modelId
stringlengths
4
112
sha
stringlengths
40
40
lastModified
stringlengths
24
24
tags
list
pipeline_tag
stringclasses
29 values
private
bool
1 class
author
stringlengths
2
38
config
null
id
stringlengths
4
112
downloads
float64
0
36.8M
likes
float64
0
712
library_name
stringclasses
17 values
__index_level_0__
int64
0
38.5k
readme
stringlengths
0
186k
Jeevesh8/std_pnt_04_feather_berts-21
9f54a2124a7be60769c99d545a9f861555c45216
2022-06-12T06:04:19.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/std_pnt_04_feather_berts-21
5
null
transformers
17,400
Entry not found
Jeevesh8/std_pnt_04_feather_berts-19
87e30f27a7ddf29b742f482f08649e5c6bff2485
2022-06-12T06:03:27.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/std_pnt_04_feather_berts-19
5
null
transformers
17,401
Entry not found
Jeevesh8/std_pnt_04_feather_berts-75
d0a179d5f2a6435bc5339de95c505065ee94b685
2022-06-12T06:03:02.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/std_pnt_04_feather_berts-75
5
null
transformers
17,402
Entry not found
Jeevesh8/std_pnt_04_feather_berts-55
642b26f5ec85a837fb9e9c44afd430e2461f8751
2022-06-12T06:03:00.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/std_pnt_04_feather_berts-55
5
null
transformers
17,403
Entry not found
Jeevesh8/std_pnt_04_feather_berts-90
7c8ad68b19b68c9b340711e59ce734d6ef216e0c
2022-06-12T06:03:07.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/std_pnt_04_feather_berts-90
5
null
transformers
17,404
Entry not found
Jeevesh8/std_pnt_04_feather_berts-20
0103d89586de016cc6b4458397852dde6581ee55
2022-06-12T06:04:20.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/std_pnt_04_feather_berts-20
5
null
transformers
17,405
Entry not found
Jeevesh8/std_pnt_04_feather_berts-86
86669402db1305a134cadd7374e3bec79d6a533c
2022-06-12T06:03:03.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/std_pnt_04_feather_berts-86
5
null
transformers
17,406
Entry not found
Jeevesh8/std_pnt_04_feather_berts-84
193c6c8ed6a29be99792f9a418d08c52dd83d8df
2022-06-12T06:02:59.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/std_pnt_04_feather_berts-84
5
null
transformers
17,407
Entry not found
Jeevesh8/std_pnt_04_feather_berts-74
e561460d57dd9e3d7fc7bdde9c0228c3943dfdad
2022-06-12T06:02:57.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/std_pnt_04_feather_berts-74
5
null
transformers
17,408
Entry not found
Jeevesh8/std_pnt_04_feather_berts-63
8fdbd2993ce0ae903d485390e1e5bdd37c9a0596
2022-06-12T06:03:07.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/std_pnt_04_feather_berts-63
5
null
transformers
17,409
Entry not found
Jeevesh8/std_pnt_04_feather_berts-56
74f66f2d865a6db37af6798cf7320f5d04ae08bb
2022-06-12T06:03:07.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/std_pnt_04_feather_berts-56
5
null
transformers
17,410
Entry not found
Jeevesh8/std_pnt_04_feather_berts-13
ac9e38605a14aa2407f961fe92a680ac0ae102ef
2022-06-12T06:03:26.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/std_pnt_04_feather_berts-13
5
null
transformers
17,411
Entry not found
Jeevesh8/std_pnt_04_feather_berts-17
155678e155a803c6cea3d0914530e06ef2c02a09
2022-06-12T06:03:06.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/std_pnt_04_feather_berts-17
5
null
transformers
17,412
Entry not found
Jeevesh8/std_pnt_04_feather_berts-9
24208c3920dfad06abc780fdca47085bbe7209c8
2022-06-12T06:03:28.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/std_pnt_04_feather_berts-9
5
null
transformers
17,413
Entry not found
Jeevesh8/std_pnt_04_feather_berts-92
e51ad1d9d9a8649334e2dcb0a70946904211edb1
2022-06-12T06:03:07.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/std_pnt_04_feather_berts-92
5
null
transformers
17,414
Entry not found
Jeevesh8/std_pnt_04_feather_berts-89
b93e5e0036e4d69b27c0c92fc506bbc22e5b4b1e
2022-06-12T06:03:01.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/std_pnt_04_feather_berts-89
5
null
transformers
17,415
Entry not found
Jeevesh8/std_pnt_04_feather_berts-40
2fd58ca0c31de38c7ce1adc3260e7a7cd15c8450
2022-06-12T06:03:02.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/std_pnt_04_feather_berts-40
5
null
transformers
17,416
Entry not found
Jeevesh8/std_pnt_04_feather_berts-73
6645be44bee99da54c8b31e67abec8eb67ebb1bf
2022-06-12T06:03:06.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/std_pnt_04_feather_berts-73
5
null
transformers
17,417
Entry not found
Jeevesh8/std_pnt_04_feather_berts-38
d288a70a976a10add9c055ed4b1ff56a7bfe1a0f
2022-06-12T06:02:58.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/std_pnt_04_feather_berts-38
5
null
transformers
17,418
Entry not found
Jeevesh8/std_pnt_04_feather_berts-36
45fdeef68908d425889140f3a5a2089f9dba384c
2022-06-12T06:04:08.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/std_pnt_04_feather_berts-36
5
null
transformers
17,419
Entry not found
Jeevesh8/std_pnt_04_feather_berts-22
4b683e7fcd9e967972f27e5a352f8cc823dd97df
2022-06-12T06:03:02.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/std_pnt_04_feather_berts-22
5
null
transformers
17,420
Entry not found
Jeevesh8/std_pnt_04_feather_berts-77
3c3566f4b63ef6b1ed6d2bdf02e4d17b5f703448
2022-06-12T06:02:59.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/std_pnt_04_feather_berts-77
5
null
transformers
17,421
Entry not found
Jeevesh8/std_pnt_04_feather_berts-49
782f19b1a5f2e26f38e385b53673528f38d0434e
2022-06-12T06:03:17.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/std_pnt_04_feather_berts-49
5
null
transformers
17,422
Entry not found
Jeevesh8/std_pnt_04_feather_berts-69
bfd28f4f5b6926325995e5d770ec0b5eadfdbf63
2022-06-12T06:03:15.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/std_pnt_04_feather_berts-69
5
null
transformers
17,423
Entry not found
Jeevesh8/std_pnt_04_feather_berts-70
75a806abd62db6eb0062de7bc3d34dbc4bc3b413
2022-06-12T06:03:12.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/std_pnt_04_feather_berts-70
5
null
transformers
17,424
Entry not found
Jeevesh8/std_pnt_04_feather_berts-32
90f1ad7dae49f206f18a6cbb7e22da0278ee0d1f
2022-06-12T06:03:10.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/std_pnt_04_feather_berts-32
5
null
transformers
17,425
Entry not found
Jeevesh8/std_pnt_04_feather_berts-98
b5d9d0155cfbb1462dffa09f72ad1c5f7400e8f2
2022-06-12T06:05:52.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/std_pnt_04_feather_berts-98
5
null
transformers
17,426
Entry not found
kravchenko/uk-mt5-large
80052b04cb7867a1a3a4898d9c5ef94b10985888
2022-06-12T15:00:46.000Z
[ "pytorch", "mt5", "text2text-generation", "uk", "en", "transformers", "t5", "autotrain_compatible" ]
text2text-generation
false
kravchenko
null
kravchenko/uk-mt5-large
5
null
transformers
17,427
--- language: - uk - en tags: - t5 --- The aim is to compress the mT5-large model to leave only the Ukrainian language and some basic English. Reproduced the similar result (but with another language) from [this](https://towardsdatascience.com/how-to-adapt-a-multilingual-t5-model-for-a-single-language-b9f94f3d9c90) medium article. Results: - 1.2B params -> 779M params (37%) - 250K tokens -> 8900 tokens - 4.6GB size model -> 2.9GB size model
course5i/SEAD-L-6_H-384_A-12-mrpc
dd01b469315bfa69dff2e956085ce190030164ea
2022-06-12T20:21:42.000Z
[ "pytorch", "tf", "jax", "bert", "text-classification", "en", "dataset:glue", "dataset:mrpc", "arxiv:1910.01108", "arxiv:1909.10351", "arxiv:2002.10957", "arxiv:1810.04805", "arxiv:1804.07461", "arxiv:1905.00537", "transformers", "SEAD", "license:apache-2.0" ]
text-classification
false
course5i
null
course5i/SEAD-L-6_H-384_A-12-mrpc
5
null
transformers
17,428
--- language: - en license: apache-2.0 tags: - SEAD datasets: - glue - mrpc --- ## Paper ## [SEAD: SIMPLE ENSEMBLE AND KNOWLEDGE DISTILLATION FRAMEWORK FOR NATURAL LANGUAGE UNDERSTANDING](https://www.adasci.org/journals/lattice-35309407/?volumes=true&open=621a3b18edc4364e8a96cb63) Aurthors: *Moyan Mei*, *Rohit Sroch* ## Abstract With the widespread use of pre-trained language models (PLM), there has been increased research on how to make them applicable, especially in limited-resource or low latency high throughput scenarios. One of the dominant approaches is knowledge distillation (KD), where a smaller model is trained by receiving guidance from a large PLM. While there are many successful designs for learning knowledge from teachers, it remains unclear how students can learn better. Inspired by real university teaching processes, in this work we further explore knowledge distillation and propose a very simple yet effective framework, SEAD, to further improve task-specific generalization by utilizing multiple teachers. Our experiments show that SEAD leads to better performance compared to other popular KD methods [[1](https://arxiv.org/abs/1910.01108)] [[2](https://arxiv.org/abs/1909.10351)] [[3](https://arxiv.org/abs/2002.10957)] and achieves comparable or superior performance to its teacher model such as BERT [[4](https://arxiv.org/abs/1810.04805)] on total 13 tasks for the GLUE [[5](https://arxiv.org/abs/1804.07461)] and SuperGLUE [[6](https://arxiv.org/abs/1905.00537)] benchmarks. *Moyan Mei and Rohit Sroch. 2022. [SEAD: Simple ensemble and knowledge distillation framework for natural language understanding](https://www.adasci.org/journals/lattice-35309407/?volumes=true&open=621a3b18edc4364e8a96cb63). Lattice, THE MACHINE LEARNING JOURNAL by Association of Data Scientists, 3(1).* ## SEAD-L-6_H-384_A-12-mrpc This is a student model distilled from [**BERT base**](https://huggingface.co/bert-base-uncased) as teacher by using SEAD framework on **mrpc** task. For weights initialization, we used [microsoft/xtremedistil-l6-h384-uncased](https://huggingface.co/microsoft/xtremedistil-l6-h384-uncased) ## All SEAD Checkpoints Other Community Checkpoints: [here](https://huggingface.co/models?search=SEAD) ## Intended uses & limitations More information needed ### Training hyperparameters Please take a look at the `training_args.bin` file ```python $ import torch $ hyperparameters = torch.load(os.path.join('training_args.bin')) ``` ### Evaluation results | eval_accuracy | eval_f1 | eval_runtime | eval_samples_per_second | eval_steps_per_second | eval_loss | eval_samples | |:-------------:|:-------:|:------------:|:-----------------------:|:---------------------:|:---------:|:------------:| | 0.9093 | 0.9345 | 1.1947 | 341.494 | 10.881 | 0.4309 | 408 | ### Framework versions - Transformers >=4.8.0 - Pytorch >=1.6.0 - TensorFlow >=2.5.0 - Flax >=0.3.5 - Datasets >=1.10.2 - Tokenizers >=0.11.6 If you use these models, please cite the following paper: ``` @article{article, author={Mei, Moyan and Sroch, Rohit}, title={SEAD: Simple Ensemble and Knowledge Distillation Framework for Natural Language Understanding}, volume={3}, number={1}, journal={Lattice, The Machine Learning Journal by Association of Data Scientists}, day={26}, year={2022}, month={Feb}, url = {www.adasci.org/journals/lattice-35309407/?volumes=true&open=621a3b18edc4364e8a96cb63} } ```
course5i/SEAD-L-6_H-256_A-8-mrpc
6341b3fe95529ee67705954ee0268e24d929597b
2022-06-12T20:35:41.000Z
[ "pytorch", "tf", "jax", "bert", "text-classification", "en", "dataset:glue", "dataset:mrpc", "arxiv:1910.01108", "arxiv:1909.10351", "arxiv:2002.10957", "arxiv:1810.04805", "arxiv:1804.07461", "arxiv:1905.00537", "transformers", "SEAD", "license:apache-2.0" ]
text-classification
false
course5i
null
course5i/SEAD-L-6_H-256_A-8-mrpc
5
null
transformers
17,429
--- language: - en license: apache-2.0 tags: - SEAD datasets: - glue - mrpc --- ## Paper ## [SEAD: SIMPLE ENSEMBLE AND KNOWLEDGE DISTILLATION FRAMEWORK FOR NATURAL LANGUAGE UNDERSTANDING](https://www.adasci.org/journals/lattice-35309407/?volumes=true&open=621a3b18edc4364e8a96cb63) Aurthors: *Moyan Mei*, *Rohit Sroch* ## Abstract With the widespread use of pre-trained language models (PLM), there has been increased research on how to make them applicable, especially in limited-resource or low latency high throughput scenarios. One of the dominant approaches is knowledge distillation (KD), where a smaller model is trained by receiving guidance from a large PLM. While there are many successful designs for learning knowledge from teachers, it remains unclear how students can learn better. Inspired by real university teaching processes, in this work we further explore knowledge distillation and propose a very simple yet effective framework, SEAD, to further improve task-specific generalization by utilizing multiple teachers. Our experiments show that SEAD leads to better performance compared to other popular KD methods [[1](https://arxiv.org/abs/1910.01108)] [[2](https://arxiv.org/abs/1909.10351)] [[3](https://arxiv.org/abs/2002.10957)] and achieves comparable or superior performance to its teacher model such as BERT [[4](https://arxiv.org/abs/1810.04805)] on total 13 tasks for the GLUE [[5](https://arxiv.org/abs/1804.07461)] and SuperGLUE [[6](https://arxiv.org/abs/1905.00537)] benchmarks. *Moyan Mei and Rohit Sroch. 2022. [SEAD: Simple ensemble and knowledge distillation framework for natural language understanding](https://www.adasci.org/journals/lattice-35309407/?volumes=true&open=621a3b18edc4364e8a96cb63). Lattice, THE MACHINE LEARNING JOURNAL by Association of Data Scientists, 3(1).* ## SEAD-L-6_H-256_A-8-mrpc This is a student model distilled from [**BERT base**](https://huggingface.co/bert-base-uncased) as teacher by using SEAD framework on **mrpc** task. For weights initialization, we used [microsoft/xtremedistil-l6-h256-uncased](https://huggingface.co/microsoft/xtremedistil-l6-h256-uncased) ## All SEAD Checkpoints Other Community Checkpoints: [here](https://huggingface.co/models?search=SEAD) ## Intended uses & limitations More information needed ### Training hyperparameters Please take a look at the `training_args.bin` file ```python $ import torch $ hyperparameters = torch.load(os.path.join('training_args.bin')) ``` ### Evaluation results | eval_accuracy | eval_f1 | eval_runtime | eval_samples_per_second | eval_steps_per_second | eval_loss | eval_samples | |:-------------:|:-------:|:------------:|:-----------------------:|:---------------------:|:---------:|:------------:| | 0.8897 | 0.9206 | 1.4486 | 281.643 | 8.974 | 0.4399 | 408 | ### Framework versions - Transformers >=4.8.0 - Pytorch >=1.6.0 - TensorFlow >=2.5.0 - Flax >=0.3.5 - Datasets >=1.10.2 - Tokenizers >=0.11.6 If you use these models, please cite the following paper: ``` @article{article, author={Mei, Moyan and Sroch, Rohit}, title={SEAD: Simple Ensemble and Knowledge Distillation Framework for Natural Language Understanding}, volume={3}, number={1}, journal={Lattice, The Machine Learning Journal by Association of Data Scientists}, day={26}, year={2022}, month={Feb}, url = {www.adasci.org/journals/lattice-35309407/?volumes=true&open=621a3b18edc4364e8a96cb63} } ```
course5i/SEAD-L-6_H-256_A-8-rte
d10496b489f97e9e24b89ed94e403243de4e42c8
2022-06-12T21:02:01.000Z
[ "pytorch", "tf", "jax", "bert", "text-classification", "en", "dataset:glue", "dataset:rte", "arxiv:1910.01108", "arxiv:1909.10351", "arxiv:2002.10957", "arxiv:1810.04805", "arxiv:1804.07461", "arxiv:1905.00537", "transformers", "SEAD", "license:apache-2.0" ]
text-classification
false
course5i
null
course5i/SEAD-L-6_H-256_A-8-rte
5
null
transformers
17,430
--- language: - en license: apache-2.0 tags: - SEAD datasets: - glue - rte --- ## Paper ## [SEAD: SIMPLE ENSEMBLE AND KNOWLEDGE DISTILLATION FRAMEWORK FOR NATURAL LANGUAGE UNDERSTANDING](https://www.adasci.org/journals/lattice-35309407/?volumes=true&open=621a3b18edc4364e8a96cb63) Aurthors: *Moyan Mei*, *Rohit Sroch* ## Abstract With the widespread use of pre-trained language models (PLM), there has been increased research on how to make them applicable, especially in limited-resource or low latency high throughput scenarios. One of the dominant approaches is knowledge distillation (KD), where a smaller model is trained by receiving guidance from a large PLM. While there are many successful designs for learning knowledge from teachers, it remains unclear how students can learn better. Inspired by real university teaching processes, in this work we further explore knowledge distillation and propose a very simple yet effective framework, SEAD, to further improve task-specific generalization by utilizing multiple teachers. Our experiments show that SEAD leads to better performance compared to other popular KD methods [[1](https://arxiv.org/abs/1910.01108)] [[2](https://arxiv.org/abs/1909.10351)] [[3](https://arxiv.org/abs/2002.10957)] and achieves comparable or superior performance to its teacher model such as BERT [[4](https://arxiv.org/abs/1810.04805)] on total 13 tasks for the GLUE [[5](https://arxiv.org/abs/1804.07461)] and SuperGLUE [[6](https://arxiv.org/abs/1905.00537)] benchmarks. *Moyan Mei and Rohit Sroch. 2022. [SEAD: Simple ensemble and knowledge distillation framework for natural language understanding](https://www.adasci.org/journals/lattice-35309407/?volumes=true&open=621a3b18edc4364e8a96cb63). Lattice, THE MACHINE LEARNING JOURNAL by Association of Data Scientists, 3(1).* ## SEAD-L-6_H-256_A-8-rte This is a student model distilled from [**BERT base**](https://huggingface.co/bert-base-uncased) as teacher by using SEAD framework on **rte** task. For weights initialization, we used [microsoft/xtremedistil-l6-h256-uncased](https://huggingface.co/microsoft/xtremedistil-l6-h256-uncased) ## All SEAD Checkpoints Other Community Checkpoints: [here](https://huggingface.co/models?search=SEAD) ## Intended uses & limitations More information needed ### Training hyperparameters Please take a look at the `training_args.bin` file ```python $ import torch $ hyperparameters = torch.load(os.path.join('training_args.bin')) ``` ### Evaluation results | eval_accuracy | eval_runtime | eval_samples_per_second | eval_steps_per_second | eval_loss | eval_samples | |:-------------:|:------------:|:-----------------------:|:---------------------:|:---------:|:------------:| | 0.7906 | 1.5528 | 178.391 | 5.796 | 0.6934 | 277 | ### Framework versions - Transformers >=4.8.0 - Pytorch >=1.6.0 - TensorFlow >=2.5.0 - Flax >=0.3.5 - Datasets >=1.10.2 - Tokenizers >=0.11.6 If you use these models, please cite the following paper: ``` @article{article, author={Mei, Moyan and Sroch, Rohit}, title={SEAD: Simple Ensemble and Knowledge Distillation Framework for Natural Language Understanding}, volume={3}, number={1}, journal={Lattice, The Machine Learning Journal by Association of Data Scientists}, day={26}, year={2022}, month={Feb}, url = {www.adasci.org/journals/lattice-35309407/?volumes=true&open=621a3b18edc4364e8a96cb63} } ```
course5i/SEAD-L-6_H-256_A-8-stsb
5604ed950e04c3bb58a45beec849e082ad10b205
2022-06-12T21:12:01.000Z
[ "pytorch", "tf", "jax", "bert", "text-classification", "en", "dataset:glue", "dataset:stsb", "arxiv:1910.01108", "arxiv:1909.10351", "arxiv:2002.10957", "arxiv:1810.04805", "arxiv:1804.07461", "arxiv:1905.00537", "transformers", "SEAD", "license:apache-2.0" ]
text-classification
false
course5i
null
course5i/SEAD-L-6_H-256_A-8-stsb
5
null
transformers
17,431
--- language: - en license: apache-2.0 tags: - SEAD datasets: - glue - stsb --- ## Paper ## [SEAD: SIMPLE ENSEMBLE AND KNOWLEDGE DISTILLATION FRAMEWORK FOR NATURAL LANGUAGE UNDERSTANDING](https://www.adasci.org/journals/lattice-35309407/?volumes=true&open=621a3b18edc4364e8a96cb63) Aurthors: *Moyan Mei*, *Rohit Sroch* ## Abstract With the widespread use of pre-trained language models (PLM), there has been increased research on how to make them applicable, especially in limited-resource or low latency high throughput scenarios. One of the dominant approaches is knowledge distillation (KD), where a smaller model is trained by receiving guidance from a large PLM. While there are many successful designs for learning knowledge from teachers, it remains unclear how students can learn better. Inspired by real university teaching processes, in this work we further explore knowledge distillation and propose a very simple yet effective framework, SEAD, to further improve task-specific generalization by utilizing multiple teachers. Our experiments show that SEAD leads to better performance compared to other popular KD methods [[1](https://arxiv.org/abs/1910.01108)] [[2](https://arxiv.org/abs/1909.10351)] [[3](https://arxiv.org/abs/2002.10957)] and achieves comparable or superior performance to its teacher model such as BERT [[4](https://arxiv.org/abs/1810.04805)] on total 13 tasks for the GLUE [[5](https://arxiv.org/abs/1804.07461)] and SuperGLUE [[6](https://arxiv.org/abs/1905.00537)] benchmarks. *Moyan Mei and Rohit Sroch. 2022. [SEAD: Simple ensemble and knowledge distillation framework for natural language understanding](https://www.adasci.org/journals/lattice-35309407/?volumes=true&open=621a3b18edc4364e8a96cb63). Lattice, THE MACHINE LEARNING JOURNAL by Association of Data Scientists, 3(1).* ## SEAD-L-6_H-256_A-8-stsb This is a student model distilled from [**BERT base**](https://huggingface.co/bert-base-uncased) as teacher by using SEAD framework on **stsb** task. For weights initialization, we used [microsoft/xtremedistil-l6-h256-uncased](https://huggingface.co/microsoft/xtremedistil-l6-h256-uncased) ## All SEAD Checkpoints Other Community Checkpoints: [here](https://huggingface.co/models?search=SEAD) ## Intended uses & limitations More information needed ### Training hyperparameters Please take a look at the `training_args.bin` file ```python $ import torch $ hyperparameters = torch.load(os.path.join('training_args.bin')) ``` ### Evaluation results | eval_pearson | eval_spearmanr | eval_runtime | eval_samples_per_second | eval_steps_per_second | eval_loss | eval_samples | |:------------:|:--------------:|:------------:|:-----------------------:|:---------------------:|:---------:|:------------:| | 0.8962 | 0.8978 | 2.1978 | 682.498 | 21.385 | 0.4679 | 1500 | ### Framework versions - Transformers >=4.8.0 - Pytorch >=1.6.0 - TensorFlow >=2.5.0 - Flax >=0.3.5 - Datasets >=1.10.2 - Tokenizers >=0.11.6 If you use these models, please cite the following paper: ``` @article{article, author={Mei, Moyan and Sroch, Rohit}, title={SEAD: Simple Ensemble and Knowledge Distillation Framework for Natural Language Understanding}, volume={3}, number={1}, journal={Lattice, The Machine Learning Journal by Association of Data Scientists}, day={26}, year={2022}, month={Feb}, url = {www.adasci.org/journals/lattice-35309407/?volumes=true&open=621a3b18edc4364e8a96cb63} } ```
course5i/SEAD-L-6_H-256_A-8-qnli
820d4a62433c69670f9d8b7420684bffc38890ee
2022-06-12T21:26:48.000Z
[ "pytorch", "tf", "jax", "bert", "text-classification", "en", "dataset:glue", "dataset:qnli", "arxiv:1910.01108", "arxiv:1909.10351", "arxiv:2002.10957", "arxiv:1810.04805", "arxiv:1804.07461", "arxiv:1905.00537", "transformers", "SEAD", "license:apache-2.0" ]
text-classification
false
course5i
null
course5i/SEAD-L-6_H-256_A-8-qnli
5
null
transformers
17,432
--- language: - en license: apache-2.0 tags: - SEAD datasets: - glue - qnli --- ## Paper ## [SEAD: SIMPLE ENSEMBLE AND KNOWLEDGE DISTILLATION FRAMEWORK FOR NATURAL LANGUAGE UNDERSTANDING](https://www.adasci.org/journals/lattice-35309407/?volumes=true&open=621a3b18edc4364e8a96cb63) Aurthors: *Moyan Mei*, *Rohit Sroch* ## Abstract With the widespread use of pre-trained language models (PLM), there has been increased research on how to make them applicable, especially in limited-resource or low latency high throughput scenarios. One of the dominant approaches is knowledge distillation (KD), where a smaller model is trained by receiving guidance from a large PLM. While there are many successful designs for learning knowledge from teachers, it remains unclear how students can learn better. Inspired by real university teaching processes, in this work we further explore knowledge distillation and propose a very simple yet effective framework, SEAD, to further improve task-specific generalization by utilizing multiple teachers. Our experiments show that SEAD leads to better performance compared to other popular KD methods [[1](https://arxiv.org/abs/1910.01108)] [[2](https://arxiv.org/abs/1909.10351)] [[3](https://arxiv.org/abs/2002.10957)] and achieves comparable or superior performance to its teacher model such as BERT [[4](https://arxiv.org/abs/1810.04805)] on total 13 tasks for the GLUE [[5](https://arxiv.org/abs/1804.07461)] and SuperGLUE [[6](https://arxiv.org/abs/1905.00537)] benchmarks. *Moyan Mei and Rohit Sroch. 2022. [SEAD: Simple ensemble and knowledge distillation framework for natural language understanding](https://www.adasci.org/journals/lattice-35309407/?volumes=true&open=621a3b18edc4364e8a96cb63). Lattice, THE MACHINE LEARNING JOURNAL by Association of Data Scientists, 3(1).* ## SEAD-L-6_H-256_A-8-qnli This is a student model distilled from [**BERT base**](https://huggingface.co/bert-base-uncased) as teacher by using SEAD framework on **qnli** task. For weights initialization, we used [microsoft/xtremedistil-l6-h256-uncased](https://huggingface.co/microsoft/xtremedistil-l6-h256-uncased) ## All SEAD Checkpoints Other Community Checkpoints: [here](https://huggingface.co/models?search=SEAD) ## Intended uses & limitations More information needed ### Training hyperparameters Please take a look at the `training_args.bin` file ```python $ import torch $ hyperparameters = torch.load(os.path.join('training_args.bin')) ``` ### Evaluation results | eval_accuracy | eval_runtime | eval_samples_per_second | eval_steps_per_second | eval_loss | eval_samples | |:-------------:|:------------:|:-----------------------:|:---------------------:|:---------:|:------------:| | 0.8979 | 4.3663 | 1251.171 | 39.164 | 0.2789 | 5463 | ### Framework versions - Transformers >=4.8.0 - Pytorch >=1.6.0 - TensorFlow >=2.5.0 - Flax >=0.3.5 - Datasets >=1.10.2 - Tokenizers >=0.11.6 If you use these models, please cite the following paper: ``` @article{article, author={Mei, Moyan and Sroch, Rohit}, title={SEAD: Simple Ensemble and Knowledge Distillation Framework for Natural Language Understanding}, volume={3}, number={1}, journal={Lattice, The Machine Learning Journal by Association of Data Scientists}, day={26}, year={2022}, month={Feb}, url = {www.adasci.org/journals/lattice-35309407/?volumes=true&open=621a3b18edc4364e8a96cb63} } ```
course5i/SEAD-L-6_H-256_A-8-qqp
b243ccc1372eb22e3465c64d81a4cd311ca33a94
2022-06-12T22:02:45.000Z
[ "pytorch", "tf", "jax", "bert", "text-classification", "en", "dataset:glue", "dataset:qqp", "arxiv:1910.01108", "arxiv:1909.10351", "arxiv:2002.10957", "arxiv:1810.04805", "arxiv:1804.07461", "arxiv:1905.00537", "transformers", "SEAD", "license:apache-2.0" ]
text-classification
false
course5i
null
course5i/SEAD-L-6_H-256_A-8-qqp
5
null
transformers
17,433
--- language: - en license: apache-2.0 tags: - SEAD datasets: - glue - qqp --- ## Paper ## [SEAD: SIMPLE ENSEMBLE AND KNOWLEDGE DISTILLATION FRAMEWORK FOR NATURAL LANGUAGE UNDERSTANDING](https://www.adasci.org/journals/lattice-35309407/?volumes=true&open=621a3b18edc4364e8a96cb63) Aurthors: *Moyan Mei*, *Rohit Sroch* ## Abstract With the widespread use of pre-trained language models (PLM), there has been increased research on how to make them applicable, especially in limited-resource or low latency high throughput scenarios. One of the dominant approaches is knowledge distillation (KD), where a smaller model is trained by receiving guidance from a large PLM. While there are many successful designs for learning knowledge from teachers, it remains unclear how students can learn better. Inspired by real university teaching processes, in this work we further explore knowledge distillation and propose a very simple yet effective framework, SEAD, to further improve task-specific generalization by utilizing multiple teachers. Our experiments show that SEAD leads to better performance compared to other popular KD methods [[1](https://arxiv.org/abs/1910.01108)] [[2](https://arxiv.org/abs/1909.10351)] [[3](https://arxiv.org/abs/2002.10957)] and achieves comparable or superior performance to its teacher model such as BERT [[4](https://arxiv.org/abs/1810.04805)] on total 13 tasks for the GLUE [[5](https://arxiv.org/abs/1804.07461)] and SuperGLUE [[6](https://arxiv.org/abs/1905.00537)] benchmarks. *Moyan Mei and Rohit Sroch. 2022. [SEAD: Simple ensemble and knowledge distillation framework for natural language understanding](https://www.adasci.org/journals/lattice-35309407/?volumes=true&open=621a3b18edc4364e8a96cb63). Lattice, THE MACHINE LEARNING JOURNAL by Association of Data Scientists, 3(1).* ## SEAD-L-6_H-256_A-8-qqp This is a student model distilled from [**BERT base**](https://huggingface.co/bert-base-uncased) as teacher by using SEAD framework on **qqp** task. For weights initialization, we used [microsoft/xtremedistil-l6-h256-uncased](https://huggingface.co/microsoft/xtremedistil-l6-h256-uncased) ## All SEAD Checkpoints Other Community Checkpoints: [here](https://huggingface.co/models?search=SEAD) ## Intended uses & limitations More information needed ### Training hyperparameters Please take a look at the `training_args.bin` file ```python $ import torch $ hyperparameters = torch.load(os.path.join('training_args.bin')) ``` ### Evaluation results | eval_accuracy | eval_f1 | eval_runtime | eval_samples_per_second | eval_steps_per_second | eval_loss | eval_samples | |:-------------:|:-------:|:------------:|:-----------------------:|:---------------------:|:---------:|:------------:| | 0.9065 | 0.8746 | 21.3929 | 1889.88 | 59.085 | 0.3154 | 40430 | ### Framework versions - Transformers >=4.8.0 - Pytorch >=1.6.0 - TensorFlow >=2.5.0 - Flax >=0.3.5 - Datasets >=1.10.2 - Tokenizers >=0.11.6 If you use these models, please cite the following paper: ``` @article{article, author={Mei, Moyan and Sroch, Rohit}, title={SEAD: Simple Ensemble and Knowledge Distillation Framework for Natural Language Understanding}, volume={3}, number={1}, journal={Lattice, The Machine Learning Journal by Association of Data Scientists}, day={26}, year={2022}, month={Feb}, url = {www.adasci.org/journals/lattice-35309407/?volumes=true&open=621a3b18edc4364e8a96cb63} } ```
course5i/SEAD-L-6_H-384_A-12-wnli
e209229650138c93a8498e858c8b79abb6f7d519
2022-06-12T23:09:21.000Z
[ "pytorch", "tf", "jax", "bert", "text-classification", "en", "dataset:glue", "dataset:wnli", "arxiv:1910.01108", "arxiv:1909.10351", "arxiv:2002.10957", "arxiv:1810.04805", "arxiv:1804.07461", "arxiv:1905.00537", "transformers", "SEAD", "license:apache-2.0" ]
text-classification
false
course5i
null
course5i/SEAD-L-6_H-384_A-12-wnli
5
null
transformers
17,434
--- language: - en license: apache-2.0 tags: - SEAD datasets: - glue - wnli --- ## Paper ## [SEAD: SIMPLE ENSEMBLE AND KNOWLEDGE DISTILLATION FRAMEWORK FOR NATURAL LANGUAGE UNDERSTANDING](https://www.adasci.org/journals/lattice-35309407/?volumes=true&open=621a3b18edc4364e8a96cb63) Aurthors: *Moyan Mei*, *Rohit Sroch* ## Abstract With the widespread use of pre-trained language models (PLM), there has been increased research on how to make them applicable, especially in limited-resource or low latency high throughput scenarios. One of the dominant approaches is knowledge distillation (KD), where a smaller model is trained by receiving guidance from a large PLM. While there are many successful designs for learning knowledge from teachers, it remains unclear how students can learn better. Inspired by real university teaching processes, in this work we further explore knowledge distillation and propose a very simple yet effective framework, SEAD, to further improve task-specific generalization by utilizing multiple teachers. Our experiments show that SEAD leads to better performance compared to other popular KD methods [[1](https://arxiv.org/abs/1910.01108)] [[2](https://arxiv.org/abs/1909.10351)] [[3](https://arxiv.org/abs/2002.10957)] and achieves comparable or superior performance to its teacher model such as BERT [[4](https://arxiv.org/abs/1810.04805)] on total 13 tasks for the GLUE [[5](https://arxiv.org/abs/1804.07461)] and SuperGLUE [[6](https://arxiv.org/abs/1905.00537)] benchmarks. *Moyan Mei and Rohit Sroch. 2022. [SEAD: Simple ensemble and knowledge distillation framework for natural language understanding](https://www.adasci.org/journals/lattice-35309407/?volumes=true&open=621a3b18edc4364e8a96cb63). Lattice, THE MACHINE LEARNING JOURNAL by Association of Data Scientists, 3(1).* ## SEAD-L-6_H-384_A-12-wnli This is a student model distilled from [**BERT base**](https://huggingface.co/bert-base-uncased) as teacher by using SEAD framework on **wnli** task. For weights initialization, we used [microsoft/xtremedistil-l6-h384-uncased](https://huggingface.co/microsoft/xtremedistil-l6-h384-uncased) ## All SEAD Checkpoints Other Community Checkpoints: [here](https://huggingface.co/models?search=SEAD) ## Intended uses & limitations More information needed ### Training hyperparameters Please take a look at the `training_args.bin` file ```python $ import torch $ hyperparameters = torch.load(os.path.join('training_args.bin')) ``` ### Evaluation results | eval_accuracy | eval_runtime | eval_samples_per_second | eval_steps_per_second | eval_loss | eval_samples | |:-------------:|:------------:|:-----------------------:|:---------------------:|:---------:|:------------:| | 0.5775 | 1.2959 | 54.787 | 2.315 | 0.6717 | 71 | ### Framework versions - Transformers >=4.8.0 - Pytorch >=1.6.0 - TensorFlow >=2.5.0 - Flax >=0.3.5 - Datasets >=1.10.2 - Tokenizers >=0.11.6 If you use these models, please cite the following paper: ``` @article{article, author={Mei, Moyan and Sroch, Rohit}, title={SEAD: Simple Ensemble and Knowledge Distillation Framework for Natural Language Understanding}, volume={3}, number={1}, journal={Lattice, The Machine Learning Journal by Association of Data Scientists}, day={26}, year={2022}, month={Feb}, url = {www.adasci.org/journals/lattice-35309407/?volumes=true&open=621a3b18edc4364e8a96cb63} } ```
anvayS/reddit-aita-classifier
6cb9a1b9803163bb2a9108fe89bc7d1cc1da609d
2022-06-13T09:08:26.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
anvayS
null
anvayS/reddit-aita-classifier
5
null
transformers
17,435
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: reddit-aita-classifier results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # reddit-aita-classifier This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1667 - Accuracy: 0.9497 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.5866 | 1.0 | 1250 | 0.5692 | 0.7247 | | 0.5638 | 2.0 | 2500 | 0.4841 | 0.7813 | | 0.4652 | 3.0 | 3750 | 0.2712 | 0.9077 | | 0.3088 | 4.0 | 5000 | 0.1667 | 0.9497 | ### Framework versions - Transformers 4.19.4 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
huggingtweets/egbertchannel
257e29d002d9b4fc0c9160579e2975ef014b761e
2022-06-13T15:49:21.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/egbertchannel
5
null
transformers
17,436
--- language: en thumbnail: http://www.huggingtweets.com/egbertchannel/1655135356461/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1244575861912883201/2J-Ehfg3_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Egbert</div> <div style="text-align: center; font-size: 14px;">@egbertchannel</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Egbert. | Data | Egbert | | --- | --- | | Tweets downloaded | 3243 | | Retweets | 272 | | Short tweets | 496 | | Tweets kept | 2475 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/he6lzjtk/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @egbertchannel's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/29xg9gi3) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/29xg9gi3/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/egbertchannel') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
eslamxm/AraT5-base-finetune-ar-wikilingua
3ed6e7474e7b91deaa07d636a7f9df923b47beaf
2022-06-14T02:30:20.000Z
[ "pytorch", "tensorboard", "t5", "text2text-generation", "dataset:wiki_lingua", "transformers", "summarization", "ar", "Abstractive Summarization", "generated_from_trainer", "model-index", "autotrain_compatible" ]
summarization
false
eslamxm
null
eslamxm/AraT5-base-finetune-ar-wikilingua
5
null
transformers
17,437
--- tags: - summarization - ar - Abstractive Summarization - generated_from_trainer datasets: - wiki_lingua model-index: - name: AraT5-base-finetune-ar-wikilingua results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # AraT5-base-finetune-ar-wikilingua This model is a fine-tuned version of [UBC-NLP/AraT5-base](https://huggingface.co/UBC-NLP/AraT5-base) on the wiki_lingua dataset. It achieves the following results on the evaluation set: - Loss: 4.6110 - Rouge-1: 19.97 - Rouge-2: 6.9 - Rouge-l: 18.25 - Gen Len: 18.45 - Bertscore: 69.44 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 250 - num_epochs: 10 - label_smoothing_factor: 0.1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge-1 | Rouge-2 | Rouge-l | Gen Len | Bertscore | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:-------:|:---------:| | 11.5412 | 1.0 | 312 | 6.8825 | 5.2 | 0.69 | 5.04 | 19.0 | 63.2 | | 6.5212 | 2.0 | 624 | 5.8992 | 8.89 | 1.4 | 8.36 | 17.92 | 63.9 | | 5.8302 | 3.0 | 936 | 5.3712 | 9.99 | 2.21 | 9.54 | 15.87 | 65.08 | | 5.406 | 4.0 | 1248 | 5.0632 | 13.94 | 3.5 | 13.0 | 15.95 | 66.83 | | 5.1109 | 5.0 | 1560 | 4.8718 | 15.28 | 4.34 | 14.27 | 18.26 | 66.83 | | 4.9004 | 6.0 | 1872 | 4.7631 | 16.65 | 4.92 | 15.46 | 17.73 | 67.75 | | 4.754 | 7.0 | 2184 | 4.6920 | 18.31 | 5.79 | 16.9 | 18.17 | 68.55 | | 4.6369 | 8.0 | 2496 | 4.6459 | 18.6 | 6.12 | 17.16 | 18.16 | 68.66 | | 4.5595 | 9.0 | 2808 | 4.6153 | 18.94 | 6.1 | 17.39 | 17.82 | 68.99 | | 4.4967 | 10.0 | 3120 | 4.6110 | 19.15 | 6.25 | 17.55 | 17.91 | 69.09 | ### Framework versions - Transformers 4.19.4 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
Chemsseddine/bert2gpt2SUMM
4c2d6088f4ca5a36a6575dc747b1b20af95137e9
2022-06-29T11:06:12.000Z
[ "pytorch", "encoder-decoder", "text2text-generation", "Fr", "dataset:Chemsseddine/autotrain-data-bertSummGpt2", "transformers", "co2_eq_emissions", "autotrain_compatible" ]
text2text-generation
false
Chemsseddine
null
Chemsseddine/bert2gpt2SUMM
5
null
transformers
17,438
--- language: Fr widget: - text: "Your text here" datasets: - Chemsseddine/autotrain-data-bertSummGpt2 co2_eq_emissions: 0.10685501288084795 --- <img src="https://huggingface.co/Chemsseddine/bert2gpt2_med_ml_orange_summ-finetuned_med_sum_new-finetuned_med_sum_new/resolve/main/logobert2gpt2.png" alt="Map of positive probabilities per country." width="200"/> ## This model is used for french summarization - Problem type: Summarization - Model ID: 980832493 - CO2 Emissions (in grams): 0.10685501288084795 ## Validation Metrics - Loss: 4.03749418258667 - Rouge1: 28.8384 - Rouge2: 10.7511 - RougeL: 27.0842 - RougeLsum: 27.5118 - Gen Len: 22.0625 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_HUGGINGFACE_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/Chemsseddine/autotrain-bertSummGpt2-980832493 ```
sampras343/wav2vec2-base-ft-keyword-spotting
61c834dbe30612037c5b2967a2804f26c39d124d
2022-06-14T10:02:24.000Z
[ "pytorch", "tensorboard", "dataset:superb", "audio-classification", "generated_from_trainer", "license:apache-2.0", "model-index" ]
audio-classification
false
sampras343
null
sampras343/wav2vec2-base-ft-keyword-spotting
5
null
null
17,439
--- license: apache-2.0 tags: - audio-classification - generated_from_trainer datasets: - superb metrics: - accuracy model-index: - name: wav2vec2-base-ft-keyword-spotting results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-ft-keyword-spotting This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the superb dataset. It achieves the following results on the evaluation set: - Loss: 0.0824 - Accuracy: 0.9826 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 0 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.8972 | 1.0 | 399 | 0.7023 | 0.8174 | | 0.3274 | 2.0 | 798 | 0.1634 | 0.9773 | | 0.1993 | 3.0 | 1197 | 0.1048 | 0.9788 | | 0.1777 | 4.0 | 1596 | 0.0824 | 0.9826 | | 0.1527 | 5.0 | 1995 | 0.0812 | 0.9810 | ### Framework versions - Transformers 4.12.0.dev0 - Pytorch 1.9.1+cu111 - Datasets 1.14.0 - Tokenizers 0.10.3
Auruncus/gpt-j-6b-8bit-ft-v1
f78d7c22068be39f4642a19467acaac6b450672a
2022-06-15T18:07:48.000Z
[ "pytorch", "gptj", "text-generation", "transformers" ]
text-generation
false
Auruncus
null
Auruncus/gpt-j-6b-8bit-ft-v1
5
null
transformers
17,440
Entry not found
totoro4007/cryptobert-base-all-finetuned
28e871cf4f4cca2f0a2e87e35ddd445d67cfaea1
2022-06-15T03:15:09.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
totoro4007
null
totoro4007/cryptobert-base-all-finetuned
5
null
transformers
17,441
Entry not found
olpa/pegasus-samsum
d5c0e8cff13e1ee845473e86e4ae20dbd7ae2d33
2022-06-15T04:40:48.000Z
[ "pytorch", "tensorboard", "pegasus", "text2text-generation", "dataset:samsum", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
text2text-generation
false
olpa
null
olpa/pegasus-samsum
5
null
transformers
17,442
--- tags: - generated_from_trainer datasets: - samsum model-index: - name: pegasus-samsum results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # pegasus-samsum This model is a fine-tuned version of [google/pegasus-cnn_dailymail](https://huggingface.co/google/pegasus-cnn_dailymail) on the samsum dataset. It achieves the following results on the evaluation set: - Loss: 1.4863 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.7014 | 0.54 | 500 | 1.4863 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.12.1
aymanashour/summ
dc01f1f6722baa97d2a13605cc39349f8ef3dd41
2022-06-16T00:18:21.000Z
[ "pytorch", "megatron-bert", "text-classification", "transformers", "license:other" ]
text-classification
false
aymanashour
null
aymanashour/summ
5
null
transformers
17,443
--- license: other ---
fourthbrain-demo/finetuning-sentiment-model-3000-samples
edca6fe47d153165e381cbe020389d15530a79a0
2022-06-15T22:51:47.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
fourthbrain-demo
null
fourthbrain-demo/finetuning-sentiment-model-3000-samples
5
null
transformers
17,444
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: finetuning-sentiment-model-3000-samples results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuning-sentiment-model-3000-samples This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3023 - Accuracy: 0.8767 - F1: 0.8771 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.19.4 - Pytorch 1.11.0+cu113 - Tokenizers 0.12.1
aymanashour/summ2
140e761aab80742141362f07cd6e6df9cdee8e3f
2022-06-15T23:30:34.000Z
[ "pytorch", "megatron-bert", "text-classification", "transformers", "license:apache-2.0" ]
text-classification
false
aymanashour
null
aymanashour/summ2
5
null
transformers
17,445
--- license: apache-2.0 ---
microsoft/swinv2-base-patch4-window12to16-192to256-22kto1k-ft
03d5fcecf39d909480044f3b4f46c6a7ae09fb11
2022-07-09T05:31:21.000Z
[ "pytorch", "swinv2", "transformers" ]
null
false
microsoft
null
microsoft/swinv2-base-patch4-window12to16-192to256-22kto1k-ft
5
null
transformers
17,446
Entry not found
rbawden/CCASS-semi-auto-titrages-base
8f896fb26833145f0b1e9461b1392951b3ba4241
2022-07-05T21:42:57.000Z
[ "pytorch", "fsmt", "fr", "transformers", "license:cc-by-4.0" ]
null
false
rbawden
null
rbawden/CCASS-semi-auto-titrages-base
5
null
transformers
17,447
--- language: fr license: cc-by-4.0 --- # Cour de Cassation semi-automatic *titrage* prediction model Model for the semi-automatic prediction of *titrages* (keyword sequence) from *sommaires* (synthesis of legal cases). The models are similar to the automatic models described in [this paper](https://hal.inria.fr/hal-03663110/file/LREC_2022___CCass_Inria-camera-ready.pdf) and to the model available [here](https://huggingface.co/rbawden/CCASS-pred-titrages-base). If you use this semi-automatic model, please cite our research paper (see [below](#cite)). ## Model description The model is a transformer-base model trained on parallel data (sommaires-titrages) provided by the Cour de Cassation. The model was intially trained using the Fairseq toolkit, converted to HuggingFace and then fine-tuned on the original training data to smooth out minor differences that arose during the conversion process. Tokenisation is performed using a SentencePiece model, the BPE strategy and a vocab size of 8000. ### Intended uses & limitations This model is to be used to help in the production of *titrages* for those *sommaires* that do not have them or to complement existing (manually) created *titrages*. ### How to use Contrary to the [automatic *titrage* prediction model](https://huggingface.co/rbawden/CCASS-pred-titrages-base) (designed to predict the entire sequence), this model is designed to help in the manual production of *titrages*, by proposing the next *titre* (keyword) in the sequence given a *sommaire* and the beginning of the *titrage*. Model input is the *matière* (matter) concatenated to the *titres* already decided on (separated by <t>), concatenated to the text from the sommaire separated by the token `<t>`. Each example should be on a single line. E.g. `bail <t> résiliation <t> causes <t> La recommendation du tribunal selon l'article...` (fictive example for illustrative purposes, where the matter=bail, the beginning of the *titrage*=résiliation <t> causes. The maximum input length of the model is 1024 input tokens (after tokenisation). ``` from transformers import AutoTokenizer, AutoModelForSeq2SeqLM tokeniser = AutoTokenizer.from_pretrained("rbawden/CCASS-semi-auto-titrages-base") model = AutoModelForSeq2SeqLM.from_pretrained("rbawden/CCASS-semi-auto-titrages-base") matiere_and_titrage_prefix = "matter <t> titre" sommaire = "full text from the sommaire on a single line" inputs = tokeniser([matiere_and_titrage_prefix + " <t> " + sommaire], return_tensors='pt') outputs = model.generate(inputs['input_ids']) tokeniser.batch_decode(outputs, skip_special_tokens=True, clean_up_tokenisation_spaces=True) ``` ### Limitations and bias The models' predictions should not be taken as ground-truth *titrages* and the final decision should be the expert's. The model is not constrained to predict *titres* that have previously been seen, so this should be taken into account in the deployment of this model as a *titrage* tool in order to avoid the multiplication of different *titres*. ## Training data Training data is provided by the Cour de Cassation (the original source being Jurinet data, but with pseudo-anonymisation applied). For training, we use a total of 159,836 parallel examples (each example is a sommaire-titrage pair). Our development data consists of 1,833 held-out examples. ## Training procedure ### Preprocessing We use SentencePiece, the BPE strategy and a joint vocabulary of 8000 tokens. This model was converted into the HuggingFace format and integrates a number of normalisation processes (e.g. removing double doubles, apostrophes and quotes, normalisation of different accent formats, lowercasing). ### Training The model was initialised trained using Fairseq until convergence on the development set (according to our customised weighted accuracy measure - please see [the paper](https://hal.inria.fr/hal-03663110/file/LREC_2022___CCass_Inria-camera-ready.pdf) for more details). The model was then converted to HuggingFace and training continued to smooth out incoherences introduced during the conversion procedure (incompatibilities in the way the SentencePiece and NMT vocabularies are defined, linked to HuggingFace vocabularies being necessarily the same as the tokeniser vocabulary, a constraint that is not imposed in Fairseq). ### Evaluation results Full results for the initial (automatic) Fairseq models can be found in [the paper](https://hal.inria.fr/hal-03663110/file/LREC_2022___CCass_Inria-camera-ready.pdf). Results on this semi-automatic model coming soon! ## BibTex entry and citation info <a name="cite"></a> If you use this work, please cite the following article: Thibault Charmet, Inès Cherichi, Matthieu Allain, Urszula Czerwinska, Amaury Fouret, Benoît Sagot and Rachel Bawden, 2022. [**Complex Labelling and Similarity Prediction in Legal Texts: Automatic Analysis of France’s Court of Cassation Rulings**](http://www.lrec-conf.org/proceedings/lrec2022/pdf/2022.lrec-1.509.pdf). In Proceedings of the 13th Language Resources and Evaluation Conference, Marseille, France.] ``` @inproceedings{charmet-et-al-2022-complex, tite = {Complex Labelling and Similarity Prediction in Legal Texts: Automatic Analysis of France’s Court of Cassation Rulings}, author = {Charmet, Thibault and Cherichi, Inès and Allain, Matthieu and Czerwinska, Urszula and Fouret, Amaury, and Sagot, Benoît and Bawden, Rachel}, booktitle = {Proceedings of the 13th Language Resources and Evaluation Conference}, year = {2022}, address = {Marseille, France}, pages = {4754--4766}, url = {http://www.lrec-conf.org/proceedings/lrec2022/pdf/2022.lrec-1.509.pdf} ```
chlab/efficientnet_75_planet_detection
08a757a3100fb0b805916c245697a802b2fbe9aa
2022-06-17T14:23:52.000Z
[ "pytorch", "Python 3.7+", "dataset:imagenet", "dataset:imagenet-21k", "transformers", "vision", "image-classification", "license:apache-2.0" ]
image-classification
false
chlab
null
chlab/efficientnet_75_planet_detection
5
null
transformers
17,448
--- language: - Python 3.7+ license: apache-2.0 tags: - vision - image-classification datasets: - imagenet - imagenet-21k widget: - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/tiger.jpg example_title: Tiger - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/teapot.jpg example_title: Teapot - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/palace.jpg example_title: Palace --- # Efficientnetv2 (75 channels)
WENGSYX/MedCPT
44d08ce838bbb76962839490c2ef2ddd65772ca7
2022-07-15T05:14:21.000Z
[ "pytorch", "bart", "feature-extraction", "transformers" ]
feature-extraction
false
WENGSYX
null
WENGSYX/MedCPT
5
null
transformers
17,449
# MedCPT ###### LingYi system pre training medical model ###### Prease load the model from [**CPT**](https://huggingface.co/fnlp/cpt-large) ## Usage ```python >>> from modeling_cpt import CPTForConditionalGeneration >>> from transformers import BertTokenizer >>> tokenizer = BertTokenizer.from_pretrained("WENGSYX/MedCPT") >>> model = CPTForConditionalGeneration.from_pretrained("WENGSYX/MedCPT") >>> inputs = tokenizer.encode("医生你好,腹泻难受应该怎么办?", return_tensors='pt') >>> pred_ids = model.generate(input_ids, num_beams=4, max_length=20) >>> print(tokenizer.convert_ids_to_tokens(pred_ids[i])) ```
jkhan447/sarcasm-detection-RoBerta-base-newdata
57a79d0ab45ae1b8ab5d707fec4360b566543730
2022-06-17T14:34:34.000Z
[ "pytorch", "tensorboard", "roberta", "text-classification", "transformers", "generated_from_trainer", "license:mit", "model-index" ]
text-classification
false
jkhan447
null
jkhan447/sarcasm-detection-RoBerta-base-newdata
5
null
transformers
17,450
--- license: mit tags: - generated_from_trainer metrics: - accuracy model-index: - name: sarcasm-detection-RoBerta-base-newdata results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # sarcasm-detection-RoBerta-base-newdata This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4844 - Accuracy: 0.7824 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results ### Framework versions - Transformers 4.20.0 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
huggingtweets/techreview
b1ca853b2e6e40184d0771f489c6384aacf45b2c
2022-06-17T09:38:07.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/techreview
5
null
transformers
17,451
--- language: en thumbnail: http://www.huggingtweets.com/techreview/1655458683048/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1072880528712495106/ahuQUlOb_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">MIT Technology Review</div> <div style="text-align: center; font-size: 14px;">@techreview</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from MIT Technology Review. | Data | MIT Technology Review | | --- | --- | | Tweets downloaded | 3250 | | Retweets | 293 | | Short tweets | 1 | | Tweets kept | 2956 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1zbwqwsb/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @techreview's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2bzg3pev) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2bzg3pev/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/techreview') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
efederici/convnext-base-224-22k-1k-orig-cats-vs-dogs
b16e21af48c1f4433f997d2da9e4675babee28da
2022-06-17T14:11:20.000Z
[ "pytorch", "tensorboard", "convnext", "image-classification", "dataset:cats_vs_dogs", "arxiv:2201.03545", "transformers", "vision", "license:apache-2.0", "model-index" ]
image-classification
false
efederici
null
efederici/convnext-base-224-22k-1k-orig-cats-vs-dogs
5
null
transformers
17,452
--- license: apache-2.0 tags: - image-classification - vision datasets: - cats_vs_dogs metrics: - accuracy model-index: - name: convnext-base-224-22k-1k-orig-cats-vs-dogs results: - task: name: Image Classification type: image-classification dataset: name: cats_vs_dogs type: cats_vs_dogs args: default metrics: - name: Accuracy type: accuracy value: 0.9973333333333333 --- # convnext-base-224-22k-1k-orig-cats-vs-dogs This model is a fine-tuned version of [facebook/convnext-base-224-22k-1k](https://huggingface.co/facebook/convnext-base-224-22k-1k) on the cats_vs_dogs dataset. It achieves the following results on the evaluation set: - Loss: 0.0103 - Accuracy: 0.9973 <p align="center"> <img src="https://files.ocula.com/anzax/09/09f77133-7740-4130-a567-84fb56736362_650_544.jpg" width="600"> </br> Jockum Nordström, Cat Dog Cat, 2016 </p> ## Model description The "Roaring 20s" of visual recognition began with the introduction of Vision Transformers (ViTs), which quickly superseded ConvNets as the state-of-the-art image classification model. A vanilla ViT, on the other hand, faces difficulties when applied to general computer vision tasks such as object detection and semantic segmentation. It is the hierarchical Transformers (e.g., Swin Transformers) that reintroduced several ConvNet priors, making Transformers practically viable as a generic vision backbone and demonstrating remarkable performance on a wide variety of vision tasks. However, the effectiveness of such hybrid approaches is still largely credited to the intrinsic superiority of Transformers, rather than the inherent inductive biases of convolutions. In this work, we reexamine the design spaces and test the limits of what a pure ConvNet can achieve. We gradually "modernize" a standard ResNet toward the design of a vision Transformer, and discover several key components that contribute to the performance difference along the way. The outcome of this exploration is a family of pure ConvNet models dubbed ConvNeXt. Constructed entirely from standard ConvNet modules, ConvNeXts compete favorably with Transformers in terms of accuracy and scalability, achieving 87.8% ImageNet top-1 accuracy and outperforming Swin Transformers on COCO detection and ADE20K segmentation, while maintaining the simplicity and efficiency of standard ConvNets. ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5.0 ### BibTeX entry and citation info ```bibtex @article{DBLP:journals/corr/abs-2201-03545, author = {Zhuang Liu and Hanzi Mao and Chao{-}Yuan Wu and Christoph Feichtenhofer and Trevor Darrell and Saining Xie}, title = {A ConvNet for the 2020s}, journal = {CoRR}, volume = {abs/2201.03545}, year = {2022}, url = {https://arxiv.org/abs/2201.03545}, eprinttype = {arXiv}, eprint = {2201.03545}, timestamp = {Thu, 20 Jan 2022 14:21:35 +0100}, biburl = {https://dblp.org/rec/journals/corr/abs-2201-03545.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ```
Suryabhan/tiny-bert-sst2-distilled
cf81b7d7c5303541379cd67eedd4069bb4f85f44
2022-06-27T03:41:00.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Suryabhan
null
Suryabhan/tiny-bert-sst2-distilled
5
null
transformers
17,453
Entry not found
skpawar1305/wav2vec2-base-finetuned-ks
52d090170a472c3f4027948a8a8a335401a01800
2022-06-18T11:12:09.000Z
[ "pytorch", "tensorboard", "wav2vec2", "audio-classification", "dataset:superb", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
audio-classification
false
skpawar1305
null
skpawar1305/wav2vec2-base-finetuned-ks
5
null
transformers
17,454
--- license: apache-2.0 tags: - generated_from_trainer datasets: - superb metrics: - accuracy model-index: - name: wav2vec2-base-finetuned-ks results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-finetuned-ks This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the superb dataset. It achieves the following results on the evaluation set: - Loss: 0.0903 - Accuracy: 0.9834 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.7264 | 1.0 | 399 | 0.6319 | 0.9351 | | 0.2877 | 2.0 | 798 | 0.1846 | 0.9748 | | 0.175 | 3.0 | 1197 | 0.1195 | 0.9796 | | 0.1672 | 4.0 | 1596 | 0.0903 | 0.9834 | | 0.1235 | 5.0 | 1995 | 0.0854 | 0.9825 | ### Framework versions - Transformers 4.20.0 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
AlyxTheKitten/DialoGPT-medium-Jimmis-2
a13b76b2835e62293b2000eeaa806f0f1624a200
2022-06-18T05:46:35.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
AlyxTheKitten
null
AlyxTheKitten/DialoGPT-medium-Jimmis-2
5
null
transformers
17,455
--- tags: - conversational --- # AgedBlaine DialoGPT Model 2
huggingtweets/andrewdoyle_com-conceptualjames-titaniamcgrath
ba5b93781389f75d92763d7ce172c41547129215
2022-06-18T09:11:46.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/andrewdoyle_com-conceptualjames-titaniamcgrath
5
null
transformers
17,456
--- language: en thumbnail: http://www.huggingtweets.com/andrewdoyle_com-conceptualjames-titaniamcgrath/1655543501221/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/991329326846087169/vxothdvT_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1283787273310556161/HpOtnzmp_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1459175734602350593/cW3fs5lR_400x400.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Titania McGrath & Andrew Doyle & James Lindsay, weaponizing your mom</div> <div style="text-align: center; font-size: 14px;">@andrewdoyle_com-conceptualjames-titaniamcgrath</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Titania McGrath & Andrew Doyle & James Lindsay, weaponizing your mom. | Data | Titania McGrath | Andrew Doyle | James Lindsay, weaponizing your mom | | --- | --- | --- | --- | | Tweets downloaded | 2873 | 3232 | 3226 | | Retweets | 220 | 781 | 1222 | | Short tweets | 104 | 306 | 587 | | Tweets kept | 2549 | 2145 | 1417 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1dewpz75/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @andrewdoyle_com-conceptualjames-titaniamcgrath's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3ed5g462) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3ed5g462/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/andrewdoyle_com-conceptualjames-titaniamcgrath') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
eslamxm/mbart-finetune-ar-xlsum
64bb51fb268d4800a4dc556f425126dc8645049e
2022-06-19T03:58:19.000Z
[ "pytorch", "tensorboard", "mbart", "text2text-generation", "dataset:xlsum", "transformers", "summarization", "ar", "seq2seq", "Abstractive Summarization", "generated_from_trainer", "model-index", "autotrain_compatible" ]
summarization
false
eslamxm
null
eslamxm/mbart-finetune-ar-xlsum
5
null
transformers
17,457
--- tags: - summarization - ar - seq2seq - mbart - Abstractive Summarization - generated_from_trainer datasets: - xlsum model-index: - name: mbart-finetune-ar-xlsum results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mbart-finetune-ar-xlsum This model is a fine-tuned version of [facebook/mbart-large-50](https://huggingface.co/facebook/mbart-large-50) on the xlsum dataset. It achieves the following results on the evaluation set: - Loss: 4.4328 - Rouge-1: 15.56 - Rouge-2: 4.64 - Rouge-l: 13.59 - Gen Len: 38.86 - Bertscore: 71.53 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 250 - num_epochs: 5 - label_smoothing_factor: 0.1 ### Training results ### Framework versions - Transformers 4.20.0 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
twhitehurst3/autotrain-blaze_text_classification-1004733283
9f28c51b04f8244daea3178f2a9b4dd82deab94d
2022-06-19T19:06:24.000Z
[ "pytorch", "bert", "text-classification", "en", "dataset:twhitehurst3/autotrain-data-blaze_text_classification", "transformers", "autotrain", "co2_eq_emissions" ]
text-classification
false
twhitehurst3
null
twhitehurst3/autotrain-blaze_text_classification-1004733283
5
null
transformers
17,458
strnlz/distilbert-base-uncased-finetuned-sst2
9b1646b7505f7f35ea6ab39607df8454dff050cd
2022-06-21T05:01:59.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "transformers" ]
text-classification
false
strnlz
null
strnlz/distilbert-base-uncased-finetuned-sst2
5
null
transformers
17,459
Entry not found
Alireza1044/MobileBERT_Theseus-qqp
dc08e46f2233ba5cac8935e44a0e15598bec73be
2022-06-20T18:38:18.000Z
[ "pytorch", "mobilebert", "text-classification", "transformers" ]
text-classification
false
Alireza1044
null
Alireza1044/MobileBERT_Theseus-qqp
5
null
transformers
17,460
Entry not found
davidcechak/DNADeberta_fine_
a72b31adeee7025d8c48426b2126b9e384d5ef7a
2022-06-21T15:39:44.000Z
[ "pytorch", "deberta", "text-classification", "transformers" ]
text-classification
false
davidcechak
null
davidcechak/DNADeberta_fine_
5
null
transformers
17,461
Entry not found
PontifexMaximus/Turkish2
7b1aa7f746e0ba436366bd79dea5546dbb9214f6
2022-07-09T05:48:46.000Z
[ "pytorch", "marian", "text2text-generation", "dataset:opus_infopankki", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
text2text-generation
false
PontifexMaximus
null
PontifexMaximus/Turkish2
5
null
transformers
17,462
--- license: apache-2.0 tags: - generated_from_trainer datasets: - opus_infopankki metrics: - bleu model-index: - name: opus-mt-tr-en-finetuned-tr-to-en results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: opus_infopankki type: opus_infopankki args: en-tr metrics: - name: Bleu type: bleu value: 56.617 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # opus-mt-tr-en-finetuned-tr-to-en This model is a fine-tuned version of [Helsinki-NLP/opus-mt-tr-en](https://huggingface.co/Helsinki-NLP/opus-mt-tr-en) on the opus_infopankki dataset. It achieves the following results on the evaluation set: - Loss: 0.6321 - Bleu: 56.617 - Gen Len: 13.5983 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-06 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:| | No log | 1.0 | 241 | 1.2487 | 41.0053 | 13.0461 | | No log | 2.0 | 482 | 1.1630 | 43.1077 | 13.0386 | | 1.4091 | 3.0 | 723 | 1.0992 | 44.6583 | 13.0445 | | 1.4091 | 4.0 | 964 | 1.0463 | 45.5931 | 13.0289 | | 1.2325 | 5.0 | 1205 | 1.0012 | 46.7039 | 12.9998 | | 1.2325 | 6.0 | 1446 | 0.9610 | 47.6783 | 13.0274 | | 1.1284 | 7.0 | 1687 | 0.9262 | 48.622 | 12.9866 | | 1.1284 | 8.0 | 1928 | 0.8939 | 48.4984 | 13.5762 | | 1.0486 | 9.0 | 2169 | 0.8642 | 49.1496 | 13.5918 | | 1.0486 | 10.0 | 2410 | 0.8391 | 49.8875 | 13.5905 | | 0.9866 | 11.0 | 2651 | 0.8150 | 50.6447 | 13.5803 | | 0.9866 | 12.0 | 2892 | 0.7941 | 51.2059 | 13.5731 | | 0.9362 | 13.0 | 3133 | 0.7741 | 51.7071 | 13.5754 | | 0.9362 | 14.0 | 3374 | 0.7564 | 52.4185 | 13.5781 | | 0.8928 | 15.0 | 3615 | 0.7398 | 53.0814 | 13.5744 | | 0.8928 | 16.0 | 3856 | 0.7247 | 53.5711 | 13.5783 | | 0.8598 | 17.0 | 4097 | 0.7111 | 54.0559 | 13.568 | | 0.8598 | 18.0 | 4338 | 0.6988 | 54.5188 | 13.5598 | | 0.8274 | 19.0 | 4579 | 0.6876 | 54.78 | 13.5765 | | 0.8274 | 20.0 | 4820 | 0.6780 | 55.1494 | 13.5762 | | 0.8086 | 21.0 | 5061 | 0.6688 | 55.5813 | 13.5788 | | 0.8086 | 22.0 | 5302 | 0.6610 | 55.6403 | 13.5796 | | 0.7878 | 23.0 | 5543 | 0.6539 | 55.7731 | 13.5989 | | 0.7878 | 24.0 | 5784 | 0.6483 | 55.9956 | 13.593 | | 0.7718 | 25.0 | 6025 | 0.6432 | 56.2303 | 13.5904 | | 0.7718 | 26.0 | 6266 | 0.6390 | 56.4825 | 13.5975 | | 0.7633 | 27.0 | 6507 | 0.6360 | 56.5334 | 13.5958 | | 0.7633 | 28.0 | 6748 | 0.6338 | 56.5357 | 13.5965 | | 0.7633 | 29.0 | 6989 | 0.6325 | 56.5862 | 13.5974 | | 0.7584 | 30.0 | 7230 | 0.6321 | 56.617 | 13.5983 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0 - Datasets 2.3.2 - Tokenizers 0.12.1
dunlp/GWW-finetuned-cola
10889c75b6f9bc7d4b786d591e5048632ecda6f9
2022-06-21T13:03:24.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "dataset:glue", "transformers", "generated_from_trainer", "model-index" ]
text-classification
false
dunlp
null
dunlp/GWW-finetuned-cola
5
null
transformers
17,463
--- tags: - generated_from_trainer datasets: - glue metrics: - matthews_correlation model-index: - name: GWW-finetuned-cola results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue args: cola metrics: - name: Matthews Correlation type: matthews_correlation value: 0.16962352015480656 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # GWW-finetuned-cola This model is a fine-tuned version of [dunlp/GWW](https://huggingface.co/dunlp/GWW) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.6609 - Matthews Correlation: 0.1696 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.6181 | 1.0 | 535 | 0.6585 | 0.0 | | 0.5938 | 2.0 | 1070 | 0.6276 | 0.0511 | | 0.5241 | 3.0 | 1605 | 0.6609 | 0.1696 | | 0.4433 | 4.0 | 2140 | 0.8239 | 0.1432 | | 0.3492 | 5.0 | 2675 | 0.9236 | 0.1351 | ### Framework versions - Transformers 4.20.0 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
Jeevesh8/std_0pnt2_bert_ft_cola-71
4c9b54416f7b8653916b5863beb2553ea3dca86e
2022-06-21T13:28:34.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/std_0pnt2_bert_ft_cola-71
5
null
transformers
17,464
Entry not found
Jeevesh8/std_0pnt2_bert_ft_cola-68
fffa2a342887dd61ca879d0b379832e9e2d9d3ea
2022-06-21T13:30:39.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/std_0pnt2_bert_ft_cola-68
5
null
transformers
17,465
Entry not found
Jeevesh8/std_0pnt2_bert_ft_cola-77
bddceea5d70278a61606b4beaa1944a02b70acf1
2022-06-21T13:28:04.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Jeevesh8
null
Jeevesh8/std_0pnt2_bert_ft_cola-77
5
null
transformers
17,466
Entry not found
deepesh0x/autotrain-mlsec-1013333726
029432a37633676073c8ebd22d6ffd4793fc581f
2022-06-21T20:49:59.000Z
[ "pytorch", "julien", "text-classification", "en", "dataset:deepesh0x/autotrain-data-mlsec", "transformers", "autotrain", "co2_eq_emissions" ]
text-classification
false
deepesh0x
null
deepesh0x/autotrain-mlsec-1013333726
5
null
transformers
17,467
--- tags: autotrain language: en widget: - text: "I love AutoTrain 🤗" datasets: - deepesh0x/autotrain-data-mlsec co2_eq_emissions: 33.183779535405364 --- # Model Trained Using AutoTrain - Problem type: Binary Classification - Model ID: 1013333726 - CO2 Emissions (in grams): 33.183779535405364 ## Validation Metrics - Loss: 0.1998898833990097 - Accuracy: 0.9226923076923077 - Precision: 0.9269808389435525 - Recall: 0.9177134068187645 - AUC: 0.9785380985232148 - F1: 0.9223238438747907 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/deepesh0x/autotrain-mlsec-1013333726 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("deepesh0x/autotrain-mlsec-1013333726", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("deepesh0x/autotrain-mlsec-1013333726", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
deepesh0x/autotrain-GlueFineTunedModel-1013533798
11592e83736afb3be90e7638d7d5d157ee598f57
2022-06-21T18:16:42.000Z
[ "pytorch", "bert", "text-classification", "unk", "dataset:deepesh0x/autotrain-data-GlueFineTunedModel", "transformers", "autotrain", "co2_eq_emissions" ]
text-classification
false
deepesh0x
null
deepesh0x/autotrain-GlueFineTunedModel-1013533798
5
null
transformers
17,468
--- tags: autotrain language: unk widget: - text: "I love AutoTrain 🤗" datasets: - deepesh0x/autotrain-data-GlueFineTunedModel co2_eq_emissions: 56.65990763623749 --- # Model Trained Using AutoTrain - Problem type: Binary Classification - Model ID: 1013533798 - CO2 Emissions (in grams): 56.65990763623749 ## Validation Metrics - Loss: 0.693366527557373 - Accuracy: 0.4998717948717949 - Precision: 0.0 - Recall: 0.0 - AUC: 0.5 - F1: 0.0 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/deepesh0x/autotrain-GlueFineTunedModel-1013533798 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("deepesh0x/autotrain-GlueFineTunedModel-1013533798", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("deepesh0x/autotrain-GlueFineTunedModel-1013533798", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
Alireza1044/MobileBERT_Theseus-qnli
9d0f49d1c92f05cdcb29303726b38c4a5bd7bb3d
2022-06-21T21:11:07.000Z
[ "pytorch", "mobilebert", "text-classification", "transformers" ]
text-classification
false
Alireza1044
null
Alireza1044/MobileBERT_Theseus-qnli
5
null
transformers
17,469
Entry not found
Elron/deberta-v3-large-offensive
77c18928a0efae7927043beab4a8c8036741ae6f
2022-06-22T09:47:41.000Z
[ "pytorch", "deberta-v2", "text-classification", "transformers", "generated_from_trainer", "license:mit", "model-index" ]
text-classification
false
Elron
null
Elron/deberta-v3-large-offensive
5
null
transformers
17,470
--- license: mit tags: - generated_from_trainer metrics: - accuracy model-index: - name: deberta-v3-large results: [] --- # deberta-v3-large-sentiment This model is a fine-tuned version of [microsoft/deberta-v3-large](https://huggingface.co/microsoft/deberta-v3-large) on an [tweet_eval](https://huggingface.co/datasets/tweet_eval) dataset. ## Model description Test set results: | Model | Emotion | Hate | Irony | Offensive | Sentiment | | ------------- | ------------- | ------------- | ------------- | ------------- | ------------- | | deberta-v3-large | **86.3** | **61.3** | **87.1** | **86.4** | **73.9** | | BERTweet | 79.3 | - | 82.1 | 79.5 | 73.4 | | RoB-RT | 79.5 | 52.3 | 61.7 | 80.5 | 69.3 | [source:papers_with_code](https://paperswithcode.com/sota/sentiment-analysis-on-tweeteval) ## Intended uses & limitations Classifying attributes of interest on tweeter like data. ## Training and evaluation data [tweet_eval](https://huggingface.co/datasets/tweet_eval) dataset. ## Training procedure Fine tuned and evaluated with [run_glue.py]() ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7e-06 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 50 - num_epochs: 10.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6417 | 0.27 | 100 | 0.6283 | 0.6533 | | 0.5105 | 0.54 | 200 | 0.4588 | 0.7915 | | 0.4554 | 0.81 | 300 | 0.4500 | 0.7968 | | 0.4212 | 1.08 | 400 | 0.4773 | 0.7938 | | 0.4054 | 1.34 | 500 | 0.4311 | 0.7983 | | 0.3922 | 1.61 | 600 | 0.4588 | 0.7998 | | 0.3776 | 1.88 | 700 | 0.4367 | 0.8066 | | 0.3535 | 2.15 | 800 | 0.4675 | 0.8074 | | 0.33 | 2.42 | 900 | 0.4874 | 0.8021 | | 0.3113 | 2.69 | 1000 | 0.4949 | 0.8044 | | 0.3203 | 2.96 | 1100 | 0.4550 | 0.8059 | | 0.248 | 3.23 | 1200 | 0.4858 | 0.8036 | | 0.2478 | 3.49 | 1300 | 0.5299 | 0.8029 | | 0.2371 | 3.76 | 1400 | 0.5013 | 0.7991 | | 0.2388 | 4.03 | 1500 | 0.5520 | 0.8021 | | 0.1744 | 4.3 | 1600 | 0.6687 | 0.7915 | | 0.1788 | 4.57 | 1700 | 0.7560 | 0.7689 | | 0.1652 | 4.84 | 1800 | 0.6985 | 0.7832 | | 0.1596 | 5.11 | 1900 | 0.7191 | 0.7915 | | 0.1214 | 5.38 | 2000 | 0.9097 | 0.7893 | | 0.1432 | 5.64 | 2100 | 0.9184 | 0.7787 | | 0.1145 | 5.91 | 2200 | 0.9620 | 0.7878 | | 0.1069 | 6.18 | 2300 | 0.9489 | 0.7893 | | 0.1012 | 6.45 | 2400 | 1.0107 | 0.7817 | | 0.0942 | 6.72 | 2500 | 1.0021 | 0.7885 | | 0.087 | 6.99 | 2600 | 1.1090 | 0.7915 | | 0.0598 | 7.26 | 2700 | 1.1735 | 0.7795 | | 0.0742 | 7.53 | 2800 | 1.1433 | 0.7817 | | 0.073 | 7.79 | 2900 | 1.1343 | 0.7953 | | 0.0553 | 8.06 | 3000 | 1.2258 | 0.7840 | | 0.0474 | 8.33 | 3100 | 1.2461 | 0.7817 | | 0.0515 | 8.6 | 3200 | 1.2996 | 0.7825 | | 0.0551 | 8.87 | 3300 | 1.2819 | 0.7855 | | 0.0541 | 9.14 | 3400 | 1.2808 | 0.7855 | | 0.0465 | 9.41 | 3500 | 1.3398 | 0.7817 | | 0.0407 | 9.68 | 3600 | 1.3231 | 0.7825 | | 0.0343 | 9.94 | 3700 | 1.3330 | 0.7825 | ### Framework versions - Transformers 4.20.0.dev0 - Pytorch 1.9.0 - Datasets 2.2.2 - Tokenizers 0.11.6
Elron/deberta-v3-large-sentiment
6621c4c995ae121abdab2761edd71bae9abd7da1
2022-06-22T09:45:55.000Z
[ "pytorch", "deberta-v2", "text-classification", "transformers", "generated_from_trainer", "license:mit", "model-index" ]
text-classification
false
Elron
null
Elron/deberta-v3-large-sentiment
5
null
transformers
17,471
--- license: mit tags: - generated_from_trainer metrics: - accuracy model-index: - name: deberta-v3-large results: [] --- # deberta-v3-large-sentiment This model is a fine-tuned version of [microsoft/deberta-v3-large](https://huggingface.co/microsoft/deberta-v3-large) on an [tweet_eval](https://huggingface.co/datasets/tweet_eval) dataset. ## Model description Test set results: | Model | Emotion | Hate | Irony | Offensive | Sentiment | | ------------- | ------------- | ------------- | ------------- | ------------- | ------------- | | deberta-v3-large | **86.3** | **61.3** | **87.1** | **86.4** | **73.9** | | BERTweet | 79.3 | - | 82.1 | 79.5 | 73.4 | | RoB-RT | 79.5 | 52.3 | 61.7 | 80.5 | 69.3 | [source:papers_with_code](https://paperswithcode.com/sota/sentiment-analysis-on-tweeteval) ## Intended uses & limitations Classifying attributes of interest on tweeter like data. ## Training and evaluation data [tweet_eval](https://huggingface.co/datasets/tweet_eval) dataset. ## Training procedure Fine tuned and evaluated with [run_glue.py]() ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 50 - num_epochs: 10.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 1.0614 | 0.07 | 100 | 1.0196 | 0.4345 | | 0.8601 | 0.14 | 200 | 0.7561 | 0.6460 | | 0.734 | 0.21 | 300 | 0.6796 | 0.6955 | | 0.6753 | 0.28 | 400 | 0.6521 | 0.7000 | | 0.6408 | 0.35 | 500 | 0.6119 | 0.7440 | | 0.5991 | 0.42 | 600 | 0.6034 | 0.7370 | | 0.6069 | 0.49 | 700 | 0.5976 | 0.7375 | | 0.6122 | 0.56 | 800 | 0.5871 | 0.7425 | | 0.5908 | 0.63 | 900 | 0.5935 | 0.7445 | | 0.5884 | 0.7 | 1000 | 0.5792 | 0.7520 | | 0.5839 | 0.77 | 1100 | 0.5780 | 0.7555 | | 0.5772 | 0.84 | 1200 | 0.5727 | 0.7570 | | 0.5895 | 0.91 | 1300 | 0.5601 | 0.7550 | | 0.5757 | 0.98 | 1400 | 0.5613 | 0.7525 | | 0.5121 | 1.05 | 1500 | 0.5867 | 0.7600 | | 0.5254 | 1.12 | 1600 | 0.5595 | 0.7630 | | 0.5074 | 1.19 | 1700 | 0.5594 | 0.7585 | | 0.4947 | 1.26 | 1800 | 0.5697 | 0.7575 | | 0.5019 | 1.33 | 1900 | 0.5665 | 0.7580 | | 0.5005 | 1.4 | 2000 | 0.5484 | 0.7655 | | 0.5125 | 1.47 | 2100 | 0.5626 | 0.7605 | | 0.5241 | 1.54 | 2200 | 0.5561 | 0.7560 | | 0.5198 | 1.61 | 2300 | 0.5602 | 0.7600 | | 0.5124 | 1.68 | 2400 | 0.5654 | 0.7490 | | 0.5096 | 1.75 | 2500 | 0.5803 | 0.7515 | | 0.4885 | 1.82 | 2600 | 0.5889 | 0.75 | | 0.5111 | 1.89 | 2700 | 0.5508 | 0.7665 | | 0.4868 | 1.96 | 2800 | 0.5621 | 0.7635 | | 0.4599 | 2.04 | 2900 | 0.5995 | 0.7615 | | 0.4147 | 2.11 | 3000 | 0.6202 | 0.7530 | | 0.4233 | 2.18 | 3100 | 0.5875 | 0.7625 | | 0.4324 | 2.25 | 3200 | 0.5794 | 0.7610 | | 0.4141 | 2.32 | 3300 | 0.5902 | 0.7460 | | 0.4306 | 2.39 | 3400 | 0.6053 | 0.7545 | | 0.4266 | 2.46 | 3500 | 0.5979 | 0.7570 | | 0.4227 | 2.53 | 3600 | 0.5920 | 0.7650 | | 0.4226 | 2.6 | 3700 | 0.6166 | 0.7455 | | 0.3978 | 2.67 | 3800 | 0.6126 | 0.7560 | | 0.3954 | 2.74 | 3900 | 0.6152 | 0.7550 | | 0.4209 | 2.81 | 4000 | 0.5980 | 0.75 | | 0.3982 | 2.88 | 4100 | 0.6096 | 0.7490 | | 0.4016 | 2.95 | 4200 | 0.6541 | 0.7425 | | 0.3966 | 3.02 | 4300 | 0.6377 | 0.7545 | | 0.3074 | 3.09 | 4400 | 0.6860 | 0.75 | | 0.3551 | 3.16 | 4500 | 0.6160 | 0.7550 | | 0.3323 | 3.23 | 4600 | 0.6714 | 0.7520 | | 0.3171 | 3.3 | 4700 | 0.6538 | 0.7535 | | 0.3403 | 3.37 | 4800 | 0.6774 | 0.7465 | | 0.3396 | 3.44 | 4900 | 0.6726 | 0.7465 | | 0.3259 | 3.51 | 5000 | 0.6465 | 0.7480 | | 0.3392 | 3.58 | 5100 | 0.6860 | 0.7460 | | 0.3251 | 3.65 | 5200 | 0.6697 | 0.7495 | | 0.3253 | 3.72 | 5300 | 0.6770 | 0.7430 | | 0.3455 | 3.79 | 5400 | 0.7177 | 0.7360 | | 0.3323 | 3.86 | 5500 | 0.6943 | 0.7400 | | 0.3335 | 3.93 | 5600 | 0.6507 | 0.7555 | | 0.3368 | 4.0 | 5700 | 0.6580 | 0.7485 | | 0.2479 | 4.07 | 5800 | 0.7667 | 0.7430 | | 0.2613 | 4.14 | 5900 | 0.7513 | 0.7505 | | 0.2557 | 4.21 | 6000 | 0.7927 | 0.7485 | | 0.243 | 4.28 | 6100 | 0.7792 | 0.7450 | | 0.2473 | 4.35 | 6200 | 0.8107 | 0.7355 | | 0.2447 | 4.42 | 6300 | 0.7851 | 0.7370 | | 0.2515 | 4.49 | 6400 | 0.7529 | 0.7465 | | 0.274 | 4.56 | 6500 | 0.7390 | 0.7465 | | 0.2674 | 4.63 | 6600 | 0.7658 | 0.7460 | | 0.2416 | 4.7 | 6700 | 0.7915 | 0.7485 | | 0.2432 | 4.77 | 6800 | 0.7989 | 0.7435 | | 0.2595 | 4.84 | 6900 | 0.7850 | 0.7380 | | 0.2736 | 4.91 | 7000 | 0.7577 | 0.7395 | | 0.2783 | 4.98 | 7100 | 0.7650 | 0.7405 | | 0.2304 | 5.05 | 7200 | 0.8542 | 0.7385 | | 0.1937 | 5.12 | 7300 | 0.8390 | 0.7345 | | 0.1878 | 5.19 | 7400 | 0.9150 | 0.7330 | | 0.1921 | 5.26 | 7500 | 0.8792 | 0.7405 | | 0.1916 | 5.33 | 7600 | 0.8892 | 0.7410 | | 0.2011 | 5.4 | 7700 | 0.9012 | 0.7325 | | 0.211 | 5.47 | 7800 | 0.8608 | 0.7420 | | 0.2194 | 5.54 | 7900 | 0.8852 | 0.7320 | | 0.205 | 5.61 | 8000 | 0.8803 | 0.7385 | | 0.1981 | 5.68 | 8100 | 0.8681 | 0.7330 | | 0.1908 | 5.75 | 8200 | 0.9020 | 0.7435 | | 0.1942 | 5.82 | 8300 | 0.8780 | 0.7410 | | 0.1958 | 5.89 | 8400 | 0.8937 | 0.7345 | | 0.1883 | 5.96 | 8500 | 0.9121 | 0.7360 | | 0.1819 | 6.04 | 8600 | 0.9409 | 0.7430 | | 0.145 | 6.11 | 8700 | 1.1390 | 0.7265 | | 0.1696 | 6.18 | 8800 | 0.9189 | 0.7430 | | 0.1488 | 6.25 | 8900 | 0.9718 | 0.7400 | | 0.1637 | 6.32 | 9000 | 0.9702 | 0.7450 | | 0.1547 | 6.39 | 9100 | 1.0033 | 0.7410 | | 0.1605 | 6.46 | 9200 | 0.9973 | 0.7355 | | 0.1552 | 6.53 | 9300 | 1.0491 | 0.7290 | | 0.1731 | 6.6 | 9400 | 1.0271 | 0.7335 | | 0.1738 | 6.67 | 9500 | 0.9575 | 0.7430 | | 0.1669 | 6.74 | 9600 | 0.9614 | 0.7350 | | 0.1347 | 6.81 | 9700 | 1.0263 | 0.7365 | | 0.1593 | 6.88 | 9800 | 1.0173 | 0.7360 | | 0.1549 | 6.95 | 9900 | 1.0398 | 0.7350 | | 0.1675 | 7.02 | 10000 | 0.9975 | 0.7380 | | 0.1182 | 7.09 | 10100 | 1.1059 | 0.7350 | | 0.1351 | 7.16 | 10200 | 1.0933 | 0.7400 | | 0.1496 | 7.23 | 10300 | 1.0731 | 0.7355 | | 0.1197 | 7.3 | 10400 | 1.1089 | 0.7360 | | 0.1111 | 7.37 | 10500 | 1.1381 | 0.7405 | | 0.1494 | 7.44 | 10600 | 1.0252 | 0.7425 | | 0.1235 | 7.51 | 10700 | 1.0906 | 0.7360 | | 0.133 | 7.58 | 10800 | 1.1796 | 0.7375 | | 0.1248 | 7.65 | 10900 | 1.1332 | 0.7420 | | 0.1268 | 7.72 | 11000 | 1.1304 | 0.7415 | | 0.1368 | 7.79 | 11100 | 1.1345 | 0.7380 | | 0.1228 | 7.86 | 11200 | 1.2018 | 0.7320 | | 0.1281 | 7.93 | 11300 | 1.1884 | 0.7350 | | 0.1449 | 8.0 | 11400 | 1.1571 | 0.7345 | | 0.1025 | 8.07 | 11500 | 1.1538 | 0.7345 | | 0.1199 | 8.14 | 11600 | 1.2113 | 0.7390 | | 0.1016 | 8.21 | 11700 | 1.2882 | 0.7370 | | 0.114 | 8.28 | 11800 | 1.2872 | 0.7390 | | 0.1019 | 8.35 | 11900 | 1.2876 | 0.7380 | | 0.1142 | 8.42 | 12000 | 1.2791 | 0.7385 | | 0.1135 | 8.49 | 12100 | 1.2883 | 0.7380 | | 0.1139 | 8.56 | 12200 | 1.2829 | 0.7360 | | 0.1107 | 8.63 | 12300 | 1.2698 | 0.7365 | | 0.1183 | 8.7 | 12400 | 1.2660 | 0.7345 | | 0.1064 | 8.77 | 12500 | 1.2889 | 0.7365 | | 0.0895 | 8.84 | 12600 | 1.3480 | 0.7330 | | 0.1244 | 8.91 | 12700 | 1.2872 | 0.7325 | | 0.1209 | 8.98 | 12800 | 1.2681 | 0.7375 | | 0.1144 | 9.05 | 12900 | 1.2711 | 0.7370 | | 0.1034 | 9.12 | 13000 | 1.2801 | 0.7360 | | 0.113 | 9.19 | 13100 | 1.2801 | 0.7350 | | 0.0994 | 9.26 | 13200 | 1.2920 | 0.7360 | | 0.0966 | 9.33 | 13300 | 1.2761 | 0.7335 | | 0.0939 | 9.4 | 13400 | 1.2909 | 0.7365 | | 0.0975 | 9.47 | 13500 | 1.2953 | 0.7360 | | 0.0842 | 9.54 | 13600 | 1.3179 | 0.7335 | | 0.0871 | 9.61 | 13700 | 1.3149 | 0.7385 | | 0.1162 | 9.68 | 13800 | 1.3124 | 0.7350 | | 0.085 | 9.75 | 13900 | 1.3207 | 0.7355 | | 0.0966 | 9.82 | 14000 | 1.3248 | 0.7335 | | 0.1064 | 9.89 | 14100 | 1.3261 | 0.7335 | | 0.1046 | 9.96 | 14200 | 1.3255 | 0.7360 | ### Framework versions - Transformers 4.20.0.dev0 - Pytorch 1.9.0 - Datasets 2.2.2 - Tokenizers 0.11.6
lmqg/bart-base-squadshifts-vanilla-reddit
0b1a394d09d92c0383cccef45ee3a12f4ebfe6d8
2022-06-22T10:48:42.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
lmqg
null
lmqg/bart-base-squadshifts-vanilla-reddit
5
null
transformers
17,472
Entry not found
lmqg/bart-large-squadshifts-vanilla-reddit
934ba96c1a60c6e25da207ae49c20d60e0f76901
2022-06-22T10:57:36.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
lmqg
null
lmqg/bart-large-squadshifts-vanilla-reddit
5
null
transformers
17,473
Entry not found
Mizew/autotrain-avar-1016534299
cb0624f159dbe25e869f4aa01ec36c263da07582
2022-06-22T12:12:07.000Z
[ "pytorch", "mt5", "text2text-generation", "en", "es", "dataset:Mizew/autotrain-data-avar", "transformers", "autotrain", "translation", "co2_eq_emissions", "autotrain_compatible" ]
translation
false
Mizew
null
Mizew/autotrain-avar-1016534299
5
null
transformers
17,474
--- tags: - autotrain - translation language: - en - es datasets: - Mizew/autotrain-data-avar co2_eq_emissions: 0.07815966018818815 --- # Model Trained Using AutoTrain - Problem type: Translation - Model ID: 1016534299 - CO2 Emissions (in grams): 0.07815966018818815 ## Validation Metrics - Loss: 0.9978321194648743 - SacreBLEU: 13.8459 - Gen len: 6.0588
mmillet/xlm-roberta-base_single_finetuned_on_cedr_augmented
71f2f122c1c37fe396b60fb2dca90a402c46275c
2022-06-22T18:01:45.000Z
[ "pytorch", "tensorboard", "xlm-roberta", "text-classification", "transformers", "generated_from_trainer", "license:mit", "model-index" ]
text-classification
false
mmillet
null
mmillet/xlm-roberta-base_single_finetuned_on_cedr_augmented
5
null
transformers
17,475
--- license: mit tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: xlm-roberta-base_single_finetuned_on_cedr_augmented results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base_single_finetuned_on_cedr_augmented This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.4650 - Accuracy: 0.8820 - F1: 0.8814 - Precision: 0.8871 - Recall: 0.8820 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-06 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | 0.8868 | 1.0 | 69 | 0.4939 | 0.8403 | 0.8376 | 0.8431 | 0.8403 | | 0.4248 | 2.0 | 138 | 0.3969 | 0.8779 | 0.8768 | 0.8798 | 0.8779 | | 0.3197 | 3.0 | 207 | 0.4019 | 0.8758 | 0.8757 | 0.8758 | 0.8758 | | 0.2737 | 4.0 | 276 | 0.3915 | 0.8831 | 0.8827 | 0.8847 | 0.8831 | | 0.2053 | 5.0 | 345 | 0.4445 | 0.8643 | 0.8650 | 0.8714 | 0.8643 | | 0.1705 | 6.0 | 414 | 0.4650 | 0.8820 | 0.8814 | 0.8871 | 0.8820 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
cestwc/roberta-large
38b748c75df155c9a11b5230ad13520e56db68e4
2022-06-23T12:10:28.000Z
[ "pytorch", "roberta", "text-classification", "transformers" ]
text-classification
false
cestwc
null
cestwc/roberta-large
5
null
transformers
17,476
Entry not found
Sayan01/tiny-bert-wnli-distilled
bd412120e47796517b66c6f478441b7319a7db7e
2022-06-30T15:31:49.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Sayan01
null
Sayan01/tiny-bert-wnli-distilled
5
null
transformers
17,477
Entry not found
Lucifer-nick/hsqcSmiles
1c5ca771658f45aa2a8426c2f5fc598f4d69eb66
2022-06-24T03:49:31.000Z
[ "pytorch", "transformers", "license:apache-2.0" ]
null
false
Lucifer-nick
null
Lucifer-nick/hsqcSmiles
5
null
transformers
17,478
--- license: apache-2.0 ---
IsaMaks/distilbert-base-uncased-finetuned-ner
4a3bad3bf09468a79a74641c34b0ccbbc2108e3a
2022-07-06T14:48:51.000Z
[ "pytorch", "tensorboard", "distilbert", "token-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
token-classification
false
IsaMaks
null
IsaMaks/distilbert-base-uncased-finetuned-ner
5
null
transformers
17,479
--- license: apache-2.0 tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: distilbert-base-uncased-finetuned-ner results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-ner This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.8874 - Precision: 0.2534 - Recall: 0.3333 - F1: 0.2879 - Accuracy: 0.7603 - True predictions: [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] - True labels: [0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 2, 2, 0, 0, 0, 1, 2, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 0, 1, 2, 2, 2, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 2, 2, 2, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 2, 0, 0, 0, 0, 0, 0, 1, 2, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | True predictions | True labels | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:| | No log | 1.0 | 2 | 0.9937 | 0.2839 | 0.3072 | 0.2951 | 0.6712 | [0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 2] | [0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 2, 2, 0, 0, 0, 1, 2, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 0, 1, 2, 2, 2, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 2, 2, 2, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 2, 0, 0, 0, 0, 0, 0, 1, 2, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] | | No log | 2.0 | 4 | 0.9155 | 0.2523 | 0.3273 | 0.2850 | 0.7466 | [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] | [0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 2, 2, 0, 0, 0, 1, 2, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 0, 1, 2, 2, 2, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 2, 2, 2, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 2, 0, 0, 0, 0, 0, 0, 1, 2, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] | | No log | 3.0 | 6 | 0.8874 | 0.2534 | 0.3333 | 0.2879 | 0.7603 | [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] | [0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 2, 2, 0, 0, 0, 1, 2, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 0, 1, 2, 2, 2, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 2, 2, 2, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 2, 0, 0, 0, 0, 0, 0, 1, 2, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
constructor/chinese-roberta-wwm-ext-large
52172128bb11d1c79fb114ca9428c2a2c6457766
2022-06-26T08:09:51.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
constructor
null
constructor/chinese-roberta-wwm-ext-large
5
null
transformers
17,480
Entry not found
ABDPOOR/pft-clf-finetuned
769922ff8695df1628cc8fb1c4ad5efbbbafbc6d
2022-06-26T12:49:43.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
ABDPOOR
null
ABDPOOR/pft-clf-finetuned
5
null
transformers
17,481
Entry not found
Dorin/DialoGPT-small-Rick
86797e8c6418cd101c7e6c07e0c5edd038082154
2022-06-26T17:47:02.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
Dorin
null
Dorin/DialoGPT-small-Rick
5
null
transformers
17,482
--- tags: - conversational --- # Rick and Morty DialoGPT Model
vaibhavagg303/Bart-Multilingual
455dcfcbad79b339186634acd3efd2b1c157a046
2022-06-27T02:44:25.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
vaibhavagg303
null
vaibhavagg303/Bart-Multilingual
5
null
transformers
17,483
Entry not found
kaisuke/finetuning-sentiment-model-3000-samples
3ac5da4dc843484f9698dfd96735b410521c0253
2022-06-26T21:39:32.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:imdb", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
kaisuke
null
kaisuke/finetuning-sentiment-model-3000-samples
5
null
transformers
17,484
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb metrics: - accuracy - f1 model-index: - name: finetuning-sentiment-model-3000-samples results: - task: name: Text Classification type: text-classification dataset: name: imdb type: imdb args: plain_text metrics: - name: Accuracy type: accuracy value: 0.87 - name: F1 type: f1 value: 0.8695652173913044 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuning-sentiment-model-3000-samples This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 0.3120 - Accuracy: 0.87 - F1: 0.8696 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
Shanny/dbgbert-finetuned-squad
a37bf2f42c09efe0728d6b044f725fab251a0639
2022-06-28T15:28:28.000Z
[ "pytorch", "tensorboard", "bert", "question-answering", "dataset:squad", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
question-answering
false
Shanny
null
Shanny/dbgbert-finetuned-squad
5
null
transformers
17,485
--- tags: - generated_from_trainer datasets: - squad model-index: - name: dbgbert-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # dbgbert-finetuned-squad This model was trained from scratch on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
plncmm/gpt2-wl-base-es
45daaff4f0e07506e29b7fb4aaac17e527a600a1
2022-06-27T13:59:01.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-generation
false
plncmm
null
plncmm/gpt2-wl-base-es
5
null
transformers
17,486
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: gpt2-wl-base-es results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt2-wl-base-es This model is a fine-tuned version of [PlanTL-GOB-ES/gpt2-base-bne](https://huggingface.co/PlanTL-GOB-ES/gpt2-base-bne) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results ### Framework versions - Transformers 4.21.0.dev0 - Pytorch 1.11.0+cu113 - Datasets 2.3.3.dev0 - Tokenizers 0.12.1
chisun/mt5-small-finetuned-amazon-en-es-accelerate3
91f536289ba4ea029334bcd8d3e82d824adc20fa
2022-06-28T00:26:43.000Z
[ "pytorch", "mt5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
chisun
null
chisun/mt5-small-finetuned-amazon-en-es-accelerate3
5
null
transformers
17,487
Entry not found
jmwolf27/finetuning-sentiment-model-3000-samples
064d67d6102ba48091c663b9ce0e56a343dbe9c6
2022-06-28T02:19:32.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:imdb", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
jmwolf27
null
jmwolf27/finetuning-sentiment-model-3000-samples
5
null
transformers
17,488
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb metrics: - accuracy - f1 model-index: - name: finetuning-sentiment-model-3000-samples results: - task: name: Text Classification type: text-classification dataset: name: imdb type: imdb args: plain_text metrics: - name: Accuracy type: accuracy value: 0.8766666666666667 - name: F1 type: f1 value: 0.877887788778878 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuning-sentiment-model-3000-samples This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 0.3167 - Accuracy: 0.8767 - F1: 0.8779 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
Aalaa/opt-125m-wikitext2
ed091de27bfb23a83297b1a29026f9fe071b1ecc
2022-06-28T22:39:40.000Z
[ "pytorch", "tensorboard", "opt", "text-generation", "transformers", "generated_from_trainer", "license:other", "model-index" ]
text-generation
false
Aalaa
null
Aalaa/opt-125m-wikitext2
5
null
transformers
17,489
--- license: other tags: - generated_from_trainer model-index: - name: opt-125m-wikitext2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # opt-125m-wikitext2 This model is a fine-tuned version of [facebook/opt-125m](https://huggingface.co/facebook/opt-125m) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.3409 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 3.4123 | 1.0 | 2370 | 3.3621 | | 3.2096 | 2.0 | 4740 | 3.3452 | | 3.0822 | 3.0 | 7110 | 3.3409 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
Smith123/tiny-bert-sst2-distilled_L4_H_512
5c35f1a0f81f8b9f630ae49a9b0d57a3d26634c2
2022-06-29T10:42:39.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Smith123
null
Smith123/tiny-bert-sst2-distilled_L4_H_512
5
null
transformers
17,490
Entry not found
jdang/bert-finetuned-ner
7c57ac8c08a13e9a2b666069bbf9f0ddd310e491
2022-06-29T22:07:37.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "dataset:conll2003", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
token-classification
false
jdang
null
jdang/bert-finetuned-ner
5
null
transformers
17,491
--- license: apache-2.0 tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: bert-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 args: conll2003 metrics: - name: Precision type: precision value: 0.9357509521443947 - name: Recall type: recall value: 0.9510265903736116 - name: F1 type: f1 value: 0.9433269343126617 - name: Accuracy type: accuracy value: 0.9864160828869135 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-ner This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0629 - Precision: 0.9358 - Recall: 0.9510 - F1: 0.9433 - Accuracy: 0.9864 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0855 | 1.0 | 1756 | 0.0632 | 0.9152 | 0.9387 | 0.9268 | 0.9833 | | 0.0387 | 2.0 | 3512 | 0.0589 | 0.9322 | 0.9505 | 0.9413 | 0.9859 | | 0.0193 | 3.0 | 5268 | 0.0629 | 0.9358 | 0.9510 | 0.9433 | 0.9864 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
annahaz/xlm-roberta-base-finetuned-misogyny-sexism-en-it-hi-beng
a66d2d8fdf6083e5f3f299925e11216f0ffb4238
2022-06-30T03:31:29.000Z
[ "pytorch", "xlm-roberta", "text-classification", "transformers", "generated_from_trainer", "license:mit", "model-index" ]
text-classification
false
annahaz
null
annahaz/xlm-roberta-base-finetuned-misogyny-sexism-en-it-hi-beng
5
null
transformers
17,492
--- license: mit tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: xlm-roberta-base-finetuned-misogyny-sexism-en-it-hi-beng results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-misogyny-sexism-en-it-hi-beng This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0295 - Accuracy: 0.9924 - F1: 0.9922 - Precision: 0.9845 - Recall: 1.0 - Mae: 0.0076 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | Mae | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|:---------:|:------:|:------:| | 0.3723 | 1.0 | 2778 | 0.4446 | 0.7876 | 0.7967 | 0.7375 | 0.8663 | 0.2124 | | 0.3257 | 2.0 | 5556 | 0.4372 | 0.8381 | 0.8509 | 0.7634 | 0.9611 | 0.1619 | | 0.2903 | 3.0 | 8334 | 0.2384 | 0.9044 | 0.9055 | 0.8627 | 0.9526 | 0.0956 | | 0.244 | 4.0 | 11112 | 0.1500 | 0.9514 | 0.9509 | 0.9245 | 0.9789 | 0.0486 | | 0.2169 | 5.0 | 13890 | 0.1024 | 0.9717 | 0.9709 | 0.9580 | 0.9842 | 0.0283 | | 0.1987 | 6.0 | 16668 | 0.0879 | 0.9767 | 0.9762 | 0.9612 | 0.9916 | 0.0233 | | 0.1659 | 7.0 | 19446 | 0.0557 | 0.9848 | 0.9843 | 0.9812 | 0.9874 | 0.0152 | | 0.1593 | 8.0 | 22224 | 0.0397 | 0.9894 | 0.9891 | 0.9794 | 0.9989 | 0.0106 | | 0.1384 | 9.0 | 25002 | 0.0315 | 0.9924 | 0.9922 | 0.9855 | 0.9989 | 0.0076 | | 0.1186 | 10.0 | 27780 | 0.0295 | 0.9924 | 0.9922 | 0.9845 | 1.0 | 0.0076 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.9.0+cu111 - Datasets 2.3.2 - Tokenizers 0.12.1
clevrly/roberta-base-finetuned-hotpot_qa
9b02511fdee958affb3986dba1ea47425901b364
2022-07-01T18:12:44.000Z
[ "pytorch", "tensorboard", "roberta", "question-answering", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
question-answering
false
clevrly
null
clevrly/roberta-base-finetuned-hotpot_qa
5
null
transformers
17,493
--- license: mit tags: - generated_from_trainer model-index: - name: roberta-base-finetuned-hotpot_qa results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-finetuned-hotpot_qa This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.8677 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.6588 | 1.0 | 882 | 0.9653 | | 0.7777 | 2.0 | 1764 | 0.8677 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
fujiki/gpt-neo-en2ja-1.3b
e7203da00f6e63ad08ef470d4a0a87845429a185
2022-06-30T08:26:27.000Z
[ "pytorch", "gpt_neo", "text-generation", "transformers", "license:afl-3.0" ]
text-generation
false
fujiki
null
fujiki/gpt-neo-en2ja-1.3b
5
null
transformers
17,494
--- license: afl-3.0 ---
pserna/mt5-small-spanish-paraphraser
5c3ee9be30a3b973f6e07b2edad6896ff188ea2b
2022-06-30T16:33:25.000Z
[ "pytorch", "tf", "mt5", "text2text-generation", "transformers", "license:apache-2.0", "autotrain_compatible" ]
text2text-generation
false
pserna
null
pserna/mt5-small-spanish-paraphraser
5
null
transformers
17,495
--- license: apache-2.0 --- # mT5-small based spanish paraphraser ### Original model - [Google's mT5](https://huggingface.co/google/mt5-small) ### Datasets used for training: - spanish [PAWS-X](https://huggingface.co/datasets/paws-x) - Custom database: "Poor-man's" translation of [duplicated questions in Quora](https://huggingface.co/datasets/quora) (translated with [Helsinki-NLP/opus-mt-en-es](https://huggingface.co/Helsinki-NLP/opus-mt-en-es))
z-dickson/US_politicians_covid_skepticism
20fa6d364476db90c1a55a86af2d6b2c222cb29b
2022-07-08T13:13:11.000Z
[ "pytorch", "tf", "roberta", "text-classification", "transformers", "generated_from_keras_callback", "model-index" ]
text-classification
false
z-dickson
null
z-dickson/US_politicians_covid_skepticism
5
null
transformers
17,496
--- tags: - generated_from_keras_callback model-index: - name: US_politicians_covid_skepticism results: [] --- # US_politicians_covid_skepticism This model is a fine-tuned version of [vinai/bertweet-covid19-base-uncased](https://huggingface.co/vinai/bertweet-covid19-base-uncased) on a dataset of 20,000 handcoded tweets about COVID-19 policies sent by US legislators. The model is trained to identify tweets that are either in support of covid policies (masks, social distancing, lockdowns, vaccine mandates) or are opposed to such policies. Before training the model, all URLs and @Usernames were removed from the tweets. Accuracy is very high (probably) because US legislators tweet a lot of the same messages and retweet each other often. The model is uncased. It achieves the following results on the evaluation set: - Train Loss: 0.0141 - Train Sparse Categorical Accuracy: 0.9968 - Validation Loss: 0.0115 - Validation Sparse Categorical Accuracy: 0.9970 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'learning_rate': 5e-07, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Train Sparse Categorical Accuracy | Validation Loss | Validation Sparse Categorical Accuracy | Epoch | |:----------:|:---------------------------------:|:---------------:|:--------------------------------------:|:-----:| | 0.1240 | 0.9721 | 0.0206 | 0.9957 | 0 | | 0.0194 | 0.9957 | 0.0117 | 0.9972 | 1 | | 0.0141 | 0.9968 | 0.0115 | 0.9970 | 2 | ### Framework versions - Transformers 4.20.1 - TensorFlow 2.8.2 - Datasets 2.3.2 - Tokenizers 0.12.1
annahaz/distilbert-base-multilingual-cased-finetuned-misogyny
8f5eba6282e6ae1a1d1df3aa23c0860045858ffb
2022-07-05T18:52:33.000Z
[ "pytorch", "distilbert", "text-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
annahaz
null
annahaz/distilbert-base-multilingual-cased-finetuned-misogyny
5
null
transformers
17,497
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: distilbert-base-multilingual-cased-finetuned-misogyny results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-multilingual-cased-finetuned-misogyny This model is a fine-tuned version of [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0045 - Accuracy: 0.9990 - F1: 0.9989 - Precision: 0.9989 - Recall: 0.9989 - Mae: 0.0010 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | Mae | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|:---------:|:------:|:------:| | 0.2987 | 1.0 | 1759 | 0.3910 | 0.8164 | 0.8186 | 0.7793 | 0.8621 | 0.1836 | | 0.2507 | 2.0 | 3518 | 0.2399 | 0.9029 | 0.9043 | 0.8589 | 0.9547 | 0.0971 | | 0.1793 | 3.0 | 5277 | 0.1412 | 0.9479 | 0.9483 | 0.9068 | 0.9937 | 0.0521 | | 0.1062 | 4.0 | 7036 | 0.0570 | 0.9828 | 0.9823 | 0.9702 | 0.9947 | 0.0172 | | 0.0732 | 5.0 | 8795 | 0.0293 | 0.9924 | 0.9921 | 0.9885 | 0.9958 | 0.0076 | | 0.0461 | 6.0 | 10554 | 0.0157 | 0.9960 | 0.9958 | 0.9937 | 0.9979 | 0.0040 | | 0.037 | 7.0 | 12313 | 0.0126 | 0.9975 | 0.9974 | 0.9948 | 1.0 | 0.0025 | | 0.0311 | 8.0 | 14072 | 0.0092 | 0.9980 | 0.9979 | 0.9958 | 1.0 | 0.0020 | | 0.0141 | 9.0 | 15831 | 0.0065 | 0.9985 | 0.9984 | 0.9979 | 0.9989 | 0.0015 | | 0.0119 | 10.0 | 17590 | 0.0045 | 0.9990 | 0.9989 | 0.9989 | 0.9989 | 0.0010 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.9.0+cu111 - Datasets 2.3.2 - Tokenizers 0.12.1
Evelyn18/distilbert-base-uncased-becas-5
1a5aa9285b6e15fb34d9bc1263466e7a26e007db
2022-07-02T03:30:01.000Z
[ "pytorch", "tensorboard", "distilbert", "question-answering", "dataset:becasv2", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
question-answering
false
Evelyn18
null
Evelyn18/distilbert-base-uncased-becas-5
5
null
transformers
17,498
--- license: apache-2.0 tags: - generated_from_trainer datasets: - becasv2 model-index: - name: distilbert-base-uncased-becas-5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-becas-5 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the becasv2 dataset. It achieves the following results on the evaluation set: - Loss: 4.8805 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 5 | 5.4344 | | No log | 2.0 | 10 | 4.9002 | | No log | 3.0 | 15 | 4.3601 | | No log | 4.0 | 20 | 4.4784 | | No log | 5.0 | 25 | 4.3712 | | No log | 6.0 | 30 | 4.3958 | | No log | 7.0 | 35 | 4.8476 | | No log | 8.0 | 40 | 4.6108 | | No log | 9.0 | 45 | 4.7711 | | No log | 10.0 | 50 | 4.8805 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
saekomdalkom/long-t5-local-base-finetuned
02ee0ec64536637d9a03ccc46681538817c983cf
2022-07-08T18:48:45.000Z
[ "pytorch", "longt5", "text2text-generation", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
text2text-generation
false
saekomdalkom
null
saekomdalkom/long-t5-local-base-finetuned
5
null
transformers
17,499
--- license: apache-2.0 tags: - generated_from_trainer metrics: - rouge model-index: - name: long-t5-local-base-finetuned results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # long-t5-local-base-finetuned This model is a fine-tuned version of [google/long-t5-local-base](https://huggingface.co/google/long-t5-local-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 9.2722 - Rouge1: 3.8848 - Rouge2: 0.5914 - Rougel: 3.5038 - Rougelsum: 3.7022 - Gen Len: 19.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-06 - train_batch_size: 3 - eval_batch_size: 3 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:| | No log | 0.16 | 100 | 342.4395 | 0.0 | 0.0 | 0.0 | 0.0 | 19.0 | | No log | 0.31 | 200 | 323.6985 | 0.0 | 0.0 | 0.0 | 0.0 | 19.0 | | No log | 0.47 | 300 | 303.8767 | 0.0 | 0.0 | 0.0 | 0.0 | 19.0 | | No log | 0.62 | 400 | 284.7559 | 0.0 | 0.0 | 0.0 | 0.0 | 19.0 | | 295.8376 | 0.78 | 500 | 263.0420 | 0.0 | 0.0 | 0.0 | 0.0 | 19.0 | | 295.8376 | 0.93 | 600 | 243.2220 | 0.0242 | 0.0 | 0.0223 | 0.0242 | 19.0 | | 295.8376 | 1.09 | 700 | 224.4514 | 0.0493 | 0.0 | 0.0507 | 0.0513 | 19.0 | | 295.8376 | 1.24 | 800 | 203.9065 | 0.0656 | 0.0 | 0.0634 | 0.0658 | 19.0 | | 295.8376 | 1.4 | 900 | 184.8686 | 0.0609 | 0.0 | 0.058 | 0.0616 | 19.0 | | 199.938 | 1.55 | 1000 | 167.5315 | 0.0638 | 0.0 | 0.0626 | 0.063 | 19.0 | | 199.938 | 1.71 | 1100 | 151.2369 | 0.0421 | 0.0 | 0.0411 | 0.0413 | 19.0 | | 199.938 | 1.86 | 1200 | 137.2366 | 0.0358 | 0.0 | 0.0346 | 0.0342 | 19.0 | | 199.938 | 2.02 | 1300 | 125.3076 | 0.0173 | 0.0 | 0.0157 | 0.0157 | 19.0 | | 199.938 | 2.17 | 1400 | 114.5600 | 0.0173 | 0.0 | 0.0157 | 0.0157 | 19.0 | | 136.1309 | 2.33 | 1500 | 105.9237 | 0.0361 | 0.0 | 0.0344 | 0.0363 | 19.0 | | 136.1309 | 2.48 | 1600 | 97.4123 | 0.0526 | 0.0 | 0.051 | 0.054 | 19.0 | | 136.1309 | 2.64 | 1700 | 89.0873 | 0.0427 | 0.0 | 0.0407 | 0.0418 | 19.0 | | 136.1309 | 2.79 | 1800 | 82.0562 | 0.0496 | 0.0 | 0.0462 | 0.0462 | 19.0 | | 136.1309 | 2.95 | 1900 | 76.2360 | 0.0361 | 0.0 | 0.0345 | 0.0363 | 19.0 | | 99.2229 | 3.1 | 2000 | 70.0604 | 0.0438 | 0.0 | 0.0425 | 0.0439 | 19.0 | | 99.2229 | 3.26 | 2100 | 65.1038 | 0.0454 | 0.0 | 0.0441 | 0.0447 | 19.0 | | 99.2229 | 3.41 | 2200 | 59.1831 | 0.0344 | 0.0 | 0.0318 | 0.0318 | 19.0 | | 99.2229 | 3.57 | 2300 | 53.0313 | 0.0471 | 0.0 | 0.0448 | 0.0454 | 19.0 | | 99.2229 | 3.72 | 2400 | 48.2110 | 0.0369 | 0.0 | 0.0369 | 0.0369 | 19.0 | | 73.4208 | 3.88 | 2500 | 44.2004 | 0.0425 | 0.0 | 0.0427 | 0.044 | 19.0 | | 73.4208 | 4.03 | 2600 | 40.1925 | 0.0632 | 0.0 | 0.0619 | 0.0612 | 19.0 | | 73.4208 | 4.19 | 2700 | 36.3698 | 0.0887 | 0.0 | 0.0873 | 0.086 | 19.0 | | 73.4208 | 4.34 | 2800 | 33.2154 | 0.164 | 0.0 | 0.1652 | 0.1705 | 19.0 | | 73.4208 | 4.5 | 2900 | 30.9366 | 0.1106 | 0.0 | 0.1138 | 0.1144 | 19.0 | | 55.6661 | 4.65 | 3000 | 28.5672 | 0.1289 | 0.0 | 0.1295 | 0.131 | 19.0 | | 55.6661 | 4.81 | 3100 | 27.0910 | 0.2501 | 0.0 | 0.2514 | 0.2527 | 19.0 | | 55.6661 | 4.96 | 3200 | 25.6666 | 0.318 | 0.0 | 0.3322 | 0.3203 | 19.0 | | 55.6661 | 5.12 | 3300 | 24.6176 | 0.6319 | 0.0 | 0.6419 | 0.6299 | 19.0 | | 55.6661 | 5.27 | 3400 | 23.6474 | 1.6632 | 0.0033 | 1.665 | 1.6244 | 19.0 | | 45.1105 | 5.43 | 3500 | 22.7063 | 3.1374 | 0.0 | 3.1331 | 3.1333 | 19.0 | | 45.1105 | 5.58 | 3600 | 21.9191 | 5.0757 | 0.0 | 5.0694 | 5.0456 | 19.0 | | 45.1105 | 5.74 | 3700 | 21.3359 | 5.6576 | 0.0 | 5.689 | 5.6772 | 19.0 | | 45.1105 | 5.89 | 3800 | 20.6990 | 5.828 | 0.0 | 5.8801 | 5.8688 | 19.0 | | 45.1105 | 6.05 | 3900 | 20.1800 | 6.3727 | 0.0 | 6.3801 | 6.3716 | 19.0 | | 39.6923 | 6.2 | 4000 | 19.7415 | 6.2209 | 0.0 | 6.2347 | 6.2368 | 19.0 | | 39.6923 | 6.36 | 4100 | 19.2800 | 5.7215 | 0.0 | 5.7452 | 5.7295 | 19.0 | | 39.6923 | 6.51 | 4200 | 18.9683 | 6.1018 | 0.0062 | 6.1 | 6.0935 | 19.0 | | 39.6923 | 6.67 | 4300 | 18.5776 | 6.0354 | 0.0062 | 6.0227 | 6.0103 | 19.0 | | 39.6923 | 6.82 | 4400 | 18.2629 | 5.4438 | 0.0062 | 5.441 | 5.4629 | 19.0 | | 36.1688 | 6.98 | 4500 | 18.0268 | 5.3214 | 0.0091 | 5.3093 | 5.2992 | 19.0 | | 36.1688 | 7.13 | 4600 | 17.7740 | 5.2223 | 0.0123 | 5.2132 | 5.2084 | 19.0 | | 36.1688 | 7.29 | 4700 | 17.5345 | 5.178 | 0.0231 | 5.1615 | 5.1243 | 19.0 | | 36.1688 | 7.44 | 4800 | 17.3846 | 5.3899 | 0.0277 | 5.3414 | 5.3534 | 19.0 | | 36.1688 | 7.6 | 4900 | 17.1999 | 5.315 | 0.0272 | 5.2572 | 5.2477 | 19.0 | | 33.5745 | 7.75 | 5000 | 17.0078 | 5.9014 | 0.028 | 5.8181 | 5.8058 | 19.0 | | 33.5745 | 7.91 | 5100 | 16.6418 | 5.7546 | 0.0242 | 5.6903 | 5.6746 | 19.0 | | 33.5745 | 8.06 | 5200 | 16.6330 | 6.6893 | 0.0182 | 6.6354 | 6.6178 | 19.0 | | 33.5745 | 8.22 | 5300 | 16.3423 | 6.1679 | 0.0072 | 6.1518 | 6.128 | 19.0 | | 33.5745 | 8.37 | 5400 | 16.2373 | 6.7659 | 0.0139 | 6.7271 | 6.7076 | 19.0 | | 31.9486 | 8.53 | 5500 | 16.1523 | 7.1991 | 0.0139 | 7.1674 | 7.1283 | 19.0 | | 31.9486 | 8.68 | 5600 | 16.0607 | 7.7042 | 0.0169 | 7.6741 | 7.6537 | 19.0 | | 31.9486 | 8.84 | 5700 | 15.7647 | 7.1238 | 0.02 | 7.1113 | 7.0586 | 19.0 | | 31.9486 | 8.99 | 5800 | 15.6194 | 7.3055 | 0.0116 | 7.3311 | 7.2683 | 19.0 | | 31.9486 | 9.15 | 5900 | 15.4994 | 7.3365 | 0.0139 | 7.3026 | 7.2708 | 19.0 | | 30.5224 | 9.3 | 6000 | 15.4207 | 8.1959 | 0.0116 | 8.1917 | 8.1651 | 19.0 | | 30.5224 | 9.46 | 6100 | 15.2981 | 7.7936 | 0.0144 | 7.7826 | 7.7488 | 19.0 | | 30.5224 | 9.61 | 6200 | 15.2391 | 7.95 | 0.0144 | 7.9371 | 7.895 | 19.0 | | 30.5224 | 9.77 | 6300 | 15.0941 | 7.1669 | 0.0144 | 7.146 | 7.1251 | 19.0 | | 30.5224 | 9.92 | 6400 | 14.9979 | 6.2157 | 0.0076 | 6.2086 | 6.1774 | 19.0 | | 29.1236 | 10.08 | 6500 | 14.9523 | 7.4422 | 0.0137 | 7.3929 | 7.393 | 19.0 | | 29.1236 | 10.23 | 6600 | 14.9515 | 7.2375 | 0.0137 | 7.1728 | 7.1779 | 19.0 | | 29.1236 | 10.39 | 6700 | 14.8874 | 7.5071 | 0.0068 | 7.4544 | 7.4739 | 19.0 | | 29.1236 | 10.54 | 6800 | 14.8057 | 5.9608 | 0.0169 | 5.8754 | 5.8691 | 19.0 | | 29.1236 | 10.7 | 6900 | 14.6818 | 5.6345 | 0.021 | 5.5422 | 5.5331 | 19.0 | | 28.314 | 10.85 | 7000 | 14.5409 | 5.5799 | 0.0169 | 5.4915 | 5.4833 | 19.0 | | 28.314 | 11.01 | 7100 | 14.4512 | 4.3498 | 0.0368 | 4.2243 | 4.2193 | 19.0 | | 28.314 | 11.16 | 7200 | 14.4560 | 4.0453 | 0.0372 | 3.9481 | 3.9228 | 19.0 | | 28.314 | 11.32 | 7300 | 14.3851 | 5.1332 | 0.0426 | 5.0186 | 4.9882 | 19.0 | | 28.314 | 11.47 | 7400 | 14.2265 | 4.8944 | 0.0371 | 4.7869 | 4.7765 | 19.0 | | 27.5349 | 11.63 | 7500 | 14.1214 | 3.8846 | 0.0335 | 3.7882 | 3.7677 | 19.0 | | 27.5349 | 11.78 | 7600 | 14.1505 | 3.9992 | 0.0514 | 3.883 | 3.8385 | 19.0 | | 27.5349 | 11.94 | 7700 | 13.9923 | 3.4526 | 0.0664 | 3.325 | 3.3258 | 19.0 | | 27.5349 | 12.09 | 7800 | 14.0299 | 2.3086 | 0.0346 | 2.25 | 2.219 | 19.0 | | 27.5349 | 12.25 | 7900 | 13.9814 | 2.4402 | 0.0628 | 2.3282 | 2.3004 | 19.0 | | 26.4286 | 12.4 | 8000 | 13.8561 | 2.9869 | 0.0654 | 2.8769 | 2.8485 | 19.0 | | 26.4286 | 12.56 | 8100 | 13.8259 | 1.9609 | 0.0386 | 1.8863 | 1.8846 | 19.0 | | 26.4286 | 12.71 | 8200 | 13.8127 | 2.0628 | 0.0355 | 1.9915 | 1.9738 | 19.0 | | 26.4286 | 12.87 | 8300 | 13.7174 | 1.9904 | 0.081 | 1.888 | 1.9069 | 19.0 | | 26.4286 | 13.02 | 8400 | 13.6308 | 2.1398 | 0.1055 | 2.0204 | 2.0468 | 19.0 | | 26.108 | 13.18 | 8500 | 13.6490 | 1.8934 | 0.0788 | 1.7942 | 1.8188 | 19.0 | | 26.108 | 13.33 | 8600 | 13.5996 | 1.8746 | 0.0901 | 1.7441 | 1.8006 | 19.0 | | 26.108 | 13.49 | 8700 | 13.5394 | 1.7846 | 0.0895 | 1.6648 | 1.7331 | 19.0 | | 26.108 | 13.64 | 8800 | 13.5368 | 2.1345 | 0.1287 | 1.9808 | 2.0814 | 19.0 | | 26.108 | 13.8 | 8900 | 13.4793 | 2.5234 | 0.1611 | 2.3289 | 2.4292 | 19.0 | | 25.4931 | 13.95 | 9000 | 13.3633 | 2.8056 | 0.1953 | 2.5619 | 2.7088 | 19.0 | | 25.4931 | 14.11 | 9100 | 13.5182 | 3.087 | 0.2192 | 2.8182 | 2.9928 | 19.0 | | 25.4931 | 14.26 | 9200 | 13.3372 | 2.6353 | 0.175 | 2.4145 | 2.589 | 19.0 | | 25.4931 | 14.42 | 9300 | 13.2822 | 2.7577 | 0.1905 | 2.5277 | 2.7215 | 19.0 | | 25.4931 | 14.57 | 9400 | 13.2011 | 3.1891 | 0.2381 | 2.9276 | 3.142 | 19.0 | | 24.9241 | 14.73 | 9500 | 13.2201 | 2.609 | 0.1683 | 2.4162 | 2.5905 | 19.0 | | 24.9241 | 14.88 | 9600 | 13.2206 | 3.1083 | 0.2241 | 2.8627 | 3.0606 | 19.0 | | 24.9241 | 15.04 | 9700 | 13.2157 | 3.6233 | 0.2731 | 3.338 | 3.5642 | 19.0 | | 24.9241 | 15.19 | 9800 | 13.1195 | 3.1785 | 0.2318 | 2.9449 | 3.1306 | 19.0 | | 24.9241 | 15.35 | 9900 | 13.0481 | 3.0249 | 0.2192 | 2.7991 | 2.9925 | 19.0 | | 24.4511 | 15.5 | 10000 | 13.0693 | 3.1189 | 0.2287 | 2.8726 | 3.0669 | 19.0 | | 24.4511 | 15.66 | 10100 | 12.9204 | 2.6405 | 0.1899 | 2.4337 | 2.61 | 19.0 | | 24.4511 | 15.81 | 10200 | 12.9200 | 2.9037 | 0.2148 | 2.6775 | 2.8683 | 19.0 | | 24.4511 | 15.97 | 10300 | 12.9203 | 2.8847 | 0.2034 | 2.6586 | 2.8438 | 19.0 | | 24.4511 | 16.12 | 10400 | 12.8723 | 2.8195 | 0.1976 | 2.5922 | 2.7803 | 19.0 | | 23.8949 | 16.28 | 10500 | 12.9749 | 3.2658 | 0.2217 | 2.9905 | 3.2262 | 19.0 | | 23.8949 | 16.43 | 10600 | 12.7975 | 2.9762 | 0.1844 | 2.7295 | 2.9474 | 19.0 | | 23.8949 | 16.59 | 10700 | 12.7497 | 2.5496 | 0.1406 | 2.3536 | 2.5269 | 19.0 | | 23.8949 | 16.74 | 10800 | 12.6485 | 2.5509 | 0.1454 | 2.343 | 2.5182 | 19.0 | | 23.8949 | 16.9 | 10900 | 12.6574 | 2.1914 | 0.1281 | 2.0113 | 2.1574 | 19.0 | | 23.4963 | 17.05 | 11000 | 12.6919 | 2.1748 | 0.1299 | 1.9909 | 2.1229 | 19.0 | | 23.4963 | 17.21 | 11100 | 12.5660 | 2.3751 | 0.1177 | 2.1417 | 2.326 | 19.0 | | 23.4963 | 17.36 | 11200 | 12.5866 | 2.6893 | 0.1344 | 2.4378 | 2.6318 | 19.0 | | 23.4963 | 17.52 | 11300 | 12.5427 | 2.5546 | 0.1411 | 2.3175 | 2.5073 | 19.0 | | 23.4963 | 17.67 | 11400 | 12.5011 | 2.347 | 0.1223 | 2.1322 | 2.3077 | 19.0 | | 23.1492 | 17.83 | 11500 | 12.5168 | 2.2304 | 0.1141 | 2.0657 | 2.1951 | 19.0 | | 23.1492 | 17.98 | 11600 | 12.4043 | 2.4485 | 0.1209 | 2.2548 | 2.4114 | 19.0 | | 23.1492 | 18.14 | 11700 | 12.4192 | 2.0551 | 0.0887 | 1.8996 | 2.0199 | 19.0 | | 23.1492 | 18.29 | 11800 | 12.3799 | 2.1076 | 0.0932 | 1.9464 | 2.0589 | 19.0 | | 23.1492 | 18.45 | 11900 | 12.4263 | 2.4136 | 0.1152 | 2.2172 | 2.357 | 19.0 | | 22.7005 | 18.6 | 12000 | 12.3218 | 2.1197 | 0.1105 | 1.9997 | 2.0873 | 19.0 | | 22.7005 | 18.76 | 12100 | 12.3297 | 2.1883 | 0.1102 | 2.0414 | 2.1267 | 19.0 | | 22.7005 | 18.91 | 12200 | 12.3026 | 1.966 | 0.0954 | 1.8387 | 1.9469 | 19.0 | | 22.7005 | 19.07 | 12300 | 12.3030 | 2.0179 | 0.0955 | 1.8834 | 1.9858 | 19.0 | | 22.7005 | 19.22 | 12400 | 12.2478 | 1.9549 | 0.0948 | 1.8437 | 1.9092 | 19.0 | | 22.3178 | 19.38 | 12500 | 12.1803 | 1.6396 | 0.0648 | 1.5296 | 1.6208 | 19.0 | | 22.3178 | 19.53 | 12600 | 12.1732 | 1.5568 | 0.0769 | 1.4894 | 1.5387 | 19.0 | | 22.3178 | 19.69 | 12700 | 12.1342 | 1.6861 | 0.0782 | 1.6105 | 1.666 | 19.0 | | 22.3178 | 19.84 | 12800 | 12.1313 | 2.023 | 0.0965 | 1.9295 | 2.0072 | 19.0 | | 22.3178 | 20.0 | 12900 | 12.1315 | 1.5878 | 0.0701 | 1.5153 | 1.5467 | 19.0 | | 21.8344 | 20.16 | 13000 | 12.0611 | 1.6406 | 0.0637 | 1.5665 | 1.6033 | 19.0 | | 21.8344 | 20.31 | 13100 | 12.0327 | 1.5913 | 0.0544 | 1.5209 | 1.552 | 19.0 | | 21.8344 | 20.47 | 13200 | 12.0466 | 1.3618 | 0.0494 | 1.3186 | 1.33 | 19.0 | | 21.8344 | 20.62 | 13300 | 12.0787 | 1.4445 | 0.0451 | 1.4073 | 1.41 | 19.0 | | 21.8344 | 20.78 | 13400 | 11.9829 | 1.3465 | 0.0494 | 1.3247 | 1.3167 | 19.0 | | 21.6309 | 20.93 | 13500 | 11.9072 | 1.4165 | 0.0519 | 1.3761 | 1.3839 | 19.0 | | 21.6309 | 21.09 | 13600 | 11.9261 | 1.3969 | 0.0502 | 1.3606 | 1.3618 | 19.0 | | 21.6309 | 21.24 | 13700 | 11.8313 | 1.3337 | 0.0337 | 1.2974 | 1.316 | 19.0 | | 21.6309 | 21.4 | 13800 | 11.7709 | 1.3045 | 0.0371 | 1.2746 | 1.2889 | 19.0 | | 21.6309 | 21.55 | 13900 | 11.8402 | 1.6106 | 0.0391 | 1.5678 | 1.5697 | 19.0 | | 21.2262 | 21.71 | 14000 | 11.7132 | 1.3261 | 0.0222 | 1.296 | 1.3051 | 19.0 | | 21.2262 | 21.86 | 14100 | 11.7206 | 1.41 | 0.0252 | 1.374 | 1.3985 | 19.0 | | 21.2262 | 22.02 | 14200 | 11.7033 | 1.6231 | 0.0478 | 1.5632 | 1.5851 | 19.0 | | 21.2262 | 22.17 | 14300 | 11.7385 | 1.8974 | 0.0618 | 1.8339 | 1.8583 | 19.0 | | 21.2262 | 22.33 | 14400 | 11.6519 | 1.8998 | 0.0541 | 1.8285 | 1.8552 | 19.0 | | 20.8055 | 22.48 | 14500 | 11.6039 | 1.9561 | 0.0582 | 1.859 | 1.9073 | 19.0 | | 20.8055 | 22.64 | 14600 | 11.6322 | 1.7731 | 0.0442 | 1.7061 | 1.7303 | 19.0 | | 20.8055 | 22.79 | 14700 | 11.6046 | 1.8874 | 0.0618 | 1.8083 | 1.8539 | 19.0 | | 20.8055 | 22.95 | 14800 | 11.5051 | 1.4271 | 0.016 | 1.3996 | 1.4086 | 19.0 | | 20.8055 | 23.1 | 14900 | 11.5564 | 1.743 | 0.0451 | 1.6787 | 1.727 | 19.0 | | 20.6263 | 23.26 | 15000 | 11.5024 | 1.9313 | 0.0575 | 1.8357 | 1.887 | 19.0 | | 20.6263 | 23.41 | 15100 | 11.5281 | 2.082 | 0.0435 | 1.9865 | 2.0327 | 19.0 | | 20.6263 | 23.57 | 15200 | 11.4223 | 1.9773 | 0.0332 | 1.9038 | 1.9432 | 19.0 | | 20.6263 | 23.72 | 15300 | 11.4675 | 1.7845 | 0.0831 | 1.6835 | 1.7414 | 19.0 | | 20.6263 | 23.88 | 15400 | 11.3882 | 2.1183 | 0.0715 | 1.9965 | 2.0725 | 19.0 | | 20.3154 | 24.03 | 15500 | 11.4197 | 2.4045 | 0.1336 | 2.2302 | 2.3024 | 19.0 | | 20.3154 | 24.19 | 15600 | 11.3558 | 1.9596 | 0.1196 | 1.8152 | 1.8748 | 19.0 | | 20.3154 | 24.34 | 15700 | 11.3438 | 2.0931 | 0.111 | 1.9469 | 1.999 | 19.0 | | 20.3154 | 24.5 | 15800 | 11.3021 | 2.2159 | 0.1257 | 2.0511 | 2.1345 | 19.0 | | 20.3154 | 24.65 | 15900 | 11.3178 | 2.093 | 0.132 | 1.9083 | 1.9969 | 19.0 | | 20.0858 | 24.81 | 16000 | 11.2377 | 1.6589 | 0.1129 | 1.5625 | 1.6245 | 19.0 | | 20.0858 | 24.96 | 16100 | 11.2058 | 1.6667 | 0.0854 | 1.5597 | 1.6223 | 19.0 | | 20.0858 | 25.12 | 16200 | 11.1602 | 2.0907 | 0.1219 | 1.9297 | 1.9988 | 19.0 | | 20.0858 | 25.27 | 16300 | 11.1666 | 1.86 | 0.1092 | 1.7398 | 1.7993 | 19.0 | | 20.0858 | 25.43 | 16400 | 11.1807 | 1.8879 | 0.1818 | 1.7579 | 1.8335 | 19.0 | | 19.7588 | 25.58 | 16500 | 11.1310 | 2.0377 | 0.1612 | 1.8653 | 1.9538 | 19.0 | | 19.7588 | 25.74 | 16600 | 11.1577 | 2.1441 | 0.1767 | 1.9546 | 2.0518 | 19.0 | | 19.7588 | 25.89 | 16700 | 11.0748 | 1.8679 | 0.1892 | 1.7249 | 1.7822 | 19.0 | | 19.7588 | 26.05 | 16800 | 11.1048 | 2.2775 | 0.2072 | 2.0566 | 2.1521 | 19.0 | | 19.7588 | 26.2 | 16900 | 11.0498 | 1.8117 | 0.161 | 1.6879 | 1.7357 | 19.0 | | 19.4627 | 26.36 | 17000 | 11.0435 | 1.7875 | 0.1627 | 1.6626 | 1.7306 | 19.0 | | 19.4627 | 26.51 | 17100 | 10.9406 | 1.7333 | 0.1645 | 1.6051 | 1.6671 | 19.0 | | 19.4627 | 26.67 | 17200 | 10.9242 | 1.596 | 0.1426 | 1.4747 | 1.5341 | 19.0 | | 19.4627 | 26.82 | 17300 | 10.9571 | 1.9874 | 0.2109 | 1.8109 | 1.9061 | 19.0 | | 19.4627 | 26.98 | 17400 | 10.9265 | 1.6999 | 0.1353 | 1.5574 | 1.6402 | 19.0 | | 19.2619 | 27.13 | 17500 | 10.8919 | 1.7543 | 0.1709 | 1.587 | 1.6605 | 19.0 | | 19.2619 | 27.29 | 17600 | 10.8382 | 2.126 | 0.2056 | 1.8609 | 2.0021 | 19.0 | | 19.2619 | 27.44 | 17700 | 10.8936 | 1.9626 | 0.1726 | 1.7402 | 1.8665 | 19.0 | | 19.2619 | 27.6 | 17800 | 10.8565 | 1.7668 | 0.1673 | 1.5914 | 1.7099 | 19.0 | | 19.2619 | 27.75 | 17900 | 10.9047 | 2.0972 | 0.1867 | 1.8519 | 2.0224 | 19.0 | | 19.0457 | 27.91 | 18000 | 10.7900 | 2.7761 | 0.2904 | 2.4403 | 2.6936 | 19.0 | | 19.0457 | 28.06 | 18100 | 10.7191 | 2.3652 | 0.2431 | 2.0989 | 2.2767 | 19.0 | | 19.0457 | 28.22 | 18200 | 10.7462 | 3.3125 | 0.361 | 2.847 | 3.1506 | 19.0 | | 19.0457 | 28.37 | 18300 | 10.7721 | 2.9247 | 0.3 | 2.5443 | 2.806 | 19.0 | | 19.0457 | 28.53 | 18400 | 10.7208 | 2.5398 | 0.2812 | 2.2211 | 2.4312 | 19.0 | | 18.8301 | 28.68 | 18500 | 10.6708 | 2.5902 | 0.281 | 2.2765 | 2.4881 | 19.0 | | 18.8301 | 28.84 | 18600 | 10.7220 | 2.276 | 0.2061 | 1.9904 | 2.1922 | 19.0 | | 18.8301 | 28.99 | 18700 | 10.6855 | 2.8678 | 0.3496 | 2.52 | 2.751 | 19.0 | | 18.8301 | 29.15 | 18800 | 10.6550 | 2.5232 | 0.2724 | 2.2108 | 2.4314 | 19.0 | | 18.8301 | 29.3 | 18900 | 10.6488 | 2.5629 | 0.2203 | 2.2361 | 2.4261 | 19.0 | | 18.5872 | 29.46 | 19000 | 10.6123 | 2.5052 | 0.1923 | 2.1381 | 2.3821 | 19.0 | | 18.5872 | 29.61 | 19100 | 10.6105 | 3.7779 | 0.3653 | 3.2404 | 3.5759 | 19.0 | | 18.5872 | 29.77 | 19200 | 10.5823 | 3.8282 | 0.3743 | 3.2645 | 3.6077 | 19.0 | | 18.5872 | 29.92 | 19300 | 10.5606 | 3.0976 | 0.277 | 2.6041 | 2.8838 | 19.0 | | 18.5872 | 30.08 | 19400 | 10.5846 | 3.638 | 0.3482 | 3.0804 | 3.4294 | 19.0 | | 18.2839 | 30.23 | 19500 | 10.4722 | 2.6173 | 0.2326 | 2.2268 | 2.4656 | 19.0 | | 18.2839 | 30.39 | 19600 | 10.5211 | 3.5085 | 0.3377 | 2.9751 | 3.2889 | 19.0 | | 18.2839 | 30.54 | 19700 | 10.4735 | 2.4781 | 0.2097 | 2.1099 | 2.3338 | 19.0 | | 18.2839 | 30.7 | 19800 | 10.4545 | 3.1459 | 0.3022 | 2.6844 | 2.9559 | 19.0 | | 18.2839 | 30.85 | 19900 | 10.4525 | 3.6095 | 0.3637 | 3.0873 | 3.3886 | 19.0 | | 18.1352 | 31.01 | 20000 | 10.4409 | 4.0556 | 0.4621 | 3.3857 | 3.7778 | 19.0 | | 18.1352 | 31.16 | 20100 | 10.4132 | 3.8346 | 0.3863 | 3.2323 | 3.6266 | 19.0 | | 18.1352 | 31.32 | 20200 | 10.4468 | 2.3736 | 0.1977 | 2.0195 | 2.236 | 19.0 | | 18.1352 | 31.47 | 20300 | 10.3896 | 3.6954 | 0.3512 | 3.1402 | 3.4667 | 19.0 | | 18.1352 | 31.63 | 20400 | 10.3546 | 3.5158 | 0.3558 | 3.0575 | 3.3116 | 19.0 | | 17.9834 | 31.78 | 20500 | 10.3632 | 3.179 | 0.3374 | 2.7634 | 2.9846 | 19.0 | | 17.9834 | 31.94 | 20600 | 10.3168 | 3.9121 | 0.4012 | 3.3812 | 3.687 | 19.0 | | 17.9834 | 32.09 | 20700 | 10.2772 | 3.6148 | 0.3667 | 3.1059 | 3.3541 | 19.0 | | 17.9834 | 32.25 | 20800 | 10.3173 | 3.1448 | 0.2924 | 2.6948 | 2.9338 | 19.0 | | 17.9834 | 32.4 | 20900 | 10.2154 | 2.4611 | 0.1922 | 2.1597 | 2.3288 | 19.0 | | 17.6192 | 32.56 | 21000 | 10.2957 | 3.3177 | 0.3762 | 2.8085 | 3.0595 | 19.0 | | 17.6192 | 32.71 | 21100 | 10.2064 | 3.4663 | 0.3819 | 3.0229 | 3.2201 | 19.0 | | 17.6192 | 32.87 | 21200 | 10.2235 | 3.245 | 0.3179 | 2.7618 | 3.0066 | 19.0 | | 17.6192 | 33.02 | 21300 | 10.2193 | 2.5572 | 0.2775 | 2.216 | 2.3892 | 19.0 | | 17.6192 | 33.18 | 21400 | 10.2467 | 3.4873 | 0.3934 | 3.02 | 3.2701 | 19.0 | | 17.5532 | 33.33 | 21500 | 10.2378 | 2.8087 | 0.3049 | 2.4001 | 2.6218 | 19.0 | | 17.5532 | 33.49 | 21600 | 10.2086 | 3.8967 | 0.4801 | 3.3678 | 3.603 | 19.0 | | 17.5532 | 33.64 | 21700 | 10.2384 | 2.6534 | 0.3239 | 2.3276 | 2.4692 | 19.0 | | 17.5532 | 33.8 | 21800 | 10.1929 | 2.6025 | 0.2845 | 2.2653 | 2.4507 | 19.0 | | 17.5532 | 33.95 | 21900 | 10.1016 | 3.3244 | 0.377 | 2.8311 | 3.0784 | 19.0 | | 17.3872 | 34.11 | 22000 | 10.1407 | 3.4245 | 0.4024 | 3.044 | 3.1865 | 19.0 | | 17.3872 | 34.26 | 22100 | 10.0760 | 3.9251 | 0.4272 | 3.4064 | 3.6497 | 19.0 | | 17.3872 | 34.42 | 22200 | 10.0998 | 3.3034 | 0.3438 | 2.8977 | 3.1141 | 19.0 | | 17.3872 | 34.57 | 22300 | 10.0834 | 2.4967 | 0.266 | 2.2301 | 2.3647 | 19.0 | | 17.3872 | 34.73 | 22400 | 9.9902 | 4.0828 | 0.4867 | 3.5482 | 3.7861 | 19.0 | | 17.1744 | 34.88 | 22500 | 10.0366 | 3.5772 | 0.4377 | 3.1153 | 3.3199 | 19.0 | | 17.1744 | 35.04 | 22600 | 10.0299 | 3.5342 | 0.433 | 3.0501 | 3.2176 | 19.0 | | 17.1744 | 35.19 | 22700 | 9.9912 | 3.7754 | 0.4445 | 3.3191 | 3.502 | 19.0 | | 17.1744 | 35.35 | 22800 | 9.9580 | 4.5086 | 0.5514 | 3.8986 | 4.1987 | 19.0 | | 17.1744 | 35.5 | 22900 | 9.9676 | 3.526 | 0.3942 | 3.0859 | 3.3082 | 19.0 | | 17.0687 | 35.66 | 23000 | 9.9874 | 3.7058 | 0.5139 | 3.2353 | 3.4611 | 19.0 | | 17.0687 | 35.81 | 23100 | 9.9536 | 3.6588 | 0.4552 | 3.1591 | 3.3554 | 19.0 | | 17.0687 | 35.97 | 23200 | 9.8948 | 3.6279 | 0.3933 | 3.1403 | 3.3426 | 19.0 | | 17.0687 | 36.12 | 23300 | 9.8397 | 3.8101 | 0.4971 | 3.3152 | 3.5133 | 19.0 | | 17.0687 | 36.28 | 23400 | 9.8995 | 3.3201 | 0.4209 | 2.9101 | 3.0903 | 19.0 | | 16.7686 | 36.43 | 23500 | 9.9085 | 4.0108 | 0.6389 | 3.5055 | 3.7286 | 19.0 | | 16.7686 | 36.59 | 23600 | 9.8688 | 3.6051 | 0.5164 | 3.1651 | 3.3781 | 19.0 | | 16.7686 | 36.74 | 23700 | 9.8673 | 4.4987 | 0.6051 | 3.8789 | 4.1868 | 19.0 | | 16.7686 | 36.9 | 23800 | 9.8848 | 3.6926 | 0.5635 | 3.1681 | 3.3902 | 19.0 | | 16.7686 | 37.05 | 23900 | 9.8497 | 3.518 | 0.4283 | 3.1159 | 3.3112 | 19.0 | | 16.7432 | 37.21 | 24000 | 9.8044 | 3.3369 | 0.3772 | 2.9784 | 3.147 | 19.0 | | 16.7432 | 37.36 | 24100 | 9.7768 | 3.5862 | 0.3819 | 3.1273 | 3.3535 | 19.0 | | 16.7432 | 37.52 | 24200 | 9.7536 | 4.1823 | 0.5884 | 3.645 | 3.8843 | 19.0 | | 16.7432 | 37.67 | 24300 | 9.7953 | 4.3981 | 0.6441 | 3.7941 | 4.0623 | 19.0 | | 16.7432 | 37.83 | 24400 | 9.6742 | 3.7833 | 0.4755 | 3.3516 | 3.5543 | 19.0 | | 16.5714 | 37.98 | 24500 | 9.7946 | 3.3839 | 0.495 | 3.0021 | 3.156 | 19.0 | | 16.5714 | 38.14 | 24600 | 9.7544 | 4.3873 | 0.6486 | 3.8188 | 4.0653 | 19.0 | | 16.5714 | 38.29 | 24700 | 9.7586 | 3.4403 | 0.4756 | 3.0402 | 3.2405 | 19.0 | | 16.5714 | 38.45 | 24800 | 9.7895 | 3.6822 | 0.6247 | 3.2612 | 3.4746 | 19.0 | | 16.5714 | 38.6 | 24900 | 9.6964 | 3.8743 | 0.6209 | 3.4159 | 3.6051 | 19.0 | | 16.3393 | 38.76 | 25000 | 9.7190 | 4.1508 | 0.635 | 3.5925 | 3.8753 | 19.0 | | 16.3393 | 38.91 | 25100 | 9.6435 | 3.6755 | 0.4777 | 3.268 | 3.4572 | 19.0 | | 16.3393 | 39.07 | 25200 | 9.6390 | 2.9478 | 0.4049 | 2.6531 | 2.7782 | 19.0 | | 16.3393 | 39.22 | 25300 | 9.6300 | 2.9973 | 0.3897 | 2.6662 | 2.7943 | 19.0 | | 16.3393 | 39.38 | 25400 | 9.6229 | 3.6726 | 0.4182 | 3.2207 | 3.4595 | 19.0 | | 16.3076 | 39.53 | 25500 | 9.6392 | 2.9691 | 0.3692 | 2.6709 | 2.8182 | 19.0 | | 16.3076 | 39.69 | 25600 | 9.5978 | 2.8167 | 0.3437 | 2.593 | 2.7155 | 19.0 | | 16.3076 | 39.84 | 25700 | 9.6111 | 3.5135 | 0.5453 | 3.1415 | 3.3042 | 19.0 | | 16.3076 | 40.0 | 25800 | 9.6118 | 3.459 | 0.4963 | 3.1351 | 3.2809 | 19.0 | | 16.3076 | 40.16 | 25900 | 9.5994 | 3.5735 | 0.539 | 3.2556 | 3.3904 | 19.0 | | 16.0684 | 40.31 | 26000 | 9.5526 | 3.3388 | 0.4689 | 2.9753 | 3.1562 | 19.0 | | 16.0684 | 40.47 | 26100 | 9.5365 | 3.0882 | 0.392 | 2.8072 | 2.9556 | 19.0 | | 16.0684 | 40.62 | 26200 | 9.5571 | 3.0022 | 0.4109 | 2.7108 | 2.8575 | 19.0 | | 16.0684 | 40.78 | 26300 | 9.5240 | 3.506 | 0.5734 | 3.1577 | 3.3378 | 19.0 | | 16.0684 | 40.93 | 26400 | 9.4913 | 3.5936 | 0.5165 | 3.2452 | 3.4134 | 19.0 | | 15.9425 | 41.09 | 26500 | 9.5297 | 3.7802 | 0.6862 | 3.4061 | 3.5436 | 19.0 | | 15.9425 | 41.24 | 26600 | 9.4657 | 3.8433 | 0.6105 | 3.4621 | 3.638 | 19.0 | | 15.9425 | 41.4 | 26700 | 9.5049 | 3.5822 | 0.6462 | 3.231 | 3.3745 | 19.0 | | 15.9425 | 41.55 | 26800 | 9.4739 | 2.9668 | 0.4426 | 2.7345 | 2.8134 | 19.0 | | 15.9425 | 41.71 | 26900 | 9.4868 | 3.7458 | 0.6934 | 3.3708 | 3.5492 | 19.0 | | 15.7779 | 41.86 | 27000 | 9.4683 | 3.5254 | 0.6006 | 3.1629 | 3.3011 | 19.0 | | 15.7779 | 42.02 | 27100 | 9.4108 | 4.2731 | 0.7412 | 3.8236 | 4.0171 | 19.0 | | 15.7779 | 42.17 | 27200 | 9.3994 | 3.5014 | 0.5738 | 3.1525 | 3.3306 | 19.0 | | 15.7779 | 42.33 | 27300 | 9.3760 | 3.4929 | 0.4954 | 3.1402 | 3.3028 | 19.0 | | 15.7779 | 42.48 | 27400 | 9.4201 | 4.2777 | 0.7152 | 3.7943 | 4.0349 | 19.0 | | 15.7238 | 42.64 | 27500 | 9.3913 | 3.6489 | 0.6371 | 3.2903 | 3.4528 | 19.0 | | 15.7238 | 42.79 | 27600 | 9.4269 | 3.5269 | 0.6042 | 3.2049 | 3.3528 | 19.0 | | 15.7238 | 42.95 | 27700 | 9.3847 | 3.4735 | 0.5963 | 3.1522 | 3.2796 | 19.0 | | 15.7238 | 43.1 | 27800 | 9.3474 | 3.8327 | 0.6428 | 3.406 | 3.5698 | 19.0 | | 15.7238 | 43.26 | 27900 | 9.3293 | 3.5475 | 0.6313 | 3.1725 | 3.3367 | 19.0 | | 15.5108 | 43.41 | 28000 | 9.3802 | 4.249 | 0.7997 | 3.7924 | 3.9849 | 19.0 | | 15.5108 | 43.57 | 28100 | 9.2588 | 3.4476 | 0.4676 | 3.1758 | 3.2993 | 19.0 | | 15.5108 | 43.72 | 28200 | 9.3447 | 4.0267 | 0.7081 | 3.6208 | 3.7957 | 19.0 | | 15.5108 | 43.88 | 28300 | 9.2853 | 4.0105 | 0.7799 | 3.5848 | 3.7619 | 19.0 | | 15.5108 | 44.03 | 28400 | 9.2753 | 3.1833 | 0.4678 | 2.9068 | 3.0168 | 19.0 | | 15.4004 | 44.19 | 28500 | 9.2345 | 3.6778 | 0.5955 | 3.3212 | 3.4724 | 19.0 | | 15.4004 | 44.34 | 28600 | 9.3130 | 3.9958 | 0.6892 | 3.5871 | 3.772 | 19.0 | | 15.4004 | 44.5 | 28700 | 9.2984 | 4.1868 | 0.696 | 3.7194 | 3.9197 | 19.0 | | 15.4004 | 44.65 | 28800 | 9.2722 | 3.8848 | 0.5914 | 3.5038 | 3.7022 | 19.0 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0 - Datasets 2.3.2 - Tokenizers 0.12.1