modelId
stringlengths
4
112
sha
stringlengths
40
40
lastModified
stringlengths
24
24
tags
list
pipeline_tag
stringclasses
29 values
private
bool
1 class
author
stringlengths
2
38
config
null
id
stringlengths
4
112
downloads
float64
0
36.8M
likes
float64
0
712
library_name
stringclasses
17 values
__index_level_0__
int64
0
38.5k
readme
stringlengths
0
186k
SetFit/distilbert-base-uncased__sst2__train-32-5
97535708092c66424888ca731b60ff95de298a71
2022-02-10T07:32:51.000Z
[ "pytorch", "distilbert", "text-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
SetFit
null
SetFit/distilbert-base-uncased__sst2__train-32-5
4
null
transformers
18,200
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: distilbert-base-uncased__sst2__train-32-5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__sst2__train-32-5 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6248 - Accuracy: 0.6826 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.7136 | 1.0 | 13 | 0.6850 | 0.5385 | | 0.6496 | 2.0 | 26 | 0.6670 | 0.6154 | | 0.5895 | 3.0 | 39 | 0.6464 | 0.7692 | | 0.4271 | 4.0 | 52 | 0.6478 | 0.7692 | | 0.2182 | 5.0 | 65 | 0.6809 | 0.6923 | | 0.103 | 6.0 | 78 | 0.9119 | 0.6923 | | 0.0326 | 7.0 | 91 | 1.0718 | 0.6923 | | 0.0154 | 8.0 | 104 | 1.0721 | 0.7692 | | 0.0087 | 9.0 | 117 | 1.1416 | 0.7692 | | 0.0067 | 10.0 | 130 | 1.2088 | 0.7692 | | 0.005 | 11.0 | 143 | 1.2656 | 0.7692 | | 0.0037 | 12.0 | 156 | 1.3104 | 0.7692 | | 0.0032 | 13.0 | 169 | 1.3428 | 0.6923 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
SetFit/distilbert-base-uncased__sst2__train-32-6
e8cb84b59241fe4dcf97ff05f0c7b45f7c91e2ca
2022-02-10T07:33:45.000Z
[ "pytorch", "distilbert", "text-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
SetFit
null
SetFit/distilbert-base-uncased__sst2__train-32-6
4
null
transformers
18,201
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: distilbert-base-uncased__sst2__train-32-6 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__sst2__train-32-6 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5072 - Accuracy: 0.7650 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.7057 | 1.0 | 13 | 0.6704 | 0.6923 | | 0.6489 | 2.0 | 26 | 0.6228 | 0.8462 | | 0.5475 | 3.0 | 39 | 0.5079 | 0.8462 | | 0.4014 | 4.0 | 52 | 0.4203 | 0.8462 | | 0.1923 | 5.0 | 65 | 0.3872 | 0.8462 | | 0.1014 | 6.0 | 78 | 0.4909 | 0.8462 | | 0.0349 | 7.0 | 91 | 0.5460 | 0.8462 | | 0.0173 | 8.0 | 104 | 0.4867 | 0.8462 | | 0.0098 | 9.0 | 117 | 0.5274 | 0.8462 | | 0.0075 | 10.0 | 130 | 0.6086 | 0.8462 | | 0.0057 | 11.0 | 143 | 0.6604 | 0.8462 | | 0.0041 | 12.0 | 156 | 0.6904 | 0.8462 | | 0.0037 | 13.0 | 169 | 0.7164 | 0.8462 | | 0.0034 | 14.0 | 182 | 0.7368 | 0.8462 | | 0.0031 | 15.0 | 195 | 0.7565 | 0.8462 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
SetFit/distilbert-base-uncased__sst2__train-8-0
923d714bb5207fe3abe43562963443b617569f0a
2022-02-10T07:08:27.000Z
[ "pytorch", "distilbert", "text-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
SetFit
null
SetFit/distilbert-base-uncased__sst2__train-8-0
4
null
transformers
18,202
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: distilbert-base-uncased__sst2__train-8-0 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__sst2__train-8-0 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6920 - Accuracy: 0.5189 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6916 | 1.0 | 3 | 0.7035 | 0.25 | | 0.6852 | 2.0 | 6 | 0.7139 | 0.25 | | 0.6533 | 3.0 | 9 | 0.7192 | 0.25 | | 0.6211 | 4.0 | 12 | 0.7322 | 0.25 | | 0.5522 | 5.0 | 15 | 0.7561 | 0.25 | | 0.488 | 6.0 | 18 | 0.7883 | 0.25 | | 0.48 | 7.0 | 21 | 0.8224 | 0.25 | | 0.3948 | 8.0 | 24 | 0.8605 | 0.25 | | 0.3478 | 9.0 | 27 | 0.8726 | 0.25 | | 0.2723 | 10.0 | 30 | 0.8885 | 0.25 | | 0.2174 | 11.0 | 33 | 0.8984 | 0.5 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
SetFit/distilbert-base-uncased__sst2__train-8-1
c6957605df54b9de7f50171e29a36b383f162690
2022-02-10T07:09:19.000Z
[ "pytorch", "distilbert", "text-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
SetFit
null
SetFit/distilbert-base-uncased__sst2__train-8-1
4
null
transformers
18,203
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: distilbert-base-uncased__sst2__train-8-1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__sst2__train-8-1 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6930 - Accuracy: 0.5047 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.7082 | 1.0 | 3 | 0.7048 | 0.25 | | 0.6761 | 2.0 | 6 | 0.7249 | 0.25 | | 0.6653 | 3.0 | 9 | 0.7423 | 0.25 | | 0.6212 | 4.0 | 12 | 0.7727 | 0.25 | | 0.5932 | 5.0 | 15 | 0.8098 | 0.25 | | 0.5427 | 6.0 | 18 | 0.8496 | 0.25 | | 0.5146 | 7.0 | 21 | 0.8992 | 0.25 | | 0.4356 | 8.0 | 24 | 0.9494 | 0.25 | | 0.4275 | 9.0 | 27 | 0.9694 | 0.25 | | 0.3351 | 10.0 | 30 | 0.9968 | 0.25 | | 0.2812 | 11.0 | 33 | 1.0056 | 0.5 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
SetFit/distilbert-base-uncased__sst2__train-8-2
9915864d5dd92ff1850f653afe083b9e6b9a137a
2022-02-10T07:10:08.000Z
[ "pytorch", "distilbert", "text-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
SetFit
null
SetFit/distilbert-base-uncased__sst2__train-8-2
4
null
transformers
18,204
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: distilbert-base-uncased__sst2__train-8-2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__sst2__train-8-2 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6932 - Accuracy: 0.4931 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.7081 | 1.0 | 3 | 0.7031 | 0.25 | | 0.6853 | 2.0 | 6 | 0.7109 | 0.25 | | 0.6696 | 3.0 | 9 | 0.7211 | 0.25 | | 0.6174 | 4.0 | 12 | 0.7407 | 0.25 | | 0.5717 | 5.0 | 15 | 0.7625 | 0.25 | | 0.5096 | 6.0 | 18 | 0.7732 | 0.25 | | 0.488 | 7.0 | 21 | 0.7798 | 0.25 | | 0.4023 | 8.0 | 24 | 0.7981 | 0.25 | | 0.3556 | 9.0 | 27 | 0.8110 | 0.25 | | 0.2714 | 10.0 | 30 | 0.8269 | 0.25 | | 0.2295 | 11.0 | 33 | 0.8276 | 0.25 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
SetFit/distilbert-base-uncased__sst2__train-8-4
fdd3c0f72c6b6815bdfa19e5c1cf548008829fcc
2022-02-10T07:11:48.000Z
[ "pytorch", "distilbert", "text-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
SetFit
null
SetFit/distilbert-base-uncased__sst2__train-8-4
4
null
transformers
18,205
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: distilbert-base-uncased__sst2__train-8-4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__sst2__train-8-4 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6921 - Accuracy: 0.5107 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.7163 | 1.0 | 3 | 0.7100 | 0.25 | | 0.6785 | 2.0 | 6 | 0.7209 | 0.25 | | 0.6455 | 3.0 | 9 | 0.7321 | 0.25 | | 0.6076 | 4.0 | 12 | 0.7517 | 0.25 | | 0.5593 | 5.0 | 15 | 0.7780 | 0.25 | | 0.5202 | 6.0 | 18 | 0.7990 | 0.25 | | 0.4967 | 7.0 | 21 | 0.8203 | 0.25 | | 0.4158 | 8.0 | 24 | 0.8497 | 0.25 | | 0.3997 | 9.0 | 27 | 0.8638 | 0.25 | | 0.3064 | 10.0 | 30 | 0.8732 | 0.25 | | 0.2618 | 11.0 | 33 | 0.8669 | 0.25 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
SetFit/distilbert-base-uncased__sst2__train-8-5
31c5f0a6ecb77a7eb7b543ce9e2721b0db08bdd7
2022-02-10T07:13:25.000Z
[ "pytorch", "distilbert", "text-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
SetFit
null
SetFit/distilbert-base-uncased__sst2__train-8-5
4
null
transformers
18,206
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: distilbert-base-uncased__sst2__train-8-5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__sst2__train-8-5 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.8419 - Accuracy: 0.6172 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.7057 | 1.0 | 3 | 0.6848 | 0.75 | | 0.6681 | 2.0 | 6 | 0.6875 | 0.5 | | 0.6591 | 3.0 | 9 | 0.6868 | 0.25 | | 0.6052 | 4.0 | 12 | 0.6943 | 0.25 | | 0.557 | 5.0 | 15 | 0.7078 | 0.25 | | 0.4954 | 6.0 | 18 | 0.7168 | 0.25 | | 0.4593 | 7.0 | 21 | 0.7185 | 0.25 | | 0.3936 | 8.0 | 24 | 0.7212 | 0.25 | | 0.3699 | 9.0 | 27 | 0.6971 | 0.5 | | 0.2916 | 10.0 | 30 | 0.6827 | 0.5 | | 0.2511 | 11.0 | 33 | 0.6464 | 0.5 | | 0.2109 | 12.0 | 36 | 0.6344 | 0.75 | | 0.1655 | 13.0 | 39 | 0.6377 | 0.75 | | 0.1412 | 14.0 | 42 | 0.6398 | 0.75 | | 0.1157 | 15.0 | 45 | 0.6315 | 0.75 | | 0.0895 | 16.0 | 48 | 0.6210 | 0.75 | | 0.0783 | 17.0 | 51 | 0.5918 | 0.75 | | 0.0606 | 18.0 | 54 | 0.5543 | 0.75 | | 0.0486 | 19.0 | 57 | 0.5167 | 0.75 | | 0.0405 | 20.0 | 60 | 0.4862 | 0.75 | | 0.0376 | 21.0 | 63 | 0.4644 | 0.75 | | 0.0294 | 22.0 | 66 | 0.4497 | 0.75 | | 0.0261 | 23.0 | 69 | 0.4428 | 0.75 | | 0.0238 | 24.0 | 72 | 0.4408 | 0.75 | | 0.0217 | 25.0 | 75 | 0.4392 | 0.75 | | 0.0187 | 26.0 | 78 | 0.4373 | 0.75 | | 0.0177 | 27.0 | 81 | 0.4360 | 0.75 | | 0.0136 | 28.0 | 84 | 0.4372 | 0.75 | | 0.0144 | 29.0 | 87 | 0.4368 | 0.75 | | 0.014 | 30.0 | 90 | 0.4380 | 0.75 | | 0.0137 | 31.0 | 93 | 0.4383 | 0.75 | | 0.0133 | 32.0 | 96 | 0.4409 | 0.75 | | 0.013 | 33.0 | 99 | 0.4380 | 0.75 | | 0.0096 | 34.0 | 102 | 0.4358 | 0.75 | | 0.012 | 35.0 | 105 | 0.4339 | 0.75 | | 0.0122 | 36.0 | 108 | 0.4305 | 0.75 | | 0.0109 | 37.0 | 111 | 0.4267 | 0.75 | | 0.0121 | 38.0 | 114 | 0.4231 | 0.75 | | 0.0093 | 39.0 | 117 | 0.4209 | 0.75 | | 0.0099 | 40.0 | 120 | 0.4199 | 0.75 | | 0.0091 | 41.0 | 123 | 0.4184 | 0.75 | | 0.0116 | 42.0 | 126 | 0.4173 | 0.75 | | 0.01 | 43.0 | 129 | 0.4163 | 0.75 | | 0.0098 | 44.0 | 132 | 0.4153 | 0.75 | | 0.0101 | 45.0 | 135 | 0.4155 | 0.75 | | 0.0088 | 46.0 | 138 | 0.4149 | 0.75 | | 0.0087 | 47.0 | 141 | 0.4150 | 0.75 | | 0.0093 | 48.0 | 144 | 0.4147 | 0.75 | | 0.0081 | 49.0 | 147 | 0.4147 | 0.75 | | 0.009 | 50.0 | 150 | 0.4150 | 0.75 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
SetFit/distilbert-base-uncased__sst2__train-8-6
053aa4d02baf3d434ba4cbea619a78e48a6b713b
2022-02-10T07:14:49.000Z
[ "pytorch", "distilbert", "text-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
SetFit
null
SetFit/distilbert-base-uncased__sst2__train-8-6
4
null
transformers
18,207
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: distilbert-base-uncased__sst2__train-8-6 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__sst2__train-8-6 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5336 - Accuracy: 0.7523 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.7161 | 1.0 | 3 | 0.6941 | 0.5 | | 0.6786 | 2.0 | 6 | 0.7039 | 0.25 | | 0.6586 | 3.0 | 9 | 0.7090 | 0.25 | | 0.6121 | 4.0 | 12 | 0.7183 | 0.25 | | 0.5696 | 5.0 | 15 | 0.7266 | 0.25 | | 0.522 | 6.0 | 18 | 0.7305 | 0.25 | | 0.4899 | 7.0 | 21 | 0.7339 | 0.25 | | 0.3985 | 8.0 | 24 | 0.7429 | 0.25 | | 0.3758 | 9.0 | 27 | 0.7224 | 0.25 | | 0.2876 | 10.0 | 30 | 0.7068 | 0.5 | | 0.2498 | 11.0 | 33 | 0.6751 | 0.75 | | 0.1921 | 12.0 | 36 | 0.6487 | 0.75 | | 0.1491 | 13.0 | 39 | 0.6261 | 0.75 | | 0.1276 | 14.0 | 42 | 0.6102 | 0.75 | | 0.0996 | 15.0 | 45 | 0.5964 | 0.75 | | 0.073 | 16.0 | 48 | 0.6019 | 0.75 | | 0.0627 | 17.0 | 51 | 0.5933 | 0.75 | | 0.053 | 18.0 | 54 | 0.5768 | 0.75 | | 0.0403 | 19.0 | 57 | 0.5698 | 0.75 | | 0.0328 | 20.0 | 60 | 0.5656 | 0.75 | | 0.03 | 21.0 | 63 | 0.5634 | 0.75 | | 0.025 | 22.0 | 66 | 0.5620 | 0.75 | | 0.0209 | 23.0 | 69 | 0.5623 | 0.75 | | 0.0214 | 24.0 | 72 | 0.5606 | 0.75 | | 0.0191 | 25.0 | 75 | 0.5565 | 0.75 | | 0.0173 | 26.0 | 78 | 0.5485 | 0.75 | | 0.0175 | 27.0 | 81 | 0.5397 | 0.75 | | 0.0132 | 28.0 | 84 | 0.5322 | 0.75 | | 0.0138 | 29.0 | 87 | 0.5241 | 0.75 | | 0.0128 | 30.0 | 90 | 0.5235 | 0.75 | | 0.0126 | 31.0 | 93 | 0.5253 | 0.75 | | 0.012 | 32.0 | 96 | 0.5317 | 0.75 | | 0.0118 | 33.0 | 99 | 0.5342 | 0.75 | | 0.0092 | 34.0 | 102 | 0.5388 | 0.75 | | 0.0117 | 35.0 | 105 | 0.5414 | 0.75 | | 0.0124 | 36.0 | 108 | 0.5453 | 0.75 | | 0.0109 | 37.0 | 111 | 0.5506 | 0.75 | | 0.0112 | 38.0 | 114 | 0.5555 | 0.75 | | 0.0087 | 39.0 | 117 | 0.5597 | 0.75 | | 0.01 | 40.0 | 120 | 0.5640 | 0.75 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
SetFit/distilbert-base-uncased__sst2__train-8-7
e5a0510d963ebf750f4893ed8d52747b65a85bdc
2022-02-10T07:15:41.000Z
[ "pytorch", "distilbert", "text-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
SetFit
null
SetFit/distilbert-base-uncased__sst2__train-8-7
4
null
transformers
18,208
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: distilbert-base-uncased__sst2__train-8-7 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__sst2__train-8-7 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6950 - Accuracy: 0.4618 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.7156 | 1.0 | 3 | 0.6965 | 0.25 | | 0.6645 | 2.0 | 6 | 0.7059 | 0.25 | | 0.6368 | 3.0 | 9 | 0.7179 | 0.25 | | 0.5944 | 4.0 | 12 | 0.7408 | 0.25 | | 0.5369 | 5.0 | 15 | 0.7758 | 0.25 | | 0.449 | 6.0 | 18 | 0.8009 | 0.25 | | 0.4352 | 7.0 | 21 | 0.8209 | 0.5 | | 0.3462 | 8.0 | 24 | 0.8470 | 0.5 | | 0.3028 | 9.0 | 27 | 0.8579 | 0.5 | | 0.2365 | 10.0 | 30 | 0.8704 | 0.5 | | 0.2023 | 11.0 | 33 | 0.8770 | 0.5 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
SetFit/distilbert-base-uncased__sst2__train-8-8
d04140330b1f481cbbfc95566cab2aaaa8a90a4d
2022-02-10T07:16:33.000Z
[ "pytorch", "distilbert", "text-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
SetFit
null
SetFit/distilbert-base-uncased__sst2__train-8-8
4
null
transformers
18,209
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: distilbert-base-uncased__sst2__train-8-8 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__sst2__train-8-8 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6925 - Accuracy: 0.5200 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.7061 | 1.0 | 3 | 0.6899 | 0.75 | | 0.6627 | 2.0 | 6 | 0.7026 | 0.25 | | 0.644 | 3.0 | 9 | 0.7158 | 0.25 | | 0.6087 | 4.0 | 12 | 0.7325 | 0.25 | | 0.5602 | 5.0 | 15 | 0.7555 | 0.25 | | 0.5034 | 6.0 | 18 | 0.7725 | 0.25 | | 0.4672 | 7.0 | 21 | 0.7983 | 0.25 | | 0.403 | 8.0 | 24 | 0.8314 | 0.25 | | 0.3571 | 9.0 | 27 | 0.8555 | 0.25 | | 0.2792 | 10.0 | 30 | 0.9065 | 0.25 | | 0.2373 | 11.0 | 33 | 0.9286 | 0.25 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
SetFit/distilbert-base-uncased__sst2__train-8-9
1dd1a3db6cdd2fdf14bd0af335af40a4191d4c85
2022-02-10T07:17:41.000Z
[ "pytorch", "distilbert", "text-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
SetFit
null
SetFit/distilbert-base-uncased__sst2__train-8-9
4
null
transformers
18,210
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: distilbert-base-uncased__sst2__train-8-9 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__sst2__train-8-9 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6925 - Accuracy: 0.5140 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.7204 | 1.0 | 3 | 0.7025 | 0.5 | | 0.6885 | 2.0 | 6 | 0.7145 | 0.5 | | 0.6662 | 3.0 | 9 | 0.7222 | 0.5 | | 0.6182 | 4.0 | 12 | 0.7427 | 0.25 | | 0.5707 | 5.0 | 15 | 0.7773 | 0.25 | | 0.5247 | 6.0 | 18 | 0.8137 | 0.25 | | 0.5003 | 7.0 | 21 | 0.8556 | 0.25 | | 0.4195 | 8.0 | 24 | 0.9089 | 0.5 | | 0.387 | 9.0 | 27 | 0.9316 | 0.25 | | 0.2971 | 10.0 | 30 | 0.9558 | 0.25 | | 0.2581 | 11.0 | 33 | 0.9420 | 0.25 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
SetFit/distilbert-base-uncased__subj__all-train
46f584e9c35de22e8d654bc69ac1bfa314b2647e
2022-01-26T20:54:03.000Z
[ "pytorch", "distilbert", "text-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
SetFit
null
SetFit/distilbert-base-uncased__subj__all-train
4
null
transformers
18,211
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: distilbert-base-uncased__subj__all-train results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__subj__all-train This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3193 - Accuracy: 0.9485 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.1992 | 1.0 | 500 | 0.1236 | 0.963 | | 0.084 | 2.0 | 1000 | 0.1428 | 0.963 | | 0.0333 | 3.0 | 1500 | 0.1906 | 0.965 | | 0.0159 | 4.0 | 2000 | 0.3193 | 0.9485 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.1+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
SetFit/distilbert-base-uncased__subj__train-8-1
7003ea9848933dc3e3b2a6d3cf3127f16b26c87a
2022-02-09T20:19:28.000Z
[ "pytorch", "distilbert", "text-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
SetFit
null
SetFit/distilbert-base-uncased__subj__train-8-1
4
null
transformers
18,212
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: distilbert-base-uncased__subj__train-8-1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__subj__train-8-1 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5488 - Accuracy: 0.791 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.703 | 1.0 | 3 | 0.6906 | 0.5 | | 0.666 | 2.0 | 6 | 0.6945 | 0.25 | | 0.63 | 3.0 | 9 | 0.6885 | 0.5 | | 0.588 | 4.0 | 12 | 0.6888 | 0.25 | | 0.5181 | 5.0 | 15 | 0.6899 | 0.25 | | 0.4508 | 6.0 | 18 | 0.6770 | 0.5 | | 0.4025 | 7.0 | 21 | 0.6579 | 0.5 | | 0.3361 | 8.0 | 24 | 0.6392 | 0.5 | | 0.2919 | 9.0 | 27 | 0.6113 | 0.5 | | 0.2151 | 10.0 | 30 | 0.5774 | 0.75 | | 0.1728 | 11.0 | 33 | 0.5248 | 0.75 | | 0.1313 | 12.0 | 36 | 0.4824 | 0.75 | | 0.1046 | 13.0 | 39 | 0.4456 | 0.75 | | 0.0858 | 14.0 | 42 | 0.4076 | 0.75 | | 0.0679 | 15.0 | 45 | 0.3755 | 0.75 | | 0.0485 | 16.0 | 48 | 0.3422 | 0.75 | | 0.0416 | 17.0 | 51 | 0.3055 | 0.75 | | 0.0358 | 18.0 | 54 | 0.2731 | 1.0 | | 0.0277 | 19.0 | 57 | 0.2443 | 1.0 | | 0.0234 | 20.0 | 60 | 0.2187 | 1.0 | | 0.0223 | 21.0 | 63 | 0.1960 | 1.0 | | 0.0187 | 22.0 | 66 | 0.1762 | 1.0 | | 0.017 | 23.0 | 69 | 0.1629 | 1.0 | | 0.0154 | 24.0 | 72 | 0.1543 | 1.0 | | 0.0164 | 25.0 | 75 | 0.1476 | 1.0 | | 0.0131 | 26.0 | 78 | 0.1423 | 1.0 | | 0.0139 | 27.0 | 81 | 0.1387 | 1.0 | | 0.0107 | 28.0 | 84 | 0.1360 | 1.0 | | 0.0108 | 29.0 | 87 | 0.1331 | 1.0 | | 0.0105 | 30.0 | 90 | 0.1308 | 1.0 | | 0.0106 | 31.0 | 93 | 0.1276 | 1.0 | | 0.0104 | 32.0 | 96 | 0.1267 | 1.0 | | 0.0095 | 33.0 | 99 | 0.1255 | 1.0 | | 0.0076 | 34.0 | 102 | 0.1243 | 1.0 | | 0.0094 | 35.0 | 105 | 0.1235 | 1.0 | | 0.0103 | 36.0 | 108 | 0.1228 | 1.0 | | 0.0086 | 37.0 | 111 | 0.1231 | 1.0 | | 0.0094 | 38.0 | 114 | 0.1236 | 1.0 | | 0.0074 | 39.0 | 117 | 0.1240 | 1.0 | | 0.0085 | 40.0 | 120 | 0.1246 | 1.0 | | 0.0079 | 41.0 | 123 | 0.1253 | 1.0 | | 0.0088 | 42.0 | 126 | 0.1248 | 1.0 | | 0.0082 | 43.0 | 129 | 0.1244 | 1.0 | | 0.0082 | 44.0 | 132 | 0.1234 | 1.0 | | 0.0082 | 45.0 | 135 | 0.1223 | 1.0 | | 0.0071 | 46.0 | 138 | 0.1212 | 1.0 | | 0.0073 | 47.0 | 141 | 0.1208 | 1.0 | | 0.0081 | 48.0 | 144 | 0.1205 | 1.0 | | 0.0067 | 49.0 | 147 | 0.1202 | 1.0 | | 0.0077 | 50.0 | 150 | 0.1202 | 1.0 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
SetFit/distilbert-base-uncased__subj__train-8-2
62d27832f1e977f00a43d981b1b879d68f811640
2022-02-09T20:21:28.000Z
[ "pytorch", "distilbert", "text-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
SetFit
null
SetFit/distilbert-base-uncased__subj__train-8-2
4
null
transformers
18,213
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: distilbert-base-uncased__subj__train-8-2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__subj__train-8-2 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3081 - Accuracy: 0.8755 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.7146 | 1.0 | 3 | 0.6798 | 0.75 | | 0.6737 | 2.0 | 6 | 0.6847 | 0.75 | | 0.6519 | 3.0 | 9 | 0.6783 | 0.75 | | 0.6105 | 4.0 | 12 | 0.6812 | 0.25 | | 0.5463 | 5.0 | 15 | 0.6869 | 0.25 | | 0.4922 | 6.0 | 18 | 0.6837 | 0.5 | | 0.4543 | 7.0 | 21 | 0.6716 | 0.5 | | 0.3856 | 8.0 | 24 | 0.6613 | 0.75 | | 0.3475 | 9.0 | 27 | 0.6282 | 0.75 | | 0.2717 | 10.0 | 30 | 0.6045 | 0.75 | | 0.2347 | 11.0 | 33 | 0.5620 | 0.75 | | 0.1979 | 12.0 | 36 | 0.5234 | 1.0 | | 0.1535 | 13.0 | 39 | 0.4771 | 1.0 | | 0.1332 | 14.0 | 42 | 0.4277 | 1.0 | | 0.1041 | 15.0 | 45 | 0.3785 | 1.0 | | 0.082 | 16.0 | 48 | 0.3318 | 1.0 | | 0.0672 | 17.0 | 51 | 0.2885 | 1.0 | | 0.0538 | 18.0 | 54 | 0.2568 | 1.0 | | 0.0412 | 19.0 | 57 | 0.2356 | 1.0 | | 0.0361 | 20.0 | 60 | 0.2217 | 1.0 | | 0.0303 | 21.0 | 63 | 0.2125 | 1.0 | | 0.0268 | 22.0 | 66 | 0.2060 | 1.0 | | 0.0229 | 23.0 | 69 | 0.2015 | 1.0 | | 0.0215 | 24.0 | 72 | 0.1989 | 1.0 | | 0.0211 | 25.0 | 75 | 0.1969 | 1.0 | | 0.0172 | 26.0 | 78 | 0.1953 | 1.0 | | 0.0165 | 27.0 | 81 | 0.1935 | 1.0 | | 0.0132 | 28.0 | 84 | 0.1923 | 1.0 | | 0.0146 | 29.0 | 87 | 0.1914 | 1.0 | | 0.0125 | 30.0 | 90 | 0.1904 | 1.0 | | 0.0119 | 31.0 | 93 | 0.1897 | 1.0 | | 0.0122 | 32.0 | 96 | 0.1886 | 1.0 | | 0.0118 | 33.0 | 99 | 0.1875 | 1.0 | | 0.0097 | 34.0 | 102 | 0.1866 | 1.0 | | 0.0111 | 35.0 | 105 | 0.1861 | 1.0 | | 0.0111 | 36.0 | 108 | 0.1855 | 1.0 | | 0.0102 | 37.0 | 111 | 0.1851 | 1.0 | | 0.0109 | 38.0 | 114 | 0.1851 | 1.0 | | 0.0085 | 39.0 | 117 | 0.1854 | 1.0 | | 0.0089 | 40.0 | 120 | 0.1855 | 1.0 | | 0.0092 | 41.0 | 123 | 0.1863 | 1.0 | | 0.0105 | 42.0 | 126 | 0.1868 | 1.0 | | 0.0089 | 43.0 | 129 | 0.1874 | 1.0 | | 0.0091 | 44.0 | 132 | 0.1877 | 1.0 | | 0.0096 | 45.0 | 135 | 0.1881 | 1.0 | | 0.0081 | 46.0 | 138 | 0.1881 | 1.0 | | 0.0086 | 47.0 | 141 | 0.1883 | 1.0 | | 0.009 | 48.0 | 144 | 0.1884 | 1.0 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
SetFit/distilbert-base-uncased__subj__train-8-3
5e0dd7d4d8e9b9ca1b6e6e6cb3c76b6d04d57c03
2022-02-09T20:23:31.000Z
[ "pytorch", "distilbert", "text-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
SetFit
null
SetFit/distilbert-base-uncased__subj__train-8-3
4
null
transformers
18,214
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: distilbert-base-uncased__subj__train-8-3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__subj__train-8-3 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3496 - Accuracy: 0.859 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.7136 | 1.0 | 3 | 0.6875 | 0.75 | | 0.6702 | 2.0 | 6 | 0.6824 | 0.75 | | 0.6456 | 3.0 | 9 | 0.6687 | 0.75 | | 0.5934 | 4.0 | 12 | 0.6564 | 0.75 | | 0.537 | 5.0 | 15 | 0.6428 | 0.75 | | 0.4812 | 6.0 | 18 | 0.6180 | 0.75 | | 0.4279 | 7.0 | 21 | 0.5864 | 0.75 | | 0.3608 | 8.0 | 24 | 0.5540 | 0.75 | | 0.3076 | 9.0 | 27 | 0.5012 | 1.0 | | 0.2292 | 10.0 | 30 | 0.4497 | 1.0 | | 0.1991 | 11.0 | 33 | 0.3945 | 1.0 | | 0.1495 | 12.0 | 36 | 0.3483 | 1.0 | | 0.1176 | 13.0 | 39 | 0.3061 | 1.0 | | 0.0947 | 14.0 | 42 | 0.2683 | 1.0 | | 0.0761 | 15.0 | 45 | 0.2295 | 1.0 | | 0.0584 | 16.0 | 48 | 0.1996 | 1.0 | | 0.0451 | 17.0 | 51 | 0.1739 | 1.0 | | 0.0387 | 18.0 | 54 | 0.1521 | 1.0 | | 0.0272 | 19.0 | 57 | 0.1333 | 1.0 | | 0.0247 | 20.0 | 60 | 0.1171 | 1.0 | | 0.0243 | 21.0 | 63 | 0.1044 | 1.0 | | 0.0206 | 22.0 | 66 | 0.0943 | 1.0 | | 0.0175 | 23.0 | 69 | 0.0859 | 1.0 | | 0.0169 | 24.0 | 72 | 0.0799 | 1.0 | | 0.0162 | 25.0 | 75 | 0.0746 | 1.0 | | 0.0137 | 26.0 | 78 | 0.0705 | 1.0 | | 0.0141 | 27.0 | 81 | 0.0674 | 1.0 | | 0.0107 | 28.0 | 84 | 0.0654 | 1.0 | | 0.0117 | 29.0 | 87 | 0.0634 | 1.0 | | 0.0113 | 30.0 | 90 | 0.0617 | 1.0 | | 0.0107 | 31.0 | 93 | 0.0599 | 1.0 | | 0.0106 | 32.0 | 96 | 0.0585 | 1.0 | | 0.0101 | 33.0 | 99 | 0.0568 | 1.0 | | 0.0084 | 34.0 | 102 | 0.0553 | 1.0 | | 0.0101 | 35.0 | 105 | 0.0539 | 1.0 | | 0.0102 | 36.0 | 108 | 0.0529 | 1.0 | | 0.009 | 37.0 | 111 | 0.0520 | 1.0 | | 0.0092 | 38.0 | 114 | 0.0511 | 1.0 | | 0.0073 | 39.0 | 117 | 0.0504 | 1.0 | | 0.0081 | 40.0 | 120 | 0.0497 | 1.0 | | 0.0079 | 41.0 | 123 | 0.0492 | 1.0 | | 0.0092 | 42.0 | 126 | 0.0488 | 1.0 | | 0.008 | 43.0 | 129 | 0.0483 | 1.0 | | 0.0087 | 44.0 | 132 | 0.0479 | 1.0 | | 0.009 | 45.0 | 135 | 0.0474 | 1.0 | | 0.0076 | 46.0 | 138 | 0.0470 | 1.0 | | 0.0075 | 47.0 | 141 | 0.0467 | 1.0 | | 0.008 | 48.0 | 144 | 0.0465 | 1.0 | | 0.0069 | 49.0 | 147 | 0.0464 | 1.0 | | 0.0077 | 50.0 | 150 | 0.0464 | 1.0 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
SetFit/distilbert-base-uncased__subj__train-8-6
e54ab8cae10be4e73686399ff59d3e702995b42c
2022-02-09T20:28:41.000Z
[ "pytorch", "distilbert", "text-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
SetFit
null
SetFit/distilbert-base-uncased__subj__train-8-6
4
null
transformers
18,215
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: distilbert-base-uncased__subj__train-8-6 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__subj__train-8-6 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6075 - Accuracy: 0.7485 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.7163 | 1.0 | 3 | 0.6923 | 0.5 | | 0.6648 | 2.0 | 6 | 0.6838 | 0.5 | | 0.6329 | 3.0 | 9 | 0.6747 | 0.75 | | 0.5836 | 4.0 | 12 | 0.6693 | 0.5 | | 0.5287 | 5.0 | 15 | 0.6670 | 0.25 | | 0.4585 | 6.0 | 18 | 0.6517 | 0.5 | | 0.415 | 7.0 | 21 | 0.6290 | 0.5 | | 0.3353 | 8.0 | 24 | 0.6019 | 0.5 | | 0.2841 | 9.0 | 27 | 0.5613 | 0.75 | | 0.2203 | 10.0 | 30 | 0.5222 | 1.0 | | 0.1743 | 11.0 | 33 | 0.4769 | 1.0 | | 0.1444 | 12.0 | 36 | 0.4597 | 1.0 | | 0.1079 | 13.0 | 39 | 0.4462 | 1.0 | | 0.0891 | 14.0 | 42 | 0.4216 | 1.0 | | 0.0704 | 15.0 | 45 | 0.3880 | 1.0 | | 0.0505 | 16.0 | 48 | 0.3663 | 1.0 | | 0.0428 | 17.0 | 51 | 0.3536 | 1.0 | | 0.0356 | 18.0 | 54 | 0.3490 | 1.0 | | 0.0283 | 19.0 | 57 | 0.3531 | 1.0 | | 0.025 | 20.0 | 60 | 0.3595 | 1.0 | | 0.0239 | 21.0 | 63 | 0.3594 | 1.0 | | 0.0202 | 22.0 | 66 | 0.3521 | 1.0 | | 0.0168 | 23.0 | 69 | 0.3475 | 1.0 | | 0.0159 | 24.0 | 72 | 0.3458 | 1.0 | | 0.0164 | 25.0 | 75 | 0.3409 | 1.0 | | 0.0132 | 26.0 | 78 | 0.3360 | 1.0 | | 0.0137 | 27.0 | 81 | 0.3302 | 1.0 | | 0.0112 | 28.0 | 84 | 0.3235 | 1.0 | | 0.0113 | 29.0 | 87 | 0.3178 | 1.0 | | 0.0111 | 30.0 | 90 | 0.3159 | 1.0 | | 0.0113 | 31.0 | 93 | 0.3108 | 1.0 | | 0.0107 | 32.0 | 96 | 0.3101 | 1.0 | | 0.0101 | 33.0 | 99 | 0.3100 | 1.0 | | 0.0083 | 34.0 | 102 | 0.3110 | 1.0 | | 0.0092 | 35.0 | 105 | 0.3117 | 1.0 | | 0.0102 | 36.0 | 108 | 0.3104 | 1.0 | | 0.0086 | 37.0 | 111 | 0.3086 | 1.0 | | 0.0092 | 38.0 | 114 | 0.3047 | 1.0 | | 0.0072 | 39.0 | 117 | 0.3024 | 1.0 | | 0.0079 | 40.0 | 120 | 0.3014 | 1.0 | | 0.0079 | 41.0 | 123 | 0.2983 | 1.0 | | 0.0091 | 42.0 | 126 | 0.2948 | 1.0 | | 0.0077 | 43.0 | 129 | 0.2915 | 1.0 | | 0.0085 | 44.0 | 132 | 0.2890 | 1.0 | | 0.009 | 45.0 | 135 | 0.2870 | 1.0 | | 0.0073 | 46.0 | 138 | 0.2856 | 1.0 | | 0.0073 | 47.0 | 141 | 0.2844 | 1.0 | | 0.0076 | 48.0 | 144 | 0.2841 | 1.0 | | 0.0065 | 49.0 | 147 | 0.2836 | 1.0 | | 0.0081 | 50.0 | 150 | 0.2835 | 1.0 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
SetFit/distilbert-base-uncased__subj__train-8-8
9b69b190892f79f99b88ec5b5ef6f1421438daee
2022-02-09T20:32:49.000Z
[ "pytorch", "distilbert", "text-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
SetFit
null
SetFit/distilbert-base-uncased__subj__train-8-8
4
null
transformers
18,216
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: distilbert-base-uncased__subj__train-8-8 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__subj__train-8-8 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3160 - Accuracy: 0.8735 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.7187 | 1.0 | 3 | 0.6776 | 1.0 | | 0.684 | 2.0 | 6 | 0.6608 | 1.0 | | 0.6532 | 3.0 | 9 | 0.6364 | 1.0 | | 0.5996 | 4.0 | 12 | 0.6119 | 1.0 | | 0.5242 | 5.0 | 15 | 0.5806 | 1.0 | | 0.4612 | 6.0 | 18 | 0.5320 | 1.0 | | 0.4192 | 7.0 | 21 | 0.4714 | 1.0 | | 0.3274 | 8.0 | 24 | 0.4071 | 1.0 | | 0.2871 | 9.0 | 27 | 0.3378 | 1.0 | | 0.2082 | 10.0 | 30 | 0.2822 | 1.0 | | 0.1692 | 11.0 | 33 | 0.2271 | 1.0 | | 0.1242 | 12.0 | 36 | 0.1793 | 1.0 | | 0.0977 | 13.0 | 39 | 0.1417 | 1.0 | | 0.0776 | 14.0 | 42 | 0.1117 | 1.0 | | 0.0631 | 15.0 | 45 | 0.0894 | 1.0 | | 0.0453 | 16.0 | 48 | 0.0733 | 1.0 | | 0.0399 | 17.0 | 51 | 0.0617 | 1.0 | | 0.0333 | 18.0 | 54 | 0.0528 | 1.0 | | 0.0266 | 19.0 | 57 | 0.0454 | 1.0 | | 0.0234 | 20.0 | 60 | 0.0393 | 1.0 | | 0.0223 | 21.0 | 63 | 0.0345 | 1.0 | | 0.0195 | 22.0 | 66 | 0.0309 | 1.0 | | 0.0161 | 23.0 | 69 | 0.0281 | 1.0 | | 0.0167 | 24.0 | 72 | 0.0260 | 1.0 | | 0.0163 | 25.0 | 75 | 0.0242 | 1.0 | | 0.0134 | 26.0 | 78 | 0.0227 | 1.0 | | 0.0128 | 27.0 | 81 | 0.0214 | 1.0 | | 0.0101 | 28.0 | 84 | 0.0204 | 1.0 | | 0.0109 | 29.0 | 87 | 0.0194 | 1.0 | | 0.0112 | 30.0 | 90 | 0.0186 | 1.0 | | 0.0108 | 31.0 | 93 | 0.0179 | 1.0 | | 0.011 | 32.0 | 96 | 0.0174 | 1.0 | | 0.0099 | 33.0 | 99 | 0.0169 | 1.0 | | 0.0083 | 34.0 | 102 | 0.0164 | 1.0 | | 0.0096 | 35.0 | 105 | 0.0160 | 1.0 | | 0.01 | 36.0 | 108 | 0.0156 | 1.0 | | 0.0084 | 37.0 | 111 | 0.0152 | 1.0 | | 0.0089 | 38.0 | 114 | 0.0149 | 1.0 | | 0.0073 | 39.0 | 117 | 0.0146 | 1.0 | | 0.0082 | 40.0 | 120 | 0.0143 | 1.0 | | 0.008 | 41.0 | 123 | 0.0141 | 1.0 | | 0.0093 | 42.0 | 126 | 0.0139 | 1.0 | | 0.0078 | 43.0 | 129 | 0.0138 | 1.0 | | 0.0086 | 44.0 | 132 | 0.0136 | 1.0 | | 0.009 | 45.0 | 135 | 0.0135 | 1.0 | | 0.0072 | 46.0 | 138 | 0.0134 | 1.0 | | 0.0075 | 47.0 | 141 | 0.0133 | 1.0 | | 0.0082 | 48.0 | 144 | 0.0133 | 1.0 | | 0.0068 | 49.0 | 147 | 0.0132 | 1.0 | | 0.0074 | 50.0 | 150 | 0.0132 | 1.0 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
ShengdingHu/qqp
3071ab6e9bcb9e22b7b6a36cb5d0c448b504306b
2022-02-02T15:52:19.000Z
[ "pytorch", "tensorboard", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
ShengdingHu
null
ShengdingHu/qqp
4
null
transformers
18,217
Entry not found
ShinxisS/DialoGPT-small-Neku
c41fcb35a803d4ca652f1feb82b297b53df0eae3
2021-07-22T08:39:19.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
ShinxisS
null
ShinxisS/DialoGPT-small-Neku
4
null
transformers
18,218
tags: - conversational
SilentMyuth/stablejen
bcbe6b04e4066a35a4bf81a9a35ce180ece54ed4
2021-08-27T22:30:06.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
SilentMyuth
null
SilentMyuth/stablejen
4
null
transformers
18,219
Hewlo
Sirinya/wangchanberta-th-squad_test1
4d2550afecfbb9d36b45c329f68af8073680872a
2022-04-24T13:43:51.000Z
[ "pytorch", "tensorboard", "camembert", "question-answering", "dataset:thaiqa_squad", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
question-answering
false
Sirinya
null
Sirinya/wangchanberta-th-squad_test1
4
null
transformers
18,220
--- tags: - generated_from_trainer datasets: - thaiqa_squad model-index: - name: wangchanberta-base-att-spm-uncased-finetuned-th-squad results: [] widget: - text: "สโมสรเรอัลมาดริดก่อตั้งขึ้นในปีใด" context: "สโมสรฟุตบอลเรอัลมาดริด (สเปน: Real Madrid Club de Fútbol) เป็นสโมสรฟุตบอลที่มีชื่อเสียงในประเทศสเปน ตั้งอยู่ที่กรุงมาดริด ปัจจุบันเล่นอยู่ในลาลิกา ก่อตั้งขึ้นใน ค.ศ. 1902 โดยเป็นหนึ่งในสโมสรที่ประสบความสำเร็จมากที่สุดในทวีปยุโรป เรอัลมาดริดเป็นสมาชิกของกลุ่ม 14 ซึ่งเป็นกลุ่มสโมสรชั้นนำของยูฟ่า และยังเป็นหนึ่งในสามสโมสรผู้ร่วมก่อตั้งลาลิกาซึ่งไม่เคยตกชั้นจากลีกสูงสุดนับตั้งแต่ ค.ศ. 1929 มีคู่อริคือสโมสรบาร์เซโลนา และ อัตเลติโกเดมาดริด มีสนามเหย้าคือซานเตียโก เบร์นาเบว" - text: "รักบี้ถือกำเนิดขึ้นในปีใด" context: "รักบี้ เป็นกีฬาชนิดหนึ่งถือกำเนิดขึ้นจากโรงเรียนรักบี้ (Rugby School) ในเมืองรักบี้ ในเขตวอร์วิกเชียร์ ประเทศอังกฤษ เริ่มต้นจาก ในปี ค.ศ. 1826 ขณะนั้นเป็นการแข่งขัน ฟุตบอล ภายในของโรงเรียนรักบี้ ซึ่งตั้งอยู่ ณ เมืองรักบี้ ประเทศอังกฤษ ผู้เล่นคนหนึ่งชื่อ วิลเลียม เวบบ์ เอลลิส (William Webb Ellis) ได้ทำผิดกติกาการแข่งขันที่วางไว้ โดยวิ่งอุ้มลูกบอลซึ่งตัวเขาเองไม่ได้เป็นผู้เล่นในตำแหน่งผู้รักษาประตู และได้วิ่งอุ้มลูกบอลไปจนถึงเส้นประตูฝ่ายตรงข้าม เขาจะจงใจหรือไม่ก็ตามแต่ แต่การเล่นที่นอกลู่นอกทางของเขาได้เป็นที่พูดถึงอย่างแพร่หลาย ในหมู่ผู้เล่นและผู้ดูจนแพร่กระจายไปตามโรงเรียนต่างๆในอังกฤษ โดยเฉพาะในหมู่นักเรียนของโรงเรียนเคมบริดจ์ ได้นำเอาวิธีการเล่นของ นายเอลลีส ไปจัดการแข่งขันโดยเรียกชื่อเกมชนิดใหม่นี้ว่า รักบี้เกมส์ (Rugby Games) ภายหลังจากนั้นก็เป็นที่นิยมเล่นกันมากขึ้น ทั้งได้มีการเปลี่ยนแปลงแก้ไขการเล่นเรื่อยมาในประเทศอังกฤษ" --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wangchanberta-base-att-spm-uncased-finetuned-th-squad This model is a fine-tuned version of [airesearch/wangchanberta-base-att-spm-uncased](https://huggingface.co/airesearch/wangchanberta-base-att-spm-uncased) on the thaiqa_squad dataset. ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Framework versions - Transformers 4.13.0 - Pytorch 1.10.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3
SongRb/distilbert-base-uncased-finetuned-cola
c617391ba7ce23cc7aff554684ed680e7b7bc8c4
2021-08-31T10:19:57.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:glue", "transformers", "generated_from_trainer", "license:apache-2.0" ]
text-classification
false
SongRb
null
SongRb/distilbert-base-uncased-finetuned-cola
4
null
transformers
18,221
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - matthews_correlation model_index: - name: distilbert-base-uncased-finetuned-cola results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue args: cola metric: name: Matthews Correlation type: matthews_correlation value: 0.5332198659134496 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-cola This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.8549 - Matthews Correlation: 0.5332 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.5213 | 1.0 | 535 | 0.5163 | 0.4183 | | 0.3479 | 2.0 | 1070 | 0.5351 | 0.5182 | | 0.231 | 3.0 | 1605 | 0.6271 | 0.5291 | | 0.166 | 4.0 | 2140 | 0.7531 | 0.5279 | | 0.1313 | 5.0 | 2675 | 0.8549 | 0.5332 | ### Framework versions - Transformers 4.10.0.dev0 - Pytorch 1.8.1 - Datasets 1.11.0 - Tokenizers 0.10.3
StevenLimcorn/indonesian-roberta-base-bapos-tagger
59ebfd5863c2f8ae3240aed059a173a3458cf9c1
2021-07-11T10:19:22.000Z
[ "pytorch", "tf", "roberta", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
StevenLimcorn
null
StevenLimcorn/indonesian-roberta-base-bapos-tagger
4
null
transformers
18,222
Entry not found
SupriyaArun/squeezebert-uncased-finetuned-squad-finetuned-squad
3419d58625a123682e83d43e1005c6435f180b63
2021-12-11T20:16:19.000Z
[ "pytorch", "squeezebert", "question-answering", "dataset:squad", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
question-answering
false
SupriyaArun
null
SupriyaArun/squeezebert-uncased-finetuned-squad-finetuned-squad
4
null
transformers
18,223
--- tags: - generated_from_trainer datasets: - squad model-index: - name: squeezebert-uncased-finetuned-squad-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # squeezebert-uncased-finetuned-squad-finetuned-squad This model is a fine-tuned version of [SupriyaArun/squeezebert-uncased-finetuned-squad](https://huggingface.co/SupriyaArun/squeezebert-uncased-finetuned-squad) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Framework versions - Transformers 4.13.0 - Pytorch 1.10.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3
Suva/uptag-url-model
88405f4ae280d32a5d6ff2851bd5f636e58e675f
2022-01-25T04:32:49.000Z
[ "pytorch", "t5", "text2text-generation", "dataset:arxiv", "transformers", "license:mit", "autotrain_compatible" ]
text2text-generation
false
Suva
null
Suva/uptag-url-model
4
null
transformers
18,224
--- datasets: - arxiv widget: - text: "summarize: We describe a system called Overton, whose main design goal is to support engineers in building, monitoring, and improving production machinelearning systems. Key challenges engineers face are monitoring fine-grained quality, diagnosing errors in sophisticated applications, and handling contradictory or incomplete supervision data. Overton automates the life cycle of model construction, deployment, and monitoring by providing a set of novel high-level, declarative abstractions. Overton's vision is to shift developers to these higher-level tasks instead of lower-level machine learning tasks. In fact, using Overton, engineers can build deep-learning-based applications without writing any code in frameworks like TensorFlow. For over a year, Overton has been used in production to support multiple applications in both near-real-time applications and back-of-house processing. In that time, Overton-based applications have answered billions of queries in multiple languages and processed trillions of records reducing errors 1.7-2.9 times versus production systems." license: mit --- ## Usage: ```python abstract = """We describe a system called Overton, whose main design goal is to support engineers in building, monitoring, and improving production machine learning systems. Key challenges engineers face are monitoring fine-grained quality, diagnosing errors in sophisticated applications, and handling contradictory or incomplete supervision data. Overton automates the life cycle of model construction, deployment, and monitoring by providing a set of novel high-level, declarative abstractions. Overton's vision is to shift developers to these higher-level tasks instead of lower-level machine learning tasks. In fact, using Overton, engineers can build deep-learning-based applications without writing any code in frameworks like TensorFlow. For over a year, Overton has been used in production to support multiple applications in both near-real-time applications and back-of-house processing. In that time, Overton-based applications have answered billions of queries in multiple languages and processed trillions of records reducing errors 1.7-2.9 times versus production systems. """ ``` ### Using Transformers🤗 ```python model_name = "Suva/uptag-url-model" from transformers import AutoModelForSeq2SeqLM, AutoTokenizer model = AutoModelForSeq2SeqLM.from_pretrained(model_name) tokenizer = AutoTokenizer.from_pretrained(model_name) input_ids = tokenizer.encode("summarize: " + abstract, return_tensors="pt", add_special_tokens=True) generated_ids = model.generate(input_ids=input_ids,num_beams=5,max_length=100,repetition_penalty=2.5,length_penalty=1,early_stopping=True,num_return_sequences=3) preds = [tokenizer.decode(g, skip_special_tokens=True, clean_up_tokenization_spaces=True) for g in generated_ids] print(preds) # output ["Overton: Building, Deploying, and Monitoring Machine Learning Systems for Engineers", "Overton: A System for Building, Monitoring, and Improving Production Machine Learning Systems", "Overton: Building, Monitoring, and Improving Production Machine Learning Systems"] ```
TJMUCH/transcriptome-iseeek
70cd2c031b325fec84c80951705477b118db59cc
2021-12-10T09:32:52.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
TJMUCH
null
TJMUCH/transcriptome-iseeek
4
null
transformers
18,225
# iSEEEK A universal approach for integrating super large-scale single-cell transcriptomes by exploring gene rankings ## An simple pipeline for single-cell analysis ```python import torch import gzip import re from tqdm import tqdm import numpy as np import scanpy as sc from torch.utils.data import DataLoader, Dataset from transformers import PreTrainedTokenizerFast, BertForMaskedLM class LineDataset(Dataset): def __init__(self, lines): self.lines = lines self.regex = re.compile(r'\-|\.') def __getitem__(self, i): return self.regex.sub('_', self.lines[i]) def __len__(self): return len(self.lines) device = "cuda" if torch.cuda.is_available() else "cpu" torch.set_num_threads(2) tokenizer = PreTrainedTokenizerFast.from_pretrained("TJMUCH/transcriptome-iseeek") model = BertForMaskedLM.from_pretrained("TJMUCH/transcriptome-iseeek").bert model = model.to(device) model.eval() ## Data desposited in https://huggingface.co/TJMUCH/transcriptome-iseeek/tree/main lines = [s.strip().decode() for s in gzip.open("pbmc_ranking.txt.gz")] labels = [s.strip().decode() for s in gzip.open("pbmc_label.txt.gz")] labels = np.asarray(labels) ds = LineDataset(lines) dl = DataLoader(ds, batch_size=80) features = [] for a in tqdm(dl, total=len(dl)): batch = tokenizer(a, max_length=128, truncation=True, padding=True, return_tensors="pt") for k, v in batch.items(): batch[k] = v.to(device) with torch.no_grad(): out = model(**batch) f = out.last_hidden_state[:,0,:] features.extend(f.tolist()) features = np.stack(features) adata = sc.AnnData(features) adata.obs['celltype'] = labels adata.obs.celltype = adata.obs.celltype.astype("category") sc.pp.neighbors(adata, use_rep='X') sc.tl.umap(adata) sc.tl.leiden(adata) sc.pl.umap(adata, color=['celltype','leiden'],save= "UMAP") ``` ## Extract token representations ```python cell_counts = len(lines) x = np.zeros((cell_counts, len(tokenizer)), dtype=np.float16) for a in tqdm(dl, total=len(dl)): batch = tokenizer(a, max_length=128, truncation=True, padding=True, return_tensors="pt") for k, v in batch.items(): batch[k] = v.to(device) with torch.no_grad(): out = model(**batch) eos_idxs = batch.attention_mask.sum(dim=1) - 1 f = out.last_hidden_state batch_size = f.shape[0] input_ids = batch.input_ids for i in range(batch_size): ##genes = tokenizer.batch_decode(input_ids[i]) token_norms = [f[i][j].norm().item() for j in range(1, eos_idxs[i])] idxs = input_ids[i].tolist()[1:eos_idxs[i]] x[counter, idxs] = token_norms counter = counter + 1 ```
TehranNLP/albert-base-v2-mnli
795e3982164f346ef56e071b9a8ce8050a39e70f
2021-06-03T11:30:55.000Z
[ "pytorch", "albert", "text-classification", "transformers" ]
text-classification
false
TehranNLP
null
TehranNLP/albert-base-v2-mnli
4
null
transformers
18,226
Entry not found
TehranNLP/electra-base-mnli
dc6b02f94258c8a7efd30f17ec07c9e71bb8600d
2021-06-03T11:47:40.000Z
[ "pytorch", "electra", "text-classification", "transformers" ]
text-classification
false
TehranNLP
null
TehranNLP/electra-base-mnli
4
null
transformers
18,227
Entry not found
TehranNLP-org/bert-base-uncased-avg-cola-2e-5-21
0e8ca1f54ab76bbf767d1a3ab674bb03b367528a
2021-07-23T17:43:55.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
TehranNLP-org
null
TehranNLP-org/bert-base-uncased-avg-cola-2e-5-21
4
null
transformers
18,228
Entry not found
TehranNLP-org/bert-base-uncased-avg-cola-2e-5-42
019fd747c402a831bc2fbb70b20fa2ba78468cc2
2021-07-23T17:13:25.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
TehranNLP-org
null
TehranNLP-org/bert-base-uncased-avg-cola-2e-5-42
4
null
transformers
18,229
Entry not found
TehranNLP-org/bert-base-uncased-avg-cola-2e-5-63
32aa4f18872dc55743673e10099ab6e1faf36379
2021-07-23T18:10:35.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
TehranNLP-org
null
TehranNLP-org/bert-base-uncased-avg-cola-2e-5-63
4
null
transformers
18,230
Entry not found
TehranNLP-org/bert-base-uncased-avg-mnli-2e-5-21
96b8589b1037ef39f84347c74f4c49f6f53ba686
2021-07-21T16:25:41.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
TehranNLP-org
null
TehranNLP-org/bert-base-uncased-avg-mnli-2e-5-21
4
null
transformers
18,231
Entry not found
TehranNLP-org/bert-base-uncased-avg-mnli-2e-5-63
ec22e5546dc23704b5c0a482cc0f8690e48a4f15
2021-07-23T08:36:12.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
TehranNLP-org
null
TehranNLP-org/bert-base-uncased-avg-mnli-2e-5-63
4
null
transformers
18,232
Entry not found
TehranNLP-org/bert-base-uncased-avg-sst2-2e-5-42
0156418f02a4c3013c240736b319393616f3b8c3
2021-07-31T19:53:57.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
TehranNLP-org
null
TehranNLP-org/bert-base-uncased-avg-sst2-2e-5-42
4
null
transformers
18,233
Entry not found
TehranNLP-org/bert-base-uncased-cls-mnli
ee915d9be40de5ddbc2fff630532e06e640ac816
2022-05-02T20:59:25.000Z
[ "pytorch", "tf", "bert", "text-classification", "transformers" ]
text-classification
false
TehranNLP-org
null
TehranNLP-org/bert-base-uncased-cls-mnli
4
null
transformers
18,234
Entry not found
TehranNLP-org/bert-base-uncased-mrpc-2e-5-42
b23bbeb20e3aac8be838c7ad633250051b26ad9f
2021-08-18T18:30:28.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
TehranNLP-org
null
TehranNLP-org/bert-base-uncased-mrpc-2e-5-42
4
null
transformers
18,235
Entry not found
TehranNLP-org/electra-base-ag-news-2e-5-42
7eb338f291422aa963c153335b3b8b4391b3e424
2021-08-28T19:52:33.000Z
[ "pytorch", "electra", "text-classification", "transformers" ]
text-classification
false
TehranNLP-org
null
TehranNLP-org/electra-base-ag-news-2e-5-42
4
null
transformers
18,236
Entry not found
TehranNLP-org/electra-base-avg-cola-2e-5-63
93482c682b64f920bda616d26cfa3cd91381963e
2021-07-23T18:36:22.000Z
[ "pytorch", "electra", "text-classification", "transformers" ]
text-classification
false
TehranNLP-org
null
TehranNLP-org/electra-base-avg-cola-2e-5-63
4
null
transformers
18,237
Entry not found
TehranNLP-org/electra-base-avg-mnli-2e-5-21
074cbdbf686befa115e2444c174e375e30e3cef2
2021-07-21T23:24:00.000Z
[ "pytorch", "electra", "text-classification", "transformers" ]
text-classification
false
TehranNLP-org
null
TehranNLP-org/electra-base-avg-mnli-2e-5-21
4
null
transformers
18,238
Entry not found
TehranNLP-org/electra-base-avg-qqp-2e-5-42
a54bbcbd41c3b472a40580c1951d7774392b1d7e
2021-08-14T23:32:48.000Z
[ "pytorch", "electra", "text-classification", "transformers" ]
text-classification
false
TehranNLP-org
null
TehranNLP-org/electra-base-avg-qqp-2e-5-42
4
null
transformers
18,239
Entry not found
TehranNLP-org/electra-base-avg-sst2-2e-5-21
954b3482f8a3025f99757707f565c4deef4efe0a
2021-07-31T16:32:45.000Z
[ "pytorch", "electra", "text-classification", "transformers" ]
text-classification
false
TehranNLP-org
null
TehranNLP-org/electra-base-avg-sst2-2e-5-21
4
null
transformers
18,240
Entry not found
TehranNLP-org/electra-base-avg-sst2-2e-5-63
9280b9384b7c2e8bf3c7cab9896eb0e6abd30a17
2021-07-31T18:03:47.000Z
[ "pytorch", "electra", "text-classification", "transformers" ]
text-classification
false
TehranNLP-org
null
TehranNLP-org/electra-base-avg-sst2-2e-5-63
4
null
transformers
18,241
Entry not found
TehranNLP-org/electra-base-mrpc-2e-5-42
3b64b580a0d9423e06c49b596907f251225def1b
2021-08-18T18:52:55.000Z
[ "pytorch", "electra", "text-classification", "transformers" ]
text-classification
false
TehranNLP-org
null
TehranNLP-org/electra-base-mrpc-2e-5-42
4
null
transformers
18,242
Entry not found
TehranNLP-org/electra-base-qqp-2e-5-42
d20c2a1736383d1ebfa607a61fc18fb5ef36073e
2021-08-20T05:39:17.000Z
[ "pytorch", "electra", "text-classification", "transformers" ]
text-classification
false
TehranNLP-org
null
TehranNLP-org/electra-base-qqp-2e-5-42
4
null
transformers
18,243
Entry not found
TehranNLP-org/electra-base-qqp-cls-2e-5-42
777b72aee695b5338eddc17d59572a7a365c2313
2021-08-29T10:11:43.000Z
[ "pytorch", "electra", "text-classification", "transformers" ]
text-classification
false
TehranNLP-org
null
TehranNLP-org/electra-base-qqp-cls-2e-5-42
4
null
transformers
18,244
Entry not found
TehranNLP-org/xlnet-base-cased-avg-cola-2e-5-21
84ae5cc99f9d0bad93000fba23517baa9fa6b0b2
2021-07-23T15:21:15.000Z
[ "pytorch", "xlnet", "text-classification", "transformers" ]
text-classification
false
TehranNLP-org
null
TehranNLP-org/xlnet-base-cased-avg-cola-2e-5-21
4
null
transformers
18,245
Entry not found
TehranNLP-org/xlnet-base-cased-avg-cola-2e-5-63
c7652840d693268173fbc40fef539797b5ae4a8d
2021-07-23T16:31:30.000Z
[ "pytorch", "xlnet", "text-classification", "transformers" ]
text-classification
false
TehranNLP-org
null
TehranNLP-org/xlnet-base-cased-avg-cola-2e-5-63
4
null
transformers
18,246
Entry not found
TehranNLP-org/xlnet-base-cased-avg-sst2-2e-5-21
b83c256d402e9f3aa26f31b1d949c40580f8304b
2021-07-31T22:45:16.000Z
[ "pytorch", "xlnet", "text-classification", "transformers" ]
text-classification
false
TehranNLP-org
null
TehranNLP-org/xlnet-base-cased-avg-sst2-2e-5-21
4
null
transformers
18,247
Entry not found
TehranNLP-org/xlnet-base-cased-avg-sst2-2e-5-42
75f399df98f2808f44c440163fee688364c26c12
2021-07-31T20:57:06.000Z
[ "pytorch", "xlnet", "text-classification", "transformers" ]
text-classification
false
TehranNLP-org
null
TehranNLP-org/xlnet-base-cased-avg-sst2-2e-5-42
4
null
transformers
18,248
Entry not found
TehranNLP-org/xlnet-base-cased-avg-sst2-2e-5-63
60d37af02cd153b39826264ab9a3a721b2d002ba
2021-08-01T07:06:41.000Z
[ "pytorch", "xlnet", "text-classification", "transformers" ]
text-classification
false
TehranNLP-org
null
TehranNLP-org/xlnet-base-cased-avg-sst2-2e-5-63
4
null
transformers
18,249
Entry not found
Tejas3/distillbert_110_uncased_v1
243b9f71ea1075bb4c56b9e06d0868a3cbf1313c
2021-08-22T18:01:35.000Z
[ "pytorch", "distilbert", "text-classification", "transformers" ]
text-classification
false
Tejas3
null
Tejas3/distillbert_110_uncased_v1
4
null
transformers
18,250
Entry not found
ThaiUWA/gpt2test
07ecf659f168bfae24dfeeb3d2b3820ee44c0bf3
2021-05-21T11:21:40.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "transformers" ]
text-generation
false
ThaiUWA
null
ThaiUWA/gpt2test
4
null
transformers
18,251
Entry not found
The-Data-Hound/bacteria_lamp_network
d4158691bf37e1c3f6bf194eeabfe47b5f961620
2020-12-21T16:33:38.000Z
[ "pytorch", "distilbert", "text-classification", "transformers" ]
text-classification
false
The-Data-Hound
null
The-Data-Hound/bacteria_lamp_network
4
null
transformers
18,252
Entry not found
TheCatsMoo/DialoGGPT-small-joshua
d4dc6da1e12c32379b592e19755f114abaf53cfc
2021-09-18T11:09:22.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
TheCatsMoo
null
TheCatsMoo/DialoGGPT-small-joshua
4
null
transformers
18,253
--- tags: - conversational --- #Joshua
TrLOX/gpt2-tdk
ff265b2a4b4c1d4548d6bd3a8f66db093c1f3d39
2021-12-31T02:18:21.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-generation
false
TrLOX
null
TrLOX/gpt2-tdk
4
null
transformers
18,254
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: dgpt results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # dgpt This model is a fine-tuned version of [distilgpt2](https://huggingface.co/distilgpt2) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - distributed_type: tpu - num_devices: 8 - total_train_batch_size: 16 - total_eval_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10.0 ### Training results ### Framework versions - Transformers 4.14.0.dev0 - Pytorch 1.9.0+cu102 - Datasets 1.16.2.dev0 - Tokenizers 0.10.3 hello hello
TransQuest/microtransquest-de_en-pharmaceutical-smt
a4ebf7d9a26ef6db2c4866bcf82eff030e56ec9e
2021-06-04T08:18:20.000Z
[ "pytorch", "xlm-roberta", "token-classification", "de-en", "transformers", "Quality Estimation", "microtransquest", "license:apache-2.0", "autotrain_compatible" ]
token-classification
false
TransQuest
null
TransQuest/microtransquest-de_en-pharmaceutical-smt
4
null
transformers
18,255
--- language: de-en tags: - Quality Estimation - microtransquest license: apache-2.0 --- # TransQuest: Translation Quality Estimation with Cross-lingual Transformers The goal of quality estimation (QE) is to evaluate the quality of a translation without having access to a reference translation. High-accuracy QE that can be easily deployed for a number of language pairs is the missing piece in many commercial translation workflows as they have numerous potential uses. They can be employed to select the best translation when several translation engines are available or can inform the end user about the reliability of automatically translated content. In addition, QE systems can be used to decide whether a translation can be published as it is in a given context, or whether it requires human post-editing before publishing or translation from scratch by a human. The quality estimation can be done at different levels: document level, sentence level and word level. With TransQuest, we have opensourced our research in translation quality estimation which also won the sentence-level direct assessment quality estimation shared task in [WMT 2020](http://www.statmt.org/wmt20/quality-estimation-task.html). TransQuest outperforms current open-source quality estimation frameworks such as [OpenKiwi](https://github.com/Unbabel/OpenKiwi) and [DeepQuest](https://github.com/sheffieldnlp/deepQuest). ## Features - Sentence-level translation quality estimation on both aspects: predicting post editing efforts and direct assessment. - Word-level translation quality estimation capable of predicting quality of source words, target words and target gaps. - Outperform current state-of-the-art quality estimation methods like DeepQuest and OpenKiwi in all the languages experimented. - Pre-trained quality estimation models for fifteen language pairs are available in [HuggingFace.](https://huggingface.co/TransQuest) ## Installation ### From pip ```bash pip install transquest ``` ### From Source ```bash git clone https://github.com/TharinduDR/TransQuest.git cd TransQuest pip install -r requirements.txt ``` ## Using Pre-trained Models ```python from transquest.algo.word_level.microtransquest.run_model import MicroTransQuestModel import torch model = MicroTransQuestModel("xlmroberta", "TransQuest/microtransquest-de_en-pharmaceutical-smt", labels=["OK", "BAD"], use_cuda=torch.cuda.is_available()) source_tags, target_tags = model.predict([["if not , you may not be protected against the diseases . ", "ja tā nav , Jūs varat nepasargāt no slimībām . "]]) ``` ## Documentation For more details follow the documentation. 1. **[Installation](https://tharindudr.github.io/TransQuest/install/)** - Install TransQuest locally using pip. 2. **Architectures** - Checkout the architectures implemented in TransQuest 1. [Sentence-level Architectures](https://tharindudr.github.io/TransQuest/architectures/sentence_level_architectures/) - We have released two architectures; MonoTransQuest and SiameseTransQuest to perform sentence level quality estimation. 2. [Word-level Architecture](https://tharindudr.github.io/TransQuest/architectures/word_level_architecture/) - We have released MicroTransQuest to perform word level quality estimation. 3. **Examples** - We have provided several examples on how to use TransQuest in recent WMT quality estimation shared tasks. 1. [Sentence-level Examples](https://tharindudr.github.io/TransQuest/examples/sentence_level_examples/) 2. [Word-level Examples](https://tharindudr.github.io/TransQuest/examples/word_level_examples/) 4. **Pre-trained Models** - We have provided pretrained quality estimation models for fifteen language pairs covering both sentence-level and word-level 1. [Sentence-level Models](https://tharindudr.github.io/TransQuest/models/sentence_level_pretrained/) 2. [Word-level Models](https://tharindudr.github.io/TransQuest/models/word_level_pretrained/) 5. **[Contact](https://tharindudr.github.io/TransQuest/contact/)** - Contact us for any issues with TransQuest ## Citations If you are using the word-level architecture, please consider citing this paper which is accepted to [ACL 2021](https://2021.aclweb.org/). ```bash @InProceedings{ranasinghe2021, author = {Ranasinghe, Tharindu and Orasan, Constantin and Mitkov, Ruslan}, title = {An Exploratory Analysis of Multilingual Word Level Quality Estimation with Cross-Lingual Transformers}, booktitle = {Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics}, year = {2021} } ``` If you are using the sentence-level architectures, please consider citing these papers which were presented in [COLING 2020](https://coling2020.org/) and in [WMT 2020](http://www.statmt.org/wmt20/) at EMNLP 2020. ```bash @InProceedings{transquest:2020a, author = {Ranasinghe, Tharindu and Orasan, Constantin and Mitkov, Ruslan}, title = {TransQuest: Translation Quality Estimation with Cross-lingual Transformers}, booktitle = {Proceedings of the 28th International Conference on Computational Linguistics}, year = {2020} } ``` ```bash @InProceedings{transquest:2020b, author = {Ranasinghe, Tharindu and Orasan, Constantin and Mitkov, Ruslan}, title = {TransQuest at WMT2020: Sentence-Level Direct Assessment}, booktitle = {Proceedings of the Fifth Conference on Machine Translation}, year = {2020} } ```
TransQuest/microtransquest-en_lv-pharmaceutical-smt
b952ca8188d1898944b07a2b10821fe9fc02b8e2
2021-06-04T08:22:20.000Z
[ "pytorch", "xlm-roberta", "token-classification", "en-lv", "transformers", "Quality Estimation", "microtransquest", "license:apache-2.0", "autotrain_compatible" ]
token-classification
false
TransQuest
null
TransQuest/microtransquest-en_lv-pharmaceutical-smt
4
null
transformers
18,256
--- language: en-lv tags: - Quality Estimation - microtransquest license: apache-2.0 --- # TransQuest: Translation Quality Estimation with Cross-lingual Transformers The goal of quality estimation (QE) is to evaluate the quality of a translation without having access to a reference translation. High-accuracy QE that can be easily deployed for a number of language pairs is the missing piece in many commercial translation workflows as they have numerous potential uses. They can be employed to select the best translation when several translation engines are available or can inform the end user about the reliability of automatically translated content. In addition, QE systems can be used to decide whether a translation can be published as it is in a given context, or whether it requires human post-editing before publishing or translation from scratch by a human. The quality estimation can be done at different levels: document level, sentence level and word level. With TransQuest, we have opensourced our research in translation quality estimation which also won the sentence-level direct assessment quality estimation shared task in [WMT 2020](http://www.statmt.org/wmt20/quality-estimation-task.html). TransQuest outperforms current open-source quality estimation frameworks such as [OpenKiwi](https://github.com/Unbabel/OpenKiwi) and [DeepQuest](https://github.com/sheffieldnlp/deepQuest). ## Features - Sentence-level translation quality estimation on both aspects: predicting post editing efforts and direct assessment. - Word-level translation quality estimation capable of predicting quality of source words, target words and target gaps. - Outperform current state-of-the-art quality estimation methods like DeepQuest and OpenKiwi in all the languages experimented. - Pre-trained quality estimation models for fifteen language pairs are available in [HuggingFace.](https://huggingface.co/TransQuest) ## Installation ### From pip ```bash pip install transquest ``` ### From Source ```bash git clone https://github.com/TharinduDR/TransQuest.git cd TransQuest pip install -r requirements.txt ``` ## Using Pre-trained Models ```python from transquest.algo.word_level.microtransquest.run_model import MicroTransQuestModel import torch model = MicroTransQuestModel("xlmroberta", "TransQuest/microtransquest-en_lv-pharmaceutical-smt", labels=["OK", "BAD"], use_cuda=torch.cuda.is_available()) source_tags, target_tags = model.predict([["if not , you may not be protected against the diseases . ", "ja tā nav , Jūs varat nepasargāt no slimībām . "]]) ``` ## Documentation For more details follow the documentation. 1. **[Installation](https://tharindudr.github.io/TransQuest/install/)** - Install TransQuest locally using pip. 2. **Architectures** - Checkout the architectures implemented in TransQuest 1. [Sentence-level Architectures](https://tharindudr.github.io/TransQuest/architectures/sentence_level_architectures/) - We have released two architectures; MonoTransQuest and SiameseTransQuest to perform sentence level quality estimation. 2. [Word-level Architecture](https://tharindudr.github.io/TransQuest/architectures/word_level_architecture/) - We have released MicroTransQuest to perform word level quality estimation. 3. **Examples** - We have provided several examples on how to use TransQuest in recent WMT quality estimation shared tasks. 1. [Sentence-level Examples](https://tharindudr.github.io/TransQuest/examples/sentence_level_examples/) 2. [Word-level Examples](https://tharindudr.github.io/TransQuest/examples/word_level_examples/) 4. **Pre-trained Models** - We have provided pretrained quality estimation models for fifteen language pairs covering both sentence-level and word-level 1. [Sentence-level Models](https://tharindudr.github.io/TransQuest/models/sentence_level_pretrained/) 2. [Word-level Models](https://tharindudr.github.io/TransQuest/models/word_level_pretrained/) 5. **[Contact](https://tharindudr.github.io/TransQuest/contact/)** - Contact us for any issues with TransQuest ## Citations If you are using the word-level architecture, please consider citing this paper which is accepted to [ACL 2021](https://2021.aclweb.org/). ```bash @InProceedings{ranasinghe2021, author = {Ranasinghe, Tharindu and Orasan, Constantin and Mitkov, Ruslan}, title = {An Exploratory Analysis of Multilingual Word Level Quality Estimation with Cross-Lingual Transformers}, booktitle = {Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics}, year = {2021} } ``` If you are using the sentence-level architectures, please consider citing these papers which were presented in [COLING 2020](https://coling2020.org/) and in [WMT 2020](http://www.statmt.org/wmt20/) at EMNLP 2020. ```bash @InProceedings{transquest:2020a, author = {Ranasinghe, Tharindu and Orasan, Constantin and Mitkov, Ruslan}, title = {TransQuest: Translation Quality Estimation with Cross-lingual Transformers}, booktitle = {Proceedings of the 28th International Conference on Computational Linguistics}, year = {2020} } ``` ```bash @InProceedings{transquest:2020b, author = {Ranasinghe, Tharindu and Orasan, Constantin and Mitkov, Ruslan}, title = {TransQuest at WMT2020: Sentence-Level Direct Assessment}, booktitle = {Proceedings of the Fifth Conference on Machine Translation}, year = {2020} } ```
TransQuest/siamesetransquest-da-ru_en-reddit_wikiquotes
3a58de4db76aa8a09097ab3729a1d49473b93c6c
2021-07-23T08:16:47.000Z
[ "pytorch", "xlm-roberta", "feature-extraction", "ru-en", "transformers", "Quality Estimation", "siamesetransquest", "da", "license:apache-2.0" ]
feature-extraction
false
TransQuest
null
TransQuest/siamesetransquest-da-ru_en-reddit_wikiquotes
4
null
transformers
18,257
--- language: ru-en tags: - Quality Estimation - siamesetransquest - da license: apache-2.0 --- # TransQuest: Translation Quality Estimation with Cross-lingual Transformers The goal of quality estimation (QE) is to evaluate the quality of a translation without having access to a reference translation. High-accuracy QE that can be easily deployed for a number of language pairs is the missing piece in many commercial translation workflows as they have numerous potential uses. They can be employed to select the best translation when several translation engines are available or can inform the end user about the reliability of automatically translated content. In addition, QE systems can be used to decide whether a translation can be published as it is in a given context, or whether it requires human post-editing before publishing or translation from scratch by a human. The quality estimation can be done at different levels: document level, sentence level and word level. With TransQuest, we have opensourced our research in translation quality estimation which also won the sentence-level direct assessment quality estimation shared task in [WMT 2020](http://www.statmt.org/wmt20/quality-estimation-task.html). TransQuest outperforms current open-source quality estimation frameworks such as [OpenKiwi](https://github.com/Unbabel/OpenKiwi) and [DeepQuest](https://github.com/sheffieldnlp/deepQuest). ## Features - Sentence-level translation quality estimation on both aspects: predicting post editing efforts and direct assessment. - Word-level translation quality estimation capable of predicting quality of source words, target words and target gaps. - Outperform current state-of-the-art quality estimation methods like DeepQuest and OpenKiwi in all the languages experimented. - Pre-trained quality estimation models for fifteen language pairs are available in [HuggingFace.](https://huggingface.co/TransQuest) ## Installation ### From pip ```bash pip install transquest ``` ### From Source ```bash git clone https://github.com/TharinduDR/TransQuest.git cd TransQuest pip install -r requirements.txt ``` ## Using Pre-trained Models ```python import torch from transquest.algo.sentence_level.siamesetransquest.run_model import SiameseTransQuestModel model = SiameseTransQuestModel("TransQuest/siamesetransquest-da-ru_en-reddit_wikiquotes") predictions = model.predict([["Reducerea acestor conflicte este importantă pentru conservare.", "Reducing these conflicts is not important for preservation."]]) print(predictions) ``` ## Documentation For more details follow the documentation. 1. **[Installation](https://tharindudr.github.io/TransQuest/install/)** - Install TransQuest locally using pip. 2. **Architectures** - Checkout the architectures implemented in TransQuest 1. [Sentence-level Architectures](https://tharindudr.github.io/TransQuest/architectures/sentence_level_architectures/) - We have released two architectures; MonoTransQuest and SiameseTransQuest to perform sentence level quality estimation. 2. [Word-level Architecture](https://tharindudr.github.io/TransQuest/architectures/word_level_architecture/) - We have released MicroTransQuest to perform word level quality estimation. 3. **Examples** - We have provided several examples on how to use TransQuest in recent WMT quality estimation shared tasks. 1. [Sentence-level Examples](https://tharindudr.github.io/TransQuest/examples/sentence_level_examples/) 2. [Word-level Examples](https://tharindudr.github.io/TransQuest/examples/word_level_examples/) 4. **Pre-trained Models** - We have provided pretrained quality estimation models for fifteen language pairs covering both sentence-level and word-level 1. [Sentence-level Models](https://tharindudr.github.io/TransQuest/models/sentence_level_pretrained/) 2. [Word-level Models](https://tharindudr.github.io/TransQuest/models/word_level_pretrained/) 5. **[Contact](https://tharindudr.github.io/TransQuest/contact/)** - Contact us for any issues with TransQuest ## Citations If you are using the word-level architecture, please consider citing this paper which is accepted to [ACL 2021](https://2021.aclweb.org/). ```bash @InProceedings{ranasinghe2021, author = {Ranasinghe, Tharindu and Orasan, Constantin and Mitkov, Ruslan}, title = {An Exploratory Analysis of Multilingual Word Level Quality Estimation with Cross-Lingual Transformers}, booktitle = {Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics}, year = {2021} } ``` If you are using the sentence-level architectures, please consider citing these papers which were presented in [COLING 2020](https://coling2020.org/) and in [WMT 2020](http://www.statmt.org/wmt20/) at EMNLP 2020. ```bash @InProceedings{transquest:2020a, author = {Ranasinghe, Tharindu and Orasan, Constantin and Mitkov, Ruslan}, title = {TransQuest: Translation Quality Estimation with Cross-lingual Transformers}, booktitle = {Proceedings of the 28th International Conference on Computational Linguistics}, year = {2020} } ``` ```bash @InProceedings{transquest:2020b, author = {Ranasinghe, Tharindu and Orasan, Constantin and Mitkov, Ruslan}, title = {TransQuest at WMT2020: Sentence-Level Direct Assessment}, booktitle = {Proceedings of the Fifth Conference on Machine Translation}, year = {2020} } ```
TransQuest/siamesetransquest-da-si_en-wiki
0d32a51cd21c389769fd4e8336e97e5dd71cf5b6
2021-06-04T11:15:08.000Z
[ "pytorch", "xlm-roberta", "feature-extraction", "si-en", "transformers", "Quality Estimation", "siamesetransquest", "da", "license:apache-2.0" ]
feature-extraction
false
TransQuest
null
TransQuest/siamesetransquest-da-si_en-wiki
4
null
transformers
18,258
--- language: si-en tags: - Quality Estimation - siamesetransquest - da license: apache-2.0 --- # TransQuest: Translation Quality Estimation with Cross-lingual Transformers The goal of quality estimation (QE) is to evaluate the quality of a translation without having access to a reference translation. High-accuracy QE that can be easily deployed for a number of language pairs is the missing piece in many commercial translation workflows as they have numerous potential uses. They can be employed to select the best translation when several translation engines are available or can inform the end user about the reliability of automatically translated content. In addition, QE systems can be used to decide whether a translation can be published as it is in a given context, or whether it requires human post-editing before publishing or translation from scratch by a human. The quality estimation can be done at different levels: document level, sentence level and word level. With TransQuest, we have opensourced our research in translation quality estimation which also won the sentence-level direct assessment quality estimation shared task in [WMT 2020](http://www.statmt.org/wmt20/quality-estimation-task.html). TransQuest outperforms current open-source quality estimation frameworks such as [OpenKiwi](https://github.com/Unbabel/OpenKiwi) and [DeepQuest](https://github.com/sheffieldnlp/deepQuest). ## Features - Sentence-level translation quality estimation on both aspects: predicting post editing efforts and direct assessment. - Word-level translation quality estimation capable of predicting quality of source words, target words and target gaps. - Outperform current state-of-the-art quality estimation methods like DeepQuest and OpenKiwi in all the languages experimented. - Pre-trained quality estimation models for fifteen language pairs are available in [HuggingFace.](https://huggingface.co/TransQuest) ## Installation ### From pip ```bash pip install transquest ``` ### From Source ```bash git clone https://github.com/TharinduDR/TransQuest.git cd TransQuest pip install -r requirements.txt ``` ## Using Pre-trained Models ```python import torch from transquest.algo.sentence_level.siamesetransquest.run_model import SiameseTransQuestModel model = SiameseTransQuestModel("TransQuest/siamesetransquest-da-si_en-wiki") predictions = model.predict([["Reducerea acestor conflicte este importantă pentru conservare.", "Reducing these conflicts is not important for preservation."]]) print(predictions) ``` ## Documentation For more details follow the documentation. 1. **[Installation](https://tharindudr.github.io/TransQuest/install/)** - Install TransQuest locally using pip. 2. **Architectures** - Checkout the architectures implemented in TransQuest 1. [Sentence-level Architectures](https://tharindudr.github.io/TransQuest/architectures/sentence_level_architectures/) - We have released two architectures; MonoTransQuest and SiameseTransQuest to perform sentence level quality estimation. 2. [Word-level Architecture](https://tharindudr.github.io/TransQuest/architectures/word_level_architecture/) - We have released MicroTransQuest to perform word level quality estimation. 3. **Examples** - We have provided several examples on how to use TransQuest in recent WMT quality estimation shared tasks. 1. [Sentence-level Examples](https://tharindudr.github.io/TransQuest/examples/sentence_level_examples/) 2. [Word-level Examples](https://tharindudr.github.io/TransQuest/examples/word_level_examples/) 4. **Pre-trained Models** - We have provided pretrained quality estimation models for fifteen language pairs covering both sentence-level and word-level 1. [Sentence-level Models](https://tharindudr.github.io/TransQuest/models/sentence_level_pretrained/) 2. [Word-level Models](https://tharindudr.github.io/TransQuest/models/word_level_pretrained/) 5. **[Contact](https://tharindudr.github.io/TransQuest/contact/)** - Contact us for any issues with TransQuest ## Citations If you are using the word-level architecture, please consider citing this paper which is accepted to [ACL 2021](https://2021.aclweb.org/). ```bash @InProceedings{ranasinghe2021, author = {Ranasinghe, Tharindu and Orasan, Constantin and Mitkov, Ruslan}, title = {An Exploratory Analysis of Multilingual Word Level Quality Estimation with Cross-Lingual Transformers}, booktitle = {Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics}, year = {2021} } ``` If you are using the sentence-level architectures, please consider citing these papers which were presented in [COLING 2020](https://coling2020.org/) and in [WMT 2020](http://www.statmt.org/wmt20/) at EMNLP 2020. ```bash @InProceedings{transquest:2020a, author = {Ranasinghe, Tharindu and Orasan, Constantin and Mitkov, Ruslan}, title = {TransQuest: Translation Quality Estimation with Cross-lingual Transformers}, booktitle = {Proceedings of the 28th International Conference on Computational Linguistics}, year = {2020} } ``` ```bash @InProceedings{transquest:2020b, author = {Ranasinghe, Tharindu and Orasan, Constantin and Mitkov, Ruslan}, title = {TransQuest at WMT2020: Sentence-Level Direct Assessment}, booktitle = {Proceedings of the Fifth Conference on Machine Translation}, year = {2020} } ```
TuhinColumbia/SimileLiteral
085b1e04780ec0fe107aee59db6961b14b59e0d9
2021-09-12T21:18:21.000Z
[ "pytorch", "roberta", "transformers" ]
null
false
TuhinColumbia
null
TuhinColumbia/SimileLiteral
4
null
transformers
18,259
Entry not found
TuhinColumbia/multiopus
7ef706c99b5bad7c18244e4c9ed4b9d0daa3589c
2021-09-27T18:02:55.000Z
[ "pytorch", "mbart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
TuhinColumbia
null
TuhinColumbia/multiopus
4
null
transformers
18,260
Entry not found
TuhinColumbia/spanishpoetrymany
dfbf3f4df7c6116efbc1ed45a6ac742b3122485a
2021-09-04T09:14:11.000Z
[ "pytorch", "mbart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
TuhinColumbia
null
TuhinColumbia/spanishpoetrymany
4
null
transformers
18,261
Entry not found
Tymoteusz/optics-abstracts-summarization
a26d315907adaf9f1902acf877e9f0c0ad20de79
2021-07-12T18:15:10.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
Tymoteusz
null
Tymoteusz/optics-abstracts-summarization
4
null
transformers
18,262
Entry not found
UBC-NLP/AraT5-tweet-small
e2f9309914f1fa21794ccb50fc6f2d12e004beb3
2022-05-26T18:29:06.000Z
[ "pytorch", "tf", "t5", "ar", "transformers", "Arabic T5", "MSA", "Twitter", "Arabic Dialect", "Arabic Machine Translation", "Arabic Text Summarization", "Arabic News Title and Question Generation", "Arabic Paraphrasing and Transliteration", "Arabic Code-Switched Translation" ]
null
false
UBC-NLP
null
UBC-NLP/AraT5-tweet-small
4
1
transformers
18,263
--- language: - ar tags: - Arabic T5 - MSA - Twitter - Arabic Dialect - Arabic Machine Translation - Arabic Text Summarization - Arabic News Title and Question Generation - Arabic Paraphrasing and Transliteration - Arabic Code-Switched Translation --- # AraT5-tweet-small # AraT5: Text-to-Text Transformers for Arabic Language Generation <img src="https://huggingface.co/UBC-NLP/AraT5-base/resolve/main/AraT5_CR_new.png" alt="AraT5" width="45%" height="35%" align="right"/> This is the repository accompanying our paper [AraT5: Text-to-Text Transformers for Arabic Language Understanding and Generation](https://aclanthology.org/2022.acl-long.47/). In this is the repository we Introduce **AraT5<sub>MSA</sub>**, **AraT5<sub>Tweet</sub>**, and **AraT5**: three powerful Arabic-specific text-to-text Transformer based models; --- # How to use AraT5 models Below is an example for fine-tuning **AraT5-base** for News Title Generation on the Aranews dataset ``` bash !python run_trainier_seq2seq_huggingface.py \ --learning_rate 5e-5 \ --max_target_length 128 --max_source_length 128 \ --per_device_train_batch_size 8 --per_device_eval_batch_size 8 \ --model_name_or_path "UBC-NLP/AraT5-base" \ --output_dir "/content/AraT5_FT_title_generation" --overwrite_output_dir \ --num_train_epochs 3 \ --train_file "/content/ARGEn_title_genration_sample_train.tsv" \ --validation_file "/content/ARGEn_title_genration_sample_valid.tsv" \ --task "title_generation" --text_column "document" --summary_column "title" \ --load_best_model_at_end --metric_for_best_model "eval_bleu" --greater_is_better True --evaluation_strategy epoch --logging_strategy epoch --predict_with_generate\ --do_train --do_eval ``` For more details about the fine-tuning example, please read this notebook [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://github.com/UBC-NLP/araT5/blob/main/examples/Fine_tuning_AraT5.ipynb) In addition, we release the fine-tuned checkpoint of the News Title Generation (NGT) which is described in the paper. The model available at Huggingface ([UBC-NLP/AraT5-base-title-generation](https://huggingface.co/UBC-NLP/AraT5-base-title-generation)). For more details, please visit our own [GitHub](https://github.com/UBC-NLP/araT5). # AraT5 Models Checkpoints AraT5 Pytorch and TensorFlow checkpoints are available on the Huggingface website for direct download and use ```exclusively for research```. ```For commercial use, please contact the authors via email @ (muhammad.mageed[at]ubc[dot]ca).``` | **Model** | **Link** | |---------|:------------------:| | **AraT5-base** | [https://huggingface.co/UBC-NLP/AraT5-base](https://huggingface.co/UBC-NLP/AraT5-base) | | **AraT5-msa-base** | [https://huggingface.co/UBC-NLP/AraT5-msa-base](https://huggingface.co/UBC-NLP/AraT5-msa-base) | | **AraT5-tweet-base** | [https://huggingface.co/UBC-NLP/AraT5-tweet-base](https://huggingface.co/UBC-NLP/AraT5-tweet-base) | | **AraT5-msa-small** | [https://huggingface.co/UBC-NLP/AraT5-msa-small](https://huggingface.co/UBC-NLP/AraT5-msa-small) | | **AraT5-tweet-small**| [https://huggingface.co/UBC-NLP/AraT5-tweet-small](https://huggingface.co/UBC-NLP/AraT5-tweet-small) | # BibTex If you use our models (Arat5-base, Arat5-msa-base, Arat5-tweet-base, Arat5-msa-small, or Arat5-tweet-small ) for your scientific publication, or if you find the resources in this repository useful, please cite our paper as follows (to be updated): ```bibtex @inproceedings{nagoudi-etal-2022-arat5, title = "{A}ra{T}5: Text-to-Text Transformers for {A}rabic Language Generation", author = "Nagoudi, El Moatez Billah and Elmadany, AbdelRahim and Abdul-Mageed, Muhammad", booktitle = "Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)", month = may, year = "2022", address = "Dublin, Ireland", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2022.acl-long.47", pages = "628--647", abstract = "Transfer learning with a unified Transformer framework (T5) that converts all language problems into a text-to-text format was recently proposed as a simple and effective transfer learning approach. Although a multilingual version of the T5 model (mT5) was also introduced, it is not clear how well it can fare on non-English tasks involving diverse data. To investigate this question, we apply mT5 on a language with a wide variety of dialects{--}Arabic. For evaluation, we introduce a novel benchmark for ARabic language GENeration (ARGEN), covering seven important tasks. For model comparison, we pre-train three powerful Arabic T5-style models and evaluate them on ARGEN. Although pre-trained with {\textasciitilde}49 less data, our new models perform significantly better than mT5 on all ARGEN tasks (in 52 out of 59 test sets) and set several new SOTAs. Our models also establish new SOTA on the recently-proposed, large Arabic language understanding evaluation benchmark ARLUE (Abdul-Mageed et al., 2021). Our new models are publicly available. We also link to ARGEN datasets through our repository: https://github.com/UBC-NLP/araT5.", } ``` ## Acknowledgments We gratefully acknowledge support from the Natural Sciences and Engineering Research Council of Canada, the Social Sciences and Humanities Research Council of Canada, Canadian Foundation for Innovation, [ComputeCanada](www.computecanada.ca) and [UBC ARC-Sockeye](https://doi.org/10.14288/SOCKEYE). We also thank the [Google TensorFlow Research Cloud (TFRC)](https://www.tensorflow.org/tfrc) program for providing us with free TPU access.
Unbabel/XLM-R-12L
67a19f8952131398a76dd2b5554c297f2dd7207b
2022-01-05T20:02:13.000Z
[ "pytorch", "xlm-roberta", "feature-extraction", "transformers" ]
feature-extraction
false
Unbabel
null
Unbabel/XLM-R-12L
4
null
transformers
18,264
Entry not found
Unbabel/XLM-R-13L
bab23a72a8ff0e32401a93f43d0853745dac2218
2022-01-05T20:09:01.000Z
[ "pytorch", "xlm-roberta", "feature-extraction", "transformers" ]
feature-extraction
false
Unbabel
null
Unbabel/XLM-R-13L
4
null
transformers
18,265
Entry not found
Unbabel/XLM-R-14L
40d6eda5d28c7297e8d2154ca3439c9d2fd0a59c
2022-01-05T20:17:55.000Z
[ "pytorch", "xlm-roberta", "feature-extraction", "transformers" ]
feature-extraction
false
Unbabel
null
Unbabel/XLM-R-14L
4
null
transformers
18,266
Entry not found
Unbabel/XLM-R-20L
4c5b2ef086250d162b52552af4a8603a5b99443d
2022-01-05T21:05:19.000Z
[ "pytorch", "xlm-roberta", "feature-extraction", "transformers" ]
feature-extraction
false
Unbabel
null
Unbabel/XLM-R-20L
4
null
transformers
18,267
Entry not found
Unbabel/XLM-R-21L
98160d4d6b97d37b843e1e58256b68da2c7c7d77
2022-01-05T21:13:39.000Z
[ "pytorch", "xlm-roberta", "feature-extraction", "transformers" ]
feature-extraction
false
Unbabel
null
Unbabel/XLM-R-21L
4
null
transformers
18,268
Entry not found
Unbabel/XLM-R-23L
8aa380e17f7621186378c11dfa448255ddc14119
2022-01-05T21:31:26.000Z
[ "pytorch", "xlm-roberta", "feature-extraction", "transformers" ]
feature-extraction
false
Unbabel
null
Unbabel/XLM-R-23L
4
null
transformers
18,269
Entry not found
Unbabel/XLM-R-5L
a98fff19869afee659334d777f8a794864306a23
2022-01-05T19:16:19.000Z
[ "pytorch", "xlm-roberta", "feature-extraction", "transformers" ]
feature-extraction
false
Unbabel
null
Unbabel/XLM-R-5L
4
null
transformers
18,270
Entry not found
V3RX2000/distilbert-base-uncased-finetuned-cola
4778129d3be3c9b207430ad7eb044ec4b2535d86
2021-10-12T02:10:11.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:glue", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
V3RX2000
null
V3RX2000/distilbert-base-uncased-finetuned-cola
4
null
transformers
18,271
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - matthews_correlation model-index: - name: distilbert-base-uncased-finetuned-cola results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue args: cola metrics: - name: Matthews Correlation type: matthews_correlation value: 0.5396261051709696 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-cola This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.8107 - Matthews Correlation: 0.5396 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.5261 | 1.0 | 535 | 0.5509 | 0.3827 | | 0.3498 | 2.0 | 1070 | 0.4936 | 0.5295 | | 0.2369 | 3.0 | 1605 | 0.6505 | 0.5248 | | 0.1637 | 4.0 | 2140 | 0.8107 | 0.5396 | | 0.1299 | 5.0 | 2675 | 0.8738 | 0.5387 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.9.0+cu111 - Datasets 1.12.1 - Tokenizers 0.10.3
Vaibhavbrkn/question-gen
d4af9e6d9efe2d35840c19c5be1cbd7d44a91e76
2021-10-03T15:06:24.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
Vaibhavbrkn
null
Vaibhavbrkn/question-gen
4
null
transformers
18,272
Entry not found
Vampiro/DialoGPT-small-dante_b
d787aa4a95203bf9cb73f6f5cd9530f29608c65d
2021-09-16T04:25:49.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
Vampiro
null
Vampiro/DialoGPT-small-dante_b
4
null
transformers
18,273
--- tags: - conversational --- # Dante (DMC V) DialogGPT Model
Vasanth/t5-news-summarization
2c45774a3228ec757e674ac8a6f0858629f2c729
2022-01-20T09:17:47.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
Vasanth
null
Vasanth/t5-news-summarization
4
null
transformers
18,274
Entry not found
Vassilis/distilbert-base-uncased-finetuned-emotion
c5310bb3b31b42b0429418ab0d8ada4430aff48c
2022-01-09T16:41:12.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
Vassilis
null
Vassilis/distilbert-base-uncased-finetuned-emotion
4
null
transformers
18,275
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1628 - Accuracy: 0.9345 - F1: 0.9348 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.1674 | 1.0 | 250 | 0.1718 | 0.9265 | 0.9266 | | 0.1091 | 2.0 | 500 | 0.1628 | 0.9345 | 0.9348 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0 - Tokenizers 0.10.3
VirenS13117/distilbert-base-uncased-finetuned-cola
d2d0ad4084a1f60ce7fb0c4b14bddd4d7c256481
2021-09-21T22:22:02.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:glue", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
VirenS13117
null
VirenS13117/distilbert-base-uncased-finetuned-cola
4
null
transformers
18,276
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - matthews_correlation model-index: - name: distilbert-base-uncased-finetuned-cola results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue args: cola metrics: - name: Matthews Correlation type: matthews_correlation value: 0.5286324175580216 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-cola This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.7809 - Matthews Correlation: 0.5286 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.5299 | 1.0 | 535 | 0.5040 | 0.4383 | | 0.3472 | 2.0 | 1070 | 0.5284 | 0.4911 | | 0.2333 | 3.0 | 1605 | 0.6633 | 0.5091 | | 0.1733 | 4.0 | 2140 | 0.7809 | 0.5286 | | 0.1255 | 5.0 | 2675 | 0.8894 | 0.5282 | ### Framework versions - Transformers 4.10.2 - Pytorch 1.9.0+cu102 - Datasets 1.12.1 - Tokenizers 0.10.3
Wiirin/BERT-finetuned-PubMed-FoodCancer
dad0a41503f573a7cc388434a75424e42b06677a
2021-11-08T08:52:26.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
Wiirin
null
Wiirin/BERT-finetuned-PubMed-FoodCancer
4
null
transformers
18,277
Entry not found
WikinewsSum/t5-base-multi-en-wiki-news
0366607b27688a2c5291b6ca49f33fe251994c07
2021-06-23T10:41:07.000Z
[ "pytorch", "jax", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
WikinewsSum
null
WikinewsSum/t5-base-multi-en-wiki-news
4
null
transformers
18,278
Entry not found
WikinewsSum/t5-base-with-title-multi-en-wiki-news
9e438d1736f4a205dc6a4badd6ee49dc2e310a7a
2021-06-23T11:52:12.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
WikinewsSum
null
WikinewsSum/t5-base-with-title-multi-en-wiki-news
4
null
transformers
18,279
Entry not found
Wintermute/Wintermute
bbc5e403b33687eda40da1cf0003659f7261167d
2021-05-21T11:40:58.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "transformers" ]
text-generation
false
Wintermute
null
Wintermute/Wintermute
4
null
transformers
18,280
Entry not found
XYHY/autonlp-123-478412765
fef78dd8ce84aaf73ac6652c4b2a96c907150d91
2022-01-06T06:22:38.000Z
[ "pytorch", "roberta", "text-classification", "unk", "dataset:XYHY/autonlp-data-123", "transformers", "autonlp", "co2_eq_emissions" ]
text-classification
false
XYHY
null
XYHY/autonlp-123-478412765
4
null
transformers
18,281
--- tags: autonlp language: unk widget: - text: "I love AutoNLP 🤗" datasets: - XYHY/autonlp-data-123 co2_eq_emissions: 69.86520391863117 --- # Model Trained Using AutoNLP - Problem type: Binary Classification - Model ID: 478412765 - CO2 Emissions (in grams): 69.86520391863117 ## Validation Metrics - Loss: 0.186362624168396 - Accuracy: 0.9539955699437723 - Precision: 0.9527454242928453 - Recall: 0.9572049481778669 - AUC: 0.9903929997079495 - F1: 0.9549699799866577 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/XYHY/autonlp-123-478412765 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("XYHY/autonlp-123-478412765", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("XYHY/autonlp-123-478412765", use_auth_token=True) inputs = tokenizer("I love AutoNLP", return_tensors="pt") outputs = model(**inputs) ```
YSKartal/berturk-social-5m
e0ac971efb9ea41af93a2c9c299816ca32be41ce
2021-05-20T12:32:31.000Z
[ "pytorch", "jax", "roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
YSKartal
null
YSKartal/berturk-social-5m
4
null
transformers
18,282
Entry not found
ZZDDBBCC/distilbert-base-uncased-finetuned-cola
940d25f0b23640ab39021f641f6477abf265cf25
2021-09-26T07:53:35.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:glue", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
ZZDDBBCC
null
ZZDDBBCC/distilbert-base-uncased-finetuned-cola
4
null
transformers
18,283
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - matthews_correlation model-index: - name: distilbert-base-uncased-finetuned-cola results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue args: cola metrics: - name: Matthews Correlation type: matthews_correlation value: 0.5410897632107913 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-cola This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.8631 - Matthews Correlation: 0.5411 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.5249 | 1.0 | 535 | 0.5300 | 0.4152 | | 0.3489 | 2.0 | 1070 | 0.5238 | 0.4940 | | 0.2329 | 3.0 | 1605 | 0.6447 | 0.5162 | | 0.1692 | 4.0 | 2140 | 0.7805 | 0.5332 | | 0.1256 | 5.0 | 2675 | 0.8631 | 0.5411 | ### Framework versions - Transformers 4.10.3 - Pytorch 1.9.0+cu102 - Datasets 1.12.1 - Tokenizers 0.10.3
aware-ai/distilbart-xsum-12-6-squadv2
482d3eed5747a8fbb0796d4b01b453085c5503eb
2020-06-28T11:04:49.000Z
[ "pytorch", "bart", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
aware-ai
null
aware-ai/distilbart-xsum-12-6-squadv2
4
null
transformers
18,284
Entry not found
aXhyra/demo_emotion_31415
acb4215400041bdfe65c6ea27f043e715977650b
2021-12-13T18:17:16.000Z
[ "pytorch", "distilbert", "text-classification", "dataset:tweet_eval", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
aXhyra
null
aXhyra/demo_emotion_31415
4
null
transformers
18,285
--- license: apache-2.0 tags: - generated_from_trainer datasets: - tweet_eval metrics: - f1 model-index: - name: demo_emotion_31415 results: - task: name: Text Classification type: text-classification dataset: name: tweet_eval type: tweet_eval args: emotion metrics: - name: F1 type: f1 value: 0.7348035780583043 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # demo_emotion_31415 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the tweet_eval dataset. It achieves the following results on the evaluation set: - Loss: 0.9818 - F1: 0.7348 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7.551070618629693e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 0 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | No log | 1.0 | 204 | 0.7431 | 0.6530 | | No log | 2.0 | 408 | 0.6943 | 0.7333 | | 0.5176 | 3.0 | 612 | 0.8456 | 0.7326 | | 0.5176 | 4.0 | 816 | 0.9818 | 0.7348 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.9.1 - Datasets 1.16.1 - Tokenizers 0.10.3
aXhyra/demo_hate_42
12c4cff3ec86e94331db2245f94476cc5365bdce
2021-12-13T19:09:34.000Z
[ "pytorch", "distilbert", "text-classification", "dataset:tweet_eval", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
aXhyra
null
aXhyra/demo_hate_42
4
null
transformers
18,286
--- license: apache-2.0 tags: - generated_from_trainer datasets: - tweet_eval metrics: - f1 model-index: - name: demo_hate_42 results: - task: name: Text Classification type: text-classification dataset: name: tweet_eval type: tweet_eval args: hate metrics: - name: F1 type: f1 value: 0.7772939485986298 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # demo_hate_42 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the tweet_eval dataset. It achieves the following results on the evaluation set: - Loss: 0.8697 - F1: 0.7773 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7.320702985778492e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 0 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | No log | 1.0 | 282 | 0.4850 | 0.7645 | | 0.3877 | 2.0 | 564 | 0.5160 | 0.7856 | | 0.3877 | 3.0 | 846 | 0.6927 | 0.7802 | | 0.1343 | 4.0 | 1128 | 0.8697 | 0.7773 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.9.1 - Datasets 1.16.1 - Tokenizers 0.10.3
aXhyra/emotion_trained_1234567
673a897094ba4b992c302fd255373c0e2399a9c6
2021-12-12T13:19:19.000Z
[ "pytorch", "distilbert", "text-classification", "dataset:tweet_eval", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
aXhyra
null
aXhyra/emotion_trained_1234567
4
null
transformers
18,287
--- license: apache-2.0 tags: - generated_from_trainer datasets: - tweet_eval metrics: - f1 model-index: - name: emotion_trained_1234567 results: - task: name: Text Classification type: text-classification dataset: name: tweet_eval type: tweet_eval args: emotion metrics: - name: F1 type: f1 value: 0.7301562209701973 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # emotion_trained_1234567 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the tweet_eval dataset. It achieves the following results on the evaluation set: - Loss: 0.9051 - F1: 0.7302 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 6.961635072722524e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 1234567 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | No log | 1.0 | 204 | 0.6480 | 0.7231 | | No log | 2.0 | 408 | 0.6114 | 0.7403 | | 0.5045 | 3.0 | 612 | 0.7592 | 0.7311 | | 0.5045 | 4.0 | 816 | 0.9051 | 0.7302 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.9.1 - Datasets 1.16.1 - Tokenizers 0.10.3
aXhyra/emotion_trained_31415
e6c5f6c55b1d3d5b9412aa318d71f8ff44d78f5b
2021-12-12T13:14:50.000Z
[ "pytorch", "distilbert", "text-classification", "dataset:tweet_eval", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
aXhyra
null
aXhyra/emotion_trained_31415
4
null
transformers
18,288
--- license: apache-2.0 tags: - generated_from_trainer datasets: - tweet_eval metrics: - f1 model-index: - name: emotion_trained_31415 results: - task: name: Text Classification type: text-classification dataset: name: tweet_eval type: tweet_eval args: emotion metrics: - name: F1 type: f1 value: 0.719757533529152 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # emotion_trained_31415 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the tweet_eval dataset. It achieves the following results on the evaluation set: - Loss: 0.9274 - F1: 0.7198 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 6.961635072722524e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 31415 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | No log | 1.0 | 204 | 0.6177 | 0.7137 | | No log | 2.0 | 408 | 0.7489 | 0.6761 | | 0.5082 | 3.0 | 612 | 0.8233 | 0.7283 | | 0.5082 | 4.0 | 816 | 0.9274 | 0.7198 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.9.1 - Datasets 1.16.1 - Tokenizers 0.10.3
aXhyra/emotion_trained_42
05c109993a52efa6d3e0525d4a32381082931f16
2021-12-12T13:11:11.000Z
[ "pytorch", "distilbert", "text-classification", "dataset:tweet_eval", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
aXhyra
null
aXhyra/emotion_trained_42
4
null
transformers
18,289
--- license: apache-2.0 tags: - generated_from_trainer datasets: - tweet_eval metrics: - f1 model-index: - name: emotion_trained_42 results: - task: name: Text Classification type: text-classification dataset: name: tweet_eval type: tweet_eval args: emotion metrics: - name: F1 type: f1 value: 0.7361210540311689 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # emotion_trained_42 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the tweet_eval dataset. It achieves the following results on the evaluation set: - Loss: 0.9012 - F1: 0.7361 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 6.961635072722524e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | No log | 1.0 | 204 | 0.6131 | 0.6955 | | No log | 2.0 | 408 | 0.5816 | 0.7297 | | 0.5148 | 3.0 | 612 | 0.8942 | 0.7199 | | 0.5148 | 4.0 | 816 | 0.9012 | 0.7361 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.9.1 - Datasets 1.16.1 - Tokenizers 0.10.3
aXhyra/emotion_trained_final
3fc3579f9618a60430bb9fcb91685f4908fa462b
2021-12-12T10:50:02.000Z
[ "pytorch", "distilbert", "text-classification", "dataset:tweet_eval", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
aXhyra
null
aXhyra/emotion_trained_final
4
null
transformers
18,290
--- license: apache-2.0 tags: - generated_from_trainer datasets: - tweet_eval metrics: - f1 model-index: - name: emotion_trained_final results: - task: name: Text Classification type: text-classification dataset: name: tweet_eval type: tweet_eval args: emotion metrics: - name: F1 type: f1 value: 0.7469065445487402 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # emotion_trained_final This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the tweet_eval dataset. It achieves the following results on the evaluation set: - Loss: 0.9349 - F1: 0.7469 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1.502523631581398e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 0 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.9013 | 1.0 | 815 | 0.7822 | 0.6470 | | 0.5008 | 2.0 | 1630 | 0.7142 | 0.7419 | | 0.3684 | 3.0 | 2445 | 0.8621 | 0.7443 | | 0.2182 | 4.0 | 3260 | 0.9349 | 0.7469 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.9.1 - Datasets 1.16.1 - Tokenizers 0.10.3
aXhyra/hate_trained_final
35250ed1b6f748f52ce3b3f476dca2fdbc4fc5ab
2021-12-12T11:25:23.000Z
[ "pytorch", "distilbert", "text-classification", "dataset:tweet_eval", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
aXhyra
null
aXhyra/hate_trained_final
4
null
transformers
18,291
--- license: apache-2.0 tags: - generated_from_trainer datasets: - tweet_eval metrics: - f1 model-index: - name: hate_trained_final results: - task: name: Text Classification type: text-classification dataset: name: tweet_eval type: tweet_eval args: hate metrics: - name: F1 type: f1 value: 0.7697890540753396 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # hate_trained_final This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the tweet_eval dataset. It achieves the following results on the evaluation set: - Loss: 0.5543 - F1: 0.7698 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5.460503761236833e-06 - train_batch_size: 8 - eval_batch_size: 8 - seed: 0 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.463 | 1.0 | 1125 | 0.5213 | 0.7384 | | 0.3943 | 2.0 | 2250 | 0.5134 | 0.7534 | | 0.3407 | 3.0 | 3375 | 0.5400 | 0.7666 | | 0.3121 | 4.0 | 4500 | 0.5543 | 0.7698 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.9.1 - Datasets 1.16.1 - Tokenizers 0.10.3
aXhyra/test_emotion_trained_test
306a30f30c2bcfe219215fa0bced665fe5a0d8ce
2021-12-12T17:23:27.000Z
[ "pytorch", "distilbert", "text-classification", "dataset:tweet_eval", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
aXhyra
null
aXhyra/test_emotion_trained_test
4
null
transformers
18,292
--- license: apache-2.0 tags: - generated_from_trainer datasets: - tweet_eval metrics: - f1 model-index: - name: test_emotion_trained_test results: - task: name: Text Classification type: text-classification dataset: name: tweet_eval type: tweet_eval args: emotion metrics: - name: F1 type: f1 value: 0.7014611518188594 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # test_emotion_trained_test This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the tweet_eval dataset. It achieves the following results on the evaluation set: - Loss: 0.5866 - F1: 0.7015 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2.458132814624325e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 0 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | No log | 1.0 | 51 | 0.7877 | 0.5569 | | No log | 2.0 | 102 | 0.6188 | 0.6937 | | No log | 3.0 | 153 | 0.5969 | 0.7068 | | No log | 4.0 | 204 | 0.5866 | 0.7015 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.9.1 - Datasets 1.16.1 - Tokenizers 0.10.3
aapot/wav2vec2-xlsr-1b-finnish
7fdf93ed10481ad558dde6e5862be1433b2d0299
2022-03-28T17:46:41.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "fi", "dataset:mozilla-foundation/common_voice_7_0", "arxiv:2111.09296", "transformers", "finnish", "generated_from_trainer", "hf-asr-leaderboard", "robust-speech-event", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
aapot
null
aapot/wav2vec2-xlsr-1b-finnish
4
null
transformers
18,293
--- license: apache-2.0 language: fi metrics: - wer - cer tags: - automatic-speech-recognition - fi - finnish - generated_from_trainer - hf-asr-leaderboard - robust-speech-event datasets: - mozilla-foundation/common_voice_7_0 model-index: - name: wav2vec2-xlsr-1b-finnish results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 7 type: mozilla-foundation/common_voice_7_0 args: fi metrics: - name: Test WER type: wer value: 13.11 - name: Test CER type: cer value: 2.23 --- # Wav2Vec2 XLS-R for Finnish ASR This acoustic model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) for Finnish ASR. The model has been fine-tuned with 259.57 hours of Finnish transcribed speech data. Wav2Vec2 XLS-R was introduced in [this paper](https://arxiv.org/abs/2111.09296) and first released at [this page](https://github.com/pytorch/fairseq/tree/main/examples/wav2vec#wav2vec-20). **Note**: there is a version with KenLM language model used in the decoding phase producing better transcriptions: [Finnish-NLP/wav2vec2-xlsr-1b-finnish-lm](https://huggingface.co/Finnish-NLP/wav2vec2-xlsr-1b-finnish-lm) **Note**: there is a better V2 version of this model which has been fine-tuned longer with 16 hours of more data: [Finnish-NLP/wav2vec2-xlsr-1b-finnish-lm-v2](https://huggingface.co/Finnish-NLP/wav2vec2-xlsr-1b-finnish-lm-v2) ## Model description Wav2Vec2 XLS-R is Facebook AI's large-scale multilingual pretrained model for speech. It is pretrained on 436k hours of unlabeled speech, including VoxPopuli, MLS, CommonVoice, BABEL, and VoxLingua107. It uses the wav2vec 2.0 objective, in 128 languages. You can read more about the pretrained model from [this blog](https://ai.facebook.com/blog/xls-r-self-supervised-speech-processing-for-128-languages) and [this paper](https://arxiv.org/abs/2111.09296). This model is fine-tuned version of the pretrained model (1 billion parameter variant) for Finnish ASR. ## Intended uses & limitations You can use this model for Finnish ASR (speech-to-text) task. ### How to use Check the [run-finnish-asr-models.ipynb](https://huggingface.co/aapot/wav2vec2-xlsr-1b-finnish/blob/main/run-finnish-asr-models.ipynb) notebook in this repository for an detailed example on how to use this model. ### Limitations and bias This model was fine-tuned with audio samples which maximum length was 20 seconds so this model most likely works the best for quite short audios of similar length. However, you can try this model with a lot longer audios too and see how it works. If you encounter out of memory errors with very long audio files you can use the audio chunking method introduced in [this blog post](https://huggingface.co/blog/asr-chunking). A vast majority of the data used for fine-tuning was from the Finnish Parliament dataset so this model may not generalize so well to very different domains like common daily spoken Finnish with dialects etc. In addition, audios of the datasets tend to be adult male dominated so this model may not work as well for speeches of children and women, for example. ## Training data This model was fine-tuned with 259.57 hours of Finnish transcribed speech data from following datasets: | Dataset | Hours | % of total hours | |:----------------------------------------------------------------------------------------------------------------------------------|:--------:|:----------------:| | [Common Voice 7.0 Finnish train + evaluation + other splits](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0) | 9.70 h | 3.74 % | | [Finnish parliament session 2](https://b2share.eudat.eu/records/4df422d631544ce682d6af1d4714b2d4) | 0.24 h | 0.09 % | | [VoxPopuli Finnish](https://github.com/facebookresearch/voxpopuli) | 5.94 h | 2.29 % | | [CSS10 Finnish](https://github.com/kyubyong/css10) | 10.32 h | 3.98 % | | [Aalto Finnish Parliament ASR Corpus](http://urn.fi/urn:nbn:fi:lb-2021051903) | 228.00 h | 87.84 % | | [Finnish Broadcast Corpus](http://urn.fi/urn:nbn:fi:lb-2016042502) | 5.37 h | 2.07 % | Datasets were filtered to include maximum length of 20 seconds long audio samples. ## Training procedure This model was trained during [Robust Speech Challenge Event](https://discuss.huggingface.co/t/open-to-the-community-robust-speech-recognition-challenge/13614) organized by Hugging Face. Training was done on a Tesla V100 GPU, sponsored by OVHcloud. Training script was provided by Hugging Face and it is available [here](https://github.com/huggingface/transformers/blob/main/examples/research_projects/robust-speech-event/run_speech_recognition_ctc_bnb.py). We only modified its data loading for our custom datasets. ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: [8-bit Adam](https://github.com/facebookresearch/bitsandbytes) with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 5 - mixed_precision_training: Native AMP The pretrained `facebook/wav2vec2-xls-r-1b` model was initialized with following hyperparameters: - attention_dropout: 0.094 - hidden_dropout: 0.047 - feat_proj_dropout: 0.04 - mask_time_prob: 0.082 - layerdrop: 0.041 - activation_dropout: 0.055 - ctc_loss_reduction: "mean" ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 0.968 | 0.18 | 500 | 0.4870 | 0.4720 | | 0.6557 | 0.36 | 1000 | 0.2450 | 0.2931 | | 0.647 | 0.54 | 1500 | 0.1818 | 0.2255 | | 0.5297 | 0.72 | 2000 | 0.1698 | 0.2354 | | 0.5802 | 0.9 | 2500 | 0.1581 | 0.2355 | | 0.6351 | 1.07 | 3000 | 0.1689 | 0.2336 | | 0.4626 | 1.25 | 3500 | 0.1719 | 0.3099 | | 0.4526 | 1.43 | 4000 | 0.1434 | 0.2069 | | 0.4692 | 1.61 | 4500 | 0.1645 | 0.2192 | | 0.4584 | 1.79 | 5000 | 0.1483 | 0.1987 | | 0.4234 | 1.97 | 5500 | 0.1499 | 0.2178 | | 0.4243 | 2.15 | 6000 | 0.1345 | 0.2070 | | 0.4108 | 2.33 | 6500 | 0.1383 | 0.1850 | | 0.4048 | 2.51 | 7000 | 0.1338 | 0.1811 | | 0.4085 | 2.69 | 7500 | 0.1290 | 0.1780 | | 0.4026 | 2.87 | 8000 | 0.1239 | 0.1650 | | 0.4033 | 3.04 | 8500 | 0.1346 | 0.1657 | | 0.3986 | 3.22 | 9000 | 0.1310 | 0.1850 | | 0.3867 | 3.4 | 9500 | 0.1273 | 0.1741 | | 0.3658 | 3.58 | 10000 | 0.1219 | 0.1672 | | 0.382 | 3.76 | 10500 | 0.1306 | 0.1698 | | 0.3847 | 3.94 | 11000 | 0.1230 | 0.1577 | | 0.3691 | 4.12 | 11500 | 0.1310 | 0.1615 | | 0.3593 | 4.3 | 12000 | 0.1296 | 0.1622 | | 0.3619 | 4.48 | 12500 | 0.1285 | 0.1601 | | 0.3361 | 4.66 | 13000 | 0.1261 | 0.1569 | | 0.3603 | 4.84 | 13500 | 0.1235 | 0.1533 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.3 - Tokenizers 0.11.0 ## Evaluation results Evaluation was done with the [Common Voice 7.0 Finnish test split](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). To evaluate this model, run the `eval.py` script in this repository: ```bash python3 eval.py --model_id aapot/wav2vec2-xlsr-1b-finnish --dataset mozilla-foundation/common_voice_7_0 --config fi --split test ``` This model (the second row of the table) achieves the following WER (Word Error Rate) and CER (Character Error Rate) results compared to our other models: | | WER (with LM) | WER (without LM) | CER (with LM) | CER (without LM) | |-----------------------------------------|---------------|------------------|---------------|------------------| |aapot/wav2vec2-xlsr-1b-finnish-lm-v2 |**4.09** |**9.73** |**0.88** |**1.65** | |aapot/wav2vec2-xlsr-1b-finnish-lm |5.65 |13.11 |1.20 |2.23 | |aapot/wav2vec2-xlsr-300m-finnish-lm |8.16 |17.92 |1.97 |3.36 | ## Team Members - Aapo Tanskanen, [Hugging Face profile](https://huggingface.co/aapot), [LinkedIn profile](https://www.linkedin.com/in/aapotanskanen/) - Rasmus Toivanen, [Hugging Face profile](https://huggingface.co/RASMUS), [LinkedIn profile](https://www.linkedin.com/in/rasmustoivanen/) Feel free to contact us for more details 🤗
abhijithneilabraham/stsb_multi_mt_distilbert-base-uncased
5105f1362b58842d18c94af603a4815261482ff2
2021-11-02T12:23:53.000Z
[ "pytorch", "distilbert", "feature-extraction", "sentence-transformers", "sentence-similarity", "transformers" ]
sentence-similarity
false
abhijithneilabraham
null
abhijithneilabraham/stsb_multi_mt_distilbert-base-uncased
4
null
sentence-transformers
18,294
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('abhijithneilabraham/stsb_multi_mt_distilbert-base-uncased') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('abhijithneilabraham/stsb_multi_mt_distilbert-base-uncased') model = AutoModel.from_pretrained('abhijithneilabraham/stsb_multi_mt_distilbert-base-uncased') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 360 with parameters: ``` {'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 25, "evaluation_steps": 1000, "evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 900, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: DistilBertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
abhilash1910/albert-squad-v2
fa11a5785e84f2a49214d386dbe704d9b7155b3e
2021-09-14T07:20:53.000Z
[ "pytorch", "albert", "question-answering", "en", "dataset:squad_v2", "transformers", "license:apache-2.0", "autotrain_compatible" ]
question-answering
false
abhilash1910
null
abhilash1910/albert-squad-v2
4
2
transformers
18,295
## Albert Transformer on SQuAD-v2 Training is done on the [SQuAD_v2](https://rajpurkar.github.io/SQuAD-explorer/) dataset. The model can be accessed via HuggingFace: ## Model Specifications We have used the following parameters: - num_train_epochs=0.25, - per_device_train_batch_size=5, - per_device_eval_batch_size=10, - warmup_steps=100, - weight_decay=0.01, ## Usage Specifications ```python from transformers import AutoTokenizer,AutoModelForQuestionAnswering from transformers import pipeline model=AutoModelForQuestionAnswering.from_pretrained('abhilash1910/albert-squad-v2') tokenizer=AutoTokenizer.from_pretrained('abhilash1910/albert-squad-v2') nlp_QA=pipeline('question-answering',model=model,tokenizer=tokenizer) QA_inp={ 'question': 'How many parameters does Bert large have?', 'context': 'Bert large is really big... it has 24 layers, for a total of 340M parameters.Altogether it is 1.34 GB so expect it to take a couple minutes to download to your Colab instance.' } result=nlp_QA(QA_inp) result ``` ## Result The result is: {'answer': '340M', 'end': 65, 'score': 0.14847151935100555, 'start': 61} --- language: - en license: apache-2.0 datasets: - squad_v2 ---
abhishek/autonlp-ferd1-2652021
c306c92ebda955281ad3b67b1139222b64381e62
2021-07-30T12:27:14.000Z
[ "pytorch", "distilbert", "text-classification", "en", "dataset:abhishek/autonlp-data-ferd1", "transformers", "autonlp" ]
text-classification
false
abhishek
null
abhishek/autonlp-ferd1-2652021
4
null
transformers
18,296
--- tags: autonlp language: en widget: - text: "I love AutoNLP 🤗" datasets: - abhishek/autonlp-data-ferd1 --- # Model Trained Using AutoNLP - Problem type: Binary Classification - Model ID: 2652021 ## Validation Metrics - Loss: 0.3934604227542877 - Accuracy: 0.8411030860144452 - Precision: 0.8201550387596899 - Recall: 0.8076335877862595 - AUC: 0.8946767157983608 - F1: 0.8138461538461538 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/abhishek/autonlp-ferd1-2652021 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("abhishek/autonlp-ferd1-2652021", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("abhishek/autonlp-ferd1-2652021", use_auth_token=True) inputs = tokenizer("I love AutoNLP", return_tensors="pt") outputs = model(**inputs) ```
abhishek/autonlp-toxic-new-30516963
2b37359d0bf76fc87c77cc21dcbfd0c6796934ff
2021-11-08T19:31:37.000Z
[ "pytorch", "distilbert", "text-classification", "en", "dataset:abhishek/autonlp-data-toxic-new", "transformers", "autonlp", "co2_eq_emissions" ]
text-classification
false
abhishek
null
abhishek/autonlp-toxic-new-30516963
4
null
transformers
18,297
--- tags: autonlp language: en widget: - text: "I love AutoNLP 🤗" datasets: - abhishek/autonlp-data-toxic-new co2_eq_emissions: 30.684995819386277 --- # Model Trained Using AutoNLP - Problem type: Binary Classification - Model ID: 30516963 - CO2 Emissions (in grams): 30.684995819386277 ## Validation Metrics - Loss: 0.08340361714363098 - Accuracy: 0.9688222161294113 - Precision: 0.9102096627164995 - Recall: 0.7692604006163328 - AUC: 0.9859340458715813 - F1: 0.8338204592901879 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/abhishek/autonlp-toxic-new-30516963 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("abhishek/autonlp-toxic-new-30516963", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("abhishek/autonlp-toxic-new-30516963", use_auth_token=True) inputs = tokenizer("I love AutoNLP", return_tensors="pt") outputs = model(**inputs) ```
adalbertojunior/image_captioning_portuguese
b12e4019565cb2ce3e065e12b120d0077c023ad8
2022-02-08T20:26:50.000Z
[ "pytorch", "jax", "vision-encoder-decoder", "pt", "transformers" ]
null
false
adalbertojunior
null
adalbertojunior/image_captioning_portuguese
4
1
transformers
18,298
--- language: - pt --- Image Captioning in Portuguese trained with ViT and GPT2 [DEMO](https://huggingface.co/spaces/adalbertojunior/image_captioning_portuguese) Research supported with Cloud TPUs from Google's TPU Research Cloud (TRC)
adalbertojunior/modular-test
fed596969c99b9a162079631f38e169ff8ac99f3
2021-12-23T04:05:02.000Z
[ "pytorch", "modular", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
adalbertojunior
null
adalbertojunior/modular-test
4
null
transformers
18,299
Entry not found