modelId
stringlengths
4
112
sha
stringlengths
40
40
lastModified
stringlengths
24
24
tags
list
pipeline_tag
stringclasses
29 values
private
bool
1 class
author
stringlengths
2
38
config
null
id
stringlengths
4
112
downloads
float64
0
36.8M
likes
float64
0
712
library_name
stringclasses
17 values
__index_level_0__
int64
0
38.5k
readme
stringlengths
0
186k
adam-chell/tweet-sentiment-analyzer
38f8c456eca52b55ab5a96de8c5294477eacab25
2021-12-20T21:30:06.000Z
[ "pytorch", "roberta", "text-classification", "transformers" ]
text-classification
false
adam-chell
null
adam-chell/tweet-sentiment-analyzer
4
1
transformers
18,300
This model has been trained by fine-tuning a BERTweet sentiment classification model named "finiteautomata/bertweet-base-sentiment-analysis", on a labeled positive/negative dataset of tweets. email : [email protected]
adamlin/flowscore-speak-model
0176c03597fd42ae95320602adde6f67504fb08a
2021-06-29T10:29:34.000Z
[ "pytorch", "gpt2", "feature-extraction", "transformers" ]
feature-extraction
false
adamlin
null
adamlin/flowscore-speak-model
4
null
transformers
18,301
Entry not found
adamlin/text-cls
3ec72b0342cb47c51fc36cf54d696580b9b3654d
2021-07-24T06:53:32.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
adamlin
null
adamlin/text-cls
4
null
transformers
18,302
Entry not found
adamlin/usr-topicalchat-roberta_ft
c9f6e528af2dd0c0ee91e774cedfd94a1f4aa6d4
2021-06-28T12:58:44.000Z
[ "pytorch", "transformers" ]
null
false
adamlin
null
adamlin/usr-topicalchat-roberta_ft
4
null
transformers
18,303
Entry not found
addy88/wav2vec2-base-finetuned-ks
1b5be4d2c76953a96fa189d224a89c5d153faad6
2021-12-12T03:41:52.000Z
[ "pytorch", "tensorboard", "wav2vec2", "audio-classification", "dataset:superb", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
audio-classification
false
addy88
null
addy88/wav2vec2-base-finetuned-ks
4
null
transformers
18,304
--- license: apache-2.0 tags: - generated_from_trainer datasets: - superb metrics: - accuracy model-index: - name: wav2vec2-base-finetuned-ks results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-finetuned-ks This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the superb dataset. It achieves the following results on the evaluation set: - Loss: 0.1339 - Accuracy: 0.9768 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.102 | 1.0 | 399 | 1.0087 | 0.6574 | | 0.5228 | 2.0 | 798 | 0.4266 | 0.9247 | | 0.3222 | 3.0 | 1197 | 0.2037 | 0.9744 | | 0.2096 | 4.0 | 1596 | 0.1444 | 0.9766 | | 0.2003 | 5.0 | 1995 | 0.1339 | 0.9768 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.14.0 - Tokenizers 0.10.3
addy88/wav2vec2-bhojpuri-stt
d20a1338941d83dae02822ac66c5c5daa6529325
2021-12-19T16:48:06.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
addy88
null
addy88/wav2vec2-bhojpuri-stt
4
null
transformers
18,305
## Usage The model can be used directly (without a language model) as follows: ```python import soundfile as sf import torch from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import argparse def parse_transcription(wav_file): # load pretrained model processor = Wav2Vec2Processor.from_pretrained("addy88/wav2vec2-bhojpuri-stt") model = Wav2Vec2ForCTC.from_pretrained("addy88/wav2vec2-bhojpuri-stt") # load audio audio_input, sample_rate = sf.read(wav_file) # pad input values and return pt tensor input_values = processor(audio_input, sampling_rate=sample_rate, return_tensors="pt").input_values # INFERENCE # retrieve logits & take argmax logits = model(input_values).logits predicted_ids = torch.argmax(logits, dim=-1) # transcribe transcription = processor.decode(predicted_ids[0], skip_special_tokens=True) print(transcription) ```
addy88/wav2vec2-marathi-stt
c8995d4d2378a556b2766011e899df7b18fcd6e4
2021-12-19T16:31:22.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
addy88
null
addy88/wav2vec2-marathi-stt
4
null
transformers
18,306
## Usage The model can be used directly (without a language model) as follows: ```python import soundfile as sf import torch from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import argparse def parse_transcription(wav_file): # load pretrained model processor = Wav2Vec2Processor.from_pretrained("addy88/wav2vec2-marathi-stt") model = Wav2Vec2ForCTC.from_pretrained("addy88/wav2vec2-marathi-stt") # load audio audio_input, sample_rate = sf.read(wav_file) # pad input values and return pt tensor input_values = processor(audio_input, sampling_rate=sample_rate, return_tensors="pt").input_values # INFERENCE # retrieve logits & take argmax logits = model(input_values).logits predicted_ids = torch.argmax(logits, dim=-1) # transcribe transcription = processor.decode(predicted_ids[0], skip_special_tokens=True) print(transcription) ```
addy88/wav2vec2-nepali-stt
ab8793fa3cef0534e86fc2d7aa8114074a178075
2021-12-19T15:36:06.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
addy88
null
addy88/wav2vec2-nepali-stt
4
1
transformers
18,307
## Usage The model can be used directly (without a language model) as follows: ```python import soundfile as sf import torch from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import argparse def parse_transcription(wav_file): # load pretrained model processor = Wav2Vec2Processor.from_pretrained("addy88/wav2vec2-nepali-stt") model = Wav2Vec2ForCTC.from_pretrained("addy88/wav2vec2-nepali-stt") # load audio audio_input, sample_rate = sf.read(wav_file) # pad input values and return pt tensor input_values = processor(audio_input, sampling_rate=sample_rate, return_tensors="pt").input_values # INFERENCE # retrieve logits & take argmax logits = model(input_values).logits predicted_ids = torch.argmax(logits, dim=-1) # transcribe transcription = processor.decode(predicted_ids[0], skip_special_tokens=True) print(transcription) ```
aditeyabaral/finetuned-iitp_pdt_review-additionalpretrained-distilbert-base-cased
8fe0decf5e90a4c112b7bbe8f87dad2bea83c718
2021-11-22T15:50:57.000Z
[ "pytorch", "distilbert", "text-classification", "transformers" ]
text-classification
false
aditeyabaral
null
aditeyabaral/finetuned-iitp_pdt_review-additionalpretrained-distilbert-base-cased
4
null
transformers
18,308
Entry not found
aditeyabaral/finetuned-iitp_pdt_review-additionalpretrained-indic-bert
ca58d9401a4a5248493197f95cc4de7411f33d4a
2021-11-22T16:34:37.000Z
[ "pytorch", "albert", "text-classification", "transformers" ]
text-classification
false
aditeyabaral
null
aditeyabaral/finetuned-iitp_pdt_review-additionalpretrained-indic-bert
4
null
transformers
18,309
Entry not found
aditeyabaral/sentencetransformer-bert-hinglish-big
4e8f397faaa43c4e25867c823c4ccc11805a8598
2021-10-19T19:38:38.000Z
[ "pytorch", "bert", "feature-extraction", "sentence-transformers", "sentence-similarity", "transformers" ]
sentence-similarity
false
aditeyabaral
null
aditeyabaral/sentencetransformer-bert-hinglish-big
4
null
sentence-transformers
18,310
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # aditeyabaral/sentencetransformer-bert-hinglish-big This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('aditeyabaral/sentencetransformer-bert-hinglish-big') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('aditeyabaral/sentencetransformer-bert-hinglish-big') model = AutoModel.from_pretrained('aditeyabaral/sentencetransformer-bert-hinglish-big') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=aditeyabaral/sentencetransformer-bert-hinglish-big) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 4617 with parameters: ``` {'batch_size': 32, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 10, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 100, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
aditeyabaral/sentencetransformer-xlm-roberta-base
53ae3ffe3c7115a3dde45640b284f84f1417c83d
2021-10-24T04:56:00.000Z
[ "pytorch", "xlm-roberta", "feature-extraction", "sentence-transformers", "sentence-similarity", "transformers" ]
sentence-similarity
false
aditeyabaral
null
aditeyabaral/sentencetransformer-xlm-roberta-base
4
null
sentence-transformers
18,311
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # aditeyabaral/sentencetransformer-xlm-roberta-base This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('aditeyabaral/sentencetransformer-xlm-roberta-base') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('aditeyabaral/sentencetransformer-xlm-roberta-base') model = AutoModel.from_pretrained('aditeyabaral/sentencetransformer-xlm-roberta-base') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=aditeyabaral/sentencetransformer-xlm-roberta-base) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 9234 with parameters: ``` {'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 10, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 100, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: XLMRobertaModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
adresgezgini/Wav2Vec2-tr-AG-v1
eb886f55cf5d1c070cc74779955aef6c904f712a
2022-02-25T08:02:34.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
adresgezgini
null
adresgezgini/Wav2Vec2-tr-AG-v1
4
null
transformers
18,312
```python from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor processor = Wav2Vec2Processor.from_pretrained("adresgezgini/Wav2Vec-tr-AG-v1") model = Wav2Vec2ForCTC.from_pretrained("adresgezgini/Wav2Vec-tr-AG-v1") ``` Dosyalar bölümünde paylaşılan ses1.mp3[1], ses1.mp3[2] ve ses1.mp3[3] ses dosyaları açık kaynaklı canlı kitap ses kayıtları üzerinden 1 - 1.5 dakika arasında belli bir kısmın alınması ile oluşturulmuştur. Oluşturulan sesler ile model test edilmiş ve WER değerleri kaydedilmiştir. <div align="center"> |Sesler|WER| | :---: | :---: | |SES1.mp3|0,17| |SES2.mp3|0,31| |SES3.mp3|0,20| </div> [1][Sabahattin Ali - Çaydanlık | YT: Sesli Kitap Dünyası](https://www.youtube.com/watch?v=IHUfOpqw-8s)\ [2][Sabahattin Ali - Ses | YT: Sesli Kitap Dünyası](https://www.youtube.com/watch?v=XzX2wBjncOg)\ [3][Sabahattin Ali - Sıçra Köşk | YT: Sesli Kitap Dünyası](https://www.youtube.com/watch?v=SJwUaq0Nu9c)\
adriansyahdr/adrBert-base-p1
91d2018e0b56eebcb64dc8113dfa52edf4b3c8b9
2021-05-18T23:10:07.000Z
[ "pytorch", "tf", "jax", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
adriansyahdr
null
adriansyahdr/adrBert-base-p1
4
null
transformers
18,313
Entry not found
afreireosorio/opus-mt-en-de-finetuned-en-to-de
161ad0fe3fd95712f4df23bd4716cfcfa5830afe
2021-12-04T17:43:39.000Z
[ "pytorch", "tensorboard", "marian", "text2text-generation", "dataset:wmt16", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
text2text-generation
false
afreireosorio
null
afreireosorio/opus-mt-en-de-finetuned-en-to-de
4
null
transformers
18,314
--- license: apache-2.0 tags: - generated_from_trainer datasets: - wmt16 metrics: - bleu model-index: - name: opus-mt-en-de-finetuned-en-to-de results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: wmt16 type: wmt16 args: de-en metrics: - name: Bleu type: bleu value: 26.4396 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # opus-mt-en-de-finetuned-en-to-de This model is a fine-tuned version of [Helsinki-NLP/opus-mt-en-de](https://huggingface.co/Helsinki-NLP/opus-mt-en-de) on the wmt16 dataset. It achieves the following results on the evaluation set: - Loss: 1.6798 - Bleu: 26.4396 - Gen Len: 24.8156 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:------:|:---------------:|:-------:|:-------:| | 2.0864 | 1.0 | 568611 | 1.6798 | 26.4396 | 24.8156 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.9.0.dev20210415+cu101 - Datasets 1.16.1 - Tokenizers 0.10.3
aheba31/test-predictor
413fe61ca0b77a0689aefe5834aa851b508e1977
2021-11-04T13:44:28.000Z
[ "en", "dataset:voxceleb", "arxiv:2106.04624", "speechbrain", "embeddings", "Speaker", "Verification", "Identification", "pytorch", "ECAPA", "TDNN", "license:apache-2.0" ]
null
false
aheba31
null
aheba31/test-predictor
4
null
speechbrain
18,315
--- language: "en" thumbnail: tags: - speechbrain - embeddings - Speaker - Verification - Identification - pytorch - ECAPA - TDNN license: "apache-2.0" datasets: - voxceleb metrics: - EER widget: - example_title: VoxCeleb Speaker id10003 src: https://cdn-media.huggingface.co/speech_samples/VoxCeleb1_00003.wav - example_title: VoxCeleb Speaker id10004 src: https://cdn-media.huggingface.co/speech_samples/VoxCeleb_00004.wav --- <iframe src="https://ghbtns.com/github-btn.html?user=speechbrain&repo=speechbrain&type=star&count=true&size=large&v=2" frameborder="0" scrolling="0" width="170" height="30" title="GitHub"></iframe> <br/><br/> # Speaker Verification with ECAPA-TDNN embeddings on Voxceleb This repository provides all the necessary tools to perform speaker verification with a pretrained ECAPA-TDNN model using SpeechBrain. The system can be used to extract speaker embeddings as well. It is trained on Voxceleb 1+ Voxceleb2 training data. For a better experience, we encourage you to learn more about [SpeechBrain](https://speechbrain.github.io). The model performance on Voxceleb1-test set(Cleaned) is: | Release | EER(%) | minDCF | |:-------------:|:--------------:|:--------------:| | 05-03-21 | 0.69 | 0.08258 | ## Pipeline description This system is composed of an ECAPA-TDNN model. It is a combination of convolutional and residual blocks. The embeddings are extracted using attentive statistical pooling. The system is trained with Additive Margin Softmax Loss. Speaker Verification is performed using cosine distance between speaker embeddings. ## Install SpeechBrain First of all, please install SpeechBrain with the following command: ``` gh repo clone aheba/speechbrain-aheba-contribs git checkout pretrain_new pip install -r requirements.txt pip install --editable . ``` Please notice that we encourage you to read our tutorials and learn more about [SpeechBrain](https://speechbrain.github.io). ### Compute your speaker embeddings ```python import torchaudio from speechbrain.pretrained import Predictor classifier = Predictor.import_model(source="aheba31/test-predictor") signal, fs = torchaudio.load('samples/audio_samples/example1.wav') embeddings = classifier.encode_batch(signal) ``` ### Perform Speaker Verification ```python from speechbrain.pretrained import SpeakerRecognition verification = SpeakerRecognition.from_hparams(source="aheba31/test-predictor", savedir="aheba31/test-predictor") score, prediction = verification.verify_files("speechbrain/spkrec-ecapa-voxceleb/example1.wav", "speechbrain/spkrec-ecapa-voxceleb/example2.flac") ``` The prediction is 1 if the two signals in input are from the same speaker and 0 otherwise. ### Inference on GPU To perform inference on the GPU, add `run_opts={"device":"cuda"}` when calling the `from_hparams` method. ### Training The model was trained with SpeechBrain (aa018540). To train it from scratch follows these steps: 1. Clone SpeechBrain: ```bash git clone https://github.com/speechbrain/speechbrain/ ``` 2. Install it: ``` cd speechbrain pip install -r requirements.txt pip install -e . ``` 3. Run Training: ``` cd recipes/VoxCeleb/SpeakerRec python train_speaker_embeddings.py hparams/train_ecapa_tdnn.yaml --data_folder=your_data_folder ``` You can find our training results (models, logs, etc) [here](https://drive.google.com/drive/folders/1-ahC1xeyPinAHp2oAohL-02smNWO41Cc?usp=sharing). ### Limitations The SpeechBrain team does not provide any warranty on the performance achieved by this model when used on other datasets. #### Referencing ECAPA-TDNN ``` @inproceedings{DBLP:conf/interspeech/DesplanquesTD20, author = {Brecht Desplanques and Jenthe Thienpondt and Kris Demuynck}, editor = {Helen Meng and Bo Xu and Thomas Fang Zheng}, title = {{ECAPA-TDNN:} Emphasized Channel Attention, Propagation and Aggregation in {TDNN} Based Speaker Verification}, booktitle = {Interspeech 2020}, pages = {3830--3834}, publisher = {{ISCA}}, year = {2020}, } ``` # **Citing SpeechBrain** Please, cite SpeechBrain if you use it for your research or business. ```bibtex @misc{speechbrain, title={{SpeechBrain}: A General-Purpose Speech Toolkit}, author={Mirco Ravanelli and Titouan Parcollet and Peter Plantinga and Aku Rouhe and Samuele Cornell and Loren Lugosch and Cem Subakan and Nauman Dawalatabad and Abdelwahab Heba and Jianyuan Zhong and Ju-Chieh Chou and Sung-Lin Yeh and Szu-Wei Fu and Chien-Feng Liao and Elena Rastorgueva and François Grondin and William Aris and Hwidong Na and Yan Gao and Renato De Mori and Yoshua Bengio}, year={2021}, eprint={2106.04624}, archivePrefix={arXiv}, primaryClass={eess.AS}, note={arXiv:2106.04624} } ``` # **About SpeechBrain** - Website: https://speechbrain.github.io/ - Code: https://github.com/speechbrain/speechbrain/ - HuggingFace: https://huggingface.co/speechbrain/
ainize/gpt2-rnm-with-season-1
a35bf4b3786b5817043c6e5fbeabfc0fbd3f8cfa
2021-05-21T12:08:00.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "transformers" ]
text-generation
false
ainize
null
ainize/gpt2-rnm-with-season-1
4
null
transformers
18,316
### Model information Fine tuning data 1: https://www.kaggle.com/andradaolteanu/rickmorty-scripts Base model: e-tony/gpt2-rnm Epoch: 3 Train runtime: 7.1779 secs Loss: 2.5694 Training notebook: [Colab](https://colab.research.google.com/drive/12NvO1SIZevF8ybJqfN9O21I3i9bU1dOO#scrollTo=KUsyn02WWmf5) ### ===Teachable NLP=== ### To train a GPT-2 model, write code and require GPU resources, but can easily fine-tune and get an API to use the model here for free. Teachable NLP: [Teachable NLP](https://ainize.ai/teachable-nlp) Tutorial: [Tutorial](https://forum.ainetwork.ai/t/teachable-nlp-how-to-use-teachable-nlp/65?utm_source=community&utm_medium=huggingface&utm_campaign=model&utm_content=teachable%20nlp)
airKlizz/bart-large-multi-de-wiki-news
97ffc6b8a8d99f679ec684a5fb0806d91b9f9225
2020-06-10T11:38:23.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
airKlizz
null
airKlizz/bart-large-multi-de-wiki-news
4
null
transformers
18,317
Entry not found
airKlizz/mt5-base-germeval21-toxic-with-task-specific-pretraining
432b2af4a5c5d44a3349c17bb44d76cab896a506
2021-07-12T15:56:07.000Z
[ "pytorch", "mt5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
airKlizz
null
airKlizz/mt5-base-germeval21-toxic-with-task-specific-pretraining
4
null
transformers
18,318
Entry not found
airKlizz/t5-base-multi-de-wiki-news
22357ddc3c2efac0eeea905fff2c26a4dce1084a
2021-06-23T10:52:40.000Z
[ "pytorch", "jax", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
airKlizz
null
airKlizz/t5-base-multi-de-wiki-news
4
null
transformers
18,319
Entry not found
airKlizz/t5-small-multi-combine-wiki-news
c98ad22a5970065eb663e9095098066efc9faa3e
2021-06-23T11:05:12.000Z
[ "pytorch", "jax", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
airKlizz
null
airKlizz/t5-small-multi-combine-wiki-news
4
null
transformers
18,320
Entry not found
akadriu/wav2vec2-large-xlsr-53-Total
0f5d32b135a1d0118cb4b3d9216ad08f3e310fbc
2022-02-20T19:03:42.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
akadriu
null
akadriu/wav2vec2-large-xlsr-53-Total
4
null
transformers
18,321
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-large-xlsr-53-Total results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xlsr-53-Total This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2814 - Wer: 0.2260 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 2.9157 | 0.2 | 400 | 2.8204 | 0.9707 | | 0.9554 | 0.4 | 800 | 0.5295 | 0.5046 | | 0.7585 | 0.6 | 1200 | 0.4007 | 0.3850 | | 0.7288 | 0.8 | 1600 | 0.3632 | 0.3447 | | 0.6792 | 1.0 | 2000 | 0.3433 | 0.3216 | | 0.6085 | 1.2 | 2400 | 0.3254 | 0.2928 | | 0.6225 | 1.4 | 2800 | 0.3161 | 0.2832 | | 0.6183 | 1.6 | 3200 | 0.3111 | 0.2721 | | 0.5947 | 1.8 | 3600 | 0.2969 | 0.2615 | | 0.5953 | 2.0 | 4000 | 0.2912 | 0.2515 | | 0.5358 | 2.2 | 4400 | 0.2920 | 0.2501 | | 0.5535 | 2.4 | 4800 | 0.2939 | 0.2538 | | 0.5408 | 2.6 | 5200 | 0.2854 | 0.2452 | | 0.5272 | 2.8 | 5600 | 0.2816 | 0.2434 | | 0.5248 | 3.0 | 6000 | 0.2755 | 0.2354 | | 0.4923 | 3.2 | 6400 | 0.2795 | 0.2353 | | 0.489 | 3.4 | 6800 | 0.2767 | 0.2330 | | 0.4932 | 3.6 | 7200 | 0.2821 | 0.2335 | | 0.4841 | 3.8 | 7600 | 0.2756 | 0.2349 | | 0.4794 | 4.0 | 8000 | 0.2751 | 0.2265 | | 0.444 | 4.2 | 8400 | 0.2809 | 0.2283 | | 0.4533 | 4.4 | 8800 | 0.2804 | 0.2312 | | 0.4563 | 4.6 | 9200 | 0.2830 | 0.2256 | | 0.4498 | 4.8 | 9600 | 0.2819 | 0.2251 | | 0.4532 | 5.0 | 10000 | 0.2814 | 0.2260 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.10.3
akahana/indonesia-emotion-distilbert
49fe98a8c805f66dd7b6638cba6c9a257ae63b3a
2021-12-08T09:54:22.000Z
[ "pytorch", "distilbert", "text-classification", "transformers" ]
text-classification
false
akahana
null
akahana/indonesia-emotion-distilbert
4
null
transformers
18,322
Entry not found
akahana/indonesia-emotion-roberta-small
3a808d7101bab0fad927c71f8f721cc4418da255
2021-12-08T07:44:26.000Z
[ "pytorch", "roberta", "text-classification", "transformers" ]
text-classification
false
akahana
null
akahana/indonesia-emotion-roberta-small
4
null
transformers
18,323
Entry not found
akashsivanandan/wav2vec2-large-xls-r-300m-tamil-colab-final
de36f49142eab0cd8bace4230c1443d739053400
2021-12-22T01:26:48.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "dataset:common_voice", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
akashsivanandan
null
akashsivanandan/wav2vec2-large-xls-r-300m-tamil-colab-final
4
null
transformers
18,324
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice model-index: - name: wav2vec2-large-xls-r-300m-tamil-colab-final results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-tamil-colab-final This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.7539 - Wer: 0.6135 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 11.1466 | 1.0 | 118 | 4.3444 | 1.0 | | 3.4188 | 2.0 | 236 | 3.2496 | 1.0 | | 2.8617 | 3.0 | 354 | 1.6165 | 1.0003 | | 0.958 | 4.0 | 472 | 0.7984 | 0.8720 | | 0.5929 | 5.0 | 590 | 0.6733 | 0.7831 | | 0.4628 | 6.0 | 708 | 0.6536 | 0.7621 | | 0.3834 | 7.0 | 826 | 0.6037 | 0.7155 | | 0.3242 | 8.0 | 944 | 0.6376 | 0.7184 | | 0.2736 | 9.0 | 1062 | 0.6214 | 0.7070 | | 0.2433 | 10.0 | 1180 | 0.6158 | 0.6944 | | 0.2217 | 11.0 | 1298 | 0.6548 | 0.6830 | | 0.1992 | 12.0 | 1416 | 0.6331 | 0.6775 | | 0.1804 | 13.0 | 1534 | 0.6644 | 0.6874 | | 0.1639 | 14.0 | 1652 | 0.6629 | 0.6649 | | 0.143 | 15.0 | 1770 | 0.6927 | 0.6836 | | 0.1394 | 16.0 | 1888 | 0.6933 | 0.6888 | | 0.1296 | 17.0 | 2006 | 0.7039 | 0.6860 | | 0.1212 | 18.0 | 2124 | 0.7042 | 0.6628 | | 0.1121 | 19.0 | 2242 | 0.7132 | 0.6475 | | 0.1069 | 20.0 | 2360 | 0.7423 | 0.6438 | | 0.1063 | 21.0 | 2478 | 0.7171 | 0.6484 | | 0.1025 | 22.0 | 2596 | 0.7396 | 0.6451 | | 0.0946 | 23.0 | 2714 | 0.7400 | 0.6432 | | 0.0902 | 24.0 | 2832 | 0.7385 | 0.6286 | | 0.0828 | 25.0 | 2950 | 0.7368 | 0.6286 | | 0.079 | 26.0 | 3068 | 0.7471 | 0.6306 | | 0.0747 | 27.0 | 3186 | 0.7524 | 0.6201 | | 0.0661 | 28.0 | 3304 | 0.7576 | 0.6201 | | 0.0659 | 29.0 | 3422 | 0.7579 | 0.6130 | | 0.0661 | 30.0 | 3540 | 0.7539 | 0.6135 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.13.3 - Tokenizers 0.10.3
akaushik1/DialoGPT-small-kaiser
3f84db44e84ae9f50ed8d51c4e96d8d593239ce8
2021-09-28T02:05:03.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
akaushik1
null
akaushik1/DialoGPT-small-kaiser
4
null
transformers
18,325
--- tags: - conversational --- # Kaiser DialoGPT Model
akhooli/gpt2-ar-poetry-aub
c875fcd34207dcf5863858f264d154c971537750
2021-05-21T12:25:35.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "transformers" ]
text-generation
false
akhooli
null
akhooli/gpt2-ar-poetry-aub
4
null
transformers
18,326
Entry not found
akoksal/MTMB
849a48ca9fe2a251ccbf5beaf08ce5de222bab54
2021-05-18T23:19:20.000Z
[ "pytorch", "jax", "bert", "feature-extraction", "transformers" ]
feature-extraction
false
akoksal
null
akoksal/MTMB
4
1
transformers
18,327
Entry not found
akoshel/made-ai-dungeon-rugpt3-small
746819dce03622dae2c2b12a45b2731298032a32
2021-12-11T11:21:12.000Z
[ "pytorch" ]
null
false
akoshel
null
akoshel/made-ai-dungeon-rugpt3-small
4
null
null
18,328
Entry not found
akshara23/Terra-Classification
692eb114a5526f2a91be7b8688875d2c538096fd
2021-08-27T15:21:40.000Z
[ "pytorch", "distilbert", "text-classification", "transformers" ]
text-classification
false
akshara23
null
akshara23/Terra-Classification
4
null
transformers
18,329
Entry not found
akshara23/distilbert-base-uncased-finetuned-cola
b077e9c050715f9a3427a86d4889f5845e8271dd
2021-08-27T16:29:05.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "transformers", "generated_from_trainer", "license:apache-2.0" ]
text-classification
false
akshara23
null
akshara23/distilbert-base-uncased-finetuned-cola
4
null
transformers
18,330
--- license: apache-2.0 tags: - generated_from_trainer metrics: - matthews_correlation model_index: - name: distilbert-base-uncased-finetuned-cola results: - task: name: Text Classification type: text-classification metric: name: Matthews Correlation type: matthews_correlation value: 0.6290322580645161 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-cola This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unkown dataset. It achieves the following results on the evaluation set: - Loss: 1.0475 - Matthews Correlation: 0.6290 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | No log | 1.0 | 16 | 1.3863 | 0.0 | | No log | 2.0 | 32 | 1.2695 | 0.4503 | | No log | 3.0 | 48 | 1.1563 | 0.6110 | | No log | 4.0 | 64 | 1.0757 | 0.6290 | | No log | 5.0 | 80 | 1.0475 | 0.6290 | ### Framework versions - Transformers 4.9.2 - Pytorch 1.9.0+cu102 - Datasets 1.11.0 - Tokenizers 0.10.3
akshaychaudhary/distilbert-base-uncased-finetuned-hypertuned-ner
354f11aba989e4217d4bce122139e047f150a954
2022-02-10T07:47:51.000Z
[ "pytorch", "tensorboard", "distilbert", "token-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
token-classification
false
akshaychaudhary
null
akshaychaudhary/distilbert-base-uncased-finetuned-hypertuned-ner
4
null
transformers
18,331
--- license: apache-2.0 tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: distilbert-base-uncased-finetuned-hypertuned-ner results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-hypertuned-ner This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5683 - Precision: 0.3398 - Recall: 0.6481 - F1: 0.4459 - Accuracy: 0.8762 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 84 | 0.3566 | 0.2913 | 0.5556 | 0.3822 | 0.8585 | | No log | 2.0 | 168 | 0.4698 | 0.3366 | 0.6296 | 0.4387 | 0.8730 | | No log | 3.0 | 252 | 0.5683 | 0.3398 | 0.6481 | 0.4459 | 0.8762 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
alexaapo/greek_legal_bert_v2
3d9b92e5eadd0eb757a9b3afb8391f7b2ed50109
2021-12-01T10:52:28.000Z
[ "pytorch", "bert", "pretraining", "transformers" ]
null
false
alexaapo
null
alexaapo/greek_legal_bert_v2
4
null
transformers
18,332
alexcg1/models
8576c0c1c70a2207a2156127ad7efcce5112f2eb
2021-05-21T12:59:45.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "transformers" ]
text-generation
false
alexcg1
null
alexcg1/models
4
null
transformers
18,333
Entry not found
ali2066/finetuned-token-argumentative
be5af01c52a87612fa2e8ab9b9483890490bde3c
2022-02-15T13:46:55.000Z
[ "pytorch", "tensorboard", "distilbert", "token-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
token-classification
false
ali2066
null
ali2066/finetuned-token-argumentative
4
null
transformers
18,334
--- license: apache-2.0 tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: finetuned-token-argumentative results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuned-token-argumentative This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1573 - Precision: 0.3777 - Recall: 0.3919 - F1: 0.3847 - Accuracy: 0.9497 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 75 | 0.3241 | 0.1109 | 0.2178 | 0.1470 | 0.8488 | | No log | 2.0 | 150 | 0.3145 | 0.1615 | 0.2462 | 0.1950 | 0.8606 | | No log | 3.0 | 225 | 0.3035 | 0.1913 | 0.3258 | 0.2411 | 0.8590 | | No log | 4.0 | 300 | 0.3080 | 0.2199 | 0.3220 | 0.2613 | 0.8612 | | No log | 5.0 | 375 | 0.3038 | 0.2209 | 0.3277 | 0.2639 | 0.8630 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.1+cu113 - Datasets 1.18.0 - Tokenizers 0.10.3
alireza7/ARMAN-MSR-persian-base-parsinlu-sentiment-food
76d86cfa446b7c172eef6fe1827e123dce23dd0e
2021-09-29T19:15:33.000Z
[ "pytorch", "pegasus", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
alireza7
null
alireza7/ARMAN-MSR-persian-base-parsinlu-sentiment-food
4
null
transformers
18,335
More information about models is available [here](https://github.com/alirezasalemi7/ARMAN).
alireza7/ARMAN-SH-persian-base-parsinlu-sentiment-food
1fb83afc77548134f32ea8051b57e67426a70e56
2021-09-29T19:18:19.000Z
[ "pytorch", "pegasus", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
alireza7
null
alireza7/ARMAN-SH-persian-base-parsinlu-sentiment-food
4
null
transformers
18,336
More information about models is available [here](https://github.com/alirezasalemi7/ARMAN).
alireza7/ARMAN-SH-persian-base-perkey-title
c092a015ca9189d89b85e3a1156f4063ac35b291
2021-09-29T19:19:17.000Z
[ "pytorch", "pegasus", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
alireza7
null
alireza7/ARMAN-SH-persian-base-perkey-title
4
null
transformers
18,337
More information about models is available [here](https://github.com/alirezasalemi7/ARMAN).
alireza7/ARMAN-SS-100-persian-base-parsinlu-multiple-choice
2d512c55fc4e7b4ac26a0dc0bd56a176202a07b0
2021-09-29T19:20:37.000Z
[ "pytorch", "pegasus", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
alireza7
null
alireza7/ARMAN-SS-100-persian-base-parsinlu-multiple-choice
4
null
transformers
18,338
More information about models is available [here](https://github.com/alirezasalemi7/ARMAN).
alireza7/ARMAN-SS-80-persian-base-perkey-title
aa66d03a1d688130997b804d0f34827589d7afa0
2021-09-29T19:23:33.000Z
[ "pytorch", "pegasus", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
alireza7
null
alireza7/ARMAN-SS-80-persian-base-perkey-title
4
null
transformers
18,339
More information about models is available [here](https://github.com/alirezasalemi7/ARMAN).
alireza7/ARMAN-SS-80-persian-base-tebyan
b617b4e551c7d32e990c3730321532ba5df4cb5f
2021-09-29T19:23:40.000Z
[ "pytorch", "pegasus", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
alireza7
null
alireza7/ARMAN-SS-80-persian-base-tebyan
4
null
transformers
18,340
More information about models is available [here](https://github.com/alirezasalemi7/ARMAN).
alireza7/ARMAN-SS-80-persian-base-wiki-summary
3839b9b7333d1cafaed9675fe061e40b026f73c3
2021-09-29T19:23:55.000Z
[ "pytorch", "pegasus", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
alireza7
null
alireza7/ARMAN-SS-80-persian-base-wiki-summary
4
null
transformers
18,341
More information about models is available [here](https://github.com/alirezasalemi7/ARMAN).
alireza7/ARMAN-SS-80-persian-base
460d07ae4003af193c5b5af4cf098f018f7f78e5
2021-09-29T19:24:03.000Z
[ "pytorch", "pegasus", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
alireza7
null
alireza7/ARMAN-SS-80-persian-base
4
null
transformers
18,342
More information about models is available [here](https://github.com/alirezasalemi7/ARMAN).
alireza7/TRANSFORMER-persian-base-perkey-title
bd17194654b80cfa06746d2541c2ad47b6d3bbcb
2021-09-29T19:26:44.000Z
[ "pytorch", "pegasus", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
alireza7
null
alireza7/TRANSFORMER-persian-base-perkey-title
4
null
transformers
18,343
More information about models is available [here](https://github.com/alirezasalemi7/ARMAN).
allenai/dsp_roberta_base_dapt_news_tapt_hyperpartisan_news_515
de955c2950b5fc85f16b1538395c8503dc23d146
2021-05-20T13:13:11.000Z
[ "pytorch", "jax", "roberta", "transformers" ]
null
false
allenai
null
allenai/dsp_roberta_base_dapt_news_tapt_hyperpartisan_news_515
4
null
transformers
18,344
Entry not found
allenai/dsp_roberta_base_dapt_reviews_tapt_amazon_helpfulness_115K
eea946ca98df3e19b8422648081b2ee013b346d9
2021-05-20T13:14:40.000Z
[ "pytorch", "jax", "roberta", "transformers" ]
null
false
allenai
null
allenai/dsp_roberta_base_dapt_reviews_tapt_amazon_helpfulness_115K
4
null
transformers
18,345
Entry not found
allenai/dsp_roberta_base_tapt_ag_115K
4d1bed63e397b45af824bbd5c78e0eb1e440b15b
2021-05-20T13:20:47.000Z
[ "pytorch", "jax", "roberta", "transformers" ]
null
false
allenai
null
allenai/dsp_roberta_base_tapt_ag_115K
4
null
transformers
18,346
Entry not found
allenyummy/chinese-bert-wwm-ehr-ner-qasl
e69a41088e9f0d4e69eeda9bddbdcd483854965b
2021-05-19T11:42:17.000Z
[ "pytorch", "bert", "zh-tw", "transformers" ]
null
false
allenyummy
null
allenyummy/chinese-bert-wwm-ehr-ner-qasl
4
null
transformers
18,347
--- language: zh-tw --- # Model name Chinese-bert-wwm-electrical-health-records-ner-question-answering-sequence-labeling #### How to use ``` from transformers import AutoTokenizer, AutoModelForTokenClassification tokenizer = AutoTokenizer.from_pretrained("allenyummy/chinese-bert-wwm-ehr-ner-qasl") model = AutoModelForTokenClassification.from_pretrained("allenyummy/chinese-bert-wwm-ehr-ner-qasl") ```
alvinkobe/DialoGPT-small-KST
5d937431dfa8f42908a3b21129901b986703f898
2021-10-12T01:21:56.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
alvinkobe
null
alvinkobe/DialoGPT-small-KST
4
null
transformers
18,348
--- tags: - conversational --- #PANAFRICAN DialoGPT
ami-wav2vec2/wav2vec2-base-ami_multi-nithin1
060f31b75e29c203ead4de1cf4957d435aaeb3f8
2021-10-16T05:05:19.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "en", "transformers", "ami", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
ami-wav2vec2
null
ami-wav2vec2/wav2vec2-base-ami_multi-nithin1
4
null
transformers
18,349
--- language: - en license: apache-2.0 tags: - automatic-speech-recognition - ami - generated_from_trainer model-index: - name: wav2vec2-base-ami_multi-nithin1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-ami_multi-nithin1 This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the AMI-IHM dataset. It achieves the following results on the evaluation set: - Loss: 9.4710 - Wer: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 10.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:---:| | 3.1594 | 1.07 | 5000 | 8.2680 | 1.0 | | 3.1647 | 2.13 | 10000 | 7.7283 | 1.0 | | 3.152 | 3.2 | 15000 | 8.5267 | 1.0 | | 3.1738 | 4.27 | 20000 | 7.8057 | 1.0 | | 3.1628 | 5.33 | 25000 | 8.4358 | 1.0 | | 3.1314 | 6.4 | 30000 | 8.2546 | 1.0 | | 3.1772 | 7.46 | 35000 | 8.0952 | 1.0 | | 3.1504 | 8.53 | 40000 | 8.4454 | 1.0 | | 3.1598 | 9.6 | 45000 | 8.0497 | 1.0 | ### Framework versions - Transformers 4.12.0.dev0 - Pytorch 1.9.1 - Datasets 1.12.2.dev0 - Tokenizers 0.10.3
ami-wav2vec2/wav2vec2-large-lv60-ami_multi-tune_0.0001_16
b803009b7440b86977e3a309b675e2b2e4a5aa44
2021-11-21T16:12:09.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "en", "transformers", "ami", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
ami-wav2vec2
null
ami-wav2vec2/wav2vec2-large-lv60-ami_multi-tune_0.0001_16
4
null
transformers
18,350
--- language: - en license: apache-2.0 tags: - automatic-speech-recognition - ami - generated_from_trainer model-index: - name: wav2vec2-large-lv60-ami_multi-tune_0.0001_16 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-lv60-ami_multi-tune_0.0001_16 This model is a fine-tuned version of [facebook/wav2vec2-large-lv60](https://huggingface.co/facebook/wav2vec2-large-lv60) on the AMI-IHM dataset. It achieves the following results on the evaluation set: - Loss: 1.4974 - Wer: 0.4508 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 10.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 1.4959 | 1.72 | 1000 | 1.4430 | 0.4864 | | 1.2059 | 3.45 | 2000 | 1.2716 | 0.4219 | | 1.0863 | 5.17 | 3000 | 1.2448 | 0.4069 | | 1.0271 | 6.9 | 4000 | 1.2464 | 0.3996 | | 0.9656 | 8.62 | 5000 | 1.2551 | 0.4048 | ### Framework versions - Transformers 4.12.0.dev0 - Pytorch 1.9.1 - Datasets 1.12.2.dev0 - Tokenizers 0.10.3
ami-wav2vec2/wav2vec2-large-lv60-ami_multi-tune_0.0005_16
ac10a1b2adddd2be2e878fd88ecd0848628bafd6
2021-11-20T06:04:25.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "en", "transformers", "ami", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
ami-wav2vec2
null
ami-wav2vec2/wav2vec2-large-lv60-ami_multi-tune_0.0005_16
4
null
transformers
18,351
--- language: - en license: apache-2.0 tags: - automatic-speech-recognition - ami - generated_from_trainer model-index: - name: wav2vec2-large-lv60-ami_multi-tune_0.0005_16 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-lv60-ami_multi-tune_0.0005_16 This model is a fine-tuned version of [facebook/wav2vec2-large-lv60](https://huggingface.co/facebook/wav2vec2-large-lv60) on the AMI-IHM dataset. It achieves the following results on the evaluation set: - Loss: 1.4670 - Wer: 0.4379 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 10.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 1.2775 | 1.72 | 1000 | 1.2890 | 0.4219 | | 1.0728 | 3.45 | 2000 | 1.2016 | 0.4005 | | 0.9245 | 5.17 | 3000 | 1.1885 | 0.3961 | | 0.8506 | 6.9 | 4000 | 1.2045 | 0.3909 | | 0.7202 | 8.62 | 5000 | 1.2507 | 0.3944 | ### Framework versions - Transformers 4.12.0.dev0 - Pytorch 1.9.1 - Datasets 1.12.2.dev0 - Tokenizers 0.10.3
ami-wav2vec2/wav2vec2-large-lv60-ami_multi-tune_dropout_0.0003_16
f539916d869d053281a04657f4f86d809037a6f8
2021-11-23T19:58:34.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "en", "transformers", "ami", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
ami-wav2vec2
null
ami-wav2vec2/wav2vec2-large-lv60-ami_multi-tune_dropout_0.0003_16
4
null
transformers
18,352
--- language: - en license: apache-2.0 tags: - automatic-speech-recognition - ami - generated_from_trainer model-index: - name: wav2vec2-large-lv60-ami_multi-tune_dropout_0.0003_16 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-lv60-ami_multi-tune_dropout_0.0003_16 This model is a fine-tuned version of [facebook/wav2vec2-large-lv60](https://huggingface.co/facebook/wav2vec2-large-lv60) on the AMI-IHM dataset. It achieves the following results on the evaluation set: - Loss: 1.4765 - Wer: 0.4223 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 10.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 1.5073 | 1.72 | 1000 | 1.3621 | 0.4369 | | 1.3054 | 3.45 | 2000 | 1.2400 | 0.4000 | | 1.2056 | 5.17 | 3000 | 1.2068 | 0.3876 | | 1.1534 | 6.9 | 4000 | 1.1915 | 0.3816 | | 1.1094 | 8.62 | 5000 | 1.1872 | 0.3770 | ### Framework versions - Transformers 4.12.0.dev0 - Pytorch 1.9.1 - Datasets 1.12.2.dev0 - Tokenizers 0.10.3
ami-wav2vec2/wav2vec2-large-lv60-ami_multi-tune_dropout_0.0003_8
79e13fe8925283a275614f75c5583224601e46eb
2021-11-23T04:04:41.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "en", "transformers", "ami", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
ami-wav2vec2
null
ami-wav2vec2/wav2vec2-large-lv60-ami_multi-tune_dropout_0.0003_8
4
null
transformers
18,353
--- language: - en license: apache-2.0 tags: - automatic-speech-recognition - ami - generated_from_trainer model-index: - name: wav2vec2-large-lv60-ami_multi-tune_dropout_0.0003_8 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-lv60-ami_multi-tune_dropout_0.0003_8 This model is a fine-tuned version of [facebook/wav2vec2-large-lv60](https://huggingface.co/facebook/wav2vec2-large-lv60) on the AMI-IHM dataset. It achieves the following results on the evaluation set: - Loss: 1.4292 - Wer: 0.4203 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 10.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 1.6596 | 0.86 | 1000 | 1.4908 | 0.5105 | | 1.4211 | 1.72 | 2000 | 1.3459 | 0.4167 | | 1.3246 | 2.59 | 3000 | 1.2844 | 0.3992 | | 1.2588 | 3.45 | 4000 | 1.2392 | 0.3995 | | 1.2045 | 4.31 | 5000 | 1.2349 | 0.3928 | | 1.1543 | 5.17 | 6000 | 1.2056 | 0.3886 | | 1.119 | 6.03 | 7000 | 1.2005 | 0.3793 | | 1.0984 | 6.9 | 8000 | 1.2024 | 0.3808 | | 1.0726 | 7.76 | 9000 | 1.1921 | 0.3791 | | 1.054 | 8.62 | 10000 | 1.1835 | 0.3793 | | 1.0498 | 9.48 | 11000 | 1.1854 | 0.3743 | ### Framework versions - Transformers 4.12.0.dev0 - Pytorch 1.9.1 - Datasets 1.12.2.dev0 - Tokenizers 0.10.3
anas-awadalla/bert-small-pretrained-on-squad
2a31567d8be4c3294c6515f0943e1b73eab3d3ed
2022-01-27T03:57:07.000Z
[ "pytorch", "bert", "fill-mask", "dataset:squad", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
fill-mask
false
anas-awadalla
null
anas-awadalla/bert-small-pretrained-on-squad
4
null
transformers
18,354
--- license: mit tags: - generated_from_trainer datasets: - squad model-index: - name: bert_small_pretrain_squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert_small_pretrain_squad This model is a fine-tuned version of [prajjwal1/bert-small](https://huggingface.co/prajjwal1/bert-small) on the squad dataset. It achieves the following results on the evaluation set: - Loss: 0.1410 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
anelnurkayeva/autonlp-covid-432211280
552a86ab1da2d6c1652ddda5fc2472fc62dd69a4
2021-12-20T01:23:47.000Z
[ "pytorch", "roberta", "text-classification", "en", "dataset:anelnurkayeva/autonlp-data-covid", "transformers", "autonlp", "co2_eq_emissions" ]
text-classification
false
anelnurkayeva
null
anelnurkayeva/autonlp-covid-432211280
4
null
transformers
18,355
--- tags: autonlp language: en widget: - text: "I love AutoNLP 🤗" datasets: - anelnurkayeva/autonlp-data-covid co2_eq_emissions: 8.898145050355591 --- # Model Trained Using AutoNLP - Problem type: Binary Classification - Model ID: 432211280 - CO2 Emissions (in grams): 8.898145050355591 ## Validation Metrics - Loss: 0.12489336729049683 - Accuracy: 0.9520089285714286 - Precision: 0.9436443331246086 - Recall: 0.9747736093143596 - AUC: 0.9910066767410616 - F1: 0.958956411072224 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/anelnurkayeva/autonlp-covid-432211280 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("anelnurkayeva/autonlp-covid-432211280", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("anelnurkayeva/autonlp-covid-432211280", use_auth_token=True) inputs = tokenizer("I love AutoNLP", return_tensors="pt") outputs = model(**inputs) ```
angiquer/twitterko-electra-base-discriminator-large
ebf0022d50dd9bff082e6bdbca3ed505f9473bb9
2020-07-10T01:48:02.000Z
[ "pytorch", "electra", "pretraining", "transformers" ]
null
false
angiquer
null
angiquer/twitterko-electra-base-discriminator-large
4
null
transformers
18,356
Entry not found
anirudh21/albert-large-v2-finetuned-cola
ffe6ce7a91c444a1116aa9ad406b911735e9e829
2022-01-28T04:37:55.000Z
[ "pytorch", "tensorboard", "albert", "text-classification", "transformers" ]
text-classification
false
anirudh21
null
anirudh21/albert-large-v2-finetuned-cola
4
null
transformers
18,357
Entry not found
anirudh21/albert-large-v2-finetuned-qnli
07ab25da7d476cf13244472853692dc818b99651
2022-01-28T20:58:54.000Z
[ "pytorch", "tensorboard", "albert", "text-classification", "transformers" ]
text-classification
false
anirudh21
null
anirudh21/albert-large-v2-finetuned-qnli
4
null
transformers
18,358
Entry not found
anirudh21/albert-large-v2-finetuned-qqp
6102b0fbc412d8b03285148efe7e1bcab6d4242a
2022-01-29T06:28:41.000Z
[ "pytorch", "tensorboard", "albert", "text-classification", "transformers" ]
text-classification
false
anirudh21
null
anirudh21/albert-large-v2-finetuned-qqp
4
null
transformers
18,359
Entry not found
anirudh21/albert-large-v2-finetuned-sst2
df02f259f73ce2859d37ae88cef5334b6bb62860
2022-01-28T07:46:04.000Z
[ "pytorch", "tensorboard", "albert", "text-classification", "transformers" ]
text-classification
false
anirudh21
null
anirudh21/albert-large-v2-finetuned-sst2
4
null
transformers
18,360
Entry not found
anirudh21/bert-base-uncased-finetuned-wnli
b4d191c88e704c168045faf70eb8890465ccb0a9
2022-01-24T13:33:56.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "dataset:glue", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
anirudh21
null
anirudh21/bert-base-uncased-finetuned-wnli
4
null
transformers
18,361
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: bert-base-uncased-finetuned-wnli results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue args: wnli metrics: - name: Accuracy type: accuracy value: 0.5633802816901409 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-finetuned-wnli This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.6854 - Accuracy: 0.5634 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 40 | 0.6854 | 0.5634 | | No log | 2.0 | 80 | 0.6983 | 0.3239 | | No log | 3.0 | 120 | 0.6995 | 0.5352 | | No log | 4.0 | 160 | 0.6986 | 0.5634 | | No log | 5.0 | 200 | 0.6996 | 0.5634 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.18.0 - Tokenizers 0.10.3
anirudh21/distilbert-base-uncased-finetuned-qnli
eca56f705710549d28dd0e9c872a738802448c51
2022-01-12T12:39:07.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:glue", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
anirudh21
null
anirudh21/distilbert-base-uncased-finetuned-qnli
4
null
transformers
18,362
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: distilbert-base-uncased-finetuned-qnli results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue args: rte metrics: - name: Accuracy type: accuracy value: 0.6064981949458483 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-qnli This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.8121 - Accuracy: 0.6065 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 156 | 0.6949 | 0.4874 | | No log | 2.0 | 312 | 0.6596 | 0.5957 | | No log | 3.0 | 468 | 0.7186 | 0.5812 | | 0.6026 | 4.0 | 624 | 0.7727 | 0.6029 | | 0.6026 | 5.0 | 780 | 0.8121 | 0.6065 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
anirudh21/distilbert-base-uncased-finetuned-rte
518ac617cb4e390057e0221739ba2b1aadf91c45
2022-01-12T11:32:17.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:glue", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
anirudh21
null
anirudh21/distilbert-base-uncased-finetuned-rte
4
null
transformers
18,363
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: distilbert-base-uncased-finetuned-rte results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue args: rte metrics: - name: Accuracy type: accuracy value: 0.6173285198555957 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-rte This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.6661 - Accuracy: 0.6173 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 156 | 0.6921 | 0.5162 | | No log | 2.0 | 312 | 0.6661 | 0.6173 | | No log | 3.0 | 468 | 0.7794 | 0.5632 | | 0.5903 | 4.0 | 624 | 0.8832 | 0.5921 | | 0.5903 | 5.0 | 780 | 0.9376 | 0.5921 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
anton-l/megatron-11b
fbbd34d81ef3eef9fd0dde5274e36f4f158b9934
2021-02-20T13:39:44.000Z
[ "pytorch", "megatron", "text-generation", "transformers" ]
text-generation
false
anton-l
null
anton-l/megatron-11b
4
3
transformers
18,364
Entry not found
anton-l/wav2vec2-large-xlsr-53-sakha
5ce17ed2559fa5e9a92b3367afc4011fce1b33d9
2021-07-05T20:31:23.000Z
[ "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "sah", "dataset:common_voice", "transformers", "audio", "speech", "xlsr-fine-tuning-week", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
anton-l
null
anton-l/wav2vec2-large-xlsr-53-sakha
4
null
transformers
18,365
--- language: sah datasets: - common_voice metrics: - wer tags: - audio - automatic-speech-recognition - speech - xlsr-fine-tuning-week license: apache-2.0 model-index: - name: Sakha XLSR Wav2Vec2 Large 53 by Anton Lozhkov results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice sah type: common_voice args: sah metrics: - name: Test WER type: wer value: 32.23 --- # Wav2Vec2-Large-XLSR-53-Sakha Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Sakha using the [Common Voice](https://huggingface.co/datasets/common_voice) dataset. When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "sah", split="test[:2%]") processor = Wav2Vec2Processor.from_pretrained("anton-l/wav2vec2-large-xlsr-53-sakha") model = Wav2Vec2ForCTC.from_pretrained("anton-l/wav2vec2-large-xlsr-53-sakha") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the audio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` ## Evaluation The model can be evaluated as follows on the Sakha test data of Common Voice. ```python import torch import torchaudio import urllib.request import tarfile import pandas as pd from tqdm.auto import tqdm from datasets import load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor # Download the raw data instead of using HF datasets to save disk space data_url = "https://voice-prod-bundler-ee1969a6ce8178826482b88e843c335139bd3fb4.s3.amazonaws.com/cv-corpus-6.1-2020-12-11/sah.tar.gz" filestream = urllib.request.urlopen(data_url) data_file = tarfile.open(fileobj=filestream, mode="r|gz") data_file.extractall() wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("anton-l/wav2vec2-large-xlsr-53-sakha") model = Wav2Vec2ForCTC.from_pretrained("anton-l/wav2vec2-large-xlsr-53-sakha") model.to("cuda") cv_test = pd.read_csv("cv-corpus-6.1-2020-12-11/sah/test.tsv", sep='\t') clips_path = "cv-corpus-6.1-2020-12-11/sah/clips/" def clean_sentence(sent): sent = sent.lower() # replace non-alpha characters with space sent = "".join(ch if ch.isalpha() else " " for ch in sent) # remove repeated spaces sent = " ".join(sent.split()) return sent targets = [] preds = [] for i, row in tqdm(cv_test.iterrows(), total=cv_test.shape[0]): row["sentence"] = clean_sentence(row["sentence"]) speech_array, sampling_rate = torchaudio.load(clips_path + row["path"]) resampler = torchaudio.transforms.Resample(sampling_rate, 16_000) row["speech"] = resampler(speech_array).squeeze().numpy() inputs = processor(row["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) targets.append(row["sentence"]) preds.append(processor.batch_decode(pred_ids)[0]) print("WER: {:2f}".format(100 * wer.compute(predictions=preds, references=targets))) ``` **Test Result**: 32.23 % ## Training The Common Voice `train` and `validation` datasets were used for training.
anton-l/wav2vec2-xls-r-common_voice-tr-ft-100sh
3bd249f29960f14e5241d1e3f184b66a86ceedfd
2022-01-30T02:42:22.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "tr", "transformers", "common_voice", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
anton-l
null
anton-l/wav2vec2-xls-r-common_voice-tr-ft-100sh
4
null
transformers
18,366
--- language: - tr license: apache-2.0 tags: - automatic-speech-recognition - common_voice - generated_from_trainer model-index: - name: wav2vec2-xls-r-common_voice-tr-ft results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-xls-r-common_voice-tr-ft This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the COMMON_VOICE - TR dataset. It achieves the following results on the evaluation set: - Loss: 0.5806 - Wer: 0.3998 - Cer: 0.1053 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - total_eval_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 5000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:------:|:----:|:---------------:|:------:|:------:| | 0.5369 | 17.0 | 500 | 0.6021 | 0.6366 | 0.1727 | | 0.3542 | 34.0 | 1000 | 0.5265 | 0.4906 | 0.1278 | | 0.1866 | 51.0 | 1500 | 0.5805 | 0.4768 | 0.1261 | | 0.1674 | 68.01 | 2000 | 0.5336 | 0.4518 | 0.1186 | | 0.19 | 86.0 | 2500 | 0.5676 | 0.4427 | 0.1151 | | 0.0815 | 103.0 | 3000 | 0.5510 | 0.4268 | 0.1125 | | 0.0545 | 120.0 | 3500 | 0.5608 | 0.4175 | 0.1099 | | 0.0299 | 137.01 | 4000 | 0.5875 | 0.4222 | 0.1124 | | 0.0267 | 155.0 | 4500 | 0.5882 | 0.4026 | 0.1063 | | 0.025 | 172.0 | 5000 | 0.5806 | 0.3998 | 0.1053 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2 - Datasets 1.18.2 - Tokenizers 0.10.3
anton-l/wav2vec2-xls-r-common_voice-tr-ft-stream
9208e8a3c7197b5f48b7bad4a2a12ec54594bd3b
2022-01-31T17:19:19.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "tr", "transformers", "common_voice", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
anton-l
null
anton-l/wav2vec2-xls-r-common_voice-tr-ft-stream
4
null
transformers
18,367
--- language: - tr license: apache-2.0 tags: - automatic-speech-recognition - common_voice - generated_from_trainer model-index: - name: wav2vec2-xls-r-common_voice-tr-ft-stream results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-xls-r-common_voice-tr-ft-stream This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the COMMON_VOICE - TR dataset. It achieves the following results on the evaluation set: - Loss: 0.3519 - Wer: 0.2927 - Cer: 0.0694 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - total_eval_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 5000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:| | 0.6768 | 9.01 | 500 | 0.4220 | 0.5143 | 0.1235 | | 0.3801 | 19.01 | 1000 | 0.3303 | 0.4403 | 0.1055 | | 0.3616 | 29.0 | 1500 | 0.3540 | 0.3716 | 0.0878 | | 0.2334 | 39.0 | 2000 | 0.3666 | 0.3671 | 0.0842 | | 0.3141 | 49.0 | 2500 | 0.3407 | 0.3373 | 0.0819 | | 0.1926 | 58.01 | 3000 | 0.3886 | 0.3520 | 0.0867 | | 0.1372 | 68.01 | 3500 | 0.3415 | 0.3189 | 0.0743 | | 0.091 | 78.0 | 4000 | 0.3750 | 0.3164 | 0.0757 | | 0.0893 | 88.0 | 4500 | 0.3559 | 0.2968 | 0.0712 | | 0.095 | 98.0 | 5000 | 0.3519 | 0.2927 | 0.0694 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2 - Datasets 1.18.2 - Tokenizers 0.10.3
anurag0077/distilbert-base-uncased-finetuned-squad
be0410c59b9759274fd452b87e86c2c98a162a93
2021-11-05T08:50:27.000Z
[ "pytorch", "tensorboard", "distilbert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
anurag0077
null
anurag0077/distilbert-base-uncased-finetuned-squad
4
null
transformers
18,368
Entry not found
anuragshas/wav2vec2-large-xls-r-300m-or
543f047314f4e96ba12caabe3583693beab88f9a
2022-03-24T11:57:41.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "or", "dataset:mozilla-foundation/common_voice_7_0", "transformers", "robust-speech-event", "hf-asr-leaderboard", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
anuragshas
null
anuragshas/wav2vec2-large-xls-r-300m-or
4
1
transformers
18,369
--- language: - or license: apache-2.0 tags: - automatic-speech-recognition - robust-speech-event - hf-asr-leaderboard datasets: - mozilla-foundation/common_voice_7_0 metrics: - wer model-index: - name: wav2vec2-large-xls-r-300m-or results: - task: type: automatic-speech-recognition name: Speech Recognition dataset: type: mozilla-foundation/common_voice_7_0 name: Common Voice 7 args: or metrics: - type: wer value: 47.186 name: Test WER - name: Test CER type: cer value: 11.82 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-or This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 1.6618 - Wer: 0.5166 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.12 - num_epochs: 240 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:------:| | 6.0493 | 23.53 | 400 | 2.9728 | 1.0 | | 0.5306 | 47.06 | 800 | 1.2895 | 0.6138 | | 0.1253 | 70.59 | 1200 | 1.6854 | 0.5703 | | 0.0763 | 94.12 | 1600 | 1.9433 | 0.5870 | | 0.0552 | 117.65 | 2000 | 1.4393 | 0.5575 | | 0.0382 | 141.18 | 2400 | 1.4665 | 0.5537 | | 0.0286 | 164.71 | 2800 | 1.5441 | 0.5320 | | 0.0212 | 188.24 | 3200 | 1.6502 | 0.5115 | | 0.0168 | 211.76 | 3600 | 1.6411 | 0.5332 | | 0.0129 | 235.29 | 4000 | 1.6618 | 0.5166 | ### Framework versions - Transformers 4.16.0 - Pytorch 1.10.0+cu111 - Datasets 1.18.0 - Tokenizers 0.10.3 #### Evaluation Commands 1. To evaluate on `mozilla-foundation/common_voice_7_0` with split `test` ```bash python eval.py --model_id anuragshas/wav2vec2-large-xls-r-300m-or --dataset mozilla-foundation/common_voice_7_0 --config or --split test ``` ### Inference With LM ```python import torch from datasets import load_dataset from transformers import AutoModelForCTC, AutoProcessor import torchaudio.functional as F model_id = "anuragshas/wav2vec2-large-xls-r-300m-or" sample_iter = iter(load_dataset("mozilla-foundation/common_voice_7_0", "or", split="test", streaming=True, use_auth_token=True)) sample = next(sample_iter) resampled_audio = F.resample(torch.tensor(sample["audio"]["array"]), 48_000, 16_000).numpy() model = AutoModelForCTC.from_pretrained(model_id) processor = AutoProcessor.from_pretrained(model_id) input_values = processor(resampled_audio, return_tensors="pt").input_values with torch.no_grad(): logits = model(input_values).logits transcription = processor.batch_decode(logits.numpy()).text # => "ପରରାଏ ବାଲା ଗସ୍ତି ଫାଣ୍ଡି ଗୋପାଳ ପରଠାରୁ ଦେଢ଼କଶ ଦୂର" ``` ### Eval results on Common Voice 7 "test" (WER): | Without LM | With LM (run `./eval.py`) | |---|---| | 51.92 | 47.186 |
anuragshas/wav2vec2-large-xls-r-300m-pa-in
97bae4bccc21e446e06f8359448429f1876b81e3
2022-03-24T11:53:29.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "pa", "pa-IN", "dataset:mozilla-foundation/common_voice_7_0", "transformers", "generated_from_trainer", "robust-speech-event", "hf-asr-leaderboard", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
anuragshas
null
anuragshas/wav2vec2-large-xls-r-300m-pa-in
4
null
transformers
18,370
--- language: - pa - pa-IN license: apache-2.0 tags: - generated_from_trainer - robust-speech-event - hf-asr-leaderboard datasets: - mozilla-foundation/common_voice_7_0 metrics: - wer model-index: - name: XLS-R-300M - Punjabi results: - task: type: automatic-speech-recognition name: Speech Recognition dataset: type: mozilla-foundation/common_voice_7_0 name: Common Voice 7 args: pa-IN metrics: - type: wer value: 45.611 name: Test WER - name: Test CER type: cer value: 15.584 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # XLS-R-300M - Punjabi This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 1.2548 - Wer: 0.5677 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.12 - num_epochs: 120 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:------:| | 6.4804 | 16.65 | 400 | 1.8461 | 1.0 | | 0.474 | 33.33 | 800 | 1.1018 | 0.6624 | | 0.1389 | 49.98 | 1200 | 1.1918 | 0.6103 | | 0.0919 | 66.65 | 1600 | 1.1889 | 0.6058 | | 0.0657 | 83.33 | 2000 | 1.2266 | 0.5931 | | 0.0479 | 99.98 | 2400 | 1.2512 | 0.5902 | | 0.0355 | 116.65 | 2800 | 1.2548 | 0.5677 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.18.0 - Tokenizers 0.10.3 #### Evaluation Commands 1. To evaluate on `mozilla-foundation/common_voice_7_0` with split `test` ```bash python eval.py --model_id anuragshas/wav2vec2-large-xls-r-300m-pa-in --dataset mozilla-foundation/common_voice_7_0 --config pa-IN --split test ``` ### Inference With LM ```python import torch from datasets import load_dataset from transformers import AutoModelForCTC, AutoProcessor import torchaudio.functional as F model_id = "anuragshas/wav2vec2-large-xls-r-300m-pa-in" sample_iter = iter(load_dataset("mozilla-foundation/common_voice_7_0", "pa-IN", split="test", streaming=True, use_auth_token=True)) sample = next(sample_iter) resampled_audio = F.resample(torch.tensor(sample["audio"]["array"]), 48_000, 16_000).numpy() model = AutoModelForCTC.from_pretrained(model_id) processor = AutoProcessor.from_pretrained(model_id) input_values = processor(resampled_audio, return_tensors="pt").input_values with torch.no_grad(): logits = model(input_values).logits transcription = processor.batch_decode(logits.numpy()).text # => "ਉਨ੍ਹਾਂ ਨੇ ਸਾਰੇ ਤੇਅਰਵੇ ਵੱਖਰੀ ਕਿਸਮ ਦੇ ਕੀਤੇ ਹਨ" ``` ### Eval results on Common Voice 7 "test" (WER): | Without LM | With LM (run `./eval.py`) | |---|---| | 51.968 | 45.611 |
anuragshas/wav2vec2-xls-r-1b-hi
0f13426cb386f06dd8dc89b6f2f6d1a695624743
2022-03-23T18:29:52.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "hi", "dataset:mozilla-foundation/common_voice_7_0", "transformers", "generated_from_trainer", "hf-asr-leaderboard", "mozilla-foundation/common_voice_7_0", "robust-speech-event", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
anuragshas
null
anuragshas/wav2vec2-xls-r-1b-hi
4
1
transformers
18,371
--- language: - hi license: apache-2.0 tags: - automatic-speech-recognition - generated_from_trainer - hf-asr-leaderboard - mozilla-foundation/common_voice_7_0 - robust-speech-event datasets: - mozilla-foundation/common_voice_7_0 metrics: - wer model-index: - name: wav2vec2-xls-r-1b-hi-cv7 results: - task: type: automatic-speech-recognition name: Speech Recognition dataset: type: mozilla-foundation/common_voice_7_0 name: Common Voice 7 args: hi metrics: - type: wer value: 18.504 name: Test WER - name: Test CER type: cer value: 6.655 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-xls-r-1b-hi-cv7 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - HI dataset. It achieves the following results on the evaluation set: - Loss: 0.5878 - Wer: 0.3419 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7.5e-05 - train_batch_size: 8 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2000 - num_epochs: 100.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 1.9859 | 2.72 | 400 | 1.1663 | 0.7948 | | 1.2969 | 5.44 | 800 | 0.7725 | 0.6562 | | 1.1954 | 8.16 | 1200 | 0.5940 | 0.4904 | | 1.164 | 10.88 | 1600 | 0.5338 | 0.4316 | | 1.1464 | 13.6 | 2000 | 0.5432 | 0.4226 | | 1.1553 | 16.33 | 2400 | 0.5471 | 0.4260 | | 1.0985 | 19.05 | 2800 | 0.5290 | 0.4076 | | 1.0421 | 21.77 | 3200 | 0.5672 | 0.4181 | | 0.9831 | 24.49 | 3600 | 0.5741 | 0.4141 | | 0.9827 | 27.21 | 4000 | 0.5754 | 0.4179 | | 0.9669 | 29.93 | 4400 | 0.5310 | 0.3889 | | 0.9496 | 32.65 | 4800 | 0.5649 | 0.4062 | | 0.9112 | 35.37 | 5200 | 0.5738 | 0.3926 | | 0.8838 | 38.1 | 5600 | 0.5232 | 0.3768 | | 0.8666 | 40.81 | 6000 | 0.5510 | 0.3852 | | 0.8366 | 43.54 | 6400 | 0.5436 | 0.3837 | | 0.7957 | 46.26 | 6800 | 0.5337 | 0.3775 | | 0.7834 | 48.98 | 7200 | 0.5611 | 0.3844 | | 0.7685 | 51.7 | 7600 | 0.5710 | 0.4008 | | 0.7431 | 54.42 | 8000 | 0.5636 | 0.3726 | | 0.7353 | 57.14 | 8400 | 0.5937 | 0.3836 | | 0.7001 | 59.86 | 8800 | 0.5815 | 0.3858 | | 0.6799 | 62.58 | 9200 | 0.5862 | 0.3696 | | 0.6459 | 65.31 | 9600 | 0.6181 | 0.3762 | | 0.6121 | 68.03 | 10000 | 0.5637 | 0.3590 | | 0.5942 | 70.75 | 10400 | 0.6374 | 0.3882 | | 0.5769 | 73.47 | 10800 | 0.6015 | 0.3640 | | 0.5689 | 76.19 | 11200 | 0.5669 | 0.3508 | | 0.5461 | 78.91 | 11600 | 0.5967 | 0.3621 | | 0.5286 | 81.63 | 12000 | 0.5840 | 0.3605 | | 0.5057 | 84.35 | 12400 | 0.5848 | 0.3489 | | 0.482 | 87.07 | 12800 | 0.5860 | 0.3488 | | 0.4655 | 89.79 | 13200 | 0.5780 | 0.3453 | | 0.4523 | 92.52 | 13600 | 0.6150 | 0.3532 | | 0.4422 | 95.24 | 14000 | 0.5930 | 0.3452 | | 0.4436 | 97.96 | 14400 | 0.5867 | 0.3428 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.17.1.dev0 - Tokenizers 0.11.0 #### Evaluation Commands 1. To evaluate on `mozilla-foundation/common_voice_7_0` with split `test` ```bash python eval.py --model_id anuragshas/wav2vec2-xls-r-1b-hi --dataset mozilla-foundation/common_voice_7_0 --config hi --split test ``` ### Inference With LM ```python import torch from datasets import load_dataset from transformers import AutoModelForCTC, AutoProcessor import torchaudio.functional as F model_id = "anuragshas/wav2vec2-xls-r-1b-hi" sample_iter = iter(load_dataset("mozilla-foundation/common_voice_7_0", "hi", split="test", streaming=True, use_auth_token=True)) sample = next(sample_iter) resampled_audio = F.resample(torch.tensor(sample["audio"]["array"]), 48_000, 16_000).numpy() model = AutoModelForCTC.from_pretrained(model_id) processor = AutoProcessor.from_pretrained(model_id) input_values = processor(resampled_audio, return_tensors="pt").input_values with torch.no_grad(): logits = model(input_values).logits transcription = processor.batch_decode(logits.numpy()).text # => "तुम्हारे पास तीन महीने बचे हैं" ``` ### Eval results on Common Voice 7 "test" (WER): | Without LM | With LM (run `./eval.py`) | |---|---| | 28.942 | 18.504 |
anuragshas/wav2vec2-xls-r-300m-mt-cv8-with-lm
095796ff39b18c81d9555b8b15bd6ca3d4d6472c
2022-03-24T11:57:50.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "mt", "dataset:mozilla-foundation/common_voice_8_0", "transformers", "mozilla-foundation/common_voice_8_0", "generated_from_trainer", "robust-speech-event", "hf-asr-leaderboard", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
anuragshas
null
anuragshas/wav2vec2-xls-r-300m-mt-cv8-with-lm
4
null
transformers
18,372
--- language: - mt license: apache-2.0 tags: - automatic-speech-recognition - mozilla-foundation/common_voice_8_0 - generated_from_trainer - robust-speech-event - hf-asr-leaderboard datasets: - mozilla-foundation/common_voice_8_0 metrics: - wer model-index: - name: XLS-R-300M - Maltese results: - task: type: automatic-speech-recognition name: Speech Recognition dataset: type: mozilla-foundation/common_voice_8_0 name: Common Voice 8 args: mt metrics: - type: wer value: 15.967 name: Test WER - name: Test CER type: cer value: 3.657 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # XLS-R-300M - Maltese This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - MT dataset. It achieves the following results on the evaluation set: - Loss: 0.1895 - Wer: 0.1984 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7.5e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 60.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.4219 | 3.6 | 400 | 3.3127 | 1.0 | | 3.0399 | 7.21 | 800 | 3.0330 | 1.0 | | 1.5756 | 10.81 | 1200 | 0.6108 | 0.5724 | | 1.0995 | 14.41 | 1600 | 0.3091 | 0.3154 | | 0.9639 | 18.02 | 2000 | 0.2596 | 0.2841 | | 0.9032 | 21.62 | 2400 | 0.2270 | 0.2514 | | 0.8145 | 25.23 | 2800 | 0.2172 | 0.2483 | | 0.7845 | 28.83 | 3200 | 0.2084 | 0.2333 | | 0.7694 | 32.43 | 3600 | 0.1974 | 0.2234 | | 0.7333 | 36.04 | 4000 | 0.2020 | 0.2185 | | 0.693 | 39.64 | 4400 | 0.1947 | 0.2148 | | 0.6802 | 43.24 | 4800 | 0.1960 | 0.2102 | | 0.667 | 46.85 | 5200 | 0.1904 | 0.2072 | | 0.6486 | 50.45 | 5600 | 0.1881 | 0.2009 | | 0.6339 | 54.05 | 6000 | 0.1877 | 0.1989 | | 0.6254 | 57.66 | 6400 | 0.1893 | 0.2003 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2.dev0 - Tokenizers 0.11.0 #### Evaluation Commands 1. To evaluate on `mozilla-foundation/common_voice_8_0` with split `test` ```bash python eval.py --model_id anuragshas/wav2vec2-xls-r-300m-mt-cv8-with-lm --dataset mozilla-foundation/common_voice_8_0 --config mt --split test ``` ### Inference With LM ```python import torch from datasets import load_dataset from transformers import AutoModelForCTC, AutoProcessor import torchaudio.functional as F model_id = "anuragshas/wav2vec2-xls-r-300m-mt-cv8-with-lm" sample_iter = iter(load_dataset("mozilla-foundation/common_voice_8_0", "mt", split="test", streaming=True, use_auth_token=True)) sample = next(sample_iter) resampled_audio = F.resample(torch.tensor(sample["audio"]["array"]), 48_000, 16_000).numpy() model = AutoModelForCTC.from_pretrained(model_id) processor = AutoProcessor.from_pretrained(model_id) input_values = processor(resampled_audio, return_tensors="pt").input_values with torch.no_grad(): logits = model(input_values).logits transcription = processor.batch_decode(logits.numpy()).text # => "għadu jilagħbu ċirku tant bilfondi" ``` ### Eval results on Common Voice 8 "test" (WER): | Without LM | With LM (run `./eval.py`) | |---|---| | 19.853 | 15.967 |
aodiniz/bert_uncased_L-10_H-512_A-8_cord19-200616
8ff7379ea6a12cd2d201780ee27d78c3c14348c8
2021-05-18T23:44:51.000Z
[ "pytorch", "jax", "bert", "fill-mask", "arxiv:1908.08962", "transformers", "autotrain_compatible" ]
fill-mask
false
aodiniz
null
aodiniz/bert_uncased_L-10_H-512_A-8_cord19-200616
4
null
transformers
18,373
# BERT L-10 H-512 fine-tuned on MLM (CORD-19 2020/06/16) BERT model with [10 Transformer layers and hidden embedding of size 512](https://huggingface.co/google/bert_uncased_L-10_H-512_A-8), referenced in [Well-Read Students Learn Better: On the Importance of Pre-training Compact Models](https://arxiv.org/abs/1908.08962), fine-tuned for MLM on CORD-19 dataset (as released on 2020/06/16). ## Training the model ```bash python run_language_modeling.py --model_type bert --model_name_or_path google/bert_uncased_L-10_H-512_A-8 --do_train --train_data_file {cord19-200616-dataset} --mlm --mlm_probability 0.2 --line_by_line --block_size 512 --per_device_train_batch_size 10 --learning_rate 3e-5 --num_train_epochs 2 --output_dir bert_uncased_L-10_H-512_A-8_cord19-200616
aodiniz/bert_uncased_L-10_H-512_A-8_cord19-200616_squad2
4b3ed3df43656a063ebe4ef56f91b0d12ba179b0
2021-05-18T23:45:25.000Z
[ "pytorch", "jax", "bert", "question-answering", "dataset:squad_v2", "arxiv:1908.08962", "transformers", "autotrain_compatible" ]
question-answering
false
aodiniz
null
aodiniz/bert_uncased_L-10_H-512_A-8_cord19-200616_squad2
4
null
transformers
18,374
--- datasets: - squad_v2 --- # BERT L-10 H-512 CORD-19 (2020/06/16) fine-tuned on SQuAD v2.0 BERT model with [10 Transformer layers and hidden embedding of size 512](https://huggingface.co/google/bert_uncased_L-10_H-512_A-8), referenced in [Well-Read Students Learn Better: On the Importance of Pre-training Compact Models](https://arxiv.org/abs/1908.08962), [fine-tuned for MLM](https://huggingface.co/aodiniz/bert_uncased_L-10_H-512_A-8_cord19-200616) on CORD-19 dataset (as released on 2020/06/16) and fine-tuned for QA on SQuAD v2.0. ## Training the model ```bash python run_squad.py --model_type bert --model_name_or_path aodiniz/bert_uncased_L-10_H-512_A-8_cord19-200616 --train_file 'train-v2.0.json' --predict_file 'dev-v2.0.json' --do_train --do_eval --do_lower_case --version_2_with_negative --max_seq_length 384 --per_gpu_train_batch_size 10 --learning_rate 3e-5 --num_train_epochs 2 --output_dir bert_uncased_L-10_H-512_A-8_cord19-200616_squad2
aodiniz/bert_uncased_L-2_H-512_A-8_squad2_covid-qna
55ccc3e2ef3b1f3efd574cce8c0fe882b9b4666c
2021-05-18T23:50:34.000Z
[ "pytorch", "jax", "bert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
aodiniz
null
aodiniz/bert_uncased_L-2_H-512_A-8_squad2_covid-qna
4
null
transformers
18,375
Entry not found
aodiniz/bert_uncased_L-4_H-256_A-4_squad2
70c75e68abceec8d55250dd053b7e9116f9a3801
2021-05-18T23:52:28.000Z
[ "pytorch", "jax", "bert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
aodiniz
null
aodiniz/bert_uncased_L-4_H-256_A-4_squad2
4
null
transformers
18,376
Entry not found
aodiniz/bert_uncased_L-4_H-256_A-4_squad2_covid-qna
a46dc52710ae960fa68a211263a08022f52353f5
2021-05-18T23:52:50.000Z
[ "pytorch", "jax", "bert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
aodiniz
null
aodiniz/bert_uncased_L-4_H-256_A-4_squad2_covid-qna
4
null
transformers
18,377
Entry not found
aodiniz/bert_uncased_L-4_H-768_A-12_cord19-200616
f09e6550e7e5d36923d1a34e5d0d6ba3bdecdd5c
2021-05-18T23:55:42.000Z
[ "pytorch", "jax", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
aodiniz
null
aodiniz/bert_uncased_L-4_H-768_A-12_cord19-200616
4
null
transformers
18,378
Entry not found
aodiniz/bert_uncased_L-4_H-768_A-12_cord19-200616_squad2
e7a7cfafda107fe022b5bf9d64d1f638d5e2bd7d
2021-05-18T23:56:16.000Z
[ "pytorch", "jax", "bert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
aodiniz
null
aodiniz/bert_uncased_L-4_H-768_A-12_cord19-200616_squad2
4
null
transformers
18,379
Entry not found
aodiniz/bert_uncased_L-4_H-768_A-12_squad2
4f9b6235411866d852dd2f0381de21b1fa5259dd
2021-05-18T23:57:28.000Z
[ "pytorch", "jax", "bert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
aodiniz
null
aodiniz/bert_uncased_L-4_H-768_A-12_squad2
4
null
transformers
18,380
Entry not found
aodiniz/bert_uncased_L-6_H-128_A-2_cord19-200616_squad2
9ef5f510b5c46d1ecef4a89947ac324da755085d
2021-05-18T23:59:12.000Z
[ "pytorch", "jax", "bert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
aodiniz
null
aodiniz/bert_uncased_L-6_H-128_A-2_cord19-200616_squad2
4
null
transformers
18,381
Entry not found
arampacha/wav2vec2-xls-r-1b-uk-cv
c6e4bb36f3017527d01c1cd23de279acf4270bef
2022-03-23T18:30:15.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "uk", "dataset:mozilla-foundation/common_voice_8_0", "transformers", "generated_from_trainer", "hf-asr-leaderboard", "mozilla-foundation/common_voice_8_0", "robust-speech-event", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
arampacha
null
arampacha/wav2vec2-xls-r-1b-uk-cv
4
null
transformers
18,382
--- language: - uk license: apache-2.0 tags: - automatic-speech-recognition - generated_from_trainer - hf-asr-leaderboard - mozilla-foundation/common_voice_8_0 - robust-speech-event datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: wav2vec2-xls-r-1b-hy-cv results: - task: type: automatic-speech-recognition name: Speech Recognition dataset: type: mozilla-foundation/common_voice_8_0 name: Common Voice uk args: uk metrics: - type: wer value: 12.246920571994902 name: WER LM - type: cer value: 2.513653497966816 name: CER LM - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: uk metrics: - name: Test WER type: wer value: 46.56 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: uk metrics: - name: Test WER type: wer value: 35.98 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - UK dataset. It achieves the following results on the evaluation set: - Loss: 0.1747 - Wer: 0.2107 - Cer: 0.0408 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 8e-05 - train_batch_size: 16 - eval_batch_size: 64 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.98) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - training_steps: 8000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:| | 1.3719 | 4.35 | 500 | 0.3389 | 0.4236 | 0.0833 | | 1.1361 | 8.7 | 1000 | 0.2309 | 0.3162 | 0.0630 | | 1.0517 | 13.04 | 1500 | 0.2166 | 0.3056 | 0.0597 | | 1.0118 | 17.39 | 2000 | 0.2141 | 0.2784 | 0.0557 | | 0.9922 | 21.74 | 2500 | 0.2231 | 0.2941 | 0.0594 | | 0.9929 | 26.09 | 3000 | 0.2171 | 0.2892 | 0.0587 | | 0.9485 | 30.43 | 3500 | 0.2236 | 0.2956 | 0.0599 | | 0.9573 | 34.78 | 4000 | 0.2314 | 0.3043 | 0.0616 | | 0.9195 | 39.13 | 4500 | 0.2169 | 0.2812 | 0.0580 | | 0.8915 | 43.48 | 5000 | 0.2109 | 0.2780 | 0.0560 | | 0.8449 | 47.83 | 5500 | 0.2050 | 0.2534 | 0.0514 | | 0.8028 | 52.17 | 6000 | 0.2032 | 0.2456 | 0.0492 | | 0.7881 | 56.52 | 6500 | 0.1890 | 0.2380 | 0.0469 | | 0.7423 | 60.87 | 7000 | 0.1816 | 0.2245 | 0.0442 | | 0.7248 | 65.22 | 7500 | 0.1789 | 0.2165 | 0.0422 | | 0.6993 | 69.57 | 8000 | 0.1747 | 0.2107 | 0.0408 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2.dev0 - Tokenizers 0.11.0
arampacha/wav2vec2-xls-r-300m-hy
c7bd96170804f04d78ad80b0379351ba83dc6d59
2022-03-24T11:51:06.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "hy-AM", "dataset:common_voice", "transformers", "mozilla-foundation/common_voice_8_0", "generated_from_trainer", "robust-speech-event", "hy", "hf-asr-leaderboard", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
arampacha
null
arampacha/wav2vec2-xls-r-300m-hy
4
null
transformers
18,383
--- language: - hy-AM license: apache-2.0 tags: - automatic-speech-recognition - mozilla-foundation/common_voice_8_0 - generated_from_trainer - robust-speech-event - hy - hf-asr-leaderboard datasets: - common_voice model-index: - name: wav2vec2-xls-r-300m-hy results: - task: type: automatic-speech-recognition name: Speech Recognition dataset: type: mozilla-foundation/common_voice_8_0 name: Common Voice hy-AM args: hy-AM metrics: - type: wer value: 13.192818110850899 name: WER LM - type: cer value: 2.787051087506323 name: CER LM - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: hy metrics: - name: Test WER type: wer value: 22.246048764990867 - name: Test CER type: cer value: 7.59406739840239 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the /WORKSPACE/DATA/HY/NOIZY_STUDENT_3/ - NA dataset. It achieves the following results on the evaluation set: - Loss: 0.2293 - Wer: 0.3333 - Cer: 0.0602 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 842 - gradient_accumulation_steps: 2 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.98) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - training_steps: 4000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:| | 3.1471 | 7.02 | 400 | 3.1599 | 1.0 | 1.0 | | 1.8691 | 14.04 | 800 | 0.7674 | 0.7361 | 0.1686 | | 1.3227 | 21.05 | 1200 | 0.3849 | 0.5336 | 0.1007 | | 1.163 | 28.07 | 1600 | 0.3015 | 0.4559 | 0.0823 | | 1.0768 | 35.09 | 2000 | 0.2721 | 0.4032 | 0.0728 | | 1.0224 | 42.11 | 2400 | 0.2586 | 0.3825 | 0.0691 | | 0.9817 | 49.12 | 2800 | 0.2458 | 0.3653 | 0.0653 | | 0.941 | 56.14 | 3200 | 0.2306 | 0.3388 | 0.0605 | | 0.9235 | 63.16 | 3600 | 0.2315 | 0.3380 | 0.0615 | | 0.9141 | 70.18 | 4000 | 0.2293 | 0.3333 | 0.0602 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2 - Datasets 1.18.4.dev0 - Tokenizers 0.11.0
ardauzunoglu/c_ovk
f16dca476d5e2ddb5c57927428314589c7c21005
2022-02-08T17:43:09.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers", "generated_from_trainer", "license:mit", "model-index" ]
text-classification
false
ardauzunoglu
null
ardauzunoglu/c_ovk
4
1
transformers
18,384
--- license: mit tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: c_ovk results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # c_ovk This model is a fine-tuned version of [dbmdz/bert-base-turkish-cased](https://huggingface.co/dbmdz/bert-base-turkish-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2516 - Accuracy: 0.9249 - F1: 0.9044 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.4038 | 1.0 | 2462 | 0.2424 | 0.9117 | 0.8848 | | 0.2041 | 2.0 | 4924 | 0.2323 | 0.9230 | 0.9028 | | 0.1589 | 3.0 | 7386 | 0.2516 | 0.9249 | 0.9044 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
ardauzunoglu/mlm-ovk
8ae91d7d5f0683569a6fc0e3b9f6da755d0a75d8
2022-02-09T20:02:30.000Z
[ "pytorch", "tensorboard", "distilbert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
ardauzunoglu
null
ardauzunoglu/mlm-ovk
4
1
transformers
18,385
'epoch'=3 'eval_loss': 0.2554474174976349 'loss': 0.3272 'train_loss': 0.6488333813678379 'Perplexity': 1.29
ardauzunoglu/sentence-relatedness
4358e47935270630c027c58b018dedbf67b109d1
2022-02-10T22:28:52.000Z
[ "pytorch", "distilbert", "feature-extraction", "sentence-transformers", "sentence-similarity" ]
sentence-similarity
false
ardauzunoglu
null
ardauzunoglu/sentence-relatedness
4
1
sentence-transformers
18,386
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity --- # ardauzunoglu/sentence-relatedness This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 256 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('ardauzunoglu/sentence-relatedness') embeddings = model.encode(sentences) print(embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=ardauzunoglu/sentence-relatedness) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 1064 with parameters: ``` {'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 10, "evaluation_steps": 1000, "evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 100, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: DistilBertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) (2): Dense({'in_features': 768, 'out_features': 256, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
aretw0/t5-small-finetuned-en-to-ro-dataset_20
0cbf5668aa289f931f10aa211a4d6f2b95490a47
2021-12-03T00:48:42.000Z
[ "pytorch", "tensorboard", "t5", "text2text-generation", "dataset:wmt16", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
text2text-generation
false
aretw0
null
aretw0/t5-small-finetuned-en-to-ro-dataset_20
4
null
transformers
18,387
--- license: apache-2.0 tags: - generated_from_trainer datasets: - wmt16 metrics: - bleu model-index: - name: t5-small-finetuned-en-to-ro-dataset_20 results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: wmt16 type: wmt16 args: ro-en metrics: - name: Bleu type: bleu value: 7.3293 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-en-to-ro-dataset_20 This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the wmt16 dataset. It achieves the following results on the evaluation set: - Loss: 1.4052 - Bleu: 7.3293 - Gen Len: 18.2556 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------:|:-------:| | 0.6029 | 1.0 | 7629 | 1.4052 | 7.3293 | 18.2556 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.10.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3
aripo99/dummy_model
0c5af9342496651de1897d01e44df4aa5ba102f9
2021-07-02T01:28:52.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
aripo99
null
aripo99/dummy_model
4
null
transformers
18,388
Entry not found
arjunth2001/priv_qna
5493723c158c0e3166a859a87301ad6643eaa744
2021-10-07T02:48:20.000Z
[ "pytorch", "roberta", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
arjunth2001
null
arjunth2001/priv_qna
4
null
transformers
18,389
Entry not found
arnolfokam/roberta-base-pcm
74c3c92e8cfe7e6d252fc58408e71e693cde9a76
2021-11-24T21:18:39.000Z
[ "pytorch", "roberta", "token-classification", "pcm", "dataset:masakhaner", "transformers", "NER", "license:apache-2.0", "autotrain_compatible" ]
token-classification
false
arnolfokam
null
arnolfokam/roberta-base-pcm
4
null
transformers
18,390
--- language: - pcm tags: - NER datasets: - masakhaner metrics: - f1 - precision - recall license: apache-2.0 widget: - text: "Mixed Martial Arts joinbodi, Ultimate Fighting Championship, UFC don decide say dem go enta back di octagon on Saturday, 9 May, for Jacksonville, Florida." --- # Model description **roberta-base-pcm** is a model based on the fine-tuned RoBERTa base model. It has been trained to recognize four types of entities: - dates & time (DATE) - Location (LOC) - Organizations (ORG) - Person (PER) # Intended Use - Intended to be used for research purposes concerning Named Entity Recognition for African Languages. - Not intended for practical purposes. # Training Data This model was fine-tuned on the Nigerian Pidgin corpus **(pcm)** of the [MasakhaNER](https://github.com/masakhane-io/masakhane-ner) dataset. However, we thresholded the number of entity groups per sentence in this dataset to 10 entity groups. # Training procedure This model was trained on a single NVIDIA P5000 from [Paperspace](https://www.paperspace.com) #### Hyperparameters - **Learning Rate:** 5e-5 - **Batch Size:** 32 - **Maximum Sequence Length:** 164 - **Epochs:** 30 # Evaluation Data We evaluated this model on the test split of the Swahili corpus **(pcm)** present in the [MasakhaNER](https://github.com/masakhane-io/masakhane-ner) with no thresholding. # Metrics - Precision - Recall - F1-score # Limitations - The size of the pre-trained language model prevents its usage in anything other than research. - Lack of analysis concerning the bias and fairness in these models may make them dangerous if deployed into production system. - The train data is a less populated version of the original dataset in terms of entity groups per sentence. Therefore, this can negatively impact the performance. # Caveats and Recommendations - The topics in the dataset corpus are centered around **News**. Future training could be done with a more diverse corpus. # Results Model Name| Precision | Recall | F1-score -|-|-|- **roberta-base-pcm**| 88.55 | 82.45 | 85.39 # Usage ```python from transformers import AutoTokenizer, AutoModelForTokenClassification from transformers import pipeline tokenizer = AutoTokenizer.from_pretrained("arnolfokam/roberta-base-pcm") model = AutoModelForTokenClassification.from_pretrained("arnolfokam/roberta-base-pcm") nlp = pipeline("ner", model=model, tokenizer=tokenizer) example = "Mixed Martial Arts joinbodi, Ultimate Fighting Championship, UFC don decide say dem go enta back di octagon on Saturday, 9 May, for Jacksonville, Florida." ner_results = nlp(example) print(ner_results) ```
lmqg/t5-large-squad-default
88762565b4fdf52c2e687c432c9bef60fd2f275c
2022-06-01T00:24:37.000Z
[ "pytorch", "t5", "text2text-generation", "en", "dataset:squad", "transformers", "question generation", "question answer generation", "license:mit", "autotrain_compatible" ]
text2text-generation
false
lmqg
null
lmqg/t5-large-squad-default
4
null
transformers
18,391
--- language: - en tags: - question generation - question answer generation license: mit datasets: - squad metrics: - bleu - meteor - rouge widget: - text: "generate question: <hl> Beyonce <hl> further expanded her acting career, starring as blues singer Etta James in the 2008 musical biopic, Cadillac Records." example_title: "Example 1" - text: "generate question: Beyonce further expanded her acting career, starring as blues singer <hl> Etta James <hl> in the 2008 musical biopic, Cadillac Records." example_title: "Example 2" - text: "generate question: Beyonce further expanded her acting career, starring as blues singer Etta James in the 2008 musical biopic, <hl> Cadillac Records <hl> ." example_title: "Example 3" --- # T5 finetuned on Question Generation T5 model for question generation. Please visit [our repository](https://github.com/asahi417/t5-question-generation) for more detail.
asakawa/wav2vec2-base-demo-colab
2d5143e95ff19a1fae8c057229633158adef8761
2022-01-11T16:22:43.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
asakawa
null
asakawa/wav2vec2-base-demo-colab
4
null
transformers
18,392
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base-demo-colab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-demo-colab This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4500 - Wer: 0.3391 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.5329 | 4.0 | 500 | 1.5741 | 1.0400 | | 0.6432 | 8.0 | 1000 | 0.4571 | 0.4418 | | 0.2214 | 12.0 | 1500 | 0.4381 | 0.3823 | | 0.1294 | 16.0 | 2000 | 0.4706 | 0.3911 | | 0.0868 | 20.0 | 2500 | 0.5252 | 0.3662 | | 0.0616 | 24.0 | 3000 | 0.4828 | 0.3458 | | 0.0461 | 28.0 | 3500 | 0.4500 | 0.3391 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.14.0 - Tokenizers 0.10.3
asapp/sew-d-base-plus-100k
d5c36985b805ac614e8abb710d6a06806949e87c
2021-10-28T13:48:40.000Z
[ "pytorch", "sew-d", "feature-extraction", "en", "dataset:librispeech_asr", "arxiv:2109.06870", "transformers", "speech", "license:apache-2.0" ]
feature-extraction
false
asapp
null
asapp/sew-d-base-plus-100k
4
null
transformers
18,393
--- language: en datasets: - librispeech_asr tags: - speech license: apache-2.0 --- # SEW-D-base+ [SEW-D by ASAPP Research](https://github.com/asappresearch/sew) The base model pretrained on 16kHz sampled speech audio. When using the model make sure that your speech input is also sampled at 16Khz. Note that this model should be fine-tuned on a downstream task, like Automatic Speech Recognition, Speaker Identification, Intent Classification, Emotion Recognition, etc... Paper: [Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition](https://arxiv.org/abs/2109.06870) Authors: Felix Wu, Kwangyoun Kim, Jing Pan, Kyu Han, Kilian Q. Weinberger, Yoav Artzi **Abstract** This paper is a study of performance-efficiency trade-offs in pre-trained models for automatic speech recognition (ASR). We focus on wav2vec 2.0, and formalize several architecture designs that influence both the model performance and its efficiency. Putting together all our observations, we introduce SEW (Squeezed and Efficient Wav2vec), a pre-trained model architecture with significant improvements along both performance and efficiency dimensions across a variety of training setups. For example, under the 100h-960h semi-supervised setup on LibriSpeech, SEW achieves a 1.9x inference speedup compared to wav2vec 2.0, with a 13.5% relative reduction in word error rate. With a similar inference time, SEW reduces word error rate by 25-50% across different model sizes. The original model can be found under https://github.com/asappresearch/sew#model-checkpoints . # Usage See [this blog](https://huggingface.co/blog/fine-tune-wav2vec2-english) for more information on how to fine-tune the model. Note that the class `Wav2Vec2ForCTC` has to be replaced by `SEWDForCTC`.
ashish-chouhan/xlm-roberta-base-finetuned-marc
3dd9c44de7d474e11c844a6d186729a001a9827b
2021-10-16T11:34:29.000Z
[ "pytorch", "tensorboard", "xlm-roberta", "text-classification", "dataset:amazon_reviews_multi", "transformers", "generated_from_trainer", "license:mit", "model-index" ]
text-classification
false
ashish-chouhan
null
ashish-chouhan/xlm-roberta-base-finetuned-marc
4
null
transformers
18,394
--- license: mit tags: - generated_from_trainer datasets: - amazon_reviews_multi model-index: - name: xlm-roberta-base-finetuned-marc results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-marc This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the amazon_reviews_multi dataset. It achieves the following results on the evaluation set: - Loss: 1.0171 - Mae: 0.5310 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Mae | |:-------------:|:-----:|:----:|:---------------:|:------:| | 1.1404 | 1.0 | 308 | 1.0720 | 0.5398 | | 0.9805 | 2.0 | 616 | 1.0171 | 0.5310 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.9.0+cu111 - Datasets 1.13.3 - Tokenizers 0.10.3
ashraq/dv-electra-small
78f798b702c476a057cb9c6a06927bd52311369a
2021-11-03T22:53:52.000Z
[ "pytorch", "tf", "electra", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
ashraq
null
ashraq/dv-electra-small
4
1
transformers
18,395
Entry not found
ashraq/tsdae-bert-base-dv-news-title
5972d48ef54ac7d047659a8abc9a897dbb4edefd
2021-12-07T20:06:24.000Z
[ "pytorch", "bert", "feature-extraction", "dv", "sentence-transformers", "sentence-similarity", "transformers" ]
sentence-similarity
false
ashraq
null
ashraq/tsdae-bert-base-dv-news-title
4
1
sentence-transformers
18,396
--- language: - dv pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # Dhivehi TSDAE News BERT This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('ashraq/tsdae-bert-base-dv-news-title') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch def cls_pooling(model_output, attention_mask): return model_output[0][:,0] # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('ashraq/tsdae-bert-base-dv-news-title') model = AutoModel.from_pretrained('ashraq/tsdae-bert-base-dv-news-title') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, cls pooling. sentence_embeddings = cls_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 7331 with parameters: ``` {'batch_size': 64, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.DenoisingAutoEncoderLoss.DenoisingAutoEncoderLoss` Parameters of the fit()-Method: ``` { "epochs": 3, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 0.00024 }, "scheduler": "constantlr", "steps_per_epoch": null, "warmup_steps": 10000, "weight_decay": 0 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 514, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
ashwani-tanwar/Indo-Aryan-XLM-R-Base
588fce24b07a2be9233cff6110bb84a18f7eecd3
2020-12-12T02:52:59.000Z
[ "pytorch", "tf", "xlm-roberta", "fill-mask", "gu", "hi", "mr", "bn", "transformers", "autotrain_compatible" ]
fill-mask
false
ashwani-tanwar
null
ashwani-tanwar/Indo-Aryan-XLM-R-Base
4
null
transformers
18,397
--- language: - gu - hi - mr - bn --- # Indo-Aryan-XLM-R-Base This model is finetuned over [XLM-RoBERTa](https://huggingface.co/xlm-roberta-base) (XLM-R) using its base variant with the Hindi, Gujarati, Marathi, and Bengali languages from the Indo-Aryan family using the [OSCAR](https://oscar-corpus.com/) monolingual datasets. As these languages had imbalanced datasets, we used resampling strategies as used in pretraining the XLM-R to balance the resulting dataset after combining these languages. We used the same masked language modelling (MLM) objective which was used for pretraining the XLM-R. As it is built over the pretrained XLM-R, we leveraged *Transfer Learning* by exploiting the knowledge from its parent model. ## Dataset OSCAR corpus contains several diverse datasets for different languages. We followed the work of [CamemBERT](https://www.aclweb.org/anthology/2020.acl-main.645/) who reported better performance with this diverse dataset as compared to the other large homogenous datasets. ## Preprocessing and Training Procedure Please visit [this link](https://github.com/ashwanitanwar/nmt-transfer-learning-xlm-r#6-finetuning-xlm-r) for the detailed procedure. ## Usage - This model can be used for further finetuning for different NLP tasks using the Hindi, Gujarati, Marathi, and Bengali languages. - It can be used to generate contextualised word representations for the words from the above languages. - It can be used for domain adaptation. - It can be used to predict the missing words from their sentences. ## Demo ### Using the model to predict missing words ``` from transformers import pipeline unmasker = pipeline('fill-mask', model='ashwani-tanwar/Indo-Aryan-XLM-R-Base') pred_word = unmasker("અમદાવાદ એ ગુજરાતનું એક <mask> છે.") print(pred_word) ``` ``` [{'sequence': '<s> અમદાવાદ એ ગુજરાતનું એક શહેર છે.</s>', 'score': 0.7811868786811829, 'token': 85227, 'token_str': '▁શહેર'}, {'sequence': '<s> અમદાવાદ એ ગુજરાતનું એક ગામ છે.</s>', 'score': 0.055032357573509216, 'token': 66346, 'token_str': '▁ગામ'}, {'sequence': '<s> અમદાવાદ એ ગુજરાતનું એક નામ છે.</s>', 'score': 0.0287721399217844, 'token': 29565, 'token_str': '▁નામ'}, {'sequence': '<s> અમદાવાદ એ ગુજરાતનું એક રાજ્ય છે.</s>', 'score': 0.02565067447721958, 'token': 63678, 'token_str': '▁રાજ્ય'}, {'sequence': '<s> અમદાવાદ એ ગુજરાતનું એકનગર છે.</s>', 'score': 0.022877279669046402, 'token': 69702, 'token_str': 'નગર'}] ``` ### Using the model to generate contextualised word representations ``` from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("ashwani-tanwar/Indo-Aryan-XLM-R-Base") model = AutoModel.from_pretrained("ashwani-tanwar/Indo-Aryan-XLM-R-Base") sentence = "અમદાવાદ એ ગુજરાતનું એક શહેર છે." encoded_sentence = tokenizer(sentence, return_tensors='pt') context_word_rep = model(**encoded_sentence) ```
astremo/friendly_JA
4b2704a7c3c73535d61ee7b2b80b4bb55bf8b576
2022-05-22T14:57:21.000Z
[ "pytorch", "t5", "text2text-generation", "ja", "dataset:astremo/friendly_JA_corpus", "transformers", "japanese", "easy-japanese", "friendly-japanese", "sino-japanese", "katakana", "license:cc-by-4.0", "autotrain_compatible" ]
text2text-generation
false
astremo
null
astremo/friendly_JA
4
2
transformers
18,398
--- language: - ja license: cc-by-4.0 tags: - japanese - easy-japanese - friendly-japanese - sino-japanese - katakana datasets: - astremo/friendly_JA_corpus metrics: - bleu --- # friendly_JA-Model (T5 fine-tuned model) MT model trained using the friendly_JA Corpus attempting to make Japanese easier/more accessible to occidental people by using the Latin/English derived katakana lexicon instead of the standard Sino-Japanese lexicon # Examples | input | output| |---|---| |最適化を応用した機械翻訳モデルは高精度だ|オプティマイゼーションを応用したマシントランスレーションモデルは高いアキュラシーだ| |彼は架空の世界に住んでいる|彼はイマジナリー世界に住んでいる| |新型コロナウイルスに感染してしまった|コロナウイルスにかかってしまった| |深層学習は難しい|ディープラーニングはむずかしい| |新たな概念を紹介する|新しいコンセプトを紹介する| |津波の警報が流れた|ツナミのアラートが流れた| |南海トラフの災害は震源地による|南海トラフのディザスターはエピセンターによる| |息子は際どい内容の本を読んでしまった|子どもはセンシティブなコンテンツの本を読んでしまった| |彼女は非現金決済で払った|彼女はキャッシュレスで払った| |係員は会議の予定を調整している|担当の人はアジェンダを調整している| |友人とカラオケに行く予定があったが、彼女はどうしても美術館に行きたかった|友だちとカラオケに行くスケジュールがあったが、彼女はどうしてもミュージアムに行きたかった| |国際会議に参加しました|インターナショナルコンファレンスに参加しました| |部長は今日の会議に参加できかねました|部長は今日のミーティングに参加できませんでした。| |新型コロナウイルスの予防接種による心膜炎が多数報告されている|コロナウイルスのワクチンによるペリカーダイティスがレポートされている| |私はジョジョの奇妙な冒険が好き|私はジョジョのビザールアドベンチャーが好き| |新型コロナウイルスウイルス オミクロン株 1人死亡 8249人感染|コロナウイルス オミクロンバリアント 1人死んだ 8249人インフェクション| |2021年10月4日から岸田文雄は日本の総理大臣として勤めている|2021年10月4日から岸田文雄は日本のプライムミニスターとして働いている| # References t5 japanese pre-trained model: sonoisa t5-base-japanese (https://huggingface.co/sonoisa/t5-base-japanese) # License Shield: [![CC BY 4.0][cc-by-shield]][cc-by] This work is licensed under a [Creative Commons Attribution 4.0 International License][cc-by]. [![CC BY 4.0][cc-by-image]][cc-by] [cc-by]: http://creativecommons.org/licenses/by/4.0/ [cc-by-image]: https://i.creativecommons.org/l/by/4.0/88x31.png [cc-by-shield]: https://img.shields.io/badge/License-CC%20BY%204.0-lightgrey.svg
avneet/distilbert-base-uncased-finetuned-sst2
c84c214e2f581d66857e65b0c002ba3d4db93638
2021-08-02T16:33:20.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:glue", "transformers", "generated_from_trainer", "license:apache-2.0" ]
text-classification
false
avneet
null
avneet/distilbert-base-uncased-finetuned-sst2
4
null
transformers
18,399
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy model_index: - name: distilbert-base-uncased-finetuned-sst2 results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue args: sst2 metric: name: Accuracy type: accuracy value: 0.9151376146788991 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-sst2 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.3651 - Accuracy: 0.9151 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.1902 | 1.0 | 4210 | 0.3102 | 0.9117 | | 0.1293 | 2.0 | 8420 | 0.3672 | 0.9048 | | 0.084 | 3.0 | 12630 | 0.3651 | 0.9151 | | 0.0682 | 4.0 | 16840 | 0.3971 | 0.9037 | | 0.0438 | 5.0 | 21050 | 0.4720 | 0.9117 | ### Framework versions - Transformers 4.9.1 - Pytorch 1.9.0+cu102 - Datasets 1.11.0 - Tokenizers 0.10.3