modelId
stringlengths
4
112
sha
stringlengths
40
40
lastModified
stringlengths
24
24
tags
list
pipeline_tag
stringclasses
29 values
private
bool
1 class
author
stringlengths
2
38
config
null
id
stringlengths
4
112
downloads
float64
0
36.8M
likes
float64
0
712
library_name
stringclasses
17 values
__index_level_0__
int64
0
38.5k
readme
stringlengths
0
186k
NathanZhu/GabHateCorpusTrained
bfdee5d262c7269a3042f213ca5b974f97d75544
2021-05-18T21:47:53.000Z
[ "pytorch", "jax", "bert", "text-classification", "transformers" ]
text-classification
false
NathanZhu
null
NathanZhu/GabHateCorpusTrained
4
null
transformers
18,100
Test for use in Google Colab :'(
NbAiLab/flax-community-nordic-roberta-wiki
dca73411104f94895c3fe10255e32315f9341655
2021-12-01T13:23:02.000Z
[ "pytorch", "jax", "tensorboard", "roberta", "fill-mask", "no", "transformers", "norwegian", "license:cc-by-4.0", "autotrain_compatible" ]
fill-mask
false
NbAiLab
null
NbAiLab/flax-community-nordic-roberta-wiki
4
null
transformers
18,101
--- language: no license: cc-by-4.0 tags: - norwegian - roberta pipeline_tag: fill-mask widget: - text: På biblioteket kan du <mask> en bok. - text: Dette er et <mask> eksempel. - text: Av og til kan en språkmodell gi et <mask> resultat. - text: Som ansat får du <mask> for at bidrage til borgernes adgang til dansk kulturarv, til forskning og til samfundets demokratiske udvikling. --- # This is just an internal test used for debugging. Please do not use this model for anything. Visit the local repo instead. # Nordic Roberta Wikipedia ## Description Nord roberta model trainined on the swedish danish and norwegian wikipedia. ## Evaluation Evaluation on Named Entity recognition in Danish. I finetuned each model on 3 epochs on DaNE, repeated it 5 times for each model, and calculated 95% confidence intervals for the means. Here are the results: xlm-roberta-base : 88.01 +- 0.43 flax-community/nordic-roberta-wiki: 85.75 +- 0.69 (this model) Maltehb/danish-bert-botxo: 85.38 +- 0.55 flax-community/roberta-base-danish: 80.14 +- 1.47 flax-community/roberta-base-scandinavian : 78.03 +- 3.02 Maltehb/-l-ctra-danish-electra-small-cased: 57.87 +- 3.19 NbAiLab/nb-bert-base : 30.24 +- 1.21 Randomly initialised RoBERTa model: 19.79 +- 2.00 Evaluation on Sentiment analysis in Dansish Here are the results on test set, where each model has been trained 5 times, and the “+-” refers to a 95% confidence interval of the mean score: Maltehb/danish-bert-botxo: 65.19 +- 0.53 NbAiLab/nb-bert-base : 63.80 +- 0.77 xlm-roberta-base : 63.55 +- 1.59 flax-community/nordic-roberta-wiki : 56.46 +- 1.77 flax-community/roberta-base-danish : 54.73 +- 8.96 flax-community/roberta-base-scandinavian : 44.28 +- 9.21 Maltehb/-l-ctra-danish-electra-small-cased : 47.78 +- 12.65 Randomly initialised RoBERTa model: 36.96 +- 1.02 Maltehb/roberta-base-scandinavian : 33.65 +- 8.32 ## Model series This model is part of a series of models training on TPU with Flax Jax during Huggingface Flax/Jax challenge. ## Gpt models ## Swedish Gpt https://huggingface.co/birgermoell/swedish-gpt/ ## Swedish gpt wiki https://huggingface.co/flax-community/swe-gpt-wiki # Nordic gpt wiki https://huggingface.co/flax-community/nordic-gpt-wiki ## Dansk gpt wiki https://huggingface.co/flax-community/dansk-gpt-wiki ## Norsk gpt wiki https://huggingface.co/flax-community/norsk-gpt-wiki ## Roberta models ## Nordic Roberta Wiki https://huggingface.co/flax-community/nordic-roberta-wiki ## Swe Roberta Wiki Oscar https://huggingface.co/flax-community/swe-roberta-wiki-oscar ## Roberta Swedish Scandi https://huggingface.co/birgermoell/roberta-swedish-scandi ## Roberta Swedish https://huggingface.co/birgermoell/roberta-swedish ## Swedish T5 model https://huggingface.co/birgermoell/t5-base-swedish
NbAiLab/test_w5
64cb0948cb77e9345ec86c57c360175c36aacb23
2021-12-22T16:11:11.000Z
[ "pytorch", "jax", "tensorboard", "roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
NbAiLab
null
NbAiLab/test_w5
4
null
transformers
18,102
Just for performing some experiments. Do not use.
NbAiLab/test_w5_long_roberta_tokenizer
cc99b63c3fef22aa361857972e276b890d6782db
2021-12-19T10:36:40.000Z
[ "pytorch", "jax", "tensorboard", "roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
NbAiLab
null
NbAiLab/test_w5_long_roberta_tokenizer
4
null
transformers
18,103
Just for performing some experiments. Do not use.
NbAiLab/xls-r-1b-npsc
9f7e04d56f6a2c889399dcb7b8cebe7f7e6151d4
2022-01-31T04:33:39.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "license:apache-2.0" ]
automatic-speech-recognition
false
NbAiLab
null
NbAiLab/xls-r-1b-npsc
4
null
transformers
18,104
--- license: apache-2.0 ---
NeuML/bert-small-cord19-squad2
5ea1c68fbbb2cdddb3243f410c5c06a81551f5c4
2021-05-18T21:52:28.000Z
[ "pytorch", "jax", "bert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
NeuML
null
NeuML/bert-small-cord19-squad2
4
null
transformers
18,105
# BERT-Small CORD-19 fine-tuned on SQuAD 2.0 [bert-small-cord19 model](https://huggingface.co/NeuML/bert-small-cord19) fine-tuned on SQuAD 2.0 ## Building the model ```bash python run_squad.py --model_type bert --model_name_or_path bert-small-cord19 --do_train --do_eval --do_lower_case --version_2_with_negative --train_file train-v2.0.json --predict_file dev-v2.0.json --per_gpu_train_batch_size 8 --learning_rate 3e-5 --num_train_epochs 3.0 --max_seq_length 384 --doc_stride 128 --output_dir bert-small-cord19-squad2 --save_steps 0 --threads 8 --overwrite_cache --overwrite_output_dir
Nevena/test-model
a2fc4fa5d5ace74972d14dde62aafff58ddd7e54
2021-11-17T07:54:59.000Z
[ "pytorch", "xlm-roberta", "feature-extraction", "transformers" ]
feature-extraction
false
Nevena
null
Nevena/test-model
4
null
transformers
18,106
Entry not found
Nicki/scarlet-choir
a1b5a888cc5550155c5a5d547e21f8afb9114c2a
2021-08-15T12:28:03.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
Nicki
null
Nicki/scarlet-choir
4
null
transformers
18,107
Entry not found
Omar95farag/distilbert-base-uncased-finetuned-clinc
19cebbef17a10522574ea845350daf08bb033fb3
2022-02-24T01:08:45.000Z
[ "pytorch", "distilbert", "text-classification", "transformers" ]
text-classification
false
Omar95farag
null
Omar95farag/distilbert-base-uncased-finetuned-clinc
4
null
transformers
18,108
Entry not found
Palak/microsoft_deberta-base_squad
a197dde8a82e8d6f7340fd89b21cebc18111bd6d
2021-12-24T18:22:28.000Z
[ "pytorch", "deberta", "question-answering", "dataset:squad", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
question-answering
false
Palak
null
Palak/microsoft_deberta-base_squad
4
1
transformers
18,109
--- license: mit tags: - generated_from_trainer datasets: - squad model-index: - name: microsoft_deberta-base_squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # microsoft_deberta-base_squad This model is a fine-tuned version of [microsoft/deberta-base](https://huggingface.co/microsoft/deberta-base) on the **squadV1** dataset. - "eval_exact_match": 86.30085146641439 - "eval_f1": 92.68502275661561 - "eval_samples": 10788 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 12 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results ### Framework versions - Transformers 4.14.1 - Pytorch 1.9.0 - Datasets 1.16.1 - Tokenizers 0.10.3
Parsa/BBB_prediction_classification_IUPAC
7acd8abf1baa70308bff9e3f0d6b289e142b26aa
2022-02-23T07:42:01.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
Parsa
null
Parsa/BBB_prediction_classification_IUPAC
4
null
transformers
18,110
A fine-tuned model based on'gumgo91/IUPAC_BERT'for Blood brain barrier permeability prediction based on IUPAC string. There are also BiLSTM models available as well as these two models in 'https://github.com/mephisto121/BBBNLP if you want to check them all and check the codes too. [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1jGYf3sq93yO4EbgVaEl3nlClrVatVaXS#scrollTo=AMEdQItmilAw)
PaulAdversarial/PAN_twitter_hate_speech_2021_ES_MT5
cc61ba8fd7256fcaa407a050af62c8ae8b87e12d
2021-06-23T14:56:11.000Z
[ "pytorch", "mt5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
PaulAdversarial
null
PaulAdversarial/PAN_twitter_hate_speech_2021_ES_MT5
4
null
transformers
18,111
##An MT5ForConditionalGeneration trained on 3 tasks from PAN Profiling Hate Speech Spreaders on Twitter dataset (ES): * topic attribution - topics were assigned with BertTopic library using embeddings from `Hate-speech-CNERG/dehatebert-mono-spanish` bert model (train and test sets from the PAN task) * hate speech identification (train set from the PAN task) in order to generate tone of comment use prefix **hater classification:**
PedroR/xlm-roberta-4
9ccfe1244d7b6c5ed96cb3fad55a5b96a6123128
2021-07-27T22:01:38.000Z
[ "pytorch", "xlm-roberta", "feature-extraction", "transformers" ]
feature-extraction
false
PedroR
null
PedroR/xlm-roberta-4
4
null
transformers
18,112
Entry not found
PedroR/xlm-roberta-5-pretrained
7a743a19d44f986ebb0b20ebab4b9d7d36f70332
2021-07-29T11:01:26.000Z
[ "pytorch", "xlm-roberta", "feature-extraction", "transformers" ]
feature-extraction
false
PedroR
null
PedroR/xlm-roberta-5-pretrained
4
null
transformers
18,113
Entry not found
PedroR/xlm-roberta-5
e9f0e59717ea21544cada53b3fe1b05de4edb191
2021-07-27T21:58:57.000Z
[ "pytorch", "xlm-roberta", "feature-extraction", "transformers" ]
feature-extraction
false
PedroR
null
PedroR/xlm-roberta-5
4
null
transformers
18,114
Entry not found
Prasadi/wav2vec2-base-timit-demo-colab-1
be1ce457f9530d8e8b6c7789e1bece29b70c5539
2022-01-05T06:18:01.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
Prasadi
null
Prasadi/wav2vec2-base-timit-demo-colab-1
4
null
transformers
18,115
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base-timit-demo-colab-1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-timit-demo-colab-1 This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3857 - Wer: 0.3874 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.4285 | 2.01 | 500 | 1.4732 | 0.9905 | | 0.7457 | 4.02 | 1000 | 0.5278 | 0.4960 | | 0.3463 | 6.02 | 1500 | 0.4245 | 0.4155 | | 0.2034 | 8.03 | 2000 | 0.3857 | 0.3874 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.13.3 - Tokenizers 0.10.3
Pyke/DS-config-18
b07dfd3a0bdf422d919392ad845d9b74ec54a4eb
2021-08-22T18:23:29.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
Pyke
null
Pyke/DS-config-18
4
null
transformers
18,116
Entry not found
Pyke/DS-config-23
e36b997884308e2b980bd106d0896df019f0c115
2021-08-23T17:41:49.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
Pyke
null
Pyke/DS-config-23
4
null
transformers
18,117
Entry not found
Pyke/bart-finetuned-on-patent-Deepspeed-Test11
5b22d3e6b278da5c68c7d42782719ed27a9a7547
2021-08-15T17:50:56.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
Pyke
null
Pyke/bart-finetuned-on-patent-Deepspeed-Test11
4
null
transformers
18,118
Entry not found
Pyke/bart-finetuned-on-patent-Deepspeed-Test26
7120ac258d86802ca9c8687d79bf8714b43bb485
2021-08-16T02:06:26.000Z
[ "pytorch", "bart", "feature-extraction", "transformers" ]
feature-extraction
false
Pyke
null
Pyke/bart-finetuned-on-patent-Deepspeed-Test26
4
null
transformers
18,119
Entry not found
Pyke/bart-finetuned-on-patent-Deepspeed-Test31
56960a58063e523bcb763d7f3c0cfada4cba363a
2021-08-16T15:51:31.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
Pyke
null
Pyke/bart-finetuned-on-patent-Deepspeed-Test31
4
null
transformers
18,120
Entry not found
Qinghui/autonlp-fake-covid-news-36769078
e442d773aa2dc69cb4bbf7d91936499e0a05621c
2021-11-28T19:41:07.000Z
[ "pytorch", "roberta", "text-classification", "unk", "dataset:Qinghui/autonlp-data-fake-covid-news", "transformers", "autonlp", "co2_eq_emissions" ]
text-classification
false
Qinghui
null
Qinghui/autonlp-fake-covid-news-36769078
4
null
transformers
18,121
--- tags: autonlp language: unk widget: - text: "I love AutoNLP 🤗" datasets: - Qinghui/autonlp-data-fake-covid-news co2_eq_emissions: 23.42719853096565 --- # Model Trained Using AutoNLP - Problem type: Binary Classification - Model ID: 36769078 - CO2 Emissions (in grams): 23.42719853096565 ## Validation Metrics - Loss: 0.15959647297859192 - Accuracy: 0.9817757009345794 - Precision: 0.980411361410382 - Recall: 0.9813725490196078 - AUC: 0.9982379201680672 - F1: 0.9808917197452229 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/Qinghui/autonlp-fake-covid-news-36769078 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("Qinghui/autonlp-fake-covid-news-36769078", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("Qinghui/autonlp-fake-covid-news-36769078", use_auth_token=True) inputs = tokenizer("I love AutoNLP", return_tensors="pt") outputs = model(**inputs) ```
Radella/quora_helpful_answers_classifier
c0b88f5808ae0c05bc46f1367f361afe33b3295b
2021-12-01T03:42:32.000Z
[ "pytorch", "distilbert", "text-classification", "transformers" ]
text-classification
false
Radella
null
Radella/quora_helpful_answers_classifier
4
null
transformers
18,122
Entry not found
Raintree/wav2vec2-base-timit-demo-colab
9fe88e1f11ab5f4074610e3e4680d5593cd381f6
2021-10-28T10:08:08.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
Raintree
null
Raintree/wav2vec2-base-timit-demo-colab
4
null
transformers
18,123
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base-timit-demo-colab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-timit-demo-colab This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4526 - Wer: 0.3411 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.7503 | 4.0 | 500 | 2.4125 | 1.0006 | | 0.9595 | 8.0 | 1000 | 0.4833 | 0.4776 | | 0.3018 | 12.0 | 1500 | 0.4333 | 0.4062 | | 0.1751 | 16.0 | 2000 | 0.4474 | 0.3697 | | 0.1288 | 20.0 | 2500 | 0.4445 | 0.3558 | | 0.1073 | 24.0 | 3000 | 0.4695 | 0.3464 | | 0.0816 | 28.0 | 3500 | 0.4526 | 0.3411 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.9.0+cu111 - Datasets 1.13.3 - Tokenizers 0.10.3
Rayane/DialoGPT-Rick-Sanchez
02284466c30c1276b7a33c3bdf8641d84d841fe6
2021-08-27T01:21:12.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
Rayane
null
Rayane/DialoGPT-Rick-Sanchez
4
null
transformers
18,124
--- tags: - conversational --- # Rick Sanchez DialoGPT Model
Razan/QAIDeptModel
a9ed2def1716b5be3e1bc817bbfd2c591bf6b63b
2021-10-17T07:00:56.000Z
[ "pytorch", "tensorboard", "bert", "fill-mask", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
fill-mask
false
Razan
null
Razan/QAIDeptModel
4
null
transformers
18,125
--- tags: - generated_from_trainer model-index: - name: QAIDeptModel results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # QAIDeptModel This model is a fine-tuned version of [aubmindlab/bert-base-arabertv2](https://huggingface.co/aubmindlab/bert-base-arabertv2) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 105 | 2.6675 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.9.0+cu111 - Datasets 1.13.3 - Tokenizers 0.10.3
RenZHU/t5-small-finetuned-xsum-original
90fe5b7b4e7d2b035c72e96e1039b0e08bbb9b0d
2022-01-09T06:04:38.000Z
[ "pytorch", "tensorboard", "t5", "text2text-generation", "dataset:xsum", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
text2text-generation
false
RenZHU
null
RenZHU/t5-small-finetuned-xsum-original
4
1
transformers
18,126
--- license: apache-2.0 tags: - generated_from_trainer datasets: - xsum metrics: - rouge model-index: - name: t5-small-finetuned-xsum-original results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: xsum type: xsum args: default metrics: - name: Rouge1 type: rouge value: 28.8838 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-xsum-original This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the xsum dataset. It achieves the following results on the evaluation set: - Loss: 2.4436 - Rouge1: 28.8838 - Rouge2: 8.1114 - Rougel: 22.8318 - Rougelsum: 22.8318 - Gen Len: 18.8141 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:------:|:-------:|:---------:|:-------:| | 2.6754 | 1.0 | 51012 | 2.4436 | 28.8838 | 8.1114 | 22.8318 | 22.8318 | 18.8141 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.0+cu111 - Datasets 1.17.1.dev0 - Tokenizers 0.11.0
ReynaQuita/twitter_disaster_bart
066dee0c7a492e3854f7c4c4d16376fbfac4119a
2021-10-27T07:20:57.000Z
[ "pytorch", "bart", "text-classification", "transformers" ]
text-classification
false
ReynaQuita
null
ReynaQuita/twitter_disaster_bart
4
null
transformers
18,127
Entry not found
Ritvik/nlp_model
d79cab8b6f6c6a379237102370e0d64f49e378dd
2021-10-21T20:35:52.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
Ritvik
null
Ritvik/nlp_model
4
null
transformers
18,128
Entry not found
Riyagarg01/Practice1
ac9bcd2c457ace658cdc13a9c88d4c0260f8f262
2022-03-13T21:02:47.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
Riyagarg01
null
Riyagarg01/Practice1
4
null
transformers
18,129
Entry not found
Rolv-Arild/xls-r-300m-npsc
62dd410aa592a06003739117a253817a362bf80a
2022-01-31T09:24:08.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
Rolv-Arild
null
Rolv-Arild/xls-r-300m-npsc
4
null
transformers
18,130
Rubens/Wav2Vec2-Large-XLSR-53-Portuguese
b32aa7604314341c9d807b065f8fbdef36de7b61
2021-07-05T17:09:30.000Z
[ "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "pt", "dataset:common_voice", "transformers", "audio", "speech", "apache-2.0", "portuguese-speech-corpus", "xlsr-fine-tuning-week", "PyTorch", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
Rubens
null
Rubens/Wav2Vec2-Large-XLSR-53-Portuguese
4
null
transformers
18,131
--- language: pt datasets: - common_voice metrics: - wer tags: - audio - speech - wav2vec2 - pt - apache-2.0 - portuguese-speech-corpus - automatic-speech-recognition - speech - xlsr-fine-tuning-week - PyTorch license: apache-2.0 model-index: - name: Rubens XLSR Wav2Vec2 Large 53 Portuguese results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice pt type: common_voice args: pt metrics: - name: Test WER type: wer value: 20.41% --- # Wav2Vec2-Large-XLSR-53-Portuguese Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Portuguese using the [Common Voice](https://huggingface.co/datasets/common_voice) dataset. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "pt", split="test[:2%]") processor = Wav2Vec2Processor.from_pretrained("Rubens/Wav2Vec2-Large-XLSR-53-Portuguese") model = Wav2Vec2ForCTC.from_pretrained("Rubens/Wav2Vec2-Large-XLSR-53-Portuguese") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): \tspeech_array, sampling_rate = torchaudio.load(batch["path"]) \tbatch["speech"] = resampler(speech_array).squeeze().numpy() \treturn batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): \tlogits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` ## Evaluation The model can be evaluated as follows on the Portuguese test data of Common Voice. ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re test_dataset = load_dataset("common_voice", "pt", split="test") wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("Rubens/Wav2Vec2-Large-XLSR-53-Portuguese") model = Wav2Vec2ForCTC.from_pretrained("Rubens/Wav2Vec2-Large-XLSR-53-Portuguese") model.to("cuda") chars_to_ignore_regex = '[\\,\\?\\.\\!\\-\\;\\:\\"\\“]' # TODO: adapt this list to include all special characters you removed from the data resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): \tbatch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() \tspeech_array, sampling_rate = torchaudio.load(batch["path"]) \tbatch["speech"] = resampler(speech_array).squeeze().numpy() \treturn batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the aduio files as arrays def evaluate(batch): \tinputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) \twith torch.no_grad(): \t\tlogits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) \tbatch["pred_strings"] = processor.batch_decode(pred_ids) \treturn batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ``` **Test Result (wer)**: 20.41 % ## Training The Common Voice `train`, `validation` datasets were used for training. The script used for training can be found at: https://github.com/RubensZimbres/wav2vec2/blob/main/fine-tuning.py
Ruizhou/bert-base-uncased-finetuned-rte
92df71cfaef45e9e6d9fcdfe2850a54bcbac76fb
2021-10-03T08:46:32.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Ruizhou
null
Ruizhou/bert-base-uncased-finetuned-rte
4
null
transformers
18,132
Entry not found
RuudVelo/wav2vec2-large-xls-r-300m-cv8-nl
2da02d15c603ad650671c2c228b7237dffc8c8b5
2022-03-24T11:53:26.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "nl", "dataset:mozilla-foundation/common_voice_8_0", "transformers", "mozilla-foundation/common_voice_8_0", "generated_from_trainer", "robust-speech-event", "model_for_talk", "hf-asr-leaderboard", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
RuudVelo
null
RuudVelo/wav2vec2-large-xls-r-300m-cv8-nl
4
null
transformers
18,133
--- language: - nl license: apache-2.0 tags: - automatic-speech-recognition - mozilla-foundation/common_voice_8_0 - generated_from_trainer - nl - robust-speech-event - model_for_talk - hf-asr-leaderboard datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: wav2vec2-large-xls-r-300m-cv8-nl results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: nl metrics: - name: Test WER type: wer value: 14.53 - name: Test CER type: cer value: 4.7 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: nl metrics: - name: Test WER type: wer value: 33.7 - name: Test CER type: cer value: 15.64 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: nl metrics: - name: Test WER type: wer value: 35.19 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-cv8-nl This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. In addition a 6gram KenLM model was trained and used. The KenLM model was based on train+validation Common Voice 8 It achieves results depicted on the rigth side on the model card (testset CV8) ## Model description Dutch wav2vec2-xls-r-300m model using Common Voice 8 dataset ## Intended uses & limitations More information needed ## Training and evaluation data The model was trained on Dutch common voice 8 with 75 epochs. The train set consisted of the common voice 8 train set and evaluation set was the common voice 8 validation set. The WER reported is on the common voice 8 test set which was not part of training nor validation (eval) ## Training procedure ### Training hyperparameters ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.18.1 - Tokenizers 0.11.0
SEBIS/code_trans_t5_base_code_documentation_generation_go_multitask_finetune
c30f1151057f990ce12b33ef68c803e1a6f6a462
2021-06-23T04:15:33.000Z
[ "pytorch", "jax", "t5", "feature-extraction", "transformers", "summarization" ]
summarization
false
SEBIS
null
SEBIS/code_trans_t5_base_code_documentation_generation_go_multitask_finetune
4
null
transformers
18,134
--- tags: - summarization widget: - text: "func ( pr * Progress ) needSnapshotAbort ( ) bool { return pr . State == ProgressStateSnapshot && pr . Match >= pr . PendingSnapshot }" --- # CodeTrans model for code documentation generation go Pretrained model on programming language go using the t5 base model architecture. It was first released in [this repository](https://github.com/agemagician/CodeTrans). This model is trained on tokenized go code functions: it works best with tokenized go functions. ## Model description This CodeTrans model is based on the `t5-base` model. It has its own SentencePiece vocabulary model. It used multi-task training on 13 supervised tasks in the software development domain and 7 unsupervised datasets. It is then fine-tuned on the code documentation generation task for the go function/method. ## Intended uses & limitations The model could be used to generate the description for the go function or be fine-tuned on other go code tasks. It can be used on unparsed and untokenized go code. However, if the go code is tokenized, the performance should be better. ### How to use Here is how to use this model to generate go function documentation using Transformers SummarizationPipeline: ```python from transformers import AutoTokenizer, AutoModelWithLMHead, SummarizationPipeline pipeline = SummarizationPipeline( model=AutoModelWithLMHead.from_pretrained("SEBIS/code_trans_t5_base_code_documentation_generation_go_multitask_finetune"), tokenizer=AutoTokenizer.from_pretrained("SEBIS/code_trans_t5_base_code_documentation_generation_go_multitask_finetune", skip_special_tokens=True), device=0 ) tokenized_code = "func ( pr * Progress ) needSnapshotAbort ( ) bool { return pr . State == ProgressStateSnapshot && pr . Match >= pr . PendingSnapshot }" pipeline([tokenized_code]) ``` Run this example in [colab notebook](https://github.com/agemagician/CodeTrans/blob/main/prediction/multitask/fine-tuning/function%20documentation%20generation/go/base_model.ipynb). ## Training data The supervised training tasks datasets can be downloaded on [Link](https://www.dropbox.com/sh/488bq2of10r4wvw/AACs5CGIQuwtsD7j_Ls_JAORa/finetuning_dataset?dl=0&subfolder_nav_tracking=1) ## Training procedure ### Multi-task Pretraining The model was trained on a single TPU Pod V3-8 for half million steps in total, using sequence length 512 (batch size 4096). It has a total of approximately 220M parameters and was trained using the encoder-decoder architecture. The optimizer used is AdaFactor with inverse square root learning rate schedule for pre-training. ### Fine-tuning This model was then fine-tuned on a single TPU Pod V2-8 for 2000 steps in total, using sequence length 512 (batch size 256), using only the dataset only containing go code. ## Evaluation results For the code documentation tasks, different models achieves the following results on different programming languages (in BLEU score): Test results : | Language / Model | Python | Java | Go | Php | Ruby | JavaScript | | -------------------- | :------------: | :------------: | :------------: | :------------: | :------------: | :------------: | | CodeTrans-ST-Small | 17.31 | 16.65 | 16.89 | 23.05 | 9.19 | 13.7 | | CodeTrans-ST-Base | 16.86 | 17.17 | 17.16 | 22.98 | 8.23 | 13.17 | | CodeTrans-TF-Small | 19.93 | 19.48 | 18.88 | 25.35 | 13.15 | 17.23 | | CodeTrans-TF-Base | 20.26 | 20.19 | 19.50 | 25.84 | 14.07 | 18.25 | | CodeTrans-TF-Large | 20.35 | 20.06 | **19.54** | 26.18 | 14.94 | **18.98** | | CodeTrans-MT-Small | 19.64 | 19.00 | 19.15 | 24.68 | 14.91 | 15.26 | | CodeTrans-MT-Base | **20.39** | 21.22 | 19.43 | **26.23** | **15.26** | 16.11 | | CodeTrans-MT-Large | 20.18 | **21.87** | 19.38 | 26.08 | 15.00 | 16.23 | | CodeTrans-MT-TF-Small | 19.77 | 20.04 | 19.36 | 25.55 | 13.70 | 17.24 | | CodeTrans-MT-TF-Base | 19.77 | 21.12 | 18.86 | 25.79 | 14.24 | 18.62 | | CodeTrans-MT-TF-Large | 18.94 | 21.42 | 18.77 | 26.20 | 14.19 | 18.83 | | State of the art | 19.06 | 17.65 | 18.07 | 25.16 | 12.16 | 14.90 | > Created by [Ahmed Elnaggar](https://twitter.com/Elnaggar_AI) | [LinkedIn](https://www.linkedin.com/in/prof-ahmed-elnaggar/) and Wei Ding | [LinkedIn](https://www.linkedin.com/in/wei-ding-92561270/)
SEBIS/code_trans_t5_base_code_documentation_generation_go_transfer_learning_finetune
79bff6b2efda6bc1f1d18f8f10440511f53961e4
2021-06-23T04:17:25.000Z
[ "pytorch", "jax", "t5", "feature-extraction", "transformers", "summarization" ]
summarization
false
SEBIS
null
SEBIS/code_trans_t5_base_code_documentation_generation_go_transfer_learning_finetune
4
null
transformers
18,135
--- tags: - summarization widget: - text: "func ( pr * Progress ) needSnapshotAbort ( ) bool { return pr . State == ProgressStateSnapshot && pr . Match >= pr . PendingSnapshot }" --- # CodeTrans model for code documentation generation go Pretrained model on programming language go using the t5 base model architecture. It was first released in [this repository](https://github.com/agemagician/CodeTrans). This model is trained on tokenized go code functions: it works best with tokenized go functions. ## Model description This CodeTrans model is based on the `t5-base` model. It has its own SentencePiece vocabulary model. It used transfer-learning pre-training on 7 unsupervised datasets in the software development domain. It is then fine-tuned on the code documentation generation task for the go function/method. ## Intended uses & limitations The model could be used to generate the description for the go function or be fine-tuned on other go code tasks. It can be used on unparsed and untokenized go code. However, if the go code is tokenized, the performance should be better. ### How to use Here is how to use this model to generate go function documentation using Transformers SummarizationPipeline: ```python from transformers import AutoTokenizer, AutoModelWithLMHead, SummarizationPipeline pipeline = SummarizationPipeline( model=AutoModelWithLMHead.from_pretrained("SEBIS/code_trans_t5_base_code_documentation_generation_go_transfer_learning_finetune"), tokenizer=AutoTokenizer.from_pretrained("SEBIS/code_trans_t5_base_code_documentation_generation_go_transfer_learning_finetune", skip_special_tokens=True), device=0 ) tokenized_code = "func ( pr * Progress ) needSnapshotAbort ( ) bool { return pr . State == ProgressStateSnapshot && pr . Match >= pr . PendingSnapshot }" pipeline([tokenized_code]) ``` Run this example in [colab notebook](https://github.com/agemagician/CodeTrans/blob/main/prediction/transfer%20learning%20fine-tuning/function%20documentation%20generation/go/base_model.ipynb). ## Training data The supervised training tasks datasets can be downloaded on [Link](https://www.dropbox.com/sh/488bq2of10r4wvw/AACs5CGIQuwtsD7j_Ls_JAORa/finetuning_dataset?dl=0&subfolder_nav_tracking=1) ## Training procedure ### Transfer-learning Pretraining The model was trained on a single TPU Pod V3-8 for half million steps in total, using sequence length 512 (batch size 4096). It has a total of approximately 220M parameters and was trained using the encoder-decoder architecture. The optimizer used is AdaFactor with inverse square root learning rate schedule for pre-training. ### Fine-tuning This model was then fine-tuned on a single TPU Pod V2-8 for 5000 steps in total, using sequence length 512 (batch size 256), using only the dataset only containing go code. ## Evaluation results For the code documentation tasks, different models achieves the following results on different programming languages (in BLEU score): Test results : | Language / Model | Python | Java | Go | Php | Ruby | JavaScript | | -------------------- | :------------: | :------------: | :------------: | :------------: | :------------: | :------------: | | CodeTrans-ST-Small | 17.31 | 16.65 | 16.89 | 23.05 | 9.19 | 13.7 | | CodeTrans-ST-Base | 16.86 | 17.17 | 17.16 | 22.98 | 8.23 | 13.17 | | CodeTrans-TF-Small | 19.93 | 19.48 | 18.88 | 25.35 | 13.15 | 17.23 | | CodeTrans-TF-Base | 20.26 | 20.19 | 19.50 | 25.84 | 14.07 | 18.25 | | CodeTrans-TF-Large | 20.35 | 20.06 | **19.54** | 26.18 | 14.94 | **18.98** | | CodeTrans-MT-Small | 19.64 | 19.00 | 19.15 | 24.68 | 14.91 | 15.26 | | CodeTrans-MT-Base | **20.39** | 21.22 | 19.43 | **26.23** | **15.26** | 16.11 | | CodeTrans-MT-Large | 20.18 | **21.87** | 19.38 | 26.08 | 15.00 | 16.23 | | CodeTrans-MT-TF-Small | 19.77 | 20.04 | 19.36 | 25.55 | 13.70 | 17.24 | | CodeTrans-MT-TF-Base | 19.77 | 21.12 | 18.86 | 25.79 | 14.24 | 18.62 | | CodeTrans-MT-TF-Large | 18.94 | 21.42 | 18.77 | 26.20 | 14.19 | 18.83 | | State of the art | 19.06 | 17.65 | 18.07 | 25.16 | 12.16 | 14.90 | > Created by [Ahmed Elnaggar](https://twitter.com/Elnaggar_AI) | [LinkedIn](https://www.linkedin.com/in/prof-ahmed-elnaggar/) and Wei Ding | [LinkedIn](https://www.linkedin.com/in/wei-ding-92561270/)
SEBIS/code_trans_t5_base_code_documentation_generation_php_transfer_learning_finetune
1db770ec0c6d479ffb8163131a2c3d96575ea931
2021-06-23T04:40:47.000Z
[ "pytorch", "jax", "t5", "feature-extraction", "transformers", "summarization" ]
summarization
false
SEBIS
null
SEBIS/code_trans_t5_base_code_documentation_generation_php_transfer_learning_finetune
4
null
transformers
18,136
--- tags: - summarization widget: - text: "public static function update ( $ table ) { if ( ! is_array ( $ table ) ) { $ table = json_decode ( $ table , true ) ; } if ( ! SchemaManager :: tableExists ( $ table [ 'oldName' ] ) ) { throw SchemaException :: tableDoesNotExist ( $ table [ 'oldName' ] ) ; } $ updater = new self ( $ table ) ; $ updater -> updateTable ( ) ; }" --- # CodeTrans model for code documentation generation php Pretrained model on programming language php using the t5 base model architecture. It was first released in [this repository](https://github.com/agemagician/CodeTrans). This model is trained on tokenized php code functions: it works best with tokenized php functions. ## Model description This CodeTrans model is based on the `t5-base` model. It has its own SentencePiece vocabulary model. It used transfer-learning pre-training on 7 unsupervised datasets in the software development domain. It is then fine-tuned on the code documentation generation task for the php function/method. ## Intended uses & limitations The model could be used to generate the description for the php function or be fine-tuned on other php code tasks. It can be used on unparsed and untokenized php code. However, if the php code is tokenized, the performance should be better. ### How to use Here is how to use this model to generate php function documentation using Transformers SummarizationPipeline: ```python from transformers import AutoTokenizer, AutoModelWithLMHead, SummarizationPipeline pipeline = SummarizationPipeline( model=AutoModelWithLMHead.from_pretrained("SEBIS/code_trans_t5_base_code_documentation_generation_php_transfer_learning_finetune"), tokenizer=AutoTokenizer.from_pretrained("SEBIS/code_trans_t5_base_code_documentation_generation_php_transfer_learning_finetune", skip_special_tokens=True), device=0 ) tokenized_code = "public static function update ( $ table ) { if ( ! is_array ( $ table ) ) { $ table = json_decode ( $ table , true ) ; } if ( ! SchemaManager :: tableExists ( $ table [ 'oldName' ] ) ) { throw SchemaException :: tableDoesNotExist ( $ table [ 'oldName' ] ) ; } $ updater = new self ( $ table ) ; $ updater -> updateTable ( ) ; }" pipeline([tokenized_code]) ``` Run this example in [colab notebook](https://github.com/agemagician/CodeTrans/blob/main/prediction/transfer%20learning%20fine-tuning/function%20documentation%20generation/php/base_model.ipynb). ## Training data The supervised training tasks datasets can be downloaded on [Link](https://www.dropbox.com/sh/488bq2of10r4wvw/AACs5CGIQuwtsD7j_Ls_JAORa/finetuning_dataset?dl=0&subfolder_nav_tracking=1) ## Training procedure ### Transfer-learning Pretraining The model was trained on a single TPU Pod V3-8 for half million steps in total, using sequence length 512 (batch size 4096). It has a total of approximately 220M parameters and was trained using the encoder-decoder architecture. The optimizer used is AdaFactor with inverse square root learning rate schedule for pre-training. ### Fine-tuning This model was then fine-tuned on a single TPU Pod V2-8 for 65,000 steps in total, using sequence length 512 (batch size 256), using only the dataset only containing php code. ## Evaluation results For the code documentation tasks, different models achieves the following results on different programming languages (in BLEU score): Test results : | Language / Model | Python | Java | Go | Php | Ruby | JavaScript | | -------------------- | :------------: | :------------: | :------------: | :------------: | :------------: | :------------: | | CodeTrans-ST-Small | 17.31 | 16.65 | 16.89 | 23.05 | 9.19 | 13.7 | | CodeTrans-ST-Base | 16.86 | 17.17 | 17.16 | 22.98 | 8.23 | 13.17 | | CodeTrans-TF-Small | 19.93 | 19.48 | 18.88 | 25.35 | 13.15 | 17.23 | | CodeTrans-TF-Base | 20.26 | 20.19 | 19.50 | 25.84 | 14.07 | 18.25 | | CodeTrans-TF-Large | 20.35 | 20.06 | **19.54** | 26.18 | 14.94 | **18.98** | | CodeTrans-MT-Small | 19.64 | 19.00 | 19.15 | 24.68 | 14.91 | 15.26 | | CodeTrans-MT-Base | **20.39** | 21.22 | 19.43 | **26.23** | **15.26** | 16.11 | | CodeTrans-MT-Large | 20.18 | **21.87** | 19.38 | 26.08 | 15.00 | 16.23 | | CodeTrans-MT-TF-Small | 19.77 | 20.04 | 19.36 | 25.55 | 13.70 | 17.24 | | CodeTrans-MT-TF-Base | 19.77 | 21.12 | 18.86 | 25.79 | 14.24 | 18.62 | | CodeTrans-MT-TF-Large | 18.94 | 21.42 | 18.77 | 26.20 | 14.19 | 18.83 | | State of the art | 19.06 | 17.65 | 18.07 | 25.16 | 12.16 | 14.90 | > Created by [Ahmed Elnaggar](https://twitter.com/Elnaggar_AI) | [LinkedIn](https://www.linkedin.com/in/prof-ahmed-elnaggar/) and Wei Ding | [LinkedIn](https://www.linkedin.com/in/wei-ding-92561270/)
SEBIS/code_trans_t5_base_code_documentation_generation_python_multitask
28ddab36b3c0a5143622b332d9afab53ac043cb3
2021-06-23T04:45:11.000Z
[ "pytorch", "jax", "t5", "feature-extraction", "transformers", "summarization" ]
summarization
false
SEBIS
null
SEBIS/code_trans_t5_base_code_documentation_generation_python_multitask
4
null
transformers
18,137
--- tags: - summarization widget: - text: "def e ( message , exit_code = None ) : print_log ( message , YELLOW , BOLD ) if exit_code is not None : sys . exit ( exit_code )" --- # CodeTrans model for code documentation generation python Pretrained model on programming language python using the t5 base model architecture. It was first released in [this repository](https://github.com/agemagician/CodeTrans). This model is trained on tokenized python code functions: it works best with tokenized python functions. ## Model description This CodeTrans model is based on the `t5-base` model. It has its own SentencePiece vocabulary model. It used multi-task training on 13 supervised tasks in the software development domain and 7 unsupervised datasets. ## Intended uses & limitations The model could be used to generate the description for the python function or be fine-tuned on other python code tasks. It can be used on unparsed and untokenized python code. However, if the python code is tokenized, the performance should be better. ### How to use Here is how to use this model to generate python function documentation using Transformers SummarizationPipeline: ```python from transformers import AutoTokenizer, AutoModelWithLMHead, SummarizationPipeline pipeline = SummarizationPipeline( model=AutoModelWithLMHead.from_pretrained("SEBIS/code_trans_t5_base_code_documentation_generation_python_multitask"), tokenizer=AutoTokenizer.from_pretrained("SEBIS/code_trans_t5_base_code_documentation_generation_python_multitask", skip_special_tokens=True), device=0 ) tokenized_code = "def e ( message , exit_code = None ) : print_log ( message , YELLOW , BOLD ) if exit_code is not None : sys . exit ( exit_code )" pipeline([tokenized_code]) ``` Run this example in [colab notebook](https://github.com/agemagician/CodeTrans/blob/main/prediction/multitask/pre-training/function%20documentation%20generation/python/base_model.ipynb). ## Training data The supervised training tasks datasets can be downloaded on [Link](https://www.dropbox.com/sh/488bq2of10r4wvw/AACs5CGIQuwtsD7j_Ls_JAORa/finetuning_dataset?dl=0&subfolder_nav_tracking=1) ## Training procedure ### Multi-task Pretraining The model was trained on a single TPU Pod V3-8 for 420,000 steps in total, using sequence length 512 (batch size 4096). It has a total of approximately 220M parameters and was trained using the encoder-decoder architecture. The optimizer used is AdaFactor with inverse square root learning rate schedule for pre-training. ## Evaluation results For the code documentation tasks, different models achieves the following results on different programming languages (in BLEU score): Test results : | Language / Model | Python | Java | Go | Php | Ruby | JavaScript | | -------------------- | :------------: | :------------: | :------------: | :------------: | :------------: | :------------: | | CodeTrans-ST-Small | 17.31 | 16.65 | 16.89 | 23.05 | 9.19 | 13.7 | | CodeTrans-ST-Base | 16.86 | 17.17 | 17.16 | 22.98 | 8.23 | 13.17 | | CodeTrans-TF-Small | 19.93 | 19.48 | 18.88 | 25.35 | 13.15 | 17.23 | | CodeTrans-TF-Base | 20.26 | 20.19 | 19.50 | 25.84 | 14.07 | 18.25 | | CodeTrans-TF-Large | 20.35 | 20.06 | **19.54** | 26.18 | 14.94 | **18.98** | | CodeTrans-MT-Small | 19.64 | 19.00 | 19.15 | 24.68 | 14.91 | 15.26 | | CodeTrans-MT-Base | **20.39** | 21.22 | 19.43 | **26.23** | **15.26** | 16.11 | | CodeTrans-MT-Large | 20.18 | **21.87** | 19.38 | 26.08 | 15.00 | 16.23 | | CodeTrans-MT-TF-Small | 19.77 | 20.04 | 19.36 | 25.55 | 13.70 | 17.24 | | CodeTrans-MT-TF-Base | 19.77 | 21.12 | 18.86 | 25.79 | 14.24 | 18.62 | | CodeTrans-MT-TF-Large | 18.94 | 21.42 | 18.77 | 26.20 | 14.19 | 18.83 | | State of the art | 19.06 | 17.65 | 18.07 | 25.16 | 12.16 | 14.90 | > Created by [Ahmed Elnaggar](https://twitter.com/Elnaggar_AI) | [LinkedIn](https://www.linkedin.com/in/prof-ahmed-elnaggar/) and Wei Ding | [LinkedIn](https://www.linkedin.com/in/wei-ding-92561270/)
SEBIS/code_trans_t5_base_code_documentation_generation_ruby_multitask_finetune
135786b70a73f529ae097db46b18499c49320b66
2021-06-23T04:53:48.000Z
[ "pytorch", "jax", "t5", "feature-extraction", "transformers", "summarization" ]
summarization
false
SEBIS
null
SEBIS/code_trans_t5_base_code_documentation_generation_ruby_multitask_finetune
4
null
transformers
18,138
--- tags: - summarization widget: - text: "def add ( severity , progname , & block ) return true if io . nil? || severity < level message = format_message ( severity , progname , yield ) MUTEX . synchronize { io . write ( message ) } true end" --- # CodeTrans model for code documentation generation ruby Pretrained model on programming language ruby using the t5 base model architecture. It was first released in [this repository](https://github.com/agemagician/CodeTrans). This model is trained on tokenized ruby code functions: it works best with tokenized ruby functions. ## Model description This CodeTrans model is based on the `t5-base` model. It has its own SentencePiece vocabulary model. It used multi-task training on 13 supervised tasks in the software development domain and 7 unsupervised datasets. It is then fine-tuned on the code documentation generation task for the ruby function/method. ## Intended uses & limitations The model could be used to generate the description for the ruby function or be fine-tuned on other ruby code tasks. It can be used on unparsed and untokenized ruby code. However, if the ruby code is tokenized, the performance should be better. ### How to use Here is how to use this model to generate ruby function documentation using Transformers SummarizationPipeline: ```python from transformers import AutoTokenizer, AutoModelWithLMHead, SummarizationPipeline pipeline = SummarizationPipeline( model=AutoModelWithLMHead.from_pretrained("SEBIS/code_trans_t5_base_code_documentation_generation_ruby_multitask_finetune"), tokenizer=AutoTokenizer.from_pretrained("SEBIS/code_trans_t5_base_code_documentation_generation_ruby_multitask_finetune", skip_special_tokens=True), device=0 ) tokenized_code = "def add ( severity , progname , & block ) return true if io . nil? || severity < level message = format_message ( severity , progname , yield ) MUTEX . synchronize { io . write ( message ) } true end" pipeline([tokenized_code]) ``` Run this example in [colab notebook](https://github.com/agemagician/CodeTrans/blob/main/prediction/multitask/fine-tuning/function%20documentation%20generation/ruby/base_model.ipynb). ## Training data The supervised training tasks datasets can be downloaded on [Link](https://www.dropbox.com/sh/488bq2of10r4wvw/AACs5CGIQuwtsD7j_Ls_JAORa/finetuning_dataset?dl=0&subfolder_nav_tracking=1) ## Training procedure ### Multi-task Pretraining The model was trained on a single TPU Pod V3-8 for half million steps in total, using sequence length 512 (batch size 4096). It has a total of approximately 220M parameters and was trained using the encoder-decoder architecture. The optimizer used is AdaFactor with inverse square root learning rate schedule for pre-training. ### Fine-tuning This model was then fine-tuned on a single TPU Pod V2-8 for 12,000 steps in total, using sequence length 512 (batch size 256), using only the dataset only containing ruby code. ## Evaluation results For the code documentation tasks, different models achieves the following results on different programming languages (in BLEU score): Test results : | Language / Model | Python | Java | Go | Php | Ruby | JavaScript | | -------------------- | :------------: | :------------: | :------------: | :------------: | :------------: | :------------: | | CodeTrans-ST-Small | 17.31 | 16.65 | 16.89 | 23.05 | 9.19 | 13.7 | | CodeTrans-ST-Base | 16.86 | 17.17 | 17.16 | 22.98 | 8.23 | 13.17 | | CodeTrans-TF-Small | 19.93 | 19.48 | 18.88 | 25.35 | 13.15 | 17.23 | | CodeTrans-TF-Base | 20.26 | 20.19 | 19.50 | 25.84 | 14.07 | 18.25 | | CodeTrans-TF-Large | 20.35 | 20.06 | **19.54** | 26.18 | 14.94 | **18.98** | | CodeTrans-MT-Small | 19.64 | 19.00 | 19.15 | 24.68 | 14.91 | 15.26 | | CodeTrans-MT-Base | **20.39** | 21.22 | 19.43 | **26.23** | **15.26** | 16.11 | | CodeTrans-MT-Large | 20.18 | **21.87** | 19.38 | 26.08 | 15.00 | 16.23 | | CodeTrans-MT-TF-Small | 19.77 | 20.04 | 19.36 | 25.55 | 13.70 | 17.24 | | CodeTrans-MT-TF-Base | 19.77 | 21.12 | 18.86 | 25.79 | 14.24 | 18.62 | | CodeTrans-MT-TF-Large | 18.94 | 21.42 | 18.77 | 26.20 | 14.19 | 18.83 | | State of the art | 19.06 | 17.65 | 18.07 | 25.16 | 12.16 | 14.90 | > Created by [Ahmed Elnaggar](https://twitter.com/Elnaggar_AI) | [LinkedIn](https://www.linkedin.com/in/prof-ahmed-elnaggar/) and Wei Ding | [LinkedIn](https://www.linkedin.com/in/wei-ding-92561270/)
SEBIS/code_trans_t5_base_commit_generation_multitask
828c172b0e33df949a06d18f5e4aa5e4cdb2ada7
2021-06-23T04:58:37.000Z
[ "pytorch", "jax", "t5", "feature-extraction", "transformers", "summarization" ]
summarization
false
SEBIS
null
SEBIS/code_trans_t5_base_commit_generation_multitask
4
null
transformers
18,139
--- tags: - summarization widget: - text: "new file mode 100644 index 000000000 . . 892fda21b Binary files / dev / null and b / src / plugins / gateway / lib / joscar . jar differ" --- # CodeTrans model for git commit message generation Pretrained model on git commit using the t5 base model architecture. It was first released in [this repository](https://github.com/agemagician/CodeTrans). This model is trained on tokenized git commit: it works best with tokenized git commit. ## Model description This CodeTrans model is based on the `t5-base` model. It has its own SentencePiece vocabulary model. It used multi-task training on 13 supervised tasks in the software development domain and 7 unsupervised datasets. ## Intended uses & limitations The model could be used to generate the git commit message for the git commit changes or be fine-tuned on other relevant tasks. It can be used on unparsed and untokenized commit changes. However, if the change is tokenized, the performance should be better. ### How to use Here is how to use this model to generate git commit message using Transformers SummarizationPipeline: ```python from transformers import AutoTokenizer, AutoModelWithLMHead, SummarizationPipeline pipeline = SummarizationPipeline( model=AutoModelWithLMHead.from_pretrained("SEBIS/code_trans_t5_base_commit_generation_multitask"), tokenizer=AutoTokenizer.from_pretrained("SEBIS/code_trans_t5_base_commit_generation_multitask", skip_special_tokens=True), device=0 ) tokenized_code = "new file mode 100644 index 000000000 . . 892fda21b Binary files / dev / null and b / src / plugins / gateway / lib / joscar . jar differ" pipeline([tokenized_code]) ``` Run this example in [colab notebook](https://github.com/agemagician/CodeTrans/blob/main/prediction/multitask/pre-training/commit%20generation/base_model.ipynb). ## Training data The supervised training tasks datasets can be downloaded on [Link](https://www.dropbox.com/sh/488bq2of10r4wvw/AACs5CGIQuwtsD7j_Ls_JAORa/finetuning_dataset?dl=0&subfolder_nav_tracking=1) ## Training procedure ### Multi-task Pretraining The model was trained on a single TPU Pod V3-8 for 480,000 steps in total, using sequence length 512 (batch size 4096). It has a total of approximately 220M parameters and was trained using the encoder-decoder architecture. The optimizer used is AdaFactor with inverse square root learning rate schedule for pre-training. ## Evaluation results For the git commit message generation task, different models achieves the following results on different programming languages (in BLEU score): Test results : | Language / Model | Java | | -------------------- | :------------: | | CodeTrans-ST-Small | 39.61 | | CodeTrans-ST-Base | 38.67 | | CodeTrans-TF-Small | 44.22 | | CodeTrans-TF-Base | 44.17 | | CodeTrans-TF-Large | **44.41** | | CodeTrans-MT-Small | 36.17 | | CodeTrans-MT-Base | 39.25 | | CodeTrans-MT-Large | 41.18 | | CodeTrans-MT-TF-Small | 43.96 | | CodeTrans-MT-TF-Base | 44.19 | | CodeTrans-MT-TF-Large | 44.34 | | State of the art | 32.81 | > Created by [Ahmed Elnaggar](https://twitter.com/Elnaggar_AI) | [LinkedIn](https://www.linkedin.com/in/prof-ahmed-elnaggar/) and Wei Ding | [LinkedIn](https://www.linkedin.com/in/wei-ding-92561270/)
SEBIS/code_trans_t5_base_source_code_summarization_sql_transfer_learning_finetune
c6dadd261ee8e2e63d125173d3368499968f4551
2021-06-23T05:34:07.000Z
[ "pytorch", "jax", "t5", "feature-extraction", "transformers", "summarization" ]
summarization
false
SEBIS
null
SEBIS/code_trans_t5_base_source_code_summarization_sql_transfer_learning_finetune
4
null
transformers
18,140
--- tags: - summarization widget: - text: "select time ( col0 ) from tab0" --- # CodeTrans model for source code summarization sql Pretrained model on programming language sql using the t5 base model architecture. It was first released in [this repository](https://github.com/agemagician/CodeTrans). This model is trained on tokenized sql code functions: it works best with tokenized sql functions. ## Model description This CodeTrans model is based on the `t5-base` model. It has its own SentencePiece vocabulary model. It used transfer-learning pre-training on 7 unsupervised datasets in the software development domain. It is then fine-tuned on the source code summarization task for the sql code snippets. ## Intended uses & limitations The model could be used to generate the description for the sql function or be fine-tuned on other sql code tasks. It can be used on unparsed and untokenized sql code. However, if the sql code is tokenized, the performance should be better. ### How to use Here is how to use this model to generate sql function documentation using Transformers SummarizationPipeline: ```python from transformers import AutoTokenizer, AutoModelWithLMHead, SummarizationPipeline pipeline = SummarizationPipeline( model=AutoModelWithLMHead.from_pretrained("SEBIS/code_trans_t5_base_source_code_summarization_sql_transfer_learning_finetune"), tokenizer=AutoTokenizer.from_pretrained("SEBIS/code_trans_t5_base_source_code_summarization_sql_transfer_learning_finetune", skip_special_tokens=True), device=0 ) tokenized_code = "select time ( col0 ) from tab0" pipeline([tokenized_code]) ``` Run this example in [colab notebook](https://github.com/agemagician/CodeTrans/blob/main/prediction/transfer%20learning%20fine-tuning/source%20code%20summarization/sql/base_model.ipynb). ## Training data The supervised training tasks datasets can be downloaded on [Link](https://www.dropbox.com/sh/488bq2of10r4wvw/AACs5CGIQuwtsD7j_Ls_JAORa/finetuning_dataset?dl=0&subfolder_nav_tracking=1) ## Training procedure ### Transfer-learning Pretraining The model was trained on a single TPU Pod V3-8 for 500,000 steps in total, using sequence length 512 (batch size 4096). It has a total of approximately 220M parameters and was trained using the encoder-decoder architecture. The optimizer used is AdaFactor with inverse square root learning rate schedule for pre-training. ### Fine-tuning This model was then fine-tuned on a single TPU Pod V2-8 for 500 steps in total, using sequence length 512 (batch size 256), using only the dataset only containing sql code. ## Evaluation results For the source code summarization tasks, different models achieves the following results on different programming languages (in BLEU score): Test results : | Language / Model | Python | SQL | C# | | -------------------- | :------------: | :------------: | :------------: | | CodeTrans-ST-Small | 8.45 | 17.55 | 19.74 | | CodeTrans-ST-Base | 9.12 | 15.00 | 18.65 | | CodeTrans-TF-Small | 10.06 | 17.71 | 20.40 | | CodeTrans-TF-Base | 10.94 | 17.66 | 21.12 | | CodeTrans-TF-Large | 12.41 | 18.40 | 21.43 | | CodeTrans-MT-Small | 13.11 | 19.15 | 22.39 | | CodeTrans-MT-Base | **13.37** | 19.24 | 23.20 | | CodeTrans-MT-Large | 13.24 | 19.40 | **23.57** | | CodeTrans-MT-TF-Small | 12.10 | 18.25 | 22.03 | | CodeTrans-MT-TF-Base | 10.64 | 16.91 | 21.40 | | CodeTrans-MT-TF-Large | 12.14 | **19.98** | 21.10 | | CODE-NN | -- | 18.40 | 20.50 | > Created by [Ahmed Elnaggar](https://twitter.com/Elnaggar_AI) | [LinkedIn](https://www.linkedin.com/in/prof-ahmed-elnaggar/) and Wei Ding | [LinkedIn](https://www.linkedin.com/in/wei-ding-92561270/)
SEBIS/code_trans_t5_large_code_documentation_generation_php_multitask
1e6a5d6bd6c79dec67c9d9c8e62572f3e73564f0
2021-06-23T07:15:38.000Z
[ "pytorch", "jax", "t5", "feature-extraction", "transformers", "summarization" ]
summarization
false
SEBIS
null
SEBIS/code_trans_t5_large_code_documentation_generation_php_multitask
4
null
transformers
18,141
--- tags: - summarization widget: - text: "public static function update ( $ table ) { if ( ! is_array ( $ table ) ) { $ table = json_decode ( $ table , true ) ; } if ( ! SchemaManager :: tableExists ( $ table [ 'oldName' ] ) ) { throw SchemaException :: tableDoesNotExist ( $ table [ 'oldName' ] ) ; } $ updater = new self ( $ table ) ; $ updater -> updateTable ( ) ; }" --- # CodeTrans model for code documentation generation php Pretrained model on programming language php using the t5 large model architecture. It was first released in [this repository](https://github.com/agemagician/CodeTrans). This model is trained on tokenized php code functions: it works best with tokenized php functions. ## Model description This CodeTrans model is based on the `t5-large` model. It has its own SentencePiece vocabulary model. It used multi-task training on 13 supervised tasks in the software development domain and 7 unsupervised datasets. ## Intended uses & limitations The model could be used to generate the description for the php function or be fine-tuned on other php code tasks. It can be used on unparsed and untokenized php code. However, if the php code is tokenized, the performance should be better. ### How to use Here is how to use this model to generate php function documentation using Transformers SummarizationPipeline: ```python from transformers import AutoTokenizer, AutoModelWithLMHead, SummarizationPipeline pipeline = SummarizationPipeline( model=AutoModelWithLMHead.from_pretrained("SEBIS/code_trans_t5_large_code_documentation_generation_php_multitask"), tokenizer=AutoTokenizer.from_pretrained("SEBIS/code_trans_t5_large_code_documentation_generation_php_multitask", skip_special_tokens=True), device=0 ) tokenized_code = "public static function update ( $ table ) { if ( ! is_array ( $ table ) ) { $ table = json_decode ( $ table , true ) ; } if ( ! SchemaManager :: tableExists ( $ table [ 'oldName' ] ) ) { throw SchemaException :: tableDoesNotExist ( $ table [ 'oldName' ] ) ; } $ updater = new self ( $ table ) ; $ updater -> updateTable ( ) ; }" pipeline([tokenized_code]) ``` Run this example in [colab notebook](https://github.com/agemagician/CodeTrans/blob/main/prediction/multitask/pre-training/function%20documentation%20generation/php/large_model.ipynb). ## Training data The supervised training tasks datasets can be downloaded on [Link](https://www.dropbox.com/sh/488bq2of10r4wvw/AACs5CGIQuwtsD7j_Ls_JAORa/finetuning_dataset?dl=0&subfolder_nav_tracking=1) ## Training procedure ### Multi-task Pretraining The model was trained on a single TPU Pod V3-8 for 240,000 steps in total, using sequence length 512 (batch size 4096). It has a total of approximately 220M parameters and was trained using the encoder-decoder architecture. The optimizer used is AdaFactor with inverse square root learning rate schedule for pre-training. Test results : | Language / Model | Python | Java | Go | Php | Ruby | JavaScript | | -------------------- | :------------: | :------------: | :------------: | :------------: | :------------: | :------------: | | CodeTrans-ST-Small | 17.31 | 16.65 | 16.89 | 23.05 | 9.19 | 13.7 | | CodeTrans-ST-Base | 16.86 | 17.17 | 17.16 | 22.98 | 8.23 | 13.17 | | CodeTrans-TF-Small | 19.93 | 19.48 | 18.88 | 25.35 | 13.15 | 17.23 | | CodeTrans-TF-Base | 20.26 | 20.19 | 19.50 | 25.84 | 14.07 | 18.25 | | CodeTrans-TF-Large | 20.35 | 20.06 | **19.54** | 26.18 | 14.94 | **18.98** | | CodeTrans-MT-Small | 19.64 | 19.00 | 19.15 | 24.68 | 14.91 | 15.26 | | CodeTrans-MT-Base | **20.39** | 21.22 | 19.43 | **26.23** | **15.26** | 16.11 | | CodeTrans-MT-Large | 20.18 | **21.87** | 19.38 | 26.08 | 15.00 | 16.23 | | CodeTrans-MT-TF-Small | 19.77 | 20.04 | 19.36 | 25.55 | 13.70 | 17.24 | | CodeTrans-MT-TF-Base | 19.77 | 21.12 | 18.86 | 25.79 | 14.24 | 18.62 | | CodeTrans-MT-TF-Large | 18.94 | 21.42 | 18.77 | 26.20 | 14.19 | 18.83 | | State of the art | 19.06 | 17.65 | 18.07 | 25.16 | 12.16 | 14.90 | > Created by [Ahmed Elnaggar](https://twitter.com/Elnaggar_AI) | [LinkedIn](https://www.linkedin.com/in/prof-ahmed-elnaggar/) and Wei Ding | [LinkedIn](https://www.linkedin.com/in/wei-ding-92561270/)
SEBIS/code_trans_t5_large_code_documentation_generation_python_multitask
f3018ef821908d723ab74352f6badc8600b6fc79
2021-06-23T07:34:31.000Z
[ "pytorch", "jax", "t5", "feature-extraction", "transformers", "summarization" ]
summarization
false
SEBIS
null
SEBIS/code_trans_t5_large_code_documentation_generation_python_multitask
4
null
transformers
18,142
--- tags: - summarization widget: - text: "def e ( message , exit_code = None ) : print_log ( message , YELLOW , BOLD ) if exit_code is not None : sys . exit ( exit_code )" --- # CodeTrans model for code documentation generation python Pretrained model on programming language python using the t5 large model architecture. It was first released in [this repository](https://github.com/agemagician/CodeTrans). This model is trained on tokenized python code functions: it works best with tokenized python functions. ## Model description This CodeTrans model is based on the `t5-large` model. It has its own SentencePiece vocabulary model. It used multi-task training on 13 supervised tasks in the software development domain and 7 unsupervised datasets. ## Intended uses & limitations The model could be used to generate the description for the python function or be fine-tuned on other python code tasks. It can be used on unparsed and untokenized python code. However, if the python code is tokenized, the performance should be better. ### How to use Here is how to use this model to generate python function documentation using Transformers SummarizationPipeline: ```python from transformers import AutoTokenizer, AutoModelWithLMHead, SummarizationPipeline pipeline = SummarizationPipeline( model=AutoModelWithLMHead.from_pretrained("SEBIS/code_trans_t5_large_code_documentation_generation_python_multitask"), tokenizer=AutoTokenizer.from_pretrained("SEBIS/code_trans_t5_large_code_documentation_generation_python_multitask", skip_special_tokens=True), device=0 ) tokenized_code = "def e ( message , exit_code = None ) : print_log ( message , YELLOW , BOLD ) if exit_code is not None : sys . exit ( exit_code )" pipeline([tokenized_code]) ``` Run this example in [colab notebook](https://github.com/agemagician/CodeTrans/blob/main/prediction/multitask/pre-training/function%20documentation%20generation/python/large_model.ipynb). ## Training data The supervised training tasks datasets can be downloaded on [Link](https://www.dropbox.com/sh/488bq2of10r4wvw/AACs5CGIQuwtsD7j_Ls_JAORa/finetuning_dataset?dl=0&subfolder_nav_tracking=1) ## Training procedure ### Multi-task Pretraining The model was trained on a single TPU Pod V3-8 for 80,000 steps in total, using sequence length 512 (batch size 4096). It has a total of approximately 220M parameters and was trained using the encoder-decoder architecture. The optimizer used is AdaFactor with inverse square root learning rate schedule for pre-training. ## Evaluation results For the code documentation tasks, different models achieves the following results on different programming languages (in BLEU score): Test results : | Language / Model | Python | Java | Go | Php | Ruby | JavaScript | | -------------------- | :------------: | :------------: | :------------: | :------------: | :------------: | :------------: | | CodeTrans-ST-Small | 17.31 | 16.65 | 16.89 | 23.05 | 9.19 | 13.7 | | CodeTrans-ST-Base | 16.86 | 17.17 | 17.16 | 22.98 | 8.23 | 13.17 | | CodeTrans-TF-Small | 19.93 | 19.48 | 18.88 | 25.35 | 13.15 | 17.23 | | CodeTrans-TF-Base | 20.26 | 20.19 | 19.50 | 25.84 | 14.07 | 18.25 | | CodeTrans-TF-Large | 20.35 | 20.06 | **19.54** | 26.18 | 14.94 | **18.98** | | CodeTrans-MT-Small | 19.64 | 19.00 | 19.15 | 24.68 | 14.91 | 15.26 | | CodeTrans-MT-Base | **20.39** | 21.22 | 19.43 | **26.23** | **15.26** | 16.11 | | CodeTrans-MT-Large | 20.18 | **21.87** | 19.38 | 26.08 | 15.00 | 16.23 | | CodeTrans-MT-TF-Small | 19.77 | 20.04 | 19.36 | 25.55 | 13.70 | 17.24 | | CodeTrans-MT-TF-Base | 19.77 | 21.12 | 18.86 | 25.79 | 14.24 | 18.62 | | CodeTrans-MT-TF-Large | 18.94 | 21.42 | 18.77 | 26.20 | 14.19 | 18.83 | | State of the art | 19.06 | 17.65 | 18.07 | 25.16 | 12.16 | 14.90 | > Created by [Ahmed Elnaggar](https://twitter.com/Elnaggar_AI) | [LinkedIn](https://www.linkedin.com/in/prof-ahmed-elnaggar/) and Wei Ding | [LinkedIn](https://www.linkedin.com/in/wei-ding-92561270/)
SEBIS/code_trans_t5_large_code_documentation_generation_ruby_multitask_finetune
e8fab39ffb9017d36fc666b6719f5335e8ff2fcf
2021-06-23T07:57:33.000Z
[ "pytorch", "jax", "t5", "feature-extraction", "transformers", "summarization" ]
summarization
false
SEBIS
null
SEBIS/code_trans_t5_large_code_documentation_generation_ruby_multitask_finetune
4
null
transformers
18,143
--- tags: - summarization widget: - text: "def add ( severity , progname , & block ) return true if io . nil? || severity < level message = format_message ( severity , progname , yield ) MUTEX . synchronize { io . write ( message ) } true end" --- # CodeTrans model for code documentation generation ruby Pretrained model on programming language ruby using the t5 large model architecture. It was first released in [this repository](https://github.com/agemagician/CodeTrans). This model is trained on tokenized ruby code functions: it works best with tokenized ruby functions. ## Model description This CodeTrans model is based on the `t5-large` model. It has its own SentencePiece vocabulary model. It used multi-task training on 13 supervised tasks in the software development domain and 7 unsupervised datasets. It is then fine-tuned on the code documentation generation task for the ruby function/method. ## Intended uses & limitations The model could be used to generate the description for the ruby function or be fine-tuned on other ruby code tasks. It can be used on unparsed and untokenized ruby code. However, if the ruby code is tokenized, the performance should be better. ### How to use Here is how to use this model to generate ruby function documentation using Transformers SummarizationPipeline: ```python from transformers import AutoTokenizer, AutoModelWithLMHead, SummarizationPipeline pipeline = SummarizationPipeline( model=AutoModelWithLMHead.from_pretrained("SEBIS/code_trans_t5_large_code_documentation_generation_ruby_multitask_finetune"), tokenizer=AutoTokenizer.from_pretrained("SEBIS/code_trans_t5_large_code_documentation_generation_ruby_multitask_finetune", skip_special_tokens=True), device=0 ) tokenized_code = "def add ( severity , progname , & block ) return true if io . nil? || severity < level message = format_message ( severity , progname , yield ) MUTEX . synchronize { io . write ( message ) } true end" pipeline([tokenized_code]) ``` Run this example in [colab notebook](https://github.com/agemagician/CodeTrans/blob/main/prediction/multitask/fine-tuning/function%20documentation%20generation/ruby/large_model.ipynb). ## Training data The supervised training tasks datasets can be downloaded on [Link](https://www.dropbox.com/sh/488bq2of10r4wvw/AACs5CGIQuwtsD7j_Ls_JAORa/finetuning_dataset?dl=0&subfolder_nav_tracking=1) ## Training procedure ### Multi-task Pretraining The model was trained on a single TPU Pod V3-8 for half million steps in total, using sequence length 512 (batch size 4096). It has a total of approximately 220M parameters and was trained using the encoder-decoder architecture. The optimizer used is AdaFactor with inverse square root learning rate schedule for pre-training. ### Fine-tuning This model was then fine-tuned on a single TPU Pod V2-8 for 2,000 steps in total, using sequence length 512 (batch size 256), using only the dataset only containing ruby code. ## Evaluation results For the code documentation tasks, different models achieves the following results on different programming languages (in BLEU score): Test results : | Language / Model | Python | Java | Go | Php | Ruby | JavaScript | | -------------------- | :------------: | :------------: | :------------: | :------------: | :------------: | :------------: | | CodeTrans-ST-Small | 17.31 | 16.65 | 16.89 | 23.05 | 9.19 | 13.7 | | CodeTrans-ST-Base | 16.86 | 17.17 | 17.16 | 22.98 | 8.23 | 13.17 | | CodeTrans-TF-Small | 19.93 | 19.48 | 18.88 | 25.35 | 13.15 | 17.23 | | CodeTrans-TF-Base | 20.26 | 20.19 | 19.50 | 25.84 | 14.07 | 18.25 | | CodeTrans-TF-Large | 20.35 | 20.06 | **19.54** | 26.18 | 14.94 | **18.98** | | CodeTrans-MT-Small | 19.64 | 19.00 | 19.15 | 24.68 | 14.91 | 15.26 | | CodeTrans-MT-Base | **20.39** | 21.22 | 19.43 | **26.23** | **15.26** | 16.11 | | CodeTrans-MT-Large | 20.18 | **21.87** | 19.38 | 26.08 | 15.00 | 16.23 | | CodeTrans-MT-TF-Small | 19.77 | 20.04 | 19.36 | 25.55 | 13.70 | 17.24 | | CodeTrans-MT-TF-Base | 19.77 | 21.12 | 18.86 | 25.79 | 14.24 | 18.62 | | CodeTrans-MT-TF-Large | 18.94 | 21.42 | 18.77 | 26.20 | 14.19 | 18.83 | | State of the art | 19.06 | 17.65 | 18.07 | 25.16 | 12.16 | 14.90 | > Created by [Ahmed Elnaggar](https://twitter.com/Elnaggar_AI) | [LinkedIn](https://www.linkedin.com/in/prof-ahmed-elnaggar/) and Wei Ding | [LinkedIn](https://www.linkedin.com/in/wei-ding-92561270/)
SEBIS/code_trans_t5_small_api_generation
43f0c42104617fb1223f04632f8feb79a569e1de
2021-06-23T09:53:41.000Z
[ "pytorch", "t5", "feature-extraction", "transformers", "summarization" ]
summarization
false
SEBIS
null
SEBIS/code_trans_t5_small_api_generation
4
null
transformers
18,144
--- tags: - summarization widget: - text: "parse the uses licence node of this package , if any , and returns the license definition if theres" --- # CodeTrans model for api recommendation generation Pretrained model for api recommendation generation using the t5 small model architecture. It was first released in [this repository](https://github.com/agemagician/CodeTrans). ## Model description This CodeTrans model is based on the `t5-small` model. It has its own SentencePiece vocabulary model. It used single-task training on Api Recommendation Generation dataset. ## Intended uses & limitations The model could be used to generate api usage for the java programming tasks. ### How to use Here is how to use this model to generate java function documentation using Transformers SummarizationPipeline: ```python from transformers import AutoTokenizer, AutoModelWithLMHead, SummarizationPipeline pipeline = SummarizationPipeline( model=AutoModelWithLMHead.from_pretrained("SEBIS/code_trans_t5_small_api_generation"), tokenizer=AutoTokenizer.from_pretrained("SEBIS/code_trans_t5_small_api_generation", skip_special_tokens=True), device=0 ) tokenized_code = "parse the uses licence node of this package , if any , and returns the license definition if theres" pipeline([tokenized_code]) ``` Run this example in [colab notebook](https://github.com/agemagician/CodeTrans/blob/main/prediction/single%20task/api%20generation/small_model.ipynb). ## Training data The supervised training tasks datasets can be downloaded on [Link](https://www.dropbox.com/sh/488bq2of10r4wvw/AACs5CGIQuwtsD7j_Ls_JAORa/finetuning_dataset?dl=0&subfolder_nav_tracking=1) ## Evaluation results For the code documentation tasks, different models achieves the following results on different programming languages (in BLEU score): Test results : | Language / Model | Java | | -------------------- | :------------: | | CodeTrans-ST-Small | 68.71 | | CodeTrans-ST-Base | 70.45 | | CodeTrans-TF-Small | 68.90 | | CodeTrans-TF-Base | 72.11 | | CodeTrans-TF-Large | 73.26 | | CodeTrans-MT-Small | 58.43 | | CodeTrans-MT-Base | 67.97 | | CodeTrans-MT-Large | 72.29 | | CodeTrans-MT-TF-Small | 69.29 | | CodeTrans-MT-TF-Base | 72.89 | | CodeTrans-MT-TF-Large | **73.39** | | State of the art | 54.42 | > Created by [Ahmed Elnaggar](https://twitter.com/Elnaggar_AI) | [LinkedIn](https://www.linkedin.com/in/prof-ahmed-elnaggar/) and Wei Ding | [LinkedIn](https://www.linkedin.com/in/wei-ding-92561270/)
SEBIS/code_trans_t5_small_api_generation_multitask_finetune
50e3c6d6e0dd12edc8287febb2705be5cc2cd97d
2021-06-23T09:54:42.000Z
[ "pytorch", "jax", "t5", "feature-extraction", "transformers", "summarization" ]
summarization
false
SEBIS
null
SEBIS/code_trans_t5_small_api_generation_multitask_finetune
4
null
transformers
18,145
--- tags: - summarization widget: - text: "parse the uses licence node of this package , if any , and returns the license definition if theres" --- # CodeTrans model for api recommendation generation Pretrained model for api recommendation generation using the t5 small model architecture. It was first released in [this repository](https://github.com/agemagician/CodeTrans). ## Model description This CodeTrans model is based on the `t5-small` model. It has its own SentencePiece vocabulary model. It used multi-task training on 13 supervised tasks in the software development domain and 7 unsupervised datasets. It is then fine-tuned on the api recommendation generation task for the java apis. ## Intended uses & limitations The model could be used to generate api usage for the java programming tasks. ### How to use Here is how to use this model to generate java function documentation using Transformers SummarizationPipeline: ```python from transformers import AutoTokenizer, AutoModelWithLMHead, SummarizationPipeline pipeline = SummarizationPipeline( model=AutoModelWithLMHead.from_pretrained("SEBIS/code_trans_t5_small_api_generation_multitask_finetune"), tokenizer=AutoTokenizer.from_pretrained("SEBIS/code_trans_t5_small_api_generation_multitask_finetune", skip_special_tokens=True), device=0 ) tokenized_code = "parse the uses licence node of this package , if any , and returns the license definition if theres" pipeline([tokenized_code]) ``` Run this example in [colab notebook](https://github.com/agemagician/CodeTrans/blob/main/prediction/multitask/fine-tuning/api%20generation/small_model.ipynb). ## Training data The supervised training tasks datasets can be downloaded on [Link](https://www.dropbox.com/sh/488bq2of10r4wvw/AACs5CGIQuwtsD7j_Ls_JAORa/finetuning_dataset?dl=0&subfolder_nav_tracking=1) ## Training procedure ### Multi-task Pretraining The model was trained on a single TPU Pod V3-8 for 500,000 steps in total, using sequence length 512 (batch size 4096). It has a total of approximately 220M parameters and was trained using the encoder-decoder architecture. The optimizer used is AdaFactor with inverse square root learning rate schedule for pre-training. ### Fine-tuning This model was then fine-tuned on a single TPU Pod V2-8 for 1,150,000 steps in total, using sequence length 512 (batch size 256), using only the dataset only containing api recommendation generation data. ## Evaluation results For the code documentation tasks, different models achieves the following results on different programming languages (in BLEU score): Test results : | Language / Model | Java | | -------------------- | :------------: | | CodeTrans-ST-Small | 68.71 | | CodeTrans-ST-Base | 70.45 | | CodeTrans-TF-Small | 68.90 | | CodeTrans-TF-Base | 72.11 | | CodeTrans-TF-Large | 73.26 | | CodeTrans-MT-Small | 58.43 | | CodeTrans-MT-Base | 67.97 | | CodeTrans-MT-Large | 72.29 | | CodeTrans-MT-TF-Small | 69.29 | | CodeTrans-MT-TF-Base | 72.89 | | CodeTrans-MT-TF-Large | **73.39** | | State of the art | 54.42 | > Created by [Ahmed Elnaggar](https://twitter.com/Elnaggar_AI) | [LinkedIn](https://www.linkedin.com/in/prof-ahmed-elnaggar/) and Wei Ding | [LinkedIn](https://www.linkedin.com/in/wei-ding-92561270/)
SEBIS/code_trans_t5_small_code_comment_generation_java_multitask
ee9c56d7bf748c28842e52c41e03d66f23c08de4
2021-06-23T09:56:19.000Z
[ "pytorch", "jax", "t5", "feature-extraction", "transformers", "summarization" ]
summarization
false
SEBIS
null
SEBIS/code_trans_t5_small_code_comment_generation_java_multitask
4
null
transformers
18,146
--- tags: - summarization widget: - text: "protected String renderUri ( URI uri ) { return uri . toASCIIString ( ) ; }" --- # CodeTrans model for code comment generation java Pretrained model on programming language java using the t5 small model architecture. It was first released in [this repository](https://github.com/agemagician/CodeTrans). This model is trained on tokenized java code functions: it works best with tokenized java functions. ## Model description This CodeTrans model is based on the `t5-small` model. It has its own SentencePiece vocabulary model. It used multi-task training on 13 supervised tasks in the software development domain and 7 unsupervised datasets. ## Intended uses & limitations The model could be used to generate the description for the java function or be fine-tuned on other java code tasks. It can be used on unparsed and untokenized java code. However, if the java code is tokenized, the performance should be better. ### How to use Here is how to use this model to generate java function documentation using Transformers SummarizationPipeline: ```python from transformers import AutoTokenizer, AutoModelWithLMHead, SummarizationPipeline pipeline = SummarizationPipeline( model=AutoModelWithLMHead.from_pretrained("SEBIS/code_trans_t5_small_code_comment_generation_java_multitask"), tokenizer=AutoTokenizer.from_pretrained("SEBIS/code_trans_t5_small_code_comment_generation_java_multitask", skip_special_tokens=True), device=0 ) tokenized_code = "protected String renderUri ( URI uri ) { return uri . toASCIIString ( ) ; }" pipeline([tokenized_code]) ``` Run this example in [colab notebook](https://github.com/agemagician/CodeTrans/blob/main/prediction/multitask/pre-training/code%20comment%20generation/small_model.ipynb). ## Training data The supervised training tasks datasets can be downloaded on [Link](https://www.dropbox.com/sh/488bq2of10r4wvw/AACs5CGIQuwtsD7j_Ls_JAORa/finetuning_dataset?dl=0&subfolder_nav_tracking=1) ## Training procedure ### Multi-task Pretraining The model was trained on a single TPU Pod V3-8 for 360,000 steps in total, using sequence length 512 (batch size 4096). It has a total of approximately 220M parameters and was trained using the encoder-decoder architecture. The optimizer used is AdaFactor with inverse square root learning rate schedule for pre-training. ## Evaluation results For the code documentation tasks, different models achieves the following results on different programming languages (in BLEU score): Test results : | Language / Model | Java | | -------------------- | :------------: | | CodeTrans-ST-Small | 37.98 | | CodeTrans-ST-Base | 38.07 | | CodeTrans-TF-Small | 38.56 | | CodeTrans-TF-Base | 39.06 | | CodeTrans-TF-Large | **39.50** | | CodeTrans-MT-Small | 20.15 | | CodeTrans-MT-Base | 27.44 | | CodeTrans-MT-Large | 34.69 | | CodeTrans-MT-TF-Small | 38.37 | | CodeTrans-MT-TF-Base | 38.90 | | CodeTrans-MT-TF-Large | 39.25 | | State of the art | 38.17 | > Created by [Ahmed Elnaggar](https://twitter.com/Elnaggar_AI) | [LinkedIn](https://www.linkedin.com/in/prof-ahmed-elnaggar/) and Wei Ding | [LinkedIn](https://www.linkedin.com/in/wei-ding-92561270/)
SEBIS/code_trans_t5_small_code_documentation_generation_java_multitask_finetune
f7fb47f209e5cb2347ebcabfed07fee731a49bd1
2021-06-23T10:01:38.000Z
[ "pytorch", "jax", "t5", "feature-extraction", "transformers", "summarization" ]
summarization
false
SEBIS
null
SEBIS/code_trans_t5_small_code_documentation_generation_java_multitask_finetune
4
null
transformers
18,147
--- tags: - summarization widget: - text: "public static < T , U > Function < T , U > castFunction ( Class < U > target ) { return new CastToClass < T , U > ( target ) ; }" --- # CodeTrans model for code documentation generation java Pretrained model on programming language java using the t5 small model architecture. It was first released in [this repository](https://github.com/agemagician/CodeTrans). This model is trained on tokenized java code functions: it works best with tokenized java functions. ## Model description This CodeTrans model is based on the `t5-small` model. It has its own SentencePiece vocabulary model. It used multi-task training on 13 supervised tasks in the software development domain and 7 unsupervised datasets. It is then fine-tuned on the code documentation generation task for the java function/method. ## Intended uses & limitations The model could be used to generate the description for the java function or be fine-tuned on other java code tasks. It can be used on unparsed and untokenized java code. However, if the java code is tokenized, the performance should be better. ### How to use Here is how to use this model to generate java function documentation using Transformers SummarizationPipeline: ```python from transformers import AutoTokenizer, AutoModelWithLMHead, SummarizationPipeline pipeline = SummarizationPipeline( model=AutoModelWithLMHead.from_pretrained("SEBIS/code_trans_t5_small_code_documentation_generation_java_multitask_finetune"), tokenizer=AutoTokenizer.from_pretrained("SEBIS/code_trans_t5_small_code_documentation_generation_java_multitask_finetune", skip_special_tokens=True), device=0 ) tokenized_code = "public static < T , U > Function < T , U > castFunction ( Class < U > target ) { return new CastToClass < T , U > ( target ) ; }" pipeline([tokenized_code]) ``` Run this example in [colab notebook](https://github.com/agemagician/CodeTrans/blob/main/prediction/multitask/fine-tuning/function%20documentation%20generation/java/small_model.ipynb). ## Training data The supervised training tasks datasets can be downloaded on [Link](https://www.dropbox.com/sh/488bq2of10r4wvw/AACs5CGIQuwtsD7j_Ls_JAORa/finetuning_dataset?dl=0&subfolder_nav_tracking=1) ## Training procedure ### Multi-task Pretraining The model was trained on a single TPU Pod V3-8 for half million steps in total, using sequence length 512 (batch size 4096). It has a total of approximately 220M parameters and was trained using the encoder-decoder architecture. The optimizer used is AdaFactor with inverse square root learning rate schedule for pre-training. ### Fine-tuning This model was then fine-tuned on a single TPU Pod V2-8 for 4000 steps in total, using sequence length 512 (batch size 256), using only the dataset only containing java code. ## Evaluation results For the code documentation tasks, different models achieves the following results on different programming languages (in BLEU score): Test results : | Language / Model | Python | Java | Go | Php | Ruby | JavaScript | | -------------------- | :------------: | :------------: | :------------: | :------------: | :------------: | :------------: | | CodeTrans-ST-Small | 17.31 | 16.65 | 16.89 | 23.05 | 9.19 | 13.7 | | CodeTrans-ST-Base | 16.86 | 17.17 | 17.16 | 22.98 | 8.23 | 13.17 | | CodeTrans-TF-Small | 19.93 | 19.48 | 18.88 | 25.35 | 13.15 | 17.23 | | CodeTrans-TF-Base | 20.26 | 20.19 | 19.50 | 25.84 | 14.07 | 18.25 | | CodeTrans-TF-Large | 20.35 | 20.06 | **19.54** | 26.18 | 14.94 | **18.98** | | CodeTrans-MT-Small | 19.64 | 19.00 | 19.15 | 24.68 | 14.91 | 15.26 | | CodeTrans-MT-Base | **20.39** | 21.22 | 19.43 | **26.23** | **15.26** | 16.11 | | CodeTrans-MT-Large | 20.18 | **21.87** | 19.38 | 26.08 | 15.00 | 16.23 | | CodeTrans-MT-TF-Small | 19.77 | 20.04 | 19.36 | 25.55 | 13.70 | 17.24 | | CodeTrans-MT-TF-Base | 19.77 | 21.12 | 18.86 | 25.79 | 14.24 | 18.62 | | CodeTrans-MT-TF-Large | 18.94 | 21.42 | 18.77 | 26.20 | 14.19 | 18.83 | | State of the art | 19.06 | 17.65 | 18.07 | 25.16 | 12.16 | 14.90 | > Created by [Ahmed Elnaggar](https://twitter.com/Elnaggar_AI) | [LinkedIn](https://www.linkedin.com/in/prof-ahmed-elnaggar/) and Wei Ding | [LinkedIn](https://www.linkedin.com/in/wei-ding-92561270/)
SEBIS/code_trans_t5_small_code_documentation_generation_javascript_transfer_learning_finetune
7772bc36548dde7a82f02eee723e411dc8f8018c
2021-06-23T10:06:28.000Z
[ "pytorch", "jax", "t5", "feature-extraction", "transformers", "summarization" ]
summarization
false
SEBIS
null
SEBIS/code_trans_t5_small_code_documentation_generation_javascript_transfer_learning_finetune
4
null
transformers
18,148
--- tags: - summarization widget: - text: "function isStandardBrowserEnv ( ) { if ( typeof navigator !== 'undefined' && ( navigator . product === 'ReactNative' || navigator . product === 'NativeScript' || navigator . product === 'NS' ) ) { return false ; } return ( typeof window !== 'undefined' && typeof document !== 'undefined' ) ; }" --- # CodeTrans model for code documentation generation javascript Pretrained model on programming language javascript using the t5 small model architecture. It was first released in [this repository](https://github.com/agemagician/CodeTrans). This model is trained on tokenized javascript code functions: it works best with tokenized javascript functions. ## Model description This CodeTrans model is based on the `t5-small` model. It has its own SentencePiece vocabulary model. It used transfer-learning pre-training on 7 unsupervised datasets in the software development domain. It is then fine-tuned on the code documentation generation task for the javascript function/method. ## Intended uses & limitations The model could be used to generate the description for the javascript function or be fine-tuned on other javascript code tasks. It can be used on unparsed and untokenized javascript code. However, if the javascript code is tokenized, the performance should be better. ### How to use Here is how to use this model to generate javascript function documentation using Transformers SummarizationPipeline: ```python from transformers import AutoTokenizer, AutoModelWithLMHead, SummarizationPipeline pipeline = SummarizationPipeline( model=AutoModelWithLMHead.from_pretrained("SEBIS/code_trans_t5_small_code_documentation_generation_javascript_transfer_learning_finetune"), tokenizer=AutoTokenizer.from_pretrained("SEBIS/code_trans_t5_small_code_documentation_generation_javascript_transfer_learning_finetune", skip_special_tokens=True), device=0 ) tokenized_code = "function isStandardBrowserEnv ( ) { if ( typeof navigator !== 'undefined' && ( navigator . product === 'ReactNative' || navigator . product === 'NativeScript' || navigator . product === 'NS' ) ) { return false ; } return ( typeof window !== 'undefined' && typeof document !== 'undefined' ) ; }" pipeline([tokenized_code]) ``` Run this example in [colab notebook](https://github.com/agemagician/CodeTrans/blob/main/prediction/transfer%20learning%20fine-tuning/function%20documentation%20generation/javascript/small_model.ipynb). ## Training data The supervised training tasks datasets can be downloaded on [Link](https://www.dropbox.com/sh/488bq2of10r4wvw/AACs5CGIQuwtsD7j_Ls_JAORa/finetuning_dataset?dl=0&subfolder_nav_tracking=1) ## Training procedure ### Transfer-learning Pretraining The model was trained on a single TPU Pod V3-8 for half million steps in total, using sequence length 512 (batch size 4096). It has a total of approximately 220M parameters and was trained using the encoder-decoder architecture. The optimizer used is AdaFactor with inverse square root learning rate schedule for pre-training. ### Fine-tuning This model was then fine-tuned on a single TPU Pod V2-8 for 40,000 steps in total, using sequence length 512 (batch size 256), using only the dataset only containing javascript code. ## Evaluation results For the code documentation tasks, different models achieves the following results on different programming languages (in BLEU score): Test results : | Language / Model | Python | Java | Go | Php | Ruby | JavaScript | | -------------------- | :------------: | :------------: | :------------: | :------------: | :------------: | :------------: | | CodeTrans-ST-Small | 17.31 | 16.65 | 16.89 | 23.05 | 9.19 | 13.7 | | CodeTrans-ST-Base | 16.86 | 17.17 | 17.16 | 22.98 | 8.23 | 13.17 | | CodeTrans-TF-Small | 19.93 | 19.48 | 18.88 | 25.35 | 13.15 | 17.23 | | CodeTrans-TF-Base | 20.26 | 20.19 | 19.50 | 25.84 | 14.07 | 18.25 | | CodeTrans-TF-Large | 20.35 | 20.06 | **19.54** | 26.18 | 14.94 | **18.98** | | CodeTrans-MT-Small | 19.64 | 19.00 | 19.15 | 24.68 | 14.91 | 15.26 | | CodeTrans-MT-Base | **20.39** | 21.22 | 19.43 | **26.23** | **15.26** | 16.11 | | CodeTrans-MT-Large | 20.18 | **21.87** | 19.38 | 26.08 | 15.00 | 16.23 | | CodeTrans-MT-TF-Small | 19.77 | 20.04 | 19.36 | 25.55 | 13.70 | 17.24 | | CodeTrans-MT-TF-Base | 19.77 | 21.12 | 18.86 | 25.79 | 14.24 | 18.62 | | CodeTrans-MT-TF-Large | 18.94 | 21.42 | 18.77 | 26.20 | 14.19 | 18.83 | | State of the art | 19.06 | 17.65 | 18.07 | 25.16 | 12.16 | 14.90 | > Created by [Ahmed Elnaggar](https://twitter.com/Elnaggar_AI) | [LinkedIn](https://www.linkedin.com/in/prof-ahmed-elnaggar/) and Wei Ding | [LinkedIn](https://www.linkedin.com/in/wei-ding-92561270/)
SEBIS/code_trans_t5_small_code_documentation_generation_php_multitask_finetune
3e141885d53cd0419e54a224235331140b8ed0b4
2021-06-23T10:08:22.000Z
[ "pytorch", "jax", "t5", "feature-extraction", "transformers", "summarization" ]
summarization
false
SEBIS
null
SEBIS/code_trans_t5_small_code_documentation_generation_php_multitask_finetune
4
null
transformers
18,149
--- tags: - summarization widget: - text: "public static function update ( $ table ) { if ( ! is_array ( $ table ) ) { $ table = json_decode ( $ table , true ) ; } if ( ! SchemaManager :: tableExists ( $ table [ 'oldName' ] ) ) { throw SchemaException :: tableDoesNotExist ( $ table [ 'oldName' ] ) ; } $ updater = new self ( $ table ) ; $ updater -> updateTable ( ) ; }" --- # CodeTrans model for code documentation generation php Pretrained model on programming language php using the t5 small model architecture. It was first released in [this repository](https://github.com/agemagician/CodeTrans). This model is trained on tokenized php code functions: it works best with tokenized php functions. ## Model description This CodeTrans model is based on the `t5-small` model. It has its own SentencePiece vocabulary model. It used multi-task training on 13 supervised tasks in the software development domain and 7 unsupervised datasets. It is then fine-tuned on the code documentation generation task for the php function/method. ## Intended uses & limitations The model could be used to generate the description for the php function or be fine-tuned on other php code tasks. It can be used on unparsed and untokenized php code. However, if the php code is tokenized, the performance should be better. ### How to use Here is how to use this model to generate php function documentation using Transformers SummarizationPipeline: ```python from transformers import AutoTokenizer, AutoModelWithLMHead, SummarizationPipeline pipeline = SummarizationPipeline( model=AutoModelWithLMHead.from_pretrained("SEBIS/code_trans_t5_small_code_documentation_generation_php_multitask_finetune"), tokenizer=AutoTokenizer.from_pretrained("SEBIS/code_trans_t5_small_code_documentation_generation_php_multitask_finetune", skip_special_tokens=True), device=0 ) tokenized_code = "public static function update ( $ table ) { if ( ! is_array ( $ table ) ) { $ table = json_decode ( $ table , true ) ; } if ( ! SchemaManager :: tableExists ( $ table [ 'oldName' ] ) ) { throw SchemaException :: tableDoesNotExist ( $ table [ 'oldName' ] ) ; } $ updater = new self ( $ table ) ; $ updater -> updateTable ( ) ; }" pipeline([tokenized_code]) ``` Run this example in [colab notebook](https://github.com/agemagician/CodeTrans/blob/main/prediction/multitask/fine-tuning/function%20documentation%20generation/php/small_model.ipynb). ## Training data The supervised training tasks datasets can be downloaded on [Link](https://www.dropbox.com/sh/488bq2of10r4wvw/AACs5CGIQuwtsD7j_Ls_JAORa/finetuning_dataset?dl=0&subfolder_nav_tracking=1) ## Training procedure ### Multi-task Pretraining The model was trained on a single TPU Pod V3-8 for half million steps in total, using sequence length 512 (batch size 4096). It has a total of approximately 220M parameters and was trained using the encoder-decoder architecture. The optimizer used is AdaFactor with inverse square root learning rate schedule for pre-training. ### Fine-tuning This model was then fine-tuned on a single TPU Pod V2-8 for 10,000 steps in total, using sequence length 512 (batch size 256), using only the dataset only containing php code. Test results : | Language / Model | Python | Java | Go | Php | Ruby | JavaScript | | -------------------- | :------------: | :------------: | :------------: | :------------: | :------------: | :------------: | | CodeTrans-ST-Small | 17.31 | 16.65 | 16.89 | 23.05 | 9.19 | 13.7 | | CodeTrans-ST-Base | 16.86 | 17.17 | 17.16 | 22.98 | 8.23 | 13.17 | | CodeTrans-TF-Small | 19.93 | 19.48 | 18.88 | 25.35 | 13.15 | 17.23 | | CodeTrans-TF-Base | 20.26 | 20.19 | 19.50 | 25.84 | 14.07 | 18.25 | | CodeTrans-TF-Large | 20.35 | 20.06 | **19.54** | 26.18 | 14.94 | **18.98** | | CodeTrans-MT-Small | 19.64 | 19.00 | 19.15 | 24.68 | 14.91 | 15.26 | | CodeTrans-MT-Base | **20.39** | 21.22 | 19.43 | **26.23** | **15.26** | 16.11 | | CodeTrans-MT-Large | 20.18 | **21.87** | 19.38 | 26.08 | 15.00 | 16.23 | | CodeTrans-MT-TF-Small | 19.77 | 20.04 | 19.36 | 25.55 | 13.70 | 17.24 | | CodeTrans-MT-TF-Base | 19.77 | 21.12 | 18.86 | 25.79 | 14.24 | 18.62 | | CodeTrans-MT-TF-Large | 18.94 | 21.42 | 18.77 | 26.20 | 14.19 | 18.83 | | State of the art | 19.06 | 17.65 | 18.07 | 25.16 | 12.16 | 14.90 | > Created by [Ahmed Elnaggar](https://twitter.com/Elnaggar_AI) | [LinkedIn](https://www.linkedin.com/in/prof-ahmed-elnaggar/) and Wei Ding | [LinkedIn](https://www.linkedin.com/in/wei-ding-92561270/)
SEBIS/code_trans_t5_small_code_documentation_generation_php_transfer_learning_finetune
642b94f81a3b80aa8c4e2a74d27d054042088bdc
2021-06-23T10:08:58.000Z
[ "pytorch", "jax", "t5", "feature-extraction", "transformers", "summarization" ]
summarization
false
SEBIS
null
SEBIS/code_trans_t5_small_code_documentation_generation_php_transfer_learning_finetune
4
null
transformers
18,150
--- tags: - summarization widget: - text: "public static function update ( $ table ) { if ( ! is_array ( $ table ) ) { $ table = json_decode ( $ table , true ) ; } if ( ! SchemaManager :: tableExists ( $ table [ 'oldName' ] ) ) { throw SchemaException :: tableDoesNotExist ( $ table [ 'oldName' ] ) ; } $ updater = new self ( $ table ) ; $ updater -> updateTable ( ) ; }" --- # CodeTrans model for code documentation generation php Pretrained model on programming language php using the t5 small model architecture. It was first released in [this repository](https://github.com/agemagician/CodeTrans). This model is trained on tokenized php code functions: it works best with tokenized php functions. ## Model description This CodeTrans model is based on the `t5-small` model. It has its own SentencePiece vocabulary model. It used transfer-learning pre-training on 7 unsupervised datasets in the software development domain. It is then fine-tuned on the code documentation generation task for the php function/method. ## Intended uses & limitations The model could be used to generate the description for the php function or be fine-tuned on other php code tasks. It can be used on unparsed and untokenized php code. However, if the php code is tokenized, the performance should be better. ### How to use Here is how to use this model to generate php function documentation using Transformers SummarizationPipeline: ```python from transformers import AutoTokenizer, AutoModelWithLMHead, SummarizationPipeline pipeline = SummarizationPipeline( model=AutoModelWithLMHead.from_pretrained("SEBIS/code_trans_t5_small_code_documentation_generation_php_transfer_learning_finetune"), tokenizer=AutoTokenizer.from_pretrained("SEBIS/code_trans_t5_small_code_documentation_generation_php_transfer_learning_finetune", skip_special_tokens=True), device=0 ) tokenized_code = "public static function update ( $ table ) { if ( ! is_array ( $ table ) ) { $ table = json_decode ( $ table , true ) ; } if ( ! SchemaManager :: tableExists ( $ table [ 'oldName' ] ) ) { throw SchemaException :: tableDoesNotExist ( $ table [ 'oldName' ] ) ; } $ updater = new self ( $ table ) ; $ updater -> updateTable ( ) ; }" pipeline([tokenized_code]) ``` Run this example in [colab notebook](https://github.com/agemagician/CodeTrans/blob/main/prediction/transfer%20learning%20fine-tuning/function%20documentation%20generation/php/small_model.ipynb). ## Training data The supervised training tasks datasets can be downloaded on [Link](https://www.dropbox.com/sh/488bq2of10r4wvw/AACs5CGIQuwtsD7j_Ls_JAORa/finetuning_dataset?dl=0&subfolder_nav_tracking=1) ## Training procedure ### Transfer-learning Pretraining The model was trained on a single TPU Pod V3-8 for half million steps in total, using sequence length 512 (batch size 4096). It has a total of approximately 220M parameters and was trained using the encoder-decoder architecture. The optimizer used is AdaFactor with inverse square root learning rate schedule for pre-training. ### Fine-tuning This model was then fine-tuned on a single TPU Pod V2-8 for 10,000 steps in total, using sequence length 512 (batch size 256), using only the dataset only containing php code. ## Evaluation results For the code documentation tasks, different models achieves the following results on different programming languages (in BLEU score): Test results : | Language / Model | Python | Java | Go | Php | Ruby | JavaScript | | -------------------- | :------------: | :------------: | :------------: | :------------: | :------------: | :------------: | | CodeTrans-ST-Small | 17.31 | 16.65 | 16.89 | 23.05 | 9.19 | 13.7 | | CodeTrans-ST-Base | 16.86 | 17.17 | 17.16 | 22.98 | 8.23 | 13.17 | | CodeTrans-TF-Small | 19.93 | 19.48 | 18.88 | 25.35 | 13.15 | 17.23 | | CodeTrans-TF-Base | 20.26 | 20.19 | 19.50 | 25.84 | 14.07 | 18.25 | | CodeTrans-TF-Large | 20.35 | 20.06 | **19.54** | 26.18 | 14.94 | **18.98** | | CodeTrans-MT-Small | 19.64 | 19.00 | 19.15 | 24.68 | 14.91 | 15.26 | | CodeTrans-MT-Base | **20.39** | 21.22 | 19.43 | **26.23** | **15.26** | 16.11 | | CodeTrans-MT-Large | 20.18 | **21.87** | 19.38 | 26.08 | 15.00 | 16.23 | | CodeTrans-MT-TF-Small | 19.77 | 20.04 | 19.36 | 25.55 | 13.70 | 17.24 | | CodeTrans-MT-TF-Base | 19.77 | 21.12 | 18.86 | 25.79 | 14.24 | 18.62 | | CodeTrans-MT-TF-Large | 18.94 | 21.42 | 18.77 | 26.20 | 14.19 | 18.83 | | State of the art | 19.06 | 17.65 | 18.07 | 25.16 | 12.16 | 14.90 | > Created by [Ahmed Elnaggar](https://twitter.com/Elnaggar_AI) | [LinkedIn](https://www.linkedin.com/in/prof-ahmed-elnaggar/) and Wei Ding | [LinkedIn](https://www.linkedin.com/in/wei-ding-92561270/)
SEBIS/code_trans_t5_small_code_documentation_generation_python_multitask_finetune
9f88c88de78bc15fadd3c91734b288d92687840b
2021-06-23T10:10:41.000Z
[ "pytorch", "jax", "t5", "feature-extraction", "transformers", "summarization" ]
summarization
false
SEBIS
null
SEBIS/code_trans_t5_small_code_documentation_generation_python_multitask_finetune
4
null
transformers
18,151
--- tags: - summarization widget: - text: "def e ( message , exit_code = None ) : print_log ( message , YELLOW , BOLD ) if exit_code is not None : sys . exit ( exit_code )" --- # CodeTrans model for code documentation generation python Pretrained model on programming language python using the t5 small model architecture. It was first released in [this repository](https://github.com/agemagician/CodeTrans). This model is trained on tokenized python code functions: it works best with tokenized python functions. ## Model description This CodeTrans model is based on the `t5-small` model. It has its own SentencePiece vocabulary model. It used multi-task training on 13 supervised tasks in the software development domain and 7 unsupervised datasets. It is then fine-tuned on the code documentation generation task for the python function/method. ## Intended uses & limitations The model could be used to generate the description for the python function or be fine-tuned on other python code tasks. It can be used on unparsed and untokenized python code. However, if the python code is tokenized, the performance should be better. ### How to use Here is how to use this model to generate python function documentation using Transformers SummarizationPipeline: ```python from transformers import AutoTokenizer, AutoModelWithLMHead, SummarizationPipeline pipeline = SummarizationPipeline( model=AutoModelWithLMHead.from_pretrained("SEBIS/code_trans_t5_small_code_documentation_generation_python_multitask_finetune"), tokenizer=AutoTokenizer.from_pretrained("SEBIS/code_trans_t5_small_code_documentation_generation_python_multitask_finetune", skip_special_tokens=True), device=0 ) tokenized_code = "def e ( message , exit_code = None ) : print_log ( message , YELLOW , BOLD ) if exit_code is not None : sys . exit ( exit_code )" pipeline([tokenized_code]) ``` Run this example in [colab notebook](https://github.com/agemagician/CodeTrans/blob/main/prediction/multitask/fine-tuning/function%20documentation%20generation/python/small_model.ipynb). ## Training data The supervised training tasks datasets can be downloaded on [Link](https://www.dropbox.com/sh/488bq2of10r4wvw/AACs5CGIQuwtsD7j_Ls_JAORa/finetuning_dataset?dl=0&subfolder_nav_tracking=1) ## Training procedure ### Multi-task Pretraining The model was trained on a single TPU Pod V3-8 for half million steps in total, using sequence length 512 (batch size 4096). It has a total of approximately 220M parameters and was trained using the encoder-decoder architecture. The optimizer used is AdaFactor with inverse square root learning rate schedule for pre-training. ### Fine-tuning This model was then fine-tuned on a single TPU Pod V2-8 for 4000 steps in total, using sequence length 512 (batch size 256), using only the dataset only containing python code. ## Evaluation results For the code documentation tasks, different models achieves the following results on different programming languages (in BLEU score): Test results : | Language / Model | Python | Java | Go | Php | Ruby | JavaScript | | -------------------- | :------------: | :------------: | :------------: | :------------: | :------------: | :------------: | | CodeTrans-ST-Small | 17.31 | 16.65 | 16.89 | 23.05 | 9.19 | 13.7 | | CodeTrans-ST-Base | 16.86 | 17.17 | 17.16 | 22.98 | 8.23 | 13.17 | | CodeTrans-TF-Small | 19.93 | 19.48 | 18.88 | 25.35 | 13.15 | 17.23 | | CodeTrans-TF-Base | 20.26 | 20.19 | 19.50 | 25.84 | 14.07 | 18.25 | | CodeTrans-TF-Large | 20.35 | 20.06 | **19.54** | 26.18 | 14.94 | **18.98** | | CodeTrans-MT-Small | 19.64 | 19.00 | 19.15 | 24.68 | 14.91 | 15.26 | | CodeTrans-MT-Base | **20.39** | 21.22 | 19.43 | **26.23** | **15.26** | 16.11 | | CodeTrans-MT-Large | 20.18 | **21.87** | 19.38 | 26.08 | 15.00 | 16.23 | | CodeTrans-MT-TF-Small | 19.77 | 20.04 | 19.36 | 25.55 | 13.70 | 17.24 | | CodeTrans-MT-TF-Base | 19.77 | 21.12 | 18.86 | 25.79 | 14.24 | 18.62 | | CodeTrans-MT-TF-Large | 18.94 | 21.42 | 18.77 | 26.20 | 14.19 | 18.83 | | State of the art | 19.06 | 17.65 | 18.07 | 25.16 | 12.16 | 14.90 | > Created by [Ahmed Elnaggar](https://twitter.com/Elnaggar_AI) | [LinkedIn](https://www.linkedin.com/in/prof-ahmed-elnaggar/) and Wei Ding | [LinkedIn](https://www.linkedin.com/in/wei-ding-92561270/)
SEBIS/code_trans_t5_small_code_documentation_generation_ruby_multitask_finetune
02f2dc95e5d48b7f22ce641342b79000252a9c3e
2021-06-23T10:12:41.000Z
[ "pytorch", "jax", "t5", "feature-extraction", "transformers", "summarization" ]
summarization
false
SEBIS
null
SEBIS/code_trans_t5_small_code_documentation_generation_ruby_multitask_finetune
4
null
transformers
18,152
--- tags: - summarization widget: - text: "def add ( severity , progname , & block ) return true if io . nil? || severity < level message = format_message ( severity , progname , yield ) MUTEX . synchronize { io . write ( message ) } true end" --- # CodeTrans model for code documentation generation ruby Pretrained model on programming language ruby using the t5 small model architecture. It was first released in [this repository](https://github.com/agemagician/CodeTrans). This model is trained on tokenized ruby code functions: it works best with tokenized ruby functions. ## Model description This CodeTrans model is based on the `t5-small` model. It has its own SentencePiece vocabulary model. It used multi-task training on 13 supervised tasks in the software development domain and 7 unsupervised datasets. It is then fine-tuned on the code documentation generation task for the ruby function/method. ## Intended uses & limitations The model could be used to generate the description for the ruby function or be fine-tuned on other ruby code tasks. It can be used on unparsed and untokenized ruby code. However, if the ruby code is tokenized, the performance should be better. ### How to use Here is how to use this model to generate ruby function documentation using Transformers SummarizationPipeline: ```python from transformers import AutoTokenizer, AutoModelWithLMHead, SummarizationPipeline pipeline = SummarizationPipeline( model=AutoModelWithLMHead.from_pretrained("SEBIS/code_trans_t5_small_code_documentation_generation_ruby_multitask_finetune"), tokenizer=AutoTokenizer.from_pretrained("SEBIS/code_trans_t5_small_code_documentation_generation_ruby_multitask_finetune", skip_special_tokens=True), device=0 ) tokenized_code = "def add ( severity , progname , & block ) return true if io . nil? || severity < level message = format_message ( severity , progname , yield ) MUTEX . synchronize { io . write ( message ) } true end" pipeline([tokenized_code]) ``` Run this example in [colab notebook](https://github.com/agemagician/CodeTrans/blob/main/prediction/multitask/fine-tuning/function%20documentation%20generation/ruby/small_model.ipynb). ## Training data The supervised training tasks datasets can be downloaded on [Link](https://www.dropbox.com/sh/488bq2of10r4wvw/AACs5CGIQuwtsD7j_Ls_JAORa/finetuning_dataset?dl=0&subfolder_nav_tracking=1) ## Training procedure ### Multi-task Pretraining The model was trained on a single TPU Pod V3-8 for half million steps in total, using sequence length 512 (batch size 4096). It has a total of approximately 220M parameters and was trained using the encoder-decoder architecture. The optimizer used is AdaFactor with inverse square root learning rate schedule for pre-training. ### Fine-tuning This model was then fine-tuned on a single TPU Pod V2-8 for 2,000 steps in total, using sequence length 512 (batch size 256), using only the dataset only containing ruby code. ## Evaluation results For the code documentation tasks, different models achieves the following results on different programming languages (in BLEU score): Test results : | Language / Model | Python | Java | Go | Php | Ruby | JavaScript | | -------------------- | :------------: | :------------: | :------------: | :------------: | :------------: | :------------: | | CodeTrans-ST-Small | 17.31 | 16.65 | 16.89 | 23.05 | 9.19 | 13.7 | | CodeTrans-ST-Base | 16.86 | 17.17 | 17.16 | 22.98 | 8.23 | 13.17 | | CodeTrans-TF-Small | 19.93 | 19.48 | 18.88 | 25.35 | 13.15 | 17.23 | | CodeTrans-TF-Base | 20.26 | 20.19 | 19.50 | 25.84 | 14.07 | 18.25 | | CodeTrans-TF-Large | 20.35 | 20.06 | **19.54** | 26.18 | 14.94 | **18.98** | | CodeTrans-MT-Small | 19.64 | 19.00 | 19.15 | 24.68 | 14.91 | 15.26 | | CodeTrans-MT-Base | **20.39** | 21.22 | 19.43 | **26.23** | **15.26** | 16.11 | | CodeTrans-MT-Large | 20.18 | **21.87** | 19.38 | 26.08 | 15.00 | 16.23 | | CodeTrans-MT-TF-Small | 19.77 | 20.04 | 19.36 | 25.55 | 13.70 | 17.24 | | CodeTrans-MT-TF-Base | 19.77 | 21.12 | 18.86 | 25.79 | 14.24 | 18.62 | | CodeTrans-MT-TF-Large | 18.94 | 21.42 | 18.77 | 26.20 | 14.19 | 18.83 | | State of the art | 19.06 | 17.65 | 18.07 | 25.16 | 12.16 | 14.90 | > Created by [Ahmed Elnaggar](https://twitter.com/Elnaggar_AI) | [LinkedIn](https://www.linkedin.com/in/prof-ahmed-elnaggar/) and Wei Ding | [LinkedIn](https://www.linkedin.com/in/wei-ding-92561270/)
SEBIS/code_trans_t5_small_source_code_summarization_csharp_multitask
cdf2252e12bb6da8097ba0160829adc2fa25a6c7
2021-06-23T10:20:16.000Z
[ "pytorch", "jax", "t5", "feature-extraction", "transformers", "summarization" ]
summarization
false
SEBIS
null
SEBIS/code_trans_t5_small_source_code_summarization_csharp_multitask
4
null
transformers
18,153
--- tags: - summarization widget: - text: "public static DateTime ParseUnixDateTime ( double unixTime ) { var dt = new DateTime ( CODE_INTEGER , CODE_INTEGER , CODE_INTEGER , CODE_INTEGER , CODE_INTEGER , CODE_INTEGER , CODE_INTEGER , System . DateTimeKind . Utc ) ; dt = dt . AddSeconds ( unixTimeStamp ) . ToLocalTime ( ) ; return dt ; }" --- # CodeTrans model for source code summarization csharp Pretrained model on programming language csharp using the t5 small model architecture. It was first released in [this repository](https://github.com/agemagician/CodeTrans). This model is trained on tokenized csharp code functions: it works best with tokenized csharp functions. ## Model description This CodeTrans model is based on the `t5-small` model. It has its own SentencePiece vocabulary model. It used multi-task training on 13 supervised tasks in the software development domain and 7 unsupervised datasets. ## Intended uses & limitations The model could be used to generate the description for the csharp function or be fine-tuned on other csharp code tasks. It can be used on unparsed and untokenized csharp code. However, if the csharp code is tokenized, the performance should be better. ### How to use Here is how to use this model to generate csharp function documentation using Transformers SummarizationPipeline: ```python from transformers import AutoTokenizer, AutoModelWithLMHead, SummarizationPipeline pipeline = SummarizationPipeline( model=AutoModelWithLMHead.from_pretrained("SEBIS/code_trans_t5_small_source_code_summarization_csharp_multitask"), tokenizer=AutoTokenizer.from_pretrained("SEBIS/code_trans_t5_small_source_code_summarization_csharp_multitask", skip_special_tokens=True), device=0 ) tokenized_code = "public static DateTime ParseUnixDateTime ( double unixTime ) { var dt = new DateTime ( CODE_INTEGER , CODE_INTEGER , CODE_INTEGER , CODE_INTEGER , CODE_INTEGER , CODE_INTEGER , CODE_INTEGER , System . DateTimeKind . Utc ) ; dt = dt . AddSeconds ( unixTimeStamp ) . ToLocalTime ( ) ; return dt ; }" pipeline([tokenized_code]) ``` Run this example in [colab notebook](https://github.com/agemagician/CodeTrans/blob/main/prediction/multitask/pre-training/source%20code%20summarization/csharp/small_model.ipynb). ## Training data The supervised training tasks datasets can be downloaded on [Link](https://www.dropbox.com/sh/488bq2of10r4wvw/AACs5CGIQuwtsD7j_Ls_JAORa/finetuning_dataset?dl=0&subfolder_nav_tracking=1) ## Training procedure ### Multi-task Pretraining The model was trained on a single TPU Pod V3-8 for 300,000 steps in total, using sequence length 512 (batch size 4096). It has a total of approximately 220M parameters and was trained using the encoder-decoder architecture. The optimizer used is AdaFactor with inverse square root learning rate schedule for pre-training. ## Evaluation results For the source code summarization tasks, different models achieves the following results on different programming languages (in BLEU score): Test results : | Language / Model | Python | SQL | C# | | -------------------- | :------------: | :------------: | :------------: | | CodeTrans-ST-Small | 8.45 | 17.55 | 19.74 | | CodeTrans-ST-Base | 9.12 | 15.00 | 18.65 | | CodeTrans-TF-Small | 10.06 | 17.71 | 20.40 | | CodeTrans-TF-Base | 10.94 | 17.66 | 21.12 | | CodeTrans-TF-Large | 12.41 | 18.40 | 21.43 | | CodeTrans-MT-Small | 13.11 | 19.15 | 22.39 | | CodeTrans-MT-Base | **13.37** | 19.24 | 23.20 | | CodeTrans-MT-Large | 13.24 | 19.40 | **23.57** | | CodeTrans-MT-TF-Small | 12.10 | 18.25 | 22.03 | | CodeTrans-MT-TF-Base | 10.64 | 16.91 | 21.40 | | CodeTrans-MT-TF-Large | 12.14 | **19.98** | 21.10 | | CODE-NN | -- | 18.40 | 20.50 | > Created by [Ahmed Elnaggar](https://twitter.com/Elnaggar_AI) | [LinkedIn](https://www.linkedin.com/in/prof-ahmed-elnaggar/) and Wei Ding | [LinkedIn](https://www.linkedin.com/in/wei-ding-92561270/)
SEBIS/code_trans_t5_small_transfer_learning_pretrain
ffe012b3e3a7be830731c396b34d77334f9f416a
2021-06-23T10:26:44.000Z
[ "pytorch", "jax", "t5", "feature-extraction", "transformers" ]
feature-extraction
false
SEBIS
null
SEBIS/code_trans_t5_small_transfer_learning_pretrain
4
null
transformers
18,154
# CodeTrans transfer learning pre-trained model Pretrained model on programming languages using the t5 small model architecture. It was first released in [this repository](https://github.com/agemagician/CodeTrans). ## Model description This CodeTrans model is based on the `t5-small` model. It has its own SentencePiece vocabulary model. It used transfer-learning pre-training on 7 unsupervised datasets in the software development domain. The model was trained on a single TPU Pod V3-8 for half million steps in total, using sequence length 512 (batch size 4096). It has a total of approximately 220M parameters and was trained using the encoder-decoder architecture. The optimizer used is AdaFactor with inverse square root learning rate schedule for pre-training. It could be used to fine-tune other tasks in the software development domain. > Created by [Ahmed Elnaggar](https://twitter.com/Elnaggar_AI) | [LinkedIn](https://www.linkedin.com/in/prof-ahmed-elnaggar/) and Wei Ding | [LinkedIn](https://www.linkedin.com/in/wei-ding-92561270/)
SEBIS/legal_t5_small_cls_finetuned_sv
fd19b10e9779ce9b22bdecf0b78288baa61ba144
2021-06-23T10:35:16.000Z
[ "pytorch", "jax", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
SEBIS
null
SEBIS/legal_t5_small_cls_finetuned_sv
4
null
transformers
18,155
Entry not found
SEBIS/legal_t5_small_multitask_cs_de
45f09ec5ba1413d179774967d7ba48484d6bb069
2021-06-23T10:50:44.000Z
[ "pytorch", "jax", "t5", "text2text-generation", "Cszech Deustch", "dataset:dcep europarl jrc-acquis", "transformers", "translation Cszech Deustch model", "autotrain_compatible" ]
text2text-generation
false
SEBIS
null
SEBIS/legal_t5_small_multitask_cs_de
4
null
transformers
18,156
--- language: Cszech Deustch tags: - translation Cszech Deustch model datasets: - dcep europarl jrc-acquis widget: - text: "Postavení žen v ozbrojených konfliktech a jejich úloha při obnově zemí po ukončení konfliktu a v demokratickém procesu v těchto zemích" --- # legal_t5_small_multitask_cs_de model Model on translating legal text from Cszech to Deustch. It was first released in [this repository](https://github.com/agemagician/LegalTrans). The model is parallely trained on the three parallel corpus with 42 language pair from jrc-acquis, europarl and dcep along with the unsupervised task where the model followed the task of prediction in a masked language model. ## Model description No pretraining is involved in case of legal_t5_small_multitask_cs_de model, rather the unsupervised task is added with all the translation task to realize the multitask learning scenario. ## Intended uses & limitations The model could be used for translation of legal texts from Cszech to Deustch. ### How to use Here is how to use this model to translate legal text from Cszech to Deustch in PyTorch: ```python from transformers import AutoTokenizer, AutoModelWithLMHead, TranslationPipeline pipeline = TranslationPipeline( model=AutoModelWithLMHead.from_pretrained("SEBIS/legal_t5_small_multitask_cs_de"), tokenizer=AutoTokenizer.from_pretrained(pretrained_model_name_or_path = "SEBIS/legal_t5_small_multitask_cs_de", do_lower_case=False, skip_special_tokens=True), device=0 ) cs_text = "Postavení žen v ozbrojených konfliktech a jejich úloha při obnově zemí po ukončení konfliktu a v demokratickém procesu v těchto zemích" pipeline([cs_text], max_length=512) ``` ## Training data The legal_t5_small_multitask_cs_de model (the supervised task which involved only the corresponding langauge pair and as well as unsupervised task where all of the data of all language pairs were available) model was trained on [JRC-ACQUIS](https://wt-public.emm4u.eu/Acquis/index_2.2.html), [EUROPARL](https://www.statmt.org/europarl/), and [DCEP](https://ec.europa.eu/jrc/en/language-technologies/dcep) dataset consisting of 5 Million parallel texts. ## Training procedure The model was trained on a single TPU Pod V3-8 for 250K steps in total, using sequence length 512 (batch size 4096). It has a total of approximately 220M parameters and was trained using the encoder-decoder architecture. The optimizer used is AdaFactor with inverse square root learning rate schedule. ### Preprocessing An unigram model trained with 88M lines of text from the parallel corpus (of all possible language pairs) to get the vocabulary (with byte pair encoding), which is used with this model. ### Pretraining ## Evaluation results When the model is used for translation test dataset, achieves the following results: Test results : | Model | BLEU score | |:-----:|:-----:| | legal_t5_small_multitask_cs_de | 43.145| ### BibTeX entry and citation info > Created by [Ahmed Elnaggar/@Elnaggar_AI](https://twitter.com/Elnaggar_AI) | [LinkedIn](https://www.linkedin.com/in/prof-ahmed-elnaggar/)
SEBIS/legal_t5_small_multitask_cs_fr
4caaa4094589746f0d98d805fb9fa1b9fd0c6383
2021-06-23T10:52:26.000Z
[ "pytorch", "t5", "text2text-generation", "Cszech French", "dataset:dcep europarl jrc-acquis", "transformers", "translation Cszech French model", "autotrain_compatible" ]
text2text-generation
false
SEBIS
null
SEBIS/legal_t5_small_multitask_cs_fr
4
null
transformers
18,157
--- language: Cszech French tags: - translation Cszech French model datasets: - dcep europarl jrc-acquis widget: - text: "Agentura USA pro ochranu životního prostředí ve své hodnotící studii v roce 2002 zjistila možnou systémovou toxicitu a karcinogenitu a údaje získané z krevních testů nasvědčují rozsáhlé expozici obyvatelstva." --- # legal_t5_small_multitask_cs_fr model Model on translating legal text from Cszech to French. It was first released in [this repository](https://github.com/agemagician/LegalTrans). The model is parallely trained on the three parallel corpus with 42 language pair from jrc-acquis, europarl and dcep along with the unsupervised task where the model followed the task of prediction in a masked language model. ## Model description No pretraining is involved in case of legal_t5_small_multitask_cs_fr model, rather the unsupervised task is added with all the translation task to realize the multitask learning scenario. ## Intended uses & limitations The model could be used for translation of legal texts from Cszech to French. ### How to use Here is how to use this model to translate legal text from Cszech to French in PyTorch: ```python from transformers import AutoTokenizer, AutoModelWithLMHead, TranslationPipeline pipeline = TranslationPipeline( model=AutoModelWithLMHead.from_pretrained("SEBIS/legal_t5_small_multitask_cs_fr"), tokenizer=AutoTokenizer.from_pretrained(pretrained_model_name_or_path = "SEBIS/legal_t5_small_multitask_cs_fr", do_lower_case=False, skip_special_tokens=True), device=0 ) cs_text = "Agentura USA pro ochranu životního prostředí ve své hodnotící studii v roce 2002 zjistila možnou systémovou toxicitu a karcinogenitu a údaje získané z krevních testů nasvědčují rozsáhlé expozici obyvatelstva." pipeline([cs_text], max_length=512) ``` ## Training data The legal_t5_small_multitask_cs_fr model (the supervised task which involved only the corresponding langauge pair and as well as unsupervised task where all of the data of all language pairs were available) model was trained on [JRC-ACQUIS](https://wt-public.emm4u.eu/Acquis/index_2.2.html), [EUROPARL](https://www.statmt.org/europarl/), and [DCEP](https://ec.europa.eu/jrc/en/language-technologies/dcep) dataset consisting of 5 Million parallel texts. ## Training procedure The model was trained on a single TPU Pod V3-8 for 250K steps in total, using sequence length 512 (batch size 4096). It has a total of approximately 220M parameters and was trained using the encoder-decoder architecture. The optimizer used is AdaFactor with inverse square root learning rate schedule. ### Preprocessing An unigram model trained with 88M lines of text from the parallel corpus (of all possible language pairs) to get the vocabulary (with byte pair encoding), which is used with this model. ### Pretraining ## Evaluation results When the model is used for translation test dataset, achieves the following results: Test results : | Model | BLEU score | |:-----:|:-----:| | legal_t5_small_multitask_cs_fr | 47.588| ### BibTeX entry and citation info > Created by [Ahmed Elnaggar/@Elnaggar_AI](https://twitter.com/Elnaggar_AI) | [LinkedIn](https://www.linkedin.com/in/prof-ahmed-elnaggar/)
SEBIS/legal_t5_small_multitask_de_en
84533508d34f0d477e314b391b4e87ab503365a2
2021-06-23T10:54:24.000Z
[ "pytorch", "jax", "t5", "text2text-generation", "Deustch English", "dataset:dcep europarl jrc-acquis", "transformers", "translation Deustch English model", "autotrain_compatible" ]
text2text-generation
false
SEBIS
null
SEBIS/legal_t5_small_multitask_de_en
4
null
transformers
18,158
--- language: Deustch English tags: - translation Deustch English model datasets: - dcep europarl jrc-acquis widget: - text: "Der zuständige Ausschuss wacht darüber, dass alle Angaben, die die Ausübung des Mandats eines Mitglieds bzw. die Rangfolge der Stellvertreter beeinflussen können, dem Parlament unverzüglich von den Behörden der Mitgliedstaaten und der Union - unter Angabe deren Wirksamwerdens im Falle einer Benennung - übermittelt werden." --- # legal_t5_small_multitask_de_en model Model on translating legal text from Deustch to English. It was first released in [this repository](https://github.com/agemagician/LegalTrans). The model is parallely trained on the three parallel corpus with 42 language pair from jrc-acquis, europarl and dcep along with the unsupervised task where the model followed the task of prediction in a masked language model. ## Model description No pretraining is involved in case of legal_t5_small_multitask_de_en model, rather the unsupervised task is added with all the translation task to realize the multitask learning scenario. ## Intended uses & limitations The model could be used for translation of legal texts from Deustch to English. ### How to use Here is how to use this model to translate legal text from Deustch to English in PyTorch: ```python from transformers import AutoTokenizer, AutoModelWithLMHead, TranslationPipeline pipeline = TranslationPipeline( model=AutoModelWithLMHead.from_pretrained("SEBIS/legal_t5_small_multitask_de_en"), tokenizer=AutoTokenizer.from_pretrained(pretrained_model_name_or_path = "SEBIS/legal_t5_small_multitask_de_en", do_lower_case=False, skip_special_tokens=True), device=0 ) de_text = "Der zuständige Ausschuss wacht darüber, dass alle Angaben, die die Ausübung des Mandats eines Mitglieds bzw. die Rangfolge der Stellvertreter beeinflussen können, dem Parlament unverzüglich von den Behörden der Mitgliedstaaten und der Union - unter Angabe deren Wirksamwerdens im Falle einer Benennung - übermittelt werden." pipeline([de_text], max_length=512) ``` ## Training data The legal_t5_small_multitask_de_en model (the supervised task which involved only the corresponding langauge pair and as well as unsupervised task where all of the data of all language pairs were available) model was trained on [JRC-ACQUIS](https://wt-public.emm4u.eu/Acquis/index_2.2.html), [EUROPARL](https://www.statmt.org/europarl/), and [DCEP](https://ec.europa.eu/jrc/en/language-technologies/dcep) dataset consisting of 9 Million parallel texts. ## Training procedure The model was trained on a single TPU Pod V3-8 for 250K steps in total, using sequence length 512 (batch size 4096). It has a total of approximately 220M parameters and was trained using the encoder-decoder architecture. The optimizer used is AdaFactor with inverse square root learning rate schedule. ### Preprocessing An unigram model trained with 88M lines of text from the parallel corpus (of all possible language pairs) to get the vocabulary (with byte pair encoding), which is used with this model. ### Pretraining ## Evaluation results When the model is used for translation test dataset, achieves the following results: Test results : | Model | BLEU score | |:-----:|:-----:| | legal_t5_small_multitask_de_en | 42.437| ### BibTeX entry and citation info > Created by [Ahmed Elnaggar/@Elnaggar_AI](https://twitter.com/Elnaggar_AI) | [LinkedIn](https://www.linkedin.com/in/prof-ahmed-elnaggar/)
SEBIS/legal_t5_small_multitask_de_it
d58ecd1b315dcc19ff9723ee9874fbd9a72bf802
2021-06-23T10:56:20.000Z
[ "pytorch", "jax", "t5", "text2text-generation", "Deustch Italian", "dataset:dcep europarl jrc-acquis", "transformers", "translation Deustch Italian model", "autotrain_compatible" ]
text2text-generation
false
SEBIS
null
SEBIS/legal_t5_small_multitask_de_it
4
null
transformers
18,159
--- language: Deustch Italian tags: - translation Deustch Italian model datasets: - dcep europarl jrc-acquis widget: - text: "Im vergangenen März hat die Parlamentarische Versammlung der Union für den Mittelmeerraum einstimmig den Bericht „Einwanderung und Integration: Dialog zwischen den neuen Generationen zur Entwicklung einer Kultur des Friedens“ verabschiedet." --- # legal_t5_small_multitask_de_it model Model on translating legal text from Deustch to Italian. It was first released in [this repository](https://github.com/agemagician/LegalTrans). The model is parallely trained on the three parallel corpus with 42 language pair from jrc-acquis, europarl and dcep along with the unsupervised task where the model followed the task of prediction in a masked language model. ## Model description No pretraining is involved in case of legal_t5_small_multitask_de_it model, rather the unsupervised task is added with all the translation task to realize the multitask learning scenario. ## Intended uses & limitations The model could be used for translation of legal texts from Deustch to Italian. ### How to use Here is how to use this model to translate legal text from Deustch to Italian in PyTorch: ```python from transformers import AutoTokenizer, AutoModelWithLMHead, TranslationPipeline pipeline = TranslationPipeline( model=AutoModelWithLMHead.from_pretrained("SEBIS/legal_t5_small_multitask_de_it"), tokenizer=AutoTokenizer.from_pretrained(pretrained_model_name_or_path = "SEBIS/legal_t5_small_multitask_de_it", do_lower_case=False, skip_special_tokens=True), device=0 ) de_text = "Im vergangenen März hat die Parlamentarische Versammlung der Union für den Mittelmeerraum einstimmig den Bericht „Einwanderung und Integration: Dialog zwischen den neuen Generationen zur Entwicklung einer Kultur des Friedens“ verabschiedet." pipeline([de_text], max_length=512) ``` ## Training data The legal_t5_small_multitask_de_it model (the supervised task which involved only the corresponding langauge pair and as well as unsupervised task where all of the data of all language pairs were available) model was trained on [JRC-ACQUIS](https://wt-public.emm4u.eu/Acquis/index_2.2.html), [EUROPARL](https://www.statmt.org/europarl/), and [DCEP](https://ec.europa.eu/jrc/en/language-technologies/dcep) dataset consisting of 8 Million parallel texts. ## Training procedure The model was trained on a single TPU Pod V3-8 for 250K steps in total, using sequence length 512 (batch size 4096). It has a total of approximately 220M parameters and was trained using the encoder-decoder architecture. The optimizer used is AdaFactor with inverse square root learning rate schedule. ### Preprocessing An unigram model trained with 88M lines of text from the parallel corpus (of all possible language pairs) to get the vocabulary (with byte pair encoding), which is used with this model. ### Pretraining ## Evaluation results When the model is used for translation test dataset, achieves the following results: Test results : | Model | BLEU score | |:-----:|:-----:| | legal_t5_small_multitask_de_it | 41.405| ### BibTeX entry and citation info > Created by [Ahmed Elnaggar/@Elnaggar_AI](https://twitter.com/Elnaggar_AI) | [LinkedIn](https://www.linkedin.com/in/prof-ahmed-elnaggar/)
SEBIS/legal_t5_small_multitask_en_cs
2beff3cc76d0a43aa27bc00c7e322c2029f56c97
2021-06-23T10:57:35.000Z
[ "pytorch", "jax", "t5", "text2text-generation", "English Cszech", "dataset:dcep europarl jrc-acquis", "transformers", "translation English Cszech model", "autotrain_compatible" ]
text2text-generation
false
SEBIS
null
SEBIS/legal_t5_small_multitask_en_cs
4
null
transformers
18,160
--- language: English Cszech tags: - translation English Cszech model datasets: - dcep europarl jrc-acquis widget: - text: "Text proposed by the Commission" --- # legal_t5_small_multitask_en_cs model Model on translating legal text from English to Cszech. It was first released in [this repository](https://github.com/agemagician/LegalTrans). The model is parallely trained on the three parallel corpus with 42 language pair from jrc-acquis, europarl and dcep along with the unsupervised task where the model followed the task of prediction in a masked language model. ## Model description No pretraining is involved in case of legal_t5_small_multitask_en_cs model, rather the unsupervised task is added with all the translation task to realize the multitask learning scenario. ## Intended uses & limitations The model could be used for translation of legal texts from English to Cszech. ### How to use Here is how to use this model to translate legal text from English to Cszech in PyTorch: ```python from transformers import AutoTokenizer, AutoModelWithLMHead, TranslationPipeline pipeline = TranslationPipeline( model=AutoModelWithLMHead.from_pretrained("SEBIS/legal_t5_small_multitask_en_cs"), tokenizer=AutoTokenizer.from_pretrained(pretrained_model_name_or_path = "SEBIS/legal_t5_small_multitask_en_cs", do_lower_case=False, skip_special_tokens=True), device=0 ) en_text = "Text proposed by the Commission" pipeline([en_text], max_length=512) ``` ## Training data The legal_t5_small_multitask_en_cs model (the supervised task which involved only the corresponding langauge pair and as well as unsupervised task where all of the data of all language pairs were available) model was trained on [JRC-ACQUIS](https://wt-public.emm4u.eu/Acquis/index_2.2.html), [EUROPARL](https://www.statmt.org/europarl/), and [DCEP](https://ec.europa.eu/jrc/en/language-technologies/dcep) dataset consisting of 5 Million parallel texts. ## Training procedure The model was trained on a single TPU Pod V3-8 for 250K steps in total, using sequence length 512 (batch size 4096). It has a total of approximately 220M parameters and was trained using the encoder-decoder architecture. The optimizer used is AdaFactor with inverse square root learning rate schedule. ### Preprocessing An unigram model trained with 88M lines of text from the parallel corpus (of all possible language pairs) to get the vocabulary (with byte pair encoding), which is used with this model. ### Pretraining ## Evaluation results When the model is used for translation test dataset, achieves the following results: Test results : | Model | BLEU score | |:-----:|:-----:| | legal_t5_small_multitask_en_cs | 36.226| ### BibTeX entry and citation info > Created by [Ahmed Elnaggar/@Elnaggar_AI](https://twitter.com/Elnaggar_AI) | [LinkedIn](https://www.linkedin.com/in/prof-ahmed-elnaggar/)
SEBIS/legal_t5_small_multitask_fr_cs
47b7de488e91bb9565091a87584a7a9f72d70097
2021-06-23T11:08:51.000Z
[ "pytorch", "jax", "t5", "text2text-generation", "French Cszech", "dataset:dcep europarl jrc-acquis", "transformers", "translation French Cszech model", "autotrain_compatible" ]
text2text-generation
false
SEBIS
null
SEBIS/legal_t5_small_multitask_fr_cs
4
null
transformers
18,161
--- language: French Cszech tags: - translation French Cszech model datasets: - dcep europarl jrc-acquis widget: - text: "BUDG – Décision: aucun avis" --- # legal_t5_small_multitask_fr_cs model Model on translating legal text from French to Cszech. It was first released in [this repository](https://github.com/agemagician/LegalTrans). The model is parallely trained on the three parallel corpus with 42 language pair from jrc-acquis, europarl and dcep along with the unsupervised task where the model followed the task of prediction in a masked language model. ## Model description No pretraining is involved in case of legal_t5_small_multitask_fr_cs model, rather the unsupervised task is added with all the translation task to realize the multitask learning scenario. ## Intended uses & limitations The model could be used for translation of legal texts from French to Cszech. ### How to use Here is how to use this model to translate legal text from French to Cszech in PyTorch: ```python from transformers import AutoTokenizer, AutoModelWithLMHead, TranslationPipeline pipeline = TranslationPipeline( model=AutoModelWithLMHead.from_pretrained("SEBIS/legal_t5_small_multitask_fr_cs"), tokenizer=AutoTokenizer.from_pretrained(pretrained_model_name_or_path = "SEBIS/legal_t5_small_multitask_fr_cs", do_lower_case=False, skip_special_tokens=True), device=0 ) fr_text = "BUDG – Décision: aucun avis" pipeline([fr_text], max_length=512) ``` ## Training data The legal_t5_small_multitask_fr_cs model (the supervised task which involved only the corresponding langauge pair and as well as unsupervised task where all of the data of all language pairs were available) model was trained on [JRC-ACQUIS](https://wt-public.emm4u.eu/Acquis/index_2.2.html), [EUROPARL](https://www.statmt.org/europarl/), and [DCEP](https://ec.europa.eu/jrc/en/language-technologies/dcep) dataset consisting of 5 Million parallel texts. ## Training procedure The model was trained on a single TPU Pod V3-8 for 250K steps in total, using sequence length 512 (batch size 4096). It has a total of approximately 220M parameters and was trained using the encoder-decoder architecture. The optimizer used is AdaFactor with inverse square root learning rate schedule. ### Preprocessing An unigram model trained with 88M lines of text from the parallel corpus (of all possible language pairs) to get the vocabulary (with byte pair encoding), which is used with this model. ### Pretraining ## Evaluation results When the model is used for translation test dataset, achieves the following results: Test results : | Model | BLEU score | |:-----:|:-----:| | legal_t5_small_multitask_fr_cs | 44.499| ### BibTeX entry and citation info > Created by [Ahmed Elnaggar/@Elnaggar_AI](https://twitter.com/Elnaggar_AI) | [LinkedIn](https://www.linkedin.com/in/prof-ahmed-elnaggar/)
SEBIS/legal_t5_small_trans_cs_sv
d52b0d745235ac29c96e9d9428e69cd421c4b3b6
2021-06-23T11:36:15.000Z
[ "pytorch", "jax", "t5", "text2text-generation", "Cszech Swedish", "dataset:dcep europarl jrc-acquis", "transformers", "translation Cszech Swedish model", "autotrain_compatible" ]
text2text-generation
false
SEBIS
null
SEBIS/legal_t5_small_trans_cs_sv
4
null
transformers
18,162
--- language: Cszech Swedish tags: - translation Cszech Swedish model datasets: - dcep europarl jrc-acquis widget: - text: "Odborná příprava je v sektoru minimální a tradiční, postrádá specifické kurzy nebo výukové plány." --- # legal_t5_small_trans_cs_sv model Model on translating legal text from Cszech to Swedish. It was first released in [this repository](https://github.com/agemagician/LegalTrans). This model is trained on three parallel corpus from jrc-acquis, europarl and dcep. ## Model description legal_t5_small_trans_cs_sv is based on the `t5-small` model and was trained on a large corpus of parallel text. This is a smaller model, which scales the baseline model of t5 down by using `dmodel = 512`, `dff = 2,048`, 8-headed attention, and only 6 layers each in the encoder and decoder. This variant has about 60 million parameters. ## Intended uses & limitations The model could be used for translation of legal texts from Cszech to Swedish. ### How to use Here is how to use this model to translate legal text from Cszech to Swedish in PyTorch: ```python from transformers import AutoTokenizer, AutoModelWithLMHead, TranslationPipeline pipeline = TranslationPipeline( model=AutoModelWithLMHead.from_pretrained("SEBIS/legal_t5_small_trans_cs_sv"), tokenizer=AutoTokenizer.from_pretrained(pretrained_model_name_or_path = "SEBIS/legal_t5_small_trans_cs_sv", do_lower_case=False, skip_special_tokens=True), device=0 ) cs_text = "Odborná příprava je v sektoru minimální a tradiční, postrádá specifické kurzy nebo výukové plány." pipeline([cs_text], max_length=512) ``` ## Training data The legal_t5_small_trans_cs_sv model was trained on [JRC-ACQUIS](https://wt-public.emm4u.eu/Acquis/index_2.2.html), [EUROPARL](https://www.statmt.org/europarl/), and [DCEP](https://ec.europa.eu/jrc/en/language-technologies/dcep) dataset consisting of 5 Million parallel texts. ## Training procedure The model was trained on a single TPU Pod V3-8 for 250K steps in total, using sequence length 512 (batch size 4096). It has a total of approximately 220M parameters and was trained using the encoder-decoder architecture. The optimizer used is AdaFactor with inverse square root learning rate schedule for pre-training. ### Preprocessing An unigram model trained with 88M lines of text from the parallel corpus (of all possible language pairs) to get the vocabulary (with byte pair encoding), which is used with this model. ### Pretraining ## Evaluation results When the model is used for translation test dataset, achieves the following results: Test results : | Model | BLEU score | |:-----:|:-----:| | legal_t5_small_trans_cs_sv | 47.9| ### BibTeX entry and citation info > Created by [Ahmed Elnaggar/@Elnaggar_AI](https://twitter.com/Elnaggar_AI) | [LinkedIn](https://www.linkedin.com/in/prof-ahmed-elnaggar/)
SEBIS/legal_t5_small_trans_cs_sv_small_finetuned
d8e9611c077c804e120f096d1fe2049b1bf9988a
2021-06-23T11:36:51.000Z
[ "pytorch", "jax", "t5", "text2text-generation", "Cszech Swedish", "dataset:dcep europarl jrc-acquis", "transformers", "translation Cszech Swedish model", "autotrain_compatible" ]
text2text-generation
false
SEBIS
null
SEBIS/legal_t5_small_trans_cs_sv_small_finetuned
4
null
transformers
18,163
--- language: Cszech Swedish tags: - translation Cszech Swedish model datasets: - dcep europarl jrc-acquis widget: - text: "10 Ukončení denního zasedání" --- # legal_t5_small_trans_cs_sv_small_finetuned model Model on translating legal text from Cszech to Swedish. It was first released in [this repository](https://github.com/agemagician/LegalTrans). This model is first pretrained all the translation data over some unsupervised task. Then the model is trained on three parallel corpus from jrc-acquis, europarl and dcep. ## Model description legal_t5_small_trans_cs_sv_small_finetuned is initially pretrained on unsupervised task with the all of the data of the training set. The unsupervised task was "masked language modelling". legal_t5_small_trans_cs_sv_small_finetuned is based on the `t5-small` model and was trained on a large corpus of parallel text. This is a smaller model, which scales the baseline model of t5 down by using `dmodel = 512`, `dff = 2,048`, 8-headed attention, and only 6 layers each in the encoder and decoder. This variant has about 60 million parameters. ## Intended uses & limitations The model could be used for translation of legal texts from Cszech to Swedish. ### How to use Here is how to use this model to translate legal text from Cszech to Swedish in PyTorch: ```python from transformers import AutoTokenizer, AutoModelWithLMHead, TranslationPipeline pipeline = TranslationPipeline( model=AutoModelWithLMHead.from_pretrained("SEBIS/legal_t5_small_trans_cs_sv_small_finetuned"), tokenizer=AutoTokenizer.from_pretrained(pretrained_model_name_or_path = "SEBIS/legal_t5_small_trans_cs_sv", do_lower_case=False, skip_special_tokens=True), device=0 ) cs_text = "10 Ukončení denního zasedání" pipeline([cs_text], max_length=512) ``` ## Training data The legal_t5_small_trans_cs_sv_small_finetuned (the supervised task which involved only the corresponding langauge pair and as well as unsupervised task where all of the data of all language pairs were available) model was trained on [JRC-ACQUIS](https://wt-public.emm4u.eu/Acquis/index_2.2.html), [EUROPARL](https://www.statmt.org/europarl/), and [DCEP](https://ec.europa.eu/jrc/en/language-technologies/dcep) dataset consisting of 5 Million parallel texts. ## Training procedure The model was trained on a single TPU Pod V3-8 for 250K steps in total, using sequence length 512 (batch size 4096). It has a total of approximately 220M parameters and was trained using the encoder-decoder architecture. The optimizer used is AdaFactor with inverse square root learning rate schedule for pre-training. ### Preprocessing An unigram model trained with 88M lines of text from the parallel corpus (of all possible language pairs) to get the vocabulary (with byte pair encoding), which is used with this model. ### Pretraining The pre-training data was the combined data from all the 42 language pairs. The task for the model was to predict the portions of a sentence which were masked randomly. ## Evaluation results When the model is used for translation test dataset, achieves the following results: Test results : | Model | BLEU score | |:-----:|:-----:| | legal_t5_small_trans_cs_sv_small_finetuned | 48.159| ### BibTeX entry and citation info > Created by [Ahmed Elnaggar/@Elnaggar_AI](https://twitter.com/Elnaggar_AI) | [LinkedIn](https://www.linkedin.com/in/prof-ahmed-elnaggar/)
SEBIS/legal_t5_small_trans_en_es_small_finetuned
3e8cbcbf1c48b1f5e06454ddc215131fdc210e94
2021-06-23T09:36:29.000Z
[ "pytorch", "jax", "t5", "text2text-generation", "English Spanish", "dataset:dcep europarl jrc-acquis", "transformers", "translation English Spanish model", "autotrain_compatible" ]
text2text-generation
false
SEBIS
null
SEBIS/legal_t5_small_trans_en_es_small_finetuned
4
null
transformers
18,164
--- language: English Spanish tags: - translation English Spanish model datasets: - dcep europarl jrc-acquis widget: - text: "Instructs its President to forward this resolution to the Council and Commission and the Government and Parliament of Uzbekistan." --- # legal_t5_small_trans_en_es_small_finetuned model Model on translating legal text from English to Spanish. It was first released in [this repository](https://github.com/agemagician/LegalTrans). This model is first pretrained all the translation data over some unsupervised task. Then the model is trained on three parallel corpus from jrc-acquis, europarl and dcep. ## Model description legal_t5_small_trans_en_es_small_finetuned is initially pretrained on unsupervised task with the all of the data of the training set. The unsupervised task was "masked language modelling". legal_t5_small_trans_en_es_small_finetuned is based on the `t5-small` model and was trained on a large corpus of parallel text. This is a smaller model, which scales the baseline model of t5 down by using `dmodel = 512`, `dff = 2,048`, 8-headed attention, and only 6 layers each in the encoder and decoder. This variant has about 60 million parameters. ## Intended uses & limitations The model could be used for translation of legal texts from English to Spanish. ### How to use Here is how to use this model to translate legal text from English to Spanish in PyTorch: ```python from transformers import AutoTokenizer, AutoModelWithLMHead, TranslationPipeline pipeline = TranslationPipeline( model=AutoModelWithLMHead.from_pretrained("SEBIS/legal_t5_small_trans_en_es_small_finetuned"), tokenizer=AutoTokenizer.from_pretrained(pretrained_model_name_or_path = "SEBIS/legal_t5_small_trans_en_es", do_lower_case=False, skip_special_tokens=True), device=0 ) en_text = "Instructs its President to forward this resolution to the Council and Commission and the Government and Parliament of Uzbekistan." pipeline([en_text], max_length=512) ``` ## Training data The legal_t5_small_trans_en_es_small_finetuned (the supervised task which involved only the corresponding langauge pair and as well as unsupervised task where all of the data of all language pairs were available) model was trained on [JRC-ACQUIS](https://wt-public.emm4u.eu/Acquis/index_2.2.html), [EUROPARL](https://www.statmt.org/europarl/), and [DCEP](https://ec.europa.eu/jrc/en/language-technologies/dcep) dataset consisting of 9 Million parallel texts. ## Training procedure The model was trained on a single TPU Pod V3-8 for 250K steps in total, using sequence length 512 (batch size 4096). It has a total of approximately 220M parameters and was trained using the encoder-decoder architecture. The optimizer used is AdaFactor with inverse square root learning rate schedule for pre-training. ### Preprocessing An unigram model trained with 88M lines of text from the parallel corpus (of all possible language pairs) to get the vocabulary (with byte pair encoding), which is used with this model. ### Pretraining The pre-training data was the combined data from all the 42 language pairs. The task for the model was to predict the portions of a sentence which were masked randomly. ## Evaluation results When the model is used for translation test dataset, achieves the following results: Test results : | Model | BLEU score | |:-----:|:-----:| | legal_t5_small_trans_en_es_small_finetuned | 53.692| ### BibTeX entry and citation info > Created by [Ahmed Elnaggar/@Elnaggar_AI](https://twitter.com/Elnaggar_AI) | [LinkedIn](https://www.linkedin.com/in/prof-ahmed-elnaggar/)
SEBIS/legal_t5_small_trans_fr_cs
53e654ca6a8015d71f8e5d88a5e6e44486ab6004
2021-06-23T09:49:56.000Z
[ "pytorch", "jax", "t5", "text2text-generation", "French Cszech", "dataset:dcep europarl jrc-acquis", "transformers", "translation French Cszech model", "autotrain_compatible" ]
text2text-generation
false
SEBIS
null
SEBIS/legal_t5_small_trans_fr_cs
4
null
transformers
18,165
--- language: French Cszech tags: - translation French Cszech model datasets: - dcep europarl jrc-acquis widget: - text: "Hannes Swoboda , au nom du groupe PSE," --- # legal_t5_small_trans_fr_cs model Model on translating legal text from French to Cszech. It was first released in [this repository](https://github.com/agemagician/LegalTrans). This model is trained on three parallel corpus from jrc-acquis, europarl and dcep. ## Model description legal_t5_small_trans_fr_cs is based on the `t5-small` model and was trained on a large corpus of parallel text. This is a smaller model, which scales the baseline model of t5 down by using `dmodel = 512`, `dff = 2,048`, 8-headed attention, and only 6 layers each in the encoder and decoder. This variant has about 60 million parameters. ## Intended uses & limitations The model could be used for translation of legal texts from French to Cszech. ### How to use Here is how to use this model to translate legal text from French to Cszech in PyTorch: ```python from transformers import AutoTokenizer, AutoModelWithLMHead, TranslationPipeline pipeline = TranslationPipeline( model=AutoModelWithLMHead.from_pretrained("SEBIS/legal_t5_small_trans_fr_cs"), tokenizer=AutoTokenizer.from_pretrained(pretrained_model_name_or_path = "SEBIS/legal_t5_small_trans_fr_cs", do_lower_case=False, skip_special_tokens=True), device=0 ) fr_text = "Hannes Swoboda , au nom du groupe PSE," pipeline([fr_text], max_length=512) ``` ## Training data The legal_t5_small_trans_fr_cs model was trained on [JRC-ACQUIS](https://wt-public.emm4u.eu/Acquis/index_2.2.html), [EUROPARL](https://www.statmt.org/europarl/), and [DCEP](https://ec.europa.eu/jrc/en/language-technologies/dcep) dataset consisting of 5 Million parallel texts. ## Training procedure The model was trained on a single TPU Pod V3-8 for 250K steps in total, using sequence length 512 (batch size 4096). It has a total of approximately 220M parameters and was trained using the encoder-decoder architecture. The optimizer used is AdaFactor with inverse square root learning rate schedule for pre-training. ### Preprocessing An unigram model trained with 88M lines of text from the parallel corpus (of all possible language pairs) to get the vocabulary (with byte pair encoding), which is used with this model. ### Pretraining ## Evaluation results When the model is used for translation test dataset, achieves the following results: Test results : | Model | BLEU score | |:-----:|:-----:| | legal_t5_small_trans_fr_cs | 44.34| ### BibTeX entry and citation info > Created by [Ahmed Elnaggar/@Elnaggar_AI](https://twitter.com/Elnaggar_AI) | [LinkedIn](https://www.linkedin.com/in/prof-ahmed-elnaggar/)
SEBIS/legal_t5_small_trans_sv_cs
fa974e13a6e374ebd88da8ee3e94ab1cfa8988e7
2021-06-23T10:05:27.000Z
[ "pytorch", "jax", "t5", "text2text-generation", "Swedish Cszech", "dataset:dcep europarl jrc-acquis", "transformers", "translation Swedish Cszech model", "autotrain_compatible" ]
text2text-generation
false
SEBIS
null
SEBIS/legal_t5_small_trans_sv_cs
4
null
transformers
18,166
--- language: Swedish Cszech tags: - translation Swedish Cszech model datasets: - dcep europarl jrc-acquis widget: - text: "En kvalitetscertifiering av administrativa förfaranden i enlighet med ISO eller motsvarande normer skulle dessutom leda till likvärdiga villkor för sjöfartsadministrationer." --- # legal_t5_small_trans_sv_cs model Model on translating legal text from Swedish to Cszech. It was first released in [this repository](https://github.com/agemagician/LegalTrans). This model is trained on three parallel corpus from jrc-acquis, europarl and dcep. ## Model description legal_t5_small_trans_sv_cs is based on the `t5-small` model and was trained on a large corpus of parallel text. This is a smaller model, which scales the baseline model of t5 down by using `dmodel = 512`, `dff = 2,048`, 8-headed attention, and only 6 layers each in the encoder and decoder. This variant has about 60 million parameters. ## Intended uses & limitations The model could be used for translation of legal texts from Swedish to Cszech. ### How to use Here is how to use this model to translate legal text from Swedish to Cszech in PyTorch: ```python from transformers import AutoTokenizer, AutoModelWithLMHead, TranslationPipeline pipeline = TranslationPipeline( model=AutoModelWithLMHead.from_pretrained("SEBIS/legal_t5_small_trans_sv_cs"), tokenizer=AutoTokenizer.from_pretrained(pretrained_model_name_or_path = "SEBIS/legal_t5_small_trans_sv_cs", do_lower_case=False, skip_special_tokens=True), device=0 ) sv_text = "En kvalitetscertifiering av administrativa förfaranden i enlighet med ISO eller motsvarande normer skulle dessutom leda till likvärdiga villkor för sjöfartsadministrationer." pipeline([sv_text], max_length=512) ``` ## Training data The legal_t5_small_trans_sv_cs model was trained on [JRC-ACQUIS](https://wt-public.emm4u.eu/Acquis/index_2.2.html), [EUROPARL](https://www.statmt.org/europarl/), and [DCEP](https://ec.europa.eu/jrc/en/language-technologies/dcep) dataset consisting of 5 Million parallel texts. ## Training procedure The model was trained on a single TPU Pod V3-8 for 250K steps in total, using sequence length 512 (batch size 4096). It has a total of approximately 220M parameters and was trained using the encoder-decoder architecture. The optimizer used is AdaFactor with inverse square root learning rate schedule for pre-training. ### Preprocessing An unigram model trained with 88M lines of text from the parallel corpus (of all possible language pairs) to get the vocabulary (with byte pair encoding), which is used with this model. ### Pretraining ## Evaluation results When the model is used for translation test dataset, achieves the following results: Test results : | Model | BLEU score | |:-----:|:-----:| | legal_t5_small_trans_sv_cs | 45.569| ### BibTeX entry and citation info > Created by [Ahmed Elnaggar/@Elnaggar_AI](https://twitter.com/Elnaggar_AI) | [LinkedIn](https://www.linkedin.com/in/prof-ahmed-elnaggar/)
SEBIS/legal_t5_small_trans_sv_es
e3646140720e81e09acd6ede87c377a226761d62
2021-06-23T10:09:20.000Z
[ "pytorch", "jax", "t5", "text2text-generation", "Swedish Spanish", "dataset:dcep europarl jrc-acquis", "transformers", "translation Swedish Spanish model", "autotrain_compatible" ]
text2text-generation
false
SEBIS
null
SEBIS/legal_t5_small_trans_sv_es
4
null
transformers
18,167
--- language: Swedish Spanish tags: - translation Swedish Spanish model datasets: - dcep europarl jrc-acquis widget: - text: "Monika Flašíková Beňová (S&D)" --- # legal_t5_small_trans_sv_es model Model on translating legal text from Swedish to Spanish. It was first released in [this repository](https://github.com/agemagician/LegalTrans). This model is trained on three parallel corpus from jrc-acquis, europarl and dcep. ## Model description legal_t5_small_trans_sv_es is based on the `t5-small` model and was trained on a large corpus of parallel text. This is a smaller model, which scales the baseline model of t5 down by using `dmodel = 512`, `dff = 2,048`, 8-headed attention, and only 6 layers each in the encoder and decoder. This variant has about 60 million parameters. ## Intended uses & limitations The model could be used for translation of legal texts from Swedish to Spanish. ### How to use Here is how to use this model to translate legal text from Swedish to Spanish in PyTorch: ```python from transformers import AutoTokenizer, AutoModelWithLMHead, TranslationPipeline pipeline = TranslationPipeline( model=AutoModelWithLMHead.from_pretrained("SEBIS/legal_t5_small_trans_sv_es"), tokenizer=AutoTokenizer.from_pretrained(pretrained_model_name_or_path = "SEBIS/legal_t5_small_trans_sv_es", do_lower_case=False, skip_special_tokens=True), device=0 ) sv_text = "Monika Flašíková Beňová (S&D)" pipeline([sv_text], max_length=512) ``` ## Training data The legal_t5_small_trans_sv_es model was trained on [JRC-ACQUIS](https://wt-public.emm4u.eu/Acquis/index_2.2.html), [EUROPARL](https://www.statmt.org/europarl/), and [DCEP](https://ec.europa.eu/jrc/en/language-technologies/dcep) dataset consisting of 5 Million parallel texts. ## Training procedure The model was trained on a single TPU Pod V3-8 for 250K steps in total, using sequence length 512 (batch size 4096). It has a total of approximately 220M parameters and was trained using the encoder-decoder architecture. The optimizer used is AdaFactor with inverse square root learning rate schedule for pre-training. ### Preprocessing An unigram model trained with 88M lines of text from the parallel corpus (of all possible language pairs) to get the vocabulary (with byte pair encoding), which is used with this model. ### Pretraining ## Evaluation results When the model is used for translation test dataset, achieves the following results: Test results : | Model | BLEU score | |:-----:|:-----:| | legal_t5_small_trans_sv_es | 47.407| ### BibTeX entry and citation info > Created by [Ahmed Elnaggar/@Elnaggar_AI](https://twitter.com/Elnaggar_AI) | [LinkedIn](https://www.linkedin.com/in/prof-ahmed-elnaggar/)
SEBIS/legal_t5_small_trans_sv_fr_small_finetuned
f8f57bf7a1ff3b807ef48f242616755d509bdb8e
2021-06-23T10:11:10.000Z
[ "pytorch", "jax", "t5", "text2text-generation", "Swedish French", "dataset:dcep europarl jrc-acquis", "transformers", "translation Swedish French model", "autotrain_compatible" ]
text2text-generation
false
SEBIS
null
SEBIS/legal_t5_small_trans_sv_fr_small_finetuned
4
null
transformers
18,168
--- language: Swedish French tags: - translation Swedish French model datasets: - dcep europarl jrc-acquis widget: - text: "Samreglering bör följa samma principer som de formella bestämmelserna, vilket betyder att den bör vara objektiv, välgrundad, proportionell och icke-diskriminerande, och bör möjliggöra insyn." --- # legal_t5_small_trans_sv_fr_small_finetuned model Model on translating legal text from Swedish to French. It was first released in [this repository](https://github.com/agemagician/LegalTrans). This model is first pretrained all the translation data over some unsupervised task. Then the model is trained on three parallel corpus from jrc-acquis, europarl and dcep. ## Model description legal_t5_small_trans_sv_fr_small_finetuned is initially pretrained on unsupervised task with the all of the data of the training set. The unsupervised task was "masked language modelling". legal_t5_small_trans_sv_fr_small_finetuned is based on the `t5-small` model and was trained on a large corpus of parallel text. This is a smaller model, which scales the baseline model of t5 down by using `dmodel = 512`, `dff = 2,048`, 8-headed attention, and only 6 layers each in the encoder and decoder. This variant has about 60 million parameters. ## Intended uses & limitations The model could be used for translation of legal texts from Swedish to French. ### How to use Here is how to use this model to translate legal text from Swedish to French in PyTorch: ```python from transformers import AutoTokenizer, AutoModelWithLMHead, TranslationPipeline pipeline = TranslationPipeline( model=AutoModelWithLMHead.from_pretrained("SEBIS/legal_t5_small_trans_sv_fr_small_finetuned"), tokenizer=AutoTokenizer.from_pretrained(pretrained_model_name_or_path = "SEBIS/legal_t5_small_trans_sv_fr", do_lower_case=False, skip_special_tokens=True), device=0 ) sv_text = "Samreglering bör följa samma principer som de formella bestämmelserna, vilket betyder att den bör vara objektiv, välgrundad, proportionell och icke-diskriminerande, och bör möjliggöra insyn." pipeline([sv_text], max_length=512) ``` ## Training data The legal_t5_small_trans_sv_fr_small_finetuned (the supervised task which involved only the corresponding langauge pair and as well as unsupervised task where all of the data of all language pairs were available) model was trained on [JRC-ACQUIS](https://wt-public.emm4u.eu/Acquis/index_2.2.html), [EUROPARL](https://www.statmt.org/europarl/), and [DCEP](https://ec.europa.eu/jrc/en/language-technologies/dcep) dataset consisting of 8 Million parallel texts. ## Training procedure The model was trained on a single TPU Pod V3-8 for 250K steps in total, using sequence length 512 (batch size 4096). It has a total of approximately 220M parameters and was trained using the encoder-decoder architecture. The optimizer used is AdaFactor with inverse square root learning rate schedule for pre-training. ### Preprocessing An unigram model trained with 88M lines of text from the parallel corpus (of all possible language pairs) to get the vocabulary (with byte pair encoding), which is used with this model. ### Pretraining The pre-training data was the combined data from all the 42 language pairs. The task for the model was to predict the portions of a sentence which were masked randomly. ## Evaluation results When the model is used for translation test dataset, achieves the following results: Test results : | Model | BLEU score | |:-----:|:-----:| | legal_t5_small_trans_sv_fr_small_finetuned | 47.508| ### BibTeX entry and citation info > Created by [Ahmed Elnaggar/@Elnaggar_AI](https://twitter.com/Elnaggar_AI) | [LinkedIn](https://www.linkedin.com/in/prof-ahmed-elnaggar/)
SEISHIN/distilbert-base-uncased-finetuned-squad
dbe9f3331ab6bb0f24a3240dc17248c7757b2431
2021-12-27T05:27:55.000Z
[ "pytorch", "tensorboard", "distilbert", "question-answering", "dataset:squad", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
question-answering
false
SEISHIN
null
SEISHIN/distilbert-base-uncased-finetuned-squad
4
null
transformers
18,169
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: distilbert-base-uncased-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-squad This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the squad dataset. It achieves the following results on the evaluation set: - Loss: 1.1605 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 1.2172 | 1.0 | 5533 | 1.1532 | | 0.9446 | 2.0 | 11066 | 1.1184 | | 0.7671 | 3.0 | 16599 | 1.1605 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
Saitomar/wav2vec2-large-xls-r-300m-hindi-kaggle
3195940b3bcaa0521dd44960c9cab3349b5d19f9
2022-03-24T11:55:14.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "hi", "dataset:common_voice", "transformers", "generated_from_trainer", "robust-speech-event", "hf-asr-leaderboard", "model-index" ]
automatic-speech-recognition
false
Saitomar
null
Saitomar/wav2vec2-large-xls-r-300m-hindi-kaggle
4
null
transformers
18,170
--- language: - hi tags: - generated_from_trainer - robust-speech-event - hf-asr-leaderboard datasets: - common_voice model-index: - name: wav2vec2-large-xls-r-300m-hindi-kaggle results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-hindi-kaggle This model was trained from scratch on the common_voice dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu113 - Datasets 1.18.3 - Tokenizers 0.10.3
Sarmad/projectmodel-bert
ed602f455e0a5d968d75de400ef0995bd224528a
2021-05-30T11:14:17.000Z
[ "pytorch", "distilbert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
Sarmad
null
Sarmad/projectmodel-bert
4
null
transformers
18,171
Entry not found
SaulLu/test-add-new-model
eef2f8c8985f64d101fd3525e2cfaa1e274f4c70
2021-09-02T12:47:36.000Z
[ "pytorch", "bart", "feature-extraction", "arxiv:2107.06955", "transformers" ]
feature-extraction
false
SaulLu
null
SaulLu/test-add-new-model
4
null
transformers
18,172
# HTLM Pretraining Dataset: 23TB of simplified HTML extracted from common crawl dumps Paper: [HTLM: Hyper-Text Pre-Training and Prompting of Language Models](https://arxiv.org/abs/2107.06955) Authors: Armen Aghajanyan, Dmytro Okhonko, Mike Lewis, Mandar Joshi, Hu Xu, Gargi Ghosh, Luke Zettlemoyer Disclaimer: The team releasing BERT did not write a model card for this model so this model card has been written by the Hugging Face team. ## Abstract We introduce HTLM, a hyper-text language model trained on a large-scale web crawl. Modeling hyper-text has a number of advantages: (1) it is easily gathered at scale, (2) it provides rich document-level and end-task-adjacent supervision (e.g. class and id attributes often encode document category information), and (3) it allows for new structured prompting that follows the established semantics of HTML (e.g. to do zero-shot summarization by infilling title tags for a webpage that contains the input text). We show that pretraining with a BART-style denoising loss directly on simplified HTML provides highly effective transfer for a wide range of end tasks and supervision levels. HTLM matches or exceeds the performance of comparably sized text-only LMs for zero-shot prompting and fine-tuning for classification benchmarks, while also setting new state-of-the-art performance levels for zero-shot summarization. We also find that hyper-text prompts provide more value to HTLM, in terms of data efficiency, than plain text prompts do for existing LMs, and that HTLM is highly effective at auto-prompting itself, by simply generating the most likely hyper-text formatting for any available training data. We will release all code and models to support future HTLM research. ## Usage For the moment you can use it as is to do a classic Mask Filling task (see snippet bellow) or fine-tune it on a downstream task. ``` from transformers import BartTokenizer, BartForConditionalGeneration TXT = "My friends are <mask> but they eat too many carbs." model_name = "SaulLu/test-add-new-model" tokenizer = BartTokenizer.from_pretrained(model_name) model = BartForConditionalGeneration.from_pretrained(model_name) input_ids = tokenizer([TXT], return_tensors='pt')['input_ids'] logits = model(input_ids).logits masked_index = (input_ids[0] == tokenizer.mask_token_id).nonzero().item() probs = logits[0, masked_index].softmax(dim=0) values, predictions = probs.topk(5) tokenizer.decode(predictions).split() ```
SauravMaheshkar/clr-finetuned-roberta-base
de145929f5adadbf469afcf7a9ae396747d44185
2021-09-23T15:57:42.000Z
[ "pytorch", "roberta", "fill-mask", "dataset:Commonlit-Readibility", "transformers", "kaggle", "license:cc0-1.0", "autotrain_compatible" ]
fill-mask
false
SauravMaheshkar
null
SauravMaheshkar/clr-finetuned-roberta-base
4
null
transformers
18,173
--- thumbnail: https://github.com/SauravMaheshkar/CommonLit-Readibility/blob/main/assets/CommonLit%20-%20Big%20Banner.png?raw=true tags: - kaggle license: cc0-1.0 datasets: - Commonlit-Readibility --- ![](https://github.com/SauravMaheshkar/CommonLit-Readibility/blob/main/assets/CommonLit%20-%20Big%20Banner.png?raw=true) # FineTuning | **Architecture** | **Weights** | **Training Loss** | **Validation Loss** | |:-----------------------:|:---------------:|:----------------:|:----------------------:| | roberta-base | [huggingface/hub](https://huggingface.co/SauravMaheshkar/clr-finetuned-roberta-base) | **0.641** | **0.4728** | | bert-base-uncased | [huggingface/hub](https://huggingface.co/SauravMaheshkar/clr-finetuned-bert-base-uncased) | 0.6781 | 0.4977 | | albert-base | [huggingface/hub](https://huggingface.co/SauravMaheshkar/clr-finetuned-albert-base) | 0.7119 | 0.5155 | | xlm-roberta-base | [huggingface/hub](https://huggingface.co/SauravMaheshkar/clr-finetuned-xlm-roberta-base) | 0.7225 | 0.525 | | bert-large-uncased | [huggingface/hub](https://huggingface.co/SauravMaheshkar/clr-finetuned-bert-large-uncased) | 0.7482 | 0.5161 | | albert-large | [huggingface/hub](https://huggingface.co/SauravMaheshkar/clr-finetuned-albert-large) | 1.075 | 0.9921 | | roberta-large | [huggingface/hub](https://huggingface.co/SauravMaheshkar/clr-finetuned-roberta-large) | 2.749 | 1.075 |
SauravMaheshkar/clr-pretrained-distilbert-base-uncased
ee46573a22a9ef7f47eb138dd0290a3a94e4c713
2021-09-23T15:57:56.000Z
[ "pytorch", "distilbert", "fill-mask", "dataset:Commonlit-Readibility", "transformers", "kaggle", "license:cc0-1.0", "autotrain_compatible" ]
fill-mask
false
SauravMaheshkar
null
SauravMaheshkar/clr-pretrained-distilbert-base-uncased
4
null
transformers
18,174
--- thumbnail: https://github.com/SauravMaheshkar/CommonLit-Readibility/blob/main/assets/CommonLit%20-%20Big%20Banner.png?raw=true tags: - kaggle license: cc0-1.0 datasets: - Commonlit-Readibility metrics: - Perplexity --- ![](https://github.com/SauravMaheshkar/CommonLit-Readibility/blob/main/assets/CommonLit%20-%20Big%20Banner.png?raw=true) # PreTraining | **Architecture** | **Weights** | **PreTraining Loss** | **PreTraining Perplexity** | |:-----------------------:|:---------------:|:----------------:|:----------------------:| | roberta-base | [huggingface/hub](https://huggingface.co/SauravMaheshkar/clr-pretrained-roberta-base) | **0.3488** | **3.992** | | bert-base-uncased | [huggingface/hub](https://huggingface.co/SauravMaheshkar/clr-pretrained-bert-base-uncased) | 0.3909 | 6.122 | | electra-large | [huggingface/hub](https://huggingface.co/SauravMaheshkar/clr-pretrained-electra-large) | 0.723 | 6.394 | | albert-base | [huggingface/hub](https://huggingface.co/SauravMaheshkar/clr-pretrained-albert-base) | 0.7343 | 7.76 | | electra-small | [huggingface/hub](https://huggingface.co/SauravMaheshkar/clr-pretrained-electra-small) | 0.9226 | 11.098 | | electra-base | [huggingface/hub](https://huggingface.co/SauravMaheshkar/clr-pretrained-electra-base) | 0.9468 | 8.783 | | distilbert-base-uncased | [huggingface/hub](https://huggingface.co/SauravMaheshkar/clr-pretrained-distilbert-base-uncased) | 1.082 | 7.963 |
Sebb/german-nli-base-thesis
f8188a298e391b6a15daaf92d8b7c4bb969a82fb
2022-01-06T20:06:07.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
Sebb
null
Sebb/german-nli-base-thesis
4
null
transformers
18,175
Entry not found
SetFit/MiniLM-L12-H384-uncased__sst2__all-train
0d37980eb51b86c09b75666938c5927c2c76a1df
2022-01-26T11:27:47.000Z
[ "pytorch", "bert", "text-classification", "transformers", "generated_from_trainer", "license:mit", "model-index" ]
text-classification
false
SetFit
null
SetFit/MiniLM-L12-H384-uncased__sst2__all-train
4
null
transformers
18,176
--- license: mit tags: - generated_from_trainer metrics: - accuracy model-index: - name: MiniLM-L12-H384-uncased__sst2__all-train results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # MiniLM-L12-H384-uncased__sst2__all-train This model is a fine-tuned version of [microsoft/MiniLM-L12-H384-uncased](https://huggingface.co/microsoft/MiniLM-L12-H384-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2632 - Accuracy: 0.9055 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.4183 | 1.0 | 433 | 0.3456 | 0.8720 | | 0.2714 | 2.0 | 866 | 0.2632 | 0.9055 | | 0.2016 | 3.0 | 1299 | 0.3357 | 0.8990 | | 0.1501 | 4.0 | 1732 | 0.4474 | 0.8863 | | 0.1119 | 5.0 | 2165 | 0.3998 | 0.8979 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.1+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
SetFit/distilbert-base-uncased__ethos_binary__all-train
0dab96dbf3e4a3900d0252aca5fe4f80751241f5
2022-01-26T21:07:59.000Z
[ "pytorch", "distilbert", "text-classification", "transformers" ]
text-classification
false
SetFit
null
SetFit/distilbert-base-uncased__ethos_binary__all-train
4
null
transformers
18,177
Entry not found
SetFit/distilbert-base-uncased__hate_speech_offensive__all-train
f548e4c618f7756ef71554e88fb3523490ba257b
2022-01-26T20:42:51.000Z
[ "pytorch", "distilbert", "text-classification", "transformers" ]
text-classification
false
SetFit
null
SetFit/distilbert-base-uncased__hate_speech_offensive__all-train
4
null
transformers
18,178
Entry not found
SetFit/distilbert-base-uncased__hate_speech_offensive__train-16-7
871f41198c7d7564d558054cea12eafd2277ace3
2022-02-10T07:57:08.000Z
[ "pytorch", "distilbert", "text-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
SetFit
null
SetFit/distilbert-base-uncased__hate_speech_offensive__train-16-7
4
null
transformers
18,179
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: distilbert-base-uncased__hate_speech_offensive__train-16-7 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__hate_speech_offensive__train-16-7 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.9011 - Accuracy: 0.578 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.0968 | 1.0 | 10 | 1.1309 | 0.0 | | 1.0709 | 2.0 | 20 | 1.1237 | 0.1 | | 0.9929 | 3.0 | 30 | 1.1254 | 0.1 | | 0.878 | 4.0 | 40 | 1.1206 | 0.5 | | 0.7409 | 5.0 | 50 | 1.0831 | 0.1 | | 0.5663 | 6.0 | 60 | 0.9830 | 0.6 | | 0.4105 | 7.0 | 70 | 0.9919 | 0.5 | | 0.2912 | 8.0 | 80 | 1.0472 | 0.6 | | 0.1013 | 9.0 | 90 | 1.1617 | 0.4 | | 0.0611 | 10.0 | 100 | 1.2789 | 0.6 | | 0.039 | 11.0 | 110 | 1.4091 | 0.4 | | 0.0272 | 12.0 | 120 | 1.4974 | 0.4 | | 0.0189 | 13.0 | 130 | 1.4845 | 0.5 | | 0.018 | 14.0 | 140 | 1.4924 | 0.5 | | 0.0131 | 15.0 | 150 | 1.5206 | 0.6 | | 0.0116 | 16.0 | 160 | 1.5858 | 0.5 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
SetFit/distilbert-base-uncased__hate_speech_offensive__train-32-6
c62806c22be417184ff931b8e27c9bdef68502b9
2022-02-10T08:08:00.000Z
[ "pytorch", "distilbert", "text-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
SetFit
null
SetFit/distilbert-base-uncased__hate_speech_offensive__train-32-6
4
null
transformers
18,180
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: distilbert-base-uncased__hate_speech_offensive__train-32-6 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__hate_speech_offensive__train-32-6 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.0523 - Accuracy: 0.663 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.0957 | 1.0 | 19 | 1.0696 | 0.6 | | 1.0107 | 2.0 | 38 | 1.0047 | 0.55 | | 0.8257 | 3.0 | 57 | 0.8358 | 0.8 | | 0.6006 | 4.0 | 76 | 0.7641 | 0.6 | | 0.4172 | 5.0 | 95 | 0.5931 | 0.8 | | 0.2639 | 6.0 | 114 | 0.5570 | 0.7 | | 0.1314 | 7.0 | 133 | 0.5017 | 0.65 | | 0.0503 | 8.0 | 152 | 0.3115 | 0.75 | | 0.023 | 9.0 | 171 | 0.4353 | 0.85 | | 0.0128 | 10.0 | 190 | 0.5461 | 0.75 | | 0.0092 | 11.0 | 209 | 0.5045 | 0.8 | | 0.007 | 12.0 | 228 | 0.5014 | 0.8 | | 0.0064 | 13.0 | 247 | 0.5070 | 0.8 | | 0.0049 | 14.0 | 266 | 0.4681 | 0.8 | | 0.0044 | 15.0 | 285 | 0.4701 | 0.8 | | 0.0039 | 16.0 | 304 | 0.4862 | 0.8 | | 0.0036 | 17.0 | 323 | 0.4742 | 0.8 | | 0.0035 | 18.0 | 342 | 0.4652 | 0.8 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
SetFit/distilbert-base-uncased__hate_speech_offensive__train-32-7
7e8c9a5833c673a13bbe8ceb93dadac469ad3cd0
2022-02-10T08:09:09.000Z
[ "pytorch", "distilbert", "text-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
SetFit
null
SetFit/distilbert-base-uncased__hate_speech_offensive__train-32-7
4
null
transformers
18,181
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: distilbert-base-uncased__hate_speech_offensive__train-32-7 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__hate_speech_offensive__train-32-7 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.8210 - Accuracy: 0.6305 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.0989 | 1.0 | 19 | 1.0655 | 0.4 | | 1.0102 | 2.0 | 38 | 0.9927 | 0.6 | | 0.8063 | 3.0 | 57 | 0.9117 | 0.5 | | 0.5284 | 4.0 | 76 | 0.8058 | 0.55 | | 0.2447 | 5.0 | 95 | 0.8393 | 0.45 | | 0.098 | 6.0 | 114 | 0.8438 | 0.6 | | 0.0388 | 7.0 | 133 | 1.1901 | 0.45 | | 0.0188 | 8.0 | 152 | 1.4429 | 0.45 | | 0.0121 | 9.0 | 171 | 1.3648 | 0.4 | | 0.0082 | 10.0 | 190 | 1.4768 | 0.4 | | 0.0066 | 11.0 | 209 | 1.4830 | 0.45 | | 0.0057 | 12.0 | 228 | 1.4936 | 0.45 | | 0.0053 | 13.0 | 247 | 1.5649 | 0.4 | | 0.0041 | 14.0 | 266 | 1.6306 | 0.4 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
SetFit/distilbert-base-uncased__hate_speech_offensive__train-32-8
875eb1dec429aaf0d6d62a7e26cf69396bab63e2
2022-02-10T08:10:22.000Z
[ "pytorch", "distilbert", "text-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
SetFit
null
SetFit/distilbert-base-uncased__hate_speech_offensive__train-32-8
4
null
transformers
18,182
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: distilbert-base-uncased__hate_speech_offensive__train-32-8 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__hate_speech_offensive__train-32-8 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.9191 - Accuracy: 0.632 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.1008 | 1.0 | 19 | 1.0877 | 0.4 | | 1.0354 | 2.0 | 38 | 1.0593 | 0.35 | | 0.8765 | 3.0 | 57 | 0.9722 | 0.5 | | 0.6365 | 4.0 | 76 | 0.9271 | 0.55 | | 0.3944 | 5.0 | 95 | 0.7852 | 0.5 | | 0.2219 | 6.0 | 114 | 0.9360 | 0.55 | | 0.126 | 7.0 | 133 | 1.0610 | 0.55 | | 0.0389 | 8.0 | 152 | 1.0884 | 0.6 | | 0.0191 | 9.0 | 171 | 1.3483 | 0.55 | | 0.0108 | 10.0 | 190 | 1.4226 | 0.55 | | 0.0082 | 11.0 | 209 | 1.4270 | 0.55 | | 0.0065 | 12.0 | 228 | 1.5074 | 0.55 | | 0.0059 | 13.0 | 247 | 1.5577 | 0.55 | | 0.0044 | 14.0 | 266 | 1.5798 | 0.55 | | 0.0042 | 15.0 | 285 | 1.6196 | 0.55 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
SetFit/distilbert-base-uncased__hate_speech_offensive__train-8-0
de2b2192fa4728d6e672091d0fcb62730057c970
2022-02-10T07:39:26.000Z
[ "pytorch", "distilbert", "text-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
SetFit
null
SetFit/distilbert-base-uncased__hate_speech_offensive__train-8-0
4
null
transformers
18,183
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: distilbert-base-uncased__hate_speech_offensive__train-8-0 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__hate_speech_offensive__train-8-0 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.1097 - Accuracy: 0.132 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.1065 | 1.0 | 5 | 1.1287 | 0.0 | | 1.0592 | 2.0 | 10 | 1.1729 | 0.0 | | 1.0059 | 3.0 | 15 | 1.1959 | 0.0 | | 0.9129 | 4.0 | 20 | 1.2410 | 0.0 | | 0.8231 | 5.0 | 25 | 1.2820 | 0.0 | | 0.7192 | 6.0 | 30 | 1.3361 | 0.0 | | 0.6121 | 7.0 | 35 | 1.4176 | 0.0 | | 0.5055 | 8.0 | 40 | 1.5111 | 0.0 | | 0.4002 | 9.0 | 45 | 1.5572 | 0.0 | | 0.3788 | 10.0 | 50 | 1.6733 | 0.0 | | 0.2755 | 11.0 | 55 | 1.7381 | 0.2 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
SetFit/distilbert-base-uncased__hate_speech_offensive__train-8-5
116edd987e8ab22e04dee2721a7deba7982a4cc3
2022-02-10T07:44:07.000Z
[ "pytorch", "distilbert", "text-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
SetFit
null
SetFit/distilbert-base-uncased__hate_speech_offensive__train-8-5
4
null
transformers
18,184
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: distilbert-base-uncased__hate_speech_offensive__train-8-5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__hate_speech_offensive__train-8-5 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.7214 - Accuracy: 0.37 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.0995 | 1.0 | 5 | 1.1301 | 0.0 | | 1.0227 | 2.0 | 10 | 1.1727 | 0.0 | | 1.0337 | 3.0 | 15 | 1.1734 | 0.2 | | 0.9137 | 4.0 | 20 | 1.1829 | 0.2 | | 0.8065 | 5.0 | 25 | 1.1496 | 0.4 | | 0.7038 | 6.0 | 30 | 1.1101 | 0.4 | | 0.6246 | 7.0 | 35 | 1.0982 | 0.2 | | 0.4481 | 8.0 | 40 | 1.0913 | 0.2 | | 0.3696 | 9.0 | 45 | 1.0585 | 0.4 | | 0.3137 | 10.0 | 50 | 1.0418 | 0.4 | | 0.2482 | 11.0 | 55 | 1.0078 | 0.4 | | 0.196 | 12.0 | 60 | 0.9887 | 0.6 | | 0.1344 | 13.0 | 65 | 0.9719 | 0.6 | | 0.1014 | 14.0 | 70 | 1.0053 | 0.6 | | 0.111 | 15.0 | 75 | 0.9653 | 0.6 | | 0.0643 | 16.0 | 80 | 0.9018 | 0.6 | | 0.0559 | 17.0 | 85 | 0.9393 | 0.6 | | 0.0412 | 18.0 | 90 | 1.0210 | 0.6 | | 0.0465 | 19.0 | 95 | 0.9965 | 0.6 | | 0.0328 | 20.0 | 100 | 0.9739 | 0.6 | | 0.0289 | 21.0 | 105 | 0.9796 | 0.6 | | 0.0271 | 22.0 | 110 | 0.9968 | 0.6 | | 0.0239 | 23.0 | 115 | 1.0143 | 0.6 | | 0.0201 | 24.0 | 120 | 1.0459 | 0.6 | | 0.0185 | 25.0 | 125 | 1.0698 | 0.6 | | 0.0183 | 26.0 | 130 | 1.0970 | 0.6 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
SetFit/distilbert-base-uncased__hate_speech_offensive__train-8-6
c0d9507d0518abbd5d76a7801b13c99ea1c87bbd
2022-02-10T07:45:05.000Z
[ "pytorch", "distilbert", "text-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
SetFit
null
SetFit/distilbert-base-uncased__hate_speech_offensive__train-8-6
4
null
transformers
18,185
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: distilbert-base-uncased__hate_speech_offensive__train-8-6 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__hate_speech_offensive__train-8-6 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.1275 - Accuracy: 0.3795 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.11 | 1.0 | 5 | 1.1184 | 0.0 | | 1.0608 | 2.0 | 10 | 1.1227 | 0.0 | | 1.0484 | 3.0 | 15 | 1.1009 | 0.2 | | 0.9614 | 4.0 | 20 | 1.1009 | 0.2 | | 0.8545 | 5.0 | 25 | 1.0772 | 0.2 | | 0.8241 | 6.0 | 30 | 1.0457 | 0.2 | | 0.708 | 7.0 | 35 | 1.0301 | 0.4 | | 0.5045 | 8.0 | 40 | 1.0325 | 0.4 | | 0.4175 | 9.0 | 45 | 1.0051 | 0.4 | | 0.3446 | 10.0 | 50 | 0.9610 | 0.4 | | 0.2851 | 11.0 | 55 | 0.9954 | 0.4 | | 0.1808 | 12.0 | 60 | 1.0561 | 0.4 | | 0.1435 | 13.0 | 65 | 1.0218 | 0.4 | | 0.1019 | 14.0 | 70 | 1.0254 | 0.4 | | 0.0908 | 15.0 | 75 | 0.9935 | 0.4 | | 0.0591 | 16.0 | 80 | 1.0090 | 0.4 | | 0.0512 | 17.0 | 85 | 1.0884 | 0.4 | | 0.0397 | 18.0 | 90 | 1.2732 | 0.4 | | 0.039 | 19.0 | 95 | 1.2979 | 0.6 | | 0.0325 | 20.0 | 100 | 1.2705 | 0.4 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
SetFit/distilbert-base-uncased__hate_speech_offensive__train-8-7
2f41e116fca22d1de28cafe0bc280a4a57bd2005
2022-02-10T07:45:58.000Z
[ "pytorch", "distilbert", "text-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
SetFit
null
SetFit/distilbert-base-uncased__hate_speech_offensive__train-8-7
4
null
transformers
18,186
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: distilbert-base-uncased__hate_speech_offensive__train-8-7 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__hate_speech_offensive__train-8-7 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.1206 - Accuracy: 0.0555 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.1186 | 1.0 | 5 | 1.1631 | 0.0 | | 1.058 | 2.0 | 10 | 1.1986 | 0.0 | | 1.081 | 3.0 | 15 | 1.2111 | 0.0 | | 1.0118 | 4.0 | 20 | 1.2373 | 0.0 | | 0.9404 | 5.0 | 25 | 1.2645 | 0.0 | | 0.9146 | 6.0 | 30 | 1.3258 | 0.0 | | 0.8285 | 7.0 | 35 | 1.3789 | 0.0 | | 0.6422 | 8.0 | 40 | 1.3783 | 0.0 | | 0.6156 | 9.0 | 45 | 1.3691 | 0.0 | | 0.5321 | 10.0 | 50 | 1.3693 | 0.0 | | 0.4504 | 11.0 | 55 | 1.4000 | 0.0 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
SetFit/distilbert-base-uncased__hate_speech_offensive__train-8-8
b10a947d942f1af4d1fec423faf7e27863f495dd
2022-02-10T07:46:54.000Z
[ "pytorch", "distilbert", "text-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
SetFit
null
SetFit/distilbert-base-uncased__hate_speech_offensive__train-8-8
4
null
transformers
18,187
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: distilbert-base-uncased__hate_speech_offensive__train-8-8 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__hate_speech_offensive__train-8-8 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.0005 - Accuracy: 0.518 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.1029 | 1.0 | 5 | 1.1295 | 0.0 | | 1.0472 | 2.0 | 10 | 1.1531 | 0.0 | | 1.054 | 3.0 | 15 | 1.1475 | 0.0 | | 0.9366 | 4.0 | 20 | 1.1515 | 0.0 | | 0.8698 | 5.0 | 25 | 1.1236 | 0.4 | | 0.8148 | 6.0 | 30 | 1.0716 | 0.6 | | 0.6884 | 7.0 | 35 | 1.0662 | 0.6 | | 0.5641 | 8.0 | 40 | 1.0671 | 0.6 | | 0.5 | 9.0 | 45 | 1.0282 | 0.6 | | 0.3882 | 10.0 | 50 | 1.0500 | 0.6 | | 0.3522 | 11.0 | 55 | 1.1381 | 0.6 | | 0.2492 | 12.0 | 60 | 1.1278 | 0.6 | | 0.2063 | 13.0 | 65 | 1.0731 | 0.6 | | 0.1608 | 14.0 | 70 | 1.1339 | 0.6 | | 0.1448 | 15.0 | 75 | 1.1892 | 0.6 | | 0.0925 | 16.0 | 80 | 1.1840 | 0.6 | | 0.0768 | 17.0 | 85 | 1.0608 | 0.6 | | 0.0585 | 18.0 | 90 | 1.1073 | 0.6 | | 0.0592 | 19.0 | 95 | 1.3134 | 0.6 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
SetFit/distilbert-base-uncased__sst2__all-train
7ae927f648386c09394475acc274ab506df69b25
2022-01-26T20:22:08.000Z
[ "pytorch", "distilbert", "text-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
SetFit
null
SetFit/distilbert-base-uncased__sst2__all-train
4
null
transformers
18,188
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: distilbert-base-uncased__sst2__all-train results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__sst2__all-train This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2496 - Accuracy: 0.8962 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.3643 | 1.0 | 433 | 0.2496 | 0.8962 | | 0.196 | 2.0 | 866 | 0.2548 | 0.9110 | | 0.0915 | 3.0 | 1299 | 0.4483 | 0.8957 | | 0.0505 | 4.0 | 1732 | 0.4968 | 0.9044 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.1+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
SetFit/distilbert-base-uncased__sst2__train-16-0
cccd3ec70e01374ac064983c03a659ef6e927ad0
2022-02-10T07:18:41.000Z
[ "pytorch", "distilbert", "text-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
SetFit
null
SetFit/distilbert-base-uncased__sst2__train-16-0
4
null
transformers
18,189
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: distilbert-base-uncased__sst2__train-16-0 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__sst2__train-16-0 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6903 - Accuracy: 0.5091 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6934 | 1.0 | 7 | 0.7142 | 0.2857 | | 0.6703 | 2.0 | 14 | 0.7379 | 0.2857 | | 0.6282 | 3.0 | 21 | 0.7769 | 0.2857 | | 0.5193 | 4.0 | 28 | 0.8799 | 0.2857 | | 0.5104 | 5.0 | 35 | 0.8380 | 0.4286 | | 0.2504 | 6.0 | 42 | 0.8622 | 0.4286 | | 0.1794 | 7.0 | 49 | 0.9227 | 0.4286 | | 0.1156 | 8.0 | 56 | 0.8479 | 0.4286 | | 0.0709 | 9.0 | 63 | 1.0929 | 0.2857 | | 0.0471 | 10.0 | 70 | 1.2189 | 0.2857 | | 0.0288 | 11.0 | 77 | 1.2026 | 0.4286 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
SetFit/distilbert-base-uncased__sst2__train-16-2
e0664fa222d474bb5e1161808f9a307bea1ee506
2022-02-10T07:20:35.000Z
[ "pytorch", "distilbert", "text-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
SetFit
null
SetFit/distilbert-base-uncased__sst2__train-16-2
4
null
transformers
18,190
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: distilbert-base-uncased__sst2__train-16-2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__sst2__train-16-2 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6748 - Accuracy: 0.6315 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.7043 | 1.0 | 7 | 0.7054 | 0.2857 | | 0.6711 | 2.0 | 14 | 0.7208 | 0.2857 | | 0.6311 | 3.0 | 21 | 0.7365 | 0.2857 | | 0.551 | 4.0 | 28 | 0.7657 | 0.5714 | | 0.5599 | 5.0 | 35 | 0.6915 | 0.5714 | | 0.3167 | 6.0 | 42 | 0.7134 | 0.5714 | | 0.2489 | 7.0 | 49 | 0.7892 | 0.5714 | | 0.1985 | 8.0 | 56 | 0.6756 | 0.7143 | | 0.0864 | 9.0 | 63 | 0.8059 | 0.5714 | | 0.0903 | 10.0 | 70 | 0.8165 | 0.7143 | | 0.0429 | 11.0 | 77 | 0.7947 | 0.7143 | | 0.0186 | 12.0 | 84 | 0.8570 | 0.7143 | | 0.0146 | 13.0 | 91 | 0.9346 | 0.7143 | | 0.011 | 14.0 | 98 | 0.9804 | 0.7143 | | 0.0098 | 15.0 | 105 | 1.0136 | 0.7143 | | 0.0086 | 16.0 | 112 | 1.0424 | 0.7143 | | 0.0089 | 17.0 | 119 | 1.0736 | 0.7143 | | 0.0068 | 18.0 | 126 | 1.0808 | 0.7143 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
SetFit/distilbert-base-uncased__sst2__train-16-3
2a5e6d64e883f89da237da61366e1e784eadb0e1
2022-02-10T07:21:36.000Z
[ "pytorch", "distilbert", "text-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
SetFit
null
SetFit/distilbert-base-uncased__sst2__train-16-3
4
null
transformers
18,191
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: distilbert-base-uncased__sst2__train-16-3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__sst2__train-16-3 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7887 - Accuracy: 0.6458 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6928 | 1.0 | 7 | 0.6973 | 0.4286 | | 0.675 | 2.0 | 14 | 0.7001 | 0.4286 | | 0.6513 | 3.0 | 21 | 0.6959 | 0.4286 | | 0.5702 | 4.0 | 28 | 0.6993 | 0.4286 | | 0.5389 | 5.0 | 35 | 0.6020 | 0.7143 | | 0.3386 | 6.0 | 42 | 0.5326 | 0.5714 | | 0.2596 | 7.0 | 49 | 0.4943 | 0.7143 | | 0.1633 | 8.0 | 56 | 0.3589 | 0.8571 | | 0.1086 | 9.0 | 63 | 0.2924 | 0.8571 | | 0.0641 | 10.0 | 70 | 0.2687 | 0.8571 | | 0.0409 | 11.0 | 77 | 0.2202 | 0.8571 | | 0.0181 | 12.0 | 84 | 0.2445 | 0.8571 | | 0.0141 | 13.0 | 91 | 0.2885 | 0.8571 | | 0.0108 | 14.0 | 98 | 0.3069 | 0.8571 | | 0.009 | 15.0 | 105 | 0.3006 | 0.8571 | | 0.0084 | 16.0 | 112 | 0.2834 | 0.8571 | | 0.0088 | 17.0 | 119 | 0.2736 | 0.8571 | | 0.0062 | 18.0 | 126 | 0.2579 | 0.8571 | | 0.0058 | 19.0 | 133 | 0.2609 | 0.8571 | | 0.0057 | 20.0 | 140 | 0.2563 | 0.8571 | | 0.0049 | 21.0 | 147 | 0.2582 | 0.8571 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
SetFit/distilbert-base-uncased__sst2__train-16-5
560971ffa86bbdfb96176225552a4ed53203b728
2022-02-10T07:23:42.000Z
[ "pytorch", "distilbert", "text-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
SetFit
null
SetFit/distilbert-base-uncased__sst2__train-16-5
4
null
transformers
18,192
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: distilbert-base-uncased__sst2__train-16-5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__sst2__train-16-5 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6537 - Accuracy: 0.6332 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6925 | 1.0 | 7 | 0.6966 | 0.2857 | | 0.6703 | 2.0 | 14 | 0.7045 | 0.2857 | | 0.6404 | 3.0 | 21 | 0.7205 | 0.2857 | | 0.555 | 4.0 | 28 | 0.7548 | 0.2857 | | 0.5179 | 5.0 | 35 | 0.6745 | 0.5714 | | 0.3038 | 6.0 | 42 | 0.7260 | 0.5714 | | 0.2089 | 7.0 | 49 | 0.8016 | 0.5714 | | 0.1303 | 8.0 | 56 | 0.8202 | 0.5714 | | 0.0899 | 9.0 | 63 | 0.9966 | 0.5714 | | 0.0552 | 10.0 | 70 | 1.1887 | 0.5714 | | 0.0333 | 11.0 | 77 | 1.2163 | 0.5714 | | 0.0169 | 12.0 | 84 | 1.2874 | 0.5714 | | 0.0136 | 13.0 | 91 | 1.3598 | 0.5714 | | 0.0103 | 14.0 | 98 | 1.4237 | 0.5714 | | 0.0089 | 15.0 | 105 | 1.4758 | 0.5714 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
SetFit/distilbert-base-uncased__sst2__train-16-6
c151c6d914b49bddeb46f360862dcf7644f9a5cd
2022-02-10T07:24:39.000Z
[ "pytorch", "distilbert", "text-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
SetFit
null
SetFit/distilbert-base-uncased__sst2__train-16-6
4
null
transformers
18,193
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: distilbert-base-uncased__sst2__train-16-6 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__sst2__train-16-6 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.8356 - Accuracy: 0.6480 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6978 | 1.0 | 7 | 0.6807 | 0.4286 | | 0.6482 | 2.0 | 14 | 0.6775 | 0.4286 | | 0.6051 | 3.0 | 21 | 0.6623 | 0.5714 | | 0.486 | 4.0 | 28 | 0.6710 | 0.5714 | | 0.4612 | 5.0 | 35 | 0.5325 | 0.7143 | | 0.2233 | 6.0 | 42 | 0.4992 | 0.7143 | | 0.1328 | 7.0 | 49 | 0.4753 | 0.7143 | | 0.0905 | 8.0 | 56 | 0.2416 | 1.0 | | 0.0413 | 9.0 | 63 | 0.2079 | 1.0 | | 0.0356 | 10.0 | 70 | 0.2234 | 0.8571 | | 0.0217 | 11.0 | 77 | 0.2639 | 0.8571 | | 0.0121 | 12.0 | 84 | 0.2977 | 0.8571 | | 0.0105 | 13.0 | 91 | 0.3468 | 0.8571 | | 0.0085 | 14.0 | 98 | 0.3912 | 0.8571 | | 0.0077 | 15.0 | 105 | 0.4000 | 0.8571 | | 0.0071 | 16.0 | 112 | 0.4015 | 0.8571 | | 0.0078 | 17.0 | 119 | 0.3865 | 0.8571 | | 0.0059 | 18.0 | 126 | 0.3603 | 0.8571 | | 0.0051 | 19.0 | 133 | 0.3231 | 0.8571 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
SetFit/distilbert-base-uncased__sst2__train-16-7
f00c9c7e621bccbd44d24de19fa6f1fa0899fa35
2022-02-10T07:25:33.000Z
[ "pytorch", "distilbert", "text-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
SetFit
null
SetFit/distilbert-base-uncased__sst2__train-16-7
4
null
transformers
18,194
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: distilbert-base-uncased__sst2__train-16-7 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__sst2__train-16-7 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6952 - Accuracy: 0.5025 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6949 | 1.0 | 7 | 0.7252 | 0.2857 | | 0.6678 | 2.0 | 14 | 0.7550 | 0.2857 | | 0.6299 | 3.0 | 21 | 0.8004 | 0.2857 | | 0.5596 | 4.0 | 28 | 0.8508 | 0.2857 | | 0.5667 | 5.0 | 35 | 0.8464 | 0.2857 | | 0.367 | 6.0 | 42 | 0.8515 | 0.2857 | | 0.2706 | 7.0 | 49 | 0.9574 | 0.2857 | | 0.2163 | 8.0 | 56 | 0.9710 | 0.4286 | | 0.1024 | 9.0 | 63 | 1.1607 | 0.1429 | | 0.1046 | 10.0 | 70 | 1.3779 | 0.1429 | | 0.0483 | 11.0 | 77 | 1.4876 | 0.1429 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
SetFit/distilbert-base-uncased__sst2__train-16-8
b6a38e24de9e310f1b51ea37f1136481c4f4c52e
2022-02-10T07:26:26.000Z
[ "pytorch", "distilbert", "text-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
SetFit
null
SetFit/distilbert-base-uncased__sst2__train-16-8
4
null
transformers
18,195
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: distilbert-base-uncased__sst2__train-16-8 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__sst2__train-16-8 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6895 - Accuracy: 0.5222 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6899 | 1.0 | 7 | 0.7055 | 0.2857 | | 0.6793 | 2.0 | 14 | 0.7205 | 0.2857 | | 0.6291 | 3.0 | 21 | 0.7460 | 0.2857 | | 0.5659 | 4.0 | 28 | 0.8041 | 0.2857 | | 0.5607 | 5.0 | 35 | 0.7785 | 0.4286 | | 0.3349 | 6.0 | 42 | 0.8163 | 0.4286 | | 0.2436 | 7.0 | 49 | 0.9101 | 0.2857 | | 0.1734 | 8.0 | 56 | 0.8632 | 0.5714 | | 0.1122 | 9.0 | 63 | 0.9851 | 0.5714 | | 0.0661 | 10.0 | 70 | 1.0835 | 0.5714 | | 0.0407 | 11.0 | 77 | 1.1656 | 0.5714 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
SetFit/distilbert-base-uncased__sst2__train-16-9
a49434b7dfe74611e9f672ead5ed5b1d183cc6fa
2022-02-10T07:27:19.000Z
[ "pytorch", "distilbert", "text-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
SetFit
null
SetFit/distilbert-base-uncased__sst2__train-16-9
4
null
transformers
18,196
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: distilbert-base-uncased__sst2__train-16-9 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__sst2__train-16-9 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6915 - Accuracy: 0.5157 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6868 | 1.0 | 7 | 0.7121 | 0.1429 | | 0.6755 | 2.0 | 14 | 0.7234 | 0.1429 | | 0.6389 | 3.0 | 21 | 0.7384 | 0.2857 | | 0.5575 | 4.0 | 28 | 0.7884 | 0.2857 | | 0.4972 | 5.0 | 35 | 0.7767 | 0.4286 | | 0.2821 | 6.0 | 42 | 0.8275 | 0.4286 | | 0.1859 | 7.0 | 49 | 0.9283 | 0.2857 | | 0.1388 | 8.0 | 56 | 0.9384 | 0.4286 | | 0.078 | 9.0 | 63 | 1.1973 | 0.4286 | | 0.0462 | 10.0 | 70 | 1.4016 | 0.4286 | | 0.0319 | 11.0 | 77 | 1.4087 | 0.4286 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
SetFit/distilbert-base-uncased__sst2__train-32-0
5dddb1be62ac53bec6b5b7bee99a6ab80dc9c79e
2022-02-10T07:28:25.000Z
[ "pytorch", "distilbert", "text-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
SetFit
null
SetFit/distilbert-base-uncased__sst2__train-32-0
4
null
transformers
18,197
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: distilbert-base-uncased__sst2__train-32-0 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__sst2__train-32-0 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.8558 - Accuracy: 0.7183 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.7088 | 1.0 | 13 | 0.6819 | 0.6154 | | 0.635 | 2.0 | 26 | 0.6318 | 0.7692 | | 0.547 | 3.0 | 39 | 0.5356 | 0.7692 | | 0.3497 | 4.0 | 52 | 0.4456 | 0.6923 | | 0.1979 | 5.0 | 65 | 0.3993 | 0.7692 | | 0.098 | 6.0 | 78 | 0.3613 | 0.7692 | | 0.0268 | 7.0 | 91 | 0.3561 | 0.9231 | | 0.0137 | 8.0 | 104 | 0.3755 | 0.9231 | | 0.0083 | 9.0 | 117 | 0.4194 | 0.7692 | | 0.0065 | 10.0 | 130 | 0.4446 | 0.7692 | | 0.005 | 11.0 | 143 | 0.4527 | 0.7692 | | 0.0038 | 12.0 | 156 | 0.4645 | 0.7692 | | 0.0033 | 13.0 | 169 | 0.4735 | 0.7692 | | 0.0033 | 14.0 | 182 | 0.4874 | 0.7692 | | 0.0029 | 15.0 | 195 | 0.5041 | 0.7692 | | 0.0025 | 16.0 | 208 | 0.5148 | 0.7692 | | 0.0024 | 17.0 | 221 | 0.5228 | 0.7692 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
SetFit/distilbert-base-uncased__sst2__train-32-2
5fc30f85236d90f24899956fddcc9ab97f977540
2022-02-10T07:30:14.000Z
[ "pytorch", "distilbert", "text-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
SetFit
null
SetFit/distilbert-base-uncased__sst2__train-32-2
4
null
transformers
18,198
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: distilbert-base-uncased__sst2__train-32-2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__sst2__train-32-2 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4805 - Accuracy: 0.7699 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.7124 | 1.0 | 13 | 0.6882 | 0.5385 | | 0.6502 | 2.0 | 26 | 0.6715 | 0.5385 | | 0.6001 | 3.0 | 39 | 0.6342 | 0.6154 | | 0.455 | 4.0 | 52 | 0.5713 | 0.7692 | | 0.2605 | 5.0 | 65 | 0.5562 | 0.7692 | | 0.1258 | 6.0 | 78 | 0.6799 | 0.7692 | | 0.0444 | 7.0 | 91 | 0.8096 | 0.7692 | | 0.0175 | 8.0 | 104 | 0.9281 | 0.6923 | | 0.0106 | 9.0 | 117 | 0.9826 | 0.6923 | | 0.0077 | 10.0 | 130 | 1.0254 | 0.7692 | | 0.0056 | 11.0 | 143 | 1.0667 | 0.7692 | | 0.0042 | 12.0 | 156 | 1.1003 | 0.7692 | | 0.0036 | 13.0 | 169 | 1.1299 | 0.7692 | | 0.0034 | 14.0 | 182 | 1.1623 | 0.6923 | | 0.003 | 15.0 | 195 | 1.1938 | 0.6923 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
SetFit/distilbert-base-uncased__sst2__train-32-3
4b11d5008c7478a0f3d47645b4f6b9d393ef2544
2022-02-10T07:31:06.000Z
[ "pytorch", "distilbert", "text-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
SetFit
null
SetFit/distilbert-base-uncased__sst2__train-32-3
4
null
transformers
18,199
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: distilbert-base-uncased__sst2__train-32-3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__sst2__train-32-3 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5694 - Accuracy: 0.7073 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.7118 | 1.0 | 13 | 0.6844 | 0.5385 | | 0.6587 | 2.0 | 26 | 0.6707 | 0.6154 | | 0.6067 | 3.0 | 39 | 0.6295 | 0.5385 | | 0.4714 | 4.0 | 52 | 0.5811 | 0.6923 | | 0.2444 | 5.0 | 65 | 0.5932 | 0.7692 | | 0.1007 | 6.0 | 78 | 0.7386 | 0.6923 | | 0.0332 | 7.0 | 91 | 0.6962 | 0.6154 | | 0.0147 | 8.0 | 104 | 0.8200 | 0.7692 | | 0.0083 | 9.0 | 117 | 0.9250 | 0.7692 | | 0.0066 | 10.0 | 130 | 0.9345 | 0.7692 | | 0.005 | 11.0 | 143 | 0.9313 | 0.7692 | | 0.0036 | 12.0 | 156 | 0.9356 | 0.7692 | | 0.0031 | 13.0 | 169 | 0.9395 | 0.7692 | | 0.0029 | 14.0 | 182 | 0.9504 | 0.7692 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3