modelId
stringlengths
4
112
sha
stringlengths
40
40
lastModified
stringlengths
24
24
tags
sequence
pipeline_tag
stringclasses
29 values
private
bool
1 class
author
stringlengths
2
38
config
null
id
stringlengths
4
112
downloads
float64
0
36.8M
likes
float64
0
712
library_name
stringclasses
17 values
__index_level_0__
int64
0
38.5k
readme
stringlengths
0
186k
youzanai/bert-customer-message-chinese
22eff0121b4bff1609c71f7b0cecf91e1f1f4c72
2022-03-21T02:43:18.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
youzanai
null
youzanai/bert-customer-message-chinese
2
null
transformers
25,100
基于有赞商家客服中客户提问语料训练的bert模型。 模型示例代码参考 https://github.com/youzanai/trexpark
ydshieh/tiny-random-rembert
ed9a6fd063b93875c4435dc856adf65b569000d0
2022-03-08T13:16:16.000Z
[ "pytorch", "rembert", "feature-extraction", "transformers" ]
feature-extraction
false
ydshieh
null
ydshieh/tiny-random-rembert
2
null
transformers
25,101
Entry not found
Ameer05/bart-large-cnn-samsum-rescom-finetuned-resume-summarizer-10-epoch-tweak-lr-8-10-1
e332e76bf79e3074e2482da5817534bf65b0cb30
2022-03-08T08:48:11.000Z
[ "pytorch", "tensorboard", "bart", "text2text-generation", "transformers", "summarization", "generated_from_trainer", "model-index", "autotrain_compatible" ]
summarization
false
Ameer05
null
Ameer05/bart-large-cnn-samsum-rescom-finetuned-resume-summarizer-10-epoch-tweak-lr-8-10-1
2
null
transformers
25,102
--- tags: - summarization - generated_from_trainer metrics: - rouge model-index: - name: bart-large-cnn-samsum-rescom-finetuned-resume-summarizer-10-epoch-tweak-lr-8-10-1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-large-cnn-samsum-rescom-finetuned-resume-summarizer-10-epoch-tweak-lr-8-10-1 This model is a fine-tuned version of [Ameer05/model-token-repo](https://huggingface.co/Ameer05/model-token-repo) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.4855 - Rouge1: 58.3832 - Rouge2: 49.9973 - Rougel: 55.3055 - Rougelsum: 57.7139 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:| | No log | 0.91 | 5 | 2.0183 | 52.3098 | 45.5304 | 49.2759 | 51.7456 | | No log | 1.91 | 10 | 1.6564 | 61.815 | 53.9035 | 58.4243 | 60.784 | | No log | 2.91 | 15 | 1.5330 | 61.3032 | 54.12 | 58.9152 | 60.7178 | | No log | 3.91 | 20 | 1.4539 | 63.3012 | 56.2987 | 61.0907 | 62.5217 | | 1.5646 | 4.91 | 25 | 1.4578 | 62.4815 | 55.1453 | 60.3921 | 61.6067 | | 1.5646 | 5.91 | 30 | 1.4284 | 61.5347 | 54.1271 | 58.8474 | 60.5427 | | 1.5646 | 6.91 | 35 | 1.4467 | 61.5081 | 53.8512 | 59.2782 | 60.6928 | | 1.5646 | 7.91 | 40 | 1.4653 | 59.5349 | 51.8208 | 56.5996 | 58.8211 | | 0.6692 | 8.91 | 45 | 1.4740 | 57.2917 | 49.5416 | 54.8409 | 56.6276 | | 0.6692 | 9.91 | 50 | 1.4855 | 58.3832 | 49.9973 | 55.3055 | 57.7139 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.9.1 - Datasets 1.18.4 - Tokenizers 0.10.3
davidlopez/distilbert-base-uncased-go-emotion-cyberblue
215714a3f89c7cc04c3ebf02c17b852118e4b63d
2022-03-08T10:11:51.000Z
[ "pytorch", "distilbert", "transformers" ]
null
false
davidlopez
null
davidlopez/distilbert-base-uncased-go-emotion-cyberblue
2
null
transformers
25,103
Entry not found
frahman/xlm-roberta-base-finetuned-panx-de
9f7dc58f54e22e3f187724fdf64dbda35f838610
2022-03-08T10:51:37.000Z
[ "pytorch", "tensorboard", "xlm-roberta", "token-classification", "dataset:xtreme", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
token-classification
false
frahman
null
frahman/xlm-roberta-base-finetuned-panx-de
2
null
transformers
25,104
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme args: PAN-X.de metrics: - name: F1 type: f1 value: 0.8591260810195721 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.1352 - F1: 0.8591 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.257 | 1.0 | 525 | 0.1512 | 0.8302 | | 0.1305 | 2.0 | 1050 | 0.1401 | 0.8447 | | 0.0817 | 3.0 | 1575 | 0.1352 | 0.8591 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 1.18.4 - Tokenizers 0.11.6
ctoraman/RoBERTa-TR-medium-word-16k
cf12be5b1b12ab00464a054be9daa81bd1a595ed
2022-04-20T06:59:33.000Z
[ "pytorch", "roberta", "fill-mask", "tr", "dataset:oscar", "arxiv:2204.08832", "transformers", "license:cc-by-nc-sa-4.0", "autotrain_compatible" ]
fill-mask
false
ctoraman
null
ctoraman/RoBERTa-TR-medium-word-16k
2
null
transformers
25,105
--- language: - tr tags: - roberta license: cc-by-nc-sa-4.0 datasets: - oscar --- # RoBERTa Turkish medium Word-level 16k (uncased) Pretrained model on Turkish language using a masked language modeling (MLM) objective. The model is uncased. The pretrained corpus is OSCAR's Turkish split, but it is further filtered and cleaned. Model architecture is similar to bert-medium (8 layers, 8 heads, and 512 hidden size). Tokenization algorithm is Word-level, which means text is split by white space. Vocabulary size is 16.7k. The details and performance comparisons can be found at this paper: https://arxiv.org/abs/2204.08832 The following code can be used for model loading and tokenization, example max length (514) can be changed: ``` model = AutoModel.from_pretrained([model_path]) #for sequence classification: #model = AutoModelForSequenceClassification.from_pretrained([model_path], num_labels=[num_classes]) tokenizer = PreTrainedTokenizerFast(tokenizer_file=[file_path]) tokenizer.mask_token = "[MASK]" tokenizer.cls_token = "[CLS]" tokenizer.sep_token = "[SEP]" tokenizer.pad_token = "[PAD]" tokenizer.unk_token = "[UNK]" tokenizer.bos_token = "[CLS]" tokenizer.eos_token = "[SEP]" tokenizer.model_max_length = 514 ``` ### BibTeX entry and citation info ```bibtex @misc{https://doi.org/10.48550/arxiv.2204.08832, doi = {10.48550/ARXIV.2204.08832}, url = {https://arxiv.org/abs/2204.08832}, author = {Toraman, Cagri and Yilmaz, Eyup Halit and Şahinuç, Furkan and Ozcelik, Oguzhan}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Impact of Tokenization on Language Models: An Analysis for Turkish}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution Non Commercial Share Alike 4.0 International} } ```
ctoraman/RoBERTa-TR-medium-wp-16k
58863e42709982079bcb015e630a7e25bc3f72dd
2022-04-20T07:00:50.000Z
[ "pytorch", "roberta", "fill-mask", "tr", "dataset:oscar", "arxiv:2204.08832", "transformers", "license:cc-by-nc-sa-4.0", "autotrain_compatible" ]
fill-mask
false
ctoraman
null
ctoraman/RoBERTa-TR-medium-wp-16k
2
null
transformers
25,106
--- language: - tr tags: - roberta license: cc-by-nc-sa-4.0 datasets: - oscar --- # RoBERTa Turkish medium WordPiece 16k (uncased) Pretrained model on Turkish language using a masked language modeling (MLM) objective. The model is uncased. The pretrained corpus is OSCAR's Turkish split, but it is further filtered and cleaned. Model architecture is similar to bert-medium (8 layers, 8 heads, and 512 hidden size). Tokenization algorithm is WordPiece. Vocabulary size is 16.7k. The details and performance comparisons can be found at this paper: https://arxiv.org/abs/2204.08832 The following code can be used for model loading and tokenization, example max length (514) can be changed: ``` model = AutoModel.from_pretrained([model_path]) #for sequence classification: #model = AutoModelForSequenceClassification.from_pretrained([model_path], num_labels=[num_classes]) tokenizer = PreTrainedTokenizerFast(tokenizer_file=[file_path]) tokenizer.mask_token = "[MASK]" tokenizer.cls_token = "[CLS]" tokenizer.sep_token = "[SEP]" tokenizer.pad_token = "[PAD]" tokenizer.unk_token = "[UNK]" tokenizer.bos_token = "[CLS]" tokenizer.eos_token = "[SEP]" tokenizer.model_max_length = 514 ``` ### BibTeX entry and citation info ```bibtex @misc{https://doi.org/10.48550/arxiv.2204.08832, doi = {10.48550/ARXIV.2204.08832}, url = {https://arxiv.org/abs/2204.08832}, author = {Toraman, Cagri and Yilmaz, Eyup Halit and Şahinuç, Furkan and Ozcelik, Oguzhan}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Impact of Tokenization on Language Models: An Analysis for Turkish}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution Non Commercial Share Alike 4.0 International} } ```
anton-l/xtreme_s_xlsr_mls_pl
91f474e1aef1543bc3ec39045ec42cab7fe8de73
2022-03-08T16:54:33.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
anton-l
null
anton-l/xtreme_s_xlsr_mls_pl
2
null
transformers
25,107
Entry not found
voidful/phoneme_byt5
eaf02f94b0fc4a4f2802508b45ea492a19973343
2022-04-19T09:11:40.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
voidful
null
voidful/phoneme_byt5
2
null
transformers
25,108
Entry not found
cammy/bart-large-cnn-100-pad-early-lit
dc9d2d6d2088917b9014c6f3879d565275d6df70
2022-03-08T15:01:27.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
text2text-generation
false
cammy
null
cammy/bart-large-cnn-100-pad-early-lit
2
null
transformers
25,109
--- license: mit tags: - generated_from_trainer metrics: - rouge model-index: - name: bart-large-cnn-100-pad-early-lit results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-large-cnn-100-pad-early-lit This model is a fine-tuned version of [facebook/bart-large-cnn](https://huggingface.co/facebook/bart-large-cnn) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.1460 - Rouge1: 25.4944 - Rouge2: 7.9048 - Rougel: 16.2879 - Rougelsum: 20.883 - Gen Len: 64.3 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | No log | 1.0 | 100 | 1.0390 | 27.3059 | 10.0672 | 19.7294 | 23.0611 | 62.1 | | No log | 2.0 | 200 | 1.1460 | 25.4944 | 7.9048 | 16.2879 | 20.883 | 64.3 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.2 - Datasets 1.18.3 - Tokenizers 0.11.0
Rawat29/distilroberta-base-finetuned-wikitext2
09d2787f79f43d5e869ad5534156179118ae66a8
2022-03-08T16:19:47.000Z
[ "pytorch", "tensorboard", "roberta", "fill-mask", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
fill-mask
false
Rawat29
null
Rawat29/distilroberta-base-finetuned-wikitext2
2
null
transformers
25,110
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distilroberta-base-finetuned-wikitext2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilroberta-base-finetuned-wikitext2 This model is a fine-tuned version of [distilroberta-base](https://huggingface.co/distilroberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.8512 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.084 | 1.0 | 2406 | 1.9229 | | 1.9999 | 2.0 | 4812 | 1.8832 | | 1.9616 | 3.0 | 7218 | 1.8173 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 1.18.4 - Tokenizers 0.11.6
Noricum/wav2vec2-large-xls-r-300m-de-with-lm
8914aabd44acc790eec253a9af62c11fae60699d
2022-03-09T18:14:21.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
Noricum
null
Noricum/wav2vec2-large-xls-r-300m-de-with-lm
2
null
transformers
25,111
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-large-xls-r-300m-de-with-lm results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-de-with-lm This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.17.0 - Pytorch 1.9.0+cu111 - Datasets 1.18.4 - Tokenizers 0.11.6
OrfeasTsk/bert-base-uncased-finetuned-triviaqa
d17fc1a4b8c7bc5cb1b8eda591989024ceea90ac
2022-03-08T18:48:47.000Z
[ "pytorch", "bert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
OrfeasTsk
null
OrfeasTsk/bert-base-uncased-finetuned-triviaqa
2
null
transformers
25,112
{ 'max_seq_length': 384, 'batch_size': 8, 'learning_rate': {'val': 5e-5, 'schelduler': 'Linear'}, 'max_clip_norm': None, 'epochs': 2 }
akozlo/lib_bal
fa434898e0077b1efc69777f29286887f7161a6f
2022-03-08T20:19:15.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "generated_from_trainer", "license:mit", "model-index" ]
text-generation
false
akozlo
null
akozlo/lib_bal
2
null
transformers
25,113
--- license: mit tags: - generated_from_trainer model-index: - name: lib_balanced_gpt_model results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # lib_balanced_gpt_model This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.1+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3 hello
OrfeasTsk/bert-base-uncased-finetuned-nq
baabd208763209c729ba9272c061cc14acf30f1f
2022-03-08T21:44:45.000Z
[ "pytorch", "bert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
OrfeasTsk
null
OrfeasTsk/bert-base-uncased-finetuned-nq
2
null
transformers
25,114
{ 'max_seq_length': 384, 'batch_size': 8, 'learning_rate': {'val': 5e-5, 'schelduler': 'Linear'}, 'max_clip_norm': None, 'epochs': 2 }
jcai1/ss_ver1
46cab17377edb2cf504f888ef07f069e70d421c5
2022-03-09T03:03:20.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
jcai1
null
jcai1/ss_ver1
2
null
transformers
25,115
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: ss_ver1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ss_ver1 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---:| | No log | 1.0 | 436 | 0.0001 | 1.0 | 0.0 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 1.18.4 - Tokenizers 0.11.6
ctoraman/RoBERTa-TR-medium-wp-7k
b81247874322de7606ce40f4969f2c50801a48b9
2022-04-20T07:02:00.000Z
[ "pytorch", "roberta", "fill-mask", "tr", "dataset:oscar", "arxiv:2204.08832", "transformers", "license:cc-by-nc-sa-4.0", "autotrain_compatible" ]
fill-mask
false
ctoraman
null
ctoraman/RoBERTa-TR-medium-wp-7k
2
null
transformers
25,116
--- language: - tr tags: - roberta license: cc-by-nc-sa-4.0 datasets: - oscar --- # RoBERTa Turkish medium WordPiece 7k (uncased) Pretrained model on Turkish language using a masked language modeling (MLM) objective. The model is uncased. The pretrained corpus is OSCAR's Turkish split, but it is further filtered and cleaned. Model architecture is similar to bert-medium (8 layers, 8 heads, and 512 hidden size). Tokenization algorithm is WordPiece. Vocabulary size is 7.5k. The details and performance comparisons can be found at this paper: https://arxiv.org/abs/2204.08832 The following code can be used for model loading and tokenization, example max length (514) can be changed: ``` model = AutoModel.from_pretrained([model_path]) #for sequence classification: #model = AutoModelForSequenceClassification.from_pretrained([model_path], num_labels=[num_classes]) tokenizer = PreTrainedTokenizerFast(tokenizer_file=[file_path]) tokenizer.mask_token = "[MASK]" tokenizer.cls_token = "[CLS]" tokenizer.sep_token = "[SEP]" tokenizer.pad_token = "[PAD]" tokenizer.unk_token = "[UNK]" tokenizer.bos_token = "[CLS]" tokenizer.eos_token = "[SEP]" tokenizer.model_max_length = 514 ``` ### BibTeX entry and citation info ```bibtex @misc{https://doi.org/10.48550/arxiv.2204.08832, doi = {10.48550/ARXIV.2204.08832}, url = {https://arxiv.org/abs/2204.08832}, author = {Toraman, Cagri and Yilmaz, Eyup Halit and Şahinuç, Furkan and Ozcelik, Oguzhan}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Impact of Tokenization on Language Models: An Analysis for Turkish}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution Non Commercial Share Alike 4.0 International} } ```
ctoraman/RoBERTa-TR-medium-wp-44k
ea5d69ca4ce6e33d91c1bec795c3d57a53bda5e5
2022-04-20T06:41:19.000Z
[ "pytorch", "roberta", "fill-mask", "tr", "dataset:oscar", "arxiv:2204.08832", "transformers", "license:cc-by-nc-sa-4.0", "autotrain_compatible" ]
fill-mask
false
ctoraman
null
ctoraman/RoBERTa-TR-medium-wp-44k
2
null
transformers
25,117
--- language: - tr tags: - roberta license: cc-by-nc-sa-4.0 datasets: - oscar --- # RoBERTa Turkish medium WordPiece 44k (uncased) Pretrained model on Turkish language using a masked language modeling (MLM) objective. The model is uncased. The pretrained corpus is OSCAR's Turkish split, but it is further filtered and cleaned. Model architecture is similar to bert-medium (8 layers, 8 heads, and 512 hidden size). Tokenization algorithm is WordPiece. Vocabulary size is 44.5k. The details can be found at this paper: https://arxiv.org/abs/2204.08832 The following code can be used for model loading and tokenization, example max length (514) can be changed: ``` model = AutoModel.from_pretrained([model_path]) #for sequence classification: #model = AutoModelForSequenceClassification.from_pretrained([model_path], num_labels=[num_classes]) tokenizer = PreTrainedTokenizerFast(tokenizer_file=[file_path]) tokenizer.mask_token = "[MASK]" tokenizer.cls_token = "[CLS]" tokenizer.sep_token = "[SEP]" tokenizer.pad_token = "[PAD]" tokenizer.unk_token = "[UNK]" tokenizer.bos_token = "[CLS]" tokenizer.eos_token = "[SEP]" tokenizer.model_max_length = 514 ``` ### BibTeX entry and citation info ```bibtex @misc{https://doi.org/10.48550/arxiv.2204.08832, doi = {10.48550/ARXIV.2204.08832}, url = {https://arxiv.org/abs/2204.08832}, author = {Toraman, Cagri and Yilmaz, Eyup Halit and Şahinuç, Furkan and Ozcelik, Oguzhan}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Impact of Tokenization on Language Models: An Analysis for Turkish}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution Non Commercial Share Alike 4.0 International} } ```
ctoraman/RoBERTa-TR-medium-morph-7k
605c7c8be2afeac5a8fc8f84ffe59ba224103b48
2022-04-20T06:59:11.000Z
[ "pytorch", "roberta", "fill-mask", "tr", "dataset:oscar", "arxiv:2204.08832", "transformers", "license:cc-by-nc-sa-4.0", "autotrain_compatible" ]
fill-mask
false
ctoraman
null
ctoraman/RoBERTa-TR-medium-morph-7k
2
null
transformers
25,118
--- language: - tr tags: - roberta license: cc-by-nc-sa-4.0 datasets: - oscar --- # RoBERTa Turkish medium Morph-level 7k (uncased) Pretrained model on Turkish language using a masked language modeling (MLM) objective. The model is uncased. The pretrained corpus is OSCAR's Turkish split, but it is further filtered and cleaned. Model architecture is similar to bert-medium (8 layers, 8 heads, and 512 hidden size). Tokenization algorithm is Morph-level, which means that text is split according to a Turkish morphological analyzer (Zemberek). Vocabulary size is 7.5k. ## Note that this model needs a preprocessing step before running, because the tokenizer file is not a morphological anaylzer. That is, the test dataset can not be split into morphemes with the tokenizer file. The user needs to process any test dataset by a Turkish morphological analyzer (Zemberek in this case) before running evaluation. The details and performance comparisons can be found at this paper: https://arxiv.org/abs/2204.08832 The following code can be used for model loading and tokenization, example max length (514) can be changed: ``` model = AutoModel.from_pretrained([model_path]) #for sequence classification: #model = AutoModelForSequenceClassification.from_pretrained([model_path], num_labels=[num_classes]) tokenizer = PreTrainedTokenizerFast(tokenizer_file=[file_path]) tokenizer.mask_token = "[MASK]" tokenizer.cls_token = "[CLS]" tokenizer.sep_token = "[SEP]" tokenizer.pad_token = "[PAD]" tokenizer.unk_token = "[UNK]" tokenizer.bos_token = "[CLS]" tokenizer.eos_token = "[SEP]" tokenizer.model_max_length = 514 ``` ### BibTeX entry and citation info ```bibtex @misc{https://doi.org/10.48550/arxiv.2204.08832, doi = {10.48550/ARXIV.2204.08832}, url = {https://arxiv.org/abs/2204.08832}, author = {Toraman, Cagri and Yilmaz, Eyup Halit and Şahinuç, Furkan and Ozcelik, Oguzhan}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Impact of Tokenization on Language Models: An Analysis for Turkish}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution Non Commercial Share Alike 4.0 International} } ```
ctoraman/RoBERTa-TR-medium-morph-44k
484048da04ceb903c9ef27dfb822f4e38b07473e
2022-04-20T06:58:25.000Z
[ "pytorch", "roberta", "fill-mask", "tr", "dataset:oscar", "arxiv:2204.08832", "transformers", "license:cc-by-nc-sa-4.0", "autotrain_compatible" ]
fill-mask
false
ctoraman
null
ctoraman/RoBERTa-TR-medium-morph-44k
2
null
transformers
25,119
--- language: - tr tags: - roberta license: cc-by-nc-sa-4.0 datasets: - oscar --- # RoBERTa Turkish medium Morph-level 44k (uncased) Pretrained model on Turkish language using a masked language modeling (MLM) objective. The model is uncased. The pretrained corpus is OSCAR's Turkish split, but it is further filtered and cleaned. Model architecture is similar to bert-medium (8 layers, 8 heads, and 512 hidden size). Tokenization algorithm is Morph-level, which means that text is split according to a Turkish morphological analyzer (Zemberek). Vocabulary size is 43.6k. ## Note that this model needs a preprocessing step before running, because the tokenizer file is not a morphological anaylzer. That is, the test dataset can not be split into morphemes with the tokenizer file. The user needs to process any test dataset by a Turkish morphological analyzer (Zemberek in this case) before running evaluation. The details and performance comparisons can be found at this paper: https://arxiv.org/abs/2204.08832 The following code can be used for model loading and tokenization, example max length (514) can be changed: ``` model = AutoModel.from_pretrained([model_path]) #for sequence classification: #model = AutoModelForSequenceClassification.from_pretrained([model_path], num_labels=[num_classes]) tokenizer = PreTrainedTokenizerFast(tokenizer_file=[file_path]) tokenizer.mask_token = "[MASK]" tokenizer.cls_token = "[CLS]" tokenizer.sep_token = "[SEP]" tokenizer.pad_token = "[PAD]" tokenizer.unk_token = "[UNK]" tokenizer.bos_token = "[CLS]" tokenizer.eos_token = "[SEP]" tokenizer.model_max_length = 514 ``` ### BibTeX entry and citation info ```bibtex @misc{https://doi.org/10.48550/arxiv.2204.08832, doi = {10.48550/ARXIV.2204.08832}, url = {https://arxiv.org/abs/2204.08832}, author = {Toraman, Cagri and Yilmaz, Eyup Halit and Şahinuç, Furkan and Ozcelik, Oguzhan}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Impact of Tokenization on Language Models: An Analysis for Turkish}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution Non Commercial Share Alike 4.0 International} } ```
ctoraman/RoBERTa-TR-medium-morph-66k
5613ae8ce577764643310ea13eb8a4e64c010404
2022-04-20T06:58:48.000Z
[ "pytorch", "roberta", "fill-mask", "tr", "dataset:oscar", "arxiv:2204.08832", "transformers", "license:cc-by-nc-sa-4.0", "autotrain_compatible" ]
fill-mask
false
ctoraman
null
ctoraman/RoBERTa-TR-medium-morph-66k
2
null
transformers
25,120
--- language: - tr tags: - roberta license: cc-by-nc-sa-4.0 datasets: - oscar --- # RoBERTa Turkish medium Morph-level 66k (uncased) Pretrained model on Turkish language using a masked language modeling (MLM) objective. The model is uncased. The pretrained corpus is OSCAR's Turkish split, but it is further filtered and cleaned. Model architecture is similar to bert-medium (8 layers, 8 heads, and 512 hidden size). Tokenization algorithm is Morph-level, which means that text is split according to a Turkish morphological analyzer (Zemberek). Vocabulary size is 64.2k. ## Note that this model needs a preprocessing step before running, because the tokenizer file is not a morphological anaylzer. That is, the test dataset can not be split into morphemes with the tokenizer file. The user needs to process any test dataset by a Turkish morphological analyzer (Zemberek in this case) before running evaluation. The details and performance comparisons can be found at this paper: https://arxiv.org/abs/2204.08832 The following code can be used for model loading and tokenization, example max length (514) can be changed: ``` model = AutoModel.from_pretrained([model_path]) #for sequence classification: #model = AutoModelForSequenceClassification.from_pretrained([model_path], num_labels=[num_classes]) tokenizer = PreTrainedTokenizerFast(tokenizer_file=[file_path]) tokenizer.mask_token = "[MASK]" tokenizer.cls_token = "[CLS]" tokenizer.sep_token = "[SEP]" tokenizer.pad_token = "[PAD]" tokenizer.unk_token = "[UNK]" tokenizer.bos_token = "[CLS]" tokenizer.eos_token = "[SEP]" tokenizer.model_max_length = 514 ``` ### BibTeX entry and citation info ```bibtex @misc{https://doi.org/10.48550/arxiv.2204.08832, doi = {10.48550/ARXIV.2204.08832}, url = {https://arxiv.org/abs/2204.08832}, author = {Toraman, Cagri and Yilmaz, Eyup Halit and Şahinuç, Furkan and Ozcelik, Oguzhan}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Impact of Tokenization on Language Models: An Analysis for Turkish}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution Non Commercial Share Alike 4.0 International} } ```
ctoraman/RoBERTa-TR-medium-word-66k
8ff6a58229c7909a956fbd22525d1a025462355b
2022-04-20T06:47:24.000Z
[ "pytorch", "roberta", "fill-mask", "tr", "dataset:oscar", "arxiv:2204.08832", "transformers", "license:cc-by-nc-sa-4.0", "autotrain_compatible" ]
fill-mask
false
ctoraman
null
ctoraman/RoBERTa-TR-medium-word-66k
2
1
transformers
25,121
--- language: - tr tags: - roberta license: cc-by-nc-sa-4.0 datasets: - oscar --- # RoBERTa Turkish medium Word-level 66k (uncased) Pretrained model on Turkish language using a masked language modeling (MLM) objective. The model is uncased. The pretrained corpus is OSCAR's Turkish split, but it is further filtered and cleaned. Model architecture is similar to bert-medium (8 layers, 8 heads, and 512 hidden size). Tokenization algorithm is Word-level, which means text is split by white space. Vocabulary size is 66.7k. The details and performance comparisons can be found at this paper: https://arxiv.org/abs/2204.08832 The following code can be used for model loading and tokenization, example max length (514) can be changed: ``` model = AutoModel.from_pretrained([model_path]) #for sequence classification: #model = AutoModelForSequenceClassification.from_pretrained([model_path], num_labels=[num_classes]) tokenizer = PreTrainedTokenizerFast(tokenizer_file=[file_path]) tokenizer.mask_token = "[MASK]" tokenizer.cls_token = "[CLS]" tokenizer.sep_token = "[SEP]" tokenizer.pad_token = "[PAD]" tokenizer.unk_token = "[UNK]" tokenizer.bos_token = "[CLS]" tokenizer.eos_token = "[SEP]" tokenizer.model_max_length = 514 ``` ### BibTeX entry and citation info ```bibtex @misc{https://doi.org/10.48550/arxiv.2204.08832, doi = {10.48550/ARXIV.2204.08832}, url = {https://arxiv.org/abs/2204.08832}, author = {Toraman, Cagri and Yilmaz, Eyup Halit and Şahinuç, Furkan and Ozcelik, Oguzhan}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Impact of Tokenization on Language Models: An Analysis for Turkish}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution Non Commercial Share Alike 4.0 International} } ```
hyechanjun/interview-length-tagged
e20f5ff9ce720c98586670c57aaaff949e6860a1
2022-03-09T19:04:53.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
hyechanjun
null
hyechanjun/interview-length-tagged
2
null
transformers
25,122
Entry not found
OrfeasTsk/bert-base-uncased-finetuned-newsqa
0a08db3944aa2f11cb7519d47ece28fe0835de3e
2022-03-09T22:01:05.000Z
[ "pytorch", "bert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
OrfeasTsk
null
OrfeasTsk/bert-base-uncased-finetuned-newsqa
2
null
transformers
25,123
{ 'max_seq_length': 384, 'batch_size': 8, 'learning_rate': {'val': 5e-5, 'schelduler': 'Linear'}, 'max_clip_norm': None, 'epochs': 2 }
amanm27/bert-base-uncased-scouting
4447f7d433901e3af020033bc5a690d67c3c2595
2022-03-10T00:40:07.000Z
[ "pytorch", "tensorboard", "bert", "fill-mask", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
fill-mask
false
amanm27
null
amanm27/bert-base-uncased-scouting
2
null
transformers
25,124
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: bert-base-uncased-scouting results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-scouting This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.5443 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 378 | 1.7727 | | 2.1016 | 2.0 | 756 | 1.6040 | | 1.7298 | 3.0 | 1134 | 1.5572 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0 - Datasets 1.18.3 - Tokenizers 0.11.0
clisi2000/xlm-roberta-base-finetuned-panx-de
be66962868092c377c7e60b9a15cf94294cef804
2022-03-13T06:40:59.000Z
[ "pytorch", "tensorboard", "xlm-roberta", "token-classification", "dataset:xtreme", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
token-classification
false
clisi2000
null
clisi2000/xlm-roberta-base-finetuned-panx-de
2
null
transformers
25,125
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme args: PAN-X.de metrics: - name: F1 type: f1 value: 0.860442623883484 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.1371 - F1: 0.8604 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2584 | 1.0 | 525 | 0.1675 | 0.8188 | | 0.127 | 2.0 | 1050 | 0.1383 | 0.8519 | | 0.0781 | 3.0 | 1575 | 0.1371 | 0.8604 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.2+cpu - Datasets 1.16.1 - Tokenizers 0.10.1
cammy/bart-large-cnn-finetuned-weaksup-100-pad-early-try
804386f7325c40f1df78c33be97f601593733087
2022-03-10T06:44:44.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
cammy
null
cammy/bart-large-cnn-finetuned-weaksup-100-pad-early-try
2
null
transformers
25,126
Entry not found
amanm27/bert-base-uncased-wiki-scouting
c7644ed74d444f9e3b905e33aa651fb6735a3b60
2022-03-10T07:05:36.000Z
[ "pytorch", "tensorboard", "bert", "fill-mask", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
fill-mask
false
amanm27
null
amanm27/bert-base-uncased-wiki-scouting
2
null
transformers
25,127
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: bert-base-uncased-wiki-scouting results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-wiki-scouting This model is a fine-tuned version of [amanm27/bert-base-uncased-wiki](https://huggingface.co/amanm27/bert-base-uncased-wiki) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.5048 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 378 | 1.7017 | | 1.9945 | 2.0 | 756 | 1.5597 | | 1.6769 | 3.0 | 1134 | 1.5160 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0 - Datasets 1.18.3 - Tokenizers 0.11.0
lijingxin/xlm-roberta-base-finetuned-panx-de
003dd4d49ff9cfa4c83c8fea5542aca16f1570e3
2022-03-11T01:37:05.000Z
[ "pytorch", "tensorboard", "xlm-roberta", "token-classification", "dataset:xtreme", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
token-classification
false
lijingxin
null
lijingxin/xlm-roberta-base-finetuned-panx-de
2
null
transformers
25,128
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme args: PAN-X.de metrics: - name: F1 type: f1 value: 0.8594910162670748 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.1348 - F1: 0.8595 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2556 | 1.0 | 525 | 0.1629 | 0.8218 | | 0.1309 | 2.0 | 1050 | 0.1378 | 0.8522 | | 0.0812 | 3.0 | 1575 | 0.1348 | 0.8595 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.9.1 - Datasets 1.16.1 - Tokenizers 0.10.3
Taekyoon/unicon_v0.5.0
345526f4ee886249d9f9eb53e11d7021fe11ad23
2022-03-11T05:07:29.000Z
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
false
Taekyoon
null
Taekyoon/unicon_v0.5.0
2
null
transformers
25,129
Entry not found
imosnoi/md_blt
3b2650ce477fa954d142f8c6c5e5e88ec7cdc987
2022-03-10T09:38:34.000Z
[ "pytorch", "layoutlm", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
imosnoi
null
imosnoi/md_blt
2
null
transformers
25,130
Entry not found
AiLab-IMCS-UL/lvbert
9987f9f045f1330d56e35e75f4dc6d603d3e1846
2022-07-13T10:06:51.000Z
[ "pytorch", "bert", "feature-extraction", "transformers", "license:gpl-3.0" ]
feature-extraction
false
AiLab-IMCS-UL
null
AiLab-IMCS-UL/lvbert
2
null
transformers
25,131
--- license: gpl-3.0 --- Latvian BERT-base-cased model. ``` @inproceedings{Znotins-Barzdins:2020:BalticHLT, author = "A. Znotins and G. Barzdins", title = "LVBERT: Transformer-Based Model for Latvian Language Understanding", year = 2020, booktitle = "Human Language Technologies - The Baltic Perspective", publisher = "IOS Press", volume = 328, pages = "111-115", doi = "10.3233/FAIA200610", url = "http://ebooks.iospress.nl/volumearticle/55531" } ``` Please use the following text to cite this item or export to a predefined format: Znotiņš, Artūrs, 2020, LVBERT - Latvian BERT, CLARIN-LV digital library at IMCS, University of Latvia, http://hdl.handle.net/20.500.12574/43
Mickzaa/Translation_TH-EN-v3
ba4de30a62650a593f77ee10baad77f6a8ecd16b
2022-03-10T10:47:54.000Z
[ "pytorch", "marian", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
Mickzaa
null
Mickzaa/Translation_TH-EN-v3
2
null
transformers
25,132
Entry not found
MoHai/wav2vec2-base-timit-demo-colab
43531387b56ca751cfca0c19ca9789f37dba9d28
2022-03-10T21:34:07.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
MoHai
null
MoHai/wav2vec2-base-timit-demo-colab
2
null
transformers
25,133
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base-timit-demo-colab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-timit-demo-colab This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4701 - Wer: 0.4537 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.5672 | 4.0 | 500 | 1.6669 | 1.0323 | | 0.6226 | 8.0 | 1000 | 0.4701 | 0.4537 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.10.3
RamiEbeid/hubert-base-ser
8127ef5945df82fcf1f58ccf50a717ec515321b0
2022-03-16T03:24:57.000Z
[ "pytorch", "tensorboard", "hubert", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
null
false
RamiEbeid
null
RamiEbeid/hubert-base-ser
2
null
transformers
25,134
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: hubert-base-ser results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # hubert-base-ser This model is a fine-tuned version of [facebook/hubert-base-ls960](https://huggingface.co/facebook/hubert-base-ls960) on the Crema dataset. It achieves the following results on the evaluation set: - Loss: 1.0105 - Accuracy: 0.6313 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.8106 | 0.01 | 10 | 1.7616 | 0.1974 | | 1.7268 | 0.03 | 20 | 1.7187 | 0.2525 | | 1.7269 | 0.04 | 30 | 1.6442 | 0.3096 | | 1.7086 | 0.05 | 40 | 1.5834 | 0.3338 | | 1.6983 | 0.07 | 50 | 1.6195 | 0.3600 | | 1.5845 | 0.08 | 60 | 1.5753 | 0.3418 | | 1.5744 | 0.09 | 70 | 1.5669 | 0.3707 | | 1.5915 | 0.11 | 80 | 1.5412 | 0.3754 | | 1.5105 | 0.12 | 90 | 2.0037 | 0.2612 | | 1.4689 | 0.13 | 100 | 1.5440 | 0.3627 | | 1.527 | 0.15 | 110 | 1.5400 | 0.3862 | | 1.6481 | 0.16 | 120 | 1.6678 | 0.3298 | | 1.7504 | 0.17 | 130 | 1.6078 | 0.2995 | | 1.3748 | 0.19 | 140 | 1.5750 | 0.3251 | | 1.6417 | 0.2 | 150 | 1.7034 | 0.2599 | | 1.6146 | 0.21 | 160 | 1.6162 | 0.3519 | | 1.4896 | 0.23 | 170 | 1.5245 | 0.3741 | | 1.4278 | 0.24 | 180 | 1.7537 | 0.2424 | | 1.4475 | 0.26 | 190 | 1.4769 | 0.3882 | | 1.5416 | 0.27 | 200 | 1.4772 | 0.3949 | | 1.5997 | 0.28 | 210 | 1.4428 | 0.4278 | | 1.4337 | 0.3 | 220 | 1.4352 | 0.4124 | | 1.415 | 0.31 | 230 | 1.4405 | 0.4157 | | 1.5196 | 0.32 | 240 | 1.4197 | 0.4043 | | 1.3866 | 0.34 | 250 | 1.5241 | 0.3734 | | 1.3041 | 0.35 | 260 | 1.5703 | 0.4043 | | 1.3618 | 0.36 | 270 | 1.3963 | 0.4285 | | 1.3293 | 0.38 | 280 | 1.3478 | 0.4506 | | 1.2215 | 0.39 | 290 | 1.5994 | 0.3842 | | 1.6618 | 0.4 | 300 | 1.7751 | 0.2277 | | 1.5349 | 0.42 | 310 | 1.6091 | 0.4036 | | 1.4037 | 0.43 | 320 | 1.4741 | 0.4446 | | 1.4844 | 0.44 | 330 | 1.4170 | 0.4399 | | 1.2806 | 0.46 | 340 | 1.2887 | 0.5050 | | 1.3818 | 0.47 | 350 | 1.2668 | 0.5017 | | 1.3491 | 0.48 | 360 | 1.4721 | 0.4594 | | 1.2347 | 0.5 | 370 | 1.2188 | 0.5245 | | 1.2182 | 0.51 | 380 | 1.3813 | 0.4567 | | 1.2513 | 0.52 | 390 | 1.2111 | 0.5205 | | 1.2447 | 0.54 | 400 | 1.2231 | 0.5460 | | 1.038 | 0.55 | 410 | 1.2563 | 0.5373 | | 1.2409 | 0.56 | 420 | 1.3448 | 0.4936 | | 1.2279 | 0.58 | 430 | 1.1972 | 0.5487 | | 1.3256 | 0.59 | 440 | 1.1706 | 0.5742 | | 1.2866 | 0.6 | 450 | 1.3091 | 0.5003 | | 1.0574 | 0.62 | 460 | 1.2075 | 0.5500 | | 1.2744 | 0.63 | 470 | 1.2831 | 0.5171 | | 1.0836 | 0.64 | 480 | 1.1768 | 0.5608 | | 1.135 | 0.66 | 490 | 1.1408 | 0.5776 | | 1.1303 | 0.67 | 500 | 1.2320 | 0.5541 | | 1.2068 | 0.69 | 510 | 1.1379 | 0.5796 | | 1.1347 | 0.7 | 520 | 1.1124 | 0.5897 | | 1.1846 | 0.71 | 530 | 1.1338 | 0.5803 | | 1.2409 | 0.73 | 540 | 1.1259 | 0.5789 | | 1.0664 | 0.74 | 550 | 1.0653 | 0.6038 | | 1.1637 | 0.75 | 560 | 1.0550 | 0.5977 | | 1.0707 | 0.77 | 570 | 1.0996 | 0.5715 | | 1.2258 | 0.78 | 580 | 1.0804 | 0.5977 | | 0.9256 | 0.79 | 590 | 1.1501 | 0.5809 | | 1.1542 | 0.81 | 600 | 1.1089 | 0.5957 | | 1.3931 | 0.82 | 610 | 1.1381 | 0.5856 | | 1.1117 | 0.83 | 620 | 1.0933 | 0.6031 | | 1.1433 | 0.85 | 630 | 1.0175 | 0.6219 | | 1.0325 | 0.86 | 640 | 0.9885 | 0.6239 | | 1.111 | 0.87 | 650 | 1.0048 | 0.6259 | | 0.8125 | 0.89 | 660 | 1.0176 | 0.6165 | | 1.0414 | 0.9 | 670 | 1.0290 | 0.6185 | | 1.0037 | 0.91 | 680 | 1.0269 | 0.6253 | | 0.9406 | 0.93 | 690 | 1.0301 | 0.6273 | | 1.0129 | 0.94 | 700 | 1.0238 | 0.6326 | | 1.2213 | 0.95 | 710 | 1.0181 | 0.6273 | | 1.2519 | 0.97 | 720 | 1.0161 | 0.6266 | | 0.9932 | 0.98 | 730 | 1.0112 | 0.6279 | | 1.0135 | 0.99 | 740 | 1.0105 | 0.6313 | ### Framework versions - Transformers 4.18.0.dev0 - Pytorch 1.10.0+cu111 - Datasets 1.18.5.dev0 - Tokenizers 0.11.6
OrfeasTsk/bert-base-uncased-finetuned-nq-large-batch
89926ec34307209703cce923423edda043609be0
2022-03-10T14:09:50.000Z
[ "pytorch", "bert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
OrfeasTsk
null
OrfeasTsk/bert-base-uncased-finetuned-nq-large-batch
2
null
transformers
25,135
{ 'max_seq_length': 384, 'batch_size': 24, 'learning_rate': {'val': 3e-5, 'schelduler': 'Linear'}, 'max_clip_norm': None, 'epochs': 2 }
Kevincp560/pegasus-arxiv-finetuned-pubmed
a6bcdfa87e1e682ae04ae27162a5a00eb36da75d
2022-03-10T18:36:19.000Z
[ "pytorch", "pegasus", "text2text-generation", "dataset:pub_med_summarization_dataset", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
text2text-generation
false
Kevincp560
null
Kevincp560/pegasus-arxiv-finetuned-pubmed
2
null
transformers
25,136
--- tags: - generated_from_trainer datasets: - pub_med_summarization_dataset metrics: - rouge model-index: - name: pegasus-arxiv-finetuned-pubmed results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: pub_med_summarization_dataset type: pub_med_summarization_dataset args: document metrics: - name: Rouge1 type: rouge value: 44.286 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # pegasus-arxiv-finetuned-pubmed This model is a fine-tuned version of [google/pegasus-arxiv](https://huggingface.co/google/pegasus-arxiv) on the pub_med_summarization_dataset dataset. It achieves the following results on the evaluation set: - Loss: 1.8118 - Rouge1: 44.286 - Rouge2: 19.0477 - Rougel: 27.1122 - Rougelsum: 40.2609 - Gen Len: 230.586 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | 2.65 | 1.0 | 1000 | 1.9848 | 40.6984 | 16.387 | 25.0097 | 36.4831 | 215.294 | | 2.1317 | 2.0 | 2000 | 1.8524 | 43.6431 | 18.6794 | 26.7571 | 39.6642 | 224.646 | | 2.0591 | 3.0 | 3000 | 1.8254 | 43.6707 | 18.5176 | 26.6015 | 39.6325 | 225.894 | | 2.0109 | 4.0 | 4000 | 1.8138 | 44.1244 | 18.8866 | 26.8313 | 40.0913 | 229.656 | | 1.9894 | 5.0 | 5000 | 1.8118 | 44.286 | 19.0477 | 27.1122 | 40.2609 | 230.586 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.9.1 - Datasets 1.18.4 - Tokenizers 0.11.6
Kevincp560/pegasus-cnn_dailymail-finetuned-pubmed
5bf91d0b6d3d6c9fd7d85e3c6c37e621e8007b33
2022-03-10T20:20:46.000Z
[ "pytorch", "pegasus", "text2text-generation", "dataset:pub_med_summarization_dataset", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
text2text-generation
false
Kevincp560
null
Kevincp560/pegasus-cnn_dailymail-finetuned-pubmed
2
null
transformers
25,137
--- tags: - generated_from_trainer datasets: - pub_med_summarization_dataset metrics: - rouge model-index: - name: pegasus-cnn_dailymail-finetuned-pubmed results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: pub_med_summarization_dataset type: pub_med_summarization_dataset args: document metrics: - name: Rouge1 type: rouge value: 37.2569 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # pegasus-cnn_dailymail-finetuned-pubmed This model is a fine-tuned version of [google/pegasus-cnn_dailymail](https://huggingface.co/google/pegasus-cnn_dailymail) on the pub_med_summarization_dataset dataset. It achieves the following results on the evaluation set: - Loss: 1.8050 - Rouge1: 37.2569 - Rouge2: 15.8205 - Rougel: 24.1969 - Rougelsum: 34.0331 - Gen Len: 125.892 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | 2.2449 | 1.0 | 1000 | 1.8942 | 36.4494 | 14.9948 | 23.8279 | 33.3081 | 124.482 | | 2.0803 | 2.0 | 2000 | 1.8440 | 36.998 | 15.4992 | 24.091 | 33.6614 | 125.678 | | 2.0166 | 3.0 | 3000 | 1.8176 | 37.4703 | 16.0358 | 24.5735 | 34.1789 | 125.094 | | 1.9911 | 4.0 | 4000 | 1.8055 | 37.1338 | 15.7921 | 24.1412 | 33.8293 | 125.874 | | 1.9419 | 5.0 | 5000 | 1.8050 | 37.2569 | 15.8205 | 24.1969 | 34.0331 | 125.892 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.9.1 - Datasets 1.18.4 - Tokenizers 0.11.6
sanchit-gandhi/wav2vec2-2-rnd-2-layer-bart
283f6daac72cd50959d664a930af21e7dacba7b2
2022-03-12T03:02:56.000Z
[ "pytorch", "tensorboard", "speech-encoder-decoder", "automatic-speech-recognition", "dataset:librispeech_asr", "transformers", "generated_from_trainer", "model-index" ]
automatic-speech-recognition
false
sanchit-gandhi
null
sanchit-gandhi/wav2vec2-2-rnd-2-layer-bart
2
null
transformers
25,138
--- tags: - generated_from_trainer datasets: - librispeech_asr model-index: - name: '' results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model was trained from scratch on the librispeech_asr dataset. It achieves the following results on the evaluation set: - Loss: 4.6263 - Wer: 0.8568 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 20.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 5.9849 | 1.68 | 1500 | 5.9623 | 1.1028 | | 5.1696 | 3.36 | 3000 | 5.5504 | 1.6345 | | 4.1412 | 5.04 | 4500 | 5.3853 | 1.3565 | | 2.7226 | 6.73 | 6000 | 5.3072 | 0.9908 | | 3.2607 | 8.41 | 7500 | 5.4121 | 1.2854 | | 2.4017 | 10.09 | 9000 | 5.1094 | 1.0303 | | 1.7361 | 11.77 | 10500 | 4.8928 | 0.9506 | | 2.0638 | 13.45 | 12000 | 4.8352 | 0.9127 | | 1.2832 | 15.13 | 13500 | 4.7271 | 0.9103 | | 1.0439 | 16.82 | 15000 | 4.5980 | 0.8720 | | 0.4112 | 18.5 | 16500 | 4.6263 | 0.8568 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu113 - Datasets 1.18.3 - Tokenizers 0.11.0
willcai/wav2vec2_common_voice_accents
907690000a04d52c384c2bf927818fec68f42d1d
2022-03-13T01:55:11.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "dataset:common_voice", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
willcai
null
willcai/wav2vec2_common_voice_accents
2
null
transformers
25,139
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice model-index: - name: wav2vec2_common_voice_accents results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2_common_voice_accents This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.9095 - Wer: 0.4269 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 4 - seed: 42 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 4.0135 | 5.33 | 400 | 1.3259 | 0.8067 | | 0.5608 | 10.67 | 800 | 0.7832 | 0.5024 | | 0.1441 | 16.0 | 1200 | 0.9309 | 0.4698 | | 0.0724 | 21.33 | 1600 | 0.9750 | 0.4461 | | 0.0444 | 26.67 | 2000 | 0.9095 | 0.4269 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.4 - Tokenizers 0.11.6
newtonkwan/gpt2-fine-tuned-debiased
6607bb91d38dd332a48701e9cc6850ef43e21b6e
2022-03-11T00:37:42.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
newtonkwan
null
newtonkwan/gpt2-fine-tuned-debiased
2
null
transformers
25,140
Entry not found
newtonkwan/gpt2-xl-fine-tuned-debiased
5086f64ff5c9e8a379abab34c56a5b3a52a23f19
2022-03-11T09:16:01.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "generated_from_trainer", "model-index" ]
text-generation
false
newtonkwan
null
newtonkwan/gpt2-xl-fine-tuned-debiased
2
null
transformers
25,141
--- tags: - generated_from_trainer model-index: - name: gpt2-xl-fine-tuned-debiased results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt2-xl-fine-tuned-debiased This model is a fine-tuned version of [gpt2-xl](https://huggingface.co/gpt2-xl) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.1714 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 32 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100.0 - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 0.91 | 10 | 1.9130 | | No log | 1.91 | 20 | 1.7356 | | No log | 2.91 | 30 | 1.9216 | | No log | 3.91 | 40 | 2.1714 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.5.0 - Datasets 1.12.1 - Tokenizers 0.11.6
lijingxin/xlm-roberta-base-finetuned-panx-de-fr
3245284070d861a79ea306038db7d58a042da43b
2022-03-11T02:00:57.000Z
[ "pytorch", "xlm-roberta", "token-classification", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
token-classification
false
lijingxin
null
lijingxin/xlm-roberta-base-finetuned-panx-de-fr
2
null
transformers
25,142
--- license: mit tags: - generated_from_trainer metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de-fr results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de-fr This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1664 - F1: 0.8556 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2846 | 1.0 | 715 | 0.1837 | 0.8247 | | 0.1446 | 2.0 | 1430 | 0.1617 | 0.8409 | | 0.0923 | 3.0 | 2145 | 0.1664 | 0.8556 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.9.1 - Datasets 1.16.1 - Tokenizers 0.10.3
tiot07/wav2vec2-base-timit-demo-colab
628713fe05ea9be94c1c66d3dde889e4e346dae4
2022-03-11T06:09:20.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
tiot07
null
tiot07/wav2vec2-base-timit-demo-colab
2
null
transformers
25,143
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base-timit-demo-colab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-timit-demo-colab This model is a fine-tuned version of [facebook/wav2vec2-large](https://huggingface.co/facebook/wav2vec2-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4612 - Wer: 0.2963 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 2.9218 | 4.0 | 500 | 0.6017 | 0.5820 | | 0.5407 | 8.0 | 1000 | 0.4846 | 0.4388 | | 0.2899 | 12.0 | 1500 | 0.4442 | 0.3654 | | 0.1848 | 16.0 | 2000 | 0.4693 | 0.3396 | | 0.1282 | 20.0 | 2500 | 0.4690 | 0.3215 | | 0.0936 | 24.0 | 3000 | 0.4597 | 0.3125 | | 0.0714 | 28.0 | 3500 | 0.4612 | 0.2963 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.2 - Datasets 1.18.3 - Tokenizers 0.10.3
rcgale/psst-apr-baseline
1518ef268a5b658fb4c91aa873bd2afa9157bb5a
2022-03-23T10:51:21.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
rcgale
null
rcgale/psst-apr-baseline
2
null
transformers
25,144
Entry not found
Vasily/match
442603b3196d9e78993772c62cd37541e460f46a
2022-03-11T12:22:36.000Z
[ "pytorch", "distilbert", "transformers" ]
null
false
Vasily
null
Vasily/match
2
null
transformers
25,145
Entry not found
QuickRead/pegasus-reddit-6.35e5
2adcc69fa6baf4f998e44368fbf4651f6dd6e660
2022-03-15T01:32:49.000Z
[ "pytorch", "pegasus", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
QuickRead
null
QuickRead/pegasus-reddit-6.35e5
2
null
transformers
25,146
Entry not found
GroNLP/wav2vec2-dutch-large
27506b0e26066bc71d2d07d8475d3f6a11bc471e
2022-03-11T16:04:07.000Z
[ "pytorch", "wav2vec2", "pretraining", "nl", "transformers", "speech" ]
null
false
GroNLP
null
GroNLP/wav2vec2-dutch-large
2
null
transformers
25,147
--- language: nl tags: - speech --- # Wav2Vec2-Dutch-Large A Dutch Wav2Vec2 model. This model is created by further pre-training the original English [`facebook/wav2vec2-large`](https://huggingface.co/facebook/wav2vec2-large) model on Dutch speech from [Het Corpus Gesproken Nederlands](https://taalmaterialen.ivdnt.org/download/tstc-corpus-gesproken-nederlands/). This model is one of two Dutch Wav2Vec2 models: - [`GroNLP/wav2vec2-dutch-base`](https://huggingface.co/GroNLP/wav2vec2-dutch-base) - [`GroNLP/wav2vec2-dutch-large`](https://huggingface.co/GroNLP/wav2vec2-dutch-large) (this model)
MrAnderson/yoso-2048-full-trivia-copied-embeddings
ac22bfb89f98860d3973477654180e9aaf207278
2022-03-12T13:11:42.000Z
[ "pytorch", "yoso", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
MrAnderson
null
MrAnderson/yoso-2048-full-trivia-copied-embeddings
2
null
transformers
25,148
Entry not found
Aureliano/electra-if
20d0a6b2f1cfc8a4634501091582e3604b732221
2022-03-30T09:07:27.000Z
[ "pytorch", "tf", "electra", "feature-extraction", "en", "transformers", "license:apache-2.0" ]
feature-extraction
false
Aureliano
null
Aureliano/electra-if
2
null
transformers
25,149
--- language: en license: apache-2.0 --- ## ELECTRA for IF **ELECTRA** is a method for self-supervised language representation learning. They are trained to distinguish "real" input tokens vs "fake" input tokens generated by another neural network, similar to the discriminator of a [GAN](https://arxiv.org/pdf/1406.2661.pdf). For a detailed description and experimental results, please refer to the original paper [ELECTRA: Pre-training Text Encoders as Discriminators Rather Than Generators](https://openreview.net/pdf?id=r1xMH1BtvB). This repository contains a small ELECTRA discriminator finetuned on a corpus of interactive fiction commands labelled with the WordNet synset offset of the verb in the sentence. The original dataset has been collected from the list of action in the walkthroughs for the game included in the [Jericho](https://github.com/microsoft/jericho) framework and manually annotated. For more information visit https://github.com/aporporato/electra and https://github.com/aporporato/jericho-corpora. ## How to use the discriminator in `transformers` (Heavily based on: https://github.com/huggingface/notebooks/blob/master/examples/text_classification-tf.ipynb) ```python import math import numpy as np import tensorflow as tf from datasets import load_metric, Dataset, DatasetDict from transformers import TFAutoModelForSequenceClassification, AutoTokenizer, DataCollatorWithPadding, create_optimizer from transformers.keras_callbacks import KerasMetricCallback # This example shows how this model can be used: # you should finetune the model of your specific corpus if commands, bigger than this dict_train = { "idx": ["0", "1", "2", "3", "4", "5", "6", "7", "8", "9", "10", "11", "12", "13", "14", "15", "16", "17", "18", "19", "20"], "sentence": ["e", "get pen", "drop book", "x paper", "i", "south", "get paper", "drop the pen", "x book", "inventory", "n", "get the book", "drop paper", "look at Pen", "inv", "g", "s", "get sandwich", "drop sandwich", "x sandwich", "agin"], "label": ["travel.v.01", "take.v.04", "drop.v.01", "examine.v.02", "inventory.v.01", "travel.v.01", "take.v.04", "drop.v.01", "examine.v.02", "inventory.v.01", "travel.v.01", "take.v.04", "drop.v.01", "examine.v.02", "inventory.v.01", "repeat.v.01", "travel.v.01", "take.v.04", "drop.v.01", "examine.v.02", "repeat.v.01"] } dict_val = { "idx": ["0", "1", "2", "3", "4", "5"], "sentence": ["w", "get shield", "drop sword", "x spikes", "i", "repeat"], "label": ["travel.v.01", "take.v.04", "drop.v.01", "examine.v.02", "inventory.v.01", "repeat.v.01"] } raw_train_dataset = Dataset.from_dict(dict_train) raw_val_dataset = Dataset.from_dict(dict_val) raw_dataset = DatasetDict() raw_dataset["train"] = raw_train_dataset raw_dataset["val"] = raw_val_dataset raw_dataset = raw_dataset.class_encode_column("label") print(raw_dataset) print(raw_dataset["train"].features) print(raw_dataset["val"].features) print(raw_dataset["train"][1]) label2id = {} id2label = {} for i, l in enumerate(raw_dataset["train"].features["label"].names): label2id[l] = i id2label[i] = l discriminator = TFAutoModelForSequenceClassification.from_pretrained("Aureliano/electra-if", label2id=label2id, id2label=id2label) tokenizer = AutoTokenizer.from_pretrained("Aureliano/electra-if") tokenize_function = lambda example: tokenizer(example["sentence"], truncation=True) pre_tokenizer_columns = set(raw_dataset["train"].features) encoded_dataset = raw_dataset.map(tokenize_function, batched=True) tokenizer_columns = list(set(encoded_dataset["train"].features) - pre_tokenizer_columns) data_collator = DataCollatorWithPadding(tokenizer=tokenizer, return_tensors="tf") batch_size = len(encoded_dataset["train"]) tf_train_dataset = encoded_dataset["train"].to_tf_dataset( columns=tokenizer_columns, label_cols=["labels"], shuffle=True, batch_size=batch_size, collate_fn=data_collator ) tf_validation_dataset = encoded_dataset["val"].to_tf_dataset( columns=tokenizer_columns, label_cols=["labels"], shuffle=False, batch_size=batch_size, collate_fn=data_collator ) loss = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True) num_epochs = 25 batches_per_epoch = math.ceil(len(encoded_dataset["train"]) / batch_size) total_train_steps = int(batches_per_epoch * num_epochs) optimizer, schedule = create_optimizer( init_lr=5e-5, num_warmup_steps=total_train_steps // 5, num_train_steps=total_train_steps ) metric = load_metric("accuracy") def compute_metrics(eval_predictions): logits, labels = eval_predictions predictions = np.argmax(logits, axis=-1) return metric.compute(predictions=predictions, references=labels) metric_callback = KerasMetricCallback(metric_fn=compute_metrics, eval_dataset=tf_validation_dataset) callbacks = [metric_callback] discriminator.compile(optimizer=optimizer, loss=loss, metrics=["sparse_categorical_accuracy"]) discriminator.fit( tf_train_dataset, epochs=num_epochs, validation_data=tf_validation_dataset, callbacks=callbacks ) print("Evaluate on test data") results = discriminator.evaluate(tf_validation_dataset) print("test loss, test acc:", results) text = "i" encoded_input = tokenizer(text, return_tensors='tf') output = discriminator(encoded_input) prediction = tf.nn.softmax(output["logits"][0], -1) label = id2label[tf.math.argmax(prediction).numpy()] print("\n", text, ":", label, "\n") # ideally 'inventory.v.01' (-> "make or include in an itemized record or report"), but probably only with a better finetuning dataset text = "get lamp" encoded_input = tokenizer(text, return_tensors='tf') output = discriminator(encoded_input) prediction = tf.nn.softmax(output["logits"][0], -1) label = id2label[tf.math.argmax(prediction).numpy()] print("\n", text, ":", label, "\n") # ideally 'take.v.04' (-> "get into one's hands, take physically"), but probably only with a better finetuning dataset text = "w" encoded_input = tokenizer(text, return_tensors='tf') output = discriminator(encoded_input) prediction = tf.nn.softmax(output["logits"][0], -1) label = id2label[tf.math.argmax(prediction).numpy()] print("\n", text, ":", label, "\n") # ideally 'travel.v.01' (-> "change location; move, travel, or proceed, also metaphorically"), but probably only with a better finetuning dataset ```
cammy/bart-large-cnn-100-lit-evalMA-NOpad
73fa9143a0ac509e8b0a5ca8b45481b7b57033bd
2022-03-13T09:34:29.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
text2text-generation
false
cammy
null
cammy/bart-large-cnn-100-lit-evalMA-NOpad
2
null
transformers
25,150
--- license: mit tags: - generated_from_trainer metrics: - rouge model-index: - name: bart-large-cnn-100-lit-evalMA-NOpad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-large-cnn-100-lit-evalMA-NOpad This model is a fine-tuned version of [facebook/bart-large-cnn](https://huggingface.co/facebook/bart-large-cnn) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.1514 - Rouge1: 27.5985 - Rouge2: 11.3869 - Rougel: 20.9359 - Rougelsum: 24.7113 - Gen Len: 62.5 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | No log | 1.0 | 100 | 1.7982 | 28.7996 | 11.2592 | 19.7524 | 25.2125 | 62.5 | | No log | 2.0 | 200 | 2.1514 | 27.5985 | 11.3869 | 20.9359 | 24.7113 | 62.5 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.2 - Datasets 1.18.3 - Tokenizers 0.11.0
cammy/bart-large-cnn-weaksup-100-NOpad-early1
f5c5427bdf5464fc87ac954ed07b63537434de6c
2022-03-13T09:39:22.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
text2text-generation
false
cammy
null
cammy/bart-large-cnn-weaksup-100-NOpad-early1
2
null
transformers
25,151
--- license: mit tags: - generated_from_trainer metrics: - rouge model-index: - name: bart-large-cnn-weaksup-100-NOpad-early1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-large-cnn-weaksup-100-NOpad-early1 This model is a fine-tuned version of [facebook/bart-large-cnn](https://huggingface.co/facebook/bart-large-cnn) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.0768 - Rouge1: 28.7953 - Rouge2: 10.9535 - Rougel: 20.6447 - Rougelsum: 24.3516 - Gen Len: 68.5 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | No log | 1.0 | 100 | 1.8905 | 31.2906 | 13.5675 | 21.5533 | 27.2536 | 64.2 | | No log | 2.0 | 200 | 2.0768 | 28.7953 | 10.9535 | 20.6447 | 24.3516 | 68.5 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.2 - Datasets 1.18.3 - Tokenizers 0.11.0
cammy/bart-large-cnn-weaksup-100-NOpad-early2
767770dfb087a8f151207810a9bbe287e3673c02
2022-03-13T09:45:38.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
text2text-generation
false
cammy
null
cammy/bart-large-cnn-weaksup-100-NOpad-early2
2
null
transformers
25,152
--- license: mit tags: - generated_from_trainer metrics: - rouge model-index: - name: bart-large-cnn-weaksup-100-NOpad-early2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-large-cnn-weaksup-100-NOpad-early2 This model is a fine-tuned version of [facebook/bart-large-cnn](https://huggingface.co/facebook/bart-large-cnn) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.0768 - Rouge1: 28.6914 - Rouge2: 11.1481 - Rougel: 20.6967 - Rougelsum: 24.2834 - Gen Len: 68.5 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | No log | 1.0 | 100 | 1.8905 | 31.4929 | 13.8614 | 21.6279 | 27.1315 | 64.2 | | No log | 2.0 | 200 | 2.0768 | 28.6914 | 11.1481 | 20.6967 | 24.2834 | 68.5 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.2 - Datasets 1.18.3 - Tokenizers 0.11.0
cammy/bart-large-cnn-100-lit-evalMA-pad
b1c238d60940abb045ba27013ac8ecaf54b09875
2022-03-13T10:02:01.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
cammy
null
cammy/bart-large-cnn-100-lit-evalMA-pad
2
null
transformers
25,153
Entry not found
cammy/bart-large-cnn-10k-lit-evalMA-NOpad
1f0d8888109ad85b31963ab8a4733d38b9f3fde4
2022-03-13T18:11:42.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
text2text-generation
false
cammy
null
cammy/bart-large-cnn-10k-lit-evalMA-NOpad
2
null
transformers
25,154
--- license: mit tags: - generated_from_trainer metrics: - rouge model-index: - name: bart-large-cnn-10k-lit-evalMA-NOpad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-large-cnn-10k-lit-evalMA-NOpad This model is a fine-tuned version of [facebook/bart-large-cnn](https://huggingface.co/facebook/bart-large-cnn) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.9464 - Rouge1: 28.6721 - Rouge2: 13.8303 - Rougel: 22.458 - Rougelsum: 25.668 - Gen Len: 66.893 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | 1.535 | 1.0 | 10000 | 1.7501 | 28.519 | 13.967 | 22.4854 | 25.4511 | 66.555 | | 0.8754 | 2.0 | 20000 | 1.9464 | 28.6721 | 13.8303 | 22.458 | 25.668 | 66.893 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.2 - Datasets 1.18.3 - Tokenizers 0.11.0
Taekyoon/komrc_train
740cb58bf49410796f72cef3deba96e68e16d2ff
2022-03-13T15:11:14.000Z
[ "pytorch", "tensorboard", "bert", "question-answering", "dataset:korquad", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
question-answering
false
Taekyoon
null
Taekyoon/komrc_train
2
null
transformers
25,155
--- tags: - generated_from_trainer datasets: - korquad model-index: - name: komrc_train results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # komrc_train This model is a fine-tuned version of [beomi/kcbert-base](https://huggingface.co/beomi/kcbert-base) on the korquad dataset. It achieves the following results on the evaluation set: - Loss: 0.6544 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 1234 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 0.8187 | 0.31 | 2000 | 0.7377 | | 0.6947 | 0.63 | 4000 | 0.6934 | | 0.6352 | 0.94 | 6000 | 0.6544 | | 0.3869 | 1.25 | 8000 | 0.7633 | | 0.3812 | 1.56 | 10000 | 0.7047 | | 0.3579 | 1.88 | 12000 | 0.7097 | | 0.2053 | 2.19 | 14000 | 0.8511 | | 0.2173 | 2.5 | 16000 | 0.8457 | | 0.2094 | 2.82 | 18000 | 0.8433 | ### Framework versions - Transformers 4.13.0 - Pytorch 1.10.0+cu111 - Datasets 1.18.4 - Tokenizers 0.10.3
sanchit-gandhi/wav2vec2-2-roberta-long-run
4422b2394b173f5aedb613ce880dd1ce6b39eeec
2022-03-14T10:41:46.000Z
[ "pytorch", "tensorboard", "speech-encoder-decoder", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
sanchit-gandhi
null
sanchit-gandhi/wav2vec2-2-roberta-long-run
2
null
transformers
25,156
Entry not found
MrAnderson/nystrom-1024-full-trivia-copied-embeddings
ab80c28ca4348b875bbcc5fda5051f0922f75425
2022-03-14T13:01:18.000Z
[ "pytorch", "nystromformer", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
MrAnderson
null
MrAnderson/nystrom-1024-full-trivia-copied-embeddings
2
null
transformers
25,157
Entry not found
prakod/en-hi-pos-tagger-symcom
1e13630f8cff03fd4961f22f4891a04e0d2d10ab
2022-03-14T08:24:56.000Z
[ "pytorch", "xlm-roberta", "token-classification", "transformers", "license:afl-3.0", "autotrain_compatible" ]
token-classification
false
prakod
null
prakod/en-hi-pos-tagger-symcom
2
null
transformers
25,158
--- license: afl-3.0 ---
holtin/distilbert-base-uncased-holtin-finetuned-squad
1f156f2601a642694385dd6577a724817fa3dbf7
2022-03-14T08:09:33.000Z
[ "pytorch", "tensorboard", "distilbert", "question-answering", "dataset:squad_v2", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
question-answering
false
holtin
null
holtin/distilbert-base-uncased-holtin-finetuned-squad
2
null
transformers
25,159
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad_v2 model-index: - name: distilbert-base-uncased-holtin-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-holtin-finetuned-squad This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the squad_v2 dataset. It achieves the following results on the evaluation set: - Loss: 3.8541 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 84 | 4.4978 | | No log | 2.0 | 168 | 3.9588 | | No log | 3.0 | 252 | 3.8541 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 1.18.4 - Tokenizers 0.11.6
mrm8488/electricidad-small-finetuned-review-classification
819b54455106662ba743afcc9de901c1194e726b
2022-03-14T12:35:12.000Z
[ "pytorch", "tensorboard", "electra", "text-classification", "transformers" ]
text-classification
false
mrm8488
null
mrm8488/electricidad-small-finetuned-review-classification
2
null
transformers
25,160
Entry not found
GPL/fever-distilbert-tas-b-gpl-self_miner
b18488a373430f02a1f667e13418ee2c58a21b81
2022-03-14T14:23:38.000Z
[ "pytorch", "distilbert", "feature-extraction", "sentence-transformers", "sentence-similarity", "transformers" ]
sentence-similarity
false
GPL
null
GPL/fever-distilbert-tas-b-gpl-self_miner
2
null
sentence-transformers
25,161
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch def cls_pooling(model_output, attention_mask): return model_output[0][:,0] # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, cls pooling. sentence_embeddings = cls_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 140000 with parameters: ``` {'batch_size': 32, 'sampler': 'torch.utils.data.sampler.SequentialSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `gpl.toolkit.loss.MarginDistillationLoss` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": 140000, "warmup_steps": 1000, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 350, 'do_lower_case': False}) with Transformer model: DistilBertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
GPL/signal1m-distilbert-tas-b-gpl-self_miner
541aa5c47e9a8f5b8247bdefcb658c7f861b89b0
2022-03-14T14:25:02.000Z
[ "pytorch", "distilbert", "feature-extraction", "sentence-transformers", "sentence-similarity", "transformers" ]
sentence-similarity
false
GPL
null
GPL/signal1m-distilbert-tas-b-gpl-self_miner
2
null
sentence-transformers
25,162
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch def cls_pooling(model_output, attention_mask): return model_output[0][:,0] # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, cls pooling. sentence_embeddings = cls_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 140000 with parameters: ``` {'batch_size': 32, 'sampler': 'torch.utils.data.sampler.SequentialSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `gpl.toolkit.loss.MarginDistillationLoss` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": 140000, "warmup_steps": 1000, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 350, 'do_lower_case': False}) with Transformer model: DistilBertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
evs/xlm-roberta-base-finetuned-panx-de
0e7f6264d8f9f1af245652859c51dc53250da86d
2022-03-15T12:02:07.000Z
[ "pytorch", "tensorboard", "xlm-roberta", "token-classification", "dataset:xtreme", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
token-classification
false
evs
null
evs/xlm-roberta-base-finetuned-panx-de
2
null
transformers
25,163
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme args: PAN-X.de metrics: - name: F1 type: f1 value: 0.8591260810195721 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.1352 - F1: 0.8591 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.257 | 1.0 | 525 | 0.1512 | 0.8302 | | 0.1305 | 2.0 | 1050 | 0.1401 | 0.8447 | | 0.0817 | 3.0 | 1575 | 0.1352 | 0.8591 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3
gossminn/detect-femicide-news-xlmr
964e5324b025f298b14172faf9b7acf4aa2f67a6
2022-03-14T16:43:08.000Z
[ "pytorch", "tensorboard", "xlm-roberta", "text-classification", "transformers", "generated_from_trainer", "license:mit", "model-index" ]
text-classification
false
gossminn
null
gossminn/detect-femicide-news-xlmr
2
null
transformers
25,164
--- license: mit tags: - generated_from_trainer metrics: - accuracy model-index: - name: detect-femicide-news-xlmr results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # detect-femicide-news-xlmr This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0161 - Accuracy: 0.9973 - Precision Neg: 0.9975 - Precision Pos: 0.9967 - Recall Neg: 0.9988 - Recall Pos: 0.9933 - F1 Score Neg: 0.9981 - F1 Score Pos: 0.9950 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 128 - eval_batch_size: 8 - seed: 1996 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 6 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision Neg | Precision Pos | Recall Neg | Recall Pos | F1 Score Neg | F1 Score Pos | |:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:-------------:|:----------:|:----------:|:------------:|:------------:| | 0.2758 | 1.0 | 204 | 0.1001 | 0.9718 | 0.9741 | 0.9654 | 0.9875 | 0.93 | 0.9808 | 0.9474 | | 0.0782 | 2.0 | 408 | 0.0505 | 0.9809 | 0.9839 | 0.9729 | 0.99 | 0.9567 | 0.9869 | 0.9647 | | 0.0501 | 3.0 | 612 | 0.0272 | 0.9927 | 0.9962 | 0.9834 | 0.9938 | 0.99 | 0.9950 | 0.9867 | | 0.0389 | 4.0 | 816 | 0.0201 | 0.9945 | 0.9938 | 0.9966 | 0.9988 | 0.9833 | 0.9963 | 0.9899 | | 0.031 | 5.0 | 1020 | 0.0175 | 0.9964 | 0.9963 | 0.9966 | 0.9988 | 0.99 | 0.9975 | 0.9933 | | 0.0235 | 6.0 | 1224 | 0.0161 | 0.9973 | 0.9975 | 0.9967 | 0.9988 | 0.9933 | 0.9981 | 0.9950 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.2+cu113 - Datasets 1.18.3 - Tokenizers 0.11.0
mmohamme/distilbert-base-uncased-finetuned-btc
1a751bb86ef9347a95bc8fc51c1eee3918f736fc
2022-03-16T02:21:42.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "transformers" ]
text-classification
false
mmohamme
null
mmohamme/distilbert-base-uncased-finetuned-btc
2
null
transformers
25,165
### distilbert-base-uncased-finetuned-btc for PH66 Unwanted Event - This is our initial attempt on using the transformers for BTC-PH66. - This test file used in this model are in projects with Ids [1065, 950, 956, 2650]. The other 4 projects were not included as they resulted very low accuracy with ML models. - The data was preprocessed to remove duplicates, and cases where the same cause-conseq has a different Unwanted Event - Next Model: Improve the hyper-parameters of the model
mindlogic/mindlogic-electra-ko-ai-citizen-classifier-base
81391f80a54ec8052c85cf40ec7babf92e7e40a4
2022-03-22T03:25:46.000Z
[ "pytorch", "electra", "text-classification", "transformers" ]
text-classification
false
mindlogic
null
mindlogic/mindlogic-electra-ko-ai-citizen-classifier-base
2
1
transformers
25,166
Entry not found
moralstories/roberta-large_action
ed49f14463512a7148b45001012fae606d701113
2022-03-15T06:03:05.000Z
[ "pytorch", "roberta", "text-classification", "transformers" ]
text-classification
false
moralstories
null
moralstories/roberta-large_action
2
null
transformers
25,167
Entry not found
hazal/BioBERTurkcased-con-trM
d8085ab9d0ae0630f06c45801eb7d6261799cbc6
2022-03-21T07:57:30.000Z
[ "pytorch", "transformers" ]
null
false
hazal
null
hazal/BioBERTurkcased-con-trM
2
null
transformers
25,168
# BioBERTurk- Turkish Biomedical Language Models
janck/DistilBERT-finetuned-wiki20m
b46c4e775230a4b59010036c490a2a4060ed5722
2022-03-17T07:13:33.000Z
[ "pytorch", "distilbert", "text-classification", "transformers" ]
text-classification
false
janck
null
janck/DistilBERT-finetuned-wiki20m
2
1
transformers
25,169
Entry not found
hazal/BioBERTurkcased-con-trM-trR
e79beac1d310f34ed3d656f7a96467d05dee314a
2022-03-15T09:07:00.000Z
[ "pytorch", "transformers" ]
null
false
hazal
null
hazal/BioBERTurkcased-con-trM-trR
2
null
transformers
25,170
Entry not found
RobertoMCA97/xlm-roberta-base-finetuned-panx-de
6bf5889cf20f2852d140eded42b147f0109daaf5
2022-03-16T11:55:06.000Z
[ "pytorch", "tensorboard", "xlm-roberta", "token-classification", "dataset:xtreme", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
token-classification
false
RobertoMCA97
null
RobertoMCA97/xlm-roberta-base-finetuned-panx-de
2
null
transformers
25,171
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme args: PAN-X.de metrics: - name: F1 type: f1 value: 0.8590909090909091 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.1380 - F1: 0.8591 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2642 | 1.0 | 525 | 0.1624 | 0.8251 | | 0.1315 | 2.0 | 1050 | 0.1445 | 0.8508 | | 0.0832 | 3.0 | 1575 | 0.1380 | 0.8591 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
DrishtiSharma/poem-gen-t5-small
ca13a264955be248d83652ba8f04dc09527445a6
2022-03-15T18:50:42.000Z
[ "pytorch", "tensorboard", "t5", "text2text-generation", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
text2text-generation
false
DrishtiSharma
null
DrishtiSharma/poem-gen-t5-small
2
null
transformers
25,172
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: poem-gen-t5-small results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # poem-gen-t5-small This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.1066 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 3.67 | 0.32 | 5000 | 3.4705 | | 3.573 | 0.63 | 10000 | 3.3747 | | 3.5075 | 0.95 | 15000 | 3.3154 | | 3.4486 | 1.26 | 20000 | 3.2704 | | 3.4207 | 1.58 | 25000 | 3.2351 | | 3.3933 | 1.89 | 30000 | 3.2069 | | 3.3612 | 2.21 | 35000 | 3.1853 | | 3.34 | 2.53 | 40000 | 3.1659 | | 3.3422 | 2.84 | 45000 | 3.1503 | | 3.3034 | 3.16 | 50000 | 3.1376 | | 3.2886 | 3.47 | 55000 | 3.1283 | | 3.2806 | 3.79 | 60000 | 3.1208 | | 3.2745 | 4.1 | 65000 | 3.1141 | | 3.2894 | 4.42 | 70000 | 3.1093 | | 3.264 | 4.74 | 75000 | 3.1075 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 1.18.4 - Tokenizers 0.11.6
Rustem/distilroberta-base-trained
c12ff18b7c81eca06a80b550225d9fffdbca85ff
2022-03-15T18:12:23.000Z
[ "pytorch", "roberta", "fill-mask", "transformers", "license:afl-3.0", "autotrain_compatible" ]
fill-mask
false
Rustem
null
Rustem/distilroberta-base-trained
2
null
transformers
25,173
--- license: afl-3.0 ---
Rustem/distilroberta-base-trainedmodel
4268e8c9e600f8c786cba42d3f6792b6ef479513
2022-03-15T19:32:36.000Z
[ "pytorch", "roberta", "fill-mask", "transformers", "license:apache-2.0", "autotrain_compatible" ]
fill-mask
false
Rustem
null
Rustem/distilroberta-base-trainedmodel
2
null
transformers
25,174
--- license: apache-2.0 ---
facebook/regnet-x-002
2b69d3ab4a835f17f32fbdebfd63659fc46dc852
2022-06-28T17:54:23.000Z
[ "pytorch", "tf", "regnet", "image-classification", "dataset:imagenet-1k", "arxiv:2003.13678", "transformers", "vision", "license:apache-2.0" ]
image-classification
false
facebook
null
facebook/regnet-x-002
2
1
transformers
25,175
--- license: apache-2.0 tags: - vision - image-classification datasets: - imagenet-1k widget: - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/tiger.jpg example_title: Tiger - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/teapot.jpg example_title: Teapot - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/palace.jpg example_title: Palace --- # RegNet RegNet model trained on imagenet-1k. It was introduced in the paper [Designing Network Design Spaces](https://arxiv.org/abs/2003.13678) and first released in [this repository](https://github.com/facebookresearch/pycls). Disclaimer: The team releasing RegNet did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description The authors design search spaces to perform Neural Architecture Search (NAS). They first start from a high dimensional search space and iteratively reduce the search space by empirically applying constraints based on the best-performing models sampled by the current search space. ![model image](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/regnet_architecture.png) ## Intended uses & limitations You can use the raw model for image classification. See the [model hub](https://huggingface.co/models?search=regnet) to look for fine-tuned versions on a task that interests you. ### How to use Here is how to use this model: ```python >>> from transformers import AutoFeatureExtractor, RegNetForImageClassification >>> import torch >>> from datasets import load_dataset >>> dataset = load_dataset("huggingface/cats-image") >>> image = dataset["test"]["image"][0] >>> feature_extractor = AutoFeatureExtractor.from_pretrained("zuppif/regnet-y-040") >>> model = RegNetForImageClassification.from_pretrained("zuppif/regnet-y-040") >>> inputs = feature_extractor(image, return_tensors="pt") >>> with torch.no_grad(): ... logits = model(**inputs).logits >>> # model predicts one of the 1000 ImageNet classes >>> predicted_label = logits.argmax(-1).item() >>> print(model.config.id2label[predicted_label]) 'tabby, tabby cat' ``` For more code examples, we refer to the [documentation](https://huggingface.co/docs/transformers/master/en/model_doc/regnet).
jarguello76/distilbert-base-uncased-finetuned-emotion
02db228f93fe208995b2939f45260a102978013f
2022-03-16T01:45:28.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "transformers" ]
text-classification
false
jarguello76
null
jarguello76/distilbert-base-uncased-finetuned-emotion
2
null
transformers
25,176
Entry not found
golivaresm/roberta-base-bne-finetuned-amazon_reviews_multi
570b4d38e710c5936eadc31b844c101c5b5c083f
2022-03-16T00:34:07.000Z
[ "pytorch", "tensorboard", "roberta", "text-classification", "dataset:amazon_reviews_multi", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
golivaresm
null
golivaresm/roberta-base-bne-finetuned-amazon_reviews_multi
2
null
transformers
25,177
--- license: apache-2.0 tags: - generated_from_trainer datasets: - amazon_reviews_multi metrics: - accuracy model-index: - name: roberta-base-bne-finetuned-amazon_reviews_multi results: - task: name: Text Classification type: text-classification dataset: name: amazon_reviews_multi type: amazon_reviews_multi args: es metrics: - name: Accuracy type: accuracy value: 0.93125 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-bne-finetuned-amazon_reviews_multi This model is a fine-tuned version of [BSC-TeMU/roberta-base-bne](https://huggingface.co/BSC-TeMU/roberta-base-bne) on the amazon_reviews_multi dataset. It achieves the following results on the evaluation set: - Loss: 0.2328 - Accuracy: 0.9313 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.1985 | 1.0 | 1250 | 0.1730 | 0.9327 | | 0.0982 | 2.0 | 2500 | 0.2328 | 0.9313 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
yerevann/xlsrhy
b41f6cefeab8e2351560c225a7bb7b6d4daff999
2022-03-16T00:50:13.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
yerevann
null
yerevann/xlsrhy
2
null
transformers
25,178
Entry not found
hackathon-pln-es/poem-gen-gpt2-small-spanish
a9dfac53bae9ffe82279524b35280f15bd724824
2022-03-15T04:32:41.000Z
[ "pytorch", "tensorboard", "gpt2", "text-generation", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-generation
false
hackathon-pln-es
null
hackathon-pln-es/poem-gen-gpt2-small-spanish
2
2
transformers
25,179
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: poem-gen-gpt2-small-spanish results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # poem-gen-gpt2-small-spanish This model is a fine-tuned version of [datificate/gpt2-small-spanish](https://huggingface.co/datificate/gpt2-small-spanish) on an unknown dataset. It achieves the following results on the evaluation set: - eval_loss: 4.1366 - eval_runtime: 25.1623 - eval_samples_per_second: 43.676 - eval_steps_per_second: 10.929 - epoch: 0.78 - step: 2040 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 1.18.4 - Tokenizers 0.11.6
PSW/random-word-swapping-bart-samsum
37780a3d9d72186c60f70bfcdeaa3586a6cbbd07
2022-03-16T02:50:12.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
PSW
null
PSW/random-word-swapping-bart-samsum
2
null
transformers
25,180
Entry not found
Rustem/roberta-base-trained
47fa7ed0570fbd3927fcf6275b499e6bf2bb7961
2022-03-16T07:54:42.000Z
[ "pytorch", "roberta", "fill-mask", "transformers", "license:apache-2.0", "autotrain_compatible" ]
fill-mask
false
Rustem
null
Rustem/roberta-base-trained
2
null
transformers
25,181
--- license: apache-2.0 ---
navteca/ms-marco-MiniLM-L-6-v2
1fc781fd837cffa498cda42dd0254ed8691b97e6
2022-03-16T09:36:49.000Z
[ "pytorch", "jax", "bert", "text-classification", "en", "sentence-transformers", "license:mit" ]
text-classification
false
navteca
null
navteca/ms-marco-MiniLM-L-6-v2
2
null
sentence-transformers
25,182
--- language: en license: mit pipeline_tag: text-classification tags: - sentence-transformers --- # Cross-Encoder for MS Marco The model can be used for Information Retrieval: Given a query, encode the query will all possible passages (e.g. retrieved with ElasticSearch). Then sort the passages in a decreasing order. See [SBERT.net Retrieve & Re-rank](https://www.sbert.net/examples/applications/retrieve_rerank/README.html) for more details. The training code is available here: [SBERT.net Training MS Marco](https://github.com/UKPLab/sentence-transformers/tree/master/examples/training/ms_marco) ## Training Data This model was trained on the [MS Marco Passage Ranking](https://github.com/microsoft/MSMARCO-Passage-Ranking) task. ## Usage The usage becomes easier when you have [SentenceTransformers](https://www.sbert.net/) installed. Then, you can use the pre-trained models like this: ```python from sentence_transformers import CrossEncoder model = CrossEncoder('model_name', max_length=512) scores = model.predict([('Query', 'Paragraph1'), ('Query', 'Paragraph2')]) ``` ## Performance In the following table, we provide various pre-trained Cross-Encoders together with their performance on the [TREC Deep Learning 2019](https://microsoft.github.io/TREC-2019-Deep-Learning/) and the [MS Marco Passage Reranking](https://github.com/microsoft/MSMARCO-Passage-Ranking/) dataset. | Model-Name | NDCG@10 (TREC DL 19) | MRR@10 (MS Marco Dev) | Docs / Sec | | ------------- |:-------------| -----| --- | | **Version 2 models** | | | | cross-encoder/ms-marco-TinyBERT-L-2-v2 | 69.84 | 32.56 | 9000 | cross-encoder/ms-marco-MiniLM-L-2-v2 | 71.01 | 34.85 | 4100 | cross-encoder/ms-marco-MiniLM-L-4-v2 | 73.04 | 37.70 | 2500 | cross-encoder/ms-marco-MiniLM-L-6-v2 | 74.30 | 39.01 | 1800 | cross-encoder/ms-marco-MiniLM-L-12-v2 | 74.31 | 39.02 | 960 | **Version 1 models** | | | | cross-encoder/ms-marco-TinyBERT-L-2 | 67.43 | 30.15 | 9000 | cross-encoder/ms-marco-TinyBERT-L-4 | 68.09 | 34.50 | 2900 | cross-encoder/ms-marco-TinyBERT-L-6 | 69.57 | 36.13 | 680 | cross-encoder/ms-marco-electra-base | 71.99 | 36.41 | 340 | **Other models** | | | | nboost/pt-tinybert-msmarco | 63.63 | 28.80 | 2900 | nboost/pt-bert-base-uncased-msmarco | 70.94 | 34.75 | 340 | nboost/pt-bert-large-msmarco | 73.36 | 36.48 | 100 | Capreolus/electra-base-msmarco | 71.23 | 36.89 | 340 | amberoad/bert-multilingual-passage-reranking-msmarco | 68.40 | 35.54 | 330 | sebastian-hofstaetter/distilbert-cat-margin_mse-T2-msmarco | 72.82 | 37.88 | 720 Note: Runtime was computed on a V100 GPU.
ixa-ehu/roberta-eus-cc100-base-cased
2769bc619bcbe1261f1e4a4012cf77c1ad601b40
2022-03-16T11:48:07.000Z
[ "pytorch", "roberta", "fill-mask", "eu", "arxiv:2203.08111", "transformers", "basque", "license:cc-by-nc-4.0", "autotrain_compatible" ]
fill-mask
false
ixa-ehu
null
ixa-ehu/roberta-eus-cc100-base-cased
2
null
transformers
25,183
--- language: eu license: cc-by-nc-4.0 tags: - basque - roberta --- # Roberta-eus cc100 base cased This is a RoBERTa model for Basque model presented in [Does corpus quality really matter for low-resource languages?](https://arxiv.org/abs/2203.08111). There are several models for Basque using the RoBERTa architecture, using different corpora: - roberta-eus-euscrawl-base-cased: Basque RoBERTa model trained on Euscrawl, a corpus created using tailored crawling from Basque sites. EusCrawl contains 12,528k documents and 423M tokens. - roberta-eus-euscrawl-large-cased: RoBERTa large trained on EusCrawl. - roberta-eus-mC4-base-cased: Basque RoBERTa model trained on the Basque portion of mc4 dataset. - roberta-eus-CC100-base-cased: Basque RoBERTa model trained on Basque portion of cc100 dataset. The models have been tested on five different downstream tasks for Basque: Topic classification, Sentiment analysis, Stance detection, Named Entity Recognition (NER), and Question Answering (refer to the [paper](https://arxiv.org/abs/2203.08111) for more details). See summary of results below: | Model | Topic class. | Sentiment | Stance det. | NER | QA | Average | |----------------------------------|--------------|-----------|-------------|----------|----------|----------| | roberta-eus-euscrawl-base-cased | 76.2 | 77.7 | 57.4 | 86.8 | 34.6 | 66.5 | | roberta-eus-euscrawl-large-cased | **77.6** | 78.8 | 62.9 | **87.2** | **38.3** | **69.0** | | roberta-eus-mC4-base-cased | 75.3 | **80.4** | 59.1 | 86.0 | 35.2 | 67.2 | | roberta-eus-CC100-base-cased | 76.2 | 78.8 | **63.4** | 85.2 | 35.8 | 67.9 | If you use any of these models, please cite the following paper: ``` @misc{artetxe2022euscrawl, title={Does corpus quality really matter for low-resource languages?}, author={Mikel Artetxe, Itziar Aldabe, Rodrigo Agerri, Olatz Perez-de-Viñaspre, Aitor Soroa}, year={2022}, eprint={2203.08111}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
ai4bharat/MultiIndicQuestionGenerationUnified
65c3fddf75c302edde59c4721f26435d506d87a6
2022-05-23T17:19:26.000Z
[ "pytorch", "mbart", "text2text-generation", "as", "bn", "gu", "hi", "kn", "ml", "mr", "or", "pa", "ta", "te", "dataset:ai4bharat/IndicQuestionGeneration", "dataset:squad", "arxiv:2203.05437", "transformers", "question-generation", "multilingual", "nlp", "indicnlp", "autotrain_compatible" ]
text2text-generation
false
ai4bharat
null
ai4bharat/MultiIndicQuestionGenerationUnified
2
null
transformers
25,184
--- tags: - question-generation - multilingual - nlp - indicnlp datasets: - ai4bharat/IndicQuestionGeneration - squad language: - as - bn - gu - hi - kn - ml - mr - or - pa - ta - te licenses: - cc-by-nc-4.0 --- # MultiIndicQuestionGenerationUnified MultiIndicQuestionGenerationUnified is a multilingual, sequence-to-sequence pre-trained model, a [IndicBART](https://huggingface.co/ai4bharat/IndicBART) checkpoint fine-tuned on the 11 languages of [IndicQuestionGeneration](https://huggingface.co/datasets/ai4bharat/IndicQuestionGeneration) dataset. For fine-tuning details, see the [paper](https://arxiv.org/abs/2203.05437). You can use MultiIndicQuestionGenerationUnified to build question generation applications for Indian languages by fine-tuning the model with supervised training data for the question generation task. Some salient features of the MultiIndicQuestionGenerationUnified are: <ul> <li >Supported languages: Assamese, Bengali, Gujarati, Hindi, Marathi, Oriya, Punjabi, Kannada, Malayalam, Tamil, and Telugu. Not all of these languages are supported by mBART50 and mT5. </li> <li >The model is much smaller than the mBART and mT5(-base) models, so less computationally expensive for fine-tuning and decoding. </li> <li> Fine-tuned on large Indic language corpora (770 K examples). </li> <li> All languages have been represented in Devanagari script to encourage transfer learning among the related languages. </li> </ul> You can read more about MultiIndicQuestionGenerationUnified in this <a href="https://arxiv.org/abs/2203.05437">paper</a>. ## Using this model in `transformers` ``` from transformers import MBartForConditionalGeneration, AutoModelForSeq2SeqLM from transformers import AlbertTokenizer, AutoTokenizer tokenizer = AutoTokenizer.from_pretrained("ai4bharat/MultiIndicQuestionGenerationUnified", do_lower_case=False, use_fast=False, keep_accents=True) # Or use tokenizer = AlbertTokenizer.from_pretrained("ai4bharat/MultiIndicQuestionGenerationUnified", do_lower_case=False, use_fast=False, keep_accents=True) model = AutoModelForSeq2SeqLM.from_pretrained("ai4bharat/MultiIndicQuestionGenerationUnified") # Or use model = MBartForConditionalGeneration.from_pretrained("ai4bharat/MultiIndicQuestionGenerationUnified") # Some initial mapping bos_id = tokenizer._convert_token_to_id_with_added_voc("<s>") eos_id = tokenizer._convert_token_to_id_with_added_voc("</s>") pad_id = tokenizer._convert_token_to_id_with_added_voc("<pad>") # To get lang_id use any of ['<2as>', '<2bn>', '<2gu>', '<2hi>', '<2kn>', '<2ml>', '<2mr>', '<2or>', '<2pa>', '<2ta>', '<2te>'] # First tokenize the input and outputs. The format below is how IndicBART was trained so the input should be "Sentence </s> <2xx>" where xx is the language code. Similarly, the output should be "<2yy> Sentence </s>". inp = tokenizer("7 फरवरी, 2016 [SEP] खेल 7 फरवरी, 2016 को कैलिफोर्निया के सांता क्लारा में सैन फ्रांसिस्को खाड़ी क्षेत्र में लेवी स्टेडियम में खेला गया था।</s><2hi>", add_special_tokens=False, return_tensors="pt", padding=True).input_ids out = tokenizer("<2hi> सुपर बाउल किस दिन खेला गया? </s>", add_special_tokens=False, return_tensors="pt", padding=True).input_ids model_outputs=model(input_ids=inp, decoder_input_ids=out[:,0:-1], labels=out[:,1:]) # For loss model_outputs.loss ## This is not label smoothed. # For logits model_outputs.logits # For generation. Pardon the messiness. Note the decoder_start_token_id. model.eval() # Set dropouts to zero model_output=model.generate(inp, use_cache=True,no_repeat_ngram_size=3,encoder_no_repeat_ngram_size=3, num_beams=4, max_length=20, min_length=1, early_stopping=True, pad_token_id=pad_id, bos_token_id=bos_id, eos_token_id=eos_id, decoder_start_token_id=tokenizer._convert_token_to_id_with_added_voc("<2hi>")) # Decode to get output strings decoded_output=tokenizer.decode(model_output[0], skip_special_tokens=True, clean_up_tokenization_spaces=False) print(decoded_output) # कब खेला जाएगा पहला मैच? # Disclaimer Note that if your output language is not Hindi or Marathi, you should convert its script from Devanagari to the desired language using the [Indic NLP Library](https://github.com/AI4Bharat/indic-bart/blob/main/indic_scriptmap.py). ``` # Note: If you wish to use any language written in a non-Devanagari script, then you should first convert it to Devanagari using the <a href="https://github.com/anoopkunchukuttan/indic_nlp_library">Indic NLP Library</a>. After you get the output, you should convert it back into the original script. ## Benchmarks Scores on the `IndicQuestionGeneration` test sets are as follows: Language | RougeL ---------|---------------------------- as | 20.48 bn | 26.63 gu | 27.71 hi | 35.38 kn | 23.56 ml | 22.17 mr | 23.52 or | 25.25 pa | 32.10 ta | 22.98 te | 25.67 ## Citation If you use this model, please cite the following paper: ``` @inproceedings{Kumar2022IndicNLGSM, title={IndicNLG Suite: Multilingual Datasets for Diverse NLG Tasks in Indic Languages}, author={Aman Kumar and Himani Shrotriya and Prachi Sahu and Raj Dabre and Ratish Puduppully and Anoop Kunchukuttan and Amogh Mishra and Mitesh M. Khapra and Pratyush Kumar}, year={2022}, url = "https://arxiv.org/abs/2203.05437" } ``` # License The model is available under the MIT License.
RobertoMCA97/xlm-roberta-base-finetuned-panx-de-fr
3a0bd6ab806259ef75dcc6e502d9da815faafe54
2022-03-16T12:24:41.000Z
[ "pytorch", "xlm-roberta", "token-classification", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
token-classification
false
RobertoMCA97
null
RobertoMCA97/xlm-roberta-base-finetuned-panx-de-fr
2
null
transformers
25,185
--- license: mit tags: - generated_from_trainer metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de-fr results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de-fr This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1667 - F1: 0.8582 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2885 | 1.0 | 715 | 0.1817 | 0.8287 | | 0.1497 | 2.0 | 1430 | 0.1618 | 0.8442 | | 0.0944 | 3.0 | 2145 | 0.1667 | 0.8582 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
RobertoMCA97/xlm-roberta-base-finetuned-panx-it
57076fb12373b8a19f6f93eb102d18da0b0fd2a0
2022-03-16T12:56:38.000Z
[ "pytorch", "xlm-roberta", "token-classification", "dataset:xtreme", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
token-classification
false
RobertoMCA97
null
RobertoMCA97/xlm-roberta-base-finetuned-panx-it
2
null
transformers
25,186
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-it results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme args: PAN-X.it metrics: - name: F1 type: f1 value: 0.822805578342904 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-it This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.2323 - F1: 0.8228 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.8126 | 1.0 | 70 | 0.3361 | 0.7231 | | 0.2995 | 2.0 | 140 | 0.2526 | 0.8079 | | 0.1865 | 3.0 | 210 | 0.2323 | 0.8228 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
RobertoMCA97/xlm-roberta-base-finetuned-panx-en
499f09d9657a27014c05accaf1cc91c029d8a153
2022-03-16T13:12:04.000Z
[ "pytorch", "xlm-roberta", "token-classification", "dataset:xtreme", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
token-classification
false
RobertoMCA97
null
RobertoMCA97/xlm-roberta-base-finetuned-panx-en
2
null
transformers
25,187
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-en results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme args: PAN-X.en metrics: - name: F1 type: f1 value: 0.7075365579302588 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-en This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.3925 - F1: 0.7075 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 1.1493 | 1.0 | 50 | 0.5884 | 0.4748 | | 0.5135 | 2.0 | 100 | 0.4088 | 0.6623 | | 0.3558 | 3.0 | 150 | 0.3925 | 0.7075 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
malteos/aspect-scibert-dataset
c5d016fce8e63abed19be303f9a3ab2e950dda88
2022-03-16T14:00:58.000Z
[ "pytorch", "bert", "feature-extraction", "transformers", "license:mit" ]
feature-extraction
false
malteos
null
malteos/aspect-scibert-dataset
2
null
transformers
25,188
--- license: mit ---
vpelloin/MEDIA_NLU_flaubert_finetuned
d350309f204ad34831aa5eb8b6f6d050b8daa255
2022-06-17T13:54:59.000Z
[ "pytorch", "tensorboard", "flaubert", "token-classification", "fr", "transformers", "bert", "natural language understanding", "NLU", "spoken language understanding", "SLU", "understanding", "MEDIA", "autotrain_compatible" ]
token-classification
false
vpelloin
null
vpelloin/MEDIA_NLU_flaubert_finetuned
2
null
transformers
25,189
--- language: fr pipeline_tag: "token-classification" widget: - text: "je voudrais réserver une chambre à paris pour demain et lundi" - text: "d'accord pour l'hôtel à quatre vingt dix euros la nuit" - text: "deux nuits s'il vous plait" - text: "dans un hôtel avec piscine à marseille" tags: - bert - flaubert - natural language understanding - NLU - spoken language understanding - SLU - understanding - MEDIA --- # vpelloin/MEDIA_NLU_flaubert_finetuned (FT) This is a Natural Language Understanding (NLU) model for the French [MEDIA benchmark](https://catalogue.elra.info/en-us/repository/browse/ELRA-S0272/). It maps each input words into outputs concepts tags (76 available). This model is a fine-tuning of [`flaubert-oral-ft`](https://huggingface.co/nherve/flaubert-oral-ft) (FlauBERT finetuned on ASR data). ## Usage with Pipeline ```python from transformers import pipeline generator = pipeline(model="vpelloin/MEDIA_NLU_flaubert_finetuned", task="token-classification") print(generator) ``` ## Usage with AutoTokenizer/AutoModel ```python from transformers import ( AutoTokenizer, AutoModelForTokenClassification ) tokenizer = AutoTokenizer.from_pretrained("vpelloin/MEDIA_NLU_flaubert_finetuned") model = AutoModelForTokenClassification.from_pretrained("vpelloin/MEDIA_NLU_flaubert_finetuned") sentences = [ "je voudrais réserver une chambre à paris pour demain et lundi", "d'accord pour l'hôtel à quatre vingt dix euros la nuit", "deux nuits s'il vous plait", "dans un hôtel avec piscine à marseille" ] inputs = tokenizer(sentences, padding=True, return_tensors='pt') outptus = model(**inputs).logits print([[model.config.id2label[i] for i in b] for b in outptus.argmax(dim=-1).tolist()]) ```
Rustem/roberta-base-trained-7epochs
2f393e28b863e958587ec9c95c70633d69aba06a
2022-03-16T16:01:00.000Z
[ "pytorch", "roberta", "fill-mask", "transformers", "license:apache-2.0", "autotrain_compatible" ]
fill-mask
false
Rustem
null
Rustem/roberta-base-trained-7epochs
2
null
transformers
25,190
--- license: apache-2.0 ---
MrAnderson/bert-base-4096-full-trivia-copied-embeddings
8d002389dc50d8659b6ad10852123beef96eb165
2022-03-16T21:38:28.000Z
[ "pytorch", "bert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
MrAnderson
null
MrAnderson/bert-base-4096-full-trivia-copied-embeddings
2
null
transformers
25,191
Entry not found
internetoftim/pushit
6bbc85810c227cb3b84aa40a0dc212e66089724e
2022-03-16T18:24:08.000Z
[ "pytorch", "bert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
internetoftim
null
internetoftim/pushit
2
null
transformers
25,192
Entry not found
horsbug98/Part_1_XLM_Model_E1
74f124913c27a55dec19839ca917a8001419aac3
2022-03-30T17:13:01.000Z
[ "pytorch", "xlm-roberta", "question-answering", "dataset:tydiqa", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
question-answering
false
horsbug98
null
horsbug98/Part_1_XLM_Model_E1
2
null
transformers
25,193
--- license: mit tags: - generated_from_trainer datasets: - tydiqa model-index: - name: debug_xlm_task1_1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # debug_xlm_task1_1 This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the tydiqa secondary_task dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 12 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1.0 ### Training results ### Framework versions - Transformers 4.15.0 - Pytorch 1.9.1 - Datasets 2.0.0 - Tokenizers 0.10.3
Savitar/DialoGPT-medium-RickandMorty
231cb33bd2114f732e26f6acaa6570562ea49966
2022-03-16T20:37:26.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
Savitar
null
Savitar/DialoGPT-medium-RickandMorty
2
null
transformers
25,194
--- tags: - conversational --- # Rick and Morty DialoGPT Model
clapika2010/movies_finetuned
ec63aeacda84f4f979710857bd15b2ade171e0c8
2022-03-17T00:02:37.000Z
[ "pytorch", "roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
clapika2010
null
clapika2010/movies_finetuned
2
null
transformers
25,195
Entry not found
cammy/pegasus-cnn_dailymail-100-lit-evalMA-ga
5afc2b89b881433eaef33ea2e6a1ef7ad9b41571
2022-03-17T02:22:31.000Z
[ "pytorch", "tensorboard", "pegasus", "text2text-generation", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
text2text-generation
false
cammy
null
cammy/pegasus-cnn_dailymail-100-lit-evalMA-ga
2
null
transformers
25,196
--- tags: - generated_from_trainer model-index: - name: pegasus-cnn_dailymail-100-lit-evalMA-ga results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # pegasus-cnn_dailymail-100-lit-evalMA-ga This model is a fine-tuned version of [google/pegasus-cnn_dailymail](https://huggingface.co/google/pegasus-cnn_dailymail) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.2 - Datasets 1.18.3 - Tokenizers 0.11.0
zdepablo/distilbert-base-uncased-distilled-clinc
645407d017db5354b9aa69b75637f7b12ad829e0
2022-03-17T02:41:19.000Z
[ "pytorch", "distilbert", "text-classification", "dataset:clinc_oos", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
zdepablo
null
zdepablo/distilbert-base-uncased-distilled-clinc
2
null
transformers
25,197
--- license: apache-2.0 tags: - generated_from_trainer datasets: - clinc_oos metrics: - accuracy model-index: - name: distilbert-base-uncased-distilled-clinc results: - task: name: Text Classification type: text-classification dataset: name: clinc_oos type: clinc_oos args: plus metrics: - name: Accuracy type: accuracy value: 0.9474193548387096 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-distilled-clinc This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the clinc_oos dataset. It achieves the following results on the evaluation set: - Loss: 0.2587 - Accuracy: 0.9474 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 48 - eval_batch_size: 48 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 4.2192 | 1.0 | 318 | 3.1512 | 0.7519 | | 2.3972 | 2.0 | 636 | 1.5605 | 0.8519 | | 1.1587 | 3.0 | 954 | 0.7688 | 0.9139 | | 0.5616 | 4.0 | 1272 | 0.4672 | 0.9319 | | 0.3001 | 5.0 | 1590 | 0.3414 | 0.9403 | | 0.1817 | 6.0 | 1908 | 0.2952 | 0.9432 | | 0.1228 | 7.0 | 2226 | 0.2714 | 0.9468 | | 0.0939 | 8.0 | 2544 | 0.2605 | 0.9465 | | 0.0799 | 9.0 | 2862 | 0.2600 | 0.9468 | | 0.0736 | 10.0 | 3180 | 0.2587 | 0.9474 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.9.1 - Datasets 1.16.1 - Tokenizers 0.10.3
mmohamme/distilbert-base-uncased-finetuned-btc_2
dabefb380bd65747822cfe71aa876dbbff0d2c13
2022-03-22T21:08:41.000Z
[ "pytorch", "distilbert", "text-classification", "transformers" ]
text-classification
false
mmohamme
null
mmohamme/distilbert-base-uncased-finetuned-btc_2
2
null
transformers
25,198
Entry not found
nqcccccc/phobert-asba-qam
8cea82f0b9a74944a02b56aa3b95632d484edab7
2022-03-17T08:05:46.000Z
[ "pytorch", "roberta", "text-classification", "transformers" ]
text-classification
false
nqcccccc
null
nqcccccc/phobert-asba-qam
2
null
transformers
25,199
Entry not found