modelId
stringlengths
4
112
sha
stringlengths
40
40
lastModified
stringlengths
24
24
tags
sequence
pipeline_tag
stringclasses
29 values
private
bool
1 class
author
stringlengths
2
38
config
null
id
stringlengths
4
112
downloads
float64
0
36.8M
likes
float64
0
712
library_name
stringclasses
17 values
__index_level_0__
int64
0
38.5k
readme
stringlengths
0
186k
Amloii/gpt2-reviewspanish
81b25b23c54080f38a2cc51b417b9b10332e4440
2022-05-19T08:28:35.000Z
[ "pytorch", "gpt2", "text-generation", "es", "dataset:amazon_reviews_multi", "transformers", "GPT-2", "Spanish", "review", "fake", "license:mit" ]
text-generation
false
Amloii
null
Amloii/gpt2-reviewspanish
2
0
transformers
25,700
--- language: es tags: - GPT-2 - Spanish - review - fake datasets: - amazon_reviews_multi widget: - text: "Me ha gustado su" example_title: "Positive review" - text: "No quiero" example_title: "Negative review" license: mit --- # GPT-2 - reviewspanish ## Model description GPT-2 is a transformers model pretrained on a very large corpus of text data in a self-supervised fashion. This means it was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots of publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, it was trained to guess the next word in sentences. In our case, we created a fined-tunned model of [Spanish GTP-2](https://huggingface.co/DeepESP/gpt2-spanish) combined with the spanish reviews of Amazon from the HG dataset [Amazon-reviews-multi](https://huggingface.co/datasets/amazon_reviews_multi). With this strategy, we obtain a model for text generation able to create realistic product reviews, useful for bot detection in fake reviews. ### How to use You can use this model directly with a pipeline for text generation. Since the generation relies on some randomness, we set a seed for reproducibility: ```python from transformers import pipeline, set_seed generator = pipeline('text-generation', model='Amloii/gpt2-reviewspanish', tokenizer='Amloii/gpt2-reviewspanish') set_seed(42) generator("Me ha gustado su", max_length=30, num_return_sequences=5) [{'generated_text': 'Me ha gustado su tamaño y la flexibilidad de las correas, al ser de plastico las hebillas que lleva para sujetar las cadenas me han quitado el'}, {'generated_text': 'Me ha gustado su color y calidad. Lo peor de todo, es que las gafas no se pegan nada. La parte de fuera es finita'}, {'generated_text': 'Me ha gustado su rapidez y los ajustes de la correa, lo único que para mí, es poco manejable. Además en el bolso tiene una goma'}, {'generated_text': 'Me ha gustado su diseño y las dimensiones, pero el material es demasiado duro. Se nota bastante el uso pero me parece un poco caro para lo que'}, {'generated_text': 'Me ha gustado su aspecto aunque para lo que yo lo quería no me ha impresionado mucho. Las hojas tienen un tacto muy agradable que hace que puedas'}] ```
manueltonneau/bert-twitter-es-is-unemployed
01b3d65fcfff52cabad2230ee973b50c3d546a2d
2022-04-26T16:02:53.000Z
[ "pytorch", "bert", "text-classification", "es", "arxiv:2203.09178", "transformers" ]
text-classification
false
manueltonneau
null
manueltonneau/bert-twitter-es-is-unemployed
2
null
transformers
25,701
--- language: es # <-- my language widget: - text: "No tengo trabajo" --- # Detection of employment status disclosures on Twitter ## Model main characteristics: - class: Is Unemployed (1), else (0) - country: MX - language: Spanish - architecture: BERT base ## Model description This model is a version of `dccuchile/bert-base-spanish-wwm-cased` finetuned to recognize Spanish tweets where a user mentions that she is unemployed. It was trained on Spanish tweets from users based in Mexico. The task is framed as a binary classification problem with: - the positive class referring to tweets mentioning that a user is currently unemployed (label=1) - the negative class referring to all other tweets (label=0) ## Resources The dataset of Spanish tweets on which this classifier was trained is open-sourced [here](https://github.com/manueltonneau/twitter-unemployment). Details on the performance can be found in our [ACL 2022 paper](https://arxiv.org/abs/2203.09178). ## Citation If you find this model useful, please cite our paper (citation to come soon).
0x12/t5small-news_commentary-en-zh
c9936638213fbaed74fe497ca5c860319c0677bb
2022-04-26T19:23:08.000Z
[ "pytorch", "tensorboard", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
0x12
null
0x12/t5small-news_commentary-en-zh
2
null
transformers
25,702
Entry not found
manueltonneau/bert-twitter-es-job-search
c8d078857fa1995dc2ff361aca12815d805ad6e8
2022-04-26T20:12:47.000Z
[ "pytorch", "bert", "text-classification", "es", "arxiv:2203.09178", "transformers" ]
text-classification
false
manueltonneau
null
manueltonneau/bert-twitter-es-job-search
2
null
transformers
25,703
--- language: es # <-- my language widget: - text: "Busco trabajo" --- # Detection of employment status disclosures on Twitter ## Model main characteristics: - class: Job Search (1), else (0) - country: MX - language: Spanish - architecture: BERT base ## Model description This model is a version of `dccuchile/bert-base-spanish-wwm-cased` finetuned to recognize Spanish tweets where a user mentions that she is currently looking for a job. It was trained on Spanish tweets from users based in Mexico. The task is framed as a binary classification problem with: - the positive class referring to tweets mentioning that a user is currently looking for a job (label=1) - the negative class referring to all other tweets (label=0) ## Resources The dataset of Spanish tweets on which this classifier was trained is open-sourced [here](https://github.com/manueltonneau/twitter-unemployment). Details on the performance can be found in our [ACL 2022 paper](https://arxiv.org/abs/2203.09178). ## Citation If you find this model useful, please cite our paper (citation to come soon).
rahulgkatre/DialoGPT-lisa
896d058c3e1c922c53f3a62bd1a9f18013810c31
2022-04-27T04:06:39.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
rahulgkatre
null
rahulgkatre/DialoGPT-lisa
2
null
transformers
25,704
Entry not found
mriggs/gutenberg_wikisource_on_flaubert
534c83552a7c8906aa0edf2e6758d83f7e0e48cd
2022-04-27T05:26:16.000Z
[ "pytorch", "flaubert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
mriggs
null
mriggs/gutenberg_wikisource_on_flaubert
2
null
transformers
25,705
Entry not found
manueltonneau/bert-twitter-pt-lost-job
7d5476a2030c35bddb6e794454deab314ac4b98d
2022-04-27T08:39:01.000Z
[ "pytorch", "bert", "text-classification", "pt", "arxiv:2203.09178", "transformers" ]
text-classification
false
manueltonneau
null
manueltonneau/bert-twitter-pt-lost-job
2
null
transformers
25,706
--- language: pt # <-- my language widget: - text: "hoje perdi o meu trabalho.." --- # Detection of employment status disclosures on Twitter ## Model main characteristics: - class: Lost Job (1), else (0) - country: BR - language: Portuguese - architecture: BERT base ## Model description This model is a version of `neuralmind/bert-base-portuguese-cased` finetuned to recognize Portuguese tweets where a user mentions that she lost her job in the past month. It was trained on Portuguese tweets from users based in Brazil. The task is framed as a binary classification problem with: - the positive class referring to tweets mentioning that a user recently lost her job (label=1) - the negative class referring to all other tweets (label=0) ## Resources The dataset of Portuguese tweets on which this classifier was trained is open-sourced [here](https://github.com/manueltonneau/twitter-unemployment). Details on the performance can be found in our [ACL 2022 paper](https://arxiv.org/abs/2203.09178). ## Citation If you find this model useful, please cite our paper (citation to come soon).
Lilya/distilbert-base-uncased-finetuned-ner-final
969f741721dd83b536eb1dec98ff682618e5d9bf
2022-04-27T08:33:02.000Z
[ "pytorch", "distilbert", "token-classification", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
token-classification
false
Lilya
null
Lilya/distilbert-base-uncased-finetuned-ner-final
2
null
transformers
25,707
--- tags: - generated_from_trainer model-index: - name: distilbert-base-uncased-finetuned-ner-final results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-ner-final This model was trained from scratch on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.1 - Datasets 2.0.0 - Tokenizers 0.10.3
Ghost1/marian-finetuned-kde4-en-to-fr3
b5e0307c095926fe77a00a5a1cc3280777573a60
2022-04-27T11:09:24.000Z
[ "pytorch", "tensorboard", "marian", "text2text-generation", "dataset:kde4", "transformers", "translation", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
translation
false
Ghost1
null
Ghost1/marian-finetuned-kde4-en-to-fr3
2
null
transformers
25,708
--- license: apache-2.0 tags: - translation - generated_from_trainer datasets: - kde4 metrics: - bleu model-index: - name: marian-finetuned-kde4-en-to-fr3 results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: kde4 type: kde4 args: en-fr metrics: - name: Bleu type: bleu value: 45.69063116587886 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # marian-finetuned-kde4-en-to-fr3 This model is a fine-tuned version of [Helsinki-NLP/opus-mt-en-fr](https://huggingface.co/Helsinki-NLP/opus-mt-en-fr) on the kde4 dataset. It achieves the following results on the evaluation set: - Loss: 1.3274 - Bleu: 45.6906 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.1.0 - Tokenizers 0.12.1
kvnaraya/DialoGPT-small-dwight
4bbc830651ce5ff98867b6366e9831490949c0bf
2022-04-27T15:58:59.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
kvnaraya
null
kvnaraya/DialoGPT-small-dwight
2
null
transformers
25,709
Entry not found
Diya-999/Bart12-12V6.0
f1f2923415f951ebd829c05ad5198b11438077a9
2022-04-28T04:09:37.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "license:afl-3.0", "autotrain_compatible" ]
text2text-generation
false
Diya-999
null
Diya-999/Bart12-12V6.0
2
null
transformers
25,710
--- license: afl-3.0 ---
nbroad/jplu-xlm-r-ner-40-lang
7f7f0fe9bc946a9848611aff079f556387687216
2022-06-09T17:51:49.000Z
[ "pytorch", "xlm-roberta", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
nbroad
null
nbroad/jplu-xlm-r-ner-40-lang
2
null
transformers
25,711
pytorch version of [jplu/tf-xlm-r-ner-40-lang](https://huggingface.co/jplu/tf-xlm-r-ner-40-lang)
PSW/random_sim_ins3_seed1
81deacb236b76a98c44aef2d2f327b99e67bc9f2
2022-04-27T15:39:05.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
PSW
null
PSW/random_sim_ins3_seed1
2
null
transformers
25,712
Entry not found
PSW/random_sim_ins3_seed27
af6591926a4dab40bd5625d460684c36df3473f1
2022-04-27T16:36:01.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
PSW
null
PSW/random_sim_ins3_seed27
2
null
transformers
25,713
Entry not found
Bistolero/german_40k_final
532ede45fdb882f7932169586e785e98a1c26706
2022-04-27T17:43:17.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
Bistolero
null
Bistolero/german_40k_final
2
null
transformers
25,714
Entry not found
Bistolero/german_40k
6f312d45c2aff9f5b60947f570eb47126c40fbf7
2022-04-27T18:35:21.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
Bistolero
null
Bistolero/german_40k
2
null
transformers
25,715
Entry not found
PSW/random_sim_swap2_seed1
9d0f9f06965894e4b3fc6d78014a74a627db0449
2022-04-27T18:29:57.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
PSW
null
PSW/random_sim_swap2_seed1
2
null
transformers
25,716
Entry not found
bdickson/bert-base-uncased-finetuned-squad
e16ec28bf4e8550254f85fa1331a65be1f75eb3d
2022-04-28T07:30:32.000Z
[ "pytorch", "tensorboard", "bert", "question-answering", "dataset:squad", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
question-answering
false
bdickson
null
bdickson/bert-base-uncased-finetuned-squad
2
null
transformers
25,717
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: bert-base-uncased-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-finetuned-squad This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the squad dataset. It achieves the following results on the evaluation set: - eval_loss: 1.1240 - eval_runtime: 262.7193 - eval_samples_per_second: 41.048 - eval_steps_per_second: 2.565 - epoch: 3.0 - step: 16599 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.1.0 - Tokenizers 0.12.1
icity/distilbert-base-uncased-finetuned-imdb
b8abca7819ce5c56509d061a2904c9550c156e8e
2022-05-18T15:29:08.000Z
[ "pytorch", "tensorboard", "distilbert", "fill-mask", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
fill-mask
false
icity
null
icity/distilbert-base-uncased-finetuned-imdb
2
null
transformers
25,718
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distilbert-base-uncased-finetuned-imdb results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-imdb This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 4.6022 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 5.414 | 1.0 | 10 | 4.7780 | | 4.8623 | 2.0 | 20 | 4.7064 | | 4.6726 | 3.0 | 30 | 4.5646 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.1 - Tokenizers 0.12.1
Ghost1/mt5-small-finetuned-amazon-en-es
32ec5d3da1d66e25cddee36aa2708b197ed57fcd
2022-04-28T14:49:11.000Z
[ "pytorch", "tensorboard", "mt5", "text2text-generation", "transformers", "summarization", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
summarization
false
Ghost1
null
Ghost1/mt5-small-finetuned-amazon-en-es
2
null
transformers
25,719
--- license: apache-2.0 tags: - summarization - generated_from_trainer metrics: - rouge model-index: - name: mt5-small-finetuned-amazon-en-es results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mt5-small-finetuned-amazon-en-es This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.0282 - Rouge1: 17.629 - Rouge2: 8.5256 - Rougel: 17.1329 - Rougelsum: 17.1403 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5.6e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:| | 6.6665 | 1.0 | 1209 | 3.2917 | 13.9446 | 5.4878 | 13.3696 | 13.3884 | | 3.9091 | 2.0 | 2418 | 3.1575 | 16.5515 | 8.4045 | 15.734 | 15.8858 | | 3.5987 | 3.0 | 3627 | 3.0803 | 18.4586 | 10.0134 | 17.6448 | 17.8592 | | 3.4269 | 4.0 | 4836 | 3.0492 | 17.9493 | 8.9283 | 17.0803 | 17.1683 | | 3.3213 | 5.0 | 6045 | 3.0466 | 18.124 | 8.967 | 17.4472 | 17.4445 | | 3.2368 | 6.0 | 7254 | 3.0405 | 17.5527 | 8.4814 | 16.9722 | 17.0104 | | 3.2039 | 7.0 | 8463 | 3.0335 | 17.5116 | 8.2969 | 17.006 | 17.0084 | | 3.1834 | 8.0 | 9672 | 3.0282 | 17.629 | 8.5256 | 17.1329 | 17.1403 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.1.0 - Tokenizers 0.12.1
it5/it5-efficient-small-el32-repubblica-to-ilgiornale
0ae8af833fa574596bd3fb2667b7e57b39138fea
2022-04-29T14:46:50.000Z
[ "pytorch", "tf", "jax", "tensorboard", "t5", "text2text-generation", "it", "dataset:gsarti/change_it", "arxiv:2203.03759", "arxiv:2109.10686", "transformers", "italian", "sequence-to-sequence", "efficient", "newspaper", "ilgiornale", "repubblica", "style-transfer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
text2text-generation
false
it5
null
it5/it5-efficient-small-el32-repubblica-to-ilgiornale
2
null
transformers
25,720
--- language: - it license: apache-2.0 datasets: - gsarti/change_it tags: - italian - sequence-to-sequence - efficient - newspaper - ilgiornale - repubblica - style-transfer widget: - text: "WASHINGTON - La Corea del Nord torna dopo nove anni nella blacklist Usa degli Stati considerati sponsor del terrorismo. Come Iran, Siria e Sudan. Lo ha deciso Donald Trump , che ha preferito dare l'annuncio non durante il suo recente viaggio in Asia ma ieri, in una riunione del governo alla Casa Bianca. 'Oggi gli Stati Uniti designeranno la Corea del nord come uno stato sponsor del terrorismo', ha tuonato il tycoon, anticipando che sarà formalizzata oggi dal dipartimento di stato e sarà accompagnata da nuove e più severe sanzioni. 'Il livello più alto' mai imposto a Pyongyang, ha promesso. 'Avrebbe dovuto succedere molto tempo fa', ha aggiunto, scaricando per l'ennesima volta la responsabilità dell'attuale crisi sull'amministrazione Obama. Poi si è scagliato contro un 'regime assassino' che 'deve mettere fine allo sviluppo del suo programma illegale nucleare e balistico'. Per giustificare la svolta, Trump ha accusato Pyongyang non solo di 'minacciare il mondo con una devastazione nucleare' ma anche di aver 'ripetutamente sostenuto atti di terrorismo internazionale', compreso omicidi in suolo straniero. Il riferimento è all' uccisione all'aeroporto della capitale malese di Kim Jong Nam , il fratellastro del leader nordcoreano Kim Jong Un , ma non ci sono altri episodi noti. Tanto che alcuni esperti, come pure dirigenti Usa coperti dall'anonimato, dubitano che Pyongyang risponda ai criteri per una tale designazione. La mossa appare altamente simbolica, dato che la Corea del Nord è già pesantemente sanzionata a livello internazionale. Per il segretario di stato Rex Tillerson è solo l'ultima di una serie di passi per rafforzare la pressione su Pyongyang e costringerla a sedersi ad un tavolo perché gli Usa hanno sempre 'speranza nella diplomazia'. Ma nello stesso tempo è un monito per 'fermare e dissuadere' altri Paesi dal sostenere la Corea del Nord, finita nella blacklist 'anche per l'uso di armi chimiche'. Ma la mossa potrebbe anche essere controproducente, provocando una risposta di Kim o minando gli sforzi per sollecitare Pechino ad una maggiore pressione su Pyongyang. In ogni caso non aiuta il dialogo diretto tra Usa e Corea del Nord, che sembrava essere stato avviato in modo riservato. Come non aiutano gli scambi di insulti fra Trump e Kim. Nord Corea, Trump: 'Cerco di essere amico di Kim, sarebbe una bella cosa per il mondo'. Pyongyang era stata messa nella lista Usa degli Stati sponsor del terrorismo per aver fatto esplodere nel 1987 un volo della Korean Air uccidendo tutti i 115 passeggeri a bordo. Ma l'amministrazione di George W. Bush l'aveva rimossa sperando di far avanzare i negoziati sulla denuclearizzazione della penisola coreana. Il governo giapponese sostiene la decisione degli Stati Uniti di inserire la Corea del Nord nella lista degli stati che sponsorizzano il terrorismo, pur riconoscendo che l'annuncio potrebbe provocare una reazione immediata del regime di Pyongyang. Il premier Shinzo Abe ha accolto con consenso il comunicato Usa e ha detto alla stampa che servirà a incrementare la pressione sulla Corea del Nord. Il ministro della Difesa Itsunori Onodera , pur valutando positivamente la notifica, ha spiegato che si attendono azioni provocatorie dallo stato eremita, ribadendo che è vitale rimanere vigili. Secondo la stampa nipponica Abe aveva richiesto al dipartimento di Stato Usa di mettere la Corea del Nord sulla lista durante l'incontro col presidente Usa Donald Trump a Tokyo a inizio mese. L'ultimo lancio di missile balistico condotto da Pyongyang nell'oceano Pacifico, sorvolando il mare del Giappone, risale allo scorso settembre." - text: "ROMA - Una nuova droga killer è stata sequestrata per la prima volta in Europa dagli investigatori del Nas. Si tratta di una nuova \"miscela psicoattiva altamente tossica\" per la prima volta individuata da forze di polizia, simile all'eroina sintetica, ma molto più economica e letale. Tanto che i 20 grammi scoperti sarebbero stati sufficienti per fabbricare ben 20.000 dosi e lo stesso contatto attraverso la pelle può provocare intossicazione. Individuata per la prima volta, la nuova droga presenta una struttura simile al farmaco sedativo Fentanyl ma con effetti molto più devastanti per l'organismo. Proveniva dell'estero ed era contenuta in un plico postale indirizzato in una città del centro Italia: è stata intercettata tramite accertamenti sul web grazie a un'operazione di intelligence che ha visto come protagonisti i militari della Sezione operativa centrale del Comando carabinieri per la Tutela della salute (Nas). Economica e letale, secondo gli investigatori \"in confronto l'eroina è quasi 'acqua fresca', anzi, proprio per la sua economicità, in alcuni casi viene venduta dai pusher a giovani conviti di comprare eroina\". La diffusione di nuove droghe sintetiche che continuamente appaiono sui mercati necessita di un'attività investigativa costante e complessa. Si tratta infatti di sostanze dalla struttura molecolare molto simile a quella del Fentanyl ma ogni volta leggermente diversa. Di qui la difficoltà di individuarle e l'importanza del nuovo sequestro. \"La chiamano impropriamente 'eroina sintetica' - spiega il comandante dei Nas, generale Adelmo Lusi - per il tipo di effetto psicotropo simile, ma dal punto di vista della tossicità è molto peggio: con 25 milligrammi di eroina ci si sballa, con 25mg di simil-fentanyl, come quello appena sequestrato, si muore\". Le indagini sono partite da ricoveri per overdose in ospedale, in cui arrivavano ragazzi che non rispondevano al trattamento disintossicante per l'eroina. La nuova sostanza verrà ora segnalata per l'inserimento tra le tabelle ministeriali degli stupefacenti prevista dal Dpr 309/1990." - text: "Fragile come il burro. Il nostro territorio è precario. Ne sanno qualcosa i comuni che sono stati investititi dal maltempo . Il dissesto idrogeologico imperversa su tutto il territorio. Infatti, oltre 6.600 comuni , pari all’82% del totale, sono in aree ad elevato rischio idrogeologico, pari al 10% della sua superficie. La popolazione potenzialmente esposta è stimata in 5,8 milioni di persone. I dati emergono dalle recenti analisi fatte da Legambiente e Protezione civile, che mettono in evidenza come in 10 anni in Italia sia raddoppiata l’area dei territori colpiti da alluvioni e frane , passando da una media di quattro regioni all’anno a otto regioni. Nella classifica delle regioni a maggior rischio idrogeologico prima è la Calabria con il 100% dei comuni esposti; al 100% ci sono anche la provincia di Trento, il Molise, la Basilicata, l’Umbria, la Valle d’Aosta. Poi Marche, Liguria al 99%; Lazio, Toscana al 98%; Abruzzo (96%), Emilia-Romagna (95%), Campania e Friuli Venezia Giulia al 92%, Piemonte (87%), Sardegna (81%), Puglia (78%), Sicilia (71%), Lombardia (60%), provincia di Bolzano (59%), Veneto (56%). Tra le cause che condizionano ed amplificano il rischio idrogeologico c’è l’azione dell’uomo (abbandono e degrado, cementificazione, consumo di suolo, abusivismo, disboscamento e incendi). Ma anche e soprattutto la mancanza di una seria manutenzione ordinaria e non ad una organica politica di prevenzione." - text: "Arriva dal Partito nazionalista basco (Pnv) la conferma che i cinque deputati che siedono in parlamento voteranno la sfiducia al governo guidato da Mariano Rajoy. Pochi voti, ma significativi quelli della formazione politica di Aitor Esteban, che interverrà nel pomeriggio. Pur con dimensioni molto ridotte, il partito basco si è trovato a fare da ago della bilancia in aula. E il sostegno alla mozione presentata dai Socialisti potrebbe significare per il primo ministro non trovare quei 176 voti che gli servono per continuare a governare. \" Perché dovrei dimettermi io che per il momento ho la fiducia della Camera e quella che mi è stato data alle urne \", ha detto oggi Rajoy nel suo intervento in aula, mentre procedeva la discussione sulla mozione di sfiducia. Il voto dei baschi ora cambia le carte in tavola e fa crescere ulteriormente la pressione sul premier perché rassegni le sue dimissioni. La sfiducia al premier, o un'eventuale scelta di dimettersi, porterebbe alle estreme conseguenze lo scandalo per corruzione che ha investito il Partito popolare. Ma per ora sembra pensare a tutt'altro. \"Non ha intenzione di dimettersi - ha detto il segretario generale del Partito popolare , María Dolores de Cospedal - Non gioverebbe all'interesse generale o agli interessi del Pp\"." metrics: - rouge - bertscore - headline-headline-consistency-classifier - headline-article-consistency-classifier model-index: - name: it5-efficient-small-el32-repubblica-to-ilgiornale results: - task: type: headline-style-transfer-repubblica-to-ilgiornale name: "Headline style transfer (Repubblica to Il Giornale)" dataset: type: gsarti/change_it name: "CHANGE-IT" metrics: - type: rouge1 value: 0.269 name: "Test Rouge1" - type: rouge2 value: 0.087 name: "Test Rouge2" - type: rougeL value: 0.235 name: "Test RougeL" - type: bertscore value: 0.395 name: "Test BERTScore" args: - model_type: "dbmdz/bert-base-italian-xxl-uncased" - lang: "it" - num_layers: 10 - rescale_with_baseline: True - baseline_path: "bertscore_baseline_ita.tsv" - type: headline-headline-consistency-classifier value: 0.808 name: "Test Headline-Headline Consistency Accuracy" - type: headline-article-consistency-classifier value: 0.810 name: "Test Headline-Article Consistency Accuracy" thumbnail: https://gsarti.com/publication/it5/featured.png --- # IT5 Cased Small Efficient EL32 for News Headline Style Transfer (Repubblica to Il Giornale) 🗞️➡️🗞️ 🇮🇹 *Shout-out to [Stefan Schweter](https://github.com/stefan-it) for contributing the pre-trained efficient model!* This repository contains the checkpoint for the [IT5 Cased Small Efficient EL32](https://huggingface.co/it5/it5-efficient-small-el32) model fine-tuned on news headline style transfer in the Repubblica to Il Giornale direction on the Italian CHANGE-IT dataset as part of the experiments of the paper [IT5: Large-scale Text-to-text Pretraining for Italian Language Understanding and Generation](https://arxiv.org/abs/2203.03759) by [Gabriele Sarti](https://gsarti.com) and [Malvina Nissim](https://malvinanissim.github.io). Efficient IT5 models differ from the standard ones by adopting a different vocabulary that enables cased text generation and an [optimized model architecture](https://arxiv.org/abs/2109.10686) to improve performances while reducing parameter count. The Small-EL32 replaces the original encoder from the T5 Small architecture with a 32-layer deep encoder, showing improved performances over the base model. A comprehensive overview of other released materials is provided in the [gsarti/it5](https://github.com/gsarti/it5) repository. Refer to the paper for additional details concerning the reported scores and the evaluation approach. ## Using the model The model is trained to generate a headline in the style of Il Giornale from the full body of an article written in the style of Repubblica. Model checkpoints are available for usage in Tensorflow, Pytorch and JAX. They can be used directly with pipelines as: ```python from transformers import pipelines r2g = pipeline("text2text-generation", model='it5/it5-efficient-small-el32-repubblica-to-ilgiornale') r2g("Arriva dal Partito nazionalista basco (Pnv) la conferma che i cinque deputati che siedono in parlamento voteranno la sfiducia al governo guidato da Mariano Rajoy. Pochi voti, ma significativi quelli della formazione politica di Aitor Esteban, che interverrà nel pomeriggio. Pur con dimensioni molto ridotte, il partito basco si è trovato a fare da ago della bilancia in aula. E il sostegno alla mozione presentata dai Socialisti potrebbe significare per il primo ministro non trovare quei 176 voti che gli servono per continuare a governare. \" Perché dovrei dimettermi io che per il momento ho la fiducia della Camera e quella che mi è stato data alle urne \", ha detto oggi Rajoy nel suo intervento in aula, mentre procedeva la discussione sulla mozione di sfiducia. Il voto dei baschi ora cambia le carte in tavola e fa crescere ulteriormente la pressione sul premier perché rassegni le sue dimissioni. La sfiducia al premier, o un'eventuale scelta di dimettersi, porterebbe alle estreme conseguenze lo scandalo per corruzione che ha investito il Partito popolare. Ma per ora sembra pensare a tutt'altro. \"Non ha intenzione di dimettersi - ha detto il segretario generale del Partito popolare , María Dolores de Cospedal - Non gioverebbe all'interesse generale o agli interessi del Pp\".") >>> [{"generated_text": "il nazionalista rajoy: 'voteremo la sfiducia'"}] ``` or loaded using autoclasses: ```python from transformers import AutoTokenizer, AutoModelForSeq2SeqLM tokenizer = AutoTokenizer.from_pretrained("it5/it5-efficient-small-el32-repubblica-to-ilgiornale") model = AutoModelForSeq2SeqLM.from_pretrained("it5/it5-efficient-small-el32-repubblica-to-ilgiornale") ``` If you use this model in your research, please cite our work as: ```bibtex @article{sarti-nissim-2022-it5, title={{IT5}: Large-scale Text-to-text Pretraining for Italian Language Understanding and Generation}, author={Sarti, Gabriele and Nissim, Malvina}, journal={ArXiv preprint 2203.03759}, url={https://arxiv.org/abs/2203.03759}, year={2022}, month={mar} } ``` ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10.0 ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
princeton-nlp/efficient_mlm_m0.20
05388b19cae3a6bad03ce7c81ff5a89bc27d5205
2022-04-28T18:57:30.000Z
[ "pytorch", "roberta", "fill-mask", "arxiv:2202.08005", "transformers", "autotrain_compatible" ]
fill-mask
false
princeton-nlp
null
princeton-nlp/efficient_mlm_m0.20
2
null
transformers
25,721
--- inference: false --- This is a model checkpoint for ["Should You Mask 15% in Masked Language Modeling"](https://arxiv.org/abs/2202.08005) [(code)](https://github.com/princeton-nlp/DinkyTrain.git). We use pre layer norm, which is not supported by HuggingFace. To use our model, go to our [github repo](https://github.com/princeton-nlp/DinkyTrain.git), download our code, and import the RoBERTa class from `huggingface/modeling_roberta_prelayernorm.py`. For example, ``` bash from huggingface.modeling_roberta_prelayernorm import RobertaForMaskedLM, RobertaForSequenceClassification ```
princeton-nlp/efficient_mlm_m0.70
b906e1b03a7f8b92f0c2e84be2970ccf94ffeb49
2022-04-28T18:57:57.000Z
[ "pytorch", "roberta", "fill-mask", "arxiv:2202.08005", "transformers", "autotrain_compatible" ]
fill-mask
false
princeton-nlp
null
princeton-nlp/efficient_mlm_m0.70
2
null
transformers
25,722
--- inference: false --- This is a model checkpoint for ["Should You Mask 15% in Masked Language Modeling"](https://arxiv.org/abs/2202.08005) [(code)](https://github.com/princeton-nlp/DinkyTrain.git). We use pre layer norm, which is not supported by HuggingFace. To use our model, go to our [github repo](https://github.com/princeton-nlp/DinkyTrain.git), download our code, and import the RoBERTa class from `huggingface/modeling_roberta_prelayernorm.py`. For example, ``` bash from huggingface.modeling_roberta_prelayernorm import RobertaForMaskedLM, RobertaForSequenceClassification ```
123tarunanand/roberta-base-finetuned
c9747f1ecf8d9dd0520d31636974644a3cf082c5
2022-04-28T15:32:00.000Z
[ "pytorch", "tensorboard", "roberta", "question-answering", "dataset:squad_v2", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
question-answering
false
123tarunanand
null
123tarunanand/roberta-base-finetuned
2
null
transformers
25,723
--- license: mit tags: - generated_from_trainer datasets: - squad_v2 model-index: - name: roberta-base-finetuned-squad2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-finetuned-squad2 This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the squad_v2 dataset. It achieves the following results on the evaluation set: - Loss: 0.9325 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 0.88 | 1.0 | 8160 | 0.8129 | | 0.6643 | 2.0 | 16320 | 0.8567 | | 0.5096 | 3.0 | 24480 | 0.9325 | ### Framework versions - Transformers 4.12.2 - Pytorch 1.9.0+cu111 - Datasets 1.14.0 - Tokenizers 0.10.3
chv5/t5-small-shuffled_take3-small
1bc5094258f5225846bbaf9e8ee288fb491db76c
2022-04-29T03:26:41.000Z
[ "pytorch", "tensorboard", "t5", "text2text-generation", "dataset:xsum", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
text2text-generation
false
chv5
null
chv5/t5-small-shuffled_take3-small
2
null
transformers
25,724
--- license: apache-2.0 tags: - generated_from_trainer datasets: - xsum metrics: - rouge model-index: - name: t5-small-shuffled_take3-small results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: xsum type: xsum args: default metrics: - name: Rouge1 type: rouge value: 11.883 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-shuffled_take3-small This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the xsum dataset. It achieves the following results on the evaluation set: - Loss: 0.4505 - Rouge1: 11.883 - Rouge2: 9.4784 - Rougel: 10.9978 - Rougelsum: 11.5961 - Gen Len: 18.9834 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 6 - eval_batch_size: 6 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|:-------:|:---------:|:-------:| | 0.5205 | 1.0 | 34008 | 0.4505 | 11.883 | 9.4784 | 10.9978 | 11.5961 | 18.9834 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.1.0 - Tokenizers 0.12.1
bkh6722/wav2vec2-vorarlbergerisch
8fba45435ffdb31a62ab80379f186037d4756959
2022-04-29T02:50:23.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
bkh6722
null
bkh6722/wav2vec2-vorarlbergerisch
2
null
transformers
25,725
--- license: apache-2.0 tags: - generated_from_trainer model-index: name: wav2vec2-vorarlbergerisch --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-vorarlbergerisch This model is a fine-tuned version of [facebook/wav2vec2-base-960h](https://huggingface.co/facebook/wav2vec2-base-960h) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.9241 - Wer: 0.4358 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 62 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 12.6837 | 3.83 | 100 | 3.7188 | 1.0 | | 3.33 | 7.68 | 200 | 3.0620 | 1.0 | | 2.9508 | 11.53 | 300 | 2.5915 | 1.0101 | | 1.8954 | 15.38 | 400 | 1.6930 | 0.8243 | | 1.231 | 19.23 | 500 | 1.7179 | 0.7551 | | 0.9862 | 23.08 | 600 | 1.5237 | 0.6529 | | 0.7353 | 26.91 | 700 | 1.5119 | 0.5921 | | 0.5368 | 30.75 | 800 | 1.5011 | 0.5574 | | 0.4448 | 34.6 | 900 | 1.5334 | 0.5363 | | 0.3278 | 38.45 | 1000 | 1.7125 | 0.5144 | | 0.2575 | 42.3 | 1100 | 1.6529 | 0.4958 | | 0.1966 | 46.15 | 1200 | 1.7670 | 0.4848 | | 0.1552 | 49.98 | 1300 | 1.7586 | 0.4620 | | 0.1118 | 53.83 | 1400 | 1.7912 | 0.4417 | | 0.0847 | 57.68 | 1500 | 1.8709 | 0.4443 | | 0.0654 | 61.53 | 1600 | 1.9241 | 0.4358 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu113 - Datasets 1.18.3 - Tokenizers 0.10.3
megrisdal/distilbert-rater
61f67b85438fc7bdeaa399551f6ab6d61369adff
2022-05-24T17:33:47.000Z
[ "pytorch", "distilbert", "text-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
megrisdal
null
megrisdal/distilbert-rater
2
null
transformers
25,726
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distilbert-rater results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-rater This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results ### Framework versions - Transformers 4.16.2 - Pytorch 1.9.1 - Datasets 1.18.4 - Tokenizers 0.11.6
AntoDono/DialoGPT-Bopy-Normal
b7c4205d520b7e78349ddb22b06efc6ff9fa9654
2022-04-29T02:34:07.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
AntoDono
null
AntoDono/DialoGPT-Bopy-Normal
2
null
transformers
25,727
Entry not found
mpangrazzi/wonderflow_newsletter
9ce815fee371a48a859db3f44fc65d09b241be03
2022-05-02T12:36:13.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "license:mit" ]
text-generation
false
mpangrazzi
null
mpangrazzi/wonderflow_newsletter
2
1
transformers
25,728
--- license: mit --- A fancy weekly newsletter generator for Wonderflow Development team. NOTE: Use with caution. To use this model, first load it: ```python from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("mpangrazzi/wonderflow_newsletter") model = AutoModelForCausalLM.from_pretrained("mpangrazzi/wonderflow_newsletter") ``` Then, use a `pipeline` to get predictions: ```python from transformers import pipeline text_generator = pipeline('text-generation', model=model, tokenizer=tokenizer) inputs = ["This week the development team"] samples = text_generator( inputs, do_sample=True, max_length=150, num_return_sequences=5, num_beans=5, top_p=0.90, temperature=1.3 ) outputs = [entry["generated_text"] for sample in samples for entry in sample] for entry in outputs: print(f"{entry}\n\n") ```
megrisdal/distilbert-base-uncased-finetuned
4f56c2ee308f5e1b9c9439d720c163990059e28c
2022-04-30T03:28:16.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "transformers" ]
text-classification
false
megrisdal
null
megrisdal/distilbert-base-uncased-finetuned
2
null
transformers
25,729
Entry not found
fjavitor/gpt-2-spanish-cantaubot_1.0
f7bd51190572351c807525ed42930f3fbe08e1ca
2022-05-03T16:45:01.000Z
[ "pytorch", "tensorboard", "gpt2", "text-generation", "transformers" ]
text-generation
false
fjavitor
null
fjavitor/gpt-2-spanish-cantaubot_1.0
2
null
transformers
25,730
--- widget: - text: "Dale alegría a tu cuerpo, Macarena" ---
dipteshkanojia/roberta-large-finetuned-ner
30b11631f5602ed1b0339f2067ffdd02bcc7ad3d
2022-04-30T21:40:41.000Z
[ "pytorch", "roberta", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
dipteshkanojia
null
dipteshkanojia/roberta-large-finetuned-ner
2
null
transformers
25,731
Entry not found
Muennighoff/t5-small-finetuned-xsum
fe9a7803b6cbecae89850fa66ca1feae7f356d12
2022-04-30T14:26:40.000Z
[ "pytorch", "t5", "text2text-generation", "dataset:xsum", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
text2text-generation
false
Muennighoff
null
Muennighoff/t5-small-finetuned-xsum
2
null
transformers
25,732
--- license: apache-2.0 tags: - generated_from_trainer datasets: - xsum metrics: - rouge model-index: - name: t5-small-finetuned-xsum results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: xsum type: xsum args: default metrics: - name: Rouge1 type: rouge value: 28.2881 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-xsum This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the xsum dataset. It achieves the following results on the evaluation set: - Loss: 2.4784 - Rouge1: 28.2881 - Rouge2: 7.6834 - Rougel: 22.2163 - Rougelsum: 22.219 - Gen Len: 18.8292 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:------:|:-------:|:---------:|:-------:| | 2.7184 | 1.0 | 12753 | 2.4784 | 28.2881 | 7.6834 | 22.2163 | 22.219 | 18.8292 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.1.0 - Tokenizers 0.12.1
Barkavi/totto-bert-score-pretrained-10K-steps
4f7ba3869c40ca8ad1e331236c3519fa7a953394
2022-04-30T19:25:44.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
Barkavi
null
Barkavi/totto-bert-score-pretrained-10K-steps
2
null
transformers
25,733
Entry not found
sherry7144/wav2vec2-base-timit-demo-colab0
bf7f0b3c8b5b96595ee9f80c2194633147974d22
2022-04-30T20:04:12.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
sherry7144
null
sherry7144/wav2vec2-base-timit-demo-colab0
2
null
transformers
25,734
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base-timit-demo-colab0 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-timit-demo-colab0 This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.0395 - Wer: 0.5635 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.3976 | 13.89 | 500 | 0.8616 | 0.5968 | | 0.2637 | 27.78 | 1000 | 0.9973 | 0.5826 | | 0.1794 | 41.67 | 1500 | 1.0395 | 0.5635 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.11.0+cu113 - Datasets 1.18.3 - Tokenizers 0.10.3
doddle124578/wav2vec2-base-timit-demo-colab-3
b2e778fc0ed9530b85085bcb96ef1b7e3c6c7570
2022-04-30T18:32:37.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
doddle124578
null
doddle124578/wav2vec2-base-timit-demo-colab-3
2
null
transformers
25,735
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base-timit-demo-colab-3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-timit-demo-colab-3 This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6622 - Wer: 0.5082 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 10 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 800 - num_epochs: 35 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 2.2195 | 8.77 | 500 | 0.9187 | 0.6635 | | 0.5996 | 17.54 | 1000 | 0.6569 | 0.5347 | | 0.2855 | 26.32 | 1500 | 0.6622 | 0.5082 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.11.0+cu113 - Datasets 1.18.3 - Tokenizers 0.10.3
ali221000262/wav2vec2-base-timit-ali-hasan-colab
f9186cbfb51fb682cace2a3d8343b57c542b9ea0
2022-04-30T17:36:34.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
ali221000262
null
ali221000262/wav2vec2-base-timit-ali-hasan-colab
2
null
transformers
25,736
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base-timit-ali-hasan-colab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-timit-ali-hasan-colab This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.2471 - Wer: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.01 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 25 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:---:| | 3.5485 | 13.89 | 500 | 3.2471 | 1.0 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.11.0+cu113 - Datasets 1.18.3 - Tokenizers 0.10.3
ali221000262/wav2vec2-base-timit-ali-hasan-colab-EX2
ab532a1336f03268cd2b49c6a3903fcd90c8d18b
2022-04-30T19:02:59.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
ali221000262
null
ali221000262/wav2vec2-base-timit-ali-hasan-colab-EX2
2
null
transformers
25,737
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base-timit-ali-hasan-colab-EX2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-timit-ali-hasan-colab-EX2 This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5087 - Wer: 0.4458 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.1956 | 13.89 | 500 | 0.5087 | 0.4458 | | 0.1946 | 27.78 | 1000 | 0.5087 | 0.4458 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.11.0+cu113 - Datasets 1.18.3 - Tokenizers 0.10.3
ParanoidAndroid/bert-finetuned-squad
819f3fd8f684a4caa67cca888aa28b854a298a73
2022-04-30T18:29:58.000Z
[ "pytorch", "tensorboard", "bert", "question-answering", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
question-answering
false
ParanoidAndroid
null
ParanoidAndroid/bert-finetuned-squad
2
null
transformers
25,738
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: bert-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-squad This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.1.0 - Tokenizers 0.12.1
moaiz237/wav2vec2-base-timit-moaiz_exp2_new
82cf079eeaa30974662b71758d2abbf2da8441b0
2022-04-30T20:03:49.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
moaiz237
null
moaiz237/wav2vec2-base-timit-moaiz_exp2_new
2
null
transformers
25,739
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base-timit-moaiz_exp2_new results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-timit-moaiz_exp2_new This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6849 - Wer: 0.5396 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 4.1266 | 13.89 | 500 | 1.0233 | 0.7034 | | 0.5928 | 27.78 | 1000 | 0.6849 | 0.5396 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.11.0+cu113 - Datasets 1.18.3 - Tokenizers 0.10.3
hassnain/wav2vec2-base-timit-demo-colab1
c894eb2045688390377bf9b2a5e2405be980ca7d
2022-05-01T05:22:37.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
hassnain
null
hassnain/wav2vec2-base-timit-demo-colab1
2
null
transformers
25,740
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base-timit-demo-colab1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-timit-demo-colab1 This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.1904 - Wer: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:---:| | 5.0877 | 1.42 | 500 | 3.2909 | 1.0 | | 3.1333 | 2.85 | 1000 | 3.2624 | 1.0 | | 3.1335 | 4.27 | 1500 | 3.2121 | 1.0 | | 3.1294 | 5.7 | 2000 | 3.2047 | 1.0 | | 3.1307 | 7.12 | 2500 | 3.2020 | 1.0 | | 3.1279 | 8.55 | 3000 | 3.1978 | 1.0 | | 3.1296 | 9.97 | 3500 | 3.2015 | 1.0 | | 3.1273 | 11.4 | 4000 | 3.1983 | 1.0 | | 3.1273 | 12.82 | 4500 | 3.2258 | 1.0 | | 3.1274 | 14.25 | 5000 | 3.2151 | 1.0 | | 3.1256 | 15.67 | 5500 | 3.2105 | 1.0 | | 3.1302 | 17.09 | 6000 | 3.2018 | 1.0 | | 3.1285 | 18.52 | 6500 | 3.2006 | 1.0 | | 3.1251 | 19.94 | 7000 | 3.1858 | 1.0 | | 3.1283 | 21.37 | 7500 | 3.1829 | 1.0 | | 3.1267 | 22.79 | 8000 | 3.1773 | 1.0 | | 3.1283 | 24.22 | 8500 | 3.1857 | 1.0 | | 3.1253 | 25.64 | 9000 | 3.1847 | 1.0 | | 3.1251 | 27.07 | 9500 | 3.1832 | 1.0 | | 3.1245 | 28.49 | 10000 | 3.1869 | 1.0 | | 3.1225 | 29.91 | 10500 | 3.1904 | 1.0 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.11.0+cu113 - Datasets 1.18.3 - Tokenizers 0.10.3
fgaim/tiroberta-geezswitch
b1c45aa97d12aacb1a91acd984ab0cff30d2c9e1
2022-05-13T18:27:38.000Z
[ "pytorch", "roberta", "text-classification", "ti", "transformers", "geezlab", "license:cc-by-4.0", "model-index" ]
text-classification
false
fgaim
null
fgaim/tiroberta-geezswitch
2
null
transformers
25,741
--- language: ti widget: - text: "ድምጻዊ ኣብርሃም ኣፈወርቂ ንዘልኣለም ህያው ኮይኑ ኣብ ልብና ይነብር" - text: "ወአመ ሳብዕት ዕለት ቦዘወፅአ እምውስተ ሕዝብ ከመ ያስተጋብእ ወኢረከበ።" - text: "እሊ እግል ኖሱ አሳስ ተጠውር ወዐቦት ክምሰልቱ ሸክ ኢወትውዴ።" - text: "ኣኩኽር ፡ ልሽክክ ናው ጀረቢነዅስክ ክሙኑኽር ክራውል ሕበርሲድኖ ገረሰነኵ።" - text: "ነገ ለግማሽ ፍፃሜ ያለፉትን አሳውቀንና አስመርጠናችሁ እንሸልማለን።" tags: - geezlab metrics: - accuracy - f1 - precision - recall model-index: - name: geezswitch-tiroberta results: [] license: cc-by-4.0 --- # TiRoBERTa-GeezSwitch This model is a fine-tuned version of [fgaim/tiroberta-base](https://huggingface.co/fgaim/tiroberta-base) on the [GeezSwitch](https://github.com/fgaim/geezswitch-data) dataset. It achieves the following results on the test set: - F1: 0.9948 - Recall: 0.9948 - Precision: 0.9948 - Accuracy: 0.9948 - Loss: 0.0222 ## Training ### Hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 - seed: 42 ### Framework versions - Transformers 4.19.0.dev0 - Pytorch 1.11.0+cu113 - Datasets 2.1.0 - Tokenizers 0.12.1 ### Citation If you use this model or the GeezSwitch model in your research, please cite as follows: ```markdown @inproceedings{fgaim2022geezswitch, title={GeezSwitch: Language Identification in Typologically Related Low-resourced East African Languages}, author={Fitsum Gaim and Wonsuk Yang and Jong C. Park}, booktitle={Proceedings of the 13th Language Resources and Evaluation Conference}, year={2022} } ```
fgaim/tielectra-geezswitch
4f71499b90174207e2845303c1bb77434e8d67ab
2022-05-14T06:20:23.000Z
[ "pytorch", "electra", "text-classification", "ti", "transformers", "geezlab", "license:cc-by-4.0", "model-index" ]
text-classification
false
fgaim
null
fgaim/tielectra-geezswitch
2
null
transformers
25,742
--- language: ti widget: - text: "ድምጻዊ ኣብርሃም ኣፈወርቂ ንዘልኣለም ህያው ኮይኑ ኣብ ልብና ይነብር" - text: "ወአመ ሳብዕት ዕለት ቦዘወፅአ እምውስተ ሕዝብ ከመ ያስተጋብእ ወኢረከበ።" - text: "እሊ እግል ኖሱ አሳስ ተጠውር ወዐቦት ክምሰልቱ ሸክ ኢወትውዴ።" - text: "ኣኩኽር ፡ ልሽክክ ናው ጀረቢነዅስክ ክሙኑኽር ክራውል ሕበርሲድኖ ገረሰነኵ።" - text: "ነገ ለግማሽ ፍፃሜ ያለፉትን አሳውቀንና አስመርጠናችሁ እንሸልማለን።" tags: - geezlab metrics: - accuracy - f1 - precision - recall model-index: - name: geezswitch-tielectra results: [] license: cc-by-4.0 --- # TiELECTRA-GeezSwitch This model is a fine-tuned version of [fgaim/tielectra-small](https://huggingface.co/fgaim/tielectra-small) on the [GeezSwitch](https://github.com/fgaim/geezswitch-data) dataset. It achieves the following results on the test set: - F1: 0.9844 - Recall: 0.9844 - Precision: 0.9845 - Accuracy: 0.9844 - Loss: 0.2190 ## Training ### Hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 - seed: 42 ### Framework versions - Transformers 4.19.0.dev0 - Pytorch 1.11.0+cu113 - Datasets 2.1.0 - Tokenizers 0.12.1 ### Citation If you use this model or the GeezSwitch model in your research, please cite as follows: ```markdown @inproceedings{fgaim2022geezswitch, title={GeezSwitch: Language Identification in Typologically Related Low-resourced East African Languages}, author={Fitsum Gaim and Wonsuk Yang and Jong C. Park}, booktitle={Proceedings of the 13th Language Resources and Evaluation Conference}, year={2022} } ```
mriggs/tgb_99_100
9f30b05aea53701c74195a30d38a6d2d4f634389
2022-05-01T06:41:53.000Z
[ "pytorch", "flaubert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
mriggs
null
mriggs/tgb_99_100
2
null
transformers
25,743
Entry not found
scasutt/wav2vec2-large-xlsr-53_full_final_train_first_half
3dca490618257a1682b23396247acecd18881180
2022-05-01T22:20:27.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
scasutt
null
scasutt/wav2vec2-large-xlsr-53_full_final_train_first_half
2
null
transformers
25,744
Entry not found
Siyam/SKYLy
2da92c3545073da4fcccdd174fa564030dc14860
2022-05-01T16:02:55.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "dataset:common_voice", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
Siyam
null
Siyam/SKYLy
2
null
transformers
25,745
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice model-index: - name: SKYLy results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # SKYLy This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.7645 - Wer: 0.4083 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 4.4215 | 4.26 | 400 | 1.6323 | 0.9857 | | 0.5716 | 8.51 | 800 | 0.6679 | 0.5107 | | 0.1721 | 12.77 | 1200 | 0.6935 | 0.4632 | | 0.1063 | 17.02 | 1600 | 0.7533 | 0.4432 | | 0.0785 | 21.28 | 2000 | 0.7208 | 0.4255 | | 0.0608 | 25.53 | 2400 | 0.7481 | 0.4117 | | 0.0493 | 29.79 | 2800 | 0.7645 | 0.4083 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu113 - Datasets 2.1.0 - Tokenizers 0.10.3
huggingtweets/umakomptonrose
12735cef195dec72ac56168c627ac8fb24024d26
2022-05-01T10:41:45.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/umakomptonrose
2
null
transformers
25,746
--- language: en thumbnail: http://www.huggingtweets.com/umakomptonrose/1651401701205/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1509685524361105414/-iZ0C4dW_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Uma Kompton</div> <div style="text-align: center; font-size: 14px;">@umakomptonrose</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Uma Kompton. | Data | Uma Kompton | | --- | --- | | Tweets downloaded | 184 | | Retweets | 9 | | Short tweets | 22 | | Tweets kept | 153 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3q3vjpe4/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @umakomptonrose's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/37a8dws9) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/37a8dws9/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/umakomptonrose') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/a_ergt-sausifaktai-suuiluap
fac5edf5fb0112a16a8361cee0af5f42ad5940b7
2022-05-01T11:05:56.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/a_ergt-sausifaktai-suuiluap
2
null
transformers
25,747
--- language: en thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1512730099614953472/dyaBioOx_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/703268070962372608/sWc1Y_Ch_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/783999503711997952/BHnn3C1Z_400x400.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Æ𝚐𝚛𝚝 & Sausi Faktai & Pαulius</div> <div style="text-align: center; font-size: 14px;">@a_ergt-sausifaktai-suuiluap</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Æ𝚐𝚛𝚝 & Sausi Faktai & Pαulius. | Data | Æ𝚐𝚛𝚝 | Sausi Faktai | Pαulius | | --- | --- | --- | --- | | Tweets downloaded | 3241 | 3194 | 3192 | | Retweets | 299 | 19 | 811 | | Short tweets | 977 | 16 | 484 | | Tweets kept | 1965 | 3159 | 1897 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3bn9w1ob/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @a_ergt-sausifaktai-suuiluap's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3txmfh51) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3txmfh51/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/a_ergt-sausifaktai-suuiluap') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
hdmt/aligner-en-vi
b042e334f705d89545d6889c7e026813ef09672d
2022-05-01T13:26:54.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
hdmt
null
hdmt/aligner-en-vi
2
null
transformers
25,748
test
hassnain/wav2vec2-base-timit-demo-colab647
e50ea77814c02a55d00910c800d4acbf5afc21cc
2022-05-01T15:54:24.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
hassnain
null
hassnain/wav2vec2-base-timit-demo-colab647
2
null
transformers
25,749
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base-timit-demo-colab647 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-timit-demo-colab647 This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5534 - Wer: 0.4799 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 5.2072 | 7.04 | 500 | 3.7757 | 1.0 | | 1.2053 | 14.08 | 1000 | 0.6128 | 0.5648 | | 0.3922 | 21.13 | 1500 | 0.5547 | 0.5035 | | 0.2157 | 28.17 | 2000 | 0.5534 | 0.4799 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.11.0+cu113 - Datasets 1.18.3 - Tokenizers 0.10.3
h4d35/dummy-model
8479cee3c6a5323ea2327bac0abfcca489ebe9c3
2022-05-01T18:50:16.000Z
[ "pytorch", "camembert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
h4d35
null
h4d35/dummy-model
2
null
transformers
25,750
Entry not found
charityking2358/taglish-electra-1k
7dcc5285c2b996e6b3a2bd34bb038c60641acb9a
2022-05-01T19:10:51.000Z
[ "pytorch", "transformers" ]
null
false
charityking2358
null
charityking2358/taglish-electra-1k
2
null
transformers
25,751
Entry not found
Worldman/pega_70_articles
24cd9b784201ab1594b37e4f18810891e1b16305
2022-06-03T13:13:37.000Z
[ "pytorch", "tensorboard", "pegasus", "text2text-generation", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
text2text-generation
false
Worldman
null
Worldman/pega_70_articles
2
null
transformers
25,752
--- tags: - generated_from_trainer model-index: - name: pega_70_articles results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # pega_70_articles This model is a fine-tuned version of [google/pegasus-cnn_dailymail](https://huggingface.co/google/pegasus-cnn_dailymail) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 1 ### Training results ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
Ghost1/bert-finetuned-squad1
fff760ff15500a85c35c21da6b7a0d56b90be223
2022-05-02T02:28:59.000Z
[ "pytorch", "tensorboard", "bert", "question-answering", "dataset:squad", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
question-answering
false
Ghost1
null
Ghost1/bert-finetuned-squad1
2
0
transformers
25,753
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: bert-finetuned-squad1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-squad1 This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.1.0 - Tokenizers 0.12.1
PSW/mixed_sim3_seed1
7fd87554092e912b0b7fe917716e47e91fb85531
2022-05-02T02:10:51.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
PSW
null
PSW/mixed_sim3_seed1
2
null
transformers
25,754
Entry not found
PSW/mixed_sim3_seed27
bfff88e5634dea3985cfd8629322192908a5496d
2022-05-02T02:54:03.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
PSW
null
PSW/mixed_sim3_seed27
2
null
transformers
25,755
Entry not found
neonkitchen/wav2vec2-tcrs
9a761d49f3c5387affc7dc24911b423ecf9ca7b3
2022-05-04T08:19:18.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
neonkitchen
null
neonkitchen/wav2vec2-tcrs
2
null
transformers
25,756
Entry not found
maesneako/gpt2-fr_orfeo-cid-paco-cheese_e3
d2031570f38265d62a97be397f9963d95170e3eb
2022-05-02T19:59:57.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
maesneako
null
maesneako/gpt2-fr_orfeo-cid-paco-cheese_e3
2
null
transformers
25,757
Entry not found
Willow/DialoGPT-medium-willow
9bdd71f002c9c8ea8d8d38e930a3680ce04653c0
2022-05-02T23:07:07.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
Willow
null
Willow/DialoGPT-medium-willow
2
null
transformers
25,758
--- tags: - conversational --- # Willow DialoGPT Model
veronica320/MPE_bert-l
b647182c59e1d22a35d1cf74fe3859e8f3565abb
2022-05-03T02:15:47.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
veronica320
null
veronica320/MPE_bert-l
2
null
transformers
25,759
Entry not found
veronica320/MPE_roberta-l
b28d8ff3b00f7ded288286482af78866d68a7e7a
2022-05-03T02:23:06.000Z
[ "pytorch", "roberta", "text-classification", "transformers" ]
text-classification
false
veronica320
null
veronica320/MPE_roberta-l
2
null
transformers
25,760
Entry not found
veronica320/ADEPT_bert-l
56fe3e38a632efb0d523c821e2301586f5708904
2022-05-03T02:24:47.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
veronica320
null
veronica320/ADEPT_bert-l
2
null
transformers
25,761
Entry not found
huggingtweets/lonelythey18
4cee3938f4210aeaf49c2a77964afbe1ae1188bb
2022-05-03T05:01:20.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/lonelythey18
2
null
transformers
25,762
--- language: en thumbnail: http://www.huggingtweets.com/lonelythey18/1651554075248/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1488171735174238211/4Y7YAhJG_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Cara</div> <div style="text-align: center; font-size: 14px;">@lonelythey18</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Cara. | Data | Cara | | --- | --- | | Tweets downloaded | 2640 | | Retweets | 301 | | Short tweets | 500 | | Tweets kept | 1839 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3l0t3r5o/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @lonelythey18's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1znlhqjr) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1znlhqjr/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/lonelythey18') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
kravchenko/uk-mt5-base
9331e4e6e170df5e9c09ed2997bdf489e89558f9
2022-06-12T14:57:59.000Z
[ "pytorch", "mt5", "text2text-generation", "uk", "en", "transformers", "t5", "autotrain_compatible" ]
text2text-generation
false
kravchenko
null
kravchenko/uk-mt5-base
2
2
transformers
25,763
--- language: - uk - en tags: - t5 --- The aim is to compress the mT5-base model to leave only the Ukrainian language and some basic English. Reproduced the similar result (but with another language) from [this](https://towardsdatascience.com/how-to-adapt-a-multilingual-t5-model-for-a-single-language-b9f94f3d9c90) medium article. Results: - 582M params -> 244M params (58%) - 250K tokens -> 30K tokens - 2.2GB size model -> 0.95GB size model
wvangils/NL_BERT_michelin_finetuned
0b7db35f51649a3c66b00e76412d3b63cb0616f3
2022-05-06T07:53:47.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers", "generated_from_trainer", "model-index" ]
text-classification
false
wvangils
null
wvangils/NL_BERT_michelin_finetuned
2
1
transformers
25,764
--- tags: - generated_from_trainer metrics: - accuracy - recall - precision - f1 model-index: - name: NL_BERT_michelin_finetuned results: [] widget: - text: "Wat een geweldige ervaring. Wij gebruikte de lunch bij de Librije. 10 gangen met in overleg hierbij gekozen wijnen. Alles klopt. De aandacht, de timing, prachtige gerechtjes. En wat een smaaksensaties! Bediening met humor. Altijd daar wanneer je ze nodig hebt, maar nooit overdreven aanwezig." example_title: "Michelin restaurant" - text: "Mooie locatie, aardige medewerkers. Maaltijdsalade helaas teleurstellend, zeer kleine portie voor 13,80. Jammer." example_title: "Mooie locatie, matig eten" --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # NL_BERT_michelin_finetuned This model is a fine-tuned version of [GroNLP/bert-base-dutch-cased](https://huggingface.co/GroNLP/bert-base-dutch-cased) on a [Dutch restaurant reviews dataset](https://huggingface.co/datasets/cmotions/NL_restaurant_reviews). Provide Dutch review text to the API on the right and receive a score that indicates whether this restaurant is eligible for a Michelin star ;) It achieves the following results on the evaluation set: - Loss: 0.0637 - Accuracy: 0.9836 - Recall: 0.5486 - Precision: 0.7914 - F1: 0.6480 - Mse: 0.0164 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 128 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Recall | Precision | F1 | Mse | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|:---------:|:------:|:------:| | 0.1043 | 1.0 | 3647 | 0.0961 | 0.9792 | 0.3566 | 0.7606 | 0.4856 | 0.0208 | | 0.0799 | 2.0 | 7294 | 0.0797 | 0.9803 | 0.4364 | 0.7415 | 0.5495 | 0.0197 | | 0.0589 | 3.0 | 10941 | 0.0637 | 0.9836 | 0.5486 | 0.7914 | 0.6480 | 0.0164 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.1.0 - Tokenizers 0.12.1
masakhane/m2m100_418M_hau_en_rel_ft
990b4cd481628eefb49a73c481afe6403cec55f3
2022-05-03T13:55:17.000Z
[ "pytorch", "m2m_100", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
masakhane
null
masakhane/m2m100_418M_hau_en_rel_ft
2
null
transformers
25,765
Entry not found
PSW/min_senttrm_del_seed27
f59213da081e02d80f636014213848d27955e365
2022-05-03T14:34:17.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
PSW
null
PSW/min_senttrm_del_seed27
2
null
transformers
25,766
Entry not found
laituan245/molt5-small-smiles2caption
639e8279ee5e47a40ec949675cf996f173175d84
2022-05-03T18:07:08.000Z
[ "pytorch", "t5", "text2text-generation", "arxiv:2204.11817", "transformers", "license:apache-2.0", "autotrain_compatible" ]
text2text-generation
false
laituan245
null
laituan245/molt5-small-smiles2caption
2
null
transformers
25,767
--- license: apache-2.0 --- This model can be used to generate an input caption from a SMILES string. ## Example Usage ```python from transformers import T5Tokenizer, T5ForConditionalGeneration tokenizer = T5Tokenizer.from_pretrained("laituan245/molt5-small-smiles2caption", model_max_length=512) model = T5ForConditionalGeneration.from_pretrained('laituan245/molt5-small-smiles2caption') input_text = 'C1=CC2=C(C(=C1)[O-])NC(=CC2=O)C(=O)O' input_ids = tokenizer(input_text, return_tensors="pt").input_ids outputs = model.generate(input_ids, num_beams=5, max_length=512) print(tokenizer.decode(outputs[0], skip_special_tokens=True)) ``` ## Paper For more information, please take a look at our paper. Paper: [Translation between Molecules and Natural Language](https://arxiv.org/abs/2204.11817) Authors: *Carl Edwards\*, Tuan Lai\*, Kevin Ros, Garrett Honke, Heng Ji*
theojolliffe/bart-large-cnn-finetuned-roundup-8
4f19c59df9a9cd1f3bfc864bc50e9889226a03f3
2022-05-03T18:12:19.000Z
[ "pytorch", "tensorboard", "bart", "text2text-generation", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
text2text-generation
false
theojolliffe
null
theojolliffe/bart-large-cnn-finetuned-roundup-8
2
null
transformers
25,768
--- license: mit tags: - generated_from_trainer metrics: - rouge model-index: - name: bart-large-cnn-finetuned-roundup-8 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-large-cnn-finetuned-roundup-8 This model is a fine-tuned version of [facebook/bart-large-cnn](https://huggingface.co/facebook/bart-large-cnn) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.4519 - Rouge1: 49.5671 - Rouge2: 27.0118 - Rougel: 30.8538 - Rougelsum: 45.5503 - Gen Len: 141.75 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | No log | 1.0 | 132 | 1.3159 | 48.5275 | 28.0817 | 30.6646 | 45.5024 | 142.0 | | No log | 2.0 | 264 | 1.2377 | 47.0791 | 27.4386 | 28.9458 | 44.1536 | 142.0 | | No log | 3.0 | 396 | 1.2474 | 49.3567 | 29.5904 | 30.8029 | 46.6083 | 142.0 | | 0.9623 | 4.0 | 528 | 1.2914 | 47.8795 | 27.0611 | 29.8538 | 44.4494 | 142.0 | | 0.9623 | 5.0 | 660 | 1.2982 | 49.9921 | 28.4839 | 31.5688 | 46.9734 | 142.0 | | 0.9623 | 6.0 | 792 | 1.3521 | 46.7269 | 25.8672 | 29.7325 | 43.8279 | 142.0 | | 0.9623 | 7.0 | 924 | 1.4102 | 47.4995 | 26.0066 | 29.4342 | 44.1102 | 141.8 | | 0.3734 | 8.0 | 1056 | 1.4519 | 49.5671 | 27.0118 | 30.8538 | 45.5503 | 141.75 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.1.0 - Tokenizers 0.12.1
PSW/max_senttrm_del_seed42
49b3e75cbe3a1c043829518f791004579af9adf3
2022-05-03T17:26:01.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
PSW
null
PSW/max_senttrm_del_seed42
2
null
transformers
25,769
Entry not found
lilitket/20220503-174039
a5b766407fdd1722f91435b8e1cf10767bc53298
2022-05-04T14:12:22.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
lilitket
null
lilitket/20220503-174039
2
null
transformers
25,770
Entry not found
stevemobs/bert-finetuned-squad-pytorch
40652388e7a6ec3768e000d8a28fd9070f9f7d4e
2022-05-03T20:17:32.000Z
[ "pytorch", "tensorboard", "bert", "question-answering", "dataset:squad", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
question-answering
false
stevemobs
null
stevemobs/bert-finetuned-squad-pytorch
2
null
transformers
25,771
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: bert-finetuned-squad-pytorch results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-squad-pytorch This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.1.0 - Tokenizers 0.12.1
simonnedved/bert-seg-v1.5
76b3614880659ec0282c5a80589146c92017fdc7
2022-05-03T18:18:05.000Z
[ "pytorch", "bert", "token-classification", "transformers", "license:apache-2.0", "autotrain_compatible" ]
token-classification
false
simonnedved
null
simonnedved/bert-seg-v1.5
2
null
transformers
25,772
--- license: apache-2.0 ---
SebastianS/distilbert-base-uncased-finetuned-imdb
f1348fe9e709c9781fef7f2b8cb88da3d525dee3
2022-05-03T20:42:53.000Z
[ "pytorch", "tensorboard", "distilbert", "fill-mask", "dataset:imdb", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
fill-mask
false
SebastianS
null
SebastianS/distilbert-base-uncased-finetuned-imdb
2
null
transformers
25,773
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb model-index: - name: distilbert-base-uncased-finetuned-imdb results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-imdb This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - eval_loss: 0.0122 - eval_runtime: 27.9861 - eval_samples_per_second: 35.732 - eval_steps_per_second: 0.572 - epoch: 2.13 - step: 334 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.1.0 - Tokenizers 0.12.1
Cuprum/GPT2-Cyp
15a758c50765a191104c627ee438085c9cc01654
2022-05-03T20:03:33.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "license:other" ]
text-generation
false
Cuprum
null
Cuprum/GPT2-Cyp
2
null
transformers
25,774
--- license: other ---
PSW/min_senttrm_ins_seed1
1fcc4ac85bbb7770d28a21a585c5d92c73cc62aa
2022-05-03T20:16:51.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
PSW
null
PSW/min_senttrm_ins_seed1
2
null
transformers
25,775
Entry not found
PSW/max_senttrm_ins_seed27
56931597ba7d44cf4f5ecd40bbeeaa3bff00cb55
2022-05-03T23:08:38.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
PSW
null
PSW/max_senttrm_ins_seed27
2
null
transformers
25,776
Entry not found
ml4pubmed/scibert-scivocab-cased_pub_section
0c6e643c067cda1cfe7d751643fe946c125aae7b
2022-05-04T01:15:49.000Z
[ "pytorch", "bert", "text-classification", "en", "dataset:pubmed", "transformers" ]
text-classification
false
ml4pubmed
null
ml4pubmed/scibert-scivocab-cased_pub_section
2
null
transformers
25,777
--- language: - en datasets: - pubmed metrics: - f1 pipeline_tag: text-classification widget: - text: "Many pathogenic processes and diseases are the result of an erroneous activation of the complement cascade and a number of inhibitors of complement have thus been examined for anti-inflammatory actions." example_title: "BACKGROUND example" - text: "A total of 192 MI patients and 140 control persons were included." example_title: "METHODS example" - text: "MI patients had 18 % higher plasma levels of MAp44 (IQR 11-25 %) as compared to the healthy control group (p < 0. 001.)" example_title: "RESULTS example" - text: "The finding that a brief CB group intervention delivered by real-world providers significantly reduced MDD onset relative to both brochure control and bibliotherapy is very encouraging, although effects on continuous outcome measures were small or nonsignificant and approximately half the magnitude of those found in efficacy research, potentially because the present sample reported lower initial depression." example_title: "CONCLUSIONS example" - text: "In order to understand and update the prevalence of myopia in Taiwan, a nationwide survey was performed in 1995." example_title: "OBJECTIVE example" --- # scibert-scivocab-cased_pub_section - original model file name: textclassifer_scibert_scivocab_cased_pubmed_20k - This is a fine-tuned checkpoint of `allenai/scibert_scivocab_cased` for document section text classification - possible document section classes are:BACKGROUND, CONCLUSIONS, METHODS, OBJECTIVE, RESULTS, ## metadata ### training_metrics - date_run: Apr-26-2022_t-13 - huggingface_tag: allenai/scibert_scivocab_cased - test_set: [{'test_accuracy': 0.8313589096069336, 'test_matthewscorrcoef': 0.7736952900886536, 'test_f1score': 0.8317078948020935, 'test_cross_entropy': 0.5242752432823181}] ### training_parameters - NUM_EPOCHS: 12 - BATCH_SIZE: 32 - MAX_INPUT_LENGTH: 256 - TRAIN_FP16: True - TRAIN_STRATEGY: freeze - LR_SCHEDULE: reducelronplateau - LR_INITIAL: 0.001 - WEIGHT_DECAY: 0.05 - UNFREEZE_EPOCH: 4 - hf_tag: allenai/scibert_scivocab_cased - lowercased_input: False - input_text_colname: description - target_cls_colname: target - num_classes: 5 - model_shortname: scibert_scivocab_cased
PSW/max_senttrm_ins_seed42
2050f24e70b5da35f090e2cc83c7514acd78a2fa
2022-05-03T23:51:51.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
PSW
null
PSW/max_senttrm_ins_seed42
2
null
transformers
25,778
Entry not found
creynier/wav2vec2-base-swbd-turn-eos-long_short_utt_removed_3percent
80745fa9bee438c33240872d2ac9827636ab4cda
2022-05-05T10:55:14.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
creynier
null
creynier/wav2vec2-base-swbd-turn-eos-long_short_utt_removed_3percent
2
null
transformers
25,779
Entry not found
neelan-elucidate-ai/wav2vec2-tcrs
32ea87c391058054224c189288f3986215d8d1b8
2022-05-07T16:50:39.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
neelan-elucidate-ai
null
neelan-elucidate-ai/wav2vec2-tcrs
2
null
transformers
25,780
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-tcrs results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-tcrs This model is a fine-tuned version of [facebook/wav2vec2-large-lv60](https://huggingface.co/facebook/wav2vec2-large-lv60) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.9550 - Wer: 1.0657 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 1 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 100 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 13.6613 | 3.38 | 500 | 3.2415 | 1.0 | | 2.9524 | 6.76 | 1000 | 3.0199 | 1.0 | | 2.9425 | 10.14 | 1500 | 3.0673 | 1.0 | | 2.9387 | 13.51 | 2000 | 3.0151 | 1.0 | | 2.9384 | 16.89 | 2500 | 3.0320 | 1.0 | | 2.929 | 20.27 | 3000 | 2.9691 | 1.0 | | 2.9194 | 23.65 | 3500 | 2.9596 | 1.0 | | 2.9079 | 27.03 | 4000 | 2.9279 | 1.0 | | 2.8957 | 30.41 | 4500 | 2.9647 | 1.0 | | 2.8385 | 33.78 | 5000 | 2.8114 | 1.0193 | | 2.6546 | 37.16 | 5500 | 2.6744 | 1.0983 | | 2.5866 | 40.54 | 6000 | 2.6192 | 1.1071 | | 2.5475 | 43.92 | 6500 | 2.5777 | 1.0950 | | 2.5177 | 47.3 | 7000 | 2.5845 | 1.1220 | | 2.482 | 50.68 | 7500 | 2.5730 | 1.1264 | | 2.4343 | 54.05 | 8000 | 2.5722 | 1.0955 | | 2.3754 | 57.43 | 8500 | 2.5781 | 1.1353 | | 2.3055 | 60.81 | 9000 | 2.6177 | 1.0972 | | 2.2446 | 64.19 | 9500 | 2.6351 | 1.1027 | | 2.1625 | 67.57 | 10000 | 2.6924 | 1.0756 | | 2.1078 | 70.95 | 10500 | 2.6817 | 1.0795 | | 2.0366 | 74.32 | 11000 | 2.7629 | 1.0657 | | 1.9899 | 77.7 | 11500 | 2.7972 | 1.0845 | | 1.9309 | 81.08 | 12000 | 2.8450 | 1.0734 | | 1.8861 | 84.46 | 12500 | 2.8703 | 1.0668 | | 1.8437 | 87.84 | 13000 | 2.9308 | 1.0917 | | 1.8192 | 91.22 | 13500 | 2.9298 | 1.0701 | | 1.7952 | 94.59 | 14000 | 2.9488 | 1.0685 | | 1.7745 | 97.97 | 14500 | 2.9550 | 1.0657 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.9.1 - Datasets 1.18.3 - Tokenizers 0.10.3
PSW/mixed_sim4_seed1
ca4acdd014766c6d37036cf9c623488db0d4489a
2022-05-04T09:15:42.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
PSW
null
PSW/mixed_sim4_seed1
2
null
transformers
25,781
Entry not found
iis2009002/xlm-roberta-base-finetuned-panx-it
7a5eaeceec887686a97400d6cb204095026f9347
2022-05-12T07:07:41.000Z
[ "pytorch", "xlm-roberta", "token-classification", "dataset:xtreme", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
token-classification
false
iis2009002
null
iis2009002/xlm-roberta-base-finetuned-panx-it
2
null
transformers
25,782
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-it results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme args: PAN-X.it metrics: - name: F1 type: f1 value: 0.8247845711940912 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-it This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.2421 - F1: 0.8248 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.809 | 1.0 | 70 | 0.3380 | 0.7183 | | 0.2939 | 2.0 | 140 | 0.2582 | 0.7977 | | 0.1813 | 3.0 | 210 | 0.2421 | 0.8248 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.11.0+cu113 - Datasets 1.16.1 - Tokenizers 0.10.3
ncthuan/xlm-l-uetqa
a5f14f366f98cd9831f461a707090dc9475fbc3f
2022-05-04T14:39:06.000Z
[ "pytorch", "xlm-roberta", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
ncthuan
null
ncthuan/xlm-l-uetqa
2
null
transformers
25,783
Entry not found
anuragshas/wav2vec2-xls-r-300m-ur-cv9-with-lm
0fee38baf834b841d27923ac9c09676652963237
2022-05-10T16:51:19.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "ur", "dataset:mozilla-foundation/common_voice_9_0", "transformers", "mozilla-foundation/common_voice_9_0", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
anuragshas
null
anuragshas/wav2vec2-xls-r-300m-ur-cv9-with-lm
2
1
transformers
25,784
--- language: - ur license: apache-2.0 tags: - automatic-speech-recognition - mozilla-foundation/common_voice_9_0 - generated_from_trainer datasets: - mozilla-foundation/common_voice_9_0 metrics: - wer model-index: - name: XLS-R-300M - Urdu results: - task: type: automatic-speech-recognition name: Speech Recognition dataset: type: mozilla-foundation/common_voice_9_0 name: Common Voice 9 args: ur metrics: - type: wer value: 23.750 name: Test WER - name: Test CER type: cer value: 8.310 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_9_0 - UR dataset. It achieves the following results on the evaluation set: - Loss: 0.4147 - Wer: 0.3172 - Cer: 0.1050 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7.5e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 5108 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:| | 3.2894 | 7.83 | 400 | 3.1501 | 1.0 | 1.0 | | 1.8586 | 15.68 | 800 | 0.8871 | 0.6721 | 0.2402 | | 1.3431 | 23.52 | 1200 | 0.5813 | 0.5502 | 0.1939 | | 1.2052 | 31.37 | 1600 | 0.4956 | 0.4788 | 0.1665 | | 1.1097 | 39.21 | 2000 | 0.4447 | 0.4143 | 0.1397 | | 1.0528 | 47.06 | 2400 | 0.4439 | 0.3961 | 0.1333 | | 0.9939 | 54.89 | 2800 | 0.4348 | 0.4014 | 0.1379 | | 0.9441 | 62.74 | 3200 | 0.4236 | 0.3653 | 0.1223 | | 0.913 | 70.58 | 3600 | 0.4309 | 0.3475 | 0.1157 | | 0.8678 | 78.43 | 4000 | 0.4270 | 0.3337 | 0.1110 | | 0.8414 | 86.27 | 4400 | 0.4158 | 0.3220 | 0.1070 | | 0.817 | 94.12 | 4800 | 0.4185 | 0.3231 | 0.1072 | ### Framework versions - Transformers 4.19.0.dev0 - Pytorch 1.11.0+cu102 - Datasets 2.1.1.dev0 - Tokenizers 0.12.1
Danastos/dpr-ctx_encoder_el_custom
c9b6eff80ee8d4bf3d36df333019b30172390c72
2022-05-04T15:58:48.000Z
[ "pytorch", "dpr", "transformers" ]
null
false
Danastos
null
Danastos/dpr-ctx_encoder_el_custom
2
null
transformers
25,785
Entry not found
laituan245/t5-v1_1-base-smiles2caption
b10fe1ac49becd243c539e43a2aa9e80898e7b70
2022-05-05T00:29:48.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "license:apache-2.0", "autotrain_compatible" ]
text2text-generation
false
laituan245
null
laituan245/t5-v1_1-base-smiles2caption
2
null
transformers
25,786
--- license: apache-2.0 ---
laituan245/t5-v1_1-small-caption2smiles-ft-from-pretrained-zinc
d01ebb0c4b3d3a3d96e88ba2ed1c9b5f07314440
2022-05-05T02:32:58.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
laituan245
null
laituan245/t5-v1_1-small-caption2smiles-ft-from-pretrained-zinc
2
null
transformers
25,787
Entry not found
PSW/low_resource_percent1_maxsimins_seed42
4edf9c417c25a6f07d9d4b6d7ad51a28854b62ab
2022-05-05T06:40:52.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
PSW
null
PSW/low_resource_percent1_maxsimins_seed42
2
null
transformers
25,788
Entry not found
PSW/low_resource_percent1_minmaxswap_seed1
788c6236d0e310e5c38bc61b82a1ba03cfd10f1f
2022-05-05T06:51:45.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
PSW
null
PSW/low_resource_percent1_minmaxswap_seed1
2
null
transformers
25,789
Entry not found
PSW/low_resource_percent1_minmaxswap_seed42
dcc758091d1c8ce08717832cc4686e2eba5b9893
2022-05-05T07:13:47.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
PSW
null
PSW/low_resource_percent1_minmaxswap_seed42
2
null
transformers
25,790
Entry not found
chrisvinsen/xlsr-wav2vec2-base-commonvoice-demo-colab-6
4dfcce54f2aeca13efd68e7c4ea00ecd8505ff4c
2022-05-05T07:51:44.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
chrisvinsen
null
chrisvinsen/xlsr-wav2vec2-base-commonvoice-demo-colab-6
2
null
transformers
25,791
Entry not found
mtluczek80/VATestNew
7d8dba9e5316cb55c361b8e353fd6446249a9f2e
2022-05-05T07:53:03.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "license:other", "autotrain_compatible" ]
fill-mask
false
mtluczek80
null
mtluczek80/VATestNew
2
null
transformers
25,792
--- license: other ---
PSW/low_resource_percent1_minsimdel_seed42
14bffff62cc888925880fcea4e95a9de413a3505
2022-05-05T07:46:37.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
PSW
null
PSW/low_resource_percent1_minsimdel_seed42
2
null
transformers
25,793
Entry not found
catofnull/my-awesome-model
62bc2ded9663faa51c2b56db6da1019be3165181
2022-05-05T07:41:59.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
catofnull
null
catofnull/my-awesome-model
2
null
transformers
25,794
Entry not found
PSW/low_resource_percent1_randomdel_seed42
6da7bb1aa4b5844d47294524e975bd6b9c970829
2022-05-05T08:18:55.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
PSW
null
PSW/low_resource_percent1_randomdel_seed42
2
null
transformers
25,795
Entry not found
Khalsuu/english-filipino-wav2vec2-l-xls-r-test-03
578602470920d8cc1a7128d23034fc113c20b906
2022-05-05T15:44:36.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "dataset:filipino_voice", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
Khalsuu
null
Khalsuu/english-filipino-wav2vec2-l-xls-r-test-03
2
null
transformers
25,796
--- license: apache-2.0 tags: - generated_from_trainer datasets: - filipino_voice model-index: - name: english-filipino-wav2vec2-l-xls-r-test-03 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # english-filipino-wav2vec2-l-xls-r-test-03 This model is a fine-tuned version of [jonatasgrosman/wav2vec2-large-xlsr-53-english](https://huggingface.co/jonatasgrosman/wav2vec2-large-xlsr-53-english) on the filipino_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.6932 - Wer: 0.3676 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 40 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 2.3398 | 2.09 | 400 | 0.5733 | 0.6166 | | 0.5087 | 4.19 | 800 | 0.5210 | 0.4775 | | 0.344 | 6.28 | 1200 | 0.5284 | 0.5008 | | 0.2745 | 8.38 | 1600 | 0.5195 | 0.4457 | | 0.2153 | 10.47 | 2000 | 0.5820 | 0.4668 | | 0.1797 | 12.57 | 2400 | 0.4915 | 0.4432 | | 0.1513 | 14.66 | 2800 | 0.6316 | 0.4513 | | 0.1355 | 16.75 | 3200 | 0.5328 | 0.4070 | | 0.1204 | 18.85 | 3600 | 0.5800 | 0.4405 | | 0.1062 | 20.94 | 4000 | 0.6887 | 0.4532 | | 0.0931 | 23.04 | 4400 | 0.6184 | 0.4152 | | 0.0821 | 25.13 | 4800 | 0.7413 | 0.4461 | | 0.0733 | 27.23 | 5200 | 0.7160 | 0.4549 | | 0.071 | 29.32 | 5600 | 0.7001 | 0.4048 | | 0.0577 | 31.41 | 6000 | 0.7839 | 0.4309 | | 0.051 | 33.51 | 6400 | 0.7764 | 0.4128 | | 0.046 | 35.6 | 6800 | 0.6753 | 0.3875 | | 0.0384 | 37.7 | 7200 | 0.7106 | 0.3856 | | 0.0359 | 39.79 | 7600 | 0.6932 | 0.3676 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu113 - Datasets 1.18.3 - Tokenizers 0.10.3
PSW/low_resource_percent1_randomins_seed42
d2015cad3ff0c4864f8f0177ec37415b792ae96e
2022-05-05T08:51:06.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
PSW
null
PSW/low_resource_percent1_randomins_seed42
2
null
transformers
25,797
Entry not found
PSW/low_resource_percent1_randomswap_seed27
c5b03201591aae7aa3ea14cef91ae049a087565c
2022-05-05T09:12:47.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
PSW
null
PSW/low_resource_percent1_randomswap_seed27
2
null
transformers
25,798
Entry not found
CarlCochet/trajectory-transformer-halfcheetah-expert-v2
89941d7f01a17c51d8bdeb8a25b21bf7f6439cae
2022-05-12T17:00:41.000Z
[ "pytorch", "trajectory_transformer", "feature-extraction", "transformers", "license:mit" ]
feature-extraction
false
CarlCochet
null
CarlCochet/trajectory-transformer-halfcheetah-expert-v2
2
null
transformers
25,799
--- license: mit ---