modelId
stringlengths 4
112
| sha
stringlengths 40
40
| lastModified
stringlengths 24
24
| tags
sequence | pipeline_tag
stringclasses 29
values | private
bool 1
class | author
stringlengths 2
38
⌀ | config
null | id
stringlengths 4
112
| downloads
float64 0
36.8M
⌀ | likes
float64 0
712
⌀ | library_name
stringclasses 17
values | __index_level_0__
int64 0
38.5k
| readme
stringlengths 0
186k
|
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
sileod/roberta-base-mnli | 86d5eb9545d2276806ce7290e670134a65e95e84 | 2022-05-31T10:08:10.000Z | [
"pytorch",
"roberta",
"text-classification",
"dataset:multi_nli",
"transformers",
"generated_from_trainer",
"license:mit",
"model-index"
] | text-classification | false | sileod | null | sileod/roberta-base-mnli | 516 | 1 | transformers | 2,300 | ---
license: mit
tags:
- generated_from_trainer
datasets:
- multi_nli
metrics:
- accuracy
model-index:
- name: roberta-base-mnli
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: multi_nli
type: multi_nli
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.8719307182883341
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# roberta-base-mnli
This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the multi_nli dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4661
- Accuracy: 0.8719
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 0
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.06
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|
| 0.4172 | 1.0 | 24544 | 0.4175 | 0.8508 |
| 0.3324 | 2.0 | 49088 | 0.4146 | 0.8609 |
| 0.2191 | 3.0 | 73632 | 0.4661 | 0.8719 |
### Framework versions
- Transformers 4.17.0
- Pytorch 1.11.0+cu102
- Datasets 2.0.0
- Tokenizers 0.11.6
|
nvidia/mit-b2 | 44acc700d01cdfdac6f5c236e69da847985eaac3 | 2022-07-29T13:15:51.000Z | [
"pytorch",
"tf",
"segformer",
"image-classification",
"dataset:imagenet_1k",
"arxiv:2105.15203",
"transformers",
"vision",
"license:apache-2.0"
] | image-classification | false | nvidia | null | nvidia/mit-b2 | 515 | null | transformers | 2,301 | ---
license: apache-2.0
tags:
- vision
datasets:
- imagenet_1k
widget:
- src: https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg
example_title: House
- src: https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000002.jpg
example_title: Castle
---
# SegFormer (b2-sized) encoder pre-trained-only
SegFormer encoder fine-tuned on Imagenet-1k. It was introduced in the paper [SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers](https://arxiv.org/abs/2105.15203) by Xie et al. and first released in [this repository](https://github.com/NVlabs/SegFormer).
Disclaimer: The team releasing SegFormer did not write a model card for this model so this model card has been written by the Hugging Face team.
## Model description
SegFormer consists of a hierarchical Transformer encoder and a lightweight all-MLP decode head to achieve great results on semantic segmentation benchmarks such as ADE20K and Cityscapes. The hierarchical Transformer is first pre-trained on ImageNet-1k, after which a decode head is added and fine-tuned altogether on a downstream dataset.
This repository only contains the pre-trained hierarchical Transformer, hence it can be used for fine-tuning purposes.
## Intended uses & limitations
You can use the model for fine-tuning of semantic segmentation. See the [model hub](https://huggingface.co/models?other=segformer) to look for fine-tuned versions on a task that interests you.
### How to use
Here is how to use this model to classify an image of the COCO 2017 dataset into one of the 1,000 ImageNet classes:
```python
from transformers import SegformerFeatureExtractor, SegformerForImageClassification
from PIL import Image
import requests
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
image = Image.open(requests.get(url, stream=True).raw)
feature_extractor = SegformerFeatureExtractor.from_pretrained("nvidia/mit-b2")
model = SegformerForImageClassification.from_pretrained("nvidia/mit-b2")
inputs = feature_extractor(images=image, return_tensors="pt")
outputs = model(**inputs)
logits = outputs.logits
# model predicts one of the 1000 ImageNet classes
predicted_class_idx = logits.argmax(-1).item()
print("Predicted class:", model.config.id2label[predicted_class_idx])
```
For more code examples, we refer to the [documentation](https://huggingface.co/transformers/model_doc/segformer.html#).
### BibTeX entry and citation info
```bibtex
@article{DBLP:journals/corr/abs-2105-15203,
author = {Enze Xie and
Wenhai Wang and
Zhiding Yu and
Anima Anandkumar and
Jose M. Alvarez and
Ping Luo},
title = {SegFormer: Simple and Efficient Design for Semantic Segmentation with
Transformers},
journal = {CoRR},
volume = {abs/2105.15203},
year = {2021},
url = {https://arxiv.org/abs/2105.15203},
eprinttype = {arXiv},
eprint = {2105.15203},
timestamp = {Wed, 02 Jun 2021 11:46:42 +0200},
biburl = {https://dblp.org/rec/journals/corr/abs-2105-15203.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
```
|
prajjwal1/bert-mini-mnli | 2793a188a2d6f995f9e6a5f73d9dd8b7a3a3aaa6 | 2021-10-05T17:57:20.000Z | [
"pytorch",
"jax",
"bert",
"text-classification",
"arxiv:1908.08962",
"arxiv:2110.01518",
"transformers"
] | text-classification | false | prajjwal1 | null | prajjwal1/bert-mini-mnli | 515 | null | transformers | 2,302 | The following model is a Pytorch pre-trained model obtained from converting Tensorflow checkpoint found in the [official Google BERT repository](https://github.com/google-research/bert). These BERT variants were introduced in the paper [Well-Read Students Learn Better: On the Importance of Pre-training Compact Models](https://arxiv.org/abs/1908.08962). These models are trained on MNLI.
If you use the model, please consider citing the paper
```
@misc{bhargava2021generalization,
title={Generalization in NLI: Ways (Not) To Go Beyond Simple Heuristics},
author={Prajjwal Bhargava and Aleksandr Drozd and Anna Rogers},
year={2021},
eprint={2110.01518},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
Original Implementation and more info can be found in [this Github repository](https://github.com/prajjwal1/generalize_lm_nli).
```
MNLI: 68.04%
MNLI-mm: 69.17%
```
These models were trained for 4 epochs.
[@prajjwal_1](https://twitter.com/prajjwal_1)
|
Biasface/DDDC | 4481ffe566e96900e4b4e4df6ebc815524295bbf | 2021-11-30T17:30:53.000Z | [
"pytorch",
"gpt2",
"text-generation",
"transformers",
"conversational"
] | conversational | false | Biasface | null | Biasface/DDDC | 513 | null | transformers | 2,303 | ---
tags:
- conversational
---
#hi |
studio-ousia/mluke-base | 0f3c9dc42873eaf0e807bd2736bc4cfbe73de3b2 | 2022-03-11T02:58:43.000Z | [
"pytorch",
"luke",
"fill-mask",
"multilingual",
"transformers",
"named entity recognition",
"relation classification",
"question answering",
"license:apache-2.0",
"autotrain_compatible"
] | fill-mask | false | studio-ousia | null | studio-ousia/mluke-base | 513 | 3 | transformers | 2,304 | ---
language: multilingual
thumbnail: https://github.com/studio-ousia/luke/raw/master/resources/luke_logo.png
tags:
- luke
- named entity recognition
- relation classification
- question answering
license: apache-2.0
---
## mLUKE
**mLUKE** (multilingual LUKE) is a multilingual extension of LUKE.
Please check the [official repository](https://github.com/studio-ousia/luke) for
more details and updates.
This is the mLUKE base model with 12 hidden layers, 768 hidden size. The total number
of parameters in this model is 585M (278M for the word embeddings and encoder, 307M for the entity embeddings).
The model was initialized with the weights of XLM-RoBERTa(base) and trained using December 2020 version of Wikipedia in 24 languages.
### Citation
If you find mLUKE useful for your work, please cite the following paper:
```latex
@inproceedings{ri2021mluke,
title={mLUKE: The Power of Entity Representations in Multilingual Pretrained Language Models},
author={Ryokan Ri, Ikuya Yamada, Yoshimasa Tsuruoka},
booktitle={arXiv},
year={2021}
}
```
|
DeepPavlov/distilrubert-small-cased-conversational | e348066b4a7279b97138038299bddc6580a9169a | 2022-06-28T17:19:09.000Z | [
"pytorch",
"distilbert",
"ru",
"arxiv:2205.02340",
"transformers"
] | null | false | DeepPavlov | null | DeepPavlov/distilrubert-small-cased-conversational | 513 | null | transformers | 2,305 | ---
language:
- ru
---
# distilrubert-small-cased-conversational
Conversational DistilRuBERT-small \(Russian, cased, 2‑layer, 768‑hidden, 12‑heads, 107M parameters\) was trained on OpenSubtitles\[1\], [Dirty](https://d3.ru/), [Pikabu](https://pikabu.ru/), and a Social Media segment of Taiga corpus\[2\] (as [Conversational RuBERT](https://huggingface.co/DeepPavlov/rubert-base-cased-conversational)). It can be considered as small copy of [Conversational DistilRuBERT-base](https://huggingface.co/DeepPavlov/distilrubert-base-cased-conversational).
Our DistilRuBERT-small was highly inspired by \[3\], \[4\]. Namely, we used
* KL loss (between teacher and student output logits)
* MLM loss (between tokens labels and student output logits)
* Cosine embedding loss (between averaged six consecutive hidden states from teacher's encoder and one hidden state of the student)
* MSE loss (between averaged six consecutive attention maps from teacher's encoder and one attention map of the student)
The model was trained for about 80 hrs. on 8 nVIDIA Tesla P100-SXM2.0 16Gb.
To evaluate improvements in the inference speed, we ran teacher and student models on random sequences with seq_len=512, batch_size = 16 (for throughput) and batch_size=1 (for latency).
All tests were performed on Intel(R) Xeon(R) CPU E5-2698 v4 @ 2.20GHz and nVIDIA Tesla P100-SXM2.0 16Gb.
| Model | Size, Mb. | CPU latency, sec.| GPU latency, sec. | CPU throughput, samples/sec. | GPU throughput, samples/sec. |
|-------------------------------------------------|------------|------------------|-------------------|------------------------------|------------------------------|
| Teacher (RuBERT-base-cased-conversational) | 679 | 0.655 | 0.031 | 0.3754 | 36.4902 |
| Student (DistilRuBERT-small-cased-conversational)| 409 | 0.1656 | 0.015 | 0.9692 | 71.3553 |
To evaluate model quality, we fine-tuned DistilRuBERT-small on classification, NER and question answering tasks. Scores and archives with fine-tuned models can be found in [DeepPavlov docs](http://docs.deeppavlov.ai/en/master/features/overview.html#models). Also, results could be found in the [paper](https://arxiv.org/abs/2205.02340) Tables 1&2 as well as performance benchmarks and training details.
# Citation
If you found the model useful for your research, we are kindly ask to cite [this](https://arxiv.org/abs/2205.02340) paper:
```
@misc{https://doi.org/10.48550/arxiv.2205.02340,
doi = {10.48550/ARXIV.2205.02340},
url = {https://arxiv.org/abs/2205.02340},
author = {Kolesnikova, Alina and Kuratov, Yuri and Konovalov, Vasily and Burtsev, Mikhail},
keywords = {Computation and Language (cs.CL), Machine Learning (cs.LG), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Knowledge Distillation of Russian Language Models with Reduction of Vocabulary},
publisher = {arXiv},
year = {2022},
copyright = {arXiv.org perpetual, non-exclusive license}
}
```
\[1\]: P. Lison and J. Tiedemann, 2016, OpenSubtitles2016: Extracting Large Parallel Corpora from Movie and TV Subtitles. In Proceedings of the 10th International Conference on Language Resources and Evaluation \(LREC 2016\)
\[2\]: Shavrina T., Shapovalova O. \(2017\) TO THE METHODOLOGY OF CORPUS CONSTRUCTION FOR MACHINE LEARNING: «TAIGA» SYNTAX TREE CORPUS AND PARSER. in proc. of “CORPORA2017”, international conference , Saint-Petersbourg, 2017.
\[3\]: Sanh, V., Debut, L., Chaumond, J., & Wolf, T. \(2019\). DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter. arXiv preprint arXiv:1910.01108.
\[4\]: <https://github.com/huggingface/transformers/tree/master/examples/research_projects/distillation> |
tner/xlm-roberta-large-uncased-wnut2017 | d2f13491ebb59b477fa61dc0224d88daf851513f | 2021-02-13T00:12:33.000Z | [
"pytorch",
"xlm-roberta",
"token-classification",
"transformers",
"autotrain_compatible"
] | token-classification | false | tner | null | tner/xlm-roberta-large-uncased-wnut2017 | 512 | null | transformers | 2,306 | # XLM-RoBERTa for NER
XLM-RoBERTa finetuned on NER. Check more detail at [TNER repository](https://github.com/asahi417/tner).
## Usage
```
from transformers import AutoTokenizer, AutoModelForTokenClassification
tokenizer = AutoTokenizer.from_pretrained("asahi417/tner-xlm-roberta-large-uncased-wnut2017")
model = AutoModelForTokenClassification.from_pretrained("asahi417/tner-xlm-roberta-large-uncased-wnut2017")
``` |
huggingface/distilbert-base-uncased-finetuned-mnli | 0fadb1fe60cd119b3af82e2bf9cb98a59336d7bc | 2021-02-25T20:27:07.000Z | [
"pytorch",
"tf",
"distilbert",
"text-classification",
"transformers"
] | text-classification | false | huggingface | null | huggingface/distilbert-base-uncased-finetuned-mnli | 512 | null | transformers | 2,307 | Entry not found |
SIKU-BERT/sikuroberta | bb25260d5c321924fe4fb353c09191c0aaf5c5c6 | 2021-09-22T00:22:36.000Z | [
"pytorch",
"bert",
"fill-mask",
"zh",
"transformers",
"chinese",
"classical chinese",
"literary chinese",
"ancient chinese",
"roberta",
"license:apache-2.0",
"autotrain_compatible"
] | fill-mask | false | SIKU-BERT | null | SIKU-BERT/sikuroberta | 511 | 2 | transformers | 2,308 | ---
language:
- "zh"
thumbnail: "https://raw.githubusercontent.com/SIKU-BERT/SikuBERT/main/appendix/sikubert.png"
tags:
- "chinese"
- "classical chinese"
- "literary chinese"
- "ancient chinese"
- "bert"
- "roberta"
- "pytorch"
inference: false
license: "apache-2.0"
---
# SikuBERT
## Model description

Digital humanities research needs the support of large-scale corpus and high-performance ancient Chinese natural language processing tools. The pre-training language model has greatly improved the accuracy of text mining in English and modern Chinese texts. At present, there is an urgent need for a pre-training model specifically for the automatic processing of ancient texts. We used the verified high-quality “Siku Quanshu” full-text corpus as the training set, based on the BERT deep language model architecture, we constructed the SikuBERT and SikuRoBERTa pre-training language models for intelligent processing tasks of ancient Chinese.
## How to use
```python
from transformers import AutoTokenizer, AutoModel
tokenizer = AutoTokenizer.from_pretrained("SIKU-BERT/sikuroberta")
model = AutoModel.from_pretrained("SIKU-BERT/sikuroberta")
```
## About Us
We are from Nanjing Agricultural University.
> Created with by SIKU-BERT [](https://github.com/SIKU-BERT/SikuBERT-for-digital-humanities-and-classical-Chinese-information-processing)
|
Helsinki-NLP/opus-mt-ru-fr | 55c73236818495c7a6dd5a98e3529de3481bc3ae | 2021-09-10T14:02:31.000Z | [
"pytorch",
"jax",
"marian",
"text2text-generation",
"ru",
"fr",
"transformers",
"translation",
"license:apache-2.0",
"autotrain_compatible"
] | translation | false | Helsinki-NLP | null | Helsinki-NLP/opus-mt-ru-fr | 510 | null | transformers | 2,309 | ---
tags:
- translation
license: apache-2.0
---
### opus-mt-ru-fr
* source languages: ru
* target languages: fr
* OPUS readme: [ru-fr](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/ru-fr/README.md)
* dataset: opus
* model: transformer-align
* pre-processing: normalization + SentencePiece
* download original weights: [opus-2020-01-26.zip](https://object.pouta.csc.fi/OPUS-MT-models/ru-fr/opus-2020-01-26.zip)
* test set translations: [opus-2020-01-26.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/ru-fr/opus-2020-01-26.test.txt)
* test set scores: [opus-2020-01-26.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/ru-fr/opus-2020-01-26.eval.txt)
## Benchmarks
| testset | BLEU | chr-F |
|-----------------------|-------|-------|
| newstest2012.ru.fr | 18.3 | 0.497 |
| newstest2013.ru.fr | 21.6 | 0.516 |
| Tatoeba.ru.fr | 51.5 | 0.670 |
|
KoichiYasuoka/chinese-roberta-base-upos | 2fcc4e89732370e30451b65e5a7227c78811f0d4 | 2022-02-11T06:28:59.000Z | [
"pytorch",
"bert",
"token-classification",
"zh",
"dataset:universal_dependencies",
"transformers",
"chinese",
"pos",
"wikipedia",
"dependency-parsing",
"license:apache-2.0",
"autotrain_compatible"
] | token-classification | false | KoichiYasuoka | null | KoichiYasuoka/chinese-roberta-base-upos | 510 | 2 | transformers | 2,310 | ---
language:
- "zh"
tags:
- "chinese"
- "token-classification"
- "pos"
- "wikipedia"
- "dependency-parsing"
datasets:
- "universal_dependencies"
license: "apache-2.0"
pipeline_tag: "token-classification"
---
# chinese-roberta-base-upos
## Model Description
This is a BERT model pre-trained on Chinese Wikipedia texts (both simplified and traditional) for POS-tagging and dependency-parsing, derived from [chinese-roberta-wwm-ext](https://huggingface.co/hfl/chinese-roberta-wwm-ext). Every word is tagged by [UPOS](https://universaldependencies.org/u/pos/) (Universal Part-Of-Speech).
## How to Use
```py
from transformers import AutoTokenizer,AutoModelForTokenClassification
tokenizer=AutoTokenizer.from_pretrained("KoichiYasuoka/chinese-roberta-base-upos")
model=AutoModelForTokenClassification.from_pretrained("KoichiYasuoka/chinese-roberta-base-upos")
```
or
```py
import esupar
nlp=esupar.load("KoichiYasuoka/chinese-roberta-base-upos")
```
## See Also
[esupar](https://github.com/KoichiYasuoka/esupar): Tokenizer POS-tagger and Dependency-parser with BERT/RoBERTa models
|
anton-l/wav2vec2-base-superb-sv | 0a1a74d00d5e44dbd7344b65c9847a1eb625c73b | 2021-12-14T12:49:10.000Z | [
"pytorch",
"wav2vec2",
"audio-xvector",
"transformers"
] | null | false | anton-l | null | anton-l/wav2vec2-base-superb-sv | 510 | null | transformers | 2,311 | Entry not found |
Davlan/bert-base-multilingual-cased-finetuned-yoruba | 000f80b4509f73bca9a33f9db0573d6f67396a12 | 2022-06-27T11:50:30.000Z | [
"pytorch",
"tf",
"jax",
"bert",
"fill-mask",
"yo",
"transformers",
"autotrain_compatible"
] | fill-mask | false | Davlan | null | Davlan/bert-base-multilingual-cased-finetuned-yoruba | 509 | null | transformers | 2,312 | Hugging Face's logo
---
language: yo
datasets:
---
# bert-base-multilingual-cased-finetuned-yoruba
## Model description
**bert-base-multilingual-cased-finetuned-yoruba** is a **Yoruba BERT** model obtained by fine-tuning **bert-base-multilingual-cased** model on Yorùbá language texts. It provides **better performance** than the multilingual BERT on text classification and named entity recognition datasets.
Specifically, this model is a *bert-base-multilingual-cased* model that was fine-tuned on Yorùbá corpus.
## Intended uses & limitations
#### How to use
You can use this model with Transformers *pipeline* for masked token prediction.
```python
>>> from transformers import pipeline
>>> unmasker = pipeline('fill-mask', model='Davlan/bert-base-multilingual-cased-finetuned-yoruba')
>>> unmasker("Arẹmọ Phillip to jẹ ọkọ [MASK] Elizabeth to ti wa lori aisan ti dagbere faye lẹni ọdun mọkandilọgọrun")
[{'sequence': '[CLS] Arẹmọ Phillip to jẹ ọkọ Mary Elizabeth to ti wa lori aisan ti dagbere faye lẹni ọdun mọkandilọgọrun [SEP]', 'score': 0.1738305538892746,
'token': 12176,
'token_str': 'Mary'},
{'sequence': '[CLS] Arẹmọ Phillip to jẹ ọkọ Queen Elizabeth to ti wa lori aisan ti dagbere faye lẹni ọdun mọkandilọgọrun [SEP]', 'score': 0.16382873058319092,
'token': 13704,
'token_str': 'Queen'},
{'sequence': '[CLS] Arẹmọ Phillip to jẹ ọkọ ti Elizabeth to ti wa lori aisan ti dagbere faye lẹni ọdun mọkandilọgọrun [SEP]', 'score': 0.13272495567798615,
'token': 14382,
'token_str': 'ti'},
{'sequence': '[CLS] Arẹmọ Phillip to jẹ ọkọ King Elizabeth to ti wa lori aisan ti dagbere faye lẹni ọdun mọkandilọgọrun [SEP]', 'score': 0.12823280692100525,
'token': 11515,
'token_str': 'King'},
{'sequence': '[CLS] Arẹmọ Phillip to jẹ ọkọ Lady Elizabeth to ti wa lori aisan ti dagbere faye lẹni ọdun mọkandilọgọrun [SEP]', 'score': 0.07841219753026962,
'token': 14005,
'token_str': 'Lady'}]
```
#### Limitations and bias
This model is limited by its training dataset of entity-annotated news articles from a specific span of time. This may not generalize well for all use cases in different domains.
## Training data
This model was fine-tuned on Bible, JW300, [Menyo-20k](https://huggingface.co/datasets/menyo20k_mt), [Yoruba Embedding corpus](https://huggingface.co/datasets/yoruba_text_c3) and [CC-Aligned](https://opus.nlpl.eu/), Wikipedia, news corpora (BBC Yoruba, VON Yoruba, Asejere, Alaroye), and other small datasets curated from friends.
## Training procedure
This model was trained on a single NVIDIA V100 GPU
## Eval results on Test set (F-score, average over 5 runs)
Dataset| mBERT F1 | yo_bert F1
-|-|-
[MasakhaNER](https://github.com/masakhane-io/masakhane-ner) | 78.97 | 82.58
[BBC Yorùbá Textclass](https://huggingface.co/datasets/yoruba_bbc_topics) | 75.13 | 79.11
### BibTeX entry and citation info
By David Adelani
```
```
|
facebook/wav2vec2-xls-r-1b | 6d8fad78d7d9c252adfdf48da029590b21f47414 | 2021-11-18T16:32:35.000Z | [
"pytorch",
"wav2vec2",
"pretraining",
"multilingual",
"dataset:common_voice",
"dataset:multilingual_librispeech",
"arxiv:2111.09296",
"transformers",
"speech",
"xls_r",
"xls_r_pretrained",
"license:apache-2.0"
] | null | false | facebook | null | facebook/wav2vec2-xls-r-1b | 509 | 10 | transformers | 2,313 | ---
language: multilingual
datasets:
- common_voice
- multilingual_librispeech
tags:
- speech
- xls_r
- xls_r_pretrained
license: apache-2.0
---
# Wav2Vec2-XLS-R-1B
[Facebook's Wav2Vec2 XLS-R](https://ai.facebook.com/blog/xls-r-self-supervised-speech-processing-for-128-languages) counting **1 billion** parameters.

XLS-R is Facebook AI's large-scale multilingual pretrained model for speech (the "XLM-R for Speech"). It is pretrained on 436k hours of unlabeled speech, including VoxPopuli, MLS, CommonVoice, BABEL, and VoxLingua107. It uses the wav2vec 2.0 objective, in 128 languages. When using the model make sure that your speech input is sampled at 16kHz.
**Note**: This model should be fine-tuned on a downstream task, like Automatic Speech Recognition, Translation, or Classification. Check out [**this blog**](https://huggingface.co/blog/fine-tune-xlsr-wav2vec2) for more information about ASR.
[XLS-R Paper](https://arxiv.org/abs/2111.09296)
**Abstract**
This paper presents XLS-R, a large-scale model for cross-lingual speech representation learning based on wav2vec 2.0. We train models with up to 2B parameters on 436K hours of publicly available speech audio in 128 languages, an order of magnitude more public data than the largest known prior work. Our evaluation covers a wide range of tasks, domains, data regimes and languages, both high and low-resource. On the CoVoST-2 speech translation benchmark, we improve the previous state of the art by an average of 7.4 BLEU over 21 translation directions into English. For speech recognition, XLS-R improves over the best known prior work on BABEL, MLS, CommonVoice as well as VoxPopuli, lowering error rates by 20%-33% relative on average. XLS-R also sets a new state of the art on VoxLingua107 language identification. Moreover, we show that with sufficient model size, cross-lingual pretraining can outperform English-only pretraining when translating English speech into other languages, a setting which favors monolingual pretraining. We hope XLS-R can help to improve speech processing tasks for many more languages of the world.
The original model can be found under https://github.com/pytorch/fairseq/tree/master/examples/wav2vec#wav2vec-20.
# Usage
See [this google colab](https://colab.research.google.com/github/patrickvonplaten/notebooks/blob/master/Fine_Tune_XLS_R_on_Common_Voice.ipynb) for more information on how to fine-tune the model.
You can find other pretrained XLS-R models with different numbers of parameters:
* [300M parameters version](https://huggingface.co/facebook/wav2vec2-xls-r-300m)
* [1B version version](https://huggingface.co/facebook/wav2vec2-xls-r-1b)
* [2B version version](https://huggingface.co/facebook/wav2vec2-xls-r-2b)
|
oliverguhr/spelling-correction-english-base | a30d76e2e7de0b0b350304c8e17cef99da8eb8e7 | 2022-06-13T12:09:01.000Z | [
"pytorch",
"tensorboard",
"bart",
"text2text-generation",
"en",
"transformers",
"license:mit",
"autotrain_compatible"
] | text2text-generation | false | oliverguhr | null | oliverguhr/spelling-correction-english-base | 509 | 2 | transformers | 2,314 | ---
language:
- en
license: mit
widget:
- text: "lets do a comparsion"
example_title: "1"
- text: "Their going to be here so0n"
example_title: "2"
- text: "ze shop is cloed due to covid 19"
example_title: "3"
metrics:
- cer
---
This is an experimental model that should fix your typos and punctuation.
If you like to run your own experiments or train for a different language, have a look at [the code](https://github.com/oliverguhr/spelling).
## Model description
This is a proof of concept spelling correction model for English.
## Intended uses & limitations
This project is work in progress, be aware that the model can produce artefacts.
You can test the model using the pipeline-interface:
```python
from transformers import pipeline
fix_spelling = pipeline("text2text-generation",model="oliverguhr/spelling-correction-english-base")
print(fix_spelling("lets do a comparsion",max_length=2048))
```
|
SEBIS/code_trans_t5_base_code_documentation_generation_python | f42aaecddfc35f12575e9c887ee79cf3d6cdb97d | 2021-06-23T04:43:22.000Z | [
"pytorch",
"jax",
"t5",
"feature-extraction",
"transformers",
"summarization"
] | summarization | false | SEBIS | null | SEBIS/code_trans_t5_base_code_documentation_generation_python | 508 | null | transformers | 2,315 | ---
tags:
- summarization
widget:
- text: "def e ( message , exit_code = None ) : print_log ( message , YELLOW , BOLD ) if exit_code is not None : sys . exit ( exit_code )"
---
# CodeTrans model for code documentation generation python
Pretrained model on programming language python using the t5 base model architecture. It was first released in
[this repository](https://github.com/agemagician/CodeTrans). This model is trained on tokenized python code functions: it works best with tokenized python functions.
## Model description
This CodeTrans model is based on the `t5-base` model. It has its own SentencePiece vocabulary model. It used single-task training on CodeSearchNet Corpus python dataset.
## Intended uses & limitations
The model could be used to generate the description for the python function or be fine-tuned on other python code tasks. It can be used on unparsed and untokenized python code. However, if the python code is tokenized, the performance should be better.
### How to use
Here is how to use this model to generate python function documentation using Transformers SummarizationPipeline:
```python
from transformers import AutoTokenizer, AutoModelWithLMHead, SummarizationPipeline
pipeline = SummarizationPipeline(
model=AutoModelWithLMHead.from_pretrained("SEBIS/code_trans_t5_base_code_documentation_generation_python"),
tokenizer=AutoTokenizer.from_pretrained("SEBIS/code_trans_t5_base_code_documentation_generation_python", skip_special_tokens=True),
device=0
)
tokenized_code = "def e ( message , exit_code = None ) : print_log ( message , YELLOW , BOLD ) if exit_code is not None : sys . exit ( exit_code )"
pipeline([tokenized_code])
```
Run this example in [colab notebook](https://github.com/agemagician/CodeTrans/blob/main/prediction/single%20task/function%20documentation%20generation/python/base_model.ipynb).
## Training data
The supervised training tasks datasets can be downloaded on [Link](https://www.dropbox.com/sh/488bq2of10r4wvw/AACs5CGIQuwtsD7j_Ls_JAORa/finetuning_dataset?dl=0&subfolder_nav_tracking=1)
## Evaluation results
For the code documentation tasks, different models achieves the following results on different programming languages (in BLEU score):
Test results :
| Language / Model | Python | Java | Go | Php | Ruby | JavaScript |
| -------------------- | :------------: | :------------: | :------------: | :------------: | :------------: | :------------: |
| CodeTrans-ST-Small | 17.31 | 16.65 | 16.89 | 23.05 | 9.19 | 13.7 |
| CodeTrans-ST-Base | 16.86 | 17.17 | 17.16 | 22.98 | 8.23 | 13.17 |
| CodeTrans-TF-Small | 19.93 | 19.48 | 18.88 | 25.35 | 13.15 | 17.23 |
| CodeTrans-TF-Base | 20.26 | 20.19 | 19.50 | 25.84 | 14.07 | 18.25 |
| CodeTrans-TF-Large | 20.35 | 20.06 | **19.54** | 26.18 | 14.94 | **18.98** |
| CodeTrans-MT-Small | 19.64 | 19.00 | 19.15 | 24.68 | 14.91 | 15.26 |
| CodeTrans-MT-Base | **20.39** | 21.22 | 19.43 | **26.23** | **15.26** | 16.11 |
| CodeTrans-MT-Large | 20.18 | **21.87** | 19.38 | 26.08 | 15.00 | 16.23 |
| CodeTrans-MT-TF-Small | 19.77 | 20.04 | 19.36 | 25.55 | 13.70 | 17.24 |
| CodeTrans-MT-TF-Base | 19.77 | 21.12 | 18.86 | 25.79 | 14.24 | 18.62 |
| CodeTrans-MT-TF-Large | 18.94 | 21.42 | 18.77 | 26.20 | 14.19 | 18.83 |
| State of the art | 19.06 | 17.65 | 18.07 | 25.16 | 12.16 | 14.90 |
> Created by [Ahmed Elnaggar](https://twitter.com/Elnaggar_AI) | [LinkedIn](https://www.linkedin.com/in/prof-ahmed-elnaggar/) and Wei Ding | [LinkedIn](https://www.linkedin.com/in/wei-ding-92561270/)
|
indobenchmark/indobert-large-p2 | 4b280c3bfcc1ed2d6b4589be5c876076b7d73568 | 2021-05-19T20:28:22.000Z | [
"pytorch",
"tf",
"jax",
"bert",
"feature-extraction",
"id",
"dataset:Indo4B",
"arxiv:2009.05387",
"transformers",
"indobert",
"indobenchmark",
"indonlu",
"license:mit"
] | feature-extraction | false | indobenchmark | null | indobenchmark/indobert-large-p2 | 508 | null | transformers | 2,316 | ---
language: id
tags:
- indobert
- indobenchmark
- indonlu
license: mit
inference: false
datasets:
- Indo4B
---
# IndoBERT Large Model (phase2 - uncased)
[IndoBERT](https://arxiv.org/abs/2009.05387) is a state-of-the-art language model for Indonesian based on the BERT model. The pretrained model is trained using a masked language modeling (MLM) objective and next sentence prediction (NSP) objective.
## All Pre-trained Models
| Model | #params | Arch. | Training data |
|--------------------------------|--------------------------------|-------|-----------------------------------|
| `indobenchmark/indobert-base-p1` | 124.5M | Base | Indo4B (23.43 GB of text) |
| `indobenchmark/indobert-base-p2` | 124.5M | Base | Indo4B (23.43 GB of text) |
| `indobenchmark/indobert-large-p1` | 335.2M | Large | Indo4B (23.43 GB of text) |
| `indobenchmark/indobert-large-p2` | 335.2M | Large | Indo4B (23.43 GB of text) |
| `indobenchmark/indobert-lite-base-p1` | 11.7M | Base | Indo4B (23.43 GB of text) |
| `indobenchmark/indobert-lite-base-p2` | 11.7M | Base | Indo4B (23.43 GB of text) |
| `indobenchmark/indobert-lite-large-p1` | 17.7M | Large | Indo4B (23.43 GB of text) |
| `indobenchmark/indobert-lite-large-p2` | 17.7M | Large | Indo4B (23.43 GB of text) |
## How to use
### Load model and tokenizer
```python
from transformers import BertTokenizer, AutoModel
tokenizer = BertTokenizer.from_pretrained("indobenchmark/indobert-large-p2")
model = AutoModel.from_pretrained("indobenchmark/indobert-large-p2")
```
### Extract contextual representation
```python
x = torch.LongTensor(tokenizer.encode('aku adalah anak [MASK]')).view(1,-1)
print(x, model(x)[0].sum())
```
## Authors
<b>IndoBERT</b> was trained and evaluated by Bryan Wilie\*, Karissa Vincentio\*, Genta Indra Winata\*, Samuel Cahyawijaya\*, Xiaohong Li, Zhi Yuan Lim, Sidik Soleman, Rahmad Mahendra, Pascale Fung, Syafri Bahar, Ayu Purwarianti.
## Citation
If you use our work, please cite:
```bibtex
@inproceedings{wilie2020indonlu,
title={IndoNLU: Benchmark and Resources for Evaluating Indonesian Natural Language Understanding},
author={Bryan Wilie and Karissa Vincentio and Genta Indra Winata and Samuel Cahyawijaya and X. Li and Zhi Yuan Lim and S. Soleman and R. Mahendra and Pascale Fung and Syafri Bahar and A. Purwarianti},
booktitle={Proceedings of the 1st Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 10th International Joint Conference on Natural Language Processing},
year={2020}
}
```
|
kamalkraj/bioelectra-base-discriminator-pubmed-pmc-lt | d807405696fdace62f42841dc06289d2354e1158 | 2021-06-10T14:22:08.000Z | [
"pytorch",
"electra",
"pretraining",
"transformers"
] | null | false | kamalkraj | null | kamalkraj/bioelectra-base-discriminator-pubmed-pmc-lt | 508 | 2 | transformers | 2,317 | ## BioELECTRA:Pretrained Biomedical text Encoder using Discriminators
Recent advancements in pretraining strategies in NLP have shown a significant improvement in the performance of models on various text mining tasks. In this paper, we introduce BioELECTRA, a biomedical domain-specific language encoder model that adapts ELECTRA (Clark et al., 2020) for the Biomedical domain. BioELECTRA outperforms the previous models and achieves state of the art (SOTA) on all the 13 datasets in BLURB benchmark and on all the 4 Clinical datasets from BLUE Benchmark across 7 NLP tasks. BioELECTRA pretrained on PubMed and PMC full text articles performs very well on Clinical datasets as well. BioELECTRA achieves new SOTA 86.34%(1.39% accuracy improvement) on MedNLI and 64% (2.98% accuracy improvement) on PubMedQA dataset.
For a detailed description and experimental results, please refer to our paper [BioELECTRA:Pretrained Biomedical text Encoder using Discriminators](https://www.aclweb.org/anthology/2021.bionlp-1.16/).
## How to use the discriminator in `transformers`
```python
from transformers import ElectraForPreTraining, ElectraTokenizerFast
import torch
discriminator = ElectraForPreTraining.from_pretrained("kamalkraj/bioelectra-base-discriminator-pubmed")
tokenizer = ElectraTokenizerFast.from_pretrained("kamalkraj/bioelectra-base-discriminator-pubmed")
sentence = "The quick brown fox jumps over the lazy dog"
fake_sentence = "The quick brown fox fake over the lazy dog"
fake_tokens = tokenizer.tokenize(fake_sentence)
fake_inputs = tokenizer.encode(fake_sentence, return_tensors="pt")
discriminator_outputs = discriminator(fake_inputs)
predictions = torch.round((torch.sign(discriminator_outputs[0]) + 1) / 2)
[print("%7s" % token, end="") for token in fake_tokens]
[print("%7s" % int(prediction), end="") for prediction in predictions[0].tolist()]
``` |
facebook/regnet-y-040 | 40577f588ce4b8b3a306e59b93b117047e0a6625 | 2022-06-30T18:56:14.000Z | [
"pytorch",
"tf",
"regnet",
"image-classification",
"dataset:imagenet-1k",
"arxiv:2003.13678",
"transformers",
"vision",
"license:apache-2.0"
] | image-classification | false | facebook | null | facebook/regnet-y-040 | 508 | null | transformers | 2,318 | ---
license: apache-2.0
tags:
- vision
- image-classification
datasets:
- imagenet-1k
widget:
- src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/tiger.jpg
example_title: Tiger
- src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/teapot.jpg
example_title: Teapot
- src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/palace.jpg
example_title: Palace
---
# RegNet
RegNet model trained on imagenet-1k. It was introduced in the paper [Designing Network Design Spaces](https://arxiv.org/abs/2003.13678) and first released in [this repository](https://github.com/facebookresearch/pycls).
Disclaimer: The team releasing RegNet did not write a model card for this model so this model card has been written by the Hugging Face team.
## Model description
The authors design search spaces to perform Neural Architecture Search (NAS). They first start from a high dimensional search space and iteratively reduce the search space by empirically applying constraints based on the best-performing models sampled by the current search space.

## Intended uses & limitations
You can use the raw model for image classification. See the [model hub](https://huggingface.co/models?search=regnet) to look for
fine-tuned versions on a task that interests you.
### How to use
Here is how to use this model:
```python
>>> from transformers import AutoFeatureExtractor, RegNetForImageClassification
>>> import torch
>>> from datasets import load_dataset
>>> dataset = load_dataset("huggingface/cats-image")
>>> image = dataset["test"]["image"][0]
>>> feature_extractor = AutoFeatureExtractor.from_pretrained("facebook/regnet-y-040")
>>> model = RegNetForImageClassification.from_pretrained("facebook/regnet-y-040")
>>> inputs = feature_extractor(image, return_tensors="pt")
>>> with torch.no_grad():
... logits = model(**inputs).logits
>>> # model predicts one of the 1000 ImageNet classes
>>> predicted_label = logits.argmax(-1).item()
>>> print(model.config.id2label[predicted_label])
'tabby, tabby cat'
```
For more code examples, we refer to the [documentation](https://huggingface.co/docs/transformers/master/en/model_doc/regnet). |
cross-encoder/quora-roberta-base | 195493c8767e7155c449e9ff7e64890d116d432d | 2021-08-05T08:41:36.000Z | [
"pytorch",
"jax",
"roberta",
"text-classification",
"transformers",
"license:apache-2.0"
] | text-classification | false | cross-encoder | null | cross-encoder/quora-roberta-base | 507 | 1 | transformers | 2,319 | ---
license: apache-2.0
---
# Cross-Encoder for Quora Duplicate Questions Detection
This model was trained using [SentenceTransformers](https://sbert.net) [Cross-Encoder](https://www.sbert.net/examples/applications/cross-encoder/README.html) class.
## Training Data
This model was trained on the [Quora Duplicate Questions](https://www.quora.com/q/quoradata/First-Quora-Dataset-Release-Question-Pairs) dataset. The model will predict a score between 0 and 1 how likely the two given questions are duplicates.
Note: The model is not suitable to estimate the similarity of questions, e.g. the two questions "How to learn Java" and "How to learn Python" will result in a rahter low score, as these are not duplicates.
## Usage and Performance
Pre-trained models can be used like this:
```
from sentence_transformers import CrossEncoder
model = CrossEncoder('model_name')
scores = model.predict([('Question 1', 'Question 2'), ('Question 3', 'Question 4')])
```
You can use this model also without sentence_transformers and by just using Transformers ``AutoModel`` class |
valurank/distilroberta-news-small | dad826d1ce6732850428d4673ff50835c8f7f59b | 2022-06-08T20:45:50.000Z | [
"pytorch",
"roberta",
"text-classification",
"en",
"dataset:valurank/news-small",
"transformers",
"license:other"
] | text-classification | false | valurank | null | valurank/distilroberta-news-small | 507 | null | transformers | 2,320 | ---
license: other
language: en
datasets:
- valurank/news-small
---
# DistilROBERTA fine-tuned for news classification
This model is based on [distilroberta-base](https://huggingface.co/distilroberta-base) pretrained weights, with a classification head fine-tuned to classify news articles into 3 categories (bad, medium, good).
## Training data
The dataset used to fine-tune the model is [news-small](https://huggingface.co/datasets/valurank/news-small), the 300 article news dataset manually annotated by Alex.
## Inputs
Similar to its base model, this model accepts inputs with a maximum length of 512 tokens. |
Milos/slovak-gpt-j-1.4B | 1ca9a664fba18d050377579e43b92897efca62d4 | 2022-02-17T14:29:47.000Z | [
"pytorch",
"gptj",
"text-generation",
"sk",
"arxiv:2104.09864",
"transformers",
"Slovak GPT-J",
"causal-lm",
"license:gpl-3.0"
] | text-generation | false | Milos | null | Milos/slovak-gpt-j-1.4B | 506 | null | transformers | 2,321 | ---
language:
- sk
tags:
- Slovak GPT-J
- pytorch
- causal-lm
license: gpl-3.0
---
# Slovak GPT-J-1.4B
Slovak GPT-J-1.4B with the whopping `1,415,283,792` parameters is the latest and the largest model released in Slovak GPT-J series. Smaller variants, [Slovak GPT-J-405M](https://huggingface.co/Milos/slovak-gpt-j-405M) and [Slovak GPT-J-162M](https://huggingface.co/Milos/slovak-gpt-j-162M), are still available.
## Model Description
Model is based on [GPT-J](https://github.com/kingoflolz/mesh-transformer-jax/) and has over 1.4B trainable parameters.
<figure>
| Hyperparameter | Value |
|----------------------|----------------------------------------------------------------------------------------------------------------------------------------|
| \\(n_{parameters}\\) | 1,415,283,792 |
| \\(n_{layers}\\) | 24 |
| \\(d_{model}\\) | 2048 |
| \\(d_{ff}\\) | 16384 |
| \\(n_{heads}\\) | 16 |
| \\(d_{head}\\) | 256 |
| \\(n_{ctx}\\) | 2048 |
| \\(n_{vocab}\\) | 50256 (same tokenizer as GPT-2/3†) |
| Positional Encoding | [Rotary Position Embedding (RoPE)](https://arxiv.org/abs/2104.09864) |
| RoPE Dimensions | [64](https://github.com/kingoflolz/mesh-transformer-jax/blob/f2aa66e0925de6593dcbb70e72399b97b4130482/mesh_transformer/layers.py#L223) |
<p><strong>†</strong> ByteLevelBPETokenizer was trained on the same Slovak corpus.</p></figure>
## Training data
Slovak GPT-J models were trained on a privately collected dataset consisting of predominantly Slovak text spanning different categories, e.g. web, news articles or even biblical texts - in total, over 40GB of text data was used to train this model.
The dataset was preprocessed and cleaned in a specific way that involves minor but a few caveats, so in order to achieve the expected performance, feel free to refer to [How to use] section. Please, keep in mind that despite the effort to remove inappropriate corpus, the model still might generate sensitive content or leak sensitive information.
## Training procedure
This model was trained for a bit more than 26.5 billion tokens over 48,001 steps on TPU v3-8 pod. The cross-entropy validation loss at the last step was `2.657`.
## Intended Use
Same as the original GPT-J, Slovak GPT-J learns an inner representation of the language that can be used to extract features useful for downstream tasks, however, the intended use is text generation from a prompt.
### How to use
This model along with the tokenizer can be easily loaded using the `AutoModelForCausalLM` functionality:
```python
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("Milos/slovak-gpt-j-1.4B")
model = AutoModelForCausalLM.from_pretrained("Milos/slovak-gpt-j-1.4B")
```
When generating a prompt keep in mind these three things, and you should be good to go:
1. Never leave trailing whitespaces. There's a difference between how tokenizer encodes "Mám rád slovenčinu" (no space after `slovenčinu`) and "Mám rád slovenčinu " (trailing space after `slovenčinu`), i.e `[12805, 2872, 46878]` != `[12805, 2872, 46878, 221]`.
2. Always use good ol' US English primary double quotation marks, i.e. `""` instead of `„“`.
3. In case of a new line always enter `\n\n` instead of a single `\n`
To illustrate an example of a basic text generation:
```
>>> prompt = "Tradičné jedlo na Orave sú"
>>> encoded_input = tokenizer(prompt, return_tensors='pt')
>>> output = model.generate(**encoded_input)
>>> tokenizer.decode(output[0])
'Tradičné jedlo na Orave sú bryndzové halušky\n\nNa Orave sa v minulosti varilo viac druhov'
```
### Capabilities, Limitations, and Biases
Based on the parameter count and our internal testing this should be by far the most capable model out of all models released in Slovak GPT-J series.
For sake of simplicity, I have omitted all the boilerplate code and swapped `\n` for new lines in the examples that follow. These were generated with both `top_p` and `temperature` set to `0.9`.
A spin on "Mor ho!" by Samo Chalpuka
```
PROMPT
Zleteli orly z Tatry, tiahnu na podolia, ponad vysoké hory, ponad rovné polia; preleteli cez Dunaj, cez tú šíru vodu, sadli tam za pomedzím slovenského rodu.
Duní Dunaj a luna za lunou sa valí
OUTPUT
Zleteli orly z Tatry, tiahnu na podolia, ponad vysoké hory, ponad rovné polia; preleteli cez Dunaj, cez tú šíru vodu, sadli tam za pomedzím slovenského rodu.
Duní Dunaj a luna za lunou sa valí: nad ním svieti pevný hrad na vysokom bralí. Pod tým hradom je zem slovenská, na nej je Slovensko naše.
Na tom vrchu leží slovenský národ, pod tým bralom leží krajina slovenská. A pod tým hradom leží i jeho sláva: na tom vrchu, na tom brale leží sláva slovenského národa.```
```
Jokes are a bit hit or miss. Very often they contain vulgarisms and/or are highly politically incorrect. This one is rather exception than the rule.
```
PROMPT
Nasledujú najlepšie vtipy.
Prečo
OUTPUT
Nasledujú najlepšie vtipy.
Prečo má policajt pri sebe vždy dva nože? Jeden je na sebaobranu, druhý na boj zblízka.
```
The infamous unicorn prompt from GPT-2 paper.
```
PROMPT
V šokujúcom náleze vedci objavili stádo jednorožcov žijúcich v odľahlom, predtým nepreskúmanom údolí, v Andách. Ešte prekvapivejšie pre vedcov bol fakt, že jednorožce hovorili plynule po slovensky.
OUTPUT
V šokujúcom náleze vedci objavili stádo jednorožcov žijúcich v odľahlom, predtým nepreskúmanom údolí, v Andách. Ešte prekvapivejšie pre vedcov bol fakt, že jednorožce hovorili plynule po slovensky.
V Andách ich totiž žilo približne 700 jedincov, ktoré sa živili výhradne materským mliekom. Slováci sú tak pravdepodobne prvými Európanmi, ktorí v Andách stretli jednorožca. "Je to dôkaz, že tieto zvieratá sú inteligentné a že žijú v Andách už stovky rokov," povedal pre webový portál televízie JOJ profesor geológie, geografie a zoológie, Milan Kováč.
Podľa profesora Kováča si v Andách zvieratá vytvárajú svoj vlastný jazyk. Je to zároveň dôkaz, že jednorožce žili v minulosti aj v slovenských pohoriach. "Jednorožce sa tam síce vyskytovali, ale neboli tak dobre preskúmané, ako teraz v Andách."
Na Slovensku však ľudia o jednorožcoch donedávna vedeli veľmi málo.<|endoftext|>
```
Since the dataset contains profanity, politically incorrect language, and (unintentionally) even a bits of text in Czech, the model can generate them in some extent too. Here's an example of the model output when prompt is in Czech:
```
>>> prompt = "Věta nesmí být sprostá a musí být zcela"
>>> encoded_input = tokenizer(prompt, return_tensors='pt')
>>> output = model.generate(**encoded_input, max_length=16)
>>> tokenizer.decode(output[0])
'Věta nesmí být sprostá a musí být zcela pravdivá.'
```
## Citation and Related Information
This was done as a moonlighting project during summer of 2021 to better understand transformers. I didn't have much free time to open source it properly, so it all sat on my hard drive until now :)
If you use this model or have any questions about it feel free to hit me up at [twitter](https://twitter.com/miloskondela) or check out my [github](https://github.com/kondela) profile.
### BibTeX entry
To cite this model:
```bibtex
@misc{slovak-gpt-j-1.4B,
author = {Kondela, Milos},
title = {{Slovak GPT-J-1.4B}},
howpublished = {\url{https://huggingface.co/Milos/slovak-gpt-j-1.4B}},
year = 2022,
month = February
}
```
To cite the codebase that trained this model:
```bibtex
@misc{mesh-transformer-jax,
author = {Wang, Ben},
title = {{Mesh-Transformer-JAX: Model-Parallel Implementation of Transformer Language Model with JAX}},
howpublished = {\url{https://github.com/kingoflolz/mesh-transformer-jax}},
year = 2021,
month = May
}
```
## Acknowledgements
This project was generously supported by [TPU Research Cloud (TRC) program](https://sites.research.google/trc/about/). Shoutout also goes to [Ben Wang](https://github.com/kingoflolz) and great [EleutherAI community](https://www.eleuther.ai/). |
SIKU-BERT/sikubert | fc656de2d6bde33919102dd3abe31c843f42226a | 2021-09-13T13:34:40.000Z | [
"pytorch",
"bert",
"fill-mask",
"zh",
"transformers",
"chinese",
"classical chinese",
"literary chinese",
"ancient chinese",
"roberta",
"license:apache-2.0",
"autotrain_compatible"
] | fill-mask | false | SIKU-BERT | null | SIKU-BERT/sikubert | 506 | 2 | transformers | 2,322 | ---
language:
- "zh"
thumbnail: "https://raw.githubusercontent.com/SIKU-BERT/SikuBERT/main/appendix/sikubert.png"
tags:
- "chinese"
- "classical chinese"
- "literary chinese"
- "ancient chinese"
- "bert"
- "roberta"
- "pytorch"
inference: false
license: "apache-2.0"
---
# SikuBERT
## Model description

Digital humanities research needs the support of large-scale corpus and high-performance ancient Chinese natural language processing tools. The pre-training language model has greatly improved the accuracy of text mining in English and modern Chinese texts. At present, there is an urgent need for a pre-training model specifically for the automatic processing of ancient texts. We used the verified high-quality “Siku Quanshu” full-text corpus as the training set, based on the BERT deep language model architecture, we constructed the SikuBERT and SikuRoBERTa pre-training language models for intelligent processing tasks of ancient Chinese.
## How to use
```python
from transformers import AutoTokenizer, AutoModel
tokenizer = AutoTokenizer.from_pretrained("SIKU-BERT/sikubert")
model = AutoModel.from_pretrained("SIKU-BERT/sikubert")
```
## About Us
We are from Nanjing Agricultural University.
> Created with by SIKU-BERT [](https://github.com/SIKU-BERT/SikuBERT-for-digital-humanities-and-classical-Chinese-information-processing) |
google/owlvit-base-patch32 | 4641e344cbbe8e25e0f2ab4e7e53372091ef9cfd | 2022-07-21T10:49:01.000Z | [
"pytorch",
"owlvit",
"transformers"
] | null | false | google | null | google/owlvit-base-patch32 | 506 | null | transformers | 2,323 | Entry not found |
boychaboy/SNLI_distilbert-base-cased | fabefe1f7390d5aecf5d152e13da5998eee2e84d | 2021-05-10T17:08:47.000Z | [
"pytorch",
"distilbert",
"text-classification",
"transformers"
] | text-classification | false | boychaboy | null | boychaboy/SNLI_distilbert-base-cased | 505 | null | transformers | 2,324 | Entry not found |
microsoft/unispeech-sat-base-plus-sv | a492b4bf41b1bd2fa6e6d07c6eae573b3f711b66 | 2021-12-17T13:56:17.000Z | [
"pytorch",
"unispeech-sat",
"audio-xvector",
"en",
"arxiv:1912.07875",
"arxiv:2106.06909",
"arxiv:2101.00390",
"arxiv:2110.05752",
"transformers",
"speech"
] | null | false | microsoft | null | microsoft/unispeech-sat-base-plus-sv | 505 | null | transformers | 2,325 | ---
language:
- en
tags:
- speech
---
# UniSpeech-SAT-Base for Speaker Verification
[Microsoft's UniSpeech](https://www.microsoft.com/en-us/research/publication/unispeech-unified-speech-representation-learning-with-labeled-and-unlabeled-data/)
The model was pretrained on 16kHz sampled speech audio with utterance and speaker contrastive loss. When using the model, make sure that your speech input is also sampled at 16kHz.
The model was pre-trained on:
- 60,000 hours of [Libri-Light](https://arxiv.org/abs/1912.07875)
- 10,000 hours of [GigaSpeech](https://arxiv.org/abs/2106.06909)
- 24,000 hours of [VoxPopuli](https://arxiv.org/abs/2101.00390)
[Paper: UNISPEECH-SAT: UNIVERSAL SPEECH REPRESENTATION LEARNING WITH SPEAKER
AWARE PRE-TRAINING](https://arxiv.org/abs/2110.05752)
Authors: Sanyuan Chen, Yu Wu, Chengyi Wang, Zhengyang Chen, Zhuo Chen, Shujie Liu, Jian Wu, Yao Qian, Furu Wei, Jinyu Li, Xiangzhan Yu
**Abstract**
*Self-supervised learning (SSL) is a long-standing goal for speech processing, since it utilizes large-scale unlabeled data and avoids extensive human labeling. Recent years witness great successes in applying self-supervised learning in speech recognition, while limited exploration was attempted in applying SSL for modeling speaker characteristics. In this paper, we aim to improve the existing SSL framework for speaker representation learning. Two methods are introduced for enhancing the unsupervised speaker information extraction. First, we apply the multi-task learning to the current SSL framework, where we integrate the utterance-wise contrastive loss with the SSL objective function. Second, for better speaker discrimination, we propose an utterance mixing strategy for data augmentation, where additional overlapped utterances are created unsupervisely and incorporate during training. We integrate the proposed methods into the HuBERT framework. Experiment results on SUPERB benchmark show that the proposed system achieves state-of-the-art performance in universal representation learning, especially for speaker identification oriented tasks. An ablation study is performed verifying the efficacy of each proposed method. Finally, we scale up training dataset to 94 thousand hours public audio data and achieve further performance improvement in all SUPERB tasks..*
The original model can be found under https://github.com/microsoft/UniSpeech/tree/main/UniSpeech-SAT.
# Fine-tuning details
The model is fine-tuned on the [VoxCeleb1 dataset](https://www.robots.ox.ac.uk/~vgg/data/voxceleb/vox1.html) using an X-Vector head with an Additive Margin Softmax loss
[X-Vectors: Robust DNN Embeddings for Speaker Recognition](https://www.danielpovey.com/files/2018_icassp_xvectors.pdf)
# Usage
## Speaker Verification
```python
from transformers import Wav2Vec2FeatureExtractor, UniSpeechSatForXVector
from datasets import load_dataset
import torch
dataset = load_dataset("hf-internal-testing/librispeech_asr_demo", "clean", split="validation")
feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained('microsoft/unispeech-sat-base-plus-sv')
model = UniSpeechSatForXVector.from_pretrained('microsoft/unispeech-sat-base-plus-sv')
# audio files are decoded on the fly
inputs = feature_extractor(dataset[:2]["audio"]["array"], return_tensors="pt")
embeddings = model(**inputs).embeddings
embeddings = torch.nn.functional.normalize(embeddings, dim=-1).cpu()
# the resulting embeddings can be used for cosine similarity-based retrieval
cosine_sim = torch.nn.CosineSimilarity(dim=-1)
similarity = cosine_sim(embeddings[0], embeddings[1])
threshold = 0.89 # the optimal threshold is dataset-dependent
if similarity < threshold:
print("Speakers are not the same!")
```
# License
The official license can be found [here](https://github.com/microsoft/UniSpeech/blob/main/LICENSE)
 |
nkoh01/MSRoberta | 3ff20e811ea95572470d3538cad29e816f05d7f4 | 2021-05-20T18:51:20.000Z | [
"pytorch",
"jax",
"roberta",
"fill-mask",
"transformers",
"autotrain_compatible"
] | fill-mask | false | nkoh01 | null | nkoh01/MSRoberta | 505 | null | transformers | 2,326 | # MSRoBERTa
Fine-tuned RoBERTa MLM model for [`Miscrosoft Sentence Completion Challenge`](https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/MSR_SCCD.pdf). This model case-sensitive following the `Roberta-base` model.
# Model description (taken from: [here](https://huggingface.co/roberta-base))
RoBERTa is a transformers model pretrained on a large corpus of English data in a self-supervised fashion. This means
it was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots of
publicly available data) with an automatic process to generate inputs and labels from those texts.
More precisely, it was pretrained with the Masked language modeling (MLM) objective. Taking a sentence, the model
randomly masks 15% of the words in the input then run the entire masked sentence through the model and has to predict
the masked words. This is different from traditional recurrent neural networks (RNNs) that usually see the words one
after the other, or from autoregressive models like GPT which internally mask the future tokens. It allows the model to
learn a bidirectional representation of the sentence.
This way, the model learns an inner representation of the English language that can then be used to extract features
useful for downstream tasks: if you have a dataset of labeled sentences for instance, you can train a standard
classifier using the features produced by the BERT model as inputs.
### How to use
You can use this model directly with a pipeline for masked language modeling:
```python
from transformers import pipeline,AutoModelForMaskedLM,AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained("nkoh01/MSRoberta")
model = AutoModelForMaskedLM.from_pretrained("nkoh01/MSRoberta")
unmasker = pipeline(
"fill-mask",
model=model,
tokenizer=tokenizer
)
unmasker("Hello, it is a <mask> to meet you.")
[{'score': 0.9508683085441589,
'sequence': 'hello, it is a pleasure to meet you.',
'token': 10483,
'token_str': ' pleasure'},
{'score': 0.015089659951627254,
'sequence': 'hello, it is a privilege to meet you.',
'token': 9951,
'token_str': ' privilege'},
{'score': 0.013942377641797066,
'sequence': 'hello, it is a joy to meet you.',
'token': 5823,
'token_str': ' joy'},
{'score': 0.006964420434087515,
'sequence': 'hello, it is a delight to meet you.',
'token': 13213,
'token_str': ' delight'},
{'score': 0.0024567877408117056,
'sequence': 'hello, it is a honour to meet you.',
'token': 6671,
'token_str': ' honour'}]
```
## Installations
Make sure you run `!pip install transformers` command to install the transformers library before running the commands above.
## Bias and limitations
Under construction.
|
fmikaelian/camembert-base-fquad | 341bf4683d9388a0a4022ce4062283255dc9246c | 2020-12-11T21:40:08.000Z | [
"pytorch",
"camembert",
"question-answering",
"fr",
"transformers",
"autotrain_compatible"
] | question-answering | false | fmikaelian | null | fmikaelian/camembert-base-fquad | 504 | 1 | transformers | 2,327 | ---
language: fr
---
# camembert-base-fquad
## Description
A baseline model for question-answering in french ([CamemBERT](https://camembert-model.fr/) model fine-tuned on [FQuAD](https://fquad.illuin.tech/))
## Training hyperparameters
```shell
python3 ./examples/question-answering/run_squad.py \
--model_type camembert \
--model_name_or_path camembert-base \
--do_train \
--do_eval \
--do_lower_case \
--train_file train.json \
--predict_file valid.json \
--learning_rate 3e-5 \
--num_train_epochs 2 \
--max_seq_length 384 \
--doc_stride 128 \
--output_dir output \
--per_gpu_eval_batch_size=3 \
--per_gpu_train_batch_size=3 \
--save_steps 10000
```
## Evaluation results
```shell
{"f1": 77.24515316052342, "exact_match": 52.82308657465496}
```
## Usage
```python
from transformers import pipeline
nlp = pipeline('question-answering', model='fmikaelian/camembert-base-fquad', tokenizer='fmikaelian/camembert-base-fquad')
nlp({
'question': "Qui est Claude Monet?",
'context': "Claude Monet, né le 14 novembre 1840 à Paris et mort le 5 décembre 1926 à Giverny, est un peintre français et l’un des fondateurs de l'impressionnisme."
})
``` |
lanwuwei/GigaBERT-v3-Arabic-and-English | ee5c781756946364d989e0102b91b4a15390f6ac | 2021-05-19T00:17:42.000Z | [
"pytorch",
"jax",
"bert",
"feature-extraction",
"en",
"ar",
"dataset:gigaword",
"dataset:oscar",
"dataset:wikipedia",
"transformers"
] | feature-extraction | false | lanwuwei | null | lanwuwei/GigaBERT-v3-Arabic-and-English | 504 | null | transformers | 2,328 | ---
language:
- en
- ar
datasets:
- gigaword
- oscar
- wikipedia
---
## GigaBERT-v3
GigaBERT-v3 is a customized bilingual BERT for English and Arabic. It was pre-trained in a large-scale corpus (Gigaword+Oscar+Wikipedia) with ~10B tokens, showing state-of-the-art zero-shot transfer performance from English to Arabic on information extraction (IE) tasks. More details can be found in the following paper:
@inproceedings{lan2020gigabert,
author = {Lan, Wuwei and Chen, Yang and Xu, Wei and Ritter, Alan},
title = {An Empirical Study of Pre-trained Transformers for Arabic Information Extraction},
booktitle = {Proceedings of The 2020 Conference on Empirical Methods on Natural Language Processing (EMNLP)},
year = {2020}
}
## Usage
```
from transformers import *
tokenizer = BertTokenizer.from_pretrained("lanwuwei/GigaBERT-v3-Arabic-and-English", do_lower_case=True)
model = BertForTokenClassification.from_pretrained("lanwuwei/GigaBERT-v3-Arabic-and-English")
```
More code examples can be found [here](https://github.com/lanwuwei/GigaBERT).
|
orai-nlp/ElhBERTeu | 8d4de0a5d8c49f260010d5ea239afe77de31cfe2 | 2022-07-06T10:21:53.000Z | [
"pytorch",
"bert",
"feature-extraction",
"eu",
"transformers",
"basque",
"euskara",
"license:cc-by-4.0"
] | feature-extraction | false | orai-nlp | null | orai-nlp/ElhBERTeu | 502 | 0 | transformers | 2,329 | ---
license: cc-by-4.0
language: eu
tags:
- bert
- basque
- euskara
---
# ElhBERTeu
This is a BERT model for Basque introduced in [BasqueGLUE: A Natural Language Understanding Benchmark for Basque]().
To train ElhBERTeu, we collected different corpora sources from several domains: updated (2021) national and local news sources, Basque Wikipedia, as well as novel news sources and texts from other domains, such as science (both academic and divulgative), literature or subtitles. More details about the corpora used and their sizes are shown in the following table. Texts from news sources were oversampled (duplicated) as done during the training of BERTeus. In total 575M tokens were used for pre-training ElhBERTeu.
|Domain | Size |
|-----------|----------|
|News | 2 x 224M |
|Wikipedia | 40M |
|Science | 58M |
|Literature | 24M |
|Others | 7M |
|Total | 575M |
ElhBERTeu is a base, cased monolingual BERT model for Basque, with a vocab size of 50K, which has 124M parameters in total.
ElhBERTeu was trained following the design decisions for [BERTeus](https://huggingface.co/ixa-ehu/berteus-base-cased). The tokenizer and the hyper-parameter settings remained the same, with the only difference being that the full pre-training of the model (1M steps) was performed with a sequence length of 512 on a v3-8 TPU.
The model has been evaluated on the recently created [BasqueGLUE](https://github.com/Elhuyar/BasqueGLUE) NLU benchmark:
| Model | AVG | NERC | F_intent | F_slot | BHTC | BEC | Vaxx | QNLI | WiC | coref |
|-----------|:---------:|:---------:|:---------:|:-------:|:-------:|:-------:|:-------:|:-------:|:-------:|:-------:|
| | | F1 | F1 | F1 | F1 | F1 | MF1 | acc | acc | acc |
| BERTeus | 73.23 | 81.92 | **82.52** | 74.34 |**78.26**| 69.43 | 59.30 |**74.26**| 70.71 |**68.31**|
| ElhBERTeu | **73.71** | **82.30** | 82.24 |**75.64**| 78.05 |**69.89**|**63.81**| 73.84 |**71.71**| 65.93 |
If you use this model, please cite the following paper:
- G. Urbizu, I. San Vicente, X. Saralegi, R. Agerri, A. Soroa. BasqueGLUE: A Natural Language Understanding Benchmark for Basque. In proceedings of the 13th Language Resources and Evaluation Conference (LREC 2022). June 2022. Marseille, France
```
@InProceedings{urbizu2022basqueglue,
author = {Urbizu, Gorka and San Vicente, Iñaki and Saralegi, Xabier and Agerri, Rodrigo and Soroa, Aitor},
title = {BasqueGLUE: A Natural Language Understanding Benchmark for Basque},
booktitle = {Proceedings of the Language Resources and Evaluation Conference},
month = {June},
year = {2022},
address = {Marseille, France},
publisher = {European Language Resources Association},
pages = {1603--1612},
abstract = {Natural Language Understanding (NLU) technology has improved significantly over the last few years and multitask benchmarks such as GLUE are key to evaluate this improvement in a robust and general way. These benchmarks take into account a wide and diverse set of NLU tasks that require some form of language understanding, beyond the detection of superficial, textual clues. However, they are costly to develop and language-dependent, and therefore they are only available for a small number of languages. In this paper, we present BasqueGLUE, the first NLU benchmark for Basque, a less-resourced language, which has been elaborated from previously existing datasets and following similar criteria to those used for the construction of GLUE and SuperGLUE. We also report the evaluation of two state-of-the-art language models for Basque on BasqueGLUE, thus providing a strong baseline to compare upon. BasqueGLUE is freely available under an open license.},
url = {https://aclanthology.org/2022.lrec-1.172}
}
```
License:
CC BY 4.0 |
dhtocks/Named-Entity-Recognition | c9eb2cb284b0b69709132d19eeac3816ceb89c5b | 2022-01-15T11:22:33.000Z | [
"pytorch",
"roberta",
"token-classification",
"transformers",
"autotrain_compatible"
] | token-classification | false | dhtocks | null | dhtocks/Named-Entity-Recognition | 500 | null | transformers | 2,330 | Entry not found |
anas-awadalla/splinter-large-finetuned-squad | 36015d000da8055edcfbbf0a14c6f5d31a2e837c | 2022-05-15T10:51:43.000Z | [
"pytorch",
"splinter",
"question-answering",
"dataset:squad",
"transformers",
"generated_from_trainer",
"license:apache-2.0",
"model-index",
"autotrain_compatible"
] | question-answering | false | anas-awadalla | null | anas-awadalla/splinter-large-finetuned-squad | 500 | null | transformers | 2,331 | ---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- squad
model-index:
- name: splinter-large-finetuned-squad
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# splinter-large-finetuned-squad
This model is a fine-tuned version of [tau/splinter-large-qass](https://huggingface.co/tau/splinter-large-qass) on the squad dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 12
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2.0
### Training results
### Framework versions
- Transformers 4.17.0
- Pytorch 1.11.0+cu113
- Datasets 2.0.0
- Tokenizers 0.11.6
|
STAM/agricore | b6dfd05bfdcb097a78e563599517f8441452b404 | 2022-06-01T14:24:16.000Z | [
"pytorch",
"t5",
"text2text-generation",
"transformers",
"license:mit",
"autotrain_compatible"
] | text2text-generation | false | STAM | null | STAM/agricore | 500 | null | transformers | 2,332 | ---
license: mit
---
|
TofuBoy/DialoGPT-medium-boon | cd59807e12d63621addb6c915273fe8621ba6145 | 2022-01-23T05:46:38.000Z | [
"pytorch",
"gpt2",
"text-generation",
"transformers",
"conversational"
] | conversational | false | TofuBoy | null | TofuBoy/DialoGPT-medium-boon | 499 | null | transformers | 2,333 | ---
tags:
- conversational
---
# Boon Bot DialoGPT Model |
Recognai/zeroshot_selectra_medium | 6c3ff31c3c1acb96375d7913f90a19707af33b9a | 2022-03-27T09:30:04.000Z | [
"pytorch",
"electra",
"text-classification",
"es",
"dataset:xnli",
"transformers",
"zero-shot-classification",
"nli",
"license:apache-2.0"
] | zero-shot-classification | false | Recognai | null | Recognai/zeroshot_selectra_medium | 498 | 3 | transformers | 2,334 | ---
language: es
tags:
- zero-shot-classification
- nli
- pytorch
datasets:
- xnli
pipeline_tag: zero-shot-classification
license: apache-2.0
widget:
- text: "El autor se perfila, a los 50 años de su muerte, como uno de los grandes de su siglo"
candidate_labels: "cultura, sociedad, economia, salud, deportes"
---
# Zero-shot SELECTRA: A zero-shot classifier based on SELECTRA
*Zero-shot SELECTRA* is a [SELECTRA model](https://huggingface.co/Recognai/selectra_small) fine-tuned on the Spanish portion of the [XNLI dataset](https://huggingface.co/datasets/xnli). You can use it with Hugging Face's [Zero-shot pipeline](https://huggingface.co/transformers/master/main_classes/pipelines.html#transformers.ZeroShotClassificationPipeline) to make [zero-shot classifications](https://joeddav.github.io/blog/2020/05/29/ZSL.html).
In comparison to our previous zero-shot classifier [based on BETO](https://huggingface.co/Recognai/bert-base-spanish-wwm-cased-xnli), zero-shot SELECTRA is **much more lightweight**. As shown in the *Metrics* section, the *small* version (5 times fewer parameters) performs slightly worse, while the *medium* version (3 times fewer parameters) **outperforms** the BETO based zero-shot classifier.
## Usage
```python
from transformers import pipeline
classifier = pipeline("zero-shot-classification",
model="Recognai/zeroshot_selectra_medium")
classifier(
"El autor se perfila, a los 50 años de su muerte, como uno de los grandes de su siglo",
candidate_labels=["cultura", "sociedad", "economia", "salud", "deportes"],
hypothesis_template="Este ejemplo es {}."
)
"""Output
{'sequence': 'El autor se perfila, a los 50 años de su muerte, como uno de los grandes de su siglo',
'labels': ['sociedad', 'cultura', 'economia', 'salud', 'deportes'],
'scores': [0.6450043320655823,
0.16710571944713593,
0.08507631719112396,
0.0759836807847023,
0.026829993352293968]}
"""
```
The `hypothesis_template` parameter is important and should be in Spanish. **In the widget on the right, this parameter is set to its default value: "This example is {}.", so different results are expected.**
## Demo and tutorial
If you want to see this model in action, we have created a basic tutorial using [Rubrix](https://www.rubrix.ml/), a free and open-source tool to *explore, annotate, and monitor data for NLP*.
The tutorial shows you how to evaluate this classifier for news categorization in Spanish, and how it could be used to build a training set for training a supervised classifier (which might be useful if you want obtain more precise results or improve the model over time).
You can [find the tutorial here](https://rubrix.readthedocs.io/en/master/tutorials/zeroshot_data_annotation.html).
See the video below showing the predictions within the annotation process (see that the predictions are almost correct for every example).
<video width="100%" controls><source src="https://github.com/recognai/rubrix-materials/raw/main/tutorials/videos/zeroshot_selectra_news_data_annotation.mp4" type="video/mp4"></video>
## Metrics
| Model | Params | XNLI (acc) | \*MLSUM (acc) |
| --- | --- | --- | --- |
| [zs BETO](https://huggingface.co/Recognai/bert-base-spanish-wwm-cased-xnli) | 110M | 0.799 | 0.530 |
| zs SELECTRA medium | 41M | **0.807** | **0.589** |
| [zs SELECTRA small](https://huggingface.co/Recognai/zeroshot_selectra_small) | **22M** | 0.795 | 0.446 |
\*evaluated with zero-shot learning (ZSL)
- **XNLI**: The stated accuracy refers to the test portion of the [XNLI dataset](https://huggingface.co/datasets/xnli), after finetuning the model on the training portion.
- **MLSUM**: For this accuracy we take the test set of the [MLSUM dataset](https://huggingface.co/datasets/mlsum) and classify the summaries of 5 selected labels. For details, check out our [evaluation notebook](https://github.com/recognai/selectra/blob/main/zero-shot_classifier/evaluation.ipynb)
## Training
Check out our [training notebook](https://github.com/recognai/selectra/blob/main/zero-shot_classifier/training.ipynb) for all the details.
## Authors
- David Fidalgo ([GitHub](https://github.com/dcfidalgo))
- Daniel Vila ([GitHub](https://github.com/dvsrepo))
- Francisco Aranda ([GitHub](https://github.com/frascuchon))
- Javier Lopez ([GitHub](https://github.com/javispp)) |
castorini/doc2query-t5-large-msmarco | e607227b4d07161391f3a61a7ccd9efcf875ea14 | 2021-11-24T19:16:08.000Z | [
"pytorch",
"jax",
"t5",
"text2text-generation",
"transformers",
"autotrain_compatible"
] | text2text-generation | false | castorini | null | castorini/doc2query-t5-large-msmarco | 497 | null | transformers | 2,335 | For more information, check [doc2query.ai](http://doc2query.ai) |
j-hartmann/purchase-intention-english-roberta-large | e26a7d11ced410a78f1fe9a710e61ca14a2a0014 | 2022-02-06T12:22:55.000Z | [
"pytorch",
"roberta",
"text-classification",
"en",
"transformers",
"sentiment",
"twitter"
] | text-classification | false | j-hartmann | null | j-hartmann/purchase-intention-english-roberta-large | 497 | 1 | transformers | 2,336 | ---
language: "en"
tags:
- roberta
- sentiment
- twitter
widget:
- text: "This looks tasty. Where can I buy it??"
- text: "Now I want this, too."
- text: "You look great today!"
- text: "I just love spring and sunshine!"
---
This RoBERTa-based model can classify *expressed purchase intentions* in English language text in 2 classes:
- purchase intention 🤩
- no purchase intention 😐
The model was fine-tuned on 2,000 manually annotated social media posts.
The hold-out accuracy is 95% (vs. a balanced 50% random-chance baseline).
For details on the training approach see Web Appendix F in Hartmann et al. (2021).
# Application
```python
from transformers import pipeline
classifier = pipeline("text-classification", model="j-hartmann/purchase-intention-english-roberta-large", return_all_scores=True)
classifier("I want this!")
```
```python
Output:
[[{'label': 'no', 'score': 0.0014553926885128021},
{'label': 'yes', 'score': 0.9985445737838745}]]
```
# Reference
Please cite [this paper](https://journals.sagepub.com/doi/full/10.1177/00222437211037258) when you use our model. Feel free to reach out to [[email protected]](mailto:[email protected]) with any questions or feedback you may have.
```
@article{hartmann2021,
title={The Power of Brand Selfies},
author={Hartmann, Jochen and Heitmann, Mark and Schamp, Christina and Netzer, Oded},
journal={Journal of Marketing Research}
year={2021}
}
``` |
naver/efficient-splade-V-large-query | eb23fdf72c344e26d37d63a86cf536b3a6e11118 | 2022-07-08T13:12:08.000Z | [
"pytorch",
"distilbert",
"fill-mask",
"en",
"dataset:ms_marco",
"transformers",
"splade",
"query-expansion",
"document-expansion",
"bag-of-words",
"passage-retrieval",
"knowledge-distillation",
"document encoder",
"license:cc-by-nc-sa-4.0",
"autotrain_compatible"
] | fill-mask | false | naver | null | naver/efficient-splade-V-large-query | 497 | null | transformers | 2,337 | ---
license: cc-by-nc-sa-4.0
language: "en"
tags:
- splade
- query-expansion
- document-expansion
- bag-of-words
- passage-retrieval
- knowledge-distillation
- document encoder
datasets:
- ms_marco
---
## Efficient SPLADE
Efficient SPLADE model for passage retrieval. This architecture uses two distinct models for query and document inference. This is the **query** one, please also download the **doc** one (https://huggingface.co/naver/efficient-splade-V-large-doc). For additional details, please visit:
* paper: https://dl.acm.org/doi/10.1145/3477495.3531833
* code: https://github.com/naver/splade
| | MRR@10 (MS MARCO dev) | R@1000 (MS MARCO dev) | Latency (PISA) ms | Latency (Inference) ms
| --- | --- | --- | --- | --- |
| `naver/efficient-splade-V-large` | 38.8 | 98.0 | 29.0 | 45.3
| `naver/efficient-splade-VI-BT-large` | 38.0 | 97.8 | 31.1 | 0.7
## Citation
If you use our checkpoint, please cite our work (need to update):
```
@inproceedings{10.1145/3477495.3531833,
author = {Lassance, Carlos and Clinchant, St\'{e}phane},
title = {An Efficiency Study for SPLADE Models},
year = {2022},
isbn = {9781450387323},
publisher = {Association for Computing Machinery},
address = {New York, NY, USA},
url = {https://doi.org/10.1145/3477495.3531833},
doi = {10.1145/3477495.3531833},
abstract = {Latency and efficiency issues are often overlooked when evaluating IR models based on Pretrained Language Models (PLMs) in reason of multiple hardware and software testing scenarios. Nevertheless, efficiency is an important part of such systems and should not be overlooked. In this paper, we focus on improving the efficiency of the SPLADE model since it has achieved state-of-the-art zero-shot performance and competitive results on TREC collections. SPLADE efficiency can be controlled via a regularization factor, but solely controlling this regularization has been shown to not be efficient enough. In order to reduce the latency gap between SPLADE and traditional retrieval systems, we propose several techniques including L1 regularization for queries, a separation of document/query encoders, a FLOPS-regularized middle-training, and the use of faster query encoders. Our benchmark demonstrates that we can drastically improve the efficiency of these models while increasing the performance metrics on in-domain data. To our knowledge, we propose the first neural models that, under the same computing constraints, achieve similar latency (less than 4ms difference) as traditional BM25, while having similar performance (less than 10% MRR@10 reduction) as the state-of-the-art single-stage neural rankers on in-domain data.},
booktitle = {Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval},
pages = {2220–2226},
numpages = {7},
keywords = {splade, latency, information retrieval, sparse representations},
location = {Madrid, Spain},
series = {SIGIR '22}
}
```
|
canwenxu/BERT-of-Theseus-MNLI | ee82a9e7c3fec19661f93a2291295ea62e8acee1 | 2021-05-19T13:58:30.000Z | [
"pytorch",
"jax",
"bert",
"feature-extraction",
"dataset:multi_nli",
"arxiv:2002.02925",
"arxiv:2005.00628",
"transformers"
] | feature-extraction | false | canwenxu | null | canwenxu/BERT-of-Theseus-MNLI | 496 | null | transformers | 2,338 | ---
thumbnail: https://raw.githubusercontent.com/JetRunner/BERT-of-Theseus/master/bert-of-theseus.png
datasets:
- multi_nli
---
# BERT-of-Theseus
See our paper ["BERT-of-Theseus: Compressing BERT by Progressive Module Replacing"](http://arxiv.org/abs/2002.02925).
BERT-of-Theseus is a new compressed BERT by progressively replacing the components of the original BERT.

## Load Pretrained Model on MNLI
We provide a 6-layer pretrained model on MNLI as a general-purpose model, which can transfer to other sentence classification tasks, outperforming DistillBERT (with the same 6-layer structure) on six tasks of GLUE (dev set).
| Method | MNLI | MRPC | QNLI | QQP | RTE | SST-2 | STS-B |
|-----------------|------|------|------|------|------|-------|-------|
| BERT-base | 83.5 | 89.5 | 91.2 | 89.8 | 71.1 | 91.5 | 88.9 |
| DistillBERT | 79.0 | 87.5 | 85.3 | 84.9 | 59.9 | 90.7 | 81.2 |
| BERT-of-Theseus | 82.1 | 87.5 | 88.8 | 88.8 | 70.1 | 91.8 | 87.8 |
Please Note: this checkpoint is for [Intermediate-Task Transfer Learning](https://arxiv.org/abs/2005.00628) so it does not include the classification head for MNLI! Please fine-tune it before use (like DistilBERT).
|
readerbench/RoBERT-base | 42fa3f7ca1731b66401081554a36ef072279402a | 2021-05-20T04:05:43.000Z | [
"pytorch",
"tf",
"jax",
"bert",
"ro",
"transformers"
] | null | false | readerbench | null | readerbench/RoBERT-base | 496 | null | transformers | 2,339 | Model card for RoBERT-base
---
language:
- ro
---
# RoBERT-base
## Pretrained BERT model for Romanian
Pretrained model on Romanian language using a masked language modeling (MLM) and next sentence prediction (NSP) objective.
It was introduced in this [paper](https://www.aclweb.org/anthology/2020.coling-main.581/). Three BERT models were released: RoBERT-small, **RoBERT-base** and RoBERT-large, all versions uncased.
| Model | Weights | L | H | A | MLM accuracy | NSP accuracy |
|----------------|:---------:|:------:|:------:|:------:|:--------------:|:--------------:|
| RoBERT-small | 19M | 12 | 256 | 8 | 0.5363 | 0.9687 |
| *RoBERT-base* | *114M* | *12* | *768* | *12* | *0.6511* | *0.9802* |
| RoBERT-large | 341M | 24 | 1024 | 24 | 0.6929 | 0.9843 |
All models are available:
* [RoBERT-small](https://huggingface.co/readerbench/RoBERT-small)
* [RoBERT-base](https://huggingface.co/readerbench/RoBERT-base)
* [RoBERT-large](https://huggingface.co/readerbench/RoBERT-large)
#### How to use
```python
# tensorflow
from transformers import AutoModel, AutoTokenizer, TFAutoModel
tokenizer = AutoTokenizer.from_pretrained("readerbench/RoBERT-base")
model = TFAutoModel.from_pretrained("readerbench/RoBERT-base")
inputs = tokenizer("exemplu de propoziție", return_tensors="tf")
outputs = model(inputs)
# pytorch
from transformers import AutoModel, AutoTokenizer, AutoModel
tokenizer = AutoTokenizer.from_pretrained("readerbench/RoBERT-base")
model = AutoModel.from_pretrained("readerbench/RoBERT-base")
inputs = tokenizer("exemplu de propoziție", return_tensors="pt")
outputs = model(**inputs)
```
## Training data
The model is trained on the following compilation of corpora. Note that we present the statistics after the cleaning process.
| Corpus | Words | Sentences | Size (GB)|
|-----------|:---------:|:---------:|:--------:|
| Oscar | 1.78B | 87M | 10.8 |
| RoTex | 240M | 14M | 1.5 |
| RoWiki | 50M | 2M | 0.3 |
| **Total** | **2.07B** | **103M** | **12.6** |
## Downstream performance
### Sentiment analysis
We report Macro-averaged F1 score (in %)
| Model | Dev | Test |
|------------------|:--------:|:--------:|
| multilingual-BERT| 68.96 | 69.57 |
| XLM-R-base | 71.26 | 71.71 |
| BERT-base-ro | 70.49 | 71.02 |
| RoBERT-small | 66.32 | 66.37 |
| *RoBERT-base* | *70.89* | *71.61* |
| RoBERT-large | **72.48**| **72.11**|
### Moldavian vs. Romanian Dialect and Cross-dialect Topic identification
We report results on [VarDial 2019](https://sites.google.com/view/vardial2019/campaign) Moldavian vs. Romanian Cross-dialect Topic identification Challenge, as Macro-averaged F1 score (in %).
| Model | Dialect Classification | MD to RO | RO to MD |
|-------------------|:----------------------:|:--------:|:--------:|
| 2-CNN + SVM | 93.40 | 65.09 | 75.21 |
| Char+Word SVM | 96.20 | 69.08 | 81.93 |
| BiGRU | 93.30 | **70.10**| 80.30 |
| multilingual-BERT | 95.34 | 68.76 | 78.24 |
| XLM-R-base | 96.28 | 69.93 | 82.28 |
| BERT-base-ro | 96.20 | 69.93 | 78.79 |
| RoBERT-small | 95.67 | 69.01 | 80.40 |
| *RoBERT-base* | *97.39* | *68.30* | *81.09* |
| RoBERT-large | **97.78** | 69.91 | **83.65**|
### Diacritics Restoration
Challenge can be found [here](https://diacritics-challenge.speed.pub.ro/). We report results on the official test set, as accuracies in %.
| Model | word level | char level |
|-----------------------------|:----------:|:----------:|
| BiLSTM | 99.42 | - |
| CharCNN | 98.40 | 99.65 |
| CharCNN + multilingual-BERT | 99.72 | 99.94 |
| CharCNN + XLM-R-base | 99.76 | **99.95** |
| CharCNN + BERT-base-ro | **99.79** | **99.95** |
| CharCNN + RoBERT-small | 99.73 | 99.94 |
| *CharCNN + RoBERT-base* | *99.78* | **99.95** |
| CharCNN + RoBERT-large | 99.76 | **99.95** |
### BibTeX entry and citation info
```bibtex
@inproceedings{masala2020robert,
title={RoBERT--A Romanian BERT Model},
author={Masala, Mihai and Ruseti, Stefan and Dascalu, Mihai},
booktitle={Proceedings of the 28th International Conference on Computational Linguistics},
pages={6626--6637},
year={2020}
}
```
|
GroNLP/gpt2-small-dutch | a4d770e17c7b3b2aa3ff29c6e52c7c8284974fb9 | 2021-05-21T09:55:47.000Z | [
"pytorch",
"tf",
"jax",
"gpt2",
"text-generation",
"nl",
"arxiv:2012.05628",
"transformers",
"adaption",
"recycled",
"gpt2-small"
] | text-generation | false | GroNLP | null | GroNLP/gpt2-small-dutch | 495 | null | transformers | 2,340 | ---
language: nl
tags:
- adaption
- recycled
- gpt2-small
pipeline_tag: text-generation
---
# GPT-2 recycled for Dutch (small)
[Wietse de Vries](https://www.semanticscholar.org/author/Wietse-de-Vries/144611157) •
[Malvina Nissim](https://www.semanticscholar.org/author/M.-Nissim/2742475)
## Model description
This model is based on the small OpenAI GPT-2 ([`gpt2`](https://huggingface.co/gpt2)) model.
For details, check out our paper on [arXiv](https://arxiv.org/abs/2012.05628) and the code on [Github](https://github.com/wietsedv/gpt2-recycle).
## Related models
### Dutch
- [`gpt2-small-dutch-embeddings`](https://huggingface.co/GroNLP/gpt2-small-dutch-embeddings): Small model size with only retrained lexical embeddings.
- [`gpt2-small-dutch`](https://huggingface.co/GroNLP/gpt2-small-dutch): Small model size with retrained lexical embeddings and additional fine-tuning of the full model. (**Recommended**)
- [`gpt2-medium-dutch-embeddings`](https://huggingface.co/GroNLP/gpt2-medium-dutch-embeddings): Medium model size with only retrained lexical embeddings.
### Italian
- [`gpt2-small-italian-embeddings`](https://huggingface.co/GroNLP/gpt2-small-italian-embeddings): Small model size with only retrained lexical embeddings.
- [`gpt2-small-italian`](https://huggingface.co/GroNLP/gpt2-small-italian): Small model size with retrained lexical embeddings and additional fine-tuning of the full model. (**Recommended**)
- [`gpt2-medium-italian-embeddings`](https://huggingface.co/GroNLP/gpt2-medium-italian-embeddings): Medium model size with only retrained lexical embeddings.
## How to use
```python
from transformers import pipeline
pipe = pipeline("text-generation", model="GroNLP/gpt2-small-dutch")
```
```python
from transformers import AutoTokenizer, AutoModel, TFAutoModel
tokenizer = AutoTokenizer.from_pretrained("GroNLP/gpt2-small-dutch")
model = AutoModel.from_pretrained("GroNLP/gpt2-small-dutch") # PyTorch
model = TFAutoModel.from_pretrained("GroNLP/gpt2-small-dutch") # Tensorflow
```
## BibTeX entry
```bibtex
@misc{devries2020good,
title={As good as new. How to successfully recycle English GPT-2 to make models for other languages},
author={Wietse de Vries and Malvina Nissim},
year={2020},
eprint={2012.05628},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
|
textattack/roberta-base-MRPC | c8e94968c57c5d825bf0476261d3fb0602c1e0ac | 2021-05-20T22:07:47.000Z | [
"pytorch",
"jax",
"roberta",
"text-classification",
"transformers"
] | text-classification | false | textattack | null | textattack/roberta-base-MRPC | 495 | null | transformers | 2,341 | ## TextAttack Model Card
This `roberta-base` model was fine-tuned for sequence classification using TextAttack
and the glue dataset loaded using the `nlp` library. The model was fine-tuned
for 5 epochs with a batch size of 16, a learning
rate of 3e-05, and a maximum sequence length of 256.
Since this was a classification task, the model was trained with a cross-entropy loss function.
The best score the model achieved on this task was 0.9117647058823529, as measured by the
eval set accuracy, found after 2 epochs.
For more information, check out [TextAttack on Github](https://github.com/QData/TextAttack).
|
thanathorn/mt5-cpe-kmutt-thai-sentence-sum | cc479312c558c62618d794a961d994be2a12d0fc | 2022-05-13T18:20:03.000Z | [
"pytorch",
"mt5",
"text2text-generation",
"th",
"transformers",
"summarization",
"mT5",
"autotrain_compatible"
] | summarization | false | thanathorn | null | thanathorn/mt5-cpe-kmutt-thai-sentence-sum | 495 | 1 | transformers | 2,342 | ---
tags:
- summarization
- mT5
language:
- th
widget:
- text: "simplify: ถ้าพูดถึงขนมหวานในตำนานที่ชื่นใจที่สุดแล้วละก็ต้องไม่พ้น น้ำแข็งใส แน่เพราะว่าเป็นอะไรที่ชื่นใจสุด"
---
# mt5-cpe-kmutt-thai-sentence-sum
This repository contains the finetuned mT5-base model for Thai sentence summarization. The architecture of the model is based on mT5 model and fine-tuned on text-summarization pairs in Thai. Also, this project is a Senior Project of Computer Engineering Student at King Mongkut’s University of Technology Thonburi.
## Usage on SimpleTransformer (Tested on version 0.63.4)
```python
from simpletransformers.t5 import T5Model, T5Args
from torch import cuda
model = T5Model("t5", "thanathorn/mt5-cpe-kmutt-thai-sentence-sum", use_cuda=cuda.is_available())
sentence = "simplify: ถ้าพูดถึงขนมหวานในตำนานที่ชื่นใจที่สุดแล้วละก็ต้องไม่พ้น น้ำแข็งใส แน่เพราะว่าเป็นอะไรที่ชื่นใจสุด"
prediction = model.predict([sentence])
print(prediction[0])
```
(See the example on <a href="https://colab.research.google.com/drive/1XiNkZLgy1USwHYFVf_nEzOSWbHGSnYdg?usp=sharing">Google Colab</a>)
### Score
<ul>
<li>ROUGE-1: 61.7805</li>
<li>ROUGE-2: 45.9689</li>
<li>ROUGE-L: 59.3542</li>
</ul>
### Intended uses & limitations
<ul>
<li>You can use this model for Thai sentence text summarization.</li>
<li>Not intended to use with paragraph text.</li>
</ul> |
Harshveer/autonlp-formality_scoring_2-32597818 | 0683aa8fe9feb6b9824e38a256f6258aaaf79f34 | 2021-11-14T06:46:39.000Z | [
"pytorch",
"roberta",
"text-classification",
"en",
"dataset:Harshveer/autonlp-data-formality_scoring_2",
"transformers",
"autonlp",
"co2_eq_emissions"
] | text-classification | false | Harshveer | null | Harshveer/autonlp-formality_scoring_2-32597818 | 494 | null | transformers | 2,343 | ---
tags: autonlp
language: en
widget:
- text: "I love AutoNLP 🤗"
datasets:
- Harshveer/autonlp-data-formality_scoring_2
co2_eq_emissions: 8.655894631203154
---
# Model Trained Using AutoNLP
- Problem type: Single Column Regression
- Model ID: 32597818
- CO2 Emissions (in grams): 8.655894631203154
## Validation Metrics
- Loss: 0.5410276651382446
- MSE: 0.5410276651382446
- MAE: 0.5694561004638672
- R2: 0.6830431129198475
- RMSE: 0.735545814037323
- Explained Variance: 0.6834385395050049
## Usage
You can use cURL to access this model:
```
$ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/Harshveer/autonlp-formality_scoring_2-32597818
```
Or Python API:
```
from transformers import AutoModelForSequenceClassification, AutoTokenizer
model = AutoModelForSequenceClassification.from_pretrained("Harshveer/autonlp-formality_scoring_2-32597818", use_auth_token=True)
tokenizer = AutoTokenizer.from_pretrained("Harshveer/autonlp-formality_scoring_2-32597818", use_auth_token=True)
inputs = tokenizer("I love AutoNLP", return_tensors="pt")
outputs = model(**inputs)
``` |
bayartsogt/albert-mongolian | 33be497e1f7f561b0b1d58880d523be723830771 | 2021-03-17T19:01:07.000Z | [
"pytorch",
"tf",
"albert",
"fill-mask",
"mn",
"arxiv:1904.00962",
"transformers",
"autotrain_compatible"
] | fill-mask | false | bayartsogt | null | bayartsogt/albert-mongolian | 494 | 2 | transformers | 2,344 | ---
language: mn
---
# ALBERT-Mongolian
[pretraining repo link](https://github.com/bayartsogt-ya/albert-mongolian)
## Model description
Here we provide pretrained ALBERT model and trained SentencePiece model for Mongolia text. Training data is the Mongolian wikipedia corpus from Wikipedia Downloads and Mongolian News corpus.
## Evaluation Result:
```
loss = 1.7478163
masked_lm_accuracy = 0.6838185
masked_lm_loss = 1.6687671
sentence_order_accuracy = 0.998125
sentence_order_loss = 0.007942731
```
## Fine-tuning Result on Eduge Dataset:
```
precision recall f1-score support
байгал орчин 0.85 0.83 0.84 999
боловсрол 0.80 0.80 0.80 873
спорт 0.98 0.98 0.98 2736
технологи 0.88 0.93 0.91 1102
улс төр 0.92 0.85 0.89 2647
урлаг соёл 0.93 0.94 0.94 1457
хууль 0.89 0.87 0.88 1651
эдийн засаг 0.83 0.88 0.86 2509
эрүүл мэнд 0.89 0.92 0.90 1159
accuracy 0.90 15133
macro avg 0.89 0.89 0.89 15133
weighted avg 0.90 0.90 0.90 15133
```
## Reference
1. [ALBERT - official repo](https://github.com/google-research/albert)
2. [WikiExtrator](https://github.com/attardi/wikiextractor)
3. [Mongolian BERT](https://github.com/tugstugi/mongolian-bert)
4. [ALBERT - Japanese](https://github.com/alinear-corp/albert-japanese)
5. [Mongolian Text Classification](https://github.com/sharavsambuu/mongolian-text-classification)
6. [You's paper](https://arxiv.org/abs/1904.00962)
## Citation
```
@misc{albert-mongolian,
author = {Bayartsogt Yadamsuren},
title = {ALBERT Pretrained Model on Mongolian Datasets},
year = {2020},
publisher = {GitHub},
journal = {GitHub repository},
howpublished = {\url{https://github.com/bayartsogt-ya/albert-mongolian/}}
}
```
## For More Information
Please contact by [email protected]
|
bigjoedata/rockbot355M | c43da88f2a0221ca19bdc99d81cbcc05d65474eb | 2021-05-21T14:17:25.000Z | [
"pytorch",
"jax",
"gpt2",
"text-generation",
"transformers"
] | text-generation | false | bigjoedata | null | bigjoedata/rockbot355M | 494 | null | transformers | 2,345 |
# 🎸 🥁 Rockbot 🎤 🎧
A [GPT-2](https://openai.com/blog/better-language-models/) based lyrics generator fine-tuned on the writing styles of 16000 songs by 270 artists across MANY genres (not just rock).
**Instructions:** Type in a fake song title, pick an artist, click "Generate".
Most language models are imprecise and Rockbot is no exception. You may see NSFW lyrics unexpectedly. I have made no attempts to censor. Generated lyrics may be repetitive and/or incoherent at times, but hopefully you'll encounter something interesting or memorable.
Oh, and generation is resource intense and can be slow. I set governors on song length to keep generation time somewhat reasonable. You may adjust song length and other parameters on the left or check out [Github](https://github.com/bigjoedata/rockbot) to spin up your own Rockbot.
Just have fun.
[Demo](https://share.streamlit.io/bigjoedata/rockbot/main/src/main.py) Adjust settings to increase speed
[Github](https://github.com/bigjoedata/rockbot)
[GPT-2 124M version Model page on Hugging Face](https://huggingface.co/bigjoedata/rockbot)
[DistilGPT2 version Model page on Hugging Face](https://huggingface.co/bigjoedata/rockbot-distilgpt2/) This is leaner with the tradeoff being that the lyrics are more simplistic.
🎹 🪘 🎷 🎺 🪗 🪕 🎻
## Background
With the shutdown of [Google Play Music](https://en.wikipedia.org/wiki/Google_Play_Music) I used Google's takeout function to gather the metadata from artists I've listened to over the past several years. I wanted to take advantage of this bounty to build something fun. I scraped the top 50 lyrics for artists I'd listened to at least once from [Genius](https://genius.com/), then fine tuned [GPT-2's](https://openai.com/blog/better-language-models/) 124M token model using the [AITextGen](https://github.com/minimaxir/aitextgen) framework after considerable post-processing. For more on generation, see [here.](https://huggingface.co/blog/how-to-generate)
### Full Tech Stack
[Google Play Music](https://en.wikipedia.org/wiki/Google_Play_Music) (R.I.P.).
[Python](https://www.python.org/).
[Streamlit](https://www.streamlit.io/).
[GPT-2](https://openai.com/blog/better-language-models/).
[AITextGen](https://github.com/minimaxir/aitextgen).
[Pandas](https://pandas.pydata.org/).
[LyricsGenius](https://lyricsgenius.readthedocs.io/en/master/).
[Google Colab](https://colab.research.google.com/) (GPU based Training).
[Knime](https://www.knime.com/) (data cleaning).
## How to Use The Model
Please refer to [AITextGen](https://github.com/minimaxir/aitextgen) for much better documentation.
### Training Parameters Used
ai.train("lyrics.txt",
line_by_line=False,
from_cache=False,
num_steps=10000,
generate_every=2000,
save_every=2000,
save_gdrive=False,
learning_rate=1e-3,
batch_size=3,
eos_token="<|endoftext|>",
#fp16=True
)
### To Use
Generate With Prompt (Use Title Case):
Song Name
BY
Artist Name
|
superb/wav2vec2-base-superb-sid | 73365f1ed139a3d88fb8a72b98ecac3a38a1fa0e | 2021-11-04T16:03:40.000Z | [
"pytorch",
"wav2vec2",
"audio-classification",
"en",
"dataset:superb",
"arxiv:2105.01051",
"transformers",
"speech",
"audio",
"license:apache-2.0"
] | audio-classification | false | superb | null | superb/wav2vec2-base-superb-sid | 494 | null | transformers | 2,346 | ---
language: en
datasets:
- superb
tags:
- speech
- audio
- wav2vec2
- audio-classification
widget:
- example_title: VoxCeleb Speaker id10003
src: https://cdn-media.huggingface.co/speech_samples/VoxCeleb1_00003.wav
- example_title: VoxCeleb Speaker id10004
src: https://cdn-media.huggingface.co/speech_samples/VoxCeleb_00004.wav
license: apache-2.0
---
# Wav2Vec2-Base for Speaker Identification
## Model description
This is a ported version of
[S3PRL's Wav2Vec2 for the SUPERB Speaker Identification task](https://github.com/s3prl/s3prl/tree/master/s3prl/downstream/voxceleb1).
The base model is [wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base), which is pretrained on 16kHz
sampled speech audio. When using the model make sure that your speech input is also sampled at 16Khz.
For more information refer to [SUPERB: Speech processing Universal PERformance Benchmark](https://arxiv.org/abs/2105.01051)
## Task and dataset description
Speaker Identification (SI) classifies each utterance for its speaker identity as a multi-class
classification, where speakers are in the same predefined set for both training and testing. The widely
used [VoxCeleb1](https://www.robots.ox.ac.uk/~vgg/data/voxceleb/vox1.html) dataset is adopted
For the original model's training and evaluation instructions refer to the
[S3PRL downstream task README](https://github.com/s3prl/s3prl/tree/master/s3prl/downstream#sid-speaker-identification).
## Usage examples
You can use the model via the Audio Classification pipeline:
```python
from datasets import load_dataset
from transformers import pipeline
dataset = load_dataset("anton-l/superb_demo", "si", split="test")
classifier = pipeline("audio-classification", model="superb/wav2vec2-base-superb-sid")
labels = classifier(dataset[0]["file"], top_k=5)
```
Or use the model directly:
```python
import torch
import librosa
from datasets import load_dataset
from transformers import Wav2Vec2ForSequenceClassification, Wav2Vec2FeatureExtractor
def map_to_array(example):
speech, _ = librosa.load(example["file"], sr=16000, mono=True)
example["speech"] = speech
return example
# load a demo dataset and read audio files
dataset = load_dataset("anton-l/superb_demo", "si", split="test")
dataset = dataset.map(map_to_array)
model = Wav2Vec2ForSequenceClassification.from_pretrained("superb/wav2vec2-base-superb-sid")
feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained("superb/wav2vec2-base-superb-sid")
# compute attention masks and normalize the waveform if needed
inputs = feature_extractor(dataset[:2]["speech"], sampling_rate=16000, padding=True, return_tensors="pt")
logits = model(**inputs).logits
predicted_ids = torch.argmax(logits, dim=-1)
labels = [model.config.id2label[_id] for _id in predicted_ids.tolist()]
```
## Eval results
The evaluation metric is accuracy.
| | **s3prl** | **transformers** |
|--------|-----------|------------------|
|**test**| `0.7518` | `0.7518` |
### BibTeX entry and citation info
```bibtex
@article{yang2021superb,
title={SUPERB: Speech processing Universal PERformance Benchmark},
author={Yang, Shu-wen and Chi, Po-Han and Chuang, Yung-Sung and Lai, Cheng-I Jeff and Lakhotia, Kushal and Lin, Yist Y and Liu, Andy T and Shi, Jiatong and Chang, Xuankai and Lin, Guan-Ting and others},
journal={arXiv preprint arXiv:2105.01051},
year={2021}
}
``` |
crystallyzing/DialoGPT-small-nishikiyama | e2268eaff68c5ac9dc1e475d7b3362f22c5f67ff | 2022-06-21T00:05:00.000Z | [
"pytorch",
"gpt2",
"text-generation",
"transformers",
"conversational"
] | conversational | false | crystallyzing | null | crystallyzing/DialoGPT-small-nishikiyama | 494 | null | transformers | 2,347 | ---
tags:
- conversational
---
# Nishiki Chatbot Model |
Norod78/hebrew-gpt_neo-tiny | 61d3dddbbf95e3096e6a4249dc5d7fe396de529a | 2022-07-04T07:27:46.000Z | [
"pytorch",
"jax",
"gpt_neo",
"text-generation",
"he",
"transformers",
"license:mit"
] | text-generation | false | Norod78 | null | Norod78/hebrew-gpt_neo-tiny | 493 | null | transformers | 2,348 | ---
language: he
thumbnail: https://avatars1.githubusercontent.com/u/3617152?norod.jpg
widget:
- text: "עוד בימי קדם"
- text: "קוראים לי דורון ואני מעוניין ל"
- text: "קוראים לי איציק ואני חושב ש"
- text: "החתול שלך מאוד חמוד ו"
license: mit
---
# hebrew-gpt_neo-tiny
Hebrew text generation model based on [EleutherAI's gpt-neo](https://github.com/EleutherAI/gpt-neo). Each was trained on a TPUv3-8 which was made avilable to me via the [TPU Research Cloud](https://sites.research.google/trc/) Program.
## Datasets
1. An assortment of various Hebrew corpuses - I have made it available [here](https://mega.nz/folder/CodSSA4R#4INvMes-56m_WUi7jQMbJQ)
2. oscar / unshuffled_deduplicated_he - [Homepage](https://oscar-corpus.com) | [Dataset Permalink](https://huggingface.co/datasets/viewer/?dataset=oscar&config=unshuffled_deduplicated_he)
The Open Super-large Crawled ALMAnaCH coRpus is a huge multilingual corpus obtained by language classification and filtering of the Common Crawl corpus using the goclassy architecture.
## Training Config
Available [here](https://github.com/Norod/hebrew-gpt_neo/tree/main/hebrew-gpt_neo-tiny/configs) <BR>
## Usage
### Google Colab Notebook
Available [here ](https://colab.research.google.com/github/Norod/hebrew-gpt_neo/blob/main/hebrew-gpt_neo-tiny/Norod78_hebrew_gpt_neo_tiny_Colab.ipynb) <BR>
#### Simple usage sample code
```python
!pip install tokenizers==0.10.2 transformers==4.6.0
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("Norod78/hebrew-gpt_neo-tiny")
model = AutoModelForCausalLM.from_pretrained("Norod78/hebrew-gpt_neo-tiny", pad_token_id=tokenizer.eos_token_id)
prompt_text = "אני אוהב שוקולד ועוגות"
max_len = 512
sample_output_num = 3
seed = 1000
import numpy as np
import torch
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
n_gpu = 0 if torch.cuda.is_available()==False else torch.cuda.device_count()
print(f"device: {device}, n_gpu: {n_gpu}")
np.random.seed(seed)
torch.manual_seed(seed)
if n_gpu > 0:
torch.cuda.manual_seed_all(seed)
model.to(device)
encoded_prompt = tokenizer.encode(
prompt_text, add_special_tokens=False, return_tensors="pt")
encoded_prompt = encoded_prompt.to(device)
if encoded_prompt.size()[-1] == 0:
input_ids = None
else:
input_ids = encoded_prompt
print("input_ids = " + str(input_ids))
if input_ids != None:
max_len += len(encoded_prompt[0])
if max_len > 1024:
max_len = 1024
print("Updated max_len = " + str(max_len))
stop_token = "<|endoftext|>"
new_lines = "\n\n\n"
sample_outputs = model.generate(
input_ids,
do_sample=True,
max_length=max_len,
top_k=50,
top_p=0.95,
num_return_sequences=sample_output_num
)
print(100 * '-' + "\n\t\tOutput\n" + 100 * '-')
for i, sample_output in enumerate(sample_outputs):
text = tokenizer.decode(sample_output, skip_special_tokens=True)
# Remove all text after the stop token
text = text[: text.find(stop_token) if stop_token else None]
# Remove all text after 3 newlines
text = text[: text.find(new_lines) if new_lines else None]
print("\n{}: {}".format(i, text))
print("\n" + 100 * '-')
```
|
asafaya/bert-large-arabic | 980a2eb3a4b8b3eb156b82ae30cc9768ef3794de | 2021-05-19T00:07:46.000Z | [
"pytorch",
"tf",
"jax",
"bert",
"fill-mask",
"ar",
"dataset:oscar",
"dataset:wikipedia",
"transformers",
"autotrain_compatible"
] | fill-mask | false | asafaya | null | asafaya/bert-large-arabic | 492 | null | transformers | 2,349 | ---
language: ar
datasets:
- oscar
- wikipedia
---
# Arabic BERT Large Model
Pretrained BERT Large language model for Arabic
_If you use this model in your work, please cite this paper:_
```
@inproceedings{safaya-etal-2020-kuisail,
title = "{KUISAIL} at {S}em{E}val-2020 Task 12: {BERT}-{CNN} for Offensive Speech Identification in Social Media",
author = "Safaya, Ali and
Abdullatif, Moutasem and
Yuret, Deniz",
booktitle = "Proceedings of the Fourteenth Workshop on Semantic Evaluation",
month = dec,
year = "2020",
address = "Barcelona (online)",
publisher = "International Committee for Computational Linguistics",
url = "https://www.aclweb.org/anthology/2020.semeval-1.271",
pages = "2054--2059",
}
```
## Pretraining Corpus
`arabic-bert-large` model was pretrained on ~8.2 Billion words:
- Arabic version of [OSCAR](https://traces1.inria.fr/oscar/) - filtered from [Common Crawl](http://commoncrawl.org/)
- Recent dump of Arabic [Wikipedia](https://dumps.wikimedia.org/backup-index.html)
and other Arabic resources which sum up to ~95GB of text.
__Notes on training data:__
- Our final version of corpus contains some non-Arabic words inlines, which we did not remove from sentences since that would affect some tasks like NER.
- Although non-Arabic characters were lowered as a preprocessing step, since Arabic characters does not have upper or lower case, there is no cased and uncased version of the model.
- The corpus and vocabulary set are not restricted to Modern Standard Arabic, they contain some dialectical Arabic too.
## Pretraining details
- This model was trained using Google BERT's github [repository](https://github.com/google-research/bert) on a single TPU v3-8 provided for free from [TFRC](https://www.tensorflow.org/tfrc).
- Our pretraining procedure follows training settings of bert with some changes: trained for 3M training steps with batchsize of 128, instead of 1M with batchsize of 256.
## Load Pretrained Model
You can use this model by installing `torch` or `tensorflow` and Huggingface library `transformers`. And you can use it directly by initializing it like this:
```python
from transformers import AutoTokenizer, AutoModel
tokenizer = AutoTokenizer.from_pretrained("asafaya/bert-large-arabic")
model = AutoModelForMaskedLM.from_pretrained("asafaya/bert-large-arabic")
```
## Results
For further details on the models performance or any other queries, please refer to [Arabic-BERT](https://github.com/alisafaya/Arabic-BERT)
## Acknowledgement
Thanks to Google for providing free TPU for the training process and for Huggingface for hosting this model on their servers 😊
|
facebook/hubert-xlarge-ls960-ft | 8b565fd5c194610f72ff01f4fecf7ccde17f9638 | 2022-05-24T10:44:12.000Z | [
"pytorch",
"tf",
"hubert",
"automatic-speech-recognition",
"en",
"dataset:libri-light",
"dataset:librispeech_asr",
"arxiv:2106.07447",
"transformers",
"speech",
"audio",
"hf-asr-leaderboard",
"license:apache-2.0",
"model-index"
] | automatic-speech-recognition | false | facebook | null | facebook/hubert-xlarge-ls960-ft | 492 | 7 | transformers | 2,350 | ---
language: en
datasets:
- libri-light
- librispeech_asr
tags:
- speech
- audio
- automatic-speech-recognition
- hf-asr-leaderboard
license: apache-2.0
model-index:
- name: hubert-large-ls960-ft
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: LibriSpeech (clean)
type: librispeech_asr
config: clean
split: test
args:
language: en
metrics:
- name: Test WER
type: wer
value: 1.8
---
# Hubert-Extra-Large-Finetuned
[Facebook's Hubert](https://ai.facebook.com/blog/hubert-self-supervised-representation-learning-for-speech-recognition-generation-and-compression)
The extra large model fine-tuned on 960h of Librispeech on 16kHz sampled speech audio. When using the model make sure that your speech input is also sampled at 16Khz.
The model is a fine-tuned version of [hubert-xlarge-ll60k](https://huggingface.co/facebook/hubert-xlarge-ll60k).
[Paper](https://arxiv.org/abs/2106.07447)
Authors: Wei-Ning Hsu, Benjamin Bolte, Yao-Hung Hubert Tsai, Kushal Lakhotia, Ruslan Salakhutdinov, Abdelrahman Mohamed
**Abstract**
Self-supervised approaches for speech representation learning are challenged by three unique problems: (1) there are multiple sound units in each input utterance, (2) there is no lexicon of input sound units during the pre-training phase, and (3) sound units have variable lengths with no explicit segmentation. To deal with these three problems, we propose the Hidden-Unit BERT (HuBERT) approach for self-supervised speech representation learning, which utilizes an offline clustering step to provide aligned target labels for a BERT-like prediction loss. A key ingredient of our approach is applying the prediction loss over the masked regions only, which forces the model to learn a combined acoustic and language model over the continuous inputs. HuBERT relies primarily on the consistency of the unsupervised clustering step rather than the intrinsic quality of the assigned cluster labels. Starting with a simple k-means teacher of 100 clusters, and using two iterations of clustering, the HuBERT model either matches or improves upon the state-of-the-art wav2vec 2.0 performance on the Librispeech (960h) and Libri-light (60,000h) benchmarks with 10min, 1h, 10h, 100h, and 960h fine-tuning subsets. Using a 1B parameter model, HuBERT shows up to 19% and 13% relative WER reduction on the more challenging dev-other and test-other evaluation subsets.
The original model can be found under https://github.com/pytorch/fairseq/tree/master/examples/hubert .
# Usage
The model can be used for automatic-speech-recognition as follows:
```python
import torch
from transformers import Wav2Vec2Processor, HubertForCTC
from datasets import load_dataset
processor = Wav2Vec2Processor.from_pretrained("facebook/hubert-xlarge-ls960-ft")
model = HubertForCTC.from_pretrained("facebook/hubert-xlarge-ls960-ft")
ds = load_dataset("patrickvonplaten/librispeech_asr_dummy", "clean", split="validation")
input_values = processor(ds[0]["audio"]["array"], return_tensors="pt").input_values # Batch size 1
logits = model(input_values).logits
predicted_ids = torch.argmax(logits, dim=-1)
transcription = processor.decode(predicted_ids[0])
# ->"A MAN SAID TO THE UNIVERSE SIR I EXIST"
``` |
DMetaSoul/sbert-chinese-general-v2-distill | 7f91a6d64ffa5a0031587f9738dd603219abf8c3 | 2022-04-02T09:58:33.000Z | [
"pytorch",
"bert",
"feature-extraction",
"sentence-transformers",
"sentence-similarity",
"transformers",
"semantic-search",
"chinese"
] | sentence-similarity | false | DMetaSoul | null | DMetaSoul/sbert-chinese-general-v2-distill | 492 | null | sentence-transformers | 2,351 | ---
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- feature-extraction
- sentence-similarity
- transformers
- semantic-search
- chinese
---
# DMetaSoul/sbert-chinese-general-v2-distill
此模型是之前[开源通用语义匹配模型](https://huggingface.co/DMetaSoul/sbert-chinese-general-v2)的蒸馏版本(仅4层 BERT),适用于**通用语义匹配**场景,从效果来看该模型在各种任务上**泛化能力更好且编码速度更快**。
离线训练好的大模型如果直接用于线上推理,对计算资源有苛刻的需求,而且难以满足业务环境对延迟、吞吐量等性能指标的要求,这里我们使用蒸馏手段来把大模型轻量化。从 12 层 BERT 蒸馏为 4 层后,模型参数量缩小到 44%,大概 latency 减半、throughput 翻倍、精度下降 6% 左右(具体结果详见下文评估小节)。
# Usage
## 1. Sentence-Transformers
通过 [sentence-transformers](https://www.SBERT.net) 框架来使用该模型,首先进行安装:
```
pip install -U sentence-transformers
```
然后使用下面的代码来载入该模型并进行文本表征向量的提取:
```python
from sentence_transformers import SentenceTransformer
sentences = ["我的儿子!他猛然间喊道,我的儿子在哪儿?", "我的儿子呢!他突然喊道,我的儿子在哪里?"]
model = SentenceTransformer('DMetaSoul/sbert-chinese-general-v2-distill')
embeddings = model.encode(sentences)
print(embeddings)
```
## 2. HuggingFace Transformers
如果不想使用 [sentence-transformers](https://www.SBERT.net) 的话,也可以通过 HuggingFace Transformers 来载入该模型并进行文本向量抽取:
```python
from transformers import AutoTokenizer, AutoModel
import torch
#Mean Pooling - Take attention mask into account for correct averaging
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
# Sentences we want sentence embeddings for
sentences = ["我的儿子!他猛然间喊道,我的儿子在哪儿?", "我的儿子呢!他突然喊道,我的儿子在哪里?"]
# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained('DMetaSoul/sbert-chinese-general-v2-distill')
model = AutoModel.from_pretrained('DMetaSoul/sbert-chinese-general-v2-distill')
# Tokenize sentences
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
# Compute token embeddings
with torch.no_grad():
model_output = model(**encoded_input)
# Perform pooling. In this case, mean pooling.
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
print("Sentence embeddings:")
print(sentence_embeddings)
```
## Evaluation
这里主要跟蒸馏前对应的 teacher 模型作了对比:
*性能:*
| | Teacher | Student | Gap |
| ---------- | --------------------- | ------------------- | ----- |
| Model | BERT-12-layers (102M) | BERT-4-layers (45M) | 0.44x |
| Cost | 23s | 12s | -47% |
| Latency | 38ms | 20ms | -47% |
| Throughput | 418 sentence/s | 791 sentence/s | 1.9x |
*精度:*
| | **csts_dev** | **csts_test** | **afqmc** | **lcqmc** | **bqcorpus** | **pawsx** | **xiaobu** | **Avg** |
| -------------- | ------------ | ------------- | --------- | --------- | ------------ | --------- | ---------- | ------- |
| **Teacher** | 77.19% | 72.59% | 36.79% | 76.91% | 49.62% | 16.24% | 63.15% | 56.07% |
| **Student** | 76.49% | 73.33% | 26.46% | 64.26% | 46.02% | 11.83% | 52.45% | 50.12% |
| **Gap** (abs.) | - | - | - | - | - | - | - | -5.95% |
*基于1万条数据测试,GPU设备是V100,batch_size=16,max_seq_len=256*
## Citing & Authors
E-mail: [email protected] |
tscholak/1wnr382e | 44847d47b5b59789aadc86c7f88d2574cf1f284c | 2022-01-10T21:50:25.000Z | [
"pytorch",
"t5",
"text2text-generation",
"en",
"dataset:spider",
"arxiv:2109.05093",
"transformers",
"text2sql",
"license:apache-2.0",
"autotrain_compatible"
] | text2text-generation | false | tscholak | null | tscholak/1wnr382e | 490 | null | transformers | 2,352 | ---
language:
- en
thumbnail: "https://repository-images.githubusercontent.com/401779782/c2f46be5-b74b-4620-ad64-57487be3b1ab"
tags:
- text2sql
widget:
- "How many singers do we have? | concert_singer | stadium : stadium_id, location, name, capacity, highest, lowest, average | singer : singer_id, name, country, song_name, song_release_year, age, is_male | concert : concert_id, concert_name, theme, stadium_id, year | singer_in_concert : concert_id, singer_id"
license: "apache-2.0"
datasets:
- spider
metrics:
- spider
---
## tscholak/1wnr382e
Fine-tuned weights for [PICARD - Parsing Incrementally for Constrained Auto-Regressive Decoding from Language Models](https://arxiv.org/abs/2109.05093) based on [T5-Large](https://huggingface.co/t5-large).
### Training Data
The model has been fine-tuned on the 7000 training examples in the [Spider text-to-SQL dataset](https://yale-lily.github.io/spider). The model solves Spider's zero-shot text-to-SQL translation task, and that means that it can generalize to unseen SQL databases.
### Training Objective
This model was initialized with [T5-Large](https://huggingface.co/t5-large) and fine-tuned with the text-to-text generation objective.
Questions are always grounded in a database schema, and the model is trained to predict the SQL query that would be used to answer the question. The input to the model is composed of the user's natural language question, the database identifier, and a list of tables and their columns:
```
[question] | [db_id] | [table] : [column] ( [content] , [content] ) , [column] ( ... ) , [...] | [table] : ... | ...
```
The model outputs the database identifier and the SQL query that will be executed on the database to answer the user's question:
```
[db_id] | [sql]
```
### Performance
Out of the box, this model achieves 65.3 % exact-set match accuracy and 67.2 % execution accuracy on the Spider development set.
Using the PICARD constrained decoding method (see [the official PICARD implementation](https://github.com/ElementAI/picard)), the model's performance can be improved to **69.1 %** exact-set match accuracy and **72.9 %** execution accuracy on the Spider development set.
### Usage
Please see [the official repository](https://github.com/ElementAI/picard) for scripts and docker images that support evaluation and serving of this model.
### References
1. [PICARD - Parsing Incrementally for Constrained Auto-Regressive Decoding from Language Models](https://arxiv.org/abs/2109.05093)
2. [Official PICARD code](https://github.com/ElementAI/picard)
### Citation
```bibtex
@inproceedings{Scholak2021:PICARD,
author = {Torsten Scholak and Nathan Schucher and Dzmitry Bahdanau},
title = "{PICARD}: Parsing Incrementally for Constrained Auto-Regressive Decoding from Language Models",
booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing",
month = nov,
year = "2021",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.emnlp-main.779",
pages = "9895--9901",
}
``` |
codeparrot/codeparrot-small-multi | 7753edbe82562bf23c6ff15ad46ce6f0f2307139 | 2022-07-15T10:56:13.000Z | [
"pytorch",
"gpt2",
"text-generation",
"code",
"dataset:codeparrot/github-code-clean",
"dataset:openai_humaneval",
"transformers",
"generation",
"license:apache-2.0"
] | text-generation | false | codeparrot | null | codeparrot/codeparrot-small-multi | 490 | null | transformers | 2,353 | ---
language:
- code
license: apache-2.0
tags:
- code
- gpt2
- generation
datasets:
- "codeparrot/github-code-clean"
- "openai_humaneval"
metrics:
- "evaluate-metric/code_eval"
---
# CodeParrot-Multi 🦜 (small)
CodeParrot-Multi 🦜 is a GPT-2 model (110M parameters) trained to generate code in 9 programming languages: "Java", "JavaScript", "PHP", "Python", "C#", "C++", "GO", "Ruby" and "TypeScript".
## Usage
You can load the CodeParrot-Multi model and tokenizer directly in `transformers`:
```Python
from transformers import AutoTokenizer, AutoModelWithLMHead
tokenizer = AutoTokenizer.from_pretrained("codeparrot/codeparrot-small-multi")
model = AutoModelWithLMHead.from_pretrained("codeparrot/codeparrot-small-multi")
inputs = tokenizer("def hello_world():", return_tensors="pt")
outputs = model(**inputs)
```
or with a `pipeline`:
```Python
from transformers import pipeline
pipe = pipeline("text-generation", model="codeparrot/codeparrot-small-multi")
outputs = pipe("def hello_world():")
```
## Training
The model was trained on the small [Github code small](https://huggingface.co/datasets/loubnabnl/github-small-near-dedup) after near deduplication, a subset of [Github code dataset](https://huggingface.co/datasets/codeparrot/github-code-clean) with the following settings:
|Config|Value|
|-------|-----|
|Batch size| 192 |
|Context size| 1024 |
|Training steps| 300'000|
|Gradient accumulation| 2|
|Gradient checkpointing| False|
|Learning rate| 5e-4 |
|Weight decay | 0.1 |
|Warmup steps| 2000 |
|Schedule| Cosine |
The training was executed on 16 x A100 (40GB) GPUs. This setting amounts to roughly 58 billion tokens.
## Performance
We evaluated the model on OpenAI's [HumanEval](https://huggingface.co/datasets/openai_humaneval) benchmark which consists of programming challenges:
| Metric | Value |
|-------|-----|
|pass@1 | --% |
|pass@10 | --% |
|pass@100 | --% |
The [pass@k metric](https://huggingface.co/metrics/code_eval) tells the probability that at least one out of k generations passes the tests.
## Resources
- Code: [repository](https://github.com/huggingface/transformers/tree/master/examples/research_projects/codeparrot)
|
HooshvareLab/gpt2-fa | 9c1fa5edb93f30ca93df0d1f1abcc44bcc73e5d1 | 2021-05-21T10:51:23.000Z | [
"pytorch",
"tf",
"jax",
"gpt2",
"text-generation",
"fa",
"transformers",
"license:apache-2.0"
] | text-generation | false | HooshvareLab | null | HooshvareLab/gpt2-fa | 489 | null | transformers | 2,354 | ---
language: fa
license: apache-2.0
widget:
- text: "در یک اتفاق شگفت انگیز، پژوهشگران"
- text: "گرفتگی بینی در کودکان و بهخصوص نوزادان باعث میشود"
- text: "امیدواریم نوروز امسال سالی"
---
# ParsGPT2
### BibTeX entry and citation info
Please cite in publications as the following:
```bibtex
@misc{ParsGPT2,
author = {Hooshvare Team},
title = {ParsGPT2 the Persian version of GPT2},
year = {2021},
publisher = {GitHub},
journal = {GitHub repository},
howpublished = {\url{https://github.com/hooshvare/parsgpt}},
}
```
## Questions?
Post a Github issue on the [ParsGPT2 Issues](https://github.com/hooshvare/parsgpt/issues) repo. |
IMSyPP/hate_speech_en | ffe54334b9df65e704492d2d660610dd848658d6 | 2022-05-16T06:13:38.000Z | [
"pytorch",
"bert",
"text-classification",
"en",
"transformers",
"license:mit"
] | text-classification | false | IMSyPP | null | IMSyPP/hate_speech_en | 489 | 1 | transformers | 2,355 | ---
widget:
- text: "My name is Mark and I live in London. I am a postgraduate student at Queen Mary University."
language:
- en
license: mit
---
# Hate Speech Classifier for Social Media Content in English Language
A monolingual model for hate speech classification of social media content in English language. The model was trained on 103190 YouTube comments and tested on an independent test set of 20554 YouTube comments. It is based on English BERT base pre-trained language model.
## Tokenizer
During training the text was preprocessed using the original English BERT base tokenizer. We suggest the same tokenizer is used for inference.
## Model output
The model classifies each input into one of four distinct classes:
* 0 - acceptable
* 1 - inappropriate
* 2 - offensive
* 3 - violent |
dbmdz/bert-base-german-europeana-uncased | f703f5a27791d5c8e083eab510563083fb7ed18d | 2021-05-19T14:55:07.000Z | [
"pytorch",
"tf",
"jax",
"bert",
"de",
"transformers",
"historic german",
"license:mit"
] | null | false | dbmdz | null | dbmdz/bert-base-german-europeana-uncased | 489 | null | transformers | 2,356 | ---
language: de
license: mit
tags:
- "historic german"
---
# 🤗 + 📚 dbmdz BERT models
In this repository the MDZ Digital Library team (dbmdz) at the Bavarian State
Library open sources German Europeana BERT models 🎉
# German Europeana BERT
We use the open source [Europeana newspapers](http://www.europeana-newspapers.eu/)
that were provided by *The European Library*. The final
training corpus has a size of 51GB and consists of 8,035,986,369 tokens.
Detailed information about the data and pretraining steps can be found in
[this repository](https://github.com/stefan-it/europeana-bert).
## Model weights
Currently only PyTorch-[Transformers](https://github.com/huggingface/transformers)
compatible weights are available. If you need access to TensorFlow checkpoints,
please raise an issue!
| Model | Downloads
| ------------------------------------------ | ---------------------------------------------------------------------------------------------------------------
| `dbmdz/bert-base-german-europeana-uncased` | [`config.json`](https://cdn.huggingface.co/dbmdz/bert-base-german-europeana-uncased/config.json) • [`pytorch_model.bin`](https://cdn.huggingface.co/dbmdz/bert-base-german-europeana-uncased/pytorch_model.bin) • [`vocab.txt`](https://cdn.huggingface.co/dbmdz/bert-base-german-europeana-uncased/vocab.txt)
## Results
For results on Historic NER, please refer to [this repository](https://github.com/stefan-it/europeana-bert).
## Usage
With Transformers >= 2.3 our German Europeana BERT models can be loaded like:
```python
from transformers import AutoModel, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained("dbmdz/bert-base-german-europeana-uncased")
model = AutoModel.from_pretrained("dbmdz/bert-base-german-europeana-uncased")
```
# Huggingface model hub
All models are available on the [Huggingface model hub](https://huggingface.co/dbmdz).
# Contact (Bugs, Feedback, Contribution and more)
For questions about our BERT models just open an issue
[here](https://github.com/dbmdz/berts/issues/new) 🤗
# Acknowledgments
Research supported with Cloud TPUs from Google's TensorFlow Research Cloud (TFRC).
Thanks for providing access to the TFRC ❤️
Thanks to the generous support from the [Hugging Face](https://huggingface.co/) team,
it is possible to download both cased and uncased models from their S3 storage 🤗
|
naver-clova-ocr/bros-large-uncased | a644113dc6c2b6dd53f99f94feb7ed4a5e3fdf71 | 2022-04-05T13:57:07.000Z | [
"pytorch",
"bros",
"arxiv:2108.04539",
"transformers"
] | null | false | naver-clova-ocr | null | naver-clova-ocr/bros-large-uncased | 489 | 1 | transformers | 2,357 | # BROS
GitHub: https://github.com/clovaai/bros
## Introduction
BROS (BERT Relying On Spatiality) is a pre-trained language model focusing on text and layout for better key information extraction from documents.<br>
Given the OCR results of the document image, which are text and bounding box pairs, it can perform various key information extraction tasks, such as extracting an ordered item list from receipts.<br>
For more details, please refer to our paper:
BROS: A Pre-trained Language Model Focusing on Text and Layout for Better Key Information Extraction from Documents<br>
Teakgyu Hong, Donghyun Kim, Mingi Ji, Wonseok Hwang, Daehyun Nam, Sungrae Park<br>
AAAI 2022 - Main Technical Track
[[arXiv]](https://arxiv.org/abs/2108.04539)
## Pre-trained models
| name | # params | Hugging Face - Models |
|---------------------|---------:|-------------------------------------------------------------------------------------------------|
| bros-base-uncased | < 110M | [naver-clova-ocr/bros-base-uncased](https://huggingface.co/naver-clova-ocr/bros-base-uncased) |
| bros-large-uncased (**this**) | < 340M | [naver-clova-ocr/bros-large-uncased](https://huggingface.co/naver-clova-ocr/bros-large-uncased) | |
oigele/Fb_improved_zeroshot | d68aaffe80f68f2a820944c59a92b2e285741725 | 2021-11-29T11:51:49.000Z | [
"pytorch",
"bart",
"text-classification",
"dataset:multi_nli",
"arxiv:1909.00161",
"transformers",
"zero-shot-classification"
] | zero-shot-classification | false | oigele | null | oigele/Fb_improved_zeroshot | 488 | 4 | transformers | 2,358 | ---
pipeline_tag: zero-shot-classification
datasets:
- multi_nli
widget:
- text: "natural language processing"
candidate_labels: "Location & Address, Employment, Organizational, Name, Service, Studies, Science"
hypothesis_template: "This is {}."
---
# Fb_improved_zeroshot
Zero-Shot Model designed to classify academic search logs in German and English. Developed by students at ETH Zürich.
This model was trained using the [bart-large-mnli](https://huggingface.co/facebook/bart-large-mnli/) checkpoint provided by Meta on Huggingface. It was then fine-tuned to suit the needs of this project.
## NLI-based Zero-Shot Text Classification
This method is based on Natural Language Inference (NLI), see [Yin et al.](https://arxiv.org/abs/1909.00161).
The following tutorials are taken from the model card of [bart-large-mnli](https://huggingface.co/facebook/bart-large-mnli/).
#### With the zero-shot classification pipeline
The model can be loaded with the `zero-shot-classification` pipeline like so:
```python
from transformers import pipeline
classifier = pipeline("zero-shot-classification",
model="oigele/Fb_improved_zeroshot")
```
You can then use this pipeline to classify sequences into any of the class names you specify.
```python
sequence_to_classify = "natural language processing"
candidate_labels = ['Location & Address', 'Employment', 'Organizational', 'Name', 'Service', 'Studies', 'Science']
classifier(sequence_to_classify, candidate_labels)
```
If more than one candidate label can be correct, pass `multi_class=True` to calculate each class independently:
```python
candidate_labels = ['Location & Address', 'Employment', 'Organizational', 'Name', 'Service', 'Studies', 'Science']
classifier(sequence_to_classify, candidate_labels, multi_class=True)
```
#### With manual PyTorch
```python
# pose sequence as a NLI premise and label as a hypothesis
from transformers import AutoModelForSequenceClassification, AutoTokenizer
nli_model = AutoModelForSequenceClassification.from_pretrained('oigele/Fb_improved_zeroshot/')
tokenizer = AutoTokenizer.from_pretrained('facebook/bart-large-mnli')
premise = sequence
hypothesis = f'This is {label}.'
# run through model pre-trained on MNLI
x = tokenizer.encode(premise, hypothesis, return_tensors='pt',
truncation_strategy='only_first')
logits = nli_model(x.to(device))[0]
# we throw away "neutral" (dim 1) and take the probability of
# "entailment" (2) as the probability of the label being true
entail_contradiction_logits = logits[:,[0,2]]
probs = entail_contradiction_logits.softmax(dim=1)
prob_label_is_true = probs[:,1]
|
imxly/sentence_roberta_wwm_ext | 28b1082b623326456cdec17ee4b521e21e823434 | 2021-05-19T20:20:32.000Z | [
"pytorch",
"jax",
"bert",
"feature-extraction",
"transformers"
] | feature-extraction | false | imxly | null | imxly/sentence_roberta_wwm_ext | 487 | null | transformers | 2,359 | Entry not found |
KBLab/bert-base-swedish-cased-pos | eae7acf6c32812794b8edd93a944c6b1bd1e402a | 2021-05-18T21:20:59.000Z | [
"pytorch",
"tf",
"jax",
"bert",
"token-classification",
"transformers",
"autotrain_compatible"
] | token-classification | false | KBLab | null | KBLab/bert-base-swedish-cased-pos | 486 | 2 | transformers | 2,360 | Entry not found |
lirondos/anglicisms-spanish-mbert | 11e819e8161f1162b2b09d253dde4a927a9dc3e0 | 2022-05-16T14:03:29.000Z | [
"pytorch",
"bert",
"token-classification",
"es",
"dataset:coalas",
"transformers",
"anglicisms",
"loanwords",
"borrowing",
"codeswitching",
"arxiv:2203.16169",
"license:cc-by-4.0",
"autotrain_compatible"
] | token-classification | false | lirondos | null | lirondos/anglicisms-spanish-mbert | 486 | null | transformers | 2,361 | ---
language:
- es
license: cc-by-4.0
tags:
- anglicisms # Example: audio
- loanwords # Example: automatic-speech-recognition
- borrowing # Example: speech
- codeswitching # Example to specify a library: allennlp
- arxiv:2203.16169
datasets:
- coalas # Example: common_voice. Use dataset id from https://hf.co/datasets
widget:
- text: "Las fake news sobre la celebrity se reprodujeron por los 'mass media' en prime time."
- text: "Me gusta el cine noir y el anime."
- text: "Benching, estar en el banquillo de tu 'crush' mientras otro juega de titular."
- text: "Recetas de noviembre para el batch cooking."
- text: "Utilizaron técnicas de machine learning, big data o blockchain."
---
# anglicisms-spanish-mbert
This is a pretrained model for detecting unassimilated English lexical borrowings (a.k.a. anglicisms) on Spanish newswire. This model labels words of foreign origin (fundamentally from English) used in Spanish language, words such as *fake news*, *machine learning*, *smartwatch*, *influencer* or *streaming*.
The model is a fine-tuned version of [multilingual BERT](https://huggingface.co/bert-base-multilingual-cased) trained on the [COALAS](https://github.com/lirondos/coalas/) corpus for the task of detecting lexical borrowings.
The model considers two labels:
* ``ENG``: For English lexical borrowings (*smartphone*, *online*, *podcast*)
* ``OTHER``: For lexical borrowings from any other language (*boutique*, *anime*, *umami*)
The model uses BIO encoding to account for multitoken borrowings.
**⚠ This is not the best-performing model for this task.** For the best-performing model (F1=85.76) see [Flair model](https://huggingface.co/lirondos/anglicisms-spanish-flair-cs).
## Metrics (on the test set)
The following table summarizes the results obtained on the test set of the [COALAS](https://github.com/lirondos/coalas/) corpus.
| LABEL | Precision | Recall | F1 |
|:-------|-----:|-----:|---------:|
| ALL | 88.09 | 79.46 | 83.55 |
| ENG | 88.44 | 82.16 | 85.19 |
| OTHER | 37.5 | 6.52 | 11.11 |
## Dataset
This model was trained on [COALAS](https://github.com/lirondos/coalas/), a corpus of Spanish newswire annotated with unassimilated lexical borrowings. The corpus contains 370,000 tokens and includes various written media written in European Spanish. The test set was designed to be as difficult as possible: it covers sources and dates not seen in the training set, includes a high number of OOV words (92% of the borrowings in the test set are OOV) and is very borrowing-dense (20 borrowings per 1,000 tokens).
|Set | Tokens | ENG | OTHER | Unique |
|:-------|-----:|-----:|---------:|---------:|
|Training |231,126 |1,493 | 28 |380 |
|Development |82,578 |306 |49 |316|
|Test |58,997 |1,239 |46 |987|
|**Total** |372,701 |3,038 |123 |1,683 |
## More info
More information about the dataset, model experimentation and error analysis can be found in the paper: *[Detecting Unassimilated Borrowings in Spanish: An Annotated Corpus and Approaches to Modeling](https://aclanthology.org/2022.acl-long.268/)*.
## How to use
```
from transformers import pipeline, AutoModelForTokenClassification, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained("lirondos/anglicisms-spanish-mbert")
model = AutoModelForTokenClassification.from_pretrained("lirondos/anglicisms-spanish-mbert")
nlp = pipeline("ner", model=model, tokenizer=tokenizer)
example = example = "Buscamos data scientist para proyecto de machine learning."
borrowings = nlp(example)
print(borrowings)
```
## Citation
If you use this model, please cite the following reference:
```
@inproceedings{alvarez-mellado-lignos-2022-detecting,
title = "Detecting Unassimilated Borrowings in {S}panish: {A}n Annotated Corpus and Approaches to Modeling",
author = "{\'A}lvarez-Mellado, Elena and
Lignos, Constantine",
booktitle = "Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",
month = may,
year = "2022",
address = "Dublin, Ireland",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2022.acl-long.268",
pages = "3868--3888",
abstract = "This work presents a new resource for borrowing identification and analyzes the performance and errors of several models on this task. We introduce a new annotated corpus of Spanish newswire rich in unassimilated lexical borrowings{---}words from one language that are introduced into another without orthographic adaptation{---}and use it to evaluate how several sequence labeling models (CRF, BiLSTM-CRF, and Transformer-based models) perform. The corpus contains 370,000 tokens and is larger, more borrowing-dense, OOV-rich, and topic-varied than previous corpora available for this task. Our results show that a BiLSTM-CRF model fed with subword embeddings along with either Transformer-based embeddings pretrained on codeswitched data or a combination of contextualized word embeddings outperforms results obtained by a multilingual BERT-based model.",
}
```
|
FangLee/DialoGPT-small-Kirito | b367d8ac8cbfabbaeb96bfd98a3f4550687daa99 | 2021-09-04T14:25:26.000Z | [
"pytorch",
"gpt2",
"text-generation",
"transformers",
"conversational"
] | conversational | false | FangLee | null | FangLee/DialoGPT-small-Kirito | 485 | null | transformers | 2,362 | ---
tags:
- conversational
---
@Kirito DialoGPT Small Model |
filco306/gpt2-base-style-paraphraser | e320d414ae5ef9a893c4a6bc3604117f9e436c53 | 2021-08-28T19:27:41.000Z | [
"pytorch",
"text-generation",
"arxiv:2010.05700",
"transformers"
] | text-generation | false | filco306 | null | filco306/gpt2-base-style-paraphraser | 485 | 2 | transformers | 2,363 | # GPT2 base style transfer paraphraser
This is the trained base-model from the paper [Reformulating Unsupervised Style Transfer as Paraphrase Generation](https://arxiv.org/abs/2010.05700) by Krishna K. et al. Note that I (the uploader) am not the author of the paper. Permission to upload to Huggingface was given by the main author.
## Citation
If you found this model useful, please cite the original work:
```
@inproceedings{style20,
author={Kalpesh Krishna and John Wieting and Mohit Iyyer},
Booktitle = {Empirical Methods in Natural Language Processing},
Year = "2020",
Title={Reformulating Unsupervised Style Transfer as Paraphrase Generation},
}
``` |
Helsinki-NLP/opus-mt-th-fr | b9e7a1b2d0a2aa9c1cc4123c37dcef4b13d41c15 | 2021-09-11T10:48:01.000Z | [
"pytorch",
"marian",
"text2text-generation",
"th",
"fr",
"transformers",
"translation",
"license:apache-2.0",
"autotrain_compatible"
] | translation | false | Helsinki-NLP | null | Helsinki-NLP/opus-mt-th-fr | 484 | null | transformers | 2,364 | ---
tags:
- translation
license: apache-2.0
---
### opus-mt-th-fr
* source languages: th
* target languages: fr
* OPUS readme: [th-fr](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/th-fr/README.md)
* dataset: opus
* model: transformer-align
* pre-processing: normalization + SentencePiece
* download original weights: [opus-2020-01-16.zip](https://object.pouta.csc.fi/OPUS-MT-models/th-fr/opus-2020-01-16.zip)
* test set translations: [opus-2020-01-16.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/th-fr/opus-2020-01-16.test.txt)
* test set scores: [opus-2020-01-16.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/th-fr/opus-2020-01-16.eval.txt)
## Benchmarks
| testset | BLEU | chr-F |
|-----------------------|-------|-------|
| JW300.th.fr | 20.4 | 0.363 |
|
deepset/bert-base-german-cased-hatespeech-GermEval18Coarse | 9423036452a34960b227e787d8fd86063c6b87ad | 2021-05-19T15:25:01.000Z | [
"pytorch",
"jax",
"bert",
"text-classification",
"transformers",
"license:cc-by-4.0"
] | text-classification | false | deepset | null | deepset/bert-base-german-cased-hatespeech-GermEval18Coarse | 484 | 6 | transformers | 2,365 | ---
license: cc-by-4.0
---
This is a German BERT v1 (https://deepset.ai/german-bert) trained to do hate speech detection on the GermEval18Coarse dataset |
ELiRF/mbart-large-cc25-dacsa-es | c0f9e6d88fc2f865327cb63898186036944d204e | 2022-07-11T17:34:09.000Z | [
"pytorch",
"mbart",
"text2text-generation",
"es",
"arxiv:2001.08210",
"transformers",
"summarization",
"autotrain_compatible"
] | summarization | false | ELiRF | null | ELiRF/mbart-large-cc25-dacsa-es | 484 | null | transformers | 2,366 | ---
language: es
tags:
- summarization
widget:
- text: "La Universitat Politècnica de València (UPV), a través del proyecto Atenea “plataforma de mujeres, arte y tecnología” y en colaboración con las compañías tecnológicas Metric Salad y Zetalab, ha digitalizado y modelado en 3D para la 35ª edición del Festival Dansa València, que se celebra del 2 al 10 de abril, la primera pieza de danza en un metaverso específico.La pieza No es amor, dirigida por Lara Misó, forma parte de la programación de esta edición del Festival Dansa València y explora la figura geométrica del círculo desde todas sus perspectivas: espacial, corporal y compositiva. No es amor está inspirada en el trabajo de la artista japonesa Yayoi Kusama y mira de cerca las diferentes facetas de una obsesión. Así da cabida a la insistencia, la repetición, el trastorno, la hipnosis y la liberación. El proceso de digitalización, materializado por Metric Salad y ZetaLab, ha sido complejo respecto a otros ya realizados debido al enorme desafío que conlleva el modelado en 3D de cuerpos en movimiento al ritmo de la composición de la obra. El objetivo era generar una experiencia lo más realista posible y fidedigna de la original para que el resultado final fuera un proceso absolutamente inmersivo. Así, el metaverso está compuesto por figuras modeladas en 3D junto a cuatro proyecciones digitalizadas en pantallas flotantes con las que el usuario podrá interactuar según se vaya acercando, bien mediante los comandos del ordenador, bien a través de gafas de realidad virtual. El objetivo es que cuando el usuario se acerque a cada una de las proyecciones tenga la sensación de una inmersión casi completa al fundirse con el contenido audiovisual que le genere una experiencia intimista y muy real."
---
# mBART (large-cc25 model), fine-tuned on the *Dataset for Automatic summarization of Catalan and Spanish newspaper Articles (DACSA)* dataset for Spanish
The mBART model was presented in [Multilingual Denoising Pre-training for Neural Machine Translation](https://arxiv.org/abs/2001.08210) by Yinhan Liu, Jiatao Gu, Naman Goyal, Xian Li, Sergey Edunov Marjan Ghazvininejad, Mike Lewis, Luke Zettlemoyer. The large-cc25 version of the mBART model is pre-trained in 25 languages, including English, Spanish, Italian, and other ones.
# Model description
The mBART-large-cc25 model has been fine-tuned for abstractive text summarization for Spanish.
# Training data
The mBART-larges-cc25 model has been fine-tuned on *the Dataset for Automatic summarization of Catalan and Spanish newspaper Articles (DACSA)* dataset, specifically with the Spanish articles. The Spanish subset contains 1.802.919 document-summary pairs of Spanish news articles.
The DACSA dataset can be requested at the following address: https://xarrador.dsic.upv.es/resources/dacsa
# Intended uses & limitations
The model can be used for text summarization, especially in news articles.
# How to use
You can use the summarization model with the [pipeline API](https://huggingface.co/transformers/main_classes/pipelines.html):
```python
from transformers import pipeline
summarizer = pipeline("summarization", model="ELiRF/mbart-large-cc25-dacsa-es")
ARTICLE = """La Universitat Politècnica de València (UPV), a través del
proyecto Atenea “plataforma de mujeres, arte y tecnología” y en colaboración
con las compañías tecnológicas Metric Salad y Zetalab, ha digitalizado y
modelado en 3D para la 35ª edición del Festival Dansa València, que se celebra
del 2 al 10 de abril, la primera pieza de danza en un metaverso específico.La
pieza No es amor, dirigida por Lara Misó, forma parte de la programación de
esta edición del Festival Dansa València y explora la figura geométrica del
círculo desde todas sus perspectivas: espacial, corporal y compositiva. No es
amor está inspirada en el trabajo de la artista japonesa Yayoi Kusama y mira de
cerca las diferentes facetas de una obsesión. Así da cabida a la insistencia,
la repetición, el trastorno, la hipnosis y la liberación. El proceso de
digitalización, materializado por Metric Salad y ZetaLab, ha sido complejo
respecto a otros ya realizados debido al enorme desafío que conlleva el
modelado en 3D de cuerpos en movimiento al ritmo de la composición de la obra.
El objetivo era generar una experiencia lo más realista posible y fidedigna de
la original para que el resultado final fuera un proceso absolutamente
inmersivo. Así, el metaverso está compuesto por figuras modeladas en 3D junto a
cuatro proyecciones digitalizadas en pantallas flotantes con las que el usuario
podrá interactuar según se vaya acercando, bien mediante los comandos del
ordenador, bien a través de gafas de realidad virtual. El objetivo es que
cuando el usuario se acerque a cada una de las proyecciones tenga la sensación
de una inmersión casi completa al fundirse con el contenido audiovisual que le
genere una experiencia intimista y muy real.
"""
print(summarizer(ARTICLE, truncation=True))
>>>[{'summary_text': "La pieza No es amor, dirigida por Lara Misó, forma parte de la programación de esta edición del Festival Dansa València."}]
```
### BibTeX entry
```bibtex
@inproceedings{segarra-soriano-etal-2022-dacsa,
title = "{DACSA}: A large-scale Dataset for Automatic summarization of {C}atalan and {S}panish newspaper Articles",
author = "Segarra Soriano, Encarnaci{\'o}n and
Ahuir, Vicent and
Hurtado, Llu{\'\i}s-F. and
Gonz{\'a}lez, Jos{\'e}",
booktitle = "Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies",
month = jul,
year = "2022",
address = "Seattle, United States",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2022.naacl-main.434",
pages = "5931--5943",
abstract = "The application of supervised methods to automatic summarization requires the availability of adequate corpora consisting of a set of document-summary pairs. As in most Natural Language Processing tasks, the great majority of available datasets for summarization are in English, making it difficult to develop automatic summarization models for other languages. Although Spanish is gradually forming part of some recent summarization corpora, it is not the same for minority languages such as Catalan.In this work, we describe the construction of a corpus of Catalan and Spanish newspapers, the Dataset for Automatic summarization of Catalan and Spanish newspaper Articles (DACSA) corpus. It is a high-quality large-scale corpus that can be used to train summarization models for Catalan and Spanish.We have carried out an analysis of the corpus, both in terms of the style of the summaries and the difficulty of the summarization task. In particular, we have used a set of well-known metrics in the summarization field in order to characterize the corpus. Additionally, for benchmarking purposes, we have evaluated the performances of some extractive and abstractive summarization systems on the DACSA corpus.",
}
``` |
ckiplab/bert-tiny-chinese-ner | a18df36c7f73ae3329877506be48a86c09599e8d | 2022-05-10T03:28:12.000Z | [
"pytorch",
"bert",
"token-classification",
"zh",
"transformers",
"license:gpl-3.0",
"autotrain_compatible"
] | token-classification | false | ckiplab | null | ckiplab/bert-tiny-chinese-ner | 483 | null | transformers | 2,367 | ---
language:
- zh
thumbnail: https://ckip.iis.sinica.edu.tw/files/ckip_logo.png
tags:
- pytorch
- token-classification
- bert
- zh
license: gpl-3.0
---
# CKIP BERT Tiny Chinese
This project provides traditional Chinese transformers models (including ALBERT, BERT, GPT2) and NLP tools (including word segmentation, part-of-speech tagging, named entity recognition).
這個專案提供了繁體中文的 transformers 模型(包含 ALBERT、BERT、GPT2)及自然語言處理工具(包含斷詞、詞性標記、實體辨識)。
## Homepage
- https://github.com/ckiplab/ckip-transformers
## Contributers
- [Mu Yang](https://muyang.pro) at [CKIP](https://ckip.iis.sinica.edu.tw) (Author & Maintainer)
## Usage
Please use BertTokenizerFast as tokenizer instead of AutoTokenizer.
請使用 BertTokenizerFast 而非 AutoTokenizer。
```
from transformers import (
BertTokenizerFast,
AutoModel,
)
tokenizer = BertTokenizerFast.from_pretrained('bert-base-chinese')
model = AutoModel.from_pretrained('ckiplab/bert-tiny-chinese-ner')
```
For full usage and more information, please refer to https://github.com/ckiplab/ckip-transformers.
有關完整使用方法及其他資訊,請參見 https://github.com/ckiplab/ckip-transformers 。
|
navteca/roberta-base-squad2 | 6c7bec0e5e05d24070d598661767d8004c097553 | 2021-04-06T16:27:48.000Z | [
"pytorch",
"jax",
"roberta",
"question-answering",
"en",
"dataset:squad_v2",
"transformers",
"license:mit",
"autotrain_compatible"
] | question-answering | false | navteca | null | navteca/roberta-base-squad2 | 482 | null | transformers | 2,368 | ---
datasets:
- squad_v2
language: en
license: mit
pipeline_tag: question-answering
tags:
- roberta
- question-answering
---
# Roberta base model for QA (SQuAD 2.0)
This model uses [roberta-base](https://huggingface.co/roberta-base).
## Training Data
The models have been trained on the [SQuAD 2.0](https://rajpurkar.github.io/SQuAD-explorer/) dataset.
It can be used for question answering task.
## Usage and Performance
The trained model can be used like this:
```python
from transformers import AutoModelForQuestionAnswering, AutoTokenizer, pipeline
# Load model & tokenizer
roberta_model = AutoModelForQuestionAnswering.from_pretrained('navteca/roberta-base-squad2')
roberta_tokenizer = AutoTokenizer.from_pretrained('navteca/roberta-base-squad2')
# Get predictions
nlp = pipeline('question-answering', model=roberta_model, tokenizer=roberta_tokenizer)
result = nlp({
'question': 'How many people live in Berlin?',
'context': 'Berlin had a population of 3,520,031 registered inhabitants in an area of 891.82 square kilometers.'
})
print(result)
#{
# "answer": "3,520,031"
# "end": 36,
# "score": 0.96186668,
# "start": 27,
#}
```
|
Helsinki-NLP/opus-mt-en-he | 6b58caddd6ee489cafb8dd45d0e76a9c9b61de4c | 2021-09-09T21:35:50.000Z | [
"pytorch",
"rust",
"marian",
"text2text-generation",
"en",
"he",
"transformers",
"translation",
"license:apache-2.0",
"autotrain_compatible"
] | translation | false | Helsinki-NLP | null | Helsinki-NLP/opus-mt-en-he | 481 | 1 | transformers | 2,369 | ---
tags:
- translation
license: apache-2.0
---
### opus-mt-en-he
* source languages: en
* target languages: he
* OPUS readme: [en-he](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/en-he/README.md)
* dataset: opus
* model: transformer-align
* pre-processing: normalization + SentencePiece
* download original weights: [opus-2019-12-18.zip](https://object.pouta.csc.fi/OPUS-MT-models/en-he/opus-2019-12-18.zip)
* test set translations: [opus-2019-12-18.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/en-he/opus-2019-12-18.test.txt)
* test set scores: [opus-2019-12-18.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/en-he/opus-2019-12-18.eval.txt)
## Benchmarks
| testset | BLEU | chr-F |
|-----------------------|-------|-------|
| Tatoeba.en.he | 40.1 | 0.609 |
|
speechbrain/asr-crdnn-transformerlm-librispeech | 6c7c0a922755a083805630e0c1bfc2258da3fe4c | 2021-11-30T00:38:21.000Z | [
"en",
"dataset:librispeech",
"arxiv:2106.04624",
"speechbrain",
"automatic-speech-recognition",
"CTC",
"Attention",
"Tranformer",
"pytorch",
"license:apache-2.0"
] | automatic-speech-recognition | false | speechbrain | null | speechbrain/asr-crdnn-transformerlm-librispeech | 481 | null | speechbrain | 2,370 | ---
language: "en"
thumbnail:
tags:
- automatic-speech-recognition
- CTC
- Attention
- Tranformer
- pytorch
- speechbrain
license: "apache-2.0"
datasets:
- librispeech
metrics:
- wer
- cer
---
<iframe src="https://ghbtns.com/github-btn.html?user=speechbrain&repo=speechbrain&type=star&count=true&size=large&v=2" frameborder="0" scrolling="0" width="170" height="30" title="GitHub"></iframe>
<br/><br/>
# CRDNN with CTC/Attention and RNNLM trained on LibriSpeech
This repository provides all the necessary tools to perform automatic speech
recognition from an end-to-end system pretrained on LibriSpeech (EN) within
SpeechBrain. For a better experience, we encourage you to learn more about
[SpeechBrain](https://speechbrain.github.io).
The performance of the model is the following:
| Release | Test clean WER | Test other WER | GPUs |
|:-------------:|:--------------:|:--------------:|:--------:|
| 05-03-21 | 2.90 | 8.51 | 1xV100 16GB |
## Pipeline description
This ASR system is composed of 3 different but linked blocks:
1. Tokenizer (unigram) that transforms words into subword units and trained with
the train transcriptions of LibriSpeech.
2. Neural language model (Transformer LM) trained on the full 10M words dataset.
3. Acoustic model (CRDNN + CTC/Attention). The CRDNN architecture is made of
N blocks of convolutional neural networks with normalization and pooling on the
frequency domain. Then, a bidirectional LSTM with projection layers is connected
to a final DNN to obtain the final acoustic representation that is given to
the CTC and attention decoders.
The system is trained with recordings sampled at 16kHz (single channel).
The code will automatically normalize your audio (i.e., resampling + mono channel selection) when calling *transcribe_file* if needed.
## Install SpeechBrain
First of all, please install SpeechBrain with the following command:
```
pip install speechbrain
```
Please notice that we encourage you to read our tutorials and learn more about
[SpeechBrain](https://speechbrain.github.io).
### Transcribing your own audio files (in English)
```python
from speechbrain.pretrained import EncoderDecoderASR
asr_model = EncoderDecoderASR.from_hparams(source="speechbrain/asr-crdnn-transformerlm-librispeech", savedir="pretrained_models/asr-crdnn-transformerlm-librispeech")
asr_model.transcribe_file("speechbrain/asr-crdnn-transformerlm-librispeech/example.wav")
```
### Inference on GPU
To perform inference on the GPU, add `run_opts={"device":"cuda"}` when calling the `from_hparams` method.
## Parallel Inference on a Batch
Please, [see this Colab notebook](https://colab.research.google.com/drive/1hX5ZI9S4jHIjahFCZnhwwQmFoGAi3tmu?usp=sharing) to figure out how to transcribe in parallel a batch of input sentences using a pre-trained model.
### Training
The model was trained with SpeechBrain (Commit hash: 'eca313cc').
To train it from scratch follow these steps:
1. Clone SpeechBrain:
```bash
git clone https://github.com/speechbrain/speechbrain/
```
2. Install it:
```bash
cd speechbrain
pip install -r requirements.txt
pip install -e .
```
3. Run Training:
```bash
cd recipes/LibriSpeech/ASR/seq2seq
python train.py hparams/train_BPE_5000.yaml --data_folder=your_data_folder
```
You can find our training results (models, logs, etc) [here](https://drive.google.com/drive/folders/1kSwdBT8kDhnmTLzrOPDL77LX_Eq-3Tzl?usp=sharing).
### Limitations
The SpeechBrain team does not provide any warranty on the performance achieved by this model when used on other datasets.
# **About SpeechBrain**
- Website: https://speechbrain.github.io/
- Code: https://github.com/speechbrain/speechbrain/
- HuggingFace: https://huggingface.co/speechbrain/
# **Citing SpeechBrain**
Please, cite SpeechBrain if you use it for your research or business.
```bibtex
@misc{speechbrain,
title={{SpeechBrain}: A General-Purpose Speech Toolkit},
author={Mirco Ravanelli and Titouan Parcollet and Peter Plantinga and Aku Rouhe and Samuele Cornell and Loren Lugosch and Cem Subakan and Nauman Dawalatabad and Abdelwahab Heba and Jianyuan Zhong and Ju-Chieh Chou and Sung-Lin Yeh and Szu-Wei Fu and Chien-Feng Liao and Elena Rastorgueva and François Grondin and William Aris and Hwidong Na and Yan Gao and Renato De Mori and Yoshua Bengio},
year={2021},
eprint={2106.04624},
archivePrefix={arXiv},
primaryClass={eess.AS},
note={arXiv:2106.04624}
}
```
|
IIC/dpr-spanish-passage_encoder-squades-base | fa963e0a2626fa6ea5553894d5685cd262cc6382 | 2022-04-02T15:08:22.000Z | [
"pytorch",
"bert",
"fill-mask",
"es",
"dataset:squad_es",
"arxiv:2004.04906",
"transformers",
"sentence similarity",
"passage retrieval",
"model-index",
"autotrain_compatible"
] | fill-mask | false | IIC | null | IIC/dpr-spanish-passage_encoder-squades-base | 481 | 3 | transformers | 2,371 | ---
language:
- es
tags:
- sentence similarity # Example: audio
- passage retrieval # Example: automatic-speech-recognition
datasets:
- squad_es
metrics:
- eval_loss: 0.08608942725107592
- eval_accuracy: 0.9925325215819639
- eval_f1: 0.8805402320715237
- average_rank: 0.27430093209054596
model-index:
- name: dpr-spanish-passage_encoder-squades-base
results:
- task:
type: text similarity # Required. Example: automatic-speech-recognition
name: text similarity # Optional. Example: Speech Recognition
dataset:
type: squad_es # Required. Example: common_voice. Use dataset id from https://hf.co/datasets
name: squad_es # Required. Example: Common Voice zh-CN
args: es # Optional. Example: zh-CN
metrics:
- type: loss
value: 0.08608942725107592
name: eval_loss
- type: accuracy
value: 0.99
name: accuracy
- type: f1
value: 0.88
name: f1
- type: avgrank
value: 0.2743
name: avgrank
---
[Dense Passage Retrieval](https://arxiv.org/abs/2004.04906) is a set of tools for performing state of the art open-domain question answering. It was initially developed by Facebook and there is an [official repository](https://github.com/facebookresearch/DPR). DPR is intended to retrieve the relevant documents to answer a given question, and is composed of 2 models, one for encoding passages and other for encoding questions. This concrete model is the one used for encoding passages.
Regarding its use, this model should be used to vectorize the documents in the database of a question answering system in Spanish. Then, when a new question enters, [the question encoder should be used](https://huggingface.co/avacaondata/dpr-spanish-question_encoder-squades-base) to encode it, and then we compare that encoding with the encodings of the database to find the most similar documents, which then should be used for either extracting the answer or generating it.
For training the model, we used the spanish version of SQUAD, [SQUAD-ES](https://huggingface.co/datasets/squad_es), with which we created positive and negative examples for the model.
Example of use:
```python
from transformers import DPRContextEncoder, DPRContextEncoderTokenizer
model_str = "avacaondata/dpr-spanish-passage_encoder-squades-base"
tokenizer = DPRContextEncoderTokenizer.from_pretrained(model_str)
model = DPRContextEncoder.from_pretrained(model_str)
input_ids = tokenizer("Usain Bolt ganó varias medallas de oro en las Olimpiadas del año 2012", return_tensors="pt")["input_ids"]
embeddings = model(input_ids).pooler_output
```
The full metrics of this model on the evaluation split of SQUADES are:
```
evalloss: 0.08608942725107592
acc: 0.9925325215819639
f1: 0.8805402320715237
acc_and_f1: 0.9365363768267438
average_rank: 0.27430093209054596
```
And the classification report:
```
precision recall f1-score support
hard_negative 0.9961 0.9961 0.9961 325878
positive 0.8805 0.8805 0.8805 10514
accuracy 0.9925 336392
macro avg 0.9383 0.9383 0.9383 336392
weighted avg 0.9925 0.9925 0.9925 336392
```
### Contributions
Thanks to [@avacaondata](https://huggingface.co/avacaondata), [@alborotis](https://huggingface.co/alborotis), [@albarji](https://huggingface.co/albarji), [@Dabs](https://huggingface.co/Dabs), [@GuillemGSubies](https://huggingface.co/GuillemGSubies) for adding this model. |
luyaojie/uie-base-en | 966f8b1fc4c74e94ab552081605913ad5133cc41 | 2022-04-15T13:09:21.000Z | [
"pytorch",
"t5",
"text2text-generation",
"transformers",
"license:cc-by-nc-sa-4.0",
"autotrain_compatible"
] | text2text-generation | false | luyaojie | null | luyaojie/uie-base-en | 481 | null | transformers | 2,372 | ---
license: cc-by-nc-sa-4.0
---
|
zuu/grammar-error-correcter | e6b6507ef6e9308d0e344845c2e7486eaaecca5d | 2022-06-02T18:10:59.000Z | [
"pytorch",
"t5",
"text2text-generation",
"transformers",
"autotrain_compatible"
] | text2text-generation | false | zuu | null | zuu/grammar-error-correcter | 481 | 0 | transformers | 2,373 | ```python
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
GED_TOKENIZER = AutoTokenizer.from_pretrained("zuu/grammar-error-correcter")
GED_MODEL = AutoModelForSeq2SeqLM.from_pretrained("zuu/grammar-error-correcter")
# Incorrect text
incorrect_text = 'young children should avoid exposure to contageous disease'
# Tokenize text
tokens= GED_TOKENIZER(
[incorrect_text],
padding=True,
return_tensors='pt'
)
corrections = GED_MODEL.generate(**tokens)
corrections = GED_TOKENIZER.batch_decode(
corrections,
skip_special_tokens=True
)
``` |
cambridgeltl/simctg_lccc_dialogue | 45b51e1c98f8dc6f0b65a2ade9bdff6d9a128b79 | 2022-06-25T19:21:55.000Z | [
"pytorch",
"gpt2",
"text-generation",
"arxiv:2008.03946",
"arxiv:2202.06417",
"transformers"
] | text-generation | false | cambridgeltl | null | cambridgeltl/simctg_lccc_dialogue | 480 | null | transformers | 2,374 | This model provides a Chinese GPT-2 language model trained with SimCTG on the LCCC benchmark [(Wang et al., 2020)](https://arxiv.org/pdf/2008.03946v2.pdf) based on our paper [_A Contrastive Framework for Neural Text Generation_](https://arxiv.org/abs/2202.06417).
We provide a detailed tutorial on how to apply SimCTG and Contrastive Search in our [project repo](https://github.com/yxuansu/SimCTG#4-huggingface-style-tutorials-back-to-top). In the following, we illustrate a brief tutorial on how to use our approach to perform text generation.
## 1. Installation of SimCTG:
```yaml
pip install simctg --upgrade
```
## 2. Initialize SimCTG Model:
```python
import torch
# load SimCTG language model
from simctg.simctggpt import SimCTGGPT
model_name = r'cambridgeltl/simctg_lccc_dialogue'
model = SimCTGGPT(model_name)
model.eval()
tokenizer = model.tokenizer
eos_token = '[SEP]'
eos_token_id = tokenizer.convert_tokens_to_ids([eos_token])[0]
```
## 3. Prepare the Text Prefix:
```python
context_list = ['刺猬很可爱!以前别人送了只没养,味儿太大!', '是很可爱但是非常臭', '是啊,没办法养', '那个怎么养哦不会扎手吗']
prefix_text = eos_token.join(context_list).strip(eos_token) + eos_token
print ('Prefix is: {}'.format(prefix_text))
tokens = tokenizer.tokenize(prefix_text)
input_ids = tokenizer.convert_tokens_to_ids(tokens)
input_ids = torch.LongTensor(input_ids).view(1,-1)
```
## 4. Generate Text with Contrastive Search:
```python
beam_width, alpha, decoding_len = 5, 0.6, 64
output = model.fast_contrastive_search(input_ids=input_ids, beam_width=beam_width, alpha=alpha,
decoding_len=decoding_len, end_of_sequence_token_id=eos_token_id,
early_stop=True)
print("Output:\n" + 100 * '-')
print(''.join(tokenizer.decode(output)))
'''
Prefix is: 刺猬很可爱!以前别人送了只没养,味儿太大![SEP]是很可爱但是非常臭[SEP]是啊,没办法养[SEP]那个怎么养哦不会扎手吗[SEP]
Output:
----------------------------------------------------------------------------------------------------
刺猬很可爱!以前别人送了只没养,味儿太大![SEP]是很可爱但是非常臭[SEP]是啊,没办法养[SEP]那个怎么养哦不会扎手吗[SEP]我觉得还好,就是有点臭
'''
```
For more details of our work, please refer to our main [project repo](https://github.com/yxuansu/SimCTG).
## 5. Citation:
If you find our paper and resources useful, please kindly leave a star and cite our paper. Thanks!
```bibtex
@article{su2022contrastive,
title={A Contrastive Framework for Neural Text Generation},
author={Su, Yixuan and Lan, Tian and Wang, Yan and Yogatama, Dani and Kong, Lingpeng and Collier, Nigel},
journal={arXiv preprint arXiv:2202.06417},
year={2022}
}
```
|
j-hartmann/emotion-english-roberta-large | ab319b8cfc7ca91478e74bce639ed8b8e0927d0c | 2021-08-29T11:48:09.000Z | [
"pytorch",
"roberta",
"text-classification",
"en",
"transformers",
"sentiment",
"emotion",
"twitter",
"reddit"
] | text-classification | false | j-hartmann | null | j-hartmann/emotion-english-roberta-large | 480 | 1 | transformers | 2,375 | ---
language: "en"
tags:
- roberta
- sentiment
- emotion
- twitter
- reddit
widget:
- text: "Oh wow. I didn't know that."
- text: "This movie always makes me cry.."
- text: "Oh Happy Day"
---
## Description ℹ
With this model, you can classify emotions in English text data. The model was trained on 6 diverse datasets and predicts Ekman's 6 basic emotions, plus a neutral class:
1) anger 🤬
2) disgust 🤢
3) fear 😨
4) joy 😀
5) neutral 😐
6) sadness 😭
7) surprise 😲
The model is a fine-tuned checkpoint of [RoBERTa-large](https://huggingface.co/roberta-large).
For further details on this emotion model, please refer to the model card of its [DistilRoBERTa](https://huggingface.co/j-hartmann/emotion-english-distilroberta-base) version. |
Helsinki-NLP/opus-mt-tc-big-fr-en | df6dfc5e22be93169ad457196ad8472ad749f886 | 2022-06-01T13:01:21.000Z | [
"pytorch",
"marian",
"text2text-generation",
"en",
"fr",
"transformers",
"translation",
"opus-mt-tc",
"license:cc-by-4.0",
"model-index",
"autotrain_compatible"
] | translation | false | Helsinki-NLP | null | Helsinki-NLP/opus-mt-tc-big-fr-en | 480 | 1 | transformers | 2,376 | ---
language:
- en
- fr
tags:
- translation
- opus-mt-tc
license: cc-by-4.0
model-index:
- name: opus-mt-tc-big-fr-en
results:
- task:
name: Translation fra-eng
type: translation
args: fra-eng
dataset:
name: flores101-devtest
type: flores_101
args: fra eng devtest
metrics:
- name: BLEU
type: bleu
value: 46.0
- task:
name: Translation fra-eng
type: translation
args: fra-eng
dataset:
name: multi30k_test_2016_flickr
type: multi30k-2016_flickr
args: fra-eng
metrics:
- name: BLEU
type: bleu
value: 49.7
- task:
name: Translation fra-eng
type: translation
args: fra-eng
dataset:
name: multi30k_test_2017_flickr
type: multi30k-2017_flickr
args: fra-eng
metrics:
- name: BLEU
type: bleu
value: 52.0
- task:
name: Translation fra-eng
type: translation
args: fra-eng
dataset:
name: multi30k_test_2017_mscoco
type: multi30k-2017_mscoco
args: fra-eng
metrics:
- name: BLEU
type: bleu
value: 50.6
- task:
name: Translation fra-eng
type: translation
args: fra-eng
dataset:
name: multi30k_test_2018_flickr
type: multi30k-2018_flickr
args: fra-eng
metrics:
- name: BLEU
type: bleu
value: 44.9
- task:
name: Translation fra-eng
type: translation
args: fra-eng
dataset:
name: news-test2008
type: news-test2008
args: fra-eng
metrics:
- name: BLEU
type: bleu
value: 26.5
- task:
name: Translation fra-eng
type: translation
args: fra-eng
dataset:
name: newsdiscussdev2015
type: newsdiscussdev2015
args: fra-eng
metrics:
- name: BLEU
type: bleu
value: 34.4
- task:
name: Translation fra-eng
type: translation
args: fra-eng
dataset:
name: newsdiscusstest2015
type: newsdiscusstest2015
args: fra-eng
metrics:
- name: BLEU
type: bleu
value: 40.2
- task:
name: Translation fra-eng
type: translation
args: fra-eng
dataset:
name: tatoeba-test-v2021-08-07
type: tatoeba_mt
args: fra-eng
metrics:
- name: BLEU
type: bleu
value: 59.8
- task:
name: Translation fra-eng
type: translation
args: fra-eng
dataset:
name: tico19-test
type: tico19-test
args: fra-eng
metrics:
- name: BLEU
type: bleu
value: 41.3
- task:
name: Translation fra-eng
type: translation
args: fra-eng
dataset:
name: newstest2009
type: wmt-2009-news
args: fra-eng
metrics:
- name: BLEU
type: bleu
value: 30.4
- task:
name: Translation fra-eng
type: translation
args: fra-eng
dataset:
name: newstest2010
type: wmt-2010-news
args: fra-eng
metrics:
- name: BLEU
type: bleu
value: 33.4
- task:
name: Translation fra-eng
type: translation
args: fra-eng
dataset:
name: newstest2011
type: wmt-2011-news
args: fra-eng
metrics:
- name: BLEU
type: bleu
value: 33.8
- task:
name: Translation fra-eng
type: translation
args: fra-eng
dataset:
name: newstest2012
type: wmt-2012-news
args: fra-eng
metrics:
- name: BLEU
type: bleu
value: 33.6
- task:
name: Translation fra-eng
type: translation
args: fra-eng
dataset:
name: newstest2013
type: wmt-2013-news
args: fra-eng
metrics:
- name: BLEU
type: bleu
value: 34.8
- task:
name: Translation fra-eng
type: translation
args: fra-eng
dataset:
name: newstest2014
type: wmt-2014-news
args: fra-eng
metrics:
- name: BLEU
type: bleu
value: 39.4
---
# opus-mt-tc-big-fr-en
Neural machine translation model for translating from French (fr) to English (en).
This model is part of the [OPUS-MT project](https://github.com/Helsinki-NLP/Opus-MT), an effort to make neural machine translation models widely available and accessible for many languages in the world. All models are originally trained using the amazing framework of [Marian NMT](https://marian-nmt.github.io/), an efficient NMT implementation written in pure C++. The models have been converted to pyTorch using the transformers library by huggingface. Training data is taken from [OPUS](https://opus.nlpl.eu/) and training pipelines use the procedures of [OPUS-MT-train](https://github.com/Helsinki-NLP/Opus-MT-train).
* Publications: [OPUS-MT – Building open translation services for the World](https://aclanthology.org/2020.eamt-1.61/) and [The Tatoeba Translation Challenge – Realistic Data Sets for Low Resource and Multilingual MT](https://aclanthology.org/2020.wmt-1.139/) (Please, cite if you use this model.)
```
@inproceedings{tiedemann-thottingal-2020-opus,
title = "{OPUS}-{MT} {--} Building open translation services for the World",
author = {Tiedemann, J{\"o}rg and Thottingal, Santhosh},
booktitle = "Proceedings of the 22nd Annual Conference of the European Association for Machine Translation",
month = nov,
year = "2020",
address = "Lisboa, Portugal",
publisher = "European Association for Machine Translation",
url = "https://aclanthology.org/2020.eamt-1.61",
pages = "479--480",
}
@inproceedings{tiedemann-2020-tatoeba,
title = "The Tatoeba Translation Challenge {--} Realistic Data Sets for Low Resource and Multilingual {MT}",
author = {Tiedemann, J{\"o}rg},
booktitle = "Proceedings of the Fifth Conference on Machine Translation",
month = nov,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.wmt-1.139",
pages = "1174--1182",
}
```
## Model info
* Release: 2022-03-09
* source language(s): fra
* target language(s): eng
* model: transformer-big
* data: opusTCv20210807+bt ([source](https://github.com/Helsinki-NLP/Tatoeba-Challenge))
* tokenization: SentencePiece (spm32k,spm32k)
* original model: [opusTCv20210807+bt_transformer-big_2022-03-09.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/fra-eng/opusTCv20210807+bt_transformer-big_2022-03-09.zip)
* more information released models: [OPUS-MT fra-eng README](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/fra-eng/README.md)
## Usage
A short example code:
```python
from transformers import MarianMTModel, MarianTokenizer
src_text = [
"J'ai adoré l'Angleterre.",
"C'était la seule chose à faire."
]
model_name = "pytorch-models/opus-mt-tc-big-fr-en"
tokenizer = MarianTokenizer.from_pretrained(model_name)
model = MarianMTModel.from_pretrained(model_name)
translated = model.generate(**tokenizer(src_text, return_tensors="pt", padding=True))
for t in translated:
print( tokenizer.decode(t, skip_special_tokens=True) )
# expected output:
# I loved England.
# It was the only thing to do.
```
You can also use OPUS-MT models with the transformers pipelines, for example:
```python
from transformers import pipeline
pipe = pipeline("translation", model="Helsinki-NLP/opus-mt-tc-big-fr-en")
print(pipe("J'ai adoré l'Angleterre."))
# expected output: I loved England.
```
## Benchmarks
* test set translations: [opusTCv20210807+bt_transformer-big_2022-03-09.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/fra-eng/opusTCv20210807+bt_transformer-big_2022-03-09.test.txt)
* test set scores: [opusTCv20210807+bt_transformer-big_2022-03-09.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/fra-eng/opusTCv20210807+bt_transformer-big_2022-03-09.eval.txt)
* benchmark results: [benchmark_results.txt](benchmark_results.txt)
* benchmark output: [benchmark_translations.zip](benchmark_translations.zip)
| langpair | testset | chr-F | BLEU | #sent | #words |
|----------|---------|-------|-------|-------|--------|
| fra-eng | tatoeba-test-v2021-08-07 | 0.73772 | 59.8 | 12681 | 101754 |
| fra-eng | flores101-devtest | 0.69350 | 46.0 | 1012 | 24721 |
| fra-eng | multi30k_test_2016_flickr | 0.68005 | 49.7 | 1000 | 12955 |
| fra-eng | multi30k_test_2017_flickr | 0.70596 | 52.0 | 1000 | 11374 |
| fra-eng | multi30k_test_2017_mscoco | 0.69356 | 50.6 | 461 | 5231 |
| fra-eng | multi30k_test_2018_flickr | 0.65751 | 44.9 | 1071 | 14689 |
| fra-eng | newsdiscussdev2015 | 0.59008 | 34.4 | 1500 | 27759 |
| fra-eng | newsdiscusstest2015 | 0.62603 | 40.2 | 1500 | 26982 |
| fra-eng | newssyscomb2009 | 0.57488 | 31.1 | 502 | 11818 |
| fra-eng | news-test2008 | 0.54316 | 26.5 | 2051 | 49380 |
| fra-eng | newstest2009 | 0.56959 | 30.4 | 2525 | 65399 |
| fra-eng | newstest2010 | 0.59561 | 33.4 | 2489 | 61711 |
| fra-eng | newstest2011 | 0.60271 | 33.8 | 3003 | 74681 |
| fra-eng | newstest2012 | 0.59507 | 33.6 | 3003 | 72812 |
| fra-eng | newstest2013 | 0.59691 | 34.8 | 3000 | 64505 |
| fra-eng | newstest2014 | 0.64533 | 39.4 | 3003 | 70708 |
| fra-eng | tico19-test | 0.63326 | 41.3 | 2100 | 56323 |
## Acknowledgements
The work is supported by the [European Language Grid](https://www.european-language-grid.eu/) as [pilot project 2866](https://live.european-language-grid.eu/catalogue/#/resource/projects/2866), by the [FoTran project](https://www.helsinki.fi/en/researchgroups/natural-language-understanding-with-cross-lingual-grounding), funded by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 771113), and the [MeMAD project](https://memad.eu/), funded by the European Union’s Horizon 2020 Research and Innovation Programme under grant agreement No 780069. We are also grateful for the generous computational resources and IT infrastructure provided by [CSC -- IT Center for Science](https://www.csc.fi/), Finland.
## Model conversion info
* transformers version: 4.16.2
* OPUS-MT git hash: 3405783
* port time: Wed Apr 13 19:02:28 EEST 2022
* port machine: LM0-400-22516.local
|
ZipperXYZ/DialoGPT-medium-TheWorldMachineExpressive2 | 4e7b2dda5588080784ac6f7482060026296d5cea | 2022-06-22T01:36:28.000Z | [
"pytorch",
"gpt2",
"text-generation",
"transformers",
"conversational"
] | conversational | false | ZipperXYZ | null | ZipperXYZ/DialoGPT-medium-TheWorldMachineExpressive2 | 480 | null | transformers | 2,377 | ---
tags:
- conversational
---
# The world machine DialoGPT model |
facebook/hubert-xlarge-ll60k | b0cef767123fe004883915a053f538f1737a1e47 | 2021-10-20T10:20:44.000Z | [
"pytorch",
"tf",
"hubert",
"feature-extraction",
"en",
"dataset:libri-light",
"arxiv:2106.07447",
"transformers",
"speech",
"license:apache-2.0"
] | feature-extraction | false | facebook | null | facebook/hubert-xlarge-ll60k | 479 | 3 | transformers | 2,378 | ---
language: en
datasets:
- libri-light
tags:
- speech
license: apache-2.0
---
# Hubert-Extra-Large
[Facebook's Hubert](https://ai.facebook.com/blog/hubert-self-supervised-representation-learning-for-speech-recognition-generation-and-compression)
The extra large model pretrained on 16kHz sampled speech audio. When using the model make sure that your speech input is also sampled at 16Khz. Note that this model should be fine-tuned on a downstream task, like Automatic Speech Recognition, Speaker Identification, Intent Classification, Emotion Recognition, etc...
The model was pretrained on [Libri-Light](https://github.com/facebookresearch/libri-light).
[Paper](https://arxiv.org/abs/2106.07447)
Authors: Wei-Ning Hsu, Benjamin Bolte, Yao-Hung Hubert Tsai, Kushal Lakhotia, Ruslan Salakhutdinov, Abdelrahman Mohamed
**Abstract**
Self-supervised approaches for speech representation learning are challenged by three unique problems: (1) there are multiple sound units in each input utterance, (2) there is no lexicon of input sound units during the pre-training phase, and (3) sound units have variable lengths with no explicit segmentation. To deal with these three problems, we propose the Hidden-Unit BERT (HuBERT) approach for self-supervised speech representation learning, which utilizes an offline clustering step to provide aligned target labels for a BERT-like prediction loss. A key ingredient of our approach is applying the prediction loss over the masked regions only, which forces the model to learn a combined acoustic and language model over the continuous inputs. HuBERT relies primarily on the consistency of the unsupervised clustering step rather than the intrinsic quality of the assigned cluster labels. Starting with a simple k-means teacher of 100 clusters, and using two iterations of clustering, the HuBERT model either matches or improves upon the state-of-the-art wav2vec 2.0 performance on the Librispeech (960h) and Libri-light (60,000h) benchmarks with 10min, 1h, 10h, 100h, and 960h fine-tuning subsets. Using a 1B parameter model, HuBERT shows up to 19% and 13% relative WER reduction on the more challenging dev-other and test-other evaluation subsets.
The original model can be found under https://github.com/pytorch/fairseq/tree/master/examples/hubert .
# Usage
See [this blog](https://huggingface.co/blog/fine-tune-wav2vec2-english) for more information on how to fine-tune the model. Note that the class `Wav2Vec2ForCTC` has to be replaced by `HubertForCTC`. |
mrm8488/roberta-med-small2roberta-med-small-finetuned-cnn_daily_mail-summarization | 3df1c9e04581ca196e80b9ce1e4c22db6431bec7 | 2021-04-06T09:22:39.000Z | [
"pytorch",
"encoder-decoder",
"text2text-generation",
"en",
"dataset:cnn_dailymail",
"transformers",
"summarization",
"license:apache-2.0",
"autotrain_compatible"
] | summarization | false | mrm8488 | null | mrm8488/roberta-med-small2roberta-med-small-finetuned-cnn_daily_mail-summarization | 479 | null | transformers | 2,379 | ---
language: en
license: apache-2.0
datasets:
- cnn_dailymail
tags:
- summarization
---
Shared [RoBERTa2RoBERTa (med-small)](https://huggingface.co/nyu-mll/roberta-med-small-1M-1) Summarization with 🤗EncoderDecoder Framework
This model is a warm-started *RoBERTaShared* (med-small) model fine-tuned on the *cnn_dailymail* summarization dataset.
The model achieves a **16.90** ROUGE-2 score on *cnn_dailymail*'s test dataset. |
facebook/xglm-7.5B | b4f0ef7d74603a0e63a05695cd38d08260961e3a | 2022-02-14T22:54:52.000Z | [
"pytorch",
"xglm",
"text-generation",
"arxiv:2112.10668",
"transformers",
"license:mit"
] | text-generation | false | facebook | null | facebook/xglm-7.5B | 478 | 5 | transformers | 2,380 | ---
license: mit
thumbnail: https://huggingface.co/front/thumbnails/facebook.png
inference: false
---
# XGLM-7.5B
XGLM-7.5B is a multilingual autoregressive language model (with 7.5 billion parameters) trained on a balanced corpus of a diverse set of languages totaling 500 billion sub-tokens. It was introduced in the paper [Few-shot Learning with Multilingual Language Models](https://arxiv.org/abs/2112.10668) by Xi Victoria Lin\*, Todor Mihaylov, Mikel Artetxe, Tianlu Wang, Shuohui Chen, Daniel Simig, Myle Ott, Naman Goyal, Shruti Bhosale, Jingfei Du, Ramakanth Pasunuru, Sam Shleifer, Punit Singh Koura, Vishrav Chaudhary, Brian O'Horo, Jeff Wang, Luke Zettlemoyer, Zornitsa Kozareva, Mona Diab, Veselin Stoyanov, Xian Li\* (\*Equal Contribution). The original implementation was released in [this repository](https://github.com/pytorch/fairseq/tree/main/examples/xglm).
## Training Data Statistics
The training data statistics of XGLM-7.5B is shown in the table below.
| ISO-639-1| family | name | # tokens | ratio | ratio w/ lowRes upsampling |
|:--------|:-----------------|:------------------------|-------------:|------------:|-------------:|
| en | Indo-European | English | 803526736124 | 0.489906 | 0.3259 |
| ru | Indo-European | Russian | 147791898098 | 0.0901079 | 0.0602 |
| zh | Sino-Tibetan | Chinese | 132770494630 | 0.0809494 | 0.0483 |
| de | Indo-European | German | 89223707856 | 0.0543992 | 0.0363 |
| es | Indo-European | Spanish | 87303083105 | 0.0532282 | 0.0353 |
| fr | Indo-European | French | 77419639775 | 0.0472023 | 0.0313 |
| ja | Japonic | Japanese | 66054364513 | 0.040273 | 0.0269 |
| it | Indo-European | Italian | 41930465338 | 0.0255648 | 0.0171 |
| pt | Indo-European | Portuguese | 36586032444 | 0.0223063 | 0.0297 |
| el | Indo-European | Greek (modern) | 28762166159 | 0.0175361 | 0.0233 |
| ko | Koreanic | Korean | 20002244535 | 0.0121953 | 0.0811 |
| fi | Uralic | Finnish | 16804309722 | 0.0102455 | 0.0681 |
| id | Austronesian | Indonesian | 15423541953 | 0.00940365 | 0.0125 |
| tr | Turkic | Turkish | 12413166065 | 0.00756824 | 0.0101 |
| ar | Afro-Asiatic | Arabic | 12248607345 | 0.00746791 | 0.0099 |
| vi | Austroasiatic | Vietnamese | 11199121869 | 0.00682804 | 0.0091 |
| th | Tai–Kadai | Thai | 10842172807 | 0.00661041 | 0.044 |
| bg | Indo-European | Bulgarian | 9703797869 | 0.00591635 | 0.0393 |
| ca | Indo-European | Catalan | 7075834775 | 0.0043141 | 0.0287 |
| hi | Indo-European | Hindi | 3448390110 | 0.00210246 | 0.014 |
| et | Uralic | Estonian | 3286873851 | 0.00200399 | 0.0133 |
| bn | Indo-European | Bengali, Bangla | 1627447450 | 0.000992245 | 0.0066 |
| ta | Dravidian | Tamil | 1476973397 | 0.000900502 | 0.006 |
| ur | Indo-European | Urdu | 1351891969 | 0.000824241 | 0.0055 |
| sw | Niger–Congo | Swahili | 907516139 | 0.000553307 | 0.0037 |
| te | Dravidian | Telugu | 689316485 | 0.000420272 | 0.0028 |
| eu | Language isolate | Basque | 105304423 | 6.42035e-05 | 0.0043 |
| my | Sino-Tibetan | Burmese | 101358331 | 6.17976e-05 | 0.003 |
| ht | Creole | Haitian, Haitian Creole | 86584697 | 5.27902e-05 | 0.0035 |
| qu | Quechuan | Quechua | 3236108 | 1.97304e-06 | 0.0001 |
## Model card
For intended usage of the model, please refer to the [model card](https://github.com/pytorch/fairseq/blob/main/examples/xglm/model_card.md) released by the XGLM-7.5B development team.
## Example (COPA)
The following snippet shows how to evaluate our models (GPT-3 style, zero-shot) on the Choice of Plausible Alternatives (COPA) task, using examples in English, Chinese and Hindi.
```python
import torch
import torch.nn.functional as F
from transformers import XGLMTokenizer, XGLMForCausalLM
tokenizer = XGLMTokenizer.from_pretrained("facebook/xglm-7.5B")
model = XGLMForCausalLM.from_pretrained("facebook/xglm-7.5B")
data_samples = {
'en': [
{
"premise": "I wanted to conserve energy.",
"choice1": "I swept the floor in the unoccupied room.",
"choice2": "I shut off the light in the unoccupied room.",
"question": "effect",
"label": "1"
},
{
"premise": "The flame on the candle went out.",
"choice1": "I blew on the wick.",
"choice2": "I put a match to the wick.",
"question": "cause",
"label": "0"
}
],
'zh': [
{
"premise": "我想节约能源。",
"choice1": "我在空着的房间里扫了地板。",
"choice2": "我把空房间里的灯关了。",
"question": "effect",
"label": "1"
},
{
"premise": "蜡烛上的火焰熄灭了。",
"choice1": "我吹灭了灯芯。",
"choice2": "我把一根火柴放在灯芯上。",
"question": "cause",
"label": "0"
}
],
'hi': [
{
"premise": "M te vle konsève enèji.",
"choice1": "Mwen te fin baleye chanm lib la.",
"choice2": "Mwen te femen limyè nan chanm lib la.",
"question": "effect",
"label": "1"
},
{
"premise": "Flam bouji a te etenn.",
"choice1": "Mwen te soufle bouji a.",
"choice2": "Mwen te limen mèch bouji a.",
"question": "cause",
"label": "0"
}
]
}
def get_logprobs(prompt):
inputs = tokenizer(prompt, return_tensors="pt")
input_ids, output_ids = inputs["input_ids"], inputs["input_ids"][:, 1:]
outputs = model(**inputs, labels=input_ids)
logits = outputs.logits
logprobs = torch.gather(F.log_softmax(logits, dim=2), 2, output_ids.unsqueeze(2))
return logprobs
# Zero-shot evaluation for the Choice of Plausible Alternatives (COPA) task.
# A return value of 0 indicates that the first alternative is more plausible,
# while 1 indicates that the second alternative is more plausible.
def COPA_eval(prompt, alternative1, alternative2):
lprob1 = get_logprobs(prompt + "\n" + alternative1).sum()
lprob2 = get_logprobs(prompt + "\n" + alternative2).sum()
return 0 if lprob1 > lprob2 else 1
for lang in data_samples_long:
for idx, example in enumerate(data_samples_long[lang]):
predict = COPA_eval(example["premise"], example["choice1"], example["choice2"])
print(f'{lang}-{idx}', predict, example['label'])
# en-0 1 1
# en-1 0 0
# zh-0 1 1
# zh-1 0 0
# hi-0 1 1
# hi-1 0 0
``` |
sadakmed/distiluse-base-multilingual-cased-v2 | d4e9bba5ac7e7bb5a86e3b97e8150e8fc1fbd931 | 2021-09-22T09:37:21.000Z | [
"pytorch",
"distilbert",
"feature-extraction",
"multilingual",
"sentence-transformers",
"DistilBert",
"Universal Sentence Encoder",
"sentence-embeddings",
"sentence-similarity",
"license:apache-2.0"
] | feature-extraction | false | sadakmed | null | sadakmed/distiluse-base-multilingual-cased-v2 | 478 | null | sentence-transformers | 2,381 | ---
language: multilingual
tags:
- DistilBert
- Universal Sentence Encoder
- sentence-embeddings
- sentence-transformers
- sentence-similarity
license: apache-2.0
---
While v1 model supports 15 languages, this version supports 50+ languages. However, performance on the 15 languages mentioned in v1 are reported to be a bit lower.
Note that ST has additional two layers(Pooling, Linear), that cannot be saved in any predefined model in HG. |
ethanyt/guwen-quote | a5a28406ac0e3ab13727a3295c15f84f425ac9e8 | 2021-06-17T08:22:56.000Z | [
"pytorch",
"roberta",
"token-classification",
"zh",
"transformers",
"chinese",
"classical chinese",
"literary chinese",
"ancient chinese",
"bert",
"quotation detection",
"license:apache-2.0",
"autotrain_compatible"
] | token-classification | false | ethanyt | null | ethanyt/guwen-quote | 477 | null | transformers | 2,382 | ---
language:
- "zh"
thumbnail: "https://user-images.githubusercontent.com/9592150/97142000-cad08e00-179a-11eb-88df-aff9221482d8.png"
tags:
- "chinese"
- "classical chinese"
- "literary chinese"
- "ancient chinese"
- "bert"
- "pytorch"
- "quotation detection"
license: "apache-2.0"
pipeline_tag: "token-classification"
widget:
- text: "子曰学而时习之不亦说乎有朋自远方来不亦乐乎人不知而不愠不亦君子乎有子曰其为人也孝弟而好犯上者鲜矣不好犯上而好作乱者未之有也君子务本本立而道生孝弟也者其为仁之本与子曰巧言令色鲜矣仁曾子曰吾日三省吾身为人谋而不忠乎与朋友交而不信乎传不习乎子曰道千乘之国敬事而信节用而爱人使民以时"
---
# Guwen Quote
A Classical Chinese Quotation Detector.
Note: There are some problems with decoding using the default sequence classification model. Use the CRF model to achieve the best results. CRF related code please refer to
[Guwen Models](https://github.com/ethan-yt/guwen-models).
See also:
<a href="https://github.com/ethan-yt/guwen-models">
<img align="center" width="400" src="https://github-readme-stats.vercel.app/api/pin/?username=ethan-yt&repo=guwen-models&bg_color=30,e96443,904e95&title_color=fff&text_color=fff&icon_color=fff&show_owner=true" />
</a>
<a href="https://github.com/ethan-yt/cclue/">
<img align="center" width="400" src="https://github-readme-stats.vercel.app/api/pin/?username=ethan-yt&repo=cclue&bg_color=30,e96443,904e95&title_color=fff&text_color=fff&icon_color=fff&show_owner=true" />
</a>
<a href="https://github.com/ethan-yt/guwenbert/">
<img align="center" width="400" src="https://github-readme-stats.vercel.app/api/pin/?username=ethan-yt&repo=guwenbert&bg_color=30,e96443,904e95&title_color=fff&text_color=fff&icon_color=fff&show_owner=true" />
</a> |
google/pegasus-arxiv | 8d68b512ac8f83bd6ecfb651a793a35e71fdc402 | 2020-10-22T16:33:20.000Z | [
"pytorch",
"pegasus",
"text2text-generation",
"en",
"arxiv:1912.08777",
"transformers",
"summarization",
"autotrain_compatible"
] | summarization | false | google | null | google/pegasus-arxiv | 477 | 1 | transformers | 2,383 | ---
language: en
tags:
- summarization
---
### Pegasus Models
See Docs: [here](https://huggingface.co/transformers/master/model_doc/pegasus.html)
Original TF 1 code [here](https://github.com/google-research/pegasus)
Authors: Jingqing Zhang, Yao Zhao, Mohammad Saleh and Peter J. Liu on Dec 18, 2019
Maintained by: [@sshleifer](https://twitter.com/sam_shleifer)
Task: Summarization
The following is copied from the authors' README.
# Mixed & Stochastic Checkpoints
We train a pegasus model with sampled gap sentence ratios on both C4 and HugeNews, and stochastically sample important sentences. The updated the results are reported in this table.
| dataset | C4 | HugeNews | Mixed & Stochastic|
| ---- | ---- | ---- | ----|
| xsum | 45.20/22.06/36.99 | 47.21/24.56/39.25 | 47.60/24.83/39.64|
| cnn_dailymail | 43.90/21.20/40.76 | 44.17/21.47/41.11 | 44.16/21.56/41.30|
| newsroom | 45.07/33.39/41.28 | 45.15/33.51/41.33 | 45.98/34.20/42.18|
| multi_news | 46.74/17.95/24.26 | 47.52/18.72/24.91 | 47.65/18.75/24.95|
| gigaword | 38.75/19.96/36.14 | 39.12/19.86/36.24 | 39.65/20.47/36.76|
| wikihow | 43.07/19.70/34.79 | 41.35/18.51/33.42 | 46.39/22.12/38.41 *|
| reddit_tifu | 26.54/8.94/21.64 | 26.63/9.01/21.60 | 27.99/9.81/22.94|
| big_patent | 53.63/33.16/42.25 | 53.41/32.89/42.07 | 52.29/33.08/41.66 *|
| arxiv | 44.70/17.27/25.80 | 44.67/17.18/25.73 | 44.21/16.95/25.67|
| pubmed | 45.49/19.90/27.69 | 45.09/19.56/27.42 | 45.97/20.15/28.25|
| aeslc | 37.69/21.85/36.84 | 37.40/21.22/36.45 | 37.68/21.25/36.51|
| billsum | 57.20/39.56/45.80 | 57.31/40.19/45.82 | 59.67/41.58/47.59|
The "Mixed & Stochastic" model has the following changes:
- trained on both C4 and HugeNews (dataset mixture is weighted by their number of examples).
- trained for 1.5M instead of 500k (we observe slower convergence on pretraining perplexity).
- the model uniformly sample a gap sentence ratio between 15% and 45%.
- importance sentences are sampled using a 20% uniform noise to importance scores.
- the sentencepiece tokenizer is updated to be able to encode newline character.
(*) the numbers of wikihow and big_patent datasets are not comparable because of change in tokenization and data:
- wikihow dataset contains newline characters which is useful for paragraph segmentation, the C4 and HugeNews model's sentencepiece tokenizer doesn't encode newline and loose this information.
- we update the BigPatent dataset to preserve casing, some format cleanings are also changed, please refer to change in TFDS.
The "Mixed & Stochastic" model has the following changes (from pegasus-large in the paper):
trained on both C4 and HugeNews (dataset mixture is weighted by their number of examples).
trained for 1.5M instead of 500k (we observe slower convergence on pretraining perplexity).
the model uniformly sample a gap sentence ratio between 15% and 45%.
importance sentences are sampled using a 20% uniform noise to importance scores.
the sentencepiece tokenizer is updated to be able to encode newline character.
Citation
```
@misc{zhang2019pegasus,
title={PEGASUS: Pre-training with Extracted Gap-sentences for Abstractive Summarization},
author={Jingqing Zhang and Yao Zhao and Mohammad Saleh and Peter J. Liu},
year={2019},
eprint={1912.08777},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
``` |
gunghio/distilbert-base-multilingual-cased-finetuned-conll2003-ner | aeb8f1a4908c7f21676dd7c1572e303a685056e1 | 2022-05-25T08:55:03.000Z | [
"pytorch",
"distilbert",
"token-classification",
"en",
"de",
"nl",
"es",
"multilingual",
"dataset:conll2003",
"transformers",
"model-index",
"autotrain_compatible"
] | token-classification | false | gunghio | null | gunghio/distilbert-base-multilingual-cased-finetuned-conll2003-ner | 477 | null | transformers | 2,384 | ---
metrics:
- precision: 0.936
- recall: 0.9458
- f1: 0.9409
- accuracy: 0.9902
datasets:
- conll2003
language:
- en
- de
- nl
- es
- multilingual
model-index:
- name: gunghio/distilbert-base-multilingual-cased-finetuned-conll2003-ner
results:
- task:
type: ner
name: Named Entity Recognition
dataset:
type: conll2003
name: ConLL 2003
metrics:
- type: f1-score
value: 0.9409
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# gunghio/distilbert-base-multilingual-cased-finetuned-conll2003-ner
This model was trained from scratch on an conll2003 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0388
- Precision: 0.9360
- Recall: 0.9458
- F1: 0.9409
- Accuracy: 0.9902
## Model description
It is based on distilbert-base-multilingual-cased
## Intended uses & limitations
More information needed
## Training and evaluation data
Training dataset: [conll2003](https://huggingface.co/datasets/conll2003)
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 0.1653 | 1.0 | 878 | 0.0465 | 0.9267 | 0.9300 | 0.9283 | 0.9883 |
| 0.0322 | 2.0 | 1756 | 0.0404 | 0.9360 | 0.9431 | 0.9396 | 0.9897 |
| 0.0185 | 3.0 | 2634 | 0.0388 | 0.9360 | 0.9458 | 0.9409 | 0.9902 |
### Framework versions
- Transformers 4.6.1
- Pytorch 1.8.1+cu101
- Datasets 1.6.2
- Tokenizers 0.10.2
|
nsi319/legal-pegasus | 54ef2872d33bbff28eb09544bdecbf6699f5b0b8 | 2021-03-11T08:50:52.000Z | [
"pytorch",
"pegasus",
"text2text-generation",
"en",
"transformers",
"summarization",
"license:mit",
"autotrain_compatible"
] | summarization | false | nsi319 | null | nsi319/legal-pegasus | 477 | null | transformers | 2,385 | ---
language: en
tags: summarization
metrics:
- rouge
- precision
inference: false
license: mit
---
## PEGASUS for legal document summarization
**legal-pegasus** is a finetuned version of ([**google/pegasus-cnn_dailymail**](https://huggingface.co/google/pegasus-cnn_dailymail)) for the **legal domain**, trained to perform **abstractive summarization** task. The maximum length of input sequence is 1024 tokens.
## Training data
This model was trained on [**sec-litigation-releases**](https://www.sec.gov/litigation/litreleases.htm) dataset consisting more than 2700 litigation releases and complaints.
## How to use
```Python
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
tokenizer = AutoTokenizer.from_pretrained("nsi319/legal-pegasus")
model = AutoModelForSeq2SeqLM.from_pretrained("nsi319/legal-pegasus")
text = """On March 5, 2021, the Securities and Exchange Commission charged AT&T, Inc. with repeatedly violating Regulation FD, and three of its Investor Relations executives with aiding and abetting AT&T's violations, by selectively disclosing material nonpublic information to research analysts. According to the SEC's complaint, AT&T learned in March 2016 that a steeper-than-expected decline in its first quarter smartphone sales would cause AT&T's revenue to fall short of analysts' estimates for the quarter. The complaint alleges that to avoid falling short of the consensus revenue estimate for the third consecutive quarter, AT&T Investor Relations executives Christopher Womack, Michael Black, and Kent Evans made private, one-on-one phone calls to analysts at approximately 20 separate firms. On these calls, the AT&T executives allegedly disclosed AT&T's internal smartphone sales data and the impact of that data on internal revenue metrics, despite the fact that internal documents specifically informed Investor Relations personnel that AT&T's revenue and sales of smartphones were types of information generally considered "material" to AT&T investors, and therefore prohibited from selective disclosure under Regulation FD. The complaint further alleges that as a result of what they were told on these calls, the analysts substantially reduced their revenue forecasts, leading to the overall consensus revenue estimate falling to just below the level that AT&T ultimately reported to the public on April 26, 2016. The SEC's complaint, filed in federal district court in Manhattan, charges AT&T with violations of the disclosure provisions of Section 13(a) of the Securities Exchange Act of 1934 and Regulation FD thereunder, and charges Womack, Evans and Black with aiding and abetting these violations. The complaint seeks permanent injunctive relief and civil monetary penalties against each defendant. The SEC's investigation was conducted by George N. Stepaniuk, Thomas Peirce, and David Zetlin-Jones of the SEC's New York Regional Office. The SEC's litigation will be conducted by Alexander M. Vasilescu, Victor Suthammanont, and Mr. Zetlin-Jones. The case is being supervised by Sanjay Wadhwa."""
input_tokenized = tokenizer.encode(text, return_tensors='pt',max_length=1024,truncation=True)
summary_ids = model.generate(input_tokenized,
num_beams=9,
no_repeat_ngram_size=3,
length_penalty=2.0,
min_length=150,
max_length=250,
early_stopping=True)
summary = [tokenizer.decode(g, skip_special_tokens=True, clean_up_tokenization_spaces=False) for g in summary_ids][0]
### Summary Output
# The Securities and Exchange Commission today charged AT&T, Inc. and three of its Investor Relations executives with aiding and abetting the company's violations of the antifraud provisions of Section 10(b) of the Securities Exchange Act of 1934 and Rule 10b-5 thereunder. According to the SEC's complaint, the company learned in March 2016 that a steeper-than-expected decline in its first quarter smartphone sales would cause its revenue to fall short of analysts' estimates for the quarter. The complaint alleges that to avoid falling short of the consensus revenue estimate for the third consecutive quarter, the executives made private, one-on-one phone calls to analysts at approximately 20 separate firms. On these calls, the SEC alleges that Christopher Womack, Michael Black, and Kent Evans allegedly disclosed internal smartphone sales data and the impact of that data on internal revenue metrics. The SEC further alleges that as a result of what they were told, the analysts substantially reduced their revenue forecasts, leading to the overall consensus Revenue Estimate falling to just below the level that AT&t ultimately reported to the public on April 26, 2016. The SEC is seeking permanent injunctive relief and civil monetary penalties against each defendant.
```
## Evaluation results
| Model | rouge1 | rouge1-precision | rouge2 | rouge2-precision | rougeL | rougeL-precision |
|:-----------:|:-----:|:-----:|:------:|:-----:|:------:|:-----:|
| legal-pegasus | **57.39** | **62.97** | **26.85** | **28.42** | **30.91** | **33.22** |
| pegasus-cnn_dailymail | 43.16 | 45.68 | 13.75 | 14.56 | 18.82 | 20.07 |
|
hfl/chinese-electra-180g-large-discriminator | d017e219578df8e4885484edbc8969dbdea9cbe0 | 2021-03-03T01:29:12.000Z | [
"pytorch",
"tf",
"electra",
"zh",
"arxiv:2004.13922",
"transformers",
"license:apache-2.0"
] | null | false | hfl | null | hfl/chinese-electra-180g-large-discriminator | 476 | 3 | transformers | 2,386 | ---
language:
- zh
license: "apache-2.0"
---
# This model is trained on 180G data, we recommend using this one than the original version.
## Chinese ELECTRA
Google and Stanford University released a new pre-trained model called ELECTRA, which has a much compact model size and relatively competitive performance compared to BERT and its variants.
For further accelerating the research of the Chinese pre-trained model, the Joint Laboratory of HIT and iFLYTEK Research (HFL) has released the Chinese ELECTRA models based on the official code of ELECTRA.
ELECTRA-small could reach similar or even higher scores on several NLP tasks with only 1/10 parameters compared to BERT and its variants.
This project is based on the official code of ELECTRA: [https://github.com/google-research/electra](https://github.com/google-research/electra)
You may also interested in,
- Chinese BERT series: https://github.com/ymcui/Chinese-BERT-wwm
- Chinese ELECTRA: https://github.com/ymcui/Chinese-ELECTRA
- Chinese XLNet: https://github.com/ymcui/Chinese-XLNet
- Knowledge Distillation Toolkit - TextBrewer: https://github.com/airaria/TextBrewer
More resources by HFL: https://github.com/ymcui/HFL-Anthology
## Citation
If you find our resource or paper is useful, please consider including the following citation in your paper.
- https://arxiv.org/abs/2004.13922
```
@inproceedings{cui-etal-2020-revisiting,
title = "Revisiting Pre-Trained Models for {C}hinese Natural Language Processing",
author = "Cui, Yiming and
Che, Wanxiang and
Liu, Ting and
Qin, Bing and
Wang, Shijin and
Hu, Guoping",
booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: Findings",
month = nov,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://www.aclweb.org/anthology/2020.findings-emnlp.58",
pages = "657--668",
}
``` |
Visual-Attention-Network/van-base | 569d1d8e1323ad5baefa8c00b11d82de0e42cfad | 2022-03-31T12:45:44.000Z | [
"pytorch",
"van",
"image-classification",
"dataset:imagenet-1k",
"arxiv:2202.09741",
"transformers",
"vision",
"license:apache-2.0"
] | image-classification | false | Visual-Attention-Network | null | Visual-Attention-Network/van-base | 476 | null | transformers | 2,387 | ---
license: apache-2.0
tags:
- vision
- image-classification
datasets:
- imagenet-1k
widget:
- src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/tiger.jpg
example_title: Tiger
- src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/teapot.jpg
example_title: Teapot
- src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/palace.jpg
example_title: Palace
---
# Van
Van model trained on imagenet-1k. It was introduced in the paper [Visual Attention Network](https://arxiv.org/abs/2202.09741) and first released in [this repository](https://github.com/Visual-Attention-Network/VAN-Classification).
Disclaimer: The team releasing Van did not write a model card for this model so this model card has been written by the Hugging Face team.
## Model description
This paper introduces a new attention layer based on convolution operations able to capture both local and distant relationships. This is done by combining normal and large kernel convolution layers. The latter uses a dilated convolution to capture distant correlations.

## Intended uses & limitations
You can use the raw model for image classification. See the [model hub](https://huggingface.co/models?search=van) to look for
fine-tuned versions on a task that interests you.
### How to use
Here is how to use this model:
```python
>>> from transformers import AutoFeatureExtractor, VanForImageClassification
>>> import torch
>>> from datasets import load_dataset
>>> dataset = load_dataset("huggingface/cats-image")
>>> image = dataset["test"]["image"][0]
>>> feature_extractor = AutoFeatureExtractor.from_pretrained("Visual-Attention-Network/van-base")
>>> model = VanForImageClassification.from_pretrained("Visual-Attention-Network/van-base")
>>> inputs = feature_extractor(image, return_tensors="pt")
>>> with torch.no_grad():
... logits = model(**inputs).logits
>>> # model predicts one of the 1000 ImageNet classes
>>> predicted_label = logits.argmax(-1).item()
>>> print(model.config.id2label[predicted_label])
tabby, tabby cat
```
For more code examples, we refer to the [documentation](https://huggingface.co/docs/transformers/master/en/model_doc/van). |
DTAI-KULeuven/robbert-v2-dutch-sentiment | bb4e1466d94f15534e792fc6870040e024000432 | 2022-06-29T13:11:28.000Z | [
"pytorch",
"roberta",
"text-classification",
"nl",
"dataset:dbrd",
"transformers",
"Dutch",
"Flemish",
"RoBERTa",
"RobBERT",
"license:mit",
"model-index"
] | text-classification | false | DTAI-KULeuven | null | DTAI-KULeuven/robbert-v2-dutch-sentiment | 476 | null | transformers | 2,388 | ---
language: nl
license: mit
datasets:
- dbrd
model-index:
- name: robbert-v2-dutch-sentiment
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: dbrd
type: sentiment-analysis
split: test
metrics:
- name: Accuracy
type: accuracy
value: 0.93325
widget:
- text: "Ik erken dat dit een boek is, daarmee is alles gezegd."
- text: "Prachtig verhaal, heel mooi verteld en een verrassend einde... Een topper!"
thumbnail: "https://github.com/iPieter/RobBERT/raw/master/res/robbert_logo.png"
tags:
- Dutch
- Flemish
- RoBERTa
- RobBERT
---
<p align="center">
<img src="https://github.com/iPieter/RobBERT/raw/master/res/robbert_logo_with_name.png" alt="RobBERT: A Dutch RoBERTa-based Language Model" width="75%">
</p>
# RobBERT finetuned for sentiment analysis on DBRD
This is a finetuned model based on [RobBERT (v2)](https://huggingface.co/pdelobelle/robbert-v2-dutch-base). We used [DBRD](https://huggingface.co/datasets/dbrd), which consists of book reviews from [hebban.nl](https://hebban.nl). Hence our example sentences about books. We did some limited experiments to test if this also works for other domains, but this was not exactly amazing.
We released a distilled model and a `base`-sized model. Both models perform quite well, so there is only a slight performance tradeoff:
| Model | Identifier | Layers | #Params. | Accuracy |
|----------------|------------------------------------------------------------------------|--------|-----------|-----------|
| RobBERT (v2) | [`DTAI-KULeuven/robbert-v2-dutch-sentiment`](https://huggingface.co/DTAI-KULeuven/robbert-v2-dutch-sentiment) | 12 | 116 M |93.3* |
| RobBERTje - Merged (p=0.5)| [`DTAI-KULeuven/robbertje-merged-dutch-sentiment`](https://huggingface.co/DTAI-KULeuven/robbertje-merged-dutch-sentiment) | 6 | 74 M |92.9 |
*The results of RobBERT are of a different run than the one reported in the paper.
# Training data and setup
We used the [Dutch Book Reviews Dataset (DBRD)](https://huggingface.co/datasets/dbrd) from van der Burgh et al. (2019).
Originally, these reviews got a five-star rating, but this has been converted to positive (⭐️⭐️⭐️⭐️ and ⭐️⭐️⭐️⭐️⭐️), neutral (⭐️⭐️⭐️) and negative (⭐️ and ⭐️⭐️).
We used 19.5k reviews for the training set, 528 reviews for the validation set and 2224 to calculate the final accuracy.
The validation set was used to evaluate a random hyperparameter search over the learning rate, weight decay and gradient accumulation steps.
The full training details are available in [`training_args.bin`](https://huggingface.co/DTAI-KULeuven/robbert-v2-dutch-sentiment/blob/main/training_args.bin) as a binary PyTorch file.
# Limitations and biases
- The domain of the reviews is limited to book reviews.
- Most authors of the book reviews were women, which could have caused [a difference in performance for reviews written by men and women](https://www.aclweb.org/anthology/2020.findings-emnlp.292).
- This is _not_ the same model as we discussed in our paper, due to some conversion issues between the original training two years ago and now, it was easier to retrain this model. The accuracy is slightly lower, but the model was trained on the beginning of the reviews instead of the end of the reviews.
## Credits and citation
This project is created by [Pieter Delobelle](https://people.cs.kuleuven.be/~pieter.delobelle), [Thomas Winters](https://thomaswinters.be) and [Bettina Berendt](https://people.cs.kuleuven.be/~bettina.berendt/).
If you would like to cite our paper or models, you can use the following BibTeX:
```
@inproceedings{delobelle2020robbert,
title = "{R}ob{BERT}: a {D}utch {R}o{BERT}a-based {L}anguage {M}odel",
author = "Delobelle, Pieter and
Winters, Thomas and
Berendt, Bettina",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2020",
month = nov,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://www.aclweb.org/anthology/2020.findings-emnlp.292",
doi = "10.18653/v1/2020.findings-emnlp.292",
pages = "3255--3265"
}
``` |
facebook/wmt21-dense-24-wide-en-x | ee254716c52331df63a08ac929da96c59e68b057 | 2022-05-26T22:23:33.000Z | [
"pytorch",
"m2m_100",
"text2text-generation",
"multilingual",
"ha",
"is",
"ja",
"cs",
"ru",
"zh",
"de",
"en",
"arxiv:2108.03265",
"transformers",
"translation",
"wmt21",
"license:mit",
"autotrain_compatible"
] | translation | false | facebook | null | facebook/wmt21-dense-24-wide-en-x | 475 | 9 | transformers | 2,389 | ---
language:
- multilingual
- ha
- is
- ja
- cs
- ru
- zh
- de
- en
license: mit
tags:
- translation
- wmt21
---
# WMT 21 En-X
WMT 21 En-X is a 4.7B multilingual encoder-decoder (seq-to-seq) model trained for one-to-many multilingual translation.
It was introduced in this [paper](https://arxiv.org/abs/2108.03265) and first released in [this](https://github.com/pytorch/fairseq/tree/main/examples/wmt21) repository.
The model can directly translate English text into 7 other languages: Hausa (ha), Icelandic (is), Japanese (ja), Czech (cs), Russian (ru), Chinese (zh), German (de).
To translate into a target language, the target language id is forced as the first generated token.
To force the target language id as the first generated token, pass the `forced_bos_token_id` parameter to the `generate` method.
*Note: `M2M100Tokenizer` depends on `sentencepiece`, so make sure to install it before running the example.*
To install `sentencepiece` run `pip install sentencepiece`
Since the model was trained with domain tags, you should prepend them to the input as well.
* "wmtdata newsdomain": Use for sentences in the news domain
* "wmtdata otherdomain": Use for sentences in all other domain
```python
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
model = AutoModelForSeq2SeqLM.from_pretrained("facebook/wmt21-dense-24-wide-en-x")
tokenizer = AutoTokenizer.from_pretrained("facebook/wmt21-dense-24-wide-en-x")
inputs = tokenizer("wmtdata newsdomain One model for many languages.", return_tensors="pt")
# translate English to German
generated_tokens = model.generate(**inputs, forced_bos_token_id=tokenizer.get_lang_id("de"))
tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)
# => "Ein Modell für viele Sprachen."
# translate English to Icelandic
generated_tokens = model.generate(**inputs, forced_bos_token_id=tokenizer.get_lang_id("is"))
tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)
# => "Ein fyrirmynd fyrir mörg tungumál."
```
See the [model hub](https://huggingface.co/models?filter=wmt21) to look for more fine-tuned versions.
## Languages covered
English (en), Hausa (ha), Icelandic (is), Japanese (ja), Czech (cs), Russian (ru), Chinese (zh), German (de)
## BibTeX entry and citation info
```
@inproceedings{tran2021facebook
title={Facebook AI’s WMT21 News Translation Task Submission},
author={Chau Tran and Shruti Bhosale and James Cross and Philipp Koehn and Sergey Edunov and Angela Fan},
booktitle={Proc. of WMT},
year={2021},
}
``` |
alistair7/bbt-diagpt2-model | 2539b4c94eccb5f0ee1d9d86b191f492c70d4fa8 | 2021-06-06T21:49:18.000Z | [
"pytorch",
"gpt2",
"text-generation",
"transformers",
"conversational"
] | conversational | false | alistair7 | null | alistair7/bbt-diagpt2-model | 474 | null | transformers | 2,390 | ---
tags:
- conversational
---
# A conversational model based on the character of Sheldon Cooper from Big Bang Theory. |
impyadav/GPT2-FineTuned-Hinglish-Song-Generation | 7c5694e0b1ec8dab4f17a857b3778911af56609a | 2022-01-03T11:33:54.000Z | [
"pytorch",
"gpt2",
"text-generation",
"transformers"
] | text-generation | false | impyadav | null | impyadav/GPT2-FineTuned-Hinglish-Song-Generation | 474 | 1 | transformers | 2,391 | GPT-2 model fine-tuned on Custom old Hindi songs (Hinglish) for text-generation task (AI Lyricist)
language:
- Hindi
- Hinglish
|
JorisCos/DPRNNTasNet-ks2_Libri1Mix_enhsingle_16k | e37a839cfaa3ce1e0c04d93a0e242d8ec8a694ed | 2021-09-23T15:49:18.000Z | [
"pytorch",
"dataset:Libri1Mix",
"dataset:enh_single",
"asteroid",
"audio",
"DPRNNTasNet",
"audio-to-audio",
"license:cc-by-sa-4.0"
] | audio-to-audio | false | JorisCos | null | JorisCos/DPRNNTasNet-ks2_Libri1Mix_enhsingle_16k | 471 | null | asteroid | 2,392 | ---
tags:
- asteroid
- audio
- DPRNNTasNet
- audio-to-audio
datasets:
- Libri1Mix
- enh_single
license: cc-by-sa-4.0
---
## Asteroid model `JorisCos/DPRNNTasNet_Libri1Mix_enhsignle_16k`
Description:
This model was trained by Joris Cosentino using the librimix recipe in [Asteroid](https://github.com/asteroid-team/asteroid).
It was trained on the `enh_single` task of the Libri1Mix dataset.
Training config:
```yml
data:
n_src: 1
sample_rate: 16000
segment: 1
task: enh_single
train_dir: data/wav16k/min/train-360
valid_dir: data/wav16k/min/dev
filterbank:
kernel_size: 2
n_filters: 64
stride: 1
masknet:
bidirectional: true
bn_chan: 128
chunk_size: 250
dropout: 0
hid_size: 128
hop_size: 125
in_chan: 64
mask_act: sigmoid
n_repeats: 6
n_src: 1
out_chan: 64
optim:
lr: 0.001
optimizer: adam
weight_decay: 1.0e-05
training:
batch_size: 2
early_stop: true
epochs: 200
gradient_clipping: 5
half_lr: true
num_workers: 4
```
Results:
On Libri1Mix min test set :
```yml
si_sdr: 14.7228101708889
si_sdr_imp: 11.2730288650292
sdr: 15.35661405197161
sdr_imp: 11.853951252758595
sir: Infinity
sir_imp: NaN
sar: 15.35661405197161
sar_imp: 11.853951252758595
stoi: 0.9300461826351578
stoi_imp: 0.13412635909461715
```
License notice:
This work "DPRNNTasNet_Libri1Mix_enhsignle_16k" is a derivative of [LibriSpeech ASR corpus](http://www.openslr.org/12) by Vassil Panayotov,
used under [CC BY 4.0](https://creativecommons.org/licenses/by/4.0/); of The WSJ0 Hipster Ambient Mixtures
dataset by [Whisper.ai](http://wham.whisper.ai/), used under [CC BY-NC 4.0](https://creativecommons.org/licenses/by-nc/4.0/) (Research only).
"DPRNNTasNet_Libri1Mix_enhsignle_16k" is licensed under [Attribution-ShareAlike 3.0 Unported](https://creativecommons.org/licenses/by-sa/3.0/) by Joris Cosentino |
TransQuest/monotransquest-da-en_zh-wiki | fefd083a71d9be578d7d98191b880d4578898619 | 2021-06-03T19:04:32.000Z | [
"pytorch",
"xlm-roberta",
"text-classification",
"en-zh",
"transformers",
"Quality Estimation",
"monotransquest",
"DA",
"license:apache-2.0"
] | text-classification | false | TransQuest | null | TransQuest/monotransquest-da-en_zh-wiki | 471 | null | transformers | 2,393 | ---
language: en-zh
tags:
- Quality Estimation
- monotransquest
- DA
license: apache-2.0
---
# TransQuest: Translation Quality Estimation with Cross-lingual Transformers
The goal of quality estimation (QE) is to evaluate the quality of a translation without having access to a reference translation. High-accuracy QE that can be easily deployed for a number of language pairs is the missing piece in many commercial translation workflows as they have numerous potential uses. They can be employed to select the best translation when several translation engines are available or can inform the end user about the reliability of automatically translated content. In addition, QE systems can be used to decide whether a translation can be published as it is in a given context, or whether it requires human post-editing before publishing or translation from scratch by a human. The quality estimation can be done at different levels: document level, sentence level and word level.
With TransQuest, we have opensourced our research in translation quality estimation which also won the sentence-level direct assessment quality estimation shared task in [WMT 2020](http://www.statmt.org/wmt20/quality-estimation-task.html). TransQuest outperforms current open-source quality estimation frameworks such as [OpenKiwi](https://github.com/Unbabel/OpenKiwi) and [DeepQuest](https://github.com/sheffieldnlp/deepQuest).
## Features
- Sentence-level translation quality estimation on both aspects: predicting post editing efforts and direct assessment.
- Word-level translation quality estimation capable of predicting quality of source words, target words and target gaps.
- Outperform current state-of-the-art quality estimation methods like DeepQuest and OpenKiwi in all the languages experimented.
- Pre-trained quality estimation models for fifteen language pairs are available in [HuggingFace.](https://huggingface.co/TransQuest)
## Installation
### From pip
```bash
pip install transquest
```
### From Source
```bash
git clone https://github.com/TharinduDR/TransQuest.git
cd TransQuest
pip install -r requirements.txt
```
## Using Pre-trained Models
```python
import torch
from transquest.algo.sentence_level.monotransquest.run_model import MonoTransQuestModel
model = MonoTransQuestModel("xlmroberta", "TransQuest/monotransquest-da-en_zh-wiki", num_labels=1, use_cuda=torch.cuda.is_available())
predictions, raw_outputs = model.predict([["Reducerea acestor conflicte este importantă pentru conservare.", "Reducing these conflicts is not important for preservation."]])
print(predictions)
```
## Documentation
For more details follow the documentation.
1. **[Installation](https://tharindudr.github.io/TransQuest/install/)** - Install TransQuest locally using pip.
2. **Architectures** - Checkout the architectures implemented in TransQuest
1. [Sentence-level Architectures](https://tharindudr.github.io/TransQuest/architectures/sentence_level_architectures/) - We have released two architectures; MonoTransQuest and SiameseTransQuest to perform sentence level quality estimation.
2. [Word-level Architecture](https://tharindudr.github.io/TransQuest/architectures/word_level_architecture/) - We have released MicroTransQuest to perform word level quality estimation.
3. **Examples** - We have provided several examples on how to use TransQuest in recent WMT quality estimation shared tasks.
1. [Sentence-level Examples](https://tharindudr.github.io/TransQuest/examples/sentence_level_examples/)
2. [Word-level Examples](https://tharindudr.github.io/TransQuest/examples/word_level_examples/)
4. **Pre-trained Models** - We have provided pretrained quality estimation models for fifteen language pairs covering both sentence-level and word-level
1. [Sentence-level Models](https://tharindudr.github.io/TransQuest/models/sentence_level_pretrained/)
2. [Word-level Models](https://tharindudr.github.io/TransQuest/models/word_level_pretrained/)
5. **[Contact](https://tharindudr.github.io/TransQuest/contact/)** - Contact us for any issues with TransQuest
## Citations
If you are using the word-level architecture, please consider citing this paper which is accepted to [ACL 2021](https://2021.aclweb.org/).
```bash
@InProceedings{ranasinghe2021,
author = {Ranasinghe, Tharindu and Orasan, Constantin and Mitkov, Ruslan},
title = {An Exploratory Analysis of Multilingual Word Level Quality Estimation with Cross-Lingual Transformers},
booktitle = {Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics},
year = {2021}
}
```
If you are using the sentence-level architectures, please consider citing these papers which were presented in [COLING 2020](https://coling2020.org/) and in [WMT 2020](http://www.statmt.org/wmt20/) at EMNLP 2020.
```bash
@InProceedings{transquest:2020a,
author = {Ranasinghe, Tharindu and Orasan, Constantin and Mitkov, Ruslan},
title = {TransQuest: Translation Quality Estimation with Cross-lingual Transformers},
booktitle = {Proceedings of the 28th International Conference on Computational Linguistics},
year = {2020}
}
```
```bash
@InProceedings{transquest:2020b,
author = {Ranasinghe, Tharindu and Orasan, Constantin and Mitkov, Ruslan},
title = {TransQuest at WMT2020: Sentence-Level Direct Assessment},
booktitle = {Proceedings of the Fifth Conference on Machine Translation},
year = {2020}
}
```
|
neuralspace-reverie/indic-transformers-bn-distilbert | 4662cb6d6dd900f8dff05896cd1494a8ed0e1ecf | 2020-12-11T21:57:07.000Z | [
"pytorch",
"tf",
"distilbert",
"fill-mask",
"bn",
"transformers",
"MaskedLM",
"Bengali",
"DistilBERT",
"Question-Answering",
"Token Classification",
"Text Classification",
"autotrain_compatible"
] | fill-mask | false | neuralspace-reverie | null | neuralspace-reverie/indic-transformers-bn-distilbert | 471 | null | transformers | 2,394 | ---
language:
- bn
tags:
- MaskedLM
- Bengali
- DistilBERT
- Question-Answering
- Token Classification
- Text Classification
---
# Indic-Transformers Bengali DistilBERT
## Model description
This is a DistilBERT language model pre-trained on ~6 GB of monolingual training corpus. The pre-training data was majorly taken from [OSCAR](https://oscar-corpus.com/).
This model can be fine-tuned on various downstream tasks like text-classification, POS-tagging, question-answering, etc. Embeddings from this model can also be used for feature-based training.
## Intended uses & limitations
#### How to use
```
from transformers import AutoTokenizer, AutoModel
tokenizer = AutoTokenizer.from_pretrained('neuralspace-reverie/indic-transformers-bn-distilbert')
model = AutoModel.from_pretrained('neuralspace-reverie/indic-transformers-bn-distilbert')
text = "আপনি কেমন আছেন?"
input_ids = tokenizer(text, return_tensors='pt')['input_ids']
out = model(input_ids)[0]
print(out.shape)
# out = [1, 5, 768]
```
#### Limitations and bias
The original language model has been trained using `PyTorch` and hence the use of `pytorch_model.bin` weights file is recommended. The h5 file for `Tensorflow` has been generated manually by commands suggested [here](https://huggingface.co/transformers/model_sharing.html).
|
HooshvareLab/bert-fa-zwnj-base-ner | 17d4928f28c36fd74864c221a27134da8b6bf9bc | 2021-05-18T21:04:35.000Z | [
"pytorch",
"tf",
"jax",
"bert",
"token-classification",
"fa",
"transformers",
"autotrain_compatible"
] | token-classification | false | HooshvareLab | null | HooshvareLab/bert-fa-zwnj-base-ner | 470 | 3 | transformers | 2,395 | ---
language: fa
---
# BertNER
This model fine-tuned for the Named Entity Recognition (NER) task on a mixed NER dataset collected from [ARMAN](https://github.com/HaniehP/PersianNER), [PEYMA](http://nsurl.org/2019-2/tasks/task-7-named-entity-recognition-ner-for-farsi/), and [WikiANN](https://elisa-ie.github.io/wikiann/) that covered ten types of entities:
- Date (DAT)
- Event (EVE)
- Facility (FAC)
- Location (LOC)
- Money (MON)
- Organization (ORG)
- Percent (PCT)
- Person (PER)
- Product (PRO)
- Time (TIM)
## Dataset Information
| | Records | B-DAT | B-EVE | B-FAC | B-LOC | B-MON | B-ORG | B-PCT | B-PER | B-PRO | B-TIM | I-DAT | I-EVE | I-FAC | I-LOC | I-MON | I-ORG | I-PCT | I-PER | I-PRO | I-TIM |
|:------|----------:|--------:|--------:|--------:|--------:|--------:|--------:|--------:|--------:|--------:|--------:|--------:|--------:|--------:|--------:|--------:|--------:|--------:|--------:|--------:|--------:|
| Train | 29133 | 1423 | 1487 | 1400 | 13919 | 417 | 15926 | 355 | 12347 | 1855 | 150 | 1947 | 5018 | 2421 | 4118 | 1059 | 19579 | 573 | 7699 | 1914 | 332 |
| Valid | 5142 | 267 | 253 | 250 | 2362 | 100 | 2651 | 64 | 2173 | 317 | 19 | 373 | 799 | 387 | 717 | 270 | 3260 | 101 | 1382 | 303 | 35 |
| Test | 6049 | 407 | 256 | 248 | 2886 | 98 | 3216 | 94 | 2646 | 318 | 43 | 568 | 888 | 408 | 858 | 263 | 3967 | 141 | 1707 | 296 | 78 |
## Evaluation
The following tables summarize the scores obtained by model overall and per each class.
**Overall**
| Model | accuracy | precision | recall | f1 |
|:----------:|:--------:|:---------:|:--------:|:--------:|
| Bert | 0.995086 | 0.953454 | 0.961113 | 0.957268 |
**Per entities**
| | number | precision | recall | f1 |
|:---: |:------: |:---------: |:--------: |:--------: |
| DAT | 407 | 0.860636 | 0.864865 | 0.862745 |
| EVE | 256 | 0.969582 | 0.996094 | 0.982659 |
| FAC | 248 | 0.976190 | 0.991935 | 0.984000 |
| LOC | 2884 | 0.970232 | 0.971914 | 0.971072 |
| MON | 98 | 0.905263 | 0.877551 | 0.891192 |
| ORG | 3216 | 0.939125 | 0.954602 | 0.946800 |
| PCT | 94 | 1.000000 | 0.968085 | 0.983784 |
| PER | 2645 | 0.965244 | 0.965974 | 0.965608 |
| PRO | 318 | 0.981481 | 1.000000 | 0.990654 |
| TIM | 43 | 0.692308 | 0.837209 | 0.757895 |
## How To Use
You use this model with Transformers pipeline for NER.
### Installing requirements
```bash
pip install transformers
```
### How to predict using pipeline
```python
from transformers import AutoTokenizer
from transformers import AutoModelForTokenClassification # for pytorch
from transformers import TFAutoModelForTokenClassification # for tensorflow
from transformers import pipeline
model_name_or_path = "HooshvareLab/bert-fa-zwnj-base-ner"
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path)
model = AutoModelForTokenClassification.from_pretrained(model_name_or_path) # Pytorch
# model = TFAutoModelForTokenClassification.from_pretrained(model_name_or_path) # Tensorflow
nlp = pipeline("ner", model=model, tokenizer=tokenizer)
example = "در سال ۲۰۱۳ درگذشت و آندرتیکر و کین برای او مراسم یادبود گرفتند."
ner_results = nlp(example)
print(ner_results)
```
## Questions?
Post a Github issue on the [ParsNER Issues](https://github.com/hooshvare/parsner/issues) repo. |
KoboldAI/GPT-Neo-2.7B-Janeway | 56b0950204eafb4673c78595669cf8b04e413ab4 | 2022-03-20T12:57:50.000Z | [
"pytorch",
"gpt_neo",
"text-generation",
"en",
"transformers",
"license:mit"
] | text-generation | false | KoboldAI | null | KoboldAI/GPT-Neo-2.7B-Janeway | 469 | 2 | transformers | 2,396 | ---
language: en
license: mit
---
# GPT-Neo 2.7B - Janeway
## Model Description
GPT-Neo 2.7B-Janeway is a finetune created using EleutherAI's GPT-Neo 2.7B model.
## Training data
The training data contains around 2210 ebooks, mostly in the sci-fi and fantasy genres. The dataset is based on the same dataset used by GPT-Neo-2.7B-Picard, with 20% more data in various genres.
Some parts of the dataset have been prepended using the following text: `[Genre: <genre1>,<genre2>]`
### How to use
You can use this model directly with a pipeline for text generation. This example generates a different sequence each time it's run:
```py
>>> from transformers import pipeline
>>> generator = pipeline('text-generation', model='KoboldAI/GPT-Neo-2.7B-Janeway')
>>> generator("Welcome Captain Janeway, I apologize for the delay.", do_sample=True, min_length=50)
[{'generated_text': 'Welcome Captain Janeway, I apologize for the delay."\nIt's all right," Janeway said. "I'm certain that you're doing your best to keep me informed of what\'s going on."'}]
```
### Limitations and Biases
GPT-Neo was trained as an autoregressive language model. This means that its core functionality is taking a string of text and predicting the next token. While language models are widely used for tasks other than this, there are a lot of unknowns with this work.
GPT-Neo was trained on the Pile, a dataset known to contain profanity, lewd, and otherwise abrasive language. Depending on your usecase GPT-Neo may produce socially unacceptable text. See Sections 5 and 6 of the Pile paper for a more detailed analysis of the biases in the Pile.
As with all language models, it is hard to predict in advance how GPT-Neo will respond to particular prompts and offensive content may occur without warning. We recommend having a human curate or filter the outputs before releasing them, both to censor undesirable content and to improve the quality of the results.
### BibTeX entry and citation info
The model is made using the following software:
```bibtex
@software{gpt-neo,
author = {Black, Sid and
Leo, Gao and
Wang, Phil and
Leahy, Connor and
Biderman, Stella},
title = {{GPT-Neo: Large Scale Autoregressive Language
Modeling with Mesh-Tensorflow}},
month = mar,
year = 2021,
note = {{If you use this software, please cite it using
these metadata.}},
publisher = {Zenodo},
version = {1.0},
doi = {10.5281/zenodo.5297715},
url = {https://doi.org/10.5281/zenodo.5297715}
}
``` |
nvidia/segformer-b3-finetuned-cityscapes-1024-1024 | 74ff1cf1357f4bfa962660c491282dfc3e7c72c2 | 2022-07-20T09:53:50.000Z | [
"pytorch",
"tf",
"segformer",
"dataset:cityscapes",
"arxiv:2105.15203",
"transformers",
"vision",
"image-segmentation",
"license:apache-2.0"
] | image-segmentation | false | nvidia | null | nvidia/segformer-b3-finetuned-cityscapes-1024-1024 | 469 | null | transformers | 2,397 | ---
license: apache-2.0
tags:
- vision
- image-segmentation
datasets:
- cityscapes
widget:
- src: https://www.researchgate.net/profile/Anurag-Arnab/publication/315881952/figure/fig5/AS:667673876779033@1536197265755/Sample-results-on-the-Cityscapes-dataset-The-above-images-show-how-our-method-can-handle.jpg
example_title: Road
---
# SegFormer (b3-sized) model fine-tuned on CityScapes
SegFormer model fine-tuned on CityScapes at resolution 1024x1024. It was introduced in the paper [SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers](https://arxiv.org/abs/2105.15203) by Xie et al. and first released in [this repository](https://github.com/NVlabs/SegFormer).
Disclaimer: The team releasing SegFormer did not write a model card for this model so this model card has been written by the Hugging Face team.
## Model description
SegFormer consists of a hierarchical Transformer encoder and a lightweight all-MLP decode head to achieve great results on semantic segmentation benchmarks such as ADE20K and Cityscapes. The hierarchical Transformer is first pre-trained on ImageNet-1k, after which a decode head is added and fine-tuned altogether on a downstream dataset.
## Intended uses & limitations
You can use the raw model for semantic segmentation. See the [model hub](https://huggingface.co/models?other=segformer) to look for fine-tuned versions on a task that interests you.
### How to use
Here is how to use this model to classify an image of the COCO 2017 dataset into one of the 1,000 ImageNet classes:
```python
from transformers import SegformerFeatureExtractor, SegformerForSemanticSegmentation
from PIL import Image
import requests
feature_extractor = SegformerFeatureExtractor.from_pretrained("nvidia/segformer-b3-finetuned-cityscapes-1024-1024")
model = SegformerForSemanticSegmentation.from_pretrained("nvidia/segformer-b3-finetuned-cityscapes-1024-1024")
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
image = Image.open(requests.get(url, stream=True).raw)
inputs = feature_extractor(images=image, return_tensors="pt")
outputs = model(**inputs)
logits = outputs.logits # shape (batch_size, num_labels, height/4, width/4)
```
For more code examples, we refer to the [documentation](https://huggingface.co/transformers/model_doc/segformer.html#).
### BibTeX entry and citation info
```bibtex
@article{DBLP:journals/corr/abs-2105-15203,
author = {Enze Xie and
Wenhai Wang and
Zhiding Yu and
Anima Anandkumar and
Jose M. Alvarez and
Ping Luo},
title = {SegFormer: Simple and Efficient Design for Semantic Segmentation with
Transformers},
journal = {CoRR},
volume = {abs/2105.15203},
year = {2021},
url = {https://arxiv.org/abs/2105.15203},
eprinttype = {arXiv},
eprint = {2105.15203},
timestamp = {Wed, 02 Jun 2021 11:46:42 +0200},
biburl = {https://dblp.org/rec/journals/corr/abs-2105-15203.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
```
|
cardiffnlp/bertweet-base-emotion | 89c1f1de95e4ae3979c82155d9a8f00be45c1668 | 2021-05-20T14:45:11.000Z | [
"pytorch",
"tf",
"jax",
"roberta",
"text-classification",
"transformers"
] | text-classification | false | cardiffnlp | null | cardiffnlp/bertweet-base-emotion | 468 | null | transformers | 2,398 | |
ricardo-filho/bert-portuguese-cased-nli-assin-assin-2 | 17efd936dc233255fe5c95474813a51e9c3be9f8 | 2021-08-04T13:24:42.000Z | [
"pytorch",
"bert",
"feature-extraction",
"sentence-transformers",
"sentence-similarity",
"transformers"
] | sentence-similarity | false | ricardo-filho | null | ricardo-filho/bert-portuguese-cased-nli-assin-assin-2 | 468 | 3 | sentence-transformers | 2,399 | ---
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- feature-extraction
- sentence-similarity
- transformers
---
# {MODEL_NAME}
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
<!--- Describe your model here -->
## Usage (Sentence-Transformers)
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
```
pip install -U sentence-transformers
```
Then you can use the model like this:
```python
from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]
model = SentenceTransformer('{MODEL_NAME}')
embeddings = model.encode(sentences)
print(embeddings)
```
## Usage (HuggingFace Transformers)
Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
```python
from transformers import AutoTokenizer, AutoModel
import torch
#Mean Pooling - Take attention mask into account for correct averaging
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
# Sentences we want sentence embeddings for
sentences = ['This is an example sentence', 'Each sentence is converted']
# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}')
model = AutoModel.from_pretrained('{MODEL_NAME}')
# Tokenize sentences
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
# Compute token embeddings
with torch.no_grad():
model_output = model(**encoded_input)
# Perform pooling. In this case, max pooling.
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
print("Sentence embeddings:")
print(sentence_embeddings)
```
## Evaluation Results
<!--- Describe how your model was evaluated -->
For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME})
## Training
The model was trained with the parameters:
**DataLoader**:
`torch.utils.data.dataloader.DataLoader` of length 701 with parameters:
```
{'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
```
**Loss**:
`sentence_transformers.losses.SoftmaxLoss.SoftmaxLoss`
Parameters of the fit()-Method:
```
{
"callback": null,
"epochs": 1,
"evaluation_steps": 1000,
"evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator",
"max_grad_norm": 1,
"optimizer_class": "<class 'transformers.optimization.AdamW'>",
"optimizer_params": {
"lr": 2e-05
},
"scheduler": "WarmupLinear",
"steps_per_epoch": null,
"warmup_steps": 71,
"weight_decay": 0.01
}
```
## Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
)
```
## Citing & Authors
<!--- Describe where people can find more information --> |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.