modelId
stringlengths
4
112
sha
stringlengths
40
40
lastModified
stringlengths
24
24
tags
list
pipeline_tag
stringclasses
29 values
private
bool
1 class
author
stringlengths
2
38
config
null
id
stringlengths
4
112
downloads
float64
0
36.8M
likes
float64
0
712
library_name
stringclasses
17 values
__index_level_0__
int64
0
38.5k
readme
stringlengths
0
186k
AnonymousSub/declutr-emanuals-s10-SR
ab42891519600ce989a82810d1d27f71639d219f
2021-10-05T11:21:10.000Z
[ "pytorch", "roberta", "text-classification", "transformers" ]
text-classification
false
AnonymousSub
null
AnonymousSub/declutr-emanuals-s10-SR
4
null
transformers
17,700
Entry not found
AnonymousSub/declutr-model_wikiqa
c915d8180aba8551ccf9564b6a5daae155cffc61
2022-01-22T23:40:52.000Z
[ "pytorch", "roberta", "text-classification", "transformers" ]
text-classification
false
AnonymousSub
null
AnonymousSub/declutr-model_wikiqa
4
null
transformers
17,701
Entry not found
AnonymousSub/declutr-s10-AR
1c7784f7ef0c7ddab0c4f047c2449d065e8241c2
2021-10-03T04:57:08.000Z
[ "pytorch", "roberta", "text-classification", "transformers" ]
text-classification
false
AnonymousSub
null
AnonymousSub/declutr-s10-AR
4
null
transformers
17,702
Entry not found
AnonymousSub/declutr-s10-SR
6c9b48b3edb4a42cb37fe2382f9ee417713faab1
2021-10-05T12:09:55.000Z
[ "pytorch", "roberta", "text-classification", "transformers" ]
text-classification
false
AnonymousSub
null
AnonymousSub/declutr-s10-SR
4
null
transformers
17,703
Entry not found
AnonymousSub/dummy_1
72d248566bd9c31b4303142dc7b2c802c35bf395
2021-11-03T04:54:19.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
AnonymousSub
null
AnonymousSub/dummy_1
4
null
transformers
17,704
Entry not found
AnonymousSub/hier_triplet_epochs_1_shard_10
2408f87a1459c0a1d6e11011e8229fbbd88891bf
2022-01-04T08:14:15.000Z
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
false
AnonymousSub
null
AnonymousSub/hier_triplet_epochs_1_shard_10
4
null
transformers
17,705
Entry not found
AnonymousSub/rule_based_bert_quadruplet_epochs_1_shard_1_wikiqa
2827f6da850fa22a37c415bebe10fd5055bac93c
2022-01-22T23:46:17.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
AnonymousSub
null
AnonymousSub/rule_based_bert_quadruplet_epochs_1_shard_1_wikiqa
4
null
transformers
17,706
Entry not found
AnonymousSub/rule_based_hier_quadruplet_epochs_1_shard_1_wikiqa
f114a399c68ee63e817256d7bf660edeaf9b4525
2022-01-23T01:42:47.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
AnonymousSub
null
AnonymousSub/rule_based_hier_quadruplet_epochs_1_shard_1_wikiqa
4
null
transformers
17,707
Entry not found
AnonymousSub/rule_based_only_classfn_twostage_epochs_1_shard_1_wikiqa
4589d2f4ce1ef56ff99a06edd15ea28f3b529ae5
2022-01-23T07:48:22.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
AnonymousSub
null
AnonymousSub/rule_based_only_classfn_twostage_epochs_1_shard_1_wikiqa
4
null
transformers
17,708
Entry not found
AnonymousSub/rule_based_roberta_only_classfn_twostage_epochs_1_shard_1_squad2.0
623372de34aa1ce3ce86ac98a428bd3efd1c85ed
2022-01-18T03:22:36.000Z
[ "pytorch", "roberta", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
AnonymousSub
null
AnonymousSub/rule_based_roberta_only_classfn_twostage_epochs_1_shard_1_squad2.0
4
null
transformers
17,709
Entry not found
AnonymousSub/rule_based_roberta_twostagequadruplet_hier_epochs_1_shard_1
3470490bf6a22158a282c3b58331f9d4c0277333
2022-01-05T10:20:08.000Z
[ "pytorch", "roberta", "feature-extraction", "transformers" ]
feature-extraction
false
AnonymousSub
null
AnonymousSub/rule_based_roberta_twostagequadruplet_hier_epochs_1_shard_1
4
null
transformers
17,710
Entry not found
Arnold/wav2vec2-hausa2-demo-colab
f7924ab0871c0e9e42e47494670d7aea0a1e1da2
2022-02-13T01:24:29.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "dataset:common_voice", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
Arnold
null
Arnold/wav2vec2-hausa2-demo-colab
4
null
transformers
17,711
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice model-index: - name: wav2vec2-hausa2-demo-colab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-hausa2-demo-colab This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 1.2032 - Wer: 0.7237 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.1683 | 12.49 | 400 | 1.0279 | 0.7211 | | 0.0995 | 24.98 | 800 | 1.2032 | 0.7237 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
Ayah/GPT2-DBpedia
9c448b3a659e0b667b9a3112a0eb229a194a630e
2022-01-30T07:32:41.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
Ayah
null
Ayah/GPT2-DBpedia
4
null
transformers
17,712
Entry not found
AyushPJ/ai-club-inductions-21-nlp-roBERTa-base-squad-v2
a58669cd7df42be1c7c82d5c1b32c205b1599ea8
2021-10-21T19:08:11.000Z
[ "pytorch", "roberta", "question-answering", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
question-answering
false
AyushPJ
null
AyushPJ/ai-club-inductions-21-nlp-roBERTa-base-squad-v2
4
null
transformers
17,713
--- tags: - generated_from_trainer model-index: - name: ai-club-inductions-21-nlp-roBERTa-base-squad-v2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ai-club-inductions-21-nlp-roBERTa-base-squad-v2 This model was trained from scratch on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Framework versions - Transformers 4.11.3 - Pytorch 1.7.1+cpu - Datasets 1.14.0 - Tokenizers 0.10.3
Azaghast/DistilBART-SCP-ParaSummarization
1e8ad1c9629548a502a7b044ea20483ca3b22e99
2021-08-25T09:49:44.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
Azaghast
null
Azaghast/DistilBART-SCP-ParaSummarization
4
null
transformers
17,714
Entry not found
BME-TMIT/foszt2oszt
8ad158f4f1d1d758d5d286533ee5aa63a10ef11a
2022-01-07T16:10:24.000Z
[ "pytorch", "encoder-decoder", "text2text-generation", "hu", "transformers", "autotrain_compatible" ]
text2text-generation
false
BME-TMIT
null
BME-TMIT/foszt2oszt
4
1
transformers
17,715
--- language: hu metrics: rouge --- [Paper](https://hlt.bme.hu/en/publ/foszt2oszt) We publish an abstractive summarizer for Hungarian, an encoder-decoder model initialized with [huBERT](huggingface.co/SZTAKI-HLT/hubert-base-cc), and fine-tuned on the [ELTE.DH](https://elte-dh.hu/) corpus of former Hungarian news portals. The model produces fluent output in the correct topic, but it hallucinates frequently. Our quantitative evaluation on automatic and human transcripts of news (with automatic and human-made punctuation, [Tündik et al. (2019)](https://www.isca-speech.org/archive/interspeech_2019/tundik19_interspeech.html), [Tündik and Szaszák (2019)](https://www.isca-speech.org/archive/interspeech_2019/szaszak19_interspeech.html)) shows that the model is robust with respect to errors in either automatic speech recognition or automatic punctuation restoration. In fine-tuning and inference, we followed [a jupyter notebook by Patrick von Platen](https://github.com/patrickvonplaten/notebooks/blob/master/BERT2BERT_for_CNN_Dailymail.ipynb). Most hyper-parameters are the same as those by von Platen, but we found it advantageous to change the minimum length of the summary to 8 word- pieces (instead of 56), and the number of beams in beam search to 5 (instead of 4). Our model was fine-tuned on a server of the [SZTAKI-HLT](hlt.bme.hu/) group, which kindly provided access to it.
BenWitter/DialoGPT-small-Tyrion
4e897f7bbce4404407f2d50732467dd66350fd84
2021-09-20T17:39:11.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
BenWitter
null
BenWitter/DialoGPT-small-Tyrion
4
null
transformers
17,716
\ntags: -conversational inference: false conversational: true #First time chat bot using a guide, low epoch count due to limited resources.
Bharathdamu/wav2vec2-large-xls-r-300m-hindi-colab
07764ede835930a7cc40f69eda072d056d136e1f
2021-11-23T09:32:23.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "dataset:common_voice", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
Bharathdamu
null
Bharathdamu/wav2vec2-large-xls-r-300m-hindi-colab
4
null
transformers
17,717
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice model-index: - name: wav2vec2-large-xls-r-300m-hindi-colab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-hindi-colab This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.13.3 - Tokenizers 0.10.3
BigSalmon/FormalBerta3
86b989161f549a417563cea263422eb8f87cf490
2021-12-02T00:20:12.000Z
[ "pytorch", "roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
BigSalmon
null
BigSalmon/FormalBerta3
4
null
transformers
17,718
https://huggingface.co/spaces/BigSalmon/MASK2
BigSalmon/GPTT
4c72f196e8692b25ef0f033d3ff865126f9bc2b5
2021-10-02T23:55:43.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
BigSalmon
null
BigSalmon/GPTT
4
null
transformers
17,719
Entry not found
BlightZz/MakiseKurisu
553ae6dc0ebe05d887df9d2caddf7b6abf2f5562
2021-07-01T19:02:26.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
BlightZz
null
BlightZz/MakiseKurisu
4
null
transformers
17,720
--- tags: - conversational --- # A small model based on the character Makise Kurisu from Steins;Gate. This was made as a test. # A new medium model was made using her lines, I also added some fixes. It can be found here: # https://huggingface.co/BlightZz/DialoGPT-medium-Kurisu
BonjinKim/dst_kor_bert
995b9e1adb5db23ec8fdf23397d01e938579122f
2021-05-19T05:35:57.000Z
[ "pytorch", "jax", "bert", "pretraining", "transformers" ]
null
false
BonjinKim
null
BonjinKim/dst_kor_bert
4
null
transformers
17,721
# Korean bert base model for DST - This is ConversationBert for dsksd/bert-ko-small-minimal(base-module) + 5 datasets - Use dsksd/bert-ko-small-minimal tokenizer - 5 datasets - tweeter_dialogue : xlsx - speech : trn - office_dialogue : json - KETI_dialogue : txt - WOS_dataset : json ```python tokenizer = AutoTokenizer.from_pretrained("BonjinKim/dst_kor_bert") model = AutoModel.from_pretrained("BonjinKim/dst_kor_bert") ```
BumBelDumBel/ZORK-AI-TEST
55e764ecdddcb530a58f27b9e69ab36701541d24
2021-07-16T17:12:42.000Z
[ "pytorch", "tensorboard", "gpt2", "text-generation", "transformers", "generated_from_trainer", "license:mit" ]
text-generation
false
BumBelDumBel
null
BumBelDumBel/ZORK-AI-TEST
4
null
transformers
17,722
--- license: mit tags: - generated_from_trainer model_index: - name: ZORK-AI-TEST results: - task: name: Causal Language Modeling type: text-generation --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ZORK-AI-TEST This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on an unkown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 200 - num_epochs: 3 ### Training results ### Framework versions - Transformers 4.8.2 - Pytorch 1.9.0+cu102 - Tokenizers 0.10.3
CLAck/indo-mixed
71d7128837b1e62559dfdb321e4d8a70bf517f72
2022-02-15T11:25:18.000Z
[ "pytorch", "marian", "text2text-generation", "en", "id", "dataset:ALT", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
CLAck
null
CLAck/indo-mixed
4
1
transformers
17,723
--- language: - en - id tags: - translation license: apache-2.0 datasets: - ALT metrics: - sacrebleu --- This model is pretrained on Chinese and Indonesian languages, and fine-tuned on Indonesian language. ### Example ``` %%capture !pip install transformers transformers[sentencepiece] from transformers import AutoModelForSeq2SeqLM, AutoTokenizer # Download the pretrained model for English-Vietnamese available on the hub model = AutoModelForSeq2SeqLM.from_pretrained("CLAck/indo-mixed") tokenizer = AutoTokenizer.from_pretrained("CLAck/indo-mixed") # Download a tokenizer that can tokenize English since the model Tokenizer doesn't know anymore how to do it # We used the one coming from the initial model # This tokenizer is used to tokenize the input sentence tokenizer_en = AutoTokenizer.from_pretrained('Helsinki-NLP/opus-mt-en-zh') # These special tokens are needed to reproduce the original tokenizer tokenizer_en.add_tokens(["<2zh>", "<2indo>"], special_tokens=True) sentence = "The cat is on the table" # This token is needed to identify the target language input_sentence = "<2indo> " + sentence translated = model.generate(**tokenizer_en(input_sentence, return_tensors="pt", padding=True)) output_sentence = [tokenizer.decode(t, skip_special_tokens=True) for t in translated] ``` ### Training results MIXED | Epoch | Bleu | |:-----:|:-------:| | 1.0 | 24.2579 | | 2.0 | 30.6287 | | 3.0 | 34.4417 | | 4.0 | 36.2577 | | 5.0 | 37.3488 | FINETUNING | Epoch | Bleu | |:-----:|:-------:| | 6.0 | 34.1676 | | 7.0 | 35.2320 | | 8.0 | 36.7110 | | 9.0 | 37.3195 | | 10.0 | 37.9461 |
CLAck/vi-en
9144e1b986723d126a844b525e8e8656efabd513
2022-02-15T11:33:16.000Z
[ "pytorch", "marian", "text2text-generation", "en", "vi", "dataset:ALT", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
CLAck
null
CLAck/vi-en
4
null
transformers
17,724
--- language: - en - vi tags: - translation license: apache-2.0 datasets: - ALT metrics: - sacrebleu --- This is a finetuning of a MarianMT pretrained on Chinese-English. The target language pair is Vietnamese-English. ### Example ``` %%capture !pip install transformers transformers[sentencepiece] from transformers import AutoModelForSeq2SeqLM, AutoTokenizer # Download the pretrained model for English-Vietnamese available on the hub model = AutoModelForSeq2SeqLM.from_pretrained("CLAck/vi-en") tokenizer = AutoTokenizer.from_pretrained("CLAck/vi-en") sentence = your_vietnamese_sentence # This token is needed to identify the source language input_sentence = "<2vi> " + sentence translated = model.generate(**tokenizer(input_sentence, return_tensors="pt", padding=True)) output_sentence = [tokenizer.decode(t, skip_special_tokens=True) for t in translated] ``` ### Training results | Epoch | Bleu | |:-----:|:-------:| | 1.0 | 21.3180 | | 2.0 | 26.8012 | | 3.0 | 29.3578 | | 4.0 | 31.5178 | | 5.0 | 32.8740 |
CLTL/icf-levels-mbw
8792f07ac8397ec5b5e2914907d575222a2fa088
2021-11-08T12:21:31.000Z
[ "pytorch", "roberta", "text-classification", "nl", "transformers", "license:mit" ]
text-classification
false
CLTL
null
CLTL/icf-levels-mbw
4
1
transformers
17,725
--- language: nl license: mit pipeline_tag: text-classification inference: false --- # Regression Model for Weight Maintenance Functioning Levels (ICF b530) ## Description A fine-tuned regression model that assigns a functioning level to Dutch sentences describing weight maintenance functions. The model is based on a pre-trained Dutch medical language model ([link to be added]()): a RoBERTa model, trained from scratch on clinical notes of the Amsterdam UMC. To detect sentences about weight maintenance functions in clinical text in Dutch, use the [icf-domains](https://huggingface.co/CLTL/icf-domains) classification model. ## Functioning levels Level | Meaning ---|--- 4 | Healthy weight, no unintentional weight loss or gain, SNAQ 0 or 1. 3 | Some unintentional weight loss or gain, or lost a lot of weight but gained some of it back afterwards. 2 | Moderate unintentional weight loss or gain (more than 3 kg in the last month), SNAQ 2. 1 | Severe unintentional weight loss or gain (more than 6 kg in the last 6 months), SNAQ &ge; 3. 0 | Severe unintentional weight loss or gain (more than 6 kg in the last 6 months) and admitted to ICU. The predictions generated by the model might sometimes be outside of the scale (e.g. 4.2); this is normal in a regression model. ## Intended uses and limitations - The model was fine-tuned (trained, validated and tested) on medical records from the Amsterdam UMC (the two academic medical centers of Amsterdam). It might perform differently on text from a different hospital or text from non-hospital sources (e.g. GP records). - The model was fine-tuned with the [Simple Transformers](https://simpletransformers.ai/) library. This library is based on Transformers but the model cannot be used directly with Transformers `pipeline` and classes; doing so would generate incorrect outputs. For this reason, the API on this page is disabled. ## How to use To generate predictions with the model, use the [Simple Transformers](https://simpletransformers.ai/) library: ``` from simpletransformers.classification import ClassificationModel model = ClassificationModel( 'roberta', 'CLTL/icf-levels-mbw', use_cuda=False, ) example = 'Tijdens opname >10 kg afgevallen.' _, raw_outputs = model.predict([example]) predictions = np.squeeze(raw_outputs) ``` The prediction on the example is: ``` 1.95 ``` The raw outputs look like this: ``` [[1.95429301]] ``` ## Training data - The training data consists of clinical notes from medical records (in Dutch) of the Amsterdam UMC. Due to privacy constraints, the data cannot be released. - The annotation guidelines used for the project can be found [here](https://github.com/cltl/a-proof-zonmw/tree/main/resources/annotation_guidelines). ## Training procedure The default training parameters of Simple Transformers were used, including: - Optimizer: AdamW - Learning rate: 4e-5 - Num train epochs: 1 - Train batch size: 8 ## Evaluation results The evaluation is done on a sentence-level (the classification unit) and on a note-level (the aggregated unit which is meaningful for the healthcare professionals). | | Sentence-level | Note-level |---|---|--- mean absolute error | 0.81 | 0.60 mean squared error | 0.83 | 0.56 root mean squared error | 0.91 | 0.75 ## Authors and references ### Authors Jenia Kim, Piek Vossen ### References TBD
CarlosPR/mt5-spanish-memmories-analysis
e9b9d60ddf8dad3c64c0a7be09db6f356edac8a5
2021-07-11T15:11:55.000Z
[ "pytorch", "mt5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
CarlosPR
null
CarlosPR/mt5-spanish-memmories-analysis
4
null
transformers
17,726
**mt5-spanish-memmories-analysis** **// ES** Este es un trabajo en proceso. Este modelo aún es solo un punto de control inicial que mejoraré en los próximos meses. El objetivo es proporcionar un modelo capaz de, utilizando una combinación de tareas del modelo mT5, comprender los recuerdos y proporcionar una interacción útil para las personas con alzeimer o personas como mi propio abuelo que escribió sus recuerdos, pero ahora es solo un libro en la estantería. por lo que este modelo puede hacer que esos recuerdos parezcan "vivos". Pronto (si aún no está cargado) cargaré un cuaderno de **Google Colaboratory con una aplicación visual** que al usar este modelo proporcionará toda la interacción necesaria y deseada con una interfaz fácil de usar. **LINK APLICACIÓN (sobre él se actualizará la versión):** https://drive.google.com/drive/folders/1ewGcxxCYHHwhHhWtGlLiryZfV8wEAaBa?usp=sharing -> Debe descargarse la carpeta "memorium" del enlace y subirse a Google Drive sin incluir en ninguna otra carpeta (directamente en "Mi unidad"). -> A continuación se podrá abrir la app, encontrada dentro de dicha carpeta "memorium" con nombre "APP-Memorium" (el nombre puede incluir además un indicador de versión). -> Si haciendo doble click en el archivo de la app no permite abrirla, debe hacerse pulsando el botón derecho sobre el archivo y seleccionar "Abrir con", "Conectar más aplicaciones", y a continuación escoger Colaboratory (se pedirá instalar). Completada la instalación (tiempo aproximado: 2 minutos) se podrá cerrar la ventana de instalación para volver a visualizar la carpeta donde se encuentra el fichero de la app, que de ahora en adelante se podrá abrir haciendo doble click. -> Se podrán añadir memorias en la carpeta "perfiles" como se indica en la aplicación en el apartado "crear perfil". **// EN** This is a work in process. This model is just an initial checkpoint yet that I will be improving the following months. **APP LINK (it will contain the latest version):** https://drive.google.com/drive/folders/1ewGcxxCYHHwhHhWtGlLiryZfV8wEAaBa?usp=sharing -> The folder "memorium" must be downloaded and then uploaded to Google Drive at "My Drive", NOT inside any other folder. The aim is to provide a model able to, using a mixture of mT5 model's tasks, understand memories and provide an interaction useful for people with alzeimer or people like my own grandfather who wrote his memories but it is now just a book in the shelf, so this model can make those memories seem 'alive'. I will soon (if it is´t uploaded by now) upload a **Google Colaboratory notebook with a visual App** that using this model will provide all the needed and wanted interaction with an easy-to-use Interface.
CenIA/albert-large-spanish-finetuned-xnli
84a4bc2c62b369a19fed311ec452c2df40b7749d
2021-12-12T03:44:52.000Z
[ "pytorch", "albert", "text-classification", "transformers" ]
text-classification
false
CenIA
null
CenIA/albert-large-spanish-finetuned-xnli
4
null
transformers
17,727
Entry not found
CenIA/albert-xlarge-spanish-finetuned-mldoc
04d8633a0a96d7c3d6c36aa9b803d24365999ec6
2022-01-11T04:58:11.000Z
[ "pytorch", "albert", "text-classification", "transformers" ]
text-classification
false
CenIA
null
CenIA/albert-xlarge-spanish-finetuned-mldoc
4
null
transformers
17,728
Entry not found
CenIA/albert-xlarge-spanish-finetuned-pawsx
7ba6eade81ea19c30aba4ba1b7a96afd7fd8e655
2022-01-03T17:56:40.000Z
[ "pytorch", "albert", "text-classification", "transformers" ]
text-classification
false
CenIA
null
CenIA/albert-xlarge-spanish-finetuned-pawsx
4
null
transformers
17,729
Entry not found
CenIA/albert-xlarge-spanish-finetuned-xnli
dbbbd1255a24da7c87bdcef1597cd6f627d081d3
2021-12-12T03:57:48.000Z
[ "pytorch", "albert", "text-classification", "transformers" ]
text-classification
false
CenIA
null
CenIA/albert-xlarge-spanish-finetuned-xnli
4
null
transformers
17,730
Entry not found
CenIA/albert-xxlarge-spanish-finetuned-mldoc
1bef7cf6bb102c7199bc4ae6a9c2adf96c919062
2022-01-12T13:00:28.000Z
[ "pytorch", "albert", "text-classification", "transformers" ]
text-classification
false
CenIA
null
CenIA/albert-xxlarge-spanish-finetuned-mldoc
4
null
transformers
17,731
Entry not found
CenIA/albert-xxlarge-spanish-finetuned-pawsx
514f890d3e4819d08b135a6a93f506a86e1d2f79
2022-01-06T04:05:17.000Z
[ "pytorch", "albert", "text-classification", "transformers" ]
text-classification
false
CenIA
null
CenIA/albert-xxlarge-spanish-finetuned-pawsx
4
null
transformers
17,732
Entry not found
CenIA/bert-base-spanish-wwm-cased-finetuned-pawsx
2b721ed53fcd6ef1618640ef70c30867e6535195
2022-01-03T22:28:02.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
CenIA
null
CenIA/bert-base-spanish-wwm-cased-finetuned-pawsx
4
null
transformers
17,733
Entry not found
CenIA/distillbert-base-spanish-uncased-finetuned-pawsx
8746b2a66e3a49f023f9e14f9bc166ab882e392b
2022-01-04T21:31:35.000Z
[ "pytorch", "distilbert", "text-classification", "transformers" ]
text-classification
false
CenIA
null
CenIA/distillbert-base-spanish-uncased-finetuned-pawsx
4
null
transformers
17,734
Entry not found
CenIA/distillbert-base-spanish-uncased-finetuned-qa-mlqa
60e143f6bf36ab7bbc919c39617f38cd4d9abfcd
2022-01-18T22:02:21.000Z
[ "pytorch", "distilbert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
CenIA
null
CenIA/distillbert-base-spanish-uncased-finetuned-qa-mlqa
4
null
transformers
17,735
Entry not found
CennetOguz/distilbert-base-uncased-finetuned-imdb
77edd47f11c46ac35f1b3c6acecb685b83ae52cb
2022-02-17T17:18:06.000Z
[ "pytorch", "tensorboard", "distilbert", "fill-mask", "dataset:imdb", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
fill-mask
false
CennetOguz
null
CennetOguz/distilbert-base-uncased-finetuned-imdb
4
null
transformers
17,736
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb model-index: - name: distilbert-base-uncased-finetuned-imdb results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-imdb This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 2.5187 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 256 - eval_batch_size: 256 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 40 | 2.5483 | | No log | 2.0 | 80 | 2.4607 | | No log | 3.0 | 120 | 2.5474 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.2+cu102 - Datasets 1.18.3 - Tokenizers 0.11.0
CennetOguz/distilbert-base-uncased-finetuned-recipe-accelerate-1
e69ec17e1f52981bcf8bd66a7286e46a23dbc8df
2022-02-21T22:12:47.000Z
[ "pytorch", "distilbert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
CennetOguz
null
CennetOguz/distilbert-base-uncased-finetuned-recipe-accelerate-1
4
null
transformers
17,737
Entry not found
CennetOguz/distilbert-base-uncased-finetuned-recipe-accelerate
695d10e61179941347eb707dae8028c747f2c542
2022-02-17T21:23:26.000Z
[ "pytorch", "distilbert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
CennetOguz
null
CennetOguz/distilbert-base-uncased-finetuned-recipe-accelerate
4
null
transformers
17,738
Entry not found
Cheatham/xlm-roberta-base-finetuned
48df48eff9fea0fe880642bda1eddf5ad8bc55c8
2022-01-27T10:49:20.000Z
[ "pytorch", "xlm-roberta", "text-classification", "transformers" ]
text-classification
false
Cheatham
null
Cheatham/xlm-roberta-base-finetuned
4
null
transformers
17,739
Entry not found
Cheatham/xlm-roberta-large-finetuned-d1
cd2ce45fabfd818dbf157bc56bfff42a2e8520c1
2022-01-27T12:22:59.000Z
[ "pytorch", "xlm-roberta", "text-classification", "transformers" ]
text-classification
false
Cheatham
null
Cheatham/xlm-roberta-large-finetuned-d1
4
null
transformers
17,740
Entry not found
Cheatham/xlm-roberta-large-finetuned-d12
b9b0299b3eb9b78c41f5347c05cdf637bab3c3c3
2022-02-08T16:54:37.000Z
[ "pytorch", "xlm-roberta", "text-classification", "transformers" ]
text-classification
false
Cheatham
null
Cheatham/xlm-roberta-large-finetuned-d12
4
null
transformers
17,741
Entry not found
Cheatham/xlm-roberta-large-finetuned
354f831c966b14d72591b9e0be2e64198e1edf5e
2021-09-20T19:07:46.000Z
[ "pytorch", "xlm-roberta", "text-classification", "transformers" ]
text-classification
false
Cheatham
null
Cheatham/xlm-roberta-large-finetuned
4
null
transformers
17,742
Entry not found
Cheatham/xlm-roberta-large-finetuned3
c2c3d4ff4d33ae2d364d8ede9d8749f1df991036
2022-01-27T10:26:35.000Z
[ "pytorch", "xlm-roberta", "text-classification", "transformers" ]
text-classification
false
Cheatham
null
Cheatham/xlm-roberta-large-finetuned3
4
null
transformers
17,743
Entry not found
CianB/Reed
d90adfdca20b40b70242ebc1bc05c5463d5766ff
2021-08-27T18:13:32.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
CianB
null
CianB/Reed
4
null
transformers
17,744
--- tags: - conversational --- # Reed
CleveGreen/FieldClassifier_v2
da4315aa4cec7f0fbe9df130a514f3a80bd1dab0
2022-02-04T17:36:12.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
CleveGreen
null
CleveGreen/FieldClassifier_v2
4
1
transformers
17,745
Entry not found
CleveGreen/FieldClassifier_v2_gpt
be0a2428690ab693ed8f8280b7e62c1f50cfac7f
2022-02-16T19:24:10.000Z
[ "pytorch", "gpt2", "text-classification", "transformers" ]
text-classification
false
CleveGreen
null
CleveGreen/FieldClassifier_v2_gpt
4
null
transformers
17,746
Entry not found
Contrastive-Tension/BERT-Distil-CT-STSb
b9ffe4b45ae9bfe2ccdcec3e35a84ad4b6a9074d
2021-02-23T19:38:16.000Z
[ "pytorch", "tf", "distilbert", "feature-extraction", "transformers" ]
feature-extraction
false
Contrastive-Tension
null
Contrastive-Tension/BERT-Distil-CT-STSb
4
null
transformers
17,747
Entry not found
CrisLeaf/generador-de-historias-de-tolkien
20656410cab68d19c48424985613c5d1438b8bbe
2022-01-18T02:57:12.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
CrisLeaf
null
CrisLeaf/generador-de-historias-de-tolkien
4
null
transformers
17,748
hello
DCU-NLP/bert-base-irish-cased-v1
63f70eed1862b3a35c344fd4bd4dcf6ba194c366
2022-06-29T15:30:00.000Z
[ "pytorch", "tf", "bert", "fill-mask", "arxiv:2107.12930", "transformers", "generated_from_keras_callback", "model-index", "autotrain_compatible" ]
fill-mask
false
DCU-NLP
null
DCU-NLP/bert-base-irish-cased-v1
4
null
transformers
17,749
--- tags: - generated_from_keras_callback model-index: - name: bert-base-irish-cased-v1 results: [] widget: - text: "Ceoltóir [MASK] ab ea Johnny Cash." --- # bert-base-irish-cased-v1 [gaBERT](https://arxiv.org/abs/2107.12930) is a BERT-base model trained on 7.9M Irish sentences. For more details, including the hyperparameters and pretraining corpora used please refer to our paper. ## Model description Encoder-based Transformer to be used to obtain features for finetuning for downstream tasks in Irish. ## Intended uses & limitations Some data used to pretrain gaBERT was scraped from the web which potentially contains ethically problematic text (bias, hate, adult content, etc.). Consequently, downstream tasks/applications using gaBERT should be thoroughly tested with respect to ethical considerations. ### Training hyperparameters The following hyperparameters were used during training: - optimizer: None - training_precision: float32 ### Framework versions - Transformers 4.20.1 - TensorFlow 2.9.1 - Datasets 2.3.2 - Tokenizers 0.12.1
DCU-NLP/electra-base-irish-cased-discriminator-v1
f88b98179fb553bcf99e466c7dcc00a3d435ce92
2021-11-15T18:03:16.000Z
[ "pytorch", "electra", "pretraining", "ga", "arxiv:2107.12930", "transformers", "irish", "license:apache-2.0" ]
null
false
DCU-NLP
null
DCU-NLP/electra-base-irish-cased-discriminator-v1
4
null
transformers
17,750
--- language: - ga license: apache-2.0 tags: - irish - electra widget: - text: "Ceoltóir [MASK] ab ea Johnny Cash." --- # gaELECTRA [gaELECTRA](https://arxiv.org/abs/2107.12930) is an ELECTRA model trained on 7.9M Irish sentences. For more details, including the hyperparameters and pretraining corpora used please refer to our paper. For fine-tuning this model on a token classification task, e.g. Named Entity Recognition, use the discriminator model. ### Limitations and bias Some data used to pretrain gaBERT was scraped from the web which potentially contains ethically problematic text (bias, hate, adult content, etc.). Consequently, downstream tasks/applications using gaBERT should be thoroughly tested with respect to ethical considerations. ### BibTeX entry and citation info If you use this model in your research, please consider citing our paper: ``` @article{DBLP:journals/corr/abs-2107-12930, author = {James Barry and Joachim Wagner and Lauren Cassidy and Alan Cowap and Teresa Lynn and Abigail Walsh and M{\'{\i}}che{\'{a}}l J. {\'{O}} Meachair and Jennifer Foster}, title = {gaBERT - an Irish Language Model}, journal = {CoRR}, volume = {abs/2107.12930}, year = {2021}, url = {https://arxiv.org/abs/2107.12930}, archivePrefix = {arXiv}, eprint = {2107.12930}, timestamp = {Fri, 30 Jul 2021 13:03:06 +0200}, biburl = {https://dblp.org/rec/journals/corr/abs-2107-12930.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ```
DSI/TweetBasedSA
537daa619bed898f1592e3669c56ad8bc3bbc697
2021-12-05T08:51:44.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
DSI
null
DSI/TweetBasedSA
4
null
transformers
17,751
Entry not found
DataikuNLP/distiluse-base-multilingual-cased-v1
80cd39db49377b868748b227d6f3bac677bf5e6a
2021-09-02T08:25:03.000Z
[ "pytorch", "distilbert", "feature-extraction", "arxiv:1908.10084", "sentence-transformers", "sentence-similarity", "transformers", "license:apache-2.0" ]
sentence-similarity
false
DataikuNLP
null
DataikuNLP/distiluse-base-multilingual-cased-v1
4
null
sentence-transformers
17,752
--- pipeline_tag: sentence-similarity license: apache-2.0 tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # DataikuNLP/distiluse-base-multilingual-cased-v1 **This model is a copy of [this model repository](https://huggingface.co/sentence-transformers/distiluse-base-multilingual-cased-v1) from sentence-transformers at the specific commit `3a706e4d65c04f868c4684adfd4da74141be8732`.** This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 512 dimensional dense vector space and can be used for tasks like clustering or semantic search. ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('sentence-transformers/distiluse-base-multilingual-cased-v1') embeddings = model.encode(sentences) print(embeddings) ``` ## Evaluation Results For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=sentence-transformers/distiluse-base-multilingual-cased-v1) ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: DistilBertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) (2): Dense({'in_features': 768, 'out_features': 512, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'}) ) ``` ## Citing & Authors This model was trained by [sentence-transformers](https://www.sbert.net/). If you find this model helpful, feel free to cite our publication [Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks](https://arxiv.org/abs/1908.10084): ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "http://arxiv.org/abs/1908.10084", } ```
Davlan/bert-base-multilingual-cased-finetuned-luo
e6416027901f8cd338782bad4ad0a564f75c6e95
2021-06-30T21:10:52.000Z
[ "pytorch", "bert", "fill-mask", "luo", "transformers", "autotrain_compatible" ]
fill-mask
false
Davlan
null
Davlan/bert-base-multilingual-cased-finetuned-luo
4
null
transformers
17,753
Hugging Face's logo --- language: luo datasets: --- # bert-base-multilingual-cased-finetuned-luo ## Model description **bert-base-multilingual-cased-finetuned-luo** is a **Luo BERT** model obtained by fine-tuning **bert-base-multilingual-cased** model on Luo language texts. It provides **better performance** than the multilingual BERT on named entity recognition datasets. Specifically, this model is a *bert-base-multilingual-cased* model that was fine-tuned on Luo corpus. ## Intended uses & limitations #### How to use You can use this model with Transformers *pipeline* for masked token prediction. ```python >>> from transformers import pipeline >>> unmasker = pipeline('fill-mask', model='Davlan/bert-base-multilingual-cased-finetuned-luo') >>> unmasker("Obila ma Changamwe [MASK] pedho achije angwen mag njore") ``` #### Limitations and bias This model is limited by its training dataset of entity-annotated news articles from a specific span of time. This may not generalize well for all use cases in different domains. ## Training data This model was fine-tuned on JW300 ## Training procedure This model was trained on a single NVIDIA V100 GPU ## Eval results on Test set (F-score, average over 5 runs) Dataset| mBERT F1 | luo_bert F1 -|-|- [MasakhaNER](https://github.com/masakhane-io/masakhane-ner) | 74.22 | 75.59 ### BibTeX entry and citation info By David Adelani ``` ```
Davlan/bert-base-multilingual-cased-finetuned-naija
c09d913ba4fab8a9f82371469dc99d36de81c380
2021-06-15T20:39:28.000Z
[ "pytorch", "bert", "fill-mask", "pcm", "transformers", "autotrain_compatible" ]
fill-mask
false
Davlan
null
Davlan/bert-base-multilingual-cased-finetuned-naija
4
null
transformers
17,754
Hugging Face's logo --- language: pcm datasets: --- # bert-base-multilingual-cased-finetuned-naija ## Model description **bert-base-multilingual-cased-finetuned-naija** is a **Nigerian-Pidgin BERT** model obtained by fine-tuning **bert-base-multilingual-cased** model on Nigerian-Pidgin language texts. It provides **better performance** than the multilingual BERT on named entity recognition datasets. Specifically, this model is a *bert-base-multilingual-cased* model that was fine-tuned on Nigerian-Pidgin corpus. ## Intended uses & limitations #### How to use You can use this model with Transformers *pipeline* for masked token prediction. ```python >>> from transformers import pipeline >>> unmasker = pipeline('fill-mask', model='Davlan/bert-base-multilingual-cased-finetuned-naija') >>> unmasker("Another attack on ambulance happen for Koforidua in March [MASK] year where robbers kill Ambulance driver") ``` #### Limitations and bias This model is limited by its training dataset of entity-annotated news articles from a specific span of time. This may not generalize well for all use cases in different domains. ## Training data This model was fine-tuned on JW300 + [BBC Pidgin](https://www.bbc.com/pidgin) ## Training procedure This model was trained on a single NVIDIA V100 GPU ## Eval results on Test set (F-score, average over 5 runs) Dataset| mBERT F1 | pcm_bert F1 -|-|- [MasakhaNER](https://github.com/masakhane-io/masakhane-ner) | 87.23 | 89.95 ### BibTeX entry and citation info By David Adelani ``` ```
Davlan/bert-base-multilingual-cased-finetuned-wolof
682ea796df2d59fbf8e1ef75ef8fca6d37532355
2021-06-30T15:50:31.000Z
[ "pytorch", "bert", "fill-mask", "wo", "transformers", "autotrain_compatible" ]
fill-mask
false
Davlan
null
Davlan/bert-base-multilingual-cased-finetuned-wolof
4
null
transformers
17,755
Hugging Face's logo --- language: wo datasets: --- # bert-base-multilingual-cased-finetuned-wolof ## Model description **bert-base-multilingual-cased-finetuned-wolof** is a **Wolof BERT** model obtained by fine-tuning **bert-base-multilingual-cased** model on Wolof language texts. It provides **better performance** than the multilingual BERT on named entity recognition datasets. Specifically, this model is a *bert-base-multilingual-cased* model that was fine-tuned on Wolof corpus. ## Intended uses & limitations #### How to use You can use this model with Transformers *pipeline* for masked token prediction. ```python >>> from transformers import pipeline >>> unmasker = pipeline('fill-mask', model='Davlan/bert-base-multilingual-cased-finetuned-wolof') >>> unmasker("Màkki Sàll feeñal na ay xalaatam ci mbir yu am solo yu soxal [MASK] ak Afrik.") ``` #### Limitations and bias This model is limited by its training dataset of entity-annotated news articles from a specific span of time. This may not generalize well for all use cases in different domains. ## Training data This model was fine-tuned on [Bible OT](http://biblewolof.com/) + [OPUS](https://opus.nlpl.eu/) + News Corpora (Lu Defu Waxu, Saabal, and Wolof Online) ## Training procedure This model was trained on a single NVIDIA V100 GPU ## Eval results on Test set (F-score, average over 5 runs) Dataset| mBERT F1 | wo_bert F1 -|-|- [MasakhaNER](https://github.com/masakhane-io/masakhane-ner) | 64.52 | 69.43 ### BibTeX entry and citation info By David Adelani ``` ```
Davlan/byt5-base-yor-eng-mt
702c112405b3a5712b785c6399ca4d81d486c55b
2021-08-08T21:58:46.000Z
[ "pytorch", "t5", "text2text-generation", "yo", "en", "dataset:JW300 + [Menyo-20k](https://huggingface.co/datasets/menyo20k_mt)", "arxiv:2103.08647", "transformers", "autotrain_compatible" ]
text2text-generation
false
Davlan
null
Davlan/byt5-base-yor-eng-mt
4
1
transformers
17,756
Hugging Face's logo --- language: - yo - en datasets: - JW300 + [Menyo-20k](https://huggingface.co/datasets/menyo20k_mt) --- # byt5-base-yor-eng-mt ## Model description **byt5-base-yor-eng-mt** is a **machine translation** model from Yorùbá language to English language based on a fine-tuned byt5-base model. It establishes a **strong baseline** for automatically translating texts from Yorùbá to English. Specifically, this model is a *byt5-base* model that was fine-tuned on JW300 Yorùbá corpus and [Menyo-20k](https://huggingface.co/datasets/menyo20k_mt) #### Limitations and bias This model is limited by its training dataset. This may not generalize well for all use cases in different domains. ## Training data This model was fine-tuned on on JW300 corpus and [Menyo-20k](https://huggingface.co/datasets/menyo20k_mt) dataset ## Training procedure This model was trained on NVIDIA V100 GPU ## Eval results on Test set (BLEU score) Fine-tuning byt5-base achieves 14.05 BLEU on [Menyo-20k test set](https://arxiv.org/abs/2103.08647) while mt5-base achieves 15.57 ### BibTeX entry and citation info By David Adelani ``` ```
Declan/FoxNews_model_v1
5273cf55d76ccd789f7886abecc85df5d335cecb
2021-12-12T23:21:35.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
Declan
null
Declan/FoxNews_model_v1
4
null
transformers
17,757
Entry not found
Declan/FoxNews_model_v3
1a4c1ce9d75287f4a6ea5aad7f09d0299882f0c0
2021-12-15T14:38:20.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
Declan
null
Declan/FoxNews_model_v3
4
null
transformers
17,758
Entry not found
Declan/HuffPost_model_v8
77bd3d5477598ea51076236207f3cd3ccce1a168
2021-12-19T23:17:15.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
Declan
null
Declan/HuffPost_model_v8
4
null
transformers
17,759
Entry not found
Declan/NPR_model_v8
f3048011dc7ead354c31cddbd7d82aca8d40a95d
2021-12-19T23:45:44.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
Declan
null
Declan/NPR_model_v8
4
null
transformers
17,760
Entry not found
Declan/NewYorkTimes_model_v8
f0b738266b37585391513ac4328a968ca7b955b3
2021-12-20T00:14:43.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
Declan
null
Declan/NewYorkTimes_model_v8
4
null
transformers
17,761
Entry not found
Declan/Politico_model_v1
a19fd6ee62841caba89e678598d38e1b27e72d8a
2021-12-14T04:22:06.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
Declan
null
Declan/Politico_model_v1
4
null
transformers
17,762
Entry not found
Declan/Politico_model_v8
d0aa550d2442a6ef996b03c57dd149b8c61357e9
2021-12-20T00:47:49.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
Declan
null
Declan/Politico_model_v8
4
null
transformers
17,763
Entry not found
Declan/WallStreetJournal_model_v8
561152ab789aa86138165de55013654dbe127118
2021-12-20T03:11:46.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
Declan
null
Declan/WallStreetJournal_model_v8
4
null
transformers
17,764
Entry not found
DeltaHub/adapter_t5-3b_qnli
d7b829736f5a6fd39be78ff2b56dd140b236a91e
2022-02-12T08:53:17.000Z
[ "pytorch", "transformers" ]
null
false
DeltaHub
null
DeltaHub/adapter_t5-3b_qnli
4
null
transformers
17,765
Entry not found
Doogie/Waynehills-STT-doogie
8f44499387b42a632623190e41316f37e858fd78
2021-12-16T01:25:27.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
Doogie
null
Doogie/Waynehills-STT-doogie
4
null
transformers
17,766
--- license: apache-2.0 tags: - generated_from_trainer model-index: name: Waynehills-STT-doogie --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Waynehills-STT-doogie This model is a fine-tuned version of [Doogie/Waynehills-STT-doogie](https://huggingface.co/Doogie/Waynehills-STT-doogie) on an unknown dataset. It achieves the following results on the evaluation set: - eval_loss: 2.8180 - eval_wer: 0.9103 - eval_runtime: 25.2323 - eval_samples_per_second: 5.747 - eval_steps_per_second: 0.753 - epoch: 8.45 - step: 14000 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 1 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 20 ### Framework versions - Transformers 4.12.5 - Pytorch 1.10.0+cu113 - Datasets 1.16.1 - Tokenizers 0.10.3
DrishtiSharma/wav2vec2-large-xls-r-300m-or-d5
2ce8555bcea6571146f9d34a438cad41ab516cc6
2022-03-24T11:54:47.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "or", "dataset:mozilla-foundation/common_voice_8_0", "transformers", "mozilla-foundation/common_voice_8_0", "generated_from_trainer", "robust-speech-event", "model_for_talk", "hf-asr-leaderboard", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
DrishtiSharma
null
DrishtiSharma/wav2vec2-large-xls-r-300m-or-d5
4
null
transformers
17,767
--- language: - or license: apache-2.0 tags: - automatic-speech-recognition - mozilla-foundation/common_voice_8_0 - generated_from_trainer - or - robust-speech-event - model_for_talk - hf-asr-leaderboard datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: wav2vec2-large-xls-r-300m-or-d5 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: or metrics: - name: Test WER type: wer value: 0.579136690647482 - name: Test CER type: cer value: 0.1572148018392818 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: or metrics: - name: Test WER type: wer value: NA - name: Test CER type: cer value: NA --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-or-d5 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - OR dataset. It achieves the following results on the evaluation set: - Loss: 0.9571 - Wer: 0.5450 ### Evaluation Commands 1. To evaluate on mozilla-foundation/common_voice_8_0 with test split python eval.py --model_id DrishtiSharma/wav2vec2-large-xls-r-300m-or-d5 --dataset mozilla-foundation/common_voice_8_0 --config or --split test --log_outputs 2. To evaluate on speech-recognition-community-v2/dev_data python eval.py --model_id DrishtiSharma/wav2vec2-large-xls-r-300m-or-d5 --dataset speech-recognition-community-v2/dev_data --config or --split validation --chunk_length_s 10 --stride_length_s 1 ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.000111 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 800 - num_epochs: 200 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 9.2958 | 12.5 | 300 | 4.9014 | 1.0 | | 3.4065 | 25.0 | 600 | 3.5150 | 1.0 | | 1.5402 | 37.5 | 900 | 0.8356 | 0.7249 | | 0.6049 | 50.0 | 1200 | 0.7754 | 0.6349 | | 0.4074 | 62.5 | 1500 | 0.7994 | 0.6217 | | 0.3097 | 75.0 | 1800 | 0.8815 | 0.5985 | | 0.2593 | 87.5 | 2100 | 0.8532 | 0.5754 | | 0.2097 | 100.0 | 2400 | 0.9077 | 0.5648 | | 0.1784 | 112.5 | 2700 | 0.9047 | 0.5668 | | 0.1567 | 125.0 | 3000 | 0.9019 | 0.5728 | | 0.1315 | 137.5 | 3300 | 0.9295 | 0.5827 | | 0.1125 | 150.0 | 3600 | 0.9256 | 0.5681 | | 0.1035 | 162.5 | 3900 | 0.9148 | 0.5496 | | 0.0901 | 175.0 | 4200 | 0.9480 | 0.5483 | | 0.0817 | 187.5 | 4500 | 0.9799 | 0.5516 | | 0.079 | 200.0 | 4800 | 0.9571 | 0.5450 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
EMBEDDIA/rubert-tweetsentiment
0e20d4bc2a31b40c273e1ebb94861fc75bd23603
2021-07-09T14:36:23.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
EMBEDDIA
null
EMBEDDIA/rubert-tweetsentiment
4
null
transformers
17,768
Entry not found
Ebtihal/AraBertMo_base_V3
f4097315915711e4c3d6611c312fc073224a17df
2022-03-15T19:13:38.000Z
[ "pytorch", "bert", "fill-mask", "ar", "dataset:OSCAR", "transformers", "Fill-Mask", "autotrain_compatible" ]
fill-mask
false
Ebtihal
null
Ebtihal/AraBertMo_base_V3
4
null
transformers
17,769
--- language: ar tags: Fill-Mask datasets: OSCAR widget: - text: " السلام عليكم ورحمة[MASK] وبركاتة" - text: " اهلا وسهلا بكم في [MASK] من سيربح المليون" - text: " مرحبا بك عزيزي الزائر [MASK] موقعنا " --- # Arabic BERT Model **AraBERTMo** is an Arabic pre-trained language model based on [Google's BERT architechture](https://github.com/google-research/bert). AraBERTMo_base uses the same BERT-Base config. AraBERTMo_base now comes in 10 new variants All models are available on the `HuggingFace` model page under the [Ebtihal](https://huggingface.co/Ebtihal/) name. Checkpoints are available in PyTorch formats. ## Pretraining Corpus `AraBertMo_base_V3' model was pre-trained on ~3 million words: - [OSCAR](https://traces1.inria.fr/oscar/) - Arabic version "unshuffled_deduplicated_ar". ## Training results this model achieves the following results: | Task | Num examples | Num Epochs | Batch Size | steps | Wall time | training loss| |:----:|:----:|:----:|:----:|:-----:|:----:|:-----:| | Fill-Mask| 30024| 3 | 64 | 1410 | 3h 10m 31s | 8.0201 | ## Load Pretrained Model You can use this model by installing `torch` or `tensorflow` and Huggingface library `transformers`. And you can use it directly by initializing it like this: ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("Ebtihal/AraBertMo_base_V3") model = AutoModelForMaskedLM.from_pretrained("Ebtihal/AraBertMo_base_V3") ``` ## This model was built for master's degree research in an organization: - [University of kufa](https://uokufa.edu.iq/). - [Faculty of Computer Science and Mathematics](https://mathcomp.uokufa.edu.iq/). - **Department of Computer Science**
Ebtihal/AraBertMo_base_V7
99fc7ed855c80bc13aa4ea198209423057ab86ef
2022-03-16T13:27:40.000Z
[ "pytorch", "bert", "fill-mask", "ar", "dataset:OSCAR", "transformers", "Fill-Mask", "autotrain_compatible" ]
fill-mask
false
Ebtihal
null
Ebtihal/AraBertMo_base_V7
4
null
transformers
17,770
Arabic Model AraBertMo_base_V7 --- language: ar tags: Fill-Mask datasets: OSCAR widget: - text: " السلام عليكم ورحمة[MASK] وبركاتة" - text: " اهلا وسهلا بكم في [MASK] من سيربح المليون" - text: " مرحبا بك عزيزي الزائر [MASK] موقعنا " --- # Arabic BERT Model **AraBERTMo** is an Arabic pre-trained language model based on [Google's BERT architechture](https://github.com/google-research/bert). AraBERTMo_base uses the same BERT-Base config. AraBERTMo_base now comes in 10 new variants All models are available on the `HuggingFace` model page under the [Ebtihal](https://huggingface.co/Ebtihal/) name. Checkpoints are available in PyTorch formats. ## Pretraining Corpus `AraBertMo_base_V7' model was pre-trained on ~3 million words: - [OSCAR](https://traces1.inria.fr/oscar/) - Arabic version "unshuffled_deduplicated_ar". ## Training results this model achieves the following results: | Task | Num examples | Num Epochs | Batch Size | steps | Wall time | training loss| |:----:|:----:|:----:|:----:|:-----:|:----:|:-----:| | Fill-Mask| 50046| 7 | 64 | 5915 | 5h 23m 5s | 7.1381 | ## Load Pretrained Model You can use this model by installing `torch` or `tensorflow` and Huggingface library `transformers`. And you can use it directly by initializing it like this: ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("Ebtihal/AraBertMo_base_V7") model = AutoModelForMaskedLM.from_pretrained("Ebtihal/AraBertMo_base_V7") ``` ## This model was built for master's degree research in an organization: - [University of kufa](https://uokufa.edu.iq/). - [Faculty of Computer Science and Mathematics](https://mathcomp.uokufa.edu.iq/). - **Department of Computer Science**
EhsanAghazadeh/bert-based-uncased-sst2-e1
e41395c69393fdcd5fe965b91c83f73d65f3c77e
2022-01-02T08:30:18.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
EhsanAghazadeh
null
EhsanAghazadeh/bert-based-uncased-sst2-e1
4
null
transformers
17,771
Entry not found
EhsanAghazadeh/electra-base-avg-2e-5-lcc
3c47de8e915fba530962570593a624af6334e518
2021-08-13T20:20:16.000Z
[ "pytorch", "electra", "text-classification", "transformers" ]
text-classification
false
EhsanAghazadeh
null
EhsanAghazadeh/electra-base-avg-2e-5-lcc
4
null
transformers
17,772
Entry not found
EhsanAghazadeh/electra-large-lcc-2e-5-42
77ff9bf3decfbdc0ff101ef5391eb868546a8210
2021-08-26T13:22:11.000Z
[ "pytorch", "electra", "text-classification", "transformers" ]
text-classification
false
EhsanAghazadeh
null
EhsanAghazadeh/electra-large-lcc-2e-5-42
4
null
transformers
17,773
Entry not found
EhsanAghazadeh/xlm-roberta-base-lcc-fa-2e-5-42
5b352b6acba1e50da9ee9b31beb3e2246750d426
2021-08-21T18:37:49.000Z
[ "pytorch", "xlm-roberta", "text-classification", "transformers" ]
text-classification
false
EhsanAghazadeh
null
EhsanAghazadeh/xlm-roberta-base-lcc-fa-2e-5-42
4
null
transformers
17,774
Entry not found
EhsanAghazadeh/xlm-roberta-base-random-weights
0cc2118b5fc3d38734baf66dbc3909dd2329e925
2021-08-28T21:27:29.000Z
[ "pytorch", "xlm-roberta", "feature-extraction", "transformers" ]
feature-extraction
false
EhsanAghazadeh
null
EhsanAghazadeh/xlm-roberta-base-random-weights
4
null
transformers
17,775
Entry not found
Einmalumdiewelt/T5-Base_GNAD
af114658c2aa1907baec17768eb2156f682709f5
2022-06-11T06:22:41.000Z
[ "pytorch", "t5", "text2text-generation", "de", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
text2text-generation
false
Einmalumdiewelt
null
Einmalumdiewelt/T5-Base_GNAD
4
null
transformers
17,776
--- language: - de license: apache-2.0 tags: - generated_from_trainer metrics: - rouge model-index: - name: T5-Base_GNAD results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # T5-Base_GNAD This model is a fine-tuned version of [t5-base](https://huggingface.co/t5-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.2144 - Rouge1: 26.012 - Rouge2: 7.0961 - Rougel: 18.1094 - Rougelsum: 22.507 - Gen Len: 55.018 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results ### Framework versions - Transformers 4.20.0.dev0 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
Emily/fyp
26241a2ffd2db16b9a9be6f1ff287c0101f96b16
2022-01-22T06:02:10.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
Emily
null
Emily/fyp
4
null
transformers
17,777
Entry not found
Eugenia/roberta-base-bne-finetuned-amazon_reviews_multi
e11654f112c78f9bb0f9bd148e9d8e69347eccbc
2021-11-16T00:32:57.000Z
[ "pytorch", "tensorboard", "roberta", "text-classification", "transformers" ]
text-classification
false
Eugenia
null
Eugenia/roberta-base-bne-finetuned-amazon_reviews_multi
4
null
transformers
17,778
Entry not found
GKLMIP/bert-laos-base-uncased
cd5c26f0e2221a2326bda48d8781595723d6f443
2021-07-31T06:12:22.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
GKLMIP
null
GKLMIP/bert-laos-base-uncased
4
null
transformers
17,779
The Usage of tokenizer for Lao is in https://github.com/GKLMIP/Pretrained-Models-For-Laos.
GKLMIP/bert-laos-small-uncased
6fb5cbc922c759734ef1a7c1cf0d0e12cdf0a338
2021-07-31T06:18:30.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
GKLMIP
null
GKLMIP/bert-laos-small-uncased
4
null
transformers
17,780
The Usage of tokenizer for Lao is in https://github.com/GKLMIP/Pretrained-Models-For-Laos.
GKLMIP/electra-khmer-small-uncased-tokenized
3ac6038c42cfe313eec893aec4b204369d4b014c
2021-07-31T05:42:53.000Z
[ "pytorch", "electra", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
GKLMIP
null
GKLMIP/electra-khmer-small-uncased-tokenized
4
null
transformers
17,781
Entry not found
GKLMIP/electra-laos-small-uncased
ff5c82ec50fecb177ab7a3c88e07b6da61eaa0c3
2021-07-31T06:36:30.000Z
[ "pytorch", "electra", "pretraining", "transformers" ]
null
false
GKLMIP
null
GKLMIP/electra-laos-small-uncased
4
null
transformers
17,782
The Usage of tokenizer for Lao is in https://github.com/GKLMIP/Pretrained-Models-For-Laos.
GKLMIP/electra-myanmar-small-uncased
d579f2976f5e57340061c972f8e8b3d927b22803
2021-10-11T04:58:25.000Z
[ "pytorch", "electra", "pretraining", "transformers" ]
null
false
GKLMIP
null
GKLMIP/electra-myanmar-small-uncased
4
null
transformers
17,783
The Usage of tokenizer for Myanmar is same as Laos in https://github.com/GKLMIP/Pretrained-Models-For-Laos. If you use our model, please consider citing our paper: ``` @InProceedings{, author="Jiang, Shengyi and Huang, Xiuwen and Cai, Xiaonan and Lin, Nankai", title="Pre-trained Models and Evaluation Data for the Myanmar Language", booktitle="The 28th International Conference on Neural Information Processing", year="2021", publisher="Springer International Publishing", address="Cham", } ```
GPL/scifact-tsdae-msmarco-distilbert-margin-mse
bdaad2db323cc68616f573a5d5df877e03ddd76d
2022-04-19T16:48:19.000Z
[ "pytorch", "distilbert", "feature-extraction", "transformers" ]
feature-extraction
false
GPL
null
GPL/scifact-tsdae-msmarco-distilbert-margin-mse
4
null
transformers
17,784
Entry not found
Geotrend/bert-base-25lang-cased
b10b5bc87455fc3df80fe4ac2b0af7fb74f91d28
2021-05-18T18:46:59.000Z
[ "pytorch", "tf", "jax", "bert", "fill-mask", "multilingual", "dataset:wikipedia", "transformers", "license:apache-2.0", "autotrain_compatible" ]
fill-mask
false
Geotrend
null
Geotrend/bert-base-25lang-cased
4
1
transformers
17,785
--- language: multilingual datasets: wikipedia license: apache-2.0 widget: - text: "Google generated 46 billion [MASK] in revenue." - text: "Paris is the capital of [MASK]." - text: "Algiers is the largest city in [MASK]." - text: "Paris est la [MASK] de la France." - text: "Paris est la capitale de la [MASK]." - text: "L'élection américaine a eu [MASK] en novembre 2020." - text: "تقع سويسرا في [MASK] أوروبا" - text: "إسمي محمد وأسكن في [MASK]." --- # bert-base-25lang-cased We are sharing smaller versions of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) that handle a custom number of languages. Unlike [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased), our versions give exactly the same representations produced by the original model which preserves the original accuracy. Handled languages: en, fr, es, de, zh, ar, ru, vi, el, bg, th, tr, hi, ur, sw, nl, uk, ro, pt, it, lt, no, pl, da and ja. For more information please visit our paper: [Load What You Need: Smaller Versions of Multilingual BERT](https://www.aclweb.org/anthology/2020.sustainlp-1.16.pdf). ## How to use ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("Geotrend/bert-base-25lang-cased") model = AutoModel.from_pretrained("Geotrend/bert-base-25lang-cased") ``` To generate other smaller versions of multilingual transformers please visit [our Github repo](https://github.com/Geotrend-research/smaller-transformers). ### How to cite ```bibtex @inproceedings{smallermbert, title={Load What You Need: Smaller Versions of Multilingual BERT}, author={Abdaoui, Amine and Pradel, Camille and Sigel, Grégoire}, booktitle={SustaiNLP / EMNLP}, year={2020} } ``` ## Contact Please contact [email protected] for any question, feedback or request.
Geotrend/bert-base-en-bg-cased
7a81f736caeca4731f48144c9126c9693e8f0fff
2021-05-18T19:02:31.000Z
[ "pytorch", "tf", "jax", "bert", "fill-mask", "multilingual", "dataset:wikipedia", "transformers", "license:apache-2.0", "autotrain_compatible" ]
fill-mask
false
Geotrend
null
Geotrend/bert-base-en-bg-cased
4
null
transformers
17,786
--- language: multilingual datasets: wikipedia license: apache-2.0 widget: - text: "Google generated 46 billion [MASK] in revenue." - text: "Paris is the capital of [MASK]." - text: "Algiers is the largest city in [MASK]." --- # bert-base-en-bg-cased We are sharing smaller versions of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) that handle a custom number of languages. Unlike [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased), our versions give exactly the same representations produced by the original model which preserves the original accuracy. For more information please visit our paper: [Load What You Need: Smaller Versions of Multilingual BERT](https://www.aclweb.org/anthology/2020.sustainlp-1.16.pdf). ## How to use ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("Geotrend/bert-base-en-bg-cased") model = AutoModel.from_pretrained("Geotrend/bert-base-en-bg-cased") ``` To generate other smaller versions of multilingual transformers please visit [our Github repo](https://github.com/Geotrend-research/smaller-transformers). ### How to cite ```bibtex @inproceedings{smallermbert, title={Load What You Need: Smaller Versions of Mutlilingual BERT}, author={Abdaoui, Amine and Pradel, Camille and Sigel, Grégoire}, booktitle={SustaiNLP / EMNLP}, year={2020} } ``` ## Contact Please contact [email protected] for any question, feedback or request.
Geotrend/bert-base-en-es-cased
11c4b8b5e0fc596369270376311fcebc29b2caae
2021-05-18T19:08:56.000Z
[ "pytorch", "tf", "jax", "bert", "fill-mask", "multilingual", "dataset:wikipedia", "transformers", "license:apache-2.0", "autotrain_compatible" ]
fill-mask
false
Geotrend
null
Geotrend/bert-base-en-es-cased
4
null
transformers
17,787
--- language: multilingual datasets: wikipedia license: apache-2.0 widget: - text: "Google generated 46 billion [MASK] in revenue." - text: "Paris is the capital of [MASK]." - text: "Algiers is the largest city in [MASK]." --- # bert-base-en-es-cased We are sharing smaller versions of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) that handle a custom number of languages. Unlike [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased), our versions give exactly the same representations produced by the original model which preserves the original accuracy. For more information please visit our paper: [Load What You Need: Smaller Versions of Multilingual BERT](https://www.aclweb.org/anthology/2020.sustainlp-1.16.pdf). ## How to use ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("Geotrend/bert-base-en-es-cased") model = AutoModel.from_pretrained("Geotrend/bert-base-en-es-cased") ``` To generate other smaller versions of multilingual transformers please visit [our Github repo](https://github.com/Geotrend-research/smaller-transformers). ### How to cite ```bibtex @inproceedings{smallermbert, title={Load What You Need: Smaller Versions of Mutlilingual BERT}, author={Abdaoui, Amine and Pradel, Camille and Sigel, Grégoire}, booktitle={SustaiNLP / EMNLP}, year={2020} } ``` ## Contact Please contact [email protected] for any question, feedback or request.
Geotrend/bert-base-en-fr-es-cased
f0e99c720bcb934c0c6a12f6d8a7993a699eeaf5
2021-05-18T19:21:01.000Z
[ "pytorch", "tf", "jax", "bert", "fill-mask", "multilingual", "dataset:wikipedia", "transformers", "license:apache-2.0", "autotrain_compatible" ]
fill-mask
false
Geotrend
null
Geotrend/bert-base-en-fr-es-cased
4
null
transformers
17,788
--- language: multilingual datasets: wikipedia license: apache-2.0 --- # bert-base-en-fr-es-cased We are sharing smaller versions of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) that handle a custom number of languages. Unlike [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased), our versions give exactly the same representations produced by the original model which preserves the original accuracy. For more information please visit our paper: [Load What You Need: Smaller Versions of Multilingual BERT](https://www.aclweb.org/anthology/2020.sustainlp-1.16.pdf). ## How to use ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("Geotrend/bert-base-en-fr-es-cased") model = AutoModel.from_pretrained("Geotrend/bert-base-en-fr-es-cased") ``` To generate other smaller versions of multilingual transformers please visit [our Github repo](https://github.com/Geotrend-research/smaller-transformers). ### How to cite ```bibtex @inproceedings{smallermbert, title={Load What You Need: Smaller Versions of Mutlilingual BERT}, author={Abdaoui, Amine and Pradel, Camille and Sigel, Grégoire}, booktitle={SustaiNLP / EMNLP}, year={2020} } ``` ## Contact Please contact [email protected] for any question, feedback or request.
Geotrend/bert-base-en-fr-it-cased
05cd253dbc0d8571edc7719f7dcd645e2be47657
2021-05-18T19:24:24.000Z
[ "pytorch", "tf", "jax", "bert", "fill-mask", "multilingual", "dataset:wikipedia", "transformers", "license:apache-2.0", "autotrain_compatible" ]
fill-mask
false
Geotrend
null
Geotrend/bert-base-en-fr-it-cased
4
null
transformers
17,789
--- language: multilingual datasets: wikipedia license: apache-2.0 --- # bert-base-en-fr-it-cased We are sharing smaller versions of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) that handle a custom number of languages. Unlike [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased), our versions give exactly the same representations produced by the original model which preserves the original accuracy. For more information please visit our paper: [Load What You Need: Smaller Versions of Multilingual BERT](https://www.aclweb.org/anthology/2020.sustainlp-1.16.pdf). ## How to use ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("Geotrend/bert-base-en-fr-it-cased") model = AutoModel.from_pretrained("Geotrend/bert-base-en-fr-it-cased") ``` To generate other smaller versions of multilingual transformers please visit [our Github repo](https://github.com/Geotrend-research/smaller-transformers). ### How to cite ```bibtex @inproceedings{smallermbert, title={Load What You Need: Smaller Versions of Mutlilingual BERT}, author={Abdaoui, Amine and Pradel, Camille and Sigel, Grégoire}, booktitle={SustaiNLP / EMNLP}, year={2020} } ``` ## Contact Please contact [email protected] for any question, feedback or request.
Geotrend/bert-base-en-fr-nl-ru-ar-cased
30be137f7e2234dce4fbacfbc0d5defbd5c7c82b
2021-05-18T19:26:42.000Z
[ "pytorch", "tf", "jax", "bert", "fill-mask", "multilingual", "dataset:wikipedia", "transformers", "license:apache-2.0", "autotrain_compatible" ]
fill-mask
false
Geotrend
null
Geotrend/bert-base-en-fr-nl-ru-ar-cased
4
null
transformers
17,790
--- language: multilingual datasets: wikipedia license: apache-2.0 --- # bert-base-en-fr-nl-ru-ar-cased We are sharing smaller versions of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) that handle a custom number of languages. Unlike [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased), our versions give exactly the same representations produced by the original model which preserves the original accuracy. For more information please visit our paper: [Load What You Need: Smaller Versions of Multilingual BERT](https://www.aclweb.org/anthology/2020.sustainlp-1.16.pdf). ## How to use ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("Geotrend/bert-base-en-fr-nl-ru-ar-cased") model = AutoModel.from_pretrained("Geotrend/bert-base-en-fr-nl-ru-ar-cased") ``` To generate other smaller versions of multilingual transformers please visit [our Github repo](https://github.com/Geotrend-research/smaller-transformers). ### How to cite ```bibtex @inproceedings{smallermbert, title={Load What You Need: Smaller Versions of Mutlilingual BERT}, author={Abdaoui, Amine and Pradel, Camille and Sigel, Grégoire}, booktitle={SustaiNLP / EMNLP}, year={2020} } ``` ## Contact Please contact [email protected] for any question, feedback or request.
Geotrend/bert-base-en-fr-zh-ja-vi-cased
e3a3a45e0cd8d7741dc8e49c9eaeaf4f27370c01
2021-05-18T19:30:16.000Z
[ "pytorch", "tf", "jax", "bert", "fill-mask", "multilingual", "dataset:wikipedia", "transformers", "license:apache-2.0", "autotrain_compatible" ]
fill-mask
false
Geotrend
null
Geotrend/bert-base-en-fr-zh-ja-vi-cased
4
null
transformers
17,791
--- language: multilingual datasets: wikipedia license: apache-2.0 --- # bert-base-en-fr-zh-ja-vi-cased We are sharing smaller versions of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) that handle a custom number of languages. Unlike [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased), our versions give exactly the same representations produced by the original model which preserves the original accuracy. For more information please visit our paper: [Load What You Need: Smaller Versions of Multilingual BERT](https://www.aclweb.org/anthology/2020.sustainlp-1.16.pdf). ## How to use ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("Geotrend/bert-base-en-fr-zh-ja-vi-cased") model = AutoModel.from_pretrained("Geotrend/bert-base-en-fr-zh-ja-vi-cased") ``` To generate other smaller versions of multilingual transformers please visit [our Github repo](https://github.com/Geotrend-research/smaller-transformers). ### How to cite ```bibtex @inproceedings{smallermbert, title={Load What You Need: Smaller Versions of Mutlilingual BERT}, author={Abdaoui, Amine and Pradel, Camille and Sigel, Grégoire}, booktitle={SustaiNLP / EMNLP}, year={2020} } ``` ## Contact Please contact [email protected] for any question, feedback or request.
Geotrend/bert-base-en-pt-cased
836c3e3a885e3b9a9992dfba8770c0ccab81559c
2021-05-18T19:42:48.000Z
[ "pytorch", "tf", "jax", "bert", "fill-mask", "multilingual", "dataset:wikipedia", "transformers", "license:apache-2.0", "autotrain_compatible" ]
fill-mask
false
Geotrend
null
Geotrend/bert-base-en-pt-cased
4
null
transformers
17,792
--- language: multilingual datasets: wikipedia license: apache-2.0 --- # bert-base-en-pt-cased We are sharing smaller versions of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) that handle a custom number of languages. Unlike [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased), our versions give exactly the same representations produced by the original model which preserves the original accuracy. For more information please visit our paper: [Load What You Need: Smaller Versions of Multilingual BERT](https://www.aclweb.org/anthology/2020.sustainlp-1.16.pdf). ## How to use ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("Geotrend/bert-base-en-pt-cased") model = AutoModel.from_pretrained("Geotrend/bert-base-en-pt-cased") ``` To generate other smaller versions of multilingual transformers please visit [our Github repo](https://github.com/Geotrend-research/smaller-transformers). ### How to cite ```bibtex @inproceedings{smallermbert, title={Load What You Need: Smaller Versions of Mutlilingual BERT}, author={Abdaoui, Amine and Pradel, Camille and Sigel, Grégoire}, booktitle={SustaiNLP / EMNLP}, year={2020} } ``` ## Contact Please contact [email protected] for any question, feedback or request.
Geotrend/bert-base-en-ur-cased
8d472fb7a9d1406dde861b54c0935f946fd32deb
2021-05-18T19:50:18.000Z
[ "pytorch", "tf", "jax", "bert", "fill-mask", "multilingual", "dataset:wikipedia", "transformers", "license:apache-2.0", "autotrain_compatible" ]
fill-mask
false
Geotrend
null
Geotrend/bert-base-en-ur-cased
4
null
transformers
17,793
--- language: multilingual datasets: wikipedia license: apache-2.0 widget: - text: "Google generated 46 billion [MASK] in revenue." - text: "Paris is the capital of [MASK]." - text: "Algiers is the largest city in [MASK]." --- # bert-base-en-ur-cased We are sharing smaller versions of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) that handle a custom number of languages. Unlike [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased), our versions give exactly the same representations produced by the original model which preserves the original accuracy. For more information please visit our paper: [Load What You Need: Smaller Versions of Multilingual BERT](https://www.aclweb.org/anthology/2020.sustainlp-1.16.pdf). ## How to use ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("Geotrend/bert-base-en-ur-cased") model = AutoModel.from_pretrained("Geotrend/bert-base-en-ur-cased") ``` To generate other smaller versions of multilingual transformers please visit [our Github repo](https://github.com/Geotrend-research/smaller-transformers). ### How to cite ```bibtex @inproceedings{smallermbert, title={Load What You Need: Smaller Versions of Mutlilingual BERT}, author={Abdaoui, Amine and Pradel, Camille and Sigel, Grégoire}, booktitle={SustaiNLP / EMNLP}, year={2020} } ``` ## Contact Please contact [email protected] for any question, feedback or request.
Geotrend/bert-base-en-vi-cased
8b601f2b2c5eb89357a6de223692e1ad0ec3eff1
2021-05-18T19:51:36.000Z
[ "pytorch", "tf", "jax", "bert", "fill-mask", "multilingual", "dataset:wikipedia", "transformers", "license:apache-2.0", "autotrain_compatible" ]
fill-mask
false
Geotrend
null
Geotrend/bert-base-en-vi-cased
4
null
transformers
17,794
--- language: multilingual datasets: wikipedia license: apache-2.0 widget: - text: "Google generated 46 billion [MASK] in revenue." - text: "Paris is the capital of [MASK]." - text: "Algiers is the largest city in [MASK]." --- # bert-base-en-vi-cased We are sharing smaller versions of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) that handle a custom number of languages. Unlike [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased), our versions give exactly the same representations produced by the original model which preserves the original accuracy. For more information please visit our paper: [Load What You Need: Smaller Versions of Multilingual BERT](https://www.aclweb.org/anthology/2020.sustainlp-1.16.pdf). ## How to use ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("Geotrend/bert-base-en-vi-cased") model = AutoModel.from_pretrained("Geotrend/bert-base-en-vi-cased") ``` To generate other smaller versions of multilingual transformers please visit [our Github repo](https://github.com/Geotrend-research/smaller-transformers). ### How to cite ```bibtex @inproceedings{smallermbert, title={Load What You Need: Smaller Versions of Mutlilingual BERT}, author={Abdaoui, Amine and Pradel, Camille and Sigel, Grégoire}, booktitle={SustaiNLP / EMNLP}, year={2020} } ``` ## Contact Please contact [email protected] for any question, feedback or request.
Geotrend/distilbert-base-en-de-cased
ca6b2e351dc15b3dd38c9a70ccb2b01daaacff96
2021-08-16T13:55:29.000Z
[ "pytorch", "distilbert", "fill-mask", "multilingual", "dataset:wikipedia", "transformers", "license:apache-2.0", "autotrain_compatible" ]
fill-mask
false
Geotrend
null
Geotrend/distilbert-base-en-de-cased
4
null
transformers
17,795
--- language: multilingual datasets: wikipedia license: apache-2.0 --- # distilbert-base-en-de-cased We are sharing smaller versions of [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased) that handle a custom number of languages. Our versions give exactly the same representations produced by the original model which preserves the original accuracy. For more information please visit our paper: [Load What You Need: Smaller Versions of Multilingual BERT](https://www.aclweb.org/anthology/2020.sustainlp-1.16.pdf). ## How to use ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("Geotrend/distilbert-base-en-de-cased") model = AutoModel.from_pretrained("Geotrend/distilbert-base-en-de-cased") ``` To generate other smaller versions of multilingual transformers please visit [our Github repo](https://github.com/Geotrend-research/smaller-transformers). ### How to cite ```bibtex @inproceedings{smallermdistilbert, title={Load What You Need: Smaller Versions of Mutlilingual BERT}, author={Abdaoui, Amine and Pradel, Camille and Sigel, Grégoire}, booktitle={SustaiNLP / EMNLP}, year={2020} } ``` ## Contact Please contact [email protected] for any question, feedback or request.
Geotrend/distilbert-base-en-es-it-cased
e813e566d4180a2a98cfe4473a8933b55c394a51
2021-07-27T20:18:12.000Z
[ "pytorch", "distilbert", "fill-mask", "multilingual", "dataset:wikipedia", "transformers", "license:apache-2.0", "autotrain_compatible" ]
fill-mask
false
Geotrend
null
Geotrend/distilbert-base-en-es-it-cased
4
null
transformers
17,796
--- language: multilingual datasets: wikipedia license: apache-2.0 --- # distilbert-base-en-es-it-cased We are sharing smaller versions of [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased) that handle a custom number of languages. Our versions give exactly the same representations produced by the original model which preserves the original accuracy. For more information please visit our paper: [Load What You Need: Smaller Versions of Multilingual BERT](https://www.aclweb.org/anthology/2020.sustainlp-1.16.pdf). ## How to use ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("Geotrend/distilbert-base-en-es-it-cased") model = AutoModel.from_pretrained("Geotrend/distilbert-base-en-es-it-cased") ``` To generate other smaller versions of multilingual transformers please visit [our Github repo](https://github.com/Geotrend-research/smaller-transformers). ### How to cite ```bibtex @inproceedings{smallermdistilbert, title={Load What You Need: Smaller Versions of Mutlilingual BERT}, author={Abdaoui, Amine and Pradel, Camille and Sigel, Grégoire}, booktitle={SustaiNLP / EMNLP}, year={2020} } ``` ## Contact Please contact [email protected] for any question, feedback or request.
Geotrend/distilbert-base-en-fr-it-cased
fae009835bf1996017bac8ad61ccbe10f5b9ca17
2021-07-27T22:24:51.000Z
[ "pytorch", "distilbert", "fill-mask", "multilingual", "dataset:wikipedia", "transformers", "license:apache-2.0", "autotrain_compatible" ]
fill-mask
false
Geotrend
null
Geotrend/distilbert-base-en-fr-it-cased
4
null
transformers
17,797
--- language: multilingual datasets: wikipedia license: apache-2.0 --- # distilbert-base-en-fr-it-cased We are sharing smaller versions of [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased) that handle a custom number of languages. Our versions give exactly the same representations produced by the original model which preserves the original accuracy. For more information please visit our paper: [Load What You Need: Smaller Versions of Multilingual BERT](https://www.aclweb.org/anthology/2020.sustainlp-1.16.pdf). ## How to use ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("Geotrend/distilbert-base-en-fr-it-cased") model = AutoModel.from_pretrained("Geotrend/distilbert-base-en-fr-it-cased") ``` To generate other smaller versions of multilingual transformers please visit [our Github repo](https://github.com/Geotrend-research/smaller-transformers). ### How to cite ```bibtex @inproceedings{smallermdistilbert, title={Load What You Need: Smaller Versions of Mutlilingual BERT}, author={Abdaoui, Amine and Pradel, Camille and Sigel, Grégoire}, booktitle={SustaiNLP / EMNLP}, year={2020} } ``` ## Contact Please contact [email protected] for any question, feedback or request.
Geotrend/distilbert-base-en-it-cased
67670503458f536da6e2c0a143f690704f2c2042
2021-07-27T21:32:50.000Z
[ "pytorch", "distilbert", "fill-mask", "multilingual", "dataset:wikipedia", "transformers", "license:apache-2.0", "autotrain_compatible" ]
fill-mask
false
Geotrend
null
Geotrend/distilbert-base-en-it-cased
4
null
transformers
17,798
--- language: multilingual datasets: wikipedia license: apache-2.0 --- # distilbert-base-en-it-cased We are sharing smaller versions of [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased) that handle a custom number of languages. Our versions give exactly the same representations produced by the original model which preserves the original accuracy. For more information please visit our paper: [Load What You Need: Smaller Versions of Multilingual BERT](https://www.aclweb.org/anthology/2020.sustainlp-1.16.pdf). ## How to use ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("Geotrend/distilbert-base-en-it-cased") model = AutoModel.from_pretrained("Geotrend/distilbert-base-en-it-cased") ``` To generate other smaller versions of multilingual transformers please visit [our Github repo](https://github.com/Geotrend-research/smaller-transformers). ### How to cite ```bibtex @inproceedings{smallermdistilbert, title={Load What You Need: Smaller Versions of Mutlilingual BERT}, author={Abdaoui, Amine and Pradel, Camille and Sigel, Grégoire}, booktitle={SustaiNLP / EMNLP}, year={2020} } ``` ## Contact Please contact [email protected] for any question, feedback or request.
Geotrend/distilbert-base-en-ja-cased
0f9e21a7a2eae9b99ba5e8563a474c398b4a5b2a
2021-07-27T13:31:25.000Z
[ "pytorch", "distilbert", "fill-mask", "multilingual", "dataset:wikipedia", "transformers", "license:apache-2.0", "autotrain_compatible" ]
fill-mask
false
Geotrend
null
Geotrend/distilbert-base-en-ja-cased
4
null
transformers
17,799
--- language: multilingual datasets: wikipedia license: apache-2.0 --- # distilbert-base-en-ja-cased We are sharing smaller versions of [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased) that handle a custom number of languages. Our versions give exactly the same representations produced by the original model which preserves the original accuracy. For more information please visit our paper: [Load What You Need: Smaller Versions of Multilingual BERT](https://www.aclweb.org/anthology/2020.sustainlp-1.16.pdf). ## How to use ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("Geotrend/distilbert-base-en-ja-cased") model = AutoModel.from_pretrained("Geotrend/distilbert-base-en-ja-cased") ``` To generate other smaller versions of multilingual transformers please visit [our Github repo](https://github.com/Geotrend-research/smaller-transformers). ### How to cite ```bibtex @inproceedings{smallermdistilbert, title={Load What You Need: Smaller Versions of Mutlilingual BERT}, author={Abdaoui, Amine and Pradel, Camille and Sigel, Grégoire}, booktitle={SustaiNLP / EMNLP}, year={2020} } ``` ## Contact Please contact [email protected] for any question, feedback or request.