modelId
stringlengths
4
112
sha
stringlengths
40
40
lastModified
stringlengths
24
24
tags
sequence
pipeline_tag
stringclasses
29 values
private
bool
1 class
author
stringlengths
2
38
config
null
id
stringlengths
4
112
downloads
float64
0
36.8M
likes
float64
0
712
library_name
stringclasses
17 values
__index_level_0__
int64
0
38.5k
readme
stringlengths
0
186k
chrisvinsen/wav2vec2-17
2be61c71765fc104518125f7ac849d6e2239ea65
2022-06-01T06:05:03.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
chrisvinsen
null
chrisvinsen/wav2vec2-17
2
null
transformers
26,200
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-17 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-17 This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.1355 - Wer: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 256 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 50 - num_epochs: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:---:| | 7.5865 | 1.38 | 25 | 3.4717 | 1.0 | | 2.9762 | 2.77 | 50 | 3.1483 | 1.0 | | 2.9265 | 4.16 | 75 | 3.1946 | 1.0 | | 2.8813 | 5.55 | 100 | 3.0504 | 1.0 | | 2.887 | 6.93 | 125 | 3.1358 | 1.0 | | 2.9124 | 8.33 | 150 | 3.1653 | 1.0 | | 2.8854 | 9.71 | 175 | 3.1243 | 1.0 | | 2.91 | 11.11 | 200 | 3.0879 | 1.0 | | 2.8868 | 12.49 | 225 | 3.1658 | 1.0 | | 2.8827 | 13.88 | 250 | 3.1236 | 1.0 | | 2.911 | 15.27 | 275 | 3.1206 | 1.0 | | 2.8829 | 16.66 | 300 | 3.1171 | 1.0 | | 2.9105 | 18.05 | 325 | 3.1127 | 1.0 | | 2.8845 | 19.44 | 350 | 3.1377 | 1.0 | | 2.8803 | 20.82 | 375 | 3.1157 | 1.0 | | 2.9102 | 22.22 | 400 | 3.1265 | 1.0 | | 2.8803 | 23.6 | 425 | 3.1493 | 1.0 | | 2.8837 | 24.99 | 450 | 3.1085 | 1.0 | | 2.9106 | 26.38 | 475 | 3.1099 | 1.0 | | 2.8787 | 27.77 | 500 | 3.1352 | 1.0 | | 2.9132 | 29.16 | 525 | 3.1355 | 1.0 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
jamie613/xlmr_mask_punctuation
efbab8a2393a549b76bea6a7a385d389d065361d
2022-06-01T05:22:42.000Z
[ "pytorch", "tensorboard", "xlm-roberta", "fill-mask", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
fill-mask
false
jamie613
null
jamie613/xlmr_mask_punctuation
2
null
transformers
26,201
--- license: mit tags: - generated_from_trainer model-index: - name: xlmr_mask_punctuation results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlmr_mask_punctuation This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.5160 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.6352 | 0.05 | 500 | 1.4744 | | 1.4623 | 0.11 | 1000 | 1.0987 | | 1.1947 | 0.16 | 1500 | 1.1878 | | 1.0693 | 0.21 | 2000 | 0.8077 | | 0.9465 | 0.26 | 2500 | 0.8038 | | 0.8394 | 0.32 | 3000 | 0.7772 | | 0.8184 | 0.37 | 3500 | 0.8529 | | 0.7773 | 0.42 | 4000 | 0.6255 | | 0.7338 | 0.47 | 4500 | 0.6993 | | 0.6935 | 0.53 | 5000 | 0.5952 | | 0.6713 | 0.58 | 5500 | 0.5605 | | 0.6636 | 0.63 | 6000 | 0.6588 | | 0.6169 | 0.68 | 6500 | 0.5154 | | 0.6045 | 0.74 | 7000 | 0.5374 | | 0.5853 | 0.79 | 7500 | 0.5033 | | 0.5752 | 0.84 | 8000 | 0.5002 | | 0.5263 | 0.89 | 8500 | 0.5300 | | 0.5512 | 0.95 | 9000 | 0.5138 | | 0.541 | 1.0 | 9500 | 0.5160 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
kimcando/para_test_4800
62f5c827d290caf1677733eec3ddfbeebe16cfd5
2022-06-01T06:38:27.000Z
[ "pytorch", "roberta", "text-classification", "transformers" ]
text-classification
false
kimcando
null
kimcando/para_test_4800
2
null
transformers
26,202
Entry not found
chrisvinsen/wav2vec2-final-1-lm-2
976e9ae3b031cb269a2016adb6cbd260e86e9bf1
2022-06-02T11:16:49.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
chrisvinsen
null
chrisvinsen/wav2vec2-final-1-lm-2
2
null
transformers
26,203
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-19 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-19 WER 0.283 WER 0.126 with 3-Gram This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6305 - Wer: 0.4499 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 800 - num_epochs: 60 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.4816 | 2.74 | 400 | 1.0717 | 0.8927 | | 0.751 | 5.48 | 800 | 0.7155 | 0.7533 | | 0.517 | 8.22 | 1200 | 0.7039 | 0.6675 | | 0.3988 | 10.96 | 1600 | 0.5935 | 0.6149 | | 0.3179 | 13.7 | 2000 | 0.6477 | 0.5999 | | 0.2755 | 16.44 | 2400 | 0.5549 | 0.5798 | | 0.2343 | 19.18 | 2800 | 0.6626 | 0.5798 | | 0.2103 | 21.92 | 3200 | 0.6488 | 0.5674 | | 0.1877 | 24.66 | 3600 | 0.5874 | 0.5339 | | 0.1719 | 27.4 | 4000 | 0.6354 | 0.5389 | | 0.1603 | 30.14 | 4400 | 0.6612 | 0.5210 | | 0.1401 | 32.88 | 4800 | 0.6676 | 0.5131 | | 0.1286 | 35.62 | 5200 | 0.6366 | 0.5075 | | 0.1159 | 38.36 | 5600 | 0.6064 | 0.4977 | | 0.1084 | 41.1 | 6000 | 0.6530 | 0.4835 | | 0.0974 | 43.84 | 6400 | 0.6118 | 0.4853 | | 0.0879 | 46.58 | 6800 | 0.6316 | 0.4770 | | 0.0815 | 49.32 | 7200 | 0.6125 | 0.4664 | | 0.0708 | 52.05 | 7600 | 0.6449 | 0.4683 | | 0.0651 | 54.79 | 8000 | 0.6068 | 0.4571 | | 0.0555 | 57.53 | 8400 | 0.6305 | 0.4499 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
callmefons/t5-small-finetuned-xsum
a669158772481f93c2808804b9e86a24a589b09a
2022-06-02T05:10:42.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
text2text-generation
false
callmefons
null
callmefons/t5-small-finetuned-xsum
2
null
transformers
26,204
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: t5-small-finetuned-xsum results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-xsum This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:| | No log | 1.0 | 1 | 2.8006 | 0.0 | 0.0 | 0.0 | 0.0 | 19.0 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu102 - Datasets 2.2.2 - Tokenizers 0.12.1
ThePixOne/SeconBERTa1
db554094a0fb22734d49147a7fb6acb54ead99cb
2022-06-02T05:51:30.000Z
[ "pytorch", "roberta", "feature-extraction", "sentence-transformers", "sentence-similarity", "transformers" ]
sentence-similarity
false
ThePixOne
null
ThePixOne/SeconBERTa1
2
null
sentence-transformers
26,205
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `sentence_transformers.datasets.NoDuplicatesDataLoader.NoDuplicatesDataLoader` of length 20799 with parameters: ``` {'batch_size': 16} ``` **Loss**: `sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters: ``` {'scale': 20.0, 'similarity_fct': 'cos_sim'} ``` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 4159.8, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 514, 'do_lower_case': False}) with Transformer model: RobertaModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
HIT-TMG/Dialogue-BART-base
0ae23a90741f5154858fc3828ddba2a3f827ab29
2022-06-02T08:47:34.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
HIT-TMG
null
HIT-TMG/Dialogue-BART-base
2
null
transformers
26,206
Entry not found
RUCAIBox/mtl-task-dialog
8b1c1a935185d51636c538596ffc08900615a139
2022-06-27T02:27:39.000Z
[ "pytorch", "mvp", "en", "arxiv:2206.12131", "transformers", "text-generation", "text2text-generation", "license:apache-2.0" ]
text2text-generation
false
RUCAIBox
null
RUCAIBox/mtl-task-dialog
2
null
transformers
26,207
--- license: apache-2.0 language: - en tags: - text-generation - text2text-generation pipeline_tag: text2text-generation widget: - text: "Given the task dialog: Belief state [X_SEP] I'm looking for a affordable BBQ restaurant in Dallas for a large group of guest." example_title: "Example1" - text: "Given the task dialog: Dialogue action [X_SEP] I'm looking for a affordable BBQ restaurant in Dallas for a large group of guest." example_title: "Example2" - text: "Given the task dialog: System response [X_SEP] I'm looking for a affordable BBQ restaurant in Dallas for a large group of guest." example_title: "Example3" --- # MTL-task-dialog The MTL-task-dialog model was proposed in [**MVP: Multi-task Supervised Pre-training for Natural Language Generation**](https://arxiv.org/abs/2206.12131) by Tianyi Tang, Junyi Li, Wayne Xin Zhao and Ji-Rong Wen. The detailed information and instructions can be found [https://github.com/RUCAIBox/MVP](https://github.com/RUCAIBox/MVP). ## Model Description MTL-task-dialog is supervised pre-trained using a mixture of labeled task-oriented system datasets. It is a variant (Single) of our main [MVP](https://huggingface.co/RUCAIBox/mvp) model. It follows a standard Transformer encoder-decoder architecture. MTL-task-dialog is specially designed for task-oriented system tasks, such as MultiWOZ. ## Example ```python >>> from transformers import MvpTokenizer, MvpForConditionalGeneration >>> tokenizer = MvpTokenizer.from_pretrained("RUCAIBox/mvp") >>> model = MvpForConditionalGeneration.from_pretrained("RUCAIBox/mtl-task-dialog") >>> inputs = tokenizer( ... "Given the task dialog: System response [X_SEP] I'm looking for a affordable BBQ restaurant in Dallas for a large group of guest.", ... return_tensors="pt", ... ) >>> generated_ids = model.generate(**inputs) >>> tokenizer.batch_decode(generated_ids, skip_special_tokens=True) ['What date and time would you like to go?'] ``` ## Related Models **MVP**: [https://huggingface.co/RUCAIBox/mvp](https://huggingface.co/RUCAIBox/mvp). **Prompt-based models**: - MVP-multi-task: [https://huggingface.co/RUCAIBox/mvp-multi-task](https://huggingface.co/RUCAIBox/mvp-multi-task). - MVP-summarization: [https://huggingface.co/RUCAIBox/mvp-summarization](https://huggingface.co/RUCAIBox/mvp-summarization). - MVP-open-dialog: [https://huggingface.co/RUCAIBox/mvp-open-dialog](https://huggingface.co/RUCAIBox/mvp-open-dialog). - MVP-data-to-text: [https://huggingface.co/RUCAIBox/mvp-data-to-text](https://huggingface.co/RUCAIBox/mvp-data-to-text). - MVP-story: [https://huggingface.co/RUCAIBox/mvp-story](https://huggingface.co/RUCAIBox/mvp-story). - MVP-question-answering: [https://huggingface.co/RUCAIBox/mvp-question-answering](https://huggingface.co/RUCAIBox/mvp-question-answering). - MVP-question-generation: [https://huggingface.co/RUCAIBox/mvp-question-generation](https://huggingface.co/RUCAIBox/mvp-question-generation). - MVP-task-dialog: [https://huggingface.co/RUCAIBox/mvp-task-dialog](https://huggingface.co/RUCAIBox/mvp-task-dialog). **Multi-task models**: - MTL-summarization: [https://huggingface.co/RUCAIBox/mtl-summarization](https://huggingface.co/RUCAIBox/mtl-summarization). - MTL-open-dialog: [https://huggingface.co/RUCAIBox/mtl-open-dialog](https://huggingface.co/RUCAIBox/mtl-open-dialog). - MTL-data-to-text: [https://huggingface.co/RUCAIBox/mtl-data-to-text](https://huggingface.co/RUCAIBox/mtl-data-to-text). - MTL-story: [https://huggingface.co/RUCAIBox/mtl-story](https://huggingface.co/RUCAIBox/mtl-story). - MTL-question-answering: [https://huggingface.co/RUCAIBox/mtl-question-answering](https://huggingface.co/RUCAIBox/mtl-question-answering). - MTL-question-generation: [https://huggingface.co/RUCAIBox/mtl-question-generation](https://huggingface.co/RUCAIBox/mtl-question-generation). - MTL-task-dialog: [https://huggingface.co/RUCAIBox/mtl-task-dialog](https://huggingface.co/RUCAIBox/mtl-task-dialog). ## Citation ```bibtex @article{tang2022mvp, title={MVP: Multi-task Supervised Pre-training for Natural Language Generation}, author={Tang, Tianyi and Li, Junyi and Zhao, Wayne Xin and Wen, Ji-Rong}, journal={arXiv preprint arXiv:2206.12131}, year={2022}, url={https://arxiv.org/abs/2206.12131}, } ```
AAkhilesh/wav2vec2-large-xls-r-300m-ta-colab
d1f7f5d2f6c2846003536c258d16ca1826f53905
2022-06-14T20:39:54.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "dataset:common_voice", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
AAkhilesh
null
AAkhilesh/wav2vec2-large-xls-r-300m-ta-colab
2
null
transformers
26,208
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice model-index: - name: wav2vec2-large-xls-r-300m-ta-colab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-ta-colab This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 40 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
Classroom-workshop/assignment1-omar
bb3308c59bc40ca58f041be93f52d236b6372038
2022-06-02T15:20:42.000Z
[ "pytorch", "tf", "wav2vec2", "automatic-speech-recognition", "en", "dataset:librispeech_asr", "arxiv:2006.11477", "transformers", "audio", "hf-asr-leaderboard", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
Classroom-workshop
null
Classroom-workshop/assignment1-omar
2
null
transformers
26,209
--- language: en datasets: - librispeech_asr tags: - audio - automatic-speech-recognition - hf-asr-leaderboard license: apache-2.0 widget: - example_title: Librispeech sample 1 src: https://cdn-media.huggingface.co/speech_samples/sample1.flac - example_title: Librispeech sample 2 src: https://cdn-media.huggingface.co/speech_samples/sample2.flac model-index: - name: wav2vec2-base-960h results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: LibriSpeech (clean) type: librispeech_asr config: clean split: test args: language: en metrics: - name: Test WER type: wer value: 3.4 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: LibriSpeech (other) type: librispeech_asr config: other split: test args: language: en metrics: - name: Test WER type: wer value: 8.6 --- # Wav2Vec2-Base-960h [Facebook's Wav2Vec2](https://ai.facebook.com/blog/wav2vec-20-learning-the-structure-of-speech-from-raw-audio/) The base model pretrained and fine-tuned on 960 hours of Librispeech on 16kHz sampled speech audio. When using the model make sure that your speech input is also sampled at 16Khz. [Paper](https://arxiv.org/abs/2006.11477) Authors: Alexei Baevski, Henry Zhou, Abdelrahman Mohamed, Michael Auli **Abstract** We show for the first time that learning powerful representations from speech audio alone followed by fine-tuning on transcribed speech can outperform the best semi-supervised methods while being conceptually simpler. wav2vec 2.0 masks the speech input in the latent space and solves a contrastive task defined over a quantization of the latent representations which are jointly learned. Experiments using all labeled data of Librispeech achieve 1.8/3.3 WER on the clean/other test sets. When lowering the amount of labeled data to one hour, wav2vec 2.0 outperforms the previous state of the art on the 100 hour subset while using 100 times less labeled data. Using just ten minutes of labeled data and pre-training on 53k hours of unlabeled data still achieves 4.8/8.2 WER. This demonstrates the feasibility of speech recognition with limited amounts of labeled data. The original model can be found under https://github.com/pytorch/fairseq/tree/master/examples/wav2vec#wav2vec-20. # Usage To transcribe audio files the model can be used as a standalone acoustic model as follows: ```python from transformers import Wav2Vec2Processor, Wav2Vec2ForCTC from datasets import load_dataset import soundfile as sf import torch # load model and tokenizer processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-base-960h") model = Wav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-base-960h") # load dummy dataset and read soundfiles ds = load_dataset("patrickvonplaten/librispeech_asr_dummy", "clean", split="validation") # tokenize input_values = processor(ds[0]["audio"]["array"], return_tensors="pt", padding="longest").input_values # Batch size 1 # retrieve logits logits = model(input_values).logits # take argmax and decode predicted_ids = torch.argmax(logits, dim=-1) transcription = processor.batch_decode(predicted_ids) ``` ## Evaluation This code snippet shows how to evaluate **facebook/wav2vec2-base-960h** on LibriSpeech's "clean" and "other" test data. ```python from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import torch from jiwer import wer librispeech_eval = load_dataset("librispeech_asr", "clean", split="test") model = Wav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-base-960h").to("cuda") processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-base-960h") def map_to_pred(batch): input_values = processor(batch["audio"]["array"], return_tensors="pt", padding="longest").input_values with torch.no_grad(): logits = model(input_values.to("cuda")).logits predicted_ids = torch.argmax(logits, dim=-1) transcription = processor.batch_decode(predicted_ids) batch["transcription"] = transcription return batch result = librispeech_eval.map(map_to_pred, batched=True, batch_size=1, remove_columns=["audio"]) print("WER:", wer(result["text"], result["transcription"])) ``` *Result (WER)*: | "clean" | "other" | |---|---| | 3.4 | 8.6 |
Classroom-workshop/assignment1-joane
a6cb0bdf84650829517ef27391875f6b19da5780
2022-06-02T15:23:19.000Z
[ "pytorch", "tf", "speech_to_text", "automatic-speech-recognition", "en", "dataset:librispeech_asr", "arxiv:2010.05171", "arxiv:1904.08779", "transformers", "speech", "audio", "hf-asr-leaderboard", "license:mit", "model-index" ]
automatic-speech-recognition
false
Classroom-workshop
null
Classroom-workshop/assignment1-joane
2
null
transformers
26,210
--- language: en datasets: - librispeech_asr tags: - speech - audio - automatic-speech-recognition - hf-asr-leaderboard license: mit pipeline_tag: automatic-speech-recognition widget: - example_title: Librispeech sample 1 src: https://cdn-media.huggingface.co/speech_samples/sample1.flac - example_title: Librispeech sample 2 src: https://cdn-media.huggingface.co/speech_samples/sample2.flac model-index: - name: s2t-small-librispeech-asr results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: LibriSpeech (clean) type: librispeech_asr config: clean split: test args: language: en metrics: - name: Test WER type: wer value: 4.3 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: LibriSpeech (other) type: librispeech_asr config: other split: test args: language: en metrics: - name: Test WER type: wer value: 9.0 --- # S2T-SMALL-LIBRISPEECH-ASR `s2t-small-librispeech-asr` is a Speech to Text Transformer (S2T) model trained for automatic speech recognition (ASR). The S2T model was proposed in [this paper](https://arxiv.org/abs/2010.05171) and released in [this repository](https://github.com/pytorch/fairseq/tree/master/examples/speech_to_text) ## Model description S2T is an end-to-end sequence-to-sequence transformer model. It is trained with standard autoregressive cross-entropy loss and generates the transcripts autoregressively. ## Intended uses & limitations This model can be used for end-to-end speech recognition (ASR). See the [model hub](https://huggingface.co/models?filter=speech_to_text) to look for other S2T checkpoints. ### How to use As this a standard sequence to sequence transformer model, you can use the `generate` method to generate the transcripts by passing the speech features to the model. *Note: The `Speech2TextProcessor` object uses [torchaudio](https://github.com/pytorch/audio) to extract the filter bank features. Make sure to install the `torchaudio` package before running this example.* *Note: The feature extractor depends on [torchaudio](https://github.com/pytorch/audio) and the tokenizer depends on [sentencepiece](https://github.com/google/sentencepiece) so be sure to install those packages before running the examples.* You could either install those as extra speech dependancies with `pip install transformers"[speech, sentencepiece]"` or install the packages seperatly with `pip install torchaudio sentencepiece`. ```python import torch from transformers import Speech2TextProcessor, Speech2TextForConditionalGeneration from datasets import load_dataset model = Speech2TextForConditionalGeneration.from_pretrained("facebook/s2t-small-librispeech-asr") processor = Speech2TextProcessor.from_pretrained("facebook/s2t-small-librispeech-asr") ds = load_dataset( "patrickvonplaten/librispeech_asr_dummy", "clean", split="validation" ) input_features = processor( ds[0]["audio"]["array"], sampling_rate=16_000, return_tensors="pt" ).input_features # Batch size 1 generated_ids = model.generate(input_ids=input_features) transcription = processor.batch_decode(generated_ids) ``` #### Evaluation on LibriSpeech Test The following script shows how to evaluate this model on the [LibriSpeech](https://huggingface.co/datasets/librispeech_asr) *"clean"* and *"other"* test dataset. ```python from datasets import load_dataset, load_metric from transformers import Speech2TextForConditionalGeneration, Speech2TextProcessor librispeech_eval = load_dataset("librispeech_asr", "clean", split="test") # change to "other" for other test dataset wer = load_metric("wer") model = Speech2TextForConditionalGeneration.from_pretrained("facebook/s2t-small-librispeech-asr").to("cuda") processor = Speech2TextProcessor.from_pretrained("facebook/s2t-small-librispeech-asr", do_upper_case=True) librispeech_eval = librispeech_eval.map(map_to_array) def map_to_pred(batch): features = processor(batch["audio"]["array"], sampling_rate=16000, padding=True, return_tensors="pt") input_features = features.input_features.to("cuda") attention_mask = features.attention_mask.to("cuda") gen_tokens = model.generate(input_ids=input_features, attention_mask=attention_mask) batch["transcription"] = processor.batch_decode(gen_tokens, skip_special_tokens=True) return batch result = librispeech_eval.map(map_to_pred, batched=True, batch_size=8, remove_columns=["speech"]) print("WER:", wer(predictions=result["transcription"], references=result["text"])) ``` *Result (WER)*: | "clean" | "other" | |:-------:|:-------:| | 4.3 | 9.0 | ## Training data The S2T-SMALL-LIBRISPEECH-ASR is trained on [LibriSpeech ASR Corpus](https://www.openslr.org/12), a dataset consisting of approximately 1000 hours of 16kHz read English speech. ## Training procedure ### Preprocessing The speech data is pre-processed by extracting Kaldi-compliant 80-channel log mel-filter bank features automatically from WAV/FLAC audio files via PyKaldi or torchaudio. Further utterance-level CMVN (cepstral mean and variance normalization) is applied to each example. The texts are lowercased and tokenized using SentencePiece and a vocabulary size of 10,000. ### Training The model is trained with standard autoregressive cross-entropy loss and using [SpecAugment](https://arxiv.org/abs/1904.08779). The encoder receives speech features, and the decoder generates the transcripts autoregressively. ### BibTeX entry and citation info ```bibtex @inproceedings{wang2020fairseqs2t, title = {fairseq S2T: Fast Speech-to-Text Modeling with fairseq}, author = {Changhan Wang and Yun Tang and Xutai Ma and Anne Wu and Dmytro Okhonko and Juan Pino}, booktitle = {Proceedings of the 2020 Conference of the Asian Chapter of the Association for Computational Linguistics (AACL): System Demonstrations}, year = {2020}, } ```
Classroom-workshop/assignment1-maria
cb88a8f85da31f52c9e2064ddc569789038d03ea
2022-06-02T15:24:32.000Z
[ "pytorch", "tf", "speech_to_text", "automatic-speech-recognition", "en", "dataset:librispeech_asr", "arxiv:2010.05171", "arxiv:1904.08779", "transformers", "speech", "audio", "hf-asr-leaderboard", "license:mit", "model-index" ]
automatic-speech-recognition
false
Classroom-workshop
null
Classroom-workshop/assignment1-maria
2
null
transformers
26,211
--- language: en datasets: - librispeech_asr tags: - speech - audio - automatic-speech-recognition - hf-asr-leaderboard license: mit pipeline_tag: automatic-speech-recognition widget: - example_title: Librispeech sample 1 src: https://cdn-media.huggingface.co/speech_samples/sample1.flac - example_title: Librispeech sample 2 src: https://cdn-media.huggingface.co/speech_samples/sample2.flac model-index: - name: s2t-small-librispeech-asr results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: LibriSpeech (clean) type: librispeech_asr config: clean split: test args: language: en metrics: - name: Test WER type: wer value: 4.3 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: LibriSpeech (other) type: librispeech_asr config: other split: test args: language: en metrics: - name: Test WER type: wer value: 9.0 --- # S2T-SMALL-LIBRISPEECH-ASR `s2t-small-librispeech-asr` is a Speech to Text Transformer (S2T) model trained for automatic speech recognition (ASR). The S2T model was proposed in [this paper](https://arxiv.org/abs/2010.05171) and released in [this repository](https://github.com/pytorch/fairseq/tree/master/examples/speech_to_text) ## Model description S2T is an end-to-end sequence-to-sequence transformer model. It is trained with standard autoregressive cross-entropy loss and generates the transcripts autoregressively. ## Intended uses & limitations This model can be used for end-to-end speech recognition (ASR). See the [model hub](https://huggingface.co/models?filter=speech_to_text) to look for other S2T checkpoints. ### How to use As this a standard sequence to sequence transformer model, you can use the `generate` method to generate the transcripts by passing the speech features to the model. *Note: The `Speech2TextProcessor` object uses [torchaudio](https://github.com/pytorch/audio) to extract the filter bank features. Make sure to install the `torchaudio` package before running this example.* *Note: The feature extractor depends on [torchaudio](https://github.com/pytorch/audio) and the tokenizer depends on [sentencepiece](https://github.com/google/sentencepiece) so be sure to install those packages before running the examples.* You could either install those as extra speech dependancies with `pip install transformers"[speech, sentencepiece]"` or install the packages seperatly with `pip install torchaudio sentencepiece`. ```python import torch from transformers import Speech2TextProcessor, Speech2TextForConditionalGeneration from datasets import load_dataset model = Speech2TextForConditionalGeneration.from_pretrained("facebook/s2t-small-librispeech-asr") processor = Speech2TextProcessor.from_pretrained("facebook/s2t-small-librispeech-asr") ds = load_dataset( "patrickvonplaten/librispeech_asr_dummy", "clean", split="validation" ) input_features = processor( ds[0]["audio"]["array"], sampling_rate=16_000, return_tensors="pt" ).input_features # Batch size 1 generated_ids = model.generate(input_ids=input_features) transcription = processor.batch_decode(generated_ids) ``` #### Evaluation on LibriSpeech Test The following script shows how to evaluate this model on the [LibriSpeech](https://huggingface.co/datasets/librispeech_asr) *"clean"* and *"other"* test dataset. ```python from datasets import load_dataset, load_metric from transformers import Speech2TextForConditionalGeneration, Speech2TextProcessor librispeech_eval = load_dataset("librispeech_asr", "clean", split="test") # change to "other" for other test dataset wer = load_metric("wer") model = Speech2TextForConditionalGeneration.from_pretrained("facebook/s2t-small-librispeech-asr").to("cuda") processor = Speech2TextProcessor.from_pretrained("facebook/s2t-small-librispeech-asr", do_upper_case=True) librispeech_eval = librispeech_eval.map(map_to_array) def map_to_pred(batch): features = processor(batch["audio"]["array"], sampling_rate=16000, padding=True, return_tensors="pt") input_features = features.input_features.to("cuda") attention_mask = features.attention_mask.to("cuda") gen_tokens = model.generate(input_ids=input_features, attention_mask=attention_mask) batch["transcription"] = processor.batch_decode(gen_tokens, skip_special_tokens=True) return batch result = librispeech_eval.map(map_to_pred, batched=True, batch_size=8, remove_columns=["speech"]) print("WER:", wer(predictions=result["transcription"], references=result["text"])) ``` *Result (WER)*: | "clean" | "other" | |:-------:|:-------:| | 4.3 | 9.0 | ## Training data The S2T-SMALL-LIBRISPEECH-ASR is trained on [LibriSpeech ASR Corpus](https://www.openslr.org/12), a dataset consisting of approximately 1000 hours of 16kHz read English speech. ## Training procedure ### Preprocessing The speech data is pre-processed by extracting Kaldi-compliant 80-channel log mel-filter bank features automatically from WAV/FLAC audio files via PyKaldi or torchaudio. Further utterance-level CMVN (cepstral mean and variance normalization) is applied to each example. The texts are lowercased and tokenized using SentencePiece and a vocabulary size of 10,000. ### Training The model is trained with standard autoregressive cross-entropy loss and using [SpecAugment](https://arxiv.org/abs/1904.08779). The encoder receives speech features, and the decoder generates the transcripts autoregressively. ### BibTeX entry and citation info ```bibtex @inproceedings{wang2020fairseqs2t, title = {fairseq S2T: Fast Speech-to-Text Modeling with fairseq}, author = {Changhan Wang and Yun Tang and Xutai Ma and Anne Wu and Dmytro Okhonko and Juan Pino}, booktitle = {Proceedings of the 2020 Conference of the Asian Chapter of the Association for Computational Linguistics (AACL): System Demonstrations}, year = {2020}, } ```
stevemobs/deberta-base-combined-squad1-aqa-and-newsqa-1epoch
d7bac89f375eaffd42fab0dc70dec6ecf9179f84
2022-06-02T17:59:05.000Z
[ "pytorch", "tensorboard", "deberta", "question-answering", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
question-answering
false
stevemobs
null
stevemobs/deberta-base-combined-squad1-aqa-and-newsqa-1epoch
2
null
transformers
26,212
--- license: mit tags: - generated_from_trainer model-index: - name: deberta-base-combined-squad1-aqa-and-newsqa-1epoch results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # deberta-base-combined-squad1-aqa-and-newsqa-1epoch This model is a fine-tuned version of [stevemobs/deberta-base-combined-squad1-aqa](https://huggingface.co/stevemobs/deberta-base-combined-squad1-aqa) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6851 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 12 - eval_batch_size: 12 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 0.6508 | 1.0 | 17307 | 0.6851 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.12.1
awghuku/wav2vec2-base-timit-demo-google-colab
066408c8260db3220f28461d92080b3fe2ff2674
2022-06-02T18:35:00.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
awghuku
null
awghuku/wav2vec2-base-timit-demo-google-colab
2
0
transformers
26,213
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base-timit-demo-google-colab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-timit-demo-google-colab This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4732 - Wer: 0.3300 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 3.2982 | 1.0 | 500 | 1.3852 | 0.9990 | | 0.8067 | 2.01 | 1000 | 0.5318 | 0.5140 | | 0.4393 | 3.01 | 1500 | 0.4500 | 0.4570 | | 0.3007 | 4.02 | 2000 | 0.4259 | 0.4091 | | 0.2306 | 5.02 | 2500 | 0.4092 | 0.3962 | | 0.1845 | 6.02 | 3000 | 0.3949 | 0.3834 | | 0.1516 | 7.03 | 3500 | 0.4144 | 0.3759 | | 0.1347 | 8.03 | 4000 | 0.3958 | 0.3689 | | 0.1217 | 9.04 | 4500 | 0.4455 | 0.3754 | | 0.1039 | 10.04 | 5000 | 0.4228 | 0.3684 | | 0.0921 | 11.04 | 5500 | 0.4310 | 0.3566 | | 0.082 | 12.05 | 6000 | 0.4549 | 0.3617 | | 0.078 | 13.05 | 6500 | 0.4535 | 0.3661 | | 0.0668 | 14.06 | 7000 | 0.4726 | 0.3557 | | 0.0648 | 15.06 | 7500 | 0.4414 | 0.3512 | | 0.0581 | 16.06 | 8000 | 0.4781 | 0.3548 | | 0.057 | 17.07 | 8500 | 0.4626 | 0.3588 | | 0.0532 | 18.07 | 9000 | 0.5065 | 0.3495 | | 0.0442 | 19.08 | 9500 | 0.4645 | 0.3390 | | 0.0432 | 20.08 | 10000 | 0.4786 | 0.3466 | | 0.0416 | 21.08 | 10500 | 0.4487 | 0.3425 | | 0.0337 | 22.09 | 11000 | 0.4878 | 0.3416 | | 0.0305 | 23.09 | 11500 | 0.4787 | 0.3413 | | 0.0319 | 24.1 | 12000 | 0.4707 | 0.3395 | | 0.0262 | 25.1 | 12500 | 0.4875 | 0.3345 | | 0.0266 | 26.1 | 13000 | 0.4801 | 0.3343 | | 0.025 | 27.11 | 13500 | 0.4926 | 0.3320 | | 0.022 | 28.11 | 14000 | 0.4894 | 0.3313 | | 0.0227 | 29.12 | 14500 | 0.4732 | 0.3300 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.11.0+cu113 - Datasets 1.18.3 - Tokenizers 0.12.1
Danastos/nq_bert_el_4
28ac630b0cab726b89ffe99e3448d01d91aaa570
2022-06-19T12:24:39.000Z
[ "pytorch", "bert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
Danastos
null
Danastos/nq_bert_el_4
2
null
transformers
26,214
Entry not found
erickfm/t5-large-finetuned-bias
0799e47b772bcab4cfd1d881d2999e0f09323c4b
2022-06-02T20:32:44.000Z
[ "pytorch", "t5", "text2text-generation", "en", "dataset:WNC", "transformers", "license:apache-2.0", "autotrain_compatible" ]
text2text-generation
false
erickfm
null
erickfm/t5-large-finetuned-bias
2
null
transformers
26,215
--- language: - en license: apache-2.0 datasets: - WNC metrics: - accuracy --- This model is a fine-tune checkpoint of [T5-large](https://huggingface.co/t5-large), fine-tuned on the [Wiki Neutrality Corpus (WNC)](https://github.com/rpryzant/neutralizing-bias), a labeled dataset composed of 180,000 biased and neutralized sentence pairs that are generated from Wikipedia edits tagged for “neutral point of view”. This model reaches an accuracy of [?] on a dev split of the WNC. For more details about T5, check out this [model card](https://huggingface.co/t5-large).
symons/finetuning-sentiment-model-3000-samples
39580f7f3ec407655e511e51220799f889023daa
2022-06-02T23:32:51.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:rotten_tomatoes_movie_review", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
symons
null
symons/finetuning-sentiment-model-3000-samples
2
null
transformers
26,216
--- license: apache-2.0 tags: - generated_from_trainer datasets: - rotten_tomatoes_movie_review metrics: - accuracy - f1 model-index: - name: finetuning-sentiment-model-3000-samples results: - task: name: Text Classification type: text-classification dataset: name: rotten_tomatoes_movie_review type: rotten_tomatoes_movie_review args: default metrics: - name: Accuracy type: accuracy value: 0.8433333333333334 - name: F1 type: f1 value: 0.840677966101695 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuning-sentiment-model-3000-samples This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the rotten_tomatoes_movie_review dataset. It achieves the following results on the evaluation set: - Loss: 0.8692 - Accuracy: 0.8433 - F1: 0.8407 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
erickfm/t5-large-finetuned-bias-v2
1af0ee8a1850add577e837bf6f9f6772b6ce79f7
2022-06-02T22:58:37.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
erickfm
null
erickfm/t5-large-finetuned-bias-v2
2
null
transformers
26,217
Entry not found
DVillada/T5_fine_tunning_NLP_test
cc4d069d07effcaf0f676e0d2ab3db2dcfe0523f
2022-06-03T03:07:54.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "license:cc-by-4.0", "autotrain_compatible" ]
text2text-generation
false
DVillada
null
DVillada/T5_fine_tunning_NLP_test
2
null
transformers
26,218
--- license: cc-by-4.0 --- In this example model, I want to test how to summarize a short text due a very very small corpus of data used to train it. The data contains two columns: Text and Summary. This model was created in python through Google Colab interface, with the hugging face librarys for this task. Diego Villada
lewtun/t5-small-finetuned-arxiv
e09a7ddac00a57cb5a1ca757d2e15318719a24a1
2022-06-03T08:23:12.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
text2text-generation
false
lewtun
null
lewtun/t5-small-finetuned-arxiv
2
null
transformers
26,219
--- license: apache-2.0 tags: - generated_from_trainer metrics: - rouge model-index: - name: t5-small-finetuned-arxiv results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-arxiv This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.1556 - Rouge1: 37.8405 - Rouge2: 20.4483 - Rougel: 33.996 - Rougelsum: 34.0071 - Gen Len: 15.8214 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:------:|:---------:|:-------:| | 2.3825 | 1.0 | 3564 | 2.1556 | 37.8405 | 20.4483 | 33.996 | 34.0071 | 15.8214 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu102 - Datasets 2.2.1 - Tokenizers 0.12.1
unhcr/hatespeech-detection
bfbaac9b69ffb66c9d3f82382c9f7dd66b5a149a
2022-06-03T13:27:55.000Z
[ "pytorch", "roberta", "text-classification", "en", "dataset:unhcr-hatespeech", "transformers", "text classification", "hate speech", "offensive language", "hatecheck" ]
text-classification
false
unhcr
null
unhcr/hatespeech-detection
2
1
transformers
26,220
--- language: en tags: - text classification - hate speech - offensive language - hatecheck datasets: - unhcr-hatespeech metrics: - f1 - hatecheck --- Frederik Gaasdal Jensen • Henry Stoll • Sippo Rossi • Raghava Rao Mukkamala # UNHCR Hate Speech ## Model Output
Worldman/t5_70_articles
1aa05900292c0067ec85e3150e6a20c81c0c1e7f
2022-06-03T18:50:22.000Z
[ "pytorch", "tensorboard", "t5", "text2text-generation", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
text2text-generation
false
Worldman
null
Worldman/t5_70_articles
2
null
transformers
26,221
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: t5_70_articles results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5_70_articles This model is a fine-tuned version of [t5-base](https://huggingface.co/t5-base) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 50 - num_epochs: 1 ### Training results ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
enteramine/bert-fa-zwnj-base-finetuned
d4723be40ae4c9c254497f724e610b03945dbdbc
2022-06-05T15:46:15.000Z
[ "pytorch", "tensorboard", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
enteramine
null
enteramine/bert-fa-zwnj-base-finetuned
2
null
transformers
26,222
Entry not found
simecek/cDNABERT_v0
6fdca3f8c5212cbabf28d8dedb441046dd90da9c
2022-06-03T21:42:20.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
simecek
null
simecek/cDNABERT_v0
2
null
transformers
26,223
Entry not found
VedantS01/bert-finetuned-squad
2d24d4e1969a0d8d3cff784e35cac0ae67d75b55
2022-06-24T18:52:04.000Z
[ "pytorch", "tensorboard", "bert", "question-answering", "dataset:squad", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
question-answering
false
VedantS01
null
VedantS01/bert-finetuned-squad
2
null
transformers
26,224
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: bert-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-squad This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
AlekseyKorshuk/transfer-learning-gpt
09488e25eaa77d10d71a188066170b4609665e71
2022-06-04T13:30:03.000Z
[ "pytorch", "openai-gpt", "text-generation", "transformers" ]
text-generation
false
AlekseyKorshuk
null
AlekseyKorshuk/transfer-learning-gpt
2
null
transformers
26,225
Entry not found
yanekyuk/berturk-cased-keyword-discriminator
c0370cd4b1bdfe9d768d426e7b6e48ba1a4e0a8d
2022-06-04T18:18:17.000Z
[ "pytorch", "bert", "token-classification", "tr", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
token-classification
false
yanekyuk
null
yanekyuk/berturk-cased-keyword-discriminator
2
null
transformers
26,226
--- license: mit tags: - generated_from_trainer metrics: - precision - recall - accuracy - f1 language: - tr widget: - text: "İngiltere'de düzenlenen Avrupa Tekvando ve Para Tekvando Şampiyonası’nda millî tekvandocular 5 altın, 2 gümüş ve 4 bronz olmak üzere 11, millî para tekvandocular ise 4 altın, 3 gümüş ve 1 bronz olmak üzere 8 madalya kazanarak takım halinde Avrupa şampiyonu oldu." - text: "Füme somon dedik ama aslında lox salamuralanmış somon anlamına geliyor, füme etme opsiyonel. Lox bagel, 1930'larda Eggs Benedict furyasında New Yorklu Yahudi cemaati tarafından koşer bir alternatif olarak çıkan bir lezzet. Günümüzde benim hangover yüreğim dâhil dünyanın birçok yerinde enfes bir kahvaltı sandviçi." - text: "Türkiye'de son aylarda sıklıkla tartışılan konut satışı karşılığında yabancılara vatandaşlık verilmesi konusunu beyin göçü kapsamında ele almak mümkün. Daha önce 250 bin dolar olan vatandaşlık bedeli yükselen tepkiler üzerine 400 bin dolara çıkarılmıştı. Türkiye'den göç eden iyi eğitimli kişilerin , gittikleri ülkelerde 250 bin dolar tutarında yabancı yatırıma denk olduğu göz önüne alındığında nitelikli insan gücünün yabancılara konut karşılığında satılan vatandaşlık bedelin eş olduğunu görüyoruz. Yurt dışına giden her bir vatandaşın yüksek teknolojili katma değer üreten sektörlere yapacağı katkılar göz önünde bulundurulduğunda bu açığın inşaat sektörüyle kapatıldığını da görüyoruz. Beyin göçü konusunda sadece ekonomik perspektiften bakıldığında bile kısa vadeli döviz kaynağı yaratmak için kullanılan vatandaşlık satışı yerine beyin göçünü önleyecek önlemler alınmasının ülkemize çok daha faydalı olacağı sonucunu çıkarıyoruz." - text: "Türkiye’de resmî verilere göre, 15 ve daha yukarı yaştaki kişilerde mevsim etkisinden arındırılmış işsiz sayısı, bu yılın ilk çeyreğinde bir önceki çeyreğe göre 50 bin kişi artarak 3 milyon 845 bin kişi oldu. Mevsim etkisinden arındırılmış işsizlik oranı ise 0,1 puanlık artışla %11,4 seviyesinde gerçekleşti. İşsizlik oranı, ilk çeyrekte geçen yılın aynı çeyreğine göre 1,7 puan azaldı." - text: "Boeing’in insansız uzay aracı Starliner, birtakım sorunlara rağmen Uluslararası Uzay İstasyonuna (ISS) ulaşarak ilk kez başarılı bir şekilde kenetlendi. Aracın ISS’te beş gün kalmasını takiben sorunsuz bir şekilde New Mexico’ya inmesi halinde Boeing, sonbaharda astronotları yörüngeye göndermek için Starliner’ı kullanabilir.\n\nNeden önemli? NASA’nın personal aracı üretmeyi durdurmasından kaynaklı olarak görevli astronotlar ve kozmonotlar, ISS’te Rusya’nın ürettiği uzay araçları ile taşınıyordu. Starliner’ın kendini kanıtlaması ise bu konuda Rusya’ya olan bağımlılığın potansiyel olarak ortadan kalkabileceği anlamına geliyor." model-index: - name: berturk-keyword-discriminator results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # berturk-keyword-discriminator This model is a fine-tuned version of [dbmdz/bert-base-turkish-cased](https://huggingface.co/dbmdz/bert-base-turkish-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.4196 - Precision: 0.6729 - Recall: 0.6904 - Accuracy: 0.9163 - F1: 0.6815 - Ent/precision: 0.6776 - Ent/accuracy: 0.7365 - Ent/f1: 0.7058 - Con/precision: 0.6640 - Con/accuracy: 0.6151 - Con/f1: 0.6386 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | Accuracy | F1 | Ent/precision | Ent/accuracy | Ent/f1 | Con/precision | Con/accuracy | Con/f1 | |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:--------:|:------:|:-------------:|:------------:|:------:|:-------------:|:------------:|:------:| | 0.1899 | 1.0 | 1875 | 0.1927 | 0.6330 | 0.6682 | 0.9163 | 0.6502 | 0.6283 | 0.7398 | 0.6795 | 0.6438 | 0.5513 | 0.5940 | | 0.137 | 2.0 | 3750 | 0.1988 | 0.6405 | 0.6959 | 0.9160 | 0.6671 | 0.6461 | 0.7475 | 0.6931 | 0.6297 | 0.6116 | 0.6205 | | 0.101 | 3.0 | 5625 | 0.2375 | 0.6494 | 0.7188 | 0.9173 | 0.6824 | 0.6497 | 0.7743 | 0.7066 | 0.6488 | 0.6281 | 0.6383 | | 0.0767 | 4.0 | 7500 | 0.2699 | 0.6533 | 0.7188 | 0.9154 | 0.6845 | 0.6575 | 0.7741 | 0.7111 | 0.6449 | 0.6285 | 0.6366 | | 0.057 | 5.0 | 9375 | 0.3188 | 0.6696 | 0.6914 | 0.9163 | 0.6803 | 0.6790 | 0.7405 | 0.7084 | 0.6518 | 0.6112 | 0.6308 | | 0.0423 | 6.0 | 11250 | 0.3646 | 0.6773 | 0.6846 | 0.9171 | 0.6809 | 0.6787 | 0.7388 | 0.7075 | 0.6746 | 0.5959 | 0.6328 | | 0.0339 | 7.0 | 13125 | 0.4007 | 0.6711 | 0.6816 | 0.9151 | 0.6763 | 0.6782 | 0.7283 | 0.7023 | 0.6575 | 0.6055 | 0.6304 | | 0.0282 | 8.0 | 15000 | 0.4196 | 0.6729 | 0.6904 | 0.9163 | 0.6815 | 0.6776 | 0.7365 | 0.7058 | 0.6640 | 0.6151 | 0.6386 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
mailenpellegrino/transformer
10fd03980991e5923fc1fd072056886db84a10a1
2022-07-28T14:47:27.000Z
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
false
mailenpellegrino
null
mailenpellegrino/transformer
2
1
transformers
26,227
Entry not found
Splend1dchan/wav2vec2-large-lv60_mt5-base_textlna_bs64
d3e422aaa19167ec496311f39114bae0e8b3e7c6
2022-06-06T00:35:23.000Z
[ "pytorch", "speechmix", "transformers" ]
null
false
Splend1dchan
null
Splend1dchan/wav2vec2-large-lv60_mt5-base_textlna_bs64
2
null
transformers
26,228
Entry not found
ITESM/st_demo_2
2993fabf03e37df362f1eadc21d0a9fe5c916681
2022-06-05T04:38:02.000Z
[ "pytorch", "bert", "feature-extraction", "en", "arxiv:1904.06472", "arxiv:2102.07033", "arxiv:2104.08727", "arxiv:1704.05179", "arxiv:1810.09305", "sentence-transformers", "sentence-similarity", "license:apache-2.0" ]
sentence-similarity
false
ITESM
null
ITESM/st_demo_2
2
null
sentence-transformers
26,229
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity language: en license: apache-2.0 --- # all-MiniLM-L6-v2 This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 384 dimensional dense vector space and can be used for tasks like clustering or semantic search. ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch import torch.nn.functional as F #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('sentence-transformers/all-MiniLM-L6-v2') model = AutoModel.from_pretrained('sentence-transformers/all-MiniLM-L6-v2') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) # Normalize embeddings sentence_embeddings = F.normalize(sentence_embeddings, p=2, dim=1) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=sentence-transformers/all-MiniLM-L6-v2) ------ ## Background The project aims to train sentence embedding models on very large sentence level datasets using a self-supervised contrastive learning objective. We used the pretrained [`nreimers/MiniLM-L6-H384-uncased`](https://huggingface.co/nreimers/MiniLM-L6-H384-uncased) model and fine-tuned in on a 1B sentence pairs dataset. We use a contrastive learning objective: given a sentence from the pair, the model should predict which out of a set of randomly sampled other sentences, was actually paired with it in our dataset. We developped this model during the [Community week using JAX/Flax for NLP & CV](https://discuss.huggingface.co/t/open-to-the-community-community-week-using-jax-flax-for-nlp-cv/7104), organized by Hugging Face. We developped this model as part of the project: [Train the Best Sentence Embedding Model Ever with 1B Training Pairs](https://discuss.huggingface.co/t/train-the-best-sentence-embedding-model-ever-with-1b-training-pairs/7354). We benefited from efficient hardware infrastructure to run the project: 7 TPUs v3-8, as well as intervention from Googles Flax, JAX, and Cloud team member about efficient deep learning frameworks. ## Intended uses Our model is intented to be used as a sentence and short paragraph encoder. Given an input text, it ouptuts a vector which captures the semantic information. The sentence vector may be used for information retrieval, clustering or sentence similarity tasks. By default, input text longer than 256 word pieces is truncated. ## Training procedure ### Pre-training We use the pretrained [`nreimers/MiniLM-L6-H384-uncased`](https://huggingface.co/nreimers/MiniLM-L6-H384-uncased) model. Please refer to the model card for more detailed information about the pre-training procedure. ### Fine-tuning We fine-tune the model using a contrastive objective. Formally, we compute the cosine similarity from each possible sentence pairs from the batch. We then apply the cross entropy loss by comparing with true pairs. #### Hyper parameters We trained ou model on a TPU v3-8. We train the model during 100k steps using a batch size of 1024 (128 per TPU core). We use a learning rate warm up of 500. The sequence length was limited to 128 tokens. We used the AdamW optimizer with a 2e-5 learning rate. The full training script is accessible in this current repository: `train_script.py`. #### Training data We use the concatenation from multiple datasets to fine-tune our model. The total number of sentence pairs is above 1 billion sentences. We sampled each dataset given a weighted probability which configuration is detailed in the `data_config.json` file. | Dataset | Paper | Number of training tuples | |--------------------------------------------------------|:----------------------------------------:|:--------------------------:| | [Reddit comments (2015-2018)](https://github.com/PolyAI-LDN/conversational-datasets/tree/master/reddit) | [paper](https://arxiv.org/abs/1904.06472) | 726,484,430 | | [S2ORC](https://github.com/allenai/s2orc) Citation pairs (Abstracts) | [paper](https://aclanthology.org/2020.acl-main.447/) | 116,288,806 | | [WikiAnswers](https://github.com/afader/oqa#wikianswers-corpus) Duplicate question pairs | [paper](https://doi.org/10.1145/2623330.2623677) | 77,427,422 | | [PAQ](https://github.com/facebookresearch/PAQ) (Question, Answer) pairs | [paper](https://arxiv.org/abs/2102.07033) | 64,371,441 | | [S2ORC](https://github.com/allenai/s2orc) Citation pairs (Titles) | [paper](https://aclanthology.org/2020.acl-main.447/) | 52,603,982 | | [S2ORC](https://github.com/allenai/s2orc) (Title, Abstract) | [paper](https://aclanthology.org/2020.acl-main.447/) | 41,769,185 | | [Stack Exchange](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_xml) (Title, Body) pairs | - | 25,316,456 | | [Stack Exchange](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_xml) (Title+Body, Answer) pairs | - | 21,396,559 | | [Stack Exchange](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_xml) (Title, Answer) pairs | - | 21,396,559 | | [MS MARCO](https://microsoft.github.io/msmarco/) triplets | [paper](https://doi.org/10.1145/3404835.3462804) | 9,144,553 | | [GOOAQ: Open Question Answering with Diverse Answer Types](https://github.com/allenai/gooaq) | [paper](https://arxiv.org/pdf/2104.08727.pdf) | 3,012,496 | | [Yahoo Answers](https://www.kaggle.com/soumikrakshit/yahoo-answers-dataset) (Title, Answer) | [paper](https://proceedings.neurips.cc/paper/2015/hash/250cf8b51c773f3f8dc8b4be867a9a02-Abstract.html) | 1,198,260 | | [Code Search](https://huggingface.co/datasets/code_search_net) | - | 1,151,414 | | [COCO](https://cocodataset.org/#home) Image captions | [paper](https://link.springer.com/chapter/10.1007%2F978-3-319-10602-1_48) | 828,395| | [SPECTER](https://github.com/allenai/specter) citation triplets | [paper](https://doi.org/10.18653/v1/2020.acl-main.207) | 684,100 | | [Yahoo Answers](https://www.kaggle.com/soumikrakshit/yahoo-answers-dataset) (Question, Answer) | [paper](https://proceedings.neurips.cc/paper/2015/hash/250cf8b51c773f3f8dc8b4be867a9a02-Abstract.html) | 681,164 | | [Yahoo Answers](https://www.kaggle.com/soumikrakshit/yahoo-answers-dataset) (Title, Question) | [paper](https://proceedings.neurips.cc/paper/2015/hash/250cf8b51c773f3f8dc8b4be867a9a02-Abstract.html) | 659,896 | | [SearchQA](https://huggingface.co/datasets/search_qa) | [paper](https://arxiv.org/abs/1704.05179) | 582,261 | | [Eli5](https://huggingface.co/datasets/eli5) | [paper](https://doi.org/10.18653/v1/p19-1346) | 325,475 | | [Flickr 30k](https://shannon.cs.illinois.edu/DenotationGraph/) | [paper](https://transacl.org/ojs/index.php/tacl/article/view/229/33) | 317,695 | | [Stack Exchange](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_xml) Duplicate questions (titles) | | 304,525 | | AllNLI ([SNLI](https://nlp.stanford.edu/projects/snli/) and [MultiNLI](https://cims.nyu.edu/~sbowman/multinli/) | [paper SNLI](https://doi.org/10.18653/v1/d15-1075), [paper MultiNLI](https://doi.org/10.18653/v1/n18-1101) | 277,230 | | [Stack Exchange](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_xml) Duplicate questions (bodies) | | 250,519 | | [Stack Exchange](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_xml) Duplicate questions (titles+bodies) | | 250,460 | | [Sentence Compression](https://github.com/google-research-datasets/sentence-compression) | [paper](https://www.aclweb.org/anthology/D13-1155/) | 180,000 | | [Wikihow](https://github.com/pvl/wikihow_pairs_dataset) | [paper](https://arxiv.org/abs/1810.09305) | 128,542 | | [Altlex](https://github.com/chridey/altlex/) | [paper](https://aclanthology.org/P16-1135.pdf) | 112,696 | | [Quora Question Triplets](https://quoradata.quora.com/First-Quora-Dataset-Release-Question-Pairs) | - | 103,663 | | [Simple Wikipedia](https://cs.pomona.edu/~dkauchak/simplification/) | [paper](https://www.aclweb.org/anthology/P11-2117/) | 102,225 | | [Natural Questions (NQ)](https://ai.google.com/research/NaturalQuestions) | [paper](https://transacl.org/ojs/index.php/tacl/article/view/1455) | 100,231 | | [SQuAD2.0](https://rajpurkar.github.io/SQuAD-explorer/) | [paper](https://aclanthology.org/P18-2124.pdf) | 87,599 | | [TriviaQA](https://huggingface.co/datasets/trivia_qa) | - | 73,346 | | **Total** | | **1,170,060,424** |
ITESM/st_demo_4
79f84408266156cb9c9a6cd07eb6e8c6fda0f3ba
2022-06-05T04:51:06.000Z
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
false
ITESM
null
ITESM/st_demo_4
2
null
transformers
26,230
Entry not found
ITESM/st_demo_5
4c6307639a94ea30dbf9c439d943e35fc01ecfa3
2022-06-05T04:55:46.000Z
[ "pytorch", "bert", "feature-extraction", "en", "arxiv:1904.06472", "arxiv:2102.07033", "arxiv:2104.08727", "arxiv:1704.05179", "arxiv:1810.09305", "sentence-transformers", "sentence-similarity", "license:apache-2.0" ]
sentence-similarity
false
ITESM
null
ITESM/st_demo_5
2
null
sentence-transformers
26,231
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity language: en license: apache-2.0 --- # all-MiniLM-L6-v2 This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 384 dimensional dense vector space and can be used for tasks like clustering or semantic search. ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch import torch.nn.functional as F #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('sentence-transformers/all-MiniLM-L6-v2') model = AutoModel.from_pretrained('sentence-transformers/all-MiniLM-L6-v2') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) # Normalize embeddings sentence_embeddings = F.normalize(sentence_embeddings, p=2, dim=1) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=sentence-transformers/all-MiniLM-L6-v2) ------ ## Background The project aims to train sentence embedding models on very large sentence level datasets using a self-supervised contrastive learning objective. We used the pretrained [`nreimers/MiniLM-L6-H384-uncased`](https://huggingface.co/nreimers/MiniLM-L6-H384-uncased) model and fine-tuned in on a 1B sentence pairs dataset. We use a contrastive learning objective: given a sentence from the pair, the model should predict which out of a set of randomly sampled other sentences, was actually paired with it in our dataset. We developped this model during the [Community week using JAX/Flax for NLP & CV](https://discuss.huggingface.co/t/open-to-the-community-community-week-using-jax-flax-for-nlp-cv/7104), organized by Hugging Face. We developped this model as part of the project: [Train the Best Sentence Embedding Model Ever with 1B Training Pairs](https://discuss.huggingface.co/t/train-the-best-sentence-embedding-model-ever-with-1b-training-pairs/7354). We benefited from efficient hardware infrastructure to run the project: 7 TPUs v3-8, as well as intervention from Googles Flax, JAX, and Cloud team member about efficient deep learning frameworks. ## Intended uses Our model is intented to be used as a sentence and short paragraph encoder. Given an input text, it ouptuts a vector which captures the semantic information. The sentence vector may be used for information retrieval, clustering or sentence similarity tasks. By default, input text longer than 256 word pieces is truncated. ## Training procedure ### Pre-training We use the pretrained [`nreimers/MiniLM-L6-H384-uncased`](https://huggingface.co/nreimers/MiniLM-L6-H384-uncased) model. Please refer to the model card for more detailed information about the pre-training procedure. ### Fine-tuning We fine-tune the model using a contrastive objective. Formally, we compute the cosine similarity from each possible sentence pairs from the batch. We then apply the cross entropy loss by comparing with true pairs. #### Hyper parameters We trained ou model on a TPU v3-8. We train the model during 100k steps using a batch size of 1024 (128 per TPU core). We use a learning rate warm up of 500. The sequence length was limited to 128 tokens. We used the AdamW optimizer with a 2e-5 learning rate. The full training script is accessible in this current repository: `train_script.py`. #### Training data We use the concatenation from multiple datasets to fine-tune our model. The total number of sentence pairs is above 1 billion sentences. We sampled each dataset given a weighted probability which configuration is detailed in the `data_config.json` file. | Dataset | Paper | Number of training tuples | |--------------------------------------------------------|:----------------------------------------:|:--------------------------:| | [Reddit comments (2015-2018)](https://github.com/PolyAI-LDN/conversational-datasets/tree/master/reddit) | [paper](https://arxiv.org/abs/1904.06472) | 726,484,430 | | [S2ORC](https://github.com/allenai/s2orc) Citation pairs (Abstracts) | [paper](https://aclanthology.org/2020.acl-main.447/) | 116,288,806 | | [WikiAnswers](https://github.com/afader/oqa#wikianswers-corpus) Duplicate question pairs | [paper](https://doi.org/10.1145/2623330.2623677) | 77,427,422 | | [PAQ](https://github.com/facebookresearch/PAQ) (Question, Answer) pairs | [paper](https://arxiv.org/abs/2102.07033) | 64,371,441 | | [S2ORC](https://github.com/allenai/s2orc) Citation pairs (Titles) | [paper](https://aclanthology.org/2020.acl-main.447/) | 52,603,982 | | [S2ORC](https://github.com/allenai/s2orc) (Title, Abstract) | [paper](https://aclanthology.org/2020.acl-main.447/) | 41,769,185 | | [Stack Exchange](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_xml) (Title, Body) pairs | - | 25,316,456 | | [Stack Exchange](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_xml) (Title+Body, Answer) pairs | - | 21,396,559 | | [Stack Exchange](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_xml) (Title, Answer) pairs | - | 21,396,559 | | [MS MARCO](https://microsoft.github.io/msmarco/) triplets | [paper](https://doi.org/10.1145/3404835.3462804) | 9,144,553 | | [GOOAQ: Open Question Answering with Diverse Answer Types](https://github.com/allenai/gooaq) | [paper](https://arxiv.org/pdf/2104.08727.pdf) | 3,012,496 | | [Yahoo Answers](https://www.kaggle.com/soumikrakshit/yahoo-answers-dataset) (Title, Answer) | [paper](https://proceedings.neurips.cc/paper/2015/hash/250cf8b51c773f3f8dc8b4be867a9a02-Abstract.html) | 1,198,260 | | [Code Search](https://huggingface.co/datasets/code_search_net) | - | 1,151,414 | | [COCO](https://cocodataset.org/#home) Image captions | [paper](https://link.springer.com/chapter/10.1007%2F978-3-319-10602-1_48) | 828,395| | [SPECTER](https://github.com/allenai/specter) citation triplets | [paper](https://doi.org/10.18653/v1/2020.acl-main.207) | 684,100 | | [Yahoo Answers](https://www.kaggle.com/soumikrakshit/yahoo-answers-dataset) (Question, Answer) | [paper](https://proceedings.neurips.cc/paper/2015/hash/250cf8b51c773f3f8dc8b4be867a9a02-Abstract.html) | 681,164 | | [Yahoo Answers](https://www.kaggle.com/soumikrakshit/yahoo-answers-dataset) (Title, Question) | [paper](https://proceedings.neurips.cc/paper/2015/hash/250cf8b51c773f3f8dc8b4be867a9a02-Abstract.html) | 659,896 | | [SearchQA](https://huggingface.co/datasets/search_qa) | [paper](https://arxiv.org/abs/1704.05179) | 582,261 | | [Eli5](https://huggingface.co/datasets/eli5) | [paper](https://doi.org/10.18653/v1/p19-1346) | 325,475 | | [Flickr 30k](https://shannon.cs.illinois.edu/DenotationGraph/) | [paper](https://transacl.org/ojs/index.php/tacl/article/view/229/33) | 317,695 | | [Stack Exchange](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_xml) Duplicate questions (titles) | | 304,525 | | AllNLI ([SNLI](https://nlp.stanford.edu/projects/snli/) and [MultiNLI](https://cims.nyu.edu/~sbowman/multinli/) | [paper SNLI](https://doi.org/10.18653/v1/d15-1075), [paper MultiNLI](https://doi.org/10.18653/v1/n18-1101) | 277,230 | | [Stack Exchange](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_xml) Duplicate questions (bodies) | | 250,519 | | [Stack Exchange](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_xml) Duplicate questions (titles+bodies) | | 250,460 | | [Sentence Compression](https://github.com/google-research-datasets/sentence-compression) | [paper](https://www.aclweb.org/anthology/D13-1155/) | 180,000 | | [Wikihow](https://github.com/pvl/wikihow_pairs_dataset) | [paper](https://arxiv.org/abs/1810.09305) | 128,542 | | [Altlex](https://github.com/chridey/altlex/) | [paper](https://aclanthology.org/P16-1135.pdf) | 112,696 | | [Quora Question Triplets](https://quoradata.quora.com/First-Quora-Dataset-Release-Question-Pairs) | - | 103,663 | | [Simple Wikipedia](https://cs.pomona.edu/~dkauchak/simplification/) | [paper](https://www.aclweb.org/anthology/P11-2117/) | 102,225 | | [Natural Questions (NQ)](https://ai.google.com/research/NaturalQuestions) | [paper](https://transacl.org/ojs/index.php/tacl/article/view/1455) | 100,231 | | [SQuAD2.0](https://rajpurkar.github.io/SQuAD-explorer/) | [paper](https://aclanthology.org/P18-2124.pdf) | 87,599 | | [TriviaQA](https://huggingface.co/datasets/trivia_qa) | - | 73,346 | | **Total** | | **1,170,060,424** |
olpa/xml-roberta-base-finetuned-panx-fr
96f748407d9620cc5ccf49c18711552ead8f49e4
2022-06-06T06:41:16.000Z
[ "pytorch", "xlm-roberta", "token-classification", "dataset:xtreme", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
token-classification
false
olpa
null
olpa/xml-roberta-base-finetuned-panx-fr
2
null
transformers
26,232
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xml-roberta-base-finetuned-panx-fr results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme args: PAN-X.fr metrics: - name: F1 type: f1 value: 0.8393729984830608 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xml-roberta-base-finetuned-panx-fr This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.2691 - F1: 0.8394 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | No log | 1.0 | 191 | 0.3150 | 0.7993 | | No log | 2.0 | 382 | 0.2799 | 0.8213 | | No log | 3.0 | 573 | 0.2691 | 0.8394 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.12.1
Yehor/wav2vec2-xls-r-300m-uk
99c1798441efcec65f013794ce9ffb46227521b7
2022-07-30T07:01:10.000Z
[ "pytorch", "wav2vec2", "pretraining", "transformers", "license:apache-2.0" ]
null
false
Yehor
null
Yehor/wav2vec2-xls-r-300m-uk
2
null
transformers
26,233
--- license: apache-2.0 --- 🇺🇦 Join Ukrainian Speech Recognition Community - https://t.me/speech_recognition_uk ⭐ See other Ukrainian models - https://github.com/egorsmkv/speech-recognition-uk This is a pre-trained Ukrainian wav2vec2 XLS-R model with 300m parameters (dataset is 323h, source of speech is **broadcast** programs). Steps: 400,000 The model is not intended to do inference, it's only for fine-tuning on own labeled dataset. The model was trained from [the wav2vec2 XLS-R model](https://huggingface.co/facebook/wav2vec2-xls-r-300m) with 300m parameters.
roshnir/xlmr-finetuned-mlqa-dev-es-hi
b02cd562efbed31666a05257089a96eb560f8167
2022-06-05T12:49:38.000Z
[ "pytorch", "xlm-roberta", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
roshnir
null
roshnir/xlmr-finetuned-mlqa-dev-es-hi
2
null
transformers
26,234
Entry not found
sayanmandal/t5-small_6_3-en-hi_en_bt
1cbcac0317c38661df9676a9d72be055b737857a
2022-06-06T09:44:30.000Z
[ "pytorch", "tensorboard", "t5", "text2text-generation", "transformers", "translation", "generated_from_trainer", "model-index", "autotrain_compatible" ]
translation
false
sayanmandal
null
sayanmandal/t5-small_6_3-en-hi_en_bt
2
null
transformers
26,235
--- tags: - translation - generated_from_trainer metrics: - bleu model-index: - name: t5-small_6_3-en-hi_en_bt results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small_6_3-en-hi_en_bt This model was trained from scratch on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.9293 - Bleu: 8.9676 - Gen Len: 33.391 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:------:|:-------:| | 3.7929 | 1.0 | 526 | 2.6759 | 1.5672 | 16.749 | | 3.1151 | 2.0 | 1052 | 2.3843 | 2.2962 | 16.5287 | | 2.8701 | 3.0 | 1578 | 2.2287 | 2.8811 | 16.4953 | | 2.7121 | 4.0 | 2104 | 2.1302 | 3.3949 | 16.5247 | | 2.5844 | 5.0 | 2630 | 2.0593 | 3.8161 | 16.4513 | | 2.4917 | 6.0 | 3156 | 2.0063 | 3.9831 | 16.4272 | | 2.4067 | 7.0 | 3682 | 1.9733 | 4.0511 | 16.3378 | | 2.3395 | 8.0 | 4208 | 1.9399 | 4.3067 | 16.4112 | | 2.2713 | 9.0 | 4734 | 1.9148 | 4.3195 | 16.3618 | | 2.2217 | 10.0 | 5260 | 1.8961 | 4.3905 | 16.4112 | | 2.1659 | 11.0 | 5786 | 1.8787 | 4.4548 | 16.3298 | | 2.1267 | 12.0 | 6312 | 1.8651 | 4.5779 | 16.3618 | | 2.0793 | 13.0 | 6838 | 1.8540 | 4.4863 | 16.2603 | | 2.0473 | 14.0 | 7364 | 1.8444 | 4.556 | 16.3044 | | 2.0082 | 15.0 | 7890 | 1.8353 | 4.5957 | 16.3124 | | 1.9748 | 16.0 | 8416 | 1.8313 | 4.5593 | 16.3204 | | 1.9456 | 17.0 | 8942 | 1.8259 | 4.4522 | 16.2764 | | 1.9177 | 18.0 | 9468 | 1.8231 | 4.3345 | 16.3084 | | 1.8871 | 19.0 | 9994 | 1.8177 | 4.48 | 16.3458 | | 1.8422 | 20.0 | 10520 | 1.8123 | 4.5078 | 16.287 | | 1.8161 | 21.0 | 11046 | 1.8106 | 4.3289 | 16.3405 | | 1.7972 | 22.0 | 11572 | 1.8106 | 4.5204 | 16.3244 | | 1.7785 | 23.0 | 12098 | 1.8117 | 4.4651 | 16.3605 | | 1.7563 | 24.0 | 12624 | 1.8125 | 4.3938 | 16.3538 | | 1.7444 | 25.0 | 13150 | 1.8089 | 4.5367 | 16.3792 | | 1.7256 | 26.0 | 13676 | 1.8075 | 4.4212 | 16.3925 | | 1.7021 | 27.0 | 14202 | 1.8080 | 4.5491 | 16.3992 | | 1.6969 | 28.0 | 14728 | 1.8061 | 4.6568 | 16.3645 | | 1.6766 | 29.0 | 15254 | 1.8063 | 4.6297 | 16.3738 | | 1.6653 | 30.0 | 15780 | 1.8095 | 4.6167 | 16.2977 | | 1.6543 | 31.0 | 16306 | 1.8085 | 4.5452 | 16.3538 | | 1.6413 | 32.0 | 16832 | 1.8112 | 4.6667 | 16.3351 | | 1.6293 | 33.0 | 17358 | 1.8126 | 4.6127 | 16.3351 | | 1.6204 | 34.0 | 17884 | 1.8115 | 4.7196 | 16.3111 | | 1.6082 | 35.0 | 18410 | 1.8134 | 4.7011 | 16.3324 | | 1.6048 | 36.0 | 18936 | 1.8122 | 4.6429 | 16.2964 | | 1.5911 | 37.0 | 19462 | 1.8143 | 4.6424 | 16.3124 | | 1.5834 | 38.0 | 19988 | 1.8131 | 4.6254 | 16.3164 | | 1.5742 | 39.0 | 20514 | 1.8154 | 4.6998 | 16.287 | | 1.5623 | 40.0 | 21040 | 1.8147 | 4.6469 | 16.3471 | | 1.5599 | 41.0 | 21566 | 1.8185 | 4.6654 | 16.3231 | | 1.5516 | 42.0 | 22092 | 1.8173 | 4.6961 | 16.3471 | | 1.5441 | 43.0 | 22618 | 1.8180 | 4.7176 | 16.3084 | | 1.545 | 44.0 | 23144 | 1.8177 | 4.5571 | 16.275 | | 1.5418 | 45.0 | 23670 | 1.8195 | 4.5927 | 16.3097 | | 1.5329 | 46.0 | 24196 | 1.8187 | 4.7025 | 16.2724 | | 1.5348 | 47.0 | 24722 | 1.8198 | 4.6575 | 16.3057 | | 1.5362 | 48.0 | 25248 | 1.8197 | 4.6912 | 16.2991 | | 1.5231 | 49.0 | 25774 | 1.8202 | 4.6752 | 16.2951 | | 1.5314 | 50.0 | 26300 | 1.8208 | 4.6114 | 16.2937 | ### Framework versions - Transformers 4.20.0.dev0 - Pytorch 1.8.0 - Datasets 2.1.0 - Tokenizers 0.12.1
RayY/pegasus-samsum
83f9c43329a681e55c5b450f7b827350f55fda5f
2022-06-06T01:12:40.000Z
[ "pytorch", "pegasus", "text2text-generation", "dataset:samsum", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
text2text-generation
false
RayY
null
RayY/pegasus-samsum
2
null
transformers
26,236
--- tags: - generated_from_trainer datasets: - samsum model-index: - name: pegasus-samsum results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # pegasus-samsum This model is a fine-tuned version of [google/pegasus-cnn_dailymail](https://huggingface.co/google/pegasus-cnn_dailymail) on the samsum dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 1 ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
Chetan1997/layoutlmv2-finetuned-funsd-test
f3f17aa6b98f4671135ff60f9270c6b6618288c9
2022-06-06T03:20:00.000Z
[ "pytorch", "tensorboard", "layoutlmv2", "token-classification", "transformers", "generated_from_trainer", "license:cc-by-nc-sa-4.0", "model-index", "autotrain_compatible" ]
token-classification
false
Chetan1997
null
Chetan1997/layoutlmv2-finetuned-funsd-test
2
null
transformers
26,237
--- license: cc-by-nc-sa-4.0 tags: - generated_from_trainer model-index: - name: layoutlmv2-finetuned-funsd-test results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # layoutlmv2-finetuned-funsd-test This model is a fine-tuned version of [microsoft/layoutlmv2-base-uncased](https://huggingface.co/microsoft/layoutlmv2-base-uncased) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 1000 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.20.0.dev0 - Pytorch 1.8.0+cu101 - Datasets 2.2.2 - Tokenizers 0.12.1
eunjin/kobart_gyeongsang_translator
bdc3882754239d780e038b002dace309eb6b07f1
2022-06-06T13:45:06.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
eunjin
null
eunjin/kobart_gyeongsang_translator
2
null
transformers
26,238
Korean Dialect Translator: Standard > Gyeongsang - Used Data : AI hub 한국어 방언 발화(경상도) - Used Model : SKT-KoBART - https://github.com/SKT-AI/KoBART - Reference Code - https://github.com/seujung/KoBART-translation
Nawaphong-zax/wangchanberta-base-att-spm-uncased-finetuned-cosme
3e52ef47666694b85874cc6fe4fedc1e1514b616
2022-06-06T08:52:29.000Z
[ "pytorch", "tensorboard", "camembert", "fill-mask", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
fill-mask
false
Nawaphong-zax
null
Nawaphong-zax/wangchanberta-base-att-spm-uncased-finetuned-cosme
2
null
transformers
26,239
--- tags: - generated_from_trainer model-index: - name: wangchanberta-base-att-spm-uncased-finetuned-cosme results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wangchanberta-base-att-spm-uncased-finetuned-cosme This model is a fine-tuned version of [airesearch/wangchanberta-base-att-spm-uncased](https://huggingface.co/airesearch/wangchanberta-base-att-spm-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.9973 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.1386 | 1.0 | 391 | 1.9939 | | 2.1301 | 2.0 | 782 | 1.9974 | | 2.1296 | 3.0 | 1173 | 2.0013 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.11.0+cu113 - Datasets 1.17.0 - Tokenizers 0.10.3
imamnurby/rob2rand_merged_w_prefix_c_fc_field
65b09c495b7251c1d1ebbe5a661ba7ad262d838c
2022-06-06T09:40:39.000Z
[ "pytorch", "encoder-decoder", "text2text-generation", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
text2text-generation
false
imamnurby
null
imamnurby/rob2rand_merged_w_prefix_c_fc_field
2
null
transformers
26,240
--- tags: - generated_from_trainer model-index: - name: rob2rand_merged_w_prefix_c_fc_field results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # rob2rand_merged_w_prefix_c_fc_field This model was trained from scratch on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 3 ### Framework versions - Transformers 4.18.0 - Pytorch 1.7.1 - Datasets 2.1.0 - Tokenizers 0.12.1
mmillet/rubert-tiny2_finetuned_emotion_experiment_augmented_anger_fear
b2e65400fd5846fee27e0c7c821633ae1306200f
2022-06-06T12:57:24.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers", "generated_from_trainer", "license:mit", "model-index" ]
text-classification
false
mmillet
null
mmillet/rubert-tiny2_finetuned_emotion_experiment_augmented_anger_fear
2
null
transformers
26,241
--- license: mit tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: rubert-tiny2_finetuned_emotion_experiment_augmented_anger_fear results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # rubert-tiny2_finetuned_emotion_experiment_augmented_anger_fear This model is a fine-tuned version of [cointegrated/rubert-tiny2](https://huggingface.co/cointegrated/rubert-tiny2) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.4049 - Accuracy: 0.8779 - F1: 0.8775 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 40 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 1.3097 | 1.0 | 69 | 1.1369 | 0.6628 | 0.6210 | | 0.949 | 2.0 | 138 | 0.7114 | 0.8225 | 0.8202 | | 0.6288 | 3.0 | 207 | 0.5147 | 0.8507 | 0.8494 | | 0.4724 | 4.0 | 276 | 0.4424 | 0.8643 | 0.8634 | | 0.3912 | 5.0 | 345 | 0.4149 | 0.8653 | 0.8645 | | 0.3283 | 6.0 | 414 | 0.3982 | 0.8664 | 0.8656 | | 0.3015 | 7.0 | 483 | 0.3958 | 0.8685 | 0.8676 | | 0.269 | 8.0 | 552 | 0.3888 | 0.8716 | 0.8712 | | 0.2366 | 9.0 | 621 | 0.3909 | 0.8747 | 0.8742 | | 0.2241 | 10.0 | 690 | 0.3991 | 0.8716 | 0.8707 | | 0.1972 | 11.0 | 759 | 0.3984 | 0.8727 | 0.8720 | | 0.1765 | 12.0 | 828 | 0.3940 | 0.8758 | 0.8753 | | 0.1582 | 13.0 | 897 | 0.4049 | 0.8779 | 0.8775 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
galbraun/distilbert-base-uncased-finetuned-cola
1bd7b5b7ca7c2a8a2d82917b01a0c2b2dd4c2b39
2022-06-06T14:20:34.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:glue", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
galbraun
null
galbraun/distilbert-base-uncased-finetuned-cola
2
null
transformers
26,242
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - matthews_correlation model-index: - name: distilbert-base-uncased-finetuned-cola results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue args: cola metrics: - name: Matthews Correlation type: matthews_correlation value: 0.5517964161621091 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-cola This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.5277 - Matthews Correlation: 0.5518 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.5221 | 1.0 | 535 | 0.5370 | 0.4246 | | 0.3496 | 2.0 | 1070 | 0.5143 | 0.4892 | | 0.2378 | 3.0 | 1605 | 0.5277 | 0.5518 | | 0.1761 | 4.0 | 2140 | 0.7462 | 0.5303 | | 0.1251 | 5.0 | 2675 | 0.7959 | 0.5414 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
asahi417/lmqg-mt5-small-esquad
48f4291669cb2693b5da369ddd27125e3029fa5e
2022-06-08T22:41:05.000Z
[ "pytorch", "mt5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
asahi417
null
asahi417/lmqg-mt5-small-esquad
2
null
transformers
26,243
Entry not found
garutyunov/meme-bert
263635824a06204278f83ff2ce00a8c6d15e9140
2022-06-06T16:26:56.000Z
[ "pytorch", "distilbert", "text-classification", "en", "meme classification", "license:mit" ]
text-classification
false
garutyunov
null
garutyunov/meme-bert
2
null
pytorch
26,244
--- language: - en license: mit library_name: pytorch tags: - meme classification metrics: - accuracy --- # MemeBERT Bert model fine-tined with [Memes dataset](https://github.com/mrsndmn/memes-dataset)
mmillet/rubert-tiny2_finetuned_emotion_experiment_augmented_anger_fear_no_emojis
a868fefc01444c3241950620c0409e204ce33096
2022-06-06T20:28:00.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers", "generated_from_trainer", "license:mit", "model-index" ]
text-classification
false
mmillet
null
mmillet/rubert-tiny2_finetuned_emotion_experiment_augmented_anger_fear_no_emojis
2
null
transformers
26,245
--- license: mit tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: rubert-tiny2_finetuned_emotion_experiment_augmented_anger_fear_no_emojis results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # rubert-tiny2_finetuned_emotion_experiment_augmented_anger_fear_no_emojis This model is a fine-tuned version of [cointegrated/rubert-tiny2](https://huggingface.co/cointegrated/rubert-tiny2) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.5820 - Accuracy: 0.7881 - F1: 0.7886 - Precision: 0.7906 - Recall: 0.7881 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 40 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | 1.0996 | 1.0 | 69 | 1.0013 | 0.6879 | 0.6779 | 0.7070 | 0.6879 | | 0.9524 | 2.0 | 138 | 0.8651 | 0.7265 | 0.7245 | 0.7322 | 0.7265 | | 0.8345 | 3.0 | 207 | 0.7821 | 0.7422 | 0.7413 | 0.7445 | 0.7422 | | 0.7573 | 4.0 | 276 | 0.7222 | 0.7484 | 0.7473 | 0.7482 | 0.7484 | | 0.6923 | 5.0 | 345 | 0.6828 | 0.7568 | 0.7562 | 0.7562 | 0.7568 | | 0.6412 | 6.0 | 414 | 0.6531 | 0.7568 | 0.7559 | 0.7556 | 0.7568 | | 0.5982 | 7.0 | 483 | 0.6320 | 0.7610 | 0.7601 | 0.7597 | 0.7610 | | 0.5593 | 8.0 | 552 | 0.6133 | 0.7651 | 0.7655 | 0.7664 | 0.7651 | | 0.5183 | 9.0 | 621 | 0.6036 | 0.7714 | 0.7708 | 0.7709 | 0.7714 | | 0.5042 | 10.0 | 690 | 0.5951 | 0.7756 | 0.7755 | 0.7760 | 0.7756 | | 0.483 | 11.0 | 759 | 0.5878 | 0.7766 | 0.7768 | 0.7774 | 0.7766 | | 0.4531 | 12.0 | 828 | 0.5855 | 0.7850 | 0.7841 | 0.7839 | 0.7850 | | 0.4386 | 13.0 | 897 | 0.5828 | 0.7797 | 0.7790 | 0.7786 | 0.7797 | | 0.4238 | 14.0 | 966 | 0.5788 | 0.7777 | 0.7780 | 0.7786 | 0.7777 | | 0.4018 | 15.0 | 1035 | 0.5793 | 0.7839 | 0.7842 | 0.7855 | 0.7839 | | 0.3998 | 16.0 | 1104 | 0.5801 | 0.7850 | 0.7844 | 0.7841 | 0.7850 | | 0.3747 | 17.0 | 1173 | 0.5791 | 0.7839 | 0.7836 | 0.7833 | 0.7839 | | 0.3595 | 18.0 | 1242 | 0.5799 | 0.7891 | 0.7891 | 0.7894 | 0.7891 | | 0.3575 | 19.0 | 1311 | 0.5820 | 0.7881 | 0.7886 | 0.7906 | 0.7881 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
tclong/wav2vec2-base-vios-v4
7c68ef810493a8328d6df350381fc60cb934ed80
2022-06-18T16:59:17.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "dataset:vivos_dataset", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
tclong
null
tclong/wav2vec2-base-vios-v4
2
null
transformers
26,246
--- license: apache-2.0 tags: - generated_from_trainer datasets: - vivos_dataset model-index: - name: wav2vec2-base-vios-v4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-vios-v4 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the vivos_dataset dataset. It achieves the following results on the evaluation set: - Loss: 0.3198 - Wer: 0.2169 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 15 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 7.8138 | 0.69 | 500 | 3.5011 | 1.0 | | 3.4372 | 1.37 | 1000 | 3.3447 | 1.0 | | 1.9519 | 2.06 | 1500 | 0.8356 | 0.5944 | | 0.8581 | 2.74 | 2000 | 0.5280 | 0.4038 | | 0.6405 | 3.43 | 2500 | 0.4410 | 0.3410 | | 0.5417 | 4.12 | 3000 | 0.3990 | 0.3140 | | 0.4804 | 4.8 | 3500 | 0.3804 | 0.2973 | | 0.4384 | 5.49 | 4000 | 0.3644 | 0.2808 | | 0.4162 | 6.17 | 4500 | 0.3542 | 0.2648 | | 0.3941 | 6.86 | 5000 | 0.3436 | 0.2529 | | 0.3733 | 7.54 | 5500 | 0.3355 | 0.2520 | | 0.3564 | 8.23 | 6000 | 0.3294 | 0.2415 | | 0.3412 | 8.92 | 6500 | 0.3311 | 0.2332 | | 0.3266 | 9.6 | 7000 | 0.3217 | 0.2325 | | 0.3226 | 10.29 | 7500 | 0.3317 | 0.2303 | | 0.3115 | 10.97 | 8000 | 0.3226 | 0.2279 | | 0.3094 | 11.66 | 8500 | 0.3157 | 0.2236 | | 0.2967 | 12.35 | 9000 | 0.3109 | 0.2202 | | 0.2995 | 13.03 | 9500 | 0.3129 | 0.2156 | | 0.2895 | 13.72 | 10000 | 0.3195 | 0.2146 | | 0.3089 | 14.4 | 10500 | 0.3198 | 0.2169 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.11.0+cu113 - Datasets 1.18.3 - Tokenizers 0.12.1
BigSalmon/InformalToFormalLincoln50
d4b0d916e766d271f4cfe77502b2c636380e8c6d
2022-06-07T01:13:35.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
BigSalmon
null
BigSalmon/InformalToFormalLincoln50
2
null
transformers
26,247
``` from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("BigSalmon/InformalToFormalLincoln50") model = AutoModelForCausalLM.from_pretrained("BigSalmon/InformalToFormalLincoln50") ``` ``` How To Make Prompt: informal english: i am very ready to do that just that. Translated into the Style of Abraham Lincoln: you can assure yourself of my readiness to work toward this end. Translated into the Style of Abraham Lincoln: please be assured that i am most ready to undertake this laborious task. *** informal english: space is huge and needs to be explored. Translated into the Style of Abraham Lincoln: space awaits traversal, a new world whose boundaries are endless. Translated into the Style of Abraham Lincoln: space is a ( limitless / boundless ) expanse, a vast virgin domain awaiting exploration. *** informal english: corn fields are all across illinois, visible once you leave chicago. Translated into the Style of Abraham Lincoln: corn fields ( permeate illinois / span the state of illinois / ( occupy / persist in ) all corners of illinois / line the horizon of illinois / envelop the landscape of illinois ), manifesting themselves visibly as one ventures beyond chicago. informal english: ``` ``` infill: chrome extensions [MASK] accomplish everyday tasks. Translated into the Style of Abraham Lincoln: chrome extensions ( expedite the ability to / unlock the means to more readily ) accomplish everyday tasks. infill: at a time when nintendo has become inflexible, [MASK] consoles that are tethered to a fixed iteration, sega diligently curates its legacy of classic video games on handheld devices. Translated into the Style of Abraham Lincoln: at a time when nintendo has become inflexible, ( stubbornly [MASK] on / firmly set on / unyielding in its insistence on ) consoles that are tethered to a fixed iteration, sega diligently curates its legacy of classic video games on handheld devices. infill: ``` ``` Essay Intro (Warriors vs. Rockets in Game 7): text: eagerly anticipated by fans, game 7's are the highlight of the post-season. text: ever-building in suspense, game 7's have the crowd captivated. *** Essay Intro (South Korean TV Is Becoming Popular): text: maturing into a bona fide paragon of programming, south korean television ( has much to offer / entertains without fail / never disappoints ). text: increasingly held in critical esteem, south korean television continues to impress. text: at the forefront of quality content, south korea is quickly achieving celebrity status. *** Essay Intro ( ``` ``` Search: What is the definition of Checks and Balances? https://en.wikipedia.org/wiki/Checks_and_balances Checks and Balances is the idea of having a system where each and every action in government should be subject to one or more checks that would not allow one branch or the other to overly dominate. https://www.harvard.edu/glossary/Checks_and_Balances Checks and Balances is a system that allows each branch of government to limit the powers of the other branches in order to prevent abuse of power https://www.law.cornell.edu/library/constitution/Checks_and_Balances Checks and Balances is a system of separation through which branches of government can control the other, thus preventing excess power. *** Search: What is the definition of Separation of Powers? https://en.wikipedia.org/wiki/Separation_of_powers The separation of powers is a principle in government, whereby governmental powers are separated into different branches, each with their own set of powers, that are prevent one branch from aggregating too much power. https://www.yale.edu/tcf/Separation_of_Powers.html Separation of Powers is the division of governmental functions between the executive, legislative and judicial branches, clearly demarcating each branch's authority, in the interest of ensuring that individual liberty or security is not undermined. *** Search: What is the definition of Connection of Powers? https://en.wikipedia.org/wiki/Connection_of_powers Connection of Powers is a feature of some parliamentary forms of government where different branches of government are intermingled, typically the executive and legislative branches. https://simple.wikipedia.org/wiki/Connection_of_powers The term Connection of Powers describes a system of government in which there is overlap between different parts of the government. *** Search: What is the definition of ``` ``` Search: What are phrase synonyms for "second-guess"? https://www.powerthesaurus.org/second-guess/synonyms Shortest to Longest: - feel dubious about - raise an eyebrow at - wrinkle their noses at - cast a jaundiced eye at - teeter on the fence about *** Search: What are phrase synonyms for "mean to newbies"? https://www.powerthesaurus.org/mean_to_newbies/synonyms Shortest to Longest: - readiness to balk at rookies - absence of tolerance for novices - hostile attitude toward newcomers *** Search: What are phrase synonyms for "make use of"? https://www.powerthesaurus.org/make_use_of/synonyms Shortest to Longest: - call upon - glean value from - reap benefits from - derive utility from - seize on the merits of - draw on the strength of - tap into the potential of *** Search: What are phrase synonyms for "hurting itself"? https://www.powerthesaurus.org/hurting_itself/synonyms Shortest to Longest: - erring - slighting itself - forfeiting its integrity - doing itself a disservice - evincing a lack of backbone *** Search: What are phrase synonyms for " ``` ``` - nebraska - unicamerical legislature - different from federal house and senate text: featuring a unicameral legislature, nebraska's political system stands in stark contrast to the federal model, comprised of a house and senate. *** - ``` ``` original: sports teams are profitable for owners. [MASK], their valuations experience a dramatic uptick. infill: sports teams are profitable for owners. ( accumulating vast sums / stockpiling treasure / realizing benefits / cashing in / registering robust financials / scoring on balance sheets ), their valuations experience a dramatic uptick. *** original: ``` ``` wordy: classical music is becoming less popular more and more. Translate into Concise Text: interest in classic music is fading. *** wordy: ``` ``` sweet: savvy voters ousted him. longer: voters who were informed delivered his defeat. *** sweet: ``` ``` 1: commercial space company spacex plans to launch a whopping 52 flights in 2022. 2: spacex, a commercial space company, intends to undertake a total of 52 flights in 2022. 3: in 2022, commercial space company spacex has its sights set on undertaking 52 flights. 4: 52 flights are in the pipeline for 2022, according to spacex, a commercial space company. 5: a commercial space company, spacex aims to conduct 52 flights in 2022. *** 1: ``` Keywords to sentences or sentence. ``` ngos are characterized by: □ voluntary citizens' group that is organized on a local, national or international level □ encourage political participation □ often serve humanitarian functions □ work for social, economic, or environmental change *** what are the drawbacks of living near an airbnb? □ noise □ parking □ traffic □ security □ strangers *** ``` ``` original: musicals generally use spoken dialogue as well as songs to convey the story. operas are usually fully sung. adapted: musicals generally use spoken dialogue as well as songs to convey the story. ( in a stark departure / on the other hand / in contrast / by comparison / at odds with this practice / far from being alike / in defiance of this standard / running counter to this convention ), operas are usually fully sung. *** original: akoya and tahitian are types of pearls. akoya pearls are mostly white, and tahitian pearls are naturally dark. adapted: akoya and tahitian are types of pearls. ( a far cry from being indistinguishable / easily distinguished / on closer inspection / setting them apart / not to be mistaken for one another / hardly an instance of mere synonymy / differentiating the two ), akoya pearls are mostly white, and tahitian pearls are naturally dark. *** original: ``` ``` original: had trouble deciding. translated into journalism speak: wrestled with the question, agonized over the matter, furrowed their brows in contemplation. *** original: ``` ``` input: not loyal 1800s english: ( two-faced / inimical / perfidious / duplicitous / mendacious / double-dealing / shifty ). *** input: ```
muchad/idt5-base
87e68f8dbe0a73a853ed3173e26e0268898a8aef
2022-06-07T06:16:53.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
muchad
null
muchad/idt5-base
2
null
transformers
26,248
Entry not found
spy24/autotrain-expand-parrot-956131825
c06f5f08550f43bc799a67830d596823c105903f
2022-06-07T09:11:04.000Z
[ "pytorch", "t5", "text2text-generation", "unk", "dataset:spy24/autotrain-data-expand-parrot", "transformers", "autotrain", "co2_eq_emissions", "autotrain_compatible" ]
text2text-generation
false
spy24
null
spy24/autotrain-expand-parrot-956131825
2
null
transformers
26,249
--- tags: autotrain language: unk widget: - text: "I love AutoTrain 🤗" datasets: - spy24/autotrain-data-expand-parrot co2_eq_emissions: 0.647019768976749 --- # Model Trained Using AutoTrain - Problem type: Summarization - Model ID: 956131825 - CO2 Emissions (in grams): 0.647019768976749 ## Validation Metrics - Loss: 2.330639123916626 - Rouge1: 53.3589 - Rouge2: 40.4273 - RougeL: 48.4928 - RougeLsum: 49.4952 - Gen Len: 18.8741 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_HUGGINGFACE_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/spy24/autotrain-expand-parrot-956131825 ```
PSW/samsum_reverse_train_distilbart_xsum_9-6_min10max2000_epoch10
7e20e6e54118e0ab8a8b2caac3def7073abd8970
2022-06-07T11:09:03.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
PSW
null
PSW/samsum_reverse_train_distilbart_xsum_9-6_min10max2000_epoch10
2
null
transformers
26,250
Entry not found
erickfm/t5-small-finetuned-bias-sweep-b223c64d
691ba68806783547556e8d01ce5e88d6f232bfde
2022-06-07T10:57:03.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
erickfm
null
erickfm/t5-small-finetuned-bias-sweep-b223c64d
2
null
transformers
26,251
Entry not found
marieke93/MiniLM-evidence-types
afdd48fd4eb5d666bdd2d9d34e027bb1405d0b46
2022-06-11T13:32:27.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers", "generated_from_trainer", "license:mit", "model-index" ]
text-classification
false
marieke93
null
marieke93/MiniLM-evidence-types
2
null
transformers
26,252
--- license: mit tags: - generated_from_trainer metrics: - accuracy model-index: - name: MiniLM-evidence-types results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # MiniLM-evidence-types This model is a fine-tuned version of [microsoft/MiniLM-L12-H384-uncased](https://huggingface.co/microsoft/MiniLM-L12-H384-uncased) on the evidence types dataset. It achieved the following results on the evaluation set: - Loss: 1.8672 - Macro f1: 0.3726 - Weighted f1: 0.7030 - Accuracy: 0.7161 - Balanced accuracy: 0.3616 ## Training and evaluation data The data set, as well as the code that was used to fine tune this model can be found in the GitHub repository [BA-Thesis-Information-Science-Persuasion-Strategies](https://github.com/mariekevdh/BA-Thesis-Information-Science-Persuasion-Strategies) ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Macro f1 | Weighted f1 | Accuracy | Balanced accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:|:-----------:|:--------:|:-----------------:| | 1.4106 | 1.0 | 250 | 1.2698 | 0.1966 | 0.6084 | 0.6735 | 0.2195 | | 1.1437 | 2.0 | 500 | 1.0985 | 0.3484 | 0.6914 | 0.7116 | 0.3536 | | 0.9714 | 3.0 | 750 | 1.0901 | 0.2606 | 0.6413 | 0.6446 | 0.2932 | | 0.8382 | 4.0 | 1000 | 1.0197 | 0.2764 | 0.7024 | 0.7237 | 0.2783 | | 0.7192 | 5.0 | 1250 | 1.0895 | 0.2847 | 0.6824 | 0.6963 | 0.2915 | | 0.6249 | 6.0 | 1500 | 1.1296 | 0.3487 | 0.6888 | 0.6948 | 0.3377 | | 0.5336 | 7.0 | 1750 | 1.1515 | 0.3591 | 0.6982 | 0.7024 | 0.3496 | | 0.4694 | 8.0 | 2000 | 1.1962 | 0.3626 | 0.7185 | 0.7314 | 0.3415 | | 0.4058 | 9.0 | 2250 | 1.3313 | 0.3121 | 0.6920 | 0.7085 | 0.3033 | | 0.3746 | 10.0 | 2500 | 1.3993 | 0.3628 | 0.6976 | 0.7047 | 0.3495 | | 0.3267 | 11.0 | 2750 | 1.5078 | 0.3560 | 0.6958 | 0.7055 | 0.3464 | | 0.2939 | 12.0 | 3000 | 1.5875 | 0.3685 | 0.6968 | 0.7062 | 0.3514 | | 0.2677 | 13.0 | 3250 | 1.6470 | 0.3606 | 0.6976 | 0.7070 | 0.3490 | | 0.2425 | 14.0 | 3500 | 1.7164 | 0.3714 | 0.7069 | 0.7207 | 0.3551 | | 0.2301 | 15.0 | 3750 | 1.8151 | 0.3597 | 0.6975 | 0.7123 | 0.3466 | | 0.2268 | 16.0 | 4000 | 1.7838 | 0.3940 | 0.7034 | 0.7123 | 0.3869 | | 0.201 | 17.0 | 4250 | 1.8328 | 0.3725 | 0.6964 | 0.7062 | 0.3704 | | 0.1923 | 18.0 | 4500 | 1.8788 | 0.3708 | 0.7019 | 0.7154 | 0.3591 | | 0.1795 | 19.0 | 4750 | 1.8574 | 0.3752 | 0.7031 | 0.7161 | 0.3619 | | 0.1713 | 20.0 | 5000 | 1.8672 | 0.3726 | 0.7030 | 0.7161 | 0.3616 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
mmillet/rubert-tiny2_best_finetuned_emotion_experiment_augmented_anger_fear
b406e0e83703be73bc4e67ae4c2b41fb5e747a4d
2022-06-07T15:52:18.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers", "generated_from_trainer", "license:mit", "model-index" ]
text-classification
false
mmillet
null
mmillet/rubert-tiny2_best_finetuned_emotion_experiment_augmented_anger_fear
2
null
transformers
26,253
--- license: mit tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: rubert-tiny2_best_finetuned_emotion_experiment_augmented_anger_fear results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # rubert-tiny2_best_finetuned_emotion_experiment_augmented_anger_fear This model is a fine-tuned version of [cointegrated/rubert-tiny2](https://huggingface.co/cointegrated/rubert-tiny2) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3902 - Accuracy: 0.8727 - F1: 0.8720 - Precision: 0.8718 - Recall: 0.8727 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=0.0001 - lr_scheduler_type: linear - num_epochs: 40 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | 1.3497 | 1.0 | 69 | 1.2944 | 0.5376 | 0.4665 | 0.6374 | 0.5376 | | 1.2023 | 2.0 | 138 | 1.0370 | 0.7056 | 0.6745 | 0.7458 | 0.7056 | | 0.9289 | 3.0 | 207 | 0.7437 | 0.8121 | 0.8082 | 0.8117 | 0.8121 | | 0.6932 | 4.0 | 276 | 0.5717 | 0.8445 | 0.8428 | 0.8434 | 0.8445 | | 0.5613 | 5.0 | 345 | 0.4888 | 0.8580 | 0.8572 | 0.8573 | 0.8580 | | 0.469 | 6.0 | 414 | 0.4401 | 0.8633 | 0.8625 | 0.8623 | 0.8633 | | 0.4176 | 7.0 | 483 | 0.4156 | 0.8653 | 0.8646 | 0.8644 | 0.8653 | | 0.3724 | 8.0 | 552 | 0.4001 | 0.8706 | 0.8700 | 0.8699 | 0.8706 | | 0.3427 | 9.0 | 621 | 0.3972 | 0.8706 | 0.8698 | 0.8701 | 0.8706 | | 0.3243 | 10.0 | 690 | 0.3898 | 0.8737 | 0.8729 | 0.8736 | 0.8737 | | 0.3039 | 11.0 | 759 | 0.3887 | 0.8716 | 0.8710 | 0.8717 | 0.8716 | | 0.2803 | 12.0 | 828 | 0.3841 | 0.8716 | 0.8709 | 0.8709 | 0.8716 | | 0.264 | 13.0 | 897 | 0.3872 | 0.8758 | 0.8753 | 0.8758 | 0.8758 | | 0.2607 | 14.0 | 966 | 0.3837 | 0.8747 | 0.8743 | 0.8741 | 0.8747 | | 0.2437 | 15.0 | 1035 | 0.3893 | 0.8716 | 0.8710 | 0.8712 | 0.8716 | | 0.2358 | 16.0 | 1104 | 0.3867 | 0.8695 | 0.8691 | 0.8690 | 0.8695 | | 0.2278 | 17.0 | 1173 | 0.3886 | 0.8737 | 0.8732 | 0.8732 | 0.8737 | | 0.2143 | 18.0 | 1242 | 0.3902 | 0.8727 | 0.8720 | 0.8718 | 0.8727 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
Anjoe/kant-gpt2
2d7b7127ab1bae90d6daa89e22f24269fc366cc1
2022-06-08T22:08:06.000Z
[ "pytorch", "tensorboard", "gpt2", "text-generation", "transformers", "generated_from_trainer", "license:mit", "model-index" ]
text-generation
false
Anjoe
null
Anjoe/kant-gpt2
2
null
transformers
26,254
--- license: mit tags: - generated_from_trainer model-index: - name: kant-gpt2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # kant-gpt2 This model is a fine-tuned version of [dbmdz/german-gpt2](https://huggingface.co/dbmdz/german-gpt2) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.8022 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 22 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 3.3257 | 1.0 | 1825 | 3.2231 | | 2.9885 | 2.0 | 3650 | 3.0069 | | 2.7955 | 3.0 | 5475 | 2.8440 | | 2.5748 | 4.0 | 7300 | 2.7059 | | 2.3545 | 5.0 | 9125 | 2.5806 | | 2.1759 | 6.0 | 10950 | 2.4618 | | 1.9697 | 7.0 | 12775 | 2.3553 | | 1.7778 | 8.0 | 14600 | 2.2517 | | 1.6192 | 9.0 | 16425 | 2.1599 | | 1.4675 | 10.0 | 18250 | 2.0895 | | 1.3195 | 11.0 | 20075 | 2.0138 | | 1.2012 | 12.0 | 21900 | 1.9602 | | 1.0828 | 13.0 | 23725 | 1.9097 | | 0.9926 | 14.0 | 25550 | 1.8720 | | 0.9076 | 15.0 | 27375 | 1.8426 | | 0.8336 | 16.0 | 29200 | 1.8214 | | 0.7649 | 17.0 | 31025 | 1.8058 | | 0.7208 | 18.0 | 32850 | 1.7980 | | 0.6798 | 19.0 | 34675 | 1.7938 | | 0.647 | 20.0 | 36500 | 1.7969 | | 0.6226 | 21.0 | 38325 | 1.7975 | | 0.601 | 22.0 | 40150 | 1.8022 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Tokenizers 0.12.1
simecek/DNADeberta
bffad793529043b72d494b25cac5710bb5ae18e7
2022-06-09T20:57:28.000Z
[ "pytorch", "deberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
simecek
null
simecek/DNADeberta
2
null
transformers
26,255
Entry not found
zdreiosis/ff_analysis_3
c088c1e467bf9f5ccba6c44625f087982d6486c2
2022-06-08T10:48:09.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers", "6th", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
zdreiosis
null
zdreiosis/ff_analysis_3
2
null
transformers
26,256
--- license: apache-2.0 tags: - 6th - generated_from_trainer metrics: - f1 - accuracy model-index: - name: ff_analysis_3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ff_analysis_3 This model is a fine-tuned version of [zdreiosis/ff_analysis_2](https://huggingface.co/zdreiosis/ff_analysis_2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0060 - F1: 1.0 - Roc Auc: 1.0 - Accuracy: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | Roc Auc | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:------:|:-------:|:--------:| | No log | 1.02 | 50 | 0.0138 | 1.0 | 1.0 | 1.0 | | No log | 2.04 | 100 | 0.0132 | 0.9966 | 0.9966 | 0.9885 | | No log | 3.06 | 150 | 0.0097 | 1.0 | 1.0 | 1.0 | | No log | 4.08 | 200 | 0.0095 | 0.9966 | 0.9966 | 0.9885 | | No log | 5.1 | 250 | 0.0096 | 1.0 | 1.0 | 1.0 | | No log | 6.12 | 300 | 0.0079 | 1.0 | 1.0 | 1.0 | | No log | 7.14 | 350 | 0.0070 | 1.0 | 1.0 | 1.0 | | No log | 8.16 | 400 | 0.0069 | 1.0 | 1.0 | 1.0 | | No log | 9.18 | 450 | 0.0065 | 1.0 | 1.0 | 1.0 | | 0.012 | 10.2 | 500 | 0.0060 | 1.0 | 1.0 | 1.0 | | 0.012 | 11.22 | 550 | 0.0060 | 0.9966 | 0.9966 | 0.9885 | | 0.012 | 12.24 | 600 | 0.0054 | 1.0 | 1.0 | 1.0 | | 0.012 | 13.27 | 650 | 0.0049 | 1.0 | 1.0 | 1.0 | | 0.012 | 14.29 | 700 | 0.0048 | 1.0 | 1.0 | 1.0 | | 0.012 | 15.31 | 750 | 0.0046 | 1.0 | 1.0 | 1.0 | | 0.012 | 16.33 | 800 | 0.0042 | 1.0 | 1.0 | 1.0 | | 0.012 | 17.35 | 850 | 0.0042 | 1.0 | 1.0 | 1.0 | | 0.012 | 18.37 | 900 | 0.0040 | 1.0 | 1.0 | 1.0 | | 0.012 | 19.39 | 950 | 0.0040 | 1.0 | 1.0 | 1.0 | | 0.0046 | 20.41 | 1000 | 0.0038 | 1.0 | 1.0 | 1.0 | | 0.0046 | 21.43 | 1050 | 0.0037 | 1.0 | 1.0 | 1.0 | | 0.0046 | 22.45 | 1100 | 0.0039 | 1.0 | 1.0 | 1.0 | | 0.0046 | 23.47 | 1150 | 0.0038 | 1.0 | 1.0 | 1.0 | | 0.0046 | 24.49 | 1200 | 0.0035 | 1.0 | 1.0 | 1.0 | | 0.0046 | 25.51 | 1250 | 0.0037 | 1.0 | 1.0 | 1.0 | | 0.0046 | 26.53 | 1300 | 0.0034 | 1.0 | 1.0 | 1.0 | | 0.0046 | 27.55 | 1350 | 0.0035 | 1.0 | 1.0 | 1.0 | | 0.0046 | 28.57 | 1400 | 0.0034 | 1.0 | 1.0 | 1.0 | | 0.0046 | 29.59 | 1450 | 0.0035 | 1.0 | 1.0 | 1.0 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.10.3
bubblecookie/t5-small-finetuned-cnndm-samsum
6940ab472dc797a0dbeab48e2e13a3c7632ce003
2022-06-09T12:40:46.000Z
[ "pytorch", "tensorboard", "t5", "text2text-generation", "dataset:cnn_dailymail", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
text2text-generation
false
bubblecookie
null
bubblecookie/t5-small-finetuned-cnndm-samsum
2
null
transformers
26,257
--- license: apache-2.0 tags: - generated_from_trainer datasets: - cnn_dailymail metrics: - rouge model-index: - name: t5-small-finetuned-cnndm-samsum results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: cnn_dailymail type: cnn_dailymail args: 3.0.0 metrics: - name: Rouge1 type: rouge value: 24.5996 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-cnndm-samsum This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the cnn_dailymail dataset. It achieves the following results on the evaluation set: - Loss: 1.6422 - Rouge1: 24.5996 - Rouge2: 11.817 - Rougel: 20.3346 - Rougelsum: 23.2155 - Gen Len: 18.9999 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:------:|:-------:|:---------:|:-------:| | 1.8078 | 1.0 | 71779 | 1.6422 | 24.5996 | 11.817 | 20.3346 | 23.2155 | 18.9999 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
khantanveera/TK
941dacac11c63a24b4b5d77f3ee9dae08833ff6e
2022-06-08T14:09:45.000Z
[ "pytorch", "distilbert", "text-classification", "transformers" ]
text-classification
false
khantanveera
null
khantanveera/TK
2
null
transformers
26,258
Entry not found
Sohaibsyed/wav2vec2-large-xls-r-300m-turkish-colab
20dda811bb0026fb493fe2db8af88f3eb8219748
2022-06-08T20:48:31.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "dataset:common_voice", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
Sohaibsyed
null
Sohaibsyed/wav2vec2-large-xls-r-300m-turkish-colab
2
null
transformers
26,259
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice model-index: - name: wav2vec2-large-xls-r-300m-turkish-colab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-turkish-colab This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.3717 - Wer: 0.2972 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 4.0139 | 3.67 | 400 | 0.7020 | 0.7112 | | 0.4129 | 7.34 | 800 | 0.4162 | 0.4503 | | 0.1869 | 11.01 | 1200 | 0.4174 | 0.3959 | | 0.1273 | 14.68 | 1600 | 0.4020 | 0.3695 | | 0.0959 | 18.35 | 2000 | 0.4026 | 0.3545 | | 0.0771 | 22.02 | 2400 | 0.3904 | 0.3361 | | 0.0614 | 25.69 | 2800 | 0.3736 | 0.3127 | | 0.0486 | 29.36 | 3200 | 0.3717 | 0.2972 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu113 - Datasets 1.18.3 - Tokenizers 0.10.3
victorlee071200/distilroberta-base-finetuned-squad_v2
279800257cede933f37b4f8134d44309e391de8f
2022-06-09T07:55:41.000Z
[ "pytorch", "roberta", "question-answering", "dataset:squad_v2", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
question-answering
false
victorlee071200
null
victorlee071200/distilroberta-base-finetuned-squad_v2
2
null
transformers
26,260
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad_v2 model-index: - name: distilroberta-base-finetuned-squad_v2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilroberta-base-finetuned-squad_v2 This model is a fine-tuned version of [distilroberta-base](https://huggingface.co/distilroberta-base) on the squad_v2 dataset. It achieves the following results on the evaluation set: - Loss: 1.1230 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 1.1061 | 1.0 | 8239 | 1.0501 | | 0.8862 | 2.0 | 16478 | 1.0564 | | 0.7547 | 3.0 | 24717 | 1.1230 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
PSW/samsum_reverse_train_distilbart_xsum_9-6_min10max2000_topp0.7_topk30_epoch3
18a306b0ef9633dea630190ff517341cf03bba0c
2022-06-08T19:44:00.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
PSW
null
PSW/samsum_reverse_train_distilbart_xsum_9-6_min10max2000_topp0.7_topk30_epoch3
2
null
transformers
26,261
Entry not found
PSW/samsum_reverse_train_distilbart_xsum_9-6_min10max2000_topp0.7_topk20_epoch3
c1946a3427c2c1d0ef4785aac87c10ce54117ae1
2022-06-08T21:34:56.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
PSW
null
PSW/samsum_reverse_train_distilbart_xsum_9-6_min10max2000_topp0.7_topk20_epoch3
2
null
transformers
26,262
Entry not found
DancingIguana/codeparrot-ds
6e81a126e31bf7d2b6298de066641f13233d1d7d
2022-06-11T16:58:04.000Z
[ "pytorch", "tensorboard", "gpt2", "text-generation", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-generation
false
DancingIguana
null
DancingIguana/codeparrot-ds
2
null
transformers
26,263
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: codeparrot-ds results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # codeparrot-ds This model is a fine-tuned version of [distilgpt2](https://huggingface.co/distilgpt2) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 256 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 1000 - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.19.4 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
huggingtweets/beepunz
c6e41ced1bf2990d801e6783293b1b48f3148a02
2022-06-08T23:51:59.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/beepunz
2
null
transformers
26,264
--- language: en thumbnail: http://www.huggingtweets.com/beepunz/1654732293963/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/942050096837005317/u5sbn8VY_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">BeePunz</div> <div style="text-align: center; font-size: 14px;">@beepunz</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from BeePunz. | Data | BeePunz | | --- | --- | | Tweets downloaded | 3218 | | Retweets | 1775 | | Short tweets | 336 | | Tweets kept | 1107 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/84kgxhyn/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @beepunz's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2analnwj) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2analnwj/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/beepunz') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
84rry/84rry-xls-r-300M-AR
2ddff905ed2c18bde01d75034e907b972bf0cb17
2022-06-12T20:54:28.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "dataset:common_voice", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
84rry
null
84rry/84rry-xls-r-300M-AR
2
null
transformers
26,265
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice model-index: - name: 84rry-xls-r-300M-AR results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # 84rry-xls-r-300M-AR This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 1.0647 - Wer: 0.5078 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 1.1428 | 9.01 | 1000 | 0.9233 | 0.7477 | | 0.4941 | 18.02 | 2000 | 0.7661 | 0.5633 | | 0.3609 | 27.03 | 3000 | 0.8757 | 0.5480 | | 0.2395 | 36.04 | 4000 | 1.0097 | 0.5275 | | 0.1671 | 45.04 | 5000 | 1.0647 | 0.5078 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.12.1
Vlasta/humandna_bert_default_beautiful_bench_4197
431a254b08ff91921d062b58cac873bab2bb8b23
2022-06-09T02:32:01.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
Vlasta
null
Vlasta/humandna_bert_default_beautiful_bench_4197
2
null
transformers
26,266
Entry not found
nestoralvaro/mt5-base-finetuned-xsum-data_prep_2021_12_26___t404_2980.csv___topic_text_google_mt5_base
7624294da881976ce0ce2a8002d8d53aa19aa297
2022-06-09T11:54:52.000Z
[ "pytorch", "tensorboard", "mt5", "text2text-generation", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
text2text-generation
false
nestoralvaro
null
nestoralvaro/mt5-base-finetuned-xsum-data_prep_2021_12_26___t404_2980.csv___topic_text_google_mt5_base
2
null
transformers
26,267
--- license: apache-2.0 tags: - generated_from_trainer metrics: - rouge model-index: - name: mt5-base-finetuned-xsum-data_prep_2021_12_26___t404_2980.csv___topic_text_google_mt5_base results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mt5-base-finetuned-xsum-data_prep_2021_12_26___t404_2980.csv___topic_text_google_mt5_base This model is a fine-tuned version of [google/mt5-base](https://huggingface.co/google/mt5-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: nan - Rouge1: 0.8441 - Rouge2: 0.0894 - Rougel: 0.8428 - Rougelsum: 0.844 - Gen Len: 6.338 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:| | 0.0 | 1.0 | 89332 | nan | 0.8441 | 0.0894 | 0.8428 | 0.844 | 6.338 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
inhee/kcbert-large-finetuned-unsmile
ff120306625b239454f7a5f4de9a88d56b991f23
2022-06-09T07:37:53.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers", "generated_from_trainer", "model-index" ]
text-classification
false
inhee
null
inhee/kcbert-large-finetuned-unsmile
2
null
transformers
26,268
--- tags: - generated_from_trainer model-index: - name: kcbert-large-finetuned-unsmile results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # kcbert-large-finetuned-unsmile This model is a fine-tuned version of [beomi/kcbert-large](https://huggingface.co/beomi/kcbert-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1240 - Lrap: 0.8816 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 128 - total_train_batch_size: 256 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Lrap | |:-------------:|:-----:|:----:|:---------------:|:------:| | No log | 0.99 | 58 | 0.2090 | 0.8098 | | No log | 1.99 | 116 | 0.1386 | 0.8707 | | No log | 2.99 | 174 | 0.1263 | 0.8795 | | No log | 3.99 | 232 | 0.1232 | 0.8823 | | No log | 4.99 | 290 | 0.1240 | 0.8816 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 1.17.0 - Tokenizers 0.12.1
ghadeermobasher/WLT-BioBERT-BC5CDR-Chemical
27d7b7ba94a918ec3c5f0558208e4c1043b0a8e3
2022-06-09T11:39:21.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
ghadeermobasher
null
ghadeermobasher/WLT-BioBERT-BC5CDR-Chemical
2
null
transformers
26,269
Entry not found
qualitydatalab/autotrain-car-review-project-966432120
a7c1c578c75edba0be1bd27ae85b5a7d59a8b425
2022-06-09T12:36:14.000Z
[ "pytorch", "roberta", "text-classification", "en", "dataset:qualitydatalab/autotrain-data-car-review-project", "transformers", "autotrain", "co2_eq_emissions" ]
text-classification
false
qualitydatalab
null
qualitydatalab/autotrain-car-review-project-966432120
2
1
transformers
26,270
--- tags: autotrain language: en widget: - text: "I love AutoTrain 🤗" datasets: - qualitydatalab/autotrain-data-car-review-project co2_eq_emissions: 0.061185706621337065 --- # Model Trained Using AutoTrain - Problem type: Multi-class Classification - Model ID: 966432120 - CO2 Emissions (in grams): 0.061185706621337065 ## Validation Metrics - Loss: 0.6066656112670898 - Accuracy: 0.724822695035461 - Macro F1: 0.7077087000886584 - Micro F1: 0.7248226950354609 - Weighted F1: 0.7077087000886584 - Macro Precision: 0.7143184427227084 - Micro Precision: 0.724822695035461 - Weighted Precision: 0.7143184427227083 - Macro Recall: 0.7248226950354609 - Micro Recall: 0.724822695035461 - Weighted Recall: 0.724822695035461 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/qualitydatalab/autotrain-car-review-project-966432120 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("qualitydatalab/autotrain-car-review-project-966432120", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("qualitydatalab/autotrain-car-review-project-966432120", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
wvangils/CTRL-Beatles-Lyrics-finetuned-newlyrics
bd20714745a4466fca5e3c00ff992686521a5aee
2022-06-17T11:21:11.000Z
[ "pytorch", "tensorboard", "ctrl", "text-generation", "transformers", "generated_from_trainer", "model-index" ]
text-generation
false
wvangils
null
wvangils/CTRL-Beatles-Lyrics-finetuned-newlyrics
2
null
transformers
26,271
--- tags: - generated_from_trainer model-index: - name: CTRL-Beatles-Lyrics-finetuned-newlyrics results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # CTRL-Beatles-Lyrics-finetuned-newlyrics This model is a fine-tuned version of [sshleifer/tiny-ctrl](https://huggingface.co/sshleifer/tiny-ctrl) on the [Cmotions - Beatles lyrics](https://huggingface.co/datasets/cmotions/Beatles_lyrics) dataset. It will complete an input prompt with Beatles-like text. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 12.361 | 1.0 | 35 | 12.3685 | | 12.3529 | 2.0 | 70 | 12.3583 | | 12.3374 | 3.0 | 105 | 12.3401 | | 12.3158 | 4.0 | 140 | 12.3237 | | 12.301 | 5.0 | 175 | 12.3180 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
Vlasta/humandna_DISTILBERT_random
d8161a40ab42d3cca18ddc1b4948f85b97858f7d
2022-06-12T17:17:50.000Z
[ "pytorch", "distilbert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
Vlasta
null
Vlasta/humandna_DISTILBERT_random
2
null
transformers
26,272
Entry not found
huggingtweets/midudev
5f6674d5cedf3925d91a3fc6c2b75c70a27c3d7d
2022-06-09T18:48:30.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/midudev
2
null
transformers
26,273
--- language: en thumbnail: http://www.huggingtweets.com/midudev/1654800505422/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1526668354609680384/r85fytOs_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">🔴 EN DIRECTO twitch.tv/midudev</div> <div style="text-align: center; font-size: 14px;">@midudev</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from 🔴 EN DIRECTO twitch.tv/midudev. | Data | 🔴 EN DIRECTO twitch.tv/midudev | | --- | --- | | Tweets downloaded | 3246 | | Retweets | 824 | | Short tweets | 163 | | Tweets kept | 2259 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/11iwoc6b/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @midudev's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/s48ktc1m) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/s48ktc1m/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/midudev') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
simecek/HumanRedoneDNADeberta
4aaa9b03453148d11589fbc83eeb7baab8cc72a0
2022-06-10T05:19:32.000Z
[ "pytorch", "tensorboard", "deberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
simecek
null
simecek/HumanRedoneDNADeberta
2
null
transformers
26,274
Entry not found
25khattab/vit_test_1_95
2a34af2e6279891a4a9dcf97f21088010d525a87
2022-06-10T01:40:54.000Z
[ "pytorch", "tensorboard", "vit", "image-classification", "transformers", "huggingpics", "model-index" ]
image-classification
false
25khattab
null
25khattab/vit_test_1_95
2
null
transformers
26,275
--- tags: - image-classification - pytorch - huggingpics metrics: - accuracy model-index: - name: vit_test_1_95 results: - task: name: Image Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 0.9501661062240601 --- # vit_test_1_95 Autogenerated by HuggingPics🤗🖼️ Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb). Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics). ## Example Images
ahmeddbahaa/mt5-base-finetuned-wikilingua-ar
f2ed89c0967e3cfdc829c912c42a7907e32106d1
2022-06-10T13:00:43.000Z
[ "pytorch", "tensorboard", "mt5", "text2text-generation", "dataset:wiki_lingua", "transformers", "summarization", "ar", "abstractive summarization", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
summarization
false
ahmeddbahaa
null
ahmeddbahaa/mt5-base-finetuned-wikilingua-ar
2
null
transformers
26,276
--- license: apache-2.0 tags: - summarization - mt5 - ar - abstractive summarization - generated_from_trainer datasets: - wiki_lingua model-index: - name: mt5-base-finetuned-wikilingua-ar results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mt5-base-finetuned-wikilingua-ar This model is a fine-tuned version of [google/mt5-base](https://huggingface.co/google/mt5-base) on the wiki_lingua dataset. It achieves the following results on the evaluation set: - Loss: 3.4936 - Rouge-1: 20.79 - Rouge-2: 7.6 - Rouge-l: 18.81 - Gen Len: 18.73 - Bertscore: 70.87 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 250 - num_epochs: 8 - label_smoothing_factor: 0.1 ### Training results ### Framework versions - Transformers 4.19.3 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
th4tkh13m/amazon_shoe_reviews
1c141b971d33c22f7f4887e8242718e31a784b56
2022-06-10T08:58:23.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
th4tkh13m
null
th4tkh13m/amazon_shoe_reviews
2
null
transformers
26,277
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: amazon_shoe_reviews results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # amazon_shoe_reviews This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Framework versions - Transformers 4.19.3 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
mmillet/distilrubert-2ndfinetune-epru
6d3d7b8ae780ba769fe496eb581121c9f0042123
2022-06-10T10:52:26.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "transformers", "generated_from_trainer", "model-index" ]
text-classification
false
mmillet
null
mmillet/distilrubert-2ndfinetune-epru
2
null
transformers
26,278
--- tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: distilrubert-2ndfinetune-epru results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilrubert-2ndfinetune-epru This model is a fine-tuned version of [mmillet/distilrubert-tiny-cased-conversational-v1_best_finetuned_emotion_experiment_augmented_anger_fear](https://huggingface.co/mmillet/distilrubert-tiny-cased-conversational-v1_best_finetuned_emotion_experiment_augmented_anger_fear) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3531 - Accuracy: 0.9054 - F1: 0.9034 - Precision: 0.9074 - Recall: 0.9054 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-06 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | 0.4716 | 1.0 | 11 | 0.2851 | 0.8986 | 0.8945 | 0.9029 | 0.8986 | | 0.2842 | 2.0 | 22 | 0.3041 | 0.8851 | 0.8796 | 0.8816 | 0.8851 | | 0.167 | 3.0 | 33 | 0.2996 | 0.8986 | 0.8914 | 0.8997 | 0.8986 | | 0.1527 | 4.0 | 44 | 0.2443 | 0.9189 | 0.9163 | 0.9222 | 0.9189 | | 0.0926 | 5.0 | 55 | 0.2777 | 0.9054 | 0.9016 | 0.9059 | 0.9054 | | 0.0897 | 6.0 | 66 | 0.3081 | 0.9122 | 0.9080 | 0.9147 | 0.9122 | | 0.0438 | 7.0 | 77 | 0.3332 | 0.8986 | 0.8952 | 0.8993 | 0.8986 | | 0.0433 | 8.0 | 88 | 0.3480 | 0.8851 | 0.8859 | 0.8896 | 0.8851 | | 0.0398 | 9.0 | 99 | 0.3531 | 0.9054 | 0.9034 | 0.9074 | 0.9054 | ### Framework versions - Transformers 4.19.3 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
simecek/DNAPerceiver1_2epochs
4a9b7019f818a7a12f5d3a00c04c4b459de5ccdf
2022-06-13T20:40:40.000Z
[ "pytorch", "tensorboard", "perceiver", "fill-mask", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
fill-mask
false
simecek
null
simecek/DNAPerceiver1_2epochs
2
null
transformers
26,279
--- tags: - generated_from_trainer model-index: - name: DNAPerceiver1_2epochs results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # DNAPerceiver1_2epochs This model is a fine-tuned version of [](https://huggingface.co/) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.3330 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 36000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 1.3597 | 0.3 | 6000 | 1.3565 | | 1.3566 | 0.6 | 12000 | 1.3557 | | 1.3514 | 0.89 | 18000 | 1.3474 | | 1.345 | 1.19 | 24000 | 1.3410 | | 1.3386 | 1.49 | 30000 | 1.3357 | | 1.3348 | 1.79 | 36000 | 1.3330 | ### Framework versions - Transformers 4.19.4 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
Vlasta/humandna_DEBERTAsmall_random
696c6edfee7e7cdc613165f9bdcebf3491c88f9b
2022-06-12T17:18:25.000Z
[ "pytorch", "distilbert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
Vlasta
null
Vlasta/humandna_DEBERTAsmall_random
2
null
transformers
26,280
Entry not found
binay1999/distilroberta-base-finetuned-wikitext2
8c39baf0f3c04553f2aa98b277d6b48a291f00d7
2022-06-10T13:18:33.000Z
[ "pytorch", "tensorboard", "roberta", "fill-mask", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
fill-mask
false
binay1999
null
binay1999/distilroberta-base-finetuned-wikitext2
2
null
transformers
26,281
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distilroberta-base-finetuned-wikitext2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilroberta-base-finetuned-wikitext2 This model is a fine-tuned version of [distilroberta-base](https://huggingface.co/distilroberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.8343 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.0842 | 1.0 | 2406 | 1.9219 | | 1.9913 | 2.0 | 4812 | 1.8822 | | 1.9596 | 3.0 | 7218 | 1.8215 | ### Framework versions - Transformers 4.19.3 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
adalbertojunior/clip-rpt
c383fcbd9cae60e085448d1be44b7045991b339f
2022-06-10T14:35:02.000Z
[ "pytorch", "tensorboard", "vision-text-dual-encoder", "feature-extraction", "dataset:ydshieh/coco_dataset_script", "transformers", "generated_from_trainer", "model-index" ]
feature-extraction
false
adalbertojunior
null
adalbertojunior/clip-rpt
2
null
transformers
26,282
--- tags: - generated_from_trainer datasets: - ydshieh/coco_dataset_script model-index: - name: clip-roberta-finetuned results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # clip-roberta-finetuned This model is a fine-tuned version of [./models/clip-roberta](https://huggingface.co/./models/clip-roberta) on the ydshieh/coco_dataset_script 2017 dataset. It achieves the following results on the evaluation set: - Loss: 2.7269 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 256 - eval_batch_size: 256 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 1.18.4 - Tokenizers 0.11.6
facebook/roberta-hate-speech-dynabench-r2-target
f6e3ad172a28bd3d85d3c3cc760be080cd929e79
2022-06-10T22:36:17.000Z
[ "pytorch", "roberta", "text-classification", "en", "arxiv:2012.15761", "transformers" ]
text-classification
false
facebook
null
facebook/roberta-hate-speech-dynabench-r2-target
2
null
transformers
26,283
--- language: en --- # LFTW R2 Target The R2 Target model from [Learning from the Worst: Dynamically Generated Datasets to Improve Online Hate Detection](https://arxiv.org/abs/2012.15761) ## Citation Information ```bibtex @inproceedings{vidgen2021lftw, title={Learning from the Worst: Dynamically Generated Datasets to Improve Online Hate Detection}, author={Bertie Vidgen and Tristan Thrush and Zeerak Waseem and Douwe Kiela}, booktitle={ACL}, year={2021} } ``` Thanks to Kushal Tirumala and Adina Williams for helping the authors put the model on the hub!
twieland/SCRATCH_ja-en_helsinki
c90aedfd6a3bccfb29fd9fa5c2c846f3b92e2d92
2022-06-11T23:01:52.000Z
[ "pytorch", "marian", "text2text-generation", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
text2text-generation
false
twieland
null
twieland/SCRATCH_ja-en_helsinki
2
null
transformers
26,284
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: SCRATCH_ja-en_helsinki results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # SCRATCH_ja-en_helsinki This model is a fine-tuned version of [Helsinki-NLP/opus-mt-ja-en](https://huggingface.co/Helsinki-NLP/opus-mt-ja-en) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.5583 - Otaku Benchmark VN BLEU: 19.12 - Otaku Benchmark LN BLEU: 11.55 - Otaku Benchmark MANGA BLEU: 12.98 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 96 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:------:|:---------------:| | 3.0252 | 0.02 | 2000 | 2.4140 | | 2.8406 | 0.03 | 4000 | 2.2819 | | 2.7505 | 0.05 | 6000 | 2.3018 | | 2.6948 | 0.06 | 8000 | 2.1931 | | 2.6408 | 0.08 | 10000 | 2.1724 | | 2.6004 | 0.09 | 12000 | 2.1583 | | 2.5685 | 0.11 | 14000 | 2.1203 | | 2.5432 | 0.12 | 16000 | 2.1593 | | 2.5153 | 0.14 | 18000 | 2.1009 | | 2.4906 | 0.15 | 20000 | 2.0899 | | 2.4709 | 0.17 | 22000 | 2.0512 | | 2.4471 | 0.18 | 24000 | 2.0208 | | 2.4295 | 0.2 | 26000 | 2.0773 | | 2.4154 | 0.21 | 28000 | 2.0441 | | 2.4008 | 0.23 | 30000 | 2.0235 | | 2.3834 | 0.24 | 32000 | 2.0190 | | 2.3709 | 0.26 | 34000 | 1.9831 | | 2.3537 | 0.27 | 36000 | 1.9870 | | 2.3486 | 0.29 | 38000 | 1.9692 | | 2.3346 | 0.3 | 40000 | 1.9517 | | 2.3195 | 0.32 | 42000 | 1.9800 | | 2.3104 | 0.33 | 44000 | 1.9676 | | 2.298 | 0.35 | 46000 | 1.9563 | | 2.2905 | 0.36 | 48000 | 1.9217 | | 2.2792 | 0.38 | 50000 | 1.9195 | | 2.2714 | 0.39 | 52000 | 1.9109 | | 2.2593 | 0.41 | 54000 | 1.9044 | | 2.2582 | 0.42 | 56000 | 1.8876 | | 2.2482 | 0.44 | 58000 | 1.8860 | | 2.2394 | 0.45 | 60000 | 1.8887 | | 2.2273 | 0.47 | 62000 | 1.8862 | | 2.2255 | 0.48 | 64000 | 1.8705 | | 2.2166 | 0.5 | 66000 | 1.8696 | | 2.2075 | 0.51 | 68000 | 1.8657 | | 2.1992 | 0.53 | 70000 | 1.8585 | | 2.1969 | 0.54 | 72000 | 1.8526 | | 2.1894 | 0.56 | 74000 | 1.8493 | | 2.1817 | 0.57 | 76000 | 1.8480 | | 2.1771 | 0.59 | 78000 | 1.8333 | | 2.1683 | 0.6 | 80000 | 1.8342 | | 2.1667 | 0.62 | 82000 | 1.8537 | | 2.1546 | 0.63 | 84000 | 1.8261 | | 2.1467 | 0.65 | 86000 | 1.8092 | | 2.1421 | 0.66 | 88000 | 1.8137 | | 2.1395 | 0.68 | 90000 | 1.8286 | | 2.1313 | 0.69 | 92000 | 1.8042 | | 2.1241 | 0.71 | 94000 | 1.7934 | | 2.1214 | 0.72 | 96000 | 1.7940 | | 2.12 | 0.74 | 98000 | 1.8064 | | 2.1096 | 0.75 | 100000 | 1.7983 | | 2.1035 | 0.77 | 102000 | 1.8089 | | 2.0937 | 0.78 | 104000 | 1.7941 | | 2.0893 | 0.8 | 106000 | 1.7791 | | 2.0869 | 0.81 | 108000 | 1.7807 | | 2.0845 | 0.83 | 110000 | 1.7852 | | 2.0782 | 0.84 | 112000 | 1.7675 | | 2.0755 | 0.86 | 114000 | 1.7756 | | 2.0657 | 0.87 | 116000 | 1.7604 | | 2.0614 | 0.89 | 118000 | 1.7447 | | 2.0591 | 0.9 | 120000 | 1.7489 | | 2.0586 | 0.92 | 122000 | 1.7550 | | 2.0498 | 0.93 | 124000 | 1.7543 | | 2.0455 | 0.95 | 126000 | 1.7510 | | 2.04 | 0.96 | 128000 | 1.7439 | | 2.0385 | 0.98 | 130000 | 1.7407 | | 2.0267 | 0.99 | 132000 | 1.7467 | | 2.0088 | 1.01 | 134000 | 1.7455 | | 1.9826 | 1.02 | 136000 | 1.7210 | | 1.9785 | 1.04 | 138000 | 1.7524 | | 1.9777 | 1.05 | 140000 | 1.7272 | | 1.9763 | 1.07 | 142000 | 1.7283 | | 1.9736 | 1.08 | 144000 | 1.7210 | | 1.9704 | 1.1 | 146000 | 1.7001 | | 1.9625 | 1.11 | 148000 | 1.7112 | | 1.9665 | 1.13 | 150000 | 1.7236 | | 1.9592 | 1.14 | 152000 | 1.7169 | | 1.9606 | 1.16 | 154000 | 1.6962 | | 1.9571 | 1.17 | 156000 | 1.7064 | | 1.9532 | 1.19 | 158000 | 1.6898 | | 1.9465 | 1.2 | 160000 | 1.7004 | | 1.9438 | 1.22 | 162000 | 1.7092 | | 1.9435 | 1.23 | 164000 | 1.6927 | | 1.9361 | 1.25 | 166000 | 1.6838 | | 1.9369 | 1.26 | 168000 | 1.6784 | | 1.9287 | 1.28 | 170000 | 1.6709 | | 1.928 | 1.29 | 172000 | 1.6735 | | 1.9227 | 1.31 | 174000 | 1.6689 | | 1.9213 | 1.32 | 176000 | 1.6685 | | 1.9152 | 1.34 | 178000 | 1.6635 | | 1.9092 | 1.35 | 180000 | 1.6561 | | 1.9059 | 1.37 | 182000 | 1.6673 | | 1.9094 | 1.38 | 184000 | 1.6717 | | 1.9006 | 1.4 | 186000 | 1.6593 | | 1.8956 | 1.41 | 188000 | 1.6483 | | 1.8972 | 1.43 | 190000 | 1.6635 | | 1.8907 | 1.44 | 192000 | 1.6604 | | 1.8885 | 1.46 | 194000 | 1.6465 | | 1.8844 | 1.47 | 196000 | 1.6444 | | 1.8799 | 1.49 | 198000 | 1.6307 | | 1.8813 | 1.5 | 200000 | 1.6240 | | 1.8693 | 1.52 | 202000 | 1.6102 | | 1.8768 | 1.53 | 204000 | 1.6197 | | 1.8678 | 1.55 | 206000 | 1.6275 | | 1.8588 | 1.56 | 208000 | 1.6183 | | 1.8585 | 1.58 | 210000 | 1.6197 | | 1.8564 | 1.59 | 212000 | 1.6004 | | 1.8493 | 1.61 | 214000 | 1.6078 | | 1.85 | 1.62 | 216000 | 1.6001 | | 1.8428 | 1.64 | 218000 | 1.6106 | | 1.8428 | 1.65 | 220000 | 1.5866 | | 1.8423 | 1.67 | 222000 | 1.5993 | | 1.8352 | 1.68 | 224000 | 1.6052 | | 1.8385 | 1.7 | 226000 | 1.5959 | | 1.8307 | 1.71 | 228000 | 1.6024 | | 1.8248 | 1.73 | 230000 | 1.5969 | | 1.82 | 1.74 | 232000 | 1.5878 | | 1.8254 | 1.76 | 234000 | 1.5934 | | 1.8188 | 1.77 | 236000 | 1.5827 | | 1.813 | 1.79 | 238000 | 1.5797 | | 1.8128 | 1.8 | 240000 | 1.5758 | | 1.8044 | 1.82 | 242000 | 1.5752 | | 1.808 | 1.83 | 244000 | 1.5818 | | 1.8025 | 1.85 | 246000 | 1.5772 | | 1.7992 | 1.86 | 248000 | 1.5738 | | 1.8021 | 1.88 | 250000 | 1.5752 | | 1.7988 | 1.89 | 252000 | 1.5717 | | 1.7967 | 1.91 | 254000 | 1.5690 | | 1.7909 | 1.92 | 256000 | 1.5607 | | 1.7942 | 1.94 | 258000 | 1.5618 | | 1.7897 | 1.95 | 260000 | 1.5585 | | 1.7871 | 1.97 | 262000 | 1.5576 | | 1.7843 | 1.98 | 264000 | 1.5577 | | 1.7888 | 2.0 | 266000 | 1.5583 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
SallyXue/DialoGPT-small-harrypotter
2430f7eefd02901950f8927feae6136a357c7b0b
2022-06-11T06:32:44.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
SallyXue
null
SallyXue/DialoGPT-small-harrypotter
2
null
transformers
26,285
--- tags: - conversational --- # Harry Potter DialoGPT Model
titi7242229/roberta-base-bne-finetuned_personality_multi_3
6cc8615b167266a68c57d9be3333f3354ce6c134
2022-06-11T13:13:47.000Z
[ "pytorch", "tensorboard", "roberta", "text-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
titi7242229
null
titi7242229/roberta-base-bne-finetuned_personality_multi_3
2
null
transformers
26,286
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: roberta-base-bne-finetuned_personality_multi_3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-bne-finetuned_personality_multi_3 This model is a fine-tuned version of [BSC-TeMU/roberta-base-bne](https://huggingface.co/BSC-TeMU/roberta-base-bne) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.1145 - Accuracy: 0.4847 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.2498 | 1.0 | 63 | 2.2799 | 0.2236 | | 2.3044 | 2.0 | 126 | 2.1644 | 0.2980 | | 1.9017 | 3.0 | 189 | 1.9934 | 0.4127 | | 2.2281 | 4.0 | 252 | 1.8517 | 0.4501 | | 1.2955 | 5.0 | 315 | 1.7588 | 0.4870 | | 1.221 | 6.0 | 378 | 1.7269 | 0.4888 | | 1.1381 | 7.0 | 441 | 1.7617 | 0.4888 | | 0.8415 | 8.0 | 504 | 1.8101 | 0.4853 | | 0.6696 | 9.0 | 567 | 1.8325 | 0.4928 | | 0.6646 | 10.0 | 630 | 1.8707 | 0.4841 | | 0.3758 | 11.0 | 693 | 1.8766 | 0.4876 | | 0.3477 | 12.0 | 756 | 1.9171 | 0.4905 | | 0.2854 | 13.0 | 819 | 1.9203 | 0.4980 | | 0.2713 | 14.0 | 882 | 2.0089 | 0.4813 | | 0.3434 | 15.0 | 945 | 2.0130 | 0.4905 | | 0.0758 | 16.0 | 1008 | 2.0230 | 0.4922 | | 0.2518 | 17.0 | 1071 | 2.0793 | 0.4824 | | 0.0783 | 18.0 | 1134 | 2.0920 | 0.4830 | | 0.0933 | 19.0 | 1197 | 2.1067 | 0.4836 | | 0.184 | 20.0 | 1260 | 2.1145 | 0.4847 | ### Framework versions - Transformers 4.19.4 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
mmillet/distilrubert-tiny-2nd-finetune-epru
db2b5583f7970b2bc52ad200b56326f0feef3874
2022-06-11T09:50:42.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "transformers", "generated_from_trainer", "model-index" ]
text-classification
false
mmillet
null
mmillet/distilrubert-tiny-2nd-finetune-epru
2
null
transformers
26,287
--- tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: distilrubert-tiny-2nd-finetune-epru results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilrubert-tiny-2nd-finetune-epru This model is a fine-tuned version of [mmillet/distilrubert-tiny-cased-conversational-v1_single_finetuned_on_cedr_augmented](https://huggingface.co/mmillet/distilrubert-tiny-cased-conversational-v1_single_finetuned_on_cedr_augmented) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3546 - Accuracy: 0.9325 - F1: 0.9328 - Precision: 0.9359 - Recall: 0.9325 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-06 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | 0.0686 | 1.0 | 12 | 0.2931 | 0.9141 | 0.9142 | 0.9163 | 0.9141 | | 0.0269 | 2.0 | 24 | 0.2690 | 0.9448 | 0.9444 | 0.9449 | 0.9448 | | 0.0282 | 3.0 | 36 | 0.3140 | 0.9141 | 0.9140 | 0.9168 | 0.9141 | | 0.0185 | 4.0 | 48 | 0.2977 | 0.9571 | 0.9570 | 0.9576 | 0.9571 | | 0.0103 | 5.0 | 60 | 0.3368 | 0.9264 | 0.9265 | 0.9296 | 0.9264 | | 0.0088 | 6.0 | 72 | 0.3067 | 0.9387 | 0.9385 | 0.9389 | 0.9387 | | 0.0152 | 7.0 | 84 | 0.3660 | 0.9264 | 0.9263 | 0.9282 | 0.9264 | | 0.0315 | 8.0 | 96 | 0.3793 | 0.9325 | 0.9328 | 0.9359 | 0.9325 | | 0.0258 | 9.0 | 108 | 0.3546 | 0.9325 | 0.9328 | 0.9359 | 0.9325 | ### Framework versions - Transformers 4.19.4 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
reaprtripr/pretrained_java_bert
d614f8938d8b2533556e09a53b74a6ae57196f34
2022-06-11T09:53:45.000Z
[ "pytorch", "roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
reaprtripr
null
reaprtripr/pretrained_java_bert
2
null
transformers
26,288
Entry not found
huggingtweets/dekotale
76797d728085f5d33cd8fbdd88718e83ee17daa1
2022-06-11T12:08:52.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/dekotale
2
null
transformers
26,289
--- language: en thumbnail: http://www.huggingtweets.com/dekotale/1654949168644/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1303333944360869888/DcCZvOOS_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Dekotale</div> <div style="text-align: center; font-size: 14px;">@dekotale</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Dekotale. | Data | Dekotale | | --- | --- | | Tweets downloaded | 3125 | | Retweets | 1528 | | Short tweets | 433 | | Tweets kept | 1164 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1l1uql9a/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @dekotale's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/fv8rmutq) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/fv8rmutq/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/dekotale') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
tuni/distilbert-base-uncased-finetuned-cola
a7644cf35ffae3f238ef84e657e8a7b0b7d74bed
2022-06-11T15:12:53.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:glue", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
tuni
null
tuni/distilbert-base-uncased-finetuned-cola
2
null
transformers
26,290
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - matthews_correlation model-index: - name: distilbert-base-uncased-finetuned-cola results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue args: cola metrics: - name: Matthews Correlation type: matthews_correlation value: 0.5324115893962171 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-cola This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.7035 - Matthews Correlation: 0.5324 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3.785228097724678e-05 - train_batch_size: 8 - eval_batch_size: 16 - seed: 28 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.5227 | 1.0 | 535 | 0.5005 | 0.4121 | | 0.318 | 2.0 | 1070 | 0.5265 | 0.4977 | | 0.1887 | 3.0 | 1605 | 0.7035 | 0.5324 | ### Framework versions - Transformers 4.19.4 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
aggtamv/wav2vec_2.0_feat_enc
562795a2c7e0fd6998c8afd8be04b5cc47b225b8
2022-06-12T07:49:42.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
aggtamv
null
aggtamv/wav2vec_2.0_feat_enc
2
null
transformers
26,291
Entry not found
seomh/distilbert-base-uncased-finetuned-squad
656c39f6450da89e03e8c441f0f54233c44bf6e4
2022-06-15T06:49:56.000Z
[ "pytorch", "tensorboard", "distilbert", "question-answering", "dataset:squad", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
question-answering
false
seomh
null
seomh/distilbert-base-uncased-finetuned-squad
2
null
transformers
26,292
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: distilbert-base-uncased-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-squad This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the squad dataset. It achieves the following results on the evaluation set: - Loss: 0.0083 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 1.2258 | 1.0 | 5533 | 0.0560 | | 0.952 | 2.0 | 11066 | 0.0096 | | 0.7492 | 3.0 | 16599 | 0.0083 | ### Framework versions - Transformers 4.19.4 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
erickfm/t5-base-finetuned-bias-sweep-c6a8795b
9483ecde9bea97efb792dba0847f563a074a60a3
2022-06-11T18:18:27.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
erickfm
null
erickfm/t5-base-finetuned-bias-sweep-c6a8795b
2
null
transformers
26,293
Entry not found
MyMild/bert-finetuned-squad
d1556591cdb4a2ee9b50d322dbb7afa30b710e04
2022-06-11T21:24:26.000Z
[ "pytorch", "tensorboard", "bert", "question-answering", "dataset:squad", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
question-answering
false
MyMild
null
MyMild/bert-finetuned-squad
2
null
transformers
26,294
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: bert-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-squad This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.15.0 - Pytorch 1.11.0+cu113 - Datasets 1.17.0 - Tokenizers 0.10.3
ahmeddbahaa/arabert2arabert-finetuned-ar-wikilingua
689b592375136c258662bac19822f5dc820a65a8
2022-06-12T05:51:47.000Z
[ "pytorch", "tensorboard", "encoder-decoder", "text2text-generation", "dataset:wiki_lingua", "transformers", "summarization", "ar", "arabert", "arabert2arabert", "Abstractive Summarization", "generated_from_trainer", "model-index", "autotrain_compatible" ]
summarization
false
ahmeddbahaa
null
ahmeddbahaa/arabert2arabert-finetuned-ar-wikilingua
2
null
transformers
26,295
--- tags: - summarization - ar - encoder-decoder - arabert - arabert2arabert - Abstractive Summarization - generated_from_trainer datasets: - wiki_lingua model-index: - name: arabert2arabert-finetuned-ar-wikilingua results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # arabert2arabert-finetuned-ar-wikilingua This model is a fine-tuned version of [](https://huggingface.co/) on the wiki_lingua dataset. It achieves the following results on the evaluation set: - Loss: 4.6877 - Rouge-1: 13.2 - Rouge-2: 3.43 - Rouge-l: 12.45 - Gen Len: 20.0 - Bertscore: 64.88 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 250 - num_epochs: 8 - label_smoothing_factor: 0.1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge-1 | Rouge-2 | Rouge-l | Gen Len | Bertscore | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:-------:|:---------:| | 6.7667 | 1.0 | 156 | 5.3846 | 3.36 | 0.56 | 3.27 | 20.0 | 60.6 | | 5.257 | 2.0 | 312 | 5.0424 | 5.44 | 0.88 | 5.35 | 20.0 | 60.56 | | 4.743 | 3.0 | 468 | 4.8294 | 9.21 | 1.8 | 8.93 | 20.0 | 62.91 | | 4.3832 | 4.0 | 624 | 4.7240 | 9.88 | 2.19 | 9.6 | 20.0 | 62.65 | | 4.1166 | 5.0 | 780 | 4.6861 | 11.61 | 2.86 | 11.13 | 20.0 | 63.71 | | 3.91 | 6.0 | 936 | 4.6692 | 12.27 | 3.11 | 11.76 | 20.0 | 64.07 | | 3.7569 | 7.0 | 1092 | 4.6805 | 12.93 | 3.38 | 12.28 | 20.0 | 64.61 | | 3.6454 | 8.0 | 1248 | 4.6877 | 13.2 | 3.43 | 12.45 | 20.0 | 64.88 | ### Framework versions - Transformers 4.19.4 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
hckhck/buda_learning
31b9ec0d70e752011603b9641445da431b6e4cd1
2022-06-12T02:19:23.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "license:afl-3.0" ]
text-generation
false
hckhck
null
hckhck/buda_learning
2
null
transformers
26,296
--- license: afl-3.0 ---
donmaclean/dfm_test
6d60074a4c00c3d507a3d27a727ce467c257460a
2022-06-20T12:21:28.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
donmaclean
null
donmaclean/dfm_test
2
null
transformers
26,297
Entry not found
abdoutony207/m2m100_418M-evaluated-en-to-ar-1000instancesopus-leaningRate2e-05-batchSize8-11epoch
c4240d0d0916c58181b5d04c2d825ec35b8aac42
2022-06-12T10:05:13.000Z
[ "pytorch", "tensorboard", "m2m_100", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
abdoutony207
null
abdoutony207/m2m100_418M-evaluated-en-to-ar-1000instancesopus-leaningRate2e-05-batchSize8-11epoch
2
null
transformers
26,298
Entry not found
abdoutony207/m2m100_418M-evaluated-en-to-ar-1000instancesUNMULTI-leaningRate2e-05-batchSize8
f3e625e0ce5d904dfdbe0cd7512bccd4ee7290bf
2022-06-12T13:19:44.000Z
[ "pytorch", "tensorboard", "m2m_100", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
abdoutony207
null
abdoutony207/m2m100_418M-evaluated-en-to-ar-1000instancesUNMULTI-leaningRate2e-05-batchSize8
2
null
transformers
26,299
Entry not found