modelId
stringlengths
4
112
sha
stringlengths
40
40
lastModified
stringlengths
24
24
tags
sequence
pipeline_tag
stringclasses
29 values
private
bool
1 class
author
stringlengths
2
38
config
null
id
stringlengths
4
112
downloads
float64
0
36.8M
likes
float64
0
712
library_name
stringclasses
17 values
__index_level_0__
int64
0
38.5k
readme
stringlengths
0
186k
peerapongch/baikal-sentiment
366e63f2bf9052592a87fe78e4126f3865552ff7
2022-04-05T06:08:28.000Z
[ "pytorch", "camembert", "text-classification", "transformers" ]
text-classification
false
peerapongch
null
peerapongch/baikal-sentiment
2
null
transformers
25,400
Entry not found
birgermoell/psst-common-voice-new
83a47933ba9bbbc1b2ddb0899599c9887bc1de25
2022-04-05T08:56:04.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
birgermoell
null
birgermoell/psst-common-voice-new
2
null
transformers
25,401
Entry not found
ramnika003/autotrain-sentiment_analysis_project-705021428
af31d1c7e777ebf76e872dfb2762163d6a8774dc
2022-04-05T09:23:07.000Z
[ "pytorch", "xlm-roberta", "text-classification", "unk", "dataset:ramnika003/autotrain-data-sentiment_analysis_project", "transformers", "autotrain", "co2_eq_emissions" ]
text-classification
false
ramnika003
null
ramnika003/autotrain-sentiment_analysis_project-705021428
2
null
transformers
25,402
--- tags: autotrain language: unk widget: - text: "I love AutoTrain 🤗" datasets: - ramnika003/autotrain-data-sentiment_analysis_project co2_eq_emissions: 10.03748863138583 --- # Model Trained Using AutoTrain - Problem type: Multi-class Classification - Model ID: 705021428 - CO2 Emissions (in grams): 10.03748863138583 ## Validation Metrics - Loss: 0.5534441471099854 - Accuracy: 0.768964665184087 - Macro F1: 0.7629008163259284 - Micro F1: 0.768964665184087 - Weighted F1: 0.7685397042536148 - Macro Precision: 0.7658234531650739 - Micro Precision: 0.768964665184087 - Weighted Precision: 0.7684017544026074 - Macro Recall: 0.7603505092881394 - Micro Recall: 0.768964665184087 - Weighted Recall: 0.768964665184087 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/ramnika003/autotrain-sentiment_analysis_project-705021428 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("ramnika003/autotrain-sentiment_analysis_project-705021428", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("ramnika003/autotrain-sentiment_analysis_project-705021428", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
impawankr/distilbert-base-uncased-finetuned-imdb
468f5ee5f777005873b1ab3bcf0b7eb49ab82aef
2022-04-05T17:09:03.000Z
[ "pytorch", "tensorboard", "distilbert", "fill-mask", "dataset:imdb", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
fill-mask
false
impawankr
null
impawankr/distilbert-base-uncased-finetuned-imdb
2
null
transformers
25,403
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb model-index: - name: distilbert-base-uncased-finetuned-imdb results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-imdb This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 2.4725 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.7086 | 1.0 | 157 | 2.4897 | | 2.5756 | 2.0 | 314 | 2.4230 | | 2.5395 | 3.0 | 471 | 2.4358 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
birgermoell/psst-common-voice-2
60f1c173ef1fd450d2ae3b4bc6c191532b0e3de6
2022-04-05T13:46:35.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
birgermoell
null
birgermoell/psst-common-voice-2
2
null
transformers
25,404
Entry not found
AnonymousSub/fpdm_triplet_roberta_FT_new_newsqa
9d1564d8d0efe221d5fbc9963f1ae91ba9d32828
2022-04-05T14:45:35.000Z
[ "pytorch", "roberta", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
AnonymousSub
null
AnonymousSub/fpdm_triplet_roberta_FT_new_newsqa
2
null
transformers
25,405
Entry not found
AnonymousSub/news_pretrain_roberta_FT_new_newsqa
4d6a0b201a597433c7e7362943f3f4281047e371
2022-04-05T14:53:47.000Z
[ "pytorch", "roberta", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
AnonymousSub
null
AnonymousSub/news_pretrain_roberta_FT_new_newsqa
2
null
transformers
25,406
Entry not found
AnonymousSub/news_pretrain_bert_FT_new_newsqa
fbd389274c80a24d125021f3c6aa59d44d87a124
2022-04-05T14:56:57.000Z
[ "pytorch", "bert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
AnonymousSub
null
AnonymousSub/news_pretrain_bert_FT_new_newsqa
2
null
transformers
25,407
Entry not found
AnonymousSub/fpdm_hier_bert_FT_new_newsqa
cc43beea65983a536ea62f348c37c00e0c41a29f
2022-04-05T15:07:30.000Z
[ "pytorch", "bert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
AnonymousSub
null
AnonymousSub/fpdm_hier_bert_FT_new_newsqa
2
null
transformers
25,408
Entry not found
Harsit/bert-finetuned-squad
3024e55f46cf7aa0a6a740be6af5b483a2740cda
2022-04-05T17:57:01.000Z
[ "pytorch", "tensorboard", "bert", "question-answering", "dataset:squad", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
question-answering
false
Harsit
null
Harsit/bert-finetuned-squad
2
1
transformers
25,409
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: bert-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-squad This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
CenIA/albert-large-spanish-finetuned-qa-tar
b9548715ff4a2d8f9c6a34c69e1b4e84ae9527d5
2022-04-05T16:27:30.000Z
[ "pytorch", "albert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
CenIA
null
CenIA/albert-large-spanish-finetuned-qa-tar
2
null
transformers
25,410
Entry not found
moshew/bert-tiny-sst2-distilled
489495d7e6f86fa03a0af3347187ff402dfee969
2022-04-06T04:46:42.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
moshew
null
moshew/bert-tiny-sst2-distilled
2
null
transformers
25,411
Entry not found
deepspeechvision/wav2vec2hindiasr2
cd41d37fff04d414157911799220475a5e274ba2
2022-04-06T17:41:55.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
deepspeechvision
null
deepspeechvision/wav2vec2hindiasr2
2
null
transformers
25,412
Entry not found
rowan1224/albert-slp
9412239a1572ad1424b999df06f76b06f14e6734
2022-04-05T16:52:26.000Z
[ "pytorch", "albert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
rowan1224
null
rowan1224/albert-slp
2
null
transformers
25,413
Entry not found
Bistolero/nl_ge_alltr
6b612b744f015fbc99485c50e061b88cd2895b3f
2022-04-05T22:05:38.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
Bistolero
null
Bistolero/nl_ge_alltr
2
null
transformers
25,414
Entry not found
suey2580/distilbert-base-uncased-finetuned-cola
7be0b3abb3c1e65b7a27cbfcb1624614b97cca64
2022-04-06T04:30:52.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:glue", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
suey2580
null
suey2580/distilbert-base-uncased-finetuned-cola
2
null
transformers
25,415
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - matthews_correlation model-index: - name: distilbert-base-uncased-finetuned-cola results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue args: cola metrics: - name: Matthews Correlation type: matthews_correlation value: 0.5238347808517775 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-cola This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 1.0766 - Matthews Correlation: 0.5238 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2.403175733231667e-05 - train_batch_size: 8 - eval_batch_size: 16 - seed: 33 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.4954 | 1.0 | 1069 | 0.4770 | 0.4589 | | 0.3627 | 2.0 | 2138 | 0.5464 | 0.4998 | | 0.2576 | 3.0 | 3207 | 0.8439 | 0.4933 | | 0.1488 | 4.0 | 4276 | 1.0184 | 0.5035 | | 0.1031 | 5.0 | 5345 | 1.0766 | 0.5238 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
unjustify/autotrain-Create_Question_Model-708521506
0761689272d2fda05974ac1de5bcc830ac5fc833
2022-04-06T20:45:17.000Z
[ "pytorch", "t5", "text2text-generation", "en", "dataset:unjustify/autotrain-data-Create_Question_Model", "transformers", "autotrain", "co2_eq_emissions", "autotrain_compatible" ]
text2text-generation
false
unjustify
null
unjustify/autotrain-Create_Question_Model-708521506
2
null
transformers
25,416
--- tags: autotrain language: en widget: - text: "I love AutoTrain 🤗" datasets: - unjustify/autotrain-data-Create_Question_Model co2_eq_emissions: 7.419693550936528 --- # Model Trained Using AutoTrain - Problem type: Summarization - Model ID: 708521506 - CO2 Emissions (in grams): 7.419693550936528 ## Validation Metrics - Loss: 1.4744563102722168 - Rouge1: 30.0761 - Rouge2: 10.142 - RougeL: 27.2745 - RougeLsum: 27.2831 - Gen Len: 13.8746 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_HUGGINGFACE_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/unjustify/autotrain-Create_Question_Model-708521506 ```
hou/opus-tatoeba-en-tr-finetuned-en-to-ug
81ea97284d0194b1e7fb6be6aa085fb41ba611e5
2022-04-06T09:37:14.000Z
[ "pytorch", "tensorboard", "marian", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
hou
null
hou/opus-tatoeba-en-tr-finetuned-en-to-ug
2
null
transformers
25,417
Entry not found
birgermoell/psst-fairseq-pitch-shift
58f28f04c4f02229def6ab4912aed00fb396373d
2022-04-06T09:11:38.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
birgermoell
null
birgermoell/psst-fairseq-pitch-shift
2
null
transformers
25,418
Entry not found
pinecone/distiluse-podcast-nq
ff08658506569c424e829f64844e6de2d3b97066
2022-05-09T22:47:45.000Z
[ "pytorch", "distilbert", "feature-extraction", "sentence-transformers", "sentence-similarity" ]
sentence-similarity
false
pinecone
null
pinecone/distiluse-podcast-nq
2
1
sentence-transformers
25,419
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity --- # DistilUSE Podcast Natural Questions This is a [sentence-transformers](https://www.SBERT.net) model built for asymmetric semantic search of Podcast episodes. It replicates the fine-tuning process of Spotify's podcast search model, as [described here](https://www.pinecone.io/learn/spotify-podcast-search/). ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["podcast about climate change", "how to make money on the internet"] model = SentenceTransformer('pinecone/distiluse-podcast-nq') embeddings = model.encode(sentences) ``` ## Training The model was trained with the parameters: **DataLoader**: `sentence_transformers.datasets.NoDuplicatesDataLoader.NoDuplicatesDataLoader` of length 3748 with parameters: ``` {'batch_size': 64} ``` **Loss**: `sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters: ``` {'scale': 20.0, 'similarity_fct': 'cos_sim'} ``` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 0, "evaluator": "sentence_transformers.evaluation.RerankingEvaluator.RerankingEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 374, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: DistilBertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) (2): Dense({'in_features': 768, 'out_features': 512, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'}) ) ``` ## Citing & Authors James Briggs, [How Spotify Uses Semantic Search for Podcasts](https://www.pinecone.io/learn/spotify-podcast-search/), Pinecone
Ramansh/RoBERTa-fake-news-detection
de2eeb8d3febe4fa6d5bd74f21b629fff1f6f9a1
2022-04-06T16:37:32.000Z
[ "pytorch", "roberta", "fill-mask", "transformers", "license:cc-by-nc-sa-4.0", "autotrain_compatible" ]
fill-mask
false
Ramansh
null
Ramansh/RoBERTa-fake-news-detection
2
null
transformers
25,420
--- license: cc-by-nc-sa-4.0 --- A simple fake news detector that utilizes RoBERTa. <br/> It was fine-tuned on [clmentbisaillon/fake-and-real-news-dataset](https://www.kaggle.com/clmentbisaillon/fake-and-real-news-dataset)
millawell/QuBERTa-finetuned-pos
f242718b454c16b15c275051a3f822a42cadc106
2022-04-06T16:25:57.000Z
[ "pytorch", "roberta", "token-classification", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
token-classification
false
millawell
null
millawell/QuBERTa-finetuned-pos
2
null
transformers
25,421
--- tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: QuBERTa-finetuned-pos results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # QuBERTa-finetuned-pos This model is a fine-tuned version of [Llamacha/QuBERTa](https://huggingface.co/Llamacha/QuBERTa) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4249 - Precision: 0.8372 - Recall: 0.8702 - F1: 0.8534 - Accuracy: 0.8623 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 152 | 0.6146 | 0.6876 | 0.7482 | 0.7167 | 0.7360 | | No log | 2.0 | 304 | 0.4937 | 0.7554 | 0.8041 | 0.7790 | 0.7932 | | No log | 3.0 | 456 | 0.4525 | 0.7920 | 0.8238 | 0.8076 | 0.8200 | | 0.5624 | 4.0 | 608 | 0.4294 | 0.8144 | 0.8426 | 0.8283 | 0.8391 | | 0.5624 | 5.0 | 760 | 0.4245 | 0.8192 | 0.8521 | 0.8353 | 0.8445 | | 0.5624 | 6.0 | 912 | 0.4357 | 0.8201 | 0.8607 | 0.8399 | 0.8480 | | 0.3064 | 7.0 | 1064 | 0.4240 | 0.8308 | 0.8694 | 0.8497 | 0.8582 | | 0.3064 | 8.0 | 1216 | 0.4231 | 0.8406 | 0.8757 | 0.8578 | 0.8653 | | 0.3064 | 9.0 | 1368 | 0.4202 | 0.8389 | 0.8686 | 0.8535 | 0.8617 | | 0.2227 | 10.0 | 1520 | 0.4249 | 0.8372 | 0.8702 | 0.8534 | 0.8623 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
neal49/distilbert-sst2-runglue
0842c0e3bc719136753361c8e6cee5794c492d2e
2022-04-07T05:05:08.000Z
[ "pytorch", "distilbert", "text-classification", "transformers" ]
text-classification
false
neal49
null
neal49/distilbert-sst2-runglue
2
null
transformers
25,422
Entry not found
srmukundb/bert-base-uncased-finetuned-squad
d71544debf33f0dcc037ca80801122c14651a52b
2022-05-03T13:54:15.000Z
[ "pytorch", "tensorboard", "bert", "question-answering", "dataset:squad_v2", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
question-answering
false
srmukundb
null
srmukundb/bert-base-uncased-finetuned-squad
2
null
transformers
25,423
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad_v2 model-index: - name: bert-base-uncased-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-finetuned-squad This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the squad_v2 dataset. It achieves the following results on the evaluation set: - Loss: 1.2582 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 1.0462 | 1.0 | 8235 | 1.0822 | | 0.7579 | 2.0 | 16470 | 1.1160 | | 0.5734 | 3.0 | 24705 | 1.2582 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
DaeLim/wav2vec2-large-xls-r-300m-turkish-colab
a64a03b9a338af5adf9aeb5c487b9da32e5679fd
2022-04-07T11:12:52.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "dataset:common_voice", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
DaeLim
null
DaeLim/wav2vec2-large-xls-r-300m-turkish-colab
2
null
transformers
25,424
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice model-index: - name: wav2vec2-large-xls-r-300m-turkish-colab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-turkish-colab This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.3779 - Wer: 0.3712 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 4.0027 | 3.67 | 400 | 0.7121 | 0.7332 | | 0.4068 | 7.34 | 800 | 0.4146 | 0.4599 | | 0.1915 | 11.01 | 1200 | 0.4276 | 0.4489 | | 0.1348 | 14.68 | 1600 | 0.4462 | 0.4388 | | 0.1057 | 18.35 | 2000 | 0.4153 | 0.4291 | | 0.0862 | 22.02 | 2400 | 0.3820 | 0.3965 | | 0.0662 | 25.69 | 2800 | 0.3809 | 0.3792 | | 0.0548 | 29.36 | 3200 | 0.3779 | 0.3712 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu113 - Datasets 1.18.3 - Tokenizers 0.10.3
Fredvv/marian-finetuned-kde4-en-to-fr
cc1fa12e056bcd67a4a5ab572d39f5bf223244f9
2022-04-07T13:02:53.000Z
[ "pytorch", "tensorboard", "marian", "text2text-generation", "dataset:kde4", "transformers", "translation", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
translation
false
Fredvv
null
Fredvv/marian-finetuned-kde4-en-to-fr
2
null
transformers
25,425
--- license: apache-2.0 tags: - translation - generated_from_trainer datasets: - kde4 metrics: - bleu model-index: - name: marian-finetuned-kde4-en-to-fr results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: kde4 type: kde4 args: en-fr metrics: - name: Bleu type: bleu value: 53.57438381688707 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # marian-finetuned-kde4-en-to-fr This model is a fine-tuned version of [Helsinki-NLP/opus-mt-en-fr](https://huggingface.co/Helsinki-NLP/opus-mt-en-fr) on the kde4 dataset. It achieves the following results on the evaluation set: - Loss: 0.8388 - Bleu: 53.5744 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0 - Datasets 2.0.0 - Tokenizers 0.11.6
medhabi/distilbert-base-uncased-score-pred
95d3604511f2556ef9f851ba459872b14e8d0c25
2022-04-08T12:41:05.000Z
[ "pytorch", "text-to-rating", "transformers" ]
null
false
medhabi
null
medhabi/distilbert-base-uncased-score-pred
2
null
transformers
25,426
Entry not found
jfealko/wav2vec2-large-xls-r-300m-russian-colab-beam_search_test
bbdb25b5b3e404e9f6bd5f2e79905cac352d4f65
2022-04-07T18:09:23.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "dataset:common_voice", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
jfealko
null
jfealko/wav2vec2-large-xls-r-300m-russian-colab-beam_search_test
2
null
transformers
25,427
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice model-index: - name: wav2vec2-large-xls-r-300m-russian-colab-beam_search_test results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-russian-colab-beam_search_test This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.7619 - Wer: 0.4680 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 800 - num_epochs: 100 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 10.0158 | 4.16 | 100 | 5.4134 | 1.0 | | 4.0394 | 8.33 | 200 | 3.4304 | 1.0 | | 3.2721 | 12.49 | 300 | 3.2273 | 1.0 | | 3.1277 | 16.66 | 400 | 2.8023 | 0.9984 | | 1.3791 | 20.82 | 500 | 0.9888 | 0.8546 | | 0.3659 | 24.99 | 600 | 0.7602 | 0.6304 | | 0.1858 | 29.16 | 700 | 0.7965 | 0.6156 | | 0.1403 | 33.33 | 800 | 0.7998 | 0.5839 | | 0.1173 | 37.49 | 900 | 0.8353 | 0.5941 | | 0.0917 | 41.66 | 1000 | 0.8272 | 0.5522 | | 0.0743 | 45.82 | 1100 | 0.8342 | 0.5471 | | 0.063 | 49.99 | 1200 | 0.7988 | 0.5352 | | 0.0528 | 54.16 | 1300 | 0.7740 | 0.5201 | | 0.0456 | 58.33 | 1400 | 0.7636 | 0.5165 | | 0.0389 | 62.49 | 1500 | 0.7922 | 0.5161 | | 0.0329 | 66.66 | 1600 | 0.8035 | 0.5158 | | 0.0283 | 70.82 | 1700 | 0.7873 | 0.4832 | | 0.0255 | 74.99 | 1800 | 0.7853 | 0.4870 | | 0.0236 | 79.16 | 1900 | 0.8236 | 0.5045 | | 0.0202 | 83.33 | 2000 | 0.7661 | 0.4796 | | 0.0165 | 87.49 | 2100 | 0.7584 | 0.4680 | | 0.0156 | 91.66 | 2200 | 0.7685 | 0.4772 | | 0.0149 | 95.82 | 2300 | 0.7519 | 0.4696 | | 0.0126 | 99.99 | 2400 | 0.7619 | 0.4680 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.10.3
philschmid/bert-large-cased-whole-word-masking-sst2
5c930994422145867b5768ba7113a2aa330b19d2
2022-04-07T14:27:45.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "dataset:glue", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
philschmid
null
philschmid/bert-large-cased-whole-word-masking-sst2
2
null
transformers
25,428
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: bert-large-cased-whole-word-masking-sst2 results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue args: sst2 metrics: - name: Accuracy type: accuracy value: 0.9438073394495413 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-large-cased-whole-word-masking-sst2 This model is a fine-tuned version of [bert-large-cased-whole-word-masking](https://huggingface.co/bert-large-cased-whole-word-masking) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.1725 - Accuracy: 0.9438 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - distributed_type: sagemaker_data_parallel - num_devices: 8 - total_train_batch_size: 128 - total_eval_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 5 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.2+cu113 - Datasets 1.18.4 - Tokenizers 0.11.6
johnpaulbin/skript-1m-gpt-neo125m
c50b71cf7058012a927a5079a10e39a51ce0ee37
2022-04-07T14:31:22.000Z
[ "pytorch", "gpt_neo", "text-generation", "transformers" ]
text-generation
false
johnpaulbin
null
johnpaulbin/skript-1m-gpt-neo125m
2
null
transformers
25,429
Entry not found
sgugger/test-bert-sharded
f0e37cd64f42e16f9c24532cd0d53bd2ed1c9f1a
2022-04-07T17:08:12.000Z
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
false
sgugger
null
sgugger/test-bert-sharded
2
null
transformers
25,430
Entry not found
mp6kv/ACTS_feedback1
b08c01aef134475f9f49436e0cdee4ee72ade0fa
2022-04-07T19:30:39.000Z
[ "pytorch", "roberta", "text-classification", "transformers", "generated_from_trainer", "license:mit", "model-index" ]
text-classification
false
mp6kv
null
mp6kv/ACTS_feedback1
2
null
transformers
25,431
--- license: mit tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: ACTS_feedback1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ACTS_feedback1 This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2357 - Accuracy: 0.8936 - Balanced accuracy: 0.8897 - Precision: 0.8951 - Recall: 0.8936 - F1: 0.8915 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Balanced accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:-----------------:|:---------:|:------:|:------:| | 1.0881 | 1.0 | 12 | 1.0513 | 0.5532 | 0.5119 | 0.4004 | 0.5532 | 0.4645 | | 0.9933 | 2.0 | 24 | 0.9257 | 0.5319 | 0.4952 | 0.3852 | 0.5319 | 0.4463 | | 0.8065 | 3.0 | 36 | 0.7059 | 0.7234 | 0.7295 | 0.7607 | 0.7234 | 0.7184 | | 0.5504 | 4.0 | 48 | 0.4259 | 0.8511 | 0.8474 | 0.8486 | 0.8511 | 0.8472 | | 0.3262 | 5.0 | 60 | 0.3703 | 0.8511 | 0.8654 | 0.8624 | 0.8511 | 0.8499 | | 0.1877 | 6.0 | 72 | 0.2518 | 0.8723 | 0.8731 | 0.8719 | 0.8723 | 0.8703 | | 0.1094 | 7.0 | 84 | 0.2283 | 0.9362 | 0.9410 | 0.9415 | 0.9362 | 0.9365 | | 0.0721 | 8.0 | 96 | 0.2246 | 0.9149 | 0.9244 | 0.9233 | 0.9149 | 0.9149 | | 0.0521 | 9.0 | 108 | 0.2215 | 0.8936 | 0.8897 | 0.8951 | 0.8936 | 0.8915 | | 0.0455 | 10.0 | 120 | 0.2357 | 0.8936 | 0.8897 | 0.8951 | 0.8936 | 0.8915 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
ali-issa/wav2vec2-Arabizi-100-epoch
3f6c64797edf8c7dd2a9a9a05a04919a27f52d65
2022-04-07T23:10:48.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
ali-issa
null
ali-issa/wav2vec2-Arabizi-100-epoch
2
null
transformers
25,432
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-Arabizi-100-epoch results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-Arabizi-100-epoch This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.4189 - Wer: 0.8732 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - num_epochs: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 2.8326 | 19.97 | 300 | 1.7665 | 0.9971 | | 0.3734 | 39.97 | 600 | 2.0734 | 0.9193 | | 0.1832 | 59.97 | 900 | 2.2837 | 0.9049 | | 0.1116 | 79.97 | 1200 | 2.3697 | 0.8818 | | 0.063 | 99.97 | 1500 | 2.4189 | 0.8732 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.10.3
Splend1dchan/canine-s-squad
f59594f9476ad15513d6a78af4b3153f4613e5df
2022-04-12T12:07:01.000Z
[ "pytorch", "canine", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
Splend1dchan
null
Splend1dchan/canine-s-squad
2
null
transformers
25,433
python run_squad.py --model_name_or_path google/canine-s --do_train --do_eval --per_gpu_train_batch_size 1 --per_gpu_eval_batch_size 1 --gradient_accumulation_steps 128 --learning_rate 3e-5 --num_train_epochs 3 --max_seq_length 1024 --doc_stride 128 --max_answer_length 240 --output_dir canine-s-squad --model_type bert { "_name_or_path": "google/canine-s", "architectures": [ "CanineForQuestionAnswering" ], "attention_probs_dropout_prob": 0.1, "bos_token_id": 57344, "downsampling_rate": 4, "eos_token_id": 57345, "hidden_act": "gelu", "hidden_dropout_prob": 0.1, "hidden_size": 768, "initializer_range": 0.02, "intermediate_size": 3072, "layer_norm_eps": 1e-12, "local_transformer_stride": 128, "max_position_embeddings": 16384, "model_type": "canine", "num_attention_heads": 12, "num_hash_buckets": 16384, "num_hash_functions": 8, "num_hidden_layers": 12, "pad_token_id": 0, "torch_dtype": "float32", "transformers_version": "4.19.0.dev0", "type_vocab_size": 16, "upsampling_kernel_size": 4, "use_cache": true } {'exact': 64.70198675496688, 'f1': 76.57594921776277}
cj-mills/xlm-roberta-base-finetuned-panx-fr
6e126102d5d0bc69a611fd01380ea7b5139efa3c
2022-04-08T01:49:11.000Z
[ "pytorch", "xlm-roberta", "token-classification", "dataset:xtreme", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
token-classification
false
cj-mills
null
cj-mills/xlm-roberta-base-finetuned-panx-fr
2
null
transformers
25,434
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-fr results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme args: PAN-X.fr metrics: - name: F1 type: f1 value: 0.8293418187908222 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-fr This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.2719 - F1: 0.8293 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.8541 | 1.0 | 72 | 0.3529 | 0.7826 | | 0.3069 | 2.0 | 144 | 0.2807 | 0.8154 | | 0.2262 | 3.0 | 216 | 0.2719 | 0.8293 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.11.0 - Datasets 1.16.1 - Tokenizers 0.10.3
cj-mills/xlm-roberta-base-finetuned-panx-it
2d1217c5de60b43ec82d3cea94bda7efd724fed1
2022-04-08T01:56:39.000Z
[ "pytorch", "xlm-roberta", "token-classification", "dataset:xtreme", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
token-classification
false
cj-mills
null
cj-mills/xlm-roberta-base-finetuned-panx-it
2
null
transformers
25,435
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-it results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme args: PAN-X.it metrics: - name: F1 type: f1 value: 0.7730210016155089 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-it This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.2928 - F1: 0.7730 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 1.4548 | 1.0 | 27 | 0.6522 | 0.5457 | | 0.5214 | 2.0 | 54 | 0.3476 | 0.7404 | | 0.3186 | 3.0 | 81 | 0.2928 | 0.7730 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.11.0 - Datasets 1.16.1 - Tokenizers 0.10.3
junnyu/flash_base_wwm_cluecorpussmall
1be1b50823aee96ec03d50efa36bc970e88baf80
2022-04-08T04:11:25.000Z
[ "pytorch", "flash", "fill-mask", "transformers", "license:mit", "autotrain_compatible" ]
fill-mask
false
junnyu
null
junnyu/flash_base_wwm_cluecorpussmall
2
null
transformers
25,436
--- license: mit inference: False --- # PS: 效果不怎么好,体验一下就行了。。。。。。wwm-MLM最终准确率55.5左右。 # cluner NER实验(globalpointer的结果差不多,softmax结果差好多- -) ```python # flash base + globalpointer 04/08/2022 10:53:34 - INFO - __main__ - ADDRESS = Score(f1=0.607703, precision=0.64939, recall=0.571046, tp=213, pred=328, gold=373) 04/08/2022 10:53:34 - INFO - __main__ - BOOK = Score(f1=0.8125, precision=0.873134, recall=0.75974, tp=117, pred=134, gold=154) 04/08/2022 10:53:34 - INFO - __main__ - COMPANY = Score(f1=0.818304, precision=0.832877, recall=0.804233, tp=304, pred=365, gold=378) 04/08/2022 10:53:34 - INFO - __main__ - GAME = Score(f1=0.854305, precision=0.834951, recall=0.874576, tp=258, pred=309, gold=295) 04/08/2022 10:53:34 - INFO - __main__ - GOVERNMENT = Score(f1=0.823529, precision=0.775, recall=0.878543, tp=217, pred=280, gold=247) 04/08/2022 10:53:34 - INFO - __main__ - MOVIE = Score(f1=0.810997, precision=0.842857, recall=0.781457, tp=118, pred=140, gold=151) 04/08/2022 10:53:34 - INFO - __main__ - NAME = Score(f1=0.874042, precision=0.890625, recall=0.858065, tp=399, pred=448, gold=465) 04/08/2022 10:53:34 - INFO - __main__ - ORGANIZATION = Score(f1=0.813986, precision=0.836207, recall=0.792916, tp=291, pred=348, gold=367) 04/08/2022 10:53:34 - INFO - __main__ - POSITION = Score(f1=0.78478, precision=0.808824, recall=0.762125, tp=330, pred=408, gold=433) 04/08/2022 10:53:34 - INFO - __main__ - SCENE = Score(f1=0.683805, precision=0.738889, recall=0.636364, tp=133, pred=180, gold=209) 04/08/2022 10:53:34 - INFO - __main__ - micro_f1 = Score(f1=0.79175, precision=0.809524, recall=0.77474, tp=2380, pred=2940, gold=3072) 04/08/2022 10:53:34 - INFO - __main__ - macro_f1 = Score(f1=0.788395, precision=0.808275, recall=0.771906, tp=0, pred=0, gold=0) 04/08/2022 10:53:34 - INFO - __main__ - mean_f1 = 0.790072 # flash base + softmax 04/08/2022 11:10:44 - INFO - __main__ - ADDRESS = Score(f1=0.568987, precision=0.522422, recall=0.624665, tp=233, pred=446, gold=373) 04/08/2022 11:10:44 - INFO - __main__ - BOOK = Score(f1=0.750789, precision=0.730061, recall=0.772727, tp=119, pred=163, gold=154) 04/08/2022 11:10:44 - INFO - __main__ - COMPANY = Score(f1=0.75528, precision=0.711944, recall=0.804233, tp=304, pred=427, gold=378) 04/08/2022 11:10:44 - INFO - __main__ - GAME = Score(f1=0.811502, precision=0.767372, recall=0.861017, tp=254, pred=331, gold=295) 04/08/2022 11:10:44 - INFO - __main__ - GOVERNMENT = Score(f1=0.738636, precision=0.69395, recall=0.789474, tp=195, pred=281, gold=247) 04/08/2022 11:10:44 - INFO - __main__ - MOVIE = Score(f1=0.74359, precision=0.720497, recall=0.768212, tp=116, pred=161, gold=151) 04/08/2022 11:10:44 - INFO - __main__ - NAME = Score(f1=0.831967, precision=0.794521, recall=0.873118, tp=406, pred=511, gold=465) 04/08/2022 11:10:44 - INFO - __main__ - ORGANIZATION = Score(f1=0.754054, precision=0.747989, recall=0.760218, tp=279, pred=373, gold=367) 04/08/2022 11:10:44 - INFO - __main__ - POSITION = Score(f1=0.742729, precision=0.720174, recall=0.766744, tp=332, pred=461, gold=433) 04/08/2022 11:10:44 - INFO - __main__ - SCENE = Score(f1=0.628842, precision=0.621495, recall=0.636364, tp=133, pred=214, gold=209) 04/08/2022 11:10:44 - INFO - __main__ - micro_f1 = Score(f1=0.736335, precision=0.703979, recall=0.77181, tp=2371, pred=3368, gold=3072) 04/08/2022 11:10:44 - INFO - __main__ - macro_f1 = Score(f1=0.732638, precision=0.703043, recall=0.765677, tp=0, pred=0, gold=0) 04/08/2022 11:10:44 - INFO - __main__ - mean_f1 = 0.734486 # bert base + globalpointer 04/08/2022 11:22:48 - INFO - __main__ - ADDRESS = Score(f1=0.641558, precision=0.622166, recall=0.662198, tp=247, pred=397, gold=373) 04/08/2022 11:22:48 - INFO - __main__ - BOOK = Score(f1=0.813115, precision=0.821192, recall=0.805195, tp=124, pred=151, gold=154) 04/08/2022 11:22:48 - INFO - __main__ - COMPANY = Score(f1=0.823684, precision=0.819372, recall=0.828042, tp=313, pred=382, gold=378) 04/08/2022 11:22:48 - INFO - __main__ - GAME = Score(f1=0.841762, precision=0.811321, recall=0.874576, tp=258, pred=318, gold=295) 04/08/2022 11:22:48 - INFO - __main__ - GOVERNMENT = Score(f1=0.827324, precision=0.778571, recall=0.882591, tp=218, pred=280, gold=247) 04/08/2022 11:22:48 - INFO - __main__ - MOVIE = Score(f1=0.82392, precision=0.826667, recall=0.821192, tp=124, pred=150, gold=151) 04/08/2022 11:22:48 - INFO - __main__ - NAME = Score(f1=0.861345, precision=0.840164, recall=0.883621, tp=410, pred=488, gold=464) 04/08/2022 11:22:48 - INFO - __main__ - ORGANIZATION = Score(f1=0.804911, precision=0.806011, recall=0.803815, tp=295, pred=366, gold=367) 04/08/2022 11:22:48 - INFO - __main__ - POSITION = Score(f1=0.805046, precision=0.799544, recall=0.810624, tp=351, pred=439, gold=433) 04/08/2022 11:22:48 - INFO - __main__ - SCENE = Score(f1=0.702703, precision=0.722222, recall=0.684211, tp=143, pred=198, gold=209) 04/08/2022 11:22:48 - INFO - __main__ - micro_f1 = Score(f1=0.795833, precision=0.783528, recall=0.808531, tp=2483, pred=3169, gold=3071) 04/08/2022 11:22:48 - INFO - __main__ - macro_f1 = Score(f1=0.794537, precision=0.784723, recall=0.805606, tp=0, pred=0, gold=0) 04/08/2022 11:22:48 - INFO - __main__ - mean_f1 = 0.795185 ``` # cmeee + globalpointer ```python 04/08/2022 11:50:41 - INFO - __main__ - bod = Score(f1=0.639522, precision=0.642318, recall=0.63675, tp=3746, pred=5832, gold=5883) 04/08/2022 11:50:41 - INFO - __main__ - dep = Score(f1=0.473988, precision=0.650794, recall=0.372727, tp=41, pred=63, gold=110) 04/08/2022 11:50:41 - INFO - __main__ - dis = Score(f1=0.716959, precision=0.704479, recall=0.729889, tp=3602, pred=5113, gold=4935) 04/08/2022 11:50:41 - INFO - __main__ - dru = Score(f1=0.756328, precision=0.829329, recall=0.695139, tp=1001, pred=1207, gold=1440) 04/08/2022 11:50:41 - INFO - __main__ - equ = Score(f1=0.518703, precision=0.638037, recall=0.436975, tp=104, pred=163, gold=238) 04/08/2022 11:50:41 - INFO - __main__ - ite = Score(f1=0.322533, precision=0.503448, recall=0.23727, tp=219, pred=435, gold=923) 04/08/2022 11:50:41 - INFO - __main__ - mic = Score(f1=0.746967, precision=0.75614, recall=0.738014, tp=431, pred=570, gold=584) 04/08/2022 11:50:41 - INFO - __main__ - pro = Score(f1=0.611138, precision=0.614138, recall=0.608167, tp=1251, pred=2037, gold=2057) 04/08/2022 11:50:41 - INFO - __main__ - sym = Score(f1=0.47969, precision=0.495738, recall=0.464649, tp=1919, pred=3871, gold=4130) 04/08/2022 11:50:41 - INFO - __main__ - micro_f1 = Score(f1=0.622061, precision=0.638329, recall=0.606601, tp=12314, pred=19291, gold=20300) 04/08/2022 11:50:41 - INFO - __main__ - macro_f1 = Score(f1=0.585092, precision=0.648269, recall=0.54662, tp=0, pred=0, gold=0) 04/08/2022 11:50:41 - INFO - __main__ - mean_f1 = 0.603576 ``` # install - https://github.com/JunnYu/FLASHQuad_pytorch # usage ```python import torch from flash import FLASHForMaskedLM from transformers import BertTokenizerFast tokenizer = BertTokenizerFast.from_pretrained("junnyu/flash_base_wwm_cluecorpussmall") model = FLASHForMaskedLM.from_pretrained("junnyu/flash_base_wwm_cluecorpussmall") model.eval() text = "天气预报说今天的天[MASK]很好,那么我[MASK]一起去公园玩吧!" inputs = tokenizer(text, return_tensors="pt", padding="max_length", max_length=512, return_token_type_ids=False) #这里必须是512,不然结果可能不对。 with torch.no_grad(): pt_outputs = model(**inputs).logits[0] pt_outputs_sentence = "pytorch: " for i, id in enumerate(tokenizer.encode(text)): if id == tokenizer.mask_token_id: val,idx = pt_outputs[i].softmax(-1).topk(k=5) tokens = tokenizer.convert_ids_to_tokens(idx) new_tokens = [] for v,t in zip(val.cpu(),tokens): new_tokens.append(f"{t}+{round(v.item(),4)}") pt_outputs_sentence += "[" + "||".join(new_tokens) + "]" else: pt_outputs_sentence += "".join( tokenizer.convert_ids_to_tokens([id], skip_special_tokens=True)) print(pt_outputs_sentence) # pytorch: 天气预报说今天的天[气+0.994||天+0.0015||空+0.0014||晴+0.0005||阳+0.0003]很好,那么我[们+0.9563||就+0.0381||也+0.0032||俩+0.0004||来+0.0002]一起去公园玩吧! ```
Pavithra/codeparrot-ds-sample-gpt-small-neo-10epoch1
4160106bb9076f24af963764da3eee844aeea353
2022-04-08T17:27:27.000Z
[ "pytorch", "tensorboard", "gpt_neo", "text-generation", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-generation
false
Pavithra
null
Pavithra/codeparrot-ds-sample-gpt-small-neo-10epoch1
2
null
transformers
25,437
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: codeparrot-ds-sample-gpt-small-neo-10epoch1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # codeparrot-ds-sample-gpt-small-neo-10epoch1 This model is a fine-tuned version of [EleutherAI/gpt-neo-125M](https://huggingface.co/EleutherAI/gpt-neo-125M) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.5696 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 256 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 1000 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 3.5639 | 0.94 | 1000 | 2.9253 | | 2.3253 | 1.88 | 2000 | 2.4563 | | 1.8494 | 2.82 | 3000 | 2.2655 | | 1.5133 | 3.77 | 4000 | 2.1635 | | 1.249 | 4.71 | 5000 | 2.1414 | | 1.0194 | 5.65 | 6000 | 2.1818 | | 0.7999 | 6.59 | 7000 | 2.2738 | | 0.5971 | 7.53 | 8000 | 2.3910 | | 0.4238 | 8.47 | 9000 | 2.5062 | | 0.3107 | 9.42 | 10000 | 2.5696 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
ybelkada/focusondepth
ebf1a412d2be5e365acb92050329c47ab597d444
2022-04-08T13:11:47.000Z
[ "pytorch", "focusondepth", "transformers" ]
null
false
ybelkada
null
ybelkada/focusondepth
2
null
transformers
25,438
Entry not found
ydshieh/tiny-random-gptj-base
ec02b56fe405ef16588efeaadafa5b8c9456a725
2022-04-08T10:20:31.000Z
[ "pytorch", "tf", "gptj", "feature-extraction", "transformers" ]
feature-extraction
false
ydshieh
null
ydshieh/tiny-random-gptj-base
2
null
transformers
25,439
Entry not found
jesperjmb/parlaBERT
2bf5aa87a29921c72f140abc62f76d93566132a0
2022-04-08T12:43:28.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
jesperjmb
null
jesperjmb/parlaBERT
2
null
transformers
25,440
Fine-tuned KB-BERT for Swedish Riksdag introductions
philschmid/MiniLMv2-L12-H384-sst2
ab98890f9b87c74760d4c3fbd97866bc00656a5c
2022-04-08T13:41:34.000Z
[ "pytorch", "tensorboard", "roberta", "text-classification", "dataset:glue", "transformers", "generated_from_trainer", "model-index" ]
text-classification
false
philschmid
null
philschmid/MiniLMv2-L12-H384-sst2
2
null
transformers
25,441
--- tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: MiniLMv2-L12-H384-sst2 results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue args: sst2 metrics: - name: Accuracy type: accuracy value: 0.9208715596330275 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # MiniLMv2-L12-H384-sst2 This model is a fine-tuned version of [nreimers/MiniLMv2-L12-H384-distilled-from-RoBERTa-Large](https://huggingface.co/nreimers/MiniLMv2-L12-H384-distilled-from-RoBERTa-Large) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.2195 - Accuracy: 0.9209 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - distributed_type: sagemaker_data_parallel - num_devices: 8 - total_train_batch_size: 256 - total_eval_batch_size: 256 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 4 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.5576 | 1.0 | 264 | 0.2690 | 0.8979 | | 0.2854 | 2.0 | 528 | 0.2077 | 0.9117 | | 0.2158 | 3.0 | 792 | 0.2195 | 0.9209 | | 0.1789 | 4.0 | 1056 | 0.2260 | 0.9163 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.2+cu113 - Datasets 1.18.4 - Tokenizers 0.11.6
philschmid/MiniLMv2-L6-H384-sst2
edb0d6ee4f33670f0b9b934806c8132bd397ef90
2022-04-08T13:56:53.000Z
[ "pytorch", "tensorboard", "roberta", "text-classification", "dataset:glue", "transformers", "generated_from_trainer", "model-index" ]
text-classification
false
philschmid
null
philschmid/MiniLMv2-L6-H384-sst2
2
null
transformers
25,442
--- tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: MiniLMv2-L6-H384-sst2 results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue args: sst2 metrics: - name: Accuracy type: accuracy value: 0.9197247706422018 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # MiniLMv2-L6-H384-sst2 This model is a fine-tuned version of [nreimers/MiniLMv2-L6-H384-distilled-from-RoBERTa-Large](https://huggingface.co/nreimers/MiniLMv2-L6-H384-distilled-from-RoBERTa-Large) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.2532 - Accuracy: 0.9197 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - distributed_type: sagemaker_data_parallel - num_devices: 8 - total_train_batch_size: 256 - total_eval_batch_size: 256 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.5787 | 1.0 | 264 | 0.3496 | 0.8624 | | 0.3413 | 2.0 | 528 | 0.2599 | 0.8991 | | 0.2716 | 3.0 | 792 | 0.2651 | 0.9048 | | 0.2343 | 4.0 | 1056 | 0.2532 | 0.9197 | | 0.2165 | 5.0 | 1320 | 0.2636 | 0.9151 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.2+cu113 - Datasets 1.18.4 - Tokenizers 0.11.6
malcolm/TSC_finetuning-sentiment-movie-model
3f9e1fa33d1f0cb046acef59f4639a0443a1ae7a
2022-04-08T16:44:47.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
malcolm
null
malcolm/TSC_finetuning-sentiment-movie-model
2
null
transformers
25,443
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: TSC_finetuning-sentiment-movie-model results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # TSC_finetuning-sentiment-movie-model This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1480 - Accuracy: 0.9578 - F1: 0.9757 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
Pavithra/codeparrot-ds-sample-gpt-small-10epoch
98c0b143a557687a688f39e1923aae41caba3252
2022-04-10T07:49:47.000Z
[ "pytorch", "tensorboard", "gpt2", "text-generation", "transformers", "generated_from_trainer", "license:mit", "model-index" ]
text-generation
false
Pavithra
null
Pavithra/codeparrot-ds-sample-gpt-small-10epoch
2
null
transformers
25,444
--- license: mit tags: - generated_from_trainer model-index: - name: codeparrot-ds-sample-gpt-small-10epoch results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # codeparrot-ds-sample-gpt-small-10epoch This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.0943 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 256 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 1000 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 4.29 | 0.94 | 1000 | 2.8452 | | 2.3155 | 1.88 | 2000 | 2.3659 | | 1.8817 | 2.82 | 3000 | 2.2085 | | 1.6245 | 3.77 | 4000 | 2.1260 | | 1.4314 | 4.71 | 5000 | 2.0705 | | 1.2698 | 5.65 | 6000 | 2.0603 | | 1.1281 | 6.59 | 7000 | 2.0599 | | 1.0108 | 7.53 | 8000 | 2.0769 | | 0.9167 | 8.47 | 9000 | 2.0870 | | 0.8551 | 9.42 | 10000 | 2.0943 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
hbruce11216/distilbert-base-uncased-finetuned-emotion
f355fabc69ee7fba187fd80cc4ac6c3c289f25ff
2022-04-09T14:31:03.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "transformers" ]
text-classification
false
hbruce11216
null
hbruce11216/distilbert-base-uncased-finetuned-emotion
2
null
transformers
25,445
Entry not found
Chikashi/t5-small-finetuned-wikihow_3epoch_b4_lr3e-3
80b4b833a5f9531a934cadbdf8872c880ed97156
2022-04-09T08:34:39.000Z
[ "pytorch", "tensorboard", "t5", "text2text-generation", "dataset:wikihow", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
text2text-generation
false
Chikashi
null
Chikashi/t5-small-finetuned-wikihow_3epoch_b4_lr3e-3
2
null
transformers
25,446
--- license: apache-2.0 tags: - generated_from_trainer datasets: - wikihow metrics: - rouge model-index: - name: t5-small-finetuned-wikihow_3epoch_b4_lr3e-3 results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: wikihow type: wikihow args: all metrics: - name: Rouge1 type: rouge value: 26.7383 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-wikihow_3epoch_b4_lr3e-3 This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the wikihow dataset. It achieves the following results on the evaluation set: - Loss: 2.3400 - Rouge1: 26.7383 - Rouge2: 10.1981 - Rougel: 22.8642 - Rougelsum: 26.0922 - Gen Len: 18.524 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.003 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:------:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | 3.2548 | 0.13 | 5000 | 2.9708 | 22.0519 | 6.7142 | 18.7677 | 21.4627 | 17.9546 | | 3.1153 | 0.25 | 10000 | 2.9099 | 20.2838 | 5.8365 | 17.5009 | 19.7112 | 18.4981 | | 3.0478 | 0.38 | 15000 | 2.8763 | 22.8282 | 7.3649 | 19.6843 | 22.2312 | 18.1331 | | 3.0146 | 0.51 | 20000 | 2.8484 | 23.2465 | 7.4295 | 19.621 | 22.6246 | 18.5115 | | 2.9572 | 0.64 | 25000 | 2.7902 | 23.8681 | 7.9617 | 20.4984 | 23.2066 | 18.5544 | | 2.9425 | 0.76 | 30000 | 2.7577 | 23.4402 | 7.5289 | 19.7382 | 22.7941 | 18.4613 | | 2.9075 | 0.89 | 35000 | 2.7343 | 23.0082 | 7.5408 | 19.8426 | 22.3832 | 18.1218 | | 2.8705 | 1.02 | 40000 | 2.7136 | 23.9492 | 7.8861 | 20.3675 | 23.3035 | 18.4869 | | 2.7967 | 1.14 | 45000 | 2.6923 | 24.2394 | 8.2895 | 20.7275 | 23.6127 | 18.3486 | | 2.7794 | 1.27 | 50000 | 2.6639 | 24.4062 | 8.2481 | 20.8957 | 23.8077 | 18.4258 | | 2.7776 | 1.4 | 55000 | 2.6321 | 24.6213 | 8.4161 | 21.0528 | 23.968 | 18.351 | | 2.7397 | 1.53 | 60000 | 2.6116 | 24.16 | 8.3605 | 20.618 | 23.5037 | 18.6049 | | 2.7199 | 1.65 | 65000 | 2.5846 | 24.2606 | 8.3829 | 20.6274 | 23.6252 | 18.4742 | | 2.7044 | 1.78 | 70000 | 2.5663 | 25.0452 | 8.896 | 21.4554 | 24.4748 | 18.3143 | | 2.6928 | 1.91 | 75000 | 2.5365 | 25.1312 | 9.008 | 21.6376 | 24.4963 | 18.5605 | | 2.6281 | 2.03 | 80000 | 2.5209 | 25.5311 | 9.1521 | 21.729 | 24.8864 | 18.2597 | | 2.5333 | 2.16 | 85000 | 2.4860 | 25.4834 | 9.2969 | 21.7257 | 24.8802 | 18.3831 | | 2.5308 | 2.29 | 90000 | 2.4619 | 26.0526 | 9.605 | 22.2178 | 25.4353 | 18.4235 | | 2.5136 | 2.42 | 95000 | 2.4356 | 25.9434 | 9.6537 | 22.2957 | 25.312 | 18.4647 | | 2.4801 | 2.54 | 100000 | 2.4098 | 26.1109 | 9.7637 | 22.3844 | 25.4771 | 18.5765 | | 2.4494 | 2.67 | 105000 | 2.3835 | 26.332 | 9.9472 | 22.4243 | 25.6933 | 18.5985 | | 2.4393 | 2.8 | 110000 | 2.3590 | 26.6896 | 10.2248 | 22.8743 | 26.0665 | 18.4883 | | 2.4071 | 2.93 | 115000 | 2.3400 | 26.7383 | 10.1981 | 22.8642 | 26.0922 | 18.524 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
gary109/wav2vec2-base-finetuned-ks
eaae301c1860de3412a02c479376207dc5edf58c
2022-04-09T08:34:11.000Z
[ "pytorch", "tensorboard", "wav2vec2", "audio-classification", "dataset:superb", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
audio-classification
false
gary109
null
gary109/wav2vec2-base-finetuned-ks
2
null
transformers
25,447
--- license: apache-2.0 tags: - generated_from_trainer datasets: - superb metrics: - accuracy model-index: - name: wav2vec2-base-finetuned-ks results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-finetuned-ks This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the superb dataset. It achieves the following results on the evaluation set: - Loss: 0.0981 - Accuracy: 0.9801 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6641 | 1.0 | 399 | 0.5522 | 0.9337 | | 0.2698 | 2.0 | 798 | 0.2015 | 0.9715 | | 0.1839 | 3.0 | 1197 | 0.1195 | 0.9793 | | 0.1582 | 4.0 | 1596 | 0.1039 | 0.9791 | | 0.1425 | 5.0 | 1995 | 0.0981 | 0.9801 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.14.0 - Tokenizers 0.10.3
Chikashi/t5-small-finetuned-wikihow_3epoch_b4_lr3e-4
cbd7052f478a3022a4a17e092a6675257e31ee24
2022-04-09T19:14:54.000Z
[ "pytorch", "tensorboard", "t5", "text2text-generation", "dataset:wikihow", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
text2text-generation
false
Chikashi
null
Chikashi/t5-small-finetuned-wikihow_3epoch_b4_lr3e-4
2
null
transformers
25,448
--- license: apache-2.0 tags: - generated_from_trainer datasets: - wikihow metrics: - rouge model-index: - name: t5-small-finetuned-wikihow_3epoch_b4_lr3e-4 results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: wikihow type: wikihow args: all metrics: - name: Rouge1 type: rouge value: 27.4024 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-wikihow_3epoch_b4_lr3e-4 This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the wikihow dataset. It achieves the following results on the evaluation set: - Loss: 2.2757 - Rouge1: 27.4024 - Rouge2: 10.7065 - Rougel: 23.3153 - Rougelsum: 26.7336 - Gen Len: 18.5506 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:------:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | 2.8424 | 0.13 | 5000 | 2.5695 | 25.2232 | 8.7617 | 21.2019 | 24.4949 | 18.4151 | | 2.7334 | 0.25 | 10000 | 2.5229 | 25.3739 | 9.0477 | 21.5054 | 24.7553 | 18.3802 | | 2.6823 | 0.38 | 15000 | 2.4857 | 26.341 | 9.6711 | 22.3446 | 25.7256 | 18.449 | | 2.6607 | 0.51 | 20000 | 2.4540 | 26.0269 | 9.4722 | 22.0822 | 25.3602 | 18.4704 | | 2.6137 | 0.64 | 25000 | 2.4326 | 26.2966 | 9.6815 | 22.4422 | 25.6326 | 18.3517 | | 2.6077 | 0.76 | 30000 | 2.4108 | 26.0981 | 9.6221 | 22.1189 | 25.454 | 18.5079 | | 2.5847 | 0.89 | 35000 | 2.3879 | 26.2675 | 9.6435 | 22.3738 | 25.6122 | 18.4838 | | 2.5558 | 1.02 | 40000 | 2.3827 | 26.3458 | 9.7844 | 22.4718 | 25.7388 | 18.5097 | | 2.4902 | 1.14 | 45000 | 2.3725 | 26.4987 | 9.9634 | 22.5398 | 25.8399 | 18.5912 | | 2.4785 | 1.27 | 50000 | 2.3549 | 26.884 | 10.1136 | 22.8212 | 26.2262 | 18.4763 | | 2.4822 | 1.4 | 55000 | 2.3467 | 26.8635 | 10.2266 | 22.9161 | 26.2252 | 18.5847 | | 2.46 | 1.53 | 60000 | 2.3393 | 26.8602 | 10.1785 | 22.8453 | 26.1917 | 18.548 | | 2.4523 | 1.65 | 65000 | 2.3330 | 26.91 | 10.237 | 22.9309 | 26.2372 | 18.5154 | | 2.4525 | 1.78 | 70000 | 2.3203 | 27.073 | 10.4317 | 23.1355 | 26.4528 | 18.5063 | | 2.4566 | 1.91 | 75000 | 2.3109 | 27.3853 | 10.5413 | 23.3455 | 26.7408 | 18.5258 | | 2.4234 | 2.03 | 80000 | 2.3103 | 27.0836 | 10.4857 | 23.0538 | 26.409 | 18.5326 | | 2.3686 | 2.16 | 85000 | 2.2986 | 27.311 | 10.6038 | 23.3068 | 26.6636 | 18.4874 | | 2.3758 | 2.29 | 90000 | 2.2969 | 27.3509 | 10.6502 | 23.2764 | 26.6832 | 18.5438 | | 2.3777 | 2.42 | 95000 | 2.2907 | 27.39 | 10.5842 | 23.3601 | 26.7433 | 18.5444 | | 2.3624 | 2.54 | 100000 | 2.2875 | 27.3717 | 10.6098 | 23.3326 | 26.7232 | 18.5521 | | 2.3543 | 2.67 | 105000 | 2.2811 | 27.4188 | 10.6919 | 23.3022 | 26.7426 | 18.564 | | 2.366 | 2.8 | 110000 | 2.2763 | 27.4872 | 10.7079 | 23.4135 | 26.829 | 18.5399 | | 2.3565 | 2.93 | 115000 | 2.2757 | 27.4024 | 10.7065 | 23.3153 | 26.7336 | 18.5506 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
AlekseyKorshuk/test
727917a0f7f552af9562a799d8217b2615e633f5
2022-06-18T11:54:05.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "huggan", "gan", "license:mit" ]
text-generation
false
AlekseyKorshuk
null
AlekseyKorshuk/test
2
null
transformers
25,449
--- tags: - huggan - gan # See a list of available tags here: # https://github.com/huggingface/hub-docs/blob/main/js/src/lib/interfaces/Types.ts#L12 # task: unconditional-image-generation or conditional-image-generation or image-to-image license: mit --- # MyModelName ## Model description Describe the model here (what it does, what it's used for, etc.) ## Intended uses & limitations #### How to use ```python # You can include sample code which will be formatted ``` #### Limitations and bias Provide examples of latent issues and potential remediations. ## Training data Describe the data you used to train the model. If you initialized it with pre-trained weights, add a link to the pre-trained model card or repository with description of the pre-training data. ## Training procedure Preprocessing, hardware used, hyperparameters... ## Eval results ## Generated Images You can embed local or remote images using `![](...)` ### BibTeX entry and citation info ```bibtex @inproceedings{..., year={2020} } ```
alistvt/docalog
eed14b91bfebf37535752ac5d346b3e2934eae16
2022-04-10T19:25:14.000Z
[ "pytorch", "roberta", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
alistvt
null
alistvt/docalog
2
null
transformers
25,450
Entry not found
Wizounovziki/t5-base-devices-sum-ver1
a59a0812fcc5d044c8c8cc3a27a8fd99a1fc21e6
2022-04-09T16:32:06.000Z
[ "pytorch", "tensorboard", "t5", "text2text-generation", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
text2text-generation
false
Wizounovziki
null
Wizounovziki/t5-base-devices-sum-ver1
2
null
transformers
25,451
--- license: apache-2.0 tags: - generated_from_trainer metrics: - rouge model-index: - name: t5-base-devices-sum-ver1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-base-devices-sum-ver1 This model is a fine-tuned version of [t5-base](https://huggingface.co/t5-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0935 - Rouge1: 97.2294 - Rouge2: 80.1323 - Rougel: 97.245 - Rougelsum: 97.2763 - Gen Len: 4.9507 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | No log | 1.0 | 186 | 0.2461 | 91.9436 | 71.232 | 91.9417 | 91.9585 | 4.6644 | | No log | 2.0 | 372 | 0.1580 | 94.5247 | 76.1321 | 94.5044 | 94.5382 | 4.8953 | | 0.488 | 3.0 | 558 | 0.1239 | 95.8673 | 78.1183 | 95.8862 | 95.8919 | 4.9102 | | 0.488 | 4.0 | 744 | 0.1100 | 96.5746 | 78.9878 | 96.5848 | 96.5831 | 4.9102 | | 0.488 | 5.0 | 930 | 0.1008 | 96.9074 | 79.5536 | 96.9143 | 96.9317 | 4.9291 | | 0.1303 | 6.0 | 1116 | 0.0974 | 96.9274 | 79.6953 | 96.933 | 96.9473 | 4.9291 | | 0.1303 | 7.0 | 1302 | 0.0969 | 96.8041 | 79.5073 | 96.817 | 96.8266 | 4.9271 | | 0.1303 | 8.0 | 1488 | 0.0945 | 97.1496 | 79.9757 | 97.1529 | 97.1779 | 4.9534 | | 0.089 | 9.0 | 1674 | 0.0944 | 97.253 | 80.1236 | 97.2619 | 97.2899 | 4.9595 | | 0.089 | 10.0 | 1860 | 0.0935 | 97.2294 | 80.1323 | 97.245 | 97.2763 | 4.9507 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
UPF/DialoGPT-small-joshua
5919a28ebec73d90d9500331a40954de03d3b76d
2022-04-09T15:17:38.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
UPF
null
UPF/DialoGPT-small-joshua
2
null
transformers
25,452
Entry not found
Splend1dchan/byt5-base-squad
716aeca54d00be23772973705aeecfe06f785597
2022-04-10T17:16:02.000Z
[ "pytorch", "tensorboard", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
Splend1dchan
null
Splend1dchan/byt5-base-squad
2
null
transformers
25,453
Entry not found
Wizounovziki/t5-small-devices-sum-ver1
46c09eb2fdad73fd27ca44565e61d85efdce0820
2022-04-09T17:53:34.000Z
[ "pytorch", "tensorboard", "t5", "text2text-generation", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
text2text-generation
false
Wizounovziki
null
Wizounovziki/t5-small-devices-sum-ver1
2
null
transformers
25,454
--- license: apache-2.0 tags: - generated_from_trainer metrics: - rouge model-index: - name: t5-small-devices-sum-ver1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-devices-sum-ver1 This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2335 - Rouge1: 93.7171 - Rouge2: 73.3058 - Rougel: 93.7211 - Rougelsum: 93.689 - Gen Len: 4.7246 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | No log | 1.0 | 185 | 0.6517 | 83.2503 | 55.7516 | 83.254 | 83.2722 | 4.4729 | | No log | 2.0 | 370 | 0.4239 | 89.2246 | 65.7477 | 89.2223 | 89.2288 | 4.5575 | | 1.0224 | 3.0 | 555 | 0.3459 | 91.0524 | 68.4783 | 91.0222 | 91.0312 | 4.6685 | | 1.0224 | 4.0 | 740 | 0.3023 | 91.9741 | 70.1066 | 91.9886 | 91.9525 | 4.6549 | | 1.0224 | 5.0 | 925 | 0.2797 | 92.667 | 71.3468 | 92.6706 | 92.6611 | 4.6969 | | 0.3678 | 6.0 | 1110 | 0.2616 | 93.229 | 72.2805 | 93.222 | 93.1935 | 4.7179 | | 0.3678 | 7.0 | 1295 | 0.2469 | 93.362 | 72.6985 | 93.3651 | 93.3294 | 4.7111 | | 0.3678 | 8.0 | 1480 | 0.2401 | 93.5689 | 73.009 | 93.582 | 93.5377 | 4.7192 | | 0.2902 | 9.0 | 1665 | 0.2350 | 93.7013 | 73.2685 | 93.7256 | 93.684 | 4.724 | | 0.2902 | 10.0 | 1850 | 0.2335 | 93.7171 | 73.3058 | 93.7211 | 93.689 | 4.7246 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
masakhane/m2m100_418M_fr_bam_rel_news
b8e70da29c74d561b37f866d8134c278cbb1d579
2022-04-11T14:44:04.000Z
[ "pytorch", "m2m_100", "text2text-generation", "transformers", "license:afl-3.0", "autotrain_compatible" ]
text2text-generation
false
masakhane
null
masakhane/m2m100_418M_fr_bam_rel_news
2
null
transformers
25,455
--- license: afl-3.0 ---
masakhane/m2m100_418M_fr_bam_rel_news_ft
20258c5a0305f7dec89f8c08a1adbb895c60f203
2022-04-11T15:12:37.000Z
[ "pytorch", "m2m_100", "text2text-generation", "transformers", "license:afl-3.0", "autotrain_compatible" ]
text2text-generation
false
masakhane
null
masakhane/m2m100_418M_fr_bam_rel_news_ft
2
null
transformers
25,456
--- license: afl-3.0 ---
masakhane/m2m100_418M_fr_bam_rel_ft
1d79daf14d694b314c66031ebcbee002e0688f34
2022-04-11T16:34:11.000Z
[ "pytorch", "m2m_100", "text2text-generation", "transformers", "license:afl-3.0", "autotrain_compatible" ]
text2text-generation
false
masakhane
null
masakhane/m2m100_418M_fr_bam_rel_ft
2
null
transformers
25,457
--- license: afl-3.0 ---
michaellutz/bert-finetuned-assertive-hillary
739f97f720c7ea8f537e1ccd1dc882e5c2b18853
2022-04-16T07:06:14.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
michaellutz
null
michaellutz/bert-finetuned-assertive-hillary
2
null
transformers
25,458
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: bert-finetuned-assertive-hillary results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-assertive-hillary This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.0+cu111 - Datasets 2.1.0 - Tokenizers 0.12.1
Wizounovziki/t5-small-devices-sum-ver2
8edc975ae70aab569de509cd2e9d39cd13325654
2022-04-10T01:20:36.000Z
[ "pytorch", "tensorboard", "t5", "text2text-generation", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
text2text-generation
false
Wizounovziki
null
Wizounovziki/t5-small-devices-sum-ver2
2
null
transformers
25,459
--- license: apache-2.0 tags: - generated_from_trainer metrics: - rouge model-index: - name: t5-small-devices-sum-ver2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-devices-sum-ver2 This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3679 - Rouge1: 90.6465 - Rouge2: 65.2833 - Rougel: 90.6707 - Rougelsum: 90.7313 - Gen Len: 4.4702 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | No log | 1.0 | 91 | 1.0957 | 58.9566 | 33.4113 | 58.8004 | 58.8863 | 4.8308 | | No log | 2.0 | 182 | 0.7017 | 78.9566 | 49.9716 | 78.9338 | 78.9643 | 4.3329 | | No log | 3.0 | 273 | 0.5386 | 84.8786 | 56.9622 | 84.8204 | 84.9117 | 4.4577 | | No log | 4.0 | 364 | 0.4693 | 87.9792 | 61.0779 | 87.8795 | 88.0098 | 4.4383 | | No log | 5.0 | 455 | 0.4273 | 89.4667 | 63.1994 | 89.4169 | 89.5197 | 4.4743 | | 1.0586 | 6.0 | 546 | 0.4002 | 89.6456 | 63.5041 | 89.6062 | 89.7042 | 4.4452 | | 1.0586 | 7.0 | 637 | 0.3848 | 89.9993 | 64.2505 | 89.9775 | 90.0651 | 4.423 | | 1.0586 | 8.0 | 728 | 0.3752 | 90.4249 | 64.819 | 90.4434 | 90.5111 | 4.4799 | | 1.0586 | 9.0 | 819 | 0.3703 | 90.4689 | 65.0086 | 90.4954 | 90.5632 | 4.4632 | | 1.0586 | 10.0 | 910 | 0.3679 | 90.6465 | 65.2833 | 90.6707 | 90.7313 | 4.4702 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
MEDT/ChatBot
97bbb40eb18644f6d722a2c0b2262d39064851dd
2022-04-10T14:53:52.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational", "license:mit" ]
conversational
false
MEDT
null
MEDT/ChatBot
2
null
transformers
25,460
--- thumbnail: https://raw.githubusercontent.com/RuolinZheng08/twewy-discord-chatbot/main/gif-demo/icon.png tags: - conversational license: mit --- # DialoGPT Trained on the Speech of a Game Character This is an instance of [microsoft/DialoGPT-medium](https://huggingface.co/microsoft/DialoGPT-medium) trained on a game character, Joshua from [The World Ends With You](https://en.wikipedia.org/wiki/The_World_Ends_with_You). The data comes from [a Kaggle game script dataset](https://www.kaggle.com/ruolinzheng/twewy-game-script). I built a Discord AI chatbot based on this model. [Check out my GitHub repo.](https://github.com/RuolinZheng08/twewy-discord-chatbot) Chat with the model: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("r3dhummingbird/DialoGPT-medium-joshua") model = AutoModelWithLMHead.from_pretrained("r3dhummingbird/DialoGPT-medium-joshua") # Let's chat for 100 lines for step in range(100): # encode the new user input, add the eos_token and return a tensor in Pytorch new_user_input_ids = tokenizer.encode(input(">> User:") + tokenizer.eos_token, return_tensors='pt') # print(new_user_input_ids) # append the new user input tokens to the chat history bot_input_ids = torch.cat([chat_history_ids, new_user_input_ids], dim=-1) if step > 0 else new_user_input_ids # generated a response while limiting the total chat history to 1000 tokens, chat_history_ids = model.generate( bot_input_ids, max_length=200, pad_token_id=tokenizer.eos_token_id, no_repeat_ngram_size=3, do_sample=True, top_k=100, top_p=0.7, temperature=0.8 ) # pretty print last ouput tokens from bot print("JoshuaBot: {}".format(tokenizer.decode(chat_history_ids[:, bot_input_ids.shape[-1]:][0], skip_special_tokens=True))) ```
DioLiu/distilroberta-base-Ctr2
3baa7c4fcf7ee2c24437dc6a03a57424d82a68fe
2022-04-13T16:19:20.000Z
[ "pytorch", "tensorboard", "roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
DioLiu
null
DioLiu/distilroberta-base-Ctr2
2
null
transformers
25,461
Entry not found
brad1141/baseline_longformerv1
b64c4177eb4713334825d469a99f8a2ac7625aef
2022-04-10T13:01:30.000Z
[ "pytorch", "tensorboard", "longformer", "token-classification", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
token-classification
false
brad1141
null
brad1141/baseline_longformerv1
2
null
transformers
25,462
--- tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: baseline_longformerv1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # baseline_longformerv1 This model is a fine-tuned version of [allenai/longformer-base-4096](https://huggingface.co/allenai/longformer-base-4096) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.7596 - Precision: 0.1333 - Recall: 0.15 - F1: 0.1400 - Accuracy: 0.1400 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 1.8469 | 0.89 | 1 | 1.7596 | 0.1333 | 0.15 | 0.1400 | 0.1400 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
V3RX2000/xlm-roberta-base-finetuned-panx-fr
9b367e963f58924b1c4f3b00f69102de6c2b46b6
2022-04-10T15:39:32.000Z
[ "pytorch", "xlm-roberta", "token-classification", "dataset:xtreme", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
token-classification
false
V3RX2000
null
V3RX2000/xlm-roberta-base-finetuned-panx-fr
2
null
transformers
25,463
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-fr results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme args: PAN-X.fr metrics: - name: F1 type: f1 value: 0.8354854938789199 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-fr This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.2651 - F1: 0.8355 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.5954 | 1.0 | 191 | 0.3346 | 0.7975 | | 0.2689 | 2.0 | 382 | 0.2900 | 0.8347 | | 0.1821 | 3.0 | 573 | 0.2651 | 0.8355 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3
V3RX2000/xlm-roberta-base-finetuned-panx-all
8103b33b17e4abc806b759bad423d90d8d589ca7
2022-04-10T16:07:58.000Z
[ "pytorch", "xlm-roberta", "token-classification", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
token-classification
false
V3RX2000
null
V3RX2000/xlm-roberta-base-finetuned-panx-all
2
null
transformers
25,464
--- license: mit tags: - generated_from_trainer metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-all results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-all This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1759 - F1: 0.8527 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.3038 | 1.0 | 835 | 0.1922 | 0.8065 | | 0.1559 | 2.0 | 1670 | 0.1714 | 0.8422 | | 0.1002 | 3.0 | 2505 | 0.1759 | 0.8527 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3
dennishe97/longformer-code-cl
26d498cb051e0e8e320afd8ac7a2383fd6ea9566
2022-04-23T04:48:09.000Z
[ "pytorch", "longformer", "feature-extraction", "transformers" ]
feature-extraction
false
dennishe97
null
dennishe97/longformer-code-cl
2
null
transformers
25,465
Entry not found
karthajee/fatima_coding_fake_news_22
7f6c8dd1e0137d8a32d4b5fd801808e4d8d3d87f
2022-04-10T19:17:04.000Z
[ "pytorch", "bert", "text-classification", "transformers", "license:mit" ]
text-classification
false
karthajee
null
karthajee/fatima_coding_fake_news_22
2
null
transformers
25,466
--- license: mit --- Hello World! This repo contains a binary file and configuration details of a pretrained BERT model fine tuned on a train set created from 80% samples of true.csv and fake.csv files of the fake news detection challenge, as part of the Fatima Fellowship Application in 2022.
yshAggarwal/finetuning-sentiment-model-3000-samples
f24f41a2f77bf7b5b5c8fc567ae5e509d5e17fe4
2022-04-13T13:43:51.000Z
[ "pytorch", "tensorboard", "roberta", "text-classification", "transformers", "generated_from_trainer", "model-index" ]
text-classification
false
yshAggarwal
null
yshAggarwal/finetuning-sentiment-model-3000-samples
2
null
transformers
25,467
--- tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: finetuning-sentiment-model-3000-samples results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuning-sentiment-model-3000-samples This model is a fine-tuned version of [cardiffnlp/twitter-roberta-base-sentiment](https://huggingface.co/cardiffnlp/twitter-roberta-base-sentiment) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 4.9295 - Accuracy: 0.4568 - Precision: 0.3403 - Recall: 0.3408 - F1: 0.3364 - Classification Report Dict: {'0': {'precision': 0.02911392405063291, 'recall': 0.008808885484488702, 'f1-score': 0.013525433695971773, 'support': 2611}, '1': {'precision': 0.01141552511415525, 'recall': 0.037783375314861464, 'f1-score': 0.017533606078316773, 'support': 794}, '2': {'precision': 0.9802220680083276, 'recall': 0.9758203799654577, 'f1-score': 0.9780162714211529, 'support': 2895}, 'accuracy': 0.4568253968253968, 'macro avg': {'precision': 0.3402505057243719, 'recall': 0.34080421358826923, 'f1-score': 0.3363584370651471, 'support': 6300}, 'weighted avg': {'precision': 0.463940201511262, 'recall': 0.4568253968253968, 'f1-score': 0.4572370946620006, 'support': 6300}} ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 0 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | Classification Report Dict | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:| | 0.2415 | 1.0 | 1838 | 3.9039 | 0.4595 | 0.3445 | 0.3481 | 0.3395 | {'0': {'precision': 0.048302872062663184, 'recall': 0.014170815779394868, 'f1-score': 0.021912940479715724, 'support': 2611}, '1': {'precision': 0.017884322678843226, 'recall': 0.05919395465994962, 'f1-score': 0.027469316189362943, 'support': 794}, '2': {'precision': 0.9673090158293186, 'recall': 0.9709844559585492, 'f1-score': 0.9691432511635926, 'support': 2895}, 'accuracy': 0.4595238095238095, 'macro avg': {'precision': 0.34449873685694166, 'recall': 0.3481164087992979, 'f1-score': 0.3395085026108904, 'support': 6300}, 'weighted avg': {'precision': 0.46677437333150673, 'recall': 0.4595238095238095, 'f1-score': 0.45788810107388767, 'support': 6300}} | | 0.106 | 2.0 | 3676 | 4.4418 | 0.4548 | 0.3412 | 0.3441 | 0.3377 | {'0': {'precision': 0.01937984496124031, 'recall': 0.005744925315970892, 'f1-score': 0.008862629246676513, 'support': 2611}, '1': {'precision': 0.01713221601489758, 'recall': 0.05793450881612091, 'f1-score': 0.026444380569129056, 'support': 794}, '2': {'precision': 0.9869764167546639, 'recall': 0.968566493955095, 'f1-score': 0.9776847977684798, 'support': 2895}, 'accuracy': 0.45476190476190476, 'macro avg': {'precision': 0.34116282591026725, 'recall': 0.34408197602906226, 'f1-score': 0.33766393586142845, 'support': 6300}, 'weighted avg': {'precision': 0.46373023511339345, 'recall': 0.45476190476190476, 'f1-score': 0.4562753416943984, 'support': 6300}} | | 0.0418 | 3.0 | 5514 | 4.5002 | 0.4568 | 0.3404 | 0.3420 | 0.3368 | {'0': {'precision': 0.02802547770700637, 'recall': 0.008425890463423975, 'f1-score': 0.012956419316843343, 'support': 2611}, '1': {'precision': 0.012898330804248861, 'recall': 0.042821158690176324, 'f1-score': 0.019825072886297375, 'support': 794}, '2': {'precision': 0.980201458839875, 'recall': 0.9747841105354059, 'f1-score': 0.9774852788361621, 'support': 2895}, 'accuracy': 0.4568253968253968, 'macro avg': {'precision': 0.3403750891170434, 'recall': 0.34201038656300203, 'f1-score': 0.33675559034643426, 'support': 6300}, 'weighted avg': {'precision': 0.46366651115761987, 'recall': 0.4568253968253968, 'f1-score': 0.4570460636410615, 'support': 6300}} | | 0.0253 | 4.0 | 7352 | 4.9295 | 0.4568 | 0.3403 | 0.3408 | 0.3364 | {'0': {'precision': 0.02911392405063291, 'recall': 0.008808885484488702, 'f1-score': 0.013525433695971773, 'support': 2611}, '1': {'precision': 0.01141552511415525, 'recall': 0.037783375314861464, 'f1-score': 0.017533606078316773, 'support': 794}, '2': {'precision': 0.9802220680083276, 'recall': 0.9758203799654577, 'f1-score': 0.9780162714211529, 'support': 2895}, 'accuracy': 0.4568253968253968, 'macro avg': {'precision': 0.3402505057243719, 'recall': 0.34080421358826923, 'f1-score': 0.3363584370651471, 'support': 6300}, 'weighted avg': {'precision': 0.463940201511262, 'recall': 0.4568253968253968, 'f1-score': 0.4572370946620006, 'support': 6300}} | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.12.1
cj-mills/pegasus-samsum
ef55b6a646f0f2954e20f97fec440926645cc9aa
2022-04-10T20:36:27.000Z
[ "pytorch", "tensorboard", "pegasus", "text2text-generation", "dataset:samsum", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
text2text-generation
false
cj-mills
null
cj-mills/pegasus-samsum
2
null
transformers
25,468
--- tags: - generated_from_trainer datasets: - samsum model-index: - name: pegasus-samsum results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # pegasus-samsum This model is a fine-tuned version of [google/pegasus-cnn_dailymail](https://huggingface.co/google/pegasus-cnn_dailymail) on the samsum dataset. It achieves the following results on the evaluation set: - Loss: 1.4875 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.7431 | 0.54 | 500 | 1.4875 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.11.0 - Datasets 2.0.0 - Tokenizers 0.10.3
osanseviero/distilbert-base-uncased-finetuned-clinc
02d311c9ce6c27a6ad704642d2a5cd69bd06b7e8
2022-04-15T19:59:25.000Z
[ "pytorch", "distilbert", "text-classification", "transformers" ]
text-classification
false
osanseviero
null
osanseviero/distilbert-base-uncased-finetuned-clinc
2
null
transformers
25,469
Entry not found
Pavithra/codeparrot-ds-500sample-gpt-neo-10epoch
24e22ffc5f591078d461f8080bdec6d67c32a01c
2022-04-12T02:48:06.000Z
[ "pytorch", "tensorboard", "gpt_neo", "text-generation", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-generation
false
Pavithra
null
Pavithra/codeparrot-ds-500sample-gpt-neo-10epoch
2
null
transformers
25,470
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: codeparrot-ds-500sample-gpt-neo-10epoch results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # codeparrot-ds-500sample-gpt-neo-10epoch This model is a fine-tuned version of [EleutherAI/gpt-neo-125M](https://huggingface.co/EleutherAI/gpt-neo-125M) on an unknown dataset. It achieves the following results on the evaluation set: - eval_loss: 1.5456 - eval_runtime: 87.6603 - eval_samples_per_second: 149.817 - eval_steps_per_second: 4.689 - epoch: 2.97 - step: 16000 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 256 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 1000 - num_epochs: 10 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
gary109/wav2vec2-base-mirst500
8ebe5404cfaa0fdea96ba4c968d4df45dd13fbae
2022-04-12T05:52:24.000Z
[ "pytorch", "tensorboard", "wav2vec2", "audio-classification", "dataset:mir_st500", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
audio-classification
false
gary109
null
gary109/wav2vec2-base-mirst500
2
null
transformers
25,471
--- license: apache-2.0 tags: - audio-classification - generated_from_trainer datasets: - mir_st500 metrics: - accuracy model-index: - name: wav2vec2-base-mirst500 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-mirst500 This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the /workspace/datasets/datasets/MIR_ST500/MIR_ST500_AUDIO_CLASSIFICATION.py dataset. It achieves the following results on the evaluation set: - Loss: 0.8678 - Accuracy: 0.7017 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 1 - seed: 0 - distributed_type: multi-GPU - num_devices: 2 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - total_eval_batch_size: 2 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.1999 | 1.0 | 1304 | 1.1029 | 0.5877 | | 1.0779 | 2.0 | 2608 | 0.9455 | 0.6555 | | 0.9775 | 3.0 | 3912 | 0.9670 | 0.6523 | | 0.9542 | 4.0 | 5216 | 0.8810 | 0.6946 | | 0.9403 | 5.0 | 6520 | 0.8678 | 0.7017 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.9.1+cu102 - Datasets 2.0.0 - Tokenizers 0.10.3
Saitomar/TrOCR-Vit-Roberta-bn
61b443c4b20e9185a85a7f64ce7b8baf580ebb8f
2022-04-11T08:41:50.000Z
[ "pytorch", "vision-encoder-decoder", "transformers" ]
null
false
Saitomar
null
Saitomar/TrOCR-Vit-Roberta-bn
2
null
transformers
25,472
Entry not found
Saitomar/TrOCR-Vit-Roberta-bn-2
ab8e6a55b9b99b3723974859b795e05185642236
2022-04-11T10:13:50.000Z
[ "pytorch", "vision-encoder-decoder", "transformers" ]
null
false
Saitomar
null
Saitomar/TrOCR-Vit-Roberta-bn-2
2
null
transformers
25,473
Entry not found
optimum/MiniLMv2-L12-H384-finetuned-clinc
efe14b87e334a9e4f8f2c2481fadaf106750a1c6
2022-04-11T10:47:40.000Z
[ "pytorch", "tensorboard", "roberta", "text-classification", "dataset:clinc_oos", "transformers", "generated_from_trainer", "model-index" ]
text-classification
false
optimum
null
optimum/MiniLMv2-L12-H384-finetuned-clinc
2
null
transformers
25,474
--- tags: - generated_from_trainer datasets: - clinc_oos metrics: - accuracy model-index: - name: MiniLMv2-L12-H384-distilled-from-RoBERTa-Large-finetuned-clinc results: - task: name: Text Classification type: text-classification dataset: name: clinc_oos type: clinc_oos args: plus metrics: - name: Accuracy type: accuracy value: 0.9319354838709677 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # MiniLMv2-L12-H384-distilled-from-RoBERTa-Large-finetuned-clinc This model is a fine-tuned version of [nreimers/MiniLMv2-L12-H384-distilled-from-RoBERTa-Large](https://huggingface.co/nreimers/MiniLMv2-L12-H384-distilled-from-RoBERTa-Large) on the clinc_oos dataset. It achieves the following results on the evaluation set: - Loss: 1.5252 - Accuracy: 0.9319 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 256 - eval_batch_size: 256 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 60 | 4.6555 | 0.1887 | | No log | 2.0 | 120 | 3.8771 | 0.4784 | | No log | 3.0 | 180 | 3.2507 | 0.7352 | | 3.9668 | 4.0 | 240 | 2.7445 | 0.8365 | | 3.9668 | 5.0 | 300 | 2.3475 | 0.8865 | | 3.9668 | 6.0 | 360 | 2.0370 | 0.8926 | | 3.9668 | 7.0 | 420 | 1.8099 | 0.9145 | | 2.0924 | 8.0 | 480 | 1.6433 | 0.9190 | | 2.0924 | 9.0 | 540 | 1.5563 | 0.9281 | | 2.0924 | 10.0 | 600 | 1.5252 | 0.9319 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.11.0 - Datasets 1.16.1 - Tokenizers 0.10.3
maximedb/latexical
dbf8b35d515b796b7d0ae4c286f90a860702d0e4
2022-04-11T12:07:10.000Z
[ "pytorch", "bert", "transformers" ]
null
false
maximedb
null
maximedb/latexical
2
null
transformers
25,475
Entry not found
ZZ99/tapt_nbme_deberta_v3_base
84cf3925da301455c7035d8372f5284850145a50
2022-04-19T21:18:00.000Z
[ "pytorch", "deberta-v2", "fill-mask", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
fill-mask
false
ZZ99
null
ZZ99/tapt_nbme_deberta_v3_base
2
null
transformers
25,476
--- license: mit tags: - generated_from_trainer metrics: - accuracy model-index: - name: test-mlm results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # test-mlm This model is a fine-tuned version of [microsoft/deberta-v3-base](https://huggingface.co/microsoft/deberta-v3-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.0870 - Accuracy: 0.7576 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.18.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 2.0.0 - Tokenizers 0.11.6
rinapch/distilbert-media-bias
24ff8adc2b536f92164f9c813677f70be2c2fe3a
2022-04-11T15:36:47.000Z
[ "pytorch", "distilbert", "text-classification", "transformers", "license:cc-by-sa-4.0" ]
text-classification
false
rinapch
null
rinapch/distilbert-media-bias
2
null
transformers
25,477
--- license: cc-by-sa-4.0 ---
Chikashi/t5-small-finetuned-wikihow_3epoch_b8_lr3e-5
7c52ad337d6471648dba745daebc2d670d452d26
2022-04-12T01:50:53.000Z
[ "pytorch", "tensorboard", "t5", "text2text-generation", "dataset:wikihow", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
text2text-generation
false
Chikashi
null
Chikashi/t5-small-finetuned-wikihow_3epoch_b8_lr3e-5
2
null
transformers
25,478
--- license: apache-2.0 tags: - generated_from_trainer datasets: - wikihow metrics: - rouge model-index: - name: t5-small-finetuned-wikihow_3epoch_b8_lr3e-5 results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: wikihow type: wikihow args: all metrics: - name: Rouge1 type: rouge value: 25.9411 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-wikihow_3epoch_b8_lr3e-5 This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the wikihow dataset. It achieves the following results on the evaluation set: - Loss: 2.4836 - Rouge1: 25.9411 - Rouge2: 9.226 - Rougel: 21.9087 - Rougelsum: 25.2863 - Gen Len: 18.4076 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:------:|:-------:|:---------:|:-------:| | 2.912 | 0.25 | 5000 | 2.6285 | 23.6659 | 7.8535 | 19.9837 | 22.9884 | 18.3867 | | 2.8115 | 0.51 | 10000 | 2.5820 | 24.7979 | 8.4888 | 20.8719 | 24.1321 | 18.3292 | | 2.767 | 0.76 | 15000 | 2.5555 | 25.0857 | 8.6437 | 21.149 | 24.4256 | 18.2981 | | 2.742 | 1.02 | 20000 | 2.5330 | 25.3431 | 8.8393 | 21.425 | 24.7032 | 18.3749 | | 2.7092 | 1.27 | 25000 | 2.5203 | 25.5338 | 8.9281 | 21.5378 | 24.9045 | 18.3399 | | 2.6989 | 1.53 | 30000 | 2.5065 | 25.4792 | 8.9745 | 21.4941 | 24.8458 | 18.4565 | | 2.6894 | 1.78 | 35000 | 2.5018 | 25.6815 | 9.1218 | 21.6958 | 25.0557 | 18.406 | | 2.6897 | 2.03 | 40000 | 2.4944 | 25.8241 | 9.2127 | 21.8205 | 25.1801 | 18.4228 | | 2.6664 | 2.29 | 45000 | 2.4891 | 25.8241 | 9.1662 | 21.7807 | 25.1615 | 18.4258 | | 2.6677 | 2.54 | 50000 | 2.4855 | 25.7435 | 9.145 | 21.765 | 25.0858 | 18.4329 | | 2.6631 | 2.8 | 55000 | 2.4836 | 25.9411 | 9.226 | 21.9087 | 25.2863 | 18.4076 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
irmgnrtop/xlm-roberta-base-finetuned-mlm-accelerate
c2ba8bb419bf4f87614881a25811613ceaf95c4f
2022-04-11T19:51:40.000Z
[ "pytorch", "xlm-roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
irmgnrtop
null
irmgnrtop/xlm-roberta-base-finetuned-mlm-accelerate
2
null
transformers
25,479
Entry not found
adasnew/t5-small-xsum
58fcedfd601516b10232113584c1a949b120226d
2022-04-11T22:35:12.000Z
[ "pytorch", "tensorboard", "t5", "text2text-generation", "dataset:xsum", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
text2text-generation
false
adasnew
null
adasnew/t5-small-xsum
2
null
transformers
25,480
--- license: apache-2.0 tags: - generated_from_trainer datasets: - xsum model-index: - name: t5-small-xsum results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-xsum This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the xsum dataset. It achieves the following results on the evaluation set: - Loss: 2.3953 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 2.8641 | 0.04 | 500 | 2.6202 | | 2.7466 | 0.08 | 1000 | 2.5660 | | 2.8767 | 0.12 | 1500 | 2.5319 | | 2.7099 | 0.16 | 2000 | 2.5107 | | 2.7752 | 0.2 | 2500 | 2.4922 | | 2.6037 | 0.24 | 3000 | 2.4800 | | 2.8236 | 0.27 | 3500 | 2.4677 | | 2.7089 | 0.31 | 4000 | 2.4581 | | 2.7299 | 0.35 | 4500 | 2.4498 | | 2.7498 | 0.39 | 5000 | 2.4420 | | 2.6186 | 0.43 | 5500 | 2.4346 | | 2.7817 | 0.47 | 6000 | 2.4288 | | 2.5559 | 0.51 | 6500 | 2.4239 | | 2.6725 | 0.55 | 7000 | 2.4186 | | 2.6316 | 0.59 | 7500 | 2.4149 | | 2.5561 | 0.63 | 8000 | 2.4115 | | 2.5708 | 0.67 | 8500 | 2.4097 | | 2.5861 | 0.71 | 9000 | 2.4052 | | 2.6363 | 0.74 | 9500 | 2.4024 | | 2.7435 | 0.78 | 10000 | 2.4003 | | 2.7258 | 0.82 | 10500 | 2.3992 | | 2.6113 | 0.86 | 11000 | 2.3983 | | 2.6006 | 0.9 | 11500 | 2.3972 | | 2.5684 | 0.94 | 12000 | 2.3960 | | 2.6181 | 0.98 | 12500 | 2.3953 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
Danastos/triviaqa_bert_el
d1ec76b092fcf055f9c032c23414dc0f8b43a6e8
2022-04-12T10:50:24.000Z
[ "pytorch", "tensorboard", "bert", "question-answering", "dataset:Danastos/triviaqa_el_custom", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
question-answering
false
Danastos
null
Danastos/triviaqa_bert_el
2
null
transformers
25,481
--- tags: - generated_from_trainer datasets: - Danastos/triviaqa_el_custom model-index: - name: triviaqa_bert_el results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # triviaqa_bert_el This model is a fine-tuned version of [Danastos/triviaqa_bert_el](https://huggingface.co/Danastos/triviaqa_bert_el) on the Danastos/triviaqa_el_custom dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Framework versions - Transformers 4.19.0.dev0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
mT0/mt0_xl_default_mixture_ckpt_1025000
ea57ff7dd3e41c698cfb0ebe65c3333f2eeff285
2022-04-11T21:14:11.000Z
[ "pytorch", "mt5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
mT0
null
mT0/mt0_xl_default_mixture_ckpt_1025000
2
null
transformers
25,482
Entry not found
Kuray107/ls-timit-wsj0-100percent-supervised-meta
18a726a218ac0c06b2181e0d780f7f88588d2bfd
2022-04-12T11:19:25.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "model-index" ]
automatic-speech-recognition
false
Kuray107
null
Kuray107/ls-timit-wsj0-100percent-supervised-meta
2
null
transformers
25,483
--- tags: - generated_from_trainer model-index: - name: ls-timit-wsj0-100percent-supervised-meta results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ls-timit-wsj0-100percent-supervised-meta This model was trained from scratch on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0531 - Wer: 0.0214 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.1618 | 4.57 | 1000 | 0.0500 | 0.0432 | | 0.0489 | 9.13 | 2000 | 0.0535 | 0.0291 | | 0.0306 | 13.7 | 3000 | 0.0478 | 0.0275 | | 0.0231 | 18.26 | 4000 | 0.0531 | 0.0214 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.2 - Datasets 1.18.2 - Tokenizers 0.10.3
chiba/electra-small-japanese-discriminator_test
565a76b32dc0349c4a96a8882c613522f76897a4
2022-04-12T02:46:41.000Z
[ "pytorch", "electra", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
chiba
null
chiba/electra-small-japanese-discriminator_test
2
null
transformers
25,484
Entry not found
Splend1dchan/wav2vec2-large-100h-lv60-self
42ff3ad24ac9144911b947e82dca60f651cad37d
2022-05-30T04:39:28.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "en", "dataset:librispeech_asr", "arxiv:2010.11430", "arxiv:2006.11477", "transformers", "speech", "audio", "hf-asr-leaderboard", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
Splend1dchan
null
Splend1dchan/wav2vec2-large-100h-lv60-self
2
null
transformers
25,485
--- language: en datasets: - librispeech_asr tags: - speech - audio - automatic-speech-recognition - hf-asr-leaderboard license: apache-2.0 model-index: - name: wav2vec2-large-100h-lv60 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Librispeech (clean) type: librispeech_asr args: en metrics: - name: Test WER type: wer value: None --- # Wav2Vec2-Large-100h-Lv60 + Self-Training # This is a direct state_dict transfer from fairseq to huggingface, the weights are identical [Facebook's Wav2Vec2](https://ai.facebook.com/blog/wav2vec-20-learning-the-structure-of-speech-from-raw-audio/) The large model pretrained and fine-tuned on 100 hours of Libri-Light and Librispeech on 16kHz sampled speech audio. Model was trained with [Self-Training objective](https://arxiv.org/abs/2010.11430). When using the model make sure that your speech input is also sampled at 16Khz. [Paper](https://arxiv.org/abs/2006.11477) Authors: Alexei Baevski, Henry Zhou, Abdelrahman Mohamed, Michael Auli **Abstract** They show for the first time that learning powerful representations from speech audio alone followed by fine-tuning on transcribed speech can outperform the best semi-supervised methods while being conceptually simpler. wav2vec 2.0 masks the speech input in the latent space and solves a contrastive task defined over a quantization of the latent representations which are jointly learned. Experiments using all labeled data of Librispeech achieve 1.8/3.3 WER on the clean/other test sets. When lowering the amount of labeled data to one hour, wav2vec 2.0 outperforms the previous state of the art on the 100 hour subset while using 100 times less labeled data. Using just ten minutes of labeled data and pre-training on 53k hours of unlabeled data still achieves 4.8/8.2 WER. This demonstrates the feasibility of speech recognition with limited amounts of labeled data. The original model can be found under https://github.com/pytorch/fairseq/tree/master/examples/wav2vec#wav2vec-20. # Usage To transcribe audio files the model can be used as a standalone acoustic model as follows: ```python from transformers import Wav2Vec2Processor, Wav2Vec2ForCTC from datasets import load_dataset import torch # load model and processor processor = Wav2Vec2Processor.from_pretrained("Splend1dchan/wav2vec2-large-100h-lv60-self") model = Wav2Vec2ForCTC.from_pretrained("Splend1dchan/wav2vec2-large-100h-lv60-self") # load dummy dataset and read soundfiles ds = load_dataset("patrickvonplaten/librispeech_asr_dummy", "clean", split="validation") # tokenize input_values = processor(ds[0]["audio"]["array"], return_tensors="pt", padding="longest").input_values # retrieve logits logits = model(input_values).logits # take argmax and decode predicted_ids = torch.argmax(logits, dim=-1) transcription = processor.batch_decode(predicted_ids) ``` ## Evaluation This code snippet shows how to evaluate facebook's **Splend1dchan/wav2vec2-large-100h-lv60-self** on LibriSpeech's "clean" and "other" test data. ```python from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import torch from jiwer import wer librispeech_eval = load_dataset("librispeech_asr", "clean", split="test") model = Wav2Vec2ForCTC.from_pretrained("Splend1dchan/wav2vec2-large-100h-lv60-self").to("cuda") processor = Wav2Vec2Processor.from_pretrained("Splend1dchan/wav2vec2-large-100h-lv60-self") def map_to_pred(batch): inputs = processor(batch["audio"]["array"], return_tensors="pt", padding="longest") input_values = inputs.input_values.to("cuda") attention_mask = inputs.attention_mask.to("cuda") with torch.no_grad(): logits = model(input_values, attention_mask=attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) transcription = processor.batch_decode(predicted_ids) batch["transcription"] = transcription return batch result = librispeech_eval.map(map_to_pred, remove_columns=["speech"]) print("WER:", wer(result["text"], result["transcription"])) ``` <!-- *Result (WER)*: | "clean" | "other" | |---|---| | untested | untested | -->
jurader/autotrain-livedoor_news-732022289
a0b883339396491d26445490e28e1b7317bec603
2022-04-12T08:07:57.000Z
[ "pytorch", "bert", "text-classification", "ja", "dataset:jurader/autotrain-data-livedoor_news", "transformers", "autotrain", "co2_eq_emissions" ]
text-classification
false
jurader
null
jurader/autotrain-livedoor_news-732022289
2
1
transformers
25,486
--- tags: autotrain language: ja widget: - text: "I love AutoTrain 🤗" datasets: - jurader/autotrain-data-livedoor_news co2_eq_emissions: 0.02886635131127639 --- # Model Trained Using AutoTrain - Problem type: Multi-class Classification - Model ID: 732022289 - CO2 Emissions (in grams): 0.02886635131127639 ## Validation Metrics - Loss: 0.19849611818790436 - Accuracy: 0.9471186440677966 - Macro F1: 0.9441816841379956 - Micro F1: 0.9471186440677966 - Weighted F1: 0.9470801715002611 - Macro Precision: 0.945983665608131 - Micro Precision: 0.9471186440677966 - Weighted Precision: 0.9475574732458715 - Macro Recall: 0.9429694962141204 - Micro Recall: 0.9471186440677966 - Weighted Recall: 0.9471186440677966 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/jurader/autotrain-livedoor_news-732022289 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("jurader/autotrain-livedoor_news-732022289", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("jurader/autotrain-livedoor_news-732022289", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
lewtun/roberta-large-finetuned-clinc-1
66b8e0c066b2a6bbecf6ccb351d12071b6d125ee
2022-04-12T09:43:04.000Z
[ "pytorch", "tensorboard", "roberta", "text-classification", "transformers" ]
text-classification
false
lewtun
null
lewtun/roberta-large-finetuned-clinc-1
2
null
transformers
25,487
Entry not found
satish860/distilbert-base-uncased-finetuned-emotion
9d6e9565f617690dc7a3748a70268316c9d9d3a8
2022-04-23T05:21:30.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "transformers" ]
text-classification
false
satish860
null
satish860/distilbert-base-uncased-finetuned-emotion
2
null
transformers
25,488
Entry not found
lewtun/roberta-large-finetuned-clinc-12
5d96325ba51cd64813627f80a921d3ff41c65206
2022-04-12T10:17:16.000Z
[ "pytorch", "tensorboard", "roberta", "text-classification", "dataset:clinc_oos", "transformers", "generated_from_trainer", "license:mit", "model-index" ]
text-classification
false
lewtun
null
lewtun/roberta-large-finetuned-clinc-12
2
null
transformers
25,489
--- license: mit tags: - generated_from_trainer datasets: - clinc_oos metrics: - accuracy model-index: - name: roberta-large-finetuned-clinc-12 results: - task: name: Text Classification type: text-classification dataset: name: clinc_oos type: clinc_oos args: plus metrics: - name: Accuracy type: accuracy value: 0.9764516129032258 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-large-finetuned-clinc-12 This model is a fine-tuned version of [roberta-large](https://huggingface.co/roberta-large) on the clinc_oos dataset. It achieves the following results on the evaluation set: - Loss: 0.1429 - Accuracy: 0.9765 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.8662 | 1.0 | 954 | 0.3441 | 0.9339 | | 0.158 | 2.0 | 1908 | 0.1498 | 0.9742 | | 0.0469 | 3.0 | 2862 | 0.1429 | 0.9765 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.2+cu113 - Datasets 1.18.4 - Tokenizers 0.11.6
chiba/electra-small-japanese-generator_same_prepare
2a819039ea83a96b85b50d155673bba9f63dbb29
2022-04-13T06:55:13.000Z
[ "pytorch", "electra", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
chiba
null
chiba/electra-small-japanese-generator_same_prepare
2
null
transformers
25,490
Entry not found
lewtun/roberta-large-finetuned-clinc-123
4fff4a85a5faf88941ce20d752234c2139e1619e
2022-04-12T12:05:51.000Z
[ "pytorch", "tensorboard", "roberta", "text-classification", "dataset:clinc_oos", "transformers", "generated_from_trainer", "license:mit", "model-index" ]
text-classification
false
lewtun
null
lewtun/roberta-large-finetuned-clinc-123
2
null
transformers
25,491
--- license: mit tags: - generated_from_trainer datasets: - clinc_oos metrics: - accuracy model-index: - name: roberta-large-finetuned-clinc-123 results: - task: name: Text Classification type: text-classification dataset: name: clinc_oos type: clinc_oos args: plus metrics: - name: Accuracy type: accuracy value: 0.925483870967742 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-large-finetuned-clinc-123 This model is a fine-tuned version of [roberta-large](https://huggingface.co/roberta-large) on the clinc_oos dataset. It achieves the following results on the evaluation set: - Loss: 0.7226 - Accuracy: 0.9255 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - distributed_type: sagemaker_data_parallel - num_devices: 8 - total_train_batch_size: 128 - total_eval_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 5.0576 | 1.0 | 120 | 5.0269 | 0.0068 | | 4.5101 | 2.0 | 240 | 2.9324 | 0.7158 | | 1.9757 | 3.0 | 360 | 0.7226 | 0.9255 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.2+cu113 - Datasets 1.18.4 - Tokenizers 0.11.6
lewtun/roberta-large-finetuned-clinc-1234
698c5ed5a99e57e47265b43dbe672e8f6b0934af
2022-04-12T12:28:09.000Z
[ "pytorch", "tensorboard", "roberta", "text-classification", "transformers" ]
text-classification
false
lewtun
null
lewtun/roberta-large-finetuned-clinc-1234
2
null
transformers
25,492
Entry not found
lewtun/roberta-large-finetuned-clinc-12345
bcae84b4d6c81b3d70b71694d90bf8a6549e1a1a
2022-04-12T12:47:44.000Z
[ "pytorch", "tensorboard", "roberta", "text-classification", "transformers" ]
text-classification
false
lewtun
null
lewtun/roberta-large-finetuned-clinc-12345
2
null
transformers
25,493
Entry not found
lewtun/roberta-large-finetuned-clinc-123456
8d8edb8a585b9252e2f8ebc48a9d848415856818
2022-04-12T13:10:11.000Z
[ "pytorch", "tensorboard", "roberta", "text-classification", "transformers" ]
text-classification
false
lewtun
null
lewtun/roberta-large-finetuned-clinc-123456
2
null
transformers
25,494
Entry not found
lewtun/roberta-large-finetuned-clinc-1234567
7bf30ef08d20466d6fcd7acce7a45243e30558fc
2022-04-12T13:23:48.000Z
[ "pytorch", "tensorboard", "roberta", "text-classification", "transformers" ]
text-classification
false
lewtun
null
lewtun/roberta-large-finetuned-clinc-1234567
2
null
transformers
25,495
Entry not found
lewtun/roberta-large-finetuned-clinc-314
38662ea5266b6759fcaf8f51d3e87ee1c1ebd4cd
2022-04-12T15:02:31.000Z
[ "pytorch", "tensorboard", "roberta", "text-classification", "dataset:clinc_oos", "transformers", "generated_from_trainer", "license:mit", "model-index" ]
text-classification
false
lewtun
null
lewtun/roberta-large-finetuned-clinc-314
2
null
transformers
25,496
--- license: mit tags: - generated_from_trainer datasets: - clinc_oos metrics: - accuracy model-index: - name: roberta-large-finetuned-clinc-314 results: - task: name: Text Classification type: text-classification dataset: name: clinc_oos type: clinc_oos args: plus metrics: - name: Accuracy type: accuracy value: 0.932258064516129 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-large-finetuned-clinc-314 This model is a fine-tuned version of [roberta-large](https://huggingface.co/roberta-large) on the clinc_oos dataset. It achieves the following results on the evaluation set: - Loss: 0.7983 - Accuracy: 0.9323 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - distributed_type: sagemaker_data_parallel - num_devices: 8 - total_train_batch_size: 128 - total_eval_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 5.0674 | 1.0 | 120 | 5.0406 | 0.0061 | | 4.566 | 2.0 | 240 | 3.0712 | 0.7316 | | 2.1553 | 3.0 | 360 | 0.7983 | 0.9323 | ### Framework versions - Transformers 4.12.3 - Pytorch 1.9.1 - Datasets 1.15.1 - Tokenizers 0.10.3
lewtun/roberta-large-finetuned-clinc-3141
bf9a8a004b60e1a2a4f578d9d47a44d7741caacc
2022-04-12T15:33:05.000Z
[ "pytorch", "tensorboard", "roberta", "text-classification", "dataset:clinc_oos", "transformers", "generated_from_trainer", "license:mit", "model-index" ]
text-classification
false
lewtun
null
lewtun/roberta-large-finetuned-clinc-3141
2
null
transformers
25,497
--- license: mit tags: - generated_from_trainer datasets: - clinc_oos metrics: - accuracy model-index: - name: roberta-large-finetuned-clinc-3141 results: - task: name: Text Classification type: text-classification dataset: name: clinc_oos type: clinc_oos args: plus metrics: - name: Accuracy type: accuracy value: 0.9738709677419355 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-large-finetuned-clinc-3141 This model is a fine-tuned version of [roberta-large](https://huggingface.co/roberta-large) on the clinc_oos dataset. It achieves the following results on the evaluation set: - Loss: 0.1533 - Accuracy: 0.9739 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.6064 | 1.0 | 954 | 0.3041 | 0.9368 | | 0.1392 | 2.0 | 1908 | 0.1590 | 0.9723 | | 0.044 | 3.0 | 2862 | 0.1533 | 0.9739 | ### Framework versions - Transformers 4.12.3 - Pytorch 1.9.1 - Datasets 1.15.1 - Tokenizers 0.10.3
xieb0001/distilbert-base-uncased-finetuned-cola
6b38e02f18b62f2a7c8d4b5b660e6fe4233f6600
2022-04-17T17:29:55.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:glue", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
xieb0001
null
xieb0001/distilbert-base-uncased-finetuned-cola
2
null
transformers
25,498
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - matthews_correlation model-index: - name: distilbert-base-uncased-finetuned-cola results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue args: cola metrics: - name: Matthews Correlation type: matthews_correlation value: 0.5504031254980248 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-cola This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.8208 - Matthews Correlation: 0.5504 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.5298 | 1.0 | 535 | 0.5310 | 0.4254 | | 0.3522 | 2.0 | 1070 | 0.4959 | 0.5339 | | 0.2358 | 3.0 | 1605 | 0.6418 | 0.5171 | | 0.1741 | 4.0 | 2140 | 0.7327 | 0.5472 | | 0.1273 | 5.0 | 2675 | 0.8208 | 0.5504 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.0+cu111 - Datasets 2.1.0 - Tokenizers 0.12.1
kabelomalapane/test_model1.2_update
68ddccf29b7bf66274d4a25399124dca96bf9d70
2022-04-13T18:04:46.000Z
[ "pytorch", "tensorboard", "marian", "text2text-generation", "transformers", "translation", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
translation
false
kabelomalapane
null
kabelomalapane/test_model1.2_update
2
null
transformers
25,499
--- license: apache-2.0 tags: - translation - generated_from_trainer metrics: - bleu model-index: - name: test_model1.2_update results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # test_model1.2_update This model is a fine-tuned version of [Helsinki-NLP/opus-mt-mul-en](https://huggingface.co/Helsinki-NLP/opus-mt-mul-en) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.6296 - Bleu: 4.0505 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.2 - Datasets 1.18.3 - Tokenizers 0.11.0