modelId
stringlengths
4
112
sha
stringlengths
40
40
lastModified
stringlengths
24
24
tags
sequence
pipeline_tag
stringclasses
29 values
private
bool
1 class
author
stringlengths
2
38
config
null
id
stringlengths
4
112
downloads
float64
0
36.8M
likes
float64
0
712
library_name
stringclasses
17 values
__index_level_0__
int64
0
38.5k
readme
stringlengths
0
186k
GPL/dbpedia-entity-tsdae-msmarco-distilbert-gpl
799bc403f77c354a5a46a676e6c79f9c6e434b11
2022-04-19T15:22:14.000Z
[ "pytorch", "distilbert", "feature-extraction", "sentence-transformers", "sentence-similarity", "transformers" ]
sentence-similarity
false
GPL
null
GPL/dbpedia-entity-tsdae-msmarco-distilbert-gpl
2
null
sentence-transformers
25,600
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 140000 with parameters: ``` {'batch_size': 32, 'sampler': 'torch.utils.data.sampler.SequentialSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `gpl.toolkit.loss.MarginDistillationLoss` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": 140000, "warmup_steps": 1000, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 350, 'do_lower_case': False}) with Transformer model: DistilBertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
GPL/fever-tsdae-msmarco-distilbert-gpl
a9b282bf911e6effe4b3621f0bcc54cf8cecc4ba
2022-04-19T15:47:15.000Z
[ "pytorch", "distilbert", "feature-extraction", "sentence-transformers", "sentence-similarity", "transformers" ]
sentence-similarity
false
GPL
null
GPL/fever-tsdae-msmarco-distilbert-gpl
2
null
sentence-transformers
25,601
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 140000 with parameters: ``` {'batch_size': 32, 'sampler': 'torch.utils.data.sampler.SequentialSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `gpl.toolkit.loss.MarginDistillationLoss` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": 140000, "warmup_steps": 1000, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 350, 'do_lower_case': False}) with Transformer model: DistilBertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
GPL/arguana-tsdae-msmarco-distilbert-margin-mse
5b7202bd768f28aa34e1f2341fc2d7688151fbcd
2022-04-19T16:42:41.000Z
[ "pytorch", "distilbert", "feature-extraction", "transformers" ]
feature-extraction
false
GPL
null
GPL/arguana-tsdae-msmarco-distilbert-margin-mse
2
null
transformers
25,602
Entry not found
GPL/climate-fever-tsdae-msmarco-distilbert-margin-mse
80249e117213e1e69753a85733150d56811aa0f5
2022-04-19T16:43:00.000Z
[ "pytorch", "distilbert", "feature-extraction", "transformers" ]
feature-extraction
false
GPL
null
GPL/climate-fever-tsdae-msmarco-distilbert-margin-mse
2
null
transformers
25,603
Entry not found
GPL/nfcorpus-tsdae-msmarco-distilbert-margin-mse
a56e544271ad54b243b098739118e4d01b16ac97
2022-04-19T16:44:28.000Z
[ "pytorch", "distilbert", "feature-extraction", "transformers" ]
feature-extraction
false
GPL
null
GPL/nfcorpus-tsdae-msmarco-distilbert-margin-mse
2
null
transformers
25,604
Entry not found
robkayinto/xlm-roberta-base-finetuned-panx-it
f770d6c2566d55ba621bae7a31191c129b5033dc
2022-07-13T18:36:07.000Z
[ "pytorch", "xlm-roberta", "token-classification", "dataset:xtreme", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
token-classification
false
robkayinto
null
robkayinto/xlm-roberta-base-finetuned-panx-it
2
null
transformers
25,605
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-it results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme args: PAN-X.it metrics: - name: F1 type: f1 value: 0.8245828245828245 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-it This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.2401 - F1: 0.8246 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.8187 | 1.0 | 70 | 0.3325 | 0.7337 | | 0.2829 | 2.0 | 140 | 0.2554 | 0.8003 | | 0.1894 | 3.0 | 210 | 0.2401 | 0.8246 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.12.0+cu113 - Datasets 1.16.1 - Tokenizers 0.10.3
robkayinto/xlm-roberta-base-finetuned-panx-en
3086f340449baca90908c65af9d8ef44b323e71c
2022-07-13T19:00:03.000Z
[ "pytorch", "xlm-roberta", "token-classification", "dataset:xtreme", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
token-classification
false
robkayinto
null
robkayinto/xlm-roberta-base-finetuned-panx-en
2
null
transformers
25,606
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-en results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme args: PAN-X.en metrics: - name: F1 type: f1 value: 0.7032474804031354 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-en This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.3932 - F1: 0.7032 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 1.1504 | 1.0 | 50 | 0.5992 | 0.4786 | | 0.5147 | 2.0 | 100 | 0.4307 | 0.6468 | | 0.3717 | 3.0 | 150 | 0.3932 | 0.7032 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.12.0+cu113 - Datasets 1.16.1 - Tokenizers 0.10.3
robkayinto/xlm-roberta-base-finetuned-panx-all
9672f1f81e44fe7ee5bb0faac1dd2f9d1cec434b
2022-07-13T19:31:35.000Z
[ "pytorch", "xlm-roberta", "token-classification", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
token-classification
false
robkayinto
null
robkayinto/xlm-roberta-base-finetuned-panx-all
2
null
transformers
25,607
--- license: mit tags: - generated_from_trainer metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-all results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-all This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1757 - F1: 0.8513 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2986 | 1.0 | 835 | 0.1939 | 0.8077 | | 0.1547 | 2.0 | 1670 | 0.1813 | 0.8351 | | 0.1003 | 3.0 | 2505 | 0.1757 | 0.8513 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.12.0+cu113 - Datasets 1.16.1 - Tokenizers 0.10.3
adalbertojunior/db-msm
cea6375919502d6eb86bb0f53243ed6c05027a46
2022-04-19T18:56:46.000Z
[ "pytorch", "bert", "feature-extraction", "sentence-transformers", "sentence-similarity", "transformers" ]
sentence-similarity
false
adalbertojunior
null
adalbertojunior/db-msm
2
null
sentence-transformers
25,608
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 147625 with parameters: ``` {'batch_size': 512, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 10000, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
michaellutz/roberta-base-prop-16-train-set
3a5fe3db93aff7391b9e52c3873cf108e31e4894
2022-07-01T18:35:08.000Z
[ "pytorch", "tensorboard", "roberta", "text-classification", "transformers", "generated_from_trainer", "license:mit", "model-index" ]
text-classification
false
michaellutz
null
michaellutz/roberta-base-prop-16-train-set
2
null
transformers
25,609
--- license: mit tags: - generated_from_trainer model-index: - name: roberta-base-prop-16-train-set results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-prop-16-train-set This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
soniais/distilbert-base-uncased-finetuned-mnli
00306be0fc06a445760ae0895753bf41186dd252
2022-04-21T02:21:49.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "transformers" ]
text-classification
false
soniais
null
soniais/distilbert-base-uncased-finetuned-mnli
2
null
transformers
25,610
Entry not found
joniponi/multilabel_inpatient_comments_23labels
1c7e6b9943be9090f41af3045ffce89d4e504c40
2022-04-20T03:15:26.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
joniponi
null
joniponi/multilabel_inpatient_comments_23labels
2
null
transformers
25,611
Entry not found
PSW/max_sim_del_seed27
ddbad9ec0677971287240c563f1cfbc1db47f412
2022-04-20T03:06:40.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
PSW
null
PSW/max_sim_del_seed27
2
null
transformers
25,612
Entry not found
PSW/half_sim_del_seed27
be1cd196bc37b39287914e64933f2a2f184dc019
2022-04-20T07:42:07.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
PSW
null
PSW/half_sim_del_seed27
2
null
transformers
25,613
Entry not found
eagles/focus_sum_gpt2
d5c8f05f33d8f40cbfaddd5cd1caed6ffc8becf8
2022-04-20T09:03:21.000Z
[ "pytorch", "tensorboard", "gpt2", "text-generation", "transformers", "generated_from_trainer", "model-index" ]
text-generation
false
eagles
null
eagles/focus_sum_gpt2
2
null
transformers
25,614
--- tags: - generated_from_trainer model-index: - name: focus_sum_gpt2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # focus_sum_gpt2 This model is a fine-tuned version of [uer/gpt2-chinese-cluecorpussmall](https://huggingface.co/uer/gpt2-chinese-cluecorpussmall) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.1917 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.5 | 15.15 | 500 | 1.1917 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.0+cu111 - Datasets 2.1.0 - Tokenizers 0.12.1
AswiN037/tamil-Roberta-small
4c146c1b40110f6031965b416370d69c6e53663f
2022-04-20T08:43:52.000Z
[ "pytorch", "roberta", "fill-mask", "Tamil", "dataset:oscar", "transformers", "Tamil-Tokenizer", "Tamil-language-model", "license:apache-2.0", "autotrain_compatible" ]
fill-mask
false
AswiN037
null
AswiN037/tamil-Roberta-small
2
null
transformers
25,615
--- language: - Tamil tags: - Tamil-Tokenizer - Tamil-language-model license: "apache-2.0" datasets: - oscar --- # tokenizer - BPE 30_522 vocab size ## model - Roberta trained using MLM OSCAR dataset train data size 5000 lines olly
patrickvonplaten/data2vec-audio-base-100h-4-gram
f70046586ea3baec83b53c82575333e9e112dcd0
2022-04-21T10:39:14.000Z
[ "pytorch", "data2vec-audio", "automatic-speech-recognition", "en", "dataset:librispeech_asr", "arxiv:2202.03555", "transformers", "speech", "license:apache-2.0" ]
automatic-speech-recognition
false
patrickvonplaten
null
patrickvonplaten/data2vec-audio-base-100h-4-gram
2
null
transformers
25,616
--- language: en datasets: - librispeech_asr tags: - speech license: apache-2.0 --- # Data2Vec-Audio-Base-100h [Facebook's Data2Vec](https://ai.facebook.com/research/data2vec-a-general-framework-for-self-supervised-learning-in-speech-vision-and-language/) The base model pretrained and fine-tuned on 100 hours of Librispeech on 16kHz sampled speech audio. When using the model make sure that your speech input is also sampled at 16Khz. [Paper](https://arxiv.org/abs/2202.03555) Authors: Alexei Baevski, Wei-Ning Hsu, Qiantong Xu, Arun Babu, Jiatao Gu, Michael Auli **Abstract** While the general idea of self-supervised learning is identical across modalities, the actual algorithms and objectives differ widely because they were developed with a single modality in mind. To get us closer to general self-supervised learning, we present data2vec, a framework that uses the same learning method for either speech, NLP or computer vision. The core idea is to predict latent representations of the full input data based on a masked view of the input in a self-distillation setup using a standard Transformer architecture. Instead of predicting modality-specific targets such as words, visual tokens or units of human speech which are local in nature, data2vec predicts contextualized latent representations that contain information from the entire input. Experiments on the major benchmarks of speech recognition, image classification, and natural language understanding demonstrate a new state of the art or competitive performance to predominant approaches. The original model can be found under https://github.com/pytorch/fairseq/tree/main/examples/data2vec . # Pre-Training method ![model image](https://raw.githubusercontent.com/patrickvonplaten/scientific_images/master/data2vec.png) For more information, please take a look at the [official paper](https://arxiv.org/abs/2202.03555). # Usage To transcribe audio files the model can be used as a standalone acoustic model as follows: ```python from transformers import Wav2Vec2Processor, Data2VecForCTC from datasets import load_dataset import torch # load model and processor processor = Wav2Vec2Processor.from_pretrained("facebook/data2vec-audio-base-100h") model = Data2VecForCTC.from_pretrained("facebook/data2vec-audio-base-100h") # load dummy dataset and read soundfiles ds = load_dataset("patrickvonplaten/librispeech_asr_dummy", "clean", split="validation") # tokenize input_values = processor(ds[0]["audio"]["array"],, return_tensors="pt", padding="longest").input_values # Batch size 1 # retrieve logits logits = model(input_values).logits # take argmax and decode predicted_ids = torch.argmax(logits, dim=-1) transcription = processor.batch_decode(predicted_ids) ```
riccard/distilbert-base-uncased-finetuned-cola
186002d51aa93a426fc1d53b4746f807ab29ee08
2022-04-20T13:32:52.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "transformers" ]
text-classification
false
riccard
null
riccard/distilbert-base-uncased-finetuned-cola
2
null
transformers
25,617
Entry not found
Matthijs/test-gpt2
26b29fc3afc829d9c52a5a6229c6d28b1343c2a5
2022-05-11T07:23:26.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
Matthijs
null
Matthijs/test-gpt2
2
null
transformers
25,618
This is an empty model card!
Tejas21/Totto_t5_base_BLEURT_24k_steps
1ac421c983b730ec3365d71fc310c03cd879ca91
2022-04-21T18:43:02.000Z
[ "pytorch", "t5", "text2text-generation", "arxiv:2004.04696", "transformers", "license:apache-2.0", "autotrain_compatible" ]
text2text-generation
false
Tejas21
null
Tejas21/Totto_t5_base_BLEURT_24k_steps
2
null
transformers
25,619
--- license: apache-2.0 --- language: - en tags: - Table to text - Data to text ## Dataset: - [ToTTo](https://github.com/google-research-datasets/ToTTo) A Controlled Table-to-Text Dataset. Totto is an open-source table-to-text dataset with over 1,20,000 examples in the English language. It defines a controlled generation task as: given a Wikipedia table and a set of highlighted cells, generate a one-sentence description. ## Base Model - T5-Base [Google's T5](https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html) The T5 was built by the Google team in order to create a general-purpose model that can understand the text. The basic idea behind t5 was to deal with the text processing problem as a “text-to-text” problem, i.e. taking the text as input and producing new text as output. ## Baseline Preprocessing [Baseline Preprocessing](https://github.com/google-research/language/tree/master/language/totto) This code repository serves as a supplementary for the main repository, which can be used to do basic preprocessing of the Totto dataset. ## Fine-tuning We used the T5 for the conditional generation model to fine-tune with, 24000 steps with the ToTTo dataset using [BLEURT](https://arxiv.org/abs/2004.04696) as a metric.
shkim/distilbert-base-uncased-finetuned-imdb
1135b496b814957514605c5358418fe6da4ee1b4
2022-04-20T14:21:24.000Z
[ "pytorch", "tensorboard", "distilbert", "fill-mask", "dataset:imdb", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
fill-mask
false
shkim
null
shkim/distilbert-base-uncased-finetuned-imdb
2
null
transformers
25,620
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb model-index: - name: distilbert-base-uncased-finetuned-imdb results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-imdb This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 2.4722 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.7117 | 1.0 | 157 | 2.4977 | | 2.5783 | 2.0 | 314 | 2.4241 | | 2.5375 | 3.0 | 471 | 2.4358 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.0+cu111 - Datasets 2.1.0 - Tokenizers 0.12.1
Wootang01/xlm-roberta-base-finetuned-hkdse-english-paper4
23308027f99fb06bb7e51ac693d0975b71eb8547
2022-04-21T01:24:16.000Z
[ "pytorch", "xlm-roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
Wootang01
null
Wootang01/xlm-roberta-base-finetuned-hkdse-english-paper4
2
null
transformers
25,621
Entry not found
4m1g0/wav2vec2-large-xls-r-300m-gl-jupyter6
e352efe2f14a042da4b19367b3b29bfcbe6a047a
2022-04-20T21:43:33.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
4m1g0
null
4m1g0/wav2vec2-large-xls-r-300m-gl-jupyter6
2
null
transformers
25,622
Entry not found
frozenwalker/SciFive_pubmedqa_question_generation_using_prompt_entity
3ffaf306b9024b7b3491d7115b459648d818eb16
2022-04-20T18:15:17.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
frozenwalker
null
frozenwalker/SciFive_pubmedqa_question_generation_using_prompt_entity
2
null
transformers
25,623
Entry not found
brad1141/Bert_v5
e22d2c0f0770604314ab748f064a448776ac2053
2022-04-20T22:23:00.000Z
[ "pytorch", "tensorboard", "longformer", "token-classification", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
token-classification
false
brad1141
null
brad1141/Bert_v5
2
null
transformers
25,624
--- tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: Bert_v5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Bert_v5 This model is a fine-tuned version of [allenai/longformer-base-4096](https://huggingface.co/allenai/longformer-base-4096) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.9191 - Precision: 0.7612 - Recall: 0.8007 - F1: 0.5106 - Accuracy: 0.7357 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 7 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 1.0663 | 1.0 | 934 | 0.8636 | 0.6973 | 0.8467 | 0.4082 | 0.7023 | | 0.8354 | 2.0 | 1868 | 0.8261 | 0.7367 | 0.8086 | 0.4733 | 0.7221 | | 0.7164 | 3.0 | 2802 | 0.7737 | 0.7572 | 0.7988 | 0.5055 | 0.7347 | | 0.6149 | 4.0 | 3736 | 0.7542 | 0.7488 | 0.8402 | 0.5176 | 0.7438 | | 0.5153 | 5.0 | 4670 | 0.8185 | 0.7614 | 0.8123 | 0.5017 | 0.7389 | | 0.4314 | 6.0 | 5604 | 0.8599 | 0.7543 | 0.8259 | 0.5085 | 0.7395 | | 0.3689 | 7.0 | 6538 | 0.9191 | 0.7612 | 0.8007 | 0.5106 | 0.7357 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.0+cu111 - Datasets 2.1.0 - Tokenizers 0.12.1
albertus-casm/domlm-finetuned-cleaneval
738e55a7c171f7c3232e52def0085015e9431bb8
2022-04-20T19:59:36.000Z
[ "pytorch", "roberta", "token-classification", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
token-classification
false
albertus-casm
null
albertus-casm/domlm-finetuned-cleaneval
2
null
transformers
25,625
--- tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: domlm-finetuned-cleaneval results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # domlm-finetuned-cleaneval This model is a fine-tuned version of [albertus-casm/dom-lm-epoch-3](https://huggingface.co/albertus-casm/dom-lm-epoch-3) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2098 - Precision: 0.9438 - Recall: 0.9559 - F1: 0.9498 - Accuracy: 0.9412 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 111 | 0.2472 | 0.9163 | 0.9636 | 0.9394 | 0.9276 | | No log | 2.0 | 222 | 0.1798 | 0.9313 | 0.9671 | 0.9489 | 0.9393 | | No log | 3.0 | 333 | 0.2098 | 0.9438 | 0.9559 | 0.9498 | 0.9412 | ### Framework versions - Transformers 4.19.0.dev0 - Pytorch 1.10.0+cu111 - Datasets 2.1.1.dev0 - Tokenizers 0.12.1
juancavallotti/roberta-base-culinary
9b9dfa39c2c3e0d5ed05a1ce44932407738ff812
2022-04-28T09:35:16.000Z
[ "pytorch", "tensorboard", "bert", "fill-mask", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
fill-mask
false
juancavallotti
null
juancavallotti/roberta-base-culinary
2
null
transformers
25,626
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distilroberta-base-culinary results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilroberta-base-culinary This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.0820 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:------:|:---------------:| | 1.3285 | 1.0 | 72679 | 1.2932 | | 1.1837 | 2.0 | 145358 | nan | | 1.1466 | 3.0 | 218037 | 1.1180 | | 1.0833 | 4.0 | 290716 | 1.0820 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.1.0 - Tokenizers 0.12.1
Rumesh/mbart-tr-simp
c063cc85356056cff285ff2c5269886d016e717c
2022-04-21T02:15:01.000Z
[ "pytorch", "mbart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
Rumesh
null
Rumesh/mbart-tr-simp
2
null
transformers
25,627
Entry not found
4m1g0/wav2vec2-large-xls-r-300m-gl-jupyter8
338200d8fcb7d8915ecc69be0102066ef3ae83a4
2022-04-21T07:48:03.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
4m1g0
null
4m1g0/wav2vec2-large-xls-r-300m-gl-jupyter8
2
null
transformers
25,628
Entry not found
SnailPoo/distilbert-base-uncased-finetuned-ner
56ef9eae6a9dc2673043cf921fa0c8c4b88d5800
2022-04-21T08:27:41.000Z
[ "pytorch", "tensorboard", "distilbert", "token-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
token-classification
false
SnailPoo
null
SnailPoo/distilbert-base-uncased-finetuned-ner
2
null
transformers
25,629
--- license: apache-2.0 tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: distilbert-base-uncased-finetuned-ner results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-ner This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1079 - Precision: 0.8408 - Recall: 0.8686 - F1: 0.8545 - Accuracy: 0.9638 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 453 | 0.1322 | 0.7759 | 0.8370 | 0.8053 | 0.9498 | | 0.246 | 2.0 | 906 | 0.1115 | 0.8284 | 0.8616 | 0.8446 | 0.9611 | | 0.1012 | 3.0 | 1359 | 0.1079 | 0.8408 | 0.8686 | 0.8545 | 0.9638 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.0+cu111 - Datasets 2.1.0 - Tokenizers 0.12.1
4m1g0/wav2vec2-large-xls-r-300m-gl-jupyter9
12c208e4ea7696d7c7be5111a18b524a622db8db
2022-04-21T19:45:24.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
4m1g0
null
4m1g0/wav2vec2-large-xls-r-300m-gl-jupyter9
2
null
transformers
25,630
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-large-xls-r-300m-gl-jupyter9 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-gl-jupyter9 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0970 - Wer: 0.0624 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 60 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.6977 | 3.36 | 400 | 0.4273 | 0.4574 | | 0.2282 | 6.72 | 800 | 0.1492 | 0.1723 | | 0.0884 | 10.08 | 1200 | 0.1344 | 0.1336 | | 0.0594 | 13.44 | 1600 | 0.1329 | 0.1238 | | 0.0437 | 16.8 | 2000 | 0.1137 | 0.1153 | | 0.0384 | 20.17 | 2400 | 0.1197 | 0.1033 | | 0.0332 | 23.53 | 2800 | 0.1147 | 0.0980 | | 0.0282 | 26.89 | 3200 | 0.1079 | 0.0917 | | 0.0236 | 30.25 | 3600 | 0.1144 | 0.0922 | | 0.0237 | 33.61 | 4000 | 0.1130 | 0.0880 | | 0.019 | 36.97 | 4400 | 0.1035 | 0.0818 | | 0.0164 | 40.33 | 4800 | 0.1045 | 0.0813 | | 0.0146 | 43.69 | 5200 | 0.1037 | 0.0735 | | 0.0111 | 47.06 | 5600 | 0.1085 | 0.0701 | | 0.0093 | 50.42 | 6000 | 0.1039 | 0.0659 | | 0.0084 | 53.78 | 6400 | 0.0970 | 0.0636 | | 0.0073 | 57.14 | 6800 | 0.0970 | 0.0624 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.9.1+cu111 - Datasets 1.18.3 - Tokenizers 0.10.3
4m1g0/wav2vec2-large-xls-r-53m-gl-jupyter7
632ef71a82f03629920963ba6b7949cba7360a13
2022-04-21T19:55:33.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
4m1g0
null
4m1g0/wav2vec2-large-xls-r-53m-gl-jupyter7
2
null
transformers
25,631
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-large-xls-r-53m-gl-jupyter7 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-53m-gl-jupyter7 This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1000 - Wer: 0.0639 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 60 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.8697 | 3.36 | 400 | 0.2631 | 0.2756 | | 0.1569 | 6.72 | 800 | 0.1243 | 0.1300 | | 0.0663 | 10.08 | 1200 | 0.1124 | 0.1153 | | 0.0468 | 13.44 | 1600 | 0.1118 | 0.1037 | | 0.0356 | 16.8 | 2000 | 0.1102 | 0.0978 | | 0.0306 | 20.17 | 2400 | 0.1095 | 0.0935 | | 0.0244 | 23.53 | 2800 | 0.1072 | 0.0844 | | 0.0228 | 26.89 | 3200 | 0.1014 | 0.0874 | | 0.0192 | 30.25 | 3600 | 0.1084 | 0.0831 | | 0.0174 | 33.61 | 4000 | 0.1048 | 0.0772 | | 0.0142 | 36.97 | 4400 | 0.1063 | 0.0764 | | 0.0131 | 40.33 | 4800 | 0.1046 | 0.0770 | | 0.0116 | 43.69 | 5200 | 0.0999 | 0.0716 | | 0.0095 | 47.06 | 5600 | 0.1044 | 0.0729 | | 0.0077 | 50.42 | 6000 | 0.1024 | 0.0670 | | 0.0071 | 53.78 | 6400 | 0.0968 | 0.0631 | | 0.0064 | 57.14 | 6800 | 0.1000 | 0.0639 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.9.1+cu111 - Datasets 1.18.3 - Tokenizers 0.10.3
MeshalAlamr/wav2vec2-xls-r-300m-ar-3
867645be8e3a8c29c9be905e6e7c0b8d54b6f723
2022-04-24T11:08:47.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "dataset:common_voice", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
MeshalAlamr
null
MeshalAlamr/wav2vec2-xls-r-300m-ar-3
2
null
transformers
25,632
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice model-index: - name: wav2vec2-xls-r-300m-ar-3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-xls-r-300m-ar-3 This model is a fine-tuned version of [MeshalAlamr/wav2vec2-xls-r-300m-ar-2](https://huggingface.co/MeshalAlamr/wav2vec2-xls-r-300m-ar-2) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.5567 - Wer: 0.3115 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 0.1654 | 1.18 | 400 | 0.5815 | 0.4237 | | 0.3412 | 2.35 | 800 | 0.5534 | 0.4479 | | 0.4661 | 1.77 | 1200 | 0.6339 | 0.4915 | | 0.441 | 2.36 | 1600 | 0.6435 | 0.5016 | | 0.3273 | 5.88 | 2000 | 0.5338 | 0.4361 | | 0.3099 | 7.06 | 2400 | 0.5570 | 0.4303 | | 0.2833 | 8.24 | 2800 | 0.5731 | 0.4427 | | 0.2714 | 9.41 | 3200 | 0.5551 | 0.4212 | | 0.2598 | 10.59 | 3600 | 0.5757 | 0.4214 | | 0.2458 | 11.76 | 4000 | 0.5269 | 0.4065 | | 0.2316 | 12.94 | 4400 | 0.5469 | 0.4053 | | 0.219 | 14.12 | 4800 | 0.5539 | 0.3912 | | 0.2022 | 15.29 | 5200 | 0.5773 | 0.3887 | | 0.1771 | 16.47 | 5600 | 0.5374 | 0.3623 | | 0.176 | 17.65 | 6000 | 0.5545 | 0.3763 | | 0.1645 | 18.82 | 6400 | 0.5332 | 0.3580 | | 0.1501 | 20.0 | 6800 | 0.5496 | 0.3614 | | 0.1372 | 21.18 | 7200 | 0.5716 | 0.3608 | | 0.1325 | 22.35 | 7600 | 0.5476 | 0.3475 | | 0.1233 | 23.53 | 8000 | 0.5657 | 0.3412 | | 0.1148 | 24.71 | 8400 | 0.5399 | 0.3324 | | 0.1058 | 25.88 | 8800 | 0.5678 | 0.3323 | | 0.1004 | 27.06 | 9200 | 0.5648 | 0.3252 | | 0.0953 | 28.24 | 9600 | 0.5594 | 0.3159 | | 0.0875 | 29.41 | 10000 | 0.5567 | 0.3115 | ### Framework versions - Transformers 4.14.1 - Pytorch 1.11.0 - Datasets 1.18.3 - Tokenizers 0.10.3
joniponi/multilabel_inpatient_comments_14labels
8f08eae6fceaa5a8fa9d9257a2f440846d6d1312
2022-04-21T16:01:37.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
joniponi
null
joniponi/multilabel_inpatient_comments_14labels
2
null
transformers
25,633
Entry not found
jackmleitch/distilbert-base-uncased-distilled-clinc
22c6ad8e4ba0e75f153d3dc782e28c38f31bc1cf
2022-04-21T20:04:39.000Z
[ "pytorch", "distilbert", "text-classification", "dataset:clinc_oos", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
jackmleitch
null
jackmleitch/distilbert-base-uncased-distilled-clinc
2
null
transformers
25,634
--- license: apache-2.0 tags: - generated_from_trainer datasets: - clinc_oos metrics: - accuracy model-index: - name: distilbert-base-uncased-distilled-clinc results: - task: name: Text Classification type: text-classification dataset: name: clinc_oos type: clinc_oos args: plus metrics: - name: Accuracy type: accuracy value: 0.9432258064516129 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-distilled-clinc This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the clinc_oos dataset. It achieves the following results on the evaluation set: - Loss: 0.1004 - Accuracy: 0.9432 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 48 - eval_batch_size: 48 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.9044 | 1.0 | 318 | 0.5748 | 0.7390 | | 0.4491 | 2.0 | 636 | 0.2876 | 0.88 | | 0.2538 | 3.0 | 954 | 0.1813 | 0.9229 | | 0.1765 | 4.0 | 1272 | 0.1388 | 0.9294 | | 0.1422 | 5.0 | 1590 | 0.1214 | 0.9345 | | 0.1243 | 6.0 | 1908 | 0.1114 | 0.9406 | | 0.1138 | 7.0 | 2226 | 0.1066 | 0.94 | | 0.1076 | 8.0 | 2544 | 0.1030 | 0.9423 | | 0.104 | 9.0 | 2862 | 0.1010 | 0.9419 | | 0.1019 | 10.0 | 3180 | 0.1004 | 0.9432 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.11.0 - Datasets 2.0.0 - Tokenizers 0.11.6
masakhane/byt5_ibo_en_news
bfa46ff173f2e363424b49c45d27cefb0bf6b05f
2022-04-22T11:48:42.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "license:afl-3.0", "autotrain_compatible" ]
text2text-generation
false
masakhane
null
masakhane/byt5_ibo_en_news
2
null
transformers
25,635
--- license: afl-3.0 ---
masakhane/m2m100_418M_en_ibo_news
6825281f6b7c0c34ceec6ce2711b6817051bc9eb
2022-04-22T12:45:15.000Z
[ "pytorch", "m2m_100", "text2text-generation", "transformers", "license:afl-3.0", "autotrain_compatible" ]
text2text-generation
false
masakhane
null
masakhane/m2m100_418M_en_ibo_news
2
null
transformers
25,636
--- license: afl-3.0 ---
ngwlh/wav2vec2-base-ft-keyword-spotting
ce8b341352ded907301c6e1ac93d140cf30326f8
2022-04-22T04:23:24.000Z
[ "pytorch", "tensorboard", "wav2vec2", "audio-classification", "transformers" ]
audio-classification
false
ngwlh
null
ngwlh/wav2vec2-base-ft-keyword-spotting
2
null
transformers
25,637
Entry not found
DioLiu/SimpleDataset
0f2e840e3fb1de1701323b2939a20f0f2b9a9ac3
2022-04-22T07:36:10.000Z
[ "pytorch", "tensorboard", "roberta", "fill-mask", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
fill-mask
false
DioLiu
null
DioLiu/SimpleDataset
2
null
transformers
25,638
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: SimpleDataset results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # SimpleDataset This model is a fine-tuned version of [distilroberta-base](https://huggingface.co/distilroberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.6762 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 4 | 3.3454 | | No log | 2.0 | 8 | 3.8818 | | No log | 3.0 | 12 | 3.6762 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.0+cu111 - Datasets 2.1.0 - Tokenizers 0.12.1
Wootang01/distilgpt2-finetuned-hkdse-english-paper4
38a5ac9760cd7bcd25f79cb02dfd935bb5285a40
2022-04-22T13:22:50.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
Wootang01
null
Wootang01/distilgpt2-finetuned-hkdse-english-paper4
2
null
transformers
25,639
Entry not found
santoshsawant/distilbert-base-uncased-finetuned-emotion
6e67a866f5834fe3989864e595b5a8013b619012
2022-04-22T11:46:46.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "transformers" ]
text-classification
false
santoshsawant
null
santoshsawant/distilbert-base-uncased-finetuned-emotion
2
null
transformers
25,640
Entry not found
Tlacaelel/DialoGPT-small-jarvis
3fcb269191c7748facb5fe064dcc4a21d544c92f
2022-04-22T11:59:13.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
Tlacaelel
null
Tlacaelel/DialoGPT-small-jarvis
2
null
transformers
25,641
--- tags: - conversational --- # JARVIS DialoGPT Model
nqcccccc/absa-phobert-qab-vslp-res
98bb465dd3febb8273a521c50b2c1cde47daad0f
2022-04-23T01:13:35.000Z
[ "pytorch", "roberta", "text-classification", "transformers" ]
text-classification
false
nqcccccc
null
nqcccccc/absa-phobert-qab-vslp-res
2
null
transformers
25,642
Entry not found
robkayinto/pegasus-samsum
dec809820098abc58cdef200c3d67f0564e2b843
2022-04-22T17:38:32.000Z
[ "pytorch", "tensorboard", "pegasus", "text2text-generation", "dataset:samsum", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
text2text-generation
false
robkayinto
null
robkayinto/pegasus-samsum
2
null
transformers
25,643
--- tags: - generated_from_trainer datasets: - samsum model-index: - name: pegasus-samsum results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # pegasus-samsum This model is a fine-tuned version of [google/pegasus-cnn_dailymail](https://huggingface.co/google/pegasus-cnn_dailymail) on the samsum dataset. It achieves the following results on the evaluation set: - Loss: 1.4874 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.702 | 0.54 | 500 | 1.4874 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.9.1 - Datasets 1.16.1 - Tokenizers 0.10.3
kilimandjaro/camembert-base-sentiment
18ffb6b05d1080020e25a92d0cfa26ed5f5288cb
2022-04-26T23:13:38.000Z
[ "pytorch", "camembert", "text-classification", "transformers" ]
text-classification
false
kilimandjaro
null
kilimandjaro/camembert-base-sentiment
2
null
transformers
25,644
WIP, not working yet
princeton-nlp/efficient_mlm_m0.40-801010
df4bf41e0da5d9e5725d8480b54aa37a3fc2804e
2022-04-27T18:54:21.000Z
[ "pytorch", "roberta", "fill-mask", "arxiv:2202.08005", "transformers", "autotrain_compatible" ]
fill-mask
false
princeton-nlp
null
princeton-nlp/efficient_mlm_m0.40-801010
2
null
transformers
25,645
--- inference: false --- This is a model checkpoint for ["Should You Mask 15% in Masked Language Modeling"](https://arxiv.org/abs/2202.08005) [(code)](https://github.com/princeton-nlp/DinkyTrain.git). We use pre layer norm, which is not supported by HuggingFace. To use our model, go to our [github repo](https://github.com/princeton-nlp/DinkyTrain.git), download our code, and import the RoBERTa class from `huggingface/modeling_roberta_prelayernorm.py`. For example, ``` bash from huggingface.modeling_roberta_prelayernorm import RobertaForMaskedLM, RobertaForSequenceClassification ```
Enoch2090/MAGI
b840c21333bc00cc9d3afe0011b3c5c8c54c3667
2022-04-23T07:58:21.000Z
[ "pytorch", "distilbert", "feature-extraction", "sentence-transformers", "sentence-similarity", "transformers" ]
sentence-similarity
false
Enoch2090
null
Enoch2090/MAGI
2
null
sentence-transformers
25,646
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `sentence_transformers.datasets.NoDuplicatesDataLoader.NoDuplicatesDataLoader` of length 14979 with parameters: ``` {'batch_size': 8} ``` **Loss**: `sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters: ``` {'scale': 20.0, 'similarity_fct': 'cos_sim'} ``` Parameters of the fit()-Method: ``` { "epochs": 3, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 4493, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: DistilBertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
sunminyu/KE-Blender
26a8e624da3ba6e6b4e198082f2b9f4ef41dce72
2022-04-24T06:38:07.000Z
[ "pytorch", "blenderbot-small", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
sunminyu
null
sunminyu/KE-Blender
2
null
transformers
25,647
Entry not found
adityay1221/Xegho.30.2
6b09551d1659097747eb8d27b2dc72d4ea26daaa
2022-04-23T12:27:02.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
text2text-generation
false
adityay1221
null
adityay1221/Xegho.30.2
2
null
transformers
25,648
--- license: apache-2.0 tags: - generated_from_trainer metrics: - bleu model-index: - name: Xegho.30.2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Xegho.30.2 This model is a fine-tuned version of [t5-base](https://huggingface.co/t5-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1632 - Bleu: 91.1608 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 121 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | |:-------------:|:-----:|:----:|:---------------:|:-------:| | No log | 0.6 | 100 | 1.4767 | 23.2970 | | No log | 1.19 | 200 | 1.0102 | 34.8884 | | No log | 1.79 | 300 | 0.7680 | 39.9415 | | No log | 2.38 | 400 | 0.6129 | 42.4210 | | 1.2252 | 2.98 | 500 | 0.4962 | 46.5901 | | 1.2252 | 3.57 | 600 | 0.4293 | 48.9165 | | 1.2252 | 4.17 | 700 | 0.3698 | 50.4146 | | 1.2252 | 4.76 | 800 | 0.3194 | 52.4519 | | 1.2252 | 5.36 | 900 | 0.2836 | 53.0005 | | 0.463 | 5.95 | 1000 | 0.2635 | 55.5264 | | 0.463 | 6.55 | 1100 | 0.2444 | 57.7553 | | 0.463 | 7.14 | 1200 | 0.2262 | 60.8152 | | 0.463 | 7.74 | 1300 | 0.2205 | 60.3349 | | 0.463 | 8.33 | 1400 | 0.2082 | 62.5781 | | 0.297 | 8.93 | 1500 | 0.2045 | 62.9341 | | 0.297 | 9.52 | 1600 | 0.1969 | 63.9225 | | 0.297 | 10.12 | 1700 | 0.1939 | 63.9559 | | 0.297 | 10.71 | 1800 | 0.1842 | 66.0123 | | 0.297 | 11.31 | 1900 | 0.1836 | 65.7767 | | 0.2403 | 11.9 | 2000 | 0.1807 | 65.1204 | | 0.2403 | 12.5 | 2100 | 0.1778 | 65.5556 | | 0.2403 | 13.1 | 2200 | 0.1753 | 66.2715 | | 0.2403 | 13.69 | 2300 | 0.1728 | 67.0917 | | 0.2403 | 14.29 | 2400 | 0.1716 | 67.2965 | | 0.1976 | 14.88 | 2500 | 0.1719 | 66.5856 | | 0.1976 | 15.48 | 2600 | 0.1706 | 66.7707 | | 0.1976 | 16.07 | 2700 | 0.1698 | 66.8323 | | 0.1976 | 16.67 | 2800 | 0.1705 | 66.8579 | | 0.1976 | 17.26 | 2900 | 0.1663 | 67.3175 | | 0.1747 | 17.86 | 3000 | 0.1671 | 68.2097 | | 0.1747 | 18.45 | 3100 | 0.1681 | 68.1515 | | 0.1747 | 19.05 | 3200 | 0.1650 | 68.6221 | | 0.1747 | 19.64 | 3300 | 0.1643 | 68.6828 | | 0.1747 | 20.24 | 3400 | 0.1662 | 68.9329 | | 0.1626 | 20.83 | 3500 | 0.1644 | 68.9651 | | 0.1626 | 21.43 | 3600 | 0.1660 | 68.6685 | | 0.1626 | 22.02 | 3700 | 0.1640 | 68.7471 | | 0.1626 | 22.62 | 3800 | 0.1630 | 68.6685 | | 0.1626 | 23.21 | 3900 | 0.1637 | 68.6835 | | 0.1437 | 23.81 | 4000 | 0.1632 | 68.5208 | | 0.1437 | 24.4 | 4100 | 0.1640 | 68.5059 | | 0.1437 | 25.0 | 4200 | 0.1645 | 68.5059 | | 0.1437 | 25.6 | 4300 | 0.1639 | 68.5059 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0a0+17540c5 - Datasets 2.1.0 - Tokenizers 0.12.1
HankyStyle/Multi-ling-BERT
d2dc7f21cfad763ad72ce34b464aeaf7abdb42b2
2022-04-24T08:19:01.000Z
[ "pytorch", "bert", "question-answering", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
question-answering
false
HankyStyle
null
HankyStyle/Multi-ling-BERT
2
null
transformers
25,649
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: Multi-ling-BERT results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Multi-ling-BERT This model is a fine-tuned version of [bert-base-multilingual-uncased](https://huggingface.co/bert-base-multilingual-uncased) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 12 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2.0 ### Training results ### Framework versions - Transformers 4.19.0.dev0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
nqcccccc/absa-bertmulti-qab-vslp-res
ab31b2f6fa7dee4ebe00910ea8b394ca884d74b6
2022-04-25T11:51:54.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
nqcccccc
null
nqcccccc/absa-bertmulti-qab-vslp-res
2
null
transformers
25,650
Entry not found
scasutt/wav2vec2-base_toy_train_data_only_augmented
44bde348c82c1228abc4fd78c0df4de4bfe6e9ac
2022-04-24T07:43:56.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
scasutt
null
scasutt/wav2vec2-base_toy_train_data_only_augmented
2
null
transformers
25,651
Entry not found
Wootang01/bert-large-cased-finetuned-hkdse-english-paper4
f2dfb8e0d02d302dcc2dda490ee2d950ab0ffa73
2022-04-23T13:43:08.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
Wootang01
null
Wootang01/bert-large-cased-finetuned-hkdse-english-paper4
2
1
transformers
25,652
Entry not found
Raffay/speech_processing_project_wav2vec2
4b4006960f13d408db9997136c7346b5edff16c2
2022-04-23T16:04:14.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
Raffay
null
Raffay/speech_processing_project_wav2vec2
2
null
transformers
25,653
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: speech_processing_project_wav2vec2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # speech_processing_project_wav2vec2 This model is a fine-tuned version of [kingabzpro/wav2vec2-urdu](https://huggingface.co/kingabzpro/wav2vec2-urdu) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 100 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.0+cu111 - Datasets 2.1.0 - Tokenizers 0.12.1
allenai/aspire-contextualsentence-singlem-compsci
8b0c408f47727716ac550680345ea7a63b317d8c
2022-04-24T20:06:39.000Z
[ "pytorch", "bert", "feature-extraction", "arxiv:2111.08366", "transformers", "license:apache-2.0" ]
feature-extraction
false
allenai
null
allenai/aspire-contextualsentence-singlem-compsci
2
null
transformers
25,654
--- license: apache-2.0 --- ## Overview Model included in a paper for modeling fine grained similarity between documents: **Title**: "Multi-Vector Models with Textual Guidance for Fine-Grained Scientific Document Similarity" **Authors**: Sheshera Mysore, Arman Cohan, Tom Hope **Paper**: https://arxiv.org/abs/2111.08366 **Github**: https://github.com/allenai/aspire **Note**: In the context of the paper, this model is referred to as `tsAspire` and represents the papers proposed multi-vector model for fine-grained scientific document similarity. ## Model Card ### Model description This model is a BERT based multi-vector model trained for fine-grained similarity of computer science papers. This model inputs the title and abstract of a paper and represents a paper with a contextual sentence vectors obtained by averaging the token representations of individual sentences - the whole title and abstract are encoded with cross-attention in the encoder block before obtaining sentence embeddings. The model is trained by leveraging a novel form of textual supervision which leverages co-citation contexts to align the sentences of positive examples. Test time behavior ranks documents based on the smallest L2 distance of sentences between documents or the smallest L2 distance between a set of query sentences and a candidate document. ### Training data The model is trained on pairs of co-cited papers with their sentences aligned by the co-citation context in a contrastive learning setup. The model is trained on 1.2 million computer science paper pairs. In training the model, negative examples for the contrastive loss are obtained as random in-batch negatives. Co-citations are obtained from the full text of papers. For example - the papers in brackets below are all co-cited and each pair of papers would be used as a training pair with the abstracts sentence aligned using the co-citation context. Here the context notes why the cited papers are similar: > The idea of distant supervision has been proposed and used widely in Relation Extraction (Mintz et al., 2009; Riedel et al., 2010; Hoffmann et al., 2011; Surdeanu et al., 2012) , where the source of labels is an external knowledge base. ### Training procedure The model was trained with the Adam Optimizer and a learning rate of 2e-5 with 1000 warm-up steps followed by linear decay of the learning rate. The model training convergence is checked with the loss on a held out dev set consisting of co-cited paper pairs. ### Intended uses & limitations This model is trained for fine-grained document similarity tasks in **computer science** scientific text using multiple vectors per document. The model allows fine grained similarity by establishing sentence-to-sentence similarity between documents. The model is most well suited to an aspect conditional task formulation where a query might consist of sentence in a query document and candidates must be retrieved along this specified sentences. Here, the documents are the title and abstract of a paper. With appropriate fine-tuning the model can also be used for other tasks such as document or sentence level classification. Since the training data comes primarily from computer science, performance on other domains may be poorer. ### How to use This model can be used via the `transformers` library and some additional code to compute contextual sentence vectors. View example usage in the model github repo: https://github.com/allenai/aspire#tsaspire ### Variable and metrics This model is evaluated on information retrieval datasets with document level queries. Performance here is reported on CSFCube (computer science/English). This is detailed on [github](https://github.com/allenai/aspire) and in our [paper](https://arxiv.org/abs/2111.08366). CSFCube presents a finer-grained query via selected sentences in a query abstract based on which a finer-grained retrieval must be made from candidate abstracts. In using this sentence level model we rank documents by the minimal L2 distance between the query sentences and a candidate abstract. ### Evaluation results The released model `aspire-contextualsentence-singlem-compsci` is compared against `allenai/specter`, a bi-encoder baseline and `all-mpnet-base-v2` a strong non-contextual sentence-bert baseline model trained on ~1 billion training examples. `aspire-contextualsentence-singlem-compsci`<sup>*</sup> is the performance reported in our paper by averaging over 3 re-runs of the model. The released models `aspire-contextualsentence-singlem-compsci` is the single best run among the 3 re-runs. | | CSFCube aggregated | CSFCube aggregated| |--------------------------------------------:|:---------:|:-------:| | | MAP | NDCG%20 | | `all-mpnet-base-v2` | 34.64 | 54.94 | | `specter` | 34.23 | 53.28 | | `aspire-contextualsentence-singlem-compsci`<sup>*</sup> | 40.26 | 60.71 | | `aspire-contextualsentence-singlem-compsci` | 41.33 | 61.46 | **Alternative models:** Besides the above models consider these alternative models also released in the Aspire paper: [`aspire-contextualsentence-singlem-biomed`](https://huggingface.co/allenai/aspire-contextualsentence-singlem-biomed): If you wanted to run on biomedical papers and want to use a model trained to match a _single_ sentence between documents. [`aspire-contextualsentence-multim-biomed`](https://huggingface.co/allenai/aspire-contextualsentence-multim-biomed): If you wanted to run on biomedical papers and want to use a model trained to match _multiple_ sentences between documents. [`aspire-contextualsentence-multim-compsci`](https://huggingface.co/allenai/aspire-contextualsentence-multim-compsci): If you wanted to run on computer science papers and want to use a model trained to match _multiple_ sentences between documents.
Raffay/local_speech_processing_project_wav2vec2
ac6a96dc1f689a0a0c1e9c969041ccd4dfa26e2d
2022-04-23T19:08:45.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
Raffay
null
Raffay/local_speech_processing_project_wav2vec2
2
null
transformers
25,655
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: local_speech_processing_project_wav2vec2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # local_speech_processing_project_wav2vec2 This model is a fine-tuned version of [kingabzpro/wav2vec2-urdu](https://huggingface.co/kingabzpro/wav2vec2-urdu) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.00015 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 10 ### Training results ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0 - Datasets 2.0.0 - Tokenizers 0.11.6
smeoni/nbme-xlnet-large-cased
f239c316b89bb4ec6acf6fd1c3a06f194149d130
2022-04-24T02:42:27.000Z
[ "pytorch", "tensorboard", "xlnet", "text-generation", "transformers", "generated_from_trainer", "license:mit", "model-index" ]
text-generation
false
smeoni
null
smeoni/nbme-xlnet-large-cased
2
null
transformers
25,656
--- license: mit tags: - generated_from_trainer model-index: - name: nbme-xlnet-large-cased results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # nbme-xlnet-large-cased This model is a fine-tuned version of [xlnet-large-cased](https://huggingface.co/xlnet-large-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.7151 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.2931 | 1.0 | 1850 | 1.9915 | | 1.9467 | 2.0 | 3700 | 1.7866 | | 1.7983 | 3.0 | 5550 | 1.6919 | ### Framework versions - Transformers 4.19.0.dev0 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.12.1
zq2186/model_da
edb8aff8f9c5dc81c90f2b9eb1e38a70d3bb8eeb
2022-04-23T22:45:23.000Z
[ "pytorch", "distilbert", "text-classification", "transformers" ]
text-classification
false
zq2186
null
zq2186/model_da
2
null
transformers
25,657
Entry not found
dllllb/poetnet-rut5-stihiru-libru
5818c87f0bee2a2ad18d8186dfcd55a681ca15e0
2022-04-24T00:07:21.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
dllllb
null
dllllb/poetnet-rut5-stihiru-libru
2
null
transformers
25,658
Entry not found
BigSalmon/InformalToFormalLincoln40
c28956e39a1bb11ae103e2ea768309f9a049e719
2022-04-24T15:00:39.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
BigSalmon
null
BigSalmon/InformalToFormalLincoln40
2
null
transformers
25,659
``` from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("BigSalmon/InformalToFormalLincoln40") model = AutoModelForCausalLM.from_pretrained("BigSalmon/InformalToFormalLincoln40") ``` ``` How To Make Prompt: informal english: i am very ready to do that just that. Translated into the Style of Abraham Lincoln: you can assure yourself of my readiness to work toward this end. Translated into the Style of Abraham Lincoln: please be assured that i am most ready to undertake this laborious task. *** informal english: space is huge and needs to be explored. Translated into the Style of Abraham Lincoln: space awaits traversal, a new world whose boundaries are endless. Translated into the Style of Abraham Lincoln: space is a ( limitless / boundless ) expanse, a vast virgin domain awaiting exploration. *** informal english: corn fields are all across illinois, visible once you leave chicago. Translated into the Style of Abraham Lincoln: corn fields ( permeate illinois / span the state of illinois / ( occupy / persist in ) all corners of illinois / line the horizon of illinois / envelop the landscape of illinois ), manifesting themselves visibly as one ventures beyond chicago. informal english: ``` ``` infill: chrome extensions [MASK] accomplish everyday tasks. Translated into the Style of Abraham Lincoln: chrome extensions ( expedite the ability to / unlock the means to more readily ) accomplish everyday tasks. infill: at a time when nintendo has become inflexible, [MASK] consoles that are tethered to a fixed iteration, sega diligently curates its legacy of classic video games on handheld devices. Translated into the Style of Abraham Lincoln: at a time when nintendo has become inflexible, ( stubbornly [MASK] on / firmly set on / unyielding in its insistence on ) consoles that are tethered to a fixed iteration, sega diligently curates its legacy of classic video games on handheld devices. infill: ``` ``` Essay Intro (Warriors vs. Rockets in Game 7): text: eagerly anticipated by fans, game 7's are the highlight of the post-season. text: ever-building in suspense, game 7's have the crowd captivated. *** Essay Intro (South Korean TV Is Becoming Popular): text: maturing into a bona fide paragon of programming, south korean television ( has much to offer / entertains without fail / never disappoints ). text: increasingly held in critical esteem, south korean television continues to impress. text: at the forefront of quality content, south korea is quickly achieving celebrity status. *** Essay Intro ( ``` ``` Search: What is the definition of Checks and Balances? https://en.wikipedia.org/wiki/Checks_and_balances Checks and Balances is the idea of having a system where each and every action in government should be subject to one or more checks that would not allow one branch or the other to overly dominate. https://www.harvard.edu/glossary/Checks_and_Balances Checks and Balances is a system that allows each branch of government to limit the powers of the other branches in order to prevent abuse of power https://www.law.cornell.edu/library/constitution/Checks_and_Balances Checks and Balances is a system of separation through which branches of government can control the other, thus preventing excess power. *** Search: What is the definition of Separation of Powers? https://en.wikipedia.org/wiki/Separation_of_powers The separation of powers is a principle in government, whereby governmental powers are separated into different branches, each with their own set of powers, that are prevent one branch from aggregating too much power. https://www.yale.edu/tcf/Separation_of_Powers.html Separation of Powers is the division of governmental functions between the executive, legislative and judicial branches, clearly demarcating each branch's authority, in the interest of ensuring that individual liberty or security is not undermined. *** Search: What is the definition of Connection of Powers? https://en.wikipedia.org/wiki/Connection_of_powers Connection of Powers is a feature of some parliamentary forms of government where different branches of government are intermingled, typically the executive and legislative branches. https://simple.wikipedia.org/wiki/Connection_of_powers The term Connection of Powers describes a system of government in which there is overlap between different parts of the government. *** Search: What is the definition of ``` ``` Search: What are phrase synonyms for "second-guess"? https://www.powerthesaurus.org/second-guess/synonyms Shortest to Longest: - feel dubious about - raise an eyebrow at - wrinkle their noses at - cast a jaundiced eye at - teeter on the fence about *** Search: What are phrase synonyms for "mean to newbies"? https://www.powerthesaurus.org/mean_to_newbies/synonyms Shortest to Longest: - readiness to balk at rookies - absence of tolerance for novices - hostile attitude toward newcomers *** Search: What are phrase synonyms for "make use of"? https://www.powerthesaurus.org/make_use_of/synonyms Shortest to Longest: - call upon - glean value from - reap benefits from - derive utility from - seize on the merits of - draw on the strength of - tap into the potential of *** Search: What are phrase synonyms for "hurting itself"? https://www.powerthesaurus.org/hurting_itself/synonyms Shortest to Longest: - erring - slighting itself - forfeiting its integrity - doing itself a disservice - evincing a lack of backbone *** Search: What are phrase synonyms for " ``` ``` - declining viewership facing the nba. - does not have to be this way. - in fact, many solutions exist. - the four point line would surely draw in eyes. text: failing to draw in the masses, the nba has ( fallen into / succumb to / bowed to ) disrepair. such does not have to be the case, however. in fact, a myriad of simple, relatively cheap ( solutions / interventions / enhancements ) could revive the league. the addition of the much-hyped four-point line would surely juice viewership. *** - ``` ``` original: sports teams are profitable for owners. [MASK], their valuations experience a dramatic uptick. infill: sports teams are profitable for owners. ( accumulating vast sums / stockpiling treasure / realizing benefits / cashing in / registering robust financials / scoring on balance sheets ), their valuations experience a dramatic uptick. *** original: ``` ``` wordy: classical music is becoming less popular more and more. Translate into Concise Text: interest in classic music is fading. *** wordy: ``` ``` sweet: savvy voters ousted him. longer: voters who were informed delivered his defeat. *** sweet: ``` ``` 1: commercial space company spacex plans to launch a whopping 52 flights in 2022. 2: spacex, a commercial space company, intends to undertake a total of 52 flights in 2022. 3: in 2022, commercial space company spacex has its sights set on undertaking 52 flights. 4: 52 flights are in the pipeline for 2022, according to spacex, a commercial space company. 5: a commercial space company, spacex aims to conduct 52 flights in 2022. *** 1: ``` Keywords to sentences or sentence. ``` ngos are characterized by: □ voluntary citizens' group that is organized on a local, national or international level □ encourage political participation □ often serve humanitarian functions □ work for social, economic, or environmental change *** what are the drawbacks of living near an airbnb? □ noise □ parking □ traffic □ security □ strangers *** ```
zq2186/model_da_small
be47ed667313fd6128dab7d3b46a291efa0183ac
2022-04-24T01:38:45.000Z
[ "pytorch", "distilbert", "text-classification", "transformers" ]
text-classification
false
zq2186
null
zq2186/model_da_small
2
null
transformers
25,660
Entry not found
artemis13fowl/test_model
cdb3ee8347c30bd59553b30b1af35e77634c6130
2022-04-24T07:05:51.000Z
[ "pytorch", "bert", "transformers" ]
null
false
artemis13fowl
null
artemis13fowl/test_model
2
null
transformers
25,661
Entry not found
jackh1995/roberta-base-chinese-extractive-qa-scratch
68c8757fe839879f37b9386f90faf218cd2a61a0
2022-04-24T11:32:12.000Z
[ "pytorch", "bert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
jackh1995
null
jackh1995/roberta-base-chinese-extractive-qa-scratch
2
null
transformers
25,662
Entry not found
singhajeet13/autotrain-NMT-778623908
5af5383367aba37d754414190c7983fa46ceb2e5
2022-04-24T13:48:26.000Z
[ "pytorch", "mt5", "text2text-generation", "en", "hi", "dataset:singhajeet13/autotrain-data-NMT", "transformers", "autotrain", "translation", "co2_eq_emissions", "autotrain_compatible" ]
translation
false
singhajeet13
null
singhajeet13/autotrain-NMT-778623908
2
null
transformers
25,663
--- tags: - autotrain - translation language: - en - hi datasets: - singhajeet13/autotrain-data-NMT co2_eq_emissions: 1.0568409665060605 --- # Model Trained Using AutoTrain - Problem type: Translation - Model ID: 778623908 - CO2 Emissions (in grams): 1.0568409665060605 ## Validation Metrics - Loss: 2.4664785861968994 - SacreBLEU: 1.6168 - Gen len: 17.645
vikasaeta/distilbert-base-uncased-finetuned-ner
ed05b0e1ea40dcd578ebf246ea3f0388912d2b90
2022-04-27T09:38:56.000Z
[ "pytorch", "tensorboard", "distilbert", "token-classification", "dataset:few_nerd", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
token-classification
false
vikasaeta
null
vikasaeta/distilbert-base-uncased-finetuned-ner
2
null
transformers
25,664
--- pipeline_tag: token-classification license: apache-2.0 tags: - generated_from_trainer datasets: - few_nerd metrics: - precision - recall - f1 - accuracy model-index: - name: distilbert-base-uncased-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: few_nerd type: few_nerd args: supervised metrics: - name: Precision type: precision value: 0.6424480067658478 - name: Recall type: recall value: 0.6854236732015421 - name: F1 type: f1 value: 0.6632404008334158 - name: Accuracy type: accuracy value: 0.9075199647113962 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-ner This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the few_nerd dataset. It achieves the following results on the evaluation set: - Loss: 0.3136 - Precision: 0.6424 - Recall: 0.6854 - F1: 0.6632 - Accuracy: 0.9075 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.328 | 1.0 | 8236 | 0.3197 | 0.6274 | 0.6720 | 0.6489 | 0.9041 | | 0.2776 | 2.0 | 16472 | 0.3111 | 0.6433 | 0.6759 | 0.6592 | 0.9069 | | 0.241 | 3.0 | 24708 | 0.3136 | 0.6424 | 0.6854 | 0.6632 | 0.9075 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.0+cu111 - Datasets 2.1.0 - Tokenizers 0.12.1
jenspt/bert_classification_v2
b7a43dcd4c4ab71af6fecd2fef206bd96f559e2e
2022-04-27T14:09:33.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
jenspt
null
jenspt/bert_classification_v2
2
null
transformers
25,665
Entry not found
QuickRead/PP0_rm_v1
837ca7585a9e6142f2545c5c9faeedbf1402bd30
2022-04-24T15:15:21.000Z
[ "pytorch", "pegasus", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
QuickRead
null
QuickRead/PP0_rm_v1
2
null
transformers
25,666
Entry not found
selen/distilbert-base-uncased-finetuned-cola
b5933656bebc6806d1f74c681188ef19d6213fe6
2022-04-24T19:06:54.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:glue", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
selen
null
selen/distilbert-base-uncased-finetuned-cola
2
null
transformers
25,667
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue model-index: - name: distilbert-base-uncased-finetuned-cola results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-cola This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.0+cu111 - Datasets 2.1.0 - Tokenizers 0.12.1
Raffay/v1_speech_processing_project_wav2vec2
1f0accddd68f8f862767a9330d1f1c9d715bf8d6
2022-04-26T13:18:07.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
Raffay
null
Raffay/v1_speech_processing_project_wav2vec2
2
null
transformers
25,668
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: v1_speech_processing_project_wav2vec2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # v1_speech_processing_project_wav2vec2 This model is a fine-tuned version of [kingabzpro/wav2vec2-large-xls-r-300m-Urdu](https://huggingface.co/kingabzpro/wav2vec2-large-xls-r-300m-Urdu) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 60 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.10.3
neal49/distilbert-sst2-notrainer
f7e786668e9a0a9a1427556c2c70bc9131fdd037
2022-04-24T21:09:20.000Z
[ "pytorch", "distilbert", "text-classification", "transformers" ]
text-classification
false
neal49
null
neal49/distilbert-sst2-notrainer
2
null
transformers
25,669
Entry not found
AntoDono/DialoGPT-Bopy-13k
077a7c9cb0fc5730414a4d01ec52c761e33a2197
2022-04-24T21:27:30.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
AntoDono
null
AntoDono/DialoGPT-Bopy-13k
2
null
transformers
25,670
Entry not found
SophieTr/PP0_rm_v1
515700f47ce2c73dc9f8dd0e851edf6360bec828
2022-04-24T22:50:31.000Z
[ "pytorch", "pegasus", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
SophieTr
null
SophieTr/PP0_rm_v1
2
null
transformers
25,671
Entry not found
rosimeirecosta/bert-base-cased-pt-c-corpus
4b122718abb272bff45a186c70f5deadd6ff80ae
2022-04-25T01:36:40.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "license:apache-2.0", "autotrain_compatible" ]
fill-mask
false
rosimeirecosta
null
rosimeirecosta/bert-base-cased-pt-c-corpus
2
null
transformers
25,672
--- license: apache-2.0 --- <b>(BERT base) Language modeling in Portuguese (C-corpus)</b> <b>bert-base-cased-pt-c-corpus</b> is a Language Model in Portuguese that was finetuned on 24/04/2022 in Google Colab from the model BERTimbau base on the dataset C-Corpus, a dataset with user-generated texts.
joniponi/multilabel_inpatient_comments_16labels
90afacd8323b965f9776ccdc3a427daa6b378fd1
2022-04-27T16:20:55.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
joniponi
null
joniponi/multilabel_inpatient_comments_16labels
2
null
transformers
25,673
# HCAHPS survey comments multilabel classification This model is a fine-tuned version of [Bio_ClinicalBERT](https://huggingface.co/emilyalsentzer/Bio_ClinicalBERT) on a dataset of HCAHPS survey comments. It achieves the following results on the evaluation set: precision recall f1-score support medical 0.87 0.81 0.84 83 environmental 0.77 0.91 0.84 93 administration 0.58 0.32 0.41 22 communication 0.85 0.82 0.84 50 condition 0.42 0.52 0.46 29 treatment 0.90 0.78 0.83 68 food 0.92 0.94 0.93 36 clean 0.65 0.83 0.73 18 bathroom 0.64 0.64 0.64 14 discharge 0.83 0.83 0.83 24 wait 0.96 1.00 0.98 24 financial 0.44 1.00 0.62 4 extra_nice 0.20 0.13 0.16 23 rude 1.00 0.64 0.78 11 nurse 0.92 0.98 0.95 110 doctor 0.96 0.84 0.90 57 micro avg 0.81 0.81 0.81 666 macro avg 0.75 0.75 0.73 666 weighted avg 0.82 0.81 0.81 666 samples avg 0.64 0.64 0.62 666 ## Model description The model classifies free-text comments into the following labels * Medical * Environmental * Administration * Communication * Condition * Treatment * Food * Clean * Bathroom * Discharge * Wait * Financial * Extra_nice * Rude * Nurse * Doctor ## How to use You can now use the models directly through the transformers library. Check out the [model's page](https://huggingface.co/joniponi/multilabel_inpatient_comments_16labels) for instructions on how to use the models within the Transformers library. Load the model via the transformers library: ``` from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("joniponi/multilabel_inpatient_comments_16labels") model = AutoModel.from_pretrained("joniponi/multilabel_inpatient_comments_16labels") ```
ankitkupadhyay/mt5-small-finetuned-amazon-en-es
b880caca1919c66c117bd9f09f08ac0134740777
2022-04-25T06:57:10.000Z
[ "pytorch", "tensorboard", "mt5", "text2text-generation", "transformers", "summarization", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
summarization
false
ankitkupadhyay
null
ankitkupadhyay/mt5-small-finetuned-amazon-en-es
2
null
transformers
25,674
--- license: apache-2.0 tags: - summarization - generated_from_trainer metrics: - rouge model-index: - name: mt5-small-finetuned-amazon-en-es results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mt5-small-finetuned-amazon-en-es This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.0255 - Rouge1: 17.469 - Rouge2: 8.5134 - Rougel: 17.1167 - Rougelsum: 17.2481 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5.6e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:-------:|:---------:| | 8.094 | 1.0 | 1209 | 3.2933 | 12.7976 | 5.1617 | 12.4199 | 12.5113 | | 3.9263 | 2.0 | 2418 | 3.1487 | 16.2082 | 8.3215 | 15.744 | 15.807 | | 3.599 | 3.0 | 3627 | 3.0789 | 16.9706 | 8.2425 | 16.3972 | 16.4067 | | 3.429 | 4.0 | 4836 | 3.0492 | 17.2122 | 8.7398 | 16.7892 | 16.795 | | 3.3279 | 5.0 | 6045 | 3.0384 | 17.5381 | 8.7438 | 17.0764 | 17.1831 | | 3.2518 | 6.0 | 7254 | 3.0343 | 17.0966 | 8.5622 | 16.7016 | 16.8022 | | 3.2084 | 7.0 | 8463 | 3.0255 | 16.7713 | 8.0472 | 16.3159 | 16.4091 | | 3.1839 | 8.0 | 9672 | 3.0255 | 17.469 | 8.5134 | 17.1167 | 17.2481 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.0+cu111 - Datasets 2.1.0 - Tokenizers 0.12.1
PSW/random_sim_ins_seed1
548a6b82786ef17b5366f7fa6ad752567c161c84
2022-04-25T07:59:51.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
PSW
null
PSW/random_sim_ins_seed1
2
null
transformers
25,675
Entry not found
MSLars/t5-small-ace_en_p_pretrained
6d1b6392f35a8807e22c214287380b18658abfda
2022-04-25T09:23:28.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
MSLars
null
MSLars/t5-small-ace_en_p_pretrained
2
null
transformers
25,676
Entry not found
PSW/random_sim_ins_seed42
b76aedbafae7ca90b8d8df2cbc6b1a0be3a1803c
2022-04-25T09:41:06.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
PSW
null
PSW/random_sim_ins_seed42
2
null
transformers
25,677
Entry not found
spuun/kekbot-beta-2-medium
d2a93e73a557bae1f54ea1ddf292c082fb94d184
2022-04-25T18:19:29.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "conversational", "license:cc-by-nc-sa-4.0", "co2_eq_emissions" ]
conversational
false
spuun
null
spuun/kekbot-beta-2-medium
2
null
transformers
25,678
--- language: - en tags: - conversational co2_eq_emissions: emissions: "940" source: "mlco2.github.io" training_type: "fine-tuning" geographical_location: "West Java, Indonesia" hardware_used: "1 Tesla P100" license: cc-by-nc-sa-4.0 widget: - text: "Hey kekbot! What's up?" example_title: "Asking what's up" - text: "Hey kekbot! How r u?" example_title: "Asking how he is" --- > THIS MODEL IS IN PUBLIC BETA, PLEASE DO NOT EXPECT ANY FORM OF STABILITY IN ITS CURRENT STATE. # Art Union server chatbot Based on a DialoGPT-medium model, fine-tuned to a small subset (115k<= messages) of Art Union's general-chat channel. ### Current issues (Which hopefully will be fixed in future iterations) Include, but not limited to: - Limited turns, after ~11 turns output may break for no apparent reason. - Inconsistent variance, acts like an overfitted model from time to time for no reason whatsoever.
PSW/max_sim_ins_seed27
2f6a5fd3a8003b0d5910e54cb1e9c34ceffd0a2f
2022-04-25T11:22:24.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
PSW
null
PSW/max_sim_ins_seed27
2
null
transformers
25,679
Entry not found
PSW/max_sim_ins_seed42
edad38c744f974cb5c888358964790d9004b4a4e
2022-04-25T12:05:53.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
PSW
null
PSW/max_sim_ins_seed42
2
null
transformers
25,680
Entry not found
0x12/t5-opus_infopankki-en-zh-0
68811e67f4151641f143510b7b6b3bc7e59dd1ba
2022-04-25T13:55:10.000Z
[ "pytorch", "tensorboard", "t5", "text2text-generation", "dataset:opus_infopankki", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
text2text-generation
false
0x12
null
0x12/t5-opus_infopankki-en-zh-0
2
null
transformers
25,681
--- license: apache-2.0 tags: - generated_from_trainer datasets: - opus_infopankki model-index: - name: t5-opus_infopankki-en-zh results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-opus_infopankki-en-zh This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the opus_infopankki dataset. It achieves the following results on the evaluation set: - Loss: 2.8797 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 3.2786 | 1.0 | 1496 | 2.8797 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.0+cu111 - Datasets 2.1.0 - Tokenizers 0.12.1
drsis/pegasus-samsum
1db79d3c6a5c23dd872a685c14ae070ecd33fd98
2022-04-25T18:16:41.000Z
[ "pytorch", "pegasus", "text2text-generation", "dataset:samsum", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
text2text-generation
false
drsis
null
drsis/pegasus-samsum
2
null
transformers
25,682
--- tags: - generated_from_trainer datasets: - samsum model-index: - name: pegasus-samsum results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # pegasus-samsum This model is a fine-tuned version of [google/pegasus-cnn_dailymail](https://huggingface.co/google/pegasus-cnn_dailymail) on the samsum dataset. It achieves the following results on the evaluation set: - Loss: 1.4251 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 3.1284 | 0.01 | 10 | 2.5960 | | 3.122 | 0.02 | 20 | 2.5579 | | 3.0196 | 0.03 | 30 | 2.4983 | | 2.9803 | 0.04 | 40 | 2.4197 | | 2.8471 | 0.05 | 50 | 2.3258 | | 2.7692 | 0.07 | 60 | 2.2438 | | 2.682 | 0.08 | 70 | 2.1608 | | 2.3648 | 0.09 | 80 | 2.0838 | | 2.5696 | 0.1 | 90 | 2.0222 | | 2.3403 | 0.11 | 100 | 1.9713 | | 2.2036 | 0.12 | 110 | 1.9199 | | 2.1998 | 0.13 | 120 | 1.8750 | | 2.3006 | 0.14 | 130 | 1.8382 | | 2.1182 | 0.15 | 140 | 1.8050 | | 2.1493 | 0.16 | 150 | 1.7748 | | 2.0437 | 0.17 | 160 | 1.7494 | | 1.9236 | 0.18 | 170 | 1.7289 | | 2.0114 | 0.2 | 180 | 1.7106 | | 1.9939 | 0.21 | 190 | 1.6906 | | 1.928 | 0.22 | 200 | 1.6737 | | 1.9444 | 0.23 | 210 | 1.6603 | | 1.9071 | 0.24 | 220 | 1.6485 | | 1.8314 | 0.25 | 230 | 1.6369 | | 1.8085 | 0.26 | 240 | 1.6277 | | 1.7493 | 0.27 | 250 | 1.6203 | | 1.8539 | 0.28 | 260 | 1.6089 | | 1.7048 | 0.29 | 270 | 1.5999 | | 1.7486 | 0.3 | 280 | 1.5921 | | 1.795 | 0.31 | 290 | 1.5842 | | 1.6613 | 0.33 | 300 | 1.5815 | | 1.8163 | 0.34 | 310 | 1.5732 | | 1.6133 | 0.35 | 320 | 1.5621 | | 1.8 | 0.36 | 330 | 1.5542 | | 1.7159 | 0.37 | 340 | 1.5506 | | 1.8081 | 0.38 | 350 | 1.5483 | | 1.7365 | 0.39 | 360 | 1.5451 | | 1.7334 | 0.4 | 370 | 1.5405 | | 1.7329 | 0.41 | 380 | 1.5334 | | 1.6923 | 0.42 | 390 | 1.5259 | | 1.6868 | 0.43 | 400 | 1.5227 | | 1.7033 | 0.45 | 410 | 1.5163 | | 1.6805 | 0.46 | 420 | 1.5144 | | 1.6056 | 0.47 | 430 | 1.5126 | | 1.7317 | 0.48 | 440 | 1.5086 | | 1.6303 | 0.49 | 450 | 1.5015 | | 1.7136 | 0.5 | 460 | 1.4943 | | 1.534 | 0.51 | 470 | 1.4910 | | 1.6682 | 0.52 | 480 | 1.4917 | | 1.6234 | 0.53 | 490 | 1.4885 | | 1.7103 | 0.54 | 500 | 1.4857 | | 1.7673 | 0.55 | 510 | 1.4800 | | 1.6631 | 0.56 | 520 | 1.4776 | | 1.7073 | 0.58 | 530 | 1.4745 | | 1.6843 | 0.59 | 540 | 1.4698 | | 1.6849 | 0.6 | 550 | 1.4679 | | 1.6054 | 0.61 | 560 | 1.4642 | | 1.6073 | 0.62 | 570 | 1.4629 | | 1.5896 | 0.63 | 580 | 1.4591 | | 1.608 | 0.64 | 590 | 1.4580 | | 1.58 | 0.65 | 600 | 1.4548 | | 1.5722 | 0.66 | 610 | 1.4548 | | 1.5529 | 0.67 | 620 | 1.4542 | | 1.5948 | 0.68 | 630 | 1.4518 | | 1.5869 | 0.7 | 640 | 1.4489 | | 1.577 | 0.71 | 650 | 1.4488 | | 1.6517 | 0.72 | 660 | 1.4477 | | 1.5955 | 0.73 | 670 | 1.4436 | | 1.5678 | 0.74 | 680 | 1.4402 | | 1.6743 | 0.75 | 690 | 1.4384 | | 1.5791 | 0.76 | 700 | 1.4374 | | 1.6397 | 0.77 | 710 | 1.4380 | | 1.5637 | 0.78 | 720 | 1.4363 | | 1.5849 | 0.79 | 730 | 1.4356 | | 1.5815 | 0.8 | 740 | 1.4350 | | 1.5797 | 0.81 | 750 | 1.4362 | | 1.5551 | 0.83 | 760 | 1.4354 | | 1.5486 | 0.84 | 770 | 1.4341 | | 1.5756 | 0.85 | 780 | 1.4320 | | 1.5326 | 0.86 | 790 | 1.4300 | | 1.6198 | 0.87 | 800 | 1.4290 | | 1.5947 | 0.88 | 810 | 1.4288 | | 1.6326 | 0.89 | 820 | 1.4291 | | 1.6231 | 0.9 | 830 | 1.4288 | | 1.597 | 0.91 | 840 | 1.4281 | | 1.5781 | 0.92 | 850 | 1.4273 | | 1.6835 | 0.93 | 860 | 1.4260 | | 1.5373 | 0.94 | 870 | 1.4257 | | 1.5458 | 0.96 | 880 | 1.4252 | | 1.4953 | 0.97 | 890 | 1.4252 | | 1.5299 | 0.98 | 900 | 1.4252 | | 1.5853 | 0.99 | 910 | 1.4251 | | 1.5723 | 1.0 | 920 | 1.4251 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0 - Datasets 1.18.4 - Tokenizers 0.12.1
PSW/half_sim_ins_seed27
27af83a6a7fbc89adc2052296ced172a286289d0
2022-04-25T15:14:47.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
PSW
null
PSW/half_sim_ins_seed27
2
null
transformers
25,683
Entry not found
Lucifermorningstar011/autotrain-final-784824211
33fb37a121e4cbf0464189f36818991f9eb7a63c
2022-04-25T18:49:50.000Z
[ "pytorch", "distilbert", "token-classification", "en", "dataset:Lucifermorningstar011/autotrain-data-final", "transformers", "autotrain", "co2_eq_emissions", "autotrain_compatible" ]
token-classification
false
Lucifermorningstar011
null
Lucifermorningstar011/autotrain-final-784824211
2
null
transformers
25,684
--- tags: autotrain language: en widget: - text: "I love AutoTrain 🤗" datasets: - Lucifermorningstar011/autotrain-data-final co2_eq_emissions: 292.55119229577315 --- # Model Trained Using AutoTrain - Problem type: Entity Extraction - Model ID: 784824211 - CO2 Emissions (in grams): 292.55119229577315 ## Validation Metrics - Loss: 0.17682738602161407 - Accuracy: 0.9732196168090091 - Precision: 0.0 - Recall: 0.0 - F1: 0.0 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/Lucifermorningstar011/autotrain-final-784824211 ``` Or Python API: ``` from transformers import AutoModelForTokenClassification, AutoTokenizer model = AutoModelForTokenClassification.from_pretrained("Lucifermorningstar011/autotrain-final-784824211", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("Lucifermorningstar011/autotrain-final-784824211", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
PSW/half_sim_ins_seed42
a5153b5b039ba8e6710ca1d4ce07fbc85ca5a28b
2022-04-25T15:59:38.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
PSW
null
PSW/half_sim_ins_seed42
2
null
transformers
25,685
Entry not found
apkbala107/myowntamilelectramodel
0c02a18a2cf4626ba4d840cf43988be6a1b269b4
2022-04-25T16:29:50.000Z
[ "pytorch", "electra", "pretraining", "transformers", "license:cc" ]
null
false
apkbala107
null
apkbala107/myowntamilelectramodel
2
null
transformers
25,686
--- license: cc ---
Isobutylcyclopentane/swin-tiny-patch4-window7-224-finetuned-eurosat
bd5579336b5a76a88bf68a4080cf422ea2708735
2022-04-26T00:50:14.000Z
[ "pytorch", "tensorboard", "perceiver", "image-classification", "transformers" ]
image-classification
false
Isobutylcyclopentane
null
Isobutylcyclopentane/swin-tiny-patch4-window7-224-finetuned-eurosat
2
null
transformers
25,687
Entry not found
Kutay/fine_tuned_squad_aip
ad6f4c38c8c246546b3fbd8d8529b3d7b0cefaef
2022-04-26T02:36:17.000Z
[ "pytorch", "bert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
Kutay
null
Kutay/fine_tuned_squad_aip
2
null
transformers
25,688
Entry not found
negfir/bert_uncased_L-10_H-256_A-4wiki103
9d997452eff1aa03b5c363583539180ceefc2592
2022-04-26T06:17:40.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
negfir
null
negfir/bert_uncased_L-10_H-256_A-4wiki103
2
null
transformers
25,689
Entry not found
Isobutylcyclopentane/2022-075004-finetuned-eurosat
20bca587be1af261364dcc28c164d461b9278561
2022-04-26T08:54:34.000Z
[ "pytorch", "tensorboard", "perceiver", "image-classification", "transformers" ]
image-classification
false
Isobutylcyclopentane
null
Isobutylcyclopentane/2022-075004-finetuned-eurosat
2
null
transformers
25,690
Entry not found
negfir/bert_uncased_L-6_H-256_A-4wiki103
32b2e1eec422fa645d7ec523f234268105865383
2022-04-26T09:12:07.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
negfir
null
negfir/bert_uncased_L-6_H-256_A-4wiki103
2
null
transformers
25,691
Entry not found
ZZ99/deberta-v3-large-tapt
1310b84b205a40247227c45e8ec0cc57489b1a00
2022-04-29T09:24:11.000Z
[ "pytorch", "deberta-v2", "fill-mask", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
fill-mask
false
ZZ99
null
ZZ99/deberta-v3-large-tapt
2
null
transformers
25,692
--- tags: - generated_from_trainer metrics: - accuracy model-index: - name: test-mlm results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # test-mlm This model is a fine-tuned version of [/root/autodl-tmp/nbme/tmp/test-mlm/deberta-v3-large-tapt](https://huggingface.co//root/autodl-tmp/nbme/tmp/test-mlm/deberta-v3-large-tapt) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.3251 - Accuracy: 0.7285 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results ### Framework versions - Transformers 4.19.0.dev0 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.12.1
Khalsuu/english-filipino-wav2vec2-l-xls-r-test
cc557e101f0a847f97577a8bea726d79053e7d7d
2022-05-05T04:50:08.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "dataset:filipino_voice", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
Khalsuu
null
Khalsuu/english-filipino-wav2vec2-l-xls-r-test
2
null
transformers
25,693
--- license: apache-2.0 tags: - generated_from_trainer datasets: - filipino_voice model-index: - name: english-filipino-wav2vec2-l-xls-r-test results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # english-filipino-wav2vec2-l-xls-r-test This model is a fine-tuned version of [jonatasgrosman/wav2vec2-large-xlsr-53-english](https://huggingface.co/jonatasgrosman/wav2vec2-large-xlsr-53-english) on the filipino_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.5795 - Wer: 0.3996 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.0751 | 2.09 | 400 | 2.4744 | 0.9804 | | 0.7852 | 4.19 | 800 | 0.5836 | 0.5620 | | 0.3751 | 6.28 | 1200 | 0.4873 | 0.4658 | | 0.2578 | 8.38 | 1600 | 0.5725 | 0.5289 | | 0.1897 | 10.47 | 2000 | 0.5342 | 0.4856 | | 0.1394 | 12.57 | 2400 | 0.5677 | 0.4761 | | 0.1048 | 14.66 | 2800 | 0.5708 | 0.4415 | | 0.0848 | 16.75 | 3200 | 0.5908 | 0.4374 | | 0.0652 | 18.85 | 3600 | 0.5795 | 0.3996 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu113 - Datasets 1.18.3 - Tokenizers 0.10.3
maretamasaeva/glue_sst_classifier
a23c5ab8ed4d6060179b4de16dd84f6cb8fe0899
2022-04-26T11:43:25.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "dataset:glue", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
maretamasaeva
null
maretamasaeva/glue_sst_classifier
2
null
transformers
25,694
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - f1 - accuracy model-index: - name: glue_sst_classifier results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue args: sst2 metrics: - name: F1 type: f1 value: 0.9033707865168539 - name: Accuracy type: accuracy value: 0.9013761467889908 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # glue_sst_classifier This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.2359 - F1: 0.9034 - Accuracy: 0.9014 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:------:|:--------:| | 0.3653 | 0.19 | 100 | 0.3213 | 0.8717 | 0.8727 | | 0.291 | 0.38 | 200 | 0.2662 | 0.8936 | 0.8911 | | 0.2239 | 0.57 | 300 | 0.2417 | 0.9081 | 0.9060 | | 0.2306 | 0.76 | 400 | 0.2359 | 0.9105 | 0.9094 | | 0.2185 | 0.95 | 500 | 0.2371 | 0.9011 | 0.8991 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.1.0 - Tokenizers 0.12.1
manueltonneau/bert-twitter-en-is-hired
b5e257d6525f31f959a881e238bfd3ea2ab0094e
2022-04-26T16:00:13.000Z
[ "pytorch", "bert", "text-classification", "en", "arxiv:2203.09178", "transformers" ]
text-classification
false
manueltonneau
null
manueltonneau/bert-twitter-en-is-hired
2
null
transformers
25,695
--- language: en # <-- my language widget: - text: "I was just hired, yay!" --- # Detection of employment status disclosures on Twitter ## Model main characteristics: - class: Is Hired (1), else (0) - country: US - language: English - architecture: BERT base ## Model description This model is a version of `DeepPavlov/bert-base-cased-conversational` finetuned to recognize English tweets where a user mentions that she was hired in the past month. It was trained on English tweets from US-based users. The task is framed as a binary classification problem with: - the positive class referring to tweets mentioning that a user was recently hired (label=1) - the negative class referring to all other tweets (label=0) ## Resources The dataset of English tweets on which this classifier was trained is open-sourced [here](https://github.com/manueltonneau/twitter-unemployment). Details on the performance can be found in our [ACL 2022 paper](https://arxiv.org/abs/2203.09178). ## Citation If you find this model useful, please cite our paper (citation to come soon).
manueltonneau/bert-twitter-en-is-unemployed
34dee3e537b6c819b4e298013698e03a1527ea74
2022-04-26T15:49:51.000Z
[ "pytorch", "bert", "text-classification", "en", "arxiv:2203.09178", "transformers" ]
text-classification
false
manueltonneau
null
manueltonneau/bert-twitter-en-is-unemployed
2
null
transformers
25,696
--- language: en # <-- my language widget: - text: "Still unemployed..." --- # Detection of employment status disclosures on Twitter ## Model main characteristics: - class: Is Unemployed (1), else (0) - country: US - language: English - architecture: BERT base ## Model description This model is a version of `DeepPavlov/bert-base-cased-conversational` finetuned to recognize English tweets where a user mentions that she is unemployed. It was trained on English tweets from US-based users. The task is framed as a binary classification problem with: - the positive class referring to tweets mentioning that a user is currently unemployed (label=1) - the negative class referring to all other tweets (label=0) ## Resources The dataset of English tweets on which this classifier was trained is open-sourced [here](https://github.com/manueltonneau/twitter-unemployment). Details on the performance can be found in our [ACL 2022 paper](https://arxiv.org/abs/2203.09178). ## Citation If you find this model useful, please cite our paper (citation to come soon).
0x12/t5-opus_infopankki-en-zh
dba4e9c40484322d9c3c4c6fc125e870e9f869eb
2022-04-26T15:22:23.000Z
[ "pytorch", "tensorboard", "t5", "text2text-generation", "dataset:opus_infopankki", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
text2text-generation
false
0x12
null
0x12/t5-opus_infopankki-en-zh
2
null
transformers
25,697
--- license: apache-2.0 tags: - generated_from_trainer datasets: - opus_infopankki model-index: - name: t5-opus_infopankki-en-zh results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-opus_infopankki-en-zh This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the opus_infopankki dataset. It achieves the following results on the evaluation set: - Loss: 2.3548 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 3.065 | 1.0 | 1496 | 2.7383 | | 2.8459 | 2.0 | 2992 | 2.6077 | | 2.7296 | 3.0 | 4488 | 2.5336 | | 2.6639 | 4.0 | 5984 | 2.4761 | | 2.6234 | 5.0 | 7480 | 2.4342 | | 2.5847 | 6.0 | 8976 | 2.4038 | | 2.5536 | 7.0 | 10472 | 2.3808 | | 2.5213 | 8.0 | 11968 | 2.3663 | | 2.5275 | 9.0 | 13464 | 2.3574 | | 2.5215 | 10.0 | 14960 | 2.3548 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.1.0 - Tokenizers 0.12.1
manueltonneau/bert-twitter-es-is-hired
bbfb90c7e552546b5a75762ef78fd742c9e26556
2022-04-26T16:06:22.000Z
[ "pytorch", "bert", "text-classification", "es", "arxiv:2203.09178", "transformers" ]
text-classification
false
manueltonneau
null
manueltonneau/bert-twitter-es-is-hired
2
null
transformers
25,698
--- language: es # <-- my language widget: - text: "Hoy me contrataron!" --- # Detection of employment status disclosures on Twitter ## Model main characteristics: - class: Is Hired (1), else (0) - country: MX - language: Spanish - architecture: BERT base ## Model description This model is a version of `dccuchile/bert-base-spanish-wwm-cased` finetuned to recognize Spanish tweets where a user mentions that she was hired in the past month. It was trained on Spanish tweets from users based in Mexico. The task is framed as a binary classification problem with: - the positive class referring to tweets mentioning that a user was recently hired (label=1) - the negative class referring to all other tweets (label=0) ## Resources The dataset of Spanish tweets on which this classifier was trained is open-sourced [here](https://github.com/manueltonneau/twitter-unemployment). Details on the performance can be found in our [ACL 2022 paper](https://arxiv.org/abs/2203.09178). ## Citation If you find this model useful, please cite our paper (citation to come soon).
hbruce11216/distilbert-base-uncased-finetuned-OTTO
aeea1dc425270a76a1042d7a0cd2e552e09eaa71
2022-05-03T18:51:50.000Z
[ "pytorch", "tensorboard", "distilbert", "fill-mask", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
fill-mask
false
hbruce11216
null
hbruce11216/distilbert-base-uncased-finetuned-OTTO
2
null
transformers
25,699
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distilbert-base-uncased-finetuned-OTTO results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-OTTO This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.2745 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 3.7687 | 1.0 | 17 | 3.3507 | | 3.5069 | 2.0 | 34 | 3.2786 | | 3.4126 | 3.0 | 51 | 3.2575 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.1.0 - Tokenizers 0.12.1