modelId
stringlengths
4
112
sha
stringlengths
40
40
lastModified
stringlengths
24
24
tags
sequence
pipeline_tag
stringclasses
29 values
private
bool
1 class
author
stringlengths
2
38
config
null
id
stringlengths
4
112
downloads
float64
0
36.8M
likes
float64
0
712
library_name
stringclasses
17 values
__index_level_0__
int64
0
38.5k
readme
stringlengths
0
186k
Davlan/afro-xlmr-small
701aae76654c57e9aa4c5a02b1755df3ffaa0261
2022-04-15T14:29:24.000Z
[ "pytorch", "xlm-roberta", "fill-mask", "arxiv:2204.06487", "transformers", "license:afl-3.0", "autotrain_compatible" ]
fill-mask
false
Davlan
null
Davlan/afro-xlmr-small
2
null
transformers
25,500
--- license: afl-3.0 --- # afro-xlmr-small AfroXLMR-small was created by [first reducing the vocabulary token size](https://aclanthology.org/2020.sustainlp-1.16/) of XLM-R-base from 250K to 70k, followed by MLM adaptation on 17 African languages (Afrikaans, Amharic, Hausa, Igbo, Malagasy, Chichewa, Oromo, Naija, Kinyarwanda, Kirundi, Shona, Somali, Sesotho, Swahili, isiXhosa, Yoruba, and isiZulu) covering the major African language families and 3 high resource languages (Arabic, French, and English). ## Eval results on MasakhaNER (F-score) language| XLM-R-miniLM| XLM-R-base |XLM-R-large| afro-xlmr-base | afro-xlmr-small | afro-xlmr-mini -|-|-|-|-|-|- amh |69.5|70.6|76.2|76.1|70.1|69.7 hau |74.5|89.5|90.5|91.2|91.4|87.7 ibo |81.9|84.8|84.1|87.4|86.6|83.5 kin |68.6|73.3|73.8|78.0|77.5|74.1 lug |64.7|79.7|81.6|82.9|83.2|77.4 luo |11.7|74.9|73.6|75.1|75.4|17.5 pcm |83.2|87.3|89.0|89.6|89.0|85.5 swa |86.3|87.4|89.4|88.6|88.7|86.0 wol |51.7|63.9|67.9|67.4|65.9|59.0 yor |72.0|78.3|78.9|82.1|81.3|75.1 ### BibTeX entry and citation info ``` @misc{afro_maft, doi = {10.48550/ARXIV.2204.06487}, url = {https://arxiv.org/abs/2204.06487}, author = {Alabi, Jesujoba O. and Adelani, David Ifeoluwa and Mosbach, Marius and Klakow, Dietrich}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Multilingual Language Model Adaptive Fine-Tuning: A Study on African Languages}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```
dreamerdeo/unisar-t5-3b-spider
4ebde0d1edde644caba8784692492a32efe6ac1c
2022-04-13T09:33:22.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
dreamerdeo
null
dreamerdeo/unisar-t5-3b-spider
2
null
transformers
25,501
Entry not found
thamaine/distilbert-base-uncased-finetuned-squad
1bc2dae4b1faa2ee455ddf2e7721cc5e31415025
2022-06-03T13:37:51.000Z
[ "pytorch", "tf", "tensorboard", "distilbert", "question-answering", "dataset:squad", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
question-answering
false
thamaine
null
thamaine/distilbert-base-uncased-finetuned-squad
2
null
transformers
25,502
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: distilbert-base-uncased-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-squad This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the squad dataset. It achieves the following results on the evaluation set: - Loss: 1.1580 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 1.2102 | 1.0 | 5533 | 1.1573 | | 0.9535 | 2.0 | 11066 | 1.1236 | | 0.7513 | 3.0 | 16599 | 1.1580 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
dreamerdeo/unisar-t5-3b-cosql
399b48d00403fa8ca048d00b5cd28e0ee337c504
2022-04-13T10:11:27.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
dreamerdeo
null
dreamerdeo/unisar-t5-3b-cosql
2
null
transformers
25,503
Entry not found
dreamerdeo/unisar-t5-3b-sparc
cc6fb1fd1b5cbb1e32df230c4faaa17eab0f34e5
2022-04-13T10:19:20.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
dreamerdeo
null
dreamerdeo/unisar-t5-3b-sparc
2
null
transformers
25,504
Entry not found
philschmid/MiniLMv2-L12-H384-distilled-finetuned-clinc
bc3de52f2e486a36b13546f5560e2ff9c4759bf4
2022-04-13T12:07:00.000Z
[ "pytorch", "tensorboard", "roberta", "text-classification", "dataset:clinc_oos", "transformers", "generated_from_trainer", "model-index" ]
text-classification
false
philschmid
null
philschmid/MiniLMv2-L12-H384-distilled-finetuned-clinc
2
null
transformers
25,505
--- tags: - generated_from_trainer datasets: - clinc_oos metrics: - accuracy model-index: - name: MiniLMv2-L12-H384-distilled-finetuned-clinc results: - task: name: Text Classification type: text-classification dataset: name: clinc_oos type: clinc_oos args: plus metrics: - name: Accuracy type: accuracy value: 0.9529032258064516 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # MiniLMv2-L12-H384-distilled-finetuned-clinc This model is a fine-tuned version of [nreimers/MiniLMv2-L12-H384-distilled-from-RoBERTa-Large](https://huggingface.co/nreimers/MiniLMv2-L12-H384-distilled-from-RoBERTa-Large) on the clinc_oos dataset. It achieves the following results on the evaluation set: - Loss: 0.3058 - Accuracy: 0.9529 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 64 - eval_batch_size: 64 - seed: 33 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.9908 | 1.0 | 239 | 1.6816 | 0.3910 | | 1.5212 | 2.0 | 478 | 1.2365 | 0.7697 | | 1.129 | 3.0 | 717 | 0.9209 | 0.8706 | | 0.8462 | 4.0 | 956 | 0.6978 | 0.9152 | | 0.6497 | 5.0 | 1195 | 0.5499 | 0.9342 | | 0.5124 | 6.0 | 1434 | 0.4447 | 0.9445 | | 0.4196 | 7.0 | 1673 | 0.3797 | 0.9455 | | 0.3587 | 8.0 | 1912 | 0.3358 | 0.95 | | 0.3228 | 9.0 | 2151 | 0.3133 | 0.9513 | | 0.3052 | 10.0 | 2390 | 0.3058 | 0.9529 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.2+cu113 - Datasets 1.18.4 - Tokenizers 0.11.6
CenIA/albert-large-spanish-finetuned-qa-sqac
53bd8ffce0d9fa776e04677c60e9ed51ab91a90a
2022-04-13T19:12:34.000Z
[ "pytorch", "albert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
CenIA
null
CenIA/albert-large-spanish-finetuned-qa-sqac
2
null
transformers
25,506
Entry not found
Helsinki-NLP/opus-mt-tc-big-en-lv
63257c076ff5fff9d06906facd29d53b342b83b3
2022-06-01T13:03:19.000Z
[ "pytorch", "marian", "text2text-generation", "en", "lv", "transformers", "translation", "opus-mt-tc", "license:cc-by-4.0", "model-index", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-tc-big-en-lv
2
null
transformers
25,507
--- language: - en - lv tags: - translation - opus-mt-tc license: cc-by-4.0 model-index: - name: opus-mt-tc-big-en-lv results: - task: name: Translation eng-lav type: translation args: eng-lav dataset: name: flores101-devtest type: flores_101 args: eng lav devtest metrics: - name: BLEU type: bleu value: 30.1 - task: name: Translation eng-lav type: translation args: eng-lav dataset: name: newsdev2017 type: newsdev2017 args: eng-lav metrics: - name: BLEU type: bleu value: 28.9 - task: name: Translation eng-lav type: translation args: eng-lav dataset: name: tatoeba-test-v2021-08-07 type: tatoeba_mt args: eng-lav metrics: - name: BLEU type: bleu value: 44.0 - task: name: Translation eng-lav type: translation args: eng-lav dataset: name: newstest2017 type: wmt-2017-news args: eng-lav metrics: - name: BLEU type: bleu value: 22.1 --- # opus-mt-tc-big-en-lv Neural machine translation model for translating from English (en) to Latvian (lv). This model is part of the [OPUS-MT project](https://github.com/Helsinki-NLP/Opus-MT), an effort to make neural machine translation models widely available and accessible for many languages in the world. All models are originally trained using the amazing framework of [Marian NMT](https://marian-nmt.github.io/), an efficient NMT implementation written in pure C++. The models have been converted to pyTorch using the transformers library by huggingface. Training data is taken from [OPUS](https://opus.nlpl.eu/) and training pipelines use the procedures of [OPUS-MT-train](https://github.com/Helsinki-NLP/Opus-MT-train). * Publications: [OPUS-MT – Building open translation services for the World](https://aclanthology.org/2020.eamt-1.61/) and [The Tatoeba Translation Challenge – Realistic Data Sets for Low Resource and Multilingual MT](https://aclanthology.org/2020.wmt-1.139/) (Please, cite if you use this model.) ``` @inproceedings{tiedemann-thottingal-2020-opus, title = "{OPUS}-{MT} {--} Building open translation services for the World", author = {Tiedemann, J{\"o}rg and Thottingal, Santhosh}, booktitle = "Proceedings of the 22nd Annual Conference of the European Association for Machine Translation", month = nov, year = "2020", address = "Lisboa, Portugal", publisher = "European Association for Machine Translation", url = "https://aclanthology.org/2020.eamt-1.61", pages = "479--480", } @inproceedings{tiedemann-2020-tatoeba, title = "The Tatoeba Translation Challenge {--} Realistic Data Sets for Low Resource and Multilingual {MT}", author = {Tiedemann, J{\"o}rg}, booktitle = "Proceedings of the Fifth Conference on Machine Translation", month = nov, year = "2020", address = "Online", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2020.wmt-1.139", pages = "1174--1182", } ``` ## Model info * Release: 2022-03-13 * source language(s): eng * target language(s): lav * model: transformer-big * data: opusTCv20210807+bt ([source](https://github.com/Helsinki-NLP/Tatoeba-Challenge)) * tokenization: SentencePiece (spm32k,spm32k) * original model: [opusTCv20210807+bt_transformer-big_2022-03-13.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/eng-lav/opusTCv20210807+bt_transformer-big_2022-03-13.zip) * more information released models: [OPUS-MT eng-lav README](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/eng-lav/README.md) ## Usage A short example code: ```python from transformers import MarianMTModel, MarianTokenizer src_text = [ ">>lav<< A day has twenty-four hours.", ">>ltg<< He's a good lawyer." ] model_name = "pytorch-models/opus-mt-tc-big-en-lv" tokenizer = MarianTokenizer.from_pretrained(model_name) model = MarianMTModel.from_pretrained(model_name) translated = model.generate(**tokenizer(src_text, return_tensors="pt", padding=True)) for t in translated: print( tokenizer.decode(t, skip_special_tokens=True) ) # expected output: # Dienā ir divdesmit četras stundas. # Vyss ir labs advokats. ``` You can also use OPUS-MT models with the transformers pipelines, for example: ```python from transformers import pipeline pipe = pipeline("translation", model="Helsinki-NLP/opus-mt-tc-big-en-lv") print(pipe(">>lav<< A day has twenty-four hours.")) # expected output: Dienā ir divdesmit četras stundas. ``` ## Benchmarks * test set translations: [opusTCv20210807+bt_transformer-big_2022-03-13.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/eng-lav/opusTCv20210807+bt_transformer-big_2022-03-13.test.txt) * test set scores: [opusTCv20210807+bt_transformer-big_2022-03-13.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/eng-lav/opusTCv20210807+bt_transformer-big_2022-03-13.eval.txt) * benchmark results: [benchmark_results.txt](benchmark_results.txt) * benchmark output: [benchmark_translations.zip](benchmark_translations.zip) | langpair | testset | chr-F | BLEU | #sent | #words | |----------|---------|-------|-------|-------|--------| | eng-lav | tatoeba-test-v2021-08-07 | 0.66411 | 44.0 | 1631 | 9932 | | eng-lav | flores101-devtest | 0.59397 | 30.1 | 1012 | 22092 | | eng-lav | newsdev2017 | 0.58082 | 28.9 | 2003 | 41503 | | eng-lav | newstest2017 | 0.53202 | 22.1 | 2001 | 39392 | ## Acknowledgements The work is supported by the [European Language Grid](https://www.european-language-grid.eu/) as [pilot project 2866](https://live.european-language-grid.eu/catalogue/#/resource/projects/2866), by the [FoTran project](https://www.helsinki.fi/en/researchgroups/natural-language-understanding-with-cross-lingual-grounding), funded by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 771113), and the [MeMAD project](https://memad.eu/), funded by the European Union’s Horizon 2020 Research and Innovation Programme under grant agreement No 780069. We are also grateful for the generous computational resources and IT infrastructure provided by [CSC -- IT Center for Science](https://www.csc.fi/), Finland. ## Model conversion info * transformers version: 4.16.2 * OPUS-MT git hash: 3405783 * port time: Wed Apr 13 17:36:04 EEST 2022 * port machine: LM0-400-22516.local
NeuralNotwork/gpt2-ct
31b9f8f4089e25b85552d6f6dcca0bca4aac22b4
2022-04-13T16:19:58.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
NeuralNotwork
null
NeuralNotwork/gpt2-ct
2
null
transformers
25,508
Entry not found
lucaordronneau/twitter-roberta-base-sentiment-latest-finetuned-FG-CONCAT_SENTENCE-H-NEWS
576d7e510e19024fe53a221babc657b9f81a1bf5
2022-04-13T16:41:38.000Z
[ "pytorch", "tensorboard", "roberta", "text-classification", "transformers", "generated_from_trainer", "model-index" ]
text-classification
false
lucaordronneau
null
lucaordronneau/twitter-roberta-base-sentiment-latest-finetuned-FG-CONCAT_SENTENCE-H-NEWS
2
null
transformers
25,509
--- tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: twitter-roberta-base-sentiment-latest-finetuned-FG-CONCAT_SENTENCE-H-NEWS results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # twitter-roberta-base-sentiment-latest-finetuned-FG-CONCAT_SENTENCE-H-NEWS This model is a fine-tuned version of [cardiffnlp/twitter-roberta-base-sentiment-latest](https://huggingface.co/cardiffnlp/twitter-roberta-base-sentiment-latest) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 3.6335 - Accuracy: 0.5275 - F1: 0.5198 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 6e-05 - train_batch_size: 12 - eval_batch_size: 12 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | No log | 1.0 | 61 | 1.0568 | 0.4396 | 0.2684 | | No log | 2.0 | 122 | 1.0518 | 0.4396 | 0.2684 | | No log | 3.0 | 183 | 1.0584 | 0.4396 | 0.2684 | | No log | 4.0 | 244 | 1.1720 | 0.3956 | 0.3223 | | No log | 5.0 | 305 | 1.2473 | 0.5275 | 0.5196 | | No log | 6.0 | 366 | 1.0789 | 0.5220 | 0.5301 | | No log | 7.0 | 427 | 1.3556 | 0.5604 | 0.5426 | | No log | 8.0 | 488 | 1.7314 | 0.5330 | 0.5158 | | 0.8045 | 9.0 | 549 | 2.2774 | 0.5330 | 0.5161 | | 0.8045 | 10.0 | 610 | 2.8362 | 0.4451 | 0.4512 | | 0.8045 | 11.0 | 671 | 2.9130 | 0.5275 | 0.4931 | | 0.8045 | 12.0 | 732 | 3.1023 | 0.5110 | 0.5010 | | 0.8045 | 13.0 | 793 | 3.2670 | 0.5385 | 0.5208 | | 0.8045 | 14.0 | 854 | 3.4151 | 0.4945 | 0.4856 | | 0.8045 | 15.0 | 915 | 3.7614 | 0.4615 | 0.4458 | | 0.8045 | 16.0 | 976 | 3.5224 | 0.5220 | 0.5122 | | 0.0535 | 17.0 | 1037 | 3.5196 | 0.5165 | 0.5102 | | 0.0535 | 18.0 | 1098 | 3.5791 | 0.5110 | 0.5039 | | 0.0535 | 19.0 | 1159 | 3.6220 | 0.5220 | 0.5137 | | 0.0535 | 20.0 | 1220 | 3.6335 | 0.5275 | 0.5198 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.9.1 - Datasets 1.18.4 - Tokenizers 0.11.6
liangyuant/distilbert-base-uncased-finetuned-num200-450-405cls
db4668539e8f05b2640baf2ce3aa412fe2cfa318
2022-04-13T16:51:52.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "transformers" ]
text-classification
false
liangyuant
null
liangyuant/distilbert-base-uncased-finetuned-num200-450-405cls
2
null
transformers
25,510
Entry not found
NeuralNotwork/blenderbot-400M-ct
6f9f2d013a3ff053f9b0143e01f05493ee47dfef
2022-04-13T17:11:24.000Z
[ "pytorch", "blenderbot", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
NeuralNotwork
null
NeuralNotwork/blenderbot-400M-ct
2
null
transformers
25,511
Entry not found
liangyuant/distilbert-base-uncased-finetuned-5epoch-num200-450-405cls
81f1476ae9f77d58649fbf0f2633b87ee13d8eaf
2022-04-13T17:42:04.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "transformers" ]
text-classification
false
liangyuant
null
liangyuant/distilbert-base-uncased-finetuned-5epoch-num200-450-405cls
2
null
transformers
25,512
Entry not found
liangyuant/distilbert-base-uncased-finetuned-9epoch-num200-450-405cls
b7d2b28c2ad1506007418d9321766b9fdf599312
2022-04-13T18:23:48.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "transformers" ]
text-classification
false
liangyuant
null
liangyuant/distilbert-base-uncased-finetuned-9epoch-num200-450-405cls
2
null
transformers
25,513
Entry not found
rmihaylov/gpt2-small-theseus-bg
533baf04e6f7d58453b8a2ad2add32314fcb5d02
2022-04-16T17:48:14.000Z
[ "pytorch", "gpt2", "text-generation", "bg", "dataset:oscar", "dataset:chitanka", "dataset:wikipedia", "arxiv:2002.02925", "transformers", "torch", "license:mit" ]
text-generation
false
rmihaylov
null
rmihaylov/gpt2-small-theseus-bg
2
null
transformers
25,514
--- inference: false language: - bg license: mit datasets: - oscar - chitanka - wikipedia tags: - torch --- # GPT-2 Pretrained model on Bulgarian language using a causal language modeling (CLM) objective. It was introduced in [this paper](https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf) and first released at [this page](https://openai.com/blog/better-language-models/). ## Model description This is the **SMALL** version compressed via [progressive module replacing](https://arxiv.org/abs/2002.02925). The compression was executed on Bulgarian text from [OSCAR](https://oscar-corpus.com/post/oscar-2019/), [Chitanka](https://chitanka.info/) and [Wikipedia](https://bg.wikipedia.org/). ## Intended uses & limitations You can use the raw model for: - text generation - auto-complete - spelling correction Or fine-tune it to a downstream task. ### How to use Here is how to use this model in PyTorch: ```python >>> from transformers import AutoModel, AutoTokenizer >>> >>> model_id = "rmihaylov/gpt2-small-theseus-bg" >>> tokenizer = AutoTokenizer.from_pretrained(model_id) >>> model = AutoModel.from_pretrained(model_id, trust_remote_code=True) >>> >>> input_ids = tokenizer.encode( >>> "Здравей,", >>> add_special_tokens=False, >>> return_tensors='pt') >>> >>> output_ids = model.generate( >>> input_ids, >>> do_sample=True, >>> max_length=50, >>> top_p=0.92, >>> pad_token_id=2, >>> top_k=0) >>> >>> output = tokenizer.decode(output_ids[0]) >>> >>> output = output.replace('<|endoftext|>', '\n\n\n') >>> output = output.replace('<|unknown|>', '') >>> output = output.replace('▁', ' ') >>> output = output.replace('<|n|>', '\n') >>> >>> print(output) Здравей, извинявай, но не мога да заспя. Джини се обърна и забеляза колко са прегърнати. — Почакай, Джини. Не мога да повярвам, че е възможно! Толкова искам да те видя. — Обеща ``` ### Limitations and bias As the openAI team themselves point out in their [model card](https://github.com/openai/gpt-2/blob/master/model_card.md#out-of-scope-use-cases): > Because large-scale language models like GPT-2 do not distinguish fact from fiction, we don’t support use-cases > that require the generated text to be true. > > Additionally, language models like GPT-2 reflect the biases inherent to the systems they were trained on, so we do > not recommend that they be deployed into systems that interact with humans > unless the deployers first carry out a > study of biases relevant to the intended use-case. We found no statistically significant difference in gender, race, > and religious bias probes between 774M and 1.5B, implying all versions of GPT-2 should be approached with similar > levels of caution around use cases that are sensitive to biases around human attributes.
liangyuant/bert-base-uncased-finetuned-10epoch-num200-450-405cls
468e10c14c805ef941ae8f09a43a2f02e0bdcba0
2022-04-14T11:13:33.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
liangyuant
null
liangyuant/bert-base-uncased-finetuned-10epoch-num200-450-405cls
2
null
transformers
25,515
Entry not found
knok/japanese-distilgpt2
f9faa84cee65d18d48180d4bf886804acd1c4d1e
2022-04-15T06:00:51.000Z
[ "pytorch", "gpt2", "ja", "dataset:wikipedia", "dataset:cc100", "transformers", "japanese", "text-generation", "lm", "nlp", "license:mit" ]
text-generation
false
knok
null
knok/japanese-distilgpt2
2
null
transformers
25,516
--- language: ja tags: - ja - japanese - gpt2 - text-generation - lm - nlp license: mit datasets: - wikipedia - cc100 --- # 日本語 gpt2 蒸留モデル このモデルは[rinna/japanese-gpt2-meduim](https://huggingface.co/rinna/japanese-gpt2-medium)を教師として蒸留したものです。 蒸留には、HuggigFace Transformersの[コード](https://github.com/huggingface/transformers/tree/main/examples/research_projects/distillation)をベースとし、[りんなの訓練コード](https://github.com/rinnakk/japanese-pretrained-models)と組み合わせてデータ扱うよう改造したものを使っています。 訓練用コード: https://github.com/knok/japanese-pretrained-models ## 学習に関して 学習に当たり、Google Startup Programにて提供されたクレジットを用いました。 a2-highgpu-4インスタンス(A100 x 4)を使って4か月程度、何度かのresumeを挟んで訓練させました。 ## 精度について Wikipediaをコーパスとし、perplexity 40 程度となります。 rinna/japanese-gpt2-meduim を直接使った場合、27 程度なので、そこまで及びません。 何度か複数のパラメータで訓練の再開を試みたものの、かえって損失が上昇してしまう状態となってしまったので、現状のものを公開しています。 ## トークナイザについて トークナイザは rinna/japanese-gpt2-meduim を使ってください。 # Japanese GPT-2 model This model is a dillated model from [rinna/japanese-gpt2-medium](https://huggingface.co/rinna/japanese-gpt2-medium). To train, I combined HuggingFace Transformers [code](https://github.com/huggingface/transformers/tree/main/examples/research_projects/distillation) and [rinna gpt2 train code](https://github.com/rinnakk/japanese-pretrained-models). The code is available at: https://github.com/knok/japanese-pretrained-models ## training environment To train, I used GCP credit offered by Google Startup Progam. Using a2-highgpu-4 instance (A100 x4), it takes about 4 months with some stopping and resume training. ## perplexity The model gets about 40 perplexity with Wikipedia corpus. The teacher model rinna/japanese-gpt2-meduim gets about 27 perplexity, so the student model is worse. ## tokenizer The repository don't have tokenizer, so you shoud use rinna/japanese-gpt2-medium. # LICENSE MIT (same as rinna/japanese-gpt2-medium)
eleldar/marian-finetuned-kde4-en-to-fr-accelerate-2gpu
b87fc47992a1283a1b3232a91fe24eb0eb3aaa65
2022-04-14T15:37:18.000Z
[ "pytorch", "marian", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
eleldar
null
eleldar/marian-finetuned-kde4-en-to-fr-accelerate-2gpu
2
null
transformers
25,517
Entry not found
NeuralNotwork/gpt2-ul-ts
764f58c3690c2167d8c02e035c86e6e02d5f361d
2022-04-14T15:02:30.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
NeuralNotwork
null
NeuralNotwork/gpt2-ul-ts
2
null
transformers
25,518
Entry not found
eleldar/marian-finetuned-kde4-en-to-fr-trainer
95ae4c01c0830437a5b7c72e5df2d3dd3393379f
2022-04-15T10:01:48.000Z
[ "pytorch", "marian", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
eleldar
null
eleldar/marian-finetuned-kde4-en-to-fr-trainer
2
null
transformers
25,519
Entry not found
BigSalmon/InformalToFormalLincoln36
f4ce5f3fbfa232170780eef7122c6b431b282ef3
2022-04-17T17:44:43.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
BigSalmon
null
BigSalmon/InformalToFormalLincoln36
2
null
transformers
25,520
``` from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("BigSalmon/InformalToFormalLincoln36") model = AutoModelForCausalLM.from_pretrained("BigSalmon/InformalToFormalLincoln36") ``` ``` How To Make Prompt: informal english: i am very ready to do that just that. Translated into the Style of Abraham Lincoln: you can assure yourself of my readiness to work toward this end. Translated into the Style of Abraham Lincoln: please be assured that i am most ready to undertake this laborious task. *** informal english: space is huge and needs to be explored. Translated into the Style of Abraham Lincoln: space awaits traversal, a new world whose boundaries are endless. Translated into the Style of Abraham Lincoln: space is a ( limitless / boundless ) expanse, a vast virgin domain awaiting exploration. *** informal english: corn fields are all across illinois, visible once you leave chicago. Translated into the Style of Abraham Lincoln: corn fields ( permeate illinois / span the state of illinois / ( occupy / persist in ) all corners of illinois / line the horizon of illinois / envelop the landscape of illinois ), manifesting themselves visibly as one ventures beyond chicago. informal english: ``` ``` infill: chrome extensions [MASK] accomplish everyday tasks. Translated into the Style of Abraham Lincoln: chrome extensions ( expedite the ability to / unlock the means to more readily ) accomplish everyday tasks. infill: at a time when nintendo has become inflexible, [MASK] consoles that are tethered to a fixed iteration, sega diligently curates its legacy of classic video games on handheld devices. Translated into the Style of Abraham Lincoln: at a time when nintendo has become inflexible, ( stubbornly [MASK] on / firmly set on / unyielding in its insistence on ) consoles that are tethered to a fixed iteration, sega diligently curates its legacy of classic video games on handheld devices. infill: ``` ``` Essay Intro (Warriors vs. Rockets in Game 7): text: eagerly anticipated by fans, game 7's are the highlight of the post-season. text: ever-building in suspense, game 7's have the crowd captivated. *** Essay Intro (South Korean TV Is Becoming Popular): text: maturing into a bona fide paragon of programming, south korean television ( has much to offer / entertains without fail / never disappoints ). text: increasingly held in critical esteem, south korean television continues to impress. text: at the forefront of quality content, south korea is quickly achieving celebrity status. *** Essay Intro ( ``` ``` Search: What is the definition of Checks and Balances? https://en.wikipedia.org/wiki/Checks_and_balances Checks and Balances is the idea of having a system where each and every action in government should be subject to one or more checks that would not allow one branch or the other to overly dominate. https://www.harvard.edu/glossary/Checks_and_Balances Checks and Balances is a system that allows each branch of government to limit the powers of the other branches in order to prevent abuse of power https://www.law.cornell.edu/library/constitution/Checks_and_Balances Checks and Balances is a system of separation through which branches of government can control the other, thus preventing excess power. *** Search: What is the definition of Separation of Powers? https://en.wikipedia.org/wiki/Separation_of_powers The separation of powers is a principle in government, whereby governmental powers are separated into different branches, each with their own set of powers, that are prevent one branch from aggregating too much power. https://www.yale.edu/tcf/Separation_of_Powers.html Separation of Powers is the division of governmental functions between the executive, legislative and judicial branches, clearly demarcating each branch's authority, in the interest of ensuring that individual liberty or security is not undermined. *** Search: What is the definition of Connection of Powers? https://en.wikipedia.org/wiki/Connection_of_powers Connection of Powers is a feature of some parliamentary forms of government where different branches of government are intermingled, typically the executive and legislative branches. https://simple.wikipedia.org/wiki/Connection_of_powers The term Connection of Powers describes a system of government in which there is overlap between different parts of the government. *** Search: What is the definition of ``` ``` Search: What are phrase synonyms for "second-guess"? https://www.powerthesaurus.org/second-guess/synonyms Shortest to Longest: - feel dubious about - raise an eyebrow at - wrinkle their noses at - cast a jaundiced eye at - teeter on the fence about *** Search: What are phrase synonyms for "mean to newbies"? https://www.powerthesaurus.org/mean_to_newbies/synonyms Shortest to Longest: - readiness to balk at rookies - absence of tolerance for novices - hostile attitude toward newcomers *** Search: What are phrase synonyms for "make use of"? https://www.powerthesaurus.org/make_use_of/synonyms Shortest to Longest: - call upon - glean value from - reap benefits from - derive utility from - seize on the merits of - draw on the strength of - tap into the potential of *** Search: What are phrase synonyms for "hurting itself"? https://www.powerthesaurus.org/hurting_itself/synonyms Shortest to Longest: - erring - slighting itself - forfeiting its integrity - doing itself a disservice - evincing a lack of backbone *** Search: What are phrase synonyms for " ``` ``` - declining viewership facing the nba. - does not have to be this way. - in fact, many solutions exist. - the four point line would surely draw in eyes. text: failing to draw in the masses, the nba has ( fallen into / succumb to / bowed to ) disrepair. such does not have to be the case, however. in fact, a myriad of simple, relatively cheap ( solutions / interventions / enhancements ) could revive the league. the addition of the much-hyped four-point line would surely juice viewership. *** - ``` ``` original: sports teams are profitable for owners. [MASK], their valuations experience a dramatic uptick. infill: sports teams are profitable for owners. ( accumulating vast sums / stockpiling treasure / realizing benefits / cashing in / registering robust financials / scoring on balance sheets ), their valuations experience a dramatic uptick. *** original: ``` ``` wordy: classical music is becoming less popular more and more. Translate into Concise Text: interest in classic music is fading. *** wordy: ``` ``` sweet: savvy voters ousted him. longer: voters who were informed delivered his defeat. *** sweet: ``` ``` 1: commercial space company spacex plans to launch a whopping 52 flights in 2022. 2: spacex, a commercial space company, intends to undertake a total of 52 flights in 2022. 3: in 2022, commercial space company spacex has its sights set on undertaking 52 flights. 4: 52 flights are in the pipeline for 2022, according to spacex, a commercial space company. 5: a commercial space company, spacex aims to conduct 52 flights in 2022. *** 1: ``` Keywords to sentences or sentence.
liangyuant/ms-marco-MiniLM-L-12-v2-finetuned-10epoch-num200-450-405cls
cc81b2f5ef8b28501c863b97bfeb82a98a0f919f
2022-04-15T07:25:16.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
liangyuant
null
liangyuant/ms-marco-MiniLM-L-12-v2-finetuned-10epoch-num200-450-405cls
2
null
transformers
25,521
Entry not found
NeuralNotwork/gpt2-ul-ts-lrn6
1de6deab389f01827b15d215ebf94b4f8ef74443
2022-04-15T04:40:22.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
NeuralNotwork
null
NeuralNotwork/gpt2-ul-ts-lrn6
2
null
transformers
25,522
Entry not found
Chikashi/t5-small-finetuned-cnndm2-wikihow1
4fb5227b8fe097528f2714422531d7dfec7d824a
2022-04-15T11:30:20.000Z
[ "pytorch", "tensorboard", "t5", "text2text-generation", "dataset:cnn_dailymail", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
text2text-generation
false
Chikashi
null
Chikashi/t5-small-finetuned-cnndm2-wikihow1
2
null
transformers
25,523
--- license: apache-2.0 tags: - generated_from_trainer datasets: - cnn_dailymail metrics: - rouge model-index: - name: t5-small-finetuned-cnndm2-wikihow1 results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: cnn_dailymail type: cnn_dailymail args: 3.0.0 metrics: - name: Rouge1 type: rouge value: 24.6317 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-cnndm2-wikihow1 This model is a fine-tuned version of [Chikashi/t5-small-finetuned-cnndm1-wikihow1](https://huggingface.co/Chikashi/t5-small-finetuned-cnndm1-wikihow1) on the cnn_dailymail dataset. It achieves the following results on the evaluation set: - Loss: 1.6305 - Rouge1: 24.6317 - Rouge2: 11.8655 - Rougel: 20.3598 - Rougelsum: 23.2467 - Gen Len: 18.9996 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | 1.8062 | 1.0 | 71779 | 1.6305 | 24.6317 | 11.8655 | 20.3598 | 23.2467 | 18.9996 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.0+cu111 - Datasets 2.1.0 - Tokenizers 0.12.1
liangyuant/distilroberta-base-finetuned-10epoch-num200-450-405cls
c5c9c828927128e0db3e1623413b6c0ee8c855d3
2022-04-15T08:48:25.000Z
[ "pytorch", "tensorboard", "roberta", "text-classification", "transformers" ]
text-classification
false
liangyuant
null
liangyuant/distilroberta-base-finetuned-10epoch-num200-450-405cls
2
null
transformers
25,524
Entry not found
Neria/dummy-model
ce3dea88f896573dcd960ee35e3ebdbc2db3296c
2022-04-15T07:32:58.000Z
[ "pytorch", "camembert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
Neria
null
Neria/dummy-model
2
null
transformers
25,525
Entry not found
Chikashi/t5-small-finetuned-cnndm2-wikihow2
26b6b4d1f194eed3d92c83a93ca2860992c96593
2022-04-15T15:13:22.000Z
[ "pytorch", "tensorboard", "t5", "text2text-generation", "dataset:wikihow", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
text2text-generation
false
Chikashi
null
Chikashi/t5-small-finetuned-cnndm2-wikihow2
2
null
transformers
25,526
--- license: apache-2.0 tags: - generated_from_trainer datasets: - wikihow metrics: - rouge model-index: - name: t5-small-finetuned-cnndm2-wikihow2 results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: wikihow type: wikihow args: all metrics: - name: Rouge1 type: rouge value: 27.0962 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-cnndm2-wikihow2 This model is a fine-tuned version of [Chikashi/t5-small-finetuned-cnndm2-wikihow1](https://huggingface.co/Chikashi/t5-small-finetuned-cnndm2-wikihow1) on the wikihow dataset. It achieves the following results on the evaluation set: - Loss: 2.3311 - Rouge1: 27.0962 - Rouge2: 10.3575 - Rougel: 23.1099 - Rougelsum: 26.4664 - Gen Len: 18.5197 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | 2.517 | 1.0 | 39313 | 2.3311 | 27.0962 | 10.3575 | 23.1099 | 26.4664 | 18.5197 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.0+cu111 - Datasets 2.1.0 - Tokenizers 0.12.1
profoz/distilbert-toxic
ae8ee0b7378e3243b626ea3e1a83044ffc5f6c46
2022-04-15T14:24:52.000Z
[ "pytorch", "distilbert", "text-classification", "transformers" ]
text-classification
false
profoz
null
profoz/distilbert-toxic
2
null
transformers
25,527
Entry not found
profoz/distilbert-toxic-demo
863bf9a7f05169ed11431b0818b9a476f372e239
2022-04-15T14:52:01.000Z
[ "pytorch", "distilbert", "text-classification", "transformers" ]
text-classification
false
profoz
null
profoz/distilbert-toxic-demo
2
null
transformers
25,528
Entry not found
shantimohan/distilbert-base-uncased-finetuned-emotion
df3e37f148f578384aefc03475db17a9d3df1b2a
2022-04-19T18:07:49.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "transformers" ]
text-classification
false
shantimohan
null
shantimohan/distilbert-base-uncased-finetuned-emotion
2
null
transformers
25,529
Entry not found
Chikashi/t5-small-finetuned-cnndm3-wikihow2
5c605c0460c6f3ab0e5ca457e9e5f807f295e79a
2022-04-15T21:49:42.000Z
[ "pytorch", "tensorboard", "t5", "text2text-generation", "dataset:cnn_dailymail", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
text2text-generation
false
Chikashi
null
Chikashi/t5-small-finetuned-cnndm3-wikihow2
2
null
transformers
25,530
--- license: apache-2.0 tags: - generated_from_trainer datasets: - cnn_dailymail metrics: - rouge model-index: - name: t5-small-finetuned-cnndm3-wikihow2 results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: cnn_dailymail type: cnn_dailymail args: 3.0.0 metrics: - name: Rouge1 type: rouge value: 24.6704 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-cnndm3-wikihow2 This model is a fine-tuned version of [Chikashi/t5-small-finetuned-cnndm2-wikihow2](https://huggingface.co/Chikashi/t5-small-finetuned-cnndm2-wikihow2) on the cnn_dailymail dataset. It achieves the following results on the evaluation set: - Loss: 1.6265 - Rouge1: 24.6704 - Rouge2: 11.9038 - Rougel: 20.3622 - Rougelsum: 23.2612 - Gen Len: 18.9997 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | 1.8071 | 1.0 | 71779 | 1.6265 | 24.6704 | 11.9038 | 20.3622 | 23.2612 | 18.9997 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.0+cu111 - Datasets 2.1.0 - Tokenizers 0.12.1
profoz/distilbert-toxic-clf
c797ddbaa1f7ab531032531ed2afec253611e517
2022-04-15T17:31:47.000Z
[ "pytorch", "distilbert", "text-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
profoz
null
profoz/distilbert-toxic-clf
2
null
transformers
25,531
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distilbert-toxic-clf results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-toxic-clf This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2 - Datasets 1.18.3 - Tokenizers 0.10.3
Adrian/distilbert-base-uncased-finetuned-squad-colab
9653936bcdd8e88ed30330d4bbbff2970a75b98b
2022-04-15T22:41:47.000Z
[ "pytorch", "tensorboard", "distilbert", "question-answering", "dataset:squad", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
question-answering
false
Adrian
null
Adrian/distilbert-base-uncased-finetuned-squad-colab
2
null
transformers
25,532
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: distilbert-base-uncased-finetuned-squad-colab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-squad-colab This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the squad dataset. It achieves the following results on the evaluation set: - Loss: 1.1662 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 1.2123 | 1.0 | 5533 | 1.1550 | | 0.95 | 2.0 | 11066 | 1.1163 | | 0.7539 | 3.0 | 16599 | 1.1662 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.0+cu111 - Datasets 2.1.0 - Tokenizers 0.12.1
enelpol/evalatin2022-lemma-closed
13e3f1f0db693bc25fc7d664aacb69e670cba5b4
2022-04-15T20:39:58.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
enelpol
null
enelpol/evalatin2022-lemma-closed
2
null
transformers
25,533
Input have to be constructed with prefix ": ", a word form, the colon and a POS, e.g.: `: effugere:VERB`.
enelpol/evalatin2022-lemma-open
8cc43b0b81e2d8f89b83d2ca62c45097e6f889d6
2022-04-15T21:02:44.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
enelpol
null
enelpol/evalatin2022-lemma-open
2
null
transformers
25,534
Entry not found
enelpol/evalatin2022-pos-closed
d2640f7cbcf705378c646dd8f739f608fdc9d809
2022-04-15T20:53:30.000Z
[ "pytorch", "xlm-roberta", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
enelpol
null
enelpol/evalatin2022-pos-closed
2
null
transformers
25,535
Entry not found
edonath/pegasus-samsum
cbd89e943b622f7630b3b89c6a1c6528b021d5a4
2022-06-09T07:56:49.000Z
[ "pytorch", "tensorboard", "pegasus", "text2text-generation", "dataset:samsum", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
text2text-generation
false
edonath
null
edonath/pegasus-samsum
2
null
transformers
25,536
--- tags: - generated_from_trainer datasets: - samsum model-index: - name: pegasus-samsum results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # pegasus-samsum This model is a fine-tuned version of [google/pegasus-cnn_dailymail](https://huggingface.co/google/pegasus-cnn_dailymail) on the samsum dataset. It achieves the following results on the evaluation set: - Loss: 1.4841 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.7073 | 0.54 | 500 | 1.4841 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 1.16.1 - Tokenizers 0.12.1
enelpol/evalatin2022-feats-closed
f6e891acbac80c06f5db29be252b45028d684ac0
2022-04-15T21:21:19.000Z
[ "pytorch", "xlm-roberta", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
enelpol
null
enelpol/evalatin2022-feats-closed
2
null
transformers
25,537
Entry not found
chrisvinsen/wav2vec2-base-timit-demo-colab
5415930bfe1ca6820fc0bb7f19eee3df08c81bef
2022-05-26T12:14:11.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
chrisvinsen
null
chrisvinsen/wav2vec2-base-timit-demo-colab
2
null
transformers
25,538
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base-timit-demo-colab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-timit-demo-colab This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4617 - Wer: 0.3416 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.4272 | 4.0 | 500 | 1.3108 | 1.0214 | | 0.5997 | 8.0 | 1000 | 0.4324 | 0.4310 | | 0.219 | 12.0 | 1500 | 0.4512 | 0.3864 | | 0.1264 | 16.0 | 2000 | 0.5002 | 0.3721 | | 0.0834 | 20.0 | 2500 | 0.4934 | 0.3550 | | 0.0616 | 24.0 | 3000 | 0.4467 | 0.3475 | | 0.0477 | 28.0 | 3500 | 0.4617 | 0.3416 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.10.3
GENG/wav2vec2.0_lv60_timi_pr
c0cebbbaa42cc768231487aaed2465f5032d8091
2022-04-19T05:24:04.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
GENG
null
GENG/wav2vec2.0_lv60_timi_pr
2
null
transformers
25,539
Entry not found
adnankhawaja/R_FB_SMS_LM
cd14d32955ff2856bcb508a33558093d4ba3b749
2022-04-16T05:03:36.000Z
[ "pytorch", "roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
adnankhawaja
null
adnankhawaja/R_FB_SMS_LM
2
null
transformers
25,540
Entry not found
chrisvinsen/wav2vec2-base-commonvoice-demo-colab-1
f025037f5d774a5d45b7eabfce2c0c9c39395148
2022-04-16T07:14:27.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "dataset:common_voice", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
chrisvinsen
null
chrisvinsen/wav2vec2-base-commonvoice-demo-colab-1
2
null
transformers
25,541
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice model-index: - name: wav2vec2-base-commonvoice-demo-colab-1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-commonvoice-demo-colab-1 This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.7289 - Wer: 0.7888 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 4.6013 | 13.51 | 500 | 2.7396 | 1.0 | | 1.1182 | 27.03 | 1000 | 0.7289 | 0.7888 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.10.3
jason9693/klue-roberta-base-apeach
a804f34e34248e0d19566b94be91de2a77f50d63
2022-04-16T06:17:29.000Z
[ "pytorch", "roberta", "text-classification", "transformers" ]
text-classification
false
jason9693
null
jason9693/klue-roberta-base-apeach
2
null
transformers
25,542
Entry not found
V3RX2000/distilbert-base-uncased-finetuned-imdb
e4bb5d309a5f20cc049df4031adf795adb7683e4
2022-04-16T06:46:19.000Z
[ "pytorch", "tensorboard", "distilbert", "fill-mask", "dataset:imdb", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
fill-mask
false
V3RX2000
null
V3RX2000/distilbert-base-uncased-finetuned-imdb
2
null
transformers
25,543
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb model-index: - name: distilbert-base-uncased-finetuned-imdb results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-imdb This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 2.4722 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.7117 | 1.0 | 157 | 2.4977 | | 2.5783 | 2.0 | 314 | 2.4241 | | 2.5375 | 3.0 | 471 | 2.4358 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.0+cu111 - Datasets 2.1.0 - Tokenizers 0.12.1
NeuralNotwork/gpt2-simctg
ff5eed6670b653302b1d7cf81192ef414265666f
2022-04-16T09:13:16.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
NeuralNotwork
null
NeuralNotwork/gpt2-simctg
2
null
transformers
25,544
Entry not found
chrisvinsen/wav2vec2-base-commonvoice-demo-colab-3
d28cc3aa030d2ed24df8ff1d3ea9df943b38db2a
2022-04-16T12:10:28.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
chrisvinsen
null
chrisvinsen/wav2vec2-base-commonvoice-demo-colab-3
2
null
transformers
25,545
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base-commonvoice-demo-colab-3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-commonvoice-demo-colab-3 This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6268 - Wer: 0.6391 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 4.617 | 8.2 | 500 | 2.6274 | 1.0 | | 1.0694 | 16.39 | 1000 | 0.7238 | 0.7443 | | 0.3988 | 24.59 | 1500 | 0.6268 | 0.6391 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.10.3
masakhane/m2m100_418M_fr_fon_rel_news_ft
3b7ed58c972bafc9a64035e1c3f4c02fe4d6e385
2022-04-16T17:53:22.000Z
[ "pytorch", "m2m_100", "text2text-generation", "transformers", "license:afl-3.0", "autotrain_compatible" ]
text2text-generation
false
masakhane
null
masakhane/m2m100_418M_fr_fon_rel_news_ft
2
null
transformers
25,546
--- license: afl-3.0 ---
rmihaylov/gpt2-small-bg
8b535866828afd20dbce56b1121a6aeb6827c328
2022-04-16T17:54:24.000Z
[ "pytorch", "gpt2", "text-generation", "bg", "dataset:oscar", "dataset:chitanka", "dataset:wikipedia", "transformers", "torch", "license:mit" ]
text-generation
false
rmihaylov
null
rmihaylov/gpt2-small-bg
2
null
transformers
25,547
--- inference: false language: - bg license: mit datasets: - oscar - chitanka - wikipedia tags: - torch --- # GPT-2 Pretrained model on Bulgarian language using a causal language modeling (CLM) objective. It was introduced in [this paper](https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf) and first released at [this page](https://openai.com/blog/better-language-models/). ## Model description This is the **SMALL** version. The training data is Bulgarian text from [OSCAR](https://oscar-corpus.com/post/oscar-2019/), [Chitanka](https://chitanka.info/) and [Wikipedia](https://bg.wikipedia.org/). ## Intended uses & limitations You can use the raw model for: - text generation - auto-complete - spelling correction Or fine-tune it to a downstream task. ### How to use Here is how to use this model in PyTorch: ```python >>> from transformers import AutoModel, AutoTokenizer >>> >>> model_id = "rmihaylov/gpt2-small-bg" >>> tokenizer = AutoTokenizer.from_pretrained(model_id) >>> model = AutoModel.from_pretrained(model_id, trust_remote_code=True) >>> >>> input_ids = tokenizer.encode( >>> "Здравей,", >>> add_special_tokens=False, >>> return_tensors='pt') >>> >>> output_ids = model.generate( >>> input_ids, >>> do_sample=True, >>> max_length=50, >>> top_p=0.92, >>> pad_token_id=2, >>> top_k=0) >>> >>> output = tokenizer.decode(output_ids[0]) >>> >>> output = output.replace('<|endoftext|>', '\n\n\n') >>> output = output.replace('<|unknown|>', '') >>> output = output.replace('▁', ' ') >>> output = output.replace('<|n|>', '\n') >>> >>> print(output) Здравей, Ани! Не е ли прекрасно? Нещото се засмя. Зъбите му блеснаха. — Ще те разведа насам-натам! Ани се замисли, когато той си тръгна. Може би не искаше да го е ``` ### Limitations and bias As the openAI team themselves point out in their [model card](https://github.com/openai/gpt-2/blob/master/model_card.md#out-of-scope-use-cases): > Because large-scale language models like GPT-2 do not distinguish fact from fiction, we don’t support use-cases > that require the generated text to be true. > > Additionally, language models like GPT-2 reflect the biases inherent to the systems they were trained on, so we do > not recommend that they be deployed into systems that interact with humans > unless the deployers first carry out a > study of biases relevant to the intended use-case. We found no statistically significant difference in gender, race, > and religious bias probes between 774M and 1.5B, implying all versions of GPT-2 should be approached with similar > levels of caution around use cases that are sensitive to biases around human attributes.
michaellutz/roberta-finetuned-stance-assertive-hillary
c107741296189e141787062e4953217e6a41ff39
2022-04-16T18:45:46.000Z
[ "pytorch", "tensorboard", "roberta", "text-classification", "transformers", "generated_from_trainer", "license:mit", "model-index" ]
text-classification
false
michaellutz
null
michaellutz/roberta-finetuned-stance-assertive-hillary
2
null
transformers
25,548
--- license: mit tags: - generated_from_trainer model-index: - name: roberta-finetuned-stance-assertive-hillary results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-finetuned-stance-assertive-hillary This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.0+cu111 - Datasets 2.1.0 - Tokenizers 0.12.1
michaellutz/ms-marco-finetuned-stance-assertive-hillary
72a643ae2c37c871c15bd2f5fe092b40f9e73934
2022-04-16T18:26:34.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
michaellutz
null
michaellutz/ms-marco-finetuned-stance-assertive-hillary
2
null
transformers
25,549
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: ms-marco-finetuned-stance-assertive-hillary results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ms-marco-finetuned-stance-assertive-hillary This model is a fine-tuned version of [sentence-transformers/paraphrase-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/paraphrase-MiniLM-L6-v2) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.0+cu111 - Datasets 2.1.0 - Tokenizers 0.12.1
js3078/autotrain-BerTweet-749522913
b6f6a19d4cce5974e9ea95282a8d9a436ed4afa4
2022-04-16T22:34:05.000Z
[ "pytorch", "roberta", "text-classification", "unk", "dataset:js3078/autotrain-data-BerTweet", "transformers", "autotrain", "co2_eq_emissions" ]
text-classification
false
js3078
null
js3078/autotrain-BerTweet-749522913
2
null
transformers
25,550
--- tags: autotrain language: unk widget: - text: "I love AutoTrain 🤗" datasets: - js3078/autotrain-data-BerTweet co2_eq_emissions: 4.093939667345746 --- # Model Trained Using AutoTrain - Problem type: Multi-class Classification - Model ID: 749522913 - CO2 Emissions (in grams): 4.093939667345746 ## Validation Metrics - Loss: 0.6473096609115601 - Accuracy: 0.75 - Macro F1: 0.7506205181665155 - Micro F1: 0.75 - Weighted F1: 0.7506205181665155 - Macro Precision: 0.7555096418732782 - Micro Precision: 0.75 - Weighted Precision: 0.7555096418732782 - Macro Recall: 0.75 - Micro Recall: 0.75 - Weighted Recall: 0.75 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/js3078/autotrain-BerTweet-749522913 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("js3078/autotrain-BerTweet-749522913", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("js3078/autotrain-BerTweet-749522913", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
creynier/wav2vec2-base-swbd-turn-eos-long_utt_removed2
0181aa8c038976a65d9f3d957b80edb45a520a7d
2022-04-17T17:46:34.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
creynier
null
creynier/wav2vec2-base-swbd-turn-eos-long_utt_removed2
2
null
transformers
25,551
Entry not found
MrBananaHuman/engpt_medium_to_kogpt_medium_wo_freezing
c644796376e22fd27736766bb6b3c7a1b6bac437
2022-04-17T02:14:43.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
MrBananaHuman
null
MrBananaHuman/engpt_medium_to_kogpt_medium_wo_freezing
2
null
transformers
25,552
Entry not found
rmihaylov/bert-base-theseus-bg
a942e6601940fe18a12557270c699b870ac5d8b9
2022-04-17T05:02:46.000Z
[ "pytorch", "bert", "fill-mask", "bg", "dataset:oscar", "dataset:chitanka", "dataset:wikipedia", "arxiv:1810.04805", "arxiv:2002.02925", "transformers", "torch", "license:mit", "autotrain_compatible" ]
fill-mask
false
rmihaylov
null
rmihaylov/bert-base-theseus-bg
2
null
transformers
25,553
--- inference: false language: - bg license: mit datasets: - oscar - chitanka - wikipedia tags: - torch --- # BERT BASE (cased) Pretrained model on Bulgarian language using a masked language modeling (MLM) objective. It was introduced in [this paper](https://arxiv.org/abs/1810.04805) and first released in [this repository](https://github.com/google-research/bert). This model is cased: it does make a difference between bulgarian and Bulgarian. The training data is Bulgarian text from [OSCAR](https://oscar-corpus.com/post/oscar-2019/), [Chitanka](https://chitanka.info/) and [Wikipedia](https://bg.wikipedia.org/). The model was compressed via [progressive module replacing](https://arxiv.org/abs/2002.02925). ### How to use Here is how to use this model in PyTorch: ```python >>> from transformers import pipeline >>> >>> model = pipeline( >>> 'fill-mask', >>> model='rmihaylov/bert-base-theseus-bg', >>> tokenizer='rmihaylov/bert-base-theseus-bg', >>> device=0, >>> revision=None) >>> output = model("София е [MASK] на България.") >>> print(output) [{'score': 0.1586454212665558, 'sequence': 'София е столица на България.', 'token': 76074, 'token_str': 'столица'}, {'score': 0.12992817163467407, 'sequence': 'София е столица на България.', 'token': 2659, 'token_str': 'столица'}, {'score': 0.06064048036932945, 'sequence': 'София е Перлата на България.', 'token': 102146, 'token_str': 'Перлата'}, {'score': 0.034687548875808716, 'sequence': 'София е представителката на България.', 'token': 105456, 'token_str': 'представителката'}, {'score': 0.03053216263651848, 'sequence': 'София е присъединяването на България.', 'token': 18749, 'token_str': 'присъединяването'}] ```
chrisvinsen/xlsr-wav2vec2-base-commonvoice-demo-colab-1
a367f02b7e78a856e8e827646fd87a488b8c3ac0
2022-04-17T06:13:54.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
chrisvinsen
null
chrisvinsen/xlsr-wav2vec2-base-commonvoice-demo-colab-1
2
null
transformers
25,554
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: xlsr-wav2vec2-base-commonvoice-demo-colab-1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlsr-wav2vec2-base-commonvoice-demo-colab-1 This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3736 - Wer: 0.5517 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 7.5523 | 8.06 | 500 | 2.8965 | 1.0 | | 2.4454 | 16.13 | 1000 | 0.7292 | 0.8364 | | 0.6349 | 24.19 | 1500 | 0.3736 | 0.5517 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.10.3
rmihaylov/bert-base-nli-theseus-bg
75f77cd0f2f639e3ab588d177351172797c21379
2022-04-17T06:35:37.000Z
[ "pytorch", "bert", "text-classification", "bg", "dataset:oscar", "dataset:chitanka", "dataset:wikipedia", "arxiv:1810.04805", "arxiv:2002.02925", "transformers", "torch", "license:mit" ]
text-classification
false
rmihaylov
null
rmihaylov/bert-base-nli-theseus-bg
2
null
transformers
25,555
--- inference: false language: - bg license: mit datasets: - oscar - chitanka - wikipedia tags: - torch --- # BERT BASE (cased) finetuned on Bulgarian natural-language-inference data Pretrained model on Bulgarian language using a masked language modeling (MLM) objective. It was introduced in [this paper](https://arxiv.org/abs/1810.04805) and first released in [this repository](https://github.com/google-research/bert). This model is cased: it does make a difference between bulgarian and Bulgarian. The training data is Bulgarian text from [OSCAR](https://oscar-corpus.com/post/oscar-2019/), [Chitanka](https://chitanka.info/) and [Wikipedia](https://bg.wikipedia.org/). It was finetuned on private NLI Bulgarian data. Then, it was compressed via [progressive module replacing](https://arxiv.org/abs/2002.02925). ### How to use Here is how to use this model in PyTorch: ```python >>> import torch >>> from transformers import AutoModelForSequenceClassification, AutoTokenizer >>> >>> model_id = 'rmihaylov/bert-base-nli-theseus-bg' >>> model = AutoModelForSequenceClassification.from_pretrained(model_id) >>> tokenizer = AutoTokenizer.from_pretrained(model_id) >>> >>> inputs = tokenizer.encode_plus( >>> 'Няколко момчета играят футбол.', >>> 'Няколко момичета играят футбол.', >>> return_tensors='pt') >>> >>> outputs = model(**inputs) >>> contradiction, entailment, neutral = torch.softmax(outputs[0][0], dim=0).detach() >>> contradiction, neutral, entailment (tensor(0.9998), tensor(0.0001), tensor(5.9929e-05)) ```
adnankhawaja/B_T_SMS_LM
bb2eec0fe829073fbc34fae690769c458d921250
2022-04-17T07:38:05.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
adnankhawaja
null
adnankhawaja/B_T_SMS_LM
2
null
transformers
25,556
Entry not found
adnankhawaja/B_FB_SMS_LM
de1a29dfcbed8f075d1782d8563e6e03a1298580
2022-04-17T07:55:12.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
adnankhawaja
null
adnankhawaja/B_FB_SMS_LM
2
null
transformers
25,557
Entry not found
masakhane/m2m100_418M_mos_fr_news
a39c8490caedc750b23e654519576858e5972f0d
2022-04-17T08:15:54.000Z
[ "pytorch", "m2m_100", "text2text-generation", "transformers", "license:afl-3.0", "autotrain_compatible" ]
text2text-generation
false
masakhane
null
masakhane/m2m100_418M_mos_fr_news
2
null
transformers
25,558
--- license: afl-3.0 ---
ssydyc/distilbert-base-uncased-finetuned-emotion
1efd3f0915e1132d80a9bf9feb4189469ed95a9a
2022-04-17T11:28:02.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "transformers" ]
text-classification
false
ssydyc
null
ssydyc/distilbert-base-uncased-finetuned-emotion
2
null
transformers
25,559
Entry not found
masakhane/m2m100_418M_fr_mos_rel_news
c3c56a200afb57c7813985408ee5969d2efc93c7
2022-04-17T11:50:04.000Z
[ "pytorch", "m2m_100", "text2text-generation", "transformers", "license:afl-3.0", "autotrain_compatible" ]
text2text-generation
false
masakhane
null
masakhane/m2m100_418M_fr_mos_rel_news
2
null
transformers
25,560
--- license: afl-3.0 ---
apkbala107/electratamilpos
92ca08bc2d84c97ab258b4310a56b09f0cef223a
2022-04-17T12:19:58.000Z
[ "pytorch", "electra", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
apkbala107
null
apkbala107/electratamilpos
2
null
transformers
25,561
Entry not found
202015004/Studen1_model_17_april
ee2402306d8311496f9341c03cec76e07c0bacc2
2022-04-17T20:40:49.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
202015004
null
202015004/Studen1_model_17_april
2
null
transformers
25,562
Entry not found
speydach/layoutlmv2-finetuned-cord2
690bf40e067957425a3f0fa2dbe38752fe98ee70
2022-04-18T04:44:45.000Z
[ "pytorch", "tensorboard", "layoutlmv2", "token-classification", "transformers", "generated_from_trainer", "license:cc-by-nc-sa-4.0", "model-index", "autotrain_compatible" ]
token-classification
false
speydach
null
speydach/layoutlmv2-finetuned-cord2
2
null
transformers
25,563
--- license: cc-by-nc-sa-4.0 tags: - generated_from_trainer model-index: - name: layoutlmv2-finetuned-cord2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # layoutlmv2-finetuned-cord2 This model is a fine-tuned version of [microsoft/layoutlmv2-base-uncased](https://huggingface.co/microsoft/layoutlmv2-base-uncased) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 500 ### Training results ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cpu - Datasets 2.1.0 - Tokenizers 0.12.1
BigSalmon/InformalToFormalLincoln37
ff7dd2f7259ffb6cadf0ef82f5b687877dbe7024
2022-04-18T03:12:02.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
BigSalmon
null
BigSalmon/InformalToFormalLincoln37
2
null
transformers
25,564
``` from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("BigSalmon/InformalToFormalLincoln37") model = AutoModelForCausalLM.from_pretrained("BigSalmon/InformalToFormalLincoln37") ``` ``` How To Make Prompt: informal english: i am very ready to do that just that. Translated into the Style of Abraham Lincoln: you can assure yourself of my readiness to work toward this end. Translated into the Style of Abraham Lincoln: please be assured that i am most ready to undertake this laborious task. *** informal english: space is huge and needs to be explored. Translated into the Style of Abraham Lincoln: space awaits traversal, a new world whose boundaries are endless. Translated into the Style of Abraham Lincoln: space is a ( limitless / boundless ) expanse, a vast virgin domain awaiting exploration. *** informal english: corn fields are all across illinois, visible once you leave chicago. Translated into the Style of Abraham Lincoln: corn fields ( permeate illinois / span the state of illinois / ( occupy / persist in ) all corners of illinois / line the horizon of illinois / envelop the landscape of illinois ), manifesting themselves visibly as one ventures beyond chicago. informal english: ``` ``` infill: chrome extensions [MASK] accomplish everyday tasks. Translated into the Style of Abraham Lincoln: chrome extensions ( expedite the ability to / unlock the means to more readily ) accomplish everyday tasks. infill: at a time when nintendo has become inflexible, [MASK] consoles that are tethered to a fixed iteration, sega diligently curates its legacy of classic video games on handheld devices. Translated into the Style of Abraham Lincoln: at a time when nintendo has become inflexible, ( stubbornly [MASK] on / firmly set on / unyielding in its insistence on ) consoles that are tethered to a fixed iteration, sega diligently curates its legacy of classic video games on handheld devices. infill: ``` ``` Essay Intro (Warriors vs. Rockets in Game 7): text: eagerly anticipated by fans, game 7's are the highlight of the post-season. text: ever-building in suspense, game 7's have the crowd captivated. *** Essay Intro (South Korean TV Is Becoming Popular): text: maturing into a bona fide paragon of programming, south korean television ( has much to offer / entertains without fail / never disappoints ). text: increasingly held in critical esteem, south korean television continues to impress. text: at the forefront of quality content, south korea is quickly achieving celebrity status. *** Essay Intro ( ``` ``` Search: What is the definition of Checks and Balances? https://en.wikipedia.org/wiki/Checks_and_balances Checks and Balances is the idea of having a system where each and every action in government should be subject to one or more checks that would not allow one branch or the other to overly dominate. https://www.harvard.edu/glossary/Checks_and_Balances Checks and Balances is a system that allows each branch of government to limit the powers of the other branches in order to prevent abuse of power https://www.law.cornell.edu/library/constitution/Checks_and_Balances Checks and Balances is a system of separation through which branches of government can control the other, thus preventing excess power. *** Search: What is the definition of Separation of Powers? https://en.wikipedia.org/wiki/Separation_of_powers The separation of powers is a principle in government, whereby governmental powers are separated into different branches, each with their own set of powers, that are prevent one branch from aggregating too much power. https://www.yale.edu/tcf/Separation_of_Powers.html Separation of Powers is the division of governmental functions between the executive, legislative and judicial branches, clearly demarcating each branch's authority, in the interest of ensuring that individual liberty or security is not undermined. *** Search: What is the definition of Connection of Powers? https://en.wikipedia.org/wiki/Connection_of_powers Connection of Powers is a feature of some parliamentary forms of government where different branches of government are intermingled, typically the executive and legislative branches. https://simple.wikipedia.org/wiki/Connection_of_powers The term Connection of Powers describes a system of government in which there is overlap between different parts of the government. *** Search: What is the definition of ``` ``` Search: What are phrase synonyms for "second-guess"? https://www.powerthesaurus.org/second-guess/synonyms Shortest to Longest: - feel dubious about - raise an eyebrow at - wrinkle their noses at - cast a jaundiced eye at - teeter on the fence about *** Search: What are phrase synonyms for "mean to newbies"? https://www.powerthesaurus.org/mean_to_newbies/synonyms Shortest to Longest: - readiness to balk at rookies - absence of tolerance for novices - hostile attitude toward newcomers *** Search: What are phrase synonyms for "make use of"? https://www.powerthesaurus.org/make_use_of/synonyms Shortest to Longest: - call upon - glean value from - reap benefits from - derive utility from - seize on the merits of - draw on the strength of - tap into the potential of *** Search: What are phrase synonyms for "hurting itself"? https://www.powerthesaurus.org/hurting_itself/synonyms Shortest to Longest: - erring - slighting itself - forfeiting its integrity - doing itself a disservice - evincing a lack of backbone *** Search: What are phrase synonyms for " ``` ``` - declining viewership facing the nba. - does not have to be this way. - in fact, many solutions exist. - the four point line would surely draw in eyes. text: failing to draw in the masses, the nba has ( fallen into / succumb to / bowed to ) disrepair. such does not have to be the case, however. in fact, a myriad of simple, relatively cheap ( solutions / interventions / enhancements ) could revive the league. the addition of the much-hyped four-point line would surely juice viewership. *** - ``` ``` original: sports teams are profitable for owners. [MASK], their valuations experience a dramatic uptick. infill: sports teams are profitable for owners. ( accumulating vast sums / stockpiling treasure / realizing benefits / cashing in / registering robust financials / scoring on balance sheets ), their valuations experience a dramatic uptick. *** original: ``` ``` wordy: classical music is becoming less popular more and more. Translate into Concise Text: interest in classic music is fading. *** wordy: ``` ``` sweet: savvy voters ousted him. longer: voters who were informed delivered his defeat. *** sweet: ``` ``` 1: commercial space company spacex plans to launch a whopping 52 flights in 2022. 2: spacex, a commercial space company, intends to undertake a total of 52 flights in 2022. 3: in 2022, commercial space company spacex has its sights set on undertaking 52 flights. 4: 52 flights are in the pipeline for 2022, according to spacex, a commercial space company. 5: a commercial space company, spacex aims to conduct 52 flights in 2022. *** 1: ``` Keywords to sentences or sentence.
csikasote/xls-r-300m-bemba-15hrs
079d2412c444117c19ed75b432308d07e808ab43
2022-04-18T15:18:07.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
csikasote
null
csikasote/xls-r-300m-bemba-15hrs
2
null
transformers
25,565
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: xls-r-300m-bemba-15hrs results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xls-r-300m-bemba-15hrs This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2754 - Wer: 0.3481 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.5142 | 0.71 | 400 | 0.5585 | 0.7501 | | 0.6351 | 1.43 | 800 | 0.3185 | 0.5058 | | 0.4892 | 2.15 | 1200 | 0.2813 | 0.4655 | | 0.4021 | 2.86 | 1600 | 0.2539 | 0.4159 | | 0.3505 | 3.58 | 2000 | 0.2411 | 0.4000 | | 0.3045 | 4.29 | 2400 | 0.2512 | 0.3951 | | 0.274 | 5.01 | 2800 | 0.2402 | 0.3922 | | 0.2335 | 5.72 | 3200 | 0.2403 | 0.3764 | | 0.2032 | 6.44 | 3600 | 0.2383 | 0.3657 | | 0.1783 | 7.16 | 4000 | 0.2603 | 0.3518 | | 0.1487 | 7.87 | 4400 | 0.2479 | 0.3577 | | 0.1281 | 8.59 | 4800 | 0.2638 | 0.3518 | | 0.113 | 9.3 | 5200 | 0.2754 | 0.3481 | ### Framework versions - Transformers 4.19.0.dev0 - Pytorch 1.10.0+cu111 - Datasets 2.1.0 - Tokenizers 0.12.1
supriyaraj47/dummy
1bd0d8eee34fb60ff050d50b432023f3dfd371b5
2022-04-18T00:58:33.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
supriyaraj47
null
supriyaraj47/dummy
2
null
transformers
25,566
Entry not found
ToToKr/kobigbird-bert-base-finetuned-klue-goorm-q-a-task
67dbd6e46f59eb473c1c2721252c05b60d176217
2022-04-18T03:31:17.000Z
[ "pytorch", "big_bird", "question-answering", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
question-answering
false
ToToKr
null
ToToKr/kobigbird-bert-base-finetuned-klue-goorm-q-a-task
2
null
transformers
25,567
--- tags: - generated_from_trainer model-index: - name: kobigbird-bert-base-finetuned-klue-goorm-q-a-task results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # kobigbird-bert-base-finetuned-klue-goorm-q-a-task This model is a fine-tuned version of [ToToKr/kobigbird-bert-base-finetuned-klue](https://huggingface.co/ToToKr/kobigbird-bert-base-finetuned-klue) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.2115 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.6159 | 0.09 | 500 | 1.7522 | | 1.554 | 0.17 | 1000 | 1.5953 | | 1.4493 | 0.26 | 1500 | 1.3769 | | 1.4051 | 0.35 | 2000 | 1.3746 | | 1.3251 | 0.43 | 2500 | 1.5049 | | 1.2855 | 0.52 | 3000 | 1.1733 | | 1.2226 | 0.6 | 3500 | 1.1538 | | 1.1907 | 0.69 | 4000 | 1.1470 | | 1.1655 | 0.78 | 4500 | 1.0759 | | 1.1411 | 0.86 | 5000 | 1.0676 | | 1.0752 | 0.95 | 5500 | 0.9894 | | 0.9389 | 1.04 | 6000 | 1.2020 | | 0.8457 | 1.12 | 6500 | 1.1004 | | 0.7977 | 1.21 | 7000 | 1.1397 | | 0.818 | 1.29 | 7500 | 1.2960 | | 0.8142 | 1.38 | 8000 | 1.2115 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.0+cu111 - Datasets 2.1.0 - Tokenizers 0.12.1
joniponi/facility-classifier
4674ea804c20a6491b0d1e90cf8f29a3c679dee8
2022-04-18T05:00:26.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
joniponi
null
joniponi/facility-classifier
2
null
transformers
25,568
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: facility-classifier results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # facility-classifier This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4422 - Accuracy: 0.7872 - F1: 0.7854 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 6 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.671 | 1.0 | 12 | 0.6529 | 0.6596 | 0.6441 | | 0.5845 | 2.0 | 24 | 0.5722 | 0.7447 | 0.7461 | | 0.4902 | 3.0 | 36 | 0.5091 | 0.7447 | 0.7461 | | 0.378 | 4.0 | 48 | 0.4797 | 0.7660 | 0.7670 | | 0.354 | 5.0 | 60 | 0.4487 | 0.8085 | 0.8029 | | 0.2865 | 6.0 | 72 | 0.4422 | 0.7872 | 0.7854 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.0+cu111 - Datasets 2.1.0 - Tokenizers 0.12.1
rmihaylov/roberta-base-nli-stsb-theseus-bg
d60f80adfa444291a568d854c814918483d8fd8c
2022-04-18T06:59:18.000Z
[ "pytorch", "xlm-roberta", "feature-extraction", "bg", "dataset:oscar", "dataset:chitanka", "dataset:wikipedia", "arxiv:2004.09813", "arxiv:2002.02925", "transformers", "torch", "license:mit", "sentence-similarity" ]
sentence-similarity
false
rmihaylov
null
rmihaylov/roberta-base-nli-stsb-theseus-bg
2
null
transformers
25,569
--- inference: false pipeline_tag: sentence-similarity language: - bg license: mit datasets: - oscar - chitanka - wikipedia tags: - torch --- # ROBERTA BASE (cased) trained on private Bulgarian-English parallel data This is a Multilingual Roberta model. It could be used for creating embeddings of Bulgarian sentences. Using the ideas from [Sentence-BERT](https://arxiv.org/abs/2004.09813), the training is based on the idea that a translated sentence should be mapped to the same location in the vector space as the original sentence. This model is cased: it does make a difference between bulgarian and Bulgarian. It was trained on private Bulgarian-English parallel data. Then, it was compressed via [progressive module replacing](https://arxiv.org/abs/2002.02925). ### How to use Here is how to use this model in PyTorch: ```python >>> import scipy >>> import torch >>> from transformers import AutoModel, AutoTokenizer >>> >>> model = AutoModel.from_pretrained('rmihaylov/roberta-base-nli-stsb-theseus-bg') >>> tokenizer = AutoTokenizer.from_pretrained('rmihaylov/roberta-base-nli-stsb-theseus-bg') >>> >>> def embed(text): >>> inputs = tokenizer.encode_plus(text, return_tensors='pt') >>> outputs = model(**inputs) >>> sequence_output = outputs[0] >>> input_mask_expanded = inputs['attention_mask'].unsqueeze(-1).expand(sequence_output.size()).float() >>> embeddings = torch.sum(sequence_output * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) >>> return embeddings.detach().numpy()[0] >>> >>> >>> query_embedding = embed("Какви са съставките на бисквитките?") >>> >>> questions = [ >>> "Какво е бисквитка?", >>> "От какво са направени бисквитките?", >>> "Използват ли в Англия думата бисквитки?", >>> "Къде се правят бисквитките?", >>> "Какви видове бисквитки има?", >>> "Къде човек може да купи бисквитки?", >>> "Откъде дойде думата бисквитка?", >>> "Кое е чудовището на бисквитките?", >>> "Как да си направите бисквитки у дома?", >>> "Колко калории има типичната бисквитка?", >>> "Какви напитки вървят добре с бисквитките?", >>> "Бисквитките наричат ли се също сладки?" >>> ] >>> >>> corpus, corpus_embeddings = [], [] >>> for question in questions: >>> embedding = embed(question) >>> corpus.append(question) >>> corpus_embeddings.append(embedding) >>> >>> distances = scipy.spatial.distance.cdist([query_embedding], corpus_embeddings, "cosine")[0] >>> >>> results = zip(range(len(distances)), distances) >>> results = sorted(results, key=lambda x: x[1]) >>> >>> print([[corpus[idx].strip(), (1.0 - distance)] for idx, distance in results]) [['От какво са направени бисквитките?', 0.9855158537034977], ['Къде се правят бисквитките?', 0.9774093134195002], ['Какви видове бисквитки има?', 0.9766014240577192], ['Използват ли в Англия думата бисквитки?', 0.9446492058523037], ['Кое е чудовището на бисквитките?', 0.9269786184641834], ['Къде човек може да купи бисквитки?', 0.9268900421152592], ['Какво е бисквитка?', 0.9188155080718263], ['Бисквитките наричат ли се също сладки?', 0.9060368627614406], ['Откъде дойде думата бисквитка?', 0.9048309659657036], ['Какви напитки вървят добре с бисквитките?', 0.890836765118977], ['Как да си направите бисквитки у дома?', 0.8878968487540497], ['Колко калории има типичната бисквитка?', 0.8652821650136402]] ```
rmihaylov/roberta-base-nli-stsb-bg
632772f3791fa750a719810d8785dcc565f6f731
2022-04-18T07:19:42.000Z
[ "pytorch", "xlm-roberta", "feature-extraction", "bg", "dataset:oscar", "dataset:chitanka", "dataset:wikipedia", "arxiv:2004.09813", "transformers", "torch", "license:mit", "sentence-similarity" ]
sentence-similarity
false
rmihaylov
null
rmihaylov/roberta-base-nli-stsb-bg
2
null
transformers
25,570
--- inference: false pipeline_tag: sentence-similarity language: - bg license: mit datasets: - oscar - chitanka - wikipedia tags: - torch --- # ROBERTA BASE (cased) trained on private Bulgarian-English parallel data This is a Multilingual Roberta model. It could be used for creating embeddings of Bulgarian sentences. Using the ideas from [Sentence-BERT](https://arxiv.org/abs/2004.09813), the training is based on the idea that a translated sentence should be mapped to the same location in the vector space as the original sentence. This model is cased: it does make a difference between bulgarian and Bulgarian. It was trained on private Bulgarian-English parallel data. ### How to use Here is how to use this model in PyTorch: ```python >>> import scipy >>> import torch >>> from transformers import AutoModel, AutoTokenizer >>> >>> model = AutoModel.from_pretrained('rmihaylov/roberta-base-nli-stsb-bg') >>> tokenizer = AutoTokenizer.from_pretrained('rmihaylov/roberta-base-nli-stsb-bg') >>> >>> def embed(text): >>> inputs = tokenizer.encode_plus(text, return_tensors='pt') >>> outputs = model(**inputs) >>> sequence_output = outputs[0] >>> input_mask_expanded = inputs['attention_mask'].unsqueeze(-1).expand(sequence_output.size()).float() >>> embeddings = torch.sum(sequence_output * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) >>> return embeddings.detach().numpy()[0] >>> >>> >>> query_embedding = embed("Какви са съставките на бисквитките?") >>> >>> questions = [ >>> "Какво е бисквитка?", >>> "От какво са направени бисквитките?", >>> "Използват ли в Англия думата бисквитки?", >>> "Къде се правят бисквитките?", >>> "Какви видове бисквитки има?", >>> "Къде човек може да купи бисквитки?", >>> "Откъде дойде думата бисквитка?", >>> "Кое е чудовището на бисквитките?", >>> "Как да си направите бисквитки у дома?", >>> "Колко калории има типичната бисквитка?", >>> "Какви напитки вървят добре с бисквитките?", >>> "Бисквитките наричат ли се също сладки?" >>> ] >>> >>> corpus, corpus_embeddings = [], [] >>> for question in questions: >>> embedding = embed(question) >>> corpus.append(question) >>> corpus_embeddings.append(embedding) >>> >>> distances = scipy.spatial.distance.cdist([query_embedding], corpus_embeddings, "cosine")[0] >>> >>> results = zip(range(len(distances)), distances) >>> results = sorted(results, key=lambda x: x[1]) >>> >>> print([[corpus[idx].strip(), (1.0 - distance)] for idx, distance in results]) [['Какви видове бисквитки има?', 0.9749538412820795], ['От какво са направени бисквитките?', 0.9720467855849998], ['Къде се правят бисквитките?', 0.9622582076645853], ['Какво е бисквитка?', 0.9352896865855094], ['Използват ли в Англия думата бисквитки?', 0.8981422328370646], ['Откъде дойде думата бисквитка?', 0.8955433698658758], ['Кое е чудовището на бисквитките?', 0.8902666858687854], ['Бисквитките наричат ли се също сладки?', 0.8839303534407483], ['Какви напитки вървят добре с бисквитките?', 0.8582087653310524], ['Къде човек може да купи бисквитки?', 0.8570532540073935], ['Колко калории има типичната бисквитка?', 0.8387529949080176], ['Как да си направите бисквитки у дома?', 0.8243675958097614]] ```
PSW/2nd-ut-pred-pre-train
b3f03e3ee530d428630fef4e6ae6fb2115cce6e5
2022-04-18T07:15:07.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
PSW
null
PSW/2nd-ut-pred-pre-train
2
null
transformers
25,571
Entry not found
csikasote/xls-r-300m-bemba-5hrs
6bdf5cf21323f9ef9dc98ad4ca731393d0c03fa5
2022-04-18T14:52:30.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
csikasote
null
csikasote/xls-r-300m-bemba-5hrs
2
null
transformers
25,572
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: xls-r-300m-bemba-5hrs results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xls-r-300m-bemba-5hrs This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3129 - Wer: 0.4430 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.4473 | 2.16 | 400 | 0.4687 | 0.6798 | | 0.5882 | 4.32 | 800 | 0.3235 | 0.5089 | | 0.3508 | 6.49 | 1200 | 0.3190 | 0.4695 | | 0.21 | 8.65 | 1600 | 0.3129 | 0.4430 | ### Framework versions - Transformers 4.19.0.dev0 - Pytorch 1.10.0+cu111 - Datasets 2.1.0 - Tokenizers 0.12.1
MeshalAlamr/wav2vec2-xls-r-300m-ar-2
a5d3216f61274d1cad8e79a4b8c43b4058034d4e
2022-04-21T06:53:21.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "dataset:common_voice", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
MeshalAlamr
null
MeshalAlamr/wav2vec2-xls-r-300m-ar-2
2
null
transformers
25,573
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice model-index: - name: wav2vec2-large-xls-r-300m-ar-2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-ar-2 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.4764 - Wer: 0.3073 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 1.0851 | 1.18 | 400 | 0.5614 | 0.4888 | | 0.691 | 2.35 | 800 | 0.6557 | 0.5558 | | 0.6128 | 3.53 | 1200 | 0.5852 | 0.5070 | | 0.543 | 4.71 | 1600 | 0.5591 | 0.4838 | | 0.5185 | 5.88 | 2000 | 0.6649 | 0.5514 | | 0.4816 | 7.06 | 2400 | 0.5598 | 0.4689 | | 0.4336 | 8.24 | 2800 | 0.5384 | 0.4515 | | 0.405 | 9.41 | 3200 | 0.4987 | 0.4138 | | 0.3811 | 10.59 | 3600 | 0.5427 | 0.4644 | | 0.3539 | 11.76 | 4000 | 0.4881 | 0.4159 | | 0.3299 | 12.94 | 4400 | 0.5160 | 0.4198 | | 0.3096 | 14.12 | 4800 | 0.5019 | 0.4077 | | 0.2881 | 15.29 | 5200 | 0.5146 | 0.4140 | | 0.2894 | 16.47 | 5600 | 0.4861 | 0.4026 | | 0.2461 | 17.65 | 6000 | 0.4765 | 0.3742 | | 0.2371 | 18.82 | 6400 | 0.4679 | 0.3672 | | 0.2182 | 20.0 | 6800 | 0.4699 | 0.3603 | | 0.1942 | 21.18 | 7200 | 0.4769 | 0.3519 | | 0.1823 | 22.35 | 7600 | 0.4719 | 0.3497 | | 0.1682 | 23.53 | 8000 | 0.4876 | 0.3456 | | 0.1526 | 24.71 | 8400 | 0.4591 | 0.3300 | | 0.137 | 25.88 | 8800 | 0.4819 | 0.3314 | | 0.1283 | 27.06 | 9200 | 0.4823 | 0.3213 | | 0.1174 | 28.24 | 9600 | 0.4879 | 0.3174 | | 0.1104 | 29.41 | 10000 | 0.4764 | 0.3073 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.11.0 - Datasets 1.18.4 - Tokenizers 0.11.6
DongHyoungLee/dummy-model
025016c6c24ca35cd7be916e5a92e7e1763237f7
2022-04-19T02:23:10.000Z
[ "pytorch", "bert", "transformers" ]
null
false
DongHyoungLee
null
DongHyoungLee/dummy-model
2
null
transformers
25,574
Entry not found
csikasote/xls-r-300m-bemba-20hrs
e5496adfd02a62a60728bab085fbbcd80256a3d4
2022-04-18T18:43:26.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
csikasote
null
csikasote/xls-r-300m-bemba-20hrs
2
null
transformers
25,575
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: xls-r-300m-bemba-20hrs results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xls-r-300m-bemba-20hrs This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2815 - Wer: 0.3435 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.3301 | 0.54 | 400 | 0.5177 | 0.7570 | | 0.6437 | 1.08 | 800 | 0.3580 | 0.5658 | | 0.5149 | 1.61 | 1200 | 0.2953 | 0.5004 | | 0.4547 | 2.15 | 1600 | 0.2701 | 0.4464 | | 0.4084 | 2.69 | 2000 | 0.2743 | 0.4383 | | 0.3606 | 3.23 | 2400 | 0.2482 | 0.3952 | | 0.3227 | 3.76 | 2800 | 0.2461 | 0.3965 | | 0.3025 | 4.3 | 3200 | 0.2484 | 0.4015 | | 0.2697 | 4.84 | 3600 | 0.2357 | 0.3838 | | 0.2443 | 5.38 | 4000 | 0.2385 | 0.3822 | | 0.2287 | 5.91 | 4400 | 0.2353 | 0.3747 | | 0.1977 | 6.45 | 4800 | 0.2337 | 0.3624 | | 0.1895 | 6.99 | 5200 | 0.2319 | 0.3568 | | 0.1561 | 7.53 | 5600 | 0.2540 | 0.3561 | | 0.1448 | 8.06 | 6000 | 0.2772 | 0.3612 | | 0.1221 | 8.6 | 6400 | 0.2755 | 0.3596 | | 0.1133 | 9.14 | 6800 | 0.2733 | 0.3495 | | 0.0969 | 9.68 | 7200 | 0.2815 | 0.3435 | ### Framework versions - Transformers 4.19.0.dev0 - Pytorch 1.10.0+cu111 - Datasets 2.1.0 - Tokenizers 0.12.1
wangmiaobeng/distilbert-base-uncased-finetuned-imdb-accelerate
56361a3197cb9b1ad7406da15a288a245c05f89e
2022-04-18T12:25:15.000Z
[ "pytorch", "distilbert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
wangmiaobeng
null
wangmiaobeng/distilbert-base-uncased-finetuned-imdb-accelerate
2
null
transformers
25,576
Entry not found
surajp/sanbert-from-indicbert
425301de0ee2a78833432482eca4cde10f33393d
2022-04-18T13:58:02.000Z
[ "pytorch", "albert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
surajp
null
surajp/sanbert-from-indicbert
2
null
transformers
25,577
Entry not found
csikasote/xls-r-1b-bemba-5hrs
a5cd5ac847e65ff9f19aeb136a20573947b564b1
2022-04-20T06:59:55.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
csikasote
null
csikasote/xls-r-1b-bemba-5hrs
2
null
transformers
25,578
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: xls-r-1b-bemba-5hrs results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xls-r-1b-bemba-5hrs This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2659 - Wer: 0.3884 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 400 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 2.1067 | 1.08 | 400 | 0.4681 | 0.8206 | | 0.5003 | 2.16 | 800 | 0.3052 | 0.5253 | | 0.3641 | 3.24 | 1200 | 0.2665 | 0.4437 | | 0.2847 | 4.32 | 1600 | 0.2526 | 0.4267 | | 0.2324 | 5.41 | 2000 | 0.2579 | 0.4211 | | 0.1789 | 6.49 | 2400 | 0.2593 | 0.3958 | | 0.1302 | 7.57 | 2800 | 0.2659 | 0.3884 | ### Framework versions - Transformers 4.19.0.dev0 - Pytorch 1.10.0+cu111 - Datasets 2.1.0 - Tokenizers 0.12.1
lgodwangl/sent
e4128d79df7ebbcf3311fceb49a6f0075021563e
2022-04-18T23:52:21.000Z
[ "pytorch", "perceiver", "text-classification", "transformers" ]
text-classification
false
lgodwangl
null
lgodwangl/sent
2
null
transformers
25,579
Entry not found
younggns/mf_distilbert
ad5ef03396a4ccb01d98371af10c5dd824230543
2022-04-19T04:41:16.000Z
[ "pytorch", "distilbert", "text-classification", "transformers" ]
text-classification
false
younggns
null
younggns/mf_distilbert
2
null
transformers
25,580
Entry not found
fuck/distilbert-base-uncased-finetuned-cola
70e11e4741f9838adbfa09bb40c03b376252cdf6
2022-04-19T04:31:23.000Z
[ "pytorch", "distilbert", "text-classification", "transformers" ]
text-classification
false
fuck
null
fuck/distilbert-base-uncased-finetuned-cola
2
null
transformers
25,581
Entry not found
AlirezaBaneshi/autotrain-test2-756523213
0331c820360f213235c25f3df97190f5f003ebd4
2022-04-19T07:34:55.000Z
[ "pytorch", "roberta", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
AlirezaBaneshi
null
AlirezaBaneshi/autotrain-test2-756523213
2
null
transformers
25,582
Entry not found
AlirezaBaneshi/autotrain-test2-756523214
1589ef64082d130ae36f6e2de1a2816dbdfbd2d8
2022-04-19T07:40:58.000Z
[ "pytorch", "roberta", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
AlirezaBaneshi
null
AlirezaBaneshi/autotrain-test2-756523214
2
null
transformers
25,583
Entry not found
csikasote/xlsr-53-bemba-15hrs
e9c5e4d98a0203b382bd7ce19e24c5459c3536ed
2022-04-19T13:30:25.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
csikasote
null
csikasote/xlsr-53-bemba-15hrs
2
null
transformers
25,584
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: xlsr-53-bemba-15hrs results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlsr-53-bemba-15hrs This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2789 - Wer: 0.3751 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 400 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.4138 | 0.71 | 400 | 0.4965 | 0.7239 | | 0.5685 | 1.43 | 800 | 0.2939 | 0.4839 | | 0.4471 | 2.15 | 1200 | 0.2728 | 0.4467 | | 0.3579 | 2.86 | 1600 | 0.2397 | 0.3965 | | 0.3087 | 3.58 | 2000 | 0.2427 | 0.4015 | | 0.2702 | 4.29 | 2400 | 0.2539 | 0.4112 | | 0.2406 | 5.01 | 2800 | 0.2376 | 0.3885 | | 0.2015 | 5.72 | 3200 | 0.2492 | 0.3844 | | 0.1759 | 6.44 | 3600 | 0.2562 | 0.3768 | | 0.1572 | 7.16 | 4000 | 0.2789 | 0.3751 | ### Framework versions - Transformers 4.19.0.dev0 - Pytorch 1.10.0+cu111 - Datasets 2.1.0 - Tokenizers 0.12.1
csikasote/xlsr-53-bemba-10hrs
d5dddf1680a345818d5768aa150002300764426a
2022-04-19T13:09:31.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
csikasote
null
csikasote/xlsr-53-bemba-10hrs
2
null
transformers
25,585
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: xlsr-53-bemba-10hrs results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlsr-53-bemba-10hrs This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3190 - Wer: 0.4032 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 400 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.3207 | 1.07 | 400 | 0.3720 | 0.5923 | | 0.5688 | 2.14 | 800 | 0.3073 | 0.5002 | | 0.3927 | 3.22 | 1200 | 0.2678 | 0.4521 | | 0.316 | 4.29 | 1600 | 0.2703 | 0.4261 | | 0.2531 | 5.36 | 2000 | 0.2663 | 0.4198 | | 0.2051 | 6.43 | 2400 | 0.2614 | 0.4037 | | 0.1584 | 7.51 | 2800 | 0.2853 | 0.4046 | | 0.1343 | 8.58 | 3200 | 0.3072 | 0.4121 | | 0.1031 | 9.65 | 3600 | 0.3190 | 0.4032 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.0+cu111 - Datasets 2.1.0 - Tokenizers 0.12.1
creynier/wav2vec2-base-swbd-turn-eos-long_short_utt_removed
e53b0b7b902482e6e53bbdd96b8963d924249074
2022-04-19T09:56:48.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
creynier
null
creynier/wav2vec2-base-swbd-turn-eos-long_short_utt_removed
2
null
transformers
25,586
Entry not found
s50227harry/TCFD-BERT
cc410dcba48ab41de854ca10da4f5736500529fc
2022-07-21T14:48:39.000Z
[ "pytorch", "tensorboard", "roberta", "fill-mask", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
fill-mask
false
s50227harry
null
s50227harry/TCFD-BERT
2
null
transformers
25,587
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: TCFD-BERT results: [] --- Using the ClimateBERT-f model as starting point,the TCFD-BERT language model is additionally pre-trained to include precise paragraphs related to climate change. <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # TCFD-BERT It achieves the following results on the evaluation set: - Loss: 1.1325 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - distributed_type: tpu - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.865 | 0.37 | 500 | 1.4460 | | 1.6601 | 0.73 | 1000 | 1.3491 | | 1.593 | 1.1 | 1500 | 1.3190 | | 1.5336 | 1.46 | 2000 | 1.2801 | | 1.5081 | 1.83 | 2500 | 1.2446 | | 1.4547 | 2.19 | 3000 | 1.2281 | | 1.4358 | 2.56 | 3500 | 1.2065 | | 1.4121 | 2.92 | 4000 | 1.1874 | | 1.396 | 3.29 | 4500 | 1.1817 | | 1.383 | 3.65 | 5000 | 1.1747 | | 1.3662 | 4.02 | 5500 | 1.1717 | | 1.3545 | 4.38 | 6000 | 1.1567 | | 1.3441 | 4.75 | 6500 | 1.1325 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.9.0+cu102 - Datasets 2.1.0 - Tokenizers 0.12.1
frozenwalker/SciFive_pubmedqa_question_generation_nmconcept_modifies
eb49c53afc288e386add674643b3e320db035532
2022-04-19T12:25:23.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
frozenwalker
null
frozenwalker/SciFive_pubmedqa_question_generation_nmconcept_modifies
2
null
transformers
25,588
Entry not found
csikasote/xls-r-1b-bemba-10hrs
d3ca685683f75b5db70c893e961bee1743ad1f91
2022-04-19T22:51:51.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
csikasote
null
csikasote/xls-r-1b-bemba-10hrs
2
null
transformers
25,589
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: xls-r-1b-bemba-10hrs results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xls-r-1b-bemba-10hrs This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2350 - Wer: 0.3524 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 400 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 2.2547 | 0.54 | 400 | 0.4199 | 0.5888 | | 0.5422 | 1.07 | 800 | 0.2689 | 0.4360 | | 0.4154 | 1.61 | 1200 | 0.2342 | 0.4008 | | 0.4075 | 2.15 | 1600 | 0.2172 | 0.3579 | | 0.3326 | 2.68 | 2000 | 0.2151 | 0.3603 | | 0.2837 | 3.22 | 2400 | 0.2117 | 0.3505 | | 0.2688 | 3.76 | 2800 | 0.2040 | 0.3559 | | 0.2401 | 4.3 | 3200 | 0.2099 | 0.3445 | | 0.2176 | 4.83 | 3600 | 0.1973 | 0.3299 | | 0.1913 | 5.37 | 4000 | 0.2123 | 0.3432 | | 0.1683 | 5.91 | 4400 | 0.2032 | 0.3358 | | 0.1445 | 6.44 | 4800 | 0.2350 | 0.3524 | ### Framework versions - Transformers 4.19.0.dev0 - Pytorch 1.10.0+cu111 - Datasets 2.1.0 - Tokenizers 0.12.1
PSW/min_sim_del_seed27
1db0ada4fb4e077405ee5dc4e0ee8c4ba475a792
2022-04-19T15:00:29.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
PSW
null
PSW/min_sim_del_seed27
2
null
transformers
25,590
Entry not found
GPL/arguana-msmarco-distilbert-gpl
d7e2844f4f37b1d59bbfc944e065a87ec3948eba
2022-04-19T15:04:16.000Z
[ "pytorch", "distilbert", "feature-extraction", "sentence-transformers", "sentence-similarity", "transformers" ]
sentence-similarity
false
GPL
null
GPL/arguana-msmarco-distilbert-gpl
2
null
sentence-transformers
25,591
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 140000 with parameters: ``` {'batch_size': 32, 'sampler': 'torch.utils.data.sampler.SequentialSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `gpl.toolkit.loss.MarginDistillationLoss` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": 140000, "warmup_steps": 1000, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 350, 'do_lower_case': False}) with Transformer model: DistilBertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
GPL/climate-fever-msmarco-distilbert-gpl
cbf25cf4908c2fdc8d096a5322fffd4c072d7737
2022-04-19T15:13:11.000Z
[ "pytorch", "distilbert", "feature-extraction", "sentence-transformers", "sentence-similarity", "transformers" ]
sentence-similarity
false
GPL
null
GPL/climate-fever-msmarco-distilbert-gpl
2
null
sentence-transformers
25,592
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 140000 with parameters: ``` {'batch_size': 32, 'sampler': 'torch.utils.data.sampler.SequentialSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `gpl.toolkit.loss.MarginDistillationLoss` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": 140000, "warmup_steps": 1000, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 350, 'do_lower_case': False}) with Transformer model: DistilBertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
irmgnrtop/roberta-finetuned-error-detection-accelerate
74f24c7ce67f0a7a0f66a30ba16f25d86d038793
2022-04-19T20:26:08.000Z
[ "pytorch", "roberta", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
irmgnrtop
null
irmgnrtop/roberta-finetuned-error-detection-accelerate
2
null
transformers
25,593
Entry not found
apkbala107/electrabasetamilpos
94057b9641971d6767254228a32b84d70d5e8dbc
2022-04-19T15:46:24.000Z
[ "pytorch", "electra", "token-classification", "transformers", "license:cc", "autotrain_compatible" ]
token-classification
false
apkbala107
null
apkbala107/electrabasetamilpos
2
null
transformers
25,594
--- license: cc ---
GPL/fever-msmarco-distilbert-gpl
799f359e1f788489b6e392fc38405f7548f17847
2022-04-19T15:13:47.000Z
[ "pytorch", "distilbert", "feature-extraction", "sentence-transformers", "sentence-similarity", "transformers" ]
sentence-similarity
false
GPL
null
GPL/fever-msmarco-distilbert-gpl
2
null
sentence-transformers
25,595
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 140000 with parameters: ``` {'batch_size': 32, 'sampler': 'torch.utils.data.sampler.SequentialSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `gpl.toolkit.loss.MarginDistillationLoss` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": 140000, "warmup_steps": 1000, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 350, 'do_lower_case': False}) with Transformer model: DistilBertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
GPL/hotpotqa-msmarco-distilbert-gpl
77dfa85fc8b646ec5bac71fe8e910354453777a3
2022-04-19T15:14:05.000Z
[ "pytorch", "distilbert", "feature-extraction", "sentence-transformers", "sentence-similarity", "transformers" ]
sentence-similarity
false
GPL
null
GPL/hotpotqa-msmarco-distilbert-gpl
2
null
sentence-transformers
25,596
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 140000 with parameters: ``` {'batch_size': 32, 'sampler': 'torch.utils.data.sampler.SequentialSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `gpl.toolkit.loss.MarginDistillationLoss` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": 140000, "warmup_steps": 1000, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 350, 'do_lower_case': False}) with Transformer model: DistilBertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
GPL/nfcorpus-msmarco-distilbert-gpl
1885c28512386d8a61866ff17b5dba6334223e97
2022-04-19T15:14:42.000Z
[ "pytorch", "distilbert", "feature-extraction", "sentence-transformers", "sentence-similarity", "transformers" ]
sentence-similarity
false
GPL
null
GPL/nfcorpus-msmarco-distilbert-gpl
2
null
sentence-transformers
25,597
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 140000 with parameters: ``` {'batch_size': 32, 'sampler': 'torch.utils.data.sampler.SequentialSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `gpl.toolkit.loss.MarginDistillationLoss` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": 140000, "warmup_steps": 1000, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 350, 'do_lower_case': False}) with Transformer model: DistilBertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
GPL/trec-news-msmarco-distilbert-gpl
267c50a22487551bc54191d729dbeec891ff399e
2022-04-19T15:15:55.000Z
[ "pytorch", "distilbert", "feature-extraction", "sentence-transformers", "sentence-similarity", "transformers" ]
sentence-similarity
false
GPL
null
GPL/trec-news-msmarco-distilbert-gpl
2
null
sentence-transformers
25,598
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 140000 with parameters: ``` {'batch_size': 32, 'sampler': 'torch.utils.data.sampler.SequentialSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `gpl.toolkit.loss.MarginDistillationLoss` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": 140000, "warmup_steps": 1000, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 350, 'do_lower_case': False}) with Transformer model: DistilBertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
GPL/climate-fever-tsdae-msmarco-distilbert-gpl
f3ce30a2f7abd9636d12ac23b4fb8ad05e7cab6b
2022-04-19T15:46:28.000Z
[ "pytorch", "distilbert", "feature-extraction", "sentence-transformers", "sentence-similarity", "transformers" ]
sentence-similarity
false
GPL
null
GPL/climate-fever-tsdae-msmarco-distilbert-gpl
2
null
sentence-transformers
25,599
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 140000 with parameters: ``` {'batch_size': 32, 'sampler': 'torch.utils.data.sampler.SequentialSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `gpl.toolkit.loss.MarginDistillationLoss` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": 140000, "warmup_steps": 1000, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 350, 'do_lower_case': False}) with Transformer model: DistilBertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->