modelId
stringlengths
4
112
sha
stringlengths
40
40
lastModified
stringlengths
24
24
tags
list
pipeline_tag
stringclasses
29 values
private
bool
1 class
author
stringlengths
2
38
config
null
id
stringlengths
4
112
downloads
float64
0
36.8M
likes
float64
0
712
library_name
stringclasses
17 values
__index_level_0__
int64
0
38.5k
readme
stringlengths
0
186k
Helsinki-NLP/opus-mt-uk-cs
14e3fd5d67d28b3f6120187ea59a757ff6aff481
2020-08-21T14:42:51.000Z
[ "pytorch", "marian", "text2text-generation", "uk", "cs", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-uk-cs
4
null
transformers
17,900
--- language: - uk - cs tags: - translation license: apache-2.0 --- ### ukr-ces * source group: Ukrainian * target group: Czech * OPUS readme: [ukr-ces](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/ukr-ces/README.md) * model: transformer-align * source language(s): ukr * target language(s): ces * model: transformer-align * pre-processing: normalization + SentencePiece (spm32k,spm32k) * download original weights: [opus-2020-06-17.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/ukr-ces/opus-2020-06-17.zip) * test set translations: [opus-2020-06-17.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/ukr-ces/opus-2020-06-17.test.txt) * test set scores: [opus-2020-06-17.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/ukr-ces/opus-2020-06-17.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba-test.ukr.ces | 52.0 | 0.686 | ### System Info: - hf_name: ukr-ces - source_languages: ukr - target_languages: ces - opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/ukr-ces/README.md - original_repo: Tatoeba-Challenge - tags: ['translation'] - languages: ['uk', 'cs'] - src_constituents: {'ukr'} - tgt_constituents: {'ces'} - src_multilingual: False - tgt_multilingual: False - prepro: normalization + SentencePiece (spm32k,spm32k) - url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/ukr-ces/opus-2020-06-17.zip - url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/ukr-ces/opus-2020-06-17.test.txt - src_alpha3: ukr - tgt_alpha3: ces - short_pair: uk-cs - chrF2_score: 0.6859999999999999 - bleu: 52.0 - brevity_penalty: 0.993 - ref_len: 8550.0 - src_name: Ukrainian - tgt_name: Czech - train_date: 2020-06-17 - src_alpha2: uk - tgt_alpha2: cs - prefer_old: False - long_pair: ukr-ces - helsinki_git_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535 - transformers_git_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b - port_machine: brutasse - port_time: 2020-08-21-14:41
Helsinki-NLP/opus-mt-uk-it
e8acd72aa6483a93662be04b9a2b57b06fb6f0f5
2020-08-21T14:42:51.000Z
[ "pytorch", "marian", "text2text-generation", "uk", "it", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-uk-it
4
null
transformers
17,901
--- language: - uk - it tags: - translation license: apache-2.0 --- ### ukr-ita * source group: Ukrainian * target group: Italian * OPUS readme: [ukr-ita](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/ukr-ita/README.md) * model: transformer-align * source language(s): ukr * target language(s): ita * model: transformer-align * pre-processing: normalization + SentencePiece (spm32k,spm32k) * download original weights: [opus-2020-06-17.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/ukr-ita/opus-2020-06-17.zip) * test set translations: [opus-2020-06-17.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/ukr-ita/opus-2020-06-17.test.txt) * test set scores: [opus-2020-06-17.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/ukr-ita/opus-2020-06-17.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba-test.ukr.ita | 46.0 | 0.662 | ### System Info: - hf_name: ukr-ita - source_languages: ukr - target_languages: ita - opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/ukr-ita/README.md - original_repo: Tatoeba-Challenge - tags: ['translation'] - languages: ['uk', 'it'] - src_constituents: {'ukr'} - tgt_constituents: {'ita'} - src_multilingual: False - tgt_multilingual: False - prepro: normalization + SentencePiece (spm32k,spm32k) - url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/ukr-ita/opus-2020-06-17.zip - url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/ukr-ita/opus-2020-06-17.test.txt - src_alpha3: ukr - tgt_alpha3: ita - short_pair: uk-it - chrF2_score: 0.662 - bleu: 46.0 - brevity_penalty: 0.9490000000000001 - ref_len: 27846.0 - src_name: Ukrainian - tgt_name: Italian - train_date: 2020-06-17 - src_alpha2: uk - tgt_alpha2: it - prefer_old: False - long_pair: ukr-ita - helsinki_git_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535 - transformers_git_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b - port_machine: brutasse - port_time: 2020-08-21-14:41
Helsinki-NLP/opus-mt-uk-sh
39812bd6b61825901cf080bf72d8ed38a85ccc30
2020-08-21T14:42:51.000Z
[ "pytorch", "marian", "text2text-generation", "uk", "sh", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-uk-sh
4
null
transformers
17,902
--- language: - uk - sh tags: - translation license: apache-2.0 --- ### ukr-hbs * source group: Ukrainian * target group: Serbo-Croatian * OPUS readme: [ukr-hbs](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/ukr-hbs/README.md) * model: transformer-align * source language(s): ukr * target language(s): hrv srp_Cyrl srp_Latn * model: transformer-align * pre-processing: normalization + SentencePiece (spm32k,spm32k) * a sentence initial language token is required in the form of `>>id<<` (id = valid target language ID) * download original weights: [opus-2020-06-17.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/ukr-hbs/opus-2020-06-17.zip) * test set translations: [opus-2020-06-17.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/ukr-hbs/opus-2020-06-17.test.txt) * test set scores: [opus-2020-06-17.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/ukr-hbs/opus-2020-06-17.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba-test.ukr.hbs | 42.8 | 0.631 | ### System Info: - hf_name: ukr-hbs - source_languages: ukr - target_languages: hbs - opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/ukr-hbs/README.md - original_repo: Tatoeba-Challenge - tags: ['translation'] - languages: ['uk', 'sh'] - src_constituents: {'ukr'} - tgt_constituents: {'hrv', 'srp_Cyrl', 'bos_Latn', 'srp_Latn'} - src_multilingual: False - tgt_multilingual: False - prepro: normalization + SentencePiece (spm32k,spm32k) - url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/ukr-hbs/opus-2020-06-17.zip - url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/ukr-hbs/opus-2020-06-17.test.txt - src_alpha3: ukr - tgt_alpha3: hbs - short_pair: uk-sh - chrF2_score: 0.631 - bleu: 42.8 - brevity_penalty: 0.96 - ref_len: 5128.0 - src_name: Ukrainian - tgt_name: Serbo-Croatian - train_date: 2020-06-17 - src_alpha2: uk - tgt_alpha2: sh - prefer_old: False - long_pair: ukr-hbs - helsinki_git_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535 - transformers_git_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b - port_machine: brutasse - port_time: 2020-08-21-14:41
Helsinki-NLP/opus-mt-vsl-es
824012028f3564c3412baff60ac8a0b00837c3a2
2021-09-11T10:51:44.000Z
[ "pytorch", "marian", "text2text-generation", "vsl", "es", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-vsl-es
4
null
transformers
17,903
--- tags: - translation license: apache-2.0 --- ### opus-mt-vsl-es * source languages: vsl * target languages: es * OPUS readme: [vsl-es](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/vsl-es/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-16.zip](https://object.pouta.csc.fi/OPUS-MT-models/vsl-es/opus-2020-01-16.zip) * test set translations: [opus-2020-01-16.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/vsl-es/opus-2020-01-16.test.txt) * test set scores: [opus-2020-01-16.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/vsl-es/opus-2020-01-16.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.vsl.es | 91.9 | 0.944 |
Helsinki-NLP/opus-mt-war-fi
7e6df2553403fbdc55bfbcb4955223dbeac0b792
2021-09-11T10:51:58.000Z
[ "pytorch", "marian", "text2text-generation", "war", "fi", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-war-fi
4
null
transformers
17,904
--- tags: - translation license: apache-2.0 --- ### opus-mt-war-fi * source languages: war * target languages: fi * OPUS readme: [war-fi](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/war-fi/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-24.zip](https://object.pouta.csc.fi/OPUS-MT-models/war-fi/opus-2020-01-24.zip) * test set translations: [opus-2020-01-24.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/war-fi/opus-2020-01-24.test.txt) * test set scores: [opus-2020-01-24.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/war-fi/opus-2020-01-24.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.war.fi | 26.9 | 0.507 |
Helsinki-NLP/opus-mt-zle-zle
456d0a26de8553aed16380883b032a5391f10a31
2020-08-21T14:42:52.000Z
[ "pytorch", "marian", "text2text-generation", "be", "ru", "uk", "zle", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-zle-zle
4
null
transformers
17,905
--- language: - be - ru - uk - zle tags: - translation license: apache-2.0 --- ### zle-zle * source group: East Slavic languages * target group: East Slavic languages * OPUS readme: [zle-zle](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/zle-zle/README.md) * model: transformer * source language(s): bel bel_Latn orv_Cyrl rus ukr * target language(s): bel bel_Latn orv_Cyrl rus ukr * model: transformer * pre-processing: normalization + SentencePiece (spm32k,spm32k) * a sentence initial language token is required in the form of `>>id<<` (id = valid target language ID) * download original weights: [opus-2020-07-27.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/zle-zle/opus-2020-07-27.zip) * test set translations: [opus-2020-07-27.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/zle-zle/opus-2020-07-27.test.txt) * test set scores: [opus-2020-07-27.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/zle-zle/opus-2020-07-27.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba-test.bel-rus.bel.rus | 57.1 | 0.758 | | Tatoeba-test.bel-ukr.bel.ukr | 55.5 | 0.751 | | Tatoeba-test.multi.multi | 58.0 | 0.742 | | Tatoeba-test.orv-rus.orv.rus | 5.8 | 0.226 | | Tatoeba-test.orv-ukr.orv.ukr | 2.5 | 0.161 | | Tatoeba-test.rus-bel.rus.bel | 50.5 | 0.714 | | Tatoeba-test.rus-orv.rus.orv | 0.3 | 0.129 | | Tatoeba-test.rus-ukr.rus.ukr | 63.9 | 0.794 | | Tatoeba-test.ukr-bel.ukr.bel | 51.3 | 0.719 | | Tatoeba-test.ukr-orv.ukr.orv | 0.3 | 0.106 | | Tatoeba-test.ukr-rus.ukr.rus | 68.7 | 0.825 | ### System Info: - hf_name: zle-zle - source_languages: zle - target_languages: zle - opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/zle-zle/README.md - original_repo: Tatoeba-Challenge - tags: ['translation'] - languages: ['be', 'ru', 'uk', 'zle'] - src_constituents: {'bel', 'orv_Cyrl', 'bel_Latn', 'rus', 'ukr', 'rue'} - tgt_constituents: {'bel', 'orv_Cyrl', 'bel_Latn', 'rus', 'ukr', 'rue'} - src_multilingual: True - tgt_multilingual: True - prepro: normalization + SentencePiece (spm32k,spm32k) - url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/zle-zle/opus-2020-07-27.zip - url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/zle-zle/opus-2020-07-27.test.txt - src_alpha3: zle - tgt_alpha3: zle - short_pair: zle-zle - chrF2_score: 0.742 - bleu: 58.0 - brevity_penalty: 1.0 - ref_len: 62731.0 - src_name: East Slavic languages - tgt_name: East Slavic languages - train_date: 2020-07-27 - src_alpha2: zle - tgt_alpha2: zle - prefer_old: False - long_pair: zle-zle - helsinki_git_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535 - transformers_git_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b - port_machine: brutasse - port_time: 2020-08-21-14:41
Helsinki-NLP/opus-mt-zls-en
b1bf0b6fad1277b30ab93c90cd884122990ba283
2020-08-21T14:42:52.000Z
[ "pytorch", "marian", "text2text-generation", "hr", "mk", "bg", "sl", "zls", "en", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-zls-en
4
null
transformers
17,906
--- language: - hr - mk - bg - sl - zls - en tags: - translation license: apache-2.0 --- ### zls-eng * source group: South Slavic languages * target group: English * OPUS readme: [zls-eng](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/zls-eng/README.md) * model: transformer * source language(s): bos_Latn bul bul_Latn hrv mkd slv srp_Cyrl srp_Latn * target language(s): eng * model: transformer * pre-processing: normalization + SentencePiece (spm32k,spm32k) * download original weights: [opus2m-2020-08-01.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/zls-eng/opus2m-2020-08-01.zip) * test set translations: [opus2m-2020-08-01.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/zls-eng/opus2m-2020-08-01.test.txt) * test set scores: [opus2m-2020-08-01.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/zls-eng/opus2m-2020-08-01.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba-test.bul-eng.bul.eng | 54.9 | 0.693 | | Tatoeba-test.hbs-eng.hbs.eng | 55.7 | 0.700 | | Tatoeba-test.mkd-eng.mkd.eng | 54.6 | 0.681 | | Tatoeba-test.multi.eng | 53.6 | 0.676 | | Tatoeba-test.slv-eng.slv.eng | 25.6 | 0.407 | ### System Info: - hf_name: zls-eng - source_languages: zls - target_languages: eng - opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/zls-eng/README.md - original_repo: Tatoeba-Challenge - tags: ['translation'] - languages: ['hr', 'mk', 'bg', 'sl', 'zls', 'en'] - src_constituents: {'hrv', 'mkd', 'srp_Latn', 'srp_Cyrl', 'bul_Latn', 'bul', 'bos_Latn', 'slv'} - tgt_constituents: {'eng'} - src_multilingual: True - tgt_multilingual: False - prepro: normalization + SentencePiece (spm32k,spm32k) - url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/zls-eng/opus2m-2020-08-01.zip - url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/zls-eng/opus2m-2020-08-01.test.txt - src_alpha3: zls - tgt_alpha3: eng - short_pair: zls-en - chrF2_score: 0.6759999999999999 - bleu: 53.6 - brevity_penalty: 0.98 - ref_len: 68623.0 - src_name: South Slavic languages - tgt_name: English - train_date: 2020-08-01 - src_alpha2: zls - tgt_alpha2: en - prefer_old: False - long_pair: zls-eng - helsinki_git_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535 - transformers_git_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b - port_machine: brutasse - port_time: 2020-08-21-14:41
Helsinki-NLP/opus-mt-zlw-zlw
1206a7ac864845daec84450b1af7539c8f50728f
2020-08-21T14:42:52.000Z
[ "pytorch", "marian", "text2text-generation", "pl", "cs", "zlw", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-zlw-zlw
4
null
transformers
17,907
--- language: - pl - cs - zlw tags: - translation license: apache-2.0 --- ### zlw-zlw * source group: West Slavic languages * target group: West Slavic languages * OPUS readme: [zlw-zlw](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/zlw-zlw/README.md) * model: transformer * source language(s): ces dsb hsb pol * target language(s): ces dsb hsb pol * model: transformer * pre-processing: normalization + SentencePiece (spm32k,spm32k) * a sentence initial language token is required in the form of `>>id<<` (id = valid target language ID) * download original weights: [opus-2020-07-27.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/zlw-zlw/opus-2020-07-27.zip) * test set translations: [opus-2020-07-27.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/zlw-zlw/opus-2020-07-27.test.txt) * test set scores: [opus-2020-07-27.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/zlw-zlw/opus-2020-07-27.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba-test.ces-hsb.ces.hsb | 2.6 | 0.167 | | Tatoeba-test.ces-pol.ces.pol | 44.0 | 0.649 | | Tatoeba-test.dsb-pol.dsb.pol | 8.5 | 0.250 | | Tatoeba-test.hsb-ces.hsb.ces | 9.6 | 0.276 | | Tatoeba-test.multi.multi | 38.8 | 0.580 | | Tatoeba-test.pol-ces.pol.ces | 43.4 | 0.620 | | Tatoeba-test.pol-dsb.pol.dsb | 2.1 | 0.159 | ### System Info: - hf_name: zlw-zlw - source_languages: zlw - target_languages: zlw - opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/zlw-zlw/README.md - original_repo: Tatoeba-Challenge - tags: ['translation'] - languages: ['pl', 'cs', 'zlw'] - src_constituents: {'csb_Latn', 'dsb', 'hsb', 'pol', 'ces'} - tgt_constituents: {'csb_Latn', 'dsb', 'hsb', 'pol', 'ces'} - src_multilingual: True - tgt_multilingual: True - prepro: normalization + SentencePiece (spm32k,spm32k) - url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/zlw-zlw/opus-2020-07-27.zip - url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/zlw-zlw/opus-2020-07-27.test.txt - src_alpha3: zlw - tgt_alpha3: zlw - short_pair: zlw-zlw - chrF2_score: 0.58 - bleu: 38.8 - brevity_penalty: 0.99 - ref_len: 7792.0 - src_name: West Slavic languages - tgt_name: West Slavic languages - train_date: 2020-07-27 - src_alpha2: zlw - tgt_alpha2: zlw - prefer_old: False - long_pair: zlw-zlw - helsinki_git_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535 - transformers_git_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b - port_machine: brutasse - port_time: 2020-08-21-14:41
Helsinki-NLP/opus-mt-zne-es
60f3fb6d2190c11bc0e4de2e54db15778459b952
2021-09-11T10:53:07.000Z
[ "pytorch", "marian", "text2text-generation", "zne", "es", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-zne-es
4
null
transformers
17,908
--- tags: - translation license: apache-2.0 --- ### opus-mt-zne-es * source languages: zne * target languages: es * OPUS readme: [zne-es](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/zne-es/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-16.zip](https://object.pouta.csc.fi/OPUS-MT-models/zne-es/opus-2020-01-16.zip) * test set translations: [opus-2020-01-16.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/zne-es/opus-2020-01-16.test.txt) * test set scores: [opus-2020-01-16.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/zne-es/opus-2020-01-16.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.zne.es | 21.1 | 0.382 |
Helsinki-NLP/opus-tatoeba-de-ro
052c3193024b2ac0a6885b3c58b84f2ad0cade71
2021-11-08T14:45:36.000Z
[ "pytorch", "marian", "text2text-generation", "de", "ro", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-tatoeba-de-ro
4
null
transformers
17,909
--- language: - de - ro tags: - translation license: apache-2.0 --- ### de-ro * source group: German * target group: Romanian * OPUS readme: [deu-ron](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/deu-ron/README.md) * model: transformer-align * source language(s): deu * target language(s): mol ron * raw source language(s): deu * raw target language(s): mol ron * model: transformer-align * pre-processing: normalization + SentencePiece (spm32k,spm32k) * a sentence initial language token is required in the form of `>>id<<` (id = valid target language ID) * valid language labels: >>mol<< >>ron<< * download original weights: [opusTCv20210807-2021-10-22.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/deu-ron/opusTCv20210807-2021-10-22.zip) * test set translations: [opusTCv20210807-2021-10-22.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/deu-ron/opusTCv20210807-2021-10-22.test.txt) * test set scores: [opusTCv20210807-2021-10-22.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/deu-ron/opusTCv20210807-2021-10-22.eval.txt) ## Benchmarks | testset | BLEU | chr-F | #sent | #words | BP | |---------|-------|-------|-------|--------|----| | Tatoeba-test-v2021-08-07.deu-ron | 42.0 | 0.636 | 1141 | 7432 | 0.976 | ### System Info: - hf_name: de-ro - source_languages: deu - target_languages: ron - opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/deu-ron/README.md - original_repo: Tatoeba-Challenge - tags: ['translation'] - languages: ['de', 'ro'] - src_constituents: ('German', {'deu'}) - tgt_constituents: ('Romanian', {'ron'}) - src_multilingual: False - tgt_multilingual: False - long_pair: deu-ron - prepro: normalization + SentencePiece (spm32k,spm32k) - url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/deu-ron/opusTCv20210807-2021-10-22.zip - url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/deu-ron/opusTCv20210807-2021-10-22.test.txt - src_alpha3: deu - tgt_alpha3: ron - chrF2_score: 0.636 - bleu: 42.0 - src_name: German - tgt_name: Romanian - train_date: 2021-10-22 00:00:00 - src_alpha2: de - tgt_alpha2: ro - prefer_old: False - short_pair: de-ro - helsinki_git_sha: 2ef219d5b67f0afb0c6b732cd07001d84181f002 - transformers_git_sha: df1f94eb4a18b1a27d27e32040b60a17410d516e - port_machine: LM0-400-22516.local - port_time: 2021-11-08-16:45
Hormigo/roberta-base-bne-finetuned-amazon_reviews_multi
3a4dcddcadff337f6e080c97bc3b193098eca04e
2021-08-30T11:08:21.000Z
[ "pytorch", "tensorboard", "roberta", "text-classification", "dataset:amazon_reviews_multi", "transformers", "generated_from_trainer", "license:cc-by-4.0" ]
text-classification
false
Hormigo
null
Hormigo/roberta-base-bne-finetuned-amazon_reviews_multi
4
null
transformers
17,910
--- license: cc-by-4.0 tags: - generated_from_trainer datasets: - amazon_reviews_multi metrics: - accuracy model_index: - name: roberta-base-bne-finetuned-amazon_reviews_multi results: - task: name: Text Classification type: text-classification dataset: name: amazon_reviews_multi type: amazon_reviews_multi args: es metric: name: Accuracy type: accuracy value: 0.9335 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-bne-finetuned-amazon_reviews_multi This model is a fine-tuned version of [BSC-TeMU/roberta-base-bne](https://huggingface.co/BSC-TeMU/roberta-base-bne) on the amazon_reviews_multi dataset. It achieves the following results on the evaluation set: - Loss: 0.2275 - Accuracy: 0.9335 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.1909 | 1.0 | 1250 | 0.1717 | 0.9333 | | 0.0932 | 2.0 | 2500 | 0.2275 | 0.9335 | ### Framework versions - Transformers 4.9.2 - Pytorch 1.9.0+cu102 - Datasets 1.11.0 - Tokenizers 0.10.3
Huffon/qnli
ada3b36bf4346b219c49f4445bb7e657db07588d
2021-07-07T03:26:20.000Z
[ "pytorch", "electra", "text-classification", "transformers" ]
text-classification
false
Huffon
null
Huffon/qnli
4
null
transformers
17,911
Entry not found
HungChau/distilbert-base-cased-concept-extraction-iir-v1.0-concept-extraction-kp20k-v1.0
e846e6cbb5d54c87a34f2bcd26450039ac5a2d90
2021-11-12T22:27:04.000Z
[ "pytorch", "distilbert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
HungChau
null
HungChau/distilbert-base-cased-concept-extraction-iir-v1.0-concept-extraction-kp20k-v1.0
4
null
transformers
17,912
Entry not found
HungChau/distilbert-base-cased-concept-extraction-iir-v1.0-concept-extraction-kp20k-v1.4
6d93ce0df14b26d2c2b679739ff20fda795eec2c
2021-11-19T19:35:11.000Z
[ "pytorch", "distilbert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
HungChau
null
HungChau/distilbert-base-cased-concept-extraction-iir-v1.0-concept-extraction-kp20k-v1.4
4
null
transformers
17,913
Entry not found
HungChau/distilbert-base-cased-concept-extraction-iir-v1.0
8be02de48575667bb59da631af1952ac9f1afbd4
2021-11-12T16:42:21.000Z
[ "pytorch", "distilbert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
HungChau
null
HungChau/distilbert-base-cased-concept-extraction-iir-v1.0
4
null
transformers
17,914
Entry not found
HungChau/distilbert-base-cased-concept-extraction-iir-v1.2-concept-extraction-kp20k-v1.2
00ff4ed970c5e24760ec1f05c326a34d47c3d91b
2021-11-18T12:38:47.000Z
[ "pytorch", "distilbert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
HungChau
null
HungChau/distilbert-base-cased-concept-extraction-iir-v1.2-concept-extraction-kp20k-v1.2
4
null
transformers
17,915
Entry not found
HungChau/distilbert-base-cased-concept-extraction-iir-v1.2-concept-extraction-kp20k-v1.5
4cc3fd91cc082af2a05ab1e3eb985ed21efd6588
2021-11-19T22:12:59.000Z
[ "pytorch", "distilbert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
HungChau
null
HungChau/distilbert-base-cased-concept-extraction-iir-v1.2-concept-extraction-kp20k-v1.5
4
null
transformers
17,916
Entry not found
HungChau/distilbert-base-cased-concept-extraction-iir-v1.2
957cf70d86bf14bf9c604efcb342141abfbc4327
2021-11-16T03:50:15.000Z
[ "pytorch", "distilbert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
HungChau
null
HungChau/distilbert-base-cased-concept-extraction-iir-v1.2
4
null
transformers
17,917
Entry not found
HungChau/distilbert-base-cased-concept-extraction-kp20k-v1.0
ddd2ae335f0e8b601adb46885463b9ece790f7b9
2021-11-12T20:42:10.000Z
[ "pytorch", "distilbert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
HungChau
null
HungChau/distilbert-base-cased-concept-extraction-kp20k-v1.0
4
null
transformers
17,918
Entry not found
HungChau/distilbert-base-cased-concept-extraction-kp20k-v1.2-concept-extraction-allwikipedia-v1.0
4329c7829c6973e5933f598d6aaa43c68bdeecb3
2022-02-24T07:00:29.000Z
[ "pytorch", "distilbert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
HungChau
null
HungChau/distilbert-base-cased-concept-extraction-kp20k-v1.2-concept-extraction-allwikipedia-v1.0
4
null
transformers
17,919
Entry not found
HungChau/distilbert-base-uncased-concept-extraction-kp20k-v1.0-concept-extraction-wikipedia-v1.3
273053009835771a582b6dacfb8dc41dbea915de
2021-11-19T17:24:22.000Z
[ "pytorch", "distilbert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
HungChau
null
HungChau/distilbert-base-uncased-concept-extraction-kp20k-v1.0-concept-extraction-wikipedia-v1.3
4
null
transformers
17,920
Entry not found
Ifromspace/GRIEFSOFT-walr
636a58f1e32ae7d7e8f73639d650ebe3921c0d98
2022-01-15T13:07:07.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "ru", "4ulan" ]
text-generation
false
Ifromspace
null
Ifromspace/GRIEFSOFT-walr
4
1
transformers
17,921
--- tags: - ru - 4ulan --- Забавное для дискордика))00)) https://discord.gg/HpeadKH Offers [email protected]
Intel/bert-base-uncased-mnli-sparse-70-unstructured-no-classifier
4426b158cee5ff33424b66771b5ab90d208fc138
2021-06-29T11:14:53.000Z
[ "pytorch", "bert", "fill-mask", "en", "transformers", "autotrain_compatible" ]
fill-mask
false
Intel
null
Intel/bert-base-uncased-mnli-sparse-70-unstructured-no-classifier
4
null
transformers
17,922
--- language: en --- # Sparse BERT base model fine tuned to MNLI without classifier layer (uncased) Fine tuned sparse BERT base to MNLI (GLUE Benchmark) task from [bert-base-uncased-sparse-70-unstructured](https://huggingface.co/Intel/bert-base-uncased-sparse-70-unstructured). <br> This model doesn't have a classifier layer to enable easier loading of the model for training to other downstream tasks. In all the other layers this model is similar to [bert-base-uncased-mnli-sparse-70-unstructured](https://huggingface.co/Intel/bert-base-uncased-mnli-sparse-70-unstructured). <br><br> Note: This model requires `transformers==2.10.0` ## Evaluation Results Matched: 82.5% Mismatched: 83.3% This model can be further fine-tuned to other tasks and achieve the following evaluation results: | Task | QQP (Acc/F1) | QNLI (Acc) | SST-2 (Acc) | STS-B (Pears/Spear) | SQuADv1.1 (Acc/F1) | |------|--------------|------------|-------------|---------------------|--------------------| | | 90.2/86.7 | 90.3 | 91.5 | 88.9/88.6 | 80.5/88.2 |
Iskaj/xlsr300m_cv_7.0_nl_lm
ee65935d6390a13aa28bfacc2a04564dac6ba192
2022-03-24T11:54:57.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "nl", "dataset:mozilla-foundation/common_voice_8_0", "transformers", "mozilla-foundation/common_voice_8_0", "robust-speech-event", "model_for_talk", "hf-asr-leaderboard", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
Iskaj
null
Iskaj/xlsr300m_cv_7.0_nl_lm
4
null
transformers
17,923
--- language: - nl license: apache-2.0 tags: - automatic-speech-recognition - mozilla-foundation/common_voice_8_0 - nl - robust-speech-event - model_for_talk - hf-asr-leaderboard datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: XLS-R-300M - Dutch results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 NL type: mozilla-foundation/common_voice_8_0 args: nl metrics: - name: Test WER type: wer value: 32 - name: Test CER type: cer value: 17 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: nl metrics: - name: Test WER type: wer value: 37.44 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: nl metrics: - name: Test WER type: wer value: 38.74 --- # xlsr300m_cv_7.0_nl_lm
ItcastAI/bert_cn_finetunning
4830cb00612b2990a569d2487d5e4a42b0b3a7f2
2021-05-18T21:11:28.000Z
[ "pytorch", "jax", "bert", "text-classification", "transformers" ]
text-classification
false
ItcastAI
null
ItcastAI/bert_cn_finetunning
4
null
transformers
17,924
Entry not found
JazibEijaz/bert-base-uncased-finetuned-semeval2020-task4a-append-e2-b32-l5e5
e4ab44fb69683226c45f06757d8d48b5b00a8521
2021-11-05T07:54:44.000Z
[ "pytorch", "tensorboard", "bert", "multiple-choice", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
multiple-choice
false
JazibEijaz
null
JazibEijaz/bert-base-uncased-finetuned-semeval2020-task4a-append-e2-b32-l5e5
4
null
transformers
17,925
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: name: bert-base-uncased-finetuned-semeval2020-task4a-append-e2-b32-l5e5 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-finetuned-semeval2020-task4a-append-e2-b32-l5e5 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.5466 - Accuracy: 0.8890 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 344 | 0.3057 | 0.8630 | | 0.4091 | 2.0 | 688 | 0.2964 | 0.8880 | | 0.1322 | 3.0 | 1032 | 0.4465 | 0.8820 | | 0.1322 | 4.0 | 1376 | 0.5466 | 0.8890 | ### Framework versions - Transformers 4.12.3 - Pytorch 1.9.1 - Datasets 1.12.1 - Tokenizers 0.10.3
JazibEijaz/bert-base-uncased-finetuned-semeval2020-task4b-base-e2-b32-l3e5
b14256e80ffd87f518aa7f97184f087638a6b96f
2021-11-05T09:00:25.000Z
[ "pytorch", "tensorboard", "bert", "multiple-choice", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
multiple-choice
false
JazibEijaz
null
JazibEijaz/bert-base-uncased-finetuned-semeval2020-task4b-base-e2-b32-l3e5
4
null
transformers
17,926
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: name: bert-base-uncased-finetuned-semeval2020-task4b-base-e2-b32-l3e5 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-finetuned-semeval2020-task4b-base-e2-b32-l3e5 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.4114 - Accuracy: 0.8700 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 344 | 0.3773 | 0.8490 | | 0.3812 | 2.0 | 688 | 0.4114 | 0.8700 | ### Framework versions - Transformers 4.12.3 - Pytorch 1.9.1 - Datasets 1.12.1 - Tokenizers 0.10.3
Jeevesh8/sMLM-RoBERTa
ee4738bf2bc305b83ae48e9c9d474936f3dd5054
2021-11-12T10:34:05.000Z
[ "pytorch", "roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
Jeevesh8
null
Jeevesh8/sMLM-RoBERTa
4
null
transformers
17,927
Entry not found
JerryQu/v2-distilgpt2
911dc712dec69573e745a725706b003f49fc6238
2021-05-21T10:52:22.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "transformers" ]
text-generation
false
JerryQu
null
JerryQu/v2-distilgpt2
4
null
transformers
17,928
Entry not found
Jeska/VaccinChatSentenceClassifierDutch_fromBERTje2_DAdialog02
e83ff56b673b8db973dcfd4f0fef2e28f48077d2
2021-12-28T13:32:19.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeska
null
Jeska/VaccinChatSentenceClassifierDutch_fromBERTje2_DAdialog02
4
null
transformers
17,929
Entry not found
Jeska/autonlp-vaccinfaq-22144706
54721f462da666de7c651e219e9368a203d48971
2021-10-19T12:33:52.000Z
[ "pytorch", "bert", "text-classification", "unk", "dataset:Jeska/autonlp-data-vaccinfaq", "transformers", "autonlp", "co2_eq_emissions" ]
text-classification
false
Jeska
null
Jeska/autonlp-vaccinfaq-22144706
4
null
transformers
17,930
--- tags: autonlp language: unk widget: - text: "I love AutoNLP 🤗" datasets: - Jeska/autonlp-data-vaccinfaq co2_eq_emissions: 27.135492487925884 --- # Model Trained Using AutoNLP - Problem type: Multi-class Classification - Model ID: 22144706 - CO2 Emissions (in grams): 27.135492487925884 ## Validation Metrics - Loss: 1.81697416305542 - Accuracy: 0.6377269139700079 - Macro F1: 0.5181293370145044 - Micro F1: 0.6377269139700079 - Weighted F1: 0.631117826235572 - Macro Precision: 0.5371452512845428 - Micro Precision: 0.6377269139700079 - Weighted Precision: 0.6655055695465463 - Macro Recall: 0.5609328178925124 - Micro Recall: 0.6377269139700079 - Weighted Recall: 0.6377269139700079 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/Jeska/autonlp-vaccinfaq-22144706 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("Jeska/autonlp-vaccinfaq-22144706", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("Jeska/autonlp-vaccinfaq-22144706", use_auth_token=True) inputs = tokenizer("I love AutoNLP", return_tensors="pt") outputs = model(**inputs) ```
Jihyun22/bert-base-finetuned-nli
dcbed986fb107e51358a24f5bcc45bc22c3fde72
2021-10-26T11:07:39.000Z
[ "pytorch", "bert", "text-classification", "dataset:klue", "transformers", "generated_from_trainer" ]
text-classification
false
Jihyun22
null
Jihyun22/bert-base-finetuned-nli
4
1
transformers
17,931
--- tags: - generated_from_trainer datasets: - klue metrics: - accuracy model_index: - name: bert-base-finetuned-nli results: - task: name: Text Classification type: text-classification dataset: name: klue type: klue args: nli metric: name: Accuracy type: accuracy value: 0.756 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-finetuned-nli This model is a fine-tuned version of [klue/bert-base](https://huggingface.co/klue/bert-base) on the klue dataset. It achieves the following results on the evaluation set: - Loss: 0.1357 - Accuracy: 0.756 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 196 | 0.7357 | 0.156 | | No log | 2.0 | 392 | 0.5952 | 0.0993 | | 0.543 | 3.0 | 588 | 0.5630 | 0.099 | | 0.543 | 4.0 | 784 | 0.5670 | 0.079 | | 0.543 | 5.0 | 980 | 0.5795 | 0.078 | ### Framework versions - Transformers 4.9.2 - Pytorch 1.9.0+cu102 - Datasets 1.11.0 - Tokenizers 0.10.3
Jitin/manglish
e97ba1aebca3deeafe24403ff0a6d93952ccc721
2021-05-20T11:57:45.000Z
[ "pytorch", "jax", "roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
Jitin
null
Jitin/manglish
4
null
transformers
17,932
Entry not found
Josmar/BART_Finetuned_CNN_dailymail
bdd2b34325e3ce9f9db341006be5d23ac07ff316
2021-07-23T20:20:30.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
Josmar
null
Josmar/BART_Finetuned_CNN_dailymail
4
null
transformers
17,933
# BART_Finetuned_CNN_dailymail The following repo contains a [bart-base](https://huggingface.co/facebook/bart-base) model that was finetuned using the dataset [cnn_dailymail](https://huggingface.co/datasets/cnn_dailymail)
JovenPai/bert_cn_finetunning
c74bdae8e02047fecba3adf0e7f11f08198bbe1a
2021-05-18T21:15:39.000Z
[ "pytorch", "jax", "bert", "text-classification", "transformers" ]
text-classification
false
JovenPai
null
JovenPai/bert_cn_finetunning
4
null
transformers
17,934
Entry not found
KBLab/megatron-bert-base-swedish-cased-125k
0943793bb9ded62c36f336c3b2e82ecc3e7dcaf9
2022-03-17T11:11:25.000Z
[ "pytorch", "megatron-bert", "fill-mask", "sv", "transformers", "autotrain_compatible" ]
fill-mask
false
KBLab
null
KBLab/megatron-bert-base-swedish-cased-125k
4
null
transformers
17,935
--- language: - sv --- # Megatron-BERT-base Swedish 125k This BERT model was trained using the Megatron-LM library. The size of the model is a regular BERT-base with 110M parameters. The model was trained on about 70GB of data, consisting mostly of OSCAR and Swedish newspaper text curated by the National Library of Sweden. Training was done for 125k training steps. Its [sister model](https://huggingface.co/KBLab/megatron-bert-base-swedish-cased-600k) used the same setup, but was instead trained for 600k steps. The model has three sister models trained on the same dataset: - [🤗 BERT Swedish](https://huggingface.co/KBLab/bert-base-swedish-cased-new) - [Megatron-BERT-base-600k](https://huggingface.co/KBLab/megatron-bert-base-swedish-cased-600k) - [Megatron-BERT-large-110k](https://huggingface.co/KBLab/megatron-bert-large-swedish-cased-110k) ## Acknowledgements We gratefully acknowledge the HPC RIVR consortium (https://www.hpc-rivr.si) and EuroHPC JU (https://eurohpc-ju.europa.eu) for funding this research by providing computing resources of the HPC system Vega at the Institute of Information Science (https://www.izum.si).
Kao/samyarn-bert-base-multilingual-cased
32a56d81aab247a73aa3ad2e0d8c6ad5d85c46d9
2021-07-09T08:55:28.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
Kao
null
Kao/samyarn-bert-base-multilingual-cased
4
null
transformers
17,936
samyarn-bert-base-multilingual-cased kao
Katsiaryna/distilbert-base-uncased-finetuned
cbab443ab4b0161f47ed12721c12ca65409672a9
2021-12-09T00:20:03.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
Katsiaryna
null
Katsiaryna/distilbert-base-uncased-finetuned
4
null
transformers
17,937
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: distilbert-base-uncased-finetuned results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.8229 - Accuracy: 0.54 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 7 | 0.7709 | 0.74 | | No log | 2.0 | 14 | 0.7048 | 0.72 | | No log | 3.0 | 21 | 0.8728 | 0.46 | | No log | 4.0 | 28 | 0.7849 | 0.64 | | No log | 5.0 | 35 | 0.8229 | 0.54 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.10.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3
Katsiaryna/qnli-electra-base-finetuned_9th_auc_ce
355b5e946798baa4969a552d2b192ba5b851e3ba
2021-12-10T11:38:21.000Z
[ "pytorch", "tensorboard", "electra", "text-classification", "transformers" ]
text-classification
false
Katsiaryna
null
Katsiaryna/qnli-electra-base-finetuned_9th_auc_ce
4
null
transformers
17,938
Entry not found
Katsiaryna/qnli-electra-base-finetuned_9th_auc_ce_diff
a0e376be3e28c24b3bdfc43a59666498e9981880
2021-12-10T15:16:29.000Z
[ "pytorch", "tensorboard", "electra", "text-classification", "transformers" ]
text-classification
false
Katsiaryna
null
Katsiaryna/qnli-electra-base-finetuned_9th_auc_ce_diff
4
null
transformers
17,939
Entry not found
Katsiaryna/qnli-electra-base-finetuned_auc
3fd219454795371abea08a81648d09d18aa189ca
2021-12-13T11:10:18.000Z
[ "pytorch", "tensorboard", "electra", "text-classification", "transformers" ]
text-classification
false
Katsiaryna
null
Katsiaryna/qnli-electra-base-finetuned_auc
4
null
transformers
17,940
Entry not found
Katsiaryna/stsb-TinyBERT-L-4-finetuned_auc
0990f41de0bd02f67e6c189e0dcf62ead59dcac1
2021-12-14T22:20:39.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Katsiaryna
null
Katsiaryna/stsb-TinyBERT-L-4-finetuned_auc
4
null
transformers
17,941
Entry not found
Katsiaryna/stsb-TinyBERT-L-4-finetuned_auc_151221-top1
06d46114c353e18c331ff452e6882417d4a7dcbc
2021-12-15T19:33:57.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Katsiaryna
null
Katsiaryna/stsb-TinyBERT-L-4-finetuned_auc_151221-top1
4
null
transformers
17,942
Entry not found
Katsiaryna/stsb-TinyBERT-L-4-finetuned_auc_151221-top3
11be4328009cf1189f24096f1017cb3d408552e9
2021-12-15T21:21:02.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Katsiaryna
null
Katsiaryna/stsb-TinyBERT-L-4-finetuned_auc_151221-top3
4
null
transformers
17,943
Entry not found
Katsiaryna/stsb-TinyBERT-L-4-finetuned_auc_161221-top3
603407a4c51095a6d0c5d7baf72a97f235f50bed
2021-12-16T14:20:48.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Katsiaryna
null
Katsiaryna/stsb-TinyBERT-L-4-finetuned_auc_161221-top3
4
null
transformers
17,944
Entry not found
Katsiaryna/stsb-distilroberta-base-finetuned_9th_auc_ce
597c1036d6ad28c575c3c7f737d76007f5f67b16
2021-12-09T21:54:03.000Z
[ "pytorch", "tensorboard", "roberta", "text-classification", "transformers" ]
text-classification
false
Katsiaryna
null
Katsiaryna/stsb-distilroberta-base-finetuned_9th_auc_ce
4
null
transformers
17,945
Entry not found
Kien/distilbert-base-uncased-finetuned-cola
2199afa156ab7d6891f423feadfa1b2a982ced53
2022-01-07T15:00:42.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:glue", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
Kien
null
Kien/distilbert-base-uncased-finetuned-cola
4
null
transformers
17,946
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - matthews_correlation model-index: - name: distilbert-base-uncased-finetuned-cola results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue args: cola metrics: - name: Matthews Correlation type: matthews_correlation value: 0.5232819075279987 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-cola This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.5327 - Matthews Correlation: 0.5233 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.5314 | 1.0 | 535 | 0.4955 | 0.4270 | | 0.3545 | 2.0 | 1070 | 0.5327 | 0.5233 | | 0.2418 | 3.0 | 1605 | 0.6180 | 0.5132 | | 0.1722 | 4.0 | 2140 | 0.7344 | 0.5158 | | 0.1243 | 5.0 | 2675 | 0.8581 | 0.5196 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
KoichiYasuoka/SuPar-Kanbun
3b0aa2e3abd9a55ad363fef4a4fb452c7b5e6e84
2022-02-03T09:27:39.000Z
[ "pytorch", "roberta", "token-classification", "lzh", "dataset:universal_dependencies", "transformers", "classical chinese", "literary chinese", "ancient chinese", "pos", "license:mit", "autotrain_compatible" ]
token-classification
false
KoichiYasuoka
null
KoichiYasuoka/SuPar-Kanbun
4
null
transformers
17,947
--- language: - "lzh" tags: - "classical chinese" - "literary chinese" - "ancient chinese" - "token-classification" - "pos" datasets: - "universal_dependencies" license: "mit" pipeline_tag: "token-classification" widget: - text: "不入虎穴不得虎子" --- [![Current PyPI packages](https://badge.fury.io/py/suparkanbun.svg)](https://pypi.org/project/suparkanbun/) # SuPar-Kanbun Tokenizer, POS-Tagger and Dependency-Parser for Classical Chinese Texts (漢文/文言文) with [spaCy](https://spacy.io), [Transformers](https://huggingface.co/transformers/) and [SuPar](https://github.com/yzhangcs/parser). ## Basic usage ```py >>> import suparkanbun >>> nlp=suparkanbun.load() >>> doc=nlp("不入虎穴不得虎子") >>> print(type(doc)) <class 'spacy.tokens.doc.Doc'> >>> print(suparkanbun.to_conllu(doc)) # text = 不入虎穴不得虎子 1 不 不 ADV v,副詞,否定,無界 Polarity=Neg 2 advmod _ Gloss=not|SpaceAfter=No 2 入 入 VERB v,動詞,行為,移動 _ 0 root _ Gloss=enter|SpaceAfter=No 3 虎 虎 NOUN n,名詞,主体,動物 _ 4 nmod _ Gloss=tiger|SpaceAfter=No 4 穴 穴 NOUN n,名詞,固定物,地形 Case=Loc 2 obj _ Gloss=cave|SpaceAfter=No 5 不 不 ADV v,副詞,否定,無界 Polarity=Neg 6 advmod _ Gloss=not|SpaceAfter=No 6 得 得 VERB v,動詞,行為,得失 _ 2 parataxis _ Gloss=get|SpaceAfter=No 7 虎 虎 NOUN n,名詞,主体,動物 _ 8 nmod _ Gloss=tiger|SpaceAfter=No 8 子 子 NOUN n,名詞,人,関係 _ 6 obj _ Gloss=child|SpaceAfter=No >>> import deplacy >>> deplacy.render(doc) 不 ADV <════╗ advmod 入 VERB ═══╗═╝═╗ ROOT 虎 NOUN <╗ ║ ║ nmod 穴 NOUN ═╝<╝ ║ obj 不 ADV <════╗ ║ advmod 得 VERB ═══╗═╝<╝ parataxis 虎 NOUN <╗ ║ nmod 子 NOUN ═╝<╝ obj ``` `suparkanbun.load()` has two options `suparkanbun.load(BERT="roberta-classical-chinese-base-char",Danku=False)`. With the option `Danku=True` the pipeline tries to segment sentences automatically. Available `BERT` options are: * `BERT="roberta-classical-chinese-base-char"` utilizes [roberta-classical-chinese-base-char](https://huggingface.co/KoichiYasuoka/roberta-classical-chinese-base-char) (default) * `BERT="roberta-classical-chinese-large-char"` utilizes [roberta-classical-chinese-large-char](https://huggingface.co/KoichiYasuoka/roberta-classical-chinese-large-char) * `BERT="guwenbert-base"` utilizes [GuwenBERT-base](https://huggingface.co/ethanyt/guwenbert-base) * `BERT="guwenbert-large"` utilizes [GuwenBERT-large](https://huggingface.co/ethanyt/guwenbert-large) * `BERT="sikubert"` utilizes [SikuBERT](https://huggingface.co/SIKU-BERT/sikubert) * `BERT="sikuroberta"` utilizes [SikuRoBERTa](https://huggingface.co/SIKU-BERT/sikuroberta) ## Installation for Linux ```sh pip3 install suparkanbun --user ``` ## Installation for Cygwin64 Make sure to get `python37-devel` `python37-pip` `python37-cython` `python37-numpy` `python37-wheel` `gcc-g++` `mingw64-x86_64-gcc-g++` `git` `curl` `make` `cmake` packages, and then: ```sh curl -L https://raw.githubusercontent.com/KoichiYasuoka/CygTorch/master/installer/supar.sh | sh pip3.7 install suparkanbun --no-build-isolation ``` ## Installation for Jupyter Notebook (Google Colaboratory) ```py !pip install suparkanbun ``` Try [notebook](https://colab.research.google.com/github/KoichiYasuoka/SuPar-Kanbun/blob/main/suparkanbun.ipynb) for Google Colaboratory. ## Author Koichi Yasuoka (安岡孝一)
KoichiYasuoka/roberta-base-japanese-char-luw-upos
dac8407867fd2e1e93522a870b7020574c749823
2022-06-26T22:56:26.000Z
[ "pytorch", "roberta", "token-classification", "ja", "dataset:universal_dependencies", "transformers", "japanese", "pos", "dependency-parsing", "license:cc-by-sa-4.0", "autotrain_compatible" ]
token-classification
false
KoichiYasuoka
null
KoichiYasuoka/roberta-base-japanese-char-luw-upos
4
null
transformers
17,948
--- language: - "ja" tags: - "japanese" - "token-classification" - "pos" - "dependency-parsing" datasets: - "universal_dependencies" license: "cc-by-sa-4.0" pipeline_tag: "token-classification" widget: - text: "国境の長いトンネルを抜けると雪国であった。" --- # roberta-base-japanese-char-luw-upos ## Model Description This is a RoBERTa model pre-trained on 青空文庫 texts for POS-tagging and dependency-parsing, derived from [roberta-base-japanese-aozora-char](https://huggingface.co/KoichiYasuoka/roberta-base-japanese-aozora-char). Every long-unit-word is tagged by [UPOS](https://universaldependencies.org/u/pos/) (Universal Part-Of-Speech) and [FEATS](https://universaldependencies.org/u/feat/). ## How to Use ```py from transformers import AutoTokenizer,AutoModelForTokenClassification,TokenClassificationPipeline tokenizer=AutoTokenizer.from_pretrained("KoichiYasuoka/roberta-base-japanese-char-luw-upos") model=AutoModelForTokenClassification.from_pretrained("KoichiYasuoka/roberta-base-japanese-char-luw-upos") pipeline=TokenClassificationPipeline(tokenizer=tokenizer,model=model,aggregation_strategy="simple") nlp=lambda x:[(x[t["start"]:t["end"]],t["entity_group"]) for t in pipeline(x)] print(nlp("国境の長いトンネルを抜けると雪国であった。")) ``` or ```py import esupar nlp=esupar.load("KoichiYasuoka/roberta-base-japanese-char-luw-upos") print(nlp("国境の長いトンネルを抜けると雪国であった。")) ``` ## Reference 安岡孝一: [Transformersと国語研長単位による日本語係り受け解析モデルの製作](http://id.nii.ac.jp/1001/00216223/), 情報処理学会研究報告, Vol.2022-CH-128, No.7 (2022年2月), pp.1-8. ## See Also [esupar](https://github.com/KoichiYasuoka/esupar): Tokenizer POS-tagger and Dependency-parser with BERT/RoBERTa models
KoichiYasuoka/xlm-roberta-base-english-upos
733ae80046ed856c8a60c855459578e5bf17d57b
2022-02-10T15:39:46.000Z
[ "pytorch", "xlm-roberta", "token-classification", "en", "dataset:universal_dependencies", "transformers", "english", "pos", "dependency-parsing", "license:cc-by-sa-4.0", "autotrain_compatible" ]
token-classification
false
KoichiYasuoka
null
KoichiYasuoka/xlm-roberta-base-english-upos
4
null
transformers
17,949
--- language: - "en" tags: - "english" - "token-classification" - "pos" - "dependency-parsing" datasets: - "universal_dependencies" license: "cc-by-sa-4.0" pipeline_tag: "token-classification" --- # xlm-roberta-base-english-upos ## Model Description This is an XLM-RoBERTa model pre-trained with [UD_English-EWT](https://github.com/UniversalDependencies/UD_English-EWT) for POS-tagging and dependency-parsing, derived from [xlm-roberta-base](https://huggingface.co/xlm-roberta-base). Every word is tagged by [UPOS](https://universaldependencies.org/u/pos/) (Universal Part-Of-Speech). ## How to Use ```py from transformers import AutoTokenizer,AutoModelForTokenClassification tokenizer=AutoTokenizer.from_pretrained("KoichiYasuoka/xlm-roberta-base-english-upos") model=AutoModelForTokenClassification.from_pretrained("KoichiYasuoka/xlm-roberta-base-english-upos") ``` or ```py import esupar nlp=esupar.load("KoichiYasuoka/xlm-roberta-base-english-upos") ``` ## See Also [esupar](https://github.com/KoichiYasuoka/esupar): Tokenizer POS-tagger and Dependency-parser with BERT/RoBERTa models
Kumicho/distilbert-base-uncased-finetuned-cola
8f6144c18b296e82ce364e3f857bf54d77f26233
2022-02-20T07:17:42.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:glue", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
Kumicho
null
Kumicho/distilbert-base-uncased-finetuned-cola
4
null
transformers
17,950
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - matthews_correlation model-index: - name: distilbert-base-uncased-finetuned-cola results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue args: cola metrics: - name: Matthews Correlation type: matthews_correlation value: 0.5258663312307151 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-cola This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.7758 - Matthews Correlation: 0.5259 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.1926 | 1.0 | 535 | 0.7758 | 0.5259 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
Kyoungmin/kcbert-base-petition
00394077acea90f7e5dc88d3b0a05a7d64e44a19
2021-08-22T19:39:03.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
Kyoungmin
null
Kyoungmin/kcbert-base-petition
4
null
transformers
17,951
This is practice model for kcbert-base with Korean petition data!
Kyuyoung11/haremotions-v3
1fa5c448bbca839e3b4eb9c8656e73381cad87c5
2021-08-03T13:27:57.000Z
[ "pytorch", "electra", "transformers" ]
null
false
Kyuyoung11
null
Kyuyoung11/haremotions-v3
4
null
transformers
17,952
Entry not found
LilaBoualili/bert-pre-doc
f4c54705917ead3b91dd6d074b53d904a9a7380b
2021-05-20T09:58:43.000Z
[ "pytorch", "tf", "jax", "bert", "text-classification", "transformers" ]
text-classification
false
LilaBoualili
null
LilaBoualili/bert-pre-doc
4
null
transformers
17,953
Entry not found
LilaBoualili/bert-pre-pair
51e34db022db85ed6eb207a2cea88860e35ceee6
2021-05-20T09:59:45.000Z
[ "pytorch", "tf", "jax", "bert", "text-classification", "transformers" ]
text-classification
false
LilaBoualili
null
LilaBoualili/bert-pre-pair
4
null
transformers
17,954
Entry not found
LilaBoualili/electra-pre-doc
ef3ed7e3d255490551454b086022804dbed13265
2021-05-18T15:04:09.000Z
[ "pytorch", "tf", "electra", "text-classification", "transformers" ]
text-classification
false
LilaBoualili
null
LilaBoualili/electra-pre-doc
4
null
transformers
17,955
Entry not found
LilaBoualili/electra-pre-pair
c550e09aa8f365d7063ddbeac1bad3b454744be6
2021-05-18T15:11:59.000Z
[ "pytorch", "tf", "electra", "text-classification", "transformers" ]
text-classification
false
LilaBoualili
null
LilaBoualili/electra-pre-pair
4
null
transformers
17,956
Entry not found
LilaBoualili/electra-vanilla
92aa82dd9aad1480bf5650d7309a03ffb821e1bf
2021-05-18T14:14:35.000Z
[ "pytorch", "tf", "electra", "text-classification", "transformers" ]
text-classification
false
LilaBoualili
null
LilaBoualili/electra-vanilla
4
null
transformers
17,957
At its core it uses an ELECTRA-Base model (google/electra-base-discriminator) fine-tuned on the MS MARCO passage classification task. It can be loaded using the TF/AutoModelForSequenceClassification classes but it follows the same classification layer defined for BERT similarly to the TFElectraRelevanceHead in the Capreolus BERT-MaxP implementation. Refer to our [github repository](https://github.com/BOUALILILila/ExactMatchMarking) for a usage example for ad hoc ranking.
Lumos/imdb3_hga
0e2f24290d5b703ff3033dea46f553621db3cb95
2021-12-22T05:49:35.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
Lumos
null
Lumos/imdb3_hga
4
null
transformers
17,958
Entry not found
Lumos/yahoo1
dc66e90e0ecfc82a9855e5ac89ad1e734f7baa47
2021-12-13T12:51:14.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
Lumos
null
Lumos/yahoo1
4
null
transformers
17,959
Entry not found
M-FAC/bert-mini-finetuned-qqp
317db2b9745bf907cc1afe5559609bd6293d6138
2021-12-13T08:12:25.000Z
[ "pytorch", "bert", "text-classification", "arxiv:2107.03356", "transformers" ]
text-classification
false
M-FAC
null
M-FAC/bert-mini-finetuned-qqp
4
null
transformers
17,960
# BERT-mini model finetuned with M-FAC This model is finetuned on QQP dataset with state-of-the-art second-order optimizer M-FAC. Check NeurIPS 2021 paper for more details on M-FAC: [https://arxiv.org/pdf/2107.03356.pdf](https://arxiv.org/pdf/2107.03356.pdf). ## Finetuning setup For fair comparison against default Adam baseline, we finetune the model in the same framework as described here [https://github.com/huggingface/transformers/tree/master/examples/pytorch/text-classification](https://github.com/huggingface/transformers/tree/master/examples/pytorch/text-classification) and just swap Adam optimizer with M-FAC. Hyperparameters used by M-FAC optimizer: ```bash learning rate = 1e-4 number of gradients = 1024 dampening = 1e-6 ``` ## Results We share the best model out of 5 runs with the following score on QQP validation set: ```bash f1 = 82.98 accuracy = 87.03 ``` Mean and standard deviation for 5 runs on QQP validation set: | | F1 | Accuracy | |:----:|:-----------:|:----------:| | Adam | 82.43 ± 0.10 | 86.45 ± 0.12 | | M-FAC | 82.67 ± 0.23 | 86.75 ± 0.20 | Results can be reproduced by adding M-FAC optimizer code in [https://github.com/huggingface/transformers/blob/master/examples/pytorch/text-classification/run_glue.py](https://github.com/huggingface/transformers/blob/master/examples/pytorch/text-classification/run_glue.py) and running the following bash script: ```bash CUDA_VISIBLE_DEVICES=0 python run_glue.py \ --seed 10723 \ --model_name_or_path prajjwal1/bert-mini \ --task_name qqp \ --do_train \ --do_eval \ --max_seq_length 128 \ --per_device_train_batch_size 32 \ --learning_rate 1e-4 \ --num_train_epochs 5 \ --output_dir out_dir/ \ --optim MFAC \ --optim_args '{"lr": 1e-4, "num_grads": 1024, "damp": 1e-6}' ``` We believe these results could be improved with modest tuning of hyperparameters: `per_device_train_batch_size`, `learning_rate`, `num_train_epochs`, `num_grads` and `damp`. For the sake of fair comparison and a robust default setup we use the same hyperparameters across all models (`bert-tiny`, `bert-mini`) and all datasets (SQuAD version 2 and GLUE). Our code for M-FAC can be found here: [https://github.com/IST-DASLab/M-FAC](https://github.com/IST-DASLab/M-FAC). A step-by-step tutorial on how to integrate and use M-FAC with any repository can be found here: [https://github.com/IST-DASLab/M-FAC/tree/master/tutorials](https://github.com/IST-DASLab/M-FAC/tree/master/tutorials). ## BibTeX entry and citation info ```bibtex @article{frantar2021m, title={M-FAC: Efficient Matrix-Free Approximations of Second-Order Information}, author={Frantar, Elias and Kurtic, Eldar and Alistarh, Dan}, journal={Advances in Neural Information Processing Systems}, volume={35}, year={2021} } ```
M-FAC/bert-mini-finetuned-squadv2
de4d617bde35bdfd66f52f3968442e613809f966
2021-12-13T08:13:09.000Z
[ "pytorch", "bert", "question-answering", "arxiv:2107.03356", "transformers", "autotrain_compatible" ]
question-answering
false
M-FAC
null
M-FAC/bert-mini-finetuned-squadv2
4
null
transformers
17,961
# BERT-mini model finetuned with M-FAC This model is finetuned on SQuAD version 2 dataset with state-of-the-art second-order optimizer M-FAC. Check NeurIPS 2021 paper for more details on M-FAC: [https://arxiv.org/pdf/2107.03356.pdf](https://arxiv.org/pdf/2107.03356.pdf). ## Finetuning setup For fair comparison against default Adam baseline, we finetune the model in the same framework as described here [https://github.com/huggingface/transformers/tree/master/examples/pytorch/question-answering](https://github.com/huggingface/transformers/tree/master/examples/pytorch/question-answering) and just swap Adam optimizer with M-FAC. Hyperparameters used by M-FAC optimizer: ```bash learning rate = 1e-4 number of gradients = 1024 dampening = 1e-6 ``` ## Results We share the best model out of 5 runs with the following score on SQuAD version 2 validation set: ```bash exact_match = 58.38 f1 = 61.65 ``` Mean and standard deviation for 5 runs on SQuAD version 2 validation set: | | Exact Match | F1 | |:----:|:-----------:|:----:| | Adam | 54.80 ± 0.47 | 58.13 ± 0.31 | | M-FAC | 58.02 ± 0.39 | 61.35 ± 0.24 | Results can be reproduced by adding M-FAC optimizer code in [https://github.com/huggingface/transformers/blob/master/examples/pytorch/question-answering/run_qa.py](https://github.com/huggingface/transformers/blob/master/examples/pytorch/question-answering/run_qa.py) and running the following bash script: ```bash CUDA_VISIBLE_DEVICES=0 python run_qa.py \ --seed 8276 \ --model_name_or_path prajjwal1/bert-mini \ --dataset_name squad_v2 \ --version_2_with_negative \ --do_train \ --do_eval \ --per_device_train_batch_size 12 \ --learning_rate 1e-4 \ --num_train_epochs 2 \ --max_seq_length 384 \ --doc_stride 128 \ --output_dir out_dir/ \ --optim MFAC \ --optim_args '{"lr": 1e-4, "num_grads": 1024, "damp": 1e-6}' ``` We believe these results could be improved with modest tuning of hyperparameters: `per_device_train_batch_size`, `learning_rate`, `num_train_epochs`, `num_grads` and `damp`. For the sake of fair comparison and a robust default setup we use the same hyperparameters across all models (`bert-tiny`, `bert-mini`) and all datasets (SQuAD version 2 and GLUE). Our code for M-FAC can be found here: [https://github.com/IST-DASLab/M-FAC](https://github.com/IST-DASLab/M-FAC). A step-by-step tutorial on how to integrate and use M-FAC with any repository can be found here: [https://github.com/IST-DASLab/M-FAC/tree/master/tutorials](https://github.com/IST-DASLab/M-FAC/tree/master/tutorials). ## BibTeX entry and citation info ```bibtex @article{frantar2021m, title={M-FAC: Efficient Matrix-Free Approximations of Second-Order Information}, author={Frantar, Elias and Kurtic, Eldar and Alistarh, Dan}, journal={Advances in Neural Information Processing Systems}, volume={35}, year={2021} } ```
MCUxDaredevil/DialoGPT-small-rick
fa67c7bea801ab0a15be6a0cd7aee7dc5fb85910
2021-10-31T19:55:17.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
MCUxDaredevil
null
MCUxDaredevil/DialoGPT-small-rick
4
null
transformers
17,962
--- tags: - conversational --- #Rick Sanchez DialoGPT Model
Maelstrom77/roberta-large-mrpc
47fbdb7535e9edcd37e2e385e41aa083d5eec799
2021-10-04T15:21:21.000Z
[ "pytorch", "roberta", "text-classification", "transformers" ]
text-classification
false
Maelstrom77
null
Maelstrom77/roberta-large-mrpc
4
null
transformers
17,963
Entry not found
Maha/OGBV-gender-indicbert-ta-fire20_fin
d68d7efa27ad574417d9cefe0a765f338393eda6
2022-02-20T06:51:04.000Z
[ "pytorch", "tensorboard", "albert", "text-classification", "transformers" ]
text-classification
false
Maha
null
Maha/OGBV-gender-indicbert-ta-fire20_fin
4
1
transformers
17,964
Entry not found
Maha/hin-trac2
a21e7b810415a5acf054a52587f8651f88883205
2022-02-22T04:20:49.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Maha
null
Maha/hin-trac2
4
1
transformers
17,965
Entry not found
MarcBrun/ixambert-finetuned-squad-eu-en
e77d274afd5b69d9f050fdf181176306efc21a31
2022-02-23T20:25:49.000Z
[ "pytorch", "bert", "question-answering", "en", "es", "eu", "dataset:squad", "transformers", "autotrain_compatible" ]
question-answering
false
MarcBrun
null
MarcBrun/ixambert-finetuned-squad-eu-en
4
null
transformers
17,966
--- language: - en - es - eu datasets: - squad widget: - text: "When was Florence Nightingale born?" context: "Florence Nightingale, known for being the founder of modern nursing, was born in Florence, Italy, in 1820." example_title: "English" - text: "¿Por qué provincias pasa el Tajo?" context: "El Tajo es el río más largo de la península ibérica, a la que atraviesa en su parte central, siguiendo un rumbo este-oeste, con una leve inclinación hacia el suroeste, que se acentúa cuando llega a Portugal, donde recibe el nombre de Tejo. Nace en los montes Universales, en la sierra de Albarracín, sobre la rama occidental del sistema Ibérico y, después de recorrer 1007 km, llega al océano Atlántico en la ciudad de Lisboa. En su desembocadura forma el estuario del mar de la Paja, en el que vierte un caudal medio de 456 m³/s. En sus primeros 816 km atraviesa España, donde discurre por cuatro comunidades autónomas (Aragón, Castilla-La Mancha, Madrid y Extremadura) y un total de seis provincias (Teruel, Guadalajara, Cuenca, Madrid, Toledo y Cáceres)." example_title: "Español" - text: "Zer beste izenak ditu Tartalo?" context: "Tartalo euskal mitologiako izaki begibakar artzain erraldoia da. Tartalo izena zenbait euskal hizkeratan herskari-bustidurarekin ahoskatu ohi denez, horrelaxe ere idazten da batzuetan: Ttarttalo. Euskal Herriko zenbait tokitan, Torto edo Anxo ere esaten diote." example_title: "Euskara" --- # ixambert-base-cased finetuned for QA This is a basic implementation of the multilingual model ["ixambert-base-cased"](https://huggingface.co/ixa-ehu/ixambert-base-cased), fine-tuned on SQuAD v1.1 and an experimental version of SQuAD1.1 in Basque (1/3 size of original SQuAD1.1), that is able to answer basic factual questions in English, Spanish and Basque. ## Overview * **Language model:** ixambert-base-cased * **Languages:** English, Spanish and Basque * **Downstream task:** Extractive QA * **Training data:** SQuAD v1.1 + experimental SQuAD1.1 in Basque * **Eval data:** SQuAD v1.1 + experimental SQuAD1.1 in Basque * **Infrastructure:** 1x GeForce RTX 2080 ## Outputs The model outputs the answer to the question, the start and end positions of the answer in the original context, and a score for the probability for that span of text to be the correct answer. For example: ```python {'score': 0.9667195081710815, 'start': 101, 'end': 105, 'answer': '1820'} ``` ## How to use ```python from transformers import AutoModelForQuestionAnswering, AutoTokenizer, pipeline model_name = "MarcBrun/ixambert-finetuned-squad-eu-en" # To get predictions context = "Florence Nightingale, known for being the founder of modern nursing, was born in Florence, Italy, in 1820" question = "When was Florence Nightingale born?" qa = pipeline("question-answering", model=model_name, tokenizer=model_name) pred = qa(question=question,context=context) # To load the model and tokenizer model = AutoModelForQuestionAnswering.from_pretrained(model_name) tokenizer = AutoTokenizer.from_pretrained(model_name) ``` ## Hyperparameters ``` batch_size = 8 n_epochs = 3 learning_rate = 2e-5 optimizer = AdamW lr_schedule = linear max_seq_len = 384 doc_stride = 128 ```
MarioPenguin/finetuned-model
ac1e6934e161ed1b2fd3983704425a33043a105f
2022-01-29T11:18:13.000Z
[ "pytorch", "tensorboard", "roberta", "text-classification", "transformers", "generated_from_trainer", "model-index" ]
text-classification
false
MarioPenguin
null
MarioPenguin/finetuned-model
4
null
transformers
17,967
--- tags: - generated_from_trainer metrics: - accuracy model-index: - name: finetuned-model results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuned-model This model is a fine-tuned version of [cardiffnlp/twitter-roberta-base-sentiment](https://huggingface.co/cardiffnlp/twitter-roberta-base-sentiment) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.8601 - Accuracy: 0.6117 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 84 | 0.8663 | 0.5914 | | No log | 2.0 | 168 | 0.8601 | 0.6117 | ### Framework versions - Transformers 4.16.1 - Pytorch 1.10.0+cu111 - Datasets 1.18.2 - Tokenizers 0.11.0
Maunish/kgrouping-roberta-large
e10c8cbb5dc28761ff968f05b5b80a4a17588fc4
2022-02-15T13:58:45.000Z
[ "pytorch", "roberta", "text-classification", "transformers" ]
text-classification
false
Maunish
null
Maunish/kgrouping-roberta-large
4
null
transformers
17,968
Entry not found
MelissaTESSA/distilbert-base-uncased-finetuned-cola
f21110269d8fbe7e7c81eaa1ea349d5e2d59fa9e
2022-01-22T17:01:17.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:glue", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
MelissaTESSA
null
MelissaTESSA/distilbert-base-uncased-finetuned-cola
4
null
transformers
17,969
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - matthews_correlation model-index: - name: distilbert-base-uncased-finetuned-cola results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue args: cola metrics: - name: Matthews Correlation type: matthews_correlation value: 0.5206791471093309 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-cola This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.6324 - Matthews Correlation: 0.5207 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.5245 | 1.0 | 535 | 0.5155 | 0.4181 | | 0.3446 | 2.0 | 1070 | 0.5623 | 0.4777 | | 0.2331 | 3.0 | 1605 | 0.6324 | 0.5207 | | 0.1678 | 4.0 | 2140 | 0.7706 | 0.5106 | | 0.1255 | 5.0 | 2675 | 0.8852 | 0.4998 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.18.0 - Tokenizers 0.10.3
MickyMike/0-GPT2SP-duracloud
09a64c1873fc7bf1bb2eb966c3fc11a23ab9f66c
2021-08-19T02:00:58.000Z
[ "pytorch", "gpt2", "text-classification", "transformers" ]
text-classification
false
MickyMike
null
MickyMike/0-GPT2SP-duracloud
4
null
transformers
17,970
Entry not found
MickyMike/0-GPT2SP-mesos
6ba62901a54f0fe9b4bae5aeadcf27c1915264e4
2021-08-19T02:01:26.000Z
[ "pytorch", "gpt2", "text-classification", "transformers" ]
text-classification
false
MickyMike
null
MickyMike/0-GPT2SP-mesos
4
null
transformers
17,971
Entry not found
MickyMike/0-GPT2SP-mule
37c5e4734759c81626a1c0e4ef1e937633f55b39
2021-08-19T02:01:53.000Z
[ "pytorch", "gpt2", "text-classification", "transformers" ]
text-classification
false
MickyMike
null
MickyMike/0-GPT2SP-mule
4
null
transformers
17,972
Entry not found
MickyMike/0-GPT2SP-springxd
e02baf39bdc93c9fb5551a10d99552b44a634ebe
2021-08-19T02:02:19.000Z
[ "pytorch", "gpt2", "text-classification", "transformers" ]
text-classification
false
MickyMike
null
MickyMike/0-GPT2SP-springxd
4
null
transformers
17,973
Entry not found
MickyMike/0-GPT2SP-titanium
829fa29a3c96f19520e9f8b32a83300157cc188f
2021-08-19T02:02:56.000Z
[ "pytorch", "gpt2", "text-classification", "transformers" ]
text-classification
false
MickyMike
null
MickyMike/0-GPT2SP-titanium
4
null
transformers
17,974
Entry not found
MickyMike/00-GPT2SP-appceleratorstudio-aptanastudio
c72e62c776bc72747155cd5eea9f95c8656e6199
2021-08-15T06:51:13.000Z
[ "pytorch", "gpt2", "text-classification", "transformers" ]
text-classification
false
MickyMike
null
MickyMike/00-GPT2SP-appceleratorstudio-aptanastudio
4
null
transformers
17,975
Entry not found
MickyMike/00-GPT2SP-appceleratorstudio-titanium
3defebd169f919d8554b55b712def36a58dbda62
2021-08-15T06:58:34.000Z
[ "pytorch", "gpt2", "text-classification", "transformers" ]
text-classification
false
MickyMike
null
MickyMike/00-GPT2SP-appceleratorstudio-titanium
4
null
transformers
17,976
Entry not found
MickyMike/00-GPT2SP-aptanastudio-titanium
3ed2cb56c96b5da77f947f117ccc4e461b938f67
2021-08-15T07:26:55.000Z
[ "pytorch", "gpt2", "text-classification", "transformers" ]
text-classification
false
MickyMike
null
MickyMike/00-GPT2SP-aptanastudio-titanium
4
null
transformers
17,977
Entry not found
MickyMike/00-GPT2SP-titanium-appceleratorstudio
2ada9aef662f632728cc0f99c745aea8f7aaebbb
2021-08-15T07:11:41.000Z
[ "pytorch", "gpt2", "text-classification", "transformers" ]
text-classification
false
MickyMike
null
MickyMike/00-GPT2SP-titanium-appceleratorstudio
4
null
transformers
17,978
Entry not found
MickyMike/000-GPT2SP-appceleratorstudio-mule
f0713afb93b200a1e96d0617f5b99879a31115db
2021-08-15T12:39:26.000Z
[ "pytorch", "gpt2", "text-classification", "transformers" ]
text-classification
false
MickyMike
null
MickyMike/000-GPT2SP-appceleratorstudio-mule
4
null
transformers
17,979
Entry not found
MickyMike/000-GPT2SP-appceleratorstudio-mulestudio
58ed508e16849284ebcccaa9ecf6663cc50c4dde
2021-08-15T12:32:28.000Z
[ "pytorch", "gpt2", "text-classification", "transformers" ]
text-classification
false
MickyMike
null
MickyMike/000-GPT2SP-appceleratorstudio-mulestudio
4
null
transformers
17,980
Entry not found
MickyMike/000-GPT2SP-mulestudio-titanium
1f7f52dc8edaaf21e6534feb01b46e73854e5694
2021-08-15T12:26:05.000Z
[ "pytorch", "gpt2", "text-classification", "transformers" ]
text-classification
false
MickyMike
null
MickyMike/000-GPT2SP-mulestudio-titanium
4
null
transformers
17,981
Entry not found
MickyMike/000-GPT2SP-talenddataquality-appceleratorstudio
ad0bebc614858312ec4142b3370dfb1725e5cd7d
2021-08-15T11:55:46.000Z
[ "pytorch", "gpt2", "text-classification", "transformers" ]
text-classification
false
MickyMike
null
MickyMike/000-GPT2SP-talenddataquality-appceleratorstudio
4
null
transformers
17,982
Entry not found
MickyMike/000-GPT2SP-talenddataquality-aptanastudio
2fb0fac046ccd1d479c3930dcae3682c5b5a9c20
2021-08-15T11:30:36.000Z
[ "pytorch", "gpt2", "text-classification", "transformers" ]
text-classification
false
MickyMike
null
MickyMike/000-GPT2SP-talenddataquality-aptanastudio
4
null
transformers
17,983
Entry not found
MickyMike/1-GPT2SP-appceleratorstudio
eb49e972c41a3d4b3dd8300b8062f2e3ff27e74e
2021-08-15T12:50:06.000Z
[ "pytorch", "gpt2", "text-classification", "transformers" ]
text-classification
false
MickyMike
null
MickyMike/1-GPT2SP-appceleratorstudio
4
null
transformers
17,984
Entry not found
MickyMike/1-GPT2SP-aptanastudio
c2206d9b85e30acbebbdc47c9cc22574decfb091
2021-08-15T12:56:50.000Z
[ "pytorch", "gpt2", "text-classification", "transformers" ]
text-classification
false
MickyMike
null
MickyMike/1-GPT2SP-aptanastudio
4
null
transformers
17,985
Entry not found
MickyMike/1-GPT2SP-bamboo
2f284831b013d228f01f3333cd77803c79125301
2021-08-15T13:03:35.000Z
[ "pytorch", "gpt2", "text-classification", "transformers" ]
text-classification
false
MickyMike
null
MickyMike/1-GPT2SP-bamboo
4
null
transformers
17,986
Entry not found
MickyMike/1-GPT2SP-clover
8718c21c96767b9c65f8d6dd49a4615494f1b809
2021-08-15T13:09:47.000Z
[ "pytorch", "gpt2", "text-classification", "transformers" ]
text-classification
false
MickyMike
null
MickyMike/1-GPT2SP-clover
4
null
transformers
17,987
Entry not found
MickyMike/1-GPT2SP-jirasoftware
a6e10b370003c2f322fc300c015d6d78f58646a6
2021-08-15T13:27:41.000Z
[ "pytorch", "gpt2", "text-classification", "transformers" ]
text-classification
false
MickyMike
null
MickyMike/1-GPT2SP-jirasoftware
4
null
transformers
17,988
Entry not found
MickyMike/1-GPT2SP-mesos
39db072949aad26e70855207c66f947623be8131
2021-08-15T13:34:01.000Z
[ "pytorch", "gpt2", "text-classification", "transformers" ]
text-classification
false
MickyMike
null
MickyMike/1-GPT2SP-mesos
4
null
transformers
17,989
Entry not found
MickyMike/1-GPT2SP-mulestudio
6f46afdbfc431b08d317528cf695565e2c2aed70
2021-08-15T13:52:00.000Z
[ "pytorch", "gpt2", "text-classification", "transformers" ]
text-classification
false
MickyMike
null
MickyMike/1-GPT2SP-mulestudio
4
null
transformers
17,990
Entry not found
MickyMike/1-GPT2SP-talenddataquality
d5c3d1a0d9731f7ca2d7c55b83876a293b39b108
2021-08-15T14:04:57.000Z
[ "pytorch", "gpt2", "text-classification", "transformers" ]
text-classification
false
MickyMike
null
MickyMike/1-GPT2SP-talenddataquality
4
null
transformers
17,991
Entry not found
MickyMike/1-GPT2SP-talendesb
745780d1686327f4870f23e40b4ec08f62af0ae0
2021-08-15T14:11:36.000Z
[ "pytorch", "gpt2", "text-classification", "transformers" ]
text-classification
false
MickyMike
null
MickyMike/1-GPT2SP-talendesb
4
null
transformers
17,992
Entry not found
MickyMike/1-GPT2SP-titanium
4772c9b78fcd22019217f27ac6cc41e349e807a7
2021-08-15T14:17:23.000Z
[ "pytorch", "gpt2", "text-classification", "transformers" ]
text-classification
false
MickyMike
null
MickyMike/1-GPT2SP-titanium
4
null
transformers
17,993
Entry not found
MickyMike/1-GPT2SP-usergrid
67a5c517bad6fbfa18419725106675050947dce8
2021-08-15T14:23:31.000Z
[ "pytorch", "gpt2", "text-classification", "transformers" ]
text-classification
false
MickyMike
null
MickyMike/1-GPT2SP-usergrid
4
null
transformers
17,994
Entry not found
MickyMike/11-GPT2SP-appceleratorstudio-aptanastudio
a695b0390a604489670268d4b87ebb30eab23452
2021-08-15T23:40:10.000Z
[ "pytorch", "gpt2", "text-classification", "transformers" ]
text-classification
false
MickyMike
null
MickyMike/11-GPT2SP-appceleratorstudio-aptanastudio
4
null
transformers
17,995
Entry not found
MickyMike/11-GPT2SP-aptanastudio-titanium
ad5820c50cc84962dcdbed049044c0bf3de50a6f
2021-08-15T23:58:24.000Z
[ "pytorch", "gpt2", "text-classification", "transformers" ]
text-classification
false
MickyMike
null
MickyMike/11-GPT2SP-aptanastudio-titanium
4
null
transformers
17,996
Entry not found
MickyMike/11-GPT2SP-mule-mulestudio
96b283efdf9eb68ba46cd1a94039263d87a0cfb1
2021-08-16T00:04:35.000Z
[ "pytorch", "gpt2", "text-classification", "transformers" ]
text-classification
false
MickyMike
null
MickyMike/11-GPT2SP-mule-mulestudio
4
null
transformers
17,997
Entry not found
MickyMike/11-GPT2SP-mulestudio-mule
c904b0a92af29c484766235e627f9ca882f02308
2021-08-16T00:10:11.000Z
[ "pytorch", "gpt2", "text-classification", "transformers" ]
text-classification
false
MickyMike
null
MickyMike/11-GPT2SP-mulestudio-mule
4
null
transformers
17,998
Entry not found
MickyMike/11-GPT2SP-titanium-appceleratorstudio
b0b8121a458eff4a51ecea9931e370acd2b4092c
2021-08-15T23:53:03.000Z
[ "pytorch", "gpt2", "text-classification", "transformers" ]
text-classification
false
MickyMike
null
MickyMike/11-GPT2SP-titanium-appceleratorstudio
4
null
transformers
17,999
Entry not found