modelId
stringlengths
4
112
sha
stringlengths
40
40
lastModified
stringlengths
24
24
tags
list
pipeline_tag
stringclasses
29 values
private
bool
1 class
author
stringlengths
2
38
config
null
id
stringlengths
4
112
downloads
float64
0
36.8M
likes
float64
0
712
library_name
stringclasses
17 values
__index_level_0__
int64
0
38.5k
readme
stringlengths
0
186k
seanbenhur/MuLTiGENBiaS
31beafd4a2aa4d4e419445336bf97f294374b5b7
2022-03-10T11:41:29.000Z
[ "pytorch", "tf", "onnx", "xlm-roberta", "text-classification", "hn", "bn", "mn", "dataset:ComMA", "arxiv:2112.15417", "transformers", "Text Classification", "license:wtfpl" ]
text-classification
false
seanbenhur
null
seanbenhur/MuLTiGENBiaS
5
null
transformers
16,800
--- language: - "hn" - "bn" - "mn" tags: - Text Classification license: wtfpl datasets: - ComMA metrics: - F1-Score widget: - text: "but who in the holy hell says to relate with it,or inspired by it😂😂,i'm a 23 yr old student,and i say it's wrong,watch for entertainment purpose,and those who get inspired by such movies,its their mental problem.and all the praise that shahid's getting is for dark charachter that he portrays.and those sittis she's talking abt,don't we hear those when a villian arrives on [screen.my](http://screen.my/) point is bash sexism,whether it's by a man or a group of woman.and as far as i remember,those girls were not shown as dark characters,as kabir singh is🙂" - text: "सही है, बोलने के अधिकार पर गाली दो, parotest के अधिकार पर पुलिश का सर फोड़ो ,मादरचोदो अधिकारो का कब सही इस्तेमाल करोगें🐷🐷🐷😠😠😠🖕" --- # Automatic Identification of Gender Bias in Hindi,Bengali,Meitei Codemixed Texts This is a XLM-Align-Base model trained on CoMMA dataset of 12k samples - This is an extension work from our previous paper: [Hypers at ComMA@ICON: Modelling Aggressiveness, Gender Bias and Communal Bias Identification](https://arxiv.org/abs/2112.15417). ## Example Usage ```python import torch import numpy as np from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline from transformers import set_seed set_seed(425) text = "some gender biased text" pipe = pipeline("text-classification", model="seanbenhur/MuLTiGENBiaS") def predict_pipe(text): prediction = pipe(text, return_all_scores=True)[0] return prediction if __name__ == "__main__": target = predict_pipe(text) print(target) ``` ### Some concerns - Note: The model is trained on relatively lower samples (i.e 12k) but with mix of four languages Hindi, Bengali, Meitei, and English. It contains both native on codemixed scripts, So the model might perform poorly on many text samples and might not generalize well. ## Bibtex ``` @article{Benhur2021HypersAC, title={Hypers at ComMA@ICON: Modelling Aggressiveness, Gender Bias and Communal Bias Identification}, author={Sean Benhur and Roshan Nayak and Kanchana Sivanraju and Adeep Hande and Subalalitha Chinnaudayar Navaneethakrishnan and Ruba Priyadharshini and Bharathi Raja Chakravarthi6}, journal={ArXiv}, year={2021}, volume={abs/2112.15417} } ```
seanbenhur/manglish-offensive-language-identification
54e383100e32a377476a7f4083b915909520fab6
2021-11-13T12:40:35.000Z
[ "pytorch", "onnx", "bert", "text-classification", "transformers" ]
text-classification
false
seanbenhur
null
seanbenhur/manglish-offensive-language-identification
5
null
transformers
16,801
Model Card coming soon
seduerr/soccer
3063bc8b710e2706ecfea3a740806f9bf875e82d
2021-03-16T05:15:03.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
seduerr
null
seduerr/soccer
5
null
transformers
16,802
Entry not found
sehandev/koelectra-qa
c179bf387ea08df16d504ce6b4e50b376662df7d
2021-07-18T14:21:05.000Z
[ "pytorch", "electra", "question-answering", "transformers", "generated_from_trainer", "autotrain_compatible" ]
question-answering
false
sehandev
null
sehandev/koelectra-qa
5
null
transformers
16,803
--- tags: - generated_from_trainer model_index: - name: koelectra-qa results: - task: name: Question Answering type: question-answering --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # koelectra-qa This model was trained from scratch on an unkown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 64 - eval_batch_size: 256 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - num_epochs: 5 ### Training results ### Framework versions - Transformers 4.8.2 - Pytorch 1.8.1 - Datasets 1.9.0 - Tokenizers 0.10.3
sgugger/custom-resnet50d
ed94a7c6247d8aedce4647f00f20de6875b5b292
2022-02-09T21:17:49.000Z
[ "pytorch", "resnet", "transformers" ]
null
false
sgugger
null
sgugger/custom-resnet50d
5
null
transformers
16,804
Entry not found
sgugger/test-upload1
00c980bd0997b12d71b0ad659fdd2c0d71ec39f1
2022-01-28T02:10:32.000Z
[ "pytorch", "distilbert", "text-classification", "transformers" ]
text-classification
false
sgugger
null
sgugger/test-upload1
5
null
transformers
16,805
Entry not found
simonmun/Lo_SentenceClassification
320c4fe8af1f099d713927a46de016af607e2ca7
2021-05-20T05:58:21.000Z
[ "pytorch", "jax", "bert", "text-classification", "transformers" ]
text-classification
false
simonmun
null
simonmun/Lo_SentenceClassification
5
null
transformers
16,806
Entry not found
sismetanin/mbart_large-financial_phrasebank
bd337c93bf973c3c20e6d65f703b08550b598a40
2021-03-08T09:57:26.000Z
[ "pytorch", "bart", "text-classification", "transformers" ]
text-classification
false
sismetanin
null
sismetanin/mbart_large-financial_phrasebank
5
1
transformers
16,807
Entry not found
sismetanin/rubert-ru-sentiment-rureviews
64aa36de485e0424d8ea71c6ab373a9b8f6ce90b
2021-05-20T06:09:59.000Z
[ "pytorch", "jax", "bert", "text-classification", "ru", "transformers", "sentiment analysis", "Russian" ]
text-classification
false
sismetanin
null
sismetanin/rubert-ru-sentiment-rureviews
5
null
transformers
16,808
--- language: - ru tags: - sentiment analysis - Russian --- ## RuBERT-ru-sentiment-RuReviews RuBERT-ru-sentiment-RuReviews is a [RuBERT](https://huggingface.co/DeepPavlov/rubert-base-cased) model fine-tuned on [RuReviews dataset](https://github.com/sismetanin/rureviews) of Russian-language reviews from the ”Women’s Clothes and Accessories” product category on the primary e-commerce site in Russia. <table> <thead> <tr> <th rowspan="4">Model</th> <th rowspan="4">Score<br></th> <th rowspan="4">Rank</th> <th colspan="12">Dataset</th> </tr> <tr> <td colspan="6">SentiRuEval-2016<br></td> <td colspan="2" rowspan="2">RuSentiment</td> <td rowspan="2">KRND</td> <td rowspan="2">LINIS Crowd</td> <td rowspan="2">RuTweetCorp</td> <td rowspan="2">RuReviews</td> </tr> <tr> <td colspan="3">TC</td> <td colspan="3">Banks</td> </tr> <tr> <td>micro F1</td> <td>macro F1</td> <td>F1</td> <td>micro F1</td> <td>macro F1</td> <td>F1</td> <td>wighted</td> <td>F1</td> <td>F1</td> <td>F1</td> <td>F1</td> <td>F1</td> </tr> </thead> <tbody> <tr> <td>SOTA</td> <td>n/s</td> <td></td> <td>76.71</td> <td>66.40</td> <td>70.68</td> <td>67.51</td> <td>69.53</td> <td>74.06</td> <td>78.50</td> <td>n/s</td> <td>73.63</td> <td>60.51</td> <td>83.68</td> <td>77.44</td> </tr> <tr> <td>XLM-RoBERTa-Large</td> <td>76.37</td> <td>1</td> <td>82.26</td> <td>76.36</td> <td>79.42</td> <td>76.35</td> <td>76.08</td> <td>80.89</td> <td>78.31</td> <td>75.27</td> <td>75.17</td> <td>60.03</td> <td>88.91</td> <td>78.81</td> </tr> <tr> <td>SBERT-Large</td> <td>75.43</td> <td>2</td> <td>78.40</td> <td>71.36</td> <td>75.14</td> <td>72.39</td> <td>71.87</td> <td>77.72</td> <td>78.58</td> <td>75.85</td> <td>74.20</td> <td>60.64</td> <td>88.66</td> <td>77.41</td> </tr> <tr> <td>MBARTRuSumGazeta</td> <td>74.70</td> <td>3</td> <td>76.06</td> <td>68.95</td> <td>73.04</td> <td>72.34</td> <td>71.93</td> <td>77.83</td> <td>76.71</td> <td>73.56</td> <td>74.18</td> <td>60.54</td> <td>87.22</td> <td>77.51</td> </tr> <tr> <td>Conversational RuBERT</td> <td>74.44</td> <td>4</td> <td>76.69</td> <td>69.09</td> <td>73.11</td> <td>69.44</td> <td>68.68</td> <td>75.56</td> <td>77.31</td> <td>74.40</td> <td>73.10</td> <td>59.95</td> <td>87.86</td> <td>77.78</td> </tr> <tr> <td>LaBSE</td> <td>74.11</td> <td>5</td> <td>77.00</td> <td>69.19</td> <td>73.55</td> <td>70.34</td> <td>69.83</td> <td>76.38</td> <td>74.94</td> <td>70.84</td> <td>73.20</td> <td>59.52</td> <td>87.89</td> <td>78.47</td> </tr> <tr> <td>XLM-RoBERTa-Base</td> <td>73.60</td> <td>6</td> <td>76.35</td> <td>69.37</td> <td>73.42</td> <td>68.45</td> <td>67.45</td> <td>74.05</td> <td>74.26</td> <td>70.44</td> <td>71.40</td> <td>60.19</td> <td>87.90</td> <td>78.28</td> </tr> <tr> <td>RuBERT</td> <td>73.45</td> <td>7</td> <td>74.03</td> <td>66.14</td> <td>70.75</td> <td>66.46</td> <td>66.40</td> <td>73.37</td> <td>75.49</td> <td>71.86</td> <td>72.15</td> <td>60.55</td> <td>86.99</td> <td>77.41</td> </tr> <tr> <td>MBART-50-Large-Many-to-Many</td> <td>73.15</td> <td>8</td> <td>75.38</td> <td>67.81</td> <td>72.26</td> <td>67.13</td> <td>66.97</td> <td>73.85</td> <td>74.78</td> <td>70.98</td> <td>71.98</td> <td>59.20</td> <td>87.05</td> <td>77.24</td> </tr> <tr> <td>SlavicBERT</td> <td>71.96</td> <td>9</td> <td>71.45</td> <td>63.03</td> <td>68.44</td> <td>64.32</td> <td>63.99</td> <td>71.31</td> <td>72.13</td> <td>67.57</td> <td>72.54</td> <td>58.70</td> <td>86.43</td> <td>77.16</td> </tr> <tr> <td>EnRuDR-BERT</td> <td>71.51</td> <td>10</td> <td>72.56</td> <td>64.74</td> <td>69.07</td> <td>61.44</td> <td>60.21</td> <td>68.34</td> <td>74.19</td> <td>69.94</td> <td>69.33</td> <td>56.55</td> <td>87.12</td> <td>77.95</td> </tr> <tr> <td>RuDR-BERT</td> <td>71.14</td> <td>11</td> <td>72.79</td> <td>64.23</td> <td>68.36</td> <td>61.86</td> <td>60.92</td> <td>68.48</td> <td>74.65</td> <td>70.63</td> <td>68.74</td> <td>54.45</td> <td>87.04</td> <td>77.91</td> </tr> <tr> <td>MBART-50-Large</td> <td>69.46</td> <td>12</td> <td>70.91</td> <td>62.67</td> <td>67.24</td> <td>61.12</td> <td>60.25</td> <td>68.41</td> <td>72.88</td> <td>68.63</td> <td>70.52</td> <td>46.39</td> <td>86.48</td> <td>77.52</td> </tr> </tbody> </table> The table shows per-task scores and a macro-average of those scores to determine a models’s position on the leaderboard. For datasets with multiple evaluation metrics (e.g., macro F1 and weighted F1 for RuSentiment), we use an unweighted average of the metrics as the score for the task when computing the overall macro-average. The same strategy for comparing models’ results was applied in the GLUE benchmark. ## Citation If you find this repository helpful, feel free to cite our publication: ``` @article{Smetanin2021Deep, author = {Sergey Smetanin and Mikhail Komarov}, title = {Deep transfer learning baselines for sentiment analysis in Russian}, journal = {Information Processing & Management}, volume = {58}, number = {3}, pages = {102484}, year = {2021}, issn = {0306-4573}, doi = {0.1016/j.ipm.2020.102484} } ``` Dataset: ``` @INPROCEEDINGS{Smetanin2019Sentiment, author={Sergey Smetanin and Michail Komarov}, booktitle={2019 IEEE 21st Conference on Business Informatics (CBI)}, title={Sentiment Analysis of Product Reviews in Russian using Convolutional Neural Networks}, year={2019}, volume={01}, pages={482-486}, doi={10.1109/CBI.2019.00062}, ISSN={2378-1963}, month={July} } ```
sismetanin/sbert-ru-sentiment-liniscrowd
8ffaaafdbb587225c1462390242437af9230eba3
2021-05-20T06:30:38.000Z
[ "pytorch", "jax", "bert", "text-classification", "transformers" ]
text-classification
false
sismetanin
null
sismetanin/sbert-ru-sentiment-liniscrowd
5
null
transformers
16,809
Entry not found
socialmediaie/TRAC2020_ALL_B_bert-base-multilingual-uncased
ef35f108ac20446646fe21e4f8ba8c3734033b08
2021-05-20T06:53:23.000Z
[ "pytorch", "jax", "bert", "text-classification", "transformers" ]
text-classification
false
socialmediaie
null
socialmediaie/TRAC2020_ALL_B_bert-base-multilingual-uncased
5
null
transformers
16,810
# Multilingual Joint Fine-tuning of Transformer models for identifying Trolling, Aggression and Cyberbullying at TRAC 2020 Models and predictions for submission to TRAC - 2020 Second Workshop on Trolling, Aggression and Cyberbullying. Our trained models as well as evaluation metrics during traing are available at: https://databank.illinois.edu/datasets/IDB-8882752# We also make a few of our models available in HuggingFace's models repository at https://huggingface.co/socialmediaie/, these models can be further fine-tuned on your dataset of choice. Our approach is described in our paper titled: > Mishra, Sudhanshu, Shivangi Prasad, and Shubhanshu Mishra. 2020. "Multilingual Joint Fine-Tuning of Transformer Models for Identifying Trolling, Aggression and Cyberbullying at TRAC 2020." In Proceedings of the Second Workshop on Trolling, Aggression and Cyberbullying (TRAC-2020). The source code for training this model and more details can be found on our code repository: https://github.com/socialmediaie/TRAC2020 NOTE: These models are retrained for uploading here after our submission so the evaluation measures may be slightly different from the ones reported in the paper. If you plan to use the dataset please cite the following resources: * Mishra, Sudhanshu, Shivangi Prasad, and Shubhanshu Mishra. 2020. "Multilingual Joint Fine-Tuning of Transformer Models for Identifying Trolling, Aggression and Cyberbullying at TRAC 2020." In Proceedings of the Second Workshop on Trolling, Aggression and Cyberbullying (TRAC-2020). * Mishra, Shubhanshu, Shivangi Prasad, and Shubhanshu Mishra. 2020. “Trained Models for Multilingual Joint Fine-Tuning of Transformer Models for Identifying Trolling, Aggression and Cyberbullying at TRAC 2020.” University of Illinois at Urbana-Champaign. https://doi.org/10.13012/B2IDB-8882752_V1. ``` @inproceedings{Mishra2020TRAC, author = {Mishra, Sudhanshu and Prasad, Shivangi and Mishra, Shubhanshu}, booktitle = {Proceedings of the Second Workshop on Trolling, Aggression and Cyberbullying (TRAC-2020)}, title = {{Multilingual Joint Fine-tuning of Transformer models for identifying Trolling, Aggression and Cyberbullying at TRAC 2020}}, year = {2020} } @data{illinoisdatabankIDB-8882752, author = {Mishra, Shubhanshu and Prasad, Shivangi and Mishra, Shubhanshu}, doi = {10.13012/B2IDB-8882752_V1}, publisher = {University of Illinois at Urbana-Champaign}, title = {{Trained models for Multilingual Joint Fine-tuning of Transformer models for identifying Trolling, Aggression and Cyberbullying at TRAC 2020}}, url = {https://doi.org/10.13012/B2IDB-8882752{\_}V1}, year = {2020} } ``` ## Usage The models can be used via the following code: ```python from transformers import AutoModel, AutoTokenizer, AutoModelForSequenceClassification import torch from pathlib import Path from scipy.special import softmax import numpy as np import pandas as pd TASK_LABEL_IDS = { "Sub-task A": ["OAG", "NAG", "CAG"], "Sub-task B": ["GEN", "NGEN"], "Sub-task C": ["OAG-GEN", "OAG-NGEN", "NAG-GEN", "NAG-NGEN", "CAG-GEN", "CAG-NGEN"] } model_version="databank" # other option is hugging face library if model_version == "databank": # Make sure you have downloaded the required model file from https://databank.illinois.edu/datasets/IDB-8882752 # Unzip the file at some model_path (we are using: "databank_model") model_path = next(Path("databank_model").glob("./*/output/*/model")) # Assuming you get the following type of structure inside "databank_model" # 'databank_model/ALL/Sub-task C/output/bert-base-multilingual-uncased/model' lang, task, _, base_model, _ = model_path.parts tokenizer = AutoTokenizer.from_pretrained(base_model) model = AutoModelForSequenceClassification.from_pretrained(model_path) else: lang, task, base_model = "ALL", "Sub-task C", "bert-base-multilingual-uncased" base_model = f"socialmediaie/TRAC2020_{lang}_{lang.split()[-1]}_{base_model}" tokenizer = AutoTokenizer.from_pretrained(base_model) model = AutoModelForSequenceClassification.from_pretrained(base_model) # For doing inference set model in eval mode model.eval() # If you want to further fine-tune the model you can reset the model to model.train() task_labels = TASK_LABEL_IDS[task] sentence = "This is a good cat and this is a bad dog." processed_sentence = f"{tokenizer.cls_token} {sentence}" tokens = tokenizer.tokenize(sentence) indexed_tokens = tokenizer.convert_tokens_to_ids(tokens) tokens_tensor = torch.tensor([indexed_tokens]) with torch.no_grad(): logits, = model(tokens_tensor, labels=None) logits preds = logits.detach().cpu().numpy() preds_probs = softmax(preds, axis=1) preds = np.argmax(preds_probs, axis=1) preds_labels = np.array(task_labels)[preds] print(dict(zip(task_labels, preds_probs[0])), preds_labels) """You should get an output as follows: ({'CAG-GEN': 0.06762535, 'CAG-NGEN': 0.03244293, 'NAG-GEN': 0.6897794, 'NAG-NGEN': 0.15498641, 'OAG-GEN': 0.034373745, 'OAG-NGEN': 0.020792078}, array(['NAG-GEN'], dtype='<U8')) """ ```
socialmediaie/TRAC2020_HIN_B_bert-base-multilingual-uncased
a4d6da6d3c5f746e149d17993dcca135bdad243c
2021-05-20T07:00:11.000Z
[ "pytorch", "jax", "bert", "text-classification", "transformers" ]
text-classification
false
socialmediaie
null
socialmediaie/TRAC2020_HIN_B_bert-base-multilingual-uncased
5
null
transformers
16,811
# Multilingual Joint Fine-tuning of Transformer models for identifying Trolling, Aggression and Cyberbullying at TRAC 2020 Models and predictions for submission to TRAC - 2020 Second Workshop on Trolling, Aggression and Cyberbullying. Our trained models as well as evaluation metrics during traing are available at: https://databank.illinois.edu/datasets/IDB-8882752# We also make a few of our models available in HuggingFace's models repository at https://huggingface.co/socialmediaie/, these models can be further fine-tuned on your dataset of choice. Our approach is described in our paper titled: > Mishra, Sudhanshu, Shivangi Prasad, and Shubhanshu Mishra. 2020. "Multilingual Joint Fine-Tuning of Transformer Models for Identifying Trolling, Aggression and Cyberbullying at TRAC 2020." In Proceedings of the Second Workshop on Trolling, Aggression and Cyberbullying (TRAC-2020). The source code for training this model and more details can be found on our code repository: https://github.com/socialmediaie/TRAC2020 NOTE: These models are retrained for uploading here after our submission so the evaluation measures may be slightly different from the ones reported in the paper. If you plan to use the dataset please cite the following resources: * Mishra, Sudhanshu, Shivangi Prasad, and Shubhanshu Mishra. 2020. "Multilingual Joint Fine-Tuning of Transformer Models for Identifying Trolling, Aggression and Cyberbullying at TRAC 2020." In Proceedings of the Second Workshop on Trolling, Aggression and Cyberbullying (TRAC-2020). * Mishra, Shubhanshu, Shivangi Prasad, and Shubhanshu Mishra. 2020. “Trained Models for Multilingual Joint Fine-Tuning of Transformer Models for Identifying Trolling, Aggression and Cyberbullying at TRAC 2020.” University of Illinois at Urbana-Champaign. https://doi.org/10.13012/B2IDB-8882752_V1. ``` @inproceedings{Mishra2020TRAC, author = {Mishra, Sudhanshu and Prasad, Shivangi and Mishra, Shubhanshu}, booktitle = {Proceedings of the Second Workshop on Trolling, Aggression and Cyberbullying (TRAC-2020)}, title = {{Multilingual Joint Fine-tuning of Transformer models for identifying Trolling, Aggression and Cyberbullying at TRAC 2020}}, year = {2020} } @data{illinoisdatabankIDB-8882752, author = {Mishra, Shubhanshu and Prasad, Shivangi and Mishra, Shubhanshu}, doi = {10.13012/B2IDB-8882752_V1}, publisher = {University of Illinois at Urbana-Champaign}, title = {{Trained models for Multilingual Joint Fine-tuning of Transformer models for identifying Trolling, Aggression and Cyberbullying at TRAC 2020}}, url = {https://doi.org/10.13012/B2IDB-8882752{\_}V1}, year = {2020} } ``` ## Usage The models can be used via the following code: ```python from transformers import AutoModel, AutoTokenizer, AutoModelForSequenceClassification import torch from pathlib import Path from scipy.special import softmax import numpy as np import pandas as pd TASK_LABEL_IDS = { "Sub-task A": ["OAG", "NAG", "CAG"], "Sub-task B": ["GEN", "NGEN"], "Sub-task C": ["OAG-GEN", "OAG-NGEN", "NAG-GEN", "NAG-NGEN", "CAG-GEN", "CAG-NGEN"] } model_version="databank" # other option is hugging face library if model_version == "databank": # Make sure you have downloaded the required model file from https://databank.illinois.edu/datasets/IDB-8882752 # Unzip the file at some model_path (we are using: "databank_model") model_path = next(Path("databank_model").glob("./*/output/*/model")) # Assuming you get the following type of structure inside "databank_model" # 'databank_model/ALL/Sub-task C/output/bert-base-multilingual-uncased/model' lang, task, _, base_model, _ = model_path.parts tokenizer = AutoTokenizer.from_pretrained(base_model) model = AutoModelForSequenceClassification.from_pretrained(model_path) else: lang, task, base_model = "ALL", "Sub-task C", "bert-base-multilingual-uncased" base_model = f"socialmediaie/TRAC2020_{lang}_{lang.split()[-1]}_{base_model}" tokenizer = AutoTokenizer.from_pretrained(base_model) model = AutoModelForSequenceClassification.from_pretrained(base_model) # For doing inference set model in eval mode model.eval() # If you want to further fine-tune the model you can reset the model to model.train() task_labels = TASK_LABEL_IDS[task] sentence = "This is a good cat and this is a bad dog." processed_sentence = f"{tokenizer.cls_token} {sentence}" tokens = tokenizer.tokenize(sentence) indexed_tokens = tokenizer.convert_tokens_to_ids(tokens) tokens_tensor = torch.tensor([indexed_tokens]) with torch.no_grad(): logits, = model(tokens_tensor, labels=None) logits preds = logits.detach().cpu().numpy() preds_probs = softmax(preds, axis=1) preds = np.argmax(preds_probs, axis=1) preds_labels = np.array(task_labels)[preds] print(dict(zip(task_labels, preds_probs[0])), preds_labels) """You should get an output as follows: ({'CAG-GEN': 0.06762535, 'CAG-NGEN': 0.03244293, 'NAG-GEN': 0.6897794, 'NAG-NGEN': 0.15498641, 'OAG-GEN': 0.034373745, 'OAG-NGEN': 0.020792078}, array(['NAG-GEN'], dtype='<U8')) """ ```
socialmediaie/TRAC2020_HIN_C_bert-base-multilingual-uncased
41bc09d84769f4c0cfb97f12662e556856176aa3
2021-05-20T07:01:31.000Z
[ "pytorch", "jax", "bert", "text-classification", "transformers" ]
text-classification
false
socialmediaie
null
socialmediaie/TRAC2020_HIN_C_bert-base-multilingual-uncased
5
null
transformers
16,812
# Multilingual Joint Fine-tuning of Transformer models for identifying Trolling, Aggression and Cyberbullying at TRAC 2020 Models and predictions for submission to TRAC - 2020 Second Workshop on Trolling, Aggression and Cyberbullying. Our trained models as well as evaluation metrics during traing are available at: https://databank.illinois.edu/datasets/IDB-8882752# We also make a few of our models available in HuggingFace's models repository at https://huggingface.co/socialmediaie/, these models can be further fine-tuned on your dataset of choice. Our approach is described in our paper titled: > Mishra, Sudhanshu, Shivangi Prasad, and Shubhanshu Mishra. 2020. "Multilingual Joint Fine-Tuning of Transformer Models for Identifying Trolling, Aggression and Cyberbullying at TRAC 2020." In Proceedings of the Second Workshop on Trolling, Aggression and Cyberbullying (TRAC-2020). The source code for training this model and more details can be found on our code repository: https://github.com/socialmediaie/TRAC2020 NOTE: These models are retrained for uploading here after our submission so the evaluation measures may be slightly different from the ones reported in the paper. If you plan to use the dataset please cite the following resources: * Mishra, Sudhanshu, Shivangi Prasad, and Shubhanshu Mishra. 2020. "Multilingual Joint Fine-Tuning of Transformer Models for Identifying Trolling, Aggression and Cyberbullying at TRAC 2020." In Proceedings of the Second Workshop on Trolling, Aggression and Cyberbullying (TRAC-2020). * Mishra, Shubhanshu, Shivangi Prasad, and Shubhanshu Mishra. 2020. “Trained Models for Multilingual Joint Fine-Tuning of Transformer Models for Identifying Trolling, Aggression and Cyberbullying at TRAC 2020.” University of Illinois at Urbana-Champaign. https://doi.org/10.13012/B2IDB-8882752_V1. ``` @inproceedings{Mishra2020TRAC, author = {Mishra, Sudhanshu and Prasad, Shivangi and Mishra, Shubhanshu}, booktitle = {Proceedings of the Second Workshop on Trolling, Aggression and Cyberbullying (TRAC-2020)}, title = {{Multilingual Joint Fine-tuning of Transformer models for identifying Trolling, Aggression and Cyberbullying at TRAC 2020}}, year = {2020} } @data{illinoisdatabankIDB-8882752, author = {Mishra, Shubhanshu and Prasad, Shivangi and Mishra, Shubhanshu}, doi = {10.13012/B2IDB-8882752_V1}, publisher = {University of Illinois at Urbana-Champaign}, title = {{Trained models for Multilingual Joint Fine-tuning of Transformer models for identifying Trolling, Aggression and Cyberbullying at TRAC 2020}}, url = {https://doi.org/10.13012/B2IDB-8882752{\_}V1}, year = {2020} } ``` ## Usage The models can be used via the following code: ```python from transformers import AutoModel, AutoTokenizer, AutoModelForSequenceClassification import torch from pathlib import Path from scipy.special import softmax import numpy as np import pandas as pd TASK_LABEL_IDS = { "Sub-task A": ["OAG", "NAG", "CAG"], "Sub-task B": ["GEN", "NGEN"], "Sub-task C": ["OAG-GEN", "OAG-NGEN", "NAG-GEN", "NAG-NGEN", "CAG-GEN", "CAG-NGEN"] } model_version="databank" # other option is hugging face library if model_version == "databank": # Make sure you have downloaded the required model file from https://databank.illinois.edu/datasets/IDB-8882752 # Unzip the file at some model_path (we are using: "databank_model") model_path = next(Path("databank_model").glob("./*/output/*/model")) # Assuming you get the following type of structure inside "databank_model" # 'databank_model/ALL/Sub-task C/output/bert-base-multilingual-uncased/model' lang, task, _, base_model, _ = model_path.parts tokenizer = AutoTokenizer.from_pretrained(base_model) model = AutoModelForSequenceClassification.from_pretrained(model_path) else: lang, task, base_model = "ALL", "Sub-task C", "bert-base-multilingual-uncased" base_model = f"socialmediaie/TRAC2020_{lang}_{lang.split()[-1]}_{base_model}" tokenizer = AutoTokenizer.from_pretrained(base_model) model = AutoModelForSequenceClassification.from_pretrained(base_model) # For doing inference set model in eval mode model.eval() # If you want to further fine-tune the model you can reset the model to model.train() task_labels = TASK_LABEL_IDS[task] sentence = "This is a good cat and this is a bad dog." processed_sentence = f"{tokenizer.cls_token} {sentence}" tokens = tokenizer.tokenize(sentence) indexed_tokens = tokenizer.convert_tokens_to_ids(tokens) tokens_tensor = torch.tensor([indexed_tokens]) with torch.no_grad(): logits, = model(tokens_tensor, labels=None) logits preds = logits.detach().cpu().numpy() preds_probs = softmax(preds, axis=1) preds = np.argmax(preds_probs, axis=1) preds_labels = np.array(task_labels)[preds] print(dict(zip(task_labels, preds_probs[0])), preds_labels) """You should get an output as follows: ({'CAG-GEN': 0.06762535, 'CAG-NGEN': 0.03244293, 'NAG-GEN': 0.6897794, 'NAG-NGEN': 0.15498641, 'OAG-GEN': 0.034373745, 'OAG-NGEN': 0.020792078}, array(['NAG-GEN'], dtype='<U8')) """ ```
squish/BertHarmon
67badc6c4b4fab54ea7d5d74ba1ab5176e573130
2022-02-10T21:28:51.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
squish
null
squish/BertHarmon
5
null
transformers
16,813
--- thumbnail: "https://en.memesrandom.com/wp-content/uploads/2020/11/juega-ajedrez.jpeg" widget: - text: "rnbqkbnr/pppppppp/8/8/8/8/PPPPPPPP/RNBQKBNR w KQkq - 0 1 White <MOVE_SEP> [MASK]" - example_title: Empty Board - text: "6Q1/5k2/3P4/1R3p2/P4P2/7Q/6RK/8 b - - 2 60 Black <MOVE_SEP> [MASK]" - example_title: Late Game Board --- # BertHarmon Research done at Johns Hopkins University by Michael DeLeo Contact: [email protected] ![iu-13](logo.png) ## Introduction BertHarmon is a BERT model trained for the task of Chess. ![IMG_0145](chess-example.GIF) ## Sample Usage ```python from transformers import pipeline task = pipeline('fill-mask', model='squish/BertHarmon') task("rnbqkbnr/pppppppp/8/8/8/8/PPPPPPPP/RNBQKBNR w KQkq - 0 1 White <MOVE_SEP> [MASK]") ``` The base string consists of the FEN_position followed by the player color and a move seperator. Finally with the [MASK] token. The mask token is the algebraic notation for a chess move to be taken givent the current board state in FEN Notation ## Links [Github](https://github.com/deleomike/NLP-Chess) [HuggingFace](https://huggingface.co/squish/BertHarmon)
sshleifer/opus-mt-CELTIC-en
40961abf3fc21b3380a172052631f0ab24356f1c
2020-05-14T13:13:12.000Z
[ "pytorch", "marian", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
sshleifer
null
sshleifer/opus-mt-CELTIC-en
5
null
transformers
16,814
### opus-mt-INSULAR_CELTIC-en * source languages: ga,cy,br,gd,kw,gv * target languages: en * OPUS readme: [ga+cy+br+gd+kw+gv-en](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/ga+cy+br+gd+kw+gv-en/README.md) * dataset: opus+techiaith+bt * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus+techiaith+bt-2020-04-30.zip](https://object.pouta.csc.fi/OPUS-MT-models/ga+cy+br+gd+kw+gv-en/opus+techiaith+bt-2020-04-30.zip) * test set translations: [opus+techiaith+bt-2020-04-30.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/ga+cy+br+gd+kw+gv-en/opus+techiaith+bt-2020-04-30.test.txt) * test set scores: [opus+techiaith+bt-2020-04-30.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/ga+cy+br+gd+kw+gv-en/opus+techiaith+bt-2020-04-30.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba.ga.en | 28.4 | 0.446 |
sshleifer/student_xsum_3_12
062f0659955f3423666b2e8c6bfefd5a161b5bec
2021-06-14T10:05:28.000Z
[ "pytorch", "jax", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
sshleifer
null
sshleifer/student_xsum_3_12
5
null
transformers
16,815
Entry not found
sshleifer/student_xsum_9_9
66c7a05868dc12779b63d624c446b4ee1acb55b8
2021-06-14T10:16:45.000Z
[ "pytorch", "jax", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
sshleifer
null
sshleifer/student_xsum_9_9
5
null
transformers
16,816
Entry not found
ssun32/bert_twitter_turkle
e496dca13aefb660d13f3a7000242f3445073e73
2021-05-20T07:14:10.000Z
[ "pytorch", "jax", "bert", "feature-extraction", "transformers" ]
feature-extraction
false
ssun32
null
ssun32/bert_twitter_turkle
5
null
transformers
16,817
Entry not found
suha1234/pegasus_covid19
ebe870dbed0efcb40512b53bb24cfe5f3d92bf4a
2021-10-29T14:37:37.000Z
[ "pytorch", "pegasus", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
suha1234
null
suha1234/pegasus_covid19
5
null
transformers
16,818
__PEGASUS FOR COVID 19 LITERATURE SUMMARIZATION__ __Model Description:__ Pegasus-large fine Tuned on Covid 19 literature. __Dataset:__ The data is the CORD-19 dataset, containing over 400,000 scholarly articles, including over 150,000 with full text, about COVID-19, SARS-CoV-2, and related coronaviruses. Among these 1000 articles and their abstracts were used for fine tuning.
sultan/ArabicTransformer-intermediate
49171ae02f8ed9d04e2e5575637b9118471bef43
2021-12-05T17:06:10.000Z
[ "pytorch", "funnel", "feature-extraction", "arxiv:2006.03236", "transformers" ]
feature-extraction
false
sultan
null
sultan/ArabicTransformer-intermediate
5
null
transformers
16,819
ArabicTransformer small model (B6-6-6 with decoder) <b>Paper</b> : ArabicTransformer: Efficient Large Arabic Language Model with Funnel Transformer and ELECTRA Objective (EMNLP21) <b>Abstract</b> Pre-training Transformer-based models such as BERT and ELECTRA on a collection of Arabic corpora, demonstrated by both AraBERT and AraELECTRA, shows an impressive result on downstream tasks. However, pre-training Transformer-based language models is computationally expensive, especially for large-scale models. Recently, Funnel Transformer has addressed the sequential redundancy inside Transformer architecture by compressing the sequence of hidden states, leading to a significant reduction in the pretraining cost. This paper empirically studies the performance and efficiency of building an Arabic language model with Funnel Transformer and ELECTRA objective. We find that our model achieves state-of-the-art results on several Arabic downstream tasks despite using less computational resources compared to other BERT-based models. <b>Description</b> This model was pre-trained on 44GB of Arabic corpora using [Funnel Transformer with ELECTRA objective](https://arxiv.org/abs/2006.03236). This model has more parameters (1.39x) than ELECTRA-base architecture while having similar or slightly larger inference and fine-tuning time. The model was pre-trained with significantly less resources than state-of-the-art models. We will update you with more details about the model and our accepted paper later at EMNLP21. Check our GitHub page for the latest updates and examples: https://github.com/salrowili/ArabicTransformer ```bibtex @inproceedings{alrowili-shanker-2021-arabictransformer-efficient, title = "{A}rabic{T}ransformer: Efficient Large {A}rabic Language Model with Funnel Transformer and {ELECTRA} Objective", author = "Alrowili, Sultan and Shanker, Vijay", booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2021", month = nov, year = "2021", address = "Punta Cana, Dominican Republic", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.findings-emnlp.108", pages = "1255--1261", abstract = "Pre-training Transformer-based models such as BERT and ELECTRA on a collection of Arabic corpora, demonstrated by both AraBERT and AraELECTRA, shows an impressive result on downstream tasks. However, pre-training Transformer-based language models is computationally expensive, especially for large-scale models. Recently, Funnel Transformer has addressed the sequential redundancy inside Transformer architecture by compressing the sequence of hidden states, leading to a significant reduction in the pre-training cost. This paper empirically studies the performance and efficiency of building an Arabic language model with Funnel Transformer and ELECTRA objective. We find that our model achieves state-of-the-art results on several Arabic downstream tasks despite using less computational resources compared to other BERT-based models.", } ```
sultan/BioM-ELECTRA-Base-Discriminator
8bcc387785592aec3de94134a0c9db5ef6b633e6
2021-10-12T21:24:48.000Z
[ "pytorch", "electra", "pretraining", "transformers" ]
null
false
sultan
null
sultan/BioM-ELECTRA-Base-Discriminator
5
1
transformers
16,820
# BioM-Transformers: Building Large Biomedical Language Models with BERT, ALBERT and ELECTRA # Abstract The impact of design choices on the performance of biomedical language models recently has been a subject for investigation. In this paper, we empirically study biomedical domain adaptation with large transformer models using different design choices. We evaluate the performance of our pretrained models against other existing biomedical language models in the literature. Our results show that we achieve state-of-the-art results on several biomedical domain tasks despite using similar or less computational cost compared to other models in the literature. Our findings highlight the significant effect of design choices on improving the performance of biomedical language models. # Model Description This model was pre-trained on PubMed Abstracts only with biomedical domain vocabulary for 500K steps with a batch size of 1024 on TPUv3-32 unit. Check our GitHub repo at https://github.com/salrowili/BioM-Transformers for TensorFlow and GluonNLP checkpoints. # Colab Notebook Examples BioM-ELECTRA-LARGE on NER and ChemProt Task [![Open In Colab][COLAB]](https://colab.research.google.com/github/salrowili/BioM-Transformers/blob/main/examples/Example_of_NER_and_ChemProt_Task_on_TPU.ipynb) BioM-ELECTRA-Large on SQuAD2.0 and BioASQ7B Factoid tasks [![Open In Colab][COLAB]](https://colab.research.google.com/github/salrowili/BioM-Transformers/blob/main/examples/Example_of_SQuAD2_0_and_BioASQ7B_tasks_with_BioM_ELECTRA_Large_on_TPU.ipynb) BioM-ALBERT-xxlarge on SQuAD2.0 and BioASQ7B Factoid tasks [![Open In Colab][COLAB]](https://colab.research.google.com/github/salrowili/BioM-Transformers/blob/main/examples/Example_of_SQuAD2_0_and_BioASQ7B_tasks_with_BioM_ALBERT_xxlarge_on_TPU.ipynb) Text Classification Task With HuggingFace Transformers and PyTorchXLA on Free TPU [![Open In Colab][COLAB]](https://colab.research.google.com/github/salrowili/BioM-Transformers/blob/main/examples/Fine_Tuning_Biomedical_Models_on_Text_Classification_Task_With_HuggingFace_Transformers_and_PyTorch_XLA.ipynb) [COLAB]: https://colab.research.google.com/assets/colab-badge.svg # Acknowledgment We would like to acknowledge the support we have from Tensorflow Research Cloud (TFRC) team to grant us access to TPUv3 units. # Citation ```bibtex @inproceedings{alrowili-shanker-2021-biom, title = "{B}io{M}-Transformers: Building Large Biomedical Language Models with {BERT}, {ALBERT} and {ELECTRA}", author = "Alrowili, Sultan and Shanker, Vijay", booktitle = "Proceedings of the 20th Workshop on Biomedical Language Processing", month = jun, year = "2021", address = "Online", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/2021.bionlp-1.24", pages = "221--227", abstract = "The impact of design choices on the performance of biomedical language models recently has been a subject for investigation. In this paper, we empirically study biomedical domain adaptation with large transformer models using different design choices. We evaluate the performance of our pretrained models against other existing biomedical language models in the literature. Our results show that we achieve state-of-the-art results on several biomedical domain tasks despite using similar or less computational cost compared to other models in the literature. Our findings highlight the significant effect of design choices on improving the performance of biomedical language models.", } ```
suwani/try_connll-finetuned-ner
9e5b394a563cec844ebbc385b52e7ae177eff415
2021-09-26T02:54:59.000Z
[ "pytorch", "tensorboard", "distilbert", "token-classification", "dataset:conll2003", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
token-classification
false
suwani
null
suwani/try_connll-finetuned-ner
5
null
transformers
16,821
--- license: apache-2.0 tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: try_connll-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 args: conll2003 metrics: - name: Precision type: precision value: 0.9283102493074792 - name: Recall type: recall value: 0.9372413021590782 - name: F1 type: f1 value: 0.9327543976842575 - name: Accuracy type: accuracy value: 0.9840818466328817 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # try_connll-finetuned-ner This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0596 - Precision: 0.9283 - Recall: 0.9372 - F1: 0.9328 - Accuracy: 0.9841 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.2383 | 1.0 | 878 | 0.0691 | 0.9139 | 0.9239 | 0.9189 | 0.9810 | | 0.0497 | 2.0 | 1756 | 0.0607 | 0.9200 | 0.9343 | 0.9271 | 0.9833 | | 0.0303 | 3.0 | 2634 | 0.0596 | 0.9283 | 0.9372 | 0.9328 | 0.9841 | ### Framework versions - Transformers 4.10.3 - Pytorch 1.9.0+cu102 - Datasets 1.12.1 - Tokenizers 0.10.3
textattack/albert-base-v2-STS-B
45ccf6dc37749283ebae1369f5f7ed082b594de8
2020-07-06T16:32:24.000Z
[ "pytorch", "albert", "text-classification", "transformers" ]
text-classification
false
textattack
null
textattack/albert-base-v2-STS-B
5
null
transformers
16,822
## TextAttack Model Card This `albert-base-v2` model was fine-tuned for sequence classification using TextAttack and the glue dataset loaded using the `nlp` library. The model was fine-tuned for 5 epochs with a batch size of 32, a learning rate of 3e-05, and a maximum sequence length of 128. Since this was a regression task, the model was trained with a mean squared error loss function. The best score the model achieved on this task was 0.9064220351504577, as measured by the eval set pearson correlation, found after 3 epochs. For more information, check out [TextAttack on Github](https://github.com/QData/TextAttack).
textattack/distilbert-base-uncased-QQP
398b2e701ab5a828582439a7bf839dd0ca4ade3c
2020-06-09T16:47:45.000Z
[ "pytorch", "distilbert", "text-classification", "transformers" ]
text-classification
false
textattack
null
textattack/distilbert-base-uncased-QQP
5
null
transformers
16,823
Entry not found
thatdramebaazguy/roberta-base-wikimovies
b32788c7f69a52488fa55de115d092befde2c840
2021-05-20T22:29:54.000Z
[ "pytorch", "tf", "jax", "roberta", "fill-mask", "English", "dataset:wikimovies", "transformers", "roberta-base", "masked-language-modeling", "license:cc-by-4.0", "autotrain_compatible" ]
fill-mask
false
thatdramebaazguy
null
thatdramebaazguy/roberta-base-wikimovies
5
1
transformers
16,824
--- datasets: - wikimovies language: - English thumbnail: tags: - roberta - roberta-base - masked-language-modeling license: cc-by-4.0 --- # roberta-base for MLM ``` model_name = "thatdramebaazguy/roberta-base-wikimovies" pipeline(model=model_name, tokenizer=model_name, revision="v1.0", task="Fill-Mask") ``` ## Overview **Language model:** roberta-base **Language:** English **Downstream-task:** Fill-Mask **Training data:** wikimovies **Eval data:** wikimovies **Infrastructure**: 2x Tesla v100 **Code:** See [example](https://github.com/adityaarunsinghal/Domain-Adaptation/blob/master/shell_scripts/train_movie_roberta.sh) ## Hyperparameters ``` num_examples = 4346 batch_size = 16 n_epochs = 3 base_LM_model = "roberta-base" learning_rate = 5e-05 max_query_length=64 Gradient Accumulation steps = 1 Total optimization steps = 816 evaluation_strategy=IntervalStrategy.NO prediction_loss_only=False per_device_train_batch_size=8 per_device_eval_batch_size=8 adam_beta1=0.9 adam_beta2=0.999 adam_epsilon=1e-08, max_grad_norm=1.0 lr_scheduler_type=SchedulerType.LINEAR warmup_ratio=0.0 seed=42 eval_steps=500 metric_for_best_model=None greater_is_better=None label_smoothing_factor=0.0 ``` ## Performance perplexity = 4.3808 Some of my work: - [Domain-Adaptation Project](https://github.com/adityaarunsinghal/Domain-Adaptation/) ---
theainerd/wav2vec2-large-xlsr-53-odia
b6ef12feab5fa2aef2a3da0b7b84a64e980b5cfb
2021-03-24T08:43:37.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "or", "dataset:OpenSLR", "transformers", "audio", "speech", "xlsr-fine-tuning-week", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
theainerd
null
theainerd/wav2vec2-large-xlsr-53-odia
5
null
transformers
16,825
--- language: or datasets: - OpenSLR metrics: - wer tags: - audio - automatic-speech-recognition - speech - xlsr-fine-tuning-week license: apache-2.0 model-index: - name: XLSR Wav2Vec2 Odia by Shyam Sunder Kumar results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: OpenSLR type: OpenSLR args: or metrics: - name: Test WER type: wer value: 68.75 --- # Wav2Vec2-Large-XLSR-53-Odia Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) odia using the [Multilingual and code-switching ASR challenges for low resource Indian languages](https://navana-tech.github.io/IS21SS-indicASRchallenge/data.html). When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "or", split="test[:2%]") processor = Wav2Vec2Processor.from_pretrained("theainerd/wav2vec2-large-xlsr-53-odia") model = Wav2Vec2ForCTC.from_pretrained("theainerd/wav2vec2-large-xlsr-53-odia") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` ## Evaluation The model can be evaluated as follows on the Odia test data of Common Voice. ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re test_dataset = load_dataset("common_voice", "or", split="test") wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("theainerd/wav2vec2-large-xlsr-53-odia") model = Wav2Vec2ForCTC.from_pretrained("theainerd/wav2vec2-large-xlsr-53-odia") model.to("cuda") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the aduio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ``` **Test Result**: 68.75 % ## Training The script used for training can be found [Odia ASR Fine Tuning Wav2Vec2](https://colab.research.google.com/drive/1aHpFRTxaBeNblRHAtYOy0hBeXbbMWtot?usp=sharing)
thingsu/koDPR_context
3f404add1c11ae38ad90f8e96bef5cc99ecd4331
2021-05-24T02:46:37.000Z
[ "pytorch", "bert", "transformers" ]
null
false
thingsu
null
thingsu/koDPR_context
5
2
transformers
16,826
fintuned the kykim/bert-kor-base model as a dense passage retrieval context encoder by KLUE dataset this link is experiment result. https://wandb.ai/thingsu/DenseRetrieval Corpus : Korean Wikipedia Corpus Trained Strategy : - Pretrained Model : kykim/bert-kor-base - Inverse Cloze Task : 16 Epoch, by korquad v 1.0, KLUE MRC dataset - In-batch Negatives : 12 Epoch, by KLUE MRC dataset, random sampling between Sparse Retrieval(TF-IDF) top 100 passage per each query You must need to use Korean wikipedia corpus <pre> <code> from Transformers import AutoTokenizer, BertPreTrainedModel, BertModel class BertEncoder(BertPreTrainedModel): def __init__(self, config): super(BertEncoder, self).__init__(config) self.bert = BertModel(config) self.init_weights() def forward(self, input_ids, attention_mask=None, token_type_ids=None): outputs = self.bert(input_ids, attention_mask, token_type_ids) pooled_output = outputs[1] return pooled_output model_name = 'kykim/bert-kor-base' tokenizer = AutoTokenizer.from_pretrained(model_name) q_encoder = BertEncoder.from_pretrained("thingsu/koDPR_question") p_encoder = BertEncoder.from_pretrained("thingsu/koDPR_context") </pre> </code>
tiennvcs/layoutlmv2-base-uncased-finetuned-infovqa
66ed0b5b640d22ef7c11dfcb35342e851df5fb1a
2021-11-01T16:13:10.000Z
[ "pytorch", "tensorboard", "layoutlmv2", "question-answering", "transformers", "generated_from_trainer", "license:cc-by-sa-4.0", "model-index", "autotrain_compatible" ]
question-answering
false
tiennvcs
null
tiennvcs/layoutlmv2-base-uncased-finetuned-infovqa
5
null
transformers
16,827
--- license: cc-by-sa-4.0 tags: - generated_from_trainer model-index: - name: layoutlmv2-base-uncased-finetuned-infovqa results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # layoutlmv2-base-uncased-finetuned-infovqa This model is a fine-tuned version of [microsoft/layoutlmv2-base-uncased](https://huggingface.co/microsoft/layoutlmv2-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.0870 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 250500 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 3.8677 | 0.16 | 500 | 3.2829 | | 3.0395 | 0.33 | 1000 | 2.8431 | | 2.561 | 0.49 | 1500 | 2.5633 | | 2.41 | 0.65 | 2000 | 2.3548 | | 2.247 | 0.82 | 2500 | 2.2983 | | 2.1538 | 0.98 | 3000 | 2.2059 | | 1.7 | 1.14 | 3500 | 2.2006 | | 1.5705 | 1.31 | 4000 | 2.2736 | | 1.604 | 1.47 | 4500 | 2.1415 | | 1.5509 | 1.63 | 5000 | 2.0853 | | 1.5053 | 1.79 | 5500 | 2.1389 | | 1.4787 | 1.96 | 6000 | 2.0870 | ### Framework versions - Transformers 4.12.2 - Pytorch 1.8.0+cu101 - Datasets 1.14.0 - Tokenizers 0.10.3
tiennvcs/layoutlmv2-large-uncased-finetuned-vi-infovqa
6db2513ea4cbbc1f189f09db2752ad072da26106
2021-12-27T11:54:10.000Z
[ "pytorch", "tensorboard", "layoutlmv2", "question-answering", "transformers", "generated_from_trainer", "license:cc-by-nc-sa-4.0", "model-index", "autotrain_compatible" ]
question-answering
false
tiennvcs
null
tiennvcs/layoutlmv2-large-uncased-finetuned-vi-infovqa
5
null
transformers
16,828
--- license: cc-by-nc-sa-4.0 tags: - generated_from_trainer model-index: - name: layoutlmv2-large-uncased-finetuned-vi-infovqa results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # layoutlmv2-large-uncased-finetuned-vi-infovqa This model is a fine-tuned version of [microsoft/layoutlmv2-large-uncased](https://huggingface.co/microsoft/layoutlmv2-large-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 8.5806 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 250500 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 6 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 0.17 | 100 | 4.6181 | | No log | 0.33 | 200 | 4.3357 | | No log | 0.5 | 300 | 4.3897 | | No log | 0.66 | 400 | 4.8238 | | 4.4277 | 0.83 | 500 | 3.9088 | | 4.4277 | 0.99 | 600 | 3.6063 | | 4.4277 | 1.16 | 700 | 3.4278 | | 4.4277 | 1.32 | 800 | 3.5428 | | 4.4277 | 1.49 | 900 | 3.4331 | | 3.0413 | 1.65 | 1000 | 3.3699 | | 3.0413 | 1.82 | 1100 | 3.3622 | | 3.0413 | 1.98 | 1200 | 3.5294 | | 3.0413 | 2.15 | 1300 | 3.7918 | | 3.0413 | 2.31 | 1400 | 3.4007 | | 2.0843 | 2.48 | 1500 | 4.0296 | | 2.0843 | 2.64 | 1600 | 4.1852 | | 2.0843 | 2.81 | 1700 | 3.6690 | | 2.0843 | 2.97 | 1800 | 3.6089 | | 2.0843 | 3.14 | 1900 | 5.5534 | | 1.7527 | 3.3 | 2000 | 4.7498 | | 1.7527 | 3.47 | 2100 | 5.2691 | | 1.7527 | 3.63 | 2200 | 5.1324 | | 1.7527 | 3.8 | 2300 | 4.5912 | | 1.7527 | 3.96 | 2400 | 4.1727 | | 1.2037 | 4.13 | 2500 | 6.1174 | | 1.2037 | 4.29 | 2600 | 5.7172 | | 1.2037 | 4.46 | 2700 | 5.8843 | | 1.2037 | 4.62 | 2800 | 6.4232 | | 1.2037 | 4.79 | 2900 | 7.4486 | | 0.8386 | 4.95 | 3000 | 7.1946 | | 0.8386 | 5.12 | 3100 | 7.9869 | | 0.8386 | 5.28 | 3200 | 8.0310 | | 0.8386 | 5.45 | 3300 | 8.2954 | | 0.8386 | 5.61 | 3400 | 8.5361 | | 0.4389 | 5.78 | 3500 | 8.6040 | | 0.4389 | 5.94 | 3600 | 8.5806 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.8.0+cu101 - Datasets 1.17.0 - Tokenizers 0.10.3
tkwoo/electra-small-generator
9da370f97d0dea6e1180f979182cd08b61d59740
2020-06-04T08:02:16.000Z
[ "pytorch", "electra", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
tkwoo
null
tkwoo/electra-small-generator
5
null
transformers
16,829
Entry not found
tli8hf/robertabase-structured-tuning-srl-conll2012
00456219db672e94e0a5e95a20b21f8f168edbec
2021-05-20T22:32:29.000Z
[ "pytorch", "roberta", "transformers" ]
null
false
tli8hf
null
tli8hf/robertabase-structured-tuning-srl-conll2012
5
null
transformers
16,830
Entry not found
toastynews/electra-hongkongese-base-generator
8be3ad567dbcdf3cfef68f3ccdbc8fa02fd68cb0
2020-07-07T04:20:58.000Z
[ "pytorch", "tf", "electra", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
toastynews
null
toastynews/electra-hongkongese-base-generator
5
null
transformers
16,831
Entry not found
tongshuangwu/tacred_t5
68d996fa0ee1d0c5e58fb91124d1e4c351c039ae
2021-12-10T23:42:36.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
tongshuangwu
null
tongshuangwu/tacred_t5
5
null
transformers
16,832
Entry not found
tosin/dialogpt_sv
0df776c33d0cf86d98e3e77b20a58a346706ec18
2021-12-02T10:04:54.000Z
[ "pytorch", "gpt2", "text-generation", "en", "dataset:GDC", "arxiv:2110.06273", "transformers", "conversational", "license:cc-by-4.0" ]
conversational
false
tosin
null
tosin/dialogpt_sv
5
null
transformers
16,833
--- thumbnail: https://huggingface.co/front/thumbnails/dialogpt.png language: - en tags: - conversational - transformers datasets: - GDC metrics: - perplexity license: cc-by-4.0 widget: - text: "Jag ska fika." --- ## DialoGPT_SV This is a fine-tuned model of the DialoGPT (medium) on the Swedish Gothenburg Dialogue Corpus (GDC). It is intended to be used as a Swedish conversational system. The GDC dataset it's trained on is limited in scope, as it's from the transcription of dialogues of about 25 different social activities, including debates, academic seminars and situations. The dataset has about 108K turns. The perplexity achieved on the test and validation sets (from 80:10:10 split) are 27.81 and 27.81, respectivley. More information about the original pre-trained model can be found [here](https://huggingface.co/microsoft/DialoGPT-medium) * Generation example from an interactive environment: |Role | Response | |---------|------------| |User | Jag ska fika | |Bot | ja det är ju så att jag kanske inte kan få den att göra det | |User | tack så mycket | |Bot | tack tack ses vi om sex vecko igen | Please, find the information about preprocessing, training and full details of the DialoGPT in the [original DialoGPT repository](https://github.com/microsoft/DialoGPT) The paper for this work was accepted at the Northern Lights Deep Learning (NLDL) conference 2022. Arxiv paper: [https://arxiv.org/pdf/2110.06273.pdf](https://arxiv.org/pdf/2110.06273.pdf) ### How to use Now we are ready to try out how the model works as a chatting partner! ```python from transformers import AutoModelForCausalLM, AutoTokenizer import torch tokenizer = AutoTokenizer.from_pretrained("tosin/dialogpt_sv") model = AutoModelForCausalLM.from_pretrained("tosin/dialogpt_sv") # Let's chat for 5 lines for step in range(5): # encode the new user input, add the eos_token and return a tensor in Pytorch new_user_input_ids = tokenizer.encode(input(">> User:") + tokenizer.eos_token, return_tensors='pt') # append the new user input tokens to the chat history bot_input_ids = torch.cat([chat_history_ids, new_user_input_ids], dim=-1) if step > 0 else new_user_input_ids # generated a response while limiting the total chat history to 1000 tokens, chat_history_ids = model.generate(bot_input_ids, max_length=1000, pad_token_id=tokenizer.eos_token_id) # pretty print last ouput tokens from bot print("Swedish_GDC_Bot: {}".format(tokenizer.decode(chat_history_ids[:, bot_input_ids.shape[-1]:][0], skip_special_tokens=True)))
tucan9389/distilbert-base-uncased-finetuned-cola
20ce8ecc51e497a0d205e2c99d5eabf0e9358e9d
2021-10-21T00:28:21.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:glue", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
tucan9389
null
tucan9389/distilbert-base-uncased-finetuned-cola
5
null
transformers
16,834
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - matthews_correlation model-index: - name: distilbert-base-uncased-finetuned-cola results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue args: cola metrics: - name: Matthews Correlation type: matthews_correlation value: 0.5308757570358055 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-cola This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.7501 - Matthews Correlation: 0.5309 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.5286 | 1.0 | 535 | 0.5067 | 0.4301 | | 0.3469 | 2.0 | 1070 | 0.5216 | 0.4802 | | 0.2343 | 3.0 | 1605 | 0.6431 | 0.5002 | | 0.1753 | 4.0 | 2140 | 0.7501 | 0.5309 | | 0.1251 | 5.0 | 2675 | 0.8695 | 0.5222 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.9.0+cu111 - Datasets 1.14.0 - Tokenizers 0.10.3
uclanlp/plbart-multi_task-dynamic
f0416a1d52c010942cdaadbf3518bac6a4884008
2022-03-02T07:41:15.000Z
[ "pytorch", "plbart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
uclanlp
null
uclanlp/plbart-multi_task-dynamic
5
null
transformers
16,835
Entry not found
uclanlp/plbart-multi_task-go
d1b3da4209a07b6e31798e4d188dc8e673a3f401
2022-03-02T07:33:49.000Z
[ "pytorch", "plbart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
uclanlp
null
uclanlp/plbart-multi_task-go
5
null
transformers
16,836
Entry not found
uclanlp/plbart-single_task-dynamic-summarization
a74baf5054cda2469733c7fb69a6542040b92bb5
2022-03-02T07:15:43.000Z
[ "pytorch", "plbart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
uclanlp
null
uclanlp/plbart-single_task-dynamic-summarization
5
null
transformers
16,837
Entry not found
uer/chinese_roberta_L-10_H-512
73fe51089ff8064912559ae4a998668ee446070c
2022-07-15T08:15:07.000Z
[ "pytorch", "tf", "jax", "bert", "fill-mask", "zh", "dataset:CLUECorpusSmall", "arxiv:1909.05658", "arxiv:1908.08962", "transformers", "autotrain_compatible" ]
fill-mask
false
uer
null
uer/chinese_roberta_L-10_H-512
5
null
transformers
16,838
--- language: zh datasets: CLUECorpusSmall widget: - text: "北京是[MASK]国的首都。" --- # Chinese RoBERTa Miniatures ## Model description This is the set of 24 Chinese RoBERTa models pre-trained by [UER-py](https://github.com/dbiir/UER-py/), which is introduced in [this paper](https://arxiv.org/abs/1909.05658). [Turc et al.](https://arxiv.org/abs/1908.08962) have shown that the standard BERT recipe is effective on a wide range of model sizes. Following their paper, we released the 24 Chinese RoBERTa models. In order to facilitate users to reproduce the results, we used the publicly available corpus and provided all training details. You can download the 24 Chinese RoBERTa miniatures either from the [UER-py Modelzoo page](https://github.com/dbiir/UER-py/wiki/Modelzoo), or via HuggingFace from the links below: | | H=128 | H=256 | H=512 | H=768 | | -------- | :-----------------------: | :-----------------------: | :-------------------------: | :-------------------------: | | **L=2** | [**2/128 (Tiny)**][2_128] | [2/256][2_256] | [2/512][2_512] | [2/768][2_768] | | **L=4** | [4/128][4_128] | [**4/256 (Mini)**][4_256] | [**4/512 (Small)**][4_512] | [4/768][4_768] | | **L=6** | [6/128][6_128] | [6/256][6_256] | [6/512][6_512] | [6/768][6_768] | | **L=8** | [8/128][8_128] | [8/256][8_256] | [**8/512 (Medium)**][8_512] | [8/768][8_768] | | **L=10** | [10/128][10_128] | [10/256][10_256] | [10/512][10_512] | [10/768][10_768] | | **L=12** | [12/128][12_128] | [12/256][12_256] | [12/512][12_512] | [**12/768 (Base)**][12_768] | Here are scores on the devlopment set of six Chinese tasks: | Model | Score | douban | chnsenticorp | lcqmc | tnews(CLUE) | iflytek(CLUE) | ocnli(CLUE) | | -------------- | :---: | :----: | :----------: | :---: | :---------: | :-----------: | :---------: | | RoBERTa-Tiny | 72.3 | 83.0 | 91.4 | 81.8 | 62.0 | 55.0 | 60.3 | | RoBERTa-Mini | 75.7 | 84.8 | 93.7 | 86.1 | 63.9 | 58.3 | 67.4 | | RoBERTa-Small | 76.8 | 86.5 | 93.4 | 86.5 | 65.1 | 59.4 | 69.7 | | RoBERTa-Medium | 77.8 | 87.6 | 94.8 | 88.1 | 65.6 | 59.5 | 71.2 | | RoBERTa-Base | 79.5 | 89.1 | 95.2 | 89.2 | 67.0 | 60.9 | 75.5 | For each task, we selected the best fine-tuning hyperparameters from the lists below, and trained with the sequence length of 128: - epochs: 3, 5, 8 - batch sizes: 32, 64 - learning rates: 3e-5, 1e-4, 3e-4 ## How to use You can use this model directly with a pipeline for masked language modeling (take the case of RoBERTa-Medium): ```python >>> from transformers import pipeline >>> unmasker = pipeline('fill-mask', model='uer/chinese_roberta_L-8_H-512') >>> unmasker("中国的首都是[MASK]京。") [ {'sequence': '[CLS] 中 国 的 首 都 是 北 京 。 [SEP]', 'score': 0.8701988458633423, 'token': 1266, 'token_str': '北'}, {'sequence': '[CLS] 中 国 的 首 都 是 南 京 。 [SEP]', 'score': 0.1194809079170227, 'token': 1298, 'token_str': '南'}, {'sequence': '[CLS] 中 国 的 首 都 是 东 京 。 [SEP]', 'score': 0.0037803512532263994, 'token': 691, 'token_str': '东'}, {'sequence': '[CLS] 中 国 的 首 都 是 普 京 。 [SEP]', 'score': 0.0017127094324678183, 'token': 3249, 'token_str': '普'}, {'sequence': '[CLS] 中 国 的 首 都 是 望 京 。 [SEP]', 'score': 0.001687526935711503, 'token': 3307, 'token_str': '望'} ] ``` Here is how to use this model to get the features of a given text in PyTorch: ```python from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('uer/chinese_roberta_L-8_H-512') model = BertModel.from_pretrained("uer/chinese_roberta_L-8_H-512") text = "用你喜欢的任何文本替换我。" encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` and in TensorFlow: ```python from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained('uer/chinese_roberta_L-8_H-512') model = TFBertModel.from_pretrained("uer/chinese_roberta_L-8_H-512") text = "用你喜欢的任何文本替换我。" encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` ## Training data [CLUECorpusSmall](https://github.com/CLUEbenchmark/CLUECorpus2020/) is used as training data. We found that models pre-trained on CLUECorpusSmall outperform those pre-trained on CLUECorpus2020, although CLUECorpus2020 is much larger than CLUECorpusSmall. ## Training procedure Models are pre-trained by [UER-py](https://github.com/dbiir/UER-py/) on [Tencent Cloud](https://cloud.tencent.com/). We pre-train 1,000,000 steps with a sequence length of 128 and then pre-train 250,000 additional steps with a sequence length of 512. We use the same hyper-parameters on different model sizes. Taking the case of RoBERTa-Medium Stage1: ``` python3 preprocess.py --corpus_path corpora/cluecorpussmall.txt \ --vocab_path models/google_zh_vocab.txt \ --dataset_path cluecorpussmall_seq128_dataset.pt \ --processes_num 32 --seq_length 128 \ --dynamic_masking --data_processor mlm ``` ``` python3 pretrain.py --dataset_path cluecorpussmall_seq128_dataset.pt \ --vocab_path models/google_zh_vocab.txt \ --config_path models/bert/medium_config.json \ --output_model_path models/cluecorpussmall_roberta_medium_seq128_model.bin \ --world_size 8 --gpu_ranks 0 1 2 3 4 5 6 7 \ --total_steps 1000000 --save_checkpoint_steps 100000 --report_steps 50000 \ --learning_rate 1e-4 --batch_size 64 \ --data_processor mlm --target mlm ``` Stage2: ``` python3 preprocess.py --corpus_path corpora/cluecorpussmall.txt \ --vocab_path models/google_zh_vocab.txt \ --dataset_path cluecorpussmall_seq512_dataset.pt \ --processes_num 32 --seq_length 512 \ --dynamic_masking --data_processor mlm ``` ``` python3 pretrain.py --dataset_path cluecorpussmall_seq512_dataset.pt \ --vocab_path models/google_zh_vocab.txt \ --pretrained_model_path models/cluecorpussmall_roberta_medium_seq128_model.bin-1000000 \ --config_path models/bert/medium_config.json \ --output_model_path models/cluecorpussmall_roberta_medium_seq512_model.bin \ --world_size 8 --gpu_ranks 0 1 2 3 4 5 6 7 \ --total_steps 250000 --save_checkpoint_steps 50000 --report_steps 10000 \ --learning_rate 5e-5 --batch_size 16 \ --data_processor mlm --target mlm ``` Finally, we convert the pre-trained model into Huggingface's format: ``` python3 scripts/convert_bert_from_uer_to_huggingface.py --input_model_path models/cluecorpussmall_roberta_medium_seq512_model.bin-250000 \ --output_model_path pytorch_model.bin \ --layers_num 8 --type mlm ``` ### BibTeX entry and citation info ``` @article{devlin2018bert, title={Bert: Pre-training of deep bidirectional transformers for language understanding}, author={Devlin, Jacob and Chang, Ming-Wei and Lee, Kenton and Toutanova, Kristina}, journal={arXiv preprint arXiv:1810.04805}, year={2018} } @article{liu2019roberta, title={Roberta: A robustly optimized bert pretraining approach}, author={Liu, Yinhan and Ott, Myle and Goyal, Naman and Du, Jingfei and Joshi, Mandar and Chen, Danqi and Levy, Omer and Lewis, Mike and Zettlemoyer, Luke and Stoyanov, Veselin}, journal={arXiv preprint arXiv:1907.11692}, year={2019} } @article{turc2019, title={Well-Read Students Learn Better: On the Importance of Pre-training Compact Models}, author={Turc, Iulia and Chang, Ming-Wei and Lee, Kenton and Toutanova, Kristina}, journal={arXiv preprint arXiv:1908.08962v2 }, year={2019} } @article{zhao2019uer, title={UER: An Open-Source Toolkit for Pre-training Models}, author={Zhao, Zhe and Chen, Hui and Zhang, Jinbin and Zhao, Xin and Liu, Tao and Lu, Wei and Chen, Xi and Deng, Haotang and Ju, Qi and Du, Xiaoyong}, journal={EMNLP-IJCNLP 2019}, pages={241}, year={2019} } ``` [2_128]:https://huggingface.co/uer/chinese_roberta_L-2_H-128 [2_256]:https://huggingface.co/uer/chinese_roberta_L-2_H-256 [2_512]:https://huggingface.co/uer/chinese_roberta_L-2_H-512 [2_768]:https://huggingface.co/uer/chinese_roberta_L-2_H-768 [4_128]:https://huggingface.co/uer/chinese_roberta_L-4_H-128 [4_256]:https://huggingface.co/uer/chinese_roberta_L-4_H-256 [4_512]:https://huggingface.co/uer/chinese_roberta_L-4_H-512 [4_768]:https://huggingface.co/uer/chinese_roberta_L-4_H-768 [6_128]:https://huggingface.co/uer/chinese_roberta_L-6_H-128 [6_256]:https://huggingface.co/uer/chinese_roberta_L-6_H-256 [6_512]:https://huggingface.co/uer/chinese_roberta_L-6_H-512 [6_768]:https://huggingface.co/uer/chinese_roberta_L-6_H-768 [8_128]:https://huggingface.co/uer/chinese_roberta_L-8_H-128 [8_256]:https://huggingface.co/uer/chinese_roberta_L-8_H-256 [8_512]:https://huggingface.co/uer/chinese_roberta_L-8_H-512 [8_768]:https://huggingface.co/uer/chinese_roberta_L-8_H-768 [10_128]:https://huggingface.co/uer/chinese_roberta_L-10_H-128 [10_256]:https://huggingface.co/uer/chinese_roberta_L-10_H-256 [10_512]:https://huggingface.co/uer/chinese_roberta_L-10_H-512 [10_768]:https://huggingface.co/uer/chinese_roberta_L-10_H-768 [12_128]:https://huggingface.co/uer/chinese_roberta_L-12_H-128 [12_256]:https://huggingface.co/uer/chinese_roberta_L-12_H-256 [12_512]:https://huggingface.co/uer/chinese_roberta_L-12_H-512 [12_768]:https://huggingface.co/uer/chinese_roberta_L-12_H-768
uer/chinese_roberta_L-2_H-512
9bc300a1c1896bbaee4977dbb99ebf9747bb29b0
2022-07-15T08:11:00.000Z
[ "pytorch", "tf", "jax", "bert", "fill-mask", "zh", "dataset:CLUECorpusSmall", "arxiv:1909.05658", "arxiv:1908.08962", "transformers", "autotrain_compatible" ]
fill-mask
false
uer
null
uer/chinese_roberta_L-2_H-512
5
1
transformers
16,839
--- language: zh datasets: CLUECorpusSmall widget: - text: "北京是[MASK]国的首都。" --- # Chinese RoBERTa Miniatures ## Model description This is the set of 24 Chinese RoBERTa models pre-trained by [UER-py](https://github.com/dbiir/UER-py/), which is introduced in [this paper](https://arxiv.org/abs/1909.05658). [Turc et al.](https://arxiv.org/abs/1908.08962) have shown that the standard BERT recipe is effective on a wide range of model sizes. Following their paper, we released the 24 Chinese RoBERTa models. In order to facilitate users to reproduce the results, we used the publicly available corpus and provided all training details. You can download the 24 Chinese RoBERTa miniatures either from the [UER-py Modelzoo page](https://github.com/dbiir/UER-py/wiki/Modelzoo), or via HuggingFace from the links below: | | H=128 | H=256 | H=512 | H=768 | | -------- | :-----------------------: | :-----------------------: | :-------------------------: | :-------------------------: | | **L=2** | [**2/128 (Tiny)**][2_128] | [2/256][2_256] | [2/512][2_512] | [2/768][2_768] | | **L=4** | [4/128][4_128] | [**4/256 (Mini)**][4_256] | [**4/512 (Small)**][4_512] | [4/768][4_768] | | **L=6** | [6/128][6_128] | [6/256][6_256] | [6/512][6_512] | [6/768][6_768] | | **L=8** | [8/128][8_128] | [8/256][8_256] | [**8/512 (Medium)**][8_512] | [8/768][8_768] | | **L=10** | [10/128][10_128] | [10/256][10_256] | [10/512][10_512] | [10/768][10_768] | | **L=12** | [12/128][12_128] | [12/256][12_256] | [12/512][12_512] | [**12/768 (Base)**][12_768] | Here are scores on the devlopment set of six Chinese tasks: | Model | Score | douban | chnsenticorp | lcqmc | tnews(CLUE) | iflytek(CLUE) | ocnli(CLUE) | | -------------- | :---: | :----: | :----------: | :---: | :---------: | :-----------: | :---------: | | RoBERTa-Tiny | 72.3 | 83.0 | 91.4 | 81.8 | 62.0 | 55.0 | 60.3 | | RoBERTa-Mini | 75.7 | 84.8 | 93.7 | 86.1 | 63.9 | 58.3 | 67.4 | | RoBERTa-Small | 76.8 | 86.5 | 93.4 | 86.5 | 65.1 | 59.4 | 69.7 | | RoBERTa-Medium | 77.8 | 87.6 | 94.8 | 88.1 | 65.6 | 59.5 | 71.2 | | RoBERTa-Base | 79.5 | 89.1 | 95.2 | 89.2 | 67.0 | 60.9 | 75.5 | For each task, we selected the best fine-tuning hyperparameters from the lists below, and trained with the sequence length of 128: - epochs: 3, 5, 8 - batch sizes: 32, 64 - learning rates: 3e-5, 1e-4, 3e-4 ## How to use You can use this model directly with a pipeline for masked language modeling (take the case of RoBERTa-Medium): ```python >>> from transformers import pipeline >>> unmasker = pipeline('fill-mask', model='uer/chinese_roberta_L-8_H-512') >>> unmasker("中国的首都是[MASK]京。") [ {'sequence': '[CLS] 中 国 的 首 都 是 北 京 。 [SEP]', 'score': 0.8701988458633423, 'token': 1266, 'token_str': '北'}, {'sequence': '[CLS] 中 国 的 首 都 是 南 京 。 [SEP]', 'score': 0.1194809079170227, 'token': 1298, 'token_str': '南'}, {'sequence': '[CLS] 中 国 的 首 都 是 东 京 。 [SEP]', 'score': 0.0037803512532263994, 'token': 691, 'token_str': '东'}, {'sequence': '[CLS] 中 国 的 首 都 是 普 京 。 [SEP]', 'score': 0.0017127094324678183, 'token': 3249, 'token_str': '普'}, {'sequence': '[CLS] 中 国 的 首 都 是 望 京 。 [SEP]', 'score': 0.001687526935711503, 'token': 3307, 'token_str': '望'} ] ``` Here is how to use this model to get the features of a given text in PyTorch: ```python from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('uer/chinese_roberta_L-8_H-512') model = BertModel.from_pretrained("uer/chinese_roberta_L-8_H-512") text = "用你喜欢的任何文本替换我。" encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` and in TensorFlow: ```python from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained('uer/chinese_roberta_L-8_H-512') model = TFBertModel.from_pretrained("uer/chinese_roberta_L-8_H-512") text = "用你喜欢的任何文本替换我。" encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` ## Training data [CLUECorpusSmall](https://github.com/CLUEbenchmark/CLUECorpus2020/) is used as training data. We found that models pre-trained on CLUECorpusSmall outperform those pre-trained on CLUECorpus2020, although CLUECorpus2020 is much larger than CLUECorpusSmall. ## Training procedure Models are pre-trained by [UER-py](https://github.com/dbiir/UER-py/) on [Tencent Cloud](https://cloud.tencent.com/). We pre-train 1,000,000 steps with a sequence length of 128 and then pre-train 250,000 additional steps with a sequence length of 512. We use the same hyper-parameters on different model sizes. Taking the case of RoBERTa-Medium Stage1: ``` python3 preprocess.py --corpus_path corpora/cluecorpussmall.txt \ --vocab_path models/google_zh_vocab.txt \ --dataset_path cluecorpussmall_seq128_dataset.pt \ --processes_num 32 --seq_length 128 \ --dynamic_masking --data_processor mlm ``` ``` python3 pretrain.py --dataset_path cluecorpussmall_seq128_dataset.pt \ --vocab_path models/google_zh_vocab.txt \ --config_path models/bert/medium_config.json \ --output_model_path models/cluecorpussmall_roberta_medium_seq128_model.bin \ --world_size 8 --gpu_ranks 0 1 2 3 4 5 6 7 \ --total_steps 1000000 --save_checkpoint_steps 100000 --report_steps 50000 \ --learning_rate 1e-4 --batch_size 64 \ --data_processor mlm --target mlm ``` Stage2: ``` python3 preprocess.py --corpus_path corpora/cluecorpussmall.txt \ --vocab_path models/google_zh_vocab.txt \ --dataset_path cluecorpussmall_seq512_dataset.pt \ --processes_num 32 --seq_length 512 \ --dynamic_masking --data_processor mlm ``` ``` python3 pretrain.py --dataset_path cluecorpussmall_seq512_dataset.pt \ --vocab_path models/google_zh_vocab.txt \ --pretrained_model_path models/cluecorpussmall_roberta_medium_seq128_model.bin-1000000 \ --config_path models/bert/medium_config.json \ --output_model_path models/cluecorpussmall_roberta_medium_seq512_model.bin \ --world_size 8 --gpu_ranks 0 1 2 3 4 5 6 7 \ --total_steps 250000 --save_checkpoint_steps 50000 --report_steps 10000 \ --learning_rate 5e-5 --batch_size 16 \ --data_processor mlm --target mlm ``` Finally, we convert the pre-trained model into Huggingface's format: ``` python3 scripts/convert_bert_from_uer_to_huggingface.py --input_model_path models/cluecorpussmall_roberta_medium_seq512_model.bin-250000 \ --output_model_path pytorch_model.bin \ --layers_num 8 --type mlm ``` ### BibTeX entry and citation info ``` @article{devlin2018bert, title={Bert: Pre-training of deep bidirectional transformers for language understanding}, author={Devlin, Jacob and Chang, Ming-Wei and Lee, Kenton and Toutanova, Kristina}, journal={arXiv preprint arXiv:1810.04805}, year={2018} } @article{liu2019roberta, title={Roberta: A robustly optimized bert pretraining approach}, author={Liu, Yinhan and Ott, Myle and Goyal, Naman and Du, Jingfei and Joshi, Mandar and Chen, Danqi and Levy, Omer and Lewis, Mike and Zettlemoyer, Luke and Stoyanov, Veselin}, journal={arXiv preprint arXiv:1907.11692}, year={2019} } @article{turc2019, title={Well-Read Students Learn Better: On the Importance of Pre-training Compact Models}, author={Turc, Iulia and Chang, Ming-Wei and Lee, Kenton and Toutanova, Kristina}, journal={arXiv preprint arXiv:1908.08962v2 }, year={2019} } @article{zhao2019uer, title={UER: An Open-Source Toolkit for Pre-training Models}, author={Zhao, Zhe and Chen, Hui and Zhang, Jinbin and Zhao, Xin and Liu, Tao and Lu, Wei and Chen, Xi and Deng, Haotang and Ju, Qi and Du, Xiaoyong}, journal={EMNLP-IJCNLP 2019}, pages={241}, year={2019} } ``` [2_128]:https://huggingface.co/uer/chinese_roberta_L-2_H-128 [2_256]:https://huggingface.co/uer/chinese_roberta_L-2_H-256 [2_512]:https://huggingface.co/uer/chinese_roberta_L-2_H-512 [2_768]:https://huggingface.co/uer/chinese_roberta_L-2_H-768 [4_128]:https://huggingface.co/uer/chinese_roberta_L-4_H-128 [4_256]:https://huggingface.co/uer/chinese_roberta_L-4_H-256 [4_512]:https://huggingface.co/uer/chinese_roberta_L-4_H-512 [4_768]:https://huggingface.co/uer/chinese_roberta_L-4_H-768 [6_128]:https://huggingface.co/uer/chinese_roberta_L-6_H-128 [6_256]:https://huggingface.co/uer/chinese_roberta_L-6_H-256 [6_512]:https://huggingface.co/uer/chinese_roberta_L-6_H-512 [6_768]:https://huggingface.co/uer/chinese_roberta_L-6_H-768 [8_128]:https://huggingface.co/uer/chinese_roberta_L-8_H-128 [8_256]:https://huggingface.co/uer/chinese_roberta_L-8_H-256 [8_512]:https://huggingface.co/uer/chinese_roberta_L-8_H-512 [8_768]:https://huggingface.co/uer/chinese_roberta_L-8_H-768 [10_128]:https://huggingface.co/uer/chinese_roberta_L-10_H-128 [10_256]:https://huggingface.co/uer/chinese_roberta_L-10_H-256 [10_512]:https://huggingface.co/uer/chinese_roberta_L-10_H-512 [10_768]:https://huggingface.co/uer/chinese_roberta_L-10_H-768 [12_128]:https://huggingface.co/uer/chinese_roberta_L-12_H-128 [12_256]:https://huggingface.co/uer/chinese_roberta_L-12_H-256 [12_512]:https://huggingface.co/uer/chinese_roberta_L-12_H-512 [12_768]:https://huggingface.co/uer/chinese_roberta_L-12_H-768
unicamp-dl/ptt5-base-en-pt-msmarco-100k-v2
8e964d26326f1f402cfcbd55967d6039b54433a6
2022-01-06T21:32:20.000Z
[ "pytorch", "t5", "text2text-generation", "pt", "dataset:msmarco", "arxiv:2108.13897", "transformers", "msmarco", "tensorflow", "pt-br", "license:mit", "autotrain_compatible" ]
text2text-generation
false
unicamp-dl
null
unicamp-dl/ptt5-base-en-pt-msmarco-100k-v2
5
null
transformers
16,840
--- language: pt license: mit tags: - msmarco - t5 - pytorch - tensorflow - pt - pt-br datasets: - msmarco widget: - text: "Texto de exemplo em português" inference: false --- # PTT5-base Reranker finetuned on both English and Portuguese MS MARCO ## Introduction ptt5-base-msmarco-en-pt-100k-v2 is a T5-based model pretrained in the BrWac corpus, fine-tuned on both English and Portuguese translated version of MS MARCO passage dataset. In the v2 version, the Portuguese dataset was translated using Google Translate. This model was finetuned for 100k steps. Further information about the dataset or the translation method can be found on our [**mMARCO: A Multilingual Version of MS MARCO Passage Ranking Dataset**](https://arxiv.org/abs/2108.13897) and [mMARCO](https://github.com/unicamp-dl/mMARCO) repository. ## Usage ```python from transformers import T5Tokenizer, T5ForConditionalGeneration model_name = 'unicamp-dl/ptt5-base-msmarco-en-pt-100k-v2' tokenizer = T5Tokenizer.from_pretrained(model_name) model = T5ForConditionalGeneration.from_pretrained(model_name) ``` # Citation If you use ptt5-base-msmarco-en-pt-100k-v2, please cite: @misc{bonifacio2021mmarco, title={mMARCO: A Multilingual Version of MS MARCO Passage Ranking Dataset}, author={Luiz Henrique Bonifacio and Vitor Jeronymo and Hugo Queiroz Abonizio and Israel Campiotti and Marzieh Fadaee and and Roberto Lotufo and Rodrigo Nogueira}, year={2021}, eprint={2108.13897}, archivePrefix={arXiv}, primaryClass={cs.CL} }
usami/distilbert-base-uncased-finetuned-cola
96b363b112827d7db4f1dac1c9d6505fdd7f8d43
2021-11-17T06:31:12.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:glue", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
usami
null
usami/distilbert-base-uncased-finetuned-cola
5
null
transformers
16,841
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - matthews_correlation model-index: - name: distilbert-base-uncased-finetuned-cola results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue args: cola metrics: - name: Matthews Correlation type: matthews_correlation value: 0.5491920151313351 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-cola This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.7767 - Matthews Correlation: 0.5492 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.5244 | 1.0 | 535 | 0.5349 | 0.4240 | | 0.3471 | 2.0 | 1070 | 0.5087 | 0.5079 | | 0.235 | 3.0 | 1605 | 0.6847 | 0.5106 | | 0.1718 | 4.0 | 2140 | 0.7767 | 0.5492 | | 0.1271 | 5.0 | 2675 | 0.8580 | 0.5469 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.9.0+cu111 - Datasets 1.12.1 - Tokenizers 0.10.3
valhalla/s2t_librispeech_small
16a3ff225b5484c6ed21aec983ccecfff8e55e71
2021-02-26T14:24:09.000Z
[ "pytorch", "speech_to_text_transformer", "text2text-generation", "en", "dataset:librispeech_asr", "transformers", "audio", "automatic-speech-recognition", "license:apache-2.0", "autotrain_compatible" ]
text2text-generation
false
valhalla
null
valhalla/s2t_librispeech_small
5
null
transformers
16,842
--- language: en datasets: - librispeech_asr tags: - audio - automatic-speech-recognition license: apache-2.0 --- TODO: [To be filled] ## Evaluation on LibriSpeech Test The following script shows how to evaluate this model on the [LibriSpeech](https://huggingface.co/datasets/librispeech_asr) *"clean"* and *"other"* test dataset. ```python from datasets import load_dataset from transformers import Speech2TextTransformerForConditionalGeneration, Speech2TextTransformerTokenizer import soundfile as sf from jiwer import wer librispeech_eval = load_dataset("librispeech_asr", "clean", split="test") # change to "other" for other test dataset model = Speech2TextTransformerForConditionalGeneration.from_pretrained("valhalla/s2t_librispeech_small").to("cuda") tokenizer = Speech2TextTransformerTokenizer.from_pretrained("valhalla/s2t_librispeech_small", do_upper_case=True) def map_to_array(batch): speech, _ = sf.read(batch["file"]) batch["speech"] = speech return batch librispeech_eval = librispeech_eval.map(map_to_array) def map_to_pred(batch): features = tokenizer(batch["speech"], sample_rate=16000, padding=True, return_tensors="pt") input_features = features.input_features.to("cuda") attention_mask = features.attention_mask.to("cuda") gen_tokens = model.generate(input_ids=input_features, attention_mask=attention_mask) batch["transcription"] = tokenizer.batch_decode(gen_tokens, skip_special_tokens=True) return batch result = librispeech_eval.map(map_to_pred, batched=True, batch_size=8, remove_columns=["speech"]) print("WER:", wer(result["text"], result["transcription"])) ``` *Result (WER)*: | "clean" | "other" | |---|---| | 4.3 | 9.0 |
vasudevgupta/bigbird-roberta-base
ea4fe59828a801165edbfaf02baf2be7c8c72156
2021-07-26T17:30:39.000Z
[ "pytorch", "big_bird", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
vasudevgupta
null
vasudevgupta/bigbird-roberta-base
5
null
transformers
16,843
Moved here: https://huggingface.co/google/bigbird-roberta-base
vishnun/distilgpt2-finetuned-tamilmixsentiment
a1f580c9f8146596fc709f3b34caaf876f1dee3e
2021-08-14T05:09:58.000Z
[ "pytorch", "tensorboard", "gpt2", "text-generation", "transformers", "generated_from_trainer", "license:apache-2.0" ]
text-generation
false
vishnun
null
vishnun/distilgpt2-finetuned-tamilmixsentiment
5
null
transformers
16,844
--- license: apache-2.0 tags: - generated_from_trainer datasets: - null model_index: - name: distilgpt2-finetuned-tamilmixsentiment results: - task: name: Causal Language Modeling type: text-generation --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilgpt2-finetuned-tamilmixsentiment This model is a fine-tuned version of [distilgpt2](https://huggingface.co/distilgpt2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 4.4572 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 5.6438 | 1.0 | 907 | 4.8026 | | 4.774 | 2.0 | 1814 | 4.5953 | | 4.5745 | 3.0 | 2721 | 4.5070 | | 4.4677 | 4.0 | 3628 | 4.4688 | | 4.4294 | 5.0 | 4535 | 4.4572 | ### Framework versions - Transformers 4.9.2 - Pytorch 1.9.0+cu102 - Datasets 1.11.0 - Tokenizers 0.10.3
vittoriomaggio/bert-base-msmarco-fiqa-transfer
1a916d230c67f5745cfd3bbb5f49d47932d2ba34
2022-01-23T18:13:39.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
vittoriomaggio
null
vittoriomaggio/bert-base-msmarco-fiqa-transfer
5
null
transformers
16,845
Entry not found
vocab-transformers/dense_encoder-msmarco-distilbert-word2vec256k-MLM_445k_emb_updated
af36be07fe7d08c9efb4ad526e7817f20b32a7c9
2022-02-21T20:09:42.000Z
[ "pytorch", "distilbert", "feature-extraction", "sentence-transformers", "sentence-similarity", "transformers" ]
sentence-similarity
false
vocab-transformers
null
vocab-transformers/dense_encoder-msmarco-distilbert-word2vec256k-MLM_445k_emb_updated
5
null
sentence-transformers
16,846
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # dense_encoder-msmarco-distilbert-word2vec256k-MLM_445k This model is based on [vocab-transformers/msmarco-distilbert-word2vec256k-MLM_445k](https://huggingface.co/vocab-transformers/msmarco-distilbert-word2vec256k-MLM_445k) with a 256k sized vocabulary initialized with word2vec that has been trained with MLM for 445k steps. **Note: Token embeddings where updated!** It has been trained on MS MARCO using [MarginMSELoss](https://github.com/UKPLab/sentence-transformers/blob/master/examples/training/ms_marco/train_bi-encoder_margin-mse.py). See the train_script.py in this repository. **Note: Token embeddings where updated!** Performance: - MS MARCO dev: 34.94 (MRR@10) - TREC-DL 2019: 66.72 (nDCG@10) - TREC-DL 2020: 69.14 (nDCG@10) ## Usage (Sentence-Transformers) This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 7858 with parameters: ``` {'batch_size': 64, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.MarginMSELoss.MarginMSELoss` Parameters of the fit()-Method: ``` { "epochs": 30, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 1000, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 250, 'do_lower_case': False}) with Transformer model: DistilBertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
vocab-transformers/dense_encoder-msmarco-distilbert-word2vec256k-MLM_785k_emb_updated
26dfc4dd089cc8d683ee0483d1c129d523394863
2022-02-22T12:09:18.000Z
[ "pytorch", "distilbert", "feature-extraction", "sentence-transformers", "sentence-similarity", "transformers" ]
sentence-similarity
false
vocab-transformers
null
vocab-transformers/dense_encoder-msmarco-distilbert-word2vec256k-MLM_785k_emb_updated
5
null
sentence-transformers
16,847
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # dense_encoder-msmarco-distilbert-word2vec256k-MLM_785k_emb_updated **Note: Token embeddings where updated!** This model is based on [vocab-transformers/msmarco-distilbert-word2vec256k-MLM_785k_emb_updated](https://huggingface.co/vocab-transformers/msmarco-distilbert-word2vec256k-MLM_785k_emb_updated) with a 256k sized vocabulary initialized with word2vec that has been trained with MLM for 785k. It has been trained on MS MARCO using [MarginMSELoss](https://github.com/UKPLab/sentence-transformers/blob/master/examples/training/ms_marco/train_bi-encoder_margin-mse.py). See the train_script.py in this repository. Performance: - MS MARCO dev: 35.20 (MRR@10) - TREC-DL 2019: 67.61 (nDCG@10) - TREC-DL 2020: 69.62 (nDCG@10) # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 7858 with parameters: ``` {'batch_size': 64, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.MarginMSELoss.MarginMSELoss` Parameters of the fit()-Method: ``` { "epochs": 30, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 1000, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 250, 'do_lower_case': False}) with Transformer model: DistilBertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
vuiseng9/bert-base-uncased-mnli
8e0524ef179e15e7e6e0aa57c3646ab5d7ca2897
2021-10-06T02:40:23.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
vuiseng9
null
vuiseng9/bert-base-uncased-mnli
5
null
transformers
16,848
This model is developed with transformers v4.10.3. # Train ```bash #!/usr/bin/env bash export CUDA_VISIBLE_DEVICES=0 OUTDIR=bert-based-uncased-mnli WORKDIR=transformers/examples/pytorch/text-classification cd $WORKDIR nohup python run_glue.py \ --model_name_or_path bert-base-uncased \ --task_name mnli \ --do_eval \ --do_train \ --per_device_train_batch_size 16 \ --per_device_eval_batch_size 16 \ --max_seq_length 128 \ --num_train_epochs 3 \ --overwrite_output_dir \ --output_dir $OUTDIR 2>&1 | tee $OUTDIR/run.log & ``` # Eval ```bash export CUDA_VISIBLE_DEVICES=0 OUTDIR=eval-bert-based-uncased-mnli WORKDIR=transformers/examples/pytorch/text-classification cd $WORKDIR nohup python run_glue.py \ --model_name_or_path vuiseng9/bert-base-uncased-mnli \ --task_name mnli \ --do_eval \ --per_device_eval_batch_size 16 \ --max_seq_length 128 \ --overwrite_output_dir \ --output_dir $OUTDIR 2>&1 | tee $OUTDIR/run.log & ```
vuiseng9/bert-mnli
de654c98884cb44b3c941313f8b997ead820e638
2022-01-26T06:48:02.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
vuiseng9
null
vuiseng9/bert-mnli
5
null
transformers
16,849
This model is developed with transformers v4.9.1. ``` m = 0.8444 eval_samples = 9815 mm = 0.8495 eval_samples = 9832 ``` # Train ```bash #!/usr/bin/env bash export CUDA_VISIBLE_DEVICES=0 OUTDIR=bert-mnli NEPOCH=3 WORKDIR=transformers/examples/pytorch/text-classification cd $WORKDIR python run_glue.py \ --model_name_or_path bert-base-uncased \ --task_name mnli \ --max_seq_length 128 \ --do_train \ --per_device_train_batch_size 32 \ --learning_rate 2e-5 \ --num_train_epochs $NEPOCH \ --logging_steps 1 \ --evaluation_strategy steps \ --save_steps 3000 \ --do_eval \ --per_device_eval_batch_size 128 \ --eval_steps 250 \ --output_dir $OUTDIR --overwrite_output_dir ``` # Eval ```bash export CUDA_VISIBLE_DEVICES=0 OUTDIR=eval-bert-mnli WORKDIR=transformers/examples/pytorch/text-classification cd $WORKDIR nohup python run_glue.py \ --model_name_or_path vuiseng9/bert-mnli \ --task_name mnli \ --do_eval \ --per_device_eval_batch_size 128 \ --max_seq_length 128 \ --overwrite_output_dir \ --output_dir $OUTDIR 2>&1 | tee $OUTDIR/run.log & ```
w11wo/javanese-distilbert-small-imdb-classifier
7b2437c375c338ec4b063344f9e0d68173314694
2022-02-14T16:18:57.000Z
[ "pytorch", "tf", "distilbert", "text-classification", "jv", "dataset:w11wo/imdb-javanese", "arxiv:1910.01108", "transformers", "javanese-distilbert-small-imdb-classifier", "license:mit" ]
text-classification
false
w11wo
null
w11wo/javanese-distilbert-small-imdb-classifier
5
null
transformers
16,850
--- language: jv tags: - javanese-distilbert-small-imdb-classifier license: mit datasets: - w11wo/imdb-javanese widget: - text: "Aku babar pisan ora nikmati film iki." --- ## Javanese DistilBERT Small IMDB Classifier Javanese DistilBERT Small IMDB Classifier is a movie-classification model based on the [DistilBERT model](https://arxiv.org/abs/1910.01108). It was trained on Javanese IMDB movie reviews. The model was originally [`w11wo/javanese-distilbert-small-imdb`](https://huggingface.co/w11wo/javanese-distilbert-small-imdb) which is then fine-tuned on the [`w11wo/imdb-javanese`](https://huggingface.co/datasets/w11wo/imdb-javanese) dataset consisting of Javanese IMDB movie reviews. It achieved an accuracy of 76.04% on the validation dataset. Many of the techniques used are based on a Hugging Face tutorial [notebook](https://github.com/huggingface/notebooks/blob/master/examples/text_classification.ipynb) written by [Sylvain Gugger](https://github.com/sgugger). Hugging Face's `Trainer` class from the [Transformers](https://huggingface.co/transformers) library was used to train the model. PyTorch was used as the backend framework during training, but the model remains compatible with TensorFlow nonetheless. ## Model | Model | #params | Arch. | Training/Validation data (text) | |---------------------------------------------|---------|------------------|---------------------------------| | `javanese-distilbert-small-imdb-classifier` | 66M | DistilBERT Small | Javanese IMDB (47.5 MB of text) | ## Evaluation Results The model was trained for 5 epochs and the following is the final result once the training ended. | train loss | valid loss | accuracy | total time | |------------|------------|------------|------------| | 0.131 | 1.113 | 0.760 | 1:26:4 | ## How to Use ### As Text Classifier ```python from transformers import pipeline pretrained_name = "w11wo/javanese-distilbert-small-imdb-classifier" nlp = pipeline( "sentiment-analysis", model=pretrained_name, tokenizer=pretrained_name ) nlp("Film sing apik banget!") ``` ## Disclaimer Do consider the biases which came from the IMDB review that may be carried over into the results of this model. ## Author Javanese DistilBERT Small IMDB Classifier was trained and evaluated by [Wilson Wongso](https://w11wo.github.io/). All computation and development are done on Google Colaboratory using their free GPU access. ## Citation If you use any of our models in your research, please cite: ```bib @inproceedings{wongso2021causal, title={Causal and Masked Language Modeling of Javanese Language using Transformer-based Architectures}, author={Wongso, Wilson and Setiawan, David Samuel and Suhartono, Derwin}, booktitle={2021 International Conference on Advanced Computer Science and Information Systems (ICACSIS)}, pages={1--7}, year={2021}, organization={IEEE} } ```
w11wo/wav2vec2-xls-r-300m-korean-lm
3e990d7c806bfd852a31ea9f165923a2d8207f9e
2022-03-23T18:26:45.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "ko", "dataset:kresnik/zeroth_korean", "arxiv:2111.09296", "transformers", "generated_from_trainer", "hf-asr-leaderboard", "robust-speech-event", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
w11wo
null
w11wo/wav2vec2-xls-r-300m-korean-lm
5
null
transformers
16,851
--- language: ko license: apache-2.0 tags: - automatic-speech-recognition - generated_from_trainer - hf-asr-leaderboard - robust-speech-event datasets: - kresnik/zeroth_korean model-index: - name: Wav2Vec2 XLS-R 300M Korean LM results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Zeroth Korean type: kresnik/zeroth_korean args: clean metrics: - name: Test WER type: wer value: 30.94 - name: Test CER type: cer value: 7.97 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: ko metrics: - name: Test WER type: wer value: 68.34 - name: Test CER type: cer value: 37.08 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: ko metrics: - name: Test WER type: wer value: 66.47 --- # Wav2Vec2 XLS-R 300M Korean LM Wav2Vec2 XLS-R 300M Korean LM is an automatic speech recognition model based on the [XLS-R](https://arxiv.org/abs/2111.09296) architecture. This model is a fine-tuned version of [Wav2Vec2-XLS-R-300M](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the [Zeroth Korean](https://huggingface.co/datasets/kresnik/zeroth_korean) dataset. A 5-gram Language model, trained on the Korean subset of [Open Subtitles](https://huggingface.co/datasets/open_subtitles), was then subsequently added to this model. This model was trained using HuggingFace's PyTorch framework and is part of the [Robust Speech Challenge Event](https://discuss.huggingface.co/t/open-to-the-community-robust-speech-recognition-challenge/13614) organized by HuggingFace. All training was done on a Tesla V100, sponsored by OVH. All necessary scripts used for training could be found in the [Files and versions](https://huggingface.co/w11wo/wav2vec2-xls-r-300m-korean-lm/tree/main) tab, as well as the [Training metrics](https://huggingface.co/w11wo/wav2vec2-xls-r-300m-korean-lm/tensorboard) logged via Tensorboard. As for the N-gram language model training, we followed the [blog post tutorial](https://huggingface.co/blog/wav2vec2-with-ngram) provided by HuggingFace. ## Model | Model | #params | Arch. | Training/Validation data (text) | | ------------------------------- | ------- | ----- | ------------------------------- | | `wav2vec2-xls-r-300m-korean-lm` | 300M | XLS-R | `Zeroth Korean` Dataset | ## Evaluation Results The model achieves the following results on evaluation without a language model: | Dataset | WER | CER | | -------------------------------- | ------ | ------ | | `Zeroth Korean` | 29.54% | 9.53% | | `Robust Speech Event - Dev Data` | 76.26% | 38.67% | With the addition of the language model, it achieves the following results: | Dataset | WER | CER | | -------------------------------- | ------ | ------ | | `Zeroth Korean` | 30.94% | 7.97% | | `Robust Speech Event - Dev Data` | 68.34% | 37.08% | ## Training procedure The training process did not involve the addition of a language model. The following results were simply lifted from the original automatic speech recognition [model training](https://huggingface.co/w11wo/wav2vec2-xls-r-300m-korean). ### Training hyperparameters The following hyperparameters were used during training: - `learning_rate`: 7.5e-05 - `train_batch_size`: 8 - `eval_batch_size`: 8 - `seed`: 42 - `gradient_accumulation_steps`: 4 - `total_train_batch_size`: 32 - `optimizer`: Adam with `betas=(0.9, 0.999)` and `epsilon=1e-08` - `lr_scheduler_type`: linear - `lr_scheduler_warmup_steps`: 2000 - `num_epochs`: 50.0 - `mixed_precision_training`: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | | :-----------: | :---: | :---: | :-------------: | :----: | :----: | | 19.7138 | 0.72 | 500 | 19.6427 | 1.0 | 1.0 | | 4.8039 | 1.44 | 1000 | 4.7842 | 1.0 | 1.0 | | 4.5619 | 2.16 | 1500 | 4.5608 | 0.9992 | 0.9598 | | 4.254 | 2.88 | 2000 | 4.2729 | 0.9955 | 0.9063 | | 4.1905 | 3.6 | 2500 | 4.2257 | 0.9903 | 0.8758 | | 4.0683 | 4.32 | 3000 | 3.9294 | 0.9937 | 0.7911 | | 3.486 | 5.04 | 3500 | 2.7045 | 1.0012 | 0.5934 | | 2.946 | 5.75 | 4000 | 1.9691 | 0.9425 | 0.4634 | | 2.634 | 6.47 | 4500 | 1.5212 | 0.8807 | 0.3850 | | 2.4066 | 7.19 | 5000 | 1.2551 | 0.8177 | 0.3601 | | 2.2651 | 7.91 | 5500 | 1.0423 | 0.7650 | 0.3039 | | 2.1828 | 8.63 | 6000 | 0.9599 | 0.7273 | 0.3106 | | 2.1023 | 9.35 | 6500 | 0.9482 | 0.7161 | 0.3063 | | 2.0536 | 10.07 | 7000 | 0.8242 | 0.6767 | 0.2860 | | 1.9803 | 10.79 | 7500 | 0.7643 | 0.6563 | 0.2637 | | 1.9468 | 11.51 | 8000 | 0.7319 | 0.6441 | 0.2505 | | 1.9178 | 12.23 | 8500 | 0.6937 | 0.6320 | 0.2489 | | 1.8515 | 12.95 | 9000 | 0.6443 | 0.6053 | 0.2196 | | 1.8083 | 13.67 | 9500 | 0.6286 | 0.6122 | 0.2148 | | 1.819 | 14.39 | 10000 | 0.6015 | 0.5986 | 0.2074 | | 1.7684 | 15.11 | 10500 | 0.5682 | 0.5741 | 0.1982 | | 1.7195 | 15.83 | 11000 | 0.5385 | 0.5592 | 0.2007 | | 1.7044 | 16.55 | 11500 | 0.5362 | 0.5524 | 0.2097 | | 1.6879 | 17.27 | 12000 | 0.5119 | 0.5489 | 0.2083 | | 1.656 | 17.98 | 12500 | 0.4990 | 0.5362 | 0.1968 | | 1.6122 | 18.7 | 13000 | 0.4561 | 0.5092 | 0.1900 | | 1.5919 | 19.42 | 13500 | 0.4778 | 0.5225 | 0.1975 | | 1.5896 | 20.14 | 14000 | 0.4563 | 0.5098 | 0.1859 | | 1.5589 | 20.86 | 14500 | 0.4362 | 0.4940 | 0.1725 | | 1.5353 | 21.58 | 15000 | 0.4140 | 0.4826 | 0.1580 | | 1.5441 | 22.3 | 15500 | 0.4031 | 0.4742 | 0.1550 | | 1.5116 | 23.02 | 16000 | 0.3916 | 0.4748 | 0.1545 | | 1.4731 | 23.74 | 16500 | 0.3841 | 0.4810 | 0.1542 | | 1.4647 | 24.46 | 17000 | 0.3752 | 0.4524 | 0.1475 | | 1.4328 | 25.18 | 17500 | 0.3587 | 0.4476 | 0.1461 | | 1.4129 | 25.9 | 18000 | 0.3429 | 0.4242 | 0.1366 | | 1.4062 | 26.62 | 18500 | 0.3450 | 0.4251 | 0.1355 | | 1.3928 | 27.34 | 19000 | 0.3297 | 0.4145 | 0.1322 | | 1.3906 | 28.06 | 19500 | 0.3210 | 0.4185 | 0.1336 | | 1.358 | 28.78 | 20000 | 0.3131 | 0.3970 | 0.1275 | | 1.3445 | 29.5 | 20500 | 0.3069 | 0.3920 | 0.1276 | | 1.3159 | 30.22 | 21000 | 0.3035 | 0.3961 | 0.1255 | | 1.3044 | 30.93 | 21500 | 0.2952 | 0.3854 | 0.1242 | | 1.3034 | 31.65 | 22000 | 0.2966 | 0.3772 | 0.1227 | | 1.2963 | 32.37 | 22500 | 0.2844 | 0.3706 | 0.1208 | | 1.2765 | 33.09 | 23000 | 0.2841 | 0.3567 | 0.1173 | | 1.2438 | 33.81 | 23500 | 0.2734 | 0.3552 | 0.1137 | | 1.2487 | 34.53 | 24000 | 0.2703 | 0.3502 | 0.1118 | | 1.2249 | 35.25 | 24500 | 0.2650 | 0.3484 | 0.1142 | | 1.2229 | 35.97 | 25000 | 0.2584 | 0.3374 | 0.1097 | | 1.2374 | 36.69 | 25500 | 0.2568 | 0.3337 | 0.1095 | | 1.2153 | 37.41 | 26000 | 0.2494 | 0.3327 | 0.1071 | | 1.1925 | 38.13 | 26500 | 0.2518 | 0.3366 | 0.1077 | | 1.1908 | 38.85 | 27000 | 0.2437 | 0.3272 | 0.1057 | | 1.1858 | 39.57 | 27500 | 0.2396 | 0.3265 | 0.1044 | | 1.1808 | 40.29 | 28000 | 0.2373 | 0.3156 | 0.1028 | | 1.1842 | 41.01 | 28500 | 0.2356 | 0.3152 | 0.1026 | | 1.1668 | 41.73 | 29000 | 0.2319 | 0.3188 | 0.1025 | | 1.1448 | 42.45 | 29500 | 0.2293 | 0.3099 | 0.0995 | | 1.1327 | 43.17 | 30000 | 0.2265 | 0.3047 | 0.0979 | | 1.1307 | 43.88 | 30500 | 0.2222 | 0.3078 | 0.0989 | | 1.1419 | 44.6 | 31000 | 0.2215 | 0.3038 | 0.0981 | | 1.1231 | 45.32 | 31500 | 0.2193 | 0.3013 | 0.0972 | | 1.139 | 46.04 | 32000 | 0.2162 | 0.3007 | 0.0968 | | 1.1114 | 46.76 | 32500 | 0.2122 | 0.2982 | 0.0960 | | 1.111 | 47.48 | 33000 | 0.2125 | 0.2946 | 0.0948 | | 1.0982 | 48.2 | 33500 | 0.2099 | 0.2957 | 0.0953 | | 1.109 | 48.92 | 34000 | 0.2092 | 0.2955 | 0.0955 | | 1.0905 | 49.64 | 34500 | 0.2088 | 0.2954 | 0.0953 | ## Disclaimer Do consider the biases which came from pre-training datasets that may be carried over into the results of this model. ## Authors Wav2Vec2 XLS-R 300M Korean LM was trained and evaluated by [Wilson Wongso](https://w11wo.github.io/). All computation and development are done on OVH Cloud. ## Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2.dev0 - Tokenizers 0.10.3
yacov/yacov-athena-DistilBertSC
1822930af878574fde2ced3e12009b6f69299322
2021-03-12T19:40:04.000Z
[ "pytorch", "distilbert", "text-classification", "transformers" ]
text-classification
false
yacov
null
yacov/yacov-athena-DistilBertSC
5
null
transformers
16,852
hello
yahya1994/DialoGPT-small-Gintama-Gintoki
44ee101d47848923b7fa90a23d9d76faf2f12419
2021-09-03T17:17:22.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
yahya1994
null
yahya1994/DialoGPT-small-Gintama-Gintoki
5
null
transformers
16,853
--- tags: - conversational --- # Gintoki dialog
yaoyinnan/roberta-fakeddit
0aa357d4815369221eb8d79b221c911da87c387c
2021-05-20T23:15:25.000Z
[ "pytorch", "jax", "roberta", "text-classification", "transformers" ]
text-classification
false
yaoyinnan
null
yaoyinnan/roberta-fakeddit
5
null
transformers
16,854
Entry not found
yaswanth/xls-r-300m-yaswanth-hindi2
f9cf50c312203794fd430f211b977238bb6c595e
2022-03-23T18:28:10.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "hi", "dataset:mozilla-foundation/common_voice_7_0", "transformers", "generated_from_trainer", "hf-asr-leaderboard", "mozilla-foundation/common_voice_7_0", "robust-speech-event", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
yaswanth
null
yaswanth/xls-r-300m-yaswanth-hindi2
5
null
transformers
16,855
--- language: - hi license: apache-2.0 tags: - automatic-speech-recognition - generated_from_trainer - hf-asr-leaderboard - mozilla-foundation/common_voice_7_0 - robust-speech-event datasets: - mozilla-foundation/common_voice_7_0 model-index: - name: xls-r-300m-yaswanth-hindi2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xls-r-300m-yaswanth-hindi2 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 1.7163 - Wer: 0.6951 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0007 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 100 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 4.986 | 4.46 | 500 | 2.0194 | 1.1857 | | 0.9232 | 8.93 | 1000 | 1.2665 | 0.8435 | | 0.5094 | 13.39 | 1500 | 1.2473 | 0.7893 | | 0.3618 | 17.86 | 2000 | 1.3675 | 0.7789 | | 0.2914 | 22.32 | 2500 | 1.3725 | 0.7914 | | 0.2462 | 26.79 | 3000 | 1.4567 | 0.7795 | | 0.228 | 31.25 | 3500 | 1.6179 | 0.7872 | | 0.1995 | 35.71 | 4000 | 1.4932 | 0.7555 | | 0.1878 | 40.18 | 4500 | 1.5352 | 0.7480 | | 0.165 | 44.64 | 5000 | 1.5238 | 0.7440 | | 0.1514 | 49.11 | 5500 | 1.5842 | 0.7498 | | 0.1416 | 53.57 | 6000 | 1.6662 | 0.7524 | | 0.1351 | 58.04 | 6500 | 1.6280 | 0.7356 | | 0.1196 | 62.5 | 7000 | 1.6329 | 0.7250 | | 0.1109 | 66.96 | 7500 | 1.6435 | 0.7302 | | 0.1008 | 71.43 | 8000 | 1.7058 | 0.7170 | | 0.0907 | 75.89 | 8500 | 1.6880 | 0.7387 | | 0.0816 | 80.36 | 9000 | 1.6957 | 0.7031 | | 0.0743 | 84.82 | 9500 | 1.7547 | 0.7222 | | 0.0694 | 89.29 | 10000 | 1.6974 | 0.7117 | | 0.0612 | 93.75 | 10500 | 1.7251 | 0.7020 | | 0.0577 | 98.21 | 11000 | 1.7163 | 0.6951 | ### Framework versions - Transformers 4.16.0 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
ychu4/distilbert-base-uncased-finetuned-cola
fac30f58fc0e456e32c9d03d4d9de2594e8b6dd3
2021-11-16T03:23:59.000Z
[ "pytorch", "distilbert", "text-classification", "dataset:glue", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
ychu4
null
ychu4/distilbert-base-uncased-finetuned-cola
5
null
transformers
16,856
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - matthews_correlation model-index: - name: distilbert-base-uncased-finetuned-cola results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue args: cola metrics: - name: Matthews Correlation type: matthews_correlation value: 0.509687043672971 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-cola This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.7512 - Matthews Correlation: 0.5097 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.5237 | 1.0 | 535 | 0.5117 | 0.4469 | | 0.3496 | 2.0 | 1070 | 0.5538 | 0.4965 | | 0.2377 | 3.0 | 1605 | 0.6350 | 0.4963 | | 0.1767 | 4.0 | 2140 | 0.7512 | 0.5097 | | 0.1383 | 5.0 | 2675 | 0.8647 | 0.5056 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.8.1+cu102 - Datasets 1.15.1 - Tokenizers 0.10.1
yihanlin/scibert_scivocab_uncased
d57ea87ba2184b5c1b17580ebed0e05295536b81
2021-05-20T09:30:31.000Z
[ "pytorch", "jax", "bert", "transformers" ]
null
false
yihanlin
null
yihanlin/scibert_scivocab_uncased
5
null
transformers
16,857
Entry not found
ykliu1892/translation-en-pt-t5-Duolingo-Subtitles
36ad6dd3e0b179acfb105c6d375bc24912d3de8f
2021-12-13T06:06:40.000Z
[ "pytorch", "tensorboard", "t5", "text2text-generation", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
text2text-generation
false
ykliu1892
null
ykliu1892/translation-en-pt-t5-Duolingo-Subtitles
5
null
transformers
16,858
--- tags: - generated_from_trainer model-index: - name: translation-en-pt-t5-Duolingo-Subtitles results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # translation-en-pt-t5-Duolingo-Subtitles This model is a fine-tuned version of [unicamp-dl/translation-en-pt-t5](https://huggingface.co/unicamp-dl/translation-en-pt-t5) on an unknown dataset. It achieves the following results on the evaluation set: - eval_loss: 0.7469 - eval_bleu: 39.9403 - eval_gen_len: 8.98 - eval_runtime: 997.6641 - eval_samples_per_second: 150.351 - eval_steps_per_second: 4.699 - epoch: 0.49 - step: 56000 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.13.0 - Pytorch 1.10.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3
yoshitomo-matsubara/bert-base-uncased-rte_from_bert-large-uncased-rte
fd2e5db4a9d2758ac153ebb3fa7cf20570a6b574
2021-06-03T05:08:12.000Z
[ "pytorch", "bert", "text-classification", "en", "dataset:rte", "transformers", "rte", "glue", "kd", "torchdistill", "license:apache-2.0" ]
text-classification
false
yoshitomo-matsubara
null
yoshitomo-matsubara/bert-base-uncased-rte_from_bert-large-uncased-rte
5
null
transformers
16,859
--- language: en tags: - bert - rte - glue - kd - torchdistill license: apache-2.0 datasets: - rte metrics: - accuracy --- `bert-base-uncased` fine-tuned on RTE dataset, using fine-tuned `bert-large-uncased` as a teacher model, [***torchdistill***](https://github.com/yoshitomo-matsubara/torchdistill) and [Google Colab](https://colab.research.google.com/github/yoshitomo-matsubara/torchdistill/blob/master/demo/glue_kd_and_submission.ipynb) for knowledge distillation. The training configuration (including hyperparameters) is available [here](https://github.com/yoshitomo-matsubara/torchdistill/blob/main/configs/sample/glue/rte/kd/bert_base_uncased_from_bert_large_uncased.yaml). I submitted prediction files to [the GLUE leaderboard](https://gluebenchmark.com/leaderboard), and the overall GLUE score was **78.9**.
yoshitomo-matsubara/bert-base-uncased-wnli
fed1047822a7f3d31e0d61525d557c762b017aa4
2021-05-29T22:00:50.000Z
[ "pytorch", "bert", "text-classification", "en", "dataset:wnli", "transformers", "wnli", "glue", "torchdistill", "license:apache-2.0" ]
text-classification
false
yoshitomo-matsubara
null
yoshitomo-matsubara/bert-base-uncased-wnli
5
null
transformers
16,860
--- language: en tags: - bert - wnli - glue - torchdistill license: apache-2.0 datasets: - wnli metrics: - accuracy --- `bert-base-uncased` fine-tuned on WNLI dataset, using [***torchdistill***](https://github.com/yoshitomo-matsubara/torchdistill) and [Google Colab](https://colab.research.google.com/github/yoshitomo-matsubara/torchdistill/blob/master/demo/glue_finetuning_and_submission.ipynb). The hyperparameters are the same as those in Hugging Face's example and/or the paper of BERT, and the training configuration (including hyperparameters) is available [here](https://github.com/yoshitomo-matsubara/torchdistill/blob/main/configs/sample/glue/wnli/ce/bert_base_uncased.yaml). I submitted prediction files to [the GLUE leaderboard](https://gluebenchmark.com/leaderboard), and the overall GLUE score was **77.9**.
yoshitomo-matsubara/bert-large-uncased-mrpc
29cf0ac4336930584a4329cc71bdc864c77dd9f1
2021-05-29T21:32:51.000Z
[ "pytorch", "bert", "text-classification", "en", "dataset:mrpc", "transformers", "mrpc", "glue", "torchdistill", "license:apache-2.0" ]
text-classification
false
yoshitomo-matsubara
null
yoshitomo-matsubara/bert-large-uncased-mrpc
5
null
transformers
16,861
--- language: en tags: - bert - mrpc - glue - torchdistill license: apache-2.0 datasets: - mrpc metrics: - f1 - accuracy --- `bert-large-uncased` fine-tuned on MRPC dataset, using [***torchdistill***](https://github.com/yoshitomo-matsubara/torchdistill) and [Google Colab](https://colab.research.google.com/github/yoshitomo-matsubara/torchdistill/blob/master/demo/glue_finetuning_and_submission.ipynb). The hyperparameters are the same as those in Hugging Face's example and/or the paper of BERT, and the training configuration (including hyperparameters) is available [here](https://github.com/yoshitomo-matsubara/torchdistill/blob/main/configs/sample/glue/mrpc/ce/bert_large_uncased.yaml). I submitted prediction files to [the GLUE leaderboard](https://gluebenchmark.com/leaderboard), and the overall GLUE score was **80.2**.
younes9/AI-DAY-distilbert-base-uncased-finetuned-cola
aae753109d56b4c112d11c19d4d04670b02a4bd2
2022-01-24T18:13:20.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:glue", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
younes9
null
younes9/AI-DAY-distilbert-base-uncased-finetuned-cola
5
null
transformers
16,862
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - matthews_correlation model-index: - name: AI-DAY-distilbert-base-uncased-finetuned-cola results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue args: cola metrics: - name: Matthews Correlation type: matthews_correlation value: 0.5382139717003264 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # AI-DAY-distilbert-base-uncased-finetuned-cola This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.7236 - Matthews Correlation: 0.5382 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.5308 | 1.0 | 535 | 0.5065 | 0.4296 | | 0.3565 | 2.0 | 1070 | 0.5109 | 0.4940 | | 0.2399 | 3.0 | 1605 | 0.6056 | 0.5094 | | 0.1775 | 4.0 | 2140 | 0.7236 | 0.5382 | | 0.1242 | 5.0 | 2675 | 0.8659 | 0.5347 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.18.0 - Tokenizers 0.10.3
yseop/FNP_T5_D2T_simple
b6637128d717e6862410e781bdaccfdde04e3c10
2021-09-06T20:54:48.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
yseop
null
yseop/FNP_T5_D2T_simple
5
null
transformers
16,863
# T5-base data to text model specialized for Finance NLG __simple version__ This model was trained on a limited number of indicators, values and dates ---- ## Usage (HuggingFace Transformers) #### Call the model ```python from transformers import AutoTokenizer, AutoModelForSeq2SeqLM tokenizer = AutoTokenizer.from_pretrained("yseop/FNP_T5_D2T_simple") model = AutoModelForSeq2SeqLM.from_pretrained("yseop/FNP_T5_D2T_simple") text = ["Group profit | valIs | $ 10 && € $10 | dTime | in 2019"] ``` #### Choose a generation method ```python input_ids = tokenizer.encode(": {}".format(text), return_tensors="pt") p=0.72 k=40 outputs = model.generate(input_ids, do_sample=True, top_p=p, top_k=k, early_stopping=True) print(tokenizer.decode(outputs[0])) ``` ```python input_ids = tokenizer.encode(": {}".format(text), return_tensors="pt") outputs = model.generate(input_ids, max_length=200, num_beams=2, repetition_penalty=2.5, top_k=50, top_p=0.98, length_penalty=1.0, early_stopping=True) print(tokenizer.decode(outputs[0])) ``` **Created by:** [Yseop](https://www.yseop.com/) | Pioneer in Natural Language Generation (NLG) technology. Scaling human expertise through Natural Language Generation.
yuchenlin/BART0-base
ae9af6a586f26b704e5d362c04709ef89a8946ed
2021-12-11T05:07:38.000Z
[ "pytorch", "bart", "text2text-generation", "en", "dataset:bigscience/P3", "transformers", "license:apache-2.0", "autotrain_compatible" ]
text2text-generation
false
yuchenlin
null
yuchenlin/BART0-base
5
null
transformers
16,864
--- datasets: - bigscience/P3 language: en license: apache-2.0 widget: - text: "A is the son's of B's uncle. What is the family relationship between A and B?" - text: "Reorder the words in this sentence: justin and name bieber years is my am I 27 old." - text: "Task: copy but say the opposite.\n PSG won its match against Barca." - text: "Is this review positive or negative? Review: Best cast iron skillet you will every buy." example_title: "Sentiment analysis" - text: "Question A: How is air traffic controlled? \nQuestion B: How do you become an air traffic controller?\nPick one: these questions are duplicates or not duplicates." - text: "Barack Obama nominated Hilary Clinton as his secretary of state on Monday. He chose her because she had foreign affairs experience as a former First Lady. \nIn the previous sentence, decide who 'her' is referring to." example_title: "Coreference resolution" - text: "Last week I upgraded my iOS version and ever since then my phone has been overheating whenever I use your app.\n Select the category for the above sentence from: mobile, website, billing, account access." - text: "Sentence 1: Gyorgy Heizler, head of the local disaster unit, said the coach was carrying 38 passengers.\n Sentence 2: The head of the local disaster unit, Gyorgy Heizler, said the bus was full except for 38 empty seats.\n\n Do sentences 1 and 2 have the same meaning?" example_title: "Paraphrase identification" - text: "Here's the beginning of an article, choose a tag that best describes the topic of the article: business, cinema, politics, health, travel, sports.\n\n The best and worst fo 007 as 'No time to die' marks Daniel Craig's exit.\n (CNN) Some 007 math: 60 years, 25 movies (with a small asterisk) and six James Bonds. For a Cold War creation, Ian Fleming's suave spy has certainly gotten around, but despite different guises in the tuxedo and occasional scuba gear, when it comes to Bond ratings, there really shouldn't be much argument about who wore it best." - text: "Max: Know any good websites to buy clothes from?\n Payton: Sure :) LINK 1, LINK 2, LINK 3\n Max: That's a lot of them!\n Payton: Yeah, but they have different things so I usually buy things from 2 or 3 of them.\n Max: I'll check them out. Thanks.\n\n Who or what are Payton and Max referring to when they say 'them'?" - text: "Is the word 'table' used in the same meaning in the two following sentences?\n\n Sentence A: you can leave the books on the table over there.\n Sentence B: the tables in this book are very hard to read." - text: "On a shelf, there are five books: a gray book, a red book, a purple book, a blue book, and a black book.\n The red book is to the right of the gray book. The black book is to the left of the blue book. The blue book is to the left of the gray book. The purple book is the second from the right.\n\n Which book is the leftmost book?" example_title: "Logic puzzles" - text: "The two men running to become New York City's next mayor will face off in their first debate Wednesday night.\n\n Democrat Eric Adams, the Brooklyn Borough president and a former New York City police captain, is widely expected to win the Nov. 2 election against Republican Curtis Sliwa, the founder of the 1970s-era Guardian Angels anti-crime patril.\n\n Who are the men running for mayor?" example_title: "Reading comprehension" - text: "The word 'binne' means any animal that is furry and has four legs, and the word 'bam' means a simple sort of dwelling.\n\n Which of the following best characterizes binne bams?\n - Sentence 1: Binne bams are for pets.\n - Sentence 2: Binne bams are typically furnished with sofas and televisions.\n - Sentence 3: Binne bams are luxurious apartments.\n - Sentence 4: Binne bams are places where people live." --- TBA
zer0sh0t/programmer_ai_v2
837ec1dd244029e5934db618d0910069ab2d7fb4
2021-07-10T12:30:15.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
zer0sh0t
null
zer0sh0t/programmer_ai_v2
5
null
transformers
16,865
Entry not found
zharry29/intent_snips_wh_id
4e32f5a13df6b018c0ad7cf2784adc041c0bd7b7
2021-05-20T23:49:50.000Z
[ "pytorch", "jax", "roberta", "multiple-choice", "transformers" ]
multiple-choice
false
zharry29
null
zharry29/intent_snips_wh_id
5
null
transformers
16,866
Entry not found
zharry29/order_benchmark_xlnet
f1bb99b1f647d097f4f43c66758ae8a32e2e7430
2020-09-16T20:03:11.000Z
[ "pytorch", "xlnet", "multiple-choice", "transformers" ]
multiple-choice
false
zharry29
null
zharry29/order_benchmark_xlnet
5
null
transformers
16,867
Entry not found
zharry29/step_benchmark_xlnet
9d2ea97482482fb2774aa378a3b6a053ddb5a772
2020-09-16T19:57:55.000Z
[ "pytorch", "xlnet", "multiple-choice", "transformers" ]
multiple-choice
false
zharry29
null
zharry29/step_benchmark_xlnet
5
null
transformers
16,868
Entry not found
zhihao/distilbert-base-uncased-finetuned-ner
4835c303a22739e09d83b77c61315f869cefc983
2021-08-04T07:48:13.000Z
[ "pytorch", "tensorboard", "distilbert", "token-classification", "dataset:conll2003", "transformers", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible" ]
token-classification
false
zhihao
null
zhihao/distilbert-base-uncased-finetuned-ner
5
null
transformers
16,869
--- license: apache-2.0 tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model_index: - name: distilbert-base-uncased-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 args: conll2003 metric: name: Accuracy type: accuracy value: 0.9840500738716699 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-ner This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0615 - Precision: 0.9251 - Recall: 0.9363 - F1: 0.9307 - Accuracy: 0.9841 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.2473 | 1.0 | 878 | 0.0714 | 0.9154 | 0.9178 | 0.9166 | 0.9808 | | 0.0522 | 2.0 | 1756 | 0.0620 | 0.9201 | 0.9348 | 0.9274 | 0.9832 | | 0.031 | 3.0 | 2634 | 0.0615 | 0.9251 | 0.9363 | 0.9307 | 0.9841 | ### Framework versions - Transformers 4.9.1 - Pytorch 1.9.0+cu102 - Datasets 1.11.0 - Tokenizers 0.10.3
ziqingyang/XLMRobertaBaseForPAWSX-en
4c09a68a104f5342e8f48cc57bae399d9b397eb6
2021-12-16T09:49:44.000Z
[ "pytorch", "xlm-roberta", "text-classification", "transformers" ]
text-classification
false
ziqingyang
null
ziqingyang/XLMRobertaBaseForPAWSX-en
5
null
transformers
16,870
Entry not found
wietsedv/xlm-roberta-base-ft-udpos28-cy
87d9d07034b16a0ee4c500e9ed3623b212a4528e
2022-02-25T09:58:13.000Z
[ "pytorch", "xlm-roberta", "token-classification", "cy", "dataset:universal_dependencies", "transformers", "part-of-speech", "license:apache-2.0", "model-index", "autotrain_compatible" ]
token-classification
false
wietsedv
null
wietsedv/xlm-roberta-base-ft-udpos28-cy
5
null
transformers
16,871
--- language: - cy license: apache-2.0 library_name: transformers tags: - part-of-speech - token-classification datasets: - universal_dependencies metrics: - accuracy model-index: - name: xlm-roberta-base-ft-udpos28-cy results: - task: type: token-classification name: Part-of-Speech Tagging dataset: type: universal_dependencies name: Universal Dependencies v2.8 metrics: - type: accuracy name: English Test accuracy value: 78.9 - type: accuracy name: Dutch Test accuracy value: 81.3 - type: accuracy name: German Test accuracy value: 78.3 - type: accuracy name: Italian Test accuracy value: 74.9 - type: accuracy name: French Test accuracy value: 77.1 - type: accuracy name: Spanish Test accuracy value: 81.0 - type: accuracy name: Russian Test accuracy value: 82.0 - type: accuracy name: Swedish Test accuracy value: 80.6 - type: accuracy name: Norwegian Test accuracy value: 76.4 - type: accuracy name: Danish Test accuracy value: 78.7 - type: accuracy name: Low Saxon Test accuracy value: 52.7 - type: accuracy name: Akkadian Test accuracy value: 42.4 - type: accuracy name: Armenian Test accuracy value: 73.7 - type: accuracy name: Welsh Test accuracy value: 94.9 - type: accuracy name: Old East Slavic Test accuracy value: 71.6 - type: accuracy name: Albanian Test accuracy value: 76.8 - type: accuracy name: Slovenian Test accuracy value: 67.6 - type: accuracy name: Guajajara Test accuracy value: 33.1 - type: accuracy name: Kurmanji Test accuracy value: 77.1 - type: accuracy name: Turkish Test accuracy value: 72.0 - type: accuracy name: Finnish Test accuracy value: 77.1 - type: accuracy name: Indonesian Test accuracy value: 75.0 - type: accuracy name: Ukrainian Test accuracy value: 80.9 - type: accuracy name: Polish Test accuracy value: 82.7 - type: accuracy name: Portuguese Test accuracy value: 80.1 - type: accuracy name: Kazakh Test accuracy value: 75.5 - type: accuracy name: Latin Test accuracy value: 73.7 - type: accuracy name: Old French Test accuracy value: 54.0 - type: accuracy name: Buryat Test accuracy value: 60.2 - type: accuracy name: Kaapor Test accuracy value: 21.2 - type: accuracy name: Korean Test accuracy value: 56.8 - type: accuracy name: Estonian Test accuracy value: 79.4 - type: accuracy name: Croatian Test accuracy value: 79.6 - type: accuracy name: Gothic Test accuracy value: 29.3 - type: accuracy name: Swiss German Test accuracy value: 48.3 - type: accuracy name: Assyrian Test accuracy value: 14.6 - type: accuracy name: North Sami Test accuracy value: 45.4 - type: accuracy name: Naija Test accuracy value: 35.7 - type: accuracy name: Latvian Test accuracy value: 78.4 - type: accuracy name: Chinese Test accuracy value: 39.9 - type: accuracy name: Tagalog Test accuracy value: 71.9 - type: accuracy name: Bambara Test accuracy value: 33.2 - type: accuracy name: Lithuanian Test accuracy value: 77.7 - type: accuracy name: Galician Test accuracy value: 79.0 - type: accuracy name: Vietnamese Test accuracy value: 55.2 - type: accuracy name: Greek Test accuracy value: 79.5 - type: accuracy name: Catalan Test accuracy value: 78.1 - type: accuracy name: Czech Test accuracy value: 80.7 - type: accuracy name: Erzya Test accuracy value: 48.3 - type: accuracy name: Bhojpuri Test accuracy value: 55.0 - type: accuracy name: Thai Test accuracy value: 53.2 - type: accuracy name: Marathi Test accuracy value: 78.5 - type: accuracy name: Basque Test accuracy value: 69.5 - type: accuracy name: Slovak Test accuracy value: 82.6 - type: accuracy name: Kiche Test accuracy value: 41.2 - type: accuracy name: Yoruba Test accuracy value: 33.9 - type: accuracy name: Warlpiri Test accuracy value: 36.8 - type: accuracy name: Tamil Test accuracy value: 75.5 - type: accuracy name: Maltese Test accuracy value: 36.4 - type: accuracy name: Ancient Greek Test accuracy value: 55.4 - type: accuracy name: Icelandic Test accuracy value: 73.8 - type: accuracy name: Mbya Guarani Test accuracy value: 33.4 - type: accuracy name: Urdu Test accuracy value: 64.6 - type: accuracy name: Romanian Test accuracy value: 76.5 - type: accuracy name: Persian Test accuracy value: 78.7 - type: accuracy name: Apurina Test accuracy value: 48.4 - type: accuracy name: Japanese Test accuracy value: 28.6 - type: accuracy name: Hungarian Test accuracy value: 79.9 - type: accuracy name: Hindi Test accuracy value: 70.9 - type: accuracy name: Classical Chinese Test accuracy value: 20.5 - type: accuracy name: Komi Permyak Test accuracy value: 53.0 - type: accuracy name: Faroese Test accuracy value: 73.1 - type: accuracy name: Sanskrit Test accuracy value: 38.0 - type: accuracy name: Livvi Test accuracy value: 65.3 - type: accuracy name: Arabic Test accuracy value: 85.9 - type: accuracy name: Wolof Test accuracy value: 43.4 - type: accuracy name: Bulgarian Test accuracy value: 82.8 - type: accuracy name: Akuntsu Test accuracy value: 36.0 - type: accuracy name: Makurap Test accuracy value: 24.7 - type: accuracy name: Kangri Test accuracy value: 47.2 - type: accuracy name: Breton Test accuracy value: 61.8 - type: accuracy name: Telugu Test accuracy value: 74.6 - type: accuracy name: Cantonese Test accuracy value: 40.7 - type: accuracy name: Old Church Slavonic Test accuracy value: 50.3 - type: accuracy name: Karelian Test accuracy value: 70.6 - type: accuracy name: Upper Sorbian Test accuracy value: 74.1 - type: accuracy name: South Levantine Arabic Test accuracy value: 70.1 - type: accuracy name: Komi Zyrian Test accuracy value: 44.7 - type: accuracy name: Irish Test accuracy value: 69.5 - type: accuracy name: Nayini Test accuracy value: 53.8 - type: accuracy name: Munduruku Test accuracy value: 28.1 - type: accuracy name: Manx Test accuracy value: 47.4 - type: accuracy name: Skolt Sami Test accuracy value: 42.0 - type: accuracy name: Afrikaans Test accuracy value: 74.7 - type: accuracy name: Old Turkish Test accuracy value: 38.0 - type: accuracy name: Tupinamba Test accuracy value: 37.4 - type: accuracy name: Belarusian Test accuracy value: 84.5 - type: accuracy name: Serbian Test accuracy value: 80.8 - type: accuracy name: Moksha Test accuracy value: 47.7 - type: accuracy name: Western Armenian Test accuracy value: 68.7 - type: accuracy name: Scottish Gaelic Test accuracy value: 67.4 - type: accuracy name: Khunsari Test accuracy value: 50.0 - type: accuracy name: Hebrew Test accuracy value: 86.5 - type: accuracy name: Uyghur Test accuracy value: 68.9 - type: accuracy name: Chukchi Test accuracy value: 36.8 --- # XLM-RoBERTa base Universal Dependencies v2.8 POS tagging: Welsh This model is part of our paper called: - Make the Best of Cross-lingual Transfer: Evidence from POS Tagging with over 100 Languages Check the [Space](https://huggingface.co/spaces/wietsedv/xpos) for more details. ## Usage ```python from transformers import AutoTokenizer, AutoModelForTokenClassification tokenizer = AutoTokenizer.from_pretrained("wietsedv/xlm-roberta-base-ft-udpos28-cy") model = AutoModelForTokenClassification.from_pretrained("wietsedv/xlm-roberta-base-ft-udpos28-cy") ```
wietsedv/xlm-roberta-base-ft-udpos28-ja
246e47c48341f5e3429d2eb0628785a4f32e1652
2022-02-25T09:58:54.000Z
[ "pytorch", "xlm-roberta", "token-classification", "ja", "dataset:universal_dependencies", "transformers", "part-of-speech", "license:apache-2.0", "model-index", "autotrain_compatible" ]
token-classification
false
wietsedv
null
wietsedv/xlm-roberta-base-ft-udpos28-ja
5
null
transformers
16,872
--- language: - ja license: apache-2.0 library_name: transformers tags: - part-of-speech - token-classification datasets: - universal_dependencies metrics: - accuracy model-index: - name: xlm-roberta-base-ft-udpos28-ja results: - task: type: token-classification name: Part-of-Speech Tagging dataset: type: universal_dependencies name: Universal Dependencies v2.8 metrics: - type: accuracy name: English Test accuracy value: 47.7 - type: accuracy name: Dutch Test accuracy value: 49.8 - type: accuracy name: German Test accuracy value: 55.7 - type: accuracy name: Italian Test accuracy value: 52.0 - type: accuracy name: French Test accuracy value: 47.2 - type: accuracy name: Spanish Test accuracy value: 48.2 - type: accuracy name: Russian Test accuracy value: 62.7 - type: accuracy name: Swedish Test accuracy value: 52.6 - type: accuracy name: Norwegian Test accuracy value: 48.6 - type: accuracy name: Danish Test accuracy value: 54.3 - type: accuracy name: Low Saxon Test accuracy value: 34.7 - type: accuracy name: Akkadian Test accuracy value: 38.6 - type: accuracy name: Armenian Test accuracy value: 67.0 - type: accuracy name: Welsh Test accuracy value: 48.4 - type: accuracy name: Old East Slavic Test accuracy value: 55.2 - type: accuracy name: Albanian Test accuracy value: 51.8 - type: accuracy name: Slovenian Test accuracy value: 46.6 - type: accuracy name: Guajajara Test accuracy value: 39.3 - type: accuracy name: Kurmanji Test accuracy value: 54.6 - type: accuracy name: Turkish Test accuracy value: 65.4 - type: accuracy name: Finnish Test accuracy value: 69.1 - type: accuracy name: Indonesian Test accuracy value: 59.1 - type: accuracy name: Ukrainian Test accuracy value: 63.2 - type: accuracy name: Polish Test accuracy value: 60.5 - type: accuracy name: Portuguese Test accuracy value: 53.3 - type: accuracy name: Kazakh Test accuracy value: 71.9 - type: accuracy name: Latin Test accuracy value: 53.5 - type: accuracy name: Old French Test accuracy value: 30.0 - type: accuracy name: Buryat Test accuracy value: 58.2 - type: accuracy name: Kaapor Test accuracy value: 21.7 - type: accuracy name: Korean Test accuracy value: 64.5 - type: accuracy name: Estonian Test accuracy value: 67.0 - type: accuracy name: Croatian Test accuracy value: 57.5 - type: accuracy name: Gothic Test accuracy value: 15.4 - type: accuracy name: Swiss German Test accuracy value: 34.5 - type: accuracy name: Assyrian Test accuracy value: 28.3 - type: accuracy name: North Sami Test accuracy value: 35.1 - type: accuracy name: Naija Test accuracy value: 16.8 - type: accuracy name: Latvian Test accuracy value: 69.6 - type: accuracy name: Chinese Test accuracy value: 66.2 - type: accuracy name: Tagalog Test accuracy value: 50.4 - type: accuracy name: Bambara Test accuracy value: 27.5 - type: accuracy name: Lithuanian Test accuracy value: 69.7 - type: accuracy name: Galician Test accuracy value: 51.6 - type: accuracy name: Vietnamese Test accuracy value: 50.6 - type: accuracy name: Greek Test accuracy value: 54.9 - type: accuracy name: Catalan Test accuracy value: 46.1 - type: accuracy name: Czech Test accuracy value: 61.1 - type: accuracy name: Erzya Test accuracy value: 41.3 - type: accuracy name: Bhojpuri Test accuracy value: 41.9 - type: accuracy name: Thai Test accuracy value: 52.3 - type: accuracy name: Marathi Test accuracy value: 77.3 - type: accuracy name: Basque Test accuracy value: 68.4 - type: accuracy name: Slovak Test accuracy value: 62.3 - type: accuracy name: Kiche Test accuracy value: 41.0 - type: accuracy name: Yoruba Test accuracy value: 28.8 - type: accuracy name: Warlpiri Test accuracy value: 30.4 - type: accuracy name: Tamil Test accuracy value: 75.9 - type: accuracy name: Maltese Test accuracy value: 29.8 - type: accuracy name: Ancient Greek Test accuracy value: 50.2 - type: accuracy name: Icelandic Test accuracy value: 54.4 - type: accuracy name: Mbya Guarani Test accuracy value: 28.1 - type: accuracy name: Urdu Test accuracy value: 46.4 - type: accuracy name: Romanian Test accuracy value: 55.4 - type: accuracy name: Persian Test accuracy value: 51.8 - type: accuracy name: Apurina Test accuracy value: 34.5 - type: accuracy name: Japanese Test accuracy value: 92.6 - type: accuracy name: Hungarian Test accuracy value: 61.2 - type: accuracy name: Hindi Test accuracy value: 48.2 - type: accuracy name: Classical Chinese Test accuracy value: 46.1 - type: accuracy name: Komi Permyak Test accuracy value: 42.8 - type: accuracy name: Faroese Test accuracy value: 51.1 - type: accuracy name: Sanskrit Test accuracy value: 33.0 - type: accuracy name: Livvi Test accuracy value: 57.2 - type: accuracy name: Arabic Test accuracy value: 52.7 - type: accuracy name: Wolof Test accuracy value: 32.1 - type: accuracy name: Bulgarian Test accuracy value: 55.1 - type: accuracy name: Akuntsu Test accuracy value: 41.4 - type: accuracy name: Makurap Test accuracy value: 19.9 - type: accuracy name: Kangri Test accuracy value: 41.0 - type: accuracy name: Breton Test accuracy value: 46.4 - type: accuracy name: Telugu Test accuracy value: 71.8 - type: accuracy name: Cantonese Test accuracy value: 60.4 - type: accuracy name: Old Church Slavonic Test accuracy value: 39.5 - type: accuracy name: Karelian Test accuracy value: 60.7 - type: accuracy name: Upper Sorbian Test accuracy value: 54.6 - type: accuracy name: South Levantine Arabic Test accuracy value: 49.4 - type: accuracy name: Komi Zyrian Test accuracy value: 39.8 - type: accuracy name: Irish Test accuracy value: 46.8 - type: accuracy name: Nayini Test accuracy value: 37.2 - type: accuracy name: Munduruku Test accuracy value: 39.3 - type: accuracy name: Manx Test accuracy value: 33.9 - type: accuracy name: Skolt Sami Test accuracy value: 36.4 - type: accuracy name: Afrikaans Test accuracy value: 45.7 - type: accuracy name: Old Turkish Test accuracy value: 18.1 - type: accuracy name: Tupinamba Test accuracy value: 32.0 - type: accuracy name: Belarusian Test accuracy value: 62.6 - type: accuracy name: Serbian Test accuracy value: 58.0 - type: accuracy name: Moksha Test accuracy value: 42.2 - type: accuracy name: Western Armenian Test accuracy value: 62.3 - type: accuracy name: Scottish Gaelic Test accuracy value: 38.6 - type: accuracy name: Khunsari Test accuracy value: 44.6 - type: accuracy name: Hebrew Test accuracy value: 69.8 - type: accuracy name: Uyghur Test accuracy value: 65.4 - type: accuracy name: Chukchi Test accuracy value: 33.7 --- # XLM-RoBERTa base Universal Dependencies v2.8 POS tagging: Japanese This model is part of our paper called: - Make the Best of Cross-lingual Transfer: Evidence from POS Tagging with over 100 Languages Check the [Space](https://huggingface.co/spaces/wietsedv/xpos) for more details. ## Usage ```python from transformers import AutoTokenizer, AutoModelForTokenClassification tokenizer = AutoTokenizer.from_pretrained("wietsedv/xlm-roberta-base-ft-udpos28-ja") model = AutoModelForTokenClassification.from_pretrained("wietsedv/xlm-roberta-base-ft-udpos28-ja") ```
wietsedv/xlm-roberta-base-ft-udpos28-pl
db89d15eec8484b00ff8ea3ae7859315ed3175a0
2022-02-25T09:59:13.000Z
[ "pytorch", "xlm-roberta", "token-classification", "pl", "dataset:universal_dependencies", "transformers", "part-of-speech", "license:apache-2.0", "model-index", "autotrain_compatible" ]
token-classification
false
wietsedv
null
wietsedv/xlm-roberta-base-ft-udpos28-pl
5
null
transformers
16,873
--- language: - pl license: apache-2.0 library_name: transformers tags: - part-of-speech - token-classification datasets: - universal_dependencies metrics: - accuracy model-index: - name: xlm-roberta-base-ft-udpos28-pl results: - task: type: token-classification name: Part-of-Speech Tagging dataset: type: universal_dependencies name: Universal Dependencies v2.8 metrics: - type: accuracy name: English Test accuracy value: 80.5 - type: accuracy name: Dutch Test accuracy value: 78.3 - type: accuracy name: German Test accuracy value: 77.7 - type: accuracy name: Italian Test accuracy value: 77.5 - type: accuracy name: French Test accuracy value: 78.0 - type: accuracy name: Spanish Test accuracy value: 81.7 - type: accuracy name: Russian Test accuracy value: 90.6 - type: accuracy name: Swedish Test accuracy value: 86.0 - type: accuracy name: Norwegian Test accuracy value: 78.9 - type: accuracy name: Danish Test accuracy value: 83.3 - type: accuracy name: Low Saxon Test accuracy value: 53.5 - type: accuracy name: Akkadian Test accuracy value: 35.2 - type: accuracy name: Armenian Test accuracy value: 85.1 - type: accuracy name: Welsh Test accuracy value: 65.8 - type: accuracy name: Old East Slavic Test accuracy value: 76.7 - type: accuracy name: Albanian Test accuracy value: 76.9 - type: accuracy name: Slovenian Test accuracy value: 86.4 - type: accuracy name: Guajajara Test accuracy value: 41.3 - type: accuracy name: Kurmanji Test accuracy value: 77.5 - type: accuracy name: Turkish Test accuracy value: 77.3 - type: accuracy name: Finnish Test accuracy value: 81.5 - type: accuracy name: Indonesian Test accuracy value: 79.5 - type: accuracy name: Ukrainian Test accuracy value: 92.3 - type: accuracy name: Polish Test accuracy value: 98.2 - type: accuracy name: Portuguese Test accuracy value: 79.9 - type: accuracy name: Kazakh Test accuracy value: 79.5 - type: accuracy name: Latin Test accuracy value: 77.5 - type: accuracy name: Old French Test accuracy value: 55.9 - type: accuracy name: Buryat Test accuracy value: 62.8 - type: accuracy name: Kaapor Test accuracy value: 23.3 - type: accuracy name: Korean Test accuracy value: 60.7 - type: accuracy name: Estonian Test accuracy value: 83.1 - type: accuracy name: Croatian Test accuracy value: 93.7 - type: accuracy name: Gothic Test accuracy value: 26.6 - type: accuracy name: Swiss German Test accuracy value: 48.9 - type: accuracy name: Assyrian Test accuracy value: 15.7 - type: accuracy name: North Sami Test accuracy value: 45.2 - type: accuracy name: Naija Test accuracy value: 42.3 - type: accuracy name: Latvian Test accuracy value: 88.5 - type: accuracy name: Chinese Test accuracy value: 37.8 - type: accuracy name: Tagalog Test accuracy value: 80.2 - type: accuracy name: Bambara Test accuracy value: 32.3 - type: accuracy name: Lithuanian Test accuracy value: 87.3 - type: accuracy name: Galician Test accuracy value: 80.8 - type: accuracy name: Vietnamese Test accuracy value: 66.8 - type: accuracy name: Greek Test accuracy value: 74.5 - type: accuracy name: Catalan Test accuracy value: 76.3 - type: accuracy name: Czech Test accuracy value: 91.7 - type: accuracy name: Erzya Test accuracy value: 51.7 - type: accuracy name: Bhojpuri Test accuracy value: 53.3 - type: accuracy name: Thai Test accuracy value: 60.2 - type: accuracy name: Marathi Test accuracy value: 86.5 - type: accuracy name: Basque Test accuracy value: 77.5 - type: accuracy name: Slovak Test accuracy value: 91.7 - type: accuracy name: Kiche Test accuracy value: 39.4 - type: accuracy name: Yoruba Test accuracy value: 31.1 - type: accuracy name: Warlpiri Test accuracy value: 43.7 - type: accuracy name: Tamil Test accuracy value: 83.2 - type: accuracy name: Maltese Test accuracy value: 30.9 - type: accuracy name: Ancient Greek Test accuracy value: 60.6 - type: accuracy name: Icelandic Test accuracy value: 80.1 - type: accuracy name: Mbya Guarani Test accuracy value: 33.5 - type: accuracy name: Urdu Test accuracy value: 70.0 - type: accuracy name: Romanian Test accuracy value: 81.4 - type: accuracy name: Persian Test accuracy value: 78.6 - type: accuracy name: Apurina Test accuracy value: 46.6 - type: accuracy name: Japanese Test accuracy value: 28.7 - type: accuracy name: Hungarian Test accuracy value: 73.9 - type: accuracy name: Hindi Test accuracy value: 74.8 - type: accuracy name: Classical Chinese Test accuracy value: 27.9 - type: accuracy name: Komi Permyak Test accuracy value: 52.9 - type: accuracy name: Faroese Test accuracy value: 75.9 - type: accuracy name: Sanskrit Test accuracy value: 34.1 - type: accuracy name: Livvi Test accuracy value: 65.3 - type: accuracy name: Arabic Test accuracy value: 78.9 - type: accuracy name: Wolof Test accuracy value: 38.9 - type: accuracy name: Bulgarian Test accuracy value: 91.0 - type: accuracy name: Akuntsu Test accuracy value: 39.8 - type: accuracy name: Makurap Test accuracy value: 24.0 - type: accuracy name: Kangri Test accuracy value: 52.6 - type: accuracy name: Breton Test accuracy value: 61.7 - type: accuracy name: Telugu Test accuracy value: 80.2 - type: accuracy name: Cantonese Test accuracy value: 45.6 - type: accuracy name: Old Church Slavonic Test accuracy value: 50.9 - type: accuracy name: Karelian Test accuracy value: 69.1 - type: accuracy name: Upper Sorbian Test accuracy value: 77.5 - type: accuracy name: South Levantine Arabic Test accuracy value: 65.4 - type: accuracy name: Komi Zyrian Test accuracy value: 45.5 - type: accuracy name: Irish Test accuracy value: 63.7 - type: accuracy name: Nayini Test accuracy value: 42.3 - type: accuracy name: Munduruku Test accuracy value: 30.0 - type: accuracy name: Manx Test accuracy value: 39.2 - type: accuracy name: Skolt Sami Test accuracy value: 42.4 - type: accuracy name: Afrikaans Test accuracy value: 74.6 - type: accuracy name: Old Turkish Test accuracy value: 37.1 - type: accuracy name: Tupinamba Test accuracy value: 47.0 - type: accuracy name: Belarusian Test accuracy value: 90.6 - type: accuracy name: Serbian Test accuracy value: 94.0 - type: accuracy name: Moksha Test accuracy value: 48.5 - type: accuracy name: Western Armenian Test accuracy value: 80.7 - type: accuracy name: Scottish Gaelic Test accuracy value: 55.0 - type: accuracy name: Khunsari Test accuracy value: 43.2 - type: accuracy name: Hebrew Test accuracy value: 72.9 - type: accuracy name: Uyghur Test accuracy value: 74.9 - type: accuracy name: Chukchi Test accuracy value: 39.1 --- # XLM-RoBERTa base Universal Dependencies v2.8 POS tagging: Polish This model is part of our paper called: - Make the Best of Cross-lingual Transfer: Evidence from POS Tagging with over 100 Languages Check the [Space](https://huggingface.co/spaces/wietsedv/xpos) for more details. ## Usage ```python from transformers import AutoTokenizer, AutoModelForTokenClassification tokenizer = AutoTokenizer.from_pretrained("wietsedv/xlm-roberta-base-ft-udpos28-pl") model = AutoModelForTokenClassification.from_pretrained("wietsedv/xlm-roberta-base-ft-udpos28-pl") ```
wietsedv/xlm-roberta-base-ft-udpos28-uk
32633d467ae6fd694a64879b78813e49ec9ae8a7
2022-02-25T09:59:34.000Z
[ "pytorch", "xlm-roberta", "token-classification", "uk", "dataset:universal_dependencies", "transformers", "part-of-speech", "license:apache-2.0", "model-index", "autotrain_compatible" ]
token-classification
false
wietsedv
null
wietsedv/xlm-roberta-base-ft-udpos28-uk
5
null
transformers
16,874
--- language: - uk license: apache-2.0 library_name: transformers tags: - part-of-speech - token-classification datasets: - universal_dependencies metrics: - accuracy model-index: - name: xlm-roberta-base-ft-udpos28-uk results: - task: type: token-classification name: Part-of-Speech Tagging dataset: type: universal_dependencies name: Universal Dependencies v2.8 metrics: - type: accuracy name: English Test accuracy value: 82.2 - type: accuracy name: Dutch Test accuracy value: 84.3 - type: accuracy name: German Test accuracy value: 82.4 - type: accuracy name: Italian Test accuracy value: 83.9 - type: accuracy name: French Test accuracy value: 82.6 - type: accuracy name: Spanish Test accuracy value: 86.2 - type: accuracy name: Russian Test accuracy value: 93.3 - type: accuracy name: Swedish Test accuracy value: 86.3 - type: accuracy name: Norwegian Test accuracy value: 80.2 - type: accuracy name: Danish Test accuracy value: 85.2 - type: accuracy name: Low Saxon Test accuracy value: 30.9 - type: accuracy name: Akkadian Test accuracy value: 17.5 - type: accuracy name: Armenian Test accuracy value: 87.7 - type: accuracy name: Welsh Test accuracy value: 66.8 - type: accuracy name: Old East Slavic Test accuracy value: 77.5 - type: accuracy name: Albanian Test accuracy value: 79.7 - type: accuracy name: Slovenian Test accuracy value: 84.5 - type: accuracy name: Guajajara Test accuracy value: 14.6 - type: accuracy name: Kurmanji Test accuracy value: 77.0 - type: accuracy name: Turkish Test accuracy value: 76.3 - type: accuracy name: Finnish Test accuracy value: 82.5 - type: accuracy name: Indonesian Test accuracy value: 77.0 - type: accuracy name: Ukrainian Test accuracy value: 98.2 - type: accuracy name: Polish Test accuracy value: 91.8 - type: accuracy name: Portuguese Test accuracy value: 84.1 - type: accuracy name: Kazakh Test accuracy value: 81.8 - type: accuracy name: Latin Test accuracy value: 77.9 - type: accuracy name: Old French Test accuracy value: 26.9 - type: accuracy name: Buryat Test accuracy value: 60.7 - type: accuracy name: Kaapor Test accuracy value: 5.4 - type: accuracy name: Korean Test accuracy value: 61.5 - type: accuracy name: Estonian Test accuracy value: 84.4 - type: accuracy name: Croatian Test accuracy value: 93.2 - type: accuracy name: Gothic Test accuracy value: 3.7 - type: accuracy name: Swiss German Test accuracy value: 35.0 - type: accuracy name: Assyrian Test accuracy value: 14.6 - type: accuracy name: North Sami Test accuracy value: 27.0 - type: accuracy name: Naija Test accuracy value: 22.5 - type: accuracy name: Latvian Test accuracy value: 88.9 - type: accuracy name: Chinese Test accuracy value: 51.9 - type: accuracy name: Tagalog Test accuracy value: 71.1 - type: accuracy name: Bambara Test accuracy value: 18.7 - type: accuracy name: Lithuanian Test accuracy value: 88.1 - type: accuracy name: Galician Test accuracy value: 85.8 - type: accuracy name: Vietnamese Test accuracy value: 66.3 - type: accuracy name: Greek Test accuracy value: 85.9 - type: accuracy name: Catalan Test accuracy value: 84.0 - type: accuracy name: Czech Test accuracy value: 92.1 - type: accuracy name: Erzya Test accuracy value: 49.4 - type: accuracy name: Bhojpuri Test accuracy value: 51.8 - type: accuracy name: Thai Test accuracy value: 63.3 - type: accuracy name: Marathi Test accuracy value: 88.3 - type: accuracy name: Basque Test accuracy value: 75.7 - type: accuracy name: Slovak Test accuracy value: 91.8 - type: accuracy name: Kiche Test accuracy value: 22.7 - type: accuracy name: Yoruba Test accuracy value: 20.0 - type: accuracy name: Warlpiri Test accuracy value: 32.4 - type: accuracy name: Tamil Test accuracy value: 81.7 - type: accuracy name: Maltese Test accuracy value: 16.6 - type: accuracy name: Ancient Greek Test accuracy value: 63.0 - type: accuracy name: Icelandic Test accuracy value: 81.4 - type: accuracy name: Mbya Guarani Test accuracy value: 23.7 - type: accuracy name: Urdu Test accuracy value: 64.1 - type: accuracy name: Romanian Test accuracy value: 82.6 - type: accuracy name: Persian Test accuracy value: 78.3 - type: accuracy name: Apurina Test accuracy value: 24.8 - type: accuracy name: Japanese Test accuracy value: 38.0 - type: accuracy name: Hungarian Test accuracy value: 82.2 - type: accuracy name: Hindi Test accuracy value: 68.3 - type: accuracy name: Classical Chinese Test accuracy value: 36.6 - type: accuracy name: Komi Permyak Test accuracy value: 46.0 - type: accuracy name: Faroese Test accuracy value: 73.6 - type: accuracy name: Sanskrit Test accuracy value: 13.9 - type: accuracy name: Livvi Test accuracy value: 59.5 - type: accuracy name: Arabic Test accuracy value: 82.1 - type: accuracy name: Wolof Test accuracy value: 18.5 - type: accuracy name: Bulgarian Test accuracy value: 91.1 - type: accuracy name: Akuntsu Test accuracy value: 15.2 - type: accuracy name: Makurap Test accuracy value: 2.1 - type: accuracy name: Kangri Test accuracy value: 51.4 - type: accuracy name: Breton Test accuracy value: 59.3 - type: accuracy name: Telugu Test accuracy value: 84.3 - type: accuracy name: Cantonese Test accuracy value: 53.8 - type: accuracy name: Old Church Slavonic Test accuracy value: 48.0 - type: accuracy name: Karelian Test accuracy value: 68.6 - type: accuracy name: Upper Sorbian Test accuracy value: 71.7 - type: accuracy name: South Levantine Arabic Test accuracy value: 68.9 - type: accuracy name: Komi Zyrian Test accuracy value: 40.4 - type: accuracy name: Irish Test accuracy value: 66.2 - type: accuracy name: Nayini Test accuracy value: 46.2 - type: accuracy name: Munduruku Test accuracy value: 8.0 - type: accuracy name: Manx Test accuracy value: 23.0 - type: accuracy name: Skolt Sami Test accuracy value: 27.7 - type: accuracy name: Afrikaans Test accuracy value: 81.7 - type: accuracy name: Old Turkish Test accuracy value: 39.8 - type: accuracy name: Tupinamba Test accuracy value: 20.2 - type: accuracy name: Belarusian Test accuracy value: 93.7 - type: accuracy name: Serbian Test accuracy value: 93.8 - type: accuracy name: Moksha Test accuracy value: 46.0 - type: accuracy name: Western Armenian Test accuracy value: 79.8 - type: accuracy name: Scottish Gaelic Test accuracy value: 56.3 - type: accuracy name: Khunsari Test accuracy value: 36.5 - type: accuracy name: Hebrew Test accuracy value: 84.4 - type: accuracy name: Uyghur Test accuracy value: 77.2 - type: accuracy name: Chukchi Test accuracy value: 35.0 --- # XLM-RoBERTa base Universal Dependencies v2.8 POS tagging: Ukrainian This model is part of our paper called: - Make the Best of Cross-lingual Transfer: Evidence from POS Tagging with over 100 Languages Check the [Space](https://huggingface.co/spaces/wietsedv/xpos) for more details. ## Usage ```python from transformers import AutoTokenizer, AutoModelForTokenClassification tokenizer = AutoTokenizer.from_pretrained("wietsedv/xlm-roberta-base-ft-udpos28-uk") model = AutoModelForTokenClassification.from_pretrained("wietsedv/xlm-roberta-base-ft-udpos28-uk") ```
debjyoti007/new_doc_classifier
6b9717f8154b082dfa34b809768b9d332c3a59c6
2022-02-24T13:22:54.000Z
[ "pytorch", "distilbert", "text-classification", "transformers" ]
text-classification
false
debjyoti007
null
debjyoti007/new_doc_classifier
5
null
transformers
16,875
This model has been trained for the purpose of classifying text from different domains. Currently it is trained with much lesser data and it has been trained to identify text from 3 domains, "sports", "healthcare" and "financial". Label_0 represents "financial", Label_1 represents "Healthcare" and Label_2 represents "Sports". Currently I have trained it with these 3 domains only, I am pretty soon planning to train it on more domains and more data, hence its accuracy will improve further too.
lilitket/wav2vec2-large-xls-r-armenian-colab
8de2b0de5cccfd0c42d0fe14fc1cd4517c066b18
2022-02-24T14:51:52.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "dataset:common_voice", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
lilitket
null
lilitket/wav2vec2-large-xls-r-armenian-colab
5
null
transformers
16,876
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice model-index: - name: wav2vec2-large-xls-r-armenian-colab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-armenian-colab This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu113 - Datasets 1.18.3 - Tokenizers 0.10.3
DoyyingFace/bert-tweets-semeval-unclean
9576c583a95ff05a923ee1e6d944902160424d60
2022-02-24T14:35:55.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
DoyyingFace
null
DoyyingFace/bert-tweets-semeval-unclean
5
null
transformers
16,877
Entry not found
DoyyingFace/bert-tweets-semeval-clean
0864a7c8cbbd6f8e3360890a6efea9a3705609d9
2022-02-24T14:44:21.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
DoyyingFace
null
DoyyingFace/bert-tweets-semeval-clean
5
null
transformers
16,878
Entry not found
DoyyingFace/bert-asian-hate-tweets-concat-clean-with-unclean-valid
f21bc56cf7b429142c0eb2a4e96fa49643bde80d
2022-02-24T15:09:09.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
DoyyingFace
null
DoyyingFace/bert-asian-hate-tweets-concat-clean-with-unclean-valid
5
null
transformers
16,879
Entry not found
DoyyingFace/bert-asian-hate-tweets-self-unlean-with-clean-valid
46b5ea18f5435a8b30697adc78294635ca23558e
2022-02-24T15:48:05.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
DoyyingFace
null
DoyyingFace/bert-asian-hate-tweets-self-unlean-with-clean-valid
5
null
transformers
16,880
Entry not found
DoyyingFace/bert-asian-hate-tweets-asian-unclean-with-clean-valid
01e9eefd8dbf3bb8d5f72e5934dea128f33cf98f
2022-02-24T16:20:51.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
DoyyingFace
null
DoyyingFace/bert-asian-hate-tweets-asian-unclean-with-clean-valid
5
null
transformers
16,881
Entry not found
inovex/multi2convai-quality-it-bert
fcc2e2f7a6f4f0f4c2a0de6d68851318d3a14c14
2022-03-01T09:02:08.000Z
[ "pytorch", "bert", "text-classification", "it", "transformers", "license:mit" ]
text-classification
false
inovex
null
inovex/multi2convai-quality-it-bert
5
null
transformers
16,882
--- tags: - text-classification widget: - text: "Avviare il programma" license: mit language: it --- # Multi2ConvAI-Quality: finetuned Bert for Italian This model was developed in the [Multi2ConvAI](https://multi2conv.ai) project: - domain: Quality (more details about our use cases: ([en](https://multi2convai/en/blog/use-cases), [de](https://multi2convai/en/blog/use-cases))) - language: Italian (it) - model type: finetuned Bert ## How to run Requires: - Huggingface transformers ### Run with Huggingface Transformers ````python from transformers import AutoTokenizer, AutoModelForSequenceClassification tokenizer = AutoTokenizer.from_pretrained("inovex/multi2convai-quality-it-bert") model = AutoModelForSequenceClassification.from_pretrained("inovex/multi2convai-quality-it-bert") ```` ## Further information on Multi2ConvAI: - https://multi2conv.ai - https://github.com/inovex/multi2convai - mailto: [email protected]
DoyyingFace/bert-asian-hate-tweets-asian-unclean-freeze-4
7ab266823becab9ebb619d4bdd99dd994a2ea112
2022-02-24T16:38:43.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
DoyyingFace
null
DoyyingFace/bert-asian-hate-tweets-asian-unclean-freeze-4
5
null
transformers
16,883
Entry not found
ASCCCCCCCC/distilbert-base-uncased-finetuned-amazon_zh_20000
358e2a5e2453dd603fd0a68dd87ccbfc3b977900
2022-02-25T03:38:48.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
ASCCCCCCCC
null
ASCCCCCCCC/distilbert-base-uncased-finetuned-amazon_zh_20000
5
null
transformers
16,884
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: distilbert-base-uncased-finetuned-amazon_zh_20000 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-amazon_zh_20000 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.3516 - Accuracy: 0.414 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.4343 | 1.0 | 1250 | 1.3516 | 0.414 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.9.1 - Datasets 1.18.3 - Tokenizers 0.10.3
DoyyingFace/bert-asian-hate-tweets-self-unclean-freeze-8
888307992689499910770d2c55e65dbd5eea4ed6
2022-02-25T03:14:45.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
DoyyingFace
null
DoyyingFace/bert-asian-hate-tweets-self-unclean-freeze-8
5
null
transformers
16,885
Entry not found
Brendan/cse244b-hw2-roberta
3391da53f2d756071d84b8f984d343d5168785f9
2022-02-26T05:48:15.000Z
[ "pytorch", "roberta", "text-classification", "transformers" ]
text-classification
false
Brendan
null
Brendan/cse244b-hw2-roberta
5
null
transformers
16,886
Entry not found
DoyyingFace/bert-asian-hate-tweets-concat-unclean-discriminate
0b18a9be1e97044218c2016ffd9ed496b51ec981
2022-02-25T04:03:13.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
DoyyingFace
null
DoyyingFace/bert-asian-hate-tweets-concat-unclean-discriminate
5
null
transformers
16,887
Entry not found
DoyyingFace/bert-asian-hate-tweets-asian-unclean-warmup-50
c7d43f39111f81ac19b7701c765c32372b5e9b45
2022-02-25T04:10:10.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
DoyyingFace
null
DoyyingFace/bert-asian-hate-tweets-asian-unclean-warmup-50
5
null
transformers
16,888
Entry not found
DoyyingFace/bert-asian-hate-tweets-asian-unclean-warmup-25
638c3d6f269527137a57a32cbc69738948fb0d7f
2022-02-25T04:28:23.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
DoyyingFace
null
DoyyingFace/bert-asian-hate-tweets-asian-unclean-warmup-25
5
null
transformers
16,889
Entry not found
MhF/distilbert-base-uncased-distilled-clinc
e14a105707812b39a376260b002931e96c2bc466
2022-02-25T10:48:47.000Z
[ "pytorch", "distilbert", "text-classification", "dataset:clinc_oos", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
MhF
null
MhF/distilbert-base-uncased-distilled-clinc
5
null
transformers
16,890
--- license: apache-2.0 tags: - generated_from_trainer datasets: - clinc_oos metrics: - accuracy model-index: - name: distilbert-base-uncased-distilled-clinc results: - task: name: Text Classification type: text-classification dataset: name: clinc_oos type: clinc_oos args: plus metrics: - name: Accuracy type: accuracy value: 0.9461290322580646 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-distilled-clinc This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the clinc_oos dataset. It achieves the following results on the evaluation set: - Loss: 0.2663 - Accuracy: 0.9461 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 48 - eval_batch_size: 48 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 9 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 4.1991 | 1.0 | 318 | 3.1495 | 0.7523 | | 2.4112 | 2.0 | 636 | 1.5868 | 0.8510 | | 1.1887 | 3.0 | 954 | 0.7975 | 0.9203 | | 0.5952 | 4.0 | 1272 | 0.4870 | 0.9319 | | 0.3275 | 5.0 | 1590 | 0.3571 | 0.9419 | | 0.2066 | 6.0 | 1908 | 0.3070 | 0.9429 | | 0.1456 | 7.0 | 2226 | 0.2809 | 0.9448 | | 0.1154 | 8.0 | 2544 | 0.2697 | 0.9468 | | 0.1011 | 9.0 | 2862 | 0.2663 | 0.9461 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
vocab-transformers/cross_encoder-msmarco-distilbert-word2vec256k
9bdbf4c75b56d718011677f0034c8d02353b4ba2
2022-02-25T12:58:31.000Z
[ "pytorch", "distilbert", "text-classification", "transformers" ]
text-classification
false
vocab-transformers
null
vocab-transformers/cross_encoder-msmarco-distilbert-word2vec256k
5
null
transformers
16,891
#cross_encoder-msmarco-word2vec256k This CrossEncoder was trained with MarginMSE loss from the [nicoladecao/msmarco-word2vec256000-distilbert-base-uncased](https://hf.co/nicoladecao/msmarco-word2vec256000-distilbert-base-uncased) checkpoint. **Word embedding matrix has been frozen during training**. You can load the model with [sentence-transformers](https://sbert.net): ```python from sentence_transformers import CrossEncoder from torch import nn model = CrossEncoder(model_name, default_activation_function=nn.Identity()) ``` Performance on TREC Deep Learning (nDCG@10): - TREC-DL 19: 72.49 - TREC-DL 20: 72.71
anas-awadalla/spanbert-base-cased-few-shot-k-32-finetuned-squad-seed-8
22612cfb410d68d2c5b4138891a88d7fe5c61593
2022-02-25T21:42:45.000Z
[ "pytorch", "bert", "question-answering", "dataset:squad", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
question-answering
false
anas-awadalla
null
anas-awadalla/spanbert-base-cased-few-shot-k-32-finetuned-squad-seed-8
5
null
transformers
16,892
--- tags: - generated_from_trainer datasets: - squad model-index: - name: spanbert-base-cased-few-shot-k-32-finetuned-squad-seed-8 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # spanbert-base-cased-few-shot-k-32-finetuned-squad-seed-8 This model is a fine-tuned version of [SpanBERT/spanbert-base-cased](https://huggingface.co/SpanBERT/spanbert-base-cased) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 200 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
DoyyingFace/bert-asian-hate-tweets-self-clean-small-more-epoch
395904a9ab7b1144fd37aec516f31c1ee00cc7ce
2022-02-26T02:56:57.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
DoyyingFace
null
DoyyingFace/bert-asian-hate-tweets-self-clean-small-more-epoch
5
null
transformers
16,893
Entry not found
DoyyingFace/bert-asian-hate-tweets-self-clean-small-epoch5
b73fdc9a750018ec3375f4f35eacf1258ef8f0e8
2022-02-26T03:07:52.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
DoyyingFace
null
DoyyingFace/bert-asian-hate-tweets-self-clean-small-epoch5
5
null
transformers
16,894
Entry not found
ali2066/finetuned_sentence_itr3_2e-05_all_26_02_2022-04_14_37
1ab288fb6dbe5d1667a98a94bacb330e0c76dd5f
2022-02-26T03:20:03.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
ali2066
null
ali2066/finetuned_sentence_itr3_2e-05_all_26_02_2022-04_14_37
5
null
transformers
16,895
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: finetuned_sentence_itr3_2e-05_all_26_02_2022-04_14_37 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuned_sentence_itr3_2e-05_all_26_02_2022-04_14_37 This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4676 - Accuracy: 0.8299 - F1: 0.8892 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | No log | 1.0 | 195 | 0.4087 | 0.8073 | 0.8754 | | No log | 2.0 | 390 | 0.3952 | 0.8159 | 0.8803 | | 0.4084 | 3.0 | 585 | 0.4183 | 0.8195 | 0.8831 | | 0.4084 | 4.0 | 780 | 0.4596 | 0.8280 | 0.8867 | | 0.4084 | 5.0 | 975 | 0.4919 | 0.8280 | 0.8873 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.1+cu113 - Datasets 1.18.0 - Tokenizers 0.10.3
ali2066/finetuned_sentence_itr4_2e-05_all_26_02_2022-04_20_09
92c19bb87702f101232be3f8bbe38312a5683331
2022-02-26T03:25:34.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
ali2066
null
ali2066/finetuned_sentence_itr4_2e-05_all_26_02_2022-04_20_09
5
null
transformers
16,896
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: finetuned_sentence_itr4_2e-05_all_26_02_2022-04_20_09 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuned_sentence_itr4_2e-05_all_26_02_2022-04_20_09 This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4676 - Accuracy: 0.8299 - F1: 0.8892 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | No log | 1.0 | 195 | 0.4087 | 0.8073 | 0.8754 | | No log | 2.0 | 390 | 0.3952 | 0.8159 | 0.8803 | | 0.4084 | 3.0 | 585 | 0.4183 | 0.8195 | 0.8831 | | 0.4084 | 4.0 | 780 | 0.4596 | 0.8280 | 0.8867 | | 0.4084 | 5.0 | 975 | 0.4919 | 0.8280 | 0.8873 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.1+cu113 - Datasets 1.18.0 - Tokenizers 0.10.3
anas-awadalla/spanbert-base-cased-few-shot-k-1024-finetuned-squad-seed-10
4cce790d221fee0441231cefd93a490c9eca8131
2022-02-26T09:47:52.000Z
[ "pytorch", "bert", "question-answering", "dataset:squad", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
question-answering
false
anas-awadalla
null
anas-awadalla/spanbert-base-cased-few-shot-k-1024-finetuned-squad-seed-10
5
null
transformers
16,897
--- tags: - generated_from_trainer datasets: - squad model-index: - name: spanbert-base-cased-few-shot-k-1024-finetuned-squad-seed-10 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # spanbert-base-cased-few-shot-k-1024-finetuned-squad-seed-10 This model is a fine-tuned version of [SpanBERT/spanbert-base-cased](https://huggingface.co/SpanBERT/spanbert-base-cased) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10.0 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
msintaha/bert-base-uncased-copa-kb-17
990f2ce5f4be7e5432dd9ecf70c98c995be0287f
2022-02-26T22:53:54.000Z
[ "pytorch", "tensorboard", "bert", "multiple-choice", "dataset:super_glue", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
multiple-choice
false
msintaha
null
msintaha/bert-base-uncased-copa-kb-17
5
null
transformers
16,898
--- license: apache-2.0 tags: - generated_from_trainer datasets: - super_glue metrics: - accuracy model-index: - name: bert-base-uncased-copa-kb-17 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-copa-kb-17 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the super_glue dataset. It achieves the following results on the evaluation set: - Loss: 0.6385 - Accuracy: 0.7000 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 25 | 0.6792 | 0.6500 | | No log | 2.0 | 50 | 0.6385 | 0.7000 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
ali2066/finetuned_sentence_itr0_2e-05_all_27_02_2022-17_27_47
d3feb3ffc111f2ec1e26d9ee7d1990aba53f78db
2022-02-27T16:33:17.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
ali2066
null
ali2066/finetuned_sentence_itr0_2e-05_all_27_02_2022-17_27_47
5
null
transformers
16,899
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: finetuned_sentence_itr0_2e-05_all_27_02_2022-17_27_47 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuned_sentence_itr0_2e-05_all_27_02_2022-17_27_47 This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5002 - Accuracy: 0.8103 - F1: 0.8764 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | No log | 1.0 | 195 | 0.4178 | 0.7963 | 0.8630 | | No log | 2.0 | 390 | 0.3935 | 0.8061 | 0.8770 | | 0.4116 | 3.0 | 585 | 0.4037 | 0.8085 | 0.8735 | | 0.4116 | 4.0 | 780 | 0.4696 | 0.8146 | 0.8796 | | 0.4116 | 5.0 | 975 | 0.4849 | 0.8207 | 0.8823 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.1+cu113 - Datasets 1.18.0 - Tokenizers 0.10.3