modelId
stringlengths
4
112
sha
stringlengths
40
40
lastModified
stringlengths
24
24
tags
sequence
pipeline_tag
stringclasses
29 values
private
bool
1 class
author
stringlengths
2
38
config
null
id
stringlengths
4
112
downloads
float64
0
36.8M
likes
float64
0
712
library_name
stringclasses
17 values
__index_level_0__
int64
0
38.5k
readme
stringlengths
0
186k
negfir/bert_uncased_L-2_H-256_A-4_wiki103
9e818067d1e3b3a0fbc28815deda8a14b5ae1b29
2022-05-17T04:55:37.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
negfir
null
negfir/bert_uncased_L-2_H-256_A-4_wiki103
2
null
transformers
26,000
Entry not found
PSW/cnndm_0.5percent_minsimins_seed27
a5f5c9feb595a04a2d869ba59bb3d2d964bbb7bc
2022-05-17T05:46:23.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
PSW
null
PSW/cnndm_0.5percent_minsimins_seed27
2
null
transformers
26,001
Entry not found
PontifexMaximus/opus-mt-en-ro-finetuned-en-to-ro
9887bdb130408b5f57a2823709aed940c6463eea
2022-05-17T08:52:59.000Z
[ "pytorch", "tensorboard", "marian", "text2text-generation", "dataset:wmt16", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
text2text-generation
false
PontifexMaximus
null
PontifexMaximus/opus-mt-en-ro-finetuned-en-to-ro
2
null
transformers
26,002
--- license: apache-2.0 tags: - generated_from_trainer datasets: - wmt16 model-index: - name: opus-mt-en-ro-finetuned-en-to-ro results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # opus-mt-en-ro-finetuned-en-to-ro This model is a fine-tuned version of [Helsinki-NLP/opus-mt-en-ro](https://huggingface.co/Helsinki-NLP/opus-mt-en-ro) on the wmt16 dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.1 - Tokenizers 0.12.1
PSW/cnndm_0.5percent_maxsimins_seed27
a80e2fe375b68c05963b4fa8803bd036139e76f6
2022-05-17T09:18:21.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
PSW
null
PSW/cnndm_0.5percent_maxsimins_seed27
2
null
transformers
26,003
Entry not found
PSW/cnndm_0.5percent_maxsimins_seed42
8d1e76c9c8535c722884401bba5dec081350eb4b
2022-05-17T10:30:47.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
PSW
null
PSW/cnndm_0.5percent_maxsimins_seed42
2
null
transformers
26,004
Entry not found
lilitket/20220517-150219
bb9f2770858c222cde571abea77b6a1ed8fd17db
2022-05-17T14:25:48.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
lilitket
null
lilitket/20220517-150219
2
null
transformers
26,005
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: 20220517-150219 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # 20220517-150219 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2426 - Wer: 0.2344 - Cer: 0.0434 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 4 - eval_batch_size: 8 - seed: 1339 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:-----:|:-----:|:---------------:|:------:|:------:| | 5.3867 | 0.02 | 200 | 3.2171 | 1.0 | 1.0 | | 3.1288 | 0.04 | 400 | 2.9394 | 1.0 | 1.0 | | 1.8298 | 0.06 | 600 | 0.9138 | 0.8416 | 0.2039 | | 0.9751 | 0.07 | 800 | 0.6568 | 0.6928 | 0.1566 | | 0.7934 | 0.09 | 1000 | 0.5314 | 0.6225 | 0.1277 | | 0.663 | 0.11 | 1200 | 0.4759 | 0.5730 | 0.1174 | | 0.617 | 0.13 | 1400 | 0.4515 | 0.5578 | 0.1118 | | 0.5473 | 0.15 | 1600 | 0.4017 | 0.5157 | 0.1004 | | 0.5283 | 0.17 | 1800 | 0.3872 | 0.5094 | 0.0982 | | 0.4893 | 0.18 | 2000 | 0.3725 | 0.4860 | 0.0932 | | 0.495 | 0.2 | 2200 | 0.3580 | 0.4542 | 0.0878 | | 0.4438 | 0.22 | 2400 | 0.3443 | 0.4366 | 0.0858 | | 0.4425 | 0.24 | 2600 | 0.3428 | 0.4284 | 0.0865 | | 0.4293 | 0.26 | 2800 | 0.3329 | 0.4221 | 0.0819 | | 0.3779 | 0.28 | 3000 | 0.3278 | 0.4146 | 0.0794 | | 0.4116 | 0.29 | 3200 | 0.3242 | 0.4107 | 0.0757 | | 0.3912 | 0.31 | 3400 | 0.3217 | 0.4040 | 0.0776 | | 0.391 | 0.33 | 3600 | 0.3127 | 0.3955 | 0.0764 | | 0.3696 | 0.35 | 3800 | 0.3153 | 0.3892 | 0.0748 | | 0.3576 | 0.37 | 4000 | 0.3156 | 0.3846 | 0.0737 | | 0.3553 | 0.39 | 4200 | 0.3024 | 0.3814 | 0.0726 | | 0.3394 | 0.4 | 4400 | 0.3022 | 0.3637 | 0.0685 | | 0.3345 | 0.42 | 4600 | 0.3130 | 0.3641 | 0.0698 | | 0.3357 | 0.44 | 4800 | 0.2913 | 0.3602 | 0.0701 | | 0.3411 | 0.46 | 5000 | 0.2941 | 0.3514 | 0.0674 | | 0.3031 | 0.48 | 5200 | 0.3043 | 0.3613 | 0.0685 | | 0.3305 | 0.5 | 5400 | 0.2967 | 0.3468 | 0.0657 | | 0.3004 | 0.51 | 5600 | 0.2723 | 0.3309 | 0.0616 | | 0.31 | 0.53 | 5800 | 0.2835 | 0.3404 | 0.0648 | | 0.3224 | 0.55 | 6000 | 0.2743 | 0.3358 | 0.0622 | | 0.3261 | 0.57 | 6200 | 0.2803 | 0.3358 | 0.0620 | | 0.305 | 0.59 | 6400 | 0.2835 | 0.3397 | 0.0629 | | 0.3025 | 0.61 | 6600 | 0.2684 | 0.3340 | 0.0639 | | 0.2952 | 0.62 | 6800 | 0.2654 | 0.3256 | 0.0617 | | 0.2903 | 0.64 | 7000 | 0.2588 | 0.3174 | 0.0596 | | 0.2907 | 0.66 | 7200 | 0.2789 | 0.3256 | 0.0623 | | 0.2887 | 0.68 | 7400 | 0.2634 | 0.3142 | 0.0605 | | 0.291 | 0.7 | 7600 | 0.2644 | 0.3097 | 0.0582 | | 0.2646 | 0.72 | 7800 | 0.2753 | 0.3089 | 0.0582 | | 0.2683 | 0.73 | 8000 | 0.2703 | 0.3036 | 0.0574 | | 0.2808 | 0.75 | 8200 | 0.2544 | 0.2994 | 0.0561 | | 0.2724 | 0.77 | 8400 | 0.2584 | 0.3051 | 0.0592 | | 0.2516 | 0.79 | 8600 | 0.2575 | 0.2959 | 0.0557 | | 0.2561 | 0.81 | 8800 | 0.2594 | 0.2945 | 0.0552 | | 0.264 | 0.83 | 9000 | 0.2607 | 0.2987 | 0.0552 | | 0.2383 | 0.84 | 9200 | 0.2641 | 0.2983 | 0.0546 | | 0.2548 | 0.86 | 9400 | 0.2714 | 0.2930 | 0.0538 | | 0.2284 | 0.88 | 9600 | 0.2542 | 0.2945 | 0.0555 | | 0.2354 | 0.9 | 9800 | 0.2564 | 0.2937 | 0.0551 | | 0.2624 | 0.92 | 10000 | 0.2466 | 0.2891 | 0.0542 | | 0.24 | 0.94 | 10200 | 0.2404 | 0.2895 | 0.0528 | | 0.2372 | 0.95 | 10400 | 0.2590 | 0.2782 | 0.0518 | | 0.2357 | 0.97 | 10600 | 0.2629 | 0.2867 | 0.0531 | | 0.2439 | 0.99 | 10800 | 0.2722 | 0.2902 | 0.0556 | | 0.2204 | 1.01 | 11000 | 0.2618 | 0.2856 | 0.0535 | | 0.2043 | 1.03 | 11200 | 0.2662 | 0.2789 | 0.0520 | | 0.2081 | 1.05 | 11400 | 0.2744 | 0.2831 | 0.0532 | | 0.199 | 1.06 | 11600 | 0.2586 | 0.2800 | 0.0519 | | 0.2063 | 1.08 | 11800 | 0.2711 | 0.2842 | 0.0531 | | 0.2116 | 1.1 | 12000 | 0.2463 | 0.2782 | 0.0529 | | 0.2095 | 1.12 | 12200 | 0.2371 | 0.2757 | 0.0510 | | 0.1786 | 1.14 | 12400 | 0.2693 | 0.2768 | 0.0520 | | 0.1999 | 1.16 | 12600 | 0.2625 | 0.2793 | 0.0513 | | 0.1985 | 1.17 | 12800 | 0.2734 | 0.2796 | 0.0532 | | 0.187 | 1.19 | 13000 | 0.2654 | 0.2676 | 0.0514 | | 0.188 | 1.21 | 13200 | 0.2548 | 0.2648 | 0.0489 | | 0.1853 | 1.23 | 13400 | 0.2684 | 0.2641 | 0.0509 | | 0.197 | 1.25 | 13600 | 0.2589 | 0.2662 | 0.0507 | | 0.1873 | 1.27 | 13800 | 0.2633 | 0.2686 | 0.0516 | | 0.179 | 1.28 | 14000 | 0.2682 | 0.2598 | 0.0508 | | 0.2008 | 1.3 | 14200 | 0.2505 | 0.2609 | 0.0493 | | 0.1802 | 1.32 | 14400 | 0.2470 | 0.2598 | 0.0493 | | 0.1903 | 1.34 | 14600 | 0.2572 | 0.2672 | 0.0500 | | 0.1852 | 1.36 | 14800 | 0.2576 | 0.2633 | 0.0491 | | 0.1933 | 1.38 | 15000 | 0.2649 | 0.2602 | 0.0493 | | 0.191 | 1.4 | 15200 | 0.2578 | 0.2612 | 0.0484 | | 0.1863 | 1.41 | 15400 | 0.2572 | 0.2566 | 0.0488 | | 0.1785 | 1.43 | 15600 | 0.2661 | 0.2520 | 0.0478 | | 0.1755 | 1.45 | 15800 | 0.2637 | 0.2605 | 0.0485 | | 0.1677 | 1.47 | 16000 | 0.2481 | 0.2559 | 0.0478 | | 0.1633 | 1.49 | 16200 | 0.2584 | 0.2531 | 0.0476 | | 0.166 | 1.51 | 16400 | 0.2576 | 0.2595 | 0.0487 | | 0.1798 | 1.52 | 16600 | 0.2517 | 0.2570 | 0.0488 | | 0.1879 | 1.54 | 16800 | 0.2555 | 0.2531 | 0.0479 | | 0.1636 | 1.56 | 17000 | 0.2419 | 0.2467 | 0.0464 | | 0.1706 | 1.58 | 17200 | 0.2426 | 0.2457 | 0.0463 | | 0.1763 | 1.6 | 17400 | 0.2427 | 0.2496 | 0.0467 | | 0.1687 | 1.62 | 17600 | 0.2507 | 0.2496 | 0.0467 | | 0.1662 | 1.63 | 17800 | 0.2553 | 0.2474 | 0.0466 | | 0.1637 | 1.65 | 18000 | 0.2576 | 0.2450 | 0.0461 | | 0.1744 | 1.67 | 18200 | 0.2394 | 0.2414 | 0.0454 | | 0.1597 | 1.69 | 18400 | 0.2442 | 0.2443 | 0.0452 | | 0.1606 | 1.71 | 18600 | 0.2488 | 0.2435 | 0.0453 | | 0.1558 | 1.73 | 18800 | 0.2563 | 0.2464 | 0.0464 | | 0.172 | 1.74 | 19000 | 0.2501 | 0.2411 | 0.0452 | | 0.1594 | 1.76 | 19200 | 0.2481 | 0.2460 | 0.0458 | | 0.1732 | 1.78 | 19400 | 0.2427 | 0.2414 | 0.0443 | | 0.1706 | 1.8 | 19600 | 0.2367 | 0.2418 | 0.0446 | | 0.1724 | 1.82 | 19800 | 0.2376 | 0.2390 | 0.0444 | | 0.1621 | 1.84 | 20000 | 0.2430 | 0.2382 | 0.0438 | | 0.1501 | 1.85 | 20200 | 0.2445 | 0.2404 | 0.0438 | | 0.1526 | 1.87 | 20400 | 0.2472 | 0.2361 | 0.0436 | | 0.1756 | 1.89 | 20600 | 0.2431 | 0.2400 | 0.0437 | | 0.1598 | 1.91 | 20800 | 0.2472 | 0.2368 | 0.0439 | | 0.1554 | 1.93 | 21000 | 0.2431 | 0.2347 | 0.0435 | | 0.1354 | 1.95 | 21200 | 0.2427 | 0.2354 | 0.0438 | | 0.1587 | 1.96 | 21400 | 0.2427 | 0.2347 | 0.0435 | | 0.1541 | 1.98 | 21600 | 0.2426 | 0.2344 | 0.0434 | ### Framework versions - Transformers 4.18.0.dev0 - Pytorch 1.10.0+cu113 - Datasets 2.1.0 - Tokenizers 0.11.6
PSW/cnndm_0.5percent_randomsimins_seed27
c0c31b0cd8c90c1b99c767c4cf48e9ec0772617b
2022-05-17T12:59:42.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
PSW
null
PSW/cnndm_0.5percent_randomsimins_seed27
2
null
transformers
26,006
Entry not found
PSW/cnndm_0.5percent_randomsimins_seed42
2c7422479b37d02f1e5bcee17e53f66b1c5db196
2022-05-17T14:13:38.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
PSW
null
PSW/cnndm_0.5percent_randomsimins_seed42
2
null
transformers
26,007
Entry not found
negfir/bert_uncased_L-10_H-768_A-12_wiki103
684e4a056cbefa2e5d51d6538ca32683e4b6112d
2022-05-17T14:09:31.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
negfir
null
negfir/bert_uncased_L-10_H-768_A-12_wiki103
2
null
transformers
26,008
Entry not found
MeshalAlamr/wav2vec2-xls-r-300m-ar-7
0c962e64f5db617c98759909ef43018eda6eaff0
2022-05-18T01:13:10.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "dataset:common_voice", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
MeshalAlamr
null
MeshalAlamr/wav2vec2-xls-r-300m-ar-7
2
null
transformers
26,009
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice model-index: - name: wav2vec2-xls-r-300m-ar-7 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-xls-r-300m-ar-7 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 61.6652 - Wer: 0.2222 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 64 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 256 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 6306.7719 | 4.71 | 400 | 617.7255 | 1.0 | | 1222.8073 | 9.41 | 800 | 81.7446 | 0.3820 | | 326.9842 | 14.12 | 1200 | 67.3986 | 0.2859 | | 223.859 | 18.82 | 1600 | 60.8896 | 0.2492 | | 175.5662 | 23.53 | 2000 | 59.2339 | 0.2256 | | 146.3602 | 28.24 | 2400 | 61.6652 | 0.2222 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.11.0 - Datasets 1.18.4 - Tokenizers 0.11.6
Harsit/mt5-small-finetuned-multilingual-xlsum-new
384c280319ffe67ebe63a46a956a1f0c7f35af6e
2022-05-18T01:58:59.000Z
[ "pytorch", "tensorboard", "mt5", "text2text-generation", "transformers", "multilingual model", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
text2text-generation
false
Harsit
null
Harsit/mt5-small-finetuned-multilingual-xlsum-new
2
null
transformers
26,010
--- license: apache-2.0 tags: - multilingual model - generated_from_trainer metrics: - rouge model-index: - name: mt5-small-finetuned-multilingual-xlsum-new results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mt5-small-finetuned-multilingual-xlsum-new This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on the Xlsum dataset. It achieves the following results on the evaluation set: - Loss: 2.7436 - Rouge1: 9.3908 - Rouge2: 2.5077 - RougeL: 7.8615 - Rougelsum: 7.8745 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5.6e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|:------:|:---------:| | 3.8301 | 1.0 | 3375 | 2.8828 | 8.1957 | 1.9439 | 6.8031 | 6.8206 | | 3.4032 | 2.0 | 6750 | 2.8049 | 8.9533 | 2.2919 | 7.4137 | 7.4244 | | 3.3697 | 3.0 | 10125 | 2.7743 | 9.3366 | 2.4531 | 7.8129 | 7.8276 | | 3.3862 | 4.0 | 13500 | 2.7500 | 9.4377 | 2.542 | 7.9123 | 7.9268 | | 3.1704 | 5.0 | 16875 | 2.7436 | 9.3908 | 2.5077 | 7.8615 | 7.8745 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.1 - Tokenizers 0.12.1
lilitket/20220517-184412
21df154c093eaec93b422ff80f7454dfc0f2d319
2022-05-17T15:26:49.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
lilitket
null
lilitket/20220517-184412
2
null
transformers
26,011
Entry not found
Mathilda/T5-para-Quora
127ecfbabd1c4df12df38cd67231747af5f5dbc5
2022-05-17T20:43:36.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "license:afl-3.0", "autotrain_compatible" ]
text2text-generation
false
Mathilda
null
Mathilda/T5-para-Quora
2
null
transformers
26,012
--- license: afl-3.0 ---
PSW/cnndm_0.5percent_min2swap_seed27
c66f906c641f5d9b5bb3f30388abb0781d508e9d
2022-05-17T20:15:43.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
PSW
null
PSW/cnndm_0.5percent_min2swap_seed27
2
null
transformers
26,013
Entry not found
CEBaB/gpt2.CEBaB.absa.exclusive.seed_88
ca189b8a71c8994e61c805999c82d02b2369d1c6
2022-05-17T20:38:07.000Z
[ "pytorch", "gpt2", "transformers" ]
null
false
CEBaB
null
CEBaB/gpt2.CEBaB.absa.exclusive.seed_88
2
null
transformers
26,014
Entry not found
PSW/cnndm_0.5percent_min2swap_seed42
09dace0a1dd03f8d3effa7c068435e117e17753e
2022-05-17T21:28:05.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
PSW
null
PSW/cnndm_0.5percent_min2swap_seed42
2
null
transformers
26,015
Entry not found
PSW/cnndm_0.5percent_max2swap_seed27
6a8ca6cc8020daa38c1496aab9a394ee74c5b5e2
2022-05-17T23:47:29.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
PSW
null
PSW/cnndm_0.5percent_max2swap_seed27
2
null
transformers
26,016
Entry not found
CEBaB/gpt2.CEBaB.absa.inclusive.seed_42
5283b39ce497165543a7c7ed93b99c23286fee0b
2022-05-17T23:47:03.000Z
[ "pytorch", "gpt2", "transformers" ]
null
false
CEBaB
null
CEBaB/gpt2.CEBaB.absa.inclusive.seed_42
2
null
transformers
26,017
Entry not found
CEBaB/bert-base-uncased.CEBaB.absa.inclusive.seed_42
e2e0cf056aa654c4aaebb4f818e3bce5891e9d16
2022-05-17T23:53:21.000Z
[ "pytorch", "bert", "transformers" ]
null
false
CEBaB
null
CEBaB/bert-base-uncased.CEBaB.absa.inclusive.seed_42
2
null
transformers
26,018
Entry not found
CEBaB/gpt2.CEBaB.absa.inclusive.seed_66
fbf158b104086b4753b317625144976dd2b94191
2022-05-18T00:03:36.000Z
[ "pytorch", "gpt2", "transformers" ]
null
false
CEBaB
null
CEBaB/gpt2.CEBaB.absa.inclusive.seed_66
2
null
transformers
26,019
Entry not found
CEBaB/bert-base-uncased.CEBaB.absa.inclusive.seed_66
a2534382aad385b52fa6c50078f8b9873815030e
2022-05-18T00:10:01.000Z
[ "pytorch", "bert", "transformers" ]
null
false
CEBaB
null
CEBaB/bert-base-uncased.CEBaB.absa.inclusive.seed_66
2
null
transformers
26,020
Entry not found
CEBaB/bert-base-uncased.CEBaB.absa.inclusive.seed_77
27f327d5ed847075bb00953921f5a89b41b87c73
2022-05-18T00:26:53.000Z
[ "pytorch", "bert", "transformers" ]
null
false
CEBaB
null
CEBaB/bert-base-uncased.CEBaB.absa.inclusive.seed_77
2
null
transformers
26,021
Entry not found
CEBaB/gpt2.CEBaB.absa.inclusive.seed_88
a0d2a17c068b289a47063be0b3c7f183cf393433
2022-05-18T00:38:25.000Z
[ "pytorch", "gpt2", "transformers" ]
null
false
CEBaB
null
CEBaB/gpt2.CEBaB.absa.inclusive.seed_88
2
null
transformers
26,022
Entry not found
PSW/cnndm_0.5percent_max2swap_seed42
b61881ed1c6304588a45efb212ffe927b712c4a3
2022-05-18T00:59:38.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
PSW
null
PSW/cnndm_0.5percent_max2swap_seed42
2
null
transformers
26,023
Entry not found
CEBaB/gpt2.CEBaB.absa.inclusive.seed_99
9f26f445fb2cab22364df92db100a14a0e64b787
2022-05-18T00:55:13.000Z
[ "pytorch", "gpt2", "transformers" ]
null
false
CEBaB
null
CEBaB/gpt2.CEBaB.absa.inclusive.seed_99
2
null
transformers
26,024
Entry not found
CEBaB/bert-base-uncased.CEBaB.absa.inclusive.seed_99
eddbeaacc2b81d0d64ea531e6eb5cab54bdd704f
2022-05-18T01:01:30.000Z
[ "pytorch", "bert", "transformers" ]
null
false
CEBaB
null
CEBaB/bert-base-uncased.CEBaB.absa.inclusive.seed_99
2
null
transformers
26,025
Entry not found
PSW/cnndm_0.5percent_randomswap_seed27
d234f18a52549957eeb09718ff4429f33f7502b5
2022-05-18T03:18:39.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
PSW
null
PSW/cnndm_0.5percent_randomswap_seed27
2
null
transformers
26,026
Entry not found
PSW/cnndm_0.5percent_randomswap_seed42
93592e4debec0f8e4d940e053c78110079d62ff5
2022-05-18T04:30:37.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
PSW
null
PSW/cnndm_0.5percent_randomswap_seed42
2
null
transformers
26,027
Entry not found
negfir/bert_uncased_L-10_H-512_A-8_wiki103
f0026fcaaff29ad9c0c62e4431c86f93d8cc2403
2022-05-18T06:22:09.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
negfir
null
negfir/bert_uncased_L-10_H-512_A-8_wiki103
2
null
transformers
26,028
Entry not found
rickySaka/eng-med
ce7172189f69f441f4f17be77121d92fb2f18d42
2022-05-18T07:38:22.000Z
[ "pytorch", "marian", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
rickySaka
null
rickySaka/eng-med
2
null
transformers
26,029
Entry not found
nthanhha26/autotrain-test-project-879428192
ed55014f89a81af3c63877f5c9a3da460b7bd4f5
2022-05-18T08:28:19.000Z
[ "pytorch", "roberta", "text-classification", "unk", "dataset:nthanhha26/autotrain-data-test-project", "transformers", "autotrain", "co2_eq_emissions" ]
text-classification
false
nthanhha26
null
nthanhha26/autotrain-test-project-879428192
2
null
transformers
26,030
--- tags: autotrain language: unk widget: - text: "I love AutoTrain 🤗" datasets: - nthanhha26/autotrain-data-test-project co2_eq_emissions: 13.170344687762716 --- # Model Trained Using AutoTrain - Problem type: Binary Classification - Model ID: 879428192 - CO2 Emissions (in grams): 13.170344687762716 ## Validation Metrics - Loss: 0.06465228646993637 - Accuracy: 0.9796652588768966 - Precision: 0.9843385538153949 - Recall: 0.993943472409152 - AUC: 0.9855992605071237 - F1: 0.9891176963000168 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/nthanhha26/autotrain-test-project-879428192 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("nthanhha26/autotrain-test-project-879428192", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("nthanhha26/autotrain-test-project-879428192", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
PSW/cnndm_0.1percent_baseline_seed1
9fbbdaeb1cba3120c8e7a638311e4fcd661b27b3
2022-05-18T14:42:17.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
PSW
null
PSW/cnndm_0.1percent_baseline_seed1
2
null
transformers
26,031
Entry not found
RuiqianLi/wav2vec2-large-xls-r-300m-singlish-colab
403a2d58c35e06b187b7cd7de5e7823468cb95e6
2022-05-18T19:16:22.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "dataset:li_singlish", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
RuiqianLi
null
RuiqianLi/wav2vec2-large-xls-r-300m-singlish-colab
2
1
transformers
26,032
--- license: apache-2.0 tags: - generated_from_trainer datasets: - li_singlish model-index: - name: wav2vec2-large-xls-r-300m-singlish-colab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-singlish-colab This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the li_singlish dataset. It achieves the following results on the evaluation set: - Loss: 0.7199 - Wer: 0.3337 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 4.2984 | 4.76 | 400 | 2.9046 | 1.0 | | 1.1895 | 9.52 | 800 | 0.7725 | 0.4535 | | 0.1331 | 14.28 | 1200 | 0.7068 | 0.3847 | | 0.0701 | 19.05 | 1600 | 0.7547 | 0.3617 | | 0.0509 | 23.8 | 2000 | 0.7123 | 0.3444 | | 0.0385 | 28.57 | 2400 | 0.7199 | 0.3337 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu113 - Datasets 1.18.3 - Tokenizers 0.10.3
EddieChen372/CodeBerta-finetuned-react
b49b129cbc7415b8907da059d314a0c4f209235a
2022-05-18T18:53:00.000Z
[ "pytorch", "tensorboard", "roberta", "fill-mask", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
fill-mask
false
EddieChen372
null
EddieChen372/CodeBerta-finetuned-react
2
null
transformers
26,033
--- tags: - generated_from_trainer model-index: - name: CodeBerta-finetuned-react results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # CodeBerta-finetuned-react This model is a fine-tuned version of [huggingface/CodeBERTa-small-v1](https://huggingface.co/huggingface/CodeBERTa-small-v1) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.7887 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 3.8968 | 1.0 | 157 | 3.2166 | | 3.1325 | 2.0 | 314 | 2.9491 | | 2.9744 | 3.0 | 471 | 2.7887 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.1 - Tokenizers 0.12.1
negfir/bert_uncased_L-8_H-768_A-12_wiki103
9b52d56f54f0aac287ce65f5b0e728af60e2e8ca
2022-05-18T16:01:23.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
negfir
null
negfir/bert_uncased_L-8_H-768_A-12_wiki103
2
null
transformers
26,034
Entry not found
carlosaguayo/features_and_usecases_05182022_1245
597004638cded0e66e82a0d8615091b5fac5e448
2022-05-18T16:45:57.000Z
[ "pytorch", "roberta", "feature-extraction", "sentence-transformers", "sentence-similarity" ]
sentence-similarity
false
carlosaguayo
null
carlosaguayo/features_and_usecases_05182022_1245
2
null
sentence-transformers
26,035
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity --- # carlosaguayo/features_and_usecases_05182022_1245 This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('carlosaguayo/features_and_usecases_05182022_1245') embeddings = model.encode(sentences) print(embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=carlosaguayo/features_and_usecases_05182022_1245) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 175 with parameters: ``` {'batch_size': 16, 'sampler': 'torch.utils.data.sampler.SequentialSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 0, "evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 100, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: RobertaModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) (2): Normalize() ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
PSW/cnndm_0.1percent_baseline_seed42
add1ac417f88f43759ee737f03adff01c5a3a43e
2022-05-18T17:10:05.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
PSW
null
PSW/cnndm_0.1percent_baseline_seed42
2
null
transformers
26,036
Entry not found
negfir/bert_uncased_L-10_H-128_A-2_wiki103
6204dafde52f8c87fac0bd41b5da7d7e805e499b
2022-05-18T17:06:51.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
negfir
null
negfir/bert_uncased_L-10_H-128_A-2_wiki103
2
null
transformers
26,037
Entry not found
PSW/cnndm_0.5percent_baseline_seed1
6394c8ab058fb096d7b6cb64f8b31c466ca11989
2022-05-19T08:10:16.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
PSW
null
PSW/cnndm_0.5percent_baseline_seed1
2
null
transformers
26,038
Entry not found
PSW/cnndm_0.5percent_baseline_seed27
d2fc8b20527ea445ca20e4da21f05c7545138969
2022-05-18T20:43:42.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
PSW
null
PSW/cnndm_0.5percent_baseline_seed27
2
null
transformers
26,039
Entry not found
negfir/bert_uncased_L-8_H-512_A-8_wiki103
7c9690ce50ae7eb6a8950b5bfbcbc22620559ae1
2022-05-19T05:31:55.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
negfir
null
negfir/bert_uncased_L-8_H-512_A-8_wiki103
2
null
transformers
26,040
Entry not found
PontifexMaximus/opus-mt-en-de-finetuned-de-to-en
813ec48d7e22a9794a513797c4d16d4bc1d38678
2022-05-19T07:01:23.000Z
[ "pytorch", "tensorboard", "marian", "text2text-generation", "dataset:wmt14", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
text2text-generation
false
PontifexMaximus
null
PontifexMaximus/opus-mt-en-de-finetuned-de-to-en
2
null
transformers
26,041
--- license: apache-2.0 tags: - generated_from_trainer datasets: - wmt14 model-index: - name: opus-mt-en-de-finetuned-de-to-en results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # opus-mt-en-de-finetuned-de-to-en This model is a fine-tuned version of [Helsinki-NLP/opus-mt-en-de](https://huggingface.co/Helsinki-NLP/opus-mt-en-de) on the wmt14 dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.2 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.1 - Tokenizers 0.12.1
PontifexMaximus/opus-mt-en-ro-finetuned-ro-to-en
b878a8aeb8399903b0ca5c1a063979cd87155960
2022-05-19T09:07:32.000Z
[ "pytorch", "tensorboard", "marian", "text2text-generation", "dataset:wmt16", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
text2text-generation
false
PontifexMaximus
null
PontifexMaximus/opus-mt-en-ro-finetuned-ro-to-en
2
null
transformers
26,042
--- license: apache-2.0 tags: - generated_from_trainer datasets: - wmt16 model-index: - name: opus-mt-en-ro-finetuned-ro-to-en results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # opus-mt-en-ro-finetuned-ro-to-en This model is a fine-tuned version of [Helsinki-NLP/opus-mt-en-ro](https://huggingface.co/Helsinki-NLP/opus-mt-en-ro) on the wmt16 dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.2 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.1 - Tokenizers 0.12.1
moma1820/AUG_XLMR_MARKETING
ebccfd419e903d9d8c876e8df4f0692314b50e81
2022-05-19T16:32:21.000Z
[ "pytorch", "xlm-roberta-xl", "feature-extraction", "transformers" ]
feature-extraction
false
moma1820
null
moma1820/AUG_XLMR_MARKETING
2
null
transformers
26,043
Entry not found
sarakolding/daT5-base
0a659318bb33f7b6cc1237b66c1d815f9c0c1a7a
2022-05-31T13:18:37.000Z
[ "pytorch", "mt5", "text2text-generation", "da", "transformers", "autotrain_compatible" ]
text2text-generation
false
sarakolding
null
sarakolding/daT5-base
2
1
transformers
26,044
--- language: - da --- This repository contains a language-specific mT5-base, where the vocabulary is condensed to include tokens used in Danish and English.
NCAI/Bert_backup
cdbac05a6183f8441147003ac8ae5399cc1a6a52
2022-05-21T19:45:14.000Z
[ "pytorch", "lean_albert", "transformers" ]
null
false
NCAI
null
NCAI/Bert_backup
2
null
transformers
26,045
Entry not found
negfir/bert_uncased_L-8_H-256_A-4_wiki103
df486e96448b2e14b5032a7d5feb2926f29e3cd2
2022-05-19T10:26:35.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
negfir
null
negfir/bert_uncased_L-8_H-256_A-4_wiki103
2
null
transformers
26,046
Entry not found
ViktorDo/bert-base-uncased-scratch-powo_mgh_pt
9f48768738ce04af3eddc6db130720fd2b15a3e5
2022-05-19T11:06:43.000Z
[ "pytorch", "tensorboard", "bert", "fill-mask", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
fill-mask
false
ViktorDo
null
ViktorDo/bert-base-uncased-scratch-powo_mgh_pt
2
null
transformers
26,047
--- tags: - generated_from_trainer model-index: - name: bert-base-uncased-scratch-powo_mgh_pt results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-scratch-powo_mgh_pt This model is a fine-tuned version of [](https://huggingface.co/) on the None dataset. It achieves the following results on the evaluation set: - Loss: 4.5901 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 5 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 40 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 6.3881 | 3.57 | 200 | 5.2653 | | 4.7294 | 7.14 | 400 | 4.6365 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.1 - Tokenizers 0.12.1
vijaygoriya/test_trainer
2c6a37dc34fba7693643e0e8a277b96d7bf7034c
2022-06-15T11:23:25.000Z
[ "pytorch", "bert", "text-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
vijaygoriya
null
vijaygoriya/test_trainer
2
null
transformers
26,048
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: test_trainer results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # test_trainer This model is a fine-tuned version of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.9646 - Accuracy: 0.8171 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.4452 | 1.0 | 2000 | 0.5505 | 0.7673 | | 0.277 | 2.0 | 4000 | 0.7271 | 0.8210 | | 0.1412 | 3.0 | 6000 | 0.9646 | 0.8171 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.1 - Tokenizers 0.12.1
leonweber/bunsen_base_last
bb9af07c83c0f0715297d58f5da1d61a276f77c8
2022-05-19T11:49:17.000Z
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
false
leonweber
null
leonweber/bunsen_base_last
2
null
transformers
26,049
Entry not found
MeshalAlamr/wav2vec2-xls-r-300m-ar-9
37fa7ec2e6c0d23e7225e1b33b9b0a607b70f6a5
2022-05-23T07:54:10.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "dataset:common_voice", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
MeshalAlamr
null
MeshalAlamr/wav2vec2-xls-r-300m-ar-9
2
null
transformers
26,050
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice model-index: - name: wav2vec2-xls-r-300m-ar-9 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-xls-r-300m-ar-9 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 86.4276 - Wer: 0.1947 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 64 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 256 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 120 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:-----:|:---------------:|:------:| | 6312.2087 | 4.71 | 400 | 616.6482 | 1.0 | | 1928.3641 | 9.41 | 800 | 135.8992 | 0.6373 | | 502.0017 | 14.12 | 1200 | 84.4729 | 0.3781 | | 299.4288 | 18.82 | 1600 | 76.2488 | 0.3132 | | 224.0057 | 23.53 | 2000 | 77.6899 | 0.2868 | | 183.0379 | 28.24 | 2400 | 77.7943 | 0.2725 | | 160.6119 | 32.94 | 2800 | 79.4487 | 0.2643 | | 142.7342 | 37.65 | 3200 | 81.3426 | 0.2523 | | 127.1061 | 42.35 | 3600 | 83.4995 | 0.2489 | | 114.0666 | 47.06 | 4000 | 82.9293 | 0.2416 | | 108.4024 | 51.76 | 4400 | 78.6118 | 0.2330 | | 99.6215 | 56.47 | 4800 | 87.1001 | 0.2328 | | 95.5135 | 61.18 | 5200 | 84.0371 | 0.2260 | | 88.2917 | 65.88 | 5600 | 85.9637 | 0.2278 | | 82.5884 | 70.59 | 6000 | 81.7456 | 0.2237 | | 77.6827 | 75.29 | 6400 | 88.2686 | 0.2184 | | 73.313 | 80.0 | 6800 | 85.1965 | 0.2183 | | 69.61 | 84.71 | 7200 | 86.1655 | 0.2100 | | 65.6991 | 89.41 | 7600 | 84.0606 | 0.2106 | | 62.6059 | 94.12 | 8000 | 83.8724 | 0.2036 | | 57.8635 | 98.82 | 8400 | 85.2078 | 0.2012 | | 55.2126 | 103.53 | 8800 | 86.6009 | 0.2021 | | 53.1746 | 108.24 | 9200 | 88.4284 | 0.1975 | | 52.3969 | 112.94 | 9600 | 85.2846 | 0.1972 | | 49.8386 | 117.65 | 10000 | 86.4276 | 0.1947 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.11.0 - Datasets 1.18.4 - Tokenizers 0.11.6
mmillet/rubert-tiny2_finetuned_emotion_experiment
13cc90539a92213b84c8df16aeab5bb5222ed70e
2022-06-03T20:03:37.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers", "generated_from_trainer", "license:mit", "model-index" ]
text-classification
false
mmillet
null
mmillet/rubert-tiny2_finetuned_emotion_experiment
2
null
transformers
26,051
--- license: mit tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: rubert-tiny2_finetuned_emotion_experiment results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # rubert-tiny2_finetuned_emotion_experiment This model is a fine-tuned version of [cointegrated/rubert-tiny2](https://huggingface.co/cointegrated/rubert-tiny2) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3947 - Accuracy: 0.8616 - F1: 0.8577 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 15 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.651 | 1.0 | 54 | 0.5689 | 0.8172 | 0.8008 | | 0.5355 | 2.0 | 108 | 0.4842 | 0.8486 | 0.8349 | | 0.4561 | 3.0 | 162 | 0.4436 | 0.8590 | 0.8509 | | 0.4133 | 4.0 | 216 | 0.4203 | 0.8590 | 0.8528 | | 0.3709 | 5.0 | 270 | 0.4071 | 0.8564 | 0.8515 | | 0.3346 | 6.0 | 324 | 0.3980 | 0.8564 | 0.8529 | | 0.3153 | 7.0 | 378 | 0.3985 | 0.8590 | 0.8565 | | 0.302 | 8.0 | 432 | 0.3967 | 0.8642 | 0.8619 | | 0.2774 | 9.0 | 486 | 0.3958 | 0.8616 | 0.8575 | | 0.2728 | 10.0 | 540 | 0.3959 | 0.8668 | 0.8644 | | 0.2427 | 11.0 | 594 | 0.3962 | 0.8590 | 0.8550 | | 0.2425 | 12.0 | 648 | 0.3959 | 0.8642 | 0.8611 | | 0.2414 | 13.0 | 702 | 0.3959 | 0.8642 | 0.8611 | | 0.2249 | 14.0 | 756 | 0.3949 | 0.8616 | 0.8582 | | 0.2391 | 15.0 | 810 | 0.3947 | 0.8616 | 0.8577 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.1 - Tokenizers 0.12.1
jjezabek/roberta-base-sst
48aba7899b8318614500f8e67169d43fd78265d4
2022-05-19T19:41:54.000Z
[ "pytorch", "roberta", "text-classification", "transformers" ]
text-classification
false
jjezabek
null
jjezabek/roberta-base-sst
2
null
transformers
26,052
Entry not found
jjezabek/roberta-base-sst_bin
1934462962b7da3002430e41e15ec5535442646e
2022-05-19T19:49:01.000Z
[ "pytorch", "roberta", "text-classification", "transformers" ]
text-classification
false
jjezabek
null
jjezabek/roberta-base-sst_bin
2
null
transformers
26,053
Entry not found
jjezabek/bert-base-uncased-yelp_bin
f01b11624af55161907e002138c18a2622bb3e56
2022-05-19T19:53:20.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
jjezabek
null
jjezabek/bert-base-uncased-yelp_bin
2
null
transformers
26,054
Entry not found
triet1102/xlm-roberta-base-finetuned-panx-de
1573815d0c3345e70b6fddd3902e07b2ef6c751b
2022-05-19T21:15:51.000Z
[ "pytorch", "tensorboard", "xlm-roberta", "token-classification", "dataset:xtreme", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
token-classification
false
triet1102
null
triet1102/xlm-roberta-base-finetuned-panx-de
2
null
transformers
26,055
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme args: PAN-X.de metrics: - name: F1 type: f1 value: 0.8620945214069894 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.1372 - F1: 0.8621 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2575 | 1.0 | 525 | 0.1621 | 0.8292 | | 0.1287 | 2.0 | 1050 | 0.1378 | 0.8526 | | 0.0831 | 3.0 | 1575 | 0.1372 | 0.8621 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.1 - Tokenizers 0.12.1
jjezabek/roberta-base-yelp_bin
f5156a912931a3b8b292d2540ea383103d377131
2022-05-19T20:48:56.000Z
[ "pytorch", "roberta", "text-classification", "transformers" ]
text-classification
false
jjezabek
null
jjezabek/roberta-base-yelp_bin
2
null
transformers
26,056
Entry not found
jjezabek/roberta-base-yelp_full
07eb9f4a72d0642f8b6394b5d2c3ed716fa8d64b
2022-05-19T20:49:11.000Z
[ "pytorch", "roberta", "text-classification", "transformers" ]
text-classification
false
jjezabek
null
jjezabek/roberta-base-yelp_full
2
null
transformers
26,057
Entry not found
jianxun/distilbert-base-uncased-finetuned-emotion
f74a32bd4010580ecf2e4da0d0e8b5110eea1edb
2022-06-20T23:11:20.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "transformers" ]
text-classification
false
jianxun
null
jianxun/distilbert-base-uncased-finetuned-emotion
2
null
transformers
26,058
Entry not found
PontifexMaximus/opus-mt-tr-en-finetuned-az-to-en
84d10e6a79c4051a96265701c8bef7d26dcdfec4
2022-05-20T08:13:37.000Z
[ "pytorch", "tensorboard", "marian", "text2text-generation", "dataset:turkic_xwmt", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
text2text-generation
false
PontifexMaximus
null
PontifexMaximus/opus-mt-tr-en-finetuned-az-to-en
2
null
transformers
26,059
--- license: apache-2.0 tags: - generated_from_trainer datasets: - turkic_xwmt metrics: - bleu model-index: - name: opus-mt-tr-en-finetuned-az-to-en results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: turkic_xwmt type: turkic_xwmt args: az-en metrics: - name: Bleu type: bleu value: 0.0002 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # opus-mt-tr-en-finetuned-az-to-en This model is a fine-tuned version of [Helsinki-NLP/opus-mt-tr-en](https://huggingface.co/Helsinki-NLP/opus-mt-tr-en) on the turkic_xwmt dataset. It achieves the following results on the evaluation set: - Loss: nan - Bleu: 0.0002 - Gen Len: 511.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.2 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------:|:-------:| | No log | 1.0 | 38 | nan | 0.0002 | 511.0 | | No log | 2.0 | 76 | nan | 0.0002 | 511.0 | | No log | 3.0 | 114 | nan | 0.0002 | 511.0 | | No log | 4.0 | 152 | nan | 0.0002 | 511.0 | | No log | 5.0 | 190 | nan | 0.0002 | 511.0 | | No log | 6.0 | 228 | nan | 0.0002 | 511.0 | | No log | 7.0 | 266 | nan | 0.0002 | 511.0 | | No log | 8.0 | 304 | nan | 0.0002 | 511.0 | | No log | 9.0 | 342 | nan | 0.0002 | 511.0 | | No log | 10.0 | 380 | nan | 0.0002 | 511.0 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.1 - Tokenizers 0.12.1
totoro4007/cryptoroberta-base
639073072bc27ea2edffebe6717637f8dd52463c
2022-05-20T07:37:33.000Z
[ "pytorch", "xlm-roberta", "text-classification", "transformers" ]
text-classification
false
totoro4007
null
totoro4007/cryptoroberta-base
2
null
transformers
26,060
Entry not found
tornqvistmax/XLMR_finetuned_cluster4
7123f02697cf021a860744a784183fb1408d129f
2022-05-20T13:46:07.000Z
[ "pytorch", "xlm-roberta-xl", "text-classification", "transformers" ]
text-classification
false
tornqvistmax
null
tornqvistmax/XLMR_finetuned_cluster4
2
null
transformers
26,061
Entry not found
HueyNemud/das22-43-camembert_pretrained_finetuned_pero
359d820b9f6cdcff866a29caab778cefa21f8bc2
2022-05-20T16:21:33.000Z
[ "pytorch", "camembert", "token-classification", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
token-classification
false
HueyNemud
null
HueyNemud/das22-43-camembert_pretrained_finetuned_pero
2
null
transformers
26,062
--- tags: - generated_from_trainer model-index: - name: CamemBERT pretrained on french trade directories from the XIXth century results: [] --- # CamemBERT trained and fine-tuned for NER on french trade directories from the XIXth century [PERO-OCR training set] This mdoel is part of the material of the paper > Abadie, N., Carlinet, E., Chazalon, J., Duménieu, B. (2022). A > Benchmark of Named Entity Recognition Approaches in Historical > Documents Application to 19𝑡ℎ Century French Directories. In: Uchida, > S., Barney, E., Eglin, V. (eds) Document Analysis Systems. DAS 2022. > Lecture Notes in Computer Science, vol 13237. Springer, Cham. > https://doi.org/10.1007/978-3-031-06555-2_30 The source code to train this model is available on the [GitHub repository](https://github.com/soduco/paper-ner-bench-das22) of the paper as a Jupyter notebook in `src/ner/40_experiment_2.ipynb`. ## Model description This model adapts the model [Jean-Baptiste/camembert-ner](https://huggingface.co/Jean-Baptiste/camembert-ner) for NER on 6004 manually annotated directory entries referred as the "reference dataset" in the paper. Trade directory entries are short and strongly structured texts that giving the name, activity and location of a person or business, e.g: ``` Peynaud, R. de la Vieille Bouclerie, 18. Richard, Joullain et comp., (commission- —Phéâtre Français. naire, (entrepôt), au port de la Rapée- ``` ## Intended uses & limitations This model is intended for reproducibility of the NER evaluation published in the DAS2022 paper. Several derived models trained for NER on trade directories are available on HuggingFace, each trained on a different dataset : - [das22-10-camembert_pretrained_finetuned_ref](): trained for NER on ~6000 directory entries manually corrected. - [das22-10-camembert_pretrained_finetuned_pero](): trained for NER on ~6000 directory entries extracted with PERO-OCR. - [das22-10-camembert_pretrained_finetuned_tess](): trained for NER on ~6000 directory entries extracted with Tesseract. ### Training hyperparameters ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
HueyNemud/das22-41-camembert_pretrained_finetuned_ref
ac4f93a35b88df4df2f74354cbe10340ba9490b3
2022-05-20T16:27:58.000Z
[ "pytorch", "camembert", "token-classification", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
token-classification
false
HueyNemud
null
HueyNemud/das22-41-camembert_pretrained_finetuned_ref
2
null
transformers
26,063
--- tags: - generated_from_trainer model-index: - name: CamemBERT pretrained on french trade directories from the XIXth century results: [] --- # CamemBERT pretrained and trained for NER on french trade directories from the XIXth century [GOLD training set] This mdoel is part of the material of the paper > Abadie, N., Carlinet, E., Chazalon, J., Duménieu, B. (2022). A > Benchmark of Named Entity Recognition Approaches in Historical > Documents Application to 19𝑡ℎ Century French Directories. In: Uchida, > S., Barney, E., Eglin, V. (eds) Document Analysis Systems. DAS 2022. > Lecture Notes in Computer Science, vol 13237. Springer, Cham. > https://doi.org/10.1007/978-3-031-06555-2_30 The source code to train this model is available on the [GitHub repository](https://github.com/soduco/paper-ner-bench-das22) of the paper as a Jupyter notebook in `src/ner/40_experiment_2.ipynb`. ## Model description This model adapts the pre-trained model [das22-10-camembert_pretrained](https://huggingface.co/HueyNemud/das22-10-camembert_pretrained) for NER on 6004 manually annotated directory entries referred as the "reference dataset" in the paper. Trade directory entries are short and strongly structured texts that giving the name, activity and location of a person or business, e.g: ``` Peynaud, R. de la Vieille Bouclerie, 18. Richard, Joullain et comp., (commission- —Phéâtre Français. naire, (entrepôt), au port de la Rapée- ``` ## Intended uses & limitations This model is intended for reproducibility of the NER evaluation published in the DAS2022 paper. Several derived models trained for NER on trade directories are available on HuggingFace, each trained on a different dataset : - [das22-10-camembert_pretrained_finetuned_ref](): trained for NER on ~6000 directory entries manually corrected. - [das22-10-camembert_pretrained_finetuned_pero](): trained for NER on ~6000 directory entries extracted with PERO-OCR. - [das22-10-camembert_pretrained_finetuned_tess](): trained for NER on ~6000 directory entries extracted with Tesseract. ### Training hyperparameters ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
okovtun/bert-emotion
67b9ebf401fe96738d962ecdeeb2c0efc0f8db06
2022-05-23T03:51:49.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "transformers" ]
text-classification
false
okovtun
null
okovtun/bert-emotion
2
null
transformers
26,064
Entry not found
Ukhushn/ukhushn
156f38a4eb5d89ff33f5f3e42042ae876c85cb2c
2022-05-20T19:28:31.000Z
[ "pytorch", "distilbert", "feature-extraction", "sentence-transformers", "sentence-similarity", "transformers" ]
sentence-similarity
false
Ukhushn
null
Ukhushn/ukhushn
2
null
sentence-transformers
26,065
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # Ukhushn/ukhushn This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('Ukhushn/ukhushn') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('Ukhushn/ukhushn') model = AutoModel.from_pretrained('Ukhushn/ukhushn') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=Ukhushn/ukhushn) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 6661 with parameters: ``` {'batch_size': 8, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 4, "evaluation_steps": 1000, "evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 2665, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: DistilBertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
Kuaaangwen/distilroberta-base-finetuned-chemistry
3c9ac47d8c5413e8e7fcafacc99bbc28f74cb72f
2022-05-22T08:56:27.000Z
[ "pytorch", "tensorboard", "roberta", "fill-mask", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
fill-mask
false
Kuaaangwen
null
Kuaaangwen/distilroberta-base-finetuned-chemistry
2
null
transformers
26,066
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distilroberta-base-finetuned-chemistry results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilroberta-base-finetuned-chemistry This model is a fine-tuned version of [distilroberta-base](https://huggingface.co/distilroberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.7643 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 259 | 1.9385 | | 2.148 | 2.0 | 518 | 1.7923 | | 2.148 | 3.0 | 777 | 1.7691 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
Kuaaangwen/distilroberta-base-finetuned-chemistry-with-new-tokenizer
ce3b095b1d58185f32d385a1e5978c017232c2a5
2022-05-21T10:36:36.000Z
[ "pytorch", "tensorboard", "roberta", "fill-mask", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
fill-mask
false
Kuaaangwen
null
Kuaaangwen/distilroberta-base-finetuned-chemistry-with-new-tokenizer
2
null
transformers
26,067
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distilroberta-base-finetuned-chemistry-with-new-tokenizer results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilroberta-base-finetuned-chemistry-with-new-tokenizer This model is a fine-tuned version of [distilroberta-base](https://huggingface.co/distilroberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 4.8354 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 224 | 5.1474 | | No log | 2.0 | 448 | 4.9120 | | 5.4707 | 3.0 | 672 | 4.8450 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
Leizhang/xlm-roberta-base-finetuned-panx-de
9aefb5d9f60fd43f3a2fe83ae1fdcc7d2c927a16
2022-05-22T12:51:10.000Z
[ "pytorch", "tensorboard", "xlm-roberta", "token-classification", "dataset:xtreme", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
token-classification
false
Leizhang
null
Leizhang/xlm-roberta-base-finetuned-panx-de
2
null
transformers
26,068
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme args: PAN-X.de metrics: - name: F1 type: f1 value: 0.8620945214069894 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.1372 - F1: 0.8621 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2575 | 1.0 | 525 | 0.1621 | 0.8292 | | 0.1287 | 2.0 | 1050 | 0.1378 | 0.8526 | | 0.0831 | 3.0 | 1575 | 0.1372 | 0.8621 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.11.0+cu113 - Datasets 1.16.1 - Tokenizers 0.10.3
stevemobs/bert-base-spanish-wwm-uncased-finetuned-squad_es
c8ce07505cee089d3239bb1bb522e318adcc046a
2022-05-22T03:38:07.000Z
[ "pytorch", "tensorboard", "bert", "question-answering", "dataset:squad_es", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
question-answering
false
stevemobs
null
stevemobs/bert-base-spanish-wwm-uncased-finetuned-squad_es
2
null
transformers
26,069
--- tags: - generated_from_trainer datasets: - squad_es model-index: - name: bert-base-spanish-wwm-uncased-finetuned-squad_es results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-spanish-wwm-uncased-finetuned-squad_es This model is a fine-tuned version of [dccuchile/bert-base-spanish-wwm-uncased](https://huggingface.co/dccuchile/bert-base-spanish-wwm-uncased) on the squad_es dataset. It achieves the following results on the evaluation set: - Loss: 1.7747 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 1.5377 | 1.0 | 8259 | 1.4632 | | 1.1928 | 2.0 | 16518 | 1.5536 | | 0.9486 | 3.0 | 24777 | 1.7747 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
himanshubeniwal/distilbert-base-uncased-finetuned-cola
46d3ce0c60d15466a3e3c6c100757a809f5a7d39
2022-05-22T08:48:32.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:glue", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
himanshubeniwal
null
himanshubeniwal/distilbert-base-uncased-finetuned-cola
2
1
transformers
26,070
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - matthews_correlation model-index: - name: distilbert-base-uncased-finetuned-cola results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue args: cola metrics: - name: Matthews Correlation type: matthews_correlation value: 0.5383825234212567 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-cola This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.8011 - Matthews Correlation: 0.5384 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.5215 | 1.0 | 535 | 0.5279 | 0.4360 | | 0.3478 | 2.0 | 1070 | 0.5187 | 0.4925 | | 0.2348 | 3.0 | 1605 | 0.5646 | 0.5341 | | 0.1741 | 4.0 | 2140 | 0.7430 | 0.5361 | | 0.1253 | 5.0 | 2675 | 0.8011 | 0.5384 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
Chen1999/distilbert-base-uncased-finetuned-imdb
25aefefe5250055f8cbb56d5caa5e1969658372f
2022-05-22T07:32:54.000Z
[ "pytorch", "tensorboard", "distilbert", "fill-mask", "dataset:imdb", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
fill-mask
false
Chen1999
null
Chen1999/distilbert-base-uncased-finetuned-imdb
2
null
transformers
26,071
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb model-index: - name: distilbert-base-uncased-finetuned-imdb results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-imdb This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 2.4720 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.7086 | 0.99 | 156 | 2.5081 | | 2.5795 | 1.99 | 312 | 2.4608 | | 2.5257 | 2.98 | 468 | 2.4520 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
Minenine/distilbert-base-uncased-finetuned-imdb
a1f8d3959bb9af8159b926c32a0a2a72a09e6058
2022-05-22T08:10:33.000Z
[ "pytorch", "tensorboard", "distilbert", "fill-mask", "dataset:imdb", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
fill-mask
false
Minenine
null
Minenine/distilbert-base-uncased-finetuned-imdb
2
null
transformers
26,072
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb model-index: - name: distilbert-base-uncased-finetuned-imdb results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-imdb This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 2.4721 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.7086 | 1.0 | 157 | 2.4897 | | 2.5796 | 2.0 | 314 | 2.4230 | | 2.5269 | 3.0 | 471 | 2.4354 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.11.0+cu113 - Datasets 1.17.0 - Tokenizers 0.10.3
moghis/xlm-roberta-base-finetuned-panx-fr
2fbe952f51a847888267874637adaf9243cdf1b1
2022-05-22T12:18:03.000Z
[ "pytorch", "xlm-roberta", "token-classification", "dataset:xtreme", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
token-classification
false
moghis
null
moghis/xlm-roberta-base-finetuned-panx-fr
2
null
transformers
26,073
--- license: mit tags: - generated_from_trainer datasets: - xtreme model-index: - name: xlm-roberta-base-finetuned-panx-fr results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-fr This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.2684 - F1 Score: 0.8380 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 Score | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.5416 | 1.0 | 191 | 0.3088 | 0.7953 | | 0.2614 | 2.0 | 382 | 0.2822 | 0.8310 | | 0.1758 | 3.0 | 573 | 0.2684 | 0.8380 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
stevemobs/distilbert-base-uncased-finetuned-squad-finetuned-squad_adversarial
e6f89059d5281c5e67915001bb03c7c4ae65e4ef
2022-05-22T12:13:03.000Z
[ "pytorch", "tensorboard", "distilbert", "question-answering", "dataset:adversarial_qa", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
question-answering
false
stevemobs
null
stevemobs/distilbert-base-uncased-finetuned-squad-finetuned-squad_adversarial
2
null
transformers
26,074
--- license: apache-2.0 tags: - generated_from_trainer datasets: - adversarial_qa model-index: - name: distilbert-base-uncased-finetuned-squad-finetuned-squad_adversarial results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-squad-finetuned-squad_adversarial This model is a fine-tuned version of [stevemobs/distilbert-base-uncased-finetuned-squad](https://huggingface.co/stevemobs/distilbert-base-uncased-finetuned-squad) on the adversarial_qa dataset. It achieves the following results on the evaluation set: - Loss: 2.3121 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.6352 | 1.0 | 1896 | 2.2623 | | 2.1121 | 2.0 | 3792 | 2.2465 | | 1.7932 | 3.0 | 5688 | 2.3121 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
moghis/xlm-roberta-base-finetuned-panx-en
befcbc5bd8ad95013b7370dcb79ad5e6a263979c
2022-05-22T12:48:39.000Z
[ "pytorch", "xlm-roberta", "token-classification", "dataset:xtreme", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
token-classification
false
moghis
null
moghis/xlm-roberta-base-finetuned-panx-en
2
null
transformers
26,075
--- license: mit tags: - generated_from_trainer datasets: - xtreme model-index: - name: xlm-roberta-base-finetuned-panx-en results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-en This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.3932 - F1 Score: 0.6774 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 Score | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.0236 | 1.0 | 50 | 0.5462 | 0.5109 | | 0.5047 | 2.0 | 100 | 0.4387 | 0.6370 | | 0.3716 | 3.0 | 150 | 0.3932 | 0.6774 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
versae/mdeberta-v3-base-finetuned-recores
fb8f15c05c7195b0a0af1d5468b075ce2ff410ed
2022-05-22T20:34:41.000Z
[ "pytorch", "tensorboard", "deberta-v2", "multiple-choice", "transformers", "generated_from_trainer", "license:mit", "model-index" ]
multiple-choice
false
versae
null
versae/mdeberta-v3-base-finetuned-recores
2
null
transformers
26,076
--- license: mit tags: - generated_from_trainer metrics: - accuracy model-index: - name: mdeberta-v3-base-finetuned-recores results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mdeberta-v3-base-finetuned-recores This model is a fine-tuned version of [microsoft/mdeberta-v3-base](https://huggingface.co/microsoft/mdeberta-v3-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.6094 - Accuracy: 0.2011 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 3000 - num_epochs: 25 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 1.6112 | 1.0 | 1047 | 1.6094 | 0.1901 | | 1.608 | 2.0 | 2094 | 1.6094 | 0.1873 | | 1.6127 | 3.0 | 3141 | 1.6095 | 0.1983 | | 1.6125 | 4.0 | 4188 | 1.6094 | 0.2424 | | 1.6118 | 5.0 | 5235 | 1.6094 | 0.1956 | | 1.6181 | 6.0 | 6282 | 1.6094 | 0.2094 | | 1.6229 | 7.0 | 7329 | 1.6095 | 0.1680 | | 1.6125 | 8.0 | 8376 | 1.6094 | 0.1736 | | 1.6134 | 9.0 | 9423 | 1.6094 | 0.2066 | | 1.6174 | 10.0 | 10470 | 1.6093 | 0.2204 | | 1.6161 | 11.0 | 11517 | 1.6096 | 0.2121 | | 1.6198 | 12.0 | 12564 | 1.6094 | 0.2039 | | 1.6182 | 13.0 | 13611 | 1.6094 | 0.2287 | | 1.6208 | 14.0 | 14658 | 1.6094 | 0.2287 | | 1.6436 | 15.0 | 15705 | 1.6092 | 0.2287 | | 1.6209 | 16.0 | 16752 | 1.6094 | 0.2094 | | 1.6097 | 17.0 | 17799 | 1.6094 | 0.2094 | | 1.6115 | 18.0 | 18846 | 1.6094 | 0.2149 | | 1.6249 | 19.0 | 19893 | 1.6094 | 0.1956 | | 1.6201 | 20.0 | 20940 | 1.6094 | 0.1763 | | 1.6217 | 21.0 | 21987 | 1.6094 | 0.1956 | | 1.6193 | 22.0 | 23034 | 1.6094 | 0.1846 | | 1.6171 | 23.0 | 24081 | 1.6095 | 0.1983 | | 1.6123 | 24.0 | 25128 | 1.6095 | 0.1846 | | 1.6164 | 25.0 | 26175 | 1.6094 | 0.2011 | ### Framework versions - Transformers 4.19.0 - Pytorch 1.10.1+cu102 - Datasets 2.2.1 - Tokenizers 0.12.1
HomerChatbot/HomerSimpson
3adf4fa95efcef036deb37a820a6ae4024d6732a
2022-05-25T02:48:27.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
HomerChatbot
null
HomerChatbot/HomerSimpson
2
null
transformers
26,077
--- tags: - conversational --- # Homer Simpson Chatbot
globuslabs/ScholarBERT-XL_1
f68001f152e72c6612dd6241b7b2f2288528dafe
2022-05-24T03:14:00.000Z
[ "pytorch", "bert", "fill-mask", "en", "arxiv:2205.11342", "transformers", "science", "multi-displinary", "license:apache-2.0", "autotrain_compatible" ]
fill-mask
false
globuslabs
null
globuslabs/ScholarBERT-XL_1
2
null
transformers
26,078
--- language: en tags: - science - multi-displinary license: apache-2.0 --- # ScholarBERT-XL_1 Model This is the **ScholarBERT-XL_1** variant of the ScholarBERT model family. The model is pretrained on a large collection of scientific research articles (**2.2B tokens**). This is a **cased** (case-sensitive) model. The tokenizer will not convert all inputs to lower-case by default. The model has a total of 770M parameters. # Model Architecture | Hyperparameter | Value | |-----------------|:-------:| | Layers | 36 | | Hidden Size | 1280 | | Attention Heads | 20 | | Total Parameters | 770M | # Training Dataset The vocab and the model are pertrained on **1% of the PRD** scientific literature dataset. The PRD dataset is provided by Public.Resource.Org, Inc. (“Public Resource”), a nonprofit organization based in California. This dataset was constructed from a corpus of journal article files, from which We successfully extracted text from 75,496,055 articles from 178,928 journals. The articles span across Arts & Humanities, Life Sciences & Biomedicine, Physical Sciences, Social Sciences, and Technology. The distribution of articles is shown below. ![corpus pie chart](https://huggingface.co/globuslabs/ScholarBERT/resolve/main/corpus_pie_chart.png) # BibTeX entry and citation info If using this model, please cite this paper: ``` @misc{hong2022scholarbert, doi = {10.48550/ARXIV.2205.11342}, url = {https://arxiv.org/abs/2205.11342}, author = {Hong, Zhi and Ajith, Aswathy and Pauloski, Gregory and Duede, Eamon and Malamud, Carl and Magoulas, Roger and Chard, Kyle and Foster, Ian}, title = {ScholarBERT: Bigger is Not Always Better}, publisher = {arXiv}, year = {2022} } ```
krotima1/mbart-ht2a-s
ca2683630ec79f3ca2af34756b70e644f52d1e2e
2022-05-23T20:38:00.000Z
[ "pytorch", "mbart", "text2text-generation", "cs", "dataset:SumeCzech dataset news-based", "transformers", "abstractive summarization", "mbart-cc25", "Czech", "license:apache-2.0", "autotrain_compatible" ]
text2text-generation
false
krotima1
null
krotima1/mbart-ht2a-s
2
null
transformers
26,079
--- language: - cs - cs tags: - abstractive summarization - mbart-cc25 - Czech license: apache-2.0 datasets: - SumeCzech dataset news-based metrics: - rouge - rougeraw --- # mBART fine-tuned model for Czech abstractive summarization (HT2A-S) This model is a fine-tuned checkpoint of [facebook/mbart-large-cc25](https://huggingface.co/facebook/mbart-large-cc25) on the Czech news dataset to produce Czech abstractive summaries. ## Task The model deals with the task ``Headline + Text to Abstract`` (HT2A) which consists in generating a multi-sentence summary considered as an abstract from a Czech news text. ## Dataset The model has been trained on the [SumeCzech](https://ufal.mff.cuni.cz/sumeczech) dataset. The dataset includes around 1M Czech news-based documents consisting of a Headline, Abstract, and Full-text sections. Truncation and padding were configured for 512 tokens for the encoder and 128 for the decoder. ## Training The model has been trained on 1x NVIDIA Tesla A100 40GB for 20 hours, 1x NVIDIA Tesla V100 32GB for 40 hours, and 4x NVIDIA Tesla A100 40GB for 20 hours. During training, the model has seen 6928K documents corresponding to roughly 8 epochs. # Use Assuming you are using the provided Summarizer.ipynb file. ```python def summ_config(): cfg = OrderedDict([ # summarization model - checkpoint from website ("model_name", "krotima1/mbart-ht2a-s"), ("inference_cfg", OrderedDict([ ("num_beams", 4), ("top_k", 40), ("top_p", 0.92), ("do_sample", True), ("temperature", 0.89), ("repetition_penalty", 1.2), ("no_repeat_ngram_size", None), ("early_stopping", True), ("max_length", 128), ("min_length", 10), ])), #texts to summarize ("text", [ "Input your Czech text", ] ), ]) return cfg cfg = summ_config() #load model model = AutoModelForSeq2SeqLM.from_pretrained(cfg["model_name"]) tokenizer = AutoTokenizer.from_pretrained(cfg["model_name"]) # init summarizer summarize = Summarizer(model, tokenizer, cfg["inference_cfg"]) summarize(cfg["text"]) ```
krotima1/mbart-at2h-s
aacc4ec6ca1a35d673097526d43504e35579979f
2022-05-23T20:36:30.000Z
[ "pytorch", "mbart", "text2text-generation", "cs", "dataset:SumeCzech dataset news-based", "transformers", "abstractive summarization", "mbart-cc25", "Czech", "license:apache-2.0", "autotrain_compatible" ]
text2text-generation
false
krotima1
null
krotima1/mbart-at2h-s
2
null
transformers
26,080
--- language: - cs - cs tags: - abstractive summarization - mbart-cc25 - Czech license: apache-2.0 datasets: - SumeCzech dataset news-based metrics: - rouge - rougeraw --- # mBART fine-tuned model for Czech abstractive summarization (AT2H-S) This model is a fine-tuned checkpoint of [facebook/mbart-large-cc25](https://huggingface.co/facebook/mbart-large-cc25) on the Czech news dataset to produce Czech abstractive summaries. ## Task The model deals with the task ``Abstract + Text to Headline`` (AT2H) which consists in generating a one- or two-sentence summary considered as a headline from a Czech news text. ## Dataset The model has been trained on the [SumeCzech](https://ufal.mff.cuni.cz/sumeczech) dataset. The dataset includes around 1M Czech news-based documents consisting of a Headline, Abstract, and Full-text sections. Truncation and padding were configured for 512 tokens for the encoder and 64 for the decoder. ## Training The model has been trained on 1x NVIDIA Tesla A100 40GB for 40 hours. During training, the model has seen 2576K documents corresponding to roughly 3 epochs. # Use Assuming you are using the provided Summarizer.ipynb file. ```python def summ_config(): cfg = OrderedDict([ # summarization model - checkpoint from website ("model_name", "krotima1/mbart-at2h-s"), ("inference_cfg", OrderedDict([ ("num_beams", 4), ("top_k", 40), ("top_p", 0.92), ("do_sample", True), ("temperature", 0.89), ("repetition_penalty", 1.2), ("no_repeat_ngram_size", None), ("early_stopping", True), ("max_length", 64), ("min_length", 10), ])), #texts to summarize ("text", [ "Input your Czech text", ] ), ]) return cfg cfg = summ_config() #load model model = AutoModelForSeq2SeqLM.from_pretrained(cfg["model_name"]) tokenizer = AutoTokenizer.from_pretrained(cfg["model_name"]) # init summarizer summarize = Summarizer(model, tokenizer, cfg["inference_cfg"]) summarize(cfg["text"]) ```
jinesh90/distilbert-base-uncased-finetuned-emotinons-jinesh
826aec13ae978fb37751645247a4a09e3603deea
2022-05-22T23:55:58.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
jinesh90
null
jinesh90/distilbert-base-uncased-finetuned-emotinons-jinesh
2
null
transformers
26,081
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotinons-jinesh results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotinons-jinesh This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2175 - Accuracy: 0.9275 - F1: 0.9274 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8177 | 1.0 | 250 | 0.3146 | 0.904 | 0.9009 | | 0.246 | 2.0 | 500 | 0.2175 | 0.9275 | 0.9274 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Tokenizers 0.12.1
hamidov02/wav2vec2-large-xls-r-300m-turkish-colab
5aebcff85fd8c3e08ec1651305067b73e53b0252
2022-05-24T00:05:27.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "dataset:common_voice", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
hamidov02
null
hamidov02/wav2vec2-large-xls-r-300m-turkish-colab
2
null
transformers
26,082
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice model-index: - name: wav2vec2-large-xls-r-300m-turkish-colab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-turkish-colab This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.3701 - Wer: 0.2946 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 32 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.8287 | 3.67 | 400 | 0.6628 | 0.6928 | | 0.3926 | 7.34 | 800 | 0.4257 | 0.4716 | | 0.1847 | 11.01 | 1200 | 0.4034 | 0.3931 | | 0.1273 | 14.68 | 1600 | 0.4094 | 0.3664 | | 0.0991 | 18.35 | 2000 | 0.4133 | 0.3375 | | 0.0811 | 22.02 | 2400 | 0.4021 | 0.3301 | | 0.0646 | 25.69 | 2800 | 0.3949 | 0.3166 | | 0.0513 | 29.36 | 3200 | 0.3701 | 0.2946 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu113 - Datasets 1.18.3 - Tokenizers 0.10.3
GiordanoB/mT5_multilingual_XLSum-finetuned-summarization-V2
13b408c27fafd0dc1341505cdeed8569572f762f
2022-05-23T07:17:22.000Z
[ "pytorch", "tensorboard", "mt5", "text2text-generation", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
text2text-generation
false
GiordanoB
null
GiordanoB/mT5_multilingual_XLSum-finetuned-summarization-V2
2
null
transformers
26,083
--- tags: - generated_from_trainer metrics: - rouge model-index: - name: mT5_multilingual_XLSum-finetuned-summarization-V2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mT5_multilingual_XLSum-finetuned-summarization-V2 This model is a fine-tuned version of [csebuetnlp/mT5_multilingual_XLSum](https://huggingface.co/csebuetnlp/mT5_multilingual_XLSum) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.5523 - Rouge1: 25.8727 - Rouge2: 16.1688 - Rougel: 19.8093 - Rougelsum: 23.4429 - Gen Len: 34.4286 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | No log | 1.0 | 13 | 1.8850 | 23.9901 | 12.4882 | 17.2823 | 20.8977 | 31.2857 | | No log | 2.0 | 26 | 1.5894 | 25.1547 | 14.8857 | 19.2203 | 22.9079 | 31.8571 | | No log | 3.0 | 39 | 1.5523 | 25.8727 | 16.1688 | 19.8093 | 23.4429 | 34.4286 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.12.1
PSW/samsum_percent10_minsimdel
799a3b205bebde4d0859b2017f33bf3dbca376e0
2022-05-23T06:05:19.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
PSW
null
PSW/samsum_percent10_minsimdel
2
null
transformers
26,084
Entry not found
PSW/samsum_percent10_maxsimins
1d4e623674ddea6d3f5a3ccbc383ae87a85847b5
2022-05-23T06:34:21.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
PSW
null
PSW/samsum_percent10_maxsimins
2
null
transformers
26,085
Entry not found
chrisvinsen/wav2vec2-9
d2c73707418c236ff587f3e58c86b39c1225027a
2022-05-23T13:52:54.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
chrisvinsen
null
chrisvinsen/wav2vec2-9
2
null
transformers
26,086
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-9 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-9 This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.0821 - Wer: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.005 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 400 - num_epochs: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:---:| | 3.2803 | 1.56 | 200 | 3.1231 | 1.0 | | 2.8809 | 3.12 | 400 | 3.0366 | 1.0 | | 2.8761 | 4.69 | 600 | 3.1217 | 1.0 | | 2.8641 | 6.25 | 800 | 3.0584 | 1.0 | | 2.866 | 7.81 | 1000 | 3.0318 | 1.0 | | 2.865 | 9.38 | 1200 | 3.0789 | 1.0 | | 2.8642 | 10.94 | 1400 | 3.0560 | 1.0 | | 2.8617 | 12.5 | 1600 | 2.9985 | 1.0 | | 2.8573 | 14.06 | 1800 | 3.1928 | 1.0 | | 2.8609 | 15.62 | 2000 | 3.0782 | 1.0 | | 2.8605 | 17.19 | 2200 | 3.1244 | 1.0 | | 2.8638 | 18.75 | 2400 | 3.0417 | 1.0 | | 2.8578 | 20.31 | 2600 | 3.1586 | 1.0 | | 2.8579 | 21.88 | 2800 | 3.0409 | 1.0 | | 2.8569 | 23.44 | 3000 | 3.0537 | 1.0 | | 2.8574 | 25.0 | 3200 | 3.0105 | 1.0 | | 2.8536 | 26.56 | 3400 | 3.0901 | 1.0 | | 2.8571 | 28.12 | 3600 | 3.0904 | 1.0 | | 2.8532 | 29.69 | 3800 | 3.0821 | 1.0 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
chrisvinsen/wav2vec2-10
7a9b4442d37b712e8b28b3617c469d86b2526371
2022-05-23T19:05:20.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
chrisvinsen
null
chrisvinsen/wav2vec2-10
2
null
transformers
26,087
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-10 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-10 This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.0354 - Wer: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 400 - num_epochs: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:---:| | 4.2231 | 0.78 | 200 | 3.0442 | 1.0 | | 2.8665 | 1.57 | 400 | 3.0081 | 1.0 | | 2.8596 | 2.35 | 600 | 3.0905 | 1.0 | | 2.865 | 3.14 | 800 | 3.0443 | 1.0 | | 2.8613 | 3.92 | 1000 | 3.0316 | 1.0 | | 2.8601 | 4.71 | 1200 | 3.0574 | 1.0 | | 2.8554 | 5.49 | 1400 | 3.0261 | 1.0 | | 2.8592 | 6.27 | 1600 | 3.0785 | 1.0 | | 2.8606 | 7.06 | 1800 | 3.1129 | 1.0 | | 2.8547 | 7.84 | 2000 | 3.0647 | 1.0 | | 2.8565 | 8.63 | 2200 | 3.0624 | 1.0 | | 2.8633 | 9.41 | 2400 | 2.9900 | 1.0 | | 2.855 | 10.2 | 2600 | 3.0084 | 1.0 | | 2.8581 | 10.98 | 2800 | 3.0092 | 1.0 | | 2.8545 | 11.76 | 3000 | 3.0299 | 1.0 | | 2.8583 | 12.55 | 3200 | 3.0293 | 1.0 | | 2.8536 | 13.33 | 3400 | 3.0566 | 1.0 | | 2.8556 | 14.12 | 3600 | 3.0385 | 1.0 | | 2.8573 | 14.9 | 3800 | 3.0098 | 1.0 | | 2.8551 | 15.69 | 4000 | 3.0623 | 1.0 | | 2.8546 | 16.47 | 4200 | 3.0964 | 1.0 | | 2.8569 | 17.25 | 4400 | 3.0648 | 1.0 | | 2.8543 | 18.04 | 4600 | 3.0377 | 1.0 | | 2.8532 | 18.82 | 4800 | 3.0454 | 1.0 | | 2.8579 | 19.61 | 5000 | 3.0301 | 1.0 | | 2.8532 | 20.39 | 5200 | 3.0364 | 1.0 | | 2.852 | 21.18 | 5400 | 3.0187 | 1.0 | | 2.8561 | 21.96 | 5600 | 3.0172 | 1.0 | | 2.8509 | 22.75 | 5800 | 3.0420 | 1.0 | | 2.8551 | 23.53 | 6000 | 3.0309 | 1.0 | | 2.8552 | 24.31 | 6200 | 3.0416 | 1.0 | | 2.8521 | 25.1 | 6400 | 3.0469 | 1.0 | | 2.852 | 25.88 | 6600 | 3.0489 | 1.0 | | 2.854 | 26.67 | 6800 | 3.0394 | 1.0 | | 2.8572 | 27.45 | 7000 | 3.0336 | 1.0 | | 2.8502 | 28.24 | 7200 | 3.0363 | 1.0 | | 2.8557 | 29.02 | 7400 | 3.0304 | 1.0 | | 2.8522 | 29.8 | 7600 | 3.0354 | 1.0 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
jeremyccollinsmpi/autotrain-inference_probability_3-900329401
8c43f533c2be72b63090692aba11323f1d547fa1
2022-05-23T16:04:36.000Z
[ "pytorch", "t5", "text2text-generation", "en", "dataset:jeremyccollinsmpi/autotrain-data-inference_probability_3", "transformers", "autotrain", "co2_eq_emissions", "autotrain_compatible" ]
text2text-generation
false
jeremyccollinsmpi
null
jeremyccollinsmpi/autotrain-inference_probability_3-900329401
2
null
transformers
26,088
--- tags: autotrain language: en widget: - text: "I love AutoTrain 🤗" datasets: - jeremyccollinsmpi/autotrain-data-inference_probability_3 co2_eq_emissions: 3.807314953201688 --- # Model Trained Using AutoTrain - Problem type: Summarization - Model ID: 900329401 - CO2 Emissions (in grams): 3.807314953201688 ## Validation Metrics - Loss: 0.06255918741226196 - Rouge1: 94.0693 - Rouge2: 0.0 - RougeL: 94.0693 - RougeLsum: 94.1126 - Gen Len: 2.8528 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_HUGGINGFACE_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/jeremyccollinsmpi/autotrain-inference_probability_3-900329401 ```
CEBaB/gpt2.CEBaB.causalm.None__None.2-class.exclusive.seed_42
2602845d6eb691cad4e755611eb565c7aedc208c
2022-05-24T10:04:25.000Z
[ "pytorch", "gpt2_causalm", "transformers" ]
null
false
CEBaB
null
CEBaB/gpt2.CEBaB.causalm.None__None.2-class.exclusive.seed_42
2
null
transformers
26,089
Entry not found
CEBaB/gpt2.CEBaB.causalm.None__None.2-class.exclusive.seed_43
6da6204a1dcfccc49d3d4a3ff91eb067ba2b0174
2022-05-24T10:04:27.000Z
[ "pytorch", "gpt2_causalm", "transformers" ]
null
false
CEBaB
null
CEBaB/gpt2.CEBaB.causalm.None__None.2-class.exclusive.seed_43
2
null
transformers
26,090
Entry not found
CEBaB/gpt2.CEBaB.causalm.None__None.2-class.exclusive.seed_46
41305e60eafbd9e8cfa8ca852e5f650282de623b
2022-05-24T10:04:33.000Z
[ "pytorch", "gpt2_causalm", "transformers" ]
null
false
CEBaB
null
CEBaB/gpt2.CEBaB.causalm.None__None.2-class.exclusive.seed_46
2
null
transformers
26,091
Entry not found
CEBaB/gpt2.CEBaB.causalm.None__None.3-class.exclusive.seed_44
fe14aa929621bf955f74c6dbd492b76906968df0
2022-05-24T10:07:48.000Z
[ "pytorch", "gpt2_causalm", "transformers" ]
null
false
CEBaB
null
CEBaB/gpt2.CEBaB.causalm.None__None.3-class.exclusive.seed_44
2
null
transformers
26,092
Entry not found
CEBaB/bert-base-uncased.CEBaB.causalm.noise__food.2-class.exclusive.seed_42
e7693ee902c31a10321162b5ef63f5791956c91a
2022-05-24T12:10:39.000Z
[ "pytorch", "bert_causalm", "transformers" ]
null
false
CEBaB
null
CEBaB/bert-base-uncased.CEBaB.causalm.noise__food.2-class.exclusive.seed_42
2
null
transformers
26,093
Entry not found
Mich/distilbert-base-uncased-finetuned-imdb
b3757313cf018a55158e254708c469d5adbdf7c7
2022-05-23T19:17:21.000Z
[ "pytorch", "tensorboard", "distilbert", "fill-mask", "dataset:imdb", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
fill-mask
false
Mich
null
Mich/distilbert-base-uncased-finetuned-imdb
2
null
transformers
26,094
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb model-index: - name: distilbert-base-uncased-finetuned-imdb results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-imdb This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 2.6059 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.8574 | 1.0 | 32 | 2.6973 | | 2.7248 | 2.0 | 64 | 2.5887 | | 2.7313 | 3.0 | 96 | 2.6203 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
CEBaB/bert-base-uncased.CEBaB.causalm.service__food.2-class.exclusive.seed_42
7421d058c93664df068cfc9fbcad1154e472ee2c
2022-05-24T12:12:03.000Z
[ "pytorch", "bert_causalm", "transformers" ]
null
false
CEBaB
null
CEBaB/bert-base-uncased.CEBaB.causalm.service__food.2-class.exclusive.seed_42
2
null
transformers
26,095
Entry not found
CEBaB/gpt2.CEBaB.causalm.None__None.5-class.exclusive.seed_44
e0f99b9ce42b102a3aafc59006409b444cb16a41
2022-05-24T10:11:08.000Z
[ "pytorch", "gpt2_causalm", "transformers" ]
null
false
CEBaB
null
CEBaB/gpt2.CEBaB.causalm.None__None.5-class.exclusive.seed_44
2
null
transformers
26,096
Entry not found
CEBaB/gpt2.CEBaB.causalm.None__None.5-class.exclusive.seed_45
0062eee6c24b54d8be38bf5fd33a30dc2ce47edf
2022-05-24T10:11:10.000Z
[ "pytorch", "gpt2_causalm", "transformers" ]
null
false
CEBaB
null
CEBaB/gpt2.CEBaB.causalm.None__None.5-class.exclusive.seed_45
2
null
transformers
26,097
Entry not found
CEBaB/gpt2.CEBaB.causalm.ambiance__food.2-class.exclusive.seed_46
830086fb179d8e761cd8e938447ae59f6630cdcb
2022-05-24T10:04:43.000Z
[ "pytorch", "gpt2_causalm", "transformers" ]
null
false
CEBaB
null
CEBaB/gpt2.CEBaB.causalm.ambiance__food.2-class.exclusive.seed_46
2
null
transformers
26,098
Entry not found
CEBaB/gpt2.CEBaB.causalm.food__service.2-class.exclusive.seed_45
589d85698ccb4c2ac89be0698018f91549742adf
2022-05-24T10:04:51.000Z
[ "pytorch", "gpt2_causalm", "transformers" ]
null
false
CEBaB
null
CEBaB/gpt2.CEBaB.causalm.food__service.2-class.exclusive.seed_45
2
null
transformers
26,099
Entry not found