modelId
stringlengths
4
112
sha
stringlengths
40
40
lastModified
stringlengths
24
24
tags
list
pipeline_tag
stringclasses
29 values
private
bool
1 class
author
stringlengths
2
38
config
null
id
stringlengths
4
112
downloads
float64
0
36.8M
likes
float64
0
712
library_name
stringclasses
17 values
__index_level_0__
int64
0
38.5k
readme
stringlengths
0
186k
Team-PIXEL/pixel-base-finetuned-qnli
066279a64f5529a4527e63b40bbcee9fa3e8f221
2022-07-15T02:52:20.000Z
[ "pytorch", "pixel", "text-classification", "en", "dataset:glue", "transformers", "generated_from_trainer", "model-index" ]
text-classification
false
Team-PIXEL
null
Team-PIXEL/pixel-base-finetuned-qnli
5
null
transformers
17,600
--- language: - en tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: pixel-base-finetuned-qnli results: - task: name: Text Classification type: text-classification dataset: name: GLUE QNLI type: glue args: qnli metrics: - name: Accuracy type: accuracy value: 0.8859600951857953 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # pixel-base-finetuned-qnli This model is a fine-tuned version of [Team-PIXEL/pixel-base](https://huggingface.co/Team-PIXEL/pixel-base) on the GLUE QNLI dataset. It achieves the following results on the evaluation set: - Loss: 0.9503 - Accuracy: 0.8860 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 64 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - training_steps: 15000 - mixed_precision_training: Apex, opt level O1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.5451 | 0.31 | 500 | 0.5379 | 0.7282 | | 0.4451 | 0.61 | 1000 | 0.3846 | 0.8318 | | 0.4567 | 0.92 | 1500 | 0.3543 | 0.8525 | | 0.3558 | 1.22 | 2000 | 0.3294 | 0.8638 | | 0.3324 | 1.53 | 2500 | 0.3221 | 0.8666 | | 0.3434 | 1.83 | 3000 | 0.2976 | 0.8774 | | 0.2573 | 2.14 | 3500 | 0.3193 | 0.8750 | | 0.2411 | 2.44 | 4000 | 0.3044 | 0.8794 | | 0.253 | 2.75 | 4500 | 0.2932 | 0.8834 | | 0.1653 | 3.05 | 5000 | 0.3364 | 0.8841 | | 0.1662 | 3.36 | 5500 | 0.3348 | 0.8797 | | 0.1816 | 3.67 | 6000 | 0.3440 | 0.8869 | | 0.1699 | 3.97 | 6500 | 0.3453 | 0.8845 | | 0.1027 | 4.28 | 7000 | 0.4277 | 0.8810 | | 0.0987 | 4.58 | 7500 | 0.4590 | 0.8832 | | 0.0974 | 4.89 | 8000 | 0.4311 | 0.8783 | | 0.0669 | 5.19 | 8500 | 0.5214 | 0.8819 | | 0.0583 | 5.5 | 9000 | 0.5776 | 0.8850 | | 0.065 | 5.8 | 9500 | 0.5646 | 0.8821 | | 0.0381 | 6.11 | 10000 | 0.6252 | 0.8796 | | 0.0314 | 6.41 | 10500 | 0.7222 | 0.8801 | | 0.0453 | 6.72 | 11000 | 0.6951 | 0.8823 | | 0.0264 | 7.03 | 11500 | 0.7620 | 0.8828 | | 0.0215 | 7.33 | 12000 | 0.8160 | 0.8834 | | 0.0176 | 7.64 | 12500 | 0.8583 | 0.8828 | | 0.0245 | 7.94 | 13000 | 0.8484 | 0.8867 | | 0.0124 | 8.25 | 13500 | 0.8927 | 0.8836 | | 0.0112 | 8.55 | 14000 | 0.9368 | 0.8827 | | 0.0154 | 8.86 | 14500 | 0.9405 | 0.8860 | | 0.0046 | 9.16 | 15000 | 0.9503 | 0.8860 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.11.0+cu113 - Datasets 2.0.0 - Tokenizers 0.11.6
huggingtweets/thomastrainrek
d8e268125fe164d667b22ccef939c34cf0c1d604
2022-07-17T02:03:59.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/thomastrainrek
5
null
transformers
17,601
--- language: en thumbnail: http://www.huggingtweets.com/thomastrainrek/1658023434881/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1321337599332593664/tqNLm-HD_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">thomas the trainwreck</div> <div style="text-align: center; font-size: 14px;">@thomastrainrek</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from thomas the trainwreck. | Data | thomas the trainwreck | | --- | --- | | Tweets downloaded | 1454 | | Retweets | 34 | | Short tweets | 40 | | Tweets kept | 1380 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/15e6z8cg/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @thomastrainrek's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2967djo2) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2967djo2/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/thomastrainrek') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
JoonJoon/koelectra-base-v3-discriminator-finetuned-ner
29e2af0578469824a76ee16a4f590ff7df003ccc
2022-07-15T06:43:05.000Z
[ "pytorch", "electra", "token-classification", "dataset:klue", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
token-classification
false
JoonJoon
null
JoonJoon/koelectra-base-v3-discriminator-finetuned-ner
5
null
transformers
17,602
--- license: apache-2.0 tags: - generated_from_trainer datasets: - klue metrics: - precision - recall - f1 - accuracy model-index: - name: koelectra-base-v3-discriminator-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: klue type: klue args: ner metrics: - name: Precision type: precision value: 0.6665182546749777 - name: Recall type: recall value: 0.7350073648032546 - name: F1 type: f1 value: 0.6990893625537877 - name: Accuracy type: accuracy value: 0.9395764497172635 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # koelectra-base-v3-discriminator-finetuned-ner This model is a fine-tuned version of [monologg/koelectra-base-v3-discriminator](https://huggingface.co/monologg/koelectra-base-v3-discriminator) on the klue dataset. It achieves the following results on the evaluation set: - Loss: 0.1957 - Precision: 0.6665 - Recall: 0.7350 - F1: 0.6991 - Accuracy: 0.9396 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 48 - eval_batch_size: 48 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 438 | 0.2588 | 0.5701 | 0.6655 | 0.6141 | 0.9212 | | 0.4333 | 2.0 | 876 | 0.2060 | 0.6671 | 0.7134 | 0.6895 | 0.9373 | | 0.1944 | 3.0 | 1314 | 0.1957 | 0.6665 | 0.7350 | 0.6991 | 0.9396 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.12.0+cu102 - Datasets 1.14.0 - Tokenizers 0.10.3
jinwooChoi/hjw_small_25_32_0.0001
1a129cd10e36943e4395b70e1e439e74419667d6
2022-07-15T07:32:27.000Z
[ "pytorch", "electra", "text-classification", "transformers" ]
text-classification
false
jinwooChoi
null
jinwooChoi/hjw_small_25_32_0.0001
5
null
transformers
17,603
Entry not found
darragh/swinunetr-btcv-base
2a60a8f819994b0210038531994703c7c7bd8e21
2022-07-15T21:01:42.000Z
[ "pytorch", "en", "dataset:BTCV", "transformers", "btcv", "medical", "swin", "license:apache-2.0" ]
null
false
darragh
null
darragh/swinunetr-btcv-base
5
null
transformers
17,604
--- language: en tags: - btcv - medical - swin license: apache-2.0 datasets: - BTCV --- # Model Overview This repository contains the code for Swin UNETR [1,2]. Swin UNETR is the state-of-the-art on Medical Segmentation Decathlon (MSD) and Beyond the Cranial Vault (BTCV) Segmentation Challenge dataset. In [1], a novel methodology is devised for pre-training Swin UNETR backbone in a self-supervised manner. We provide the option for training Swin UNETR by fine-tuning from pre-trained self-supervised weights or from scratch. The source repository for the training of these models can be found [here](https://github.com/Project-MONAI/research-contributions/tree/main/SwinUNETR/BTCV). # Installing Dependencies Dependencies for training and inference can be installed using the model requirements : ``` bash pip install -r requirements.txt ``` # Intended uses & limitations You can use the raw model for dicom segmentation, but it's mostly intended to be fine-tuned on a downstream task. Note that this model is primarily aimed at being fine-tuned on tasks which segment CAT scans or MRIs on images in dicom format. Dicom meta data mostly differs across medical facilities, so if applying to a new dataset, the model should be finetuned. # How to use To install necessary dependencies, run the below in bash. ``` git clone https://github.com/darraghdog/Project-MONAI-research-contributions pmrc pip install -r pmrc/requirements.txt cd pmrc/SwinUNETR/BTCV ``` To load the model from the hub. ``` >>> from swinunetr import SwinUnetrModelForInference >>> model = SwinUnetrModelForInference.from_pretrained('darragh/swinunetr-btcv-tiny') ``` # Limitations and bias The training data used for this model is specific to CAT scans from certain health facilities and machines. Data from other facilities may difffer in image distributions, and may require finetuning of the models for best performance. # Evaluation results We provide several pre-trained models on BTCV dataset in the following. <table> <tr> <th>Name</th> <th>Dice (overlap=0.7)</th> <th>Dice (overlap=0.5)</th> <th>Feature Size</th> <th># params (M)</th> <th>Self-Supervised Pre-trained </th> </tr> <tr> <td>Swin UNETR/Base</td> <td>82.25</td> <td>81.86</td> <td>48</td> <td>62.1</td> <td>Yes</td> </tr> <tr> <td>Swin UNETR/Small</td> <td>79.79</td> <td>79.34</td> <td>24</td> <td>15.7</td> <td>No</td> </tr> <tr> <td>Swin UNETR/Tiny</td> <td>72.05</td> <td>70.35</td> <td>12</td> <td>4.0</td> <td>No</td> </tr> </table> # Data Preparation ![image](https://lh3.googleusercontent.com/pw/AM-JKLX0svvlMdcrchGAgiWWNkg40lgXYjSHsAAuRc5Frakmz2pWzSzf87JQCRgYpqFR0qAjJWPzMQLc_mmvzNjfF9QWl_1OHZ8j4c9qrbR6zQaDJWaCLArRFh0uPvk97qAa11HtYbD6HpJ-wwTCUsaPcYvM=w1724-h522-no?authuser=0) The training data is from the [BTCV challenge dataset](https://www.synapse.org/#!Synapse:syn3193805/wiki/217752). - Target: 13 abdominal organs including 1. Spleen 2. Right Kidney 3. Left Kideny 4.Gallbladder 5.Esophagus 6. Liver 7. Stomach 8.Aorta 9. IVC 10. Portal and Splenic Veins 11. Pancreas 12.Right adrenal gland 13.Left adrenal gland. - Task: Segmentation - Modality: CT - Size: 30 3D volumes (24 Training + 6 Testing) # Training See the source repository [here](https://github.com/Project-MONAI/research-contributions/tree/main/SwinUNETR/BTCV) for information on training. # BibTeX entry and citation info If you find this repository useful, please consider citing the following papers: ``` @inproceedings{tang2022self, title={Self-supervised pre-training of swin transformers for 3d medical image analysis}, author={Tang, Yucheng and Yang, Dong and Li, Wenqi and Roth, Holger R and Landman, Bennett and Xu, Daguang and Nath, Vishwesh and Hatamizadeh, Ali}, booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition}, pages={20730--20740}, year={2022} } @article{hatamizadeh2022swin, title={Swin UNETR: Swin Transformers for Semantic Segmentation of Brain Tumors in MRI Images}, author={Hatamizadeh, Ali and Nath, Vishwesh and Tang, Yucheng and Yang, Dong and Roth, Holger and Xu, Daguang}, journal={arXiv preprint arXiv:2201.01266}, year={2022} } ``` # References [1]: Tang, Y., Yang, D., Li, W., Roth, H.R., Landman, B., Xu, D., Nath, V. and Hatamizadeh, A., 2022. Self-supervised pre-training of swin transformers for 3d medical image analysis. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 20730-20740). [2]: Hatamizadeh, A., Nath, V., Tang, Y., Yang, D., Roth, H. and Xu, D., 2022. Swin UNETR: Swin Transformers for Semantic Segmentation of Brain Tumors in MRI Images. arXiv preprint arXiv:2201.01266.
Jinchen/roberta-base-finetuned-mrpc
e1e575856446d6d7f99499bcd8288732da817d87
2022-07-15T13:15:54.000Z
[ "pytorch", "roberta", "text-classification", "dataset:glue", "transformers", "generated_from_trainer", "license:mit", "model-index" ]
text-classification
false
Jinchen
null
Jinchen/roberta-base-finetuned-mrpc
5
null
transformers
17,605
--- license: mit tags: - generated_from_trainer datasets: - glue metrics: - accuracy - f1 model-index: - name: roberta-base-finetuned-mrpc results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-finetuned-mrpc This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.2891 - Accuracy: 0.8925 - F1: 0.9228 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - distributed_type: IPU - gradient_accumulation_steps: 16 - total_train_batch_size: 64 - total_eval_batch_size: 20 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 - training precision: Mixed Precision ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.5998 | 1.0 | 57 | 0.5425 | 0.74 | 0.8349 | | 0.5058 | 2.0 | 114 | 0.3020 | 0.875 | 0.9084 | | 0.3316 | 3.0 | 171 | 0.2891 | 0.8925 | 0.9228 | | 0.1617 | 4.0 | 228 | 0.2937 | 0.8825 | 0.9138 | | 0.3161 | 5.0 | 285 | 0.3193 | 0.8875 | 0.9171 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.10.0+cpu - Datasets 2.3.2 - Tokenizers 0.12.1
clevrly/roberta-large-mnli-fer-finetuned
0c7894eae6933bbbf3858723b33d8092805b7093
2022-07-22T20:30:58.000Z
[ "pytorch", "tensorboard", "roberta", "text-classification", "transformers", "generated_from_trainer", "license:mit", "model-index" ]
text-classification
false
clevrly
null
clevrly/roberta-large-mnli-fer-finetuned
5
null
transformers
17,606
--- license: mit tags: - generated_from_trainer metrics: - accuracy model-index: - name: roberta-large-mnli-fer-finetuned results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-large-mnli-fer-finetuned This model is a fine-tuned version of [roberta-large](https://huggingface.co/roberta-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6940 - Accuracy: 0.5005 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.7049 | 1.0 | 554 | 0.6895 | 0.5750 | | 0.6981 | 2.0 | 1108 | 0.7054 | 0.5005 | | 0.7039 | 3.0 | 1662 | 0.6936 | 0.5005 | | 0.6976 | 4.0 | 2216 | 0.6935 | 0.4995 | | 0.6991 | 5.0 | 2770 | 0.6940 | 0.5005 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
Someman/xlm-roberta-base-finetuned-panx-de
cf83a59d0a275fc21ddbc23ecf7691346161c1c8
2022-07-16T05:50:27.000Z
[ "pytorch", "tensorboard", "xlm-roberta", "token-classification", "dataset:xtreme", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
token-classification
false
Someman
null
Someman/xlm-roberta-base-finetuned-panx-de
5
null
transformers
17,607
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme args: PAN-X.de metrics: - name: F1 type: f1 value: 0.8640345886904085 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.1426 - F1: 0.8640 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2525 | 1.0 | 787 | 0.1795 | 0.8184 | | 0.1283 | 2.0 | 1574 | 0.1402 | 0.8468 | | 0.08 | 3.0 | 2361 | 0.1426 | 0.8640 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
Someman/xlm-roberta-base-finetuned-panx-de-fr
bfdd3666597b998a34362838d77d958238e22ffe
2022-07-16T07:25:13.000Z
[ "pytorch", "xlm-roberta", "token-classification", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
token-classification
false
Someman
null
Someman/xlm-roberta-base-finetuned-panx-de-fr
5
null
transformers
17,608
--- license: mit tags: - generated_from_trainer metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de-fr results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de-fr This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1717 - F1: 0.8601 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2889 | 1.0 | 1073 | 0.1945 | 0.8293 | | 0.1497 | 2.0 | 2146 | 0.1636 | 0.8476 | | 0.093 | 3.0 | 3219 | 0.1717 | 0.8601 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
Konstantine4096/bart-pizza-5K
4fbd492c8cbed6ef5cfd65b124f9c7f5e125d210
2022-07-16T22:26:21.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
text2text-generation
false
Konstantine4096
null
Konstantine4096/bart-pizza-5K
5
null
transformers
17,609
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: bart-pizza-5K results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-pizza-5K This model is a fine-tuned version of [facebook/bart-base](https://huggingface.co/facebook/bart-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1688 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.0171 | 1.6 | 500 | 0.1688 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu102 - Datasets 2.3.2 - Tokenizers 0.12.1
MMVos/distilbert-base-uncased-finetuned-squad
7e229c745a8c6aea4b1ce74f972bd69a0b57ae18
2022-07-18T12:16:01.000Z
[ "pytorch", "tensorboard", "distilbert", "question-answering", "dataset:squad_v2", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
question-answering
false
MMVos
null
MMVos/distilbert-base-uncased-finetuned-squad
5
null
transformers
17,610
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad_v2 model-index: - name: distilbert-base-uncased-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-squad This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the squad_v2 dataset. It achieves the following results on the evaluation set: - Loss: 1.4214 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 1.1814 | 1.0 | 8235 | 1.2488 | | 0.9078 | 2.0 | 16470 | 1.3127 | | 0.7439 | 3.0 | 24705 | 1.4214 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
davanstrien/vit-base-patch16-224-in21k-fine-tuned
d71d5458c6c0f6986cd74848f1d8758cd69de070
2022-07-20T17:18:39.000Z
[ "pytorch", "tensorboard", "vit", "transformers" ]
null
false
davanstrien
null
davanstrien/vit-base-patch16-224-in21k-fine-tuned
5
null
transformers
17,611
Entry not found
Kayvane/distilbert-base-uncased-wandb-week-3-complaints-classifier-256
88ba91c7588f1f13846521731b7e3f6dd0083f70
2022-07-19T06:29:12.000Z
[ "pytorch", "distilbert", "text-classification", "dataset:consumer-finance-complaints", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
Kayvane
null
Kayvane/distilbert-base-uncased-wandb-week-3-complaints-classifier-256
5
null
transformers
17,612
--- license: apache-2.0 tags: - generated_from_trainer datasets: - consumer-finance-complaints metrics: - accuracy - f1 - recall - precision model-index: - name: distilbert-base-uncased-wandb-week-3-complaints-classifier-256 results: - task: name: Text Classification type: text-classification dataset: name: consumer-finance-complaints type: consumer-finance-complaints args: default metrics: - name: Accuracy type: accuracy value: 0.8234544620559604 - name: F1 type: f1 value: 0.8176243580045963 - name: Recall type: recall value: 0.8234544620559604 - name: Precision type: precision value: 0.8171438106054644 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-wandb-week-3-complaints-classifier-256 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the consumer-finance-complaints dataset. It achieves the following results on the evaluation set: - Loss: 0.5453 - Accuracy: 0.8235 - F1: 0.8176 - Recall: 0.8235 - Precision: 0.8171 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4.097565552226687e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 256 - num_epochs: 2 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Recall | Precision | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:------:|:---------:| | 0.6691 | 0.61 | 1500 | 0.6475 | 0.7962 | 0.7818 | 0.7962 | 0.7875 | | 0.5361 | 1.22 | 3000 | 0.5794 | 0.8161 | 0.8080 | 0.8161 | 0.8112 | | 0.4659 | 1.83 | 4500 | 0.5453 | 0.8235 | 0.8176 | 0.8235 | 0.8171 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu102 - Datasets 2.3.2 - Tokenizers 0.12.1
Ghostwolf/wav2vec2-large-xlsr-hindi
757c05bcb11267d09a942180aeb1dd77f35bbb69
2022-07-26T16:48:59.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
Ghostwolf
null
Ghostwolf/wav2vec2-large-xlsr-hindi
5
null
transformers
17,613
RJ3vans/DeBERTaCMV1spanTagger
054c74e31ea15fb78b7745cdc13c5d70158081a4
2022-07-19T16:24:58.000Z
[ "pytorch", "deberta-v2", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
RJ3vans
null
RJ3vans/DeBERTaCMV1spanTagger
5
null
transformers
17,614
Entry not found
abecode/t5-base-finetuned-emo20q-classification
1ae994837532f5c27c347d90524050346e34e59d
2022-07-19T18:56:13.000Z
[ "pytorch", "tensorboard", "t5", "text2text-generation", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
text2text-generation
false
abecode
null
abecode/t5-base-finetuned-emo20q-classification
5
null
transformers
17,615
--- license: apache-2.0 tags: - generated_from_trainer metrics: - rouge model-index: - name: t5-base-finetuned-emo20q-classification results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-base-finetuned-emo20q-classification This model is a fine-tuned version of [t5-base](https://huggingface.co/t5-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3759 - Rouge1: 70.3125 - Rouge2: 0.0 - Rougel: 70.2083 - Rougelsum: 70.2083 - Gen Len: 2.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:-------:|:---------:|:-------:| | No log | 1.0 | 280 | 0.3952 | 68.3333 | 0.0 | 68.2292 | 68.2812 | 2.0 | | 0.7404 | 2.0 | 560 | 0.3774 | 70.1042 | 0.0 | 70.1042 | 70.1042 | 2.0 | | 0.7404 | 3.0 | 840 | 0.3759 | 70.3125 | 0.0 | 70.2083 | 70.2083 | 2.0 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
Siyong/MT_RN
554b6a3111d14b1d3df95c9e46b89fbbfdfea1e8
2022-07-20T01:36:09.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
Siyong
null
Siyong/MT_RN
5
null
transformers
17,616
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: run1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # run1 This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.6666 - Wer: 0.6375 - Cer: 0.3170 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2000 - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:-----:|:-----:|:---------------:|:------:|:------:| | 1.0564 | 2.36 | 2000 | 2.3456 | 0.9628 | 0.5549 | | 0.5071 | 4.73 | 4000 | 2.0652 | 0.9071 | 0.5115 | | 0.3952 | 7.09 | 6000 | 2.3649 | 0.9108 | 0.4628 | | 0.3367 | 9.46 | 8000 | 1.7615 | 0.8253 | 0.4348 | | 0.2765 | 11.82 | 10000 | 1.6151 | 0.7937 | 0.4087 | | 0.2493 | 14.18 | 12000 | 1.4976 | 0.7881 | 0.3905 | | 0.2318 | 16.55 | 14000 | 1.6731 | 0.8160 | 0.3925 | | 0.2074 | 18.91 | 16000 | 1.5822 | 0.7658 | 0.3913 | | 0.1825 | 21.28 | 18000 | 1.5442 | 0.7361 | 0.3704 | | 0.1824 | 23.64 | 20000 | 1.5988 | 0.7621 | 0.3711 | | 0.1699 | 26.0 | 22000 | 1.4261 | 0.7119 | 0.3490 | | 0.158 | 28.37 | 24000 | 1.7482 | 0.7658 | 0.3648 | | 0.1385 | 30.73 | 26000 | 1.4103 | 0.6784 | 0.3348 | | 0.1199 | 33.1 | 28000 | 1.5214 | 0.6636 | 0.3273 | | 0.116 | 35.46 | 30000 | 1.4288 | 0.7212 | 0.3486 | | 0.1071 | 37.83 | 32000 | 1.5344 | 0.7138 | 0.3411 | | 0.1007 | 40.19 | 34000 | 1.4501 | 0.6691 | 0.3237 | | 0.0943 | 42.55 | 36000 | 1.5367 | 0.6859 | 0.3265 | | 0.0844 | 44.92 | 38000 | 1.5321 | 0.6599 | 0.3273 | | 0.0762 | 47.28 | 40000 | 1.6721 | 0.6264 | 0.3142 | | 0.0778 | 49.65 | 42000 | 1.6666 | 0.6375 | 0.3170 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.12.0+cu113 - Datasets 2.0.0 - Tokenizers 0.12.1
commanderstrife/bc2gm_corpus-Bio_ClinicalBERT-finetuned-ner
a4367803bb4a087c0b8e0eac15862b08e0ad2697
2022-07-20T02:51:04.000Z
[ "pytorch", "bert", "token-classification", "dataset:bc2gm_corpus", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
token-classification
false
commanderstrife
null
commanderstrife/bc2gm_corpus-Bio_ClinicalBERT-finetuned-ner
5
null
transformers
17,617
--- license: mit tags: - generated_from_trainer datasets: - bc2gm_corpus metrics: - precision - recall - f1 - accuracy model-index: - name: bc2gm_corpus-Bio_ClinicalBERT-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: bc2gm_corpus type: bc2gm_corpus args: bc2gm_corpus metrics: - name: Precision type: precision value: 0.7853881278538812 - name: Recall type: recall value: 0.8158102766798419 - name: F1 type: f1 value: 0.8003101977510663 - name: Accuracy type: accuracy value: 0.9758965601366187 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bc2gm_corpus-Bio_ClinicalBERT-finetuned-ner This model is a fine-tuned version of [emilyalsentzer/Bio_ClinicalBERT](https://huggingface.co/emilyalsentzer/Bio_ClinicalBERT) on the bc2gm_corpus dataset. It achieves the following results on the evaluation set: - Loss: 0.1505 - Precision: 0.7854 - Recall: 0.8158 - F1: 0.8003 - Accuracy: 0.9759 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0981 | 1.0 | 782 | 0.0712 | 0.7228 | 0.7948 | 0.7571 | 0.9724 | | 0.0509 | 2.0 | 1564 | 0.0687 | 0.7472 | 0.8199 | 0.7818 | 0.9746 | | 0.0121 | 3.0 | 2346 | 0.0740 | 0.7725 | 0.8011 | 0.7866 | 0.9747 | | 0.0001 | 4.0 | 3128 | 0.1009 | 0.7618 | 0.8251 | 0.7922 | 0.9741 | | 0.0042 | 5.0 | 3910 | 0.1106 | 0.7757 | 0.8185 | 0.7965 | 0.9754 | | 0.0015 | 6.0 | 4692 | 0.1182 | 0.7812 | 0.8111 | 0.7958 | 0.9758 | | 0.0001 | 7.0 | 5474 | 0.1283 | 0.7693 | 0.8275 | 0.7973 | 0.9753 | | 0.0072 | 8.0 | 6256 | 0.1376 | 0.7863 | 0.8158 | 0.8008 | 0.9762 | | 0.0045 | 9.0 | 7038 | 0.1468 | 0.7856 | 0.8180 | 0.8015 | 0.9761 | | 0.0 | 10.0 | 7820 | 0.1505 | 0.7854 | 0.8158 | 0.8003 | 0.9759 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
huggingartists/rage-against-the-machine
091efabcc80a94165cd155146cbc77a31804b783
2022-07-20T04:23:50.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "en", "dataset:huggingartists/rage-against-the-machine", "transformers", "huggingartists", "lyrics", "lm-head", "causal-lm" ]
text-generation
false
huggingartists
null
huggingartists/rage-against-the-machine
5
null
transformers
17,618
--- language: en datasets: - huggingartists/rage-against-the-machine tags: - huggingartists - lyrics - lm-head - causal-lm widget: - text: "I am" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/2158957823960c84c7890b8fa5e6d479.1000x1000x1.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Rage Against the Machine</div> <a href="https://genius.com/artists/rage-against-the-machine"> <div style="text-align: center; font-size: 14px;">@rage-against-the-machine</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from Rage Against the Machine. Dataset is available [here](https://huggingface.co/datasets/huggingartists/rage-against-the-machine). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/rage-against-the-machine") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/2lbi7kzi/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on Rage Against the Machine's lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/10r0sf3w) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/10r0sf3w/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/rage-against-the-machine') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/rage-against-the-machine") model = AutoModelWithLMHead.from_pretrained("huggingartists/rage-against-the-machine") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
lqdisme/test_squad
9f2d7e3235da7299bdbce33e9e5deb8dac823bc6
2022-07-20T04:27:06.000Z
[ "pytorch", "distilbert", "feature-extraction", "transformers" ]
feature-extraction
false
lqdisme
null
lqdisme/test_squad
5
null
transformers
17,619
Entry not found
ryo0634/luke-base-comp-umls
04b2e898e2f6f0bec9f74048f87b90a9c7221d0f
2022-07-20T05:38:59.000Z
[ "pytorch", "luke", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
ryo0634
null
ryo0634/luke-base-comp-umls
5
null
transformers
17,620
Entry not found
jordyvl/biobert-base-cased-v1.2_ncbi_disease-lowC-sm-first-ner
2e2a35f2d4bd5f914ca4666d038fa4cb4c5e7087
2022-07-20T08:49:02.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
jordyvl
null
jordyvl/biobert-base-cased-v1.2_ncbi_disease-lowC-sm-first-ner
5
null
transformers
17,621
Entry not found
tianying/bert-finetuned-ner
4ecd1ad44a9b45d96f860c7a073323fdae4b5b02
2022-07-20T13:58:10.000Z
[ "pytorch", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
tianying
null
tianying/bert-finetuned-ner
5
null
transformers
17,622
Entry not found
liton10/mt5-small-finetuned-amazon-en-es
bfb3714d65045c5f051eefe8e916d0b87c78c107
2022-07-20T10:03:33.000Z
[ "pytorch", "tensorboard", "mt5", "text2text-generation", "transformers", "summarization", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
summarization
false
liton10
null
liton10/mt5-small-finetuned-amazon-en-es
5
null
transformers
17,623
--- license: apache-2.0 tags: - summarization - generated_from_trainer metrics: - rouge model-index: - name: mt5-small-finetuned-amazon-en-es results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mt5-small-finetuned-amazon-en-es This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 9.2585 - Rouge1: 6.1835 - Rouge2: 0.0 - Rougel: 5.8333 - Rougelsum: 6.1835 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5.6e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:| | 24.1065 | 1.0 | 11 | 32.7123 | 7.342 | 1.5385 | 7.1515 | 7.342 | | 22.6474 | 2.0 | 22 | 19.7137 | 6.1039 | 0.0 | 5.7143 | 6.1039 | | 16.319 | 3.0 | 33 | 12.8543 | 6.1039 | 0.0 | 5.7143 | 6.1039 | | 16.3224 | 4.0 | 44 | 10.1929 | 5.9524 | 0.0 | 5.7143 | 5.9524 | | 15.0599 | 5.0 | 55 | 9.9186 | 5.9524 | 0.0 | 5.7143 | 5.9524 | | 14.6053 | 6.0 | 66 | 9.3235 | 6.1835 | 0.0 | 5.8333 | 6.1835 | | 14.4345 | 7.0 | 77 | 9.1621 | 6.1835 | 0.0 | 5.8333 | 6.1835 | | 13.7973 | 8.0 | 88 | 9.2585 | 6.1835 | 0.0 | 5.8333 | 6.1835 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
jordyvl/biobert-base-cased-v1.2_ncbi_disease-CRF-first-ner
2743f53bcf91adb11b6498e15d6be157218180f4
2022-07-20T14:09:50.000Z
[ "pytorch", "tensorboard", "bert", "transformers" ]
null
false
jordyvl
null
jordyvl/biobert-base-cased-v1.2_ncbi_disease-CRF-first-ner
5
null
transformers
17,624
Entry not found
Lvxue/distilled_test_0.99_formal
76de46cb5e250490cd0f1dd585e4da81623d6e37
2022-07-22T20:00:29.000Z
[ "pytorch", "mt5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
Lvxue
null
Lvxue/distilled_test_0.99_formal
5
null
transformers
17,625
Entry not found
ckadam15/distilbert-base-uncased-finetuned-squad
389d2d4549011487e254c605f3390fc893bced15
2022-07-25T16:04:57.000Z
[ "pytorch", "distilbert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
ckadam15
null
ckadam15/distilbert-base-uncased-finetuned-squad
5
null
transformers
17,626
Entry not found
furrutiav/beto_coherence_v2
639f8320999464f2b729f4d37c462e873980acde
2022-07-21T20:23:27.000Z
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
false
furrutiav
null
furrutiav/beto_coherence_v2
5
null
transformers
17,627
Entry not found
gary109/ai-light-dance_singing3_ft_pretrain2_wav2vec2-large-xlsr-53
3468f5bec770d7eadb63aa5f6928ad27afa47433
2022-07-27T03:22:01.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "gary109/AI_Light_Dance", "generated_from_trainer", "model-index" ]
automatic-speech-recognition
false
gary109
null
gary109/ai-light-dance_singing3_ft_pretrain2_wav2vec2-large-xlsr-53
5
null
transformers
17,628
--- tags: - automatic-speech-recognition - gary109/AI_Light_Dance - generated_from_trainer model-index: - name: ai-light-dance_singing3_ft_pretrain2_wav2vec2-large-xlsr-53 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ai-light-dance_singing3_ft_pretrain2_wav2vec2-large-xlsr-53 This model is a fine-tuned version of [gary109/ai-light-dance_singing3_ft_pretrain2_wav2vec2-large-xlsr-53](https://huggingface.co/gary109/ai-light-dance_singing3_ft_pretrain2_wav2vec2-large-xlsr-53) on the GARY109/AI_LIGHT_DANCE - ONSET-SINGING3 dataset. It achieves the following results on the evaluation set: - Loss: 2.4279 - Wer: 1.0087 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - num_epochs: 100.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 1.209 | 1.0 | 72 | 2.5599 | 0.9889 | | 1.3395 | 2.0 | 144 | 2.7188 | 0.9877 | | 1.2695 | 3.0 | 216 | 2.9989 | 0.9709 | | 1.2818 | 4.0 | 288 | 3.2352 | 0.9757 | | 1.2389 | 5.0 | 360 | 3.6867 | 0.9783 | | 1.2368 | 6.0 | 432 | 3.3189 | 0.9811 | | 1.2307 | 7.0 | 504 | 3.0786 | 0.9657 | | 1.2607 | 8.0 | 576 | 2.9720 | 0.9677 | | 1.2584 | 9.0 | 648 | 2.5613 | 0.9702 | | 1.2266 | 10.0 | 720 | 2.6937 | 0.9610 | | 1.262 | 11.0 | 792 | 3.9060 | 0.9745 | | 1.2361 | 12.0 | 864 | 3.6138 | 0.9718 | | 1.2348 | 13.0 | 936 | 3.4838 | 0.9745 | | 1.2715 | 14.0 | 1008 | 3.3128 | 0.9751 | | 1.2505 | 15.0 | 1080 | 3.2015 | 0.9710 | | 1.211 | 16.0 | 1152 | 3.4709 | 0.9709 | | 1.2067 | 17.0 | 1224 | 3.0566 | 0.9673 | | 1.2536 | 18.0 | 1296 | 2.5479 | 0.9789 | | 1.2297 | 19.0 | 1368 | 2.8307 | 0.9710 | | 1.1949 | 20.0 | 1440 | 3.4112 | 0.9777 | | 1.2181 | 21.0 | 1512 | 2.6784 | 0.9682 | | 1.195 | 22.0 | 1584 | 3.0395 | 0.9639 | | 1.2047 | 23.0 | 1656 | 3.1935 | 0.9726 | | 1.2306 | 24.0 | 1728 | 3.2649 | 0.9723 | | 1.199 | 25.0 | 1800 | 3.1378 | 0.9645 | | 1.1945 | 26.0 | 1872 | 2.8143 | 0.9596 | | 1.19 | 27.0 | 1944 | 3.5174 | 0.9787 | | 1.1976 | 28.0 | 2016 | 2.9666 | 0.9594 | | 1.2229 | 29.0 | 2088 | 2.8672 | 0.9589 | | 1.1548 | 30.0 | 2160 | 2.6568 | 0.9627 | | 1.169 | 31.0 | 2232 | 2.8799 | 0.9654 | | 1.1857 | 32.0 | 2304 | 2.8691 | 0.9625 | | 1.1862 | 33.0 | 2376 | 2.8251 | 0.9555 | | 1.1721 | 34.0 | 2448 | 3.5968 | 0.9726 | | 1.1293 | 35.0 | 2520 | 3.4130 | 0.9651 | | 1.1513 | 36.0 | 2592 | 2.8804 | 0.9630 | | 1.1537 | 37.0 | 2664 | 2.5824 | 0.9575 | | 1.1818 | 38.0 | 2736 | 2.8443 | 0.9613 | | 1.1835 | 39.0 | 2808 | 2.6431 | 0.9619 | | 1.1457 | 40.0 | 2880 | 2.9254 | 0.9639 | | 1.1591 | 41.0 | 2952 | 2.8194 | 0.9561 | | 1.1284 | 42.0 | 3024 | 2.6432 | 0.9806 | | 1.1602 | 43.0 | 3096 | 2.4279 | 1.0087 | | 1.1556 | 44.0 | 3168 | 2.5040 | 1.0030 | | 1.1256 | 45.0 | 3240 | 3.1641 | 0.9608 | | 1.1256 | 46.0 | 3312 | 2.9522 | 0.9677 | | 1.1211 | 47.0 | 3384 | 2.6318 | 0.9580 | | 1.1142 | 48.0 | 3456 | 2.7298 | 0.9533 | | 1.1237 | 49.0 | 3528 | 2.5442 | 0.9673 | | 1.0976 | 50.0 | 3600 | 2.7767 | 0.9610 | | 1.1154 | 51.0 | 3672 | 2.6849 | 0.9646 | | 1.1012 | 52.0 | 3744 | 2.5384 | 0.9621 | | 1.1077 | 53.0 | 3816 | 2.4505 | 1.0067 | | 1.0936 | 54.0 | 3888 | 2.5847 | 0.9687 | | 1.0772 | 55.0 | 3960 | 2.4575 | 0.9761 | | 1.092 | 56.0 | 4032 | 2.4889 | 0.9802 | | 1.0868 | 57.0 | 4104 | 2.5885 | 0.9664 | | 1.0979 | 58.0 | 4176 | 2.6370 | 0.9607 | | 1.094 | 59.0 | 4248 | 2.6195 | 0.9605 | | 1.0745 | 60.0 | 4320 | 2.5346 | 0.9834 | | 1.1057 | 61.0 | 4392 | 2.6879 | 0.9603 | | 1.0722 | 62.0 | 4464 | 2.5426 | 0.9735 | | 1.0731 | 63.0 | 4536 | 2.8259 | 0.9535 | | 1.0862 | 64.0 | 4608 | 2.7632 | 0.9559 | | 1.0396 | 65.0 | 4680 | 2.5401 | 0.9807 | | 1.0581 | 66.0 | 4752 | 2.6977 | 0.9687 | | 1.0647 | 67.0 | 4824 | 2.6968 | 0.9694 | | 1.0549 | 68.0 | 4896 | 2.6439 | 0.9807 | | 1.0607 | 69.0 | 4968 | 2.6822 | 0.9771 | | 1.05 | 70.0 | 5040 | 2.7011 | 0.9607 | | 1.042 | 71.0 | 5112 | 2.5766 | 0.9713 | | 1.042 | 72.0 | 5184 | 2.5720 | 0.9747 | | 1.0594 | 73.0 | 5256 | 2.7176 | 0.9704 | | 1.0425 | 74.0 | 5328 | 2.7458 | 0.9614 | | 1.0199 | 75.0 | 5400 | 2.5906 | 0.9987 | | 1.0198 | 76.0 | 5472 | 2.5534 | 1.0087 | | 1.0193 | 77.0 | 5544 | 2.5421 | 0.9933 | | 1.0379 | 78.0 | 5616 | 2.5139 | 0.9994 | | 1.025 | 79.0 | 5688 | 2.4850 | 1.0313 | | 1.0054 | 80.0 | 5760 | 2.5803 | 0.9814 | | 1.0218 | 81.0 | 5832 | 2.5696 | 0.9867 | | 1.0177 | 82.0 | 5904 | 2.6011 | 1.0065 | | 1.0094 | 83.0 | 5976 | 2.6166 | 0.9855 | | 1.0202 | 84.0 | 6048 | 2.5557 | 1.0204 | | 1.0148 | 85.0 | 6120 | 2.6118 | 1.0033 | | 1.0117 | 86.0 | 6192 | 2.5671 | 1.0120 | | 1.0195 | 87.0 | 6264 | 2.5443 | 1.0041 | | 1.0114 | 88.0 | 6336 | 2.5627 | 1.0049 | | 1.0074 | 89.0 | 6408 | 2.5670 | 1.0255 | | 0.9883 | 90.0 | 6480 | 2.5338 | 1.0306 | | 1.0112 | 91.0 | 6552 | 2.5615 | 1.0142 | | 0.9986 | 92.0 | 6624 | 2.5566 | 1.0415 | | 0.9939 | 93.0 | 6696 | 2.5728 | 1.0287 | | 0.9954 | 94.0 | 6768 | 2.5617 | 1.0138 | | 0.9643 | 95.0 | 6840 | 2.5890 | 1.0145 | | 0.9892 | 96.0 | 6912 | 2.5918 | 1.0119 | | 0.983 | 97.0 | 6984 | 2.5862 | 1.0175 | | 0.988 | 98.0 | 7056 | 2.5873 | 1.0147 | | 0.9908 | 99.0 | 7128 | 2.5973 | 1.0073 | | 0.9696 | 100.0 | 7200 | 2.5938 | 1.0156 | ### Framework versions - Transformers 4.21.0.dev0 - Pytorch 1.9.1+cu102 - Datasets 2.3.3.dev0 - Tokenizers 0.12.1
huggingtweets/hotwingsuk
b3b6666d4a33270169525ff28f135fcfcc34e3cf
2022-07-22T03:26:48.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/hotwingsuk
5
null
transformers
17,629
--- language: en thumbnail: http://www.huggingtweets.com/hotwingsuk/1658460403599/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1280474754214957056/GKqk3gAm_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">HotWings</div> <div style="text-align: center; font-size: 14px;">@hotwingsuk</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from HotWings. | Data | HotWings | | --- | --- | | Tweets downloaded | 2057 | | Retweets | 69 | | Short tweets | 258 | | Tweets kept | 1730 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3opu8h6o/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @hotwingsuk's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/bzf76pmf) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/bzf76pmf/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/hotwingsuk') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
sudo-s/exper5_mesum5
97e53fb419c9c283bba70e7520acb1e0ad4387c3
2022-07-22T15:29:30.000Z
[ "pytorch", "tensorboard", "vit", "image-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
image-classification
false
sudo-s
null
sudo-s/exper5_mesum5
5
null
transformers
17,630
--- license: apache-2.0 tags: - image-classification - generated_from_trainer metrics: - accuracy model-index: - name: exper5_mesum5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # exper5_mesum5 This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the sudo-s/herbier_mesuem5 dataset. It achieves the following results on the evaluation set: - Loss: 1.0181 - Accuracy: 0.8142 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 16 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 4.7331 | 0.23 | 100 | 4.7080 | 0.1130 | | 4.4246 | 0.47 | 200 | 4.4573 | 0.1598 | | 4.2524 | 0.7 | 300 | 4.2474 | 0.2 | | 4.0881 | 0.93 | 400 | 4.0703 | 0.2290 | | 3.8605 | 1.16 | 500 | 3.9115 | 0.2763 | | 3.7434 | 1.4 | 600 | 3.7716 | 0.3349 | | 3.5978 | 1.63 | 700 | 3.6375 | 0.3544 | | 3.5081 | 1.86 | 800 | 3.5081 | 0.3840 | | 3.2616 | 2.09 | 900 | 3.3952 | 0.4308 | | 3.2131 | 2.33 | 1000 | 3.2817 | 0.4509 | | 3.1369 | 2.56 | 1100 | 3.1756 | 0.4710 | | 3.0726 | 2.79 | 1200 | 3.0692 | 0.5107 | | 2.8159 | 3.02 | 1300 | 2.9734 | 0.5308 | | 2.651 | 3.26 | 1400 | 2.8813 | 0.5728 | | 2.6879 | 3.49 | 1500 | 2.7972 | 0.5781 | | 2.5625 | 3.72 | 1600 | 2.7107 | 0.6012 | | 2.4156 | 3.95 | 1700 | 2.6249 | 0.6237 | | 2.3557 | 4.19 | 1800 | 2.5475 | 0.6302 | | 2.2496 | 4.42 | 1900 | 2.4604 | 0.6556 | | 2.1933 | 4.65 | 2000 | 2.3963 | 0.6456 | | 2.0341 | 4.88 | 2100 | 2.3327 | 0.6858 | | 1.793 | 5.12 | 2200 | 2.2500 | 0.6858 | | 1.8131 | 5.35 | 2300 | 2.1950 | 0.6935 | | 1.8358 | 5.58 | 2400 | 2.1214 | 0.7136 | | 1.8304 | 5.81 | 2500 | 2.0544 | 0.7130 | | 1.602 | 6.05 | 2600 | 1.9998 | 0.7325 | | 1.5487 | 6.28 | 2700 | 1.9519 | 0.7308 | | 1.4782 | 6.51 | 2800 | 1.8918 | 0.7361 | | 1.4397 | 6.74 | 2900 | 1.8359 | 0.7544 | | 1.3278 | 6.98 | 3000 | 1.7930 | 0.7485 | | 1.4241 | 7.21 | 3100 | 1.7463 | 0.7574 | | 1.3319 | 7.44 | 3200 | 1.7050 | 0.7663 | | 1.2584 | 7.67 | 3300 | 1.6436 | 0.7686 | | 1.088 | 7.91 | 3400 | 1.6128 | 0.7751 | | 1.0303 | 8.14 | 3500 | 1.5756 | 0.7757 | | 1.0075 | 8.37 | 3600 | 1.5306 | 0.7822 | | 0.976 | 8.6 | 3700 | 1.4990 | 0.7858 | | 0.9363 | 8.84 | 3800 | 1.4619 | 0.7781 | | 0.8869 | 9.07 | 3900 | 1.4299 | 0.7899 | | 0.8749 | 9.3 | 4000 | 1.3930 | 0.8018 | | 0.7958 | 9.53 | 4100 | 1.3616 | 0.8065 | | 0.7605 | 9.77 | 4200 | 1.3367 | 0.7982 | | 0.7642 | 10.0 | 4300 | 1.3154 | 0.7911 | | 0.6852 | 10.23 | 4400 | 1.2894 | 0.8 | | 0.667 | 10.47 | 4500 | 1.2623 | 0.8148 | | 0.6119 | 10.7 | 4600 | 1.2389 | 0.8095 | | 0.6553 | 10.93 | 4700 | 1.2180 | 0.8053 | | 0.5725 | 11.16 | 4800 | 1.2098 | 0.8036 | | 0.567 | 11.4 | 4900 | 1.1803 | 0.8083 | | 0.4941 | 11.63 | 5000 | 1.1591 | 0.8107 | | 0.4562 | 11.86 | 5100 | 1.1471 | 0.8024 | | 0.5155 | 12.09 | 5200 | 1.1272 | 0.8172 | | 0.5062 | 12.33 | 5300 | 1.1206 | 0.8095 | | 0.4552 | 12.56 | 5400 | 1.1030 | 0.8142 | | 0.4553 | 12.79 | 5500 | 1.0918 | 0.8148 | | 0.4055 | 13.02 | 5600 | 1.0837 | 0.8118 | | 0.4484 | 13.26 | 5700 | 1.0712 | 0.8148 | | 0.3635 | 13.49 | 5800 | 1.0657 | 0.8124 | | 0.4054 | 13.72 | 5900 | 1.0543 | 0.8124 | | 0.3201 | 13.95 | 6000 | 1.0508 | 0.8148 | | 0.3448 | 14.19 | 6100 | 1.0409 | 0.8166 | | 0.3591 | 14.42 | 6200 | 1.0371 | 0.8142 | | 0.3606 | 14.65 | 6300 | 1.0345 | 0.8160 | | 0.3633 | 14.88 | 6400 | 1.0281 | 0.8136 | | 0.373 | 15.12 | 6500 | 1.0259 | 0.8124 | | 0.3417 | 15.35 | 6600 | 1.0215 | 0.8112 | | 0.3429 | 15.58 | 6700 | 1.0204 | 0.8148 | | 0.3509 | 15.81 | 6800 | 1.0181 | 0.8142 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0 - Datasets 2.3.2 - Tokenizers 0.12.1
ai4bharat/IndicXLMv2-alpha-QA
e9b34813364166204fa9f2aa5a5b3b2f8b0da389
2022-07-22T14:22:58.000Z
[ "pytorch", "roberta", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
ai4bharat
null
ai4bharat/IndicXLMv2-alpha-QA
5
null
transformers
17,631
Entry not found
cyr19/distilbert-base-uncased_2-epochs-squad
fb53da82b07f65ca8150147a205431731d9c90db
2022-07-22T16:17:30.000Z
[ "pytorch", "distilbert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
cyr19
null
cyr19/distilbert-base-uncased_2-epochs-squad
5
null
transformers
17,632
learning_rate: - 1e-5 train_batchsize: - 16 epochs: - 2 weight_decay - 0.01 optimizer - Adam datasets: - squad metrics - EM:10.307414104882 - F1:42.10389032370503
huggingtweets/aoc-kamalaharris
05ad2c1d3bbbdbe0a17a284e54fcba435c4014bd
2022-07-23T04:44:34.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/aoc-kamalaharris
5
null
transformers
17,633
--- language: en thumbnail: http://www.huggingtweets.com/aoc-kamalaharris/1658551469874/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1377062766314467332/2hyqngJz_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/923274881197895680/AbHcStkl_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Kamala Harris & Alexandria Ocasio-Cortez</div> <div style="text-align: center; font-size: 14px;">@aoc-kamalaharris</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Kamala Harris & Alexandria Ocasio-Cortez. | Data | Kamala Harris | Alexandria Ocasio-Cortez | | --- | --- | --- | | Tweets downloaded | 3206 | 3245 | | Retweets | 829 | 1264 | | Short tweets | 8 | 126 | | Tweets kept | 2369 | 1855 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1fpjb3ip/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @aoc-kamalaharris's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/wftrlnh5) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/wftrlnh5/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/aoc-kamalaharris') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/kremlinrussia_e
e48343e61aa78d240c67d0b316622e91bac48fac
2022-07-23T05:48:32.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/kremlinrussia_e
5
null
transformers
17,634
--- language: en thumbnail: http://www.huggingtweets.com/kremlinrussia_e/1658555307462/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/501717583846842368/psd9aFLl_400x400.png&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">President of Russia</div> <div style="text-align: center; font-size: 14px;">@kremlinrussia_e</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from President of Russia. | Data | President of Russia | | --- | --- | | Tweets downloaded | 3197 | | Retweets | 1 | | Short tweets | 38 | | Tweets kept | 3158 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1nplalk6/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @kremlinrussia_e's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3jz3samc) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3jz3samc/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/kremlinrussia_e') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
planhanasan/test-trainer
6f8a5204d700486a3493645adcfb6506328d9dcd
2022-07-27T00:09:44.000Z
[ "pytorch", "tensorboard", "camembert", "fill-mask", "ja", "dataset:glue", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
fill-mask
false
planhanasan
null
planhanasan/test-trainer
5
null
transformers
17,635
--- license: apache-2.0 language: - ja tags: - generated_from_trainer datasets: - glue model-index: - name: test-trainer results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # test-trainer This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the glue dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
Someman/pegasus-samsum
23c750d73ac94da41bf70cd039749d6804c0d45d
2022-07-23T13:20:32.000Z
[ "pytorch", "tensorboard", "pegasus", "text2text-generation", "dataset:samsum", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
text2text-generation
false
Someman
null
Someman/pegasus-samsum
5
null
transformers
17,636
--- tags: - generated_from_trainer datasets: - samsum model-index: - name: pegasus-samsum results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # pegasus-samsum This model is a fine-tuned version of [google/pegasus-cnn_dailymail](https://huggingface.co/google/pegasus-cnn_dailymail) on the samsum dataset. It achieves the following results on the evaluation set: - Loss: 1.4884 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.6902 | 0.54 | 500 | 1.4884 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
Siyong/M_RN_LM
36b173c09a7b925cd1f4e8c047f4d31fc0b716ab
2022-07-23T16:51:20.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
Siyong
null
Siyong/M_RN_LM
5
null
transformers
17,637
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: MilladRN results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # MilladRN This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.4355 - Wer: 0.4907 - Cer: 0.2802 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 4000 - num_epochs: 750 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:------:|:-----:|:---------------:|:------:|:------:| | 3.3347 | 33.9 | 2000 | 2.2561 | 0.9888 | 0.6087 | | 1.3337 | 67.8 | 4000 | 1.8137 | 0.6877 | 0.3407 | | 0.6504 | 101.69 | 6000 | 2.0718 | 0.6245 | 0.3229 | | 0.404 | 135.59 | 8000 | 2.2246 | 0.6004 | 0.3221 | | 0.2877 | 169.49 | 10000 | 2.2624 | 0.5836 | 0.3107 | | 0.2149 | 203.39 | 12000 | 2.3788 | 0.5279 | 0.2802 | | 0.1693 | 237.29 | 14000 | 1.8928 | 0.5502 | 0.2937 | | 0.1383 | 271.19 | 16000 | 2.7520 | 0.5725 | 0.3103 | | 0.1169 | 305.08 | 18000 | 2.2552 | 0.5446 | 0.2968 | | 0.1011 | 338.98 | 20000 | 2.6794 | 0.5725 | 0.3119 | | 0.0996 | 372.88 | 22000 | 2.4704 | 0.5595 | 0.3142 | | 0.0665 | 406.78 | 24000 | 2.9073 | 0.5836 | 0.3194 | | 0.0538 | 440.68 | 26000 | 3.1357 | 0.5632 | 0.3213 | | 0.0538 | 474.58 | 28000 | 2.5639 | 0.5613 | 0.3091 | | 0.0493 | 508.47 | 30000 | 3.3801 | 0.5613 | 0.3119 | | 0.0451 | 542.37 | 32000 | 3.5469 | 0.5428 | 0.3158 | | 0.0307 | 576.27 | 34000 | 4.2243 | 0.5390 | 0.3126 | | 0.0301 | 610.17 | 36000 | 3.6666 | 0.5297 | 0.2929 | | 0.0269 | 644.07 | 38000 | 3.2164 | 0.5 | 0.2838 | | 0.0182 | 677.97 | 40000 | 3.0557 | 0.4963 | 0.2779 | | 0.0191 | 711.86 | 42000 | 3.5190 | 0.5130 | 0.2921 | | 0.0133 | 745.76 | 44000 | 3.4355 | 0.4907 | 0.2802 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.12.0+cu113 - Datasets 1.18.3 - Tokenizers 0.12.1
Isaacks/swin-tiny-patch4-window7-224-finetuned-cars
acd01546297f68e862e88f83357caad1e6f5873c
2022-07-23T18:53:15.000Z
[ "pytorch", "tensorboard", "swin", "image-classification", "dataset:imagefolder", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
image-classification
false
Isaacks
null
Isaacks/swin-tiny-patch4-window7-224-finetuned-cars
5
null
transformers
17,638
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: swin-tiny-patch4-window7-224-finetuned-cars results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder args: default metrics: - name: Accuracy type: accuracy value: 0.9135135135135135 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # swin-tiny-patch4-window7-224-finetuned-cars This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.2192 - Accuracy: 0.9135 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.4522 | 1.0 | 13 | 0.3636 | 0.8432 | | 0.3308 | 2.0 | 26 | 0.2472 | 0.9027 | | 0.2714 | 3.0 | 39 | 0.2192 | 0.9135 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
clevrly/xlnet-base-rte-finetuned
d8bfe91c16102b467e48b52d18a14aa1890f316b
2022-07-25T05:45:31.000Z
[ "pytorch", "tensorboard", "xlnet", "text-classification", "dataset:glue", "transformers", "generated_from_trainer", "license:mit", "model-index" ]
text-classification
false
clevrly
null
clevrly/xlnet-base-rte-finetuned
5
null
transformers
17,639
--- license: mit tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: xlnet-base-rte-finetuned results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue args: rte metrics: - name: Accuracy type: accuracy value: 0.703971119133574 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlnet-base-rte-finetuned This model is a fine-tuned version of [xlnet-base-cased](https://huggingface.co/xlnet-base-cased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 2.6688 - Accuracy: 0.7040 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 311 | 0.9695 | 0.6859 | | 0.315 | 2.0 | 622 | 2.2516 | 0.6498 | | 0.315 | 3.0 | 933 | 2.0439 | 0.7076 | | 0.1096 | 4.0 | 1244 | 2.5190 | 0.7040 | | 0.0368 | 5.0 | 1555 | 2.6688 | 0.7040 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
circulus/kobart-style-v1
92ae63f4807c8f47be33ed018114766e45ad5703
2022-07-25T06:46:04.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
circulus
null
circulus/kobart-style-v1
5
null
transformers
17,640
KoBART 기반 언어 스타일 변환 - Smilegate AI 의 SmileStyle 데이터 셋을 통해 훈련된 모델 입니다. (https://github.com/smilegate-ai/korean_smile_style_dataset) - 사용방법은 곧 올리도록 하겠습니다.
wisejiyoon/bert-base-finetuned-sts
85b8a8854820e720492ccfb0e0e75abfe69183fe
2022-07-25T05:29:55.000Z
[ "pytorch", "bert", "text-classification", "dataset:klue", "transformers", "generated_from_trainer", "model-index" ]
text-classification
false
wisejiyoon
null
wisejiyoon/bert-base-finetuned-sts
5
null
transformers
17,641
--- tags: - generated_from_trainer datasets: - klue metrics: - pearsonr model-index: - name: bert-base-finetuned-sts results: - task: name: Text Classification type: text-classification dataset: name: klue type: klue args: sts metrics: - name: Pearsonr type: pearsonr value: 0.9000373376026184 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-finetuned-sts This model is a fine-tuned version of [klue/bert-base](https://huggingface.co/klue/bert-base) on the klue dataset. It achieves the following results on the evaluation set: - Loss: 0.4582 - Pearsonr: 0.9000 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Pearsonr | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 183 | 0.5329 | 0.8827 | | No log | 2.0 | 366 | 0.4549 | 0.8937 | | 0.2316 | 3.0 | 549 | 0.4656 | 0.8959 | | 0.2316 | 4.0 | 732 | 0.4651 | 0.8990 | | 0.2316 | 5.0 | 915 | 0.4582 | 0.9000 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
jonatasgrosman/exp_w2v2r_en_vp-100k_accent_us-0_england-10_s870
ec520e9d7a001347421d9727a9185ad4b968675d
2022-07-25T05:24:06.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "en", "dataset:mozilla-foundation/common_voice_7_0", "transformers", "license:apache-2.0" ]
automatic-speech-recognition
false
jonatasgrosman
null
jonatasgrosman/exp_w2v2r_en_vp-100k_accent_us-0_england-10_s870
5
null
transformers
17,642
--- language: - en license: apache-2.0 tags: - automatic-speech-recognition - en datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2r_en_vp-100k_accent_us-0_england-10_s870 Fine-tuned [facebook/wav2vec2-large-100k-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-100k-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (en)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jinwooChoi/SKKU_SA_HJW_base_9_a
812017d1513a91eb7b54d1684debc94034cfcffa
2022-07-25T07:17:52.000Z
[ "pytorch", "electra", "text-classification", "transformers" ]
text-classification
false
jinwooChoi
null
jinwooChoi/SKKU_SA_HJW_base_9_a
5
null
transformers
17,643
Entry not found
jinwooChoi/SKKU_AP_SA_KBT6
bb4adcf23d6aaf39ef717fe99f6d733a854df1db
2022-07-25T08:37:32.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
jinwooChoi
null
jinwooChoi/SKKU_AP_SA_KBT6
5
null
transformers
17,644
Entry not found
jinwooChoi/SKKU_AP_SA_KBT7
7e2c3b0d542857b325a8be34caac1aaecab1564a
2022-07-25T08:55:59.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
jinwooChoi
null
jinwooChoi/SKKU_AP_SA_KBT7
5
null
transformers
17,645
Entry not found
relbert/relbert-roberta-large-conceptnet-hc-average-prompt-d-nce
976d287994700d7eac7aa515de07b7a3c5fbe3d0
2022-07-27T10:58:34.000Z
[ "pytorch", "roberta", "feature-extraction", "transformers" ]
feature-extraction
false
relbert
null
relbert/relbert-roberta-large-conceptnet-hc-average-prompt-d-nce
5
null
transformers
17,646
Entry not found
Frikallo/Dodo82J
6d69158f52459e4ee395ff9d2872d965ed579b90
2022-07-26T08:24:41.000Z
[ "pytorch", "tensorboard", "gpt2", "text-generation", "transformers", "generated_from_trainer", "license:mit", "model-index" ]
text-generation
false
Frikallo
null
Frikallo/Dodo82J
5
null
transformers
17,647
--- license: mit tags: - generated_from_trainer model-index: - name: Dodo82J results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Dodo82J This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001372 - train_batch_size: 1 - eval_batch_size: 8 - seed: 3064995158 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1.0 ### Training results ### Framework versions - Transformers 4.20.1 - Pytorch 1.9.1+cu111 - Datasets 2.3.2 - Tokenizers 0.12.1
ZedTheUndead/solar_bloom
4715121ce007544bd9f45794115863083d08768d
2022-07-26T16:01:58.000Z
[ "pytorch", "jax", "bloom", "feature-extraction", "ak", "ar", "as", "bm", "bn", "ca", "code", "en", "es", "eu", "fon", "fr", "gu", "hi", "id", "ig", "ki", "kn", "lg", "ln", "ml", "mr", "ne", "nso", "ny", "or", "pa", "pt", "rn", "rw", "sn", "st", "sw", "ta", "te", "tn", "ts", "tum", "tw", "ur", "vi", "wo", "xh", "yo", "zh", "zhs", "zht", "zu", "arxiv:1909.08053", "arxiv:2110.02861", "arxiv:2108.12409", "transformers", "license:bigscience-bloom-rail-1.0", "text-generation" ]
text-generation
false
ZedTheUndead
null
ZedTheUndead/solar_bloom
5
null
transformers
17,648
aemami1/distilbert-base-uncased-finetuned-wnli
115408304dc486dc7461dbef0d29db8c265863a2
2022-07-26T17:02:48.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:glue", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
aemami1
null
aemami1/distilbert-base-uncased-finetuned-wnli
5
null
transformers
17,649
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: distilbert-base-uncased-finetuned-wnli results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue args: wnli metrics: - name: Accuracy type: accuracy value: 0.5492957746478874 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-wnli This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.6950 - Accuracy: 0.5493 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 40 | 0.6929 | 0.5211 | | No log | 2.0 | 80 | 0.6951 | 0.4789 | | No log | 3.0 | 120 | 0.6950 | 0.5493 | | No log | 4.0 | 160 | 0.6966 | 0.5352 | | No log | 5.0 | 200 | 0.6966 | 0.5352 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
leokai/distilroberta-base-finetuned-marktextepoch_35
9991df368e068cc7b562bab558d6c60ad4428c8a
2022-07-27T06:17:44.000Z
[ "pytorch", "tensorboard", "roberta", "fill-mask", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
fill-mask
false
leokai
null
leokai/distilroberta-base-finetuned-marktextepoch_35
5
null
transformers
17,650
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distilroberta-base-finetuned-marktextepoch_35 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilroberta-base-finetuned-marktextepoch_35 This model is a fine-tuned version of [distilroberta-base](https://huggingface.co/distilroberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.0029 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 35 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 2.5158 | 1.0 | 1500 | 2.3385 | | 2.4312 | 2.0 | 3000 | 2.2620 | | 2.3563 | 3.0 | 4500 | 2.2279 | | 2.3249 | 4.0 | 6000 | 2.2165 | | 2.2515 | 5.0 | 7500 | 2.2246 | | 2.2178 | 6.0 | 9000 | 2.1714 | | 2.1822 | 7.0 | 10500 | 2.1461 | | 2.1501 | 8.0 | 12000 | 2.1388 | | 2.1342 | 9.0 | 13500 | 2.1085 | | 2.1141 | 10.0 | 15000 | 2.1090 | | 2.0833 | 11.0 | 16500 | 2.1130 | | 2.0769 | 12.0 | 18000 | 2.0969 | | 2.0474 | 13.0 | 19500 | 2.0823 | | 2.0364 | 14.0 | 21000 | 2.0893 | | 2.0269 | 15.0 | 22500 | 2.0501 | | 1.9814 | 16.0 | 24000 | 2.0667 | | 1.9716 | 17.0 | 25500 | 2.0570 | | 1.9611 | 18.0 | 27000 | 2.0530 | | 1.9557 | 19.0 | 28500 | 2.0590 | | 1.9443 | 20.0 | 30000 | 2.0381 | | 1.9229 | 21.0 | 31500 | 2.0433 | | 1.9192 | 22.0 | 33000 | 2.0468 | | 1.8865 | 23.0 | 34500 | 2.0361 | | 1.914 | 24.0 | 36000 | 2.0412 | | 1.867 | 25.0 | 37500 | 2.0165 | | 1.8724 | 26.0 | 39000 | 2.0152 | | 1.8644 | 27.0 | 40500 | 2.0129 | | 1.8685 | 28.0 | 42000 | 2.0183 | | 1.8458 | 29.0 | 43500 | 2.0082 | | 1.8653 | 30.0 | 45000 | 1.9939 | | 1.8584 | 31.0 | 46500 | 2.0015 | | 1.8396 | 32.0 | 48000 | 1.9924 | | 1.8399 | 33.0 | 49500 | 2.0102 | | 1.8363 | 34.0 | 51000 | 1.9946 | | 1.83 | 35.0 | 52500 | 1.9908 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
Evelyn18/roberta-base-spanish-squades-becasIncentivos1
2e3736b2be6313a3f611dbcd3ae03a2107ec2c46
2022-07-27T03:13:04.000Z
[ "pytorch", "tensorboard", "roberta", "question-answering", "dataset:becasv2", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
question-answering
false
Evelyn18
null
Evelyn18/roberta-base-spanish-squades-becasIncentivos1
5
null
transformers
17,651
--- tags: - generated_from_trainer datasets: - becasv2 model-index: - name: roberta-base-spanish-squades-becasIncentivos1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-spanish-squades-becasIncentivos1 This model is a fine-tuned version of [IIC/roberta-base-spanish-squades](https://huggingface.co/IIC/roberta-base-spanish-squades) on the becasv2 dataset. It achieves the following results on the evaluation set: - Loss: 2.1943 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 11 - eval_batch_size: 11 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 6 | 2.1580 | | No log | 2.0 | 12 | 1.7889 | | No log | 3.0 | 18 | 1.8939 | | No log | 4.0 | 24 | 2.1401 | | No log | 5.0 | 30 | 2.1943 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
olemeyer/zero_shot_issue_classification_bart-large-32-b
8b2e6fd7a9395ab2a7fb1d602fa9174e4dfff673
2022-07-27T14:09:29.000Z
[ "pytorch", "tensorboard", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
olemeyer
null
olemeyer/zero_shot_issue_classification_bart-large-32-b
5
null
transformers
17,652
Entry not found
sheikh/layoutlmv2-finetuned-SLR-test
07a4fb6b8ca6e8e3a0c16437605ad1cb4e64c9cd
2022-07-27T06:09:01.000Z
[ "pytorch", "tensorboard", "layoutlmv2", "token-classification", "transformers", "generated_from_trainer", "license:cc-by-nc-sa-4.0", "model-index", "autotrain_compatible" ]
token-classification
false
sheikh
null
sheikh/layoutlmv2-finetuned-SLR-test
5
null
transformers
17,653
--- license: cc-by-nc-sa-4.0 tags: - generated_from_trainer model-index: - name: layoutlmv2-finetuned-SLR-test results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # layoutlmv2-finetuned-SLR-test This model is a fine-tuned version of [microsoft/layoutlmv2-base-uncased](https://huggingface.co/microsoft/layoutlmv2-base-uncased) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 8 ### Training results ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
Doohae/lassl-electra-720k
d6c886a960ea9d852122abd22d4e39dc51a54f0d
2022-07-27T06:24:17.000Z
[ "pytorch", "electra", "pretraining", "transformers" ]
null
false
Doohae
null
Doohae/lassl-electra-720k
5
null
transformers
17,654
Entry not found
lisaterumi/genia-biobert-ent2
db354c3d694a090a36b49fa6c2f6603a2e985787
2022-07-27T14:02:12.000Z
[ "pytorch", "bert", "token-classification", "en", "dataset:Genia", "transformers", "autotrain_compatible" ]
token-classification
false
lisaterumi
null
lisaterumi/genia-biobert-ent2
5
null
transformers
17,655
--- language: "en" widget: - text: "Point mutation of a GATA-1 site at -230 reduced promoter activity by 37%." - text: "Electrophoretic mobility shift assays indicated that the -230 GATA-1 site has a relatively low affinity for GATA-1." - text: "Accordingly, the effects of the constitutively active PKCs were compared to the effects of mutationally activated p21ras." - text: "Activated Src and p21ras were able to induce CD69 expression." datasets: - Genia --- # Genia-BioBERT-ENT-v2 Nesta versão, as entidades descontinuas são marcadas como uma só. Exemplo: ``` [['alpha', '-', 'globin'], [17, 18, 22]] [['beta', '-', 'globin'], [20, 21, 22]] ``` Viram: ``` [['alpha', '-', 'and', 'beta', '-', 'globin'], [17, 18, 19, 20, 21, 22]] ``` Treinado com codigo Thiago no [Colab](https://colab.research.google.com/drive/1lYXwcYcj5k95CGeO2VyFciXwQI6hVD4M#scrollTo=6xIR5mAhZ8TV). Metricas: ``` precision recall f1-score support 0 0.92 0.93 0.93 17388 1 0.96 0.96 0.96 34980 accuracy 0.95 52368 macro avg 0.94 0.95 0.94 52368 weighted avg 0.95 0.95 0.95 52368 F1: 0.9509454289528652 Accuracy: 0.9509242285365108 ``` Parâmetros: ``` nclasses = 3 nepochs = 50 (parou na 10a. epoca pelo early stop) batch_size = 32 batch_status = 32 learning_rate = 3e-5 early_stop = 5 max_length = 200 checkpoint: dmis-lab/biobert-base-cased-v1.2 ``` ## Citation ``` coming soon ```
jaeyeon/korean-aihub-learning-math-8batch
9e32cad5ca4f927cd4944bc99b0f54cc10c1ab60
2022-07-28T06:51:16.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
jaeyeon
null
jaeyeon/korean-aihub-learning-math-8batch
5
null
transformers
17,656
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: korean-aihub-learning-math-8batch results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # korean-aihub-learning-math-8batch This model is a fine-tuned version of [kresnik/wav2vec2-large-xlsr-korean](https://huggingface.co/kresnik/wav2vec2-large-xlsr-korean) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.1867 - Wer: 0.5315 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | No log | 1.0 | 20 | 33.1529 | 1.0 | | No log | 2.0 | 40 | 28.0161 | 1.0 | | No log | 3.0 | 60 | 8.7324 | 1.0 | | No log | 4.0 | 80 | 4.9786 | 1.0 | | 21.6269 | 5.0 | 100 | 4.5335 | 1.0 | | 21.6269 | 6.0 | 120 | 4.4517 | 1.0 | | 21.6269 | 7.0 | 140 | 4.4068 | 1.0 | | 21.6269 | 8.0 | 160 | 4.3210 | 1.0 | | 21.6269 | 9.0 | 180 | 4.0041 | 0.9932 | | 4.1788 | 10.0 | 200 | 3.0921 | 0.9712 | | 4.1788 | 11.0 | 220 | 2.1650 | 0.8603 | | 4.1788 | 12.0 | 240 | 1.6135 | 0.7192 | | 4.1788 | 13.0 | 260 | 1.3842 | 0.6466 | | 4.1788 | 14.0 | 280 | 1.2872 | 0.5918 | | 1.205 | 15.0 | 300 | 1.2234 | 0.5808 | | 1.205 | 16.0 | 320 | 1.2694 | 0.6 | | 1.205 | 17.0 | 340 | 1.2287 | 0.5575 | | 1.205 | 18.0 | 360 | 1.1776 | 0.5877 | | 1.205 | 19.0 | 380 | 1.2418 | 0.5671 | | 0.2825 | 20.0 | 400 | 1.2469 | 0.5616 | | 0.2825 | 21.0 | 420 | 1.2203 | 0.5425 | | 0.2825 | 22.0 | 440 | 1.2270 | 0.5863 | | 0.2825 | 23.0 | 460 | 1.1930 | 0.5548 | | 0.2825 | 24.0 | 480 | 1.1242 | 0.5521 | | 0.1831 | 25.0 | 500 | 1.2245 | 0.5575 | | 0.1831 | 26.0 | 520 | 1.2276 | 0.5342 | | 0.1831 | 27.0 | 540 | 1.1641 | 0.5205 | | 0.1831 | 28.0 | 560 | 1.1727 | 0.5329 | | 0.1831 | 29.0 | 580 | 1.1885 | 0.5534 | | 0.14 | 30.0 | 600 | 1.1867 | 0.5315 | ### Framework versions - Transformers 4.21.0 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
SharpAI/mal_tls-bert-base-w1q8
775ab52526a78dc9fd35fe1c012cf7db00038a2d
2022-07-28T07:05:48.000Z
[ "pytorch", "tf", "bert", "text-classification", "transformers", "generated_from_keras_callback", "model-index" ]
text-classification
false
SharpAI
null
SharpAI/mal_tls-bert-base-w1q8
5
null
transformers
17,657
--- tags: - generated_from_keras_callback model-index: - name: mal_tls-bert-base-w1q8 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # mal_tls-bert-base-w1q8 This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set: ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: None - training_precision: float32 ### Training results ### Framework versions - Transformers 4.15.0 - TensorFlow 2.6.4 - Datasets 2.1.0 - Tokenizers 0.10.3
dnikolic/wav2vec2-xlsr-530-serbian-colab
8d46a78014020bcf9329eb7e204abb0b115c6e43
2022-07-28T14:16:28.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
dnikolic
null
dnikolic/wav2vec2-xlsr-530-serbian-colab
5
null
transformers
17,658
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-xlsr-530-serbian-colab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-xlsr-530-serbian-colab This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 ### Framework versions - Transformers 4.20.0 - Pytorch 1.12.0 - Datasets 2.4.0 - Tokenizers 0.12.1
BramVanroy/bert-base-dutch-cased-hebban-reviews5
fc8ac9a45b3f6c5c6e259beaa4e87b898883ba8c
2022-07-29T09:52:36.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "nl", "dataset:BramVanroy/hebban-reviews", "transformers", "sentiment-analysis", "dutch", "text", "license:mit", "model-index" ]
text-classification
false
BramVanroy
null
BramVanroy/bert-base-dutch-cased-hebban-reviews5
5
null
transformers
17,659
--- datasets: - BramVanroy/hebban-reviews language: - nl license: mit metrics: - accuracy - f1 - precision - qwk - recall model-index: - name: bert-base-dutch-cased-hebban-reviews5 results: - dataset: config: filtered_rating name: BramVanroy/hebban-reviews - filtered_rating - 2.0.0 revision: 2.0.0 split: test type: BramVanroy/hebban-reviews metrics: - name: Test accuracy type: accuracy value: 0.6071005917159763 - name: Test f1 type: f1 value: 0.6050857981600024 - name: Test precision type: precision value: 0.6167698094913165 - name: Test qwk type: qwk value: 0.7455315835020534 - name: Test recall type: recall value: 0.6071005917159763 task: name: sentiment analysis type: text-classification tags: - sentiment-analysis - dutch - text widget: - text: Wauw, wat een leuk boek! Ik heb me er er goed mee vermaakt. - text: Nee, deze vond ik niet goed. De auteur doet zijn best om je als lezer mee te trekken in het verhaal maar mij overtuigt het alleszins niet. - text: Ik vind het niet slecht maar de schrijfstijl trekt me ook niet echt aan. Het wordt een beetje saai vanaf het vijfde hoofdstuk --- # bert-base-dutch-cased-hebban-reviews5 # Dataset - dataset_name: BramVanroy/hebban-reviews - dataset_config: filtered_rating - dataset_revision: 2.0.0 - labelcolumn: review_rating0 - textcolumn: review_text_without_quotes # Training - optim: adamw_hf - learning_rate: 5e-05 - per_device_train_batch_size: 64 - per_device_eval_batch_size: 64 - gradient_accumulation_steps: 1 - max_steps: 5001 - save_steps: 500 - metric_for_best_model: qwk # Best checkedpoint based on validation - best_metric: 0.736704788874575 - best_model_checkpoint: trained/hebban-reviews5/bert-base-dutch-cased/checkpoint-2000 # Test results of best checkpoint - accuracy: 0.6071005917159763 - f1: 0.6050857981600024 - precision: 0.6167698094913165 - qwk: 0.7455315835020534 - recall: 0.6071005917159763 ## Confusion matric ![cfm](fig/test_confusion_matrix.png) ## Normalized confusion matrix ![norm cfm](fig/test_confusion_matrix_norm.png) # Environment - cuda_capabilities: 8.0; 8.0 - cuda_device_count: 2 - cuda_devices: NVIDIA A100-SXM4-80GB; NVIDIA A100-SXM4-80GB - finetuner_commit: 8159b4c1d5e66b36f68dd263299927ffb8670ebd - platform: Linux-4.18.0-305.49.1.el8_4.x86_64-x86_64-with-glibc2.28 - python_version: 3.9.5 - toch_version: 1.10.0 - transformers_version: 4.21.0
BramVanroy/robbert-v2-dutch-base-hebban-reviews5
6df31850ee3c01a8f3bb2df32f997f7dbfb1d543
2022-07-29T09:55:19.000Z
[ "pytorch", "tensorboard", "roberta", "text-classification", "nl", "dataset:BramVanroy/hebban-reviews", "transformers", "sentiment-analysis", "dutch", "text", "license:mit", "model-index" ]
text-classification
false
BramVanroy
null
BramVanroy/robbert-v2-dutch-base-hebban-reviews5
5
null
transformers
17,660
--- datasets: - BramVanroy/hebban-reviews language: - nl license: mit metrics: - accuracy - f1 - precision - qwk - recall model-index: - name: robbert-v2-dutch-base-hebban-reviews5 results: - dataset: config: filtered_rating name: BramVanroy/hebban-reviews - filtered_rating - 2.0.0 revision: 2.0.0 split: test type: BramVanroy/hebban-reviews metrics: - name: Test accuracy type: accuracy value: 0.624457593688363 - name: Test f1 type: f1 value: 0.625518585787774 - name: Test precision type: precision value: 0.6295608657909847 - name: Test qwk type: qwk value: 0.7517620387343015 - name: Test recall type: recall value: 0.624457593688363 task: name: sentiment analysis type: text-classification tags: - sentiment-analysis - dutch - text widget: - text: Wauw, wat een leuk boek! Ik heb me er er goed mee vermaakt. - text: Nee, deze vond ik niet goed. De auteur doet zijn best om je als lezer mee te trekken in het verhaal maar mij overtuigt het alleszins niet. - text: Ik vind het niet slecht maar de schrijfstijl trekt me ook niet echt aan. Het wordt een beetje saai vanaf het vijfde hoofdstuk --- # robbert-v2-dutch-base-hebban-reviews5 # Dataset - dataset_name: BramVanroy/hebban-reviews - dataset_config: filtered_rating - dataset_revision: 2.0.0 - labelcolumn: review_rating0 - textcolumn: review_text_without_quotes # Training - optim: adamw_hf - learning_rate: 5e-05 - per_device_train_batch_size: 64 - per_device_eval_batch_size: 64 - gradient_accumulation_steps: 1 - max_steps: 5001 - save_steps: 500 - metric_for_best_model: qwk # Best checkedpoint based on validation - best_metric: 0.7480754124116261 - best_model_checkpoint: trained/hebban-reviews5/robbert-v2-dutch-base/checkpoint-3000 # Test results of best checkpoint - accuracy: 0.624457593688363 - f1: 0.625518585787774 - precision: 0.6295608657909847 - qwk: 0.7517620387343015 - recall: 0.624457593688363 ## Confusion matric ![cfm](fig/test_confusion_matrix.png) ## Normalized confusion matrix ![norm cfm](fig/test_confusion_matrix_norm.png) # Environment - cuda_capabilities: 8.0; 8.0 - cuda_device_count: 2 - cuda_devices: NVIDIA A100-SXM4-80GB; NVIDIA A100-SXM4-80GB - finetuner_commit: 8159b4c1d5e66b36f68dd263299927ffb8670ebd - platform: Linux-4.18.0-305.49.1.el8_4.x86_64-x86_64-with-glibc2.28 - python_version: 3.9.5 - toch_version: 1.10.0 - transformers_version: 4.21.0
asparius/combined
c5f5fee480c4e291731caf8fbe11c262e5e1eb09
2022-07-29T15:04:34.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers", "generated_from_trainer", "license:mit", "model-index" ]
text-classification
false
asparius
null
asparius/combined
5
null
transformers
17,661
--- license: mit tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: combined results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # combined This model is a fine-tuned version of [dbmdz/bert-base-turkish-cased](https://huggingface.co/dbmdz/bert-base-turkish-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.4197 - Accuracy: 0.8898 - F1: 0.8934 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results ### Framework versions - Transformers 4.21.0 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
Anas2000/balu
f04f8d2d1743a7b0307d72c0b629e748319a91fc
2022-07-29T15:23:03.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
Anas2000
null
Anas2000/balu
5
null
transformers
17,662
Entry not found
susghosh/distilbert-base-uncased-finetuned-imdb
0c300106cd32c3c8d916154893928d5cbf912279
2022-07-29T16:32:48.000Z
[ "pytorch", "tensorboard", "distilbert", "fill-mask", "dataset:imdb", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
fill-mask
false
susghosh
null
susghosh/distilbert-base-uncased-finetuned-imdb
5
null
transformers
17,663
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb model-index: - name: distilbert-base-uncased-finetuned-imdb results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-imdb This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 2.7341 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.9667 | 1.0 | 156 | 2.7795 | | 2.8612 | 2.0 | 312 | 2.6910 | | 2.8075 | 3.0 | 468 | 2.7044 | ### Framework versions - Transformers 4.21.0 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
bthomas/testModel2
690cfba3e73a4f8607757ba5dd2c4a4ca9207557
2022-07-29T16:52:33.000Z
[ "pytorch", "bert", "text-classification", "dataset:glue", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
bthomas
null
bthomas/testModel2
5
null
transformers
17,664
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy - f1 model-index: - name: testModel2 results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue args: mrpc metrics: - name: Accuracy type: accuracy value: 0.875 - name: F1 type: f1 value: 0.9134125636672327 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # testModel2 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.5316 - Accuracy: 0.875 - F1: 0.9134 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | No log | 1.0 | 459 | 0.3961 | 0.8235 | 0.8723 | | 0.5362 | 2.0 | 918 | 0.4021 | 0.8627 | 0.9070 | | 0.313 | 3.0 | 1377 | 0.5316 | 0.875 | 0.9134 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0 - Datasets 2.3.2 - Tokenizers 0.11.0
hadidev/Vit_roberta_urdu
65d7a66879ccf4dd69e1ee15f2bb0c48ebf3dfc2
2022-07-29T22:43:27.000Z
[ "pytorch", "tensorboard", "vision-encoder-decoder", "transformers", "license:gpl-3.0" ]
null
false
hadidev
null
hadidev/Vit_roberta_urdu
5
null
transformers
17,665
--- license: gpl-3.0 ---
13048909972/wav2vec2-common_voice-tr-demo
92c68c2dd3aeb0c9eb5fe79f57bd09e522a1cbbc
2021-12-09T02:15:30.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
13048909972
null
13048909972/wav2vec2-common_voice-tr-demo
4
null
transformers
17,666
Entry not found
18811449050/bert_cn_finetuning
dd8621ee740c6bc4fbbc25f24757723bf3a50cf5
2021-05-18T17:03:47.000Z
[ "pytorch", "jax", "bert", "text-classification", "transformers" ]
text-classification
false
18811449050
null
18811449050/bert_cn_finetuning
4
null
transformers
17,667
Entry not found
AIDA-UPM/bertweet-base-multi-mami
aac32459c38bd7a29ed8aa079172a0c7a12e794c
2021-12-29T11:45:41.000Z
[ "pytorch", "roberta", "text-classification", "en", "transformers", "misogyny", "license:apache-2.0" ]
text-classification
false
AIDA-UPM
null
AIDA-UPM/bertweet-base-multi-mami
4
null
transformers
17,668
--- pipeline_tag: text-classification tags: - text-classification - misogyny language: en license: apache-2.0 widget: - text: "Women wear yoga pants because men don't stare at their personality" example_title: "Misogyny detection" --- # bertweet-base-multi-mami This is a Bertweet model: It maps sentences & paragraphs to a 768 dimensional dense vector space and classifies them into 5 multi labels. # Multilabels label2id={ "misogynous": 0, "shaming": 1, "stereotype": 2, "objectification": 3, "violence": 4, },
AK/ak_nlp
ef5cc2479fb4388e9a49bcbfad935e73b9bccf21
2021-05-20T11:39:02.000Z
[ "pytorch", "jax", "roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
AK
null
AK/ak_nlp
4
null
transformers
17,669
Entry not found
Ahren09/distilbert-base-uncased-finetuned-cola
a635cfbf7441a808025f10a0d82c6b87a00d6d2f
2021-11-28T02:27:26.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "transformers" ]
text-classification
false
Ahren09
null
Ahren09/distilbert-base-uncased-finetuned-cola
4
null
transformers
17,670
Entry not found
AkshaySg/gramCorrection
04edb6a4c1ef4f02eaf8d315231f9c5500501929
2021-07-15T08:56:11.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
AkshaySg
null
AkshaySg/gramCorrection
4
null
transformers
17,671
Entry not found
Aleksandar/bert-srb-base-cased-oscar
583a406adc3e9c1eccdf1fc72d3375a06a3e8004
2021-09-22T12:19:20.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "generated_from_trainer", "autotrain_compatible" ]
fill-mask
false
Aleksandar
null
Aleksandar/bert-srb-base-cased-oscar
4
null
transformers
17,672
--- tags: - generated_from_trainer model_index: - name: bert-srb-base-cased-oscar results: - task: name: Masked Language Modeling type: fill-mask --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-srb-base-cased-oscar This model is a fine-tuned version of [](https://huggingface.co/) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results ### Framework versions - Transformers 4.9.2 - Pytorch 1.9.0 - Datasets 1.11.0 - Tokenizers 0.10.1
Aleksandar/distilbert-srb-ner-setimes
2b1db306808207f82b5242ffe53fb8d441d3df7b
2021-09-22T12:19:29.000Z
[ "pytorch", "distilbert", "token-classification", "transformers", "generated_from_trainer", "autotrain_compatible" ]
token-classification
false
Aleksandar
null
Aleksandar/distilbert-srb-ner-setimes
4
null
transformers
17,673
--- tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model_index: - name: distilbert-srb-ner-setimes results: - task: name: Token Classification type: token-classification metric: name: Accuracy type: accuracy value: 0.9665376552169005 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-srb-ner-setimes This model was trained from scratch on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1838 - Precision: 0.8370 - Recall: 0.8617 - F1: 0.8492 - Accuracy: 0.9665 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 104 | 0.2319 | 0.6668 | 0.7029 | 0.6844 | 0.9358 | | No log | 2.0 | 208 | 0.1850 | 0.7265 | 0.7508 | 0.7385 | 0.9469 | | No log | 3.0 | 312 | 0.1584 | 0.7555 | 0.7937 | 0.7741 | 0.9538 | | No log | 4.0 | 416 | 0.1484 | 0.7644 | 0.8128 | 0.7879 | 0.9571 | | 0.1939 | 5.0 | 520 | 0.1383 | 0.7850 | 0.8131 | 0.7988 | 0.9604 | | 0.1939 | 6.0 | 624 | 0.1409 | 0.7914 | 0.8359 | 0.8130 | 0.9632 | | 0.1939 | 7.0 | 728 | 0.1526 | 0.8176 | 0.8392 | 0.8283 | 0.9637 | | 0.1939 | 8.0 | 832 | 0.1536 | 0.8195 | 0.8409 | 0.8301 | 0.9641 | | 0.1939 | 9.0 | 936 | 0.1538 | 0.8242 | 0.8523 | 0.8380 | 0.9661 | | 0.0364 | 10.0 | 1040 | 0.1612 | 0.8228 | 0.8413 | 0.8319 | 0.9652 | | 0.0364 | 11.0 | 1144 | 0.1721 | 0.8289 | 0.8503 | 0.8395 | 0.9656 | | 0.0364 | 12.0 | 1248 | 0.1645 | 0.8301 | 0.8590 | 0.8443 | 0.9663 | | 0.0364 | 13.0 | 1352 | 0.1747 | 0.8352 | 0.8540 | 0.8445 | 0.9665 | | 0.0364 | 14.0 | 1456 | 0.1703 | 0.8277 | 0.8573 | 0.8422 | 0.9663 | | 0.011 | 15.0 | 1560 | 0.1770 | 0.8314 | 0.8624 | 0.8466 | 0.9665 | | 0.011 | 16.0 | 1664 | 0.1903 | 0.8399 | 0.8537 | 0.8467 | 0.9661 | | 0.011 | 17.0 | 1768 | 0.1837 | 0.8363 | 0.8590 | 0.8475 | 0.9665 | | 0.011 | 18.0 | 1872 | 0.1820 | 0.8338 | 0.8570 | 0.8453 | 0.9667 | | 0.011 | 19.0 | 1976 | 0.1855 | 0.8382 | 0.8620 | 0.8499 | 0.9666 | | 0.0053 | 20.0 | 2080 | 0.1838 | 0.8370 | 0.8617 | 0.8492 | 0.9665 | ### Framework versions - Transformers 4.9.2 - Pytorch 1.9.0 - Datasets 1.11.0 - Tokenizers 0.10.1
Alerosae/SocratesGPT-2
38449e4d6b86ddf4db3a010aef572eee4a899bac
2021-12-20T12:36:38.000Z
[ "pytorch", "gpt2", "feature-extraction", "en", "transformers", "text-generation" ]
text-generation
false
Alerosae
null
Alerosae/SocratesGPT-2
4
null
transformers
17,674
--- language: "en" tags: - text-generation pipeline_tag: text-generation widget: - text: "The Gods" - text: "What is" --- This is a fine-tuned version of GPT-2, trained with the entire corpus of Plato's works. By generating text samples you should be able to generate ancient Greek philosophy on the fly!
Alexander-Learn/bert-finetuned-squad
4a8f1adebf1f241f0f14682ea3d44f950b31dabc
2022-01-29T09:16:44.000Z
[ "pytorch", "tensorboard", "bert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
Alexander-Learn
null
Alexander-Learn/bert-finetuned-squad
4
null
transformers
17,675
Entry not found
Alireza1044/albert-base-v2-cola
7b3d1e47bc6ad26f49e79ccd3bfb56bf1179528e
2021-07-25T16:25:10.000Z
[ "pytorch", "tensorboard", "albert", "text-classification", "en", "dataset:glue", "transformers", "generated_from_trainer", "license:apache-2.0" ]
text-classification
false
Alireza1044
null
Alireza1044/albert-base-v2-cola
4
null
transformers
17,676
--- language: - en license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - matthews_correlation model_index: - name: cola results: - task: name: Text Classification type: text-classification dataset: name: GLUE COLA type: glue args: cola metric: name: Matthews Correlation type: matthews_correlation value: 0.5494768667363472 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # cola This model is a fine-tuned version of [albert-base-v2](https://huggingface.co/albert-base-v2) on the GLUE COLA dataset. It achieves the following results on the evaluation set: - Loss: 0.7552 - Matthews Correlation: 0.5495 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4.0 ### Training results ### Framework versions - Transformers 4.9.0 - Pytorch 1.9.0+cu102 - Datasets 1.10.2 - Tokenizers 0.10.3
Alireza1044/albert-base-v2-qqp
529530efc4e7a27c184e280e7e31dc1177c2c229
2021-07-28T02:04:17.000Z
[ "pytorch", "albert", "text-classification", "en", "dataset:glue", "transformers", "generated_from_trainer", "license:apache-2.0" ]
text-classification
false
Alireza1044
null
Alireza1044/albert-base-v2-qqp
4
null
transformers
17,677
--- language: - en license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy - f1 model_index: - name: qqp results: - task: name: Text Classification type: text-classification dataset: name: GLUE QQP type: glue args: qqp metric: name: F1 type: f1 value: 0.8722569490623753 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # qqp This model is a fine-tuned version of [albert-base-v2](https://huggingface.co/albert-base-v2) on the GLUE QQP dataset. It achieves the following results on the evaluation set: - Loss: 0.3695 - Accuracy: 0.9050 - F1: 0.8723 - Combined Score: 0.8886 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 64 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4.0 ### Training results ### Framework versions - Transformers 4.9.1 - Pytorch 1.9.0+cu102 - Datasets 1.10.2 - Tokenizers 0.10.3
Alireza1044/bert_classification_lm
e44960e937ebbd66268001dc99b679e195ece584
2021-07-09T08:50:58.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
Alireza1044
null
Alireza1044/bert_classification_lm
4
null
transformers
17,678
A simple model trained on dialogues of characters in NBC series, `The Office`. The model can do a binary classification between `Michael Scott` and `Dwight Shrute`'s dialogues. <style type="text/css"> .tg {border-collapse:collapse;border-spacing:0;} .tg td{border-color:black;border-style:solid;border-width:1px;font-family:Arial, sans-serif;font-size:14px; overflow:hidden;padding:10px 5px;word-break:normal;} .tg th{border-color:black;border-style:solid;border-width:1px;font-family:Arial, sans-serif;font-size:14px; font-weight:normal;overflow:hidden;padding:10px 5px;word-break:normal;} .tg .tg-c3ow{border-color:inherit;text-align:center;vertical-align:top} </style> <table class="tg"> <thead> <tr> <th class="tg-c3ow" colspan="2">Label Definitions</th> </tr> </thead> <tbody> <tr> <td class="tg-c3ow">Label 0</td> <td class="tg-c3ow">Michael</td> </tr> <tr> <td class="tg-c3ow">Label 1</td> <td class="tg-c3ow">Dwight</td> </tr> </tbody> </table>
Amalq/distilbert-base-uncased-finetuned-cola
a94ca7df7aa7c1bb797bd84249e125e2c9fa1937
2022-02-11T20:25:53.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:glue", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
Amalq
null
Amalq/distilbert-base-uncased-finetuned-cola
4
null
transformers
17,679
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - matthews_correlation model-index: - name: distilbert-base-uncased-finetuned-cola results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue args: cola metrics: - name: Matthews Correlation type: matthews_correlation value: 0.5335074704896392 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-cola This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.7570 - Matthews Correlation: 0.5335 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.5315 | 1.0 | 535 | 0.5214 | 0.4009 | | 0.354 | 2.0 | 1070 | 0.5275 | 0.4857 | | 0.2396 | 3.0 | 1605 | 0.6610 | 0.4901 | | 0.1825 | 4.0 | 2140 | 0.7570 | 0.5335 | | 0.1271 | 5.0 | 2675 | 0.8923 | 0.5074 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
Anamika/autonlp-fa-473312409
30f4541f49f67d3887c5f2161a2513c6a2741e55
2022-01-04T20:08:00.000Z
[ "pytorch", "roberta", "text-classification", "en", "dataset:Anamika/autonlp-data-fa", "transformers", "autonlp", "co2_eq_emissions" ]
text-classification
false
Anamika
null
Anamika/autonlp-fa-473312409
4
null
transformers
17,680
--- tags: autonlp language: en widget: - text: "I love AutoNLP 🤗" datasets: - Anamika/autonlp-data-fa co2_eq_emissions: 25.128735714898614 --- # Model Trained Using AutoNLP - Problem type: Multi-class Classification - Model ID: 473312409 - CO2 Emissions (in grams): 25.128735714898614 ## Validation Metrics - Loss: 0.6010786890983582 - Accuracy: 0.7990650945370823 - Macro F1: 0.7429662929144928 - Micro F1: 0.7990650945370823 - Weighted F1: 0.7977660363770382 - Macro Precision: 0.7744390888231261 - Micro Precision: 0.7990650945370823 - Weighted Precision: 0.800444194278352 - Macro Recall: 0.7198278524814119 - Micro Recall: 0.7990650945370823 - Weighted Recall: 0.7990650945370823 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/Anamika/autonlp-fa-473312409 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("Anamika/autonlp-fa-473312409", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("Anamika/autonlp-fa-473312409", use_auth_token=True) inputs = tokenizer("I love AutoNLP", return_tensors="pt") outputs = model(**inputs) ```
Andrija/SRoBERTa-F
0756a2b34ebbb89e8e344e90b6945f207c4633cd
2021-10-07T18:53:58.000Z
[ "pytorch", "tensorboard", "roberta", "fill-mask", "hr", "sr", "dataset:oscar", "dataset:srwac", "dataset:leipzig", "dataset:cc100", "dataset:hrwac", "transformers", "masked-lm", "license:apache-2.0", "autotrain_compatible" ]
fill-mask
false
Andrija
null
Andrija/SRoBERTa-F
4
null
transformers
17,681
--- datasets: - oscar - srwac - leipzig - cc100 - hrwac language: - hr - sr tags: - masked-lm widget: - text: "Ovo je početak <mask>." license: apache-2.0 --- # Transformer language model for Croatian and Serbian Trained on 43GB datasets that contain Croatian and Serbian language for one epochs (9.6 mil. steps, 3 epochs). Leipzig Corpus, OSCAR, srWac, hrWac, cc100-hr and cc100-sr datasets Validation number of exampels run for perplexity:1620487 sentences Perplexity:6.02 Start loss: 8.6 Final loss: 2.0 Thoughts: Model could be trained more, the training did not stagnate. | Model | #params | Arch. | Training data | |--------------------------------|--------------------------------|-------|-----------------------------------| | `Andrija/SRoBERTa-X` | 80M | Fifth | Leipzig Corpus, OSCAR, srWac, hrWac, cc100-hr and cc100-sr (43 GB of text) |
Andrija/SRoBERTa-L
41be36386505953338c6ab26986c2b1225e09dda
2021-08-19T14:11:38.000Z
[ "pytorch", "roberta", "fill-mask", "hr", "sr", "dataset:oscar", "dataset:srwac", "dataset:leipzig", "transformers", "masked-lm", "license:apache-2.0", "autotrain_compatible" ]
fill-mask
false
Andrija
null
Andrija/SRoBERTa-L
4
null
transformers
17,682
--- datasets: - oscar - srwac - leipzig language: - hr - sr tags: - masked-lm widget: - text: "Ovo je početak <mask>." license: apache-2.0 --- # Transformer language model for Croatian and Serbian Trained on 6GB datasets that contain Croatian and Serbian language for two epochs (500k steps). Leipzig, OSCAR and srWac datasets | Model | #params | Arch. | Training data | |--------------------------------|--------------------------------|-------|-----------------------------------| | `Andrija/SRoBERTa-L` | 80M | Third | Leipzig Corpus, OSCAR and srWac (6 GB of text) |
AndyJ/prompt_finetune
9f06e8b528686a6bbd412ca861e1eceaf3e58902
2022-02-17T01:25:00.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
AndyJ
null
AndyJ/prompt_finetune
4
null
transformers
17,683
Entry not found
AnonARR/qqp-bert
4e29cc176eba764a341e5bf18854c634a1334e73
2021-11-15T21:25:04.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
AnonARR
null
AnonARR/qqp-bert
4
null
transformers
17,684
Entry not found
Anonymous/ReasonBERT-RoBERTa
e913515bb4824cc3dc93bc9b043d7ae5b779fccb
2021-05-23T02:34:08.000Z
[ "pytorch", "roberta", "feature-extraction", "transformers" ]
feature-extraction
false
Anonymous
null
Anonymous/ReasonBERT-RoBERTa
4
null
transformers
17,685
Pre-trained to have better reasoning ability, try this if you are working with task like QA. For more details please see https://openreview.net/forum?id=cGB7CMFtrSx This is based on roberta-base model and pre-trained for text input
AnonymousSub/AR_SDR_HF_model_base
2ca620015458f285b6d37b67e14f7c477afd6f98
2022-01-11T21:48:47.000Z
[ "pytorch", "roberta", "feature-extraction", "transformers" ]
feature-extraction
false
AnonymousSub
null
AnonymousSub/AR_SDR_HF_model_base
4
null
transformers
17,686
Entry not found
AnonymousSub/AR_rule_based_hier_quadruplet_epochs_1_shard_1
2e3de1d312bfc6095360785a4bd7b9fa5b0fdab4
2022-01-10T22:20:52.000Z
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
false
AnonymousSub
null
AnonymousSub/AR_rule_based_hier_quadruplet_epochs_1_shard_1
4
null
transformers
17,687
Entry not found
AnonymousSub/AR_rule_based_roberta_bert_quadruplet_epochs_1_shard_1
89e8b8ff7aab0d9767610cd76694d424725a6e1e
2022-01-06T13:53:01.000Z
[ "pytorch", "roberta", "feature-extraction", "transformers" ]
feature-extraction
false
AnonymousSub
null
AnonymousSub/AR_rule_based_roberta_bert_quadruplet_epochs_1_shard_1
4
null
transformers
17,688
Entry not found
AnonymousSub/AR_rule_based_roberta_only_classfn_twostage_epochs_1_shard_1
32aa0f629e8dd7d331b0f22bd345d113b548d47d
2022-01-06T10:19:21.000Z
[ "pytorch", "roberta", "feature-extraction", "transformers" ]
feature-extraction
false
AnonymousSub
null
AnonymousSub/AR_rule_based_roberta_only_classfn_twostage_epochs_1_shard_1
4
null
transformers
17,689
Entry not found
AnonymousSub/EManuals_BERT_copy
1f3bfe85464f66377abab7d403eb90f664a09d37
2022-01-23T03:44:19.000Z
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
false
AnonymousSub
null
AnonymousSub/EManuals_BERT_copy
4
null
transformers
17,690
Entry not found
AnonymousSub/SR_rule_based_hier_triplet_epochs_1_shard_1
fb39f389cfcf22f3cde561453ab656b95a8b6e0e
2022-01-11T01:14:35.000Z
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
false
AnonymousSub
null
AnonymousSub/SR_rule_based_hier_triplet_epochs_1_shard_1
4
null
transformers
17,691
Entry not found
AnonymousSub/SR_rule_based_only_classfn_twostage_epochs_1_shard_1
8829254d3f63c7a9f304a91ead7811db3a23b484
2022-01-10T22:14:11.000Z
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
false
AnonymousSub
null
AnonymousSub/SR_rule_based_only_classfn_twostage_epochs_1_shard_1
4
null
transformers
17,692
Entry not found
AnonymousSub/T5_pubmedqa_question_generation
f463c14de6e70fdec1c8daa698f7199ef50a1472
2022-01-06T10:01:25.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
AnonymousSub
null
AnonymousSub/T5_pubmedqa_question_generation
4
null
transformers
17,693
Entry not found
AnonymousSub/cline-emanuals-s10-AR
b4c05723f2022daa35316b543f1f7813349672ab
2021-10-03T02:09:14.000Z
[ "pytorch", "roberta", "text-classification", "transformers" ]
text-classification
false
AnonymousSub
null
AnonymousSub/cline-emanuals-s10-AR
4
null
transformers
17,694
Entry not found
AnonymousSub/cline-s10-AR
a313ffbe5b5a453fec3991c5861a8986efffdda2
2021-10-03T02:14:07.000Z
[ "pytorch", "roberta", "text-classification", "transformers" ]
text-classification
false
AnonymousSub
null
AnonymousSub/cline-s10-AR
4
null
transformers
17,695
Entry not found
AnonymousSub/cline-techqa
1e0d8e7e3b9e7ab2bc0b87c623627928083b4114
2021-09-30T19:09:50.000Z
[ "pytorch", "roberta", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
AnonymousSub
null
AnonymousSub/cline-techqa
4
null
transformers
17,696
Entry not found
AnonymousSub/cline
ece0cf3cc921815593993dcf910c1198a5f99cf1
2021-09-29T17:30:05.000Z
[ "pytorch", "roberta", "transformers" ]
null
false
AnonymousSub
null
AnonymousSub/cline
4
null
transformers
17,697
Entry not found
AnonymousSub/cline_wikiqa
4d2dd09531dbe97daa8650264c5bb24e5718394b
2022-01-23T00:39:46.000Z
[ "pytorch", "roberta", "text-classification", "transformers" ]
text-classification
false
AnonymousSub
null
AnonymousSub/cline_wikiqa
4
null
transformers
17,698
Entry not found
AnonymousSub/consert-s10-SR
d830184228681879c0104fd630930403466487e3
2021-10-05T14:11:09.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
AnonymousSub
null
AnonymousSub/consert-s10-SR
4
null
transformers
17,699
Entry not found