modelId
stringlengths
4
112
sha
stringlengths
40
40
lastModified
stringlengths
24
24
tags
list
pipeline_tag
stringclasses
29 values
private
bool
1 class
author
stringlengths
2
38
config
null
id
stringlengths
4
112
downloads
float64
0
36.8M
likes
float64
0
712
library_name
stringclasses
17 values
__index_level_0__
int64
0
38.5k
readme
stringlengths
0
186k
mateocolina/xlm-roberta-base-finetuned-marc-en
d5ab585a22012b4864dc8ae6206333c553666f2d
2021-12-16T14:39:14.000Z
[ "pytorch", "tensorboard", "xlm-roberta", "text-classification", "dataset:amazon_reviews_multi", "transformers", "generated_from_trainer", "license:mit", "model-index" ]
text-classification
false
mateocolina
null
mateocolina/xlm-roberta-base-finetuned-marc-en
5
null
transformers
16,700
--- license: mit tags: - generated_from_trainer datasets: - amazon_reviews_multi model-index: - name: xlm-roberta-base-finetuned-marc-en results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-marc-en This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the amazon_reviews_multi dataset. It achieves the following results on the evaluation set: - Loss: 0.9276 - Mae: 0.5366 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Mae | |:-------------:|:-----:|:----:|:---------------:|:------:| | 1.0992 | 1.0 | 235 | 0.9340 | 0.5122 | | 0.945 | 2.0 | 470 | 0.9276 | 0.5366 | ### Framework versions - Transformers 4.14.1 - Pytorch 1.10.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3
mathew/layoutlmv2-finetuned-funsd-1024
f856d7dc1d534bc1f6b39ef5c152aedefa4b8d36
2021-10-24T06:13:48.000Z
[ "pytorch", "tensorboard", "layoutlmv2", "token-classification", "transformers", "generated_from_trainer", "license:cc-by-sa-4.0", "model-index", "autotrain_compatible" ]
token-classification
false
mathew
null
mathew/layoutlmv2-finetuned-funsd-1024
5
null
transformers
16,701
--- license: cc-by-sa-4.0 tags: - generated_from_trainer model-index: - name: layoutlmv2-finetuned-funsd-1024 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # layoutlmv2-finetuned-funsd-1024 This model is a fine-tuned version of [microsoft/layoutlmv2-base-uncased](https://huggingface.co/microsoft/layoutlmv2-base-uncased) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 1000 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.12.0.dev0 - Pytorch 1.8.0+cu101 - Datasets 1.14.0 - Tokenizers 0.10.3
matprado/DialoGPT-small-rick-sanchez
3d3ebace7dab9e0494d7ee60686aeea392573c00
2021-07-09T17:01:53.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
matprado
null
matprado/DialoGPT-small-rick-sanchez
5
null
transformers
16,702
--- tags: - conversational --- # GPT
mattchurgin/bert-finetuned-ner
39d485afdf7c51299e577338c2b5be3c43dd3652
2022-01-20T22:16:43.000Z
[ "pytorch", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
mattchurgin
null
mattchurgin/bert-finetuned-ner
5
null
transformers
16,703
Entry not found
maxxx2021/DialGPT-small-harrypotter
85166a329282564fb6e2a517c7c0573e9db41eae
2021-09-13T22:43:17.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
maxxx2021
null
maxxx2021/DialGPT-small-harrypotter
5
null
transformers
16,704
--- tags: - conversational --- #Harry Potter DialGPT Model
mbateman/bert-finetuned-ner
9171971eebce47788f5df15a53185b40f502dee8
2022-01-04T20:30:26.000Z
[ "pytorch", "bert", "token-classification", "dataset:conll2003", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
token-classification
false
mbateman
null
mbateman/bert-finetuned-ner
5
null
transformers
16,705
--- license: apache-2.0 tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: bert-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 args: conll2003 metrics: - name: Precision type: precision value: 0.9333553828344634 - name: Recall type: recall value: 0.9498485358465163 - name: F1 type: f1 value: 0.9415297355909584 - name: Accuracy type: accuracy value: 0.9868281627126626 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-ner This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0622 - Precision: 0.9334 - Recall: 0.9498 - F1: 0.9415 - Accuracy: 0.9868 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0881 | 1.0 | 1756 | 0.0683 | 0.9136 | 0.9322 | 0.9228 | 0.9826 | | 0.0383 | 2.0 | 3512 | 0.0641 | 0.9277 | 0.9456 | 0.9366 | 0.9854 | | 0.0229 | 3.0 | 5268 | 0.0622 | 0.9334 | 0.9498 | 0.9415 | 0.9868 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.10.0+cu102 - Datasets 1.15.1 - Tokenizers 0.10.1
mbeukman/xlm-roberta-base-finetuned-igbo-finetuned-ner-igbo
838ccbada6753782040cdc0958648e2930f37cb4
2021-11-25T09:04:00.000Z
[ "pytorch", "xlm-roberta", "token-classification", "ig", "dataset:masakhaner", "arxiv:2103.11811", "transformers", "NER", "autotrain_compatible" ]
token-classification
false
mbeukman
null
mbeukman/xlm-roberta-base-finetuned-igbo-finetuned-ner-igbo
5
null
transformers
16,706
--- language: - ig tags: - NER datasets: - masakhaner metrics: - f1 - precision - recall widget: - text: "Ike ịda jụụ otụ nkeji banyere oke ogbugbu na - eme n'ala Naijiria agwụla Ekweremmadụ" --- # xlm-roberta-base-finetuned-igbo-finetuned-ner-igbo This is a token classification (specifically NER) model that fine-tuned [xlm-roberta-base-finetuned-igbo](https://huggingface.co/Davlan/xlm-roberta-base-finetuned-igbo) on the [MasakhaNER](https://arxiv.org/abs/2103.11811) dataset, specifically the Igbo part. More information, and other similar models can be found in the [main Github repository](https://github.com/Michael-Beukman/NERTransfer). ## About This model is transformer based and was fine-tuned on the MasakhaNER dataset. It is a named entity recognition dataset, containing mostly news articles in 10 different African languages. The model was fine-tuned for 50 epochs, with a maximum sequence length of 200, 32 batch size, 5e-5 learning rate. This process was repeated 5 times (with different random seeds), and this uploaded model performed the best out of those 5 seeds (aggregate F1 on test set). This model was fine-tuned by me, Michael Beukman while doing a project at the University of the Witwatersrand, Johannesburg. This is version 1, as of 20 November 2021. This model is licensed under the [Apache License, Version 2.0](https://www.apache.org/licenses/LICENSE-2.0). ### Contact & More information For more information about the models, including training scripts, detailed results and further resources, you can visit the the [main Github repository](https://github.com/Michael-Beukman/NERTransfer). You can contact me by filing an issue on this repository. ### Training Resources In the interest of openness, and reporting resources used, we list here how long the training process took, as well as what the minimum resources would be to reproduce this. Fine-tuning each model on the NER dataset took between 10 and 30 minutes, and was performed on a NVIDIA RTX3090 GPU. To use a batch size of 32, at least 14GB of GPU memory was required, although it was just possible to fit these models in around 6.5GB's of VRAM when using a batch size of 1. ## Data The train, evaluation and test datasets were taken directly from the MasakhaNER [Github](https://github.com/masakhane-io/masakhane-ner) repository, with minimal to no preprocessing, as the original dataset is already of high quality. The motivation for the use of this data is that it is the "first large, publicly available, high­ quality dataset for named entity recognition (NER) in ten African languages" ([source](https://arxiv.org/pdf/2103.11811.pdf)). The high-quality data, as well as the groundwork laid by the paper introducing it are some more reasons why this dataset was used. For evaluation, the dedicated test split was used, which is from the same distribution as the training data, so this model may not generalise to other distributions, and further testing would need to be done to investigate this. The exact distribution of the data is covered in detail [here](https://arxiv.org/abs/2103.11811). ## Intended Use This model are intended to be used for NLP research into e.g. interpretability or transfer learning. Using this model in production is not supported, as generalisability and downright performance is limited. In particular, this is not designed to be used in any important downstream task that could affect people, as harm could be caused by the limitations of the model, described next. ## Limitations This model was only trained on one (relatively small) dataset, covering one task (NER) in one domain (news articles) and in a set span of time. The results may not generalise, and the model may perform badly, or in an unfair / biased way if used on other tasks. Although the purpose of this project was to investigate transfer learning, the performance on languages that the model was not trained for does suffer. Because this model used xlm-roberta-base as its starting point (potentially with domain adaptive fine-tuning on specific languages), this model's limitations can also apply here. These can include being biased towards the hegemonic viewpoint of most of its training data, being ungrounded and having subpar results on other languages (possibly due to unbalanced training data). As [Adelani et al. (2021)](https://arxiv.org/abs/2103.11811) showed, the models in general struggled with entities that were either longer than 3 words and entities that were not contained in the training data. This could bias the models towards not finding, e.g. names of people that have many words, possibly leading to a misrepresentation in the results. Similarly, names that are uncommon, and may not have been found in the training data (due to e.g. different languages) would also be predicted less often. Additionally, this model has not been verified in practice, and other, more subtle problems may become prevalent if used without any verification that it does what it is supposed to. ### Privacy & Ethical Considerations The data comes from only publicly available news sources, the only available data should cover public figures and those that agreed to be reported on. See the original MasakhaNER paper for more details. No explicit ethical considerations or adjustments were made during fine-tuning of this model. ## Metrics The language adaptive models achieve (mostly) superior performance over starting with xlm-roberta-base. Our main metric was the aggregate F1 score for all NER categories. These metrics are on the test set for MasakhaNER, so the data distribution is similar to the training set, so these results do not directly indicate how well these models generalise. We do find large variation in transfer results when starting from different seeds (5 different seeds were tested), indicating that the fine-tuning process for transfer might be unstable. The metrics used were chosen to be consistent with previous work, and to facilitate research. Other metrics may be more appropriate for other purposes. ## Caveats and Recommendations In general, this model performed worse on the 'date' category compared to others, so if dates are a critical factor, then that might need to be taken into account and addressed, by for example collecting and annotating more data. ## Model Structure Here are some performance details on this specific model, compared to others we trained. All of these metrics were calculated on the test set, and the seed was chosen that gave the best overall F1 score. The first three result columns are averaged over all categories, and the latter 4 provide performance broken down by category. This model can predict the following label for a token ([source](https://huggingface.co/Davlan/xlm-roberta-large-masakhaner)): Abbreviation|Description -|- O|Outside of a named entity B-DATE |Beginning of a DATE entity right after another DATE entity I-DATE |DATE entity B-PER |Beginning of a person’s name right after another person’s name I-PER |Person’s name B-ORG |Beginning of an organisation right after another organisation I-ORG |Organisation B-LOC |Beginning of a location right after another location I-LOC |Location | Model Name | Staring point | Evaluation / Fine-tune Language | F1 | Precision | Recall | F1 (DATE) | F1 (LOC) | F1 (ORG) | F1 (PER) | | -------------------------------------------------- | -------------------- | -------------------- | -------------- | -------------- | -------------- | -------------- | -------------- | -------------- | -------------- | | [xlm-roberta-base-finetuned-igbo-finetuned-ner-igbo](https://huggingface.co/mbeukman/xlm-roberta-base-finetuned-igbo-finetuned-ner-igbo) (This model) | [ibo](https://huggingface.co/Davlan/xlm-roberta-base-finetuned-igbo) | ibo | 88.39 | 87.08 | 89.74 | 74.00 | 91.00 | 90.00 | 91.00 | | [xlm-roberta-base-finetuned-swahili-finetuned-ner-igbo](https://huggingface.co/mbeukman/xlm-roberta-base-finetuned-swahili-finetuned-ner-igbo) | [swa](https://huggingface.co/Davlan/xlm-roberta-base-finetuned-swahili) | ibo | 84.93 | 83.63 | 86.26 | 70.00 | 88.00 | 89.00 | 84.00 | | [xlm-roberta-base-finetuned-ner-igbo](https://huggingface.co/mbeukman/xlm-roberta-base-finetuned-ner-igbo) | [base](https://huggingface.co/xlm-roberta-base) | ibo | 86.06 | 85.20 | 86.94 | 76.00 | 86.00 | 90.00 | 87.00 | ## Usage To use this model (or others), you can do the following, just changing the model name ([source](https://huggingface.co/dslim/bert-base-NER)): ``` from transformers import AutoTokenizer, AutoModelForTokenClassification from transformers import pipeline model_name = 'mbeukman/xlm-roberta-base-finetuned-igbo-finetuned-ner-igbo' tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForTokenClassification.from_pretrained(model_name) nlp = pipeline("ner", model=model, tokenizer=tokenizer) example = "Ike ịda jụụ otụ nkeji banyere oke ogbugbu na - eme n'ala Naijiria agwụla Ekweremmadụ" ner_results = nlp(example) print(ner_results) ```
mbien/fdh-wikibio
bb63af9dcc878d3e89c75bef4caabd6da20b2df9
2021-05-23T08:55:05.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "transformers" ]
text-generation
false
mbien
null
mbien/fdh-wikibio
5
null
transformers
16,707
# fdh-wikibio Model used to prepare Biography Generator for EPFL Foundations of Digital Humanities course. ## Project description Please read our report on FDH page: http://fdh.epfl.ch/index.php/WikiBio ## Project result You're invited to read through our generated biographies! https://wikibio.mbien.pl/
mbien/fma2vec
574966ab4cb292e0ffbfddeb9feb9054cc90453d
2021-07-06T12:35:57.000Z
[ "pytorch", "wav2vec2", "feature-extraction", "transformers" ]
feature-extraction
false
mbien
null
mbien/fma2vec
5
null
transformers
16,708
# Predicting music popularity using DNNs This is a pre-trained wav2vec2.0 model, trained on a fill Free Music Archive repository, created as part of DH-401: Digital Musicology class on EPFL ## Team * Elisa ([email protected]) * Michał ([email protected]) * Noé ([email protected]) ## Milestone 3 Main notebook presenting out results is available [here](https://nbviewer.jupyter.org/github/Glorf/DH-401/blob/main/milestone3.ipynb) Notebook describing the details of Wav2Vec2.0 pre-training and fine-tuning for the task is available [here](https://nbviewer.jupyter.org/github/Glorf/DH-401/blob/main/milestone3-wav2vec2.ipynb) ## Milestone 2 Exploratory data analysis notebook is available [here](https://nbviewer.jupyter.org/github/Glorf/DH-401/blob/main/milestone2.ipynb) ## Milestone 1 Refined project proposal is available [here](https://github.com/Glorf/DH-401/blob/main/milestone0.md) ## Milestone 0 Original project proposal is available in git history [here](https://github.com/Glorf/DH-401/blob/bb14813ff2bbbd9cdc6b6eecf34c9e3c160598eb/milestone0.md)
megagonlabs/bimeanvae-yelp
b8702d7b6e88fdae30e8f73c5dfd6cd45ce51f4f
2021-09-11T00:12:51.000Z
[ "pytorch", "en", "transformers", "summarization", "license:bsd-3-clause" ]
summarization
false
megagonlabs
null
megagonlabs/bimeanvae-yelp
5
1
transformers
16,709
--- language: en tags: - summarization inference: false license: bsd-3-clause --- ## BiMeanVAE model See original GitHub repo for more details [here](https://github.com/megagonlabs/coop)
mfuntowicz/bert-base-cased-finetuned-sst2
1b000bd1de50ed79cf3826f9240b87de1fc9c7bb
2021-05-19T23:19:10.000Z
[ "pytorch", "jax", "bert", "text-classification", "transformers" ]
text-classification
false
mfuntowicz
null
mfuntowicz/bert-base-cased-finetuned-sst2
5
null
transformers
16,710
Entry not found
microsoft/deberta-xlarge-v2-mnli
7042bc565d0fbdf2a4840ff70eeafd057fabec08
2021-02-11T02:04:40.000Z
[ "pytorch", "deberta-v2", "en", "transformers", "deberta", "license:mit" ]
null
false
microsoft
null
microsoft/deberta-xlarge-v2-mnli
5
null
transformers
16,711
--- language: en tags: deberta thumbnail: https://huggingface.co/front/thumbnails/microsoft.png license: mit --- ## DeBERTa: Decoding-enhanced BERT with Disentangled Attention ## This model is DEPRECATED, please use [DeBERTa-V2-XLarge-MNLI](https://huggingface.co/microsoft/deberta-v2-xlarge-mnli)
microsoft/unispeech-sat-base-sd
b175a5cfa53b3d4f1bcf94fb06d6fc5d1972098b
2021-12-17T18:39:23.000Z
[ "pytorch", "unispeech-sat", "audio-frame-classification", "en", "dataset:librispeech_asr", "arxiv:2110.05752", "transformers", "speech" ]
null
false
microsoft
null
microsoft/unispeech-sat-base-sd
5
null
transformers
16,712
--- language: - en datasets: - librispeech_asr tags: - speech --- # UniSpeech-SAT-Base for Speaker Diarization [Microsoft's UniSpeech](https://www.microsoft.com/en-us/research/publication/unispeech-unified-speech-representation-learning-with-labeled-and-unlabeled-data/) The model was pretrained on 16kHz sampled speech audio with utterance and speaker contrastive loss. When using the model, make sure that your speech input is also sampled at 16kHz. The model was pre-trained on: - 960 hours of [LibriSpeech](https://huggingface.co/datasets/librispeech_asr) [Paper: UNISPEECH-SAT: UNIVERSAL SPEECH REPRESENTATION LEARNING WITH SPEAKER AWARE PRE-TRAINING](https://arxiv.org/abs/2110.05752) Authors: Sanyuan Chen, Yu Wu, Chengyi Wang, Zhengyang Chen, Zhuo Chen, Shujie Liu, Jian Wu, Yao Qian, Furu Wei, Jinyu Li, Xiangzhan Yu **Abstract** *Self-supervised learning (SSL) is a long-standing goal for speech processing, since it utilizes large-scale unlabeled data and avoids extensive human labeling. Recent years witness great successes in applying self-supervised learning in speech recognition, while limited exploration was attempted in applying SSL for modeling speaker characteristics. In this paper, we aim to improve the existing SSL framework for speaker representation learning. Two methods are introduced for enhancing the unsupervised speaker information extraction. First, we apply the multi-task learning to the current SSL framework, where we integrate the utterance-wise contrastive loss with the SSL objective function. Second, for better speaker discrimination, we propose an utterance mixing strategy for data augmentation, where additional overlapped utterances are created unsupervisely and incorporate during training. We integrate the proposed methods into the HuBERT framework. Experiment results on SUPERB benchmark show that the proposed system achieves state-of-the-art performance in universal representation learning, especially for speaker identification oriented tasks. An ablation study is performed verifying the efficacy of each proposed method. Finally, we scale up training dataset to 94 thousand hours public audio data and achieve further performance improvement in all SUPERB tasks..* The original model can be found under https://github.com/microsoft/UniSpeech/tree/main/UniSpeech-SAT. # Fine-tuning details The model is fine-tuned on the [LibriMix dataset](https://github.com/JorisCos/LibriMix) using just a linear layer for mapping the network outputs. # Usage ## Speaker Diarization ```python from transformers import Wav2Vec2FeatureExtractor, UniSpeechSatForAudioFrameClassification from datasets import load_dataset import torch dataset = load_dataset("hf-internal-testing/librispeech_asr_demo", "clean", split="validation") feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained('microsoft/unispeech-sat-base-sd') model = UniSpeechSatForAudioFrameClassification.from_pretrained('microsoft/unispeech-sat-base-sd') # audio file is decoded on the fly inputs = feature_extractor(dataset[0]["audio"]["array"], return_tensors="pt") logits = model(**inputs).logits probabilities = torch.sigmoid(logits[0]) # labels is a one-hot array of shape (num_frames, num_speakers) labels = (probabilities > 0.5).long() ``` # License The official license can be found [here](https://github.com/microsoft/UniSpeech/blob/main/LICENSE) ![design](https://raw.githubusercontent.com/patrickvonplaten/scientific_images/master/UniSpeechSAT.png)
midas/gupshup_h2e_gpt
4df3a144cd053f17c731cf442039d1402bcfa284
2021-11-14T02:08:32.000Z
[ "pytorch", "gpt2", "text-generation", "arxiv:1910.04073", "transformers" ]
text-generation
false
midas
null
midas/gupshup_h2e_gpt
5
null
transformers
16,713
# Gupshup GupShup: Summarizing Open-Domain Code-Switched Conversations EMNLP 2021 Paper: [https://aclanthology.org/2021.emnlp-main.499.pdf](https://aclanthology.org/2021.emnlp-main.499.pdf) Github: [https://github.com/midas-research/gupshup](https://github.com/midas-research/gupshup) ### Dataset Please request for the Gupshup data using [this Google form](https://docs.google.com/forms/d/1zvUk7WcldVF3RCoHdWzQPzPprtSJClrnHoIOYbzaJEI/edit?ts=61381ec0). Dataset is available for `Hinglish Dilaogues to English Summarization`(h2e) and `English Dialogues to English Summarization`(e2e). For each task, Dialogues/conversastion have `.source`(train.source) as file extension whereas Summary has `.target`(train.target) file extension. ".source" file need to be provided to `input_path` and ".target" file to `reference_path` argument in the scripts. ## Models All model weights are available on the Huggingface model hub. Users can either directly download these weights in their local and provide this path to `model_name` argument in the scripts or use the provided alias (to `model_name` argument) in scripts directly; this will lead to download weights automatically by scripts. Model names were aliased in "gupshup_TASK_MODEL" sense, where "TASK" can be h2e,e2e and MODEL can be mbart, pegasus, etc., as listed below. **1. Hinglish Dialogues to English Summary (h2e)** | Model | Huggingface Alias | |---------|-------------------------------------------------------------------------------| | mBART | [midas/gupshup_h2e_mbart](https://huggingface.co/midas/gupshup_h2e_mbart) | | PEGASUS | [midas/gupshup_h2e_pegasus](https://huggingface.co/midas/gupshup_h2e_pegasus) | | T5 MTL | [midas/gupshup_h2e_t5_mtl](https://huggingface.co/midas/gupshup_h2e_t5_mtl) | | T5 | [midas/gupshup_h2e_t5](https://huggingface.co/midas/gupshup_h2e_t5) | | BART | [midas/gupshup_h2e_bart](https://huggingface.co/midas/gupshup_h2e_bart) | | GPT-2 | [midas/gupshup_h2e_gpt](https://huggingface.co/midas/gupshup_h2e_gpt) | **2. English Dialogues to English Summary (e2e)** | Model | Huggingface Alias | |---------|-------------------------------------------------------------------------------| | mBART | [midas/gupshup_e2e_mbart](https://huggingface.co/midas/gupshup_e2e_mbart) | | PEGASUS | [midas/gupshup_e2e_pegasus](https://huggingface.co/midas/gupshup_e2e_pegasus) | | T5 MTL | [midas/gupshup_e2e_t5_mtl](https://huggingface.co/midas/gupshup_e2e_t5_mtl) | | T5 | [midas/gupshup_e2e_t5](https://huggingface.co/midas/gupshup_e2e_t5) | | BART | [midas/gupshup_e2e_bart](https://huggingface.co/midas/gupshup_e2e_bart) | | GPT-2 | [midas/gupshup_e2e_gpt](https://huggingface.co/midas/gupshup_e2e_gpt) | ## Inference ### Using command line 1. Clone this repo and create a python virtual environment (https://docs.python.org/3/library/venv.html). Install the required packages using ``` git clone https://github.com/midas-research/gupshup.git pip install -r requirements.txt ``` 2. run_eval script has the following arguments. * **model_name** : Path or alias to one of our models available on Huggingface as listed above. * **input_path** : Source file or path to file containing conversations, which will be summarized. * **save_path** : File path where to save summaries generated by the model. * **reference_path** : Target file or path to file containing summaries, used to calculate matrices. * **score_path** : File path where to save scores. * **bs** : Batch size * **device**: Cuda devices to use. Please make sure you have downloaded the Gupshup dataset using the above google form and provide the correct path to these files in the argument's `input_path` and `refrence_path.` Or you can simply put `test.source` and `test.target` in `data/h2e/`(hinglish to english) or `data/e2e/`(english to english) folder. For example, to generate English summaries from Hinglish dialogues using the mbart model, run the following command ``` python run_eval.py \ --model_name midas/gupshup_h2e_mbart \ --input_path data/h2e/test.source \ --save_path generated_summary.txt \ --reference_path data/h2e/test.target \ --score_path scores.txt \ --bs 8 ``` Another example, to generate English summaries from English dialogues using the Pegasus model ``` python run_eval.py \ --model_name midas/gupshup_e2e_pegasus \ --input_path data/e2e/test.source \ --save_path generated_summary.txt \ --reference_path data/e2e/test.target \ --score_path scores.txt \ --bs 8 ``` Please create an issue if you are facing any difficulties in replicating the results. ### References Please cite [[1]](https://arxiv.org/abs/1910.04073) if you found the resources in this repository useful. [1] Mehnaz, Laiba, Debanjan Mahata, Rakesh Gosangi, Uma Sushmitha Gunturi, Riya Jain, Gauri Gupta, Amardeep Kumar, Isabelle G. Lee, Anish Acharya, and Rajiv Shah. [*GupShup: Summarizing Open-Domain Code-Switched Conversations*](https://aclanthology.org/2021.emnlp-main.499.pdf) ``` @inproceedings{mehnaz2021gupshup, title={GupShup: Summarizing Open-Domain Code-Switched Conversations}, author={Mehnaz, Laiba and Mahata, Debanjan and Gosangi, Rakesh and Gunturi, Uma Sushmitha and Jain, Riya and Gupta, Gauri and Kumar, Amardeep and Lee, Isabelle G and Acharya, Anish and Shah, Rajiv}, booktitle={Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing}, pages={6177--6192}, year={2021} } ```
mikeee/model-zs
9d67271c32a3fed01c97322bc6d7ec04b090ced1
2022-01-23T11:36:38.000Z
[ "pytorch", "xlm-roberta", "text-classification", "transformers" ]
text-classification
false
mikeee
null
mikeee/model-zs
5
null
transformers
16,714
Entry not found
milyiyo/multi-minilm-finetuned-amazon-review
cb5cf17e58a9e28b42e4cf73b511abff6c850ac7
2022-01-16T22:53:05.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "dataset:amazon_reviews_multi", "transformers", "generated_from_trainer", "license:mit", "model-index" ]
text-classification
false
milyiyo
null
milyiyo/multi-minilm-finetuned-amazon-review
5
null
transformers
16,715
--- license: mit tags: - generated_from_trainer datasets: - amazon_reviews_multi metrics: - accuracy - f1 - precision - recall model-index: - name: multi-minilm-finetuned-amazon-review results: - task: name: Text Classification type: text-classification dataset: name: amazon_reviews_multi type: amazon_reviews_multi args: es metrics: - name: Accuracy type: accuracy value: 0.5422 - name: F1 type: f1 value: 0.543454465221178 - name: Precision type: precision value: 0.5452336215624385 - name: Recall type: recall value: 0.5422 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # multi-minilm-finetuned-amazon-review This model is a fine-tuned version of [microsoft/Multilingual-MiniLM-L12-H384](https://huggingface.co/microsoft/Multilingual-MiniLM-L12-H384) on the amazon_reviews_multi dataset. It achieves the following results on the evaluation set: - Loss: 1.2436 - Accuracy: 0.5422 - F1: 0.5435 - Precision: 0.5452 - Recall: 0.5422 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|:---------:|:------:| | 1.0049 | 1.0 | 2500 | 1.0616 | 0.5352 | 0.5268 | 0.5347 | 0.5352 | | 0.9172 | 2.0 | 5000 | 1.0763 | 0.5432 | 0.5412 | 0.5444 | 0.5432 | | 0.8285 | 3.0 | 7500 | 1.1077 | 0.5408 | 0.5428 | 0.5494 | 0.5408 | | 0.7361 | 4.0 | 10000 | 1.1743 | 0.5342 | 0.5399 | 0.5531 | 0.5342 | | 0.6538 | 5.0 | 12500 | 1.2436 | 0.5422 | 0.5435 | 0.5452 | 0.5422 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
ml6team/robbert-dutch-base-toxic-comments
0cc82d682443fc2502fa1687656c116a387d737d
2022-01-20T07:57:36.000Z
[ "pytorch", "roberta", "text-classification", "nl", "transformers", "license:apache-2.0" ]
text-classification
false
ml6team
null
ml6team/robbert-dutch-base-toxic-comments
5
4
transformers
16,716
--- language: - nl tags: - text-classification - pytorch widget: - text: "Ik heb je lief met heel mijn hart" example_title: "Non toxic comment 1" - text: "Dat is een goed punt, zo had ik het nog niet bekeken." example_title: "Non toxic comment 2" - text: "Wat de fuck zei je net tegen me, klootzak?" example_title: "Toxic comment 1" - text: "Rot op, vuile hoerenzoon." example_title: "Toxic comment 2" license: apache-2.0 metrics: - Accuracy, F1 Score, Recall, Precision --- # RobBERT-dutch-base-toxic-comments ## Model description: This model was created with the purpose to detect toxic or potentially harmful comments. For this model, we finetuned a dutch RobBerta-based model called [RobBERT](https://huggingface.co/pdelobelle/robbert-v2-dutch-base) on the translated [Jigsaw Toxicity dataset](https://www.kaggle.com/c/jigsaw-toxic-comment-classification-challenge). The original dataset was translated using the appropriate [MariantMT model](https://huggingface.co/Helsinki-NLP/opus-mt-en-nl). The model was trained for 2 epochs, on 90% of the dataset, with the following arguments: ``` training_args = TrainingArguments( learning_rate=1e-5, per_device_train_batch_size=8, per_device_eval_batch_size=8, gradient_accumulation_steps=6, load_best_model_at_end=True, metric_for_best_model="recall", epochs=2, evaluation_strategy="steps", save_strategy="steps", save_total_limit=10, logging_steps=100, eval_steps=250, save_steps=250, weight_decay=0.001, report_to="wandb") ``` ## Model Performance: Model evaluation was done on 1/10th of the dataset, which served as the test dataset. | Accuracy | F1 Score | Recall | Precision | | --- | --- | --- | --- | | 95.63 | 78.80 | 78.99 | 78.61 | ## Dataset: Unfortunately we cannot open-source the dataset, since we are bound by the underlying Jigsaw license.
mmcquade11/autonlp-imdb-test-21134442
373477ad379a424dd616415ea679cffbe8097606
2021-10-18T20:16:41.000Z
[ "pytorch", "bert", "text-classification", "en", "dataset:mmcquade11/autonlp-data-imdb-test", "transformers", "autonlp", "co2_eq_emissions" ]
text-classification
false
mmcquade11
null
mmcquade11/autonlp-imdb-test-21134442
5
null
transformers
16,717
--- tags: autonlp language: en widget: - text: "I love AutoNLP 🤗" datasets: - mmcquade11/autonlp-data-imdb-test co2_eq_emissions: 298.7849611952843 --- # Model Trained Using AutoNLP - Problem type: Binary Classification - Model ID: 21134442 - CO2 Emissions (in grams): 298.7849611952843 ## Validation Metrics - Loss: 0.21618066728115082 - Accuracy: 0.9393 - Precision: 0.9360730593607306 - Recall: 0.943 - AUC: 0.98362804 - F1: 0.9395237620803029 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/mmcquade11/autonlp-imdb-test-21134442 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("mmcquade11/autonlp-imdb-test-21134442", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("mmcquade11/autonlp-imdb-test-21134442", use_auth_token=True) inputs = tokenizer("I love AutoNLP", return_tensors="pt") outputs = model(**inputs) ```
mmoradi/Robust-Biomed-RoBERTa-TextualInference
955a62e817848392b3d4bb271ef22dbe30487230
2021-10-07T13:42:06.000Z
[ "pytorch", "jax", "roberta", "feature-extraction", "transformers" ]
feature-extraction
false
mmoradi
null
mmoradi/Robust-Biomed-RoBERTa-TextualInference
5
null
transformers
16,718
Entry not found
mofawzy/BERT-ASTD
e0b1163d3000957431d094c2d0669a6ff6abe193
2022-02-18T22:49:39.000Z
[ "pytorch", "tf", "bert", "text-classification", "ar", "dataset:ASTD", "transformers", "ASTD" ]
text-classification
false
mofawzy
null
mofawzy/BERT-ASTD
5
1
transformers
16,719
--- language: - ar datasets: - ASTD tags: - ASTD widget: - text: "العنف والقتل في محيط العالم في زياده يوميا" - text: "الصداقه تزرع الحياه ازهارا" --- # BERT-ASTD Balanced Arabic version bert model fine tuned on ASTD dataset balanced version to identify twitter sentiments in Arabic language MSA dialect . ## Data The model were fine-tuned on ~1330 tweet in Arabic language. ## Results | class | precision | recall | f1-score | Support | |----------|-----------|--------|----------|---------| | 0 | 0.9328 | 0.9398 | 0.9363 | 133 | | 1 | 0.9394 | 0.9323 | 0.9358 | 133 | | Accuracy | | | 0.9361 | 266 | ## How to use You can use these models by installing `torch` or `tensorflow` and Huggingface library `transformers`. And you can use it directly by initializing it like this: ```python from transformers import AutoModelForSequenceClassification, AutoTokenizer model_name="mofawzy/BERT-ASTD" model = AutoModelForSequenceClassification.from_pretrained(model_name,num_labels=2) tokenizer = AutoTokenizer.from_pretrained(model_name) ```
mofawzy/Bert-hard-balanced
1cfc9dc5156c0f2240b764a0595a3b587e0156f1
2022-02-18T23:29:24.000Z
[ "pytorch", "bert", "text-classification", "ar", "dataset:HARD", "transformers", "HARD" ]
text-classification
false
mofawzy
null
mofawzy/Bert-hard-balanced
5
1
transformers
16,720
--- language: - ar datasets: - HARD tags: - HARD widget: - text: "جيد. المكان جميل وهاديء. كل شي جيد ونظيف" - text: "استغرب تقييم الفندق كخمس نجوم”. لا شي. يستحق" --- # BERT-ASTD Balanced Arabic version bert model fine tuned on Hotel Arabic Reviews dataset from booking.com (HARD) dataset balanced version to identify sentiments opinion in Arabic language. ## Data The model were fine-tuned on ~93000 book reviews in arabic using bert large arabic Dataset: - Train 70% - Validation: 10% - Test: 20% ## Results | class | precision | recall | f1-score | Support | |----------|-----------|--------|----------|---------| | 0 | 0.9733 | 0.9547 | 0.9639 | 10570 | | 1 | 0.9555 | 0.9738 | 0.9646 | 10570 | | Accuracy | | | 0.9642 | 21140 | ## How to use You can use these models by installing `torch` or `tensorflow` and Huggingface library `transformers`. And you can use it directly by initializing it like this: ```python from transformers import AutoModelForSequenceClassification, AutoTokenizer model_name="mofawzy/Bert-hard-balanced" model = AutoModelForSequenceClassification.from_pretrained(model_name,num_labels=2) tokenizer = AutoTokenizer.from_pretrained(model_name) ```
mofawzy/arbert-goodreads
2894639541306e3d28c48d04fbd4adf6e5290606
2021-12-05T04:48:16.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
mofawzy
null
mofawzy/arbert-goodreads
5
null
transformers
16,721
Entry not found
mohsenfayyaz/bert-base-uncased-offenseval2019-upsample
672b9c1d188c49e87311e9794acd0b73ae55d634
2021-05-19T23:42:32.000Z
[ "pytorch", "jax", "bert", "text-classification", "transformers" ]
text-classification
false
mohsenfayyaz
null
mohsenfayyaz/bert-base-uncased-offenseval2019-upsample
5
null
transformers
16,722
Entry not found
mohsenfayyaz/bert-base-uncased-offenseval2019
32d9b8221d6bb1cfc14d867b4fa200ff2c0742b8
2021-05-19T23:43:36.000Z
[ "pytorch", "jax", "bert", "text-classification", "transformers" ]
text-classification
false
mohsenfayyaz
null
mohsenfayyaz/bert-base-uncased-offenseval2019
5
null
transformers
16,723
Entry not found
mohsenfayyaz/roberta-base-toxicity
60f207a822d82c823c1169164b7404f88d006c49
2021-05-20T17:59:08.000Z
[ "pytorch", "jax", "roberta", "text-classification", "transformers" ]
text-classification
false
mohsenfayyaz
null
mohsenfayyaz/roberta-base-toxicity
5
null
transformers
16,724
Entry not found
monsoon-nlp/byt5-base-dv
a9fee4d5ad49fad2b8f36ac419b19729a53a8e01
2021-07-09T23:32:01.000Z
[ "pytorch", "tf", "t5", "text2text-generation", "dv", "transformers", "autotrain_compatible" ]
text2text-generation
false
monsoon-nlp
null
monsoon-nlp/byt5-base-dv
5
null
transformers
16,725
--- language: dv --- # byt5-base-dv Pretrained from scratch on Dhivei (language of the Maldives) with ByT5, Google's new byte-level tokenizer strategy. **Use byt5-dv for now; this is less accurate** Corpus: Sofwath's Dhivehi corpus https://github.com/Sofwath/DhivehiDatasets Pretraining Notebook: https://colab.research.google.com/drive/1ERIZ1PyHn-yN_jo7dTQeODn22vrt-d1d?usp=sharing ## Fine-tuning Demo On Dhivehi news classification task https://colab.research.google.com/drive/11u5SafR4bKICmArgDl6KQ9vqfYtDpyWp?usp=sharing ## Issues There was an issue with the vocabulary size, final layer, and/or accuracy on fine-tuning.
monsoon-nlp/gpt-nyc-nontoxic
cca94e0cab06fb987a2d3e474d1e8fe686b2eee8
2021-08-09T02:04:22.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
monsoon-nlp
null
monsoon-nlp/gpt-nyc-nontoxic
5
null
transformers
16,726
# GPT-NYC-nontoxic ## About GPT2 (small version on HF) fine-tuned on questions and responses from https://reddit.com/r/asknyc I filtered comments to ones with scores >= 3, and responding directly to the original post ( = ignoring responses to other commenters). I also added many tokens which were common on /r/AskNYC but missing from GPT2. Additional <Toxic> and <NonToxic> tokens control following output. Toxic comments (about 5.5% of input data) are those which were flagged by [Perspective API](https://developers.perspectiveapi.com) with toxicity > 0.7, or by [English DeHateBERT](https://huggingface.co/Hate-speech-CNERG/dehatebert-mono-english), with <NonToxic> tagging for all comments related to LGBTQ identity to avoid false positives / more aggressive censorship from these classifiers. Try prompting with ```question? - additional info %% <Toxic> ``` Or ```question? - additional info %% <NonToxic>``` ## Other options The [gpt-nyc-small](https://huggingface.co/monsoon-nlp/gpt-nyc-small) repo is based on GPT2 [small] but without the <Toxic> and <NonToxic> tags. It is the most directly comparable model to this one. The main [gpt-nyc](https://huggingface.co/monsoon-nlp/gpt-nyc) repo is based on GPT2-Medium and comes off more accurate. It does not have Toxic/NonToxic tagging. ## Blog Initial model: https://mapmeld.medium.com/gpt-nyc-part-1-9cb698b2e3d ## Notebooks ### Data processing / new tokens https://colab.research.google.com/drive/13BOw0uekoAYB4jjQtaXTn6J_VHatiRLu ### Fine-tuning GPT2 (small) https://colab.research.google.com/drive/1FnXcAh4H-k8dAzixkV5ieygV96ePh3lR ### Predictive text and probabilities Scroll to end of https://colab.research.google.com/drive/1FnXcAh4H-k8dAzixkV5ieygV96ePh3lR to see how to install git-lfs and trick ecco into loading this.
moussaKam/frugalscore_medium_deberta_bert-score
e998607b03da2cdd96d96a0670defc2fa89aac51
2022-02-01T10:51:45.000Z
[ "pytorch", "bert", "text-classification", "arxiv:2110.08559", "transformers" ]
text-classification
false
moussaKam
null
moussaKam/frugalscore_medium_deberta_bert-score
5
null
transformers
16,727
# FrugalScore FrugalScore is an approach to learn a fixed, low cost version of any expensive NLG metric, while retaining most of its original performance Paper: https://arxiv.org/abs/2110.08559?context=cs Project github: https://github.com/moussaKam/FrugalScore The pretrained checkpoints presented in the paper : | FrugalScore | Student | Teacher | Method | |----------------------------------------------------|-------------|----------------|------------| | [moussaKam/frugalscore_tiny_bert-base_bert-score](https://huggingface.co/moussaKam/frugalscore_tiny_bert-base_bert-score) | BERT-tiny | BERT-Base | BERTScore | | [moussaKam/frugalscore_small_bert-base_bert-score](https://huggingface.co/moussaKam/frugalscore_small_bert-base_bert-score) | BERT-small | BERT-Base | BERTScore | | [moussaKam/frugalscore_medium_bert-base_bert-score](https://huggingface.co/moussaKam/frugalscore_medium_bert-base_bert-score) | BERT-medium | BERT-Base | BERTScore | | [moussaKam/frugalscore_tiny_roberta_bert-score](https://huggingface.co/moussaKam/frugalscore_tiny_roberta_bert-score) | BERT-tiny | RoBERTa-Large | BERTScore | | [moussaKam/frugalscore_small_roberta_bert-score](https://huggingface.co/moussaKam/frugalscore_small_roberta_bert-score) | BERT-small | RoBERTa-Large | BERTScore | | [moussaKam/frugalscore_medium_roberta_bert-score](https://huggingface.co/moussaKam/frugalscore_medium_roberta_bert-score) | BERT-medium | RoBERTa-Large | BERTScore | | [moussaKam/frugalscore_tiny_deberta_bert-score](https://huggingface.co/moussaKam/frugalscore_tiny_deberta_bert-score) | BERT-tiny | DeBERTa-XLarge | BERTScore | | [moussaKam/frugalscore_small_deberta_bert-score](https://huggingface.co/moussaKam/frugalscore_small_deberta_bert-score) | BERT-small | DeBERTa-XLarge | BERTScore | | [moussaKam/frugalscore_medium_deberta_bert-score](https://huggingface.co/moussaKam/frugalscore_medium_deberta_bert-score) | BERT-medium | DeBERTa-XLarge | BERTScore | | [moussaKam/frugalscore_tiny_bert-base_mover-score](https://huggingface.co/moussaKam/frugalscore_tiny_bert-base_mover-score) | BERT-tiny | BERT-Base | MoverScore | | [moussaKam/frugalscore_small_bert-base_mover-score](https://huggingface.co/moussaKam/frugalscore_small_bert-base_mover-score) | BERT-small | BERT-Base | MoverScore | | [moussaKam/frugalscore_medium_bert-base_mover-score](https://huggingface.co/moussaKam/frugalscore_medium_bert-base_mover-score) | BERT-medium | BERT-Base | MoverScore |
moussaKam/frugalscore_small_bert-base_bert-score
73441c494f4ad4c211e78c200c0b3ef7c5e73609
2022-02-01T10:50:31.000Z
[ "pytorch", "bert", "text-classification", "arxiv:2110.08559", "transformers" ]
text-classification
false
moussaKam
null
moussaKam/frugalscore_small_bert-base_bert-score
5
null
transformers
16,728
# FrugalScore FrugalScore is an approach to learn a fixed, low cost version of any expensive NLG metric, while retaining most of its original performance Paper: https://arxiv.org/abs/2110.08559?context=cs Project github: https://github.com/moussaKam/FrugalScore The pretrained checkpoints presented in the paper : | FrugalScore | Student | Teacher | Method | |----------------------------------------------------|-------------|----------------|------------| | [moussaKam/frugalscore_tiny_bert-base_bert-score](https://huggingface.co/moussaKam/frugalscore_tiny_bert-base_bert-score) | BERT-tiny | BERT-Base | BERTScore | | [moussaKam/frugalscore_small_bert-base_bert-score](https://huggingface.co/moussaKam/frugalscore_small_bert-base_bert-score) | BERT-small | BERT-Base | BERTScore | | [moussaKam/frugalscore_medium_bert-base_bert-score](https://huggingface.co/moussaKam/frugalscore_medium_bert-base_bert-score) | BERT-medium | BERT-Base | BERTScore | | [moussaKam/frugalscore_tiny_roberta_bert-score](https://huggingface.co/moussaKam/frugalscore_tiny_roberta_bert-score) | BERT-tiny | RoBERTa-Large | BERTScore | | [moussaKam/frugalscore_small_roberta_bert-score](https://huggingface.co/moussaKam/frugalscore_small_roberta_bert-score) | BERT-small | RoBERTa-Large | BERTScore | | [moussaKam/frugalscore_medium_roberta_bert-score](https://huggingface.co/moussaKam/frugalscore_medium_roberta_bert-score) | BERT-medium | RoBERTa-Large | BERTScore | | [moussaKam/frugalscore_tiny_deberta_bert-score](https://huggingface.co/moussaKam/frugalscore_tiny_deberta_bert-score) | BERT-tiny | DeBERTa-XLarge | BERTScore | | [moussaKam/frugalscore_small_deberta_bert-score](https://huggingface.co/moussaKam/frugalscore_small_deberta_bert-score) | BERT-small | DeBERTa-XLarge | BERTScore | | [moussaKam/frugalscore_medium_deberta_bert-score](https://huggingface.co/moussaKam/frugalscore_medium_deberta_bert-score) | BERT-medium | DeBERTa-XLarge | BERTScore | | [moussaKam/frugalscore_tiny_bert-base_mover-score](https://huggingface.co/moussaKam/frugalscore_tiny_bert-base_mover-score) | BERT-tiny | BERT-Base | MoverScore | | [moussaKam/frugalscore_small_bert-base_mover-score](https://huggingface.co/moussaKam/frugalscore_small_bert-base_mover-score) | BERT-small | BERT-Base | MoverScore | | [moussaKam/frugalscore_medium_bert-base_mover-score](https://huggingface.co/moussaKam/frugalscore_medium_bert-base_mover-score) | BERT-medium | BERT-Base | MoverScore |
moussaKam/frugalscore_tiny_deberta_bert-score
267c17bec0ada8743db19f8a50d057ae63af3151
2022-02-01T10:51:30.000Z
[ "pytorch", "bert", "text-classification", "arxiv:2110.08559", "transformers" ]
text-classification
false
moussaKam
null
moussaKam/frugalscore_tiny_deberta_bert-score
5
null
transformers
16,729
# FrugalScore FrugalScore is an approach to learn a fixed, low cost version of any expensive NLG metric, while retaining most of its original performance Paper: https://arxiv.org/abs/2110.08559?context=cs Project github: https://github.com/moussaKam/FrugalScore The pretrained checkpoints presented in the paper : | FrugalScore | Student | Teacher | Method | |----------------------------------------------------|-------------|----------------|------------| | [moussaKam/frugalscore_tiny_bert-base_bert-score](https://huggingface.co/moussaKam/frugalscore_tiny_bert-base_bert-score) | BERT-tiny | BERT-Base | BERTScore | | [moussaKam/frugalscore_small_bert-base_bert-score](https://huggingface.co/moussaKam/frugalscore_small_bert-base_bert-score) | BERT-small | BERT-Base | BERTScore | | [moussaKam/frugalscore_medium_bert-base_bert-score](https://huggingface.co/moussaKam/frugalscore_medium_bert-base_bert-score) | BERT-medium | BERT-Base | BERTScore | | [moussaKam/frugalscore_tiny_roberta_bert-score](https://huggingface.co/moussaKam/frugalscore_tiny_roberta_bert-score) | BERT-tiny | RoBERTa-Large | BERTScore | | [moussaKam/frugalscore_small_roberta_bert-score](https://huggingface.co/moussaKam/frugalscore_small_roberta_bert-score) | BERT-small | RoBERTa-Large | BERTScore | | [moussaKam/frugalscore_medium_roberta_bert-score](https://huggingface.co/moussaKam/frugalscore_medium_roberta_bert-score) | BERT-medium | RoBERTa-Large | BERTScore | | [moussaKam/frugalscore_tiny_deberta_bert-score](https://huggingface.co/moussaKam/frugalscore_tiny_deberta_bert-score) | BERT-tiny | DeBERTa-XLarge | BERTScore | | [moussaKam/frugalscore_small_deberta_bert-score](https://huggingface.co/moussaKam/frugalscore_small_deberta_bert-score) | BERT-small | DeBERTa-XLarge | BERTScore | | [moussaKam/frugalscore_medium_deberta_bert-score](https://huggingface.co/moussaKam/frugalscore_medium_deberta_bert-score) | BERT-medium | DeBERTa-XLarge | BERTScore | | [moussaKam/frugalscore_tiny_bert-base_mover-score](https://huggingface.co/moussaKam/frugalscore_tiny_bert-base_mover-score) | BERT-tiny | BERT-Base | MoverScore | | [moussaKam/frugalscore_small_bert-base_mover-score](https://huggingface.co/moussaKam/frugalscore_small_bert-base_mover-score) | BERT-small | BERT-Base | MoverScore | | [moussaKam/frugalscore_medium_bert-base_mover-score](https://huggingface.co/moussaKam/frugalscore_medium_bert-base_mover-score) | BERT-medium | BERT-Base | MoverScore |
mrm8488/convbert-small-spanish
3dd1c2e8c297391c338ec14a3b427056cb14d75b
2021-07-20T19:11:54.000Z
[ "pytorch", "tf", "convbert", "feature-extraction", "es", "dataset:large_spanish_corpus", "arxiv:2008.02496", "transformers", "license:mit" ]
feature-extraction
false
mrm8488
null
mrm8488/convbert-small-spanish
5
1
transformers
16,730
--- language: es datasets: - large_spanish_corpus license: mit --- # ConvBERT small pre-trained on large_spanish_corpus The ConvBERT architecture is presented in the ["ConvBERT: Improving BERT with Span-based Dynamic Convolution"](https://arxiv.org/abs/2008.02496) paper. ## Metrics on evaluation set ``` disc_accuracy = 0.95163906 disc_auc = 0.9405496 disc_loss = 0.13658184 disc_precision = 0.80829453 disc_recall = 0.49316448 global_step = 1000000 loss = 9.12079 masked_lm_accuracy = 0.53505784 masked_lm_loss = 2.3028736 sampled_masked_lm_accuracy = 0.44047198 ``` ## Usage ```python from transformers import AutoModel, AutoTokenizer model_name = "mrm8488/convbert-small-spanish" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModel.from_pretrained(model_name) ``` > Created by [Manuel Romero/@mrm8488](https://twitter.com/mrm8488) with the support of [Narrativa](https://www.narrativa.com/) > Made with <span style="color: #e25555;">&hearts;</span> in Spain
mrm8488/deberta-v3-small-goemotions
25552893e88a2ba0918e763a66207f8edd4554ce
2021-12-28T23:12:12.000Z
[ "pytorch", "tensorboard", "deberta-v2", "text-classification", "transformers", "generated_from_trainer", "license:mit", "model-index" ]
text-classification
false
mrm8488
null
mrm8488/deberta-v3-small-goemotions
5
null
transformers
16,731
--- license: mit tags: - generated_from_trainer metrics: - f1 model-index: - name: deberta-v3-snall-goemotions results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # deberta-v3-snall-goemotions This model is a fine-tuned version of [microsoft/deberta-v3-small](https://huggingface.co/microsoft/deberta-v3-small) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.5638 - F1: 0.4241 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 1.614 | 1.0 | 3082 | 1.5577 | 0.3663 | | 1.4338 | 2.0 | 6164 | 1.5580 | 0.4084 | | 1.2936 | 3.0 | 9246 | 1.5006 | 0.4179 | | 1.1531 | 4.0 | 12328 | 1.5348 | 0.4276 | | 1.0536 | 5.0 | 15410 | 1.5638 | 0.4241 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
mrm8488/distilbert-multi-finedtuned-squad-pt
9cfb67374c33d73e9abbeaae7e41985ce218642b
2020-05-23T07:23:36.000Z
[ "pytorch", "distilbert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
mrm8488
null
mrm8488/distilbert-multi-finedtuned-squad-pt
5
null
transformers
16,732
Entry not found
mrm8488/electricidad-base-finetuned-pawsx-es
bcdcdcd3df46c25a2007f8bb853a9189fcdbc12a
2021-04-28T15:52:25.000Z
[ "pytorch", "electra", "text-classification", "es", "dataset:xtreme", "transformers", "nli" ]
text-classification
false
mrm8488
null
mrm8488/electricidad-base-finetuned-pawsx-es
5
1
transformers
16,733
--- language: es datasets: - xtreme tags: - nli widget: - text: "El río Tabaci es una vertiente del río Leurda en Rumania. El río Leurda es un afluente del río Tabaci en Rumania." --- # Electricidad-base fine-tuned on PAWS-X-es for Paraphrase Identification (NLI)
mrm8488/es-tinybert-v1
d74022048982a717c651bec56935e653412f60ea
2021-05-20T00:47:48.000Z
[ "pytorch", "jax", "bert", "transformers" ]
null
false
mrm8488
null
mrm8488/es-tinybert-v1
5
null
transformers
16,734
Entry not found
mrm8488/gpt2-imdb-neutral
2424eeb2546306857174670e99b2bc9bc8b37e22
2021-08-07T07:15:04.000Z
[ "pytorch", "gpt2", "en", "dataset:imdb", "transformers", "GPT-2", "license:mit" ]
null
false
mrm8488
null
mrm8488/gpt2-imdb-neutral
5
1
transformers
16,735
--- language: en tags: - GPT-2 datasets: - imdb widgets: - text: "I think the movie was " license: mit --- # GPT2-IMDB-neutral (LM + RL) 🎞😐✍ ## What is it? A small GPT2 (`lvwerra/gpt2-imdb`) language model fine-tuned to produce **neutral**-ish movie reviews based on the [IMDB dataset](https://www.kaggle.com/lakshmi25npathi/imdb-dataset-of-50k-movie-reviews). The model is trained with rewards from a BERT sentiment classifier (`lvwerra/gpt2-imdb`) via **PPO**. ## Why? After reproducing the experiment [lvwerra/gpt2-imdb-pos](https://huggingface.co/lvwerra/gpt2-imdb-pos) but for generating **negative** movie reviews ([mrm8488/gpt2-imdb-neg](https://huggingface.co/mrm8488/gpt2-imdb-neg)) I wanted to check if I could generate neutral-ish movie reviews. So, based on the classifier output (logit), I saw that clearly negative reviews gives around *-4* values and clearly positive reviews around *4*. Then, it was esay to establish an interval ```[-1.75,1.75]``` that it could be considered as **neutral**. So if the classifier output was in that interval I gave it a positive reward while values out of the interval got a negative reward. ## Training setting The model was trained for `100` optimisation steps with a batch size of `128` which corresponds to `30000` training samples. The full experiment setup (for positive samples) in [trl repo](https://lvwerra.github.io/trl/04-gpt2-sentiment-ppo-training/). ## Examples A few examples of the model response to a query before and after optimisation: | query | response (before) | response (after) | rewards (before) | rewards (after) | |-------|-------------------|------------------|------------------|-----------------| |Okay, my title is|partly over, but this drama still makes me proud to read its first 40...|weird. The title is "mana were, ahunter". "Man...|4.200727 |-1.891443| |Where is it written that|there is a monster in this movie anyway? How is it that the entire|[ of the women in the recent women of jungle business between Gender and husband| -3.113942| -1.944993| |As a lesbian, I|cannot believe I was in the Sixties! Subtle yet witty, with original| found it hard to get responsive. In fact I found myself with the long|\t3.906178|\t0.769166| |The Derek's have over|three times as many acting hours than Jack Nicholson? You think bitches?|30 dueling characters and kill of, they retreat themselves to their base.|-2.503655| -1.898380| > All credits to [@lvwerra](https://twitter.com/lvwerra) > Created by [Manuel Romero/@mrm8488](https://twitter.com/mrm8488) > Made with <span style="color: #e25555;">&hearts;</span> in Spain
mrm8488/prunebert-multi-uncased-finepruned-soft-movement-tydiqa-for-xqa
e2b6bdef50c3bc856fcf569e933e34f6b2b2cdd2
2020-06-10T17:24:44.000Z
[ "pytorch", "tensorboard", "masked_bert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
mrm8488
null
mrm8488/prunebert-multi-uncased-finepruned-soft-movement-tydiqa-for-xqa
5
null
transformers
16,736
Entry not found
mrm8488/t5-base-finetuned-disaster-tweets
afd35e68766022e528206b268439bcf7b9834c21
2021-06-23T12:44:56.000Z
[ "pytorch", "jax", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
mrm8488
null
mrm8488/t5-base-finetuned-disaster-tweets
5
null
transformers
16,737
Entry not found
mrp/simcse-model-m-bert-thai-cased
1a309049e15ee54a2e63ee82f556e7db846c5546
2021-10-05T05:48:44.000Z
[ "pytorch", "bert", "feature-extraction", "arxiv:2104.08821", "sentence-transformers", "sentence-similarity", "transformers" ]
sentence-similarity
false
mrp
null
mrp/simcse-model-m-bert-thai-cased
5
null
sentence-transformers
16,738
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {mrp/simcse-model-m-bert-thai-cased} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> We use SimCSE [here](https://arxiv.org/pdf/2104.08821.pdf) by using mBERT as the baseline model and training the model with Thai Wikipedia [here](https://github.com/PyThaiNLP/ThaiWiki-clean/releases/tag/20210620?fbclid=IwAR1YcmZkb-xd1ibTWCJOcu98_FQ5x3ioZaGW1ME-VHy9fAQLhEr5tXTJygA) ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["ฉันนะคือคนรักชาติยังไงละ!", "พวกสามกีบล้มเจ้า!"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ```
msavel-prnt/distilbert-base-uncased-finetuned-clinc
83a0de4ca19608c9ca7340990581e58855b8fd60
2022-01-05T15:37:05.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:clinc_oos", "transformers", "generated_from_trainer", "license:apache-2.0" ]
text-classification
false
msavel-prnt
null
msavel-prnt/distilbert-base-uncased-finetuned-clinc
5
null
transformers
16,739
--- license: apache-2.0 tags: - generated_from_trainer datasets: - clinc_oos metrics: - accuracy model_index: - name: distilbert-base-uncased-finetuned-clinc results: - task: name: Text Classification type: text-classification dataset: name: clinc_oos type: clinc_oos args: plus metric: name: Accuracy type: accuracy value: 0.9180645161290323 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-clinc This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the clinc_oos dataset. It achieves the following results on the evaluation set: - Loss: 0.7528 - Accuracy: 0.9181 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 48 - eval_batch_size: 48 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 318 | 3.3044 | 0.7623 | | 3.7959 | 2.0 | 636 | 1.8674 | 0.8597 | | 3.7959 | 3.0 | 954 | 1.1377 | 0.8948 | | 1.6819 | 4.0 | 1272 | 0.8351 | 0.9126 | | 0.8804 | 5.0 | 1590 | 0.7528 | 0.9181 | ### Framework versions - Transformers 4.8.2 - Pytorch 1.9.0+cu102 - Datasets 1.9.0 - Tokenizers 0.10.3
mujerry/bert-base-uncased-finetuned-QnA
4680faa1663470dc2c888b54ab495fba443be7eb
2021-07-27T13:30:46.000Z
[ "pytorch", "tensorboard", "bert", "fill-mask", "transformers", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible" ]
fill-mask
false
mujerry
null
mujerry/bert-base-uncased-finetuned-QnA
5
null
transformers
16,740
--- license: apache-2.0 tags: - generated_from_trainer datasets: - null model_index: - name: bert-base-uncased-finetuned-QnA results: - task: name: Masked Language Modeling type: fill-mask --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-finetuned-QnA This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.0604 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 20 | 3.4894 | | No log | 2.0 | 40 | 3.5654 | | No log | 3.0 | 60 | 3.3185 | | No log | 4.0 | 80 | 3.2859 | | No log | 5.0 | 100 | 3.2947 | | No log | 6.0 | 120 | 3.3998 | | No log | 7.0 | 140 | 3.1642 | | No log | 8.0 | 160 | 3.2653 | | No log | 9.0 | 180 | 3.3427 | | No log | 10.0 | 200 | 3.3549 | ### Framework versions - Transformers 4.9.1 - Pytorch 1.9.0+cu102 - Datasets 1.10.2 - Tokenizers 0.10.3
nadzma/finetuned-T5-UK-financial-summarization
af2fcae2f73d40c35e290c650d3e9081552fad23
2022-01-17T17:33:17.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
text2text-generation
false
nadzma
null
nadzma/finetuned-T5-UK-financial-summarization
5
null
transformers
16,741
--- license: apache-2.0 tags: - generated_from_trainer metrics: - rouge model-index: - name: finetuned-T5-UK-financial-summarization results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuned-T5-UK-financial-summarization This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3276 - Rouge1: 49.5834 - Rouge2: 34.5668 - Rougel: 37.6179 - Rougelsum: 46.0004 - Gen Len: 490.0579 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 4.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:| | 0.8064 | 0.67 | 1000 | 0.4376 | 5.8905 | 3.8332 | 5.1982 | 5.5451 | 19.0 | | 0.486 | 1.34 | 2000 | 0.3717 | 6.3056 | 4.3892 | 5.6589 | 6.0154 | 19.0 | | 0.4492 | 2.01 | 3000 | 0.3427 | 6.4831 | 4.595 | 5.809 | 6.1753 | 19.0 | | 0.4138 | 2.68 | 4000 | 0.3362 | 6.4667 | 4.5705 | 5.8081 | 6.1579 | 19.0 | | 0.3697 | 3.34 | 5000 | 0.3284 | 6.5319 | 4.6032 | 5.8458 | 6.2253 | 19.0 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.7.0 - Datasets 1.17.0 - Tokenizers 0.11.0
naram92/distilbert-base-uncased-finetuned-ner
4cdd420e27abe8cad0fe5da9711ca74326d490e4
2021-09-28T16:03:47.000Z
[ "pytorch", "tensorboard", "distilbert", "token-classification", "dataset:conll2003", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
token-classification
false
naram92
null
naram92/distilbert-base-uncased-finetuned-ner
5
null
transformers
16,742
--- license: apache-2.0 tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: distilbert-base-uncased-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 args: conll2003 metrics: - name: Precision type: precision value: 0.9255649091714665 - name: Recall type: recall value: 0.9347801767535519 - name: F1 type: f1 value: 0.9301497189291478 - name: Accuracy type: accuracy value: 0.9837164598789457 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-ner This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0613 - Precision: 0.9256 - Recall: 0.9348 - F1: 0.9301 - Accuracy: 0.9837 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.2414 | 1.0 | 878 | 0.0702 | 0.9097 | 0.9200 | 0.9148 | 0.9804 | | 0.0521 | 2.0 | 1756 | 0.0609 | 0.9190 | 0.9327 | 0.9258 | 0.9828 | | 0.0308 | 3.0 | 2634 | 0.0613 | 0.9256 | 0.9348 | 0.9301 | 0.9837 | ### Framework versions - Transformers 4.11.0 - Pytorch 1.9.0+cu102 - Datasets 1.12.1 - Tokenizers 0.10.3
nateraw/resnet50
74b8ab5d279c8073d535c0a98b64f9089ff59780
2021-04-15T23:19:34.000Z
[ "pytorch", "resnet", "dataset:imagenet", "transformers", "image-classification" ]
image-classification
false
nateraw
null
nateraw/resnet50
5
null
transformers
16,743
--- tags: - image-classification - pytorch datasets: - imagenet --- # Resnet50 Model from Torchvision ## Using the model ``` pip install modelz ``` ```python from modelz import ResnetModel model = ResnetModel.from_pretrained('nateraw/resnet50') ex_input = torch.rand(4, 3, 224, 224) out = model(ex_input) ```
ncats/EpiClassify4GARD
064c51a2f38860013d4d85ce5c3ddaa50f800051
2022-02-12T19:10:44.000Z
[ "pytorch", "bert", "text-classification", "transformers", "license:other" ]
text-classification
false
ncats
null
ncats/EpiClassify4GARD
5
null
transformers
16,744
--- license: other --- ## Model Documentation in progress
ncduy/distilbert-base-uncased-finetuned-ner
c68a1aebb656db6da5a920ae6a2fed30445cc508
2021-08-06T15:24:57.000Z
[ "pytorch", "tensorboard", "distilbert", "token-classification", "dataset:conll2003", "transformers", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible" ]
token-classification
false
ncduy
null
ncduy/distilbert-base-uncased-finetuned-ner
5
null
transformers
16,745
--- license: apache-2.0 tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model_index: - name: distilbert-base-uncased-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 args: conll2003 metric: name: Accuracy type: accuracy value: 0.9839547555880344 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-ner This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0612 - Precision: 0.9270 - Recall: 0.9377 - F1: 0.9323 - Accuracy: 0.9840 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.2403 | 1.0 | 878 | 0.0683 | 0.9177 | 0.9215 | 0.9196 | 0.9815 | | 0.0513 | 2.0 | 1756 | 0.0605 | 0.9227 | 0.9365 | 0.9295 | 0.9836 | | 0.0298 | 3.0 | 2634 | 0.0612 | 0.9270 | 0.9377 | 0.9323 | 0.9840 | ### Framework versions - Transformers 4.9.1 - Pytorch 1.9.0+cu102 - Datasets 1.11.0 - Tokenizers 0.10.3
neuralspace-reverie/indic-transformers-te-bert
2c6b0ac7cb5d20034ec372cde7699a40a972300f
2021-05-20T01:37:01.000Z
[ "pytorch", "tf", "jax", "bert", "fill-mask", "te", "transformers", "MaskedLM", "Telugu", "BERT", "Question-Answering", "Token Classification", "Text Classification", "autotrain_compatible" ]
fill-mask
false
neuralspace-reverie
null
neuralspace-reverie/indic-transformers-te-bert
5
null
transformers
16,746
--- language: - te tags: - MaskedLM - Telugu - BERT - Question-Answering - Token Classification - Text Classification --- # Indic-Transformers Telugu BERT ## Model description This is a BERT language model pre-trained on ~1.6 GB of monolingual training corpus. The pre-training data was majorly taken from [OSCAR](https://oscar-corpus.com/). This model can be fine-tuned on various downstream tasks like text-classification, POS-tagging, question-answering, etc. Embeddings from this model can also be used for feature-based training. ## Intended uses & limitations #### How to use ``` from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained('neuralspace-reverie/indic-transformers-te-bert') model = AutoModel.from_pretrained('neuralspace-reverie/indic-transformers-te-bert') text = "మీరు ఎలా ఉన్నారు" input_ids = tokenizer(text, return_tensors='pt')['input_ids'] out = model(input_ids)[0] print(out.shape) # out = [1, 5, 768] ``` #### Limitations and bias The original language model has been trained using `PyTorch` and hence the use of `pytorch_model.bin` weights file is recommended. The h5 file for `Tensorflow` has been generated manually by commands suggested [here](https://huggingface.co/transformers/model_sharing.html).
neuralspace-reverie/indic-transformers-te-xlmroberta
6ad46592e98e80d6bfb49b738e8c5a94b0bc0ae2
2020-12-11T21:57:43.000Z
[ "pytorch", "tf", "xlm-roberta", "fill-mask", "te", "transformers", "MaskedLM", "Telugu", "XLMRoBERTa", "Question-Answering", "Token Classification", "Text Classification", "autotrain_compatible" ]
fill-mask
false
neuralspace-reverie
null
neuralspace-reverie/indic-transformers-te-xlmroberta
5
null
transformers
16,747
--- language: - te tags: - MaskedLM - Telugu - XLMRoBERTa - Question-Answering - Token Classification - Text Classification --- # Indic-Transformers Telugu XLMRoBERTa ## Model description This is a XLMRoBERTa language model pre-trained on ~1.6 GB of monolingual training corpus. The pre-training data was majorly taken from [OSCAR](https://oscar-corpus.com/). This model can be fine-tuned on various downstream tasks like text-classification, POS-tagging, question-answering, etc. Embeddings from this model can also be used for feature-based training. ## Intended uses & limitations #### How to use ``` from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained('neuralspace-reverie/indic-transformers-te-xlmroberta') model = AutoModel.from_pretrained('neuralspace-reverie/indic-transformers-te-xlmroberta') text = "మీరు ఎలా ఉన్నారు" input_ids = tokenizer(text, return_tensors='pt')['input_ids'] out = model(input_ids)[0] print(out.shape) # out = [1, 5, 768] ``` #### Limitations and bias The original language model has been trained using `PyTorch` and hence the use of `pytorch_model.bin` weights file is recommended. The h5 file for `Tensorflow` has been generated manually by commands suggested [here](https://huggingface.co/transformers/model_sharing.html).
new5558/chula-course-paraphrase-multilingual-mpnet-base-v2
028413d7b6315af5caa13882631755fc2e4116e4
2021-12-21T21:26:18.000Z
[ "pytorch", "xlm-roberta", "feature-extraction", "sentence-transformers", "sentence-similarity", "transformers" ]
sentence-similarity
false
new5558
null
new5558/chula-course-paraphrase-multilingual-mpnet-base-v2
5
null
sentence-transformers
16,748
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # new5558/chula-course-paraphrase-multilingual-mpnet-base-v2 This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('new5558/chula-course-paraphrase-multilingual-mpnet-base-v2') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('new5558/chula-course-paraphrase-multilingual-mpnet-base-v2') model = AutoModel.from_pretrained('new5558/chula-course-paraphrase-multilingual-mpnet-base-v2') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=new5558/chula-course-paraphrase-multilingual-mpnet-base-v2) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 49314 with parameters: ``` {'batch_size': 32, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 2000, "evaluator": "__main__.EmbeddingSimilarityOptimizedEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 10000, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: XLMRobertaModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
niclas/model_en
577d815d8f07a8c9115fde3f38b369671b201887
2021-12-08T09:45:05.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
niclas
null
niclas/model_en
5
null
transformers
16,749
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: model_en results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # model_en This model is a fine-tuned version of [facebook/wav2vec2-large](https://huggingface.co/facebook/wav2vec2-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.8610 - Wer: 0.2641 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:-----:|:---------------:|:------:| | 6.3443 | 3.05 | 250 | 3.0966 | 1.0 | | 2.9847 | 6.1 | 500 | 3.0603 | 1.0 | | 2.9263 | 9.15 | 750 | 2.9131 | 1.0 | | 2.2584 | 12.19 | 1000 | 1.4318 | 0.6575 | | 1.2603 | 15.24 | 1250 | 1.1964 | 0.4994 | | 0.9182 | 18.29 | 1500 | 1.1494 | 0.4485 | | 0.7462 | 21.34 | 1750 | 1.2171 | 0.4357 | | 0.6129 | 24.39 | 2000 | 1.0557 | 0.3468 | | 0.5364 | 27.44 | 2250 | 1.1069 | 0.4222 | | 0.4607 | 30.48 | 2500 | 1.3270 | 0.3370 | | 0.4139 | 33.53 | 2750 | 1.1814 | 0.3658 | | 0.3587 | 36.58 | 3000 | 1.2423 | 0.3419 | | 0.321 | 39.63 | 3250 | 1.2931 | 0.3211 | | 0.2961 | 42.68 | 3500 | 1.1409 | 0.3315 | | 0.2635 | 45.73 | 3750 | 1.4537 | 0.3241 | | 0.2498 | 48.78 | 4000 | 1.2643 | 0.3192 | | 0.2352 | 51.82 | 4250 | 1.2789 | 0.3278 | | 0.2193 | 54.87 | 4500 | 1.4220 | 0.3021 | | 0.2068 | 57.92 | 4750 | 1.3567 | 0.3713 | | 0.2055 | 60.97 | 5000 | 1.5375 | 0.3051 | | 0.198 | 64.02 | 5250 | 1.2676 | 0.2782 | | 0.1835 | 67.07 | 5500 | 1.3905 | 0.2825 | | 0.1655 | 70.12 | 5750 | 1.7000 | 0.2978 | | 0.1677 | 73.17 | 6000 | 1.4250 | 0.2812 | | 0.1522 | 76.22 | 6250 | 1.4220 | 0.2941 | | 0.1522 | 79.27 | 6500 | 1.5195 | 0.3021 | | 0.1344 | 82.32 | 6750 | 1.3749 | 0.2996 | | 0.1298 | 85.36 | 7000 | 1.6663 | 0.2849 | | 0.1293 | 88.41 | 7250 | 1.4564 | 0.2892 | | 0.1264 | 91.46 | 7500 | 1.4373 | 0.2935 | | 0.1243 | 94.51 | 7750 | 1.6572 | 0.2972 | | 0.1141 | 97.56 | 8000 | 1.4936 | 0.2892 | | 0.1086 | 100.61 | 8250 | 1.5231 | 0.2868 | | 0.1056 | 103.65 | 8500 | 1.3733 | 0.2763 | | 0.098 | 106.7 | 8750 | 1.4887 | 0.2923 | | 0.0984 | 109.75 | 9000 | 1.3779 | 0.2923 | | 0.0916 | 112.8 | 9250 | 1.4868 | 0.2604 | | 0.0881 | 115.85 | 9500 | 1.7991 | 0.2996 | | 0.0846 | 118.9 | 9750 | 1.5845 | 0.2849 | | 0.0861 | 121.95 | 10000 | 1.6684 | 0.2794 | | 0.0806 | 124.99 | 10250 | 1.5774 | 0.3039 | | 0.0822 | 128.05 | 10500 | 1.5928 | 0.2886 | | 0.0788 | 131.1 | 10750 | 1.6158 | 0.2880 | | 0.0704 | 134.15 | 11000 | 1.7679 | 0.2941 | | 0.0721 | 137.19 | 11250 | 1.7055 | 0.2629 | | 0.0723 | 140.24 | 11500 | 1.5473 | 0.2653 | | 0.0676 | 143.29 | 11750 | 1.8963 | 0.2745 | | 0.0665 | 146.34 | 12000 | 1.6367 | 0.2739 | | 0.0618 | 149.39 | 12250 | 1.6757 | 0.2745 | | 0.0595 | 152.44 | 12500 | 1.5900 | 0.2745 | | 0.056 | 155.48 | 12750 | 1.5362 | 0.2794 | | 0.0587 | 158.53 | 13000 | 1.4616 | 0.2684 | | 0.0519 | 161.58 | 13250 | 1.6867 | 0.2549 | | 0.0569 | 164.63 | 13500 | 1.8294 | 0.2574 | | 0.0497 | 167.68 | 13750 | 1.7844 | 0.2868 | | 0.0531 | 170.73 | 14000 | 1.7564 | 0.2770 | | 0.0489 | 173.78 | 14250 | 1.5811 | 0.2629 | | 0.0524 | 176.82 | 14500 | 1.6925 | 0.2684 | | 0.0431 | 179.87 | 14750 | 1.7236 | 0.2653 | | 0.0457 | 182.92 | 15000 | 1.7460 | 0.2512 | | 0.045 | 185.97 | 15250 | 1.8096 | 0.2610 | | 0.0402 | 189.02 | 15500 | 1.8795 | 0.2635 | | 0.0529 | 192.07 | 15750 | 1.8310 | 0.2616 | | 0.0396 | 195.12 | 16000 | 1.8380 | 0.2635 | | 0.0432 | 198.17 | 16250 | 1.8610 | 0.2641 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.9.0 - Datasets 1.13.3 - Tokenizers 0.10.3
nikokons/dialo_transfer_5epo
deb39872bd8b7e51d68a29e40f44eb4dcef54669
2021-07-27T12:30:17.000Z
[ "pytorch", "gpt2", "transformers" ]
null
false
nikokons
null
nikokons/dialo_transfer_5epo
5
null
transformers
16,750
# A brief description: This model uses the open sourced-weights of the DIALOGPT (microsoft/DialoGPT-small) and is fine-tuned to the PERSONA-CHAT dataset using an augmented input representation and a multi-task learning scheme, further described in the paper "TransferTransfo: A Transfer Learning Approach for Neural Network Based Conversational Agents". The model finetunes quickly to the PERSONA-CHAT dataset and 5 epochs of training was sufficient. A batch size of 4 and accumulated gradients over 8 iterations are used, resulting in the effective batch size of 32. In addition, the Adam optimization scheme with a learning rate of 6e-5 is used.
nlplab/PhishingEmailGeneration
b51c2958c272f9130f92d7409440d02a879ebb00
2022-03-18T08:17:07.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
nlplab
null
nlplab/PhishingEmailGeneration
5
null
transformers
16,751
Entry not found
nlpunibo/roberta
bc51370623c87567d89814bb24b7075a91201063
2021-05-20T18:52:48.000Z
[ "pytorch", "jax", "roberta", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
nlpunibo
null
nlpunibo/roberta
5
null
transformers
16,752
Entry not found
nreimers/BERT-Medium_L-8_H-512_A-8
7de90da3e62fde133518c3c343dec9963d5fe754
2021-05-28T11:04:38.000Z
[ "pytorch", "jax", "bert", "feature-extraction", "transformers" ]
feature-extraction
false
nreimers
null
nreimers/BERT-Medium_L-8_H-512_A-8
5
null
transformers
16,753
This is the BERT-Medium model from Google: https://github.com/google-research/bert#bert. A BERT model with 8 layers, 512 hidden unit size, and 8 attention heads.
nyu-mll/roberta-base-10M-3
2264e7f6d648257ff9ca99f02d31d6b7d66ae88a
2021-05-20T19:00:36.000Z
[ "pytorch", "jax", "roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
nyu-mll
null
nyu-mll/roberta-base-10M-3
5
null
transformers
16,754
# RoBERTa Pretrained on Smaller Datasets We pretrain RoBERTa on smaller datasets (1M, 10M, 100M, 1B tokens). We release 3 models with lowest perplexities for each pretraining data size out of 25 runs (or 10 in the case of 1B tokens). The pretraining data reproduces that of BERT: We combine English Wikipedia and a reproduction of BookCorpus using texts from smashwords in a ratio of approximately 3:1. ### Hyperparameters and Validation Perplexity The hyperparameters and validation perplexities corresponding to each model are as follows: | Model Name | Training Size | Model Size | Max Steps | Batch Size | Validation Perplexity | |--------------------------|---------------|------------|-----------|------------|-----------------------| | [roberta-base-1B-1][link-roberta-base-1B-1] | 1B | BASE | 100K | 512 | 3.93 | | [roberta-base-1B-2][link-roberta-base-1B-2] | 1B | BASE | 31K | 1024 | 4.25 | | [roberta-base-1B-3][link-roberta-base-1B-3] | 1B | BASE | 31K | 4096 | 3.84 | | [roberta-base-100M-1][link-roberta-base-100M-1] | 100M | BASE | 100K | 512 | 4.99 | | [roberta-base-100M-2][link-roberta-base-100M-2] | 100M | BASE | 31K | 1024 | 4.61 | | [roberta-base-100M-3][link-roberta-base-100M-3] | 100M | BASE | 31K | 512 | 5.02 | | [roberta-base-10M-1][link-roberta-base-10M-1] | 10M | BASE | 10K | 1024 | 11.31 | | [roberta-base-10M-2][link-roberta-base-10M-2] | 10M | BASE | 10K | 512 | 10.78 | | [roberta-base-10M-3][link-roberta-base-10M-3] | 10M | BASE | 31K | 512 | 11.58 | | [roberta-med-small-1M-1][link-roberta-med-small-1M-1] | 1M | MED-SMALL | 100K | 512 | 153.38 | | [roberta-med-small-1M-2][link-roberta-med-small-1M-2] | 1M | MED-SMALL | 10K | 512 | 134.18 | | [roberta-med-small-1M-3][link-roberta-med-small-1M-3] | 1M | MED-SMALL | 31K | 512 | 139.39 | The hyperparameters corresponding to model sizes mentioned above are as follows: | Model Size | L | AH | HS | FFN | P | |------------|----|----|-----|------|------| | BASE | 12 | 12 | 768 | 3072 | 125M | | MED-SMALL | 6 | 8 | 512 | 2048 | 45M | (AH = number of attention heads; HS = hidden size; FFN = feedforward network dimension; P = number of parameters.) For other hyperparameters, we select: - Peak Learning rate: 5e-4 - Warmup Steps: 6% of max steps - Dropout: 0.1 [link-roberta-med-small-1M-1]: https://huggingface.co/nyu-mll/roberta-med-small-1M-1 [link-roberta-med-small-1M-2]: https://huggingface.co/nyu-mll/roberta-med-small-1M-2 [link-roberta-med-small-1M-3]: https://huggingface.co/nyu-mll/roberta-med-small-1M-3 [link-roberta-base-10M-1]: https://huggingface.co/nyu-mll/roberta-base-10M-1 [link-roberta-base-10M-2]: https://huggingface.co/nyu-mll/roberta-base-10M-2 [link-roberta-base-10M-3]: https://huggingface.co/nyu-mll/roberta-base-10M-3 [link-roberta-base-100M-1]: https://huggingface.co/nyu-mll/roberta-base-100M-1 [link-roberta-base-100M-2]: https://huggingface.co/nyu-mll/roberta-base-100M-2 [link-roberta-base-100M-3]: https://huggingface.co/nyu-mll/roberta-base-100M-3 [link-roberta-base-1B-1]: https://huggingface.co/nyu-mll/roberta-base-1B-1 [link-roberta-base-1B-2]: https://huggingface.co/nyu-mll/roberta-base-1B-2 [link-roberta-base-1B-3]: https://huggingface.co/nyu-mll/roberta-base-1B-3
nyu-mll/roberta-base-1B-3
2be1c065ab8ce8d8fa1be97575763088214a855b
2021-05-20T19:05:43.000Z
[ "pytorch", "jax", "roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
nyu-mll
null
nyu-mll/roberta-base-1B-3
5
null
transformers
16,755
# RoBERTa Pretrained on Smaller Datasets We pretrain RoBERTa on smaller datasets (1M, 10M, 100M, 1B tokens). We release 3 models with lowest perplexities for each pretraining data size out of 25 runs (or 10 in the case of 1B tokens). The pretraining data reproduces that of BERT: We combine English Wikipedia and a reproduction of BookCorpus using texts from smashwords in a ratio of approximately 3:1. ### Hyperparameters and Validation Perplexity The hyperparameters and validation perplexities corresponding to each model are as follows: | Model Name | Training Size | Model Size | Max Steps | Batch Size | Validation Perplexity | |--------------------------|---------------|------------|-----------|------------|-----------------------| | [roberta-base-1B-1][link-roberta-base-1B-1] | 1B | BASE | 100K | 512 | 3.93 | | [roberta-base-1B-2][link-roberta-base-1B-2] | 1B | BASE | 31K | 1024 | 4.25 | | [roberta-base-1B-3][link-roberta-base-1B-3] | 1B | BASE | 31K | 4096 | 3.84 | | [roberta-base-100M-1][link-roberta-base-100M-1] | 100M | BASE | 100K | 512 | 4.99 | | [roberta-base-100M-2][link-roberta-base-100M-2] | 100M | BASE | 31K | 1024 | 4.61 | | [roberta-base-100M-3][link-roberta-base-100M-3] | 100M | BASE | 31K | 512 | 5.02 | | [roberta-base-10M-1][link-roberta-base-10M-1] | 10M | BASE | 10K | 1024 | 11.31 | | [roberta-base-10M-2][link-roberta-base-10M-2] | 10M | BASE | 10K | 512 | 10.78 | | [roberta-base-10M-3][link-roberta-base-10M-3] | 10M | BASE | 31K | 512 | 11.58 | | [roberta-med-small-1M-1][link-roberta-med-small-1M-1] | 1M | MED-SMALL | 100K | 512 | 153.38 | | [roberta-med-small-1M-2][link-roberta-med-small-1M-2] | 1M | MED-SMALL | 10K | 512 | 134.18 | | [roberta-med-small-1M-3][link-roberta-med-small-1M-3] | 1M | MED-SMALL | 31K | 512 | 139.39 | The hyperparameters corresponding to model sizes mentioned above are as follows: | Model Size | L | AH | HS | FFN | P | |------------|----|----|-----|------|------| | BASE | 12 | 12 | 768 | 3072 | 125M | | MED-SMALL | 6 | 8 | 512 | 2048 | 45M | (AH = number of attention heads; HS = hidden size; FFN = feedforward network dimension; P = number of parameters.) For other hyperparameters, we select: - Peak Learning rate: 5e-4 - Warmup Steps: 6% of max steps - Dropout: 0.1 [link-roberta-med-small-1M-1]: https://huggingface.co/nyu-mll/roberta-med-small-1M-1 [link-roberta-med-small-1M-2]: https://huggingface.co/nyu-mll/roberta-med-small-1M-2 [link-roberta-med-small-1M-3]: https://huggingface.co/nyu-mll/roberta-med-small-1M-3 [link-roberta-base-10M-1]: https://huggingface.co/nyu-mll/roberta-base-10M-1 [link-roberta-base-10M-2]: https://huggingface.co/nyu-mll/roberta-base-10M-2 [link-roberta-base-10M-3]: https://huggingface.co/nyu-mll/roberta-base-10M-3 [link-roberta-base-100M-1]: https://huggingface.co/nyu-mll/roberta-base-100M-1 [link-roberta-base-100M-2]: https://huggingface.co/nyu-mll/roberta-base-100M-2 [link-roberta-base-100M-3]: https://huggingface.co/nyu-mll/roberta-base-100M-3 [link-roberta-base-1B-1]: https://huggingface.co/nyu-mll/roberta-base-1B-1 [link-roberta-base-1B-2]: https://huggingface.co/nyu-mll/roberta-base-1B-2 [link-roberta-base-1B-3]: https://huggingface.co/nyu-mll/roberta-base-1B-3
oigele/awesome_fb_model
a3c396d52104fe12ab8da78b55811403dc730752
2021-11-15T10:18:34.000Z
[ "pytorch", "bart", "text-classification", "dataset:multi_nli", "transformers", "zero-shot-classification" ]
zero-shot-classification
false
oigele
null
oigele/awesome_fb_model
5
null
transformers
16,756
--- pipeline_tag: zero-shot-classification datasets: - multi_nli widget: - text: "ETH" candidate_labels: "Location & Address, Employment, Organizational, Name, Service, Studies, Science" hypothesis_template: "This is {}." --- ETH Zeroshot
okaemon/fortune
1fe320b901b68bf98010956c6087709854c99370
2021-10-04T08:23:38.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
okaemon
null
okaemon/fortune
5
null
transformers
16,757
Entry not found
orisuchy/Descriptive_Classifier
f1eb0010f9d1923b4e24bd453d13f8be6228de24
2022-03-06T13:20:02.000Z
[ "pytorch", "bert", "text-classification", "he", "dataset:orisuchy/Descriptive_Sentences_He", "transformers", "Text Classification", "license:afl-3.0" ]
text-classification
false
orisuchy
null
orisuchy/Descriptive_Classifier
5
2
transformers
16,758
--- license: afl-3.0 language: "he" tags: - Text Classification widget: - text: "היער השחור והגדול" - text: "ואז הוא הלך לטייל בתוך היער השחור והגדול" datasets: - orisuchy/Descriptive_Sentences_He metrics: - accuracy - f1 --- # **Descriptive Sentences Classifier** Based on [AlephBERT](https://huggingface.co/onlplab/alephbert-base) model. # **Metrics** [accuracy](https://huggingface.co/metrics/accuracy): 0.813953488372093 </br> [f1](https://huggingface.co/metrics/f1): 0.8181818181818182 ## How to Use the model: ```python from transformers import pipeline classifier = pipeline("text-classification",model='orisuchy/Descriptive_Classifier', return_all_scores=True) outputs = classifier("מסווג חתיך במיוחד") print(outputs) """ Output: [[ {'label': 'Descriptive', 'score': 0.999764621257782}, {'label': 'Not Descriptive', 'score': 0.00023541577684227377}]] """ ``` #### Or, if you want only the final class: ```python from transformers import pipeline classifier = pipeline("text-classification",model='orisuchy/Descriptive_Classifier') output = classifier("הלכתי אליו הביתה וחיכיתי") print(output) """ Output: [{'label': 'Not Descriptive', 'score': 0.999901533126831}] """ ``` Created by Daniel Smotritsky & Ori Suchy <br> [GitHub](https://github.com/orisuchy/miniProject_DHU) <iframe src="https://wandb.ai/orisuchy/huggingface/reports/Shared-panel-22-03-01-15-03-08--VmlldzoxNjI5MjM0?highlightShare" style="border:none;height:1024px;width:100%">
osanseviero/full-sentence-distillroberta3
a3046011326b6788322c3d39da362acd597dcba3
2022-07-01T13:51:38.000Z
[ "pytorch", "jax", "roberta", "feature-extraction", "sentence-transformers", "causal-lm", "license:cc-by-sa-4.0", "sentence-similarity" ]
sentence-similarity
false
osanseviero
null
osanseviero/full-sentence-distillroberta3
5
1
sentence-transformers
16,759
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - causal-lm license: - cc-by-sa-4.0 --- # TODO: Name of Model TODO: Description ## Model Description TODO: Add relevant content (0) Base Transformer Type: RobertaModel (1) Pooling mean ## Usage (Sentence-Transformers) Using this model becomes more convenient when you have [sentence-transformers](https://github.com/UKPLab/sentence-transformers) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence"] model = SentenceTransformer(TODO) embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) ```python from transformers import AutoTokenizer, AutoModel import torch # The next step is optional if you want your own pooling function. # Max Pooling - Take the max value over time for every dimension. def max_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() token_embeddings[input_mask_expanded == 0] = -1e9 # Set padding tokens to large negative value max_over_time = torch.max(token_embeddings, 1)[0] return max_over_time # Sentences we want sentence embeddings for sentences = ['This is an example sentence'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained(TODO) model = AutoModel.from_pretrained(TODO) # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, max_length=128, return_tensors='pt')) # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, max pooling. sentence_embeddings = max_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## TODO: Training Procedure ## TODO: Evaluation Results ## TODO: Citing & Authors
osunlp/ReasonBERT-BERT-base
cb135c20c96f89f80e44b31f29fcdd227d087ea7
2021-09-13T05:42:23.000Z
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
false
osunlp
null
osunlp/ReasonBERT-BERT-base
5
null
transformers
16,760
Entry not found
owen99630/riskdt
b4780eeec4fcb6239a490f3e2eb36f33dd4f8b7c
2021-09-29T16:45:57.000Z
[ "pytorch", "roberta", "text-classification", "transformers" ]
text-classification
false
owen99630
null
owen99630/riskdt
5
null
transformers
16,761
Entry not found
p208p2002/bart-squad-nqg-hl
187486625af6462d69b50fcd7738f5cd5758aaf9
2021-05-03T03:17:28.000Z
[ "pytorch", "bart", "text2text-generation", "dataset:squad", "arxiv:1606.05250", "arxiv:1705.00106", "transformers", "question-generation", "autotrain_compatible" ]
text2text-generation
false
p208p2002
null
p208p2002/bart-squad-nqg-hl
5
null
transformers
16,762
--- datasets: - squad tags: - question-generation widget: - text: "Harry Potter is a series of seven fantasy novels written by British author, [HL]J. K. Rowling[HL]." --- # Transformer QG on SQuAD HLQG is Proposed by [Ying-Hong Chan & Yao-Chung Fan. (2019). A Re-current BERT-based Model for Question Generation.](https://www.aclweb.org/anthology/D19-5821/) **This is a Reproduce Version** More detail: [p208p2002/Transformer-QG-on-SQuAD](https://github.com/p208p2002/Transformer-QG-on-SQuAD) ## Usage ### Input Format ``` C' = [c1, c2, ..., [HL], a1, ..., a|A|, [HL], ..., c|C|] ``` ### Input Example ``` Harry Potter is a series of seven fantasy novels written by British author, [HL]J. K. Rowling[HL]. ``` > # Who wrote Harry Potter? ## Data setting We report two dataset setting as Follow ### SQuAD - train: 87599\\\\t - validation: 10570 > [SQuAD: 100,000+ Questions for Machine Comprehension of Text](https://arxiv.org/abs/1606.05250) ### SQuAD NQG - train: 75722 - dev: 10570 - test: 11877 > [Learning to Ask: Neural Question Generation for Reading Comprehension](https://arxiv.org/abs/1705.00106) ## Available models - BART - GPT2 - T5 ## Expriments We report score with `NQG Scorer` which is using in SQuAD NQG. If not special explanation, the size of the model defaults to "base". ### SQuAD Model |Bleu 1|Bleu 2|Bleu 3|Bleu 4|METEOR|ROUGE-L| ---------------------------------|------|------|------|------|------|-------| BART-HLSQG |54.67 |39.26 |30.34 |24.15 |25.43 |52.64 | GPT2-HLSQG |49.31 |33.95 |25.41| 19.69 |22.29 |48.82 | T5-HLSQG |54.29 |39.22 |30.43 |24.26 |25.56 |53.11 | ### SQuAD NQG Model |Bleu 1|Bleu 2|Bleu 3|Bleu 4|METEOR|ROUGE-L| ---------------------------------|------|------|------|------|------|-------| BERT-HLSQG (Chan et al.) |49.73 |34.60 |26.13 |20.33 |23.88 |48.23 | BART-HLSQG |54.12 |38.19 |28.84 |22.35 |24.55 |51.03 | GPT2-HLSQG |49.82 |33.69 |24.71 |18.63 |21.90 |47.60 | T5-HLSQG |53.13 |37.60 |28.62 |22.38 |24.48 |51.20 |
p208p2002/t5-squad-nqg-hl
3b1a4c128c826caf1a5cba50c736a7ae067f5a48
2021-06-23T13:16:20.000Z
[ "pytorch", "jax", "t5", "text2text-generation", "dataset:squad", "arxiv:1606.05250", "arxiv:1705.00106", "transformers", "question-generation", "autotrain_compatible" ]
text2text-generation
false
p208p2002
null
p208p2002/t5-squad-nqg-hl
5
null
transformers
16,763
--- datasets: - squad tags: - question-generation widget: - text: "Harry Potter is a series of seven fantasy novels written by British author, [HL]J. K. Rowling[HL]." --- # Transformer QG on SQuAD HLQG is Proposed by [Ying-Hong Chan & Yao-Chung Fan. (2019). A Re-current BERT-based Model for Question Generation.](https://www.aclweb.org/anthology/D19-5821/) **This is a Reproduce Version** More detail: [p208p2002/Transformer-QG-on-SQuAD](https://github.com/p208p2002/Transformer-QG-on-SQuAD) ## Usage ### Input Format ``` C' = [c1, c2, ..., [HL], a1, ..., a|A|, [HL], ..., c|C|] ``` ### Input Example ``` Harry Potter is a series of seven fantasy novels written by British author, [HL]J. K. Rowling[HL]. ``` > # Who wrote Harry Potter? ## Data setting We report two dataset setting as Follow ### SQuAD - train: 87599\\t - validation: 10570 > [SQuAD: 100,000+ Questions for Machine Comprehension of Text](https://arxiv.org/abs/1606.05250) ### SQuAD NQG - train: 75722 - dev: 10570 - test: 11877 > [Learning to Ask: Neural Question Generation for Reading Comprehension](https://arxiv.org/abs/1705.00106) ## Available models - BART - GPT2 - T5 ## Expriments We report score with `NQG Scorer` which is using in SQuAD NQG. If not special explanation, the size of the model defaults to "base". ### SQuAD Model |Bleu 1|Bleu 2|Bleu 3|Bleu 4|METEOR|ROUGE-L| ---------------------------------|------|------|------|------|------|-------| BART-HLSQG |54.67 |39.26 |30.34 |24.15 |25.43 |52.64 | GPT2-HLSQG |49.31 |33.95 |25.41| 19.69 |22.29 |48.82 | T5-HLSQG |54.29 |39.22 |30.43 |24.26 |25.56 |53.11 | ### SQuAD NQG Model |Bleu 1|Bleu 2|Bleu 3|Bleu 4|METEOR|ROUGE-L| ---------------------------------|------|------|------|------|------|-------| BERT-HLSQG (Chan et al.) |49.73 |34.60 |26.13 |20.33 |23.88 |48.23 | BART-HLSQG |54.12 |38.19 |28.84 |22.35 |24.55 |51.03 | GPT2-HLSQG |49.82 |33.69 |24.71 |18.63 |21.90 |47.60 | T5-HLSQG |53.13 |37.60 |28.62 |22.38 |24.48 |51.20 |
pablouribe/beto-copus-supercategories
57c4a922e5a960fdf18a5557d95aebb714853cbc
2022-02-01T07:56:57.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
pablouribe
null
pablouribe/beto-copus-supercategories
5
null
transformers
16,764
Entry not found
patrickvonplaten/bert-testing
826d6c54346934868126a2bba2508c1192db0b9d
2021-05-20T02:17:51.000Z
[ "pytorch", "jax", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
patrickvonplaten
null
patrickvonplaten/bert-testing
5
null
transformers
16,765
Entry not found
patrickvonplaten/s2t-wav2vec2-large-en-de
9ff3c047f05ef2fde376450dc270a675674bce01
2021-08-25T15:45:42.000Z
[ "pytorch", "encoder-decoder", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
patrickvonplaten
null
patrickvonplaten/s2t-wav2vec2-large-en-de
5
null
transformers
16,766
Entry not found
patrickvonplaten/sew-d-small-100k-ft-timit
68afae0ff5ac24f0b01458cb7a8a52b98dd231c0
2021-10-28T15:26:02.000Z
[ "pytorch", "tensorboard", "sew-d", "automatic-speech-recognition", "dataset:timit_asr", "transformers", "timit_asr", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
patrickvonplaten
null
patrickvonplaten/sew-d-small-100k-ft-timit
5
null
transformers
16,767
--- license: apache-2.0 tags: - automatic-speech-recognition - timit_asr - generated_from_trainer datasets: - timit_asr model-index: - name: sew-d-small-100k-ft-timit results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # sew-d-small-100k-ft-timit This model is a fine-tuned version of [asapp/sew-d-small-100k](https://huggingface.co/asapp/sew-d-small-100k) on the TIMIT_ASR - NA dataset. It achieves the following results on the evaluation set: - Loss: 1.7482 - Wer: 0.7987 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 20.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 4.2068 | 0.69 | 100 | 4.0802 | 1.0 | | 2.9805 | 1.38 | 200 | 2.9792 | 1.0 | | 2.9781 | 2.07 | 300 | 2.9408 | 1.0 | | 2.9655 | 2.76 | 400 | 2.9143 | 1.0 | | 2.8953 | 3.45 | 500 | 2.8775 | 1.0 | | 2.7719 | 4.14 | 600 | 2.7815 | 0.9999 | | 2.6531 | 4.83 | 700 | 2.6375 | 1.0065 | | 2.6425 | 5.52 | 800 | 2.5602 | 1.0210 | | 2.3963 | 6.21 | 900 | 2.4665 | 1.0591 | | 2.1447 | 6.9 | 1000 | 2.2792 | 0.9848 | | 2.2719 | 7.59 | 1100 | 2.2237 | 0.9465 | | 2.3629 | 8.28 | 1200 | 2.1058 | 0.8907 | | 2.0913 | 8.97 | 1300 | 2.0113 | 0.9070 | | 1.8334 | 9.66 | 1400 | 1.9466 | 0.8177 | | 1.6608 | 10.34 | 1500 | 1.9217 | 0.8698 | | 2.2194 | 11.03 | 1600 | 1.9091 | 0.8727 | | 1.9002 | 11.72 | 1700 | 1.8746 | 0.8332 | | 1.6268 | 12.41 | 1800 | 1.8782 | 0.7951 | | 1.6455 | 13.1 | 1900 | 1.8230 | 0.8225 | | 2.0308 | 13.79 | 2000 | 1.8067 | 0.8560 | | 1.855 | 14.48 | 2100 | 1.8129 | 0.8177 | | 1.5901 | 15.17 | 2200 | 1.7891 | 0.8367 | | 1.4848 | 15.86 | 2300 | 1.7821 | 0.8201 | | 1.8754 | 16.55 | 2400 | 1.7700 | 0.8137 | | 1.7975 | 17.24 | 2500 | 1.7795 | 0.8171 | | 1.5194 | 17.93 | 2600 | 1.7605 | 0.7977 | | 1.4374 | 18.62 | 2700 | 1.7529 | 0.7978 | | 1.7498 | 19.31 | 2800 | 1.7522 | 0.8023 | | 1.7452 | 20.0 | 2900 | 1.7482 | 0.7987 | ### Framework versions - Transformers 4.12.0.dev0 - Pytorch 1.8.1 - Datasets 1.14.1.dev0 - Tokenizers 0.10.3
patrickvonplaten/wav2vec2-large-xls-r-300m-common_voice-tr-ft
fb0ff0413d411d600bf1073d7440141ee1a8449b
2021-11-14T16:47:34.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "tr", "dataset:common_voice", "transformers", "common_voice", "generated_from_trainer", "xls_r_repro_common_voice_tr", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
patrickvonplaten
null
patrickvonplaten/wav2vec2-large-xls-r-300m-common_voice-tr-ft
5
null
transformers
16,768
--- language: - tr license: apache-2.0 tags: - automatic-speech-recognition - common_voice - generated_from_trainer - xls_r_repro_common_voice_tr datasets: - common_voice model-index: - name: wav2vec2-large-xls-r-300m-common_voice-tr-ft results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-common_voice-tr-ft This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the COMMON_VOICE - TR dataset. It achieves the following results on the evaluation set: - Loss: 0.4179 - Wer: 0.3071 - Cer: 0.0736 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - total_train_batch_size: 64 - total_eval_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 100.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:| | 0.7638 | 9.09 | 500 | 0.4763 | 0.5313 | 0.1333 | | 0.5739 | 18.18 | 1000 | 0.4007 | 0.4357 | 0.1099 | | 0.4343 | 27.27 | 1500 | 0.3819 | 0.4060 | 0.1012 | | 0.4401 | 36.36 | 2000 | 0.3991 | 0.3954 | 0.1001 | | 0.2647 | 45.45 | 2500 | 0.3901 | 0.3689 | 0.0914 | | 0.2656 | 54.55 | 3000 | 0.4284 | 0.3463 | 0.0852 | | 0.2586 | 63.64 | 3500 | 0.4084 | 0.3297 | 0.0804 | | 0.2041 | 72.73 | 4000 | 0.3907 | 0.3193 | 0.0781 | | 0.4265 | 81.82 | 4500 | 0.4265 | 0.3120 | 0.0755 | | 0.2041 | 90.91 | 5000 | 0.4240 | 0.3071 | 0.0736 | ### Framework versions - Transformers 4.13.0.dev0 - Pytorch 1.9.0+cu111 - Datasets 1.15.2.dev0 - Tokenizers 0.10.3
persiannlp/mt5-base-parsinlu-multiple-choice
1c4d79ab004e28273e700563172f7244f3fced84
2021-09-23T16:19:55.000Z
[ "pytorch", "jax", "t5", "text2text-generation", "fa", "multilingual", "dataset:parsinlu", "transformers", "multiple-choice", "mt5", "persian", "farsi", "license:cc-by-nc-sa-4.0", "autotrain_compatible" ]
text2text-generation
false
persiannlp
null
persiannlp/mt5-base-parsinlu-multiple-choice
5
null
transformers
16,769
--- language: - fa - multilingual thumbnail: https://upload.wikimedia.org/wikipedia/commons/a/a2/Farsi.svg tags: - multiple-choice - mt5 - persian - farsi license: cc-by-nc-sa-4.0 datasets: - parsinlu metrics: - accuracy --- # Multiple-Choice Question Answering (مدل برای پاسخ به سوالات چهار جوابی) This is a mT5-based model for multiple-choice question answering. Here is an example of how you can run this model: ```python from transformers import MT5ForConditionalGeneration, MT5Tokenizer model_size = "base" model_name = f"persiannlp/mt5-{model_size}-parsinlu-multiple-choice" tokenizer = MT5Tokenizer.from_pretrained(model_name) model = MT5ForConditionalGeneration.from_pretrained(model_name) def run_model(input_string, **generator_args): input_ids = tokenizer.encode(input_string, return_tensors="pt") res = model.generate(input_ids, **generator_args) output = tokenizer.batch_decode(res, skip_special_tokens=True) print(output) return output run_model("وسیع ترین کشور جهان کدام است؟ <sep> آمریکا <sep> کانادا <sep> روسیه <sep> چین") run_model("طامع یعنی ؟ <sep> آزمند <sep> خوش شانس <sep> محتاج <sep> مطمئن") run_model( "زمینی به ۳۱ قطعه متساوی مفروض شده است و هر روز مساحت آماده شده برای احداث، دو برابر مساحت روز قبل است.اگر پس از (۵ روز) تمام زمین آماده شده باشد، در چه روزی یک قطعه زمین آماده شده <sep> روز اول <sep> روز دوم <sep> روز سوم <sep> هیچکدام") ``` For more details, visit this page: https://github.com/persiannlp/parsinlu/
philschmid/MiniLMv2-L12-H384-emotion
4f973da95f168987a8418d12436337d1e861a9e8
2021-12-06T18:00:12.000Z
[ "pytorch", "roberta", "text-classification", "dataset:emotion", "transformers", "generated_from_trainer", "model-index" ]
text-classification
false
philschmid
null
philschmid/MiniLMv2-L12-H384-emotion
5
null
transformers
16,770
--- tags: - generated_from_trainer datasets: - emotion metrics: - accuracy model-index: - name: MiniLMv2-L12-H384-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: default metrics: - name: Accuracy type: accuracy value: 0.925 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # MiniLMv2-L12-H384-emotion This model is a fine-tuned version of [nreimers/MiniLMv2-L12-H384-distilled-from-RoBERTa-Large](https://huggingface.co/nreimers/MiniLMv2-L12-H384-distilled-from-RoBERTa-Large) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2069 - Accuracy: 0.925 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 8 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.8745 | 1.0 | 1000 | 0.6673 | 0.81 | | 0.3466 | 2.0 | 2000 | 0.2816 | 0.918 | | 0.2201 | 3.0 | 3000 | 0.2367 | 0.9215 | | 0.1761 | 4.0 | 4000 | 0.2069 | 0.925 | | 0.1435 | 5.0 | 5000 | 0.2089 | 0.922 | | 0.1454 | 6.0 | 6000 | 0.2168 | 0.923 | | 0.1041 | 7.0 | 7000 | 0.2081 | 0.924 | | 0.0953 | 8.0 | 8000 | 0.2133 | 0.9245 | ### Framework versions - Transformers 4.12.3 - Pytorch 1.9.1 - Datasets 1.15.1 - Tokenizers 0.10.3
plum/xlm-roberta-large
7e264a7a3106524d41dd068bc8b08799a034f653
2022-01-05T18:19:13.000Z
[ "pytorch", "xlm-roberta", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
plum
null
plum/xlm-roberta-large
5
null
transformers
16,771
Entry not found
prajjwal1/ctrl_discovery_flipped_5
7f91751af7b03da60025837bdc67dc059163d756
2021-04-11T18:28:47.000Z
[ "pytorch", "ctrl", "text-generation", "transformers" ]
text-generation
false
prajjwal1
null
prajjwal1/ctrl_discovery_flipped_5
5
null
transformers
16,772
Entry not found
pritamdeka/PubMedBert-abstract-cord19-v2
988718278f1ce7cb512a07d49cf7b8e935cd3fe2
2022-02-07T22:27:55.000Z
[ "pytorch", "bert", "fill-mask", "dataset:pritamdeka/cord-19-abstract", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
fill-mask
false
pritamdeka
null
pritamdeka/PubMedBert-abstract-cord19-v2
5
null
transformers
16,773
--- license: mit tags: - generated_from_trainer datasets: - pritamdeka/cord-19-abstract metrics: - accuracy model-index: - name: pubmedbert-abstract-cord19 results: - task: name: Masked Language Modeling type: fill-mask dataset: name: pritamdeka/cord-19-abstract type: pritamdeka/cord-19-abstract args: fulltext metrics: - name: Accuracy type: accuracy value: 0.7246798699728464 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # PubMedBert-abstract-cord19-v2 This model is a fine-tuned version of [microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext](https://huggingface.co/microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext) on the [pritamdeka/cord-19-abstract](https://huggingface.co/datasets/pritamdeka/cord-19-abstract) dataset. It achieves the following results on the evaluation set: - Loss: 1.2371 - Accuracy: 0.7247 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.95) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 10000 - num_epochs: 4.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 1.27 | 0.53 | 5000 | 1.2425 | 0.7236 | | 1.2634 | 1.06 | 10000 | 1.3123 | 0.7141 | | 1.3041 | 1.59 | 15000 | 1.3583 | 0.7072 | | 1.3829 | 2.12 | 20000 | 1.3590 | 0.7121 | | 1.3069 | 2.65 | 25000 | 1.3506 | 0.7154 | | 1.2921 | 3.18 | 30000 | 1.3448 | 0.7160 | | 1.2731 | 3.7 | 35000 | 1.3375 | 0.7178 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
professional/DialoGPT-small-joshua
04029f429b9f13d1793b21699274fd8106072493
2021-11-06T11:49:15.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
professional
null
professional/DialoGPT-small-joshua
5
1
transformers
16,774
--- tags: - conversational --- # Joshua DialoGPT model
projecte-aina/bart-base-ca
03ed47f969391f49de367c7de3db89b48a2ebd49
2022-07-25T06:49:13.000Z
[ "pytorch", "bart", "text2text-generation", "ca", "dataset:projecte-aina/catalan_textual_corpus", "arxiv:2202.06871", "transformers", "license:apache-2.0", "autotrain_compatible" ]
text2text-generation
false
projecte-aina
null
projecte-aina/bart-base-ca
5
null
transformers
16,775
--- language: ca license: apache-2.0 inference: false datasets: - projecte-aina/catalan_textual_corpus --- # BART-Ca: The monolingual Catalan BART ## Table of Contents - [Model Description](#model-description) - [Intended Uses and Limitations](#intended-use) - [How to Use](#how-to-use) - [Training](#training) - [Training Data](#training-data) - [Training Procedure](#training-procedure) - [Tokenization](#tokenization) - [Hyperparameters](#hyperparameters) - [Evaluation](#evaluation) - [Variable and Metrics](#variable-and-metrics) - [Evaluation Results](#evaluation-results) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) - [Funding](#funding) - [Contributions](#contributions) ## Model description BART-ca is a transformer-based language model for the Catalan language and has been trained on a medium-size corpus collected from publicly available corpora and crawlers with the [Catalan Textual Corpus](https://huggingface.co/datasets/projecte-aina/catalan_textual_corpus). ## Intended Uses and Limitations You can use the raw model for text infilling. However, the model is mostly meant to be fine-tuned on a supervised dataset. BART is particularly effective when fine-tuned for text generation (e.g. summarization, translation) but also works well for comprehension tasks (e.g. text classification, question answering). ## How to Use Here is how to use this model in PyTorch: ```python from transformers import BartTokenizer, BartModel tokenizer = BartTokenizer.from_pretrained('projecte-aina/bart-base-ca') model = BartModel.from_pretrained('projecte-aina/bart-base-ca') inputs = tokenizer("Hola, el meu gos és molt bonic", return_tensors="pt") outputs = model(**inputs) last_hidden_states = outputs.last_hidden_state ``` ## Training ### Training Data As training data, we used the [Catalan Textual Corpus](https://huggingface.co/datasets/projecte-aina/catalan_textual_corpus), a 1760-million-token web corpus of Catalan built from several sources. ### Training Procedure #### Tokenization The training corpus has been tokenized using a byte version of [Byte-Pair Encoding (BPE)](https://github.com/openai/gpt-2) with a vocabulary size of 51,200 tokens. #### Hyperparameters The hyperparameters were adapted for [fairseq](https://github.com/facebookresearch/fairseq/blob/main/examples/bart/README.md) from the original BART's paper. | Hyper-parameter | Value | |------------------------------------|--------| | Learning Rate | 5e-4 | | Learning Rate Decay | Polynomial Decay | | Warmup Updates | 10000 | | Batch Size | 2048 | | Weight Decay | 0.01 | | Max. Training Updates | 125000 | ## Evaluation ### Variable and Metrics This model is intended to be fine-tuned for downstream tasks. ### Evaluation Results This model is intended to be fine-tuned for downstream tasks. ## Licensing Information [Apache License, Version 2.0](https://www.apache.org/licenses/LICENSE-2.0) ## Citation Information If you use any of these resources (datasets or models) in your work, please cite our latest preprint: ```bibtex @misc{degibert2022sequencetosequence, title={Sequence-to-Sequence Resources for Catalan}, author={Ona de Gibert and Ksenia Kharitonova and Blanca Calvo Figueras and Jordi Armengol-Estapé and Maite Melero}, year={2022}, eprint={2202.06871}, archivePrefix={arXiv}, primaryClass={cs.CL} } ``` ## Funding This work was funded by MT4All CEF project and the [Departament de la Vicepresidència i de Polítiques Digitals i Territori de la Generalitat de Catalunya](https://politiquesdigitals.gencat.cat/ca/inici/index.html#googtrans(ca|en) within the framework of [Projecte AINA](https://politiquesdigitals.gencat.cat/ca/economia/catalonia-ai/aina). ## Contributions [N/A]
projecte-aina/roberta-base-ca-cased-te
d888a1b523162a253448bbc955a7882866e28199
2022-02-24T08:38:57.000Z
[ "pytorch", "roberta", "text-classification", "ca", "dataset:projecte-aina/teca", "arxiv:1907.11692", "transformers", "catalan", "textual entailment", "teca", "CaText", "Catalan Textual Corpus", "license:apache-2.0", "model-index" ]
text-classification
false
projecte-aina
null
projecte-aina/roberta-base-ca-cased-te
5
null
transformers
16,776
--- language: - ca license: apache-2.0 tags: - "catalan" - "textual entailment" - "teca" - "CaText" - "Catalan Textual Corpus" datasets: - "projecte-aina/teca" metrics: - "accuracy" model-index: - name: roberta-base-ca-cased-te results: - task: type: text-classification # Required. Example: automatic-speech-recognition dataset: type: projecte-aina/teca name: teca metrics: - type: accuracy value: 0.7912139892578125 widget: - text: "M'agrades. T'estimo." - text: "M'agrada el sol i la calor. A la Garrotxa plou molt." - text: "El llibre va caure per la finestra. El llibre va sortir volant." - text: "El meu aniversari és el 23 de maig. Faré anys a finals de maig." --- # Catalan BERTa (RoBERTa-base) finetuned for Textual Entailment. The **roberta-base-ca-cased-te** is a Textual Entailment (TE) model for the Catalan language fine-tuned from the [BERTa](https://huggingface.co/PlanTL-GOB-ES/roberta-base-ca) model, a [RoBERTa](https://arxiv.org/abs/1907.11692) base model pre-trained on a medium-size corpus collected from publicly available corpora and crawlers (check the BERTa model card for more details). ## Datasets We used the TE dataset in Catalan called [TECA](https://huggingface.co/datasets/projecte-aina/viquiquad) for training and evaluation. ## Evaluation and results We evaluated the roberta-base-ca-cased-te on the TECA test set against standard multilingual and monolingual baselines: | Model | TECA (accuracy) | | ------------|:----| | BERTa | 79.12 | | mBERT | 74.78 | | XLM-RoBERTa | 75.44 | | WikiBERT-ca | x | For more details, check the fine-tuning and evaluation scripts in the official [GitHub repository](https://github.com/projecte-aina/club). ## Citing If you use any of these resources (datasets or models) in your work, please cite our latest paper: ```bibtex @inproceedings{armengol-estape-etal-2021-multilingual, title = "Are Multilingual Models the Best Choice for Moderately Under-resourced Languages? {A} Comprehensive Assessment for {C}atalan", author = "Armengol-Estap{\'e}, Jordi and Carrino, Casimiro Pio and Rodriguez-Penagos, Carlos and de Gibert Bonet, Ona and Armentano-Oller, Carme and Gonzalez-Agirre, Aitor and Melero, Maite and Villegas, Marta", booktitle = "Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021", month = aug, year = "2021", address = "Online", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.findings-acl.437", doi = "10.18653/v1/2021.findings-acl.437", pages = "4933--4946", } ```
proycon/robbert-ner-cased-sonar1-nld
ea6556acbd2a41c118f2baa5a56564b286f22367
2021-05-20T19:41:07.000Z
[ "pytorch", "jax", "roberta", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
proycon
null
proycon/robbert-ner-cased-sonar1-nld
5
null
transformers
16,777
Entry not found
psyche/kobart-paraphrase-generation
0cfe47f817d312250f1ea3bfc63f7193daa046aa
2022-01-17T12:44:49.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
psyche
null
psyche/kobart-paraphrase-generation
5
null
transformers
16,778
Entry not found
pszemraj/Ballpark-Trivia-XL
b641d710173ee7c882fb47103f28761c59643146
2022-06-13T13:05:13.000Z
[ "pytorch", "gpt2", "text-generation", "en", "dataset:natural questions", "transformers", "gpt", "trivia", "chatbot", "license:mit" ]
text-generation
false
pszemraj
null
pszemraj/Ballpark-Trivia-XL
5
null
transformers
16,779
--- language: - en tags: - text-generation - gpt2 - gpt - trivia - chatbot license: mit datasets: - natural questions widget: - text: "how many ping-pong balls fit inside a standard 747 jet aeroplane?\nperson beta:\n\n" example_title: "ping-pong" - text: "What is the capital of Uganda?\nperson beta:\n\n" example_title: "geography" - text: "What is the most popular TV show of all time?\nperson beta:\n\n" example_title: "pseudo-culture" - text: "A man pushes his car to a hotel and tells the owner he’s bankrupt. Why?\nperson beta:\n\n" example_title: "brain teaser" inference: parameters: min_length: 2 max_length: 32 no_repeat_ngram_size: 2 do_sample: False num_beams: 4 early_stopping: True repetition_penalty: 2.1 --- # Ballpark Trivia: Size XL **Check out a demo on HF Spaces [here](https://huggingface.co/spaces/pszemraj/ballpark-trivia).** Are you frequently asked google-able Trivia questions and annoyed by it? Well, this is the model for you! Ballpark Trivia Bot answers any trivia question with something that sounds plausible but is probably not 100% correct. One might say.. the answers are in the right ballpark. This is by far the largest model trained and should be _more_ credible in its answers or at least able to handle more kinds of questions. ``` what is the temperature of dry ice in kelvin person beta: 194.65 K ``` ## Training This text gen model is a GPT-2 ~1.5 B Parameter Size XL Model, first trained on [Wizard of Wikipedia](https://parl.ai/projects/wizard_of_wikipedia/) for 40k steps (**33**/36 layers frozen for the fine-tuning), and then subsequently trained for 40k steps on a parsed variant of [Natural Questions](https://ai.google.com/research/NaturalQuestions)(then **34**/36 layers frozen for the second fine-tuning) to accidentally create this model. Note that because the model was originally trained for use in a [chatbot application](https://github.com/pszemraj/ai-msgbot), it uses a named conversation dialogue structure, _i.e. the questions are asked by person alpha, and responded to by person beta_. Even if you don't specify person alpha in the prompt, it hopefully responds to any question. ## Example Prompt - the default examples are not great - you can type in any trivia question or delete the example and write `what` or `when` in there, and it will generate the rest of the trivia question **and the answer**!
pulp/CHILDES-ParentBERTo
455d6439bbfb595bae6b2bba666d23d75815f832
2021-05-20T19:46:06.000Z
[ "pytorch", "jax", "roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
pulp
null
pulp/CHILDES-ParentBERTo
5
null
transformers
16,780
The language model trained on a fill-mask task with all the North American parent's data in CHILDES. The parent's data can be found here: https://github.com/xiaomeng-ma/CHILDES
q5530793/bert_finetuning_test
3257e8b492a6fc638f3db03d14fbd4b39b015550
2021-05-20T03:40:11.000Z
[ "pytorch", "jax", "bert", "text-classification", "transformers" ]
text-classification
false
q5530793
null
q5530793/bert_finetuning_test
5
null
transformers
16,781
Entry not found
qarib/bert-base-qarib60_1970k
7b3515c11cd977ccb3066d4ceb111b84d75a8d0e
2021-05-20T03:46:19.000Z
[ "pytorch", "jax", "bert", "fill-mask", "ar", "dataset:arabic_billion_words", "dataset:open_subtitles", "dataset:twitter", "arxiv:2102.10684", "transformers", "tf", "qarib", "qarib60_1790k", "autotrain_compatible" ]
fill-mask
false
qarib
null
qarib/bert-base-qarib60_1970k
5
null
transformers
16,782
--- language: ar tags: - pytorch - tf - qarib - qarib60_1790k datasets: - arabic_billion_words - open_subtitles - twitter metrics: - f1 widget: - text: " شو عندكم يا [MASK] ." --- # QARiB: QCRI Arabic and Dialectal BERT ## About QARiB QCRI Arabic and Dialectal BERT (QARiB) model, was trained on a collection of ~ 420 Million tweets and ~ 180 Million sentences of text. For Tweets, the data was collected using twitter API and using language filter. `lang:ar`. For Text data, it was a combination from [Arabic GigaWord](url), [Abulkhair Arabic Corpus]() and [OPUS](http://opus.nlpl.eu/). ### bert-base-qarib60_1970k - Data size: 60Gb - Number of Iterations: 1970k - Loss: 1.5708898 ## Training QARiB The training of the model has been performed using Google’s original Tensorflow code on Google Cloud TPU v2. We used a Google Cloud Storage bucket, for persistent storage of training data and models. See more details in [Training QARiB](https://github.com/qcri/QARIB/Training_QARiB.md) ## Using QARiB You can use the raw model for either masked language modeling or next sentence prediction, but it's mostly intended to be fine-tuned on a downstream task. See the model hub to look for fine-tuned versions on a task that interests you. For more details, see [Using QARiB](https://github.com/qcri/QARIB/Using_QARiB.md) ### How to use You can use this model directly with a pipeline for masked language modeling: ```python >>>from transformers import pipeline >>>fill_mask = pipeline("fill-mask", model="./models/data60gb_86k") >>> fill_mask("شو عندكم يا [MASK]") [{'sequence': '[CLS] شو عندكم يا عرب [SEP]', 'score': 0.0990147516131401, 'token': 2355, 'token_str': 'عرب'}, {'sequence': '[CLS] شو عندكم يا جماعة [SEP]', 'score': 0.051633741706609726, 'token': 2308, 'token_str': 'جماعة'}, {'sequence': '[CLS] شو عندكم يا شباب [SEP]', 'score': 0.046871256083250046, 'token': 939, 'token_str': 'شباب'}, {'sequence': '[CLS] شو عندكم يا رفاق [SEP]', 'score': 0.03598872944712639, 'token': 7664, 'token_str': 'رفاق'}, {'sequence': '[CLS] شو عندكم يا ناس [SEP]', 'score': 0.031996358186006546, 'token': 271, 'token_str': 'ناس'}] >>> fill_mask("قللي وشفيييك يرحم [MASK]") [{'sequence': '[CLS] قللي وشفيييك يرحم والديك [SEP]', 'score': 0.4152909517288208, 'token': 9650, 'token_str': 'والديك'}, {'sequence': '[CLS] قللي وشفيييك يرحملي [SEP]', 'score': 0.07663793861865997, 'token': 294, 'token_str': '##لي'}, {'sequence': '[CLS] قللي وشفيييك يرحم حالك [SEP]', 'score': 0.0453166700899601, 'token': 2663, 'token_str': 'حالك'}, {'sequence': '[CLS] قللي وشفيييك يرحم امك [SEP]', 'score': 0.04390475153923035, 'token': 1942, 'token_str': 'امك'}, {'sequence': '[CLS] قللي وشفيييك يرحمونك [SEP]', 'score': 0.027349254116415977, 'token': 3283, 'token_str': '##ونك'}] >>> fill_mask("وقام المدير [MASK]") [ {'sequence': '[CLS] وقام المدير بالعمل [SEP]', 'score': 0.0678194984793663, 'token': 4230, 'token_str': 'بالعمل'}, {'sequence': '[CLS] وقام المدير بذلك [SEP]', 'score': 0.05191086605191231, 'token': 984, 'token_str': 'بذلك'}, {'sequence': '[CLS] وقام المدير بالاتصال [SEP]', 'score': 0.045264165848493576, 'token': 26096, 'token_str': 'بالاتصال'}, {'sequence': '[CLS] وقام المدير بعمله [SEP]', 'score': 0.03732728958129883, 'token': 40486, 'token_str': 'بعمله'}, {'sequence': '[CLS] وقام المدير بالامر [SEP]', 'score': 0.0246378555893898, 'token': 29124, 'token_str': 'بالامر'} ] >>> fill_mask("وقامت المديرة [MASK]") [{'sequence': '[CLS] وقامت المديرة بذلك [SEP]', 'score': 0.23992691934108734, 'token': 984, 'token_str': 'بذلك'}, {'sequence': '[CLS] وقامت المديرة بالامر [SEP]', 'score': 0.108805812895298, 'token': 29124, 'token_str': 'بالامر'}, {'sequence': '[CLS] وقامت المديرة بالعمل [SEP]', 'score': 0.06639821827411652, 'token': 4230, 'token_str': 'بالعمل'}, {'sequence': '[CLS] وقامت المديرة بالاتصال [SEP]', 'score': 0.05613093823194504, 'token': 26096, 'token_str': 'بالاتصال'}, {'sequence': '[CLS] وقامت المديرة المديرة [SEP]', 'score': 0.021778125315904617, 'token': 41635, 'token_str': 'المديرة'}] ``` ## Training procedure The training of the model has been performed using Google’s original Tensorflow code on eight core Google Cloud TPU v2. We used a Google Cloud Storage bucket, for persistent storage of training data and models. ## Eval results We evaluated QARiB models on five NLP downstream task: - Sentiment Analysis - Emotion Detection - Named-Entity Recognition (NER) - Offensive Language Detection - Dialect Identification The results obtained from QARiB models outperforms multilingual BERT/AraBERT/ArabicBERT. ## Model Weights and Vocab Download From Huggingface site: https://huggingface.co/qarib/qarib/bert-base-qarib60_1970k ## Contacts Ahmed Abdelali, Sabit Hassan, Hamdy Mubarak, Kareem Darwish and Younes Samih ## Reference ``` @article{abdelali2021pretraining, title={Pre-Training BERT on Arabic Tweets: Practical Considerations}, author={Ahmed Abdelali and Sabit Hassan and Hamdy Mubarak and Kareem Darwish and Younes Samih}, year={2021}, eprint={2102.10684}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
qarib/bert-base-qarib_far_6500k
19aae048a31b9cdb1b7323598e7198c3713cedf7
2021-04-21T13:41:11.000Z
[ "pytorch", "ar", "dataset:arabic_billion_words", "dataset:open_subtitles", "dataset:twitter", "dataset:Farasa", "arxiv:2102.10684", "transformers", "tf", "QARiB", "qarib" ]
null
false
qarib
null
qarib/bert-base-qarib_far_6500k
5
null
transformers
16,783
--- language: ar tags: - pytorch - tf - QARiB - qarib datasets: - arabic_billion_words - open_subtitles - twitter - Farasa metrics: - f1 widget: - text: "و+قام ال+مدير [MASK]" --- # QARiB: QCRI Arabic and Dialectal BERT ## About QARiB Farasa QCRI Arabic and Dialectal BERT (QARiB) model, was trained on a collection of ~ 420 Million tweets and ~ 180 Million sentences of text. For the tweets, the data was collected using twitter API and using language filter. `lang:ar`. For the text data, it was a combination from [Arabic GigaWord](url), [Abulkhair Arabic Corpus]() and [OPUS](http://opus.nlpl.eu/). QARiB: Is the Arabic name for "Boat". ## Model and Parameters: - Data size: 14B tokens - Vocabulary: 64k - Iterations: 10M - Number of Layers: 12 ## Training QARiB See details in [Training QARiB](https://github.com/qcri/QARIB/Training_QARiB.md) ## Using QARiB You can use the raw model for either masked language modeling or next sentence prediction, but it's mostly intended to be fine-tuned on a downstream task. See the model hub to look for fine-tuned versions on a task that interests you. For more details, see [Using QARiB](https://github.com/qcri/QARIB/Using_QARiB.md) This model expects the data to be segmented. You may use [Farasa Segmenter](https://farasa-api.qcri.org/segmentation/) API. ### How to use You can use this model directly with a pipeline for masked language modeling: ```python >>>from transformers import pipeline >>>fill_mask = pipeline("fill-mask", model="./models/bert-base-qarib_far") >>> fill_mask("و+قام ال+مدير [MASK]") [ ] >>> fill_mask("و+قام+ت ال+مدير+ة [MASK]") [ ] >>> fill_mask("قللي وشفيييك يرحم [MASK]") [ ] ``` ## Evaluations: |**Experiment** |**mBERT**|**AraBERT0.1**|**AraBERT1.0**|**ArabicBERT**|**QARiB**| |---------------|---------|--------------|--------------|--------------|---------| |Dialect Identification | 6.06% | 59.92% | 59.85% | 61.70% | **65.21%** | |Emotion Detection | 27.90% | 43.89% | 42.37% | 41.65% | **44.35%** | |Named-Entity Recognition (NER) | 49.38% | 64.97% | **66.63%** | 64.04% | 61.62% | |Offensive Language Detection | 83.14% | 88.07% | 88.97% | 88.19% | **91.94%** | |Sentiment Analysis | 86.61% | 90.80% | **93.58%** | 83.27% | 93.31% | ## Model Weights and Vocab Download From Huggingface site: https://huggingface.co/qarib/bert-base-qarib_far ## Contacts Ahmed Abdelali, Sabit Hassan, Hamdy Mubarak, Kareem Darwish and Younes Samih ## Reference ``` @article{abdelali2021pretraining, title={Pre-Training BERT on Arabic Tweets: Practical Considerations}, author={Ahmed Abdelali and Sabit Hassan and Hamdy Mubarak and Kareem Darwish and Younes Samih}, year={2021}, eprint={2102.10684}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
qingtan007/bert_finetuning_test
890ad37510584a3707bedeff9c1b2429491bc303
2021-05-20T03:50:11.000Z
[ "pytorch", "jax", "bert", "text-classification", "transformers" ]
text-classification
false
qingtan007
null
qingtan007/bert_finetuning_test
5
null
transformers
16,784
Entry not found
ralcanta/do_nothing_bert
73451420f4cc588b0a319db5c818484bc15bbebe
2020-11-26T23:38:08.000Z
[ "pytorch", "encoder-decoder", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
ralcanta
null
ralcanta/do_nothing_bert
5
null
transformers
16,785
Entry not found
ramonzaca/roberto-base-finetuned-pos
41d1e3f398fdca5a0f85ae0afcb0c74157b31296
2021-05-20T19:49:47.000Z
[ "pytorch", "jax", "roberta", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
ramonzaca
null
ramonzaca/roberto-base-finetuned-pos
5
null
transformers
16,786
Entry not found
ran/h1
8f2856dea30f628a8abbc9a572a9fc62397f4727
2021-05-20T03:56:49.000Z
[ "pytorch", "jax", "bert", "text-classification", "transformers" ]
text-classification
false
ran
null
ran/h1
5
null
transformers
16,787
Entry not found
raruidol/GameANchess
895fadac8d1799fdef1b49aa5d0616e715b71d85
2021-09-16T08:53:50.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
raruidol
null
raruidol/GameANchess
5
null
transformers
16,788
Algebraic Notation model of sequences of moves of complete chess games.
reach-vb/wav2vec2-large-xls-r-1B-common_voice7-lv-ft
a0f7edd3e6daf9616ceb67da1774432b13a8b696
2022-03-23T18:34:08.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "lv", "dataset:common_voice", "transformers", "generated_from_trainer", "hf-asr-leaderboard", "robust-speech-event", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
reach-vb
null
reach-vb/wav2vec2-large-xls-r-1B-common_voice7-lv-ft
5
1
transformers
16,789
--- license: apache-2.0 language: - lv tags: - generated_from_trainer - hf-asr-leaderboard - robust-speech-event datasets: - common_voice model-index: - name: wav2vec2-large-xls-r-1B-common_voice7-lv-ft results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 7 type: mozilla-foundation/common_voice_7_0 args: lv metrics: - name: Test WER type: wer value: 11.179 - name: Test CER type: cer value: 2.78 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: lv metrics: - name: Test WER type: wer value: 44.33 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: lv metrics: - name: Test WER type: wer value: 50.89 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-1B-common_voice7-lv-ft This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.1582 - Wer: 0.1137 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 48 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 900 - num_epochs: 100 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.6292 | 5.26 | 500 | 1.5562 | 0.9263 | | 0.1303 | 10.53 | 1000 | 0.8107 | 0.7666 | | 0.0974 | 15.79 | 1500 | 0.5290 | 0.4979 | | 0.0724 | 21.05 | 2000 | 0.2941 | 0.2247 | | 0.0591 | 26.32 | 2500 | 0.2838 | 0.2125 | | 0.0494 | 31.58 | 3000 | 0.2589 | 0.2102 | | 0.0417 | 36.84 | 3500 | 0.1987 | 0.1760 | | 0.0375 | 42.11 | 4000 | 0.1934 | 0.1690 | | 0.031 | 47.37 | 4500 | 0.1630 | 0.1460 | | 0.027 | 52.63 | 5000 | 0.1957 | 0.1447 | | 0.0256 | 57.89 | 5500 | 0.1747 | 0.1368 | | 0.0206 | 63.16 | 6000 | 0.1602 | 0.1299 | | 0.0178 | 68.42 | 6500 | 0.1809 | 0.1273 | | 0.0154 | 73.68 | 7000 | 0.1686 | 0.1216 | | 0.0137 | 78.95 | 7500 | 0.1585 | 0.1241 | | 0.0128 | 84.21 | 8000 | 0.1783 | 0.1278 | | 0.011 | 89.47 | 8500 | 0.1653 | 0.1228 | | 0.0096 | 94.74 | 9000 | 0.1620 | 0.1161 | | 0.0091 | 100.0 | 9500 | 0.1582 | 0.1137 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.17.1.dev0 - Tokenizers 0.10.3
recobo/chemical-bert-uncased-simcse
501ebc46786e9cef5c13d8290ed50530ff708161
2021-09-06T05:52:59.000Z
[ "pytorch", "bert", "feature-extraction", "sentence-transformers", "sentence-similarity", "transformers", "license:apache-2.0" ]
sentence-similarity
false
recobo
null
recobo/chemical-bert-uncased-simcse
5
null
sentence-transformers
16,790
--- pipeline_tag: sentence-similarity license: apache-2.0 tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # recobo/chemical-bert-uncased-simcse ```python from sentence_transformers import SentenceTransformer model_name = 'recobo/chemical-bert-uncased-simcse' model = SentenceTransformer(model_name) ```
recobo/chemical-bert-uncased-tsdae
e6702c55ba838e9e4e25666e643ccba4e2b3c6db
2021-09-04T21:17:19.000Z
[ "pytorch", "bert", "feature-extraction", "sentence-transformers", "sentence-similarity", "transformers", "license:apache-2.0" ]
sentence-similarity
false
recobo
null
recobo/chemical-bert-uncased-tsdae
5
null
sentence-transformers
16,791
--- pipeline_tag: sentence-similarity license: apache-2.0 tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # recobo/chemical-bert-uncased-tsdae ```python from sentence_transformers import SentenceTransformer model_name = 'recobo/chemical-bert-uncased-tsdae' model = SentenceTransformer(model_name) ```
rjbownes/lovelace-evaluator
a544951d6eacd1cde02fd2ad637e745073eb2b0d
2021-05-20T04:28:03.000Z
[ "pytorch", "jax", "bert", "text-classification", "transformers" ]
text-classification
false
rjbownes
null
rjbownes/lovelace-evaluator
5
null
transformers
16,792
Entry not found
rodrigogelacio/autonlp-department-classification-534915130
fba721a44c8c100f23019f83eda66219df0f9c0c
2022-01-28T02:06:52.000Z
[ "pytorch", "bert", "text-classification", "unk", "dataset:rodrigogelacio/autonlp-data-department-classification", "transformers", "autonlp", "co2_eq_emissions" ]
text-classification
false
rodrigogelacio
null
rodrigogelacio/autonlp-department-classification-534915130
5
1
transformers
16,793
--- tags: autonlp language: unk widget: - text: "I love AutoNLP 🤗" datasets: - rodrigogelacio/autonlp-data-department-classification co2_eq_emissions: 1.4862856774320061 --- # Model Trained Using AutoNLP - Problem type: Multi-class Classification - Model ID: 534915130 - CO2 Emissions (in grams): 1.4862856774320061 ## Validation Metrics - Loss: 0.37066277861595154 - Accuracy: 0.9204545454545454 - Macro F1: 0.9103715740678612 - Micro F1: 0.9204545454545455 - Weighted F1: 0.9196871607509906 - Macro Precision: 0.9207759152612094 - Micro Precision: 0.9204545454545454 - Weighted Precision: 0.922177301864802 - Macro Recall: 0.9055002187355129 - Micro Recall: 0.9204545454545454 - Weighted Recall: 0.9204545454545454 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/rodrigogelacio/autonlp-department-classification-534915130 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("rodrigogelacio/autonlp-department-classification-534915130", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("rodrigogelacio/autonlp-department-classification-534915130", use_auth_token=True) inputs = tokenizer("I love AutoNLP", return_tensors="pt") outputs = model(**inputs) ```
saattrupdan/verdict-classifier-en
4cba74d525c83c3536834efc40b1e2f4a686656a
2021-10-27T14:58:17.000Z
[ "pytorch", "tensorboard", "roberta", "text-classification", "en", "transformers", "generated_from_trainer", "license:mit", "model-index" ]
text-classification
false
saattrupdan
null
saattrupdan/verdict-classifier-en
5
null
transformers
16,794
--- license: mit language: en tags: - generated_from_trainer model-index: - name: verdict-classifier-en results: - task: type: text-classification name: Verdict Classification widget: - "Even though it might look true, it has been taken out of context." --- # English Verdict Classifier This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on 2,500 deduplicated verdicts from [Google Fact Check Tools API](https://developers.google.com/fact-check/tools/api/reference/rest/v1alpha1/claims/search), translated into English with the [Google Cloud Translation API](https://cloud.google.com/translate/docs/reference/rest/). It achieves the following results on the evaluation set, being 1,000 such verdicts translated into English, but here including duplicates to represent the true distribution: - Loss: 0.1290 - F1 Macro: 0.9171 - F1 Misinformation: 0.9896 - F1 Factual: 0.9890 - F1 Other: 0.7727 - Precision Macro: 0.8940 - Precision Misinformation: 0.9954 - Precision Factual: 0.9783 - Precision Other: 0.7083 ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2500 - num_epochs: 1000 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 Macro | F1 Misinformation | F1 Factual | F1 Other | Precision Macro | Precision Misinformation | Precision Factual | Precision Other | |:-------------:|:-----:|:----:|:---------------:|:--------:|:-----------------:|:----------:|:--------:|:----------:|:-------------------:|:------------:|:----------:| | 1.1493 | 0.16 | 50 | 1.1040 | 0.0550 | 0.0 | 0.1650 | 0.0 | 0.0300 | 0.0 | 0.0899 | 0.0 | | 1.0899 | 0.32 | 100 | 1.0765 | 0.0619 | 0.0203 | 0.1654 | 0.0 | 0.2301 | 0.6 | 0.0903 | 0.0 | | 1.0136 | 0.48 | 150 | 1.0487 | 0.3102 | 0.9306 | 0.0 | 0.0 | 0.2900 | 0.8701 | 0.0 | 0.0 | | 0.9868 | 0.64 | 200 | 1.0221 | 0.3102 | 0.9306 | 0.0 | 0.0 | 0.2900 | 0.8701 | 0.0 | 0.0 | | 0.9599 | 0.8 | 250 | 0.9801 | 0.3102 | 0.9306 | 0.0 | 0.0 | 0.2900 | 0.8701 | 0.0 | 0.0 | | 0.9554 | 0.96 | 300 | 0.9500 | 0.3102 | 0.9306 | 0.0 | 0.0 | 0.2900 | 0.8701 | 0.0 | 0.0 | | 0.935 | 1.12 | 350 | 0.9071 | 0.3102 | 0.9306 | 0.0 | 0.0 | 0.2900 | 0.8701 | 0.0 | 0.0 | | 0.948 | 1.28 | 400 | 0.8809 | 0.3102 | 0.9306 | 0.0 | 0.0 | 0.2900 | 0.8701 | 0.0 | 0.0 | | 0.9344 | 1.44 | 450 | 0.8258 | 0.3102 | 0.9306 | 0.0 | 0.0 | 0.2900 | 0.8701 | 0.0 | 0.0 | | 0.9182 | 1.6 | 500 | 0.7687 | 0.3102 | 0.9306 | 0.0 | 0.0 | 0.2900 | 0.8701 | 0.0 | 0.0 | | 0.8942 | 1.76 | 550 | 0.5787 | 0.3102 | 0.9306 | 0.0 | 0.0 | 0.2900 | 0.8701 | 0.0 | 0.0 | | 0.8932 | 1.92 | 600 | 0.4506 | 0.4043 | 0.9628 | 0.0 | 0.25 | 0.3777 | 0.9753 | 0.0 | 0.1579 | | 0.7448 | 2.08 | 650 | 0.2884 | 0.5323 | 0.9650 | 0.3303 | 0.3017 | 0.7075 | 0.9810 | 0.9474 | 0.1942 | | 0.6616 | 2.24 | 700 | 0.2162 | 0.8161 | 0.9710 | 0.9724 | 0.5051 | 0.7910 | 0.9824 | 0.9670 | 0.4237 | | 0.575 | 2.4 | 750 | 0.1754 | 0.8305 | 0.9714 | 0.9780 | 0.5421 | 0.7961 | 0.9881 | 0.9674 | 0.4328 | | 0.5246 | 2.56 | 800 | 0.1641 | 0.8102 | 0.9659 | 0.9175 | 0.5472 | 0.7614 | 0.9892 | 0.8558 | 0.4394 | | 0.481 | 2.72 | 850 | 0.1399 | 0.8407 | 0.9756 | 0.9780 | 0.5686 | 0.8082 | 0.9894 | 0.9674 | 0.4677 | | 0.4588 | 2.88 | 900 | 0.1212 | 0.8501 | 0.9786 | 0.9783 | 0.5934 | 0.8247 | 0.9871 | 0.9574 | 0.5294 | | 0.4512 | 3.04 | 950 | 0.1388 | 0.8270 | 0.9702 | 0.9836 | 0.5273 | 0.7904 | 0.9893 | 0.9677 | 0.4143 | | 0.3894 | 3.2 | 1000 | 0.1270 | 0.8411 | 0.9737 | 0.9836 | 0.5660 | 0.8043 | 0.9905 | 0.9677 | 0.4545 | | 0.3772 | 3.36 | 1050 | 0.1267 | 0.8336 | 0.9732 | 0.9890 | 0.5385 | 0.8013 | 0.9882 | 0.9783 | 0.4375 | | 0.3528 | 3.52 | 1100 | 0.1073 | 0.8546 | 0.9791 | 0.9890 | 0.5957 | 0.8284 | 0.9883 | 0.9783 | 0.5185 | | 0.3694 | 3.68 | 1150 | 0.1120 | 0.8431 | 0.9786 | 0.9890 | 0.5618 | 0.8244 | 0.9849 | 0.9783 | 0.5102 | | 0.3146 | 3.84 | 1200 | 0.1189 | 0.8325 | 0.9738 | 0.9836 | 0.54 | 0.8016 | 0.9870 | 0.9677 | 0.45 | | 0.3038 | 4.01 | 1250 | 0.1041 | 0.8648 | 0.9815 | 0.9836 | 0.6292 | 0.8425 | 0.9884 | 0.9677 | 0.5714 | | 0.2482 | 4.17 | 1300 | 0.1245 | 0.8588 | 0.9773 | 0.9836 | 0.6154 | 0.8202 | 0.9929 | 0.9677 | 0.5 | | 0.2388 | 4.33 | 1350 | 0.1167 | 0.8701 | 0.9808 | 0.9836 | 0.6458 | 0.8377 | 0.9918 | 0.9677 | 0.5536 | | 0.2593 | 4.49 | 1400 | 0.1215 | 0.8654 | 0.9790 | 0.9836 | 0.6337 | 0.8284 | 0.9929 | 0.9677 | 0.5246 | | 0.239 | 4.65 | 1450 | 0.1057 | 0.8621 | 0.9803 | 0.9890 | 0.6170 | 0.8349 | 0.9895 | 0.9783 | 0.5370 | | 0.2397 | 4.81 | 1500 | 0.1256 | 0.8544 | 0.9761 | 0.9890 | 0.5981 | 0.8162 | 0.9929 | 0.9783 | 0.4776 | | 0.2238 | 4.97 | 1550 | 0.1189 | 0.8701 | 0.9802 | 0.9836 | 0.6465 | 0.8343 | 0.9929 | 0.9677 | 0.5424 | | 0.1811 | 5.13 | 1600 | 0.1456 | 0.8438 | 0.9737 | 0.9836 | 0.5741 | 0.8051 | 0.9917 | 0.9677 | 0.4559 | | 0.1615 | 5.29 | 1650 | 0.1076 | 0.8780 | 0.9838 | 0.9836 | 0.6667 | 0.8581 | 0.9895 | 0.9677 | 0.6170 | | 0.1783 | 5.45 | 1700 | 0.1217 | 0.8869 | 0.9831 | 0.9836 | 0.6939 | 0.8497 | 0.9953 | 0.9677 | 0.5862 | | 0.1615 | 5.61 | 1750 | 0.1305 | 0.8770 | 0.9808 | 0.9836 | 0.6667 | 0.8371 | 0.9953 | 0.9677 | 0.5484 | | 0.155 | 5.77 | 1800 | 0.1218 | 0.8668 | 0.9821 | 0.9890 | 0.6292 | 0.8460 | 0.9884 | 0.9783 | 0.5714 | | 0.167 | 5.93 | 1850 | 0.1091 | 0.8991 | 0.9873 | 0.9890 | 0.7209 | 0.8814 | 0.9919 | 0.9783 | 0.6739 | | 0.1455 | 6.09 | 1900 | 0.1338 | 0.8535 | 0.9773 | 0.9890 | 0.5941 | 0.8202 | 0.9906 | 0.9783 | 0.4918 | | 0.1301 | 6.25 | 1950 | 0.1321 | 0.8792 | 0.9820 | 0.9890 | 0.6667 | 0.8439 | 0.9941 | 0.9783 | 0.5593 | | 0.1049 | 6.41 | 2000 | 0.1181 | 0.9031 | 0.9879 | 0.9834 | 0.7381 | 0.8911 | 0.9908 | 0.9780 | 0.7045 | | 0.1403 | 6.57 | 2050 | 0.1432 | 0.8608 | 0.9779 | 0.9890 | 0.6154 | 0.8237 | 0.9929 | 0.9783 | 0.5 | | 0.1178 | 6.73 | 2100 | 0.1443 | 0.8937 | 0.9844 | 0.9945 | 0.7021 | 0.8644 | 0.9930 | 0.9890 | 0.6111 | | 0.1267 | 6.89 | 2150 | 0.1346 | 0.8494 | 0.9786 | 0.9890 | 0.5806 | 0.8249 | 0.9871 | 0.9783 | 0.5094 | | 0.1043 | 7.05 | 2200 | 0.1494 | 0.8905 | 0.9832 | 0.9945 | 0.6939 | 0.8564 | 0.9941 | 0.9890 | 0.5862 | | 0.0886 | 7.21 | 2250 | 0.1180 | 0.8946 | 0.9873 | 0.9890 | 0.7073 | 0.8861 | 0.9896 | 0.9783 | 0.6905 | | 0.1183 | 7.37 | 2300 | 0.1777 | 0.8720 | 0.9790 | 0.9890 | 0.6481 | 0.8298 | 0.9964 | 0.9783 | 0.5147 | | 0.0813 | 7.53 | 2350 | 0.1405 | 0.8912 | 0.9856 | 0.9836 | 0.7045 | 0.8685 | 0.9919 | 0.9677 | 0.6458 | | 0.111 | 7.69 | 2400 | 0.1379 | 0.8874 | 0.9838 | 0.9836 | 0.6947 | 0.8540 | 0.9941 | 0.9677 | 0.6 | | 0.1199 | 7.85 | 2450 | 0.1301 | 0.9080 | 0.9879 | 0.9890 | 0.7473 | 0.8801 | 0.9953 | 0.9783 | 0.6667 | | 0.1054 | 8.01 | 2500 | 0.1478 | 0.8845 | 0.9838 | 0.9890 | 0.6809 | 0.8546 | 0.9930 | 0.9783 | 0.5926 | | 0.105 | 8.17 | 2550 | 0.1333 | 0.9021 | 0.9879 | 0.9890 | 0.7294 | 0.8863 | 0.9919 | 0.9783 | 0.6889 | | 0.09 | 8.33 | 2600 | 0.1555 | 0.8926 | 0.9855 | 0.9890 | 0.7033 | 0.8662 | 0.9930 | 0.9783 | 0.6275 | | 0.0947 | 8.49 | 2650 | 0.1572 | 0.8831 | 0.9856 | 0.9890 | 0.6747 | 0.8726 | 0.9885 | 0.9783 | 0.6512 | | 0.0784 | 8.65 | 2700 | 0.1477 | 0.8969 | 0.9873 | 0.9890 | 0.7143 | 0.8836 | 0.9908 | 0.9783 | 0.6818 | | 0.0814 | 8.81 | 2750 | 0.1700 | 0.8932 | 0.9861 | 0.9890 | 0.7045 | 0.8720 | 0.9919 | 0.9783 | 0.6458 | | 0.0962 | 8.97 | 2800 | 0.1290 | 0.9171 | 0.9896 | 0.9890 | 0.7727 | 0.8940 | 0.9954 | 0.9783 | 0.7083 | | 0.0802 | 9.13 | 2850 | 0.1721 | 0.8796 | 0.9832 | 0.9890 | 0.6667 | 0.8517 | 0.9918 | 0.9783 | 0.5849 | | 0.0844 | 9.29 | 2900 | 0.1516 | 0.9023 | 0.9867 | 0.9890 | 0.7312 | 0.8717 | 0.9953 | 0.9783 | 0.6415 | | 0.0511 | 9.45 | 2950 | 0.1544 | 0.9062 | 0.9879 | 0.9890 | 0.7416 | 0.8820 | 0.9942 | 0.9783 | 0.6735 | | 0.0751 | 9.61 | 3000 | 0.1748 | 0.8884 | 0.9832 | 0.9945 | 0.6875 | 0.8571 | 0.9930 | 0.9890 | 0.5893 | | 0.0707 | 9.77 | 3050 | 0.1743 | 0.8721 | 0.9802 | 0.9890 | 0.6471 | 0.8349 | 0.9941 | 0.9783 | 0.5323 | | 0.0951 | 9.93 | 3100 | 0.1660 | 0.8899 | 0.9850 | 0.9890 | 0.6957 | 0.8622 | 0.9930 | 0.9783 | 0.6154 | | 0.0576 | 10.1 | 3150 | 0.2029 | 0.8613 | 0.9766 | 0.9890 | 0.6182 | 0.8197 | 0.9952 | 0.9783 | 0.4857 | | 0.0727 | 10.26 | 3200 | 0.1709 | 0.8920 | 0.9849 | 0.9890 | 0.7021 | 0.8612 | 0.9942 | 0.9783 | 0.6111 | | 0.0654 | 10.42 | 3250 | 0.1599 | 0.8999 | 0.9861 | 0.9945 | 0.7191 | 0.8780 | 0.9919 | 0.9890 | 0.6531 | | 0.0553 | 10.58 | 3300 | 0.2091 | 0.8920 | 0.9849 | 0.9890 | 0.7021 | 0.8612 | 0.9942 | 0.9783 | 0.6111 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.9.0+cu102 - Datasets 1.9.0 - Tokenizers 0.10.2
sammy786/wav2vec2-xlsr-czech
7a6989ffbaa3495a1e8ca86761c76849752a1cbb
2022-03-23T18:26:37.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "cs", "dataset:mozilla-foundation/common_voice_8_0", "transformers", "generated_from_trainer", "hf-asr-leaderboard", "model_for_talk", "mozilla-foundation/common_voice_8_0", "robust-speech-event", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
sammy786
null
sammy786/wav2vec2-xlsr-czech
5
null
transformers
16,795
--- language: - cs license: apache-2.0 tags: - automatic-speech-recognition - cs - generated_from_trainer - hf-asr-leaderboard - model_for_talk - mozilla-foundation/common_voice_8_0 - robust-speech-event datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: sammy786/wav2vec2-xlsr-czech results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: cs metrics: - name: Test WER type: wer value: 11.22 - name: Test CER type: cer value: 2.52 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: cs metrics: - name: Test WER type: wer value: 97.02 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: cs metrics: - name: Test WER type: wer value: 69.7 --- # sammy786/wav2vec2-xlsr-czech This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - cs dataset. It achieves the following results on evaluation set (which is 10 percent of train data set merged with other and dev datasets): - Loss: 7.26 - Wer: 19.32 ## Model description "facebook/wav2vec2-xls-r-1b" was finetuned. ## Intended uses & limitations More information needed ## Training and evaluation data Training data - Common voice Finnish train.tsv, dev.tsv, invalidated.tsv and other.tsv ## Training procedure For creating the train dataset, all possible datasets were appended and 90-10 split was used. ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.000045637994662983496 - train_batch_size: 8 - eval_batch_size: 16 - seed: 13 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine_with_restarts - lr_scheduler_warmup_steps: 500 - num_epochs: 7 - mixed_precision_training: Native AMP ### Training results | Step | Training Loss | Validation Loss | Wer | |:----:|:-------------:|:---------------:|:--------:| | 200 | 6.654600 | 3.329486 | 1.000000 | | 400 | 1.700600 | 0.317266 | 0.409446 | | 600 | 0.767400 | 0.211371 | 0.313981 | | 800 | 0.718600 | 0.167771 | 0.280676 | | 1000 | 0.661700 | 0.142229 | 0.258938 | | 1200 | 0.594400 | 0.137321 | 0.256275 | | 1400 | 0.583900 | 0.132922 | 0.248418 | | 1600 | 0.565100 | 0.117214 | 0.238640 | | 1800 | 0.369600 | 0.116954 | 0.238291 | | 2000 | 0.292800 | 0.109973 | 0.227509 | | 2200 | 0.255400 | 0.104955 | 0.228120 | | 2400 | 0.266800 | 0.097268 | 0.220525 | | 2600 | 0.232700 | 0.096055 | 0.213584 | | 2800 | 0.213700 | 0.097770 | 0.218866 | | 3000 | 0.209900 | 0.091633 | 0.210485 | | 3200 | 0.196800 | 0.090342 | 0.208739 | | 3400 | 0.200500 | 0.082326 | 0.204767 | | 3600 | 0.176800 | 0.085491 | 0.204068 | | 3800 | 0.170000 | 0.081289 | 0.201231 | | 4000 | 0.166200 | 0.080762 | 0.200227 | | 4200 | 0.161700 | 0.076671 | 0.198001 | | 4400 | 0.147000 | 0.077383 | 0.196997 | | 4600 | 0.141900 | 0.076057 | 0.195862 | | 4800 | 0.144800 | 0.074612 | 0.195120 | | 5000 | 0.138900 | 0.073138 | 0.193985 | | 5200 | 0.143900 | 0.072802 | 0.192894 | | 5400 | 0.131100 | 0.072764 | 0.193723 | | 5600 | 0.137000 | 0.072697 | 0.193679 | | 5800 | 0.133300 | 0.072651 | 0.193286 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.0+cu102 - Datasets 1.17.1.dev0 - Tokenizers 0.10.3 #### Evaluation Commands 1. To evaluate on `mozilla-foundation/common_voice_8_0` with split `test` ```bash python eval.py --model_id sammy786/wav2vec2-xlsr-czech --dataset mozilla-foundation/common_voice_8_0 --config cs --split test ```
sammy786/wav2vec2-xlsr-romansh_vallader
c1ce827735fa788b654e65e61a255dd77929f928
2022-03-23T18:33:09.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "rm-vallader", "dataset:mozilla-foundation/common_voice_8_0", "transformers", "generated_from_trainer", "hf-asr-leaderboard", "model_for_talk", "mozilla-foundation/common_voice_8_0", "robust-speech-event", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
sammy786
null
sammy786/wav2vec2-xlsr-romansh_vallader
5
null
transformers
16,796
--- language: - rm-vallader license: apache-2.0 tags: - automatic-speech-recognition - generated_from_trainer - hf-asr-leaderboard - model_for_talk - mozilla-foundation/common_voice_8_0 - rm-vallader - robust-speech-event datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: sammy786/wav2vec2-xlsr-romansh_vallader results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: rm-vallader metrics: - name: Test WER type: wer value: 28.54 - name: Test CER type: cer value: 6.57 --- # sammy786/wav2vec2-xlsr-romansh_vallader This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - rm-vallader dataset. It achieves the following results on evaluation set (which is 10 percent of train data set merged with other and dev datasets): - Loss: 30.31 - Wer: 26.32 ## Model description "facebook/wav2vec2-xls-r-1b" was finetuned. ## Intended uses & limitations More information needed ## Training and evaluation data Training data - Common voice Finnish train.tsv, dev.tsv and other.tsv ## Training procedure For creating the train dataset, all possible datasets were appended and 90-10 split was used. ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.000045637994662983496 - train_batch_size: 16 - eval_batch_size: 16 - seed: 13 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine_with_restarts - lr_scheduler_warmup_steps: 500 - num_epochs: 40 - mixed_precision_training: Native AMP ### Training results | Step | Training Loss | Validation Loss | Wer | |------|---------------|-----------------|----------| | 200 | 5.895100 | 3.136624 | 0.999713 | | 400 | 1.545700 | 0.445069 | 0.471584 | | 600 | 0.693900 | 0.340700 | 0.363088 | | 800 | 0.510600 | 0.295432 | 0.289610 | | 1000 | 0.318800 | 0.286795 | 0.281860 | | 1200 | 0.194000 | 0.307468 | 0.274110 | | 1400 | 0.151800 | 0.304849 | 0.264351 | | 1600 | 0.148300 | 0.303112 | 0.263203 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.0+cu102 - Datasets 1.17.1.dev0 - Tokenizers 0.10.3 #### Evaluation Commands 1. To evaluate on `mozilla-foundation/common_voice_8_0` with split `test` ```bash python eval.py --model_id sammy786/wav2vec2-xlsr-romansh_vallader --dataset mozilla-foundation/common_voice_8_0 --config rm-vallader --split test ```
saraks/cuad-distil-governing_law-cased-08-31-v1
d412346a84032e0ae906af9afee60d8bf88ce45c
2021-08-31T17:13:43.000Z
[ "pytorch", "distilbert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
saraks
null
saraks/cuad-distil-governing_law-cased-08-31-v1
5
null
transformers
16,797
Entry not found
savasy/TurkQP
80057516d7be8bf90773797841e84a1e9c12e887
2021-05-20T04:52:43.000Z
[ "pytorch", "jax", "bert", "text-classification", "transformers" ]
text-classification
false
savasy
null
savasy/TurkQP
5
null
transformers
16,798
Entry not found
sberbank-ai/ruclip-vit-large-patch14-224
5814c526671a20e620fd9be930780675e34711ef
2022-01-09T21:43:58.000Z
[ "pytorch", "transformers" ]
null
false
sberbank-ai
null
sberbank-ai/ruclip-vit-large-patch14-224
5
null
transformers
16,799
# ruclip-vit-large-patch14-224 **RuCLIP** (**Ru**ssian **C**ontrastive **L**anguage–**I**mage **P**retraining) is a multimodal model for obtaining images and text similarities and rearranging captions and pictures. RuCLIP builds on a large body of work on zero-shot transfer, computer vision, natural language processing and multimodal learning. Model was trained by [Sber AI](https://github.com/sberbank-ai) and [SberDevices](https://sberdevices.ru/) teams. * Task: `text ranking`; `image ranking`; `zero-shot image classification`; * Type: `encoder` * Num Parameters: `430M` * Training Data Volume: `240 million text-image pairs` * Language: `Russian` * Context Length: `77` * Transformer Layers: `12` * Transformer Width: `768` * Transformer Heads: `12` * Image Size: `224` * Vision Layers: `24` * Vision Width: `1024` * Vision Patch Size: `14` ## Usage [Github](https://github.com/sberbank-ai/ru-clip) ``` pip install ruclip ``` ```python clip, processor = ruclip.load("ruclip-vit-large-patch14-224", device="cuda") ``` ## Performance We have evaluated the performance on the following datasets: | Dataset | Metric Name | Metric Result | |:--------------|:---------------|:--------------------| | Food101 | acc | 0.597 | | CIFAR10 | acc | 0.878 | | CIFAR100 | acc | 0.511 | | Birdsnap | acc | 0.172 | | SUN397 | acc | 0.484 | | Stanford Cars | acc | 0.559 | | DTD | acc | 0.370 | | MNIST | acc | 0.337 | | STL10 | acc | 0.934 | | PCam | acc | 0.520 | | CLEVR | acc | 0.152 | | Rendered SST2 | acc | 0.529 | | ImageNet | acc | 0.426 | | FGVC Aircraft | mean-per-class | 0.046 | | Oxford Pets | mean-per-class | 0.604 | | Caltech101 | mean-per-class | 0.777 | | Flowers102 | mean-per-class | 0.455 | | HatefulMemes | roc-auc | 0.530 | # Authors + Alex Shonenkov: [Github](https://github.com/shonenkov), [Kaggle GM](https://www.kaggle.com/shonenkov) + Daniil Chesakov: [Github](https://github.com/Danyache) + Denis Dimitrov: [Github](https://github.com/denndimitrov) + Igor Pavlov: [Github](https://github.com/boomb0om)