modelId
stringlengths
4
112
sha
stringlengths
40
40
lastModified
stringlengths
24
24
tags
sequence
pipeline_tag
stringclasses
29 values
private
bool
1 class
author
stringlengths
2
38
config
null
id
stringlengths
4
112
downloads
float64
0
36.8M
likes
float64
0
712
library_name
stringclasses
17 values
__index_level_0__
int64
0
38.5k
readme
stringlengths
0
186k
ceggian/sbert_standard_reddit_mnr
5338ec9d1db3116f9cf90e6618de79c683af86a7
2022-05-11T06:47:13.000Z
[ "pytorch", "bert", "feature-extraction", "sentence-transformers", "sentence-similarity", "transformers" ]
sentence-similarity
false
ceggian
null
ceggian/sbert_standard_reddit_mnr
2
null
sentence-transformers
25,900
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `sentence_transformers.datasets.NoDuplicatesDataLoader.NoDuplicatesDataLoader` of length 39289 with parameters: ``` {'batch_size': 8} ``` **Loss**: `sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters: ``` {'scale': 20.0, 'similarity_fct': 'cos_sim'} ``` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 0, "evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 3928, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
Diegomejia/bert-ucb-v1
7b098c72af132e0a7eb51b893f1d5383246817f8
2022-05-11T06:56:50.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
Diegomejia
null
Diegomejia/bert-ucb-v1
2
null
transformers
25,901
Entry not found
ceggian/bert_post_trained_reddit_batch64
ab9911036be52c45cf970480599e16e2dad54e6b
2022-05-11T07:01:17.000Z
[ "pytorch", "bert", "pretraining", "transformers" ]
null
false
ceggian
null
ceggian/bert_post_trained_reddit_batch64
2
null
transformers
25,902
Entry not found
masakhane/mbart50_zul_en_news
eae22ed568787a87092f130ba2cad84c63614d94
2022-05-12T13:06:17.000Z
[ "pytorch", "mbart", "text2text-generation", "transformers", "license:afl-3.0", "autotrain_compatible" ]
text2text-generation
false
masakhane
null
masakhane/mbart50_zul_en_news
2
null
transformers
25,903
--- license: afl-3.0 ---
masakhane/mbart50_en_zul_news
71231a216f6a9a760bb5bfc83debb805d24100d6
2022-05-12T13:06:20.000Z
[ "pytorch", "mbart", "text2text-generation", "transformers", "license:afl-3.0", "autotrain_compatible" ]
text2text-generation
false
masakhane
null
masakhane/mbart50_en_zul_news
2
null
transformers
25,904
--- license: afl-3.0 ---
masakhane/m2m100_418M_en_zul_rel_news_ft
91458b077bd212c1f9a866f2c0964e45c2b8a5a5
2022-05-12T13:36:16.000Z
[ "pytorch", "m2m_100", "text2text-generation", "transformers", "license:afl-3.0", "autotrain_compatible" ]
text2text-generation
false
masakhane
null
masakhane/m2m100_418M_en_zul_rel_news_ft
2
null
transformers
25,905
--- license: afl-3.0 ---
masakhane/m2m100_418M_twi_en_rel
372600595b1a7155e5b46176aa677a8bf229c966
2022-05-12T12:40:17.000Z
[ "pytorch", "m2m_100", "text2text-generation", "transformers", "license:afl-3.0", "autotrain_compatible" ]
text2text-generation
false
masakhane
null
masakhane/m2m100_418M_twi_en_rel
2
null
transformers
25,906
--- license: afl-3.0 ---
PSW/min2_sim_swap_seed42
e5ef8e17dd529fa651c10fe866649709d45a79f4
2022-05-12T03:27:02.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
PSW
null
PSW/min2_sim_swap_seed42
2
null
transformers
25,907
Entry not found
PSW/max2_sim_swap_seed27
1c6941f59acf268a7a0a8056952bf550403609f4
2022-05-12T04:54:50.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
PSW
null
PSW/max2_sim_swap_seed27
2
null
transformers
25,908
Entry not found
lucaordronneau/finbert-finetuned-FG-SINGLE_SENTENCE-NEWS-WEIGHTED
8739777170fe6a3170abfc5d869d732f7818cf99
2022-05-11T13:26:50.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers", "generated_from_trainer", "model-index" ]
text-classification
false
lucaordronneau
null
lucaordronneau/finbert-finetuned-FG-SINGLE_SENTENCE-NEWS-WEIGHTED
2
null
transformers
25,909
--- tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: finbert-finetuned-FG-SINGLE_SENTENCE-NEWS-WEIGHTED results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finbert-finetuned-FG-SINGLE_SENTENCE-NEWS-WEIGHTED This model is a fine-tuned version of [ProsusAI/finbert](https://huggingface.co/ProsusAI/finbert) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.2741 - Accuracy: 0.7475 - F1: 0.7253 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 6e-05 - train_batch_size: 48 - eval_batch_size: 48 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 16 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | No log | 1.0 | 249 | 0.9150 | 0.7346 | 0.6484 | | No log | 2.0 | 498 | 0.8837 | 0.6210 | 0.6317 | | 1.033 | 3.0 | 747 | 0.8460 | 0.6485 | 0.6666 | | 1.033 | 4.0 | 996 | 1.0089 | 0.6831 | 0.6909 | | 0.5642 | 5.0 | 1245 | 1.2507 | 0.7352 | 0.7152 | | 0.5642 | 6.0 | 1494 | 1.3241 | 0.7129 | 0.7042 | | 0.2078 | 7.0 | 1743 | 1.5163 | 0.7528 | 0.7230 | | 0.2078 | 8.0 | 1992 | 1.5818 | 0.7352 | 0.7236 | | 0.1108 | 9.0 | 2241 | 1.7930 | 0.7012 | 0.7046 | | 0.1108 | 10.0 | 2490 | 1.8262 | 0.7305 | 0.7211 | | 0.07 | 11.0 | 2739 | 2.0415 | 0.7440 | 0.7192 | | 0.07 | 12.0 | 2988 | 2.1260 | 0.7563 | 0.7230 | | 0.0392 | 13.0 | 3237 | 2.1502 | 0.7528 | 0.7323 | | 0.0392 | 14.0 | 3486 | 2.2117 | 0.7516 | 0.7270 | | 0.0174 | 15.0 | 3735 | 2.2657 | 0.7405 | 0.7236 | | 0.0174 | 16.0 | 3984 | 2.2741 | 0.7475 | 0.7253 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.9.1 - Datasets 1.18.4 - Tokenizers 0.11.6
PSW/max2_sim_swap_seed42
cff847bdf5a1999e90eb80378a711a02f07fbe01
2022-05-12T05:38:52.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
PSW
null
PSW/max2_sim_swap_seed42
2
null
transformers
25,910
Entry not found
PSW/low_resource_percent1_min2swap_seed1
53e619f633d4ba8a086d9cdf9fc7ad06cb2c41b5
2022-05-12T05:50:59.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
PSW
null
PSW/low_resource_percent1_min2swap_seed1
2
null
transformers
25,911
Entry not found
lilitket/20220511-173138
f1c8de085ad87ac1558d4ecb41a21179dbbe5094
2022-05-13T00:32:13.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
lilitket
null
lilitket/20220511-173138
2
null
transformers
25,912
Entry not found
PSW/low_resource_percent1_min2swap_seed27
4bf7f33144f02e39da14d3b682248789da2aed26
2022-05-12T06:02:16.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
PSW
null
PSW/low_resource_percent1_min2swap_seed27
2
null
transformers
25,913
Entry not found
bansals10/wav2vec2-large-xls-r-300m-turkish-colab
3f0411949980de537d51843610e1be3a94cc4337
2022-05-12T15:25:20.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "dataset:common_voice", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
bansals10
null
bansals10/wav2vec2-large-xls-r-300m-turkish-colab
2
null
transformers
25,914
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice model-index: - name: wav2vec2-large-xls-r-300m-turkish-colab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-turkish-colab This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu113 - Datasets 1.18.3 - Tokenizers 0.10.3
PSW/low_resource_percent1_max2swap_seed42
2f8e97d1050cf810eaa38ea5f0f4731bb4ff3ef0
2022-05-12T06:54:13.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
PSW
null
PSW/low_resource_percent1_max2swap_seed42
2
null
transformers
25,915
Entry not found
aware-ai/wav2vec2-xls-r-1b-german-augmented
fd64302e845d9348ea74dfb1af4447341cee5f96
2022-05-15T01:02:32.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
aware-ai
null
aware-ai/wav2vec2-xls-r-1b-german-augmented
2
null
transformers
25,916
Entry not found
PSW/low_resource_percent10_min2swap_seed42
4cfc6caa2a68db8875e5895d32a1d448a499783b
2022-05-12T07:43:01.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
PSW
null
PSW/low_resource_percent10_min2swap_seed42
2
null
transformers
25,917
Entry not found
ceggian/sbert_pt_reddit_softmax_512
5d0da98baad0dd9d457ea5501ffc2e72b4623798
2022-05-11T16:59:38.000Z
[ "pytorch", "bert", "feature-extraction", "sentence-transformers", "sentence-similarity", "transformers" ]
sentence-similarity
false
ceggian
null
ceggian/sbert_pt_reddit_softmax_512
2
null
sentence-transformers
25,918
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 117759 with parameters: ``` {'batch_size': 8, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.SoftmaxLoss.SoftmaxLoss` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 11775, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
ceggian/sbert_pt_reddit_mnr_128
0115e8596e7c939ecc7c4361b1e66e879e63c892
2022-05-11T19:05:37.000Z
[ "pytorch", "bert", "feature-extraction", "sentence-transformers", "sentence-similarity", "transformers" ]
sentence-similarity
false
ceggian
null
ceggian/sbert_pt_reddit_mnr_128
2
null
sentence-transformers
25,919
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `sentence_transformers.datasets.NoDuplicatesDataLoader.NoDuplicatesDataLoader` of length 39289 with parameters: ``` {'batch_size': 8} ``` **Loss**: `sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters: ``` {'scale': 20.0, 'similarity_fct': 'cos_sim'} ``` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 3928, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
ceggian/sbert_pt_reddit_mnr_32
546e637f458f41aa95da156c399c5f68bf14072e
2022-05-11T21:33:56.000Z
[ "pytorch", "bert", "feature-extraction", "sentence-transformers", "sentence-similarity", "transformers" ]
sentence-similarity
false
ceggian
null
ceggian/sbert_pt_reddit_mnr_32
2
null
sentence-transformers
25,920
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `sentence_transformers.datasets.NoDuplicatesDataLoader.NoDuplicatesDataLoader` of length 39289 with parameters: ``` {'batch_size': 8} ``` **Loss**: `sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters: ``` {'scale': 20.0, 'similarity_fct': 'cos_sim'} ``` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 3928, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
Dizzykong/gpt2-large-quests
da925033fee27cb4ec151ec94a747fbe3398a75c
2022-05-12T00:51:19.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
Dizzykong
null
Dizzykong/gpt2-large-quests
2
null
transformers
25,921
Entry not found
ceggian/sbert_pt_reddit_softmax_32
c77e3b13268baff060670854c4d696d8a8bb2906
2022-05-12T05:28:54.000Z
[ "pytorch", "bert", "feature-extraction", "sentence-transformers", "sentence-similarity", "transformers" ]
sentence-similarity
false
ceggian
null
ceggian/sbert_pt_reddit_softmax_32
2
null
sentence-transformers
25,922
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 117759 with parameters: ``` {'batch_size': 8, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.SoftmaxLoss.SoftmaxLoss` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 11775, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
withU/kogpt2-emotion-chatbot
2dd5ffb2b0a5860f184afc45c222537f97187f4a
2022-05-16T07:58:01.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
withU
null
withU/kogpt2-emotion-chatbot
2
null
transformers
25,923
# KoGPT2-emotion-chatbot kogpt2 on hugging face Transformers for Psychological Counseling - [full project link](https://github.com/jiminAn/Capstone_2022) ## how to use ``` from transformers import GPT2LMHeadModel, PreTrainedTokenizerFast model = GPT2LMHeadModel.from_pretrained("withU/kogpt2-emotion-chatbot") tokenizer = PreTrainedTokenizerFast.from_pretrained("withU/kogpt2-emotion-chatbot") input_ids = tokenizer.encode("안녕", add_special_tokens=False, return_tensors="pt") output_sequences = model.generate(input_ids=input_ids, do_sample=True, max_length=80, num_return_sequences=4) for generated_sequence in output_sequences: generated_sequence = generated_sequence.tolist() print("GENERATED SEQUENCE : {0}".format(tokenizer.decode(generated_sequence, clean_up_tokenization_spaces=True))) ``` ## dataset finetuned on - [wellness dataset](https://aihub.or.kr/opendata/keti-data/recognition-laguage/KETI-02-006) - [emotion corpus of conversations](https://aihub.or.kr/opendata/keti-data/recognition-laguage/KETI-02-010) - [chatbot data](https://jeongukjae.github.io/tfds-korean/datasets/korean_chatbot_qa_data.html) ## references - [WelllnessConversation-LanguageModel](https://github.com/nawnoes/WellnessConversation-LanguageModel) - [KoGPT2: SKT-AI](https://github.com/SKT-AI/KoGPT2)
ali-issa/FYP_ARABIZI
9ea119f7c4b3010b0e98761bd2cee160424d6744
2022-05-12T10:47:21.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
ali-issa
null
ali-issa/FYP_ARABIZI
2
null
transformers
25,924
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-Arabizi-gpu-colab-similar-to-german-param results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-Arabizi-gpu-colab-similar-to-german-param This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5609 - Wer: 0.4042 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 6 - total_train_batch_size: 12 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 4.6416 | 2.83 | 400 | 2.8983 | 1.0 | | 1.4951 | 5.67 | 800 | 0.6272 | 0.6097 | | 0.6419 | 8.51 | 1200 | 0.5491 | 0.5069 | | 0.4767 | 11.35 | 1600 | 0.5152 | 0.4553 | | 0.3899 | 14.18 | 2000 | 0.5436 | 0.4475 | | 0.3342 | 17.02 | 2400 | 0.5400 | 0.4431 | | 0.2982 | 19.85 | 2800 | 0.5599 | 0.4248 | | 0.2738 | 22.69 | 3200 | 0.5401 | 0.4103 | | 0.2563 | 25.53 | 3600 | 0.5710 | 0.4198 | | 0.2443 | 28.37 | 4000 | 0.5609 | 0.4042 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu113 - Datasets 1.18.3 - Tokenizers 0.10.3
Sumedha/distilbert-base-uncased-finetuned-imdb
b85b29fb58325e47035b1b2c1eba594e283db3c2
2022-05-12T11:10:45.000Z
[ "pytorch", "tensorboard", "distilbert", "fill-mask", "dataset:imdb", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
fill-mask
false
Sumedha
null
Sumedha/distilbert-base-uncased-finetuned-imdb
2
null
transformers
25,925
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb model-index: - name: distilbert-base-uncased-finetuned-imdb results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-imdb This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 2.4726 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.707 | 1.0 | 157 | 2.4884 | | 2.5761 | 2.0 | 314 | 2.4230 | | 2.5255 | 3.0 | 471 | 2.4356 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.11.0+cu102 - Datasets 2.2.0 - Tokenizers 0.11.0
creynier/wav2vec2-base-swbd-turn-eos-long_short2s_utt_removed_3percent
20a8686409ba1150e76da680af3255494de0eb18
2022-05-12T10:24:46.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
creynier
null
creynier/wav2vec2-base-swbd-turn-eos-long_short2s_utt_removed_3percent
2
null
transformers
25,926
Entry not found
Fawreez/DialoGPT-small-raptor
70ba01b8ea315bbf4858cfd7a59d32bf25339f40
2022-05-12T12:38:50.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
Fawreez
null
Fawreez/DialoGPT-small-raptor
2
null
transformers
25,927
--- tags: - conversational --- # Fawreez DialoGPT Model
creynier/wav2vec2-base-swbd-turn-eos-long_short1-8s_utt_removed_5percent
9e9eb99c247a331166216a2b1f1b0d24c7666381
2022-05-13T06:27:55.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
creynier
null
creynier/wav2vec2-base-swbd-turn-eos-long_short1-8s_utt_removed_5percent
2
null
transformers
25,928
Entry not found
gonzpen/gbert-base-ft-edu-redux
c18078334f82b40f5c60bf7a797b17182b05131b
2022-05-13T10:42:51.000Z
[ "pytorch", "bert", "text-classification", "de", "transformers", "license:mit" ]
text-classification
false
gonzpen
null
gonzpen/gbert-base-ft-edu-redux
2
null
transformers
25,929
--- language: de license: mit --- # German BERT base fine-tuned to predict educational requirements This is a fine-tuned version of the German BERT base language model [deepset/gbert-base](https://huggingface.co/deepset/gbert-base). The multilabel task this model was trained on was to predict education requirements from job ad texts. The dataset used for training is not available to the public. The 7 labels in the task are (in the classification head order): - `'Bachelor'` - `'Berufsausbildung'` - `'Doktorat oder äquivalent'` - `'Höhere Berufsausbildung'` - `'Master'` - `'Sonstiges'` - `'keine Ausbildungserfordernisse'` The number of representatives of these labels in each of the splits (train/test/val) of the dataset is summarized in the following table: | Label name | All data | Training | Validation | Test | |------------|----------|----------|------------|------| | Bachelor | 521 | 365 | 52 | 104 | | Berufsausbildung | 1854 | 1298 | 185 | 371 | | Doktorat oder äquivalent | 38 | 27 | 4 | 7 | | Höhere Berufsausbildung | 564 | 395 | 56 | 113 | | Master | 245 | 171 | 25 | 49 | | Sonstiges | 819 | 573 | 82 | 164 | | keine Ausbildungserfordernisse | 176 | 123 | 18 | 35 | ## Performance Training consisted of [minimizing the binary cross-entropy (BCE)](https://en.wikipedia.org/wiki/Cross_entropy#Cross-entropy_minimization) loss between the model's predictions and the actual labels in the training set. During training, a weighted version of the [label ranking average precision (LRAP)](https://scikit-learn.org/stable/modules/model_evaluation.html#label-ranking-average-precision) was tracked for the testing set. LRAP measures what fraction of higher-ranked labels produced by the model were true labels. To account for the label imbalance, the rankings were weighted so that improperly ranked rare labels are penalized more than their more frequent counterparts. After training was complete, the model with highest weighted LRAP was saved. ``` LRAP: 0.93 ``` # See also: - [deepset/gbert-base](https://huggingface.co/deepset/gbert-base) - [deepset/gbert-large](https://huggingface.co/deepset/gbert-large) - [gonzpen/gbert-large-ft-edu-redux](https://huggingface.co/gonzpen/gbert-large-ft-edu-redux) ## Authors Rodrigo C. G. Pena: `rodrigocgp [at] gmail.com`
aajrami/bert-ascii-base
ac0934a8496f5820a46c7568c1d29e13569b9da2
2022-06-01T11:51:29.000Z
[ "pytorch", "roberta", "feature-extraction", "arxiv:2203.10415", "transformers", "bert", "license:cc-by-4.0" ]
feature-extraction
false
aajrami
null
aajrami/bert-ascii-base
2
null
transformers
25,930
--- tags: - bert license: cc-by-4.0 --- ## bert-ascii-base is a BERT base Language Model pre-trained by predicting the summation of the **ASCII** code values of the characters in a masked token as a pre-training objective. For more details about the pre-training objective and the pre-training hyperparameters, please refer to [How does the pre-training objective affect what large language models learn about linguistic properties?](https://arxiv.org/abs/2203.10415) ## License CC BY 4.0 ## Citation If you use this model, please cite the following paper: ``` @inproceedings{alajrami2022does, title={How does the pre-training objective affect what large language models learn about linguistic properties?}, author={Alajrami, Ahmed and Aletras, Nikolaos}, booktitle={Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)}, pages={131--147}, year={2022} } ```
ceggian/sbert_pt_reddit_softmax_64
8139435724180750ae209cc86e62e362c2d275d6
2022-05-12T20:23:45.000Z
[ "pytorch", "bert", "feature-extraction", "sentence-transformers", "sentence-similarity", "transformers" ]
sentence-similarity
false
ceggian
null
ceggian/sbert_pt_reddit_softmax_64
2
null
sentence-transformers
25,931
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 117759 with parameters: ``` {'batch_size': 8, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.SoftmaxLoss.SoftmaxLoss` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 11775, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
danieleV9H/hubert-base-timit-demo-google-colab-ft30ep_v5
b3aadc14f39e5b1958e88ec049205d322d61e018
2022-05-14T10:32:52.000Z
[ "pytorch", "tensorboard", "hubert", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
danieleV9H
null
danieleV9H/hubert-base-timit-demo-google-colab-ft30ep_v5
2
null
transformers
25,932
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: hubert-base-timit-demo-google-colab-ft30ep_v5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # hubert-base-timit-demo-google-colab-ft30ep_v5 This model is a fine-tuned version of [facebook/hubert-base-ls960](https://huggingface.co/facebook/hubert-base-ls960) on the timit-asr dataset. It achieves the following results on the evaluation set: - Loss: 0.4763 - Wer: 0.3322 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 3.9596 | 0.87 | 500 | 3.1237 | 1.0 | | 2.5388 | 1.73 | 1000 | 1.1689 | 0.9184 | | 1.0448 | 2.6 | 1500 | 0.6106 | 0.5878 | | 0.6793 | 3.46 | 2000 | 0.4912 | 0.5200 | | 0.5234 | 4.33 | 2500 | 0.4529 | 0.4798 | | 0.4368 | 5.19 | 3000 | 0.4239 | 0.4543 | | 0.3839 | 6.06 | 3500 | 0.4326 | 0.4339 | | 0.3315 | 6.92 | 4000 | 0.4265 | 0.4173 | | 0.2878 | 7.79 | 4500 | 0.4304 | 0.4068 | | 0.25 | 8.65 | 5000 | 0.4130 | 0.3940 | | 0.242 | 9.52 | 5500 | 0.4310 | 0.3938 | | 0.2182 | 10.38 | 6000 | 0.4204 | 0.3843 | | 0.2063 | 11.25 | 6500 | 0.4449 | 0.3816 | | 0.2099 | 12.11 | 7000 | 0.4016 | 0.3681 | | 0.1795 | 12.98 | 7500 | 0.4027 | 0.3647 | | 0.1604 | 13.84 | 8000 | 0.4294 | 0.3664 | | 0.1683 | 14.71 | 8500 | 0.4412 | 0.3661 | | 0.1452 | 15.57 | 9000 | 0.4484 | 0.3588 | | 0.1491 | 16.44 | 9500 | 0.4508 | 0.3515 | | 0.1388 | 17.3 | 10000 | 0.4240 | 0.3518 | | 0.1399 | 18.17 | 10500 | 0.4605 | 0.3513 | | 0.1265 | 19.03 | 11000 | 0.4412 | 0.3485 | | 0.1137 | 19.9 | 11500 | 0.4520 | 0.3467 | | 0.106 | 20.76 | 12000 | 0.4873 | 0.3426 | | 0.1243 | 21.63 | 12500 | 0.4456 | 0.3396 | | 0.1055 | 22.49 | 13000 | 0.4819 | 0.3406 | | 0.1124 | 23.36 | 13500 | 0.4613 | 0.3391 | | 0.1064 | 24.22 | 14000 | 0.4842 | 0.3430 | | 0.0875 | 25.09 | 14500 | 0.4661 | 0.3348 | | 0.086 | 25.95 | 15000 | 0.4724 | 0.3371 | | 0.0842 | 26.82 | 15500 | 0.4982 | 0.3381 | | 0.0834 | 27.68 | 16000 | 0.4856 | 0.3337 | | 0.0918 | 28.55 | 16500 | 0.4783 | 0.3344 | | 0.0773 | 29.41 | 17000 | 0.4763 | 0.3322 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.11.0+cu113 - Datasets 1.18.3 - Tokenizers 0.12.1
luckydog/bert-base-chinese-finetuned-mosei1
a24c16e2937efb96fdf9c5ceeefdbb52a12ce431
2022-05-13T02:48:17.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
luckydog
null
luckydog/bert-base-chinese-finetuned-mosei1
2
null
transformers
25,933
Entry not found
misawann/bert-base-jaquad-ffn2150-head-10
addd80159ef98a9ce17b3507fe621f15182d993a
2022-05-13T07:11:54.000Z
[ "pytorch", "bert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
misawann
null
misawann/bert-base-jaquad-ffn2150-head-10
2
null
transformers
25,934
--- widget: - text: "ドクウツボはインド洋とどの海域の熱帯域に分布しますか?" context: "ドクウツボ(毒鱓)Gymnothoraxjavanicus(Bleeker,1859)は体長3メートルの記録がある大型種で、鰓孔が黒いことで近縁種と区別できる。 インド洋と太平洋の熱帯域に広く分布し、日本では琉球列島で見られる。 " --- ## モデル詳細 - [cl-tohoku/bert-base-japanese](https://huggingface.co/cl-tohoku/bert-base-japanese) を JaQuAD で fine-tuning した [SkelterLabsInc/bert-base-japanese-jaquad](https://huggingface.co/SkelterLabsInc/bert-base-japanese-jaquad) に対して [TextPruner](https://github.com/airaria/TextPruner) を使って Transformer Pruning したモデル。 - 枝刈りには,JaQuAD の訓練データのうち1024件を使用し,10イテレーションで実施。 - FFNのサイズを30%,attention head の数を 10 % 削減 (ffn: 3072, head: 12 -> ffn: 2150, head: 10)。 - ※ [JaQuAD の実験コード](https://github.com/SkelterLabsInc/JaQuAD/blob/main/JaQuAD.ipynb)と同じ前処理をした上で使用してください。 - ※ 上記の理由で, hf hub の Hosted inference API 上では適切な予測が出力されません。 ## JaQuAD の validation データでの性能 - フルモデル - F1 score: 0.779 - Exact Match: 0.614 - 枝刈り後のモデル - F1 score: 0.756 - Exact Match: 0.587
lucifermorninstar011/autotrain-luicfer_company-861827409
28636681b7ce6d65a9e3e282d2a8bfdde5f67858
2022-05-13T09:20:43.000Z
[ "pytorch", "distilbert", "token-classification", "en", "dataset:lucifermorninstar011/autotrain-data-luicfer_company", "transformers", "autotrain", "co2_eq_emissions", "autotrain_compatible" ]
token-classification
false
lucifermorninstar011
null
lucifermorninstar011/autotrain-luicfer_company-861827409
2
null
transformers
25,935
--- tags: autotrain language: en widget: - text: "I love AutoTrain 🤗" datasets: - lucifermorninstar011/autotrain-data-luicfer_company co2_eq_emissions: 159.62610219360334 --- # Model Trained Using AutoTrain - Problem type: Entity Extraction - Model ID: 861827409 - CO2 Emissions (in grams): 159.62610219360334 ## Validation Metrics - Loss: 0.007599336095154285 - Accuracy: 0.9905338980217686 - Precision: 0.9557812806826499 - Recall: 0.9549459565512075 - F1: 0.9553634360250886 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/lucifermorninstar011/autotrain-luicfer_company-861827409 ``` Or Python API: ``` from transformers import AutoModelForTokenClassification, AutoTokenizer model = AutoModelForTokenClassification.from_pretrained("lucifermorninstar011/autotrain-luicfer_company-861827409", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("lucifermorninstar011/autotrain-luicfer_company-861827409", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
PSW/cnndm_0.1percent_maxsimdel_seed1
af110b7d6aa74fdb78a805043094064a361c4830
2022-05-15T11:50:53.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
PSW
null
PSW/cnndm_0.1percent_maxsimdel_seed1
2
null
transformers
25,936
Entry not found
PSW/cnndm_0.1percent_randomsimdel_seed1
fb4657bb2e0fadfe854f288d4674d14bc4fb1952
2022-05-15T15:11:22.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
PSW
null
PSW/cnndm_0.1percent_randomsimdel_seed1
2
null
transformers
25,937
Entry not found
Ninh/xlm-roberta-base-finetuned-panx-de
d8d62c04b5284d29bdd96e9b5dfc5dcc1c088ebc
2022-05-13T09:48:15.000Z
[ "pytorch", "tensorboard", "xlm-roberta", "token-classification", "dataset:xtreme", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
token-classification
false
Ninh
null
Ninh/xlm-roberta-base-finetuned-panx-de
2
null
transformers
25,938
--- tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme args: PAN-X.de metrics: - name: F1 type: f1 value: 0.861182081417135 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.1395 - F1: 0.8612 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2539 | 1.0 | 525 | 0.1663 | 0.8258 | | 0.1311 | 2.0 | 1050 | 0.1401 | 0.8496 | | 0.0811 | 3.0 | 1575 | 0.1395 | 0.8612 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3
PSW/cnndm_0.1percent_minsimins_seed1
63d64432ac919e2e28d29d3b7ce145c558b0882c
2022-05-15T18:31:33.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
PSW
null
PSW/cnndm_0.1percent_minsimins_seed1
2
null
transformers
25,939
Entry not found
scasutt/wav2vec2-large-xlsr-53_full_train_full_train
0db2101445fadc5a40e5914ce0aaa1ae32d96f8b
2022-05-16T13:22:05.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "model-index" ]
automatic-speech-recognition
false
scasutt
null
scasutt/wav2vec2-large-xlsr-53_full_train_full_train
2
null
transformers
25,940
--- tags: - generated_from_trainer model-index: - name: wav2vec2-large-xlsr-53_full_train_full_train results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xlsr-53_full_train_full_train This model was trained from scratch on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.8369 - Wer: 0.5052 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 4 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.533 | 1.35 | 1000 | 0.3547 | 0.3483 | | 0.4531 | 2.69 | 2000 | 0.8369 | 0.5052 | ### Framework versions - Transformers 4.19.0 - Pytorch 1.11.0+cu102 - Datasets 2.2.1 - Tokenizers 0.12.1
manirai91/xlm-roberta-imdb
de8ce6543965ac21c681aec20288ad2fc198d870
2022-05-13T15:28:58.000Z
[ "pytorch", "xlm-roberta", "text-classification", "transformers" ]
text-classification
false
manirai91
null
manirai91/xlm-roberta-imdb
2
null
transformers
25,941
Entry not found
versae/bertin-roberta-base-spanish-finetuned-recores
596e4f404b010e0e105f5ef8f5329666c23422d8
2022-05-13T18:00:16.000Z
[ "pytorch", "tensorboard", "roberta", "multiple-choice", "transformers", "generated_from_trainer", "license:cc-by-4.0", "model-index" ]
multiple-choice
false
versae
null
versae/bertin-roberta-base-spanish-finetuned-recores
2
null
transformers
25,942
--- license: cc-by-4.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: bertin-roberta-base-spanish-finetuned-recores results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bertin-roberta-base-spanish-finetuned-recores This model is a fine-tuned version of [bertin-project/bertin-roberta-base-spanish](https://huggingface.co/bertin-project/bertin-roberta-base-spanish) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 4.2985 - Accuracy: 0.3581 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.6065 | 1.0 | 1047 | 1.5944 | 0.2948 | | 1.4913 | 2.0 | 2094 | 2.4456 | 0.3581 | | 0.7893 | 3.0 | 3141 | 3.4247 | 0.3691 | | 0.2117 | 4.0 | 4188 | 3.9878 | 0.3526 | | 0.0509 | 5.0 | 5235 | 4.2985 | 0.3581 | ### Framework versions - Transformers 4.19.0 - Pytorch 1.11.0+cu113 - Datasets 2.2.1 - Tokenizers 0.12.1
manirai91/xlm-roberta-conll2003
d17a673f5979ed84061755cb06a7a802811013ab
2022-05-13T15:45:14.000Z
[ "pytorch", "xlm-roberta", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
manirai91
null
manirai91/xlm-roberta-conll2003
2
null
transformers
25,943
Entry not found
PSW/cnndm_0.1percent_randomswap_seed1
31a2e22c62791c4b6c8ab7172fc4f884726bbcf6
2022-05-16T14:28:58.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
PSW
null
PSW/cnndm_0.1percent_randomswap_seed1
2
null
transformers
25,944
Entry not found
nepp1d0/TAPE-finetuned-viralProteins
f8430140a9d415180264cea2328cda6e640afc77
2022-05-13T21:27:09.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers", "generated_from_trainer", "model-index" ]
text-classification
false
nepp1d0
null
nepp1d0/TAPE-finetuned-viralProteins
2
null
transformers
25,945
--- tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: TAPE-finetuned-viralProteins results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # TAPE-finetuned-viralProteins This model was trained from scratch on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.9033 - Accuracy: 0.87 - F1: 0.8555 - Precision: 0.8475 - Recall: 0.87 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|:---------:|:------:| | 0.8845 | 1.0 | 5000 | 0.8302 | 0.85 | 0.8060 | 0.7779 | 0.85 | | 0.8189 | 2.0 | 10000 | 0.6062 | 0.86 | 0.8255 | 0.8115 | 0.86 | | 0.806 | 3.0 | 15000 | 0.8546 | 0.85 | 0.8095 | 0.7840 | 0.85 | | 0.6971 | 4.0 | 20000 | 0.7660 | 0.86 | 0.8228 | 0.8027 | 0.86 | | 0.6269 | 5.0 | 25000 | 0.7787 | 0.85 | 0.8343 | 0.8226 | 0.85 | | 0.5771 | 6.0 | 30000 | 0.7965 | 0.855 | 0.8402 | 0.8290 | 0.855 | | 0.5433 | 7.0 | 35000 | 0.7864 | 0.875 | 0.8573 | 0.8473 | 0.875 | | 0.5183 | 8.0 | 40000 | 0.8292 | 0.87 | 0.8521 | 0.8425 | 0.87 | | 0.4396 | 9.0 | 45000 | 0.8838 | 0.875 | 0.8566 | 0.8483 | 0.875 | | 0.4019 | 10.0 | 50000 | 0.9033 | 0.87 | 0.8555 | 0.8475 | 0.87 | ### Framework versions - Transformers 4.19.1 - Pytorch 1.11.0+cu113 - Datasets 2.2.1 - Tokenizers 0.12.1
PSW/cnndm_0.5percent_randomsimins_seed1
c0b34de44833d6cf0bb245b10c371fcc79d7ecde
2022-05-17T11:37:33.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
PSW
null
PSW/cnndm_0.5percent_randomsimins_seed1
2
null
transformers
25,946
Entry not found
AnonymousSub/rule_based_roberta_kldiv_hier_triplet_epochs_1_shard_1
68f7c65fd37b26f120658f572099e7d5d0fd713b
2022-05-14T01:46:55.000Z
[ "pytorch", "roberta", "feature-extraction", "transformers" ]
feature-extraction
false
AnonymousSub
null
AnonymousSub/rule_based_roberta_kldiv_hier_triplet_epochs_1_shard_1
2
null
transformers
25,947
Entry not found
PSW/cnndm_0.5percent_minmaxswap_seed1
847884f91e95e0e97af3ce1494c64d44b84eb5dd
2022-05-17T15:30:14.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
PSW
null
PSW/cnndm_0.5percent_minmaxswap_seed1
2
null
transformers
25,948
Entry not found
PSW/cnndm_0.5percent_min2swap_seed1
79bdf0976018d6bc23bc48481818a7a9ae97d679
2022-05-17T19:02:38.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
PSW
null
PSW/cnndm_0.5percent_min2swap_seed1
2
null
transformers
25,949
Entry not found
AnonymousSub/rule_based_roberta_kldiv_hier_triplet_epochs_1_shard_1_squad2.0
0d3fd7976e68f5aff5822efe53d2677ecfa9522d
2022-05-14T03:54:30.000Z
[ "pytorch", "roberta", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
AnonymousSub
null
AnonymousSub/rule_based_roberta_kldiv_hier_triplet_epochs_1_shard_1_squad2.0
2
null
transformers
25,950
Entry not found
PSW/cnndm_0.5percent_max2swap_seed1
a60a67d914f3438eacabfde9f0f79fa2dde88edb
2022-05-17T22:34:53.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
PSW
null
PSW/cnndm_0.5percent_max2swap_seed1
2
null
transformers
25,951
Entry not found
PSW/cnndm_0.5percent_randomswap_seed1
d9b040920ac754bfd4916f6d24bd4e6ced44fe66
2022-05-18T02:06:27.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
PSW
null
PSW/cnndm_0.5percent_randomswap_seed1
2
null
transformers
25,952
Entry not found
CEBaB/bert-base-uncased.CEBaB-challenge.sa.2-class.exclusive.seed_66
0c282fb111f50da3cf906a9fa5ed54a332c538b8
2022-05-14T17:30:13.000Z
[ "pytorch", "bert", "transformers" ]
null
false
CEBaB
null
CEBaB/bert-base-uncased.CEBaB-challenge.sa.2-class.exclusive.seed_66
2
null
transformers
25,953
Entry not found
CEBaB/bert-base-uncased.CEBaB-challenge.sa.2-class.inclusive.seed_99
5e74bc91486fff3d6cbe73b1941b6ca469b9dd68
2022-05-14T18:19:28.000Z
[ "pytorch", "bert", "transformers" ]
null
false
CEBaB
null
CEBaB/bert-base-uncased.CEBaB-challenge.sa.2-class.inclusive.seed_99
2
null
transformers
25,954
Entry not found
PSW/cnndm_10percent_minsimins_seed1
63707f42c5b67374982889654a5ce4aa65535cab
2022-05-14T18:35:26.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
PSW
null
PSW/cnndm_10percent_minsimins_seed1
2
null
transformers
25,955
Entry not found
claytonsamples/xlm-roberta-base-finetuned-panx-de
cc082399ce177aa3d817656b9c79378e851fccda
2022-05-14T19:19:42.000Z
[ "pytorch", "tensorboard", "xlm-roberta", "token-classification", "dataset:xtreme", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
token-classification
false
claytonsamples
null
claytonsamples/xlm-roberta-base-finetuned-panx-de
2
null
transformers
25,956
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme args: PAN-X.de metrics: - name: F1 type: f1 value: 0.8620945214069894 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.1372 - F1: 0.8621 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2575 | 1.0 | 525 | 0.1621 | 0.8292 | | 0.1287 | 2.0 | 1050 | 0.1378 | 0.8526 | | 0.0831 | 3.0 | 1575 | 0.1372 | 0.8621 | ### Framework versions - Transformers 4.20.0.dev0 - Pytorch 1.11.0+cu113 - Datasets 2.2.1 - Tokenizers 0.12.1
subhasisj/zh-kd-XLM-minilmv2-4
6a1322ad893c33f0c043b28838d3755a9eec1d15
2022-05-16T12:40:04.000Z
[ "pytorch", "tensorboard", "bert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
subhasisj
null
subhasisj/zh-kd-XLM-minilmv2-4
2
null
transformers
25,957
Multilingual MiniLMv2 fine-tuned using Knowledge Distillation with a XLM Roberta Base Teacher Model on ZH Language
anas-awadalla/roberta-large-few-shot-k-16-finetuned-squad-seed-0
41db820e8d4119f5ab2d55ded4f505284611441b
2022-05-14T19:22:38.000Z
[ "pytorch", "roberta", "question-answering", "dataset:squad", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
question-answering
false
anas-awadalla
null
anas-awadalla/roberta-large-few-shot-k-16-finetuned-squad-seed-0
2
null
transformers
25,958
--- license: mit tags: - generated_from_trainer datasets: - squad model-index: - name: roberta-large-few-shot-k-16-finetuned-squad-seed-0 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-large-few-shot-k-16-finetuned-squad-seed-0 This model is a fine-tuned version of [roberta-large](https://huggingface.co/roberta-large) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 12 - eval_batch_size: 8 - seed: 0 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 200 ### Training results ### Framework versions - Transformers 4.20.0.dev0 - Pytorch 1.11.0+cu113 - Datasets 2.0.0 - Tokenizers 0.11.6
anas-awadalla/roberta-large-few-shot-k-16-finetuned-squad-seed-4
70280671ea96fb624e17bf9207fe99dcf5413af6
2022-05-14T19:42:04.000Z
[ "pytorch", "roberta", "question-answering", "dataset:squad", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
question-answering
false
anas-awadalla
null
anas-awadalla/roberta-large-few-shot-k-16-finetuned-squad-seed-4
2
null
transformers
25,959
--- license: mit tags: - generated_from_trainer datasets: - squad model-index: - name: roberta-large-few-shot-k-16-finetuned-squad-seed-4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-large-few-shot-k-16-finetuned-squad-seed-4 This model is a fine-tuned version of [roberta-large](https://huggingface.co/roberta-large) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 12 - eval_batch_size: 8 - seed: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 200 ### Training results ### Framework versions - Transformers 4.20.0.dev0 - Pytorch 1.11.0+cu113 - Datasets 2.0.0 - Tokenizers 0.11.6
anas-awadalla/splinter-large-few-shot-k-32-finetuned-squad-seed-4
f12b756e58d4421bb8778d32f45191344100d923
2022-05-14T20:18:03.000Z
[ "pytorch", "splinter", "question-answering", "dataset:squad", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
question-answering
false
anas-awadalla
null
anas-awadalla/splinter-large-few-shot-k-32-finetuned-squad-seed-4
2
null
transformers
25,960
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: splinter-large-few-shot-k-32-finetuned-squad-seed-4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # splinter-large-few-shot-k-32-finetuned-squad-seed-4 This model is a fine-tuned version of [tau/splinter-large-qass](https://huggingface.co/tau/splinter-large-qass) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 12 - eval_batch_size: 8 - seed: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 200 ### Training results ### Framework versions - Transformers 4.20.0.dev0 - Pytorch 1.11.0+cu113 - Datasets 2.0.0 - Tokenizers 0.11.6
anas-awadalla/roberta-large-few-shot-k-64-finetuned-squad-seed-0
65a51d0026c4c04ac01d19be7ba5995ffe292a3b
2022-05-14T20:24:34.000Z
[ "pytorch", "roberta", "question-answering", "dataset:squad", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
question-answering
false
anas-awadalla
null
anas-awadalla/roberta-large-few-shot-k-64-finetuned-squad-seed-0
2
null
transformers
25,961
--- license: mit tags: - generated_from_trainer datasets: - squad model-index: - name: roberta-large-few-shot-k-64-finetuned-squad-seed-0 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-large-few-shot-k-64-finetuned-squad-seed-0 This model is a fine-tuned version of [roberta-large](https://huggingface.co/roberta-large) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 12 - eval_batch_size: 8 - seed: 0 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 200 ### Training results ### Framework versions - Transformers 4.20.0.dev0 - Pytorch 1.11.0+cu113 - Datasets 2.0.0 - Tokenizers 0.11.6
anas-awadalla/roberta-large-few-shot-k-128-finetuned-squad-seed-0
a6178b60fc2577f1af1cfd8eb1f6976ece0f8795
2022-05-14T20:58:03.000Z
[ "pytorch", "roberta", "question-answering", "dataset:squad", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
question-answering
false
anas-awadalla
null
anas-awadalla/roberta-large-few-shot-k-128-finetuned-squad-seed-0
2
null
transformers
25,962
--- license: mit tags: - generated_from_trainer datasets: - squad model-index: - name: roberta-large-few-shot-k-128-finetuned-squad-seed-0 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-large-few-shot-k-128-finetuned-squad-seed-0 This model is a fine-tuned version of [roberta-large](https://huggingface.co/roberta-large) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 12 - eval_batch_size: 8 - seed: 0 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 200 ### Training results ### Framework versions - Transformers 4.20.0.dev0 - Pytorch 1.11.0+cu113 - Datasets 2.0.0 - Tokenizers 0.11.6
anas-awadalla/splinter-large-few-shot-k-128-finetuned-squad-seed-4
50b1bb2aeb0178828000ba58c54ba284f2445774
2022-05-14T21:28:38.000Z
[ "pytorch", "splinter", "question-answering", "dataset:squad", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
question-answering
false
anas-awadalla
null
anas-awadalla/splinter-large-few-shot-k-128-finetuned-squad-seed-4
2
null
transformers
25,963
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: splinter-large-few-shot-k-128-finetuned-squad-seed-4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # splinter-large-few-shot-k-128-finetuned-squad-seed-4 This model is a fine-tuned version of [tau/splinter-large-qass](https://huggingface.co/tau/splinter-large-qass) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 12 - eval_batch_size: 8 - seed: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 200 ### Training results ### Framework versions - Transformers 4.20.0.dev0 - Pytorch 1.11.0+cu113 - Datasets 2.0.0 - Tokenizers 0.11.6
PSW/cnndm_10percent_maxsimins_seed1
0195468bb98f032480ab43fdcb0eadd5e05fb8a0
2022-05-14T21:44:17.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
PSW
null
PSW/cnndm_10percent_maxsimins_seed1
2
null
transformers
25,964
Entry not found
anas-awadalla/roberta-large-few-shot-k-256-finetuned-squad-seed-4
aa548cae10a285980532b0fc1024684cf72ac3a4
2022-05-14T22:02:44.000Z
[ "pytorch", "roberta", "question-answering", "dataset:squad", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
question-answering
false
anas-awadalla
null
anas-awadalla/roberta-large-few-shot-k-256-finetuned-squad-seed-4
2
null
transformers
25,965
--- license: mit tags: - generated_from_trainer datasets: - squad model-index: - name: roberta-large-few-shot-k-256-finetuned-squad-seed-4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-large-few-shot-k-256-finetuned-squad-seed-4 This model is a fine-tuned version of [roberta-large](https://huggingface.co/roberta-large) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 12 - eval_batch_size: 8 - seed: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10.0 ### Training results ### Framework versions - Transformers 4.20.0.dev0 - Pytorch 1.11.0+cu113 - Datasets 2.0.0 - Tokenizers 0.11.6
ruselkomp/xlm-roberta
a932fab91b30bc1396de4a4adeeedf263127ad58
2022-05-15T07:26:51.000Z
[ "pytorch", "tensorboard", "xlm-roberta", "question-answering", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
question-answering
false
ruselkomp
null
ruselkomp/xlm-roberta
2
null
transformers
25,966
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: xlm-roberta results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta This model is a fine-tuned version of [AlexKay/xlm-roberta-large-qa-multilingual-finedtuned-ru](https://huggingface.co/AlexKay/xlm-roberta-large-qa-multilingual-finedtuned-ru) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.1842 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 3 - eval_batch_size: 3 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 1.0083 | 1.0 | 15104 | 0.9420 | | 0.8093 | 2.0 | 30208 | 0.9264 | | 0.5576 | 3.0 | 45312 | 1.1842 | ### Framework versions - Transformers 4.20.0.dev0 - Pytorch 1.11.0+cu113 - Datasets 2.2.2.dev0 - Tokenizers 0.12.1
anas-awadalla/roberta-large-few-shot-k-1024-finetuned-squad-seed-2
f3bd05d446c3c87f74574bebc2c190325bc460b5
2022-05-14T23:31:40.000Z
[ "pytorch", "roberta", "question-answering", "dataset:squad", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
question-answering
false
anas-awadalla
null
anas-awadalla/roberta-large-few-shot-k-1024-finetuned-squad-seed-2
2
null
transformers
25,967
--- license: mit tags: - generated_from_trainer datasets: - squad model-index: - name: roberta-large-few-shot-k-1024-finetuned-squad-seed-2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-large-few-shot-k-1024-finetuned-squad-seed-2 This model is a fine-tuned version of [roberta-large](https://huggingface.co/roberta-large) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 12 - eval_batch_size: 8 - seed: 2 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10.0 ### Training results ### Framework versions - Transformers 4.20.0.dev0 - Pytorch 1.11.0+cu113 - Datasets 2.0.0 - Tokenizers 0.11.6
fatirali/DialoGPT-medium-harrypotter
bfc30b8647fd1727747d68cbd65bde4429e51050
2022-05-16T06:46:30.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
fatirali
null
fatirali/DialoGPT-medium-harrypotter
2
null
transformers
25,968
--- tags: - conversational --- # Harry Potter DialoGPT Model
PSW/cnndm_0.1percent_minsimdel_seed27
d3e2b6a0767898e3ce11cfc14cb07700f6b6218f
2022-05-15T09:38:43.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
PSW
null
PSW/cnndm_0.1percent_minsimdel_seed27
2
null
transformers
25,969
Entry not found
PSW/cnndm_0.1percent_minsimdel_seed42
f47481deded24ab6ee4e3701af368a317a5e064e
2022-05-15T10:47:54.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
PSW
null
PSW/cnndm_0.1percent_minsimdel_seed42
2
null
transformers
25,970
Entry not found
PSW/cnndm_0.1percent_maxsimdel_seed27
56bb06d70b12778f7770334bbd3707fc6b1905be
2022-05-15T12:59:23.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
PSW
null
PSW/cnndm_0.1percent_maxsimdel_seed27
2
null
transformers
25,971
Entry not found
PSW/cnndm_0.1percent_randomsimdel_seed42
5c13626fb426b8dee24359bc6b46f29632325617
2022-05-15T17:28:26.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
PSW
null
PSW/cnndm_0.1percent_randomsimdel_seed42
2
null
transformers
25,972
Entry not found
ali-issa/4-wav2vec2-arabic-gpu-colab-similar-to-german-less-warm-ups
da81bf44f63df5573af85e3b25f84f66f97d9fb5
2022-05-16T01:51:28.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
ali-issa
null
ali-issa/4-wav2vec2-arabic-gpu-colab-similar-to-german-less-warm-ups
2
null
transformers
25,973
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-arabic-gpu-colab-similar-to-german-less-warm-ups results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-arabic-gpu-colab-similar-to-german-less-warm-ups This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6937 - Wer: 0.4204 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 6 - total_train_batch_size: 12 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2500 - num_epochs: 40 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 8.1807 | 2.83 | 400 | 3.0778 | 1.0 | | 2.9844 | 5.67 | 800 | 2.8777 | 1.0 | | 2.5142 | 8.51 | 1200 | 1.2195 | 0.8743 | | 1.1035 | 11.35 | 1600 | 0.7026 | 0.6095 | | 0.7302 | 14.18 | 2000 | 0.6435 | 0.5437 | | 0.5551 | 17.02 | 2400 | 0.6070 | 0.4874 | | 0.4428 | 19.85 | 2800 | 0.5915 | 0.4551 | | 0.3592 | 22.69 | 3200 | 0.5830 | 0.4416 | | 0.3033 | 25.53 | 3600 | 0.6089 | 0.4375 | | 0.2618 | 28.37 | 4000 | 0.6523 | 0.4334 | | 0.2328 | 31.2 | 4400 | 0.6716 | 0.4193 | | 0.2109 | 34.04 | 4800 | 0.6733 | 0.4281 | | 0.1974 | 36.88 | 5200 | 0.6793 | 0.4269 | | 0.1886 | 39.71 | 5600 | 0.6937 | 0.4204 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu113 - Datasets 1.18.3 - Tokenizers 0.10.3
CEBaB/t5-base.CEBaB.sa.3-class.inclusive.seed_42
a6fe93f719abaf9813a27cf8403131e1feefe1ef
2022-05-15T20:35:21.000Z
[ "pytorch", "t5", "transformers" ]
null
false
CEBaB
null
CEBaB/t5-base.CEBaB.sa.3-class.inclusive.seed_42
2
null
transformers
25,974
Entry not found
CEBaB/t5-base.CEBaB.sa.5-class.inclusive.seed_88
5d802822485c7a024560ec140aaad469949c46c3
2022-05-15T22:08:16.000Z
[ "pytorch", "t5", "transformers" ]
null
false
CEBaB
null
CEBaB/t5-base.CEBaB.sa.5-class.inclusive.seed_88
2
null
transformers
25,975
Entry not found
HenryAI/FAU-CORD19
aac4a3bb231d3375177e268b4d89953fb3b4be91
2022-05-15T23:08:52.000Z
[ "pytorch", "roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
HenryAI
null
HenryAI/FAU-CORD19
2
null
transformers
25,976
Entry not found
PSW/cnndm_0.1percent_maxsimins_seed27
a0edbfa9239a6a8ce65fcdf0e81ee38c64c366c3
2022-05-15T22:57:50.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
PSW
null
PSW/cnndm_0.1percent_maxsimins_seed27
2
null
transformers
25,977
Entry not found
CEBaB/t5-base.CEBaB.sa.5-class.exclusive.seed_88
e54fc80863c2534949dd5edd6194b68c83a3e09c
2022-05-16T00:30:49.000Z
[ "pytorch", "t5", "transformers" ]
null
false
CEBaB
null
CEBaB/t5-base.CEBaB.sa.5-class.exclusive.seed_88
2
null
transformers
25,978
Entry not found
CEBaB/t5-base.CEBaB.sa.2-class.exclusive.seed_99
8b7e3b5b25143f72f0b25b02901ba7cb888ebbb2
2022-05-16T00:40:10.000Z
[ "pytorch", "t5", "transformers" ]
null
false
CEBaB
null
CEBaB/t5-base.CEBaB.sa.2-class.exclusive.seed_99
2
null
transformers
25,979
Entry not found
CEBaB/t5-base.CEBaB.sa.3-class.exclusive.seed_99
7fd74c96b81b20cc5eaa989af96ea552b30d4628
2022-05-16T00:49:40.000Z
[ "pytorch", "t5", "transformers" ]
null
false
CEBaB
null
CEBaB/t5-base.CEBaB.sa.3-class.exclusive.seed_99
2
null
transformers
25,980
Entry not found
PSW/cnndm_0.1percent_randomsimins_seed27
c002c2f998a3f5e747f49532dcbe3f45feceafe6
2022-05-16T02:16:16.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
PSW
null
PSW/cnndm_0.1percent_randomsimins_seed27
2
null
transformers
25,981
Entry not found
LDD/wwm
3f0f9a601a8f6d8f7b3d02fef98f7b7039d2e494
2022-05-16T03:26:49.000Z
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
false
LDD
null
LDD/wwm
2
null
transformers
25,982
Entry not found
dreamerdeo/ground-en-roberta-base
bc9b3b1ed9a2939aa2f0f89d42edd6ea6c7a3e95
2022-05-16T05:41:04.000Z
[ "pytorch", "roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
dreamerdeo
null
dreamerdeo/ground-en-roberta-base
2
null
transformers
25,983
Entry not found
PSW/cnndm_0.1percent_minmaxswap_seed42
4654b91f4dc7efa3cbf30ea17353713caa459e63
2022-05-16T06:44:37.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
PSW
null
PSW/cnndm_0.1percent_minmaxswap_seed42
2
null
transformers
25,984
Entry not found
ceggian/sbert_pt_reddit_softmax_256
7772ca36d1eba75afb9cf570453bce378fbed342
2022-05-16T06:52:11.000Z
[ "pytorch", "bert", "feature-extraction", "sentence-transformers", "sentence-similarity", "transformers" ]
sentence-similarity
false
ceggian
null
ceggian/sbert_pt_reddit_softmax_256
2
null
sentence-transformers
25,985
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 117759 with parameters: ``` {'batch_size': 8, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.SoftmaxLoss.SoftmaxLoss` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 11775, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
PSW/cnndm_0.1percent_min2swap_seed27
965b7274b8848f8da10b0046d7094fd680034c73
2022-05-16T08:56:55.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
PSW
null
PSW/cnndm_0.1percent_min2swap_seed27
2
null
transformers
25,986
Entry not found
PSW/cnndm_0.1percent_min2swap_seed42
53328c7fe9ece7ff8817a2b6834120523c0a34e6
2022-05-16T10:05:42.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
PSW
null
PSW/cnndm_0.1percent_min2swap_seed42
2
null
transformers
25,987
Entry not found
PSW/cnndm_0.1percent_max2swap_seed42
4888bc90e100a3e5f76fa16dfcd1a7fcb7d1c819
2022-05-16T13:25:57.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
PSW
null
PSW/cnndm_0.1percent_max2swap_seed42
2
null
transformers
25,988
Entry not found
huawei-noah/AutoTinyBERT-KD-S3
bec642d680cfd863656443b93f5bf7e2fb6f5aa0
2022-05-16T15:13:45.000Z
[ "pytorch", "transformers", "license:other" ]
null
false
huawei-noah
null
huawei-noah/AutoTinyBERT-KD-S3
2
null
transformers
25,989
--- license: other ---
PSW/cnndm_0.1percent_randomswap_seed42
0bd0987a509d801112cecdfc645dd123672550dd
2022-05-16T16:47:32.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
PSW
null
PSW/cnndm_0.1percent_randomswap_seed42
2
null
transformers
25,990
Entry not found
PSW/cnndm_0.5percent_minsimdel_seed27
e97a0a2cb2038c18990372f89dcdd16289c2fda9
2022-05-16T19:07:11.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
PSW
null
PSW/cnndm_0.5percent_minsimdel_seed27
2
null
transformers
25,991
Entry not found
PSW/cnndm_0.5percent_minsimdel_seed42
8472c635fcd85c987b102c5d66fccaa205901f47
2022-05-16T20:20:29.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
PSW
null
PSW/cnndm_0.5percent_minsimdel_seed42
2
null
transformers
25,992
Entry not found
evolvingstuff/bert-base-cased-wikitext2
fbbb944928d9ce4de333f969d9dd94af9413eb97
2022-05-16T22:05:33.000Z
[ "pytorch", "tensorboard", "bert", "fill-mask", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
fill-mask
false
evolvingstuff
null
evolvingstuff/bert-base-cased-wikitext2
2
null
transformers
25,993
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: bert-base-cased-wikitext2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-cased-wikitext2 This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 6.8574 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 7.0916 | 1.0 | 2346 | 7.0492 | | 6.9039 | 2.0 | 4692 | 6.8751 | | 6.8845 | 3.0 | 7038 | 6.8929 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.1 - Tokenizers 0.12.1
carlosaguayo/features_and_usecases_05162022_603
60201698c7a9309fa024333b45c275add756917d
2022-05-16T22:03:05.000Z
[ "pytorch", "roberta", "feature-extraction", "sentence-transformers", "sentence-similarity" ]
sentence-similarity
false
carlosaguayo
null
carlosaguayo/features_and_usecases_05162022_603
2
null
sentence-transformers
25,994
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity --- # carlosaguayo/features_and_usecases_05162022_603 This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('carlosaguayo/features_and_usecases_05162022_603') embeddings = model.encode(sentences) print(embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=carlosaguayo/features_and_usecases_05162022_603) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 175 with parameters: ``` {'batch_size': 16, 'sampler': 'torch.utils.data.sampler.SequentialSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 0, "evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 100, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: RobertaModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) (2): Normalize() ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
PSW/cnndm_0.5percent_maxsimdel_seed27
8ad9eb355ca9d3eafaae892ea8b08a97139e5278
2022-05-16T22:39:58.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
PSW
null
PSW/cnndm_0.5percent_maxsimdel_seed27
2
null
transformers
25,995
Entry not found
bkh6722/d-l-dl
d2a51927115efeeda6f173b5b5c69325cb056ede
2022-05-17T16:09:07.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
bkh6722
null
bkh6722/d-l-dl
2
null
transformers
25,996
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # d-l-dl This model is a fine-tuned version of [facebook/wav2vec2-base-960h](https://huggingface.co/facebook/wav2vec2-base-960h) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 3.4495 - Wer: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 800 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:---:| | 42.4143 | 49.8 | 100 | 21.5116 | 1.0 | | 5.9884 | 99.8 | 200 | 31.7976 | 1.0 | | 4.0043 | 149.8 | 300 | 3.4829 | 1.0 | | 3.653 | 199.8 | 400 | 3.6417 | 1.0 | | 3.5207 | 249.8 | 500 | 3.5081 | 1.0 | | 3.63 | 299.8 | 600 | 3.4836 | 1.0 | | 3.648 | 349.8 | 700 | 3.4515 | 1.0 | | 3.6448 | 399.8 | 800 | 3.4647 | 1.0 | | 3.6872 | 449.8 | 900 | 3.4371 | 1.0 | | 3.6892 | 499.8 | 1000 | 3.4337 | 1.0 | | 3.684 | 549.8 | 1100 | 3.4375 | 1.0 | | 3.6843 | 599.8 | 1200 | 3.4452 | 1.0 | | 3.6842 | 649.8 | 1300 | 3.4416 | 1.0 | | 3.6819 | 699.8 | 1400 | 3.4498 | 1.0 | | 3.6832 | 749.8 | 1500 | 3.4524 | 1.0 | | 3.6828 | 799.8 | 1600 | 3.4495 | 1.0 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu113 - Datasets 1.18.3 - Tokenizers 0.10.3
SebastianS/distilbert-base-uncased-finetuned-squad-d5716d28
b9792fe9af050cdf7d50859a3a893e21aae35727
2022-05-17T01:17:00.000Z
[ "pytorch", "distilbert", "fill-mask", "en", "dataset:squad", "arxiv:1910.01108", "transformers", "question-answering", "license:apache-2.0", "autotrain_compatible" ]
question-answering
false
SebastianS
null
SebastianS/distilbert-base-uncased-finetuned-squad-d5716d28
2
null
transformers
25,997
--- language: - en thumbnail: https://github.com/karanchahal/distiller/blob/master/distiller.jpg tags: - question-answering license: apache-2.0 datasets: - squad metrics: - squad --- # DistilBERT with a second step of distillation ## Model description This model replicates the "DistilBERT (D)" model from Table 2 of the [DistilBERT paper](https://arxiv.org/pdf/1910.01108.pdf). In this approach, a DistilBERT student is fine-tuned on SQuAD v1.1, but with a BERT model (also fine-tuned on SQuAD v1.1) acting as a teacher for a second step of task-specific distillation. In this version, the following pre-trained models were used: * Student: `distilbert-base-uncased` * Teacher: `lewtun/bert-base-uncased-finetuned-squad-v1` ## Training data This model was trained on the SQuAD v1.1 dataset which can be obtained from the `datasets` library as follows: ```python from datasets import load_dataset squad = load_dataset('squad') ``` ## Training procedure ## Eval results | | Exact Match | F1 | |------------------|-------------|------| | DistilBERT paper | 79.1 | 86.9 | | Ours | 78.4 | 86.5 | The scores were calculated using the `squad` metric from `datasets`. ### BibTeX entry and citation info ```bibtex @misc{sanh2020distilbert, title={DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter}, author={Victor Sanh and Lysandre Debut and Julien Chaumond and Thomas Wolf}, year={2020}, eprint={1910.01108}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
lilitket/20220517-045629
6e7542df8a8b7dfcc77cb9f17018fbbb59f34494
2022-05-17T03:34:58.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
lilitket
null
lilitket/20220517-045629
2
null
transformers
25,998
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: 20220517-045629 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # 20220517-045629 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3700 - Wer: 0.4581 - Cer: 0.0854 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 1339 - gradient_accumulation_steps: 8 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:| | 5.238 | 0.29 | 200 | 3.1770 | 1.0 | 1.0 | | 2.165 | 0.59 | 400 | 0.7309 | 0.7144 | 0.1543 | | 0.7022 | 0.88 | 600 | 0.4614 | 0.5521 | 0.1058 | | 0.5114 | 1.17 | 800 | 0.4202 | 0.4998 | 0.0965 | | 0.4482 | 1.47 | 1000 | 0.3786 | 0.4645 | 0.0877 | | 0.4082 | 1.76 | 1200 | 0.3700 | 0.4581 | 0.0854 | ### Framework versions - Transformers 4.18.0.dev0 - Pytorch 1.10.0+cu113 - Datasets 2.1.0 - Tokenizers 0.11.6
PSW/cnndm_0.5percent_randomsimdel_seed27
f477112aa15a02f5a9cffb8daf0203d6bcd6320e
2022-05-17T02:13:35.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
PSW
null
PSW/cnndm_0.5percent_randomsimdel_seed27
2
null
transformers
25,999
Entry not found