modelId
stringlengths
4
112
sha
stringlengths
40
40
lastModified
stringlengths
24
24
tags
list
pipeline_tag
stringclasses
29 values
private
bool
1 class
author
stringlengths
2
38
config
null
id
stringlengths
4
112
downloads
float64
0
36.8M
likes
float64
0
712
library_name
stringclasses
17 values
__index_level_0__
int64
0
38.5k
readme
stringlengths
0
186k
harish/PT-mbert-train-from-test-and-dev-FalseTrue-0_0_BEST
c9b1ed94f2d181eec89f1286f191ea7e6426a363
2021-05-19T18:38:31.000Z
[ "pytorch", "jax", "bert", "text-classification", "transformers" ]
text-classification
false
harish
null
harish/PT-mbert-train-from-test-and-dev-FalseTrue-0_0_BEST
5
null
transformers
16,600
Entry not found
hf-internal-testing/tiny-random-ctrl
42f6ee0f45b523f232f876349517964a1b1e9fd4
2021-09-17T19:26:29.000Z
[ "pytorch", "tf", "ctrl", "transformers" ]
null
false
hf-internal-testing
null
hf-internal-testing/tiny-random-ctrl
5
null
transformers
16,601
Entry not found
hf-internal-testing/tiny-random-fsmt
8ffcd27c62c60221b14212157ae174fde75c22ed
2021-09-15T21:26:37.000Z
[ "pytorch", "fsmt", "transformers" ]
null
false
hf-internal-testing
null
hf-internal-testing/tiny-random-fsmt
5
null
transformers
16,602
Entry not found
hf-internal-testing/tiny-random-layoutlm
d5318a7f70ceaec327ae059b40448103743855cd
2021-09-17T19:24:07.000Z
[ "pytorch", "tf", "layoutlm", "transformers" ]
null
false
hf-internal-testing
null
hf-internal-testing/tiny-random-layoutlm
5
null
transformers
16,603
Entry not found
hf-internal-testing/tiny-random-marian
328fbe295c8dbc6ae4ec2c3c297046ce2e4b36b4
2021-09-17T19:25:22.000Z
[ "pytorch", "tf", "marian", "transformers" ]
null
false
hf-internal-testing
null
hf-internal-testing/tiny-random-marian
5
null
transformers
16,604
Entry not found
hf-internal-testing/tiny-random-xlm
272d5cdf26464126f163bb2116f356ade1a45908
2021-09-17T19:23:00.000Z
[ "pytorch", "tf", "xlm", "transformers" ]
null
false
hf-internal-testing
null
hf-internal-testing/tiny-random-xlm
5
null
transformers
16,605
Entry not found
hf-internal-testing/tiny-random-xlnet
34c842ab0324d89ef2d77daad5645308145836b2
2021-09-17T19:26:00.000Z
[ "pytorch", "tf", "xlnet", "transformers" ]
null
false
hf-internal-testing
null
hf-internal-testing/tiny-random-xlnet
5
null
transformers
16,606
Entry not found
hfl/chinese-legal-electra-base-discriminator
d935c3bade27f64e1ec696959a576df7e2e437bc
2021-01-22T05:19:42.000Z
[ "pytorch", "tf", "electra", "zh", "arxiv:2004.13922", "transformers", "license:apache-2.0" ]
null
false
hfl
null
hfl/chinese-legal-electra-base-discriminator
5
null
transformers
16,607
--- language: - zh license: "apache-2.0" --- # This model is specifically designed for legal domain. ## Chinese ELECTRA Google and Stanford University released a new pre-trained model called ELECTRA, which has a much compact model size and relatively competitive performance compared to BERT and its variants. For further accelerating the research of the Chinese pre-trained model, the Joint Laboratory of HIT and iFLYTEK Research (HFL) has released the Chinese ELECTRA models based on the official code of ELECTRA. ELECTRA-small could reach similar or even higher scores on several NLP tasks with only 1/10 parameters compared to BERT and its variants. This project is based on the official code of ELECTRA: [https://github.com/google-research/electra](https://github.com/google-research/electra) You may also interested in, - Chinese BERT series: https://github.com/ymcui/Chinese-BERT-wwm - Chinese ELECTRA: https://github.com/ymcui/Chinese-ELECTRA - Chinese XLNet: https://github.com/ymcui/Chinese-XLNet - Knowledge Distillation Toolkit - TextBrewer: https://github.com/airaria/TextBrewer More resources by HFL: https://github.com/ymcui/HFL-Anthology ## Citation If you find our resource or paper is useful, please consider including the following citation in your paper. - https://arxiv.org/abs/2004.13922 ``` @inproceedings{cui-etal-2020-revisiting, title = "Revisiting Pre-Trained Models for {C}hinese Natural Language Processing", author = "Cui, Yiming and Che, Wanxiang and Liu, Ting and Qin, Bing and Wang, Shijin and Hu, Guoping", booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: Findings", month = nov, year = "2020", address = "Online", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/2020.findings-emnlp.58", pages = "657--668", } ```
hiiamsid/est5-base
36adca992fc9c5dca03e811cd35dce8dfe332cc4
2021-10-05T07:35:26.000Z
[ "pytorch", "t5", "text2text-generation", "es", "transformers", "spanish", "license:mit", "autotrain_compatible" ]
text2text-generation
false
hiiamsid
null
hiiamsid/est5-base
5
null
transformers
16,608
--- language: ["es"] tags: - spanish license: mit --- This is a smaller version of the [google/mt5-base](https://huggingface.co/google/mt5-base) model with only Spanish embeddings left. * The original model has 582M parameters, with 237M of them being input and output embeddings. * After shrinking the `sentencepiece` vocabulary from 250K to 25K (top 25K Spanish tokens) the number of model parameters reduced to 237M parameters, and model size reduced from 2.2GB to 0.9GB - 42% of the original one. ## Citing & Authors - Datasets : [cleaned corpora](https://github.com/crscardellino/sbwce) - Model : [google/mt5-base](https://huggingface.co/google/mt5-base) - Reference: [cointegrated/rut5-base](https://huggingface.co/cointegrated/rut5-base)
hoangbinhmta99/wav2vec-demo
b7ff0022e4601cd8c223491d1a9134e29556f405
2022-03-30T17:18:48.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
hoangbinhmta99
null
hoangbinhmta99/wav2vec-demo
5
1
transformers
16,609
Convert from model .pt to transformer Link: https://huggingface.co/tommy19970714/wav2vec2-base-960h Bash: ```bash pip install transformers[sentencepiece] pip install fairseq -U git clone https://github.com/huggingface/transformers.git cp transformers/src/transformers/models/wav2vec2/convert_wav2vec2_original_pytorch_checkpoint_to_pytorch.py . wget https://dl.fbaipublicfiles.com/fairseq/wav2vec/wav2vec_small.pt -O ./wav2vec_small.pt mkdir dict wget https://dl.fbaipublicfiles.com/fairseq/wav2vec/dict.ltr.txt mkdir outputs python convert_wav2vec2_original_pytorch_checkpoint_to_pytorch.py --pytorch_dump_folder_path ./outputs --checkpoint_path ./finetuned/wav2vec_small.pt --dict_path ./dict/dict.ltr.txt --not_finetuned ``` # install and upload model ``` curl -s https://packagecloud.io/install/repositories/github/git-lfs/script.deb.sh | sudo bash git lfs install sudo apt-get install git-lfs git lfs install git clone https://huggingface.co/hoangbinhmta99/wav2vec-demo ls cd wav2vec-demo/ git status git add . git commit -m "First model version" git config --global user.email [yourname] git config --global user.name [yourpass] git commit -m "First model version" git push ```
hoanhkhoa/roberta-base-finetuned-ner
bab456a6d790f10c97fb02d3ff4c4b235ea956d8
2021-08-18T03:55:19.000Z
[ "pytorch", "tensorboard", "roberta", "token-classification", "transformers", "generated_from_trainer", "license:mit", "autotrain_compatible" ]
token-classification
false
hoanhkhoa
null
hoanhkhoa/roberta-base-finetuned-ner
5
1
transformers
16,610
--- license: mit tags: - generated_from_trainer datasets: - null metrics: - precision - recall - f1 - accuracy model_index: - name: roberta-base-finetuned-ner results: - task: name: Token Classification type: token-classification metric: name: Accuracy type: accuracy value: 0.9914674251177673 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-finetuned-ner This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0381 - Precision: 0.9469 - Recall: 0.9530 - F1: 0.9500 - Accuracy: 0.9915 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.1328 | 1.0 | 753 | 0.0492 | 0.9143 | 0.9308 | 0.9225 | 0.9884 | | 0.0301 | 2.0 | 1506 | 0.0378 | 0.9421 | 0.9474 | 0.9448 | 0.9910 | | 0.0185 | 3.0 | 2259 | 0.0381 | 0.9469 | 0.9530 | 0.9500 | 0.9915 | ### Framework versions - Transformers 4.9.2 - Pytorch 1.9.0+cu102 - Datasets 1.11.0 - Tokenizers 0.10.3
hoonst/distilbert-base-uncased-finetuned-cola
0a5a4c15e76200e8705829d83983e92143effbaa
2021-11-01T06:49:11.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "transformers" ]
text-classification
false
hoonst
null
hoonst/distilbert-base-uncased-finetuned-cola
5
null
transformers
16,611
Entry not found
howey/roberta-large-squad2
d1ac0d13d67464b17627742593245c9e0b28d7b4
2021-06-15T04:50:41.000Z
[ "pytorch" ]
null
false
howey
null
howey/roberta-large-squad2
5
null
null
16,612
Entry not found
huawei-noah/DynaBERT_MNLI
3875b92138f435a9c1d0c604375682e3d4514e8f
2021-05-19T20:02:03.000Z
[ "pytorch", "jax", "bert", "arxiv:2004.04037", "transformers" ]
null
false
huawei-noah
null
huawei-noah/DynaBERT_MNLI
5
null
transformers
16,613
## DynaBERT: Dynamic BERT with Adaptive Width and Depth * DynaBERT can flexibly adjust the size and latency by selecting adaptive width and depth, and the subnetworks of it have competitive performances as other similar-sized compressed models. The training process of DynaBERT includes first training a width-adaptive BERT and then allowing both adaptive width and depth using knowledge distillation. * This code is modified based on the repository developed by Hugging Face: [Transformers v2.1.1](https://github.com/huggingface/transformers/tree/v2.1.1), and is released in [GitHub](https://github.com/huawei-noah/Pretrained-Language-Model/tree/master/DynaBERT). ### Reference Lu Hou, Zhiqi Huang, Lifeng Shang, Xin Jiang, Xiao Chen, Qun Liu. [DynaBERT: Dynamic BERT with Adaptive Width and Depth](https://arxiv.org/abs/2004.04037). ``` @inproceedings{hou2020dynabert, title = {DynaBERT: Dynamic BERT with Adaptive Width and Depth}, author = {Lu Hou, Zhiqi Huang, Lifeng Shang, Xin Jiang, Xiao Chen, Qun Liu}, booktitle = {Advances in Neural Information Processing Systems}, year = {2020} } ```
huawei-noah/TernaryBERT_SST-2
5be28da9080d3b7ce81491c0fdf701fce3d29518
2020-10-16T03:16:54.000Z
[ "pytorch", "transformers" ]
null
false
huawei-noah
null
huawei-noah/TernaryBERT_SST-2
5
null
transformers
16,614
Entry not found
huggingartists/billie-eilish
2ec1c0b95cbf7f6a907c882faaa8d9afbf2fabb9
2021-07-30T11:57:08.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "en", "dataset:huggingartists/billie-eilish", "transformers", "huggingartists", "lyrics", "lm-head", "causal-lm" ]
text-generation
false
huggingartists
null
huggingartists/billie-eilish
5
null
transformers
16,615
--- language: en datasets: - huggingartists/billie-eilish tags: - huggingartists - lyrics - lm-head - causal-lm widget: - text: "I am" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/1aa6c04aad3652556046bb3aabe96498.900x900x1.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Billie Eilish</div> <a href="https://genius.com/artists/billie-eilish"> <div style="text-align: center; font-size: 14px;">@billie-eilish</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from Billie Eilish. Dataset is available [here](https://huggingface.co/datasets/huggingartists/billie-eilish). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/billie-eilish") ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/billie-eilish") model = AutoModelWithLMHead.from_pretrained("huggingartists/billie-eilish") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/3l1r2mnu/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on Billie Eilish's lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/209kskmi) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/209kskmi/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/billie-eilish') generator("I am", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
huggingartists/machine-gun-kelly
c6580ad4170e7892fb26541c24ada97ad2ec3aa8
2021-09-20T12:50:31.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "en", "dataset:huggingartists/machine-gun-kelly", "transformers", "huggingartists", "lyrics", "lm-head", "causal-lm" ]
text-generation
false
huggingartists
null
huggingartists/machine-gun-kelly
5
null
transformers
16,616
--- language: en datasets: - huggingartists/machine-gun-kelly tags: - huggingartists - lyrics - lm-head - causal-lm widget: - text: "I am" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/bee1868cba78bf4b170886b3368c4ae8.640x640x1.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Machine Gun Kelly</div> <a href="https://genius.com/artists/machine-gun-kelly"> <div style="text-align: center; font-size: 14px;">@machine-gun-kelly</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from Machine Gun Kelly. Dataset is available [here](https://huggingface.co/datasets/huggingartists/machine-gun-kelly). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/machine-gun-kelly") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/33f2ce6m/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on Machine Gun Kelly's lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/2bbn6fvb) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/2bbn6fvb/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/machine-gun-kelly') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/machine-gun-kelly") model = AutoModelWithLMHead.from_pretrained("huggingartists/machine-gun-kelly") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
huggingartists/placebo
a4e8f3eaf7df461217336a48100712f158cc0e6b
2021-08-10T17:26:47.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "en", "dataset:huggingartists/placebo", "transformers", "huggingartists", "lyrics", "lm-head", "causal-lm" ]
text-generation
false
huggingartists
null
huggingartists/placebo
5
null
transformers
16,617
--- language: en datasets: - huggingartists/placebo tags: - huggingartists - lyrics - lm-head - causal-lm widget: - text: "I am" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/c7e467de49cab7cdcc1d52c9c95ccd47.931x931x1.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Placebo</div> <a href="https://genius.com/artists/placebo"> <div style="text-align: center; font-size: 14px;">@placebo</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from Placebo. Dataset is available [here](https://huggingface.co/datasets/huggingartists/placebo). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/placebo") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/3jfcdfc1/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on Placebo's lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/jx3r5x9o) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/jx3r5x9o/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/placebo') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/placebo") model = AutoModelWithLMHead.from_pretrained("huggingartists/placebo") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
huggingartists/tom-waits
253253ec20657da67acf63c332b1da4e198f5d8a
2021-08-02T07:29:08.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "en", "dataset:huggingartists/tom-waits", "transformers", "huggingartists", "lyrics", "lm-head", "causal-lm" ]
text-generation
false
huggingartists
null
huggingartists/tom-waits
5
null
transformers
16,618
--- language: en datasets: - huggingartists/tom-waits tags: - huggingartists - lyrics - lm-head - causal-lm widget: - text: "I am" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/505d2d5d1d43304dca446fd2e788a0f8.750x750x1.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Tom Waits</div> <a href="https://genius.com/artists/tom-waits"> <div style="text-align: center; font-size: 14px;">@tom-waits</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from Tom Waits. Dataset is available [here](https://huggingface.co/datasets/huggingartists/tom-waits). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/tom-waits") ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/tom-waits") model = AutoModelWithLMHead.from_pretrained("huggingartists/tom-waits") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/216zw2jw/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on Tom Waits's lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/16iei9vt) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/16iei9vt/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/tom-waits') generator("I am", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
huggingartists/xxxtentacion
00326fa2a8ffb27680f2b81e03ef8d9765d07258
2021-09-10T19:22:45.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "en", "dataset:huggingartists/xxxtentacion", "transformers", "huggingartists", "lyrics", "lm-head", "causal-lm" ]
text-generation
false
huggingartists
null
huggingartists/xxxtentacion
5
null
transformers
16,619
--- language: en datasets: - huggingartists/xxxtentacion tags: - huggingartists - lyrics - lm-head - causal-lm widget: - text: "I am" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/f72572986d8187cf35f0fc9f9d06afb2.900x900x1.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">XXXTENTACION</div> <a href="https://genius.com/artists/xxxtentacion"> <div style="text-align: center; font-size: 14px;">@xxxtentacion</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from XXXTENTACION. Dataset is available [here](https://huggingface.co/datasets/huggingartists/xxxtentacion). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/xxxtentacion") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/12xi0jh5/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on XXXTENTACION's lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/2l2qvy4j) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/2l2qvy4j/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/xxxtentacion') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/xxxtentacion") model = AutoModelWithLMHead.from_pretrained("huggingartists/xxxtentacion") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
huggingartists/zemfira
f17b1c6b2a283d29b6b316205e0571072c557c19
2021-09-22T09:43:44.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "en", "dataset:huggingartists/zemfira", "transformers", "huggingartists", "lyrics", "lm-head", "causal-lm" ]
text-generation
false
huggingartists
null
huggingartists/zemfira
5
null
transformers
16,620
--- language: en datasets: - huggingartists/zemfira tags: - huggingartists - lyrics - lm-head - causal-lm widget: - text: "I am" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/df440220b2dd0a34a119db791da90e59.1000x1000x1.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Земфира (Zemfira)</div> <a href="https://genius.com/artists/zemfira"> <div style="text-align: center; font-size: 14px;">@zemfira</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from Земфира (Zemfira). Dataset is available [here](https://huggingface.co/datasets/huggingartists/zemfira). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/zemfira") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/3hj4sma8/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on Земфира (Zemfira)'s lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/1v74giz2) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/1v74giz2/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/zemfira') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/zemfira") model = AutoModelWithLMHead.from_pretrained("huggingartists/zemfira") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
huggingfans/bert-mini
769c226eaf4a530041f6891ad4db3688ff637a31
2020-08-19T06:55:55.000Z
[ "pytorch", "transformers" ]
null
false
huggingfans
null
huggingfans/bert-mini
5
null
transformers
16,621
Entry not found
huggingtweets/_me_you_coward
b54099429c82000be4f606e6cc1bcfc1173dd00c
2021-05-21T17:09:40.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/_me_you_coward
5
null
transformers
16,622
--- language: en thumbnail: https://www.huggingtweets.com/_me_you_coward/1616717688936/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1146178675991334912/OC_eRIcT_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Phlogiston International 😇🌷🇵🇸 ☭🏴 🤖 AI Bot </div> <div style="font-size: 15px">@_me_you_coward bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@_me_you_coward's tweets](https://twitter.com/_me_you_coward). | Data | Quantity | | --- | --- | | Tweets downloaded | 3214 | | Retweets | 358 | | Short tweets | 629 | | Tweets kept | 2227 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/362p183s/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @_me_you_coward's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/clfmnc4u) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/clfmnc4u/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/_me_you_coward') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/ambivalegenic
6b6a5e2980efb5975a9719ffde9fb685e8f88949
2021-05-21T18:35:50.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/ambivalegenic
5
null
transformers
16,623
--- language: en thumbnail: https://www.huggingtweets.com/ambivalegenic/1616659230833/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1364898993998680066/stqI7iN8_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">not the kind of princess that is princess-cis 🤖 AI Bot </div> <div style="font-size: 15px">@ambivalegenic bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@ambivalegenic's tweets](https://twitter.com/ambivalegenic). | Data | Quantity | | --- | --- | | Tweets downloaded | 2614 | | Retweets | 664 | | Short tweets | 228 | | Tweets kept | 1722 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1mvt2owy/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @ambivalegenic's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/25yttpuo) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/25yttpuo/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/ambivalegenic') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/d_greetest
411274742456461457de61d57af0fa8e3365098b
2021-12-15T02:04:34.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/d_greetest
5
null
transformers
16,624
--- language: en thumbnail: http://www.huggingtweets.com/d_greetest/1639533869820/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1387092178753687567/43vkVfBK_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Greetest</div> <div style="text-align: center; font-size: 14px;">@d_greetest</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Greetest. | Data | Greetest | | --- | --- | | Tweets downloaded | 629 | | Retweets | 265 | | Short tweets | 34 | | Tweets kept | 330 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3kz7im60/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @d_greetest's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1h67ju9y) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1h67ju9y/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/d_greetest') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/drilbot_neo-rusticgendarme
93a0630cde1c3335277541768b1bfdfb79f42d49
2021-07-28T19:24:06.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/drilbot_neo-rusticgendarme
5
null
transformers
16,625
--- language: en thumbnail: https://www.huggingtweets.com/drilbot_neo-rusticgendarme/1627500242288/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1405236436144508932/5bN_yThT_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1374924360780242944/-Q8NfgEr_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">merzy & wintbot_neo</div> <div style="text-align: center; font-size: 14px;">@drilbot_neo-rusticgendarme</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from merzy & wintbot_neo. | Data | merzy | wintbot_neo | | --- | --- | --- | | Tweets downloaded | 2598 | 3244 | | Retweets | 449 | 218 | | Short tweets | 440 | 271 | | Tweets kept | 1709 | 2755 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/33n6vv8i/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @drilbot_neo-rusticgendarme's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3ti3qa9s) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3ti3qa9s/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/drilbot_neo-rusticgendarme') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/fifteenai
fd6fc2395912db834527d6162196473849e78e09
2022-07-23T04:16:18.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/fifteenai
5
null
transformers
16,626
--- language: en thumbnail: http://www.huggingtweets.com/fifteenai/1658549683215/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1513191641921765388/rToX3RpX_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">15</div> <div style="text-align: center; font-size: 14px;">@fifteenai</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from 15. | Data | 15 | | --- | --- | | Tweets downloaded | 111 | | Retweets | 9 | | Short tweets | 10 | | Tweets kept | 92 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/169wgrhk/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @fifteenai's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/390dyi5s) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/390dyi5s/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/fifteenai') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/hirox246
b27e39fd85bef9b3fd76a37b9146a3b07a6c522b
2022-03-28T13:12:56.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/hirox246
5
null
transformers
16,627
--- language: en thumbnail: http://www.huggingtweets.com/hirox246/1648473171015/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/646595746905620480/oeKI14gB_400x400.png&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">ひろゆき, Hiroyuki Nishimura</div> <div style="text-align: center; font-size: 14px;">@hirox246</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from ひろゆき, Hiroyuki Nishimura. | Data | ひろゆき, Hiroyuki Nishimura | | --- | --- | | Tweets downloaded | 3246 | | Retweets | 288 | | Short tweets | 2002 | | Tweets kept | 956 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1fs862rv/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @hirox246's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/ktc28kc0) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/ktc28kc0/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/hirox246') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/islamphobiacow-praisegodbarbon
6965ff26b8b6a2a5f2006b6e8035081d5bb16d1f
2021-07-23T16:06:26.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/islamphobiacow-praisegodbarbon
5
null
transformers
16,628
--- language: en thumbnail: https://www.huggingtweets.com/islamphobiacow-praisegodbarbon/1627056382131/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1381764452098437120/74IgKP07_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1368077075127603200/Z08slO2P_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Boston Psychology PhD & keyvan</div> <div style="text-align: center; font-size: 14px;">@islamphobiacow-praisegodbarbon</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Boston Psychology PhD & keyvan. | Data | Boston Psychology PhD | keyvan | | --- | --- | --- | | Tweets downloaded | 3224 | 3242 | | Retweets | 858 | 179 | | Short tweets | 251 | 223 | | Tweets kept | 2115 | 2840 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3egvdux4/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @islamphobiacow-praisegodbarbon's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/34hmjrwi) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/34hmjrwi/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/islamphobiacow-praisegodbarbon') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/kanyewest
2ae5ab8942439189a85dcc19cb6a493371a9d2d1
2021-10-20T04:02:20.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/kanyewest
5
null
transformers
16,629
--- language: en thumbnail: https://www.huggingtweets.com/kanyewest/1634702536209/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1276461929934942210/cqNhNk6v_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">ye</div> <div style="text-align: center; font-size: 14px;">@kanyewest</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from ye. | Data | ye | | --- | --- | | Tweets downloaded | 1856 | | Retweets | 186 | | Short tweets | 573 | | Tweets kept | 1097 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/bvnrjbxn/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @kanyewest's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2nxhg2su) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2nxhg2su/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/kanyewest') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/nntaleb
d9b023127429a477e4561ff95c9cc1619e3b4cf8
2022-06-16T09:52:06.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/nntaleb
5
null
transformers
16,630
--- language: en thumbnail: http://www.huggingtweets.com/nntaleb/1655373122161/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1200820286964346880/Zz6YSFus_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Nassim Nicholas Taleb</div> <div style="text-align: center; font-size: 14px;">@nntaleb</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Nassim Nicholas Taleb. | Data | Nassim Nicholas Taleb | | --- | --- | | Tweets downloaded | 3247 | | Retweets | 138 | | Short tweets | 364 | | Tweets kept | 2745 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3p17kwd2/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @nntaleb's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/278506vz) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/278506vz/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/nntaleb') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/postgohst
08d3d001cc8a06bd5c4c3b8bd70a19d2f4f3d294
2021-09-24T22:10:56.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/postgohst
5
null
transformers
16,631
--- language: en thumbnail: https://www.huggingtweets.com/postgohst/1632521452929/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1151812292889047040/BHktVZLN_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Connoise: FALSE GOD SYSTEMS @ONLINE🖤</div> <div style="text-align: center; font-size: 14px;">@postgohst</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Connoise: FALSE GOD SYSTEMS @ONLINE🖤. | Data | Connoise: FALSE GOD SYSTEMS @ONLINE🖤 | | --- | --- | | Tweets downloaded | 3191 | | Retweets | 319 | | Short tweets | 387 | | Tweets kept | 2485 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1shgunpl/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @postgohst's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3dybkr8z) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3dybkr8z/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/postgohst') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/stephenking
0aafb74048e7764da1bd8b2fe99f56b846428ee7
2022-07-27T06:45:12.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/stephenking
5
null
transformers
16,632
--- language: en thumbnail: http://www.huggingtweets.com/stephenking/1658904308336/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/378800000836981162/b683f7509ec792c3e481ead332940cdc_400x400.jpeg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Stephen King</div> <div style="text-align: center; font-size: 14px;">@stephenking</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Stephen King. | Data | Stephen King | | --- | --- | | Tweets downloaded | 3230 | | Retweets | 770 | | Short tweets | 205 | | Tweets kept | 2255 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3c83ql6r/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @stephenking's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/llolipvn) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/llolipvn/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/stephenking') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/uberfacts
7e425e777676f0a8ffa65e9cead08c3bd8a67048
2021-08-13T06:58:05.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "huggingtweets" ]
text-generation
false
huggingtweets
null
huggingtweets/uberfacts
5
null
transformers
16,633
--- language: en thumbnail: https://www.huggingtweets.com/uberfacts/1628837881576/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1340165521992372226/zJ0Zo4rD_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">UberFacts</div> <div style="text-align: center; font-size: 14px;">@uberfacts</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from UberFacts. | Data | UberFacts | | --- | --- | | Tweets downloaded | 3250 | | Retweets | 1356 | | Short tweets | 148 | | Tweets kept | 1746 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2wg9sgv5/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @uberfacts's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1bl0xgi3) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1bl0xgi3/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/uberfacts') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
husnu/xtremedistil-l6-h256-uncased-finetuned_lr-2e-05_epochs-3
fb64003fc6fc93e4e1de208352d0fc8f773ce83d
2022-01-14T00:17:31.000Z
[ "pytorch", "tensorboard", "bert", "question-answering", "dataset:squad", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
question-answering
false
husnu
null
husnu/xtremedistil-l6-h256-uncased-finetuned_lr-2e-05_epochs-3
5
null
transformers
16,634
--- license: mit tags: - generated_from_trainer datasets: - squad model-index: - name: xtremedistil-l6-h256-uncased-finetuned_lr-2e-05_epochs-3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xtremedistil-l6-h256-uncased-finetuned_lr-2e-05_epochs-3 This model is a fine-tuned version of [microsoft/xtremedistil-l6-h256-uncased](https://huggingface.co/microsoft/xtremedistil-l6-h256-uncased) on the squad dataset. It achieves the following results on the evaluation set: - Loss: 1.2864 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 1.6088 | 1.0 | 5533 | 1.4429 | | 1.3928 | 2.0 | 11066 | 1.3183 | | 1.3059 | 3.0 | 16599 | 1.2864 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
hyunwoongko/ctrlsum-bigpatent
29c6b331fb305ad833bcecf7d866eaebc139565d
2021-03-21T15:56:21.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
hyunwoongko
null
hyunwoongko/ctrlsum-bigpatent
5
null
transformers
16,635
Entry not found
hyunwoongko/reddit-9B
5add95bbf47daec949c2c3b3e4d417df14104a5e
2021-06-22T16:09:14.000Z
[ "pytorch", "blenderbot", "text2text-generation", "en", "dataset:blended_skill_talk", "arxiv:1907.06616", "transformers", "convAI", "conversational", "facebook", "license:apache-2.0", "autotrain_compatible" ]
conversational
false
hyunwoongko
null
hyunwoongko/reddit-9B
5
null
transformers
16,636
--- language: - en thumbnail: tags: - convAI - conversational - facebook license: apache-2.0 datasets: - blended_skill_talk metrics: - perplexity --- ## Model description + Paper: [Recipes for building an open-domain chatbot](https://arxiv.org/abs/1907.06616) + [Original PARLAI Code](https://parl.ai/projects/recipes/) ### Abstract Building open-domain chatbots is a challenging area for machine learning research. While prior work has shown that scaling neural models in the number of parameters and the size of the data they are trained on gives improved results, we show that other ingredients are important for a high-performing chatbot. Good conversation requires a number of skills that an expert conversationalist blends in a seamless way: providing engaging talking points and listening to their partners, both asking and answering questions, and displaying knowledge, empathy and personality appropriately, depending on the situation. We show that large scale models can learn these skills when given appropriate training data and choice of generation strategy. We build variants of these recipes with 90M, 2.7B and 9.4B parameter neural models, and make our models and code publicly available. Human evaluations show our best models are superior to existing approaches in multi-turn dialogue in terms of engagingness and humanness measurements. We then discuss the limitations of this work by analyzing failure cases of our models.
imjeffhi/syllables_generator
67818d21695745e343766957ae3c06e19d4d4bf3
2021-12-18T19:44:23.000Z
[ "pytorch", "gpt_neo", "text-generation", "transformers" ]
text-generation
false
imjeffhi
null
imjeffhi/syllables_generator
5
null
transformers
16,637
# Syllabizer Card A fine-tuned version of GPT-neo (small, 125M parameters) on a syllables dataset collected via web scraping. The model has two additional special tokens: 1. \<SPELLED\>: Is followed by the word you wish to syllabize spelled out (used to work around some aspects of tokenization). 2. \<SYLLABLES\>: Is where the model outputs syllables in a spaced format A sample code can be seen here: ```python word = "syllabizer" characters = " ".join(word) input_string = f"{word} <SPELLED> {characters} <SYLLABLES>" ``` Output: ```python syllabizer <SPELLED> s y l l a b i z e r <SYLLABLES> syl lab iz er <|endoftext|> ```
imvladikon/charbert-roberta-wiki
f0c90bcf7b3fc535fd9c63ed86b8fd6054076dc8
2022-01-30T11:37:26.000Z
[ "pytorch", "en", "dataset:wikipedia", "arxiv:2011.01513", "transformers", "language model" ]
null
false
imvladikon
null
imvladikon/charbert-roberta-wiki
5
null
transformers
16,638
--- language: - en tags: - language model datasets: - wikipedia --- pre-trained model from [CharBERT: Character-aware Pre-trained Language Model](https://github.com/wtma/CharBERT) ``` @misc{ma2020charbert, title={CharBERT: Character-aware Pre-trained Language Model}, author={Wentao Ma and Yiming Cui and Chenglei Si and Ting Liu and Shijin Wang and Guoping Hu}, year={2020}, eprint={2011.01513}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
indobenchmark/indobert-lite-large-p1
94a271102d510db9d1ba8b603e5dc1f3227d2929
2020-12-11T21:45:56.000Z
[ "pytorch", "tf", "albert", "feature-extraction", "id", "dataset:Indo4B", "arxiv:2009.05387", "transformers", "indobert", "indobenchmark", "indonlu", "license:mit" ]
feature-extraction
false
indobenchmark
null
indobenchmark/indobert-lite-large-p1
5
null
transformers
16,639
--- language: id tags: - indobert - indobenchmark - indonlu license: mit inference: false datasets: - Indo4B --- # IndoBERT-Lite Large Model (phase1 - uncased) [IndoBERT](https://arxiv.org/abs/2009.05387) is a state-of-the-art language model for Indonesian based on the BERT model. The pretrained model is trained using a masked language modeling (MLM) objective and next sentence prediction (NSP) objective. ## All Pre-trained Models | Model | #params | Arch. | Training data | |--------------------------------|--------------------------------|-------|-----------------------------------| | `indobenchmark/indobert-base-p1` | 124.5M | Base | Indo4B (23.43 GB of text) | | `indobenchmark/indobert-base-p2` | 124.5M | Base | Indo4B (23.43 GB of text) | | `indobenchmark/indobert-large-p1` | 335.2M | Large | Indo4B (23.43 GB of text) | | `indobenchmark/indobert-large-p2` | 335.2M | Large | Indo4B (23.43 GB of text) | | `indobenchmark/indobert-lite-base-p1` | 11.7M | Base | Indo4B (23.43 GB of text) | | `indobenchmark/indobert-lite-base-p2` | 11.7M | Base | Indo4B (23.43 GB of text) | | `indobenchmark/indobert-lite-large-p1` | 17.7M | Large | Indo4B (23.43 GB of text) | | `indobenchmark/indobert-lite-large-p2` | 17.7M | Large | Indo4B (23.43 GB of text) | ## How to use ### Load model and tokenizer ```python from transformers import BertTokenizer, AutoModel tokenizer = BertTokenizer.from_pretrained("indobenchmark/indobert-lite-large-p1") model = AutoModel.from_pretrained("indobenchmark/indobert-lite-large-p1") ``` ### Extract contextual representation ```python x = torch.LongTensor(tokenizer.encode('aku adalah anak [MASK]')).view(1,-1) print(x, model(x)[0].sum()) ``` ## Authors <b>IndoBERT</b> was trained and evaluated by Bryan Wilie\*, Karissa Vincentio\*, Genta Indra Winata\*, Samuel Cahyawijaya\*, Xiaohong Li, Zhi Yuan Lim, Sidik Soleman, Rahmad Mahendra, Pascale Fung, Syafri Bahar, Ayu Purwarianti. ## Citation If you use our work, please cite: ```bibtex @inproceedings{wilie2020indonlu, title={IndoNLU: Benchmark and Resources for Evaluating Indonesian Natural Language Understanding}, author={Bryan Wilie and Karissa Vincentio and Genta Indra Winata and Samuel Cahyawijaya and X. Li and Zhi Yuan Lim and S. Soleman and R. Mahendra and Pascale Fung and Syafri Bahar and A. Purwarianti}, booktitle={Proceedings of the 1st Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 10th International Joint Conference on Natural Language Processing}, year={2020} } ```
infinitejoy/wav2vec2-large-xls-r-300m-finnish
b7fd96c49c0eff74f2af2fdd5b59024b381168f3
2022-03-23T18:34:46.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "fi", "dataset:mozilla-foundation/common_voice_7_0", "transformers", "generated_from_trainer", "hf-asr-leaderboard", "model_for_talk", "mozilla-foundation/common_voice_7_0", "robust-speech-event", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
infinitejoy
null
infinitejoy/wav2vec2-large-xls-r-300m-finnish
5
null
transformers
16,640
--- language: - fi license: apache-2.0 tags: - automatic-speech-recognition - fi - generated_from_trainer - hf-asr-leaderboard - model_for_talk - mozilla-foundation/common_voice_7_0 - robust-speech-event datasets: - mozilla-foundation/common_voice_7_0 model-index: - name: XLS-R-300M - Finnish results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 7 type: mozilla-foundation/common_voice_7_0 args: fi metrics: - name: Test WER type: wer value: 29.97 - name: Test CER type: cer value: NA --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-finnish This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - FI dataset. It achieves the following results on the evaluation set: - Loss: 0.2307 - Wer: 0.2984 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 70.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 2.9032 | 4.39 | 500 | 2.8768 | 1.0 | | 1.5724 | 8.77 | 1000 | 0.5638 | 0.6438 | | 1.1818 | 13.16 | 1500 | 0.3338 | 0.4759 | | 1.0798 | 17.54 | 2000 | 0.2876 | 0.4086 | | 1.0296 | 21.93 | 2500 | 0.2694 | 0.4248 | | 1.0014 | 26.32 | 3000 | 0.2626 | 0.3733 | | 0.9616 | 30.7 | 3500 | 0.2391 | 0.3294 | | 0.9303 | 35.09 | 4000 | 0.2352 | 0.3218 | | 0.9248 | 39.47 | 4500 | 0.2351 | 0.3207 | | 0.8837 | 43.86 | 5000 | 0.2341 | 0.3103 | | 0.8887 | 48.25 | 5500 | 0.2311 | 0.3115 | | 0.8529 | 52.63 | 6000 | 0.2230 | 0.3001 | | 0.8404 | 57.02 | 6500 | 0.2279 | 0.3054 | | 0.8242 | 61.4 | 7000 | 0.2298 | 0.3006 | | 0.8288 | 65.79 | 7500 | 0.2333 | 0.2997 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.17.1.dev0 - Tokenizers 0.11.0
infinitejoy/wav2vec2-large-xls-r-300m-romanian
2dbe318e8470c6756dbd67f0bc2fa08737898df5
2022-03-23T18:33:55.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "ro", "dataset:mozilla-foundation/common_voice_7_0", "transformers", "generated_from_trainer", "hf-asr-leaderboard", "model_for_talk", "mozilla-foundation/common_voice_7_0", "robust-speech-event", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
infinitejoy
null
infinitejoy/wav2vec2-large-xls-r-300m-romanian
5
null
transformers
16,641
--- language: - ro license: apache-2.0 tags: - automatic-speech-recognition - generated_from_trainer - hf-asr-leaderboard - model_for_talk - mozilla-foundation/common_voice_7_0 - ro - robust-speech-event datasets: - mozilla-foundation/common_voice_7_0 model-index: - name: XLS-R-300M - Romanian results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 7 type: mozilla-foundation/common_voice_7_0 args: ro metrics: - name: Test WER type: wer value: 14.194 - name: Test CER type: cer value: 3.288 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: ro metrics: - name: Test WER type: wer value: 40.869 - name: Test CER type: cer value: 12.049 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: ro metrics: - name: Test WER type: wer value: 47.2 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-romanian This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - RO dataset. It achieves the following results on the evaluation set: - Loss: 0.1167 - Wer: 0.1421 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7e-05 - train_batch_size: 32 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2000 - num_epochs: 50.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 1.1973 | 8.89 | 2000 | 0.4481 | 0.4849 | | 0.6005 | 17.78 | 4000 | 0.1420 | 0.1777 | | 0.5248 | 26.67 | 6000 | 0.1303 | 0.1651 | | 0.4871 | 35.56 | 8000 | 0.1207 | 0.1523 | | 0.4428 | 44.44 | 10000 | 0.1143 | 0.1425 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.17.1.dev0 - Tokenizers 0.11.0
it5/it5-large-repubblica-to-ilgiornale
a49eb55635437bb88b779379524ee0a7bc80079d
2022-03-09T08:01:50.000Z
[ "pytorch", "tf", "jax", "tensorboard", "t5", "text2text-generation", "it", "dataset:gsarti/change_it", "arxiv:2203.03759", "transformers", "italian", "sequence-to-sequence", "newspaper", "ilgiornale", "repubblica", "style-transfer", "license:apache-2.0", "model-index", "co2_eq_emissions", "autotrain_compatible" ]
text2text-generation
false
it5
null
it5/it5-large-repubblica-to-ilgiornale
5
null
transformers
16,642
--- language: - it license: apache-2.0 datasets: - gsarti/change_it tags: - italian - sequence-to-sequence - newspaper - ilgiornale - repubblica - style-transfer widget: - text: "WASHINGTON - La Corea del Nord torna dopo nove anni nella blacklist Usa degli Stati considerati sponsor del terrorismo. Come Iran, Siria e Sudan. Lo ha deciso Donald Trump , che ha preferito dare l'annuncio non durante il suo recente viaggio in Asia ma ieri, in una riunione del governo alla Casa Bianca. 'Oggi gli Stati Uniti designeranno la Corea del nord come uno stato sponsor del terrorismo', ha tuonato il tycoon, anticipando che sarà formalizzata oggi dal dipartimento di stato e sarà accompagnata da nuove e più severe sanzioni. 'Il livello più alto' mai imposto a Pyongyang, ha promesso. 'Avrebbe dovuto succedere molto tempo fa', ha aggiunto, scaricando per l'ennesima volta la responsabilità dell'attuale crisi sull'amministrazione Obama. Poi si è scagliato contro un 'regime assassino' che 'deve mettere fine allo sviluppo del suo programma illegale nucleare e balistico'. Per giustificare la svolta, Trump ha accusato Pyongyang non solo di 'minacciare il mondo con una devastazione nucleare' ma anche di aver 'ripetutamente sostenuto atti di terrorismo internazionale', compreso omicidi in suolo straniero. Il riferimento è all' uccisione all'aeroporto della capitale malese di Kim Jong Nam , il fratellastro del leader nordcoreano Kim Jong Un , ma non ci sono altri episodi noti. Tanto che alcuni esperti, come pure dirigenti Usa coperti dall'anonimato, dubitano che Pyongyang risponda ai criteri per una tale designazione. La mossa appare altamente simbolica, dato che la Corea del Nord è già pesantemente sanzionata a livello internazionale. Per il segretario di stato Rex Tillerson è solo l'ultima di una serie di passi per rafforzare la pressione su Pyongyang e costringerla a sedersi ad un tavolo perché gli Usa hanno sempre 'speranza nella diplomazia'. Ma nello stesso tempo è un monito per 'fermare e dissuadere' altri Paesi dal sostenere la Corea del Nord, finita nella blacklist 'anche per l'uso di armi chimiche'. Ma la mossa potrebbe anche essere controproducente, provocando una risposta di Kim o minando gli sforzi per sollecitare Pechino ad una maggiore pressione su Pyongyang. In ogni caso non aiuta il dialogo diretto tra Usa e Corea del Nord, che sembrava essere stato avviato in modo riservato. Come non aiutano gli scambi di insulti fra Trump e Kim. Nord Corea, Trump: 'Cerco di essere amico di Kim, sarebbe una bella cosa per il mondo'. Pyongyang era stata messa nella lista Usa degli Stati sponsor del terrorismo per aver fatto esplodere nel 1987 un volo della Korean Air uccidendo tutti i 115 passeggeri a bordo. Ma l'amministrazione di George W. Bush l'aveva rimossa sperando di far avanzare i negoziati sulla denuclearizzazione della penisola coreana. Il governo giapponese sostiene la decisione degli Stati Uniti di inserire la Corea del Nord nella lista degli stati che sponsorizzano il terrorismo, pur riconoscendo che l'annuncio potrebbe provocare una reazione immediata del regime di Pyongyang. Il premier Shinzo Abe ha accolto con consenso il comunicato Usa e ha detto alla stampa che servirà a incrementare la pressione sulla Corea del Nord. Il ministro della Difesa Itsunori Onodera , pur valutando positivamente la notifica, ha spiegato che si attendono azioni provocatorie dallo stato eremita, ribadendo che è vitale rimanere vigili. Secondo la stampa nipponica Abe aveva richiesto al dipartimento di Stato Usa di mettere la Corea del Nord sulla lista durante l'incontro col presidente Usa Donald Trump a Tokyo a inizio mese. L'ultimo lancio di missile balistico condotto da Pyongyang nell'oceano Pacifico, sorvolando il mare del Giappone, risale allo scorso settembre." - text: "ROMA - Una nuova droga killer è stata sequestrata per la prima volta in Europa dagli investigatori del Nas. Si tratta di una nuova \"miscela psicoattiva altamente tossica\" per la prima volta individuata da forze di polizia, simile all'eroina sintetica, ma molto più economica e letale. Tanto che i 20 grammi scoperti sarebbero stati sufficienti per fabbricare ben 20.000 dosi e lo stesso contatto attraverso la pelle può provocare intossicazione. Individuata per la prima volta, la nuova droga presenta una struttura simile al farmaco sedativo Fentanyl ma con effetti molto più devastanti per l'organismo. Proveniva dell'estero ed era contenuta in un plico postale indirizzato in una città del centro Italia: è stata intercettata tramite accertamenti sul web grazie a un'operazione di intelligence che ha visto come protagonisti i militari della Sezione operativa centrale del Comando carabinieri per la Tutela della salute (Nas). Economica e letale, secondo gli investigatori \"in confronto l'eroina è quasi 'acqua fresca', anzi, proprio per la sua economicità, in alcuni casi viene venduta dai pusher a giovani conviti di comprare eroina\". La diffusione di nuove droghe sintetiche che continuamente appaiono sui mercati necessita di un'attività investigativa costante e complessa. Si tratta infatti di sostanze dalla struttura molecolare molto simile a quella del Fentanyl ma ogni volta leggermente diversa. Di qui la difficoltà di individuarle e l'importanza del nuovo sequestro. \"La chiamano impropriamente 'eroina sintetica' - spiega il comandante dei Nas, generale Adelmo Lusi - per il tipo di effetto psicotropo simile, ma dal punto di vista della tossicità è molto peggio: con 25 milligrammi di eroina ci si sballa, con 25mg di simil-fentanyl, come quello appena sequestrato, si muore\". Le indagini sono partite da ricoveri per overdose in ospedale, in cui arrivavano ragazzi che non rispondevano al trattamento disintossicante per l'eroina. La nuova sostanza verrà ora segnalata per l'inserimento tra le tabelle ministeriali degli stupefacenti prevista dal Dpr 309/1990." - text: "Fragile come il burro. Il nostro territorio è precario. Ne sanno qualcosa i comuni che sono stati investititi dal maltempo . Il dissesto idrogeologico imperversa su tutto il territorio. Infatti, oltre 6.600 comuni , pari all’82% del totale, sono in aree ad elevato rischio idrogeologico, pari al 10% della sua superficie. La popolazione potenzialmente esposta è stimata in 5,8 milioni di persone. I dati emergono dalle recenti analisi fatte da Legambiente e Protezione civile, che mettono in evidenza come in 10 anni in Italia sia raddoppiata l’area dei territori colpiti da alluvioni e frane , passando da una media di quattro regioni all’anno a otto regioni. Nella classifica delle regioni a maggior rischio idrogeologico prima è la Calabria con il 100% dei comuni esposti; al 100% ci sono anche la provincia di Trento, il Molise, la Basilicata, l’Umbria, la Valle d’Aosta. Poi Marche, Liguria al 99%; Lazio, Toscana al 98%; Abruzzo (96%), Emilia-Romagna (95%), Campania e Friuli Venezia Giulia al 92%, Piemonte (87%), Sardegna (81%), Puglia (78%), Sicilia (71%), Lombardia (60%), provincia di Bolzano (59%), Veneto (56%). Tra le cause che condizionano ed amplificano il rischio idrogeologico c’è l’azione dell’uomo (abbandono e degrado, cementificazione, consumo di suolo, abusivismo, disboscamento e incendi). Ma anche e soprattutto la mancanza di una seria manutenzione ordinaria e non ad una organica politica di prevenzione." - text: "Arriva dal Partito nazionalista basco (Pnv) la conferma che i cinque deputati che siedono in parlamento voteranno la sfiducia al governo guidato da Mariano Rajoy. Pochi voti, ma significativi quelli della formazione politica di Aitor Esteban, che interverrà nel pomeriggio. Pur con dimensioni molto ridotte, il partito basco si è trovato a fare da ago della bilancia in aula. E il sostegno alla mozione presentata dai Socialisti potrebbe significare per il primo ministro non trovare quei 176 voti che gli servono per continuare a governare. \" Perché dovrei dimettermi io che per il momento ho la fiducia della Camera e quella che mi è stato data alle urne \", ha detto oggi Rajoy nel suo intervento in aula, mentre procedeva la discussione sulla mozione di sfiducia. Il voto dei baschi ora cambia le carte in tavola e fa crescere ulteriormente la pressione sul premier perché rassegni le sue dimissioni. La sfiducia al premier, o un'eventuale scelta di dimettersi, porterebbe alle estreme conseguenze lo scandalo per corruzione che ha investito il Partito popolare. Ma per ora sembra pensare a tutt'altro. \"Non ha intenzione di dimettersi - ha detto il segretario generale del Partito popolare , María Dolores de Cospedal - Non gioverebbe all'interesse generale o agli interessi del Pp\"." metrics: - rouge - bertscore - headline-headline-consistency-classifier - headline-article-consistency-classifier model-index: - name: it5-large-repubblica-to-ilgiornale results: - task: type: headline-style-transfer-repubblica-to-ilgiornale name: "Headline style transfer (Repubblica to Il Giornale)" dataset: type: gsarti/change_it name: "CHANGE-IT" metrics: - type: rouge1 value: 0.270 name: "Test Rouge1" - type: rouge2 value: 0.089 name: "Test Rouge2" - type: rougeL value: 0.237 name: "Test RougeL" - type: bertscore value: 0.400 name: "Test BERTScore" args: - model_type: "dbmdz/bert-base-italian-xxl-uncased" - lang: "it" - num_layers: 10 - rescale_with_baseline: True - baseline_path: "bertscore_baseline_ita.tsv" - type: headline-headline-consistency-classifier value: 0.883 name: "Test Headline-Headline Consistency Accuracy" - type: headline-article-consistency-classifier value: 0.880 name: "Test Headline-Article Consistency Accuracy" co2_eq_emissions: emissions: "51g" source: "Google Cloud Platform Carbon Footprint" training_type: "fine-tuning" geographical_location: "Eemshaven, Netherlands, Europe" hardware_used: "1 TPU v3-8 VM" thumbnail: https://gsarti.com/publication/it5/featured.png --- # IT5 Large for News Headline Style Transfer (Repubblica to Il Giornale) 🗞️➡️🗞️ 🇮🇹 This repository contains the checkpoint for the [IT5 Large](https://huggingface.co/gsarti/it5-large) model fine-tuned on news headline style transfer in the Repubblica to Il Giornale direction on the Italian CHANGE-IT dataset as part of the experiments of the paper [IT5: Large-scale Text-to-text Pretraining for Italian Language Understanding and Generation](https://arxiv.org/abs/2203.03759) by [Gabriele Sarti](https://gsarti.com) and [Malvina Nissim](https://malvinanissim.github.io). A comprehensive overview of other released materials is provided in the [gsarti/it5](https://github.com/gsarti/it5) repository. Refer to the paper for additional details concerning the reported scores and the evaluation approach. ## Using the model The model is trained to generate an headline in the style of Il Giornale from the full body of an article written in the style of Repubblica. Model checkpoints are available for usage in Tensorflow, Pytorch and JAX. They can be used directly with pipelines as: ```python from transformers import pipelines r2g = pipeline("text2text-generation", model='it5/it5-large-repubblica-to-ilgiornale') r2g("Arriva dal Partito nazionalista basco (Pnv) la conferma che i cinque deputati che siedono in parlamento voteranno la sfiducia al governo guidato da Mariano Rajoy. Pochi voti, ma significativi quelli della formazione politica di Aitor Esteban, che interverrà nel pomeriggio. Pur con dimensioni molto ridotte, il partito basco si è trovato a fare da ago della bilancia in aula. E il sostegno alla mozione presentata dai Socialisti potrebbe significare per il primo ministro non trovare quei 176 voti che gli servono per continuare a governare. \" Perché dovrei dimettermi io che per il momento ho la fiducia della Camera e quella che mi è stato data alle urne \", ha detto oggi Rajoy nel suo intervento in aula, mentre procedeva la discussione sulla mozione di sfiducia. Il voto dei baschi ora cambia le carte in tavola e fa crescere ulteriormente la pressione sul premier perché rassegni le sue dimissioni. La sfiducia al premier, o un'eventuale scelta di dimettersi, porterebbe alle estreme conseguenze lo scandalo per corruzione che ha investito il Partito popolare. Ma per ora sembra pensare a tutt'altro. \"Non ha intenzione di dimettersi - ha detto il segretario generale del Partito popolare , María Dolores de Cospedal - Non gioverebbe all'interesse generale o agli interessi del Pp\".") >>> [{"generated_text": "il nazionalista rajoy: 'voteremo la sfiducia'"}] ``` or loaded using autoclasses: ```python from transformers import AutoTokenizer, AutoModelForSeq2SeqLM tokenizer = AutoTokenizer.from_pretrained("it5/it5-large-repubblica-to-ilgiornale") model = AutoModelForSeq2SeqLM.from_pretrained("it5/it5-large-repubblica-to-ilgiornale") ``` If you use this model in your research, please cite our work as: ```bibtex @article{sarti-nissim-2022-it5, title={{IT5}: Large-scale Text-to-text Pretraining for Italian Language Understanding and Generation}, author={Sarti, Gabriele and Nissim, Malvina}, journal={ArXiv preprint 2203.03759}, url={https://arxiv.org/abs/2203.03759}, year={2022}, month={mar} } ```
it5/mt5-small-headline-generation
2245c36e93dbc00b44a36aeeb5956f89472f6b91
2022-03-09T07:59:17.000Z
[ "pytorch", "tf", "jax", "tensorboard", "mt5", "text2text-generation", "it", "dataset:gsarti/change_it", "arxiv:2203.03759", "transformers", "italian", "sequence-to-sequence", "newspaper", "ilgiornale", "repubblica", "headline-generation", "license:apache-2.0", "model-index", "co2_eq_emissions", "autotrain_compatible" ]
text2text-generation
false
it5
null
it5/mt5-small-headline-generation
5
null
transformers
16,643
--- language: - it license: apache-2.0 datasets: - gsarti/change_it tags: - italian - sequence-to-sequence - newspaper - ilgiornale - repubblica - headline-generation widget: - text: "WASHINGTON - La Corea del Nord torna dopo nove anni nella blacklist Usa degli Stati considerati sponsor del terrorismo. Come Iran, Siria e Sudan. Lo ha deciso Donald Trump , che ha preferito dare l'annuncio non durante il suo recente viaggio in Asia ma ieri, in una riunione del governo alla Casa Bianca. 'Oggi gli Stati Uniti designeranno la Corea del nord come uno stato sponsor del terrorismo', ha tuonato il tycoon, anticipando che sarà formalizzata oggi dal dipartimento di stato e sarà accompagnata da nuove e più severe sanzioni. 'Il livello più alto' mai imposto a Pyongyang, ha promesso. 'Avrebbe dovuto succedere molto tempo fa', ha aggiunto, scaricando per l'ennesima volta la responsabilità dell'attuale crisi sull'amministrazione Obama. Poi si è scagliato contro un 'regime assassino' che 'deve mettere fine allo sviluppo del suo programma illegale nucleare e balistico'. Per giustificare la svolta, Trump ha accusato Pyongyang non solo di 'minacciare il mondo con una devastazione nucleare' ma anche di aver 'ripetutamente sostenuto atti di terrorismo internazionale', compreso omicidi in suolo straniero. Il riferimento è all' uccisione all'aeroporto della capitale malese di Kim Jong Nam , il fratellastro del leader nordcoreano Kim Jong Un , ma non ci sono altri episodi noti. Tanto che alcuni esperti, come pure dirigenti Usa coperti dall'anonimato, dubitano che Pyongyang risponda ai criteri per una tale designazione. La mossa appare altamente simbolica, dato che la Corea del Nord è già pesantemente sanzionata a livello internazionale. Per il segretario di stato Rex Tillerson è solo l'ultima di una serie di passi per rafforzare la pressione su Pyongyang e costringerla a sedersi ad un tavolo perché gli Usa hanno sempre 'speranza nella diplomazia'. Ma nello stesso tempo è un monito per 'fermare e dissuadere' altri Paesi dal sostenere la Corea del Nord, finita nella blacklist 'anche per l'uso di armi chimiche'. Ma la mossa potrebbe anche essere controproducente, provocando una risposta di Kim o minando gli sforzi per sollecitare Pechino ad una maggiore pressione su Pyongyang. In ogni caso non aiuta il dialogo diretto tra Usa e Corea del Nord, che sembrava essere stato avviato in modo riservato. Come non aiutano gli scambi di insulti fra Trump e Kim. Nord Corea, Trump: 'Cerco di essere amico di Kim, sarebbe una bella cosa per il mondo'. Pyongyang era stata messa nella lista Usa degli Stati sponsor del terrorismo per aver fatto esplodere nel 1987 un volo della Korean Air uccidendo tutti i 115 passeggeri a bordo. Ma l'amministrazione di George W. Bush l'aveva rimossa sperando di far avanzare i negoziati sulla denuclearizzazione della penisola coreana. Il governo giapponese sostiene la decisione degli Stati Uniti di inserire la Corea del Nord nella lista degli stati che sponsorizzano il terrorismo, pur riconoscendo che l'annuncio potrebbe provocare una reazione immediata del regime di Pyongyang. Il premier Shinzo Abe ha accolto con consenso il comunicato Usa e ha detto alla stampa che servirà a incrementare la pressione sulla Corea del Nord. Il ministro della Difesa Itsunori Onodera , pur valutando positivamente la notifica, ha spiegato che si attendono azioni provocatorie dallo stato eremita, ribadendo che è vitale rimanere vigili. Secondo la stampa nipponica Abe aveva richiesto al dipartimento di Stato Usa di mettere la Corea del Nord sulla lista durante l'incontro col presidente Usa Donald Trump a Tokyo a inizio mese. L'ultimo lancio di missile balistico condotto da Pyongyang nell'oceano Pacifico, sorvolando il mare del Giappone, risale allo scorso settembre." - text: "ROMA - Una nuova droga killer è stata sequestrata per la prima volta in Europa dagli investigatori del Nas. Si tratta di una nuova \"miscela psicoattiva altamente tossica\" per la prima volta individuata da forze di polizia, simile all'eroina sintetica, ma molto più economica e letale. Tanto che i 20 grammi scoperti sarebbero stati sufficienti per fabbricare ben 20.000 dosi e lo stesso contatto attraverso la pelle può provocare intossicazione. Individuata per la prima volta, la nuova droga presenta una struttura simile al farmaco sedativo Fentanyl ma con effetti molto più devastanti per l'organismo. Proveniva dell'estero ed era contenuta in un plico postale indirizzato in una città del centro Italia: è stata intercettata tramite accertamenti sul web grazie a un'operazione di intelligence che ha visto come protagonisti i militari della Sezione operativa centrale del Comando carabinieri per la Tutela della salute (Nas). Economica e letale, secondo gli investigatori \"in confronto l'eroina è quasi 'acqua fresca', anzi, proprio per la sua economicità, in alcuni casi viene venduta dai pusher a giovani conviti di comprare eroina\". La diffusione di nuove droghe sintetiche che continuamente appaiono sui mercati necessita di un'attività investigativa costante e complessa. Si tratta infatti di sostanze dalla struttura molecolare molto simile a quella del Fentanyl ma ogni volta leggermente diversa. Di qui la difficoltà di individuarle e l'importanza del nuovo sequestro. \"La chiamano impropriamente 'eroina sintetica' - spiega il comandante dei Nas, generale Adelmo Lusi - per il tipo di effetto psicotropo simile, ma dal punto di vista della tossicità è molto peggio: con 25 milligrammi di eroina ci si sballa, con 25mg di simil-fentanyl, come quello appena sequestrato, si muore\". Le indagini sono partite da ricoveri per overdose in ospedale, in cui arrivavano ragazzi che non rispondevano al trattamento disintossicante per l'eroina. La nuova sostanza verrà ora segnalata per l'inserimento tra le tabelle ministeriali degli stupefacenti prevista dal Dpr 309/1990." - text: "Fragile come il burro. Il nostro territorio è precario. Ne sanno qualcosa i comuni che sono stati investititi dal maltempo . Il dissesto idrogeologico imperversa su tutto il territorio. Infatti, oltre 6.600 comuni , pari all’82% del totale, sono in aree ad elevato rischio idrogeologico, pari al 10% della sua superficie. La popolazione potenzialmente esposta è stimata in 5,8 milioni di persone. I dati emergono dalle recenti analisi fatte da Legambiente e Protezione civile, che mettono in evidenza come in 10 anni in Italia sia raddoppiata l’area dei territori colpiti da alluvioni e frane , passando da una media di quattro regioni all’anno a otto regioni. Nella classifica delle regioni a maggior rischio idrogeologico prima è la Calabria con il 100% dei comuni esposti; al 100% ci sono anche la provincia di Trento, il Molise, la Basilicata, l’Umbria, la Valle d’Aosta. Poi Marche, Liguria al 99%; Lazio, Toscana al 98%; Abruzzo (96%), Emilia-Romagna (95%), Campania e Friuli Venezia Giulia al 92%, Piemonte (87%), Sardegna (81%), Puglia (78%), Sicilia (71%), Lombardia (60%), provincia di Bolzano (59%), Veneto (56%). Tra le cause che condizionano ed amplificano il rischio idrogeologico c’è l’azione dell’uomo (abbandono e degrado, cementificazione, consumo di suolo, abusivismo, disboscamento e incendi). Ma anche e soprattutto la mancanza di una seria manutenzione ordinaria e non ad una organica politica di prevenzione." - text: "Arriva dal Partito nazionalista basco (Pnv) la conferma che i cinque deputati che siedono in parlamento voteranno la sfiducia al governo guidato da Mariano Rajoy. Pochi voti, ma significativi quelli della formazione politica di Aitor Esteban, che interverrà nel pomeriggio. Pur con dimensioni molto ridotte, il partito basco si è trovato a fare da ago della bilancia in aula. E il sostegno alla mozione presentata dai Socialisti potrebbe significare per il primo ministro non trovare quei 176 voti che gli servono per continuare a governare. \" Perché dovrei dimettermi io che per il momento ho la fiducia della Camera e quella che mi è stato data alle urne \", ha detto oggi Rajoy nel suo intervento in aula, mentre procedeva la discussione sulla mozione di sfiducia. Il voto dei baschi ora cambia le carte in tavola e fa crescere ulteriormente la pressione sul premier perché rassegni le sue dimissioni. La sfiducia al premier, o un'eventuale scelta di dimettersi, porterebbe alle estreme conseguenze lo scandalo per corruzione che ha investito il Partito popolare. Ma per ora sembra pensare a tutt'altro. \"Non ha intenzione di dimettersi - ha detto il segretario generale del Partito popolare , María Dolores de Cospedal - Non gioverebbe all'interesse generale o agli interessi del Pp\"." metrics: - rouge - bertscore model-index: - name: mt5-small-headline-generation results: - task: type: headline-generation name: "Headline generation" dataset: type: headgen_it name: "HeadGen-IT" metrics: - type: rouge1 value: 0.277 name: "Test Rouge1" - type: rouge2 value: 0.094 name: "Test Rouge2" - type: rougeL value: 0.244 name: "Test RougeL" - type: bertscore value: 0.408 name: "Test BERTScore" args: - model_type: "dbmdz/bert-base-italian-xxl-uncased" - lang: "it" - num_layers: 10 - rescale_with_baseline: True - baseline_path: "bertscore_baseline_ita.tsv" co2_eq_emissions: emissions: "17g" source: "Google Cloud Platform Carbon Footprint" training_type: "fine-tuning" geographical_location: "Eemshaven, Netherlands, Europe" hardware_used: "1 TPU v3-8 VM" thumbnail: https://gsarti.com/publication/it5/featured.png --- # mT5 Small for News Headline Generation 📣 🇮🇹 This repository contains the checkpoint for the [mT5 Small](https://huggingface.co/google/mt5-small) model fine-tuned on news headline generation on the Italian HeadGen-IT dataset as part of the experiments of the paper [IT5: Large-scale Text-to-text Pretraining for Italian Language Understanding and Generation](https://arxiv.org/abs/2203.03759) by [Gabriele Sarti](https://gsarti.com) and [Malvina Nissim](https://malvinanissim.github.io). A comprehensive overview of other released materials is provided in the [gsarti/it5](https://github.com/gsarti/it5) repository. Refer to the paper for additional details concerning the reported scores and the evaluation approach. ## Using the model Model checkpoints are available for usage in Tensorflow, Pytorch and JAX. They can be used directly with pipelines as: ```python from transformers import pipelines hg = pipeline("text2text-generation", model='it5/mt5-small-headline-generation') hg("Arriva dal Partito nazionalista basco (Pnv) la conferma che i cinque deputati che siedono in parlamento voteranno la sfiducia al governo guidato da Mariano Rajoy. Pochi voti, ma significativi quelli della formazione politica di Aitor Esteban, che interverrà nel pomeriggio. Pur con dimensioni molto ridotte, il partito basco si è trovato a fare da ago della bilancia in aula. E il sostegno alla mozione presentata dai Socialisti potrebbe significare per il primo ministro non trovare quei 176 voti che gli servono per continuare a governare. \" Perché dovrei dimettermi io che per il momento ho la fiducia della Camera e quella che mi è stato data alle urne \", ha detto oggi Rajoy nel suo intervento in aula, mentre procedeva la discussione sulla mozione di sfiducia. Il voto dei baschi ora cambia le carte in tavola e fa crescere ulteriormente la pressione sul premier perché rassegni le sue dimissioni. La sfiducia al premier, o un'eventuale scelta di dimettersi, porterebbe alle estreme conseguenze lo scandalo per corruzione che ha investito il Partito popolare. Ma per ora sembra pensare a tutt'altro. \"Non ha intenzione di dimettersi - ha detto il segretario generale del Partito popolare , María Dolores de Cospedal - Non gioverebbe all'interesse generale o agli interessi del Pp\".") >>> [{"generated_text": "il nazionalista rajoy: 'voteremo la sfiducia'"}] ``` or loaded using autoclasses: ```python from transformers import AutoTokenizer, AutoModelForSeq2SeqLM tokenizer = AutoTokenizer.from_pretrained("it5/mt5-small-headline-generation") model = AutoModelForSeq2SeqLM.from_pretrained("it5/mt5-small-headline-generation") ``` If you use this model in your research, please cite our work as: ```bibtex @article{sarti-nissim-2022-it5, title={{IT5}: Large-scale Text-to-text Pretraining for Italian Language Understanding and Generation}, author={Sarti, Gabriele and Nissim, Malvina}, journal={ArXiv preprint 2203.03759}, url={https://arxiv.org/abs/2203.03759}, year={2022}, month={mar} } ```
it5/mt5-small-question-generation
a48144da3cd4d293ca4baf273e3e204f7c02464e
2022-03-09T07:55:07.000Z
[ "pytorch", "tf", "jax", "tensorboard", "mt5", "text2text-generation", "it", "dataset:squad_it", "arxiv:2203.03759", "transformers", "italian", "sequence-to-sequence", "question-generation", "squad_it", "license:apache-2.0", "model-index", "co2_eq_emissions", "autotrain_compatible" ]
text2text-generation
false
it5
null
it5/mt5-small-question-generation
5
null
transformers
16,644
--- language: - it license: apache-2.0 datasets: - squad_it tags: - italian - sequence-to-sequence - question-generation - squad_it - text2text-generation widget: - text: "Le conoscenze mediche erano stagnanti durante il Medioevo. Il resoconto più autorevole di allora è venuto dalla facoltà di medicina di Parigi in un rapporto al re di Francia che ha incolpato i cieli, sotto forma di una congiunzione di tre pianeti nel 1345 che causò una \"grande pestilenza nell' aria\". Questa relazione è diventata la prima e più diffusa di una serie di casi di peste che cercava di dare consigli ai malati. Che la peste fosse causata dalla cattiva aria divenne la teoria più accettata. Oggi, questo è conosciuto come la teoria di Miasma. La parola \"peste\" non aveva un significato particolare in questo momento, e solo la ricorrenza dei focolai durante il Medioevo gli diede il nome che è diventato il termine medico. Risposta: re di Francia" - text: "Il 14 aprile 2011, ABC ha annullato le lunghe opere di sapone All My Children e One Life to Live dopo 41 e 43 anni in onda, rispettivamente (in seguito al contraccolpo dei tifosi, ABC ha venduto i diritti ad entrambi gli spettacoli a Prospect Park, che alla fine ha rilanciato i saponi su Hulu per un' ulteriore stagione nel 2013 e con entrambe le società che si citano in giudizio per accuse di interferenza con il processo di rilancio degli spettacoli, mancato pagamento delle tasse di licenza. Il talk/lifestyle show che ha sostituito One Life to Live, The Revolution, non è riuscito a generare giudizi soddisfacenti ed è stato a sua volta annullato dopo soli sette mesi. La stagione 2011-12 ha visto l' ABC cadere al quarto posto nel 18-49 demografico nonostante rinnovando una manciata di nuovi spettacoli (compresi i drammi matricole Scandal, Revenge e Once Upon a Time) per la seconda stagione. Risposta: Hulu" - text: "L' American Broadcasting Company (ABC) (stlized nel suo logo come abc dal 1957) è una rete televisiva commerciale americana trasmissione televisiva che è di proprietà del Disney-ABC Television Group, una controllata della divisione Disney Media Networks di The Walt Disney Company. La rete fa parte delle grandi reti televisive Big Three. La rete ha sede a Columbus Avenue e West 66th Street a Manhattan, con ulteriori uffici e stabilimenti di produzione a New York City, Los Angeles e Burbank, California. Risposta: Manhattan" - text: "La disobbedienza civile non rivoluzionaria è una semplice disobbedienza delle leggi sulla base del fatto che sono giudicate \"sbagliate\" da una coscienza individuale, o come parte di uno sforzo per rendere alcune leggi inefficaci, per causarne l' abrogazione, o per esercitare pressioni per ottenere i propri desideri politici su qualche altra questione. La disobbedienza civile rivoluzionaria è più che altro un tentativo attivo di rovesciare un governo (o di cambiare le tradizioni culturali, i costumi sociali, le credenze religiose, ecc. La rivoluzione non deve necessariamente essere politica, cioè \"rivoluzione culturale\", implica semplicemente un cambiamento radicale e diffuso in una sezione del tessuto sociale). Gli atti di Gandhi sono stati descritti come disobbedienza civile rivoluzionaria. È stato affermato che gli ungheresi sotto Ferenc Deák hanno diretto una disobbedienza civile rivoluzionaria contro il governo austriaco. Thoreau ha anche scritto di disobbedienza civile realizzando \"rivoluzione pacifica\". Howard Zinn, Harvey Wheeler e altri hanno identificato il diritto sposato nella Dichiarazione d' Indipendenza di \"alterare o abolire\" un governo ingiusto come principio di disobbedienza civile. Risposta: Ferenc Deák" metrics: - rouge - bertscore model-index: - name: mt5-small-question-generation results: - task: type: question-generation name: "Question generation" dataset: type: squad_it name: "SQuAD-IT" metrics: - type: rouge1 value: 0.306 name: "Test Rouge1" - type: rouge2 value: 0.143 name: "Test Rouge2" - type: rougeL value: 0.286 name: "Test RougeL" - type: bertscore value: 0.463 name: "Test BERTScore" args: - model_type: "dbmdz/bert-base-italian-xxl-uncased" - lang: "it" - num_layers: 10 - rescale_with_baseline: True - baseline_path: "bertscore_baseline_ita.tsv" co2_eq_emissions: emissions: "17g" source: "Google Cloud Platform Carbon Footprint" training_type: "fine-tuning" geographical_location: "Eemshaven, Netherlands, Europe" hardware_used: "1 TPU v3-8 VM" thumbnail: https://gsarti.com/publication/it5/featured.png --- # mT5 Small for Question Generation 💭 🇮🇹 This repository contains the checkpoint for the [mT5 Small](https://huggingface.co/google/mt5-small) model fine-tuned on question generation on the [SQuAD-IT corpus](https://huggingface.co/datasets/squad_it) as part of the experiments of the paper [IT5: Large-scale Text-to-text Pretraining for Italian Language Understanding and Generation](https://arxiv.org/abs/2203.03759) by [Gabriele Sarti](https://gsarti.com) and [Malvina Nissim](https://malvinanissim.github.io). A comprehensive overview of other released materials is provided in the [gsarti/it5](https://github.com/gsarti/it5) repository. Refer to the paper for additional details concerning the reported scores and the evaluation approach. ## Using the model Model checkpoints are available for usage in Tensorflow, Pytorch and JAX. They can be used directly with pipelines as: ```python from transformers import pipelines qg = pipeline("text2text-generation", model='it5/mt5-small-question-generation') qg("Le conoscenze mediche erano stagnanti durante il Medioevo. Il resoconto più autorevole di allora è venuto dalla facoltà di medicina di Parigi in un rapporto al re di Francia che ha incolpato i cieli, sotto forma di una congiunzione di tre pianeti nel 1345 che causò una "grande pestilenza nell\' aria". Questa relazione è diventata la prima e più diffusa di una serie di casi di peste che cercava di dare consigli ai malati. Che la peste fosse causata dalla cattiva aria divenne la teoria più accettata. Oggi, questo è conosciuto come la teoria di Miasma. La parola "peste" non aveva un significato particolare in questo momento, e solo la ricorrenza dei focolai durante il Medioevo gli diede il nome che è diventato il termine medico. Risposta: re di Francia") >>> [{"generated_text": "Per chi è stato redatto il referto medico?"}] ``` or loaded using autoclasses: ```python from transformers import AutoTokenizer, AutoModelForSeq2SeqLM tokenizer = AutoTokenizer.from_pretrained("it5/mt5-small-question-generation") model = AutoModelForSeq2SeqLM.from_pretrained("it5/mt5-small-question-generation") ``` If you use this model in your research, please cite our work as: ```bibtex @article{sarti-nissim-2022-it5, title={{IT5}: Large-scale Text-to-text Pretraining for Italian Language Understanding and Generation}, author={Sarti, Gabriele and Nissim, Malvina}, journal={ArXiv preprint 2203.03759}, url={https://arxiv.org/abs/2203.03759}, year={2022}, month={mar} } ```
jacksonargo/music-mlm
0ca3ca99e9f8562ec3f1b1e06c8bab7cd25e8c10
2021-12-03T16:31:53.000Z
[ "pytorch", "distilbert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
jacksonargo
null
jacksonargo/music-mlm
5
null
transformers
16,645
Entry not found
jacksonargo/music-production-qa
f6b57cdc6c326cf1c8cd9c74f3c8bc6dad08594d
2021-12-03T03:27:29.000Z
[ "pytorch", "distilbert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
jacksonargo
null
jacksonargo/music-production-qa
5
null
transformers
16,646
Entry not found
jaesun/kogpt2-base-v2-finetuned-nsmc
9b13e0b7004ce01cc933a7ccfe0f5dd075ee5e17
2021-10-21T07:33:48.000Z
[ "pytorch", "gpt2", "text-classification", "transformers" ]
text-classification
false
jaesun
null
jaesun/kogpt2-base-v2-finetuned-nsmc
5
null
transformers
16,647
Entry not found
jambo/marker-associations-binary-base
3b1b4989f4b8f8943778b8f6bc9564032fd74c40
2021-11-02T12:52:24.000Z
[ "pytorch", "bert", "text-classification", "dataset:marker-associations-binary-base", "transformers", "generated_from_trainer", "license:mit", "model-index" ]
text-classification
false
jambo
null
jambo/marker-associations-binary-base
5
null
transformers
16,648
--- license: mit tags: - generated_from_trainer datasets: - marker-associations-binary-base metrics: - precision - recall - f1 - accuracy model-index: - name: marker-associations-binary-base results: - task: name: Text Classification type: text-classification dataset: name: marker-associations-binary-base type: marker-associations-binary-base metrics: - name: Precision type: precision value: 0.7981651376146789 - name: Recall type: recall value: 0.9560439560439561 - name: F1 type: f1 value: 0.87 - name: Accuracy type: accuracy value: 0.8884120171673819 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # marker-associations-binary-base This model is a fine-tuned version of [microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext](https://huggingface.co/microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext) on the marker-associations-binary-base dataset. It achieves the following results on the evaluation set: ### Gene Results - Precision = 0.808 - Recall = 0.940 - F1 = 0.869 - Accuracy = 0.862 - AUC = 0.944 ### Chemical Results - Precision = 0.774 - Recall = 1.0 - F1 = 0.873 - Accuracy = 0.926 - AUC = 0.964 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 1 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 15 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | Auc | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|:------:| | No log | 1.0 | 88 | 0.3266 | 0.8191 | 0.8462 | 0.8324 | 0.8670 | 0.9313 | | No log | 2.0 | 176 | 0.3335 | 0.7870 | 0.9341 | 0.8543 | 0.8755 | 0.9465 | | No log | 3.0 | 264 | 0.4243 | 0.7982 | 0.9560 | 0.87 | 0.8884 | 0.9516 | | No log | 4.0 | 352 | 0.5388 | 0.825 | 0.7253 | 0.7719 | 0.8326 | 0.9384 | | No log | 5.0 | 440 | 0.7101 | 0.8537 | 0.7692 | 0.8092 | 0.8584 | 0.9416 | | 0.1824 | 6.0 | 528 | 0.6175 | 0.8242 | 0.8242 | 0.8242 | 0.8627 | 0.9478 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.9.0+cu111 - Tokenizers 0.10.3
jamesmullenbach/CLIP_DNote_BERT_Context
035ae2434cf496bf47a8f65bb98e5f1f60b62d6d
2021-08-03T19:03:54.000Z
[ "pytorch", "bert", "transformers" ]
null
false
jamesmullenbach
null
jamesmullenbach/CLIP_DNote_BERT_Context
5
1
transformers
16,649
Entry not found
jannesg/takalane_sot_roberta
b0cb9af0cf3488f46bc41b8a5b3f37729c30f9f3
2021-09-22T08:52:06.000Z
[ "pytorch", "jax", "roberta", "fill-mask", "sot", "transformers", "masked-lm", "license:mit", "autotrain_compatible" ]
fill-mask
false
jannesg
null
jannesg/takalane_sot_roberta
5
null
transformers
16,650
--- language: - sot thumbnail: https://pbs.twimg.com/media/EVjR6BsWoAAFaq5.jpg tags: - sot - fill-mask - pytorch - roberta - masked-lm license: mit --- # Takalani Sesame - Southern Sotho 🇿🇦 <img src="https://pbs.twimg.com/media/EVjR6BsWoAAFaq5.jpg" width="600"/> ## Model description Takalani Sesame (named after the South African version of Sesame Street) is a project that aims to promote the use of South African languages in NLP, and in particular look at techniques for low-resource languages to equalise performance with larger languages around the world. ## Intended uses & limitations #### How to use ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("jannesg/takalane_sot_roberta") model = AutoModelWithLMHead.from_pretrained("jannesg/takalane_sot_roberta") ``` #### Limitations and bias Updates will be added continously to improve performance. ## Training data Data collected from [https://wortschatz.uni-leipzig.de/en](https://wortschatz.uni-leipzig.de/en) <br/> **Sentences:** 20000 ## Training procedure No preprocessing. Standard Huggingface hyperparameters. ## Author Jannes Germishuys [website](http://jannesgg.github.io)
jannesg/takalane_ven_roberta
fb206bc483c748e5d77022d1b2ed2682f80d779a
2021-09-22T08:52:16.000Z
[ "pytorch", "jax", "roberta", "fill-mask", "ven", "transformers", "masked-lm", "license:mit", "autotrain_compatible" ]
fill-mask
false
jannesg
null
jannesg/takalane_ven_roberta
5
null
transformers
16,651
--- language: - ven thumbnail: https://pbs.twimg.com/media/EVjR6BsWoAAFaq5.jpg tags: - ven - fill-mask - pytorch - roberta - masked-lm license: mit --- # Takalani Sesame - Venda 🇿🇦 <img src="https://pbs.twimg.com/media/EVjR6BsWoAAFaq5.jpg" width="600"/> ## Model description Takalani Sesame (named after the South African version of Sesame Street) is a project that aims to promote the use of South African languages in NLP, and in particular look at techniques for low-resource languages to equalise performance with larger languages around the world. ## Intended uses & limitations #### How to use ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("jannesg/takalane_ven_roberta") model = AutoModelWithLMHead.from_pretrained("jannesg/takalane_ven_roberta") ``` #### Limitations and bias Updates will be added continously to improve performance. ## Training data Data collected from [https://wortschatz.uni-leipzig.de/en](https://wortschatz.uni-leipzig.de/en) <br/> **Sentences:** 9279 ## Training procedure No preprocessing. Standard Huggingface hyperparameters. ## Author Jannes Germishuys [website](http://jannesgg.github.io)
jatinshah/bert-finetuned-ner
4563e7bcaaf28ab9a6700d967ee40529121a56a6
2022-02-16T03:50:43.000Z
[ "pytorch", "tensorboard", "bert", "token-classification", "dataset:conll2003", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
token-classification
false
jatinshah
null
jatinshah/bert-finetuned-ner
5
null
transformers
16,652
--- license: apache-2.0 tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: bert-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 args: conll2003 metrics: - name: Precision type: precision value: 0.9330024813895782 - name: Recall type: recall value: 0.9491753618310333 - name: F1 type: f1 value: 0.9410194377242012 - name: Accuracy type: accuracy value: 0.9861511744275033 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-ner This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0599 - Precision: 0.9330 - Recall: 0.9492 - F1: 0.9410 - Accuracy: 0.9862 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0852 | 1.0 | 1756 | 0.0647 | 0.9147 | 0.9345 | 0.9245 | 0.9826 | | 0.0305 | 2.0 | 3512 | 0.0599 | 0.9333 | 0.9463 | 0.9398 | 0.9858 | | 0.0212 | 3.0 | 5268 | 0.0599 | 0.9330 | 0.9492 | 0.9410 | 0.9862 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.9.1 - Datasets 1.18.3 - Tokenizers 0.10.3
jcblaise/bert-tagalog-base-uncased-WWM
9123041ea7e4189dcff6b30bd141e340563be792
2021-11-12T03:21:09.000Z
[ "pytorch", "jax", "bert", "fill-mask", "tl", "transformers", "tagalog", "filipino", "license:gpl-3.0", "autotrain_compatible" ]
fill-mask
false
jcblaise
null
jcblaise/bert-tagalog-base-uncased-WWM
5
null
transformers
16,653
--- language: tl tags: - bert - tagalog - filipino license: gpl-3.0 inference: false --- **Deprecation Notice** This model is deprecated. New Filipino Transformer models trained with a much larger corpora are available. Use [`jcblaise/roberta-tagalog-base`](https://huggingface.co/jcblaise/roberta-tagalog-base) or [`jcblaise/roberta-tagalog-large`](https://huggingface.co/jcblaise/roberta-tagalog-large) instead for better performance. --- # BERT Tagalog Base Uncased (Whole Word Masking) Tagalog version of BERT trained on a large preprocessed text corpus scraped and sourced from the internet. This model is part of a larger research project. We open-source the model to allow greater usage within the Filipino NLP community. This particular version uses whole word masking. ## Citations All model details and training setups can be found in our papers. If you use our model or find it useful in your projects, please cite our work: ``` @article{cruz2020establishing, title={Establishing Baselines for Text Classification in Low-Resource Languages}, author={Cruz, Jan Christian Blaise and Cheng, Charibeth}, journal={arXiv preprint arXiv:2005.02068}, year={2020} } @article{cruz2019evaluating, title={Evaluating Language Model Finetuning Techniques for Low-resource Languages}, author={Cruz, Jan Christian Blaise and Cheng, Charibeth}, journal={arXiv preprint arXiv:1907.00409}, year={2019} } ``` ## Data and Other Resources Data used to train this model as well as other benchmark datasets in Filipino can be found in my website at https://blaisecruz.com ## Contact If you have questions, concerns, or if you just want to chat about NLP and low-resource languages in general, you may reach me through my work email at [email protected]
jhgan/ko-sroberta-nli
493196adb7916f877b1cf9a5e836e8a3b10a2efc
2022-03-02T07:37:35.000Z
[ "pytorch", "roberta", "feature-extraction", "ko", "sentence-transformers", "sentence-similarity", "transformers" ]
sentence-similarity
false
jhgan
null
jhgan/ko-sroberta-nli
5
null
sentence-transformers
16,654
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers language: ko --- # ko-sroberta-nli This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["안녕하세요?", "한국어 문장 임베딩을 위한 버트 모델입니다."] model = SentenceTransformer('jhgan/ko-sroberta-nli') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('jhgan/ko-sroberta-nli') model = AutoModel.from_pretrained('jhgan/ko-sroberta-nli') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> KorNLI 학습 데이터셋으로 학습한 후 KorSTS 평가 데이터셋으로 평가한 결과입니다. - Cosine Pearson: 82.83 - Cosine Spearman: 83.85 - Euclidean Pearson: 82.87 - Euclidean Spearman: 83.29 - Manhattan Pearson: 82.88 - Manhattan Spearman: 83.28 - Dot Pearson: 80.34 - Dot Spearman: 79.69 ## Training The model was trained with the parameters: **DataLoader**: `sentence_transformers.datasets.NoDuplicatesDataLoader.NoDuplicatesDataLoader` of length 8885 with parameters: ``` {'batch_size': 64} ``` **Loss**: `sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters: ``` {'scale': 20.0, 'similarity_fct': 'cos_sim'} ``` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 1000, "evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 889, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: RobertaModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information --> - Ham, J., Choe, Y. J., Park, K., Choi, I., & Soh, H. (2020). Kornli and korsts: New benchmark datasets for korean natural language understanding. arXiv preprint arXiv:2004.03289 - Reimers, Nils and Iryna Gurevych. “Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks.” ArXiv abs/1908.10084 (2019) - Reimers, Nils and Iryna Gurevych. “Making Monolingual Sentence Embeddings Multilingual Using Knowledge Distillation.” EMNLP (2020).
jirmauritz/robbert-v2-dutch-base
7fa77da1fb2452f6e3af8c725c2a1a7e31c9ffcf
2021-06-23T09:16:10.000Z
[ "pytorch", "tf", "jax", "roberta", "fill-mask", "nl", "dataset:oscar", "dataset:oscar (NL)", "dataset:dbrd", "dataset:lassy-ud", "dataset:europarl-mono", "dataset:conll2002", "arxiv:2001.06286", "arxiv:2004.02814", "arxiv:2010.13652", "arxiv:2101.05716", "arxiv:1907.11692", "arxiv:2001.02943", "arxiv:1909.11942", "transformers", "Dutch", "Flemish", "RoBERTa", "RobBERT", "license:mit", "autotrain_compatible" ]
fill-mask
false
jirmauritz
null
jirmauritz/robbert-v2-dutch-base
5
null
transformers
16,655
--- language: "nl" thumbnail: "https://github.com/iPieter/RobBERT/raw/master/res/robbert_logo.png" tags: - Dutch - Flemish - RoBERTa - RobBERT license: mit datasets: - oscar - oscar (NL) - dbrd - lassy-ud - europarl-mono - conll2002 widget: - text: "Hallo, ik ben RobBERT, een <mask> taalmodel van de KU Leuven." --- <p align="center"> <img src="https://github.com/iPieter/RobBERT/raw/master/res/robbert_logo_with_name.png" alt="RobBERT: A Dutch RoBERTa-based Language Model" width="75%"> </p> # RobBERT: Dutch RoBERTa-based Language Model. [RobBERT](https://github.com/iPieter/RobBERT) is the state-of-the-art Dutch BERT model. It is a large pre-trained general Dutch language model that can be fine-tuned on a given dataset to perform any text classification, regression or token-tagging task. As such, it has been successfully used by many [researchers](https://scholar.google.com/scholar?oi=bibs&hl=en&cites=7180110604335112086) and [practitioners](https://huggingface.co/models?search=robbert) for achieving state-of-the-art performance for a wide range of Dutch natural language processing tasks, including: - [Emotion detection](https://www.aclweb.org/anthology/2021.wassa-1.27/) - Sentiment analysis ([book reviews](https://arxiv.org/pdf/2001.06286.pdf), [news articles](https://biblio.ugent.be/publication/8704637/file/8704638.pdf)*) - [Coreference resolution](https://arxiv.org/pdf/2001.06286.pdf) - Named entity recognition ([CoNLL](https://arxiv.org/pdf/2001.06286.pdf), [job titles](https://arxiv.org/pdf/2004.02814.pdf)*, [SoNaR](https://github.com/proycon/deepfrog)) - Part-of-speech tagging ([Small UD Lassy](https://arxiv.org/pdf/2001.06286.pdf), [CGN](https://github.com/proycon/deepfrog)) - [Zero-shot word prediction](https://arxiv.org/pdf/2001.06286.pdf) - [Humor detection](https://arxiv.org/pdf/2010.13652.pdf) - [Cyberbulling detection](https://www.cambridge.org/core/journals/natural-language-engineering/article/abs/automatic-classification-of-participant-roles-in-cyberbullying-can-we-detect-victims-bullies-and-bystanders-in-social-media-text/A2079C2C738C29428E666810B8903342) - [Correcting dt-spelling mistakes](https://gitlab.com/spelfouten/dutch-simpletransformers/)* and also achieved outstanding, near-sota results for: - [Natural language inference](https://arxiv.org/pdf/2101.05716.pdf)* - [Review classification](https://medium.com/broadhorizon-cmotions/nlp-with-r-part-5-state-of-the-art-in-nlp-transformers-bert-3449e3cd7494)* \\* *Note that several evaluations use RobBERT-v1, and that the second and improved RobBERT-v2 outperforms this first model on everything we tested* *(Also note that this list is not exhaustive. If you used RobBERT for your application, we are happy to know about it! Send us a mail, or add it yourself to this list by sending a pull request with the edit!)* More in-depth information about RobBERT can be found in our [blog post](https://people.cs.kuleuven.be/~pieter.delobelle/robbert/), [our paper](https://arxiv.org/abs/2001.06286) and [the RobBERT Github repository](https://github.com/iPieter/RobBERT) ## How to use RobBERT uses the [RoBERTa](https://arxiv.org/abs/1907.11692) architecture and pre-training but with a Dutch tokenizer and training data. RoBERTa is the robustly optimized English BERT model, making it even more powerful than the original BERT model. Given this same architecture, RobBERT can easily be finetuned and inferenced using [code to finetune RoBERTa](https://huggingface.co/transformers/model_doc/roberta.html) models and most code used for BERT models, e.g. as provided by [HuggingFace Transformers](https://huggingface.co/transformers/) library. By default, RobBERT has the masked language model head used in training. This can be used as a zero-shot way to fill masks in sentences. It can be tested out for free on [RobBERT's Hosted infererence API of Huggingface](https://huggingface.co/pdelobelle/robbert-v2-dutch-base?text=De+hoofdstad+van+Belgi%C3%AB+is+%3Cmask%3E.). You can also create a new prediction head for your own task by using any of HuggingFace's [RoBERTa-runners](https://huggingface.co/transformers/v2.7.0/examples.html#language-model-training), [their fine-tuning notebooks](https://huggingface.co/transformers/v4.1.1/notebooks.html) by changing the model name to `pdelobelle/robbert-v2-dutch-base`, or use the original fairseq [RoBERTa](https://github.com/pytorch/fairseq/tree/master/examples/roberta) training regimes. Use the following code to download the base model and finetune it yourself, or use one of our finetuned models (documented on [our project site](https://people.cs.kuleuven.be/~pieter.delobelle/robbert/)). ```python from transformers import RobertaTokenizer, RobertaForSequenceClassification tokenizer = RobertaTokenizer.from_pretrained("pdelobelle/robbert-v2-dutch-base") model = RobertaForSequenceClassification.from_pretrained("pdelobelle/robbert-v2-dutch-base") ``` Starting with `transformers v2.4.0` (or installing from source), you can use AutoTokenizer and AutoModel. You can then use most of [HuggingFace's BERT-based notebooks](https://huggingface.co/transformers/v4.1.1/notebooks.html) for finetuning RobBERT on your type of Dutch language dataset. ## Technical Details From The Paper ### Our Performance Evaluation Results All experiments are described in more detail in our [paper](https://arxiv.org/abs/2001.06286), with the code in [our GitHub repository](https://github.com/iPieter/RobBERT). ### Sentiment analysis Predicting whether a review is positive or negative using the [Dutch Book Reviews Dataset](https://github.com/benjaminvdb/110kDBRD). | Model | Accuracy [%] | |-------------------|--------------------------| | ULMFiT | 93.8 | | BERTje | 93.0 | | RobBERT v2 | **95.1** | ### Die/Dat (coreference resolution) We measured how well the models are able to do coreference resolution by predicting whether "die" or "dat" should be filled into a sentence. For this, we used the [EuroParl corpus](https://www.statmt.org/europarl/). #### Finetuning on whole dataset | Model | Accuracy [%] | F1 [%] | |-------------------|--------------------------|--------------| | [Baseline](https://arxiv.org/abs/2001.02943) (LSTM) | | 75.03 | | mBERT | 98.285 | 98.033 | | BERTje | 98.268 | 98.014 | | RobBERT v2 | **99.232** | **99.121** | #### Finetuning on 10K examples We also measured the performance using only 10K training examples. This experiment clearly illustrates that RobBERT outperforms other models when there is little data available. | Model | Accuracy [%] | F1 [%] | |-------------------|--------------------------|--------------| | mBERT | 92.157 | 90.898 | | BERTje | 93.096 | 91.279 | | RobBERT v2 | **97.816** | **97.514** | #### Using zero-shot word masking task Since BERT models are pre-trained using the word masking task, we can use this to predict whether "die" or "dat" is more likely. This experiment shows that RobBERT has internalised more information about Dutch than other models. | Model | Accuracy [%] | |-------------------|--------------------------| | ZeroR | 66.70 | | mBERT | 90.21 | | BERTje | 94.94 | | RobBERT v2 | **98.75** | ### Part-of-Speech Tagging. Using the [Lassy UD dataset](https://universaldependencies.org/treebanks/nl_lassysmall/index.html). | Model | Accuracy [%] | |-------------------|--------------------------| | Frog | 91.7 | | mBERT | **96.5** | | BERTje | 96.3 | | RobBERT v2 | 96.4 | Interestingly, we found that when dealing with **small data sets**, RobBERT v2 **significantly outperforms** other models. <p align="center"> <img src="https://github.com/iPieter/RobBERT/raw/master/res/robbert_pos_accuracy.png" alt="RobBERT's performance on smaller datasets"> </p> ### Named Entity Recognition Using the [CoNLL 2002 evaluation script](https://www.clips.uantwerpen.be/conll2002/ner/). | Model | Accuracy [%] | |-------------------|--------------------------| | Frog | 57.31 | | mBERT | **90.94** | | BERT-NL | 89.7 | | BERTje | 88.3 | | RobBERT v2 | 89.08 | ## Pre-Training Procedure Details We pre-trained RobBERT using the RoBERTa training regime. We pre-trained our model on the Dutch section of the [OSCAR corpus](https://oscar-corpus.com/), a large multilingual corpus which was obtained by language classification in the Common Crawl corpus. This Dutch corpus is 39GB large, with 6.6 billion words spread over 126 million lines of text, where each line could contain multiple sentences, thus using more data than concurrently developed Dutch BERT models. RobBERT shares its architecture with [RoBERTa's base model](https://github.com/pytorch/fairseq/tree/master/examples/roberta), which itself is a replication and improvement over BERT. Like BERT, it's architecture consists of 12 self-attention layers with 12 heads with 117M trainable parameters. One difference with the original BERT model is due to the different pre-training task specified by RoBERTa, using only the MLM task and not the NSP task. During pre-training, it thus only predicts which words are masked in certain positions of given sentences. The training process uses the Adam optimizer with polynomial decay of the learning rate l_r=10^-6 and a ramp-up period of 1000 iterations, with hyperparameters beta_1=0.9 and RoBERTa's default beta_2=0.98. Additionally, a weight decay of 0.1 and a small dropout of 0.1 helps prevent the model from overfitting. RobBERT was trained on a computing cluster with 4 Nvidia P100 GPUs per node, where the number of nodes was dynamically adjusted while keeping a fixed batch size of 8192 sentences. At most 20 nodes were used (i.e. 80 GPUs), and the median was 5 nodes. By using gradient accumulation, the batch size could be set independently of the number of GPUs available, in order to maximally utilize the cluster. Using the [Fairseq library](https://github.com/pytorch/fairseq/tree/master/examples/roberta), the model trained for two epochs, which equals over 16k batches in total, which took about three days on the computing cluster. In between training jobs on the computing cluster, 2 Nvidia 1080 Ti's also covered some parameter updates for RobBERT v2. ## Investigating Limitations and Bias In the [RobBERT paper](https://arxiv.org/abs/2001.06286), we also investigated potential sources of bias in RobBERT. We found that the zeroshot model estimates the probability of *hij* (he) to be higher than *zij* (she) for most occupations in bleached template sentences, regardless of their actual job gender ratio in reality. <p align="center"> <img src="https://github.com/iPieter/RobBERT/raw/master/res/gender_diff.png" alt="RobBERT's performance on smaller datasets"> </p> By augmenting the DBRB Dutch Book sentiment analysis dataset with the stated gender of the author of the review, we found that highly positive reviews written by women were generally more accurately detected by RobBERT as being positive than those written by men. <p align="center"> <img src="https://github.com/iPieter/RobBERT/raw/master/res/dbrd.png" alt="RobBERT's performance on smaller datasets"> </p> ## How to Replicate Our Paper Experiments Replicating our paper experiments is [described in detail on teh RobBERT repository README](https://github.com/iPieter/RobBERT#how-to-replicate-our-paper-experiments). ## Name Origin of RobBERT Most BERT-like models have the word *BERT* in their name (e.g. [RoBERTa](https://huggingface.co/transformers/model_doc/roberta.html), [ALBERT](https://arxiv.org/abs/1909.11942), [CamemBERT](https://camembert-model.fr/), and [many, many others](https://huggingface.co/models?search=bert)). As such, we queried our newly trained model using its masked language model to name itself *\\<mask\\>bert* using [all](https://huggingface.co/pdelobelle/robbert-v2-dutch-base?text=Mijn+naam+is+%3Cmask%3Ebert.) [kinds](https://huggingface.co/pdelobelle/robbert-v2-dutch-base?text=Hallo%2C+ik+ben+%3Cmask%3Ebert.) [of](https://huggingface.co/pdelobelle/robbert-v2-dutch-base?text=Leuk+je+te+ontmoeten%2C+ik+heet+%3Cmask%3Ebert.) [prompts](https://huggingface.co/pdelobelle/robbert-v2-dutch-base?text=Niemand+weet%2C+niemand+weet%2C+dat+ik+%3Cmask%3Ebert+heet.), and it consistently called itself RobBERT. We thought it was really quite fitting, given that RobBERT is a [*very* Dutch name](https://en.wikipedia.org/wiki/Robbert) *(and thus clearly a Dutch language model)*, and additionally has a high similarity to its root architecture, namely [RoBERTa](https://huggingface.co/transformers/model_doc/roberta.html). Since *"rob"* is a Dutch words to denote a seal, we decided to draw a seal and dress it up like [Bert from Sesame Street](https://muppet.fandom.com/wiki/Bert) for the [RobBERT logo](https://github.com/iPieter/RobBERT/blob/master/res/robbert_logo.png). ## Credits and citation This project is created by [Pieter Delobelle](https://people.cs.kuleuven.be/~pieter.delobelle), [Thomas Winters](https://thomaswinters.be) and [Bettina Berendt](https://people.cs.kuleuven.be/~bettina.berendt/). If you would like to cite our paper or model, you can use the following BibTeX: ``` @inproceedings{delobelle2020robbert, title = "{R}ob{BERT}: a {D}utch {R}o{BERT}a-based {L}anguage {M}odel", author = "Delobelle, Pieter and Winters, Thomas and Berendt, Bettina", booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2020", month = nov, year = "2020", address = "Online", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/2020.findings-emnlp.292", doi = "10.18653/v1/2020.findings-emnlp.292", pages = "3255--3265" } ```
jkgrad/xlnet-base-cased-qqp
1a7032ddd08046bfb09faaee3d1c6693b92aa278
2021-02-05T07:32:36.000Z
[ "pytorch", "xlnet", "text-classification", "transformers" ]
text-classification
false
jkgrad
null
jkgrad/xlnet-base-cased-qqp
5
null
transformers
16,656
Entry not found
jnz/electra-ka
020e4e2e53dff554a219bf8356b89436fb48c0d2
2020-12-12T21:53:36.000Z
[ "pytorch", "electra", "transformers" ]
null
false
jnz
null
jnz/electra-ka
5
null
transformers
16,657
### electra-ka is first of its kind, Transformer based, open source Georgian language model. The model is trained on 33GB of Georgian text collected from 4854621 pages in commoncrowl archive.
jogonba2/mbarthez-copy_mechanism-hal_articles
119236a8a1e6ee4a26b979bef9d0e91f31dc90ed
2022-01-30T03:52:27.000Z
[ "pytorch", "mbart", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
null
false
jogonba2
null
jogonba2/mbarthez-copy_mechanism-hal_articles
5
null
transformers
16,658
--- license: apache-2.0 tags: - generated_from_trainer metrics: - rouge model-index: - name: mbarthez-copy_mechanism-hal_articles results: - task: name: Summarization type: summarization metrics: - name: Rouge1 type: rouge value: 36.548 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mbarthez-davide_articles-copy_enhanced This model is a fine-tuned version of [moussaKam/mbarthez](https://huggingface.co/moussaKam/mbarthez) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.4905 - Rouge1: 36.548 - Rouge2: 19.6282 - Rougel: 30.2513 - Rougelsum: 30.2765 - Gen Len: 25.7238 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:------:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | 1.6706 | 1.0 | 33552 | 1.5690 | 31.2477 | 16.5455 | 26.9855 | 26.9754 | 18.6217 | | 1.3446 | 2.0 | 67104 | 1.5060 | 32.1108 | 17.1408 | 27.7833 | 27.7703 | 18.9115 | | 1.3245 | 3.0 | 100656 | 1.4905 | 32.9084 | 17.7027 | 28.2912 | 28.2975 | 18.9801 | ### Framework versions - Transformers 4.10.2 - Pytorch 1.7.1+cu110 - Datasets 1.11.0 - Tokenizers 0.10.3
jonfd/convbert-small-igc-is
d10ea3ad303262ff9f732d5d193f716287c384e2
2021-10-01T03:56:50.000Z
[ "pytorch", "tf", "convbert", "feature-extraction", "is", "dataset:igc", "transformers", "license:cc-by-4.0" ]
feature-extraction
false
jonfd
null
jonfd/convbert-small-igc-is
5
null
transformers
16,659
--- language: - is license: cc-by-4.0 datasets: - igc --- # Icelandic ConvBERT-Small This model was pretrained on the [Icelandic Gigaword Corpus](http://igc.arnastofnun.is/), which contains approximately 1.69B tokens, using default settings. The model uses a Unigram tokenizer with a vocabulary size of 96,000. # Acknowledgments This research was supported with Cloud TPUs from Google's TPU Research Cloud (TRC). This project was funded by the Language Technology Programme for Icelandic 2019-2023. The programme, which is managed and coordinated by [Almannarómur](https://almannaromur.is/), is funded by the Icelandic Ministry of Education, Science and Culture.
joniponi/bert-finetuned-sem_eval-english
83e57d98fe5885b25a9d074238ecdd5c2586b73c
2022-02-20T04:45:15.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
joniponi
null
joniponi/bert-finetuned-sem_eval-english
5
null
transformers
16,660
--- Epoch Training Loss Validation Loss F1 Roc Auc Accuracy 1 0.115400 0.099458 0.888763 0.920410 0.731760 2 0.070400 0.080343 0.911700 0.943234 0.781116
jorgemariocalvo/roberta-base-bne-finetuned-amazon_reviews_multi
e9a144d6b57bb03268a1a5b2b9a9f1233985e799
2021-11-13T15:14:14.000Z
[ "pytorch", "tensorboard", "roberta", "text-classification", "transformers" ]
text-classification
false
jorgemariocalvo
null
jorgemariocalvo/roberta-base-bne-finetuned-amazon_reviews_multi
5
null
transformers
16,661
Entry not found
jpreilly123/emojify_mvp
40f381545a12c7ca399250f05aa949b4be541d03
2022-02-11T07:17:55.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
jpreilly123
null
jpreilly123/emojify_mvp
5
null
transformers
16,662
Entry not found
juliensimon/autonlp-reuters-summarization-31447312
2eacb8b061ca37e642178e3e0e2087f7e4512da6
2021-11-18T11:50:52.000Z
[ "pytorch", "pegasus", "text2text-generation", "en", "dataset:juliensimon/autonlp-data-reuters-summarization", "transformers", "autonlp", "co2_eq_emissions", "autotrain_compatible" ]
text2text-generation
false
juliensimon
null
juliensimon/autonlp-reuters-summarization-31447312
5
null
transformers
16,663
--- tags: autonlp language: en widget: - text: "I love AutoNLP 🤗" datasets: - juliensimon/autonlp-data-reuters-summarization co2_eq_emissions: 206.46626351359515 --- # Model Trained Using AutoNLP - Problem type: Summarization - Model ID: 31447312 - CO2 Emissions (in grams): 206.46626351359515 ## Validation Metrics - Loss: 1.1907752752304077 - Rouge1: 55.9215 - Rouge2: 30.7724 - RougeL: 53.185 - RougeLsum: 53.3353 - Gen Len: 15.1236 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_HUGGINGFACE_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/juliensimon/autonlp-reuters-summarization-31447312 ```
juliensimon/autonlp-song-lyrics-18753423
030289c3d3dd935ef699d923ccd227170ec71e50
2021-10-15T09:55:11.000Z
[ "pytorch", "distilbert", "text-classification", "en", "dataset:juliensimon/autonlp-data-song-lyrics", "transformers", "autonlp", "co2_eq_emissions" ]
text-classification
false
juliensimon
null
juliensimon/autonlp-song-lyrics-18753423
5
null
transformers
16,664
--- tags: autonlp language: en widget: - text: "I love AutoNLP 🤗" datasets: - juliensimon/autonlp-data-song-lyrics co2_eq_emissions: 55.552987716859484 --- # Model Trained Using AutoNLP - Problem type: Multi-class Classification - Model ID: 18753423 - CO2 Emissions (in grams): 55.552987716859484 ## Validation Metrics - Loss: 0.913820743560791 - Accuracy: 0.654110224531453 - Macro F1: 0.5327761649415296 - Micro F1: 0.654110224531453 - Weighted F1: 0.6339481529454227 - Macro Precision: 0.6799297267808116 - Micro Precision: 0.654110224531453 - Weighted Precision: 0.6533459269990771 - Macro Recall: 0.49907494605289154 - Micro Recall: 0.654110224531453 - Weighted Recall: 0.654110224531453 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/juliensimon/autonlp-song-lyrics-18753423 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("juliensimon/autonlp-song-lyrics-18753423", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("juliensimon/autonlp-song-lyrics-18753423", use_auth_token=True) inputs = tokenizer("I love AutoNLP", return_tensors="pt") outputs = model(**inputs) ```
junnyu/ernie_gram
b17165bf5eac097ca7edb0fd94e916cad269cc82
2022-02-22T02:47:07.000Z
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
false
junnyu
null
junnyu/ernie_gram
5
null
transformers
16,665
Entry not found
jwouts/belabBERT_115k
2ef8a43c5f36861b61deb49e44f3a578936cf65f
2021-05-20T17:32:05.000Z
[ "pytorch", "tf", "jax", "roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
jwouts
null
jwouts/belabBERT_115k
5
null
transformers
16,666
Entry not found
kapilkd13/xls-r-300m-hi-prod
18a022bf6257729540272725cc77567dfff4765b
2022-03-23T18:27:33.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "hi", "dataset:mozilla-foundation/common_voice_7_0", "transformers", "generated_from_trainer", "hf-asr-leaderboard", "mozilla-foundation/common_voice_7_0", "robust-speech-event", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
kapilkd13
null
kapilkd13/xls-r-300m-hi-prod
5
null
transformers
16,667
--- language: - hi license: apache-2.0 tags: - automatic-speech-recognition - generated_from_trainer - hf-asr-leaderboard - mozilla-foundation/common_voice_7_0 - robust-speech-event datasets: - mozilla-foundation/common_voice_7_0 model-index: - name: '' results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 7.0 type: mozilla-foundation/common_voice_7_0 args: hi metrics: - name: Test WER type: wer value: 39.21 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - HI dataset. It achieves the following results on the evaluation set: - Loss: 0.7805 - Wer: 0.4340 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 8000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | No log | 1.36 | 400 | 1.9130 | 0.9244 | | 5.0013 | 2.71 | 800 | 0.7789 | 0.5944 | | 0.6544 | 4.07 | 1200 | 0.7298 | 0.5852 | | 0.4021 | 5.42 | 1600 | 0.6978 | 0.5667 | | 0.3003 | 6.78 | 2000 | 0.6764 | 0.5382 | | 0.3003 | 8.14 | 2400 | 0.7249 | 0.5463 | | 0.2345 | 9.49 | 2800 | 0.7280 | 0.5124 | | 0.1993 | 10.85 | 3200 | 0.7289 | 0.4690 | | 0.1617 | 12.2 | 3600 | 0.7431 | 0.4733 | | 0.1432 | 13.56 | 4000 | 0.7448 | 0.4733 | | 0.1432 | 14.92 | 4400 | 0.7746 | 0.4485 | | 0.1172 | 16.27 | 4800 | 0.7589 | 0.4742 | | 0.1035 | 17.63 | 5200 | 0.7539 | 0.4353 | | 0.0956 | 18.98 | 5600 | 0.7648 | 0.4495 | | 0.0845 | 20.34 | 6000 | 0.7877 | 0.4719 | | 0.0845 | 21.69 | 6400 | 0.7884 | 0.4434 | | 0.0761 | 23.05 | 6800 | 0.7796 | 0.4386 | | 0.0634 | 24.41 | 7200 | 0.7729 | 0.4306 | | 0.0571 | 25.76 | 7600 | 0.7826 | 0.4298 | | 0.0508 | 27.12 | 8000 | 0.7805 | 0.4340 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.1+cu102 - Datasets 1.18.3 - Tokenizers 0.11.0
khanglam7012/t5-small
66b06a9260277146b7590e277602e09470ca2f03
2022-01-10T13:32:38.000Z
[ "pytorch", "t5", "text2text-generation", "en", "dataset:WebNLG", "dataset:Dart", "transformers", "keytotext", "k2t", "Keywords to Sentences", "license:mit", "autotrain_compatible" ]
text2text-generation
false
khanglam7012
null
khanglam7012/t5-small
5
null
transformers
16,668
--- language: en thumbnail: Keywords to Sentences tags: - keytotext - k2t - Keywords to Sentences license: mit datasets: - WebNLG - Dart metrics: - NLG --- # keytotext ![keytotext (1)](https://user-images.githubusercontent.com/49101362/116334480-f5e57a00-a7dd-11eb-987c-186477f94b6e.png) Idea is to build a model which will take keywords as inputs and generate sentences as outputs. ### Keytotext is powered by Huggingface 🤗 [![pypi Version](https://img.shields.io/pypi/v/keytotext.svg?style=flat-square&logo=pypi&logoColor=white)](https://pypi.org/project/keytotext/) [![Downloads](https://static.pepy.tech/personalized-badge/keytotext?period=total&units=none&left_color=grey&right_color=orange&left_text=Pip%20Downloads)](https://pepy.tech/project/keytotext) [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/gagan3012/keytotext/blob/master/Examples/K2T.ipynb) [![Streamlit App](https://static.streamlit.io/badges/streamlit_badge_black_white.svg)](https://share.streamlit.io/gagan3012/keytotext/UI/app.py) ## Model: Keytotext is based on the Amazing T5 Model: - `k2t`: [Model](https://huggingface.co/gagan3012/k2t) - `k2t-tiny`: [Model](https://huggingface.co/gagan3012/k2t-tiny) - `k2t-base`: [Model](https://huggingface.co/gagan3012/k2t-base) Training Notebooks can be found in the [`Training Notebooks`](https://github.com/gagan3012/keytotext/tree/master/Training%20Notebooks) Folder ## Usage: Example usage: [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/gagan3012/keytotext/blob/master/Examples/K2T.ipynb) Example Notebooks can be found in the [`Notebooks`](https://github.com/gagan3012/keytotext/tree/master/Examples) Folder ``` pip install keytotext ``` ![carbon (3)](https://user-images.githubusercontent.com/49101362/116220679-90e64180-a755-11eb-9246-82d93d924a6c.png) ## UI: UI: [![Streamlit App](https://static.streamlit.io/badges/streamlit_badge_black_white.svg)](https://share.streamlit.io/gagan3012/keytotext/UI/app.py) ``` pip install streamlit-tags ``` This uses a custom streamlit component built by me: [GitHub](https://github.com/gagan3012/streamlit-tags) ![image](https://user-images.githubusercontent.com/49101362/116162205-fc042980-a6fd-11eb-892e-8f6902f193f4.png)
khizon/distilbert-unreliable-news-eng-6L
47eb057d757cff8551fffa8ad8c4558a4a15c032
2022-01-12T11:59:39.000Z
[ "pytorch", "distilbert", "text-classification", "transformers" ]
text-classification
false
khizon
null
khizon/distilbert-unreliable-news-eng-6L
5
null
transformers
16,669
Entry not found
kingabzpro/wav2vec2-large-xls-r-300m-Indonesian
001d73c81037b690976bb64f8fab8f5e60cd3a34
2022-03-23T18:29:19.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "id", "dataset:mozilla-foundation/common_voice_7_0", "transformers", "hf-asr-leaderboard", "robust-speech-event", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
kingabzpro
null
kingabzpro/wav2vec2-large-xls-r-300m-Indonesian
5
null
transformers
16,670
--- language: - id license: apache-2.0 tags: - automatic-speech-recognition - hf-asr-leaderboard - robust-speech-event datasets: - mozilla-foundation/common_voice_7_0 metrics: - wer - cer model-index: - name: wav2vec2-large-xls-r-300m-Indonesian results: - task: type: automatic-speech-recognition name: Speech Recognition dataset: type: mozilla-foundation/common_voice_7_0 name: Common Voice id args: id metrics: - type: wer value: 25.06 name: Test WER With LM - type: cer value: 6.5 name: Test CER With LM - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: id metrics: - name: Test WER type: wer value: 99.61 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: id metrics: - name: Test WER type: wer value: 106.39 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-Indonesian This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.4087 - Wer: 0.2461 - Cer: 0.0666 ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 64 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 400 - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:| | 5.0788 | 4.26 | 200 | 2.9389 | 1.0 | 1.0 | | 2.8288 | 8.51 | 400 | 2.2535 | 1.0 | 0.8004 | | 0.907 | 12.77 | 600 | 0.4558 | 0.4243 | 0.1095 | | 0.4071 | 17.02 | 800 | 0.4013 | 0.3468 | 0.0913 | | 0.3 | 21.28 | 1000 | 0.4167 | 0.3075 | 0.0816 | | 0.2544 | 25.53 | 1200 | 0.4132 | 0.2835 | 0.0762 | | 0.2145 | 29.79 | 1400 | 0.3878 | 0.2693 | 0.0729 | | 0.1923 | 34.04 | 1600 | 0.4023 | 0.2623 | 0.0702 | | 0.1681 | 38.3 | 1800 | 0.3984 | 0.2581 | 0.0686 | | 0.1598 | 42.55 | 2000 | 0.3982 | 0.2493 | 0.0663 | | 0.1464 | 46.81 | 2200 | 0.4087 | 0.2461 | 0.0666 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2.dev0 - Tokenizers 0.11.0
kingla6/distilbert-magazine-classifier
d70f97f54c1ecfd8f1ccf6d11324727bbadf4dc6
2022-01-07T16:14:25.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
kingla6
null
kingla6/distilbert-magazine-classifier
5
null
transformers
16,671
--- license: apache-2.0 tags: - generated_from_trainer metrics: - precision - recall model-index: - name: distilbert-magazine-classifier results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-magazine-classifier This model is a fine-tuned version of [distilbert-base-cased](https://huggingface.co/distilbert-base-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.8377 - Precision: 0.25 - Recall: 0.125 - Fscore: 0.1667 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | Fscore | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:| | 0.1779 | 1.0 | 2 | 1.7584 | 0.2222 | 0.3333 | 0.2667 | | 0.1635 | 2.0 | 4 | 1.7585 | 0.25 | 0.125 | 0.1667 | | 0.1405 | 3.0 | 6 | 1.8377 | 0.25 | 0.125 | 0.1667 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
kizunasunhy/distilbert-base-uncased-finetuned-squad
c1fb3e8581040460df2d2eb1f2c39e982221498e
2021-10-13T08:37:15.000Z
[ "pytorch", "distilbert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
kizunasunhy
null
kizunasunhy/distilbert-base-uncased-finetuned-squad
5
null
transformers
16,672
Entry not found
korca/textfooler-roberta-base-boolq
1f3f63676802157cdde53bd04c5c89b94bdad79e
2022-01-31T15:46:35.000Z
[ "pytorch", "roberta", "text-classification", "transformers" ]
text-classification
false
korca
null
korca/textfooler-roberta-base-boolq
5
null
transformers
16,673
Entry not found
kornosk/bert-election2020-twitter-stance-trump
36311a4ad7200ac54d3e3aff37daee69d6472888
2022-05-02T22:59:13.000Z
[ "pytorch", "jax", "bert", "text-classification", "en", "transformers", "twitter", "stance-detection", "election2020", "politics", "license:gpl-3.0" ]
text-classification
false
kornosk
null
kornosk/bert-election2020-twitter-stance-trump
5
1
transformers
16,674
--- language: "en" tags: - twitter - stance-detection - election2020 - politics license: "gpl-3.0" --- # Pre-trained BERT on Twitter US Election 2020 for Stance Detection towards Donald Trump (f-BERT) Pre-trained weights for **f-BERT** in [Knowledge Enhance Masked Language Model for Stance Detection](https://www.aclweb.org/anthology/2021.naacl-main.376), NAACL 2021. # Training Data This model is pre-trained on over 5 million English tweets about the 2020 US Presidential Election. Then fine-tuned using our [stance-labeled data](https://github.com/GU-DataLab/stance-detection-KE-MLM) for stance detection towards Donald Trump. # Training Objective This model is initialized with BERT-base and trained with normal MLM objective with classification layer fine-tuned for stance detection towards Donald Trump. # Usage This pre-trained language model is fine-tuned to the stance detection task specifically for Donald Trump. Please see the [official repository](https://github.com/GU-DataLab/stance-detection-KE-MLM) for more detail. ```python from transformers import AutoTokenizer, AutoModelForSequenceClassification import torch import numpy as np # choose GPU if available device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # select mode path here pretrained_LM_path = "kornosk/bert-election2020-twitter-stance-trump" # load model tokenizer = AutoTokenizer.from_pretrained(pretrained_LM_path) model = AutoModelForSequenceClassification.from_pretrained(pretrained_LM_path) id2label = { 0: "AGAINST", 1: "FAVOR", 2: "NONE" } ##### Prediction Neutral ##### sentence = "Hello World." inputs = tokenizer(sentence.lower(), return_tensors="pt") outputs = model(**inputs) predicted_probability = torch.softmax(outputs[0], dim=1)[0].tolist() print("Sentence:", sentence) print("Prediction:", id2label[np.argmax(predicted_probability)]) print("Against:", predicted_probability[0]) print("Favor:", predicted_probability[1]) print("Neutral:", predicted_probability[2]) ##### Prediction Favor ##### sentence = "Go Go Trump!!!" inputs = tokenizer(sentence.lower(), return_tensors="pt") outputs = model(**inputs) predicted_probability = torch.softmax(outputs[0], dim=1)[0].tolist() print("Sentence:", sentence) print("Prediction:", id2label[np.argmax(predicted_probability)]) print("Against:", predicted_probability[0]) print("Favor:", predicted_probability[1]) print("Neutral:", predicted_probability[2]) ##### Prediction Against ##### sentence = "Trump is the worst." inputs = tokenizer(sentence.lower(), return_tensors="pt") outputs = model(**inputs) predicted_probability = torch.softmax(outputs[0], dim=1)[0].tolist() print("Sentence:", sentence) print("Prediction:", id2label[np.argmax(predicted_probability)]) print("Against:", predicted_probability[0]) print("Favor:", predicted_probability[1]) print("Neutral:", predicted_probability[2]) # please consider citing our paper if you feel this is useful :) ``` # Reference - [Knowledge Enhance Masked Language Model for Stance Detection](https://www.aclweb.org/anthology/2021.naacl-main.376), NAACL 2021. # Citation ```bibtex @inproceedings{kawintiranon2021knowledge, title={Knowledge Enhanced Masked Language Model for Stance Detection}, author={Kawintiranon, Kornraphop and Singh, Lisa}, booktitle={Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies}, year={2021}, publisher={Association for Computational Linguistics}, url={https://www.aclweb.org/anthology/2021.naacl-main.376} } ```
LACAI/DialoGPT-small-PFG
905128cbb27d2375d85d11398bf468331ab9decc
2022-01-14T01:36:36.000Z
[ "pytorch", "tensorboard", "gpt2", "text-generation", "transformers" ]
text-generation
false
LACAI
null
LACAI/DialoGPT-small-PFG
5
null
transformers
16,675
Base model: [microsoft/DialoGPT-small](https://huggingface.co/microsoft/DialoGPT-small) Fine tuned for dialogue response generation on the [Persuasion For Good Dataset](https://gitlab.com/ucdavisnlp/persuasionforgood) (Wang et al., 2019) Three additional special tokens were added during the fine-tuning process: - <|pad|> padding token - <|user|> speaker control token to prompt user responses - <|system|> speaker control token to prompt system responses The following Dialogues were excluded: - Those with donation amounts outside of the task range of [$0, $2]. - Those where a donation of 0 was made at the end of the task but a non-zero amount was pledged in the dialogue. - Those with more than 800 words. Stats: - Training set: 519 dialogues - Validation set: 58 dialogues - ~20 utterances per dialogue
lalopey/pearkes
bfcb1e4db3eacbe482a9d18c9caf15145b23fb3c
2021-05-23T06:26:23.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "transformers" ]
text-generation
false
lalopey
null
lalopey/pearkes
5
null
transformers
16,676
Entry not found
laxya007/gpt2_TS_DM_AS_CC_TM_HCU
9c3035d5ba3f4ea627bfabe9e47d911b3129c8b6
2022-01-03T13:02:48.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
laxya007
null
laxya007/gpt2_TS_DM_AS_CC_TM_HCU
5
null
transformers
16,677
Entry not found
ldacunto/distilbert-base-uncased-finetuned-cola
cb437f688b9670a1c2e7a2047b9517b8b787346f
2022-01-14T13:56:25.000Z
[ "pytorch", "distilbert", "text-classification", "transformers" ]
text-classification
false
ldacunto
null
ldacunto/distilbert-base-uncased-finetuned-cola
5
null
transformers
16,678
Entry not found
leemeng/core-term-ner-v1
ab933f86880e37afeded6fe1e4a2de8665f26567
2021-05-19T21:21:42.000Z
[ "pytorch", "tf", "jax", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
leemeng
null
leemeng/core-term-ner-v1
5
null
transformers
16,679
Entry not found
leolin12345/fine-tune-lr
faf831b94bc9cf92a0c31870bd45630fed50364e
2022-02-25T00:51:08.000Z
[ "pytorch", "roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
leolin12345
null
leolin12345/fine-tune-lr
5
null
transformers
16,680
Entry not found
leslie/bert_finetuning_test
9f9f87e39a98bd84c3c324895b701584fae9544a
2021-05-19T21:22:40.000Z
[ "pytorch", "jax", "bert", "text-classification", "transformers" ]
text-classification
false
leslie
null
leslie/bert_finetuning_test
5
null
transformers
16,681
Entry not found
lewtun/xlm-roberta-base-finetuned-marc-19964-samples
70b8186e43391135ddd6d5f9ea0cc7d7c88a6b52
2021-10-15T14:41:57.000Z
[ "pytorch", "tensorboard", "xlm-roberta", "text-classification", "transformers" ]
text-classification
false
lewtun
null
lewtun/xlm-roberta-base-finetuned-marc-19964-samples
5
null
transformers
16,682
Entry not found
lewtun/xlm-roberta-base-finetuned-marc-en-hslu
1c482ee39eacbfc8caebe68f65fc8957a569e35e
2021-12-16T14:55:28.000Z
[ "pytorch", "tensorboard", "xlm-roberta", "text-classification", "dataset:amazon_reviews_multi", "transformers", "generated_from_trainer", "license:mit", "model-index" ]
text-classification
false
lewtun
null
lewtun/xlm-roberta-base-finetuned-marc-en-hslu
5
null
transformers
16,683
--- license: mit tags: - generated_from_trainer datasets: - amazon_reviews_multi model-index: - name: xlm-roberta-base-finetuned-marc-en-hslu results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-marc-en-hslu This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the amazon_reviews_multi dataset. It achieves the following results on the evaluation set: - Loss: 0.8826 - Mae: 0.5 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Mae | |:-------------:|:-----:|:----:|:---------------:|:------:| | 1.1121 | 1.0 | 235 | 0.9400 | 0.5732 | | 0.9487 | 2.0 | 470 | 0.8826 | 0.5 | ### Framework versions - Transformers 4.14.1 - Pytorch 1.10.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3
lgris/wav2vec2_base_10k_8khz_pt_cv7_2
76671014338f0ba0da780f1367df636c0d3947e7
2022-03-23T18:34:03.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "pt", "dataset:mozilla-foundation/common_voice_7_0", "transformers", "generated_from_trainer", "hf-asr-leaderboard", "mozilla-foundation/common_voice_7_0", "robust-speech-event", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
lgris
null
lgris/wav2vec2_base_10k_8khz_pt_cv7_2
5
null
transformers
16,684
--- language: - pt license: apache-2.0 tags: - automatic-speech-recognition - generated_from_trainer - hf-asr-leaderboard - mozilla-foundation/common_voice_7_0 - pt - robust-speech-event datasets: - mozilla-foundation/common_voice_7_0 model-index: - name: wav2vec2_base_10k_8khz_pt_cv7_2 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 7 type: mozilla-foundation/common_voice_7_0 args: pt metrics: - name: Test WER type: wer value: 36.9 - name: Test CER type: cer value: 14.82 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: sv metrics: - name: Test WER type: wer value: 40.53 - name: Test CER type: cer value: 16.95 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: pt metrics: - name: Test WER type: wer value: 37.15 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: pt metrics: - name: Test WER type: wer value: 38.95 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2_base_10k_8khz_pt_cv7_2 This model is a fine-tuned version of [lgris/seasr_2022_base_10k_8khz_pt](https://huggingface.co/lgris/seasr_2022_base_10k_8khz_pt) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 76.3426 - Wer: 0.1979 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - training_steps: 10000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 189.1362 | 0.65 | 500 | 80.6347 | 0.2139 | | 174.2587 | 1.3 | 1000 | 80.2062 | 0.2116 | | 164.676 | 1.95 | 1500 | 78.2161 | 0.2073 | | 176.5856 | 2.6 | 2000 | 78.8920 | 0.2074 | | 164.3583 | 3.25 | 2500 | 77.2865 | 0.2066 | | 161.414 | 3.9 | 3000 | 77.8888 | 0.2048 | | 158.283 | 4.55 | 3500 | 77.3472 | 0.2033 | | 159.2265 | 5.19 | 4000 | 79.0953 | 0.2036 | | 156.3967 | 5.84 | 4500 | 76.6855 | 0.2029 | | 154.2743 | 6.49 | 5000 | 77.7785 | 0.2015 | | 156.6497 | 7.14 | 5500 | 77.1220 | 0.2033 | | 157.3038 | 7.79 | 6000 | 76.2926 | 0.2027 | | 162.8151 | 8.44 | 6500 | 76.7602 | 0.2013 | | 151.8613 | 9.09 | 7000 | 77.4777 | 0.2011 | | 153.0225 | 9.74 | 7500 | 76.5206 | 0.2001 | | 157.52 | 10.39 | 8000 | 76.1061 | 0.2006 | | 145.0592 | 11.04 | 8500 | 76.7855 | 0.1992 | | 150.0066 | 11.69 | 9000 | 76.0058 | 0.1988 | | 146.8128 | 12.34 | 9500 | 76.2853 | 0.1987 | | 146.9148 | 12.99 | 10000 | 76.3426 | 0.1979 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
lhoestq/test-albert-upload
2ad0f93d116fda07b07a40db384db2099790bc2a
2021-05-11T15:41:35.000Z
[ "pytorch", "albert", "feature-extraction", "transformers" ]
feature-extraction
false
lhoestq
null
lhoestq/test-albert-upload
5
null
transformers
16,685
Entry not found
liamliang/demographics_race
e5e08bf7d7f52c166c414f714138a3eae91171ea
2021-05-19T21:57:27.000Z
[ "pytorch", "jax", "bert", "text-classification", "transformers" ]
text-classification
false
liamliang
null
liamliang/demographics_race
5
null
transformers
16,686
Entry not found
liangxiaoxiao/bert_finetuning_test
55c8f5bd23e87ce42ff502931cfa59e48436be56
2021-05-19T22:01:38.000Z
[ "pytorch", "jax", "bert", "text-classification", "transformers" ]
text-classification
false
liangxiaoxiao
null
liangxiaoxiao/bert_finetuning_test
5
null
transformers
16,687
Entry not found
llange/xlm-roberta-large-spanish
87965ab2356326c1db48f670ee449f05424d1c9f
2021-12-16T11:24:16.000Z
[ "pytorch", "xlm-roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
llange
null
llange/xlm-roberta-large-spanish
5
null
transformers
16,688
# Spanish XLM-R (from NLNDE-MEDDOPROF) This Spanish language model was created for the MEDDOPROF shared task as part of the **NLNDE** team submission and outperformed all other participants in both sequence labeling tasks. Details on the model, the pre-training corpus and the downstream task performance are given in the paper: "Boosting Transformers for Job Expression Extraction and Classification in a Low-Resource Setting" by Lukas Lange, Heike Adel and Jannik Strötgen. The paper can be found [here](http://ceur-ws.org/Vol-2943/meddoprof_paper1.pdf). In case of questions, please contact the authors as listed on the paper. Please cite the above paper when reporting, reproducing or extending the results. @inproceedings{lange-etal-2021-meddoprof, author = {Lukas Lange and Heike Adel and Jannik Str{\"{o}}tgen}, title = {Boosting Transformers for Job Expression Extraction and Classification in a Low-Resource Setting}, year={2021}, booktitle= {{Proceedings of The Iberian Languages Evaluation Forum (IberLEF 2021)}}, series = {{CEUR} Workshop Proceedings}, url = {http://ceur-ws.org/Vol-2943/meddoprof_paper1.pdf}, } ## Training details We use XLM-R (`xlm-roberta-large`, Conneau et al. 2020) as the main component of our models. XLM-R is a pretrained multilingual transformer model for 100 languages, including Spanish. It shows superior performance in different tasks across languages, and can even outperform monolingual models in certain settings. It was pretrained on a large-scale corpus, and Spanish documents made up only 2% of this data. Thus, we explore further pretraining of this model and tune it towards Spanish documents by pretraining a medium-size Spanish corpus with general domain documents. For this, we use the [spanish corpus](https://github.com/josecannete/spanish-corpora) used to train the BETO model. We use masked language modeling for pretraining and trained for three epochs over the corpus, which roughly corresponds to 685k steps using a batch-size of 4. ## Performance This model was trained in the context of the Meddoprof shared tasks and outperformed all other participants in both sequence labeling tasks. Our results (F1) in comparison with the standard XLM-R and the second-best system of the shared task are given in the Table. More information on the shared task and other participants is given in this paper [here](http://journal.sepln.org/sepln/ojs/ojs/index.php/pln/article/view/6393/3813). The code for our NER models can be found [here](https://github.com/boschresearch/nlnde-meddoprof). | | Meddoprof Task 1 (NER) | Meddoprof Task 2 (CLASS) | |---------------------------------|------------------------|--------------------------| | Second-best System | 80.0 | 76.4 | | XLM-R (our baseline) | 79.2 | 77.6 | | Our Spanish XLM-R (best System) | **83.2** | **79.1** | ## Purpose of the project This software is a research prototype, solely developed for and published as part of the publication cited above. It will neither be maintained nor monitored in any way. ## License The CLIN-X models are open-sourced under the CC-BY 4.0 license. See the [LICENSE](LICENSE) file for details.
longcld/t5-small-e2e-qa-full
03f4e3d6cc8052325f171739e7115af4be4fd6fe
2021-09-20T07:45:02.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
longcld
null
longcld/t5-small-e2e-qa-full
5
null
transformers
16,689
Entry not found
longcld/t5_small_qg_ae_hl
3a9499c8548c4bacfa03542d49223856e1c37fba
2021-07-26T00:56:13.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
longcld
null
longcld/t5_small_qg_ae_hl
5
null
transformers
16,690
Entry not found
luffycodes/bb_narataka_roberta_large_nli_bsz_16_bb_bsz_16_nli_lr_3e5_bb_lr_3e5_wu_7k_grad_adam
295acf00689a4eae2feb24a4d7cc900e20d2cb52
2021-10-30T03:15:24.000Z
[ "pytorch", "roberta", "transformers" ]
null
false
luffycodes
null
luffycodes/bb_narataka_roberta_large_nli_bsz_16_bb_bsz_16_nli_lr_3e5_bb_lr_3e5_wu_7k_grad_adam
5
null
transformers
16,691
Entry not found
lysandre/dummy
771d33611eeded8a62de6bfae47e089ee76bfb10
2021-11-05T15:09:39.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
lysandre
null
lysandre/dummy
5
null
transformers
16,692
# My dummy model Welcome to my model page! Central definition, reproducibility tips, code samples below!
m3hrdadfi/wili2018-roberta-base
01a5dafa0e043fb77cda29d4affe5deeac2d618b
2021-06-25T05:09:51.000Z
[ "pytorch", "tf", "roberta", "fill-mask", "multilingual", "dataset:wili_2018", "transformers", "license:apache-2.0", "autotrain_compatible" ]
fill-mask
false
m3hrdadfi
null
m3hrdadfi/wili2018-roberta-base
5
null
transformers
16,693
--- language: multilingual license: apache-2.0 datasets: - wili_2018 ---
madlag/bert-base-uncased-squad-v1-sparse0.25
23d9c7d50179c9b62549d51cf501319281307e7a
2021-05-19T22:31:23.000Z
[ "pytorch", "tf", "jax", "bert", "question-answering", "en", "dataset:squad", "arxiv:2005.07683", "transformers", "bert-base", "license:mit", "autotrain_compatible" ]
question-answering
false
madlag
null
madlag/bert-base-uncased-squad-v1-sparse0.25
5
null
transformers
16,694
--- language: en thumbnail: license: mit tags: - question-answering - bert - bert-base datasets: - squad metrics: - squad widget: - text: "Where is located the Eiffel Tower ?" context: "The Eiffel Tower is a wrought-iron lattice tower on the Champ de Mars in Paris, France. It is named after the engineer Gustave Eiffel, whose company designed and built the tower." - text: "Who is Frederic Chopin?" context: "Frédéric François Chopin, born Fryderyk Franciszek Chopin (1 March 1810 – 17 October 1849), was a Polish composer and virtuoso pianist of the Romantic era who wrote primarily for solo piano." --- ## BERT-base uncased model fine-tuned on SQuAD v1 This model is [block-sparse](https://github.com/huggingface/pytorch_block_sparse). That means that with the right runtime it can run roughly 3x faster than an dense network, with 25% of the original weights. This of course has some impact on the accuracy (see below). It uses a modified version of Victor Sanh [Movement Pruning](https://arxiv.org/abs/2005.07683) method. This model was fine-tuned from the HuggingFace [BERT](https://www.aclweb.org/anthology/N19-1423/) base uncased checkpoint on [SQuAD1.1](https://rajpurkar.github.io/SQuAD-explorer). This model is case-insensitive: it does not make a difference between english and English. ## Details | Dataset | Split | # samples | | -------- | ----- | --------- | | SQuAD1.1 | train | 90.6K | | SQuAD1.1 | eval | 11.1k | ### Fine-tuning - Python: `3.8.5` - Machine specs: `CPU: Intel(R) Core(TM) i7-6700K CPU` `Memory: 64 GiB` `GPUs: 1 GeForce GTX 3090, with 24GiB memory` `GPU driver: 455.23.05, CUDA: 11.1` ### Results **Model size**: `418M` | Metric | # Value | # Original ([Table 2](https://www.aclweb.org/anthology/N19-1423.pdf))| | ------ | --------- | --------- | | **EM** | **74.82** | **80.8** | | **F1** | **83.7** | **88.5** | Note that the above results didn't involve any hyperparameter search. ## Example Usage ```python from transformers import pipeline qa_pipeline = pipeline( "question-answering", model="madlag/bert-base-uncased-squad-v1-sparse0.25", tokenizer="madlag/bert-base-uncased-squad-v1-sparse0.25" ) predictions = qa_pipeline({ 'context': "Frédéric François Chopin, born Fryderyk Franciszek Chopin (1 March 1810 – 17 October 1849), was a Polish composer and virtuoso pianist of the Romantic era who wrote primarily for solo piano.", 'question': "Who is Frederic Chopin?", }) print(predictions)
mamlong34/t5_base_race_cosmos_qa
b3698d2855d1f2244c4678c131def2e223eef8a6
2021-10-12T07:17:10.000Z
[ "pytorch", "t5", "text2text-generation", "dataset:race", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
text2text-generation
false
mamlong34
null
mamlong34/t5_base_race_cosmos_qa
5
null
transformers
16,695
--- license: apache-2.0 tags: - generated_from_trainer datasets: - race metrics: - accuracy model-index: - name: t5_base_race_cosmos_qa results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5_base_race_cosmos_qa This model is a fine-tuned version of [t5-base](https://huggingface.co/t5-base) on the race dataset. It achieves the following results on the evaluation set: - Loss: 0.4414 - Accuracy: 0.7424 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.4355 | 1.0 | 10984 | 0.3910 | 0.7072 | | 0.3233 | 2.0 | 21968 | 0.3833 | 0.7321 | | 0.229 | 3.0 | 32952 | 0.4414 | 0.7424 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.9.0 - Datasets 1.12.1 - Tokenizers 0.10.3
marcelcastrobr/sagemaker-distilbert-emotion
6ce99f6e59e55d279745f109349d9ffe4dd388c9
2021-11-19T12:56:45.000Z
[ "pytorch", "distilbert", "text-classification", "dataset:emotion", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
marcelcastrobr
null
marcelcastrobr/sagemaker-distilbert-emotion
5
null
transformers
16,696
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy model-index: - name: sagemaker-distilbert-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: default metrics: - name: Accuracy type: accuracy value: 0.928 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # sagemaker-distilbert-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.1477 - Accuracy: 0.928 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.9308 | 1.0 | 500 | 0.2632 | 0.916 | | 0.1871 | 2.0 | 1000 | 0.1651 | 0.926 | | 0.1025 | 3.0 | 1500 | 0.1477 | 0.928 | ### Framework versions - Transformers 4.12.3 - Pytorch 1.9.1 - Datasets 1.15.1 - Tokenizers 0.10.3
marciovbarbosa/t5-small-finetuned-de-to-en-lr1e-4
a25a8c33704278ef3a3f08830029f75c66fff1db
2021-12-04T02:55:33.000Z
[ "pytorch", "tensorboard", "t5", "text2text-generation", "dataset:wmt16", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
text2text-generation
false
marciovbarbosa
null
marciovbarbosa/t5-small-finetuned-de-to-en-lr1e-4
5
null
transformers
16,697
--- license: apache-2.0 tags: - generated_from_trainer datasets: - wmt16 metrics: - bleu model-index: - name: t5-small-finetuned-de-to-en-lr1e-4 results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: wmt16 type: wmt16 args: de-en metrics: - name: Bleu type: bleu value: 11.427 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-de-to-en-lr1e-4 This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the wmt16 dataset. It achieves the following results on the evaluation set: - Loss: 1.8228 - Bleu: 11.427 - Gen Len: 17.2674 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:| | No log | 1.0 | 272 | 1.9605 | 9.0786 | 17.3148 | | 2.3992 | 2.0 | 544 | 1.8884 | 10.1443 | 17.3301 | | 2.3992 | 3.0 | 816 | 1.8647 | 10.4816 | 17.3258 | | 2.0832 | 4.0 | 1088 | 1.8473 | 10.7396 | 17.3231 | | 2.0832 | 5.0 | 1360 | 1.8343 | 11.0937 | 17.2621 | | 1.9193 | 6.0 | 1632 | 1.8282 | 11.1303 | 17.3098 | | 1.9193 | 7.0 | 1904 | 1.8234 | 11.2971 | 17.2991 | | 1.8351 | 8.0 | 2176 | 1.8241 | 11.3433 | 17.2621 | | 1.8351 | 9.0 | 2448 | 1.8224 | 11.394 | 17.2691 | | 1.7747 | 10.0 | 2720 | 1.8228 | 11.427 | 17.2674 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.10.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3
marcolatella/irony_trained
a7d3a3fdd645fc24aa59914cd1976b23d8d59d75
2021-12-10T23:03:44.000Z
[ "pytorch", "distilbert", "text-classification", "dataset:tweet_eval", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
marcolatella
null
marcolatella/irony_trained
5
null
transformers
16,698
--- license: apache-2.0 tags: - generated_from_trainer datasets: - tweet_eval metrics: - f1 model-index: - name: irony_trained results: - task: name: Text Classification type: text-classification dataset: name: tweet_eval type: tweet_eval args: irony metrics: - name: F1 type: f1 value: 0.6946397550129713 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # irony_trained This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the tweet_eval dataset. It achieves the following results on the evaluation set: - Loss: 1.6720 - F1: 0.6946 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2.6375567293432486e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 0 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.6643 | 1.0 | 716 | 0.5958 | 0.6776 | | 0.5633 | 2.0 | 1432 | 0.8863 | 0.6759 | | 0.348 | 3.0 | 2148 | 1.4215 | 0.6817 | | 0.2192 | 4.0 | 2864 | 1.6720 | 0.6946 | ### Framework versions - Transformers 4.13.0 - Pytorch 1.10.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3
markg/swda-test
05edf7a27c19ceef1818711844b753eb3ff646e4
2021-08-23T18:38:38.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
markg
null
markg/swda-test
5
null
transformers
16,699
Entry not found