8daf85956cb2e27c443de53560e1e6
2022-07-18T08:06:15.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
Aktsvigun
null
Aktsvigun/bart-base_debate_3198548
2
null
transformers
27,526
Entry not found
fqw/t5-pegasus-finetuned
30d112e3b6cc9dc97e77cf492deace9835fddd2d
2022-07-19T03:01:41.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
text2text-generation
false
fqw
null
fqw/t5-pegasus-finetuned
2
null
transformers
27,527
--- tags: - generated_from_trainer metrics: - sacrebleu model-index: - name: t5-pegasus-finetuned results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-pegasus-finetuned This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 4.8469 - Sacrebleu: 1.6544 - Rouge 1: 0.0646 - Rouge 2: 0.0076 - Rouge L: 0.0629 - Bleu 1: 0.2040 - Bleu 2: 0.0959 - Bleu 3: 0.0484 - Bleu 4: 0.0287 - Meteor: 0.0872 - Gen Len: 16.0997 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 512 - eval_batch_size: 256 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 1024 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 100 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.21.0.dev0 - Pytorch 1.9.1+cu102 - Datasets 2.3.2 - Tokenizers 0.12.1
Aktsvigun/bart-base_debate_6864530
23f1973cb71b74d1705bf73236796c3dd6a20ce7
2022-07-18T08:13:15.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
Aktsvigun
null
Aktsvigun/bart-base_debate_6864530
2
null
transformers
27,528
Entry not found
Aktsvigun/bart-base_scisummnet_3449378
8956f254f8ee4e4f9a7394a2e7c048beb8b70838
2022-07-18T08:18:18.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
Aktsvigun
null
Aktsvigun/bart-base_scisummnet_3449378
2
null
transformers
27,529
Entry not found
Aktsvigun/bart-base_pubmed_12345
1947055be9536e74198e1739fb47f5a95faefc70
2022-07-18T08:14:39.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
Aktsvigun
null
Aktsvigun/bart-base_pubmed_12345
2
null
transformers
27,530
Entry not found
Aktsvigun/bart-base_debate_9463133
20dd2ada418f1934d0144c7ad87831eac4ab6ff0
2022-07-18T08:18:09.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
Aktsvigun
null
Aktsvigun/bart-base_debate_9463133
2
null
transformers
27,531
Entry not found
Aktsvigun/bart-base_debate_2470973
a201bd59ee81b35b25d49e03efe53e0fdf475dfa
2022-07-18T08:24:45.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
Aktsvigun
null
Aktsvigun/bart-base_debate_2470973
2
null
transformers
27,532
Entry not found
Aktsvigun/bart-base_scisummnet_6864530
d17846b40a0a596d02d8c3feb16f63caa2f83416
2022-07-18T08:25:12.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
Aktsvigun
null
Aktsvigun/bart-base_scisummnet_6864530
2
null
transformers
27,533
Entry not found
Aktsvigun/bart-base_debate_3982742
5a9be604c9ddb66b6d41640906c39c1b30296c3e
2022-07-18T08:32:16.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
Aktsvigun
null
Aktsvigun/bart-base_debate_3982742
2
null
transformers
27,534
Entry not found
Aktsvigun/bart-base_scisummnet_4065329
54b1d14a1223608f1e55bc169ef936dd838ec3d6
2022-07-18T08:32:36.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
Aktsvigun
null
Aktsvigun/bart-base_scisummnet_4065329
2
null
transformers
27,535
Entry not found
Aktsvigun/bart-base_debate_4006598
b5105d4a78b23a8dff9f59d5d961f7982c4a924a
2022-07-18T08:43:46.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
Aktsvigun
null
Aktsvigun/bart-base_debate_4006598
2
null
transformers
27,536
Entry not found
Aktsvigun/bart-base_scisummnet_9463133
4d4c4a509b0007dd4c45df8d91ba7f7814d4df4e
2022-07-18T08:39:46.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
Aktsvigun
null
Aktsvigun/bart-base_scisummnet_9463133
2
null
transformers
27,537
Entry not found
Aktsvigun/bart-base_scisummnet_2470973
45864486eac9284643403609eb43dbcc87e7b330
2022-07-18T08:53:47.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
Aktsvigun
null
Aktsvigun/bart-base_scisummnet_2470973
2
null
transformers
27,538
Entry not found
Aktsvigun/bart-base_debate_3878022
251953a08329f2eb394f4cea6b1493aedb5e3a74
2022-07-18T08:50:14.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
Aktsvigun
null
Aktsvigun/bart-base_debate_3878022
2
null
transformers
27,539
Entry not found
Aktsvigun/bart-base_debate_5893459
8094e17f6c804d043f1efb90fbf0e7ac829f4063
2022-07-18T09:03:51.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
Aktsvigun
null
Aktsvigun/bart-base_debate_5893459
2
null
transformers
27,540
Entry not found
Aktsvigun/bart-base_scisummnet_3878022
65df5752aa310f1a10608a05bea3d424b34514ab
2022-07-18T09:05:33.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
Aktsvigun
null
Aktsvigun/bart-base_scisummnet_3878022
2
null
transformers
27,541
Entry not found
Aktsvigun/bart-base_abssum_scisummnet_705525
935a36fe6bc01c23af369abe3d8767497f2674b9
2022-07-18T09:05:44.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
Aktsvigun
null
Aktsvigun/bart-base_abssum_scisummnet_705525
2
null
transformers
27,542
Entry not found
rsuwaileh/IDRISI-LMR-EN-random-typebased
e2b314fea6eab88b5b8b936c247804dfd5d39cb9
2022-07-20T14:58:34.000Z
[ "pytorch", "bert", "token-classification", "transformers", "license:apache-2.0", "autotrain_compatible" ]
token-classification
false
rsuwaileh
null
rsuwaileh/IDRISI-LMR-EN-random-typebased
2
null
transformers
27,543
--- license: apache-2.0 --- This model is a BERT-based Location Mention Recognition model that is adopted from the [TLLMR4CM GitHub](https://github.com/rsuwaileh/TLLMR4CM/). The model identifies the toponyms' spans in text and predicts their location types. The location type can be coarse-grained (e.g., country, city, etc.) and fine-grained (e.g., street, POI, etc.) The model is trained using the training splits of all events from [IDRISI-R dataset](https://github.com/rsuwaileh/IDRISI) under the `Type-based` LMR mode and using the `Random` version of the data. You can download this data in `BILOU` format from [here](https://github.com/rsuwaileh/IDRISI/tree/main/data/LMR/EN/gold-random-bilou/). More details are available [here](https://github.com/rsuwaileh/IDRISI/tree/main/models). * Different variants of the model are available through HuggingFace: - [rsuwaileh/IDRISI-LMR-EN-random-typeless](https://huggingface.co/rsuwaileh/IDRISI-LMR-EN-random-typeless/) - [rsuwaileh/IDRISI-LMR-EN-timebased-typeless](https://huggingface.co/rsuwaileh/IDRISI-LMR-EN-timebased-typeless/) - [rsuwaileh/IDRISI-LMR-EN-timebased-typebased](https://huggingface.co/rsuwaileh/IDRISI-LMR-EN-timebased-typebased/) * Arabic models are also available: - [rsuwaileh/IDRISI-LMR-AR-random-typeless](https://huggingface.co/rsuwaileh/IDRISI-LMR-AR-random-typeless/) - [rsuwaileh/IDRISI-LMR-AR-random-typebased](https://huggingface.co/rsuwaileh/IDRISI-LMR-AR-random-typebased/) - [rsuwaileh/IDRISI-LMR-AR-timebased-typeless](https://huggingface.co/rsuwaileh/IDRISI-LMR-AR-timebased-typeless/) - [rsuwaileh/IDRISI-LMR-AR-timebased-typebased](https://huggingface.co/rsuwaileh/IDRISI-LMR-AR-timebased-typebased/) To cite the models: ``` @article{suwaileh2022tlLMR4disaster, title={When a Disaster Happens, We Are Ready: Location Mention Recognition from Crisis Tweets}, author={Suwaileh, Reem and Elsayed, Tamer and Imran, Muhammad and Sajjad, Hassan}, journal={International Journal of Disaster Risk Reduction}, year={2022} } @inproceedings{suwaileh2020tlLMR4disaster, title={Are We Ready for this Disaster? Towards Location Mention Recognition from Crisis Tweets}, author={Suwaileh, Reem and Imran, Muhammad and Elsayed, Tamer and Sajjad, Hassan}, booktitle={Proceedings of the 28th International Conference on Computational Linguistics}, pages={6252--6263}, year={2020} } ``` To cite the IDRISI-R dataset: ``` @article{rsuwaileh2022Idrisi-r, title={IDRISI-R: Large-scale English and Arabic Location Mention Recognition Datasets for Disaster Response over Twitter}, author={Suwaileh, Reem and Elsayed, Tamer and Imran, Muhammad}, journal={...}, volume={...}, pages={...}, year={2022}, publisher={...} } ```
Aktsvigun/bart-base_debate_6585777
194f93516f0af42a9b571ca3fccffb3b86b5b1b8
2022-07-18T09:06:06.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
Aktsvigun
null
Aktsvigun/bart-base_debate_6585777
2
null
transformers
27,544
Entry not found
Aktsvigun/bart-base_scisummnet_5537116
84be63fdd161fd9f7d9cb8d15952cc9e6fd669a9
2022-07-18T09:16:10.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
Aktsvigun
null
Aktsvigun/bart-base_scisummnet_5537116
2
null
transformers
27,545
Entry not found
Aktsvigun/bart-base_debate_6880281
333d0c82150fba20a8489a11257780e1c1b01b87
2022-07-18T09:11:43.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
Aktsvigun
null
Aktsvigun/bart-base_debate_6880281
2
null
transformers
27,546
Entry not found
Aktsvigun/bart-base_aeslc_4521825
94d7eb6f82a559fe866aa761492db1f6cc881f88
2022-07-18T09:13:27.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
Aktsvigun
null
Aktsvigun/bart-base_aeslc_4521825
2
null
transformers
27,547
Entry not found
Aktsvigun/bart-base_debate_5537116
1ae04a2f061ce5ee96e273d90ac10d671a2a2464
2022-07-18T09:26:14.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
Aktsvigun
null
Aktsvigun/bart-base_debate_5537116
2
null
transformers
27,548
Entry not found
Aktsvigun/bart-base_scisummnet_919213
6c11b31c03612d59835f64a9c6228919d3c72013
2022-07-18T09:26:11.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
Aktsvigun
null
Aktsvigun/bart-base_scisummnet_919213
2
null
transformers
27,549
Entry not found
rsuwaileh/IDRISI-LMR-EN-random-typeless
5ace9a7be5cd048b286541ac22748e0114caa95d
2022-07-20T14:58:59.000Z
[ "pytorch", "bert", "token-classification", "transformers", "license:apache-2.0", "autotrain_compatible" ]
token-classification
false
rsuwaileh
null
rsuwaileh/IDRISI-LMR-EN-random-typeless
2
null
transformers
27,550
--- license: apache-2.0 --- This model is a BERT-based Location Mention Recognition model that is adopted from the [TLLMR4CM GitHub](https://github.com/rsuwaileh/TLLMR4CM/). The model identifies the toponyms' spans in the text without predicting their location types. The model is trained using the training splits of all events from [IDRISI-R dataset](https://github.com/rsuwaileh/IDRISI) under the `Type-less` LMR mode and using the `Random` version of the data. You can download this data in `BILOU` format from [here](https://github.com/rsuwaileh/IDRISI/tree/main/data/LMR/EN/gold-random-bilou/). All Location types in the data were normalized to the `LOC` tag. More details about the models are available [here](https://github.com/rsuwaileh/IDRISI/tree/main/models). * Different variants of the model are available through HuggingFace: - [rsuwaileh/IDRISI-LMR-EN-random-typebased](https://huggingface.co/rsuwaileh/IDRISI-LMR-EN-random-typebased/) - [rsuwaileh/IDRISI-LMR-EN-timebased-typeless](https://huggingface.co/rsuwaileh/IDRISI-LMR-EN-timebased-typeless/) - [rsuwaileh/IDRISI-LMR-EN-timebased-typebased](https://huggingface.co/rsuwaileh/IDRISI-LMR-EN-timebased-typebased/) * Arabic models are also available: - [rsuwaileh/IDRISI-LMR-AR-random-typeless](https://huggingface.co/rsuwaileh/IDRISI-LMR-AR-random-typeless/) - [rsuwaileh/IDRISI-LMR-AR-random-typebased](https://huggingface.co/rsuwaileh/IDRISI-LMR-AR-random-typebased/) - [rsuwaileh/IDRISI-LMR-AR-timebased-typeless](https://huggingface.co/rsuwaileh/IDRISI-LMR-AR-timebased-typeless/) - [rsuwaileh/IDRISI-LMR-AR-timebased-typebased](https://huggingface.co/rsuwaileh/IDRISI-LMR-AR-timebased-typebased/) To cite the models: ``` @article{suwaileh2022tlLMR4disaster, title={When a Disaster Happens, We Are Ready: Location Mention Recognition from Crisis Tweets}, author={Suwaileh, Reem and Elsayed, Tamer and Imran, Muhammad and Sajjad, Hassan}, journal={International Journal of Disaster Risk Reduction}, year={2022} } @inproceedings{suwaileh2020tlLMR4disaster, title={Are We Ready for this Disaster? Towards Location Mention Recognition from Crisis Tweets}, author={Suwaileh, Reem and Imran, Muhammad and Elsayed, Tamer and Sajjad, Hassan}, booktitle={Proceedings of the 28th International Conference on Computational Linguistics}, pages={6252--6263}, year={2020} } ``` To cite the IDRISI-R dataset: ``` @article{rsuwaileh2022Idrisi-r, title={IDRISI-R: Large-scale English and Arabic Location Mention Recognition Datasets for Disaster Response over Twitter}, author={Suwaileh, Reem and Elsayed, Tamer and Imran, Muhammad}, journal={...}, volume={...}, pages={...}, year={2022}, publisher={...} } ```
Aktsvigun/bart-base_scisummnet_9467153
129e7ab705dbbe7dd2e90a2108e3a7c48855eda4
2022-07-18T09:28:44.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
Aktsvigun
null
Aktsvigun/bart-base_scisummnet_9467153
2
null
transformers
27,551
Entry not found
Aktsvigun/bart-base_debate_919213
12a70f19bfa273acfe7b90f507e95c616c860e5d
2022-07-18T09:28:58.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
Aktsvigun
null
Aktsvigun/bart-base_debate_919213
2
null
transformers
27,552
Entry not found
rsuwaileh/IDRISI-LMR-EN-timebased-typebased
653810c546b6f92c27d4e53d6dfbc6cf0a5ff018
2022-07-20T14:55:57.000Z
[ "pytorch", "bert", "token-classification", "transformers", "license:apache-2.0", "autotrain_compatible" ]
token-classification
false
rsuwaileh
null
rsuwaileh/IDRISI-LMR-EN-timebased-typebased
2
null
transformers
27,553
--- license: apache-2.0 --- This model is a BERT-based Location Mention Recognition model that is adopted from the [TLLMR4CM GitHub](https://github.com/rsuwaileh/TLLMR4CM/). The model identifies the toponyms' spans in the text and predicts their location types. The location type can be coarse-grained (e.g., country, city, etc.) and fine-grained (e.g., street, POI, etc.) The model is trained using the training splits of all events from [IDRISI-R dataset](https://github.com/rsuwaileh/IDRISI) under the `Type-based` LMR mode and using the `Time-based` version of the data. You can download this data in `BILOU` format from [here](https://github.com/rsuwaileh/IDRISI/tree/main/data/LMR/EN/gold-random-bilou/). More details about the models are available [here](https://github.com/rsuwaileh/IDRISI/tree/main/models). * Different variants of the model are available through HuggingFace: - [rsuwaileh/IDRISI-LMR-EN-random-typeless](https://huggingface.co/rsuwaileh/IDRISI-LMR-EN-random-typeless/) - [rsuwaileh/IDRISI-LMR-EN-random-typebased](https://huggingface.co/rsuwaileh/IDRISI-LMR-EN-random-typebased/) - [rsuwaileh/IDRISI-LMR-EN-timebased-typeless](https://huggingface.co/rsuwaileh/IDRISI-LMR-EN-timebased-typeless/) * Arabic models are also available: - [rsuwaileh/IDRISI-LMR-AR-random-typeless](https://huggingface.co/rsuwaileh/IDRISI-LMR-AR-random-typeless/) - [rsuwaileh/IDRISI-LMR-AR-random-typebased](https://huggingface.co/rsuwaileh/IDRISI-LMR-AR-random-typebased/) - [rsuwaileh/IDRISI-LMR-AR-timebased-typeless](https://huggingface.co/rsuwaileh/IDRISI-LMR-AR-timebased-typeless/) - [rsuwaileh/IDRISI-LMR-AR-timebased-typebased](https://huggingface.co/rsuwaileh/IDRISI-LMR-AR-timebased-typebased/) To cite the models: ``` @article{suwaileh2022tlLMR4disaster, title={When a Disaster Happens, We Are Ready: Location Mention Recognition from Crisis Tweets}, author={Suwaileh, Reem and Elsayed, Tamer and Imran, Muhammad and Sajjad, Hassan}, journal={International Journal of Disaster Risk Reduction}, year={2022} } @inproceedings{suwaileh2020tlLMR4disaster, title={Are We Ready for this Disaster? Towards Location Mention Recognition from Crisis Tweets}, author={Suwaileh, Reem and Imran, Muhammad and Elsayed, Tamer and Sajjad, Hassan}, booktitle={Proceedings of the 28th International Conference on Computational Linguistics}, pages={6252--6263}, year={2020} } ``` To cite the IDRISI-R dataset: ``` @article{rsuwaileh2022Idrisi-r, title={IDRISI-R: Large-scale English and Arabic Location Mention Recognition Datasets for Disaster Response over Twitter}, author={Suwaileh, Reem and Elsayed, Tamer and Imran, Muhammad}, journal={...}, volume={...}, pages={...}, year={2022}, publisher={...} } ```
Aktsvigun/bart-base_scisummnet_8653685
de0e236be70c2f12a85dd2c28e1f65c480a2c4fc
2022-07-18T09:31:31.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
Aktsvigun
null
Aktsvigun/bart-base_scisummnet_8653685
2
null
transformers
27,554
Entry not found
Aktsvigun/bart-base_debate_9467153
6e3cdae193f6a8e70237d3d8c288194b6910d184
2022-07-18T09:31:43.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
Aktsvigun
null
Aktsvigun/bart-base_debate_9467153
2
null
transformers
27,555
Entry not found
Aktsvigun/bart-base_scisummnet_5893459
875745255ad237ffcc79e513000bf3dc00577ff5
2022-07-18T09:37:30.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
Aktsvigun
null
Aktsvigun/bart-base_scisummnet_5893459
2
null
transformers
27,556
Entry not found
Aktsvigun/bart-base_debate_9478495
2dd4d5a1d43533afb109c0564e36fad9674e5dee
2022-07-18T09:39:50.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
Aktsvigun
null
Aktsvigun/bart-base_debate_9478495
2
null
transformers
27,557
Entry not found
Aktsvigun/bart-base_scisummnet_6585777
5212853197efef0816c8031d713bf538b9a4fa04
2022-07-18T09:39:31.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
Aktsvigun
null
Aktsvigun/bart-base_scisummnet_6585777
2
null
transformers
27,558
Entry not found
Aktsvigun/bart-base_scisummnet_6880281
db995f7a93fc9afc90682168d1cf644f7eef18bb
2022-07-18T09:46:57.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
Aktsvigun
null
Aktsvigun/bart-base_scisummnet_6880281
2
null
transformers
27,559
Entry not found
Aktsvigun/bart-base_debate_8653685
08f8774d3f032157cd65cc8353a2d7fa84411635
2022-07-18T09:45:19.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
Aktsvigun
null
Aktsvigun/bart-base_debate_8653685
2
null
transformers
27,560
Entry not found
Aktsvigun/bart-base_debate_2930982
51d2a145de4742e6ffd791ef466ea6e4827677c0
2022-07-18T09:47:26.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
Aktsvigun
null
Aktsvigun/bart-base_debate_2930982
2
null
transformers
27,561
Entry not found
Aktsvigun/bart-base_scisummnet_9478495
fc2a89907332fd83fe901e630efbdf509558bec4
2022-07-18T10:00:26.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
Aktsvigun
null
Aktsvigun/bart-base_scisummnet_9478495
2
null
transformers
27,562
Entry not found
Aktsvigun/bart-base_scisummnet_2930982
df4e6f1327c791f643cbd1a4ed12ac2d96a62e61
2022-07-18T10:11:51.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
Aktsvigun
null
Aktsvigun/bart-base_scisummnet_2930982
2
null
transformers
27,563
Entry not found
Aktsvigun/bart-base_abssum_scisummnet_4837
3440afe56dde11599ddb2b262626b7bad75c47ef
2022-07-18T10:29:47.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
Aktsvigun
null
Aktsvigun/bart-base_abssum_scisummnet_4837
2
null
transformers
27,564
Entry not found
Aktsvigun/bart-base_aeslc_9463133
612c9c77a8207daa2eb77a0dd1234c1446525372
2022-07-18T10:57:36.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
Aktsvigun
null
Aktsvigun/bart-base_aeslc_9463133
2
null
transformers
27,565
Entry not found
Aktsvigun/bart-base_abssum_scisummnet_42
fd4dd028fdd8de68f7f875559004aaabc99b52f2
2022-07-18T11:45:02.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
Aktsvigun
null
Aktsvigun/bart-base_abssum_scisummnet_42
2
null
transformers
27,566
Entry not found
Aktsvigun/bart-base_abssum_scisummnet_919213
419f38e77b46123c30af9de2dbb7eeb73a01a513
2022-07-18T12:39:53.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
Aktsvigun
null
Aktsvigun/bart-base_abssum_scisummnet_919213
2
null
transformers
27,567
Entry not found
Aktsvigun/bart-base_aeslc_3982742
66681c67be0504afa2a4dadb891350bd2f0dfdfb
2022-07-18T12:47:55.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
Aktsvigun
null
Aktsvigun/bart-base_aeslc_3982742
2
null
transformers
27,568
Entry not found
yixi/bert-finetuned-ner-accelerate
5a74e69346d1b3269f4a30be1f4c471ded4f5213
2022-07-18T13:18:11.000Z
[ "pytorch", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
yixi
null
yixi/bert-finetuned-ner-accelerate
2
null
transformers
27,569
Entry not found
Aktsvigun/bart-base_abssum_wikihow_all_4837
3d3d1f510baf6bd13ef39dc0bcac870bf173cdfb
2022-07-18T13:56:16.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
Aktsvigun
null
Aktsvigun/bart-base_abssum_wikihow_all_4837
2
null
transformers
27,570
Entry not found
andreaschandra/pegasus-samsum
480c0371c4f9b91d42e0aad7cea5db066acce40f
2022-07-18T14:47:25.000Z
[ "pytorch", "pegasus", "text2text-generation", "dataset:samsum", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
text2text-generation
false
andreaschandra
null
andreaschandra/pegasus-samsum
2
null
transformers
27,571
--- tags: - generated_from_trainer datasets: - samsum model-index: - name: pegasus-samsum results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # pegasus-samsum This model is a fine-tuned version of [google/pegasus-cnn_dailymail](https://huggingface.co/google/pegasus-cnn_dailymail) on the samsum dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 1 ### Training results ### Framework versions - Transformers 4.19.4 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
Aktsvigun/bart-base_abssum_scisummnet_9467153
07f6572126c0b602ebf7644073868c574fbcf494
2022-07-18T14:09:54.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
Aktsvigun
null
Aktsvigun/bart-base_abssum_scisummnet_9467153
2
null
transformers
27,572
Entry not found
Aktsvigun/bart-base_aeslc_2470973
667c3ba39c0e7dfbee38420d2eaa87d17128819a
2022-07-18T14:14:32.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
Aktsvigun
null
Aktsvigun/bart-base_aeslc_2470973
2
null
transformers
27,573
Entry not found
Aktsvigun/bart-base_abssum_scisummnet_6585777
47051197b79e8eebfea9931d8d7a78c6001ad734
2022-07-18T14:57:12.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
Aktsvigun
null
Aktsvigun/bart-base_abssum_scisummnet_6585777
2
null
transformers
27,574
Entry not found
Aktsvigun/bart-base_abssum_scisummnet_3878022
af7d29e6d83ecb4f6ee2c955f42c4104a3d6b817
2022-07-18T15:43:41.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
Aktsvigun
null
Aktsvigun/bart-base_abssum_scisummnet_3878022
2
null
transformers
27,575
Entry not found
Aktsvigun/bart-base_aeslc_6864530
8376270386114a25b1865229e50d22bd8ecca14b
2022-07-18T15:57:57.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
Aktsvigun
null
Aktsvigun/bart-base_aeslc_6864530
2
null
transformers
27,576
Entry not found
Aktsvigun/bart-base_abssum_scisummnet_5537116
24d440dce083d5153d269c03e6db76734e568329
2022-07-18T16:47:44.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
Aktsvigun
null
Aktsvigun/bart-base_abssum_scisummnet_5537116
2
null
transformers
27,577
Entry not found
Aktsvigun/bart-base_abssum_scisummnet_5893459
8c60d7d8b944a6dedbf3fabd3b267e00566b4804
2022-07-18T17:34:12.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
Aktsvigun
null
Aktsvigun/bart-base_abssum_scisummnet_5893459
2
null
transformers
27,578
Entry not found
Aktsvigun/bart-base_abssum_scisummnet_8653685
2f2fc12eb29f84f1da94c603d0e79eadfa7c1d63
2022-07-18T18:31:30.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
Aktsvigun
null
Aktsvigun/bart-base_abssum_scisummnet_8653685
2
null
transformers
27,579
Entry not found
Aktsvigun/bart-base_abssum_scisummnet_6880281
3c59b906d4be99878459ff497acf7d144a4138eb
2022-07-18T19:26:41.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
Aktsvigun
null
Aktsvigun/bart-base_abssum_scisummnet_6880281
2
null
transformers
27,580
Entry not found
Aktsvigun/bart-base_abssum_scisummnet_9478495
0f4a5f6984d5550e7ba049414bcb653256dc74ce
2022-07-18T20:32:57.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
Aktsvigun
null
Aktsvigun/bart-base_abssum_scisummnet_9478495
2
null
transformers
27,581
Entry not found
Aktsvigun/bart-base_abssum_scisummnet_2930982
8b6ef99abeca4bb6f12c2ad44f27cd859c30a6c5
2022-07-18T21:40:47.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
Aktsvigun
null
Aktsvigun/bart-base_abssum_scisummnet_2930982
2
null
transformers
27,582
Entry not found
Aktsvigun/bart-base_abssum_wikihow_all_919213
bdc92a33564d96e46c5497768bb8107763f3ad17
2022-07-18T22:02:40.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
Aktsvigun
null
Aktsvigun/bart-base_abssum_wikihow_all_919213
2
null
transformers
27,583
Entry not found
Aktsvigun/bart-base_abssum_scisummnet_7629317
055cf58812c4dbf2d24be08c781db9683c952e1b
2022-07-18T22:53:17.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
Aktsvigun
null
Aktsvigun/bart-base_abssum_scisummnet_7629317
2
null
transformers
27,584
Entry not found
Aktsvigun/bart-base_abssum_scisummnet_4065329
07e2ec993aec1e8f5d7e8d3742ea65306e92d948
2022-07-19T00:16:54.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
Aktsvigun
null
Aktsvigun/bart-base_abssum_scisummnet_4065329
2
null
transformers
27,585
Entry not found
Aktsvigun/bart-base_abssum_scisummnet_3449378
747e5da6579ad58820a0b560b75a79610d67a786
2022-07-19T01:22:14.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
Aktsvigun
null
Aktsvigun/bart-base_abssum_scisummnet_3449378
2
null
transformers
27,586
Entry not found
duchung17/wav2vec2-base-cmv
ecb004d909aa2ae10174ee1f3777dad21463f16b
2022-07-19T04:20:43.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "dataset:common_voice_9_0", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
duchung17
null
duchung17/wav2vec2-base-cmv
2
null
transformers
27,587
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice_9_0 model-index: - name: wav2vec2-base-cmv results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-cmv This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the common_voice_9_0 dataset. It achieves the following results on the evaluation set: - Loss: 1.5441 - Wer: 0.6622 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 11.8566 | 4.84 | 300 | 3.6325 | 1.0 | | 3.5331 | 9.68 | 600 | 3.4828 | 1.0 | | 1.9836 | 14.52 | 900 | 1.5971 | 0.7705 | | 0.3777 | 19.35 | 1200 | 1.4990 | 0.6944 | | 0.2192 | 24.19 | 1500 | 1.4303 | 0.6571 | | 0.1552 | 29.03 | 1800 | 1.5441 | 0.6622 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.10.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
Aktsvigun/bart-base_abssum_scisummnet_4521825
15b468c2b3bb3fb2ffd7e8c77011486abe026cb8
2022-07-19T02:29:01.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
Aktsvigun
null
Aktsvigun/bart-base_abssum_scisummnet_4521825
2
null
transformers
27,588
Entry not found
Aktsvigun/bart-base_abssum_scisummnet_9463133
2eb66ac1bbf862124cbdd16bc2da82cc2c0d4fec
2022-07-19T03:20:30.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
Aktsvigun
null
Aktsvigun/bart-base_abssum_scisummnet_9463133
2
null
transformers
27,589
Entry not found
fqw/t5-pegasus-finetuned_test
4d931d974b5bcdd192fc915bcf7fb9af61f77e8d
2022-07-19T06:14:16.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
text2text-generation
false
fqw
null
fqw/t5-pegasus-finetuned_test
2
null
transformers
27,590
--- tags: - generated_from_trainer metrics: - sacrebleu model-index: - name: t5-pegasus-finetuned_test results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-pegasus-finetuned_test This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 6.0045 - Sacrebleu: 0.8737 - Rouge 1: 0.0237 - Rouge 2: 0.0 - Rouge L: 0.0232 - Bleu 1: 0.1444 - Bleu 2: 0.0447 - Bleu 3: 0.0175 - Bleu 4: 0.0083 - Meteor: 0.0609 - Gen Len: 15.098 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 128 - eval_batch_size: 64 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 256 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 100 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Sacrebleu | Rouge 1 | Rouge 2 | Rouge L | Bleu 1 | Bleu 2 | Bleu 3 | Bleu 4 | Meteor | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:---------:|:-------:|:-------:|:-------:|:------:|:------:|:------:|:------:|:------:|:-------:| | No log | 52.5 | 210 | 5.9818 | 0.9114 | 0.0229 | 0.0 | 0.0225 | 0.1424 | 0.0436 | 0.0183 | 0.0091 | 0.06 | 15.126 | | No log | 70.0 | 280 | 6.0072 | 0.876 | 0.0233 | 0.0 | 0.0228 | 0.1437 | 0.0452 | 0.0177 | 0.0083 | 0.0607 | 15.088 | | No log | 87.5 | 350 | 6.0017 | 0.8695 | 0.0229 | 0.0 | 0.0225 | 0.1445 | 0.0443 | 0.0175 | 0.0082 | 0.0609 | 15.12 | ### Framework versions - Transformers 4.21.0.dev0 - Pytorch 1.9.1+cu102 - Datasets 2.3.2 - Tokenizers 0.12.1
Aktsvigun/bart-base_abssum_scisummnet_3198548
c6fcff92a386cc9c9519ca03afdbe022f6b81c3f
2022-07-19T04:22:57.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
Aktsvigun
null
Aktsvigun/bart-base_abssum_scisummnet_3198548
2
null
transformers
27,591
Entry not found
Aktsvigun/bart-base_abssum_scisummnet_4006598
039a896b86602a054066dbabaaa8f19bc4b6253f
2022-07-19T05:03:18.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
Aktsvigun
null
Aktsvigun/bart-base_abssum_scisummnet_4006598
2
null
transformers
27,592
Entry not found
fqw/mt5-small-finetuned-test
6526fca18ceb413c80f5ff27e77e008dc0567701
2022-07-19T09:03:40.000Z
[ "pytorch", "mt5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
fqw
null
fqw/mt5-small-finetuned-test
2
null
transformers
27,593
Entry not found
jordyvl/udpos28-en-CRF-first-POS
a5232068308eb830113515cbc8f7932949668af9
2022-07-19T10:42:26.000Z
[ "pytorch", "tensorboard", "bert", "transformers" ]
null
false
jordyvl
null
jordyvl/udpos28-en-CRF-first-POS
2
null
transformers
27,594
Entry not found
chinmaygharat/testDA
511333024be37ee2c29a51ba25724778fa16b758
2022-07-19T10:37:23.000Z
[ "pytorch", "distilbert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
chinmaygharat
null
chinmaygharat/testDA
2
null
transformers
27,595
Entry not found
zenkingsama/hubert-large-ll60k-librispeech-clean-100h-demo-dist
b310220bccdb85d783fd85caf4cb5d4d5da2e00e
2022-07-19T14:41:15.000Z
[ "pytorch", "tensorboard", "hubert", "automatic-speech-recognition", "transformers", "librispeech_asr", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
zenkingsama
null
zenkingsama/hubert-large-ll60k-librispeech-clean-100h-demo-dist
2
null
transformers
27,596
--- license: apache-2.0 tags: - automatic-speech-recognition - librispeech_asr - generated_from_trainer model-index: - name: hubert-large-ll60k-librispeech-clean-100h-demo-dist results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # hubert-large-ll60k-librispeech-clean-100h-demo-dist This model is a fine-tuned version of [facebook/hubert-base-ls960](https://huggingface.co/facebook/hubert-base-ls960) on the LIBRISPEECH_ASR - CLEAN dataset. It achieves the following results on the evaluation set: - Loss: 2.1361 - Wer: 0.9769 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 1.4699 | 0.15 | 100 | 2.0098 | 1.0 | | 1.1 | 0.3 | 200 | 1.0910 | 0.9769 | | 0.6468 | 0.45 | 300 | 1.5089 | 0.9769 | | 0.6928 | 0.61 | 400 | 1.6171 | 1.0 | | 0.698 | 0.76 | 500 | 1.2406 | 0.9769 | | 1.0461 | 0.91 | 600 | 1.3760 | 1.0 | | 0.6363 | 1.06 | 700 | 2.1654 | 1.0 | | 0.6743 | 1.21 | 800 | 1.7481 | 0.9769 | | 0.565 | 1.36 | 900 | 2.1965 | 1.0 | | 0.5761 | 1.51 | 1000 | 1.8223 | 0.9769 | | 0.6179 | 1.66 | 1100 | 1.9976 | 0.9769 | | 0.5052 | 1.82 | 1200 | 1.5585 | 0.9769 | | 0.5434 | 1.97 | 1300 | 2.0349 | 0.9769 | | 0.4997 | 2.12 | 1400 | 2.4083 | 0.9769 | | 0.489 | 2.27 | 1500 | 2.4164 | 0.9769 | | 0.5104 | 2.42 | 1600 | 2.4970 | 0.9769 | | 0.5324 | 2.57 | 1700 | 2.3352 | 0.9769 | | 0.5207 | 2.72 | 1800 | 2.2009 | 0.9769 | | 0.5224 | 2.87 | 1900 | 2.1035 | 0.9769 | ### Framework versions - Transformers 4.21.0.dev0 - Pytorch 1.12.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
chinmaygharat/test1
5519629f71b389400927c90bbdf0e2418a108a4e
2022-07-19T16:17:17.000Z
[ "pytorch", "distilbert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
chinmaygharat
null
chinmaygharat/test1
2
null
transformers
27,597
Entry not found
himal/swin-tiny-patch4-window7-224-finetuned-eurosat
5f011269b503b92f4a8988afec50181460059b3a
2022-07-19T17:44:49.000Z
[ "pytorch", "tensorboard", "swin", "image-classification", "dataset:imagefolder", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
image-classification
false
himal
null
himal/swin-tiny-patch4-window7-224-finetuned-eurosat
2
null
transformers
27,598
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: swin-tiny-patch4-window7-224-finetuned-eurosat results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder args: default metrics: - name: Accuracy type: accuracy value: 0.9755555555555555 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # swin-tiny-patch4-window7-224-finetuned-eurosat This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.0738 - Accuracy: 0.9756 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.2469 | 1.0 | 190 | 0.1173 | 0.9622 | | 0.1471 | 2.0 | 380 | 0.0806 | 0.9748 | | 0.1588 | 3.0 | 570 | 0.0738 | 0.9756 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
rapid3/gpt2-wikitext2
f8351d205242dd6749a8b851e682c2f9a700d3a3
2022-07-19T19:15:42.000Z
[ "pytorch", "tensorboard", "gpt2", "text-generation", "transformers", "generated_from_trainer", "license:mit", "model-index" ]
text-generation
false
rapid3
null
rapid3/gpt2-wikitext2
2
null
transformers
27,599
--- license: mit tags: - generated_from_trainer model-index: - name: gpt2-wikitext2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt2-wikitext2 This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 6.1100 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 6.5578 | 1.0 | 2249 | 6.4697 | | 6.1907 | 2.0 | 4498 | 6.1998 | | 6.0152 | 3.0 | 6747 | 6.1100 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1