modelId
stringlengths
4
112
sha
stringlengths
40
40
lastModified
stringlengths
24
24
tags
sequence
pipeline_tag
stringclasses
29 values
private
bool
1 class
author
stringlengths
2
38
config
null
id
stringlengths
4
112
downloads
float64
0
36.8M
likes
float64
0
712
library_name
stringclasses
17 values
__index_level_0__
int64
0
38.5k
readme
stringlengths
0
186k
richardc7/electricidad-small-finetuned-amazon-review-classification
31f9a7d87367091f5fd0a911eda74ca99f0268ed
2022-03-19T15:29:47.000Z
[ "pytorch", "tensorboard", "electra", "text-classification", "dataset:amazon_reviews_multi", "transformers", "generated_from_trainer", "model-index" ]
text-classification
false
richardc7
null
richardc7/electricidad-small-finetuned-amazon-review-classification
2
null
transformers
25,200
--- tags: - generated_from_trainer datasets: - amazon_reviews_multi metrics: - accuracy model-index: - name: electricidad-small-finetuned-amazon-review-classification results: - task: name: Text Classification type: text-classification dataset: name: amazon_reviews_multi type: amazon_reviews_multi args: es metrics: - name: Accuracy type: accuracy value: 0.581 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # electricidad-small-finetuned-amazon-review-classification This model is a fine-tuned version of [mrm8488/electricidad-small-discriminator](https://huggingface.co/mrm8488/electricidad-small-discriminator) on the amazon_reviews_multi dataset. It achieves the following results on the evaluation set: - Loss: 0.9601 - Accuracy: 0.581 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 1.0136 | 1.0 | 25000 | 1.0153 | 0.5414 | | 0.9416 | 2.0 | 50000 | 0.9942 | 0.5576 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
Rustem/roberta-large-copy
938e065994b9031662aeb753d58d7c1c928ba4a6
2022-03-17T13:41:37.000Z
[ "pytorch", "tf", "jax", "roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
Rustem
null
Rustem/roberta-large-copy
2
null
transformers
25,201
Entry not found
transZ/BART_shared_clean
ae246f81b65c0edf62353894e2f6a768ddadcd6f
2022-04-15T14:30:26.000Z
[ "pytorch", "shared_bart", "transformers" ]
null
false
transZ
null
transZ/BART_shared_clean
2
null
transformers
25,202
Entry not found
sanchit-gandhi/wav2vec2-2-gpt2-regularisation
546a77bf239b5cf3c2c4bb6e0e9fe96cbdf885ec
2022-03-19T17:11:48.000Z
[ "pytorch", "tensorboard", "speech-encoder-decoder", "automatic-speech-recognition", "dataset:librispeech_asr", "transformers", "generated_from_trainer", "model-index" ]
automatic-speech-recognition
false
sanchit-gandhi
null
sanchit-gandhi/wav2vec2-2-gpt2-regularisation
2
null
transformers
25,203
--- tags: - generated_from_trainer datasets: - librispeech_asr model-index: - name: '' results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model was trained from scratch on the librispeech_asr dataset. It achieves the following results on the evaluation set: - Loss: 1.8529 - Wer: 0.9977 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 20.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 3.5506 | 2.8 | 2500 | 4.4928 | 1.8772 | | 0.5145 | 5.61 | 5000 | 1.8942 | 1.1063 | | 0.2736 | 8.41 | 7500 | 1.6550 | 1.0372 | | 0.0807 | 11.21 | 10000 | 1.7601 | 1.0004 | | 0.0439 | 14.01 | 12500 | 1.8014 | 1.0022 | | 0.043 | 16.82 | 15000 | 1.8534 | 1.0097 | | 0.0434 | 19.62 | 17500 | 1.8529 | 0.9977 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu113 - Datasets 1.18.3 - Tokenizers 0.11.0
Ameer05/cloned-bart-large-cnn
07961554f64aa7de504de59ae7da7aea201f97ac
2022-03-17T17:40:48.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
Ameer05
null
Ameer05/cloned-bart-large-cnn
2
null
transformers
25,204
Entry not found
internetoftim/bert-large-uncased-squad
d767b5fd7c4dcc4dc500fc1d60cfafbdad4fa699
2022-04-01T18:11:31.000Z
[ "pytorch", "bert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
internetoftim
null
internetoftim/bert-large-uncased-squad
2
null
transformers
25,205
Entry not found
cammy/PRIMERA-100-MDS
7c5e49c23e5b85204b97100266894ddf522db529
2022-03-17T18:41:49.000Z
[ "pytorch", "tensorboard", "led", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
cammy
null
cammy/PRIMERA-100-MDS
2
null
transformers
25,206
Entry not found
saghar/MiniLMv2-L6-H384-distilled-from-RoBERTa-Large-finetuned-wikitext103
6d32f756418091813e32cb6777be209c3fd12d96
2022-03-18T02:24:28.000Z
[ "pytorch", "roberta", "fill-mask", "dataset:wikitext", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
fill-mask
false
saghar
null
saghar/MiniLMv2-L6-H384-distilled-from-RoBERTa-Large-finetuned-wikitext103
2
null
transformers
25,207
--- tags: - generated_from_trainer datasets: - wikitext model-index: - name: MiniLMv2-L6-H384-distilled-from-RoBERTa-Large-finetuned-wikitext103 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # MiniLMv2-L6-H384-distilled-from-RoBERTa-Large-finetuned-wikitext103 This model is a fine-tuned version of [nreimers/MiniLMv2-L6-H384-distilled-from-RoBERTa-Large](https://huggingface.co/nreimers/MiniLMv2-L6-H384-distilled-from-RoBERTa-Large) on the wikitext dataset. It achieves the following results on the evaluation set: - Loss: 4.8236 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 5.9694 | 1.0 | 3125 | 5.1757 | | 5.2228 | 2.0 | 6250 | 4.8847 | | 5.0653 | 3.0 | 9375 | 4.8236 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.8.1 - Datasets 1.11.0 - Tokenizers 0.10.3
BigSalmon/InformalToFormalLincoln27
5f1765ce8553bd45e1a7eadc5efe0281f04e9442
2022-03-18T02:40:27.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
BigSalmon
null
BigSalmon/InformalToFormalLincoln27
2
null
transformers
25,208
``` from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("BigSalmon/InformalToFormalLincoln27") model = AutoModelForCausalLM.from_pretrained("BigSalmon/InformalToFormalLincoln27") ``` ``` How To Make Prompt: informal english: i am very ready to do that just that. Translated into the Style of Abraham Lincoln: you can assure yourself of my readiness to work toward this end. Translated into the Style of Abraham Lincoln: please be assured that i am most ready to undertake this laborious task. *** informal english: space is huge and needs to be explored. Translated into the Style of Abraham Lincoln: space awaits traversal, a new world whose boundaries are endless. Translated into the Style of Abraham Lincoln: space is a ( limitless / boundless ) expanse, a vast virgin domain awaiting exploration. *** informal english: corn fields are all across illinois, visible once you leave chicago. Translated into the Style of Abraham Lincoln: corn fields ( permeate illinois / span the state of illinois / ( occupy / persist in ) all corners of illinois / line the horizon of illinois / envelop the landscape of illinois ), manifesting themselves visibly as one ventures beyond chicago. informal english: ``` ``` - declining viewership facing the nba. - does not have to be this way. - in fact, many solutions exist. - the four point line would surely draw in eyes. Text: failing to draw in the masses, the NBA has fallen into disrepair. such does not have to be the case, however. in fact, a myriad of simple, relatively cheap solutions could revive the league. the addition of the much-hyped four-point line would surely juice viewership. *** - ``` ``` infill: chrome extensions [MASK] accomplish everyday tasks. Translated into the Style of Abraham Lincoln: chrome extensions ( expedite the ability to / unlock the means to more readily ) accomplish everyday tasks. infill: at a time when nintendo has become inflexible, [MASK] consoles that are tethered to a fixed iteration, sega diligently curates its legacy of classic video games on handheld devices. Translated into the Style of Abraham Lincoln: at a time when nintendo has become inflexible, ( stubbornly [MASK] on / firmly set on / unyielding in its insistence on ) consoles that are tethered to a fixed iteration, sega diligently curates its legacy of classic video games on handheld devices. infill: ``` ``` Essay Intro (Warriors vs. Rockets in Game 7): text: eagerly anticipated by fans, game 7's are the highlight of the post-season. text: ever-building in suspense, game 7's have the crowd captivated. *** Essay Intro (South Korean TV Is Becoming Popular): text: maturing into a bona fide paragon of programming, south korean television ( has much to offer / entertains without fail / never disappoints ). text: increasingly held in critical esteem, south korean television continues to impress. text: at the forefront of quality content, south korea is quickly achieving celebrity status. *** Essay Intro ( ``` ``` Search: What is the definition of Checks and Balances? https://en.wikipedia.org/wiki/Checks_and_balances Checks and Balances is the idea of having a system where each and every action in government should be subject to one or more checks that would not allow one branch or the other to overly dominate. https://www.harvard.edu/glossary/Checks_and_Balances Checks and Balances is a system that allows each branch of government to limit the powers of the other branches in order to prevent abuse of power https://www.law.cornell.edu/library/constitution/Checks_and_Balances Checks and Balances is a system of separation through which branches of government can control the other, thus preventing excess power. *** Search: What is the definition of Separation of Powers? https://en.wikipedia.org/wiki/Separation_of_powers The separation of powers is a principle in government, whereby governmental powers are separated into different branches, each with their own set of powers, that are prevent one branch from aggregating too much power. https://www.yale.edu/tcf/Separation_of_Powers.html Separation of Powers is the division of governmental functions between the executive, legislative and judicial branches, clearly demarcating each branch's authority, in the interest of ensuring that individual liberty or security is not undermined. *** Search: What is the definition of Connection of Powers? https://en.wikipedia.org/wiki/Connection_of_powers Connection of Powers is a feature of some parliamentary forms of government where different branches of government are intermingled, typically the executive and legislative branches. https://simple.wikipedia.org/wiki/Connection_of_powers The term Connection of Powers describes a system of government in which there is overlap between different parts of the government. *** Search: What is the definition of ``` ``` Search: What are phrase synonyms for "second-guess"? https://www.powerthesaurus.org/second-guess/synonyms Shortest to Longest: - feel dubious about - raise an eyebrow at - wrinkle their noses at - cast a jaundiced eye at - teeter on the fence about *** Search: What are phrase synonyms for "mean to newbies"? https://www.powerthesaurus.org/mean_to_newbies/synonyms Shortest to Longest: - readiness to balk at rookies - absence of tolerance for novices - hostile attitude toward newcomers *** Search: What are phrase synonyms for "make use of"? https://www.powerthesaurus.org/make_use_of/synonyms Shortest to Longest: - call upon - glean value from - reap benefits from - derive utility from - seize on the merits of - draw on the strength of - tap into the potential of *** Search: What are phrase synonyms for "hurting itself"? https://www.powerthesaurus.org/hurting_itself/synonyms Shortest to Longest: - erring - slighting itself - forfeiting its integrity - doing itself a disservice - evincing a lack of backbone *** Search: What are phrase synonyms for " ``` ``` - declining viewership facing the nba. - does not have to be this way. - in fact, many solutions exist. - the four point line would surely draw in eyes. text: failing to draw in the masses, the nba has ( fallen into / succumb to / bowed to ) disrepair. such does not have to be the case, however. in fact, a myriad of simple, relatively cheap ( solutions / interventions / enhancements ) could revive the league. the addition of the much-hyped four-point line would surely juice viewership. *** - ``` ``` original: sports teams are profitable for owners. [MASK], their valuations experience a dramatic uptick. infill: sports teams are profitable for owners. ( accumulating vast sums / stockpiling treasure / realizing benefits / cashing in / registering robust financials / scoring on balance sheets ), their valuations experience a dramatic uptick. *** original: ```
cammy/PRIMERA-100-MDS-own
162efd4d14155b6e0da61a8ecd331eee46917ea9
2022-03-18T08:17:47.000Z
[ "pytorch", "tensorboard", "led", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
cammy
null
cammy/PRIMERA-100-MDS-own
2
null
transformers
25,209
Entry not found
moshew/paraphrase-mpnet-base-v2_SetFit_sst2
cc9ecc9f22dae10ea5be134b5f70e76368f09e3f
2022-03-18T07:53:15.000Z
[ "pytorch", "mpnet", "feature-extraction", "sentence-transformers", "sentence-similarity", "transformers" ]
sentence-similarity
false
moshew
null
moshew/paraphrase-mpnet-base-v2_SetFit_sst2
2
1
sentence-transformers
25,210
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # moshew/paraphrase-mpnet-base-v2_SetFit_sst2 This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('moshew/paraphrase-mpnet-base-v2_SetFit_sst2') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('moshew/paraphrase-mpnet-base-v2_SetFit_sst2') model = AutoModel.from_pretrained('moshew/paraphrase-mpnet-base-v2_SetFit_sst2') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=moshew/paraphrase-mpnet-base-v2_SetFit_sst2) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 8650 with parameters: ``` {'batch_size': 8, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 10, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: MPNetModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
cammy/led-large-16384-arxiv-100-MDS-own
91a1400f4041836469de08d9a746535d0c113f46
2022-03-18T08:29:48.000Z
[ "pytorch", "tensorboard", "led", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
cammy
null
cammy/led-large-16384-arxiv-100-MDS-own
2
null
transformers
25,211
Entry not found
eliasws/openApiT5-to-description-v1
4a9d402601de9e11d71c561405104f8ec9d8a93e
2022-03-18T10:08:13.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
eliasws
null
eliasws/openApiT5-to-description-v1
2
null
transformers
25,212
Entry not found
eliasws/openApiT5-to-description-v2
43218f0708bb0834644175bf4fcc685787c209a6
2022-03-18T16:25:51.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
eliasws
null
eliasws/openApiT5-to-description-v2
2
null
transformers
25,213
Entry not found
IsaacSST/gpt2-xl-ft-d1
072598abc8c08aa6f2fa9c2743df7489394fd83f
2022-03-18T15:50:00.000Z
[ "pytorch", "tensorboard", "gpt2", "text-generation", "transformers", "generated_from_trainer", "model-index" ]
text-generation
false
IsaacSST
null
IsaacSST/gpt2-xl-ft-d1
2
null
transformers
25,214
--- tags: - generated_from_trainer model-index: - name: gpt2-xl-ft-d1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt2-xl-ft-d1 This model is a fine-tuned version of [gpt2-xl](https://huggingface.co/gpt2-xl) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.2993 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 4 - eval_batch_size: 4 - seed: 2022 - gradient_accumulation_steps: 32 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100.0 - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 156 | 1.2130 | | No log | 2.0 | 312 | 1.2113 | | No log | 3.0 | 468 | 1.2585 | | 1.2059 | 4.0 | 624 | 1.2993 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
nherve/flaubert-oral-asr_nb
9edcea8ce3c63891ceafd38fe6df743aeba2818f
2022-04-04T10:27:01.000Z
[ "pytorch", "flaubert", "fr", "transformers", "bert", "language-model", "french", "flaubert-base", "uncased", "asr", "speech", "oral", "natural language understanding", "NLU", "spoken language understanding", "SLU", "understanding", "license:mit" ]
null
false
nherve
null
nherve/flaubert-oral-asr_nb
2
null
transformers
25,215
--- language: fr license: mit tags: - bert - language-model - flaubert - french - flaubert-base - uncased - asr - speech - oral - natural language understanding - NLU - spoken language understanding - SLU - understanding --- # FlauBERT-Oral models: Using ASR-Generated Text for Spoken Language Modeling **FlauBERT-Oral** are French BERT models trained on a very large amount of automatically transcribed speech from 350,000 hours of diverse French TV shows. They were trained with the [**FlauBERT software**](https://github.com/getalp/Flaubert) using the same parameters as the [flaubert-base-uncased](https://huggingface.co/flaubert/flaubert_base_uncased) model (12 layers, 12 attention heads, 768 dims, 137M parameters, uncased). ## Available FlauBERT-Oral models - `flaubert-oral-asr` : trained from scratch on ASR data, keeping the BPE tokenizer and vocabulary of flaubert-base-uncased - `flaubert-oral-asr_nb` : trained from scratch on ASR data, BPE tokenizer is also trained on the same corpus - `flaubert-oral-mixed` : trained from scratch on a mixed corpus of ASR and text data, BPE tokenizer is also trained on the same corpus - `flaubert-oral-ft` : fine-tuning of flaubert-base-uncased for a few epochs on ASR data ## Usage for sequence classification ```python flaubert_tokenizer = FlaubertTokenizer.from_pretrained("nherve/flaubert-oral-asr") flaubert_classif = FlaubertForSequenceClassification.from_pretrained("nherve/flaubert-oral-asr", num_labels=14) flaubert_classif.sequence_summary.summary_type = 'mean' # Then, train your model ``` ## References If you use FlauBERT-Oral models for your scientific publication, or if you find the resources in this repository useful, please cite the following papers: ``` @InProceedings{herve2022flaubertoral, author = {Herv\'{e}, Nicolas and Pelloin, Valentin and Favre, Benoit and Dary, Franck and Laurent, Antoine and Meignier, Sylvain and Besacier, Laurent}, title = {Using ASR-Generated Text for Spoken Language Modeling}, booktitle = {Proceedings of "Challenges & Perspectives in Creating Large Language Models" ACL 2022 Workshop}, month = {May}, year = {2022} } ```
facebook/regnet-y-032
5f298694c4b010d7e67fafb6c743c0e81d41689c
2022-06-28T11:39:30.000Z
[ "pytorch", "tf", "regnet", "image-classification", "dataset:imagenet-1k", "arxiv:2003.13678", "transformers", "vision", "license:apache-2.0" ]
image-classification
false
facebook
null
facebook/regnet-y-032
2
null
transformers
25,216
--- license: apache-2.0 tags: - vision - image-classification datasets: - imagenet-1k widget: - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/tiger.jpg example_title: Tiger - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/teapot.jpg example_title: Teapot - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/palace.jpg example_title: Palace --- # RegNet RegNet model trained on imagenet-1k. It was introduced in the paper [Designing Network Design Spaces](https://arxiv.org/abs/2003.13678) and first released in [this repository](https://github.com/facebookresearch/pycls). Disclaimer: The team releasing RegNet did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description The authors design search spaces to perform Neural Architecture Search (NAS). They first start from a high dimensional search space and iteratively reduce the search space by empirically applying constraints based on the best-performing models sampled by the current search space. ![model image](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/regnet_architecture.png) ## Intended uses & limitations You can use the raw model for image classification. See the [model hub](https://huggingface.co/models?search=regnet) to look for fine-tuned versions on a task that interests you. ### How to use Here is how to use this model: ```python >>> from transformers import AutoFeatureExtractor, RegNetForImageClassification >>> import torch >>> from datasets import load_dataset >>> dataset = load_dataset("huggingface/cats-image") >>> image = dataset["test"]["image"][0] >>> feature_extractor = AutoFeatureExtractor.from_pretrained("zuppif/regnet-y-040") >>> model = RegNetForImageClassification.from_pretrained("zuppif/regnet-y-040") >>> inputs = feature_extractor(image, return_tensors="pt") >>> with torch.no_grad(): ... logits = model(**inputs).logits >>> # model predicts one of the 1000 ImageNet classes >>> predicted_label = logits.argmax(-1).item() >>> print(model.config.id2label[predicted_label]) 'tabby, tabby cat' ``` For more code examples, we refer to the [documentation](https://huggingface.co/docs/transformers/master/en/model_doc/regnet).
emilygs2/distilroberta-base-finetuned-genderswap
e2674676033c32b3b53871fd56545a21a2d6e4a0
2022-03-18T16:35:12.000Z
[ "pytorch", "tensorboard", "roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
emilygs2
null
emilygs2/distilroberta-base-finetuned-genderswap
2
null
transformers
25,217
Entry not found
nebo333/distilbert-base-uncased-finetuned-emotion
dd533d4523aa34fb828116ea9c4833059d685fae
2022-03-18T22:34:15.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "transformers" ]
text-classification
false
nebo333
null
nebo333/distilbert-base-uncased-finetuned-emotion
2
null
transformers
25,218
Entry not found
Valouzze/MegaIA
165070c2a7b6c49567d12bebfc0199d7ab3a3df4
2022-03-18T20:20:30.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
Valouzze
null
Valouzze/MegaIA
2
null
transformers
25,219
--- tags: - conversational --- # My Awesome Model
vinaykudari/t5-ft-billsum
68a256d21dd70e7f8b52bbb6e581ea55c704f42b
2022-03-18T23:11:57.000Z
[ "pytorch", "tensorboard", "t5", "text2text-generation", "dataset:billsum", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
text2text-generation
false
vinaykudari
null
vinaykudari/t5-ft-billsum
2
null
transformers
25,220
--- license: apache-2.0 tags: - generated_from_trainer datasets: - billsum model-index: - name: t5-ft-billsum results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-ft-billsum This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the billsum dataset. It achieves the following results on the evaluation set: - Loss: 2.2752 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 10 - eval_batch_size: 10 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 99 | 2.6250 | | No log | 2.0 | 198 | 2.4587 | | No log | 3.0 | 297 | 2.3865 | | No log | 4.0 | 396 | 2.3431 | | No log | 5.0 | 495 | 2.3226 | | 2.7775 | 6.0 | 594 | 2.3019 | | 2.7775 | 7.0 | 693 | 2.2882 | | 2.7775 | 8.0 | 792 | 2.2802 | | 2.7775 | 9.0 | 891 | 2.2764 | | 2.7775 | 10.0 | 990 | 2.2752 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.6.0 - Datasets 2.0.0 - Tokenizers 0.11.6
Rustem/roberta-base-trained-43
8cd2c337801ace021867c124ffffd32a09f2ed7a
2022-03-19T09:27:41.000Z
[ "pytorch", "roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
Rustem
null
Rustem/roberta-base-trained-43
2
null
transformers
25,221
Entry not found
Ameer05/updated-bart-large-cnn
676c44e32425967b47edd122abef5694cd085629
2022-03-19T12:48:25.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
Ameer05
null
Ameer05/updated-bart-large-cnn
2
null
transformers
25,222
Entry not found
selimsametoglu/selims
695cb362e5008e8c0c926107a93f8dcb18331f7e
2022-03-21T11:01:59.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "dataset:tweet_eval", "transformers", "generated_from_trainer", "license:mit", "model-index" ]
text-classification
false
selimsametoglu
null
selimsametoglu/selims
2
null
transformers
25,223
--- license: mit tags: - generated_from_trainer datasets: - tweet_eval model-index: - name: selims results: [] widget: - text: "I love conducting research on twins!" example_title: "Sentiment analysis - English" - text: "Ja, ik vind het tweelingen onderzoek leuk maar complex, weet je." example_title: "Sentiment analysis - Dutch" --- # selims This model is a fine-tuned version of [nlptown/bert-base-multilingual-uncased-sentiment](https://huggingface.co/nlptown/bert-base-multilingual-uncased-sentiment) on the tweet_eval dataset. ## Model description This is a multilingual model for sentiment analysis that provides outputs ranging from 1 to 5, following the same logic as the 1 to 5-star reviews. ## Intended uses & limitations This sentiment model can be applied to datasets in the following languages: English, Dutch, German, French, Spanish, and Italian. ## Training and evaluation data For fine-tunning of this model, the Tweet_eval dataset was used. ## Training procedure Please refer to the information below: ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.1+cpu - Datasets 2.0.0 - Tokenizers 0.10.3
Makinitas/DialoGPT-small-RickAndMortyScripts
f5feee1261ba1391d3d9b9c1962a79491115211c
2022-03-19T17:47:44.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
Makinitas
null
Makinitas/DialoGPT-small-RickAndMortyScripts
2
null
transformers
25,224
--- tags: - conversational --- # Rick And Morty DialoGPT Model
axiomepic/hub_model_id
ade524b309ed0f903c3640ba4159bbd3997d6234
2022-03-19T21:21:23.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
axiomepic
null
axiomepic/hub_model_id
2
null
transformers
25,225
Entry not found
apkbala107/tamilberta
c34ab91a9a7273210be78cc992826d3bba9eba18
2022-03-19T18:17:06.000Z
[ "pytorch", "roberta", "fill-mask", "transformers", "license:cc", "autotrain_compatible" ]
fill-mask
false
apkbala107
null
apkbala107/tamilberta
2
null
transformers
25,226
--- license: cc ---
KheireddineDaouadi/AraRobertaAut
3eb0d09e838b14d9eb10c0a6518c892849795935
2022-03-20T20:31:23.000Z
[ "pytorch", "roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
KheireddineDaouadi
null
KheireddineDaouadi/AraRobertaAut
2
null
transformers
25,227
Entry not found
duanxingjuan/DialoGPT-medium-DEMON_SLAYER
8317ec32e343073f2d862b805c3ec085017720cb
2022-03-20T11:49:32.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
duanxingjuan
null
duanxingjuan/DialoGPT-medium-DEMON_SLAYER
2
null
transformers
25,228
--- tags: - conversational --- # DEMON_SLAYER DialoGPT Model
tbosse/distilbert-base-uncased-finetuned-pos
99836fc71c7bacf6f083bc612a8d7ed11e0c7aa7
2022-03-25T00:02:11.000Z
[ "pytorch", "tensorboard", "distilbert", "token-classification", "dataset:conll2003", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
token-classification
false
tbosse
null
tbosse/distilbert-base-uncased-finetuned-pos
2
null
transformers
25,229
--- license: apache-2.0 tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: distilbert-base-uncased-finetuned-pos results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 args: conll2003 metrics: - name: Precision type: precision value: 0.9109037731744458 - name: Recall type: recall value: 0.9143515710299648 - name: F1 type: f1 value: 0.9126244157605404 - name: Accuracy type: accuracy value: 0.9245555785025498 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-pos This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.3165 - Precision: 0.9109 - Recall: 0.9144 - F1: 0.9126 - Accuracy: 0.9246 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.7941 | 1.0 | 878 | 0.3504 | 0.8995 | 0.9026 | 0.9011 | 0.9176 | | 0.2533 | 2.0 | 1756 | 0.3216 | 0.9091 | 0.9104 | 0.9098 | 0.9233 | | 0.2047 | 3.0 | 2634 | 0.3165 | 0.9109 | 0.9144 | 0.9126 | 0.9246 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
jcai1/similarity6
292c4f6e6a91307f893995437265628afd6c8c13
2022-03-20T21:38:25.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
jcai1
null
jcai1/similarity6
2
null
transformers
25,230
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: similarity6 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # similarity6 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | No log | 1.0 | 393 | 0.2287 | 0.9341 | 0.9112 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
beston91/gpt2-xl_ft_logits_5k_2
80f0cf57115b5ce6a02a1f19a48e3601f5e31cd7
2022-03-21T10:16:30.000Z
[ "pytorch", "tensorboard", "gpt2", "text-generation", "transformers", "generated_from_trainer", "model-index" ]
text-generation
false
beston91
null
beston91/gpt2-xl_ft_logits_5k_2
2
null
transformers
25,231
--- tags: - generated_from_trainer model-index: - name: gpt2-xl_ft_logits_5k_2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt2-xl_ft_logits_5k_2 This model is a fine-tuned version of [gpt2-xl](https://huggingface.co/gpt2-xl) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 6.2407 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-07 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 32 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100.0 - num_epochs: 4 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 0.99 | 27 | 6.1106 | | No log | 1.99 | 54 | 6.1400 | | No log | 2.99 | 81 | 6.1875 | | No log | 3.99 | 108 | 6.2407 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6 ### Perplexity Score: 17.59415626525879
IsaacSST/gpt2-xl-ft-d4-0.3
75dd51de33e70152b47608e1f4ab87a300c092c0
2022-03-21T04:24:22.000Z
[ "pytorch", "tensorboard", "gpt2", "text-generation", "transformers", "generated_from_trainer", "model-index" ]
text-generation
false
IsaacSST
null
IsaacSST/gpt2-xl-ft-d4-0.3
2
null
transformers
25,232
--- tags: - generated_from_trainer model-index: - name: gpt2-xl-ft-d4-0.3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt2-xl-ft-d4-0.3 This model is a fine-tuned version of [gpt2-xl](https://huggingface.co/gpt2-xl) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.3401 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 4 - eval_batch_size: 4 - seed: 2022 - gradient_accumulation_steps: 32 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100.0 - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 156 | 1.2334 | | No log | 2.0 | 312 | 1.2392 | | No log | 3.0 | 468 | 1.2944 | | 1.1868 | 4.0 | 624 | 1.3401 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
QWEasd1122/distilbert-base-uncased-finetuned-squad
26e9b0c7739bd6e1e46f33b6c3098222f03078d7
2022-03-22T03:43:44.000Z
[ "pytorch", "tensorboard", "distilbert", "question-answering", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
question-answering
false
QWEasd1122
null
QWEasd1122/distilbert-base-uncased-finetuned-squad
2
null
transformers
25,233
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distilbert-base-uncased-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-squad This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 3.3665 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 52 | 3.5584 | | No log | 2.0 | 104 | 3.3937 | | No log | 3.0 | 156 | 3.3665 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
BigSalmon/InformalToFormalLincoln28
d71c5f2eaa8c945f89098d4093156c80ce69b612
2022-03-21T03:14:50.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
BigSalmon
null
BigSalmon/InformalToFormalLincoln28
2
null
transformers
25,234
``` from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("BigSalmon/InformalToFormalLincoln28") model = AutoModelForCausalLM.from_pretrained("BigSalmon/InformalToFormalLincoln28") ``` ``` How To Make Prompt: informal english: i am very ready to do that just that. Translated into the Style of Abraham Lincoln: you can assure yourself of my readiness to work toward this end. Translated into the Style of Abraham Lincoln: please be assured that i am most ready to undertake this laborious task. *** informal english: space is huge and needs to be explored. Translated into the Style of Abraham Lincoln: space awaits traversal, a new world whose boundaries are endless. Translated into the Style of Abraham Lincoln: space is a ( limitless / boundless ) expanse, a vast virgin domain awaiting exploration. *** informal english: corn fields are all across illinois, visible once you leave chicago. Translated into the Style of Abraham Lincoln: corn fields ( permeate illinois / span the state of illinois / ( occupy / persist in ) all corners of illinois / line the horizon of illinois / envelop the landscape of illinois ), manifesting themselves visibly as one ventures beyond chicago. informal english: ``` ``` - declining viewership facing the nba. - does not have to be this way. - in fact, many solutions exist. - the four point line would surely draw in eyes. Text: failing to draw in the masses, the NBA has fallen into disrepair. such does not have to be the case, however. in fact, a myriad of simple, relatively cheap solutions could revive the league. the addition of the much-hyped four-point line would surely juice viewership. *** - ``` ``` infill: chrome extensions [MASK] accomplish everyday tasks. Translated into the Style of Abraham Lincoln: chrome extensions ( expedite the ability to / unlock the means to more readily ) accomplish everyday tasks. infill: at a time when nintendo has become inflexible, [MASK] consoles that are tethered to a fixed iteration, sega diligently curates its legacy of classic video games on handheld devices. Translated into the Style of Abraham Lincoln: at a time when nintendo has become inflexible, ( stubbornly [MASK] on / firmly set on / unyielding in its insistence on ) consoles that are tethered to a fixed iteration, sega diligently curates its legacy of classic video games on handheld devices. infill: ``` ``` Essay Intro (Warriors vs. Rockets in Game 7): text: eagerly anticipated by fans, game 7's are the highlight of the post-season. text: ever-building in suspense, game 7's have the crowd captivated. *** Essay Intro (South Korean TV Is Becoming Popular): text: maturing into a bona fide paragon of programming, south korean television ( has much to offer / entertains without fail / never disappoints ). text: increasingly held in critical esteem, south korean television continues to impress. text: at the forefront of quality content, south korea is quickly achieving celebrity status. *** Essay Intro ( ``` ``` Search: What is the definition of Checks and Balances? https://en.wikipedia.org/wiki/Checks_and_balances Checks and Balances is the idea of having a system where each and every action in government should be subject to one or more checks that would not allow one branch or the other to overly dominate. https://www.harvard.edu/glossary/Checks_and_Balances Checks and Balances is a system that allows each branch of government to limit the powers of the other branches in order to prevent abuse of power https://www.law.cornell.edu/library/constitution/Checks_and_Balances Checks and Balances is a system of separation through which branches of government can control the other, thus preventing excess power. *** Search: What is the definition of Separation of Powers? https://en.wikipedia.org/wiki/Separation_of_powers The separation of powers is a principle in government, whereby governmental powers are separated into different branches, each with their own set of powers, that are prevent one branch from aggregating too much power. https://www.yale.edu/tcf/Separation_of_Powers.html Separation of Powers is the division of governmental functions between the executive, legislative and judicial branches, clearly demarcating each branch's authority, in the interest of ensuring that individual liberty or security is not undermined. *** Search: What is the definition of Connection of Powers? https://en.wikipedia.org/wiki/Connection_of_powers Connection of Powers is a feature of some parliamentary forms of government where different branches of government are intermingled, typically the executive and legislative branches. https://simple.wikipedia.org/wiki/Connection_of_powers The term Connection of Powers describes a system of government in which there is overlap between different parts of the government. *** Search: What is the definition of ``` ``` Search: What are phrase synonyms for "second-guess"? https://www.powerthesaurus.org/second-guess/synonyms Shortest to Longest: - feel dubious about - raise an eyebrow at - wrinkle their noses at - cast a jaundiced eye at - teeter on the fence about *** Search: What are phrase synonyms for "mean to newbies"? https://www.powerthesaurus.org/mean_to_newbies/synonyms Shortest to Longest: - readiness to balk at rookies - absence of tolerance for novices - hostile attitude toward newcomers *** Search: What are phrase synonyms for "make use of"? https://www.powerthesaurus.org/make_use_of/synonyms Shortest to Longest: - call upon - glean value from - reap benefits from - derive utility from - seize on the merits of - draw on the strength of - tap into the potential of *** Search: What are phrase synonyms for "hurting itself"? https://www.powerthesaurus.org/hurting_itself/synonyms Shortest to Longest: - erring - slighting itself - forfeiting its integrity - doing itself a disservice - evincing a lack of backbone *** Search: What are phrase synonyms for " ``` ``` - declining viewership facing the nba. - does not have to be this way. - in fact, many solutions exist. - the four point line would surely draw in eyes. text: failing to draw in the masses, the nba has ( fallen into / succumb to / bowed to ) disrepair. such does not have to be the case, however. in fact, a myriad of simple, relatively cheap ( solutions / interventions / enhancements ) could revive the league. the addition of the much-hyped four-point line would surely juice viewership. *** - ``` ``` original: sports teams are profitable for owners. [MASK], their valuations experience a dramatic uptick. infill: sports teams are profitable for owners. ( accumulating vast sums / stockpiling treasure / realizing benefits / cashing in / registering robust financials / scoring on balance sheets ), their valuations experience a dramatic uptick. *** original: ```
PSW/ut-del-two-at-once-ver1
5728a481e3a170e49f76b3ecd1882b1525230ff9
2022-03-21T05:02:36.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
PSW
null
PSW/ut-del-two-at-once-ver1
2
null
transformers
25,235
Entry not found
bdotloh/twitter-roberta-base-finetuned-twitter-user-desc
b7c82c330590cbea2328e1a026e08f273080f559
2022-03-25T04:12:19.000Z
[ "pytorch", "tensorboard", "roberta", "fill-mask", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
fill-mask
false
bdotloh
null
bdotloh/twitter-roberta-base-finetuned-twitter-user-desc
2
null
transformers
25,236
--- tags: - generated_from_trainer model-index: - name: twitter-roberta-base-finetuned-twitter-user-desc results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # twitter-roberta-base-finetuned-twitter-user-desc This model is a fine-tuned version of [cardiffnlp/twitter-roberta-base](https://huggingface.co/cardiffnlp/twitter-roberta-base) on a dataset of twitter user descriptions. It achieves the following results on the evaluation set: - eval_perplexity: 2.33 - epoch: 15 - step: 10635 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 15 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
tau/t5_lm_1024_0.3_epoch1_v2
4ed20743bc6199c5e77ddf507036acbbe522720a
2022-03-21T08:09:34.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
tau
null
tau/t5_lm_1024_0.3_epoch1_v2
2
null
transformers
25,237
Entry not found
Dahn/wav2vec2-base-timit-demo-colab
dd16c03c92107bff83d4880536669cf2c143b647
2022-03-21T13:04:57.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
Dahn
null
Dahn/wav2vec2-base-timit-demo-colab
2
null
transformers
25,238
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base-timit-demo-colab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-timit-demo-colab This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4796 - Wer: 0.3434 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.4323 | 4.0 | 500 | 1.3259 | 0.9859 | | 0.5966 | 8.0 | 1000 | 0.4682 | 0.4442 | | 0.2187 | 12.0 | 1500 | 0.4490 | 0.3875 | | 0.1274 | 16.0 | 2000 | 0.4595 | 0.3727 | | 0.0859 | 20.0 | 2500 | 0.4819 | 0.3683 | | 0.0602 | 24.0 | 3000 | 0.4524 | 0.3514 | | 0.0449 | 28.0 | 3500 | 0.4796 | 0.3434 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.10.3
Yaxin/xlm-roberta-base-amzaon-reviews-mlm
1c5c3e7cde05feabf51f472df873018a895d148a
2022-03-21T15:51:49.000Z
[ "pytorch", "dataset:amazon_reviews_multi", "generated_from_trainer", "license:mit", "model-index" ]
null
false
Yaxin
null
Yaxin/xlm-roberta-base-amzaon-reviews-mlm
2
null
null
25,239
--- license: mit tags: - generated_from_trainer datasets: - amazon_reviews_multi metrics: - accuracy model-index: - name: test-xlm-roberta-base-amzaon-reviews-mlm results: - task: name: Masked Language Modeling type: fill-mask dataset: name: amazon_reviews_multi all_languages type: amazon_reviews_multi args: all_languages metrics: - name: Accuracy type: accuracy value: 0.5032103794889962 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # test-xlm-roberta-base-amzaon-reviews-mlm This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the amazon_reviews_multi all_languages dataset. It achieves the following results on the evaluation set: - Loss: 2.1091 - Accuracy: 0.5032 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results ### Framework versions - Transformers 4.18.0.dev0 - Pytorch 1.10.0 - Datasets 1.18.3 - Tokenizers 0.11.0
Ameer05/model-tokenizer-repo
68d7abc9bb52821c1e23fd69598c9c701b0b1d2b
2022-03-21T16:45:24.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
Ameer05
null
Ameer05/model-tokenizer-repo
2
null
transformers
25,240
Entry not found
elena-soare/docu-t5-base-FK
a7b1263ec21bddadd451446f7ebb880a8a4ba2eb
2022-04-04T14:34:49.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
elena-soare
null
elena-soare/docu-t5-base-FK
2
null
transformers
25,241
# Text2SQL Task T5-Base + Foreign Keys This is our T5 model fine-tuned on Spider using a schema serialization which includes foreign keys ## Running the model Inspired by the work done by [Picard](https://github.com/ElementAI/picard/) by adding foreign keys relations.
elena-soare/bat-pre-trained
521e3ea5c79e8e10e60e3581cb7655d159067286
2022-03-21T22:23:37.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
elena-soare
null
elena-soare/bat-pre-trained
2
null
transformers
25,242
# Text2SQL Task T5-Base + E-commerce pre-training This is our T5 model pre-trained on 18k e-commerce pages from popular blogs and fine-tuned on Spider using a schema serialization. ## Running the model Inspired by the work done by [Picard](https://github.com/ElementAI/picard/) by adding a pre-training step for better performance on e-commerce data. ```python [question] | [db_id] | [table] : [column] ( [content] , [content] ) , [column] ( ... ) , [...] | [table] : ... | ... ```
Bistolero/mt5_two_epocs_nl
cd79e50a48177a82454ebbaaff96c1af962ed9d3
2022-03-21T22:58:52.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
Bistolero
null
Bistolero/mt5_two_epocs_nl
2
null
transformers
25,243
Entry not found
danyaljj/gpt-j-6B-step-378500
4c6169b3a50f7bd10e224f79dcf6638dc8a10af2
2022-03-22T23:09:46.000Z
[ "pytorch", "gptj", "text-generation", "transformers" ]
text-generation
false
danyaljj
null
danyaljj/gpt-j-6B-step-378500
2
null
transformers
25,244
Entry not found
danyaljj/gpt-j-6B-step-383000
2078e2329ee0f4896b39fe2256daade197474da2
2022-03-22T23:10:04.000Z
[ "pytorch", "gptj", "text-generation", "transformers" ]
text-generation
false
danyaljj
null
danyaljj/gpt-j-6B-step-383000
2
null
transformers
25,245
Entry not found
Bistolero/mix_training_en_du_nl
e6e81ddcf1bf3946b3a4f0c7562f0f33a59cd30d
2022-03-22T01:48:47.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
Bistolero
null
Bistolero/mix_training_en_du_nl
2
null
transformers
25,246
Entry not found
asahi417/tner-roberta-large-tweet-st-2020
207a05c2c79a3e8e209e5457025ab15d21275e22
2022-04-28T12:40:51.000Z
[ "pytorch", "roberta", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
asahi417
null
asahi417/tner-roberta-large-tweet-st-2020
2
null
transformers
25,247
Entry not found
Taekyoon/unicon_v0.5.3_alpha
802f82bc7fcbd3ac364dbde25c69ed53230d1fa0
2022-03-22T04:06:33.000Z
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
false
Taekyoon
null
Taekyoon/unicon_v0.5.3_alpha
2
null
transformers
25,248
Entry not found
aaraki/wav2vec2-base-demo-colab
708f9b8e9b2211cdabae550ead31f4459f95afcb
2022-03-22T07:43:43.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
aaraki
null
aaraki/wav2vec2-base-demo-colab
2
null
transformers
25,249
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base-demo-colab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-demo-colab This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
Doogie/Wayne_Mulang_mT5
a1f446c9094e493a23808b236402f71eb4e86ae3
2022-04-19T05:38:52.000Z
[ "pytorch", "tensorboard", "mt5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
Doogie
null
Doogie/Wayne_Mulang_mT5
2
null
transformers
25,250
Entry not found
PSW/ut_del_two_at_once_ver4
1a09fad15e0bd56d655ec0aff6ed8ae55f36c4d8
2022-03-22T06:53:07.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
PSW
null
PSW/ut_del_two_at_once_ver4
2
null
transformers
25,251
Entry not found
PSW/ut_del_two_at_once_ver5
f8c5d2bbefa6e219297cabc13a802e0a5aacadc8
2022-03-22T08:14:54.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
PSW
null
PSW/ut_del_two_at_once_ver5
2
null
transformers
25,252
Entry not found
hawoihgawjlj/STS-Team3
a4daa709fc11a6f1f3b9a2fc52ffff42e8b54346
2022-03-22T09:27:17.000Z
[ "pytorch", "roberta", "text-classification", "transformers" ]
text-classification
false
hawoihgawjlj
null
hawoihgawjlj/STS-Team3
2
null
transformers
25,253
Entry not found
caiosantillo/distilbert-base-uncased-finetuned-squad
bf7fc3c2232683a3c4896ef31378117841c1c482
2022-05-10T15:05:30.000Z
[ "pytorch", "tensorboard", "distilbert", "question-answering", "dataset:squad", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
question-answering
false
caiosantillo
null
caiosantillo/distilbert-base-uncased-finetuned-squad
2
null
transformers
25,254
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: distilbert-base-uncased-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-squad This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the squad dataset. It achieves the following results on the evaluation set: - Loss: 1.1551 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 1.2125 | 1.0 | 5533 | 1.1521 | | 0.9496 | 2.0 | 11066 | 1.1227 | | 0.7499 | 3.0 | 16599 | 1.1551 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.1.0 - Tokenizers 0.12.1
edwardjross/xlm-roberta-base-finetuned-panx-de
887e4258dbd07dd4636441bc7d5f91b3e6dc099a
2022-03-22T13:06:25.000Z
[ "pytorch", "xlm-roberta", "token-classification", "dataset:xtreme", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
token-classification
false
edwardjross
null
edwardjross/xlm-roberta-base-finetuned-panx-de
2
null
transformers
25,255
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme args: PAN-X.de metrics: - name: F1 type: f1 value: 0.8644809364168419 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.1360 - F1: 0.8645 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2528 | 1.0 | 787 | 0.1657 | 0.8244 | | 0.1298 | 2.0 | 1574 | 0.1369 | 0.8555 | | 0.0787 | 3.0 | 2361 | 0.1360 | 0.8645 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.9.1 - Datasets 1.16.1 - Tokenizers 0.10.3
edwardjross/xlm-roberta-base-finetuned-panx-de-fr
f79dafd5aadd7399568417643ddfc08f10a8afa3
2022-03-22T13:22:21.000Z
[ "pytorch", "xlm-roberta", "token-classification", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
token-classification
false
edwardjross
null
edwardjross/xlm-roberta-base-finetuned-panx-de-fr
2
null
transformers
25,256
--- license: mit tags: - generated_from_trainer metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de-fr results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de-fr This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1686 - F1: 0.8606 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2819 | 1.0 | 1073 | 0.1800 | 0.8231 | | 0.1484 | 2.0 | 2146 | 0.1655 | 0.8488 | | 0.0928 | 3.0 | 3219 | 0.1686 | 0.8606 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.9.1 - Datasets 1.16.1 - Tokenizers 0.10.3
edwardjross/xlm-roberta-base-finetuned-panx-en
a4bf7d692123c74d11752e015a09ef062083e817
2022-03-22T13:33:38.000Z
[ "pytorch", "xlm-roberta", "token-classification", "dataset:xtreme", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
token-classification
false
edwardjross
null
edwardjross/xlm-roberta-base-finetuned-panx-en
2
null
transformers
25,257
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-en results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme args: PAN-X.en metrics: - name: F1 type: f1 value: 0.6918378678511938 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-en This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.3792 - F1: 0.6918 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 1.0639 | 1.0 | 74 | 0.5075 | 0.5539 | | 0.491 | 2.0 | 148 | 0.4118 | 0.6510 | | 0.355 | 3.0 | 222 | 0.3792 | 0.6918 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.9.1 - Datasets 1.16.1 - Tokenizers 0.10.3
edwardjross/xlm-roberta-base-finetuned-panx-all
4842454eb020e671cd07375186c4f392fe79a30e
2022-03-22T13:46:27.000Z
[ "pytorch", "xlm-roberta", "token-classification", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
token-classification
false
edwardjross
null
edwardjross/xlm-roberta-base-finetuned-panx-all
2
null
transformers
25,258
--- license: mit tags: - generated_from_trainer metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-all results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-all This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1812 - F1: 0.8567 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2983 | 1.0 | 1252 | 0.1945 | 0.8033 | | 0.1603 | 2.0 | 2504 | 0.1889 | 0.8441 | | 0.1012 | 3.0 | 3756 | 0.1812 | 0.8567 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.9.1 - Datasets 1.16.1 - Tokenizers 0.10.3
Splend1dchan/t5lephone-small
0a248f7bfc9dc2a58bd3602c0334ba7d36cb544c
2022-04-06T12:38:20.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
Splend1dchan
null
Splend1dchan/t5lephone-small
2
null
transformers
25,259
Entry not found
jaketae/fastspeech2-commonvoice
036c65a958e74983e6babc742f80f7a99f3e5cc4
2022-04-16T07:26:52.000Z
[ "pytorch", "fastspeech2", "transformers" ]
null
false
jaketae
null
jaketae/fastspeech2-commonvoice
2
null
transformers
25,260
Entry not found
duanxingjuan/DialoGPT-large-DEMON1
166ac34b0ea08ff3c131bbe33f8ba21a62fae7c9
2022-03-23T01:04:55.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
duanxingjuan
null
duanxingjuan/DialoGPT-large-DEMON1
2
null
transformers
25,261
--- tags: - conversational --- # DEMON_SLAYER DialoGPT Model v5
PSW/ut_del_three_per_each_ver2
605c65cd7668147930404ed461ae978c4690a537
2022-03-23T02:12:01.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
PSW
null
PSW/ut_del_three_per_each_ver2
2
null
transformers
25,262
Entry not found
Pavithra/codeparrot-ds-sample
bbc16b2274d187595a40bf4a9519de7dd11c76f9
2022-03-24T06:41:47.000Z
[ "pytorch", "tensorboard", "gpt2", "text-generation", "transformers", "generated_from_trainer", "license:mit", "model-index" ]
text-generation
false
Pavithra
null
Pavithra/codeparrot-ds-sample
2
null
transformers
25,263
--- license: mit tags: - generated_from_trainer model-index: - name: codeparrot-ds-sample results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # codeparrot-ds-sample This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on an unknown dataset. It achieves the following results on the evaluation set: - eval_loss: 1.5219 - eval_runtime: 603.3856 - eval_samples_per_second: 154.402 - eval_steps_per_second: 4.826 - epoch: 0.15 - step: 10000 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 256 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 1000 - num_epochs: 1 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
pinot/wav2vec2-base-timit-demo-colab
0882359faaaabae96e0cda5d2d362b20120a2319
2022-05-12T14:37:53.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
pinot
null
pinot/wav2vec2-base-timit-demo-colab
2
null
transformers
25,264
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base-timit-demo-colab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-timit-demo-colab This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4548 - Wer: 0.3373 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.3291 | 4.0 | 500 | 1.0403 | 0.7174 | | 0.5336 | 8.0 | 1000 | 0.4744 | 0.4489 | | 0.2155 | 12.0 | 1500 | 0.4476 | 0.3832 | | 0.1256 | 16.0 | 2000 | 0.4358 | 0.3639 | | 0.0867 | 20.0 | 2500 | 0.4634 | 0.3527 | | 0.0608 | 24.0 | 3000 | 0.4784 | 0.3466 | | 0.0476 | 28.0 | 3500 | 0.4548 | 0.3373 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.10.3
sumedh/autonlp-MeQSum-1-660519466
254148a57d182c03e6df2437436940b66295657c
2022-03-23T07:16:44.000Z
[ "pytorch", "pegasus", "text2text-generation", "unk", "dataset:sumedh/autotrain-data-MeQSum-1", "transformers", "autonlp", "co2_eq_emissions", "autotrain_compatible" ]
text2text-generation
false
sumedh
null
sumedh/autonlp-MeQSum-1-660519466
2
null
transformers
25,265
--- tags: autonlp language: unk widget: - text: "I love AutoNLP 🤗" datasets: - sumedh/autotrain-data-MeQSum-1 co2_eq_emissions: 35.865521343923916 --- # Model Trained Using AutoNLP - Problem type: Summarization - Model ID: 660519466 - CO2 Emissions (in grams): 35.865521343923916 ## Validation Metrics - Loss: 1.3210543394088745 - Rouge1: 52.1593 - Rouge2: 34.5464 - RougeL: 50.1141 - RougeLsum: 50.1067 - Gen Len: 11.93 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_HUGGINGFACE_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/sumedh/autonlp-MeQSum-1-660519466 ```
hawoihgawjlj/Task3-STS-Team3
a9e668d0cdc1840c0b906486679a6c9cc43101b2
2022-03-23T17:19:25.000Z
[ "pytorch", "roberta", "text-classification", "transformers" ]
text-classification
false
hawoihgawjlj
null
hawoihgawjlj/Task3-STS-Team3
2
null
transformers
25,266
Entry not found
Helsinki-NLP/opus-mt-tc-base-uk-ces_slk
a63ec1610c25c67b8b5f78bf5a3b3bab02db2186
2022-06-01T13:08:17.000Z
[ "pytorch", "marian", "text2text-generation", "cs", "sk", "uk", "transformers", "translation", "opus-mt-tc", "license:cc-by-4.0", "model-index", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-tc-base-uk-ces_slk
2
null
transformers
25,267
--- language: - cs - sk - uk tags: - translation - opus-mt-tc license: cc-by-4.0 model-index: - name: opus-mt-tc-base-uk-ces_slk results: - task: name: Translation ukr-ces type: translation args: ukr-ces dataset: name: flores101-devtest type: flores_101 args: ukr ces devtest metrics: - name: BLEU type: bleu value: 23.0 - task: name: Translation ukr-slk type: translation args: ukr-slk dataset: name: flores101-devtest type: flores_101 args: ukr slk devtest metrics: - name: BLEU type: bleu value: 22.1 - task: name: Translation ukr-ces type: translation args: ukr-ces dataset: name: tatoeba-test-v2021-08-07 type: tatoeba_mt args: ukr-ces metrics: - name: BLEU type: bleu value: 54.2 --- # opus-mt-tc-base-uk-ces_slk Neural machine translation model for translating from Ukrainian (uk) to Czech and Slovak (cs+sk). This model is part of the [OPUS-MT project](https://github.com/Helsinki-NLP/Opus-MT), an effort to make neural machine translation models widely available and accessible for many languages in the world. All models are originally trained using the amazing framework of [Marian NMT](https://marian-nmt.github.io/), an efficient NMT implementation written in pure C++. The models have been converted to pyTorch using the transformers library by huggingface. Training data is taken from [OPUS](https://opus.nlpl.eu/) and training pipelines use the procedures of [OPUS-MT-train](https://github.com/Helsinki-NLP/Opus-MT-train). * Publications: [OPUS-MT – Building open translation services for the World](https://aclanthology.org/2020.eamt-1.61/) and [The Tatoeba Translation Challenge – Realistic Data Sets for Low Resource and Multilingual MT](https://aclanthology.org/2020.wmt-1.139/) (Please, cite if you use this model.) ``` @inproceedings{tiedemann-thottingal-2020-opus, title = "{OPUS}-{MT} {--} Building open translation services for the World", author = {Tiedemann, J{\"o}rg and Thottingal, Santhosh}, booktitle = "Proceedings of the 22nd Annual Conference of the European Association for Machine Translation", month = nov, year = "2020", address = "Lisboa, Portugal", publisher = "European Association for Machine Translation", url = "https://aclanthology.org/2020.eamt-1.61", pages = "479--480", } @inproceedings{tiedemann-2020-tatoeba, title = "The Tatoeba Translation Challenge {--} Realistic Data Sets for Low Resource and Multilingual {MT}", author = {Tiedemann, J{\"o}rg}, booktitle = "Proceedings of the Fifth Conference on Machine Translation", month = nov, year = "2020", address = "Online", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2020.wmt-1.139", pages = "1174--1182", } ``` ## Model info * Release: 2022-03-17 * source language(s): ukr * target language(s): ces * valid target language labels: >>ces<< >>slk<< * model: transformer-align * data: opusTCv20210807+pft ([source](https://github.com/Helsinki-NLP/Tatoeba-Challenge)) * tokenization: SentencePiece (spm32k,spm32k) * original model: [opusTCv20210807+pft_transformer-align_2022-03-17.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/ukr-ces+slk/opusTCv20210807+pft_transformer-align_2022-03-17.zip) * more information released models: [OPUS-MT ukr-ces+slk README](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/ukr-ces+slk/README.md) * more information about the model: [MarianMT](https://huggingface.co/docs/transformers/model_doc/marian) This is a multilingual translation model with multiple target languages. A sentence initial language token is required in the form of `>>id<<` (id = valid target language ID), e.g. `>>ces<<` ## Usage A short example code: ```python from transformers import MarianMTModel, MarianTokenizer src_text = [ ">>ces<< А чого так?", ">>ces<< Я загубив свої окуляри." ] model_name = "pytorch-models/opus-mt-tc-base-uk-ces_slk" tokenizer = MarianTokenizer.from_pretrained(model_name) model = MarianMTModel.from_pretrained(model_name) translated = model.generate(**tokenizer(src_text, return_tensors="pt", padding=True)) for t in translated: print( tokenizer.decode(t, skip_special_tokens=True) ) # expected output: # Proč to tak je? # Ztratil jsem brýle. ``` You can also use OPUS-MT models with the transformers pipelines, for example: ```python from transformers import pipeline pipe = pipeline("translation", model="Helsinki-NLP/opus-mt-tc-base-uk-ces_slk") print(pipe(">>ces<< А чого так?")) # expected output: Proč to tak je? ``` ## Benchmarks * test set translations: [opusTCv20210807+pft_transformer-align_2022-03-17.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/ukr-ces+slk/opusTCv20210807+pft_transformer-align_2022-03-17.test.txt) * test set scores: [opusTCv20210807+pft_transformer-align_2022-03-17.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/ukr-ces+slk/opusTCv20210807+pft_transformer-align_2022-03-17.eval.txt) * benchmark results: [benchmark_results.txt](benchmark_results.txt) * benchmark output: [benchmark_translations.zip](benchmark_translations.zip) | langpair | testset | chr-F | BLEU | #sent | #words | |----------|---------|-------|-------|-------|--------| | ukr-ces | tatoeba-test-v2021-08-07 | 0.70661 | 54.2 | 1787 | 8550 | | ukr-ces | flores101-devtest | 0.51283 | 23.0 | 1012 | 22101 | | ukr-slk | flores101-devtest | 0.51043 | 22.1 | 1012 | 22543 | ## Acknowledgements The work is supported by the [European Language Grid](https://www.european-language-grid.eu/) as [pilot project 2866](https://live.european-language-grid.eu/catalogue/#/resource/projects/2866), by the [FoTran project](https://www.helsinki.fi/en/researchgroups/natural-language-understanding-with-cross-lingual-grounding), funded by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 771113), and the [MeMAD project](https://memad.eu/), funded by the European Union’s Horizon 2020 Research and Innovation Programme under grant agreement No 780069. We are also grateful for the generous computational resources and IT infrastructure provided by [CSC -- IT Center for Science](https://www.csc.fi/), Finland. ## Model conversion info * transformers version: 4.16.2 * OPUS-MT git hash: f084bad * port time: Wed Mar 23 21:54:02 EET 2022 * port machine: LM0-400-22516.local
ScandinavianMrT/gpt2_ONION_prefinetune_4.0
36182d951d0bdfa31db573f49fa717454e1eef12
2022-03-23T18:39:51.000Z
[ "pytorch", "tensorboard", "gpt2", "text-generation", "transformers", "generated_from_trainer", "license:mit", "model-index" ]
text-generation
false
ScandinavianMrT
null
ScandinavianMrT/gpt2_ONION_prefinetune_4.0
2
null
transformers
25,268
--- license: mit tags: - generated_from_trainer model-index: - name: gpt2_ONION_prefinetune_4.0 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt2_ONION_prefinetune_4.0 This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 4.6484 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 153 | 4.7368 | | No log | 2.0 | 306 | 4.6732 | | No log | 3.0 | 459 | 4.6527 | | 4.8529 | 4.0 | 612 | 4.6484 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
BigSalmon/InformalToFormalLincoln30
9c7fb9f675284f9fa76bcfb9c9939fddac42762f
2022-03-23T20:51:13.000Z
[ "pytorch", "tensorboard", "gpt2", "text-generation", "transformers" ]
text-generation
false
BigSalmon
null
BigSalmon/InformalToFormalLincoln30
2
null
transformers
25,269
``` from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("BigSalmon/InformalToFormalLincoln30") model = AutoModelForCausalLM.from_pretrained("BigSalmon/InformalToFormalLincoln30") ``` ``` How To Make Prompt: informal english: i am very ready to do that just that. Translated into the Style of Abraham Lincoln: you can assure yourself of my readiness to work toward this end. Translated into the Style of Abraham Lincoln: please be assured that i am most ready to undertake this laborious task. *** informal english: space is huge and needs to be explored. Translated into the Style of Abraham Lincoln: space awaits traversal, a new world whose boundaries are endless. Translated into the Style of Abraham Lincoln: space is a ( limitless / boundless ) expanse, a vast virgin domain awaiting exploration. *** informal english: corn fields are all across illinois, visible once you leave chicago. Translated into the Style of Abraham Lincoln: corn fields ( permeate illinois / span the state of illinois / ( occupy / persist in ) all corners of illinois / line the horizon of illinois / envelop the landscape of illinois ), manifesting themselves visibly as one ventures beyond chicago. informal english: ``` ``` - declining viewership facing the nba. - does not have to be this way. - in fact, many solutions exist. - the four point line would surely draw in eyes. Text: failing to draw in the masses, the NBA has fallen into disrepair. such does not have to be the case, however. in fact, a myriad of simple, relatively cheap solutions could revive the league. the addition of the much-hyped four-point line would surely juice viewership. *** - ``` ``` infill: chrome extensions [MASK] accomplish everyday tasks. Translated into the Style of Abraham Lincoln: chrome extensions ( expedite the ability to / unlock the means to more readily ) accomplish everyday tasks. infill: at a time when nintendo has become inflexible, [MASK] consoles that are tethered to a fixed iteration, sega diligently curates its legacy of classic video games on handheld devices. Translated into the Style of Abraham Lincoln: at a time when nintendo has become inflexible, ( stubbornly [MASK] on / firmly set on / unyielding in its insistence on ) consoles that are tethered to a fixed iteration, sega diligently curates its legacy of classic video games on handheld devices. infill: ``` ``` Essay Intro (Warriors vs. Rockets in Game 7): text: eagerly anticipated by fans, game 7's are the highlight of the post-season. text: ever-building in suspense, game 7's have the crowd captivated. *** Essay Intro (South Korean TV Is Becoming Popular): text: maturing into a bona fide paragon of programming, south korean television ( has much to offer / entertains without fail / never disappoints ). text: increasingly held in critical esteem, south korean television continues to impress. text: at the forefront of quality content, south korea is quickly achieving celebrity status. *** Essay Intro ( ``` ``` Search: What is the definition of Checks and Balances? https://en.wikipedia.org/wiki/Checks_and_balances Checks and Balances is the idea of having a system where each and every action in government should be subject to one or more checks that would not allow one branch or the other to overly dominate. https://www.harvard.edu/glossary/Checks_and_Balances Checks and Balances is a system that allows each branch of government to limit the powers of the other branches in order to prevent abuse of power https://www.law.cornell.edu/library/constitution/Checks_and_Balances Checks and Balances is a system of separation through which branches of government can control the other, thus preventing excess power. *** Search: What is the definition of Separation of Powers? https://en.wikipedia.org/wiki/Separation_of_powers The separation of powers is a principle in government, whereby governmental powers are separated into different branches, each with their own set of powers, that are prevent one branch from aggregating too much power. https://www.yale.edu/tcf/Separation_of_Powers.html Separation of Powers is the division of governmental functions between the executive, legislative and judicial branches, clearly demarcating each branch's authority, in the interest of ensuring that individual liberty or security is not undermined. *** Search: What is the definition of Connection of Powers? https://en.wikipedia.org/wiki/Connection_of_powers Connection of Powers is a feature of some parliamentary forms of government where different branches of government are intermingled, typically the executive and legislative branches. https://simple.wikipedia.org/wiki/Connection_of_powers The term Connection of Powers describes a system of government in which there is overlap between different parts of the government. *** Search: What is the definition of ``` ``` Search: What are phrase synonyms for "second-guess"? https://www.powerthesaurus.org/second-guess/synonyms Shortest to Longest: - feel dubious about - raise an eyebrow at - wrinkle their noses at - cast a jaundiced eye at - teeter on the fence about *** Search: What are phrase synonyms for "mean to newbies"? https://www.powerthesaurus.org/mean_to_newbies/synonyms Shortest to Longest: - readiness to balk at rookies - absence of tolerance for novices - hostile attitude toward newcomers *** Search: What are phrase synonyms for "make use of"? https://www.powerthesaurus.org/make_use_of/synonyms Shortest to Longest: - call upon - glean value from - reap benefits from - derive utility from - seize on the merits of - draw on the strength of - tap into the potential of *** Search: What are phrase synonyms for "hurting itself"? https://www.powerthesaurus.org/hurting_itself/synonyms Shortest to Longest: - erring - slighting itself - forfeiting its integrity - doing itself a disservice - evincing a lack of backbone *** Search: What are phrase synonyms for " ``` ``` - declining viewership facing the nba. - does not have to be this way. - in fact, many solutions exist. - the four point line would surely draw in eyes. text: failing to draw in the masses, the nba has ( fallen into / succumb to / bowed to ) disrepair. such does not have to be the case, however. in fact, a myriad of simple, relatively cheap ( solutions / interventions / enhancements ) could revive the league. the addition of the much-hyped four-point line would surely juice viewership. *** - ``` ``` original: sports teams are profitable for owners. [MASK], their valuations experience a dramatic uptick. infill: sports teams are profitable for owners. ( accumulating vast sums / stockpiling treasure / realizing benefits / cashing in / registering robust financials / scoring on balance sheets ), their valuations experience a dramatic uptick. *** original: ```
huggingtweets/coscorrodrift
8562e811a34dcce35db2dbedd8d3e90ba2adad95
2022-03-23T22:21:11.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/coscorrodrift
2
null
transformers
25,270
--- language: en thumbnail: http://www.huggingtweets.com/coscorrodrift/1648073956402/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1363260889164623877/vz-U9f3l_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">coscorrodrift</div> <div style="text-align: center; font-size: 14px;">@coscorrodrift</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from coscorrodrift. | Data | coscorrodrift | | --- | --- | | Tweets downloaded | 3247 | | Retweets | 192 | | Short tweets | 405 | | Tweets kept | 2650 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3elna51z/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @coscorrodrift's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2mof7q9s) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2mof7q9s/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/coscorrodrift') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
Bistolero/french_all
71b8c73ff81605d9189182ee0562f9feb4de4039
2022-03-23T23:49:39.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
Bistolero
null
Bistolero/french_all
2
null
transformers
25,271
Entry not found
huggingtweets/btohtoh
daa196d7a03858603d19b14203b841d74195b120
2022-03-24T01:35:56.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/btohtoh
2
null
transformers
25,272
--- language: en thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1506402743296020484/X79Yfcx5_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">BToh</div> <div style="text-align: center; font-size: 14px;">@btohtoh</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from BToh. | Data | BToh | | --- | --- | | Tweets downloaded | 3241 | | Retweets | 347 | | Short tweets | 480 | | Tweets kept | 2414 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1xnk5832/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @btohtoh's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2gdcu3k6) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2gdcu3k6/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/btohtoh') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
rurupang/roberta-base-finetuned-sts-f1
eec33717b9de782f68d55578039320650604ba2f
2022-03-24T07:40:19.000Z
[ "pytorch", "roberta", "text-classification", "transformers" ]
text-classification
false
rurupang
null
rurupang/roberta-base-finetuned-sts-f1
2
null
transformers
25,273
Entry not found
MrBananaHuman/kobart-base-v2-summarization
ec357bc99e98b3802508ed63bd69641beb10e092
2022-03-24T04:25:30.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "license:apache-2.0", "autotrain_compatible" ]
text2text-generation
false
MrBananaHuman
null
MrBananaHuman/kobart-base-v2-summarization
2
null
transformers
25,274
--- license: apache-2.0 ---
yy642/bert-base-uncased-finetuned-rte-max-length-512-epoch-10
ac338b0e30d0163a3f8c91ee0fef7789715737e0
2022-03-24T05:45:20.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
yy642
null
yy642/bert-base-uncased-finetuned-rte-max-length-512-epoch-10
2
null
transformers
25,275
Entry not found
neal49/distilbert-sst2-withmlm-5e-1
c2a5967c8dc9a2a7ff51c815755d9735d6d0a95c
2022-03-24T07:16:49.000Z
[ "pytorch", "distilbert", "transformers" ]
null
false
neal49
null
neal49/distilbert-sst2-withmlm-5e-1
2
null
transformers
25,276
Entry not found
buvnswrn/daml-t5
143242388ee221a6b3980f8857953b0286fbce98
2022-04-11T09:26:14.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
buvnswrn
null
buvnswrn/daml-t5
2
null
transformers
25,277
Entry not found
zuppif/resnet-d-18
90cdda6f7fdf8e25088c012521b3b479e7ac14b5
2022-03-24T08:57:16.000Z
[ "pytorch", "resnetd", "transformers" ]
null
false
zuppif
null
zuppif/resnet-d-18
2
null
transformers
25,278
Entry not found
zuppif/resnet-d-26
a8021524619cba3d81cef29528f2891c03c1f7e1
2022-03-24T08:58:06.000Z
[ "pytorch", "resnetd", "transformers" ]
null
false
zuppif
null
zuppif/resnet-d-26
2
null
transformers
25,279
Entry not found
zuppif/resnet-d-50
89634f181783c0eee47e85579abe091d0dd91356
2022-03-24T09:00:13.000Z
[ "pytorch", "resnetd", "transformers" ]
null
false
zuppif
null
zuppif/resnet-d-50
2
null
transformers
25,280
Entry not found
zuppif/resnet-d-200
a238f76f494b8a79aa9d025ab5838d3d5226ab75
2022-03-24T09:05:26.000Z
[ "pytorch", "resnetd", "transformers" ]
null
false
zuppif
null
zuppif/resnet-d-200
2
null
transformers
25,281
Entry not found
Helsinki-NLP/opus-mt-tc-big-fi-zle
f1e8639e5b7c09ca4d79627d3f7b58dc49de4bf2
2022-06-01T13:09:39.000Z
[ "pytorch", "marian", "text2text-generation", "fi", "ru", "uk", "zle", "transformers", "translation", "opus-mt-tc", "license:cc-by-4.0", "model-index", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-tc-big-fi-zle
2
null
transformers
25,282
--- language: - fi - ru - uk - zle tags: - translation - opus-mt-tc license: cc-by-4.0 model-index: - name: opus-mt-tc-big-fi-zle results: - task: name: Translation fin-rus type: translation args: fin-rus dataset: name: flores101-devtest type: flores_101 args: fin rus devtest metrics: - name: BLEU type: bleu value: 21.4 - task: name: Translation fin-ukr type: translation args: fin-ukr dataset: name: flores101-devtest type: flores_101 args: fin ukr devtest metrics: - name: BLEU type: bleu value: 17.9 - task: name: Translation fin-rus type: translation args: fin-rus dataset: name: tatoeba-test-v2021-08-07 type: tatoeba_mt args: fin-rus metrics: - name: BLEU type: bleu value: 47.0 --- # opus-mt-tc-big-fi-zle Neural machine translation model for translating from Finnish (fi) to East Slavic languages (zle). This model is part of the [OPUS-MT project](https://github.com/Helsinki-NLP/Opus-MT), an effort to make neural machine translation models widely available and accessible for many languages in the world. All models are originally trained using the amazing framework of [Marian NMT](https://marian-nmt.github.io/), an efficient NMT implementation written in pure C++. The models have been converted to pyTorch using the transformers library by huggingface. Training data is taken from [OPUS](https://opus.nlpl.eu/) and training pipelines use the procedures of [OPUS-MT-train](https://github.com/Helsinki-NLP/Opus-MT-train). * Publications: [OPUS-MT – Building open translation services for the World](https://aclanthology.org/2020.eamt-1.61/) and [The Tatoeba Translation Challenge – Realistic Data Sets for Low Resource and Multilingual MT](https://aclanthology.org/2020.wmt-1.139/) (Please, cite if you use this model.) ``` @inproceedings{tiedemann-thottingal-2020-opus, title = "{OPUS}-{MT} {--} Building open translation services for the World", author = {Tiedemann, J{\"o}rg and Thottingal, Santhosh}, booktitle = "Proceedings of the 22nd Annual Conference of the European Association for Machine Translation", month = nov, year = "2020", address = "Lisboa, Portugal", publisher = "European Association for Machine Translation", url = "https://aclanthology.org/2020.eamt-1.61", pages = "479--480", } @inproceedings{tiedemann-2020-tatoeba, title = "The Tatoeba Translation Challenge {--} Realistic Data Sets for Low Resource and Multilingual {MT}", author = {Tiedemann, J{\"o}rg}, booktitle = "Proceedings of the Fifth Conference on Machine Translation", month = nov, year = "2020", address = "Online", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2020.wmt-1.139", pages = "1174--1182", } ``` ## Model info * Release: 2022-03-17 * source language(s): fin * target language(s): rus ukr * valid target language labels: >>rus<< >>ukr<< * model: transformer-big * data: opusTCv20210807+bt ([source](https://github.com/Helsinki-NLP/Tatoeba-Challenge)) * tokenization: SentencePiece (spm32k,spm32k) * original model: [opusTCv20210807+bt_transformer-big_2022-03-17.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/fin-zle/opusTCv20210807+bt_transformer-big_2022-03-17.zip) * more information released models: [OPUS-MT fin-zle README](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/fin-zle/README.md) * more information about the model: [MarianMT](https://huggingface.co/docs/transformers/model_doc/marian) This is a multilingual translation model with multiple target languages. A sentence initial language token is required in the form of `>>id<<` (id = valid target language ID), e.g. `>>rus<<` ## Usage A short example code: ```python from transformers import MarianMTModel, MarianTokenizer src_text = [ ">>rus<< Äänestimme jo.", ">>ukr<< Yksi, kaksi, kolme, neljä, viisi, kuusi, seitsemän, kahdeksan, yhdeksän, kymmenen." ] model_name = "pytorch-models/opus-mt-tc-big-fi-zle" tokenizer = MarianTokenizer.from_pretrained(model_name) model = MarianMTModel.from_pretrained(model_name) translated = model.generate(**tokenizer(src_text, return_tensors="pt", padding=True)) for t in translated: print( tokenizer.decode(t, skip_special_tokens=True) ) # expected output: # Мы уже проголосовали. # Один, два, три, чотири, п'ять, шість, сім, вісім, дев'ять, десять. ``` You can also use OPUS-MT models with the transformers pipelines, for example: ```python from transformers import pipeline pipe = pipeline("translation", model="Helsinki-NLP/opus-mt-tc-big-fi-zle") print(pipe(">>rus<< Äänestimme jo.")) # expected output: Мы уже проголосовали. ``` ## Benchmarks * test set translations: [opusTCv20210807+bt_transformer-big_2022-03-17.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/fin-zle/opusTCv20210807+bt_transformer-big_2022-03-17.test.txt) * test set scores: [opusTCv20210807+bt_transformer-big_2022-03-17.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/fin-zle/opusTCv20210807+bt_transformer-big_2022-03-17.eval.txt) * benchmark results: [benchmark_results.txt](benchmark_results.txt) * benchmark output: [benchmark_translations.zip](benchmark_translations.zip) | langpair | testset | chr-F | BLEU | #sent | #words | |----------|---------|-------|-------|-------|--------| | fin-rus | tatoeba-test-v2021-08-07 | 0.67247 | 47.0 | 3643 | 21497 | | fin-rus | flores101-devtest | 0.49920 | 21.4 | 1012 | 23295 | | fin-ukr | flores101-devtest | 0.46935 | 17.9 | 1012 | 22810 | ## Acknowledgements The work is supported by the [European Language Grid](https://www.european-language-grid.eu/) as [pilot project 2866](https://live.european-language-grid.eu/catalogue/#/resource/projects/2866), by the [FoTran project](https://www.helsinki.fi/en/researchgroups/natural-language-understanding-with-cross-lingual-grounding), funded by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 771113), and the [MeMAD project](https://memad.eu/), funded by the European Union’s Horizon 2020 Research and Innovation Programme under grant agreement No 780069. We are also grateful for the generous computational resources and IT infrastructure provided by [CSC -- IT Center for Science](https://www.csc.fi/), Finland. ## Model conversion info * transformers version: 4.16.2 * OPUS-MT git hash: 42126b6 * port time: Thu Mar 24 09:34:57 EET 2022 * port machine: LM0-400-22516.local
Helsinki-NLP/opus-mt-tc-big-zle-gmq
af590a1620be76c154a85c2390bbe0bb9b31c2e9
2022-06-01T13:04:55.000Z
[ "pytorch", "marian", "text2text-generation", "tc", "big", "zle", "gmq", "transformers", "translation", "opus-mt-tc", "license:cc-by-4.0", "model-index", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-tc-big-zle-gmq
2
null
transformers
25,283
--- language: - da - gmq - nb - false - ru - sv - uk - zle tags: - translation - opus-mt-tc license: cc-by-4.0 model-index: - name: opus-mt-tc-big-zle-gmq results: - task: name: Translation rus-dan type: translation args: rus-dan dataset: name: flores101-devtest type: flores_101 args: rus dan devtest metrics: - name: BLEU type: bleu value: 28.0 - task: name: Translation rus-nob type: translation args: rus-nob dataset: name: flores101-devtest type: flores_101 args: rus nob devtest metrics: - name: BLEU type: bleu value: 20.6 - task: name: Translation rus-swe type: translation args: rus-swe dataset: name: flores101-devtest type: flores_101 args: rus swe devtest metrics: - name: BLEU type: bleu value: 26.4 - task: name: Translation ukr-dan type: translation args: ukr-dan dataset: name: flores101-devtest type: flores_101 args: ukr dan devtest metrics: - name: BLEU type: bleu value: 30.3 - task: name: Translation ukr-nob type: translation args: ukr-nob dataset: name: flores101-devtest type: flores_101 args: ukr nob devtest metrics: - name: BLEU type: bleu value: 21.1 - task: name: Translation ukr-swe type: translation args: ukr-swe dataset: name: flores101-devtest type: flores_101 args: ukr swe devtest metrics: - name: BLEU type: bleu value: 28.8 - task: name: Translation rus-dan type: translation args: rus-dan dataset: name: tatoeba-test-v2021-08-07 type: tatoeba_mt args: rus-dan metrics: - name: BLEU type: bleu value: 59.6 - task: name: Translation rus-nob type: translation args: rus-nob dataset: name: tatoeba-test-v2021-08-07 type: tatoeba_mt args: rus-nob metrics: - name: BLEU type: bleu value: 46.1 - task: name: Translation rus-swe type: translation args: rus-swe dataset: name: tatoeba-test-v2021-08-07 type: tatoeba_mt args: rus-swe metrics: - name: BLEU type: bleu value: 53.3 --- # opus-mt-tc-big-zle-gmq Neural machine translation model for translating from East Slavic languages (zle) to North Germanic languages (gmq). This model is part of the [OPUS-MT project](https://github.com/Helsinki-NLP/Opus-MT), an effort to make neural machine translation models widely available and accessible for many languages in the world. All models are originally trained using the amazing framework of [Marian NMT](https://marian-nmt.github.io/), an efficient NMT implementation written in pure C++. The models have been converted to pyTorch using the transformers library by huggingface. Training data is taken from [OPUS](https://opus.nlpl.eu/) and training pipelines use the procedures of [OPUS-MT-train](https://github.com/Helsinki-NLP/Opus-MT-train). * Publications: [OPUS-MT – Building open translation services for the World](https://aclanthology.org/2020.eamt-1.61/) and [The Tatoeba Translation Challenge – Realistic Data Sets for Low Resource and Multilingual MT](https://aclanthology.org/2020.wmt-1.139/) (Please, cite if you use this model.) ``` @inproceedings{tiedemann-thottingal-2020-opus, title = "{OPUS}-{MT} {--} Building open translation services for the World", author = {Tiedemann, J{\"o}rg and Thottingal, Santhosh}, booktitle = "Proceedings of the 22nd Annual Conference of the European Association for Machine Translation", month = nov, year = "2020", address = "Lisboa, Portugal", publisher = "European Association for Machine Translation", url = "https://aclanthology.org/2020.eamt-1.61", pages = "479--480", } @inproceedings{tiedemann-2020-tatoeba, title = "The Tatoeba Translation Challenge {--} Realistic Data Sets for Low Resource and Multilingual {MT}", author = {Tiedemann, J{\"o}rg}, booktitle = "Proceedings of the Fifth Conference on Machine Translation", month = nov, year = "2020", address = "Online", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2020.wmt-1.139", pages = "1174--1182", } ``` ## Model info * Release: 2022-03-14 * source language(s): rus ukr * target language(s): dan nob nor swe * valid target language labels: >>dan<< >>nob<< >>nor<< >>swe<< * model: transformer-big * data: opusTCv20210807+pft ([source](https://github.com/Helsinki-NLP/Tatoeba-Challenge)) * tokenization: SentencePiece (spm32k,spm32k) * original model: [opusTCv20210807+pft_transformer-big_2022-03-14.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/zle-gmq/opusTCv20210807+pft_transformer-big_2022-03-14.zip) * more information released models: [OPUS-MT zle-gmq README](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/zle-gmq/README.md) * more information about the model: [MarianMT](https://huggingface.co/docs/transformers/model_doc/marian) This is a multilingual translation model with multiple target languages. A sentence initial language token is required in the form of `>>id<<` (id = valid target language ID), e.g. `>>dan<<` ## Usage A short example code: ```python from transformers import MarianMTModel, MarianTokenizer src_text = [ ">>dan<< Заўтра ўжо чацвер.", ">>swe<< Том грав з Мері в кішки-мишки." ] model_name = "pytorch-models/opus-mt-tc-big-zle-gmq" tokenizer = MarianTokenizer.from_pretrained(model_name) model = MarianMTModel.from_pretrained(model_name) translated = model.generate(**tokenizer(src_text, return_tensors="pt", padding=True)) for t in translated: print( tokenizer.decode(t, skip_special_tokens=True) ) # expected output: # I morgen er det torsdag. # Tom lekte med Mary i katt-möss. ``` You can also use OPUS-MT models with the transformers pipelines, for example: ```python from transformers import pipeline pipe = pipeline("translation", model="Helsinki-NLP/opus-mt-tc-big-zle-gmq") print(pipe(">>dan<< Заўтра ўжо чацвер.")) # expected output: I morgen er det torsdag. ``` ## Benchmarks * test set translations: [opusTCv20210807+pft_transformer-big_2022-03-14.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/zle-gmq/opusTCv20210807+pft_transformer-big_2022-03-14.test.txt) * test set scores: [opusTCv20210807+pft_transformer-big_2022-03-14.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/zle-gmq/opusTCv20210807+pft_transformer-big_2022-03-14.eval.txt) * benchmark results: [benchmark_results.txt](benchmark_results.txt) * benchmark output: [benchmark_translations.zip](benchmark_translations.zip) | langpair | testset | chr-F | BLEU | #sent | #words | |----------|---------|-------|-------|-------|--------| | rus-dan | tatoeba-test-v2021-08-07 | 0.74307 | 59.6 | 1713 | 11746 | | rus-nob | tatoeba-test-v2021-08-07 | 0.66376 | 46.1 | 1277 | 11672 | | rus-swe | tatoeba-test-v2021-08-07 | 0.69608 | 53.3 | 1282 | 8449 | | bel-dan | flores101-devtest | 0.47621 | 13.9 | 1012 | 24638 | | bel-nob | flores101-devtest | 0.44966 | 10.8 | 1012 | 23873 | | bel-swe | flores101-devtest | 0.47274 | 13.2 | 1012 | 23121 | | rus-dan | flores101-devtest | 0.55917 | 28.0 | 1012 | 24638 | | rus-nob | flores101-devtest | 0.50724 | 20.6 | 1012 | 23873 | | rus-swe | flores101-devtest | 0.55812 | 26.4 | 1012 | 23121 | | ukr-dan | flores101-devtest | 0.57829 | 30.3 | 1012 | 24638 | | ukr-nob | flores101-devtest | 0.52271 | 21.1 | 1012 | 23873 | | ukr-swe | flores101-devtest | 0.57499 | 28.8 | 1012 | 23121 | ## Acknowledgements The work is supported by the [European Language Grid](https://www.european-language-grid.eu/) as [pilot project 2866](https://live.european-language-grid.eu/catalogue/#/resource/projects/2866), by the [FoTran project](https://www.helsinki.fi/en/researchgroups/natural-language-understanding-with-cross-lingual-grounding), funded by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 771113), and the [MeMAD project](https://memad.eu/), funded by the European Union’s Horizon 2020 Research and Innovation Programme under grant agreement No 780069. We are also grateful for the generous computational resources and IT infrastructure provided by [CSC -- IT Center for Science](https://www.csc.fi/), Finland. ## Model conversion info * transformers version: 4.16.2 * OPUS-MT git hash: 1bdabf7 * port time: Wed Mar 23 23:13:54 EET 2022 * port machine: LM0-400-22516.local
Helsinki-NLP/opus-mt-tc-big-zle-it
7815686c1d81a39e4c58fe85b2bd74352f0599c4
2022-06-01T13:09:27.000Z
[ "pytorch", "marian", "text2text-generation", "be", "it", "ru", "uk", "zle", "transformers", "translation", "opus-mt-tc", "license:cc-by-4.0", "model-index", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-tc-big-zle-it
2
null
transformers
25,284
--- language: - be - it - ru - uk - zle tags: - translation - opus-mt-tc license: cc-by-4.0 model-index: - name: opus-mt-tc-big-zle-it results: - task: name: Translation rus-ita type: translation args: rus-ita dataset: name: flores101-devtest type: flores_101 args: rus ita devtest metrics: - name: BLEU type: bleu value: 23.7 - task: name: Translation ukr-ita type: translation args: ukr-ita dataset: name: flores101-devtest type: flores_101 args: ukr ita devtest metrics: - name: BLEU type: bleu value: 23.2 - task: name: Translation bel-ita type: translation args: bel-ita dataset: name: tatoeba-test-v2021-08-07 type: tatoeba_mt args: bel-ita metrics: - name: BLEU type: bleu value: 49.3 - task: name: Translation rus-ita type: translation args: rus-ita dataset: name: tatoeba-test-v2021-08-07 type: tatoeba_mt args: rus-ita metrics: - name: BLEU type: bleu value: 43.5 - task: name: Translation ukr-ita type: translation args: ukr-ita dataset: name: tatoeba-test-v2021-08-07 type: tatoeba_mt args: ukr-ita metrics: - name: BLEU type: bleu value: 50.0 --- # opus-mt-tc-big-zle-it Neural machine translation model for translating from East Slavic languages (zle) to Italian (it). This model is part of the [OPUS-MT project](https://github.com/Helsinki-NLP/Opus-MT), an effort to make neural machine translation models widely available and accessible for many languages in the world. All models are originally trained using the amazing framework of [Marian NMT](https://marian-nmt.github.io/), an efficient NMT implementation written in pure C++. The models have been converted to pyTorch using the transformers library by huggingface. Training data is taken from [OPUS](https://opus.nlpl.eu/) and training pipelines use the procedures of [OPUS-MT-train](https://github.com/Helsinki-NLP/Opus-MT-train). * Publications: [OPUS-MT – Building open translation services for the World](https://aclanthology.org/2020.eamt-1.61/) and [The Tatoeba Translation Challenge – Realistic Data Sets for Low Resource and Multilingual MT](https://aclanthology.org/2020.wmt-1.139/) (Please, cite if you use this model.) ``` @inproceedings{tiedemann-thottingal-2020-opus, title = "{OPUS}-{MT} {--} Building open translation services for the World", author = {Tiedemann, J{\"o}rg and Thottingal, Santhosh}, booktitle = "Proceedings of the 22nd Annual Conference of the European Association for Machine Translation", month = nov, year = "2020", address = "Lisboa, Portugal", publisher = "European Association for Machine Translation", url = "https://aclanthology.org/2020.eamt-1.61", pages = "479--480", } @inproceedings{tiedemann-2020-tatoeba, title = "The Tatoeba Translation Challenge {--} Realistic Data Sets for Low Resource and Multilingual {MT}", author = {Tiedemann, J{\"o}rg}, booktitle = "Proceedings of the Fifth Conference on Machine Translation", month = nov, year = "2020", address = "Online", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2020.wmt-1.139", pages = "1174--1182", } ``` ## Model info * Release: 2022-03-19 * source language(s): bel rus ukr * target language(s): ita * model: transformer-big * data: opusTCv20210807 ([source](https://github.com/Helsinki-NLP/Tatoeba-Challenge)) * tokenization: SentencePiece (spm32k,spm32k) * original model: [opusTCv20210807_transformer-big_2022-03-19.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/zle-ita/opusTCv20210807_transformer-big_2022-03-19.zip) * more information released models: [OPUS-MT zle-ita README](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/zle-ita/README.md) ## Usage A short example code: ```python from transformers import MarianMTModel, MarianTokenizer src_text = [ "Вони не ідіоти.", "Я не хочу идти в банк." ] model_name = "pytorch-models/opus-mt-tc-big-zle-it" tokenizer = MarianTokenizer.from_pretrained(model_name) model = MarianMTModel.from_pretrained(model_name) translated = model.generate(**tokenizer(src_text, return_tensors="pt", padding=True)) for t in translated: print( tokenizer.decode(t, skip_special_tokens=True) ) # expected output: # Non sono idioti. # Non voglio andare in banca. ``` You can also use OPUS-MT models with the transformers pipelines, for example: ```python from transformers import pipeline pipe = pipeline("translation", model="Helsinki-NLP/opus-mt-tc-big-zle-it") print(pipe("Вони не ідіоти.")) # expected output: Non sono idioti. ``` ## Benchmarks * test set translations: [opusTCv20210807_transformer-big_2022-03-19.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/zle-ita/opusTCv20210807_transformer-big_2022-03-19.test.txt) * test set scores: [opusTCv20210807_transformer-big_2022-03-19.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/zle-ita/opusTCv20210807_transformer-big_2022-03-19.eval.txt) * benchmark results: [benchmark_results.txt](benchmark_results.txt) * benchmark output: [benchmark_translations.zip](benchmark_translations.zip) | langpair | testset | chr-F | BLEU | #sent | #words | |----------|---------|-------|-------|-------|--------| | bel-ita | tatoeba-test-v2021-08-07 | 0.65945 | 49.3 | 264 | 1681 | | rus-ita | tatoeba-test-v2021-08-07 | 0.64037 | 43.5 | 10045 | 71584 | | ukr-ita | tatoeba-test-v2021-08-07 | 0.69570 | 50.0 | 5000 | 27846 | | bel-ita | flores101-devtest | 0.46311 | 13.5 | 1012 | 27306 | | rus-ita | flores101-devtest | 0.53054 | 23.7 | 1012 | 27306 | | ukr-ita | flores101-devtest | 0.52783 | 23.2 | 1012 | 27306 | ## Acknowledgements The work is supported by the [European Language Grid](https://www.european-language-grid.eu/) as [pilot project 2866](https://live.european-language-grid.eu/catalogue/#/resource/projects/2866), by the [FoTran project](https://www.helsinki.fi/en/researchgroups/natural-language-understanding-with-cross-lingual-grounding), funded by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 771113), and the [MeMAD project](https://memad.eu/), funded by the European Union’s Horizon 2020 Research and Innovation Programme under grant agreement No 780069. We are also grateful for the generous computational resources and IT infrastructure provided by [CSC -- IT Center for Science](https://www.csc.fi/), Finland. ## Model conversion info * transformers version: 4.16.2 * OPUS-MT git hash: 1bdabf7 * port time: Wed Mar 23 23:17:47 EET 2022 * port machine: LM0-400-22516.local
Helsinki-NLP/opus-mt-tc-big-zle-zle
bf1e5da40b907457791497ed2b4e50a2a4ce116f
2022-06-01T13:07:59.000Z
[ "pytorch", "marian", "text2text-generation", "be", "ru", "uk", "zle", "transformers", "translation", "opus-mt-tc", "license:cc-by-4.0", "model-index", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-tc-big-zle-zle
2
null
transformers
25,285
--- language: - be - ru - uk - zle tags: - translation - opus-mt-tc license: cc-by-4.0 model-index: - name: opus-mt-tc-big-zle-zle results: - task: name: Translation rus-ukr type: translation args: rus-ukr dataset: name: flores101-devtest type: flores_101 args: rus ukr devtest metrics: - name: BLEU type: bleu value: 25.5 - task: name: Translation ukr-rus type: translation args: ukr-rus dataset: name: flores101-devtest type: flores_101 args: ukr rus devtest metrics: - name: BLEU type: bleu value: 28.3 - task: name: Translation bel-rus type: translation args: bel-rus dataset: name: tatoeba-test-v2021-08-07 type: tatoeba_mt args: bel-rus metrics: - name: BLEU type: bleu value: 68.6 - task: name: Translation bel-ukr type: translation args: bel-ukr dataset: name: tatoeba-test-v2021-08-07 type: tatoeba_mt args: bel-ukr metrics: - name: BLEU type: bleu value: 65.5 - task: name: Translation rus-bel type: translation args: rus-bel dataset: name: tatoeba-test-v2021-08-07 type: tatoeba_mt args: rus-bel metrics: - name: BLEU type: bleu value: 50.3 - task: name: Translation rus-ukr type: translation args: rus-ukr dataset: name: tatoeba-test-v2021-08-07 type: tatoeba_mt args: rus-ukr metrics: - name: BLEU type: bleu value: 70.1 - task: name: Translation ukr-bel type: translation args: ukr-bel dataset: name: tatoeba-test-v2021-08-07 type: tatoeba_mt args: ukr-bel metrics: - name: BLEU type: bleu value: 58.9 - task: name: Translation ukr-rus type: translation args: ukr-rus dataset: name: tatoeba-test-v2021-08-07 type: tatoeba_mt args: ukr-rus metrics: - name: BLEU type: bleu value: 75.7 --- # opus-mt-tc-big-zle-zle Neural machine translation model for translating from East Slavic languages (zle) to East Slavic languages (zle). This model is part of the [OPUS-MT project](https://github.com/Helsinki-NLP/Opus-MT), an effort to make neural machine translation models widely available and accessible for many languages in the world. All models are originally trained using the amazing framework of [Marian NMT](https://marian-nmt.github.io/), an efficient NMT implementation written in pure C++. The models have been converted to pyTorch using the transformers library by huggingface. Training data is taken from [OPUS](https://opus.nlpl.eu/) and training pipelines use the procedures of [OPUS-MT-train](https://github.com/Helsinki-NLP/Opus-MT-train). * Publications: [OPUS-MT – Building open translation services for the World](https://aclanthology.org/2020.eamt-1.61/) and [The Tatoeba Translation Challenge – Realistic Data Sets for Low Resource and Multilingual MT](https://aclanthology.org/2020.wmt-1.139/) (Please, cite if you use this model.) ``` @inproceedings{tiedemann-thottingal-2020-opus, title = "{OPUS}-{MT} {--} Building open translation services for the World", author = {Tiedemann, J{\"o}rg and Thottingal, Santhosh}, booktitle = "Proceedings of the 22nd Annual Conference of the European Association for Machine Translation", month = nov, year = "2020", address = "Lisboa, Portugal", publisher = "European Association for Machine Translation", url = "https://aclanthology.org/2020.eamt-1.61", pages = "479--480", } @inproceedings{tiedemann-2020-tatoeba, title = "The Tatoeba Translation Challenge {--} Realistic Data Sets for Low Resource and Multilingual {MT}", author = {Tiedemann, J{\"o}rg}, booktitle = "Proceedings of the Fifth Conference on Machine Translation", month = nov, year = "2020", address = "Online", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2020.wmt-1.139", pages = "1174--1182", } ``` ## Model info * Release: 2022-03-07 * source language(s): bel rus ukr * target language(s): bel rus ukr * valid target language labels: >>bel<< >>rus<< >>ukr<< * model: transformer-big * data: opusTCv20210807+bt ([source](https://github.com/Helsinki-NLP/Tatoeba-Challenge)) * tokenization: SentencePiece (spm32k,spm32k) * original model: [opusTCv20210807+bt_transformer-big_2022-03-07.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/zle-zle/opusTCv20210807+bt_transformer-big_2022-03-07.zip) * more information released models: [OPUS-MT zle-zle README](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/zle-zle/README.md) * more information about the model: [MarianMT](https://huggingface.co/docs/transformers/model_doc/marian) This is a multilingual translation model with multiple target languages. A sentence initial language token is required in the form of `>>id<<` (id = valid target language ID), e.g. `>>bel<<` ## Usage A short example code: ```python from transformers import MarianMTModel, MarianTokenizer src_text = [ ">>ukr<< Кот мёртвый.", ">>bel<< Джон живе в Нью-Йорку." ] model_name = "pytorch-models/opus-mt-tc-big-zle-zle" tokenizer = MarianTokenizer.from_pretrained(model_name) model = MarianMTModel.from_pretrained(model_name) translated = model.generate(**tokenizer(src_text, return_tensors="pt", padding=True)) for t in translated: print( tokenizer.decode(t, skip_special_tokens=True) ) # expected output: # Кіт мертвий. # Джон жыве ў Нью-Йорку. ``` You can also use OPUS-MT models with the transformers pipelines, for example: ```python from transformers import pipeline pipe = pipeline("translation", model="Helsinki-NLP/opus-mt-tc-big-zle-zle") print(pipe(">>ukr<< Кот мёртвый.")) # expected output: Кіт мертвий. ``` ## Benchmarks * test set translations: [opusTCv20210807+bt_transformer-big_2022-03-07.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/zle-zle/opusTCv20210807+bt_transformer-big_2022-03-07.test.txt) * test set scores: [opusTCv20210807+bt_transformer-big_2022-03-07.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/zle-zle/opusTCv20210807+bt_transformer-big_2022-03-07.eval.txt) * benchmark results: [benchmark_results.txt](benchmark_results.txt) * benchmark output: [benchmark_translations.zip](benchmark_translations.zip) | langpair | testset | chr-F | BLEU | #sent | #words | |----------|---------|-------|-------|-------|--------| | bel-rus | tatoeba-test-v2021-08-07 | 0.82526 | 68.6 | 2500 | 18895 | | bel-ukr | tatoeba-test-v2021-08-07 | 0.81036 | 65.5 | 2355 | 15179 | | rus-bel | tatoeba-test-v2021-08-07 | 0.66943 | 50.3 | 2500 | 18756 | | rus-ukr | tatoeba-test-v2021-08-07 | 0.83639 | 70.1 | 10000 | 60212 | | ukr-bel | tatoeba-test-v2021-08-07 | 0.75368 | 58.9 | 2355 | 15175 | | ukr-rus | tatoeba-test-v2021-08-07 | 0.86806 | 75.7 | 10000 | 60387 | | bel-rus | flores101-devtest | 0.47960 | 14.5 | 1012 | 23295 | | bel-ukr | flores101-devtest | 0.47335 | 12.8 | 1012 | 22810 | | rus-ukr | flores101-devtest | 0.55287 | 25.5 | 1012 | 22810 | | ukr-rus | flores101-devtest | 0.56224 | 28.3 | 1012 | 23295 | ## Acknowledgements The work is supported by the [European Language Grid](https://www.european-language-grid.eu/) as [pilot project 2866](https://live.european-language-grid.eu/catalogue/#/resource/projects/2866), by the [FoTran project](https://www.helsinki.fi/en/researchgroups/natural-language-understanding-with-cross-lingual-grounding), funded by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 771113), and the [MeMAD project](https://memad.eu/), funded by the European Union’s Horizon 2020 Research and Innovation Programme under grant agreement No 780069. We are also grateful for the generous computational resources and IT infrastructure provided by [CSC -- IT Center for Science](https://www.csc.fi/), Finland. ## Model conversion info * transformers version: 4.16.2 * OPUS-MT git hash: 1bdabf7 * port time: Thu Mar 24 00:15:39 EET 2022 * port machine: LM0-400-22516.local
Helsinki-NLP/opus-mt-tc-base-bat-zle
ef9424b4987c9ac6afa0f74ad0d711623662362b
2022-06-01T13:09:09.000Z
[ "pytorch", "marian", "text2text-generation", "bat", "lt", "lv", "ru", "zle", "transformers", "translation", "opus-mt-tc", "license:cc-by-4.0", "model-index", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-tc-base-bat-zle
2
null
transformers
25,286
--- language: - bat - lt - lv - ru - zle tags: - translation - opus-mt-tc license: cc-by-4.0 model-index: - name: opus-mt-tc-base-bat-zle results: - task: name: Translation lav-rus type: translation args: lav-rus dataset: name: flores101-devtest type: flores_101 args: lav rus devtest metrics: - name: BLEU type: bleu value: 21.1 - task: name: Translation lit-rus type: translation args: lit-rus dataset: name: flores101-devtest type: flores_101 args: lit rus devtest metrics: - name: BLEU type: bleu value: 21.3 - task: name: Translation lav-rus type: translation args: lav-rus dataset: name: tatoeba-test-v2021-08-07 type: tatoeba_mt args: lav-rus metrics: - name: BLEU type: bleu value: 60.5 - task: name: Translation lit-rus type: translation args: lit-rus dataset: name: tatoeba-test-v2021-08-07 type: tatoeba_mt args: lit-rus metrics: - name: BLEU type: bleu value: 54.9 --- # opus-mt-tc-base-bat-zle Neural machine translation model for translating from Baltic languages (bat) to East Slavic languages (zle). This model is part of the [OPUS-MT project](https://github.com/Helsinki-NLP/Opus-MT), an effort to make neural machine translation models widely available and accessible for many languages in the world. All models are originally trained using the amazing framework of [Marian NMT](https://marian-nmt.github.io/), an efficient NMT implementation written in pure C++. The models have been converted to pyTorch using the transformers library by huggingface. Training data is taken from [OPUS](https://opus.nlpl.eu/) and training pipelines use the procedures of [OPUS-MT-train](https://github.com/Helsinki-NLP/Opus-MT-train). * Publications: [OPUS-MT – Building open translation services for the World](https://aclanthology.org/2020.eamt-1.61/) and [The Tatoeba Translation Challenge – Realistic Data Sets for Low Resource and Multilingual MT](https://aclanthology.org/2020.wmt-1.139/) (Please, cite if you use this model.) ``` @inproceedings{tiedemann-thottingal-2020-opus, title = "{OPUS}-{MT} {--} Building open translation services for the World", author = {Tiedemann, J{\"o}rg and Thottingal, Santhosh}, booktitle = "Proceedings of the 22nd Annual Conference of the European Association for Machine Translation", month = nov, year = "2020", address = "Lisboa, Portugal", publisher = "European Association for Machine Translation", url = "https://aclanthology.org/2020.eamt-1.61", pages = "479--480", } @inproceedings{tiedemann-2020-tatoeba, title = "The Tatoeba Translation Challenge {--} Realistic Data Sets for Low Resource and Multilingual {MT}", author = {Tiedemann, J{\"o}rg}, booktitle = "Proceedings of the Fifth Conference on Machine Translation", month = nov, year = "2020", address = "Online", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2020.wmt-1.139", pages = "1174--1182", } ``` ## Model info * Release: 2022-03-13 * source language(s): lav lit * target language(s): rus * model: transformer-align * data: opusTCv20210807 ([source](https://github.com/Helsinki-NLP/Tatoeba-Challenge)) * tokenization: SentencePiece (spm32k,spm32k) * original model: [opusTCv20210807_transformer-align_2022-03-13.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/bat-zle/opusTCv20210807_transformer-align_2022-03-13.zip) * more information released models: [OPUS-MT bat-zle README](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/bat-zle/README.md) ## Usage A short example code: ```python from transformers import MarianMTModel, MarianTokenizer src_text = [ ">>rus<< Āfrika ir cilvēces šūpulis.", ">>ukr<< Tomas yra mūsų kapitonas." ] model_name = "pytorch-models/opus-mt-tc-base-bat-zle" tokenizer = MarianTokenizer.from_pretrained(model_name) model = MarianMTModel.from_pretrained(model_name) translated = model.generate(**tokenizer(src_text, return_tensors="pt", padding=True)) for t in translated: print( tokenizer.decode(t, skip_special_tokens=True) ) # expected output: # Африка - это колыбель человечества. # Томас - наш капітан. ``` You can also use OPUS-MT models with the transformers pipelines, for example: ```python from transformers import pipeline pipe = pipeline("translation", model="Helsinki-NLP/opus-mt-tc-base-bat-zle") print(pipe(">>rus<< Āfrika ir cilvēces šūpulis.")) # expected output: Африка - это колыбель человечества. ``` ## Benchmarks * test set translations: [opusTCv20210807_transformer-align_2022-03-13.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/bat-zle/opusTCv20210807_transformer-align_2022-03-13.test.txt) * test set scores: [opusTCv20210807_transformer-align_2022-03-13.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/bat-zle/opusTCv20210807_transformer-align_2022-03-13.eval.txt) * benchmark results: [benchmark_results.txt](benchmark_results.txt) * benchmark output: [benchmark_translations.zip](benchmark_translations.zip) | langpair | testset | chr-F | BLEU | #sent | #words | |----------|---------|-------|-------|-------|--------| | lav-rus | tatoeba-test-v2021-08-07 | 0.75918 | 60.5 | 274 | 1541 | | lit-rus | tatoeba-test-v2021-08-07 | 0.72796 | 54.9 | 3598 | 21908 | | lav-rus | flores101-devtest | 0.49210 | 21.1 | 1012 | 23295 | | lav-ukr | flores101-devtest | 0.48185 | 19.2 | 1012 | 22810 | | lit-rus | flores101-devtest | 0.49850 | 21.3 | 1012 | 23295 | | lit-ukr | flores101-devtest | 0.49114 | 19.5 | 1012 | 22810 | ## Acknowledgements The work is supported by the [European Language Grid](https://www.european-language-grid.eu/) as [pilot project 2866](https://live.european-language-grid.eu/catalogue/#/resource/projects/2866), by the [FoTran project](https://www.helsinki.fi/en/researchgroups/natural-language-understanding-with-cross-lingual-grounding), funded by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 771113), and the [MeMAD project](https://memad.eu/), funded by the European Union’s Horizon 2020 Research and Innovation Programme under grant agreement No 780069. We are also grateful for the generous computational resources and IT infrastructure provided by [CSC -- IT Center for Science](https://www.csc.fi/), Finland. ## Model conversion info * transformers version: 4.16.2 * OPUS-MT git hash: 1bdabf7 * port time: Thu Mar 24 00:51:59 EET 2022 * port machine: LM0-400-22516.local
Helsinki-NLP/opus-mt-tc-base-ces_slk-uk
5dc623121e319ac1d0ad2c0a206e7535560b24f7
2022-06-01T13:08:52.000Z
[ "pytorch", "marian", "text2text-generation", "cs", "sk", "uk", "transformers", "translation", "opus-mt-tc", "license:cc-by-4.0", "model-index", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-tc-base-ces_slk-uk
2
null
transformers
25,287
--- language: - cs - sk - uk tags: - translation - opus-mt-tc license: cc-by-4.0 model-index: - name: opus-mt-tc-base-ces_slk-uk results: - task: name: Translation ces-ukr type: translation args: ces-ukr dataset: name: flores101-devtest type: flores_101 args: ces ukr devtest metrics: - name: BLEU type: bleu value: 21.8 - task: name: Translation slk-ukr type: translation args: slk-ukr dataset: name: flores101-devtest type: flores_101 args: slk ukr devtest metrics: - name: BLEU type: bleu value: 21.4 - task: name: Translation ces-ukr type: translation args: ces-ukr dataset: name: tatoeba-test-v2021-08-07 type: tatoeba_mt args: ces-ukr metrics: - name: BLEU type: bleu value: 48.6 --- # opus-mt-tc-base-ces_slk-uk Neural machine translation model for translating from Czech and Slovak (cs+sk) to Ukrainian (uk). This model is part of the [OPUS-MT project](https://github.com/Helsinki-NLP/Opus-MT), an effort to make neural machine translation models widely available and accessible for many languages in the world. All models are originally trained using the amazing framework of [Marian NMT](https://marian-nmt.github.io/), an efficient NMT implementation written in pure C++. The models have been converted to pyTorch using the transformers library by huggingface. Training data is taken from [OPUS](https://opus.nlpl.eu/) and training pipelines use the procedures of [OPUS-MT-train](https://github.com/Helsinki-NLP/Opus-MT-train). * Publications: [OPUS-MT – Building open translation services for the World](https://aclanthology.org/2020.eamt-1.61/) and [The Tatoeba Translation Challenge – Realistic Data Sets for Low Resource and Multilingual MT](https://aclanthology.org/2020.wmt-1.139/) (Please, cite if you use this model.) ``` @inproceedings{tiedemann-thottingal-2020-opus, title = "{OPUS}-{MT} {--} Building open translation services for the World", author = {Tiedemann, J{\"o}rg and Thottingal, Santhosh}, booktitle = "Proceedings of the 22nd Annual Conference of the European Association for Machine Translation", month = nov, year = "2020", address = "Lisboa, Portugal", publisher = "European Association for Machine Translation", url = "https://aclanthology.org/2020.eamt-1.61", pages = "479--480", } @inproceedings{tiedemann-2020-tatoeba, title = "The Tatoeba Translation Challenge {--} Realistic Data Sets for Low Resource and Multilingual {MT}", author = {Tiedemann, J{\"o}rg}, booktitle = "Proceedings of the Fifth Conference on Machine Translation", month = nov, year = "2020", address = "Online", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2020.wmt-1.139", pages = "1174--1182", } ``` ## Model info * Release: 2022-03-08 * source language(s): ces * target language(s): ukr * model: transformer-align * data: opusTCv20210807+pbt ([source](https://github.com/Helsinki-NLP/Tatoeba-Challenge)) * tokenization: SentencePiece (spm32k,spm32k) * original model: [opusTCv20210807+pbt_transformer-align_2022-03-08.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/ces+slk-ukr/opusTCv20210807+pbt_transformer-align_2022-03-08.zip) * more information released models: [OPUS-MT ces+slk-ukr README](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/ces+slk-ukr/README.md) ## Usage A short example code: ```python from transformers import MarianMTModel, MarianTokenizer src_text = [ "Replace this with text in an accepted source language.", "This is the second sentence." ] model_name = "pytorch-models/opus-mt-tc-base-ces_slk-uk" tokenizer = MarianTokenizer.from_pretrained(model_name) model = MarianMTModel.from_pretrained(model_name) translated = model.generate(**tokenizer(src_text, return_tensors="pt", padding=True)) for t in translated: print( tokenizer.decode(t, skip_special_tokens=True) ) ``` You can also use OPUS-MT models with the transformers pipelines, for example: ```python from transformers import pipeline pipe = pipeline("translation", model="Helsinki-NLP/opus-mt-tc-base-ces_slk-uk") print(pipe("Replace this with text in an accepted source language.")) ``` ## Benchmarks * test set translations: [opusTCv20210807+pbt_transformer-align_2022-03-08.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/ces+slk-ukr/opusTCv20210807+pbt_transformer-align_2022-03-08.test.txt) * test set scores: [opusTCv20210807+pbt_transformer-align_2022-03-08.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/ces+slk-ukr/opusTCv20210807+pbt_transformer-align_2022-03-08.eval.txt) * benchmark results: [benchmark_results.txt](benchmark_results.txt) * benchmark output: [benchmark_translations.zip](benchmark_translations.zip) | langpair | testset | chr-F | BLEU | #sent | #words | |----------|---------|-------|-------|-------|--------| | ces-ukr | tatoeba-test-v2021-08-07 | 0.66867 | 48.6 | 1787 | 8891 | | ces-ukr | flores101-devtest | 0.51387 | 21.8 | 1012 | 22810 | | slk-ukr | flores101-devtest | 0.51418 | 21.4 | 1012 | 22810 | ## Acknowledgements The work is supported by the [European Language Grid](https://www.european-language-grid.eu/) as [pilot project 2866](https://live.european-language-grid.eu/catalogue/#/resource/projects/2866), by the [FoTran project](https://www.helsinki.fi/en/researchgroups/natural-language-understanding-with-cross-lingual-grounding), funded by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 771113), and the [MeMAD project](https://memad.eu/), funded by the European Union’s Horizon 2020 Research and Innovation Programme under grant agreement No 780069. We are also grateful for the generous computational resources and IT infrastructure provided by [CSC -- IT Center for Science](https://www.csc.fi/), Finland. ## Model conversion info * transformers version: 4.16.2 * OPUS-MT git hash: 1bdabf7 * port time: Thu Mar 24 01:01:20 EET 2022 * port machine: LM0-400-22516.local
Helsinki-NLP/opus-mt-tc-base-hu-uk
4e8eca9f90aefb846669be161382d4cba426be5e
2022-06-01T13:08:39.000Z
[ "pytorch", "marian", "text2text-generation", "hu", "uk", "transformers", "translation", "opus-mt-tc", "license:cc-by-4.0", "model-index", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-tc-base-hu-uk
2
null
transformers
25,288
--- language: - hu - uk tags: - translation - opus-mt-tc license: cc-by-4.0 model-index: - name: opus-mt-tc-base-hu-uk results: - task: name: Translation hun-ukr type: translation args: hun-ukr dataset: name: tatoeba-test-v2021-08-07 type: tatoeba_mt args: hun-ukr metrics: - name: BLEU type: bleu value: 38.1 --- # opus-mt-tc-base-hu-uk Neural machine translation model for translating from Hungarian (hu) to Ukrainian (uk). This model is part of the [OPUS-MT project](https://github.com/Helsinki-NLP/Opus-MT), an effort to make neural machine translation models widely available and accessible for many languages in the world. All models are originally trained using the amazing framework of [Marian NMT](https://marian-nmt.github.io/), an efficient NMT implementation written in pure C++. The models have been converted to pyTorch using the transformers library by huggingface. Training data is taken from [OPUS](https://opus.nlpl.eu/) and training pipelines use the procedures of [OPUS-MT-train](https://github.com/Helsinki-NLP/Opus-MT-train). * Publications: [OPUS-MT – Building open translation services for the World](https://aclanthology.org/2020.eamt-1.61/) and [The Tatoeba Translation Challenge – Realistic Data Sets for Low Resource and Multilingual MT](https://aclanthology.org/2020.wmt-1.139/) (Please, cite if you use this model.) ``` @inproceedings{tiedemann-thottingal-2020-opus, title = "{OPUS}-{MT} {--} Building open translation services for the World", author = {Tiedemann, J{\"o}rg and Thottingal, Santhosh}, booktitle = "Proceedings of the 22nd Annual Conference of the European Association for Machine Translation", month = nov, year = "2020", address = "Lisboa, Portugal", publisher = "European Association for Machine Translation", url = "https://aclanthology.org/2020.eamt-1.61", pages = "479--480", } @inproceedings{tiedemann-2020-tatoeba, title = "The Tatoeba Translation Challenge {--} Realistic Data Sets for Low Resource and Multilingual {MT}", author = {Tiedemann, J{\"o}rg}, booktitle = "Proceedings of the Fifth Conference on Machine Translation", month = nov, year = "2020", address = "Online", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2020.wmt-1.139", pages = "1174--1182", } ``` ## Model info * Release: 2022-03-08 * source language(s): hun * target language(s): ukr * model: transformer-align * data: opusTCv20210807+pbt ([source](https://github.com/Helsinki-NLP/Tatoeba-Challenge)) * tokenization: SentencePiece (spm32k,spm32k) * original model: [opusTCv20210807+pbt_transformer-align_2022-03-08.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/hun-ukr/opusTCv20210807+pbt_transformer-align_2022-03-08.zip) * more information released models: [OPUS-MT hun-ukr README](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/hun-ukr/README.md) ## Usage A short example code: ```python from transformers import MarianMTModel, MarianTokenizer src_text = [ "1000 dollárral tartozom neked.", "Vizet iszom." ] model_name = "pytorch-models/opus-mt-tc-base-hu-uk" tokenizer = MarianTokenizer.from_pretrained(model_name) model = MarianMTModel.from_pretrained(model_name) translated = model.generate(**tokenizer(src_text, return_tensors="pt", padding=True)) for t in translated: print( tokenizer.decode(t, skip_special_tokens=True) ) # expected output: # Я зобов'язаний вам 1000 доларів. # Я п'ю воду. ``` You can also use OPUS-MT models with the transformers pipelines, for example: ```python from transformers import pipeline pipe = pipeline("translation", model="Helsinki-NLP/opus-mt-tc-base-hu-uk") print(pipe("1000 dollárral tartozom neked.")) # expected output: Я зобов'язаний вам 1000 доларів. ``` ## Benchmarks * test set translations: [opusTCv20210807+pbt_transformer-align_2022-03-08.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/hun-ukr/opusTCv20210807+pbt_transformer-align_2022-03-08.test.txt) * test set scores: [opusTCv20210807+pbt_transformer-align_2022-03-08.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/hun-ukr/opusTCv20210807+pbt_transformer-align_2022-03-08.eval.txt) * benchmark results: [benchmark_results.txt](benchmark_results.txt) * benchmark output: [benchmark_translations.zip](benchmark_translations.zip) | langpair | testset | chr-F | BLEU | #sent | #words | |----------|---------|-------|-------|-------|--------| | hun-ukr | tatoeba-test-v2021-08-07 | 0.61006 | 38.1 | 473 | 2606 | | hun-ukr | flores101-devtest | 0.49490 | 19.8 | 1012 | 22810 | ## Acknowledgements The work is supported by the [European Language Grid](https://www.european-language-grid.eu/) as [pilot project 2866](https://live.european-language-grid.eu/catalogue/#/resource/projects/2866), by the [FoTran project](https://www.helsinki.fi/en/researchgroups/natural-language-understanding-with-cross-lingual-grounding), funded by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 771113), and the [MeMAD project](https://memad.eu/), funded by the European Union’s Horizon 2020 Research and Innovation Programme under grant agreement No 780069. We are also grateful for the generous computational resources and IT infrastructure provided by [CSC -- IT Center for Science](https://www.csc.fi/), Finland. ## Model conversion info * transformers version: 4.16.2 * OPUS-MT git hash: 1bdabf7 * port time: Thu Mar 24 02:19:16 EET 2022 * port machine: LM0-400-22516.local
Helsinki-NLP/opus-mt-tc-base-tr-uk
deae12bb0d015f4d34bab94c199f24faf9097686
2022-06-01T13:02:23.000Z
[ "pytorch", "marian", "text2text-generation", "tr", "uk", "transformers", "translation", "opus-mt-tc", "license:cc-by-4.0", "model-index", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-tc-base-tr-uk
2
null
transformers
25,289
--- language: - tr - uk tags: - translation - opus-mt-tc license: cc-by-4.0 model-index: - name: opus-mt-tc-base-tr-uk results: - task: name: Translation tur-ukr type: translation args: tur-ukr dataset: name: tatoeba-test-v2021-08-07 type: tatoeba_mt args: tur-ukr metrics: - name: BLEU type: bleu value: 40.5 --- # opus-mt-tc-base-tr-uk Neural machine translation model for translating from Turkish (tr) to Ukrainian (uk). This model is part of the [OPUS-MT project](https://github.com/Helsinki-NLP/Opus-MT), an effort to make neural machine translation models widely available and accessible for many languages in the world. All models are originally trained using the amazing framework of [Marian NMT](https://marian-nmt.github.io/), an efficient NMT implementation written in pure C++. The models have been converted to pyTorch using the transformers library by huggingface. Training data is taken from [OPUS](https://opus.nlpl.eu/) and training pipelines use the procedures of [OPUS-MT-train](https://github.com/Helsinki-NLP/Opus-MT-train). * Publications: [OPUS-MT – Building open translation services for the World](https://aclanthology.org/2020.eamt-1.61/) and [The Tatoeba Translation Challenge – Realistic Data Sets for Low Resource and Multilingual MT](https://aclanthology.org/2020.wmt-1.139/) (Please, cite if you use this model.) ``` @inproceedings{tiedemann-thottingal-2020-opus, title = "{OPUS}-{MT} {--} Building open translation services for the World", author = {Tiedemann, J{\"o}rg and Thottingal, Santhosh}, booktitle = "Proceedings of the 22nd Annual Conference of the European Association for Machine Translation", month = nov, year = "2020", address = "Lisboa, Portugal", publisher = "European Association for Machine Translation", url = "https://aclanthology.org/2020.eamt-1.61", pages = "479--480", } @inproceedings{tiedemann-2020-tatoeba, title = "The Tatoeba Translation Challenge {--} Realistic Data Sets for Low Resource and Multilingual {MT}", author = {Tiedemann, J{\"o}rg}, booktitle = "Proceedings of the Fifth Conference on Machine Translation", month = nov, year = "2020", address = "Online", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2020.wmt-1.139", pages = "1174--1182", } ``` ## Model info * Release: 2022-03-07 * source language(s): * target language(s): ukr * model: transformer-align * data: opusTCv20210807+pbt ([source](https://github.com/Helsinki-NLP/Tatoeba-Challenge)) * tokenization: SentencePiece (spm32k,spm32k) * original model: [opusTCv20210807+pbt_transformer-align_2022-03-07.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/tur-ukr/opusTCv20210807+pbt_transformer-align_2022-03-07.zip) * more information released models: [OPUS-MT tur-ukr README](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/tur-ukr/README.md) ## Usage A short example code: ```python from transformers import MarianMTModel, MarianTokenizer src_text = [ "1000 yen yeterli mi?", "Zürih, İsviçre'de bir şehirdir." ] model_name = "pytorch-models/opus-mt-tc-base-tr-uk" tokenizer = MarianTokenizer.from_pretrained(model_name) model = MarianMTModel.from_pretrained(model_name) translated = model.generate(**tokenizer(src_text, return_tensors="pt", padding=True)) for t in translated: print( tokenizer.decode(t, skip_special_tokens=True) ) # expected output: # Чи достатньо 1000 ієн? # Цюрих - місто в Швейцарії. ``` You can also use OPUS-MT models with the transformers pipelines, for example: ```python from transformers import pipeline pipe = pipeline("translation", model="Helsinki-NLP/opus-mt-tc-base-tr-uk") print(pipe("1000 yen yeterli mi?")) # expected output: Чи достатньо 1000 ієн? ``` ## Benchmarks * test set translations: [opusTCv20210807+pbt_transformer-align_2022-03-07.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/tur-ukr/opusTCv20210807+pbt_transformer-align_2022-03-07.test.txt) * test set scores: [opusTCv20210807+pbt_transformer-align_2022-03-07.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/tur-ukr/opusTCv20210807+pbt_transformer-align_2022-03-07.eval.txt) * benchmark results: [benchmark_results.txt](benchmark_results.txt) * benchmark output: [benchmark_translations.zip](benchmark_translations.zip) | langpair | testset | chr-F | BLEU | #sent | #words | |----------|---------|-------|-------|-------|--------| | tur-ukr | tatoeba-test-v2021-08-07 | 0.63573 | 40.5 | 2520 | 13079 | | tur-ukr | flores101-devtest | 0.49944 | 19.9 | 1012 | 22810 | ## Acknowledgements The work is supported by the [European Language Grid](https://www.european-language-grid.eu/) as [pilot project 2866](https://live.european-language-grid.eu/catalogue/#/resource/projects/2866), by the [FoTran project](https://www.helsinki.fi/en/researchgroups/natural-language-understanding-with-cross-lingual-grounding), funded by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 771113), and the [MeMAD project](https://memad.eu/), funded by the European Union’s Horizon 2020 Research and Innovation Programme under grant agreement No 780069. We are also grateful for the generous computational resources and IT infrastructure provided by [CSC -- IT Center for Science](https://www.csc.fi/), Finland. ## Model conversion info * transformers version: 4.16.2 * OPUS-MT git hash: 1bdabf7 * port time: Thu Mar 24 03:37:19 EET 2022 * port machine: LM0-400-22516.local
Paul-Vinh/bert-base-multilingual-cased-finetuned-squad
8436b2ee57cfe6b30606ce19d34938351b6e41c2
2022-03-24T22:47:39.000Z
[ "pytorch", "tensorboard", "bert", "question-answering", "dataset:squad", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
question-answering
false
Paul-Vinh
null
Paul-Vinh/bert-base-multilingual-cased-finetuned-squad
2
null
transformers
25,290
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: bert-base-multilingual-cased-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-multilingual-cased-finetuned-squad This model is a fine-tuned version of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) on the squad dataset. It achieves the following results on the evaluation set: - Loss: 1.0122 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 0.9982 | 1.0 | 5555 | 0.9436 | | 0.7694 | 2.0 | 11110 | 0.9356 | | 0.5627 | 3.0 | 16665 | 1.0122 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
Taekyoon/unicon_v0.5.3_beta
84903824b1f0b7265ae77212f9086b623d996c89
2022-03-25T06:08:45.000Z
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
false
Taekyoon
null
Taekyoon/unicon_v0.5.3_beta
2
null
transformers
25,291
Entry not found
Shunian/wav2vec2-base-960h-finetune
ee13ee0fdfebd8ddf52e61bddadc341de89cc21f
2022-03-31T05:02:26.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
Shunian
null
Shunian/wav2vec2-base-960h-finetune
2
null
transformers
25,292
Entry not found
eliasws/openApiT5-to-description-v3
f0035c559ca86b1f31fd278f9244bd5ea63d5d88
2022-03-25T10:19:54.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
eliasws
null
eliasws/openApiT5-to-description-v3
2
null
transformers
25,293
Entry not found
PSW/ut_del_three_per_each_ver1_early_stop
e821f0e83112b702e47eb61de055c48fda53b948
2022-03-25T14:48:19.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
PSW
null
PSW/ut_del_three_per_each_ver1_early_stop
2
null
transformers
25,294
Entry not found
UWB-AIR/MQDD-pretrained
28a1d402ef65ebda64c3975009c2b58a8d53bed8
2022-04-05T06:14:47.000Z
[ "pytorch", "longformer", "feature-extraction", "arxiv:2203.14093", "transformers", "license:cc-by-nc-sa-4.0" ]
feature-extraction
false
UWB-AIR
null
UWB-AIR/MQDD-pretrained
2
null
transformers
25,295
--- license: cc-by-nc-sa-4.0 --- # MQDD - Multimodal Question Duplicity Detection This repository publishes pre-trained model for the paper [MQDD – Pre-training of Multimodal Question Duplicity Detection for Software Engineering Domain](https://arxiv.org/abs/2203.14093). For more information, see the paper. The Stack Overflow Datasets (SOD) and Stack Overflow Duplicity Dataset (SODD) presented in the paper can be obtained from our [Stack Overflow Dataset repository](https://github.com/kiv-air/StackOverflowDataset). To acquire the fine-tuned model, see [UWB-AIR/MQDD-duplicate](https://huggingface.co/UWB-AIR/MQDD-duplicates). The MQDD model, which is based on a Longformer architecture and is pre-trained on 218.5M training examples. The model was trained using MLM training objective accompanied with our novel Same Post (SP) and Question Answer (QA) learning objectives targeting specifically the duplicate detection task. The model can be loaded using the following source code snippet: ```Python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("UWB-AIR/MQDD-pretrained") model = AutoModel.from_pretrained("UWB-AIR/MQDD-pretrained") ``` ## Licence This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. http://creativecommons.org/licenses/by-nc-sa/4.0/ ## How should I cite the MQDD? For now, please cite [the Arxiv paper](https://arxiv.org/abs/2203.14093): ``` @misc{https://doi.org/10.48550/arxiv.2203.14093, doi = {10.48550/ARXIV.2203.14093}, url = {https://arxiv.org/abs/2203.14093}, author = {Pašek, Jan and Sido, Jakub and Konopík, Miloslav and Pražák, Ondřej}, title = {MQDD -- Pre-training of Multimodal Question Duplicity Detection for Software Engineering Domain}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution Non Commercial Share Alike 4.0 International} } ```
IsaacBot/t5-small-finetuned-qa-google-en-question_v1
937edb7de6cf080a9b68ee636937f87fef63a2fd
2022-03-25T20:33:51.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
text2text-generation
false
IsaacBot
null
IsaacBot/t5-small-finetuned-qa-google-en-question_v1
2
null
transformers
25,296
--- license: apache-2.0 tags: - generated_from_trainer metrics: - rouge model-index: - name: t5-small-finetuned-qa-google-en-question_v1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-qa-google-en-question_v1 This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 3.1358 - Rouge1: 49.6232 - Rouge2: 26.4156 - Rougel: 46.9194 - Rougelsum: 46.8814 - Gen Len: 13.5795 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 256 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 - mixed_precision_training: Native AMP - label_smoothing_factor: 0.1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | No log | 0.27 | 100 | 3.5967 | 43.7809 | 21.3303 | 41.6782 | 41.6869 | 12.9745 | | No log | 0.53 | 200 | 3.4539 | 45.7744 | 22.9574 | 43.4412 | 43.4249 | 13.416 | | No log | 0.8 | 300 | 3.3771 | 47.1053 | 24.1406 | 44.6092 | 44.6051 | 13.386 | | No log | 1.06 | 400 | 3.3229 | 47.5933 | 24.7048 | 45.086 | 45.1266 | 13.4725 | | 3.6954 | 1.33 | 500 | 3.2851 | 47.8847 | 24.7439 | 45.322 | 45.3243 | 13.5975 | | 3.6954 | 1.6 | 600 | 3.2570 | 48.1836 | 25.3062 | 45.6641 | 45.6346 | 13.5955 | | 3.6954 | 1.86 | 700 | 3.2321 | 48.7604 | 25.7254 | 46.1789 | 46.1537 | 13.476 | | 3.6954 | 2.13 | 800 | 3.2140 | 48.7518 | 25.639 | 46.2817 | 46.2343 | 13.5855 | | 3.6954 | 2.39 | 900 | 3.1963 | 49.0046 | 25.8439 | 46.4097 | 46.3732 | 13.6855 | | 3.3928 | 2.66 | 1000 | 3.1844 | 49.3227 | 26.0336 | 46.7032 | 46.6402 | 13.557 | | 3.3928 | 2.93 | 1100 | 3.1736 | 49.4069 | 26.0619 | 46.691 | 46.6406 | 13.5475 | | 3.3928 | 3.19 | 1200 | 3.1630 | 49.4614 | 26.1224 | 46.7679 | 46.7416 | 13.614 | | 3.3928 | 3.46 | 1300 | 3.1556 | 49.7542 | 26.4413 | 47.0601 | 47.0201 | 13.625 | | 3.3928 | 3.72 | 1400 | 3.1500 | 49.4097 | 26.1732 | 46.7324 | 46.6833 | 13.6795 | | 3.3144 | 3.99 | 1500 | 3.1440 | 49.5359 | 26.3478 | 46.8079 | 46.7769 | 13.604 | | 3.3144 | 4.26 | 1600 | 3.1406 | 49.8245 | 26.5312 | 47.1247 | 47.0744 | 13.552 | | 3.3144 | 4.52 | 1700 | 3.1378 | 49.6884 | 26.4023 | 46.9501 | 46.9063 | 13.5785 | | 3.3144 | 4.79 | 1800 | 3.1358 | 49.6232 | 26.4156 | 46.9194 | 46.8814 | 13.5795 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
pinecone/msmarco-distilbert-base-tas-b-covid
1cd431029aa2ba55d0523c8813f11869be0a63f6
2022-03-25T18:30:52.000Z
[ "pytorch", "distilbert", "feature-extraction", "sentence-transformers", "sentence-similarity", "transformers" ]
sentence-similarity
false
pinecone
null
pinecone/msmarco-distilbert-base-tas-b-covid
2
null
sentence-transformers
25,297
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch def cls_pooling(model_output, attention_mask): return model_output[0][:,0] # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, cls pooling. sentence_embeddings = cls_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 6250 with parameters: ``` {'batch_size': 32, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.MarginMSELoss.MarginMSELoss` Parameters of the fit()-Method: ``` { "epochs": 10, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 6250, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: DistilBertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
huggingtweets/huggingpuppy
a396a0293dccb047ff17d222f36b1886b9e8f2e2
2022-03-25T18:42:54.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/huggingpuppy
2
null
transformers
25,298
--- language: en thumbnail: http://www.huggingtweets.com/huggingpuppy/1648233768787/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1504530325526900756/QOTZak3q_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">hug. (INGROUP INTERN)</div> <div style="text-align: center; font-size: 14px;">@huggingpuppy</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from hug. (INGROUP INTERN). | Data | hug. (INGROUP INTERN) | | --- | --- | | Tweets downloaded | 3249 | | Retweets | 97 | | Short tweets | 816 | | Tweets kept | 2336 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1wq0kiqq/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @huggingpuppy's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3aonv9kh) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3aonv9kh/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/huggingpuppy') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
ahmeddbahaa/mt5-finetuned-en-ar
c3c32629c56f98dffeeb2d794a2c4d6feb636793
2022-03-26T02:24:12.000Z
[ "pytorch", "tensorboard", "mt5", "text2text-generation", "dataset:xlsum", "transformers", "summarization", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
summarization
false
ahmeddbahaa
null
ahmeddbahaa/mt5-finetuned-en-ar
2
1
transformers
25,299
--- license: apache-2.0 tags: - summarization - generated_from_trainer datasets: - xlsum metrics: - rouge model-index: - name: mt5-finetuned-en-ar results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: xlsum type: xlsum args: arabic metrics: - name: Rouge1 type: rouge value: 0.2824 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mt5-finetuned-en-ar This model is a fine-tuned version of [ahmeddbahaa/mt5-small-finetuned-mt5-en](https://huggingface.co/ahmeddbahaa/mt5-small-finetuned-mt5-en) on the xlsum dataset. It achieves the following results on the evaluation set: - Loss: 2.2314 - Rouge1: 0.2824 - Rouge2: 0.0 - Rougel: 0.2902 - Rougelsum: 0.298 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|:------:|:---------:| | 3.1685 | 1.0 | 4130 | 2.4262 | 0.0941 | 0.0235 | 0.1098 | 0.1098 | | 2.686 | 2.0 | 8260 | 2.2853 | 0.2824 | 0.0 | 0.298 | 0.298 | | 2.481 | 3.0 | 12390 | 2.2314 | 0.2824 | 0.0 | 0.2902 | 0.298 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6