modelId
stringlengths
4
112
sha
stringlengths
40
40
lastModified
stringlengths
24
24
tags
list
pipeline_tag
stringclasses
29 values
private
bool
1 class
author
stringlengths
2
38
config
null
id
stringlengths
4
112
downloads
float64
0
36.8M
likes
float64
0
712
library_name
stringclasses
17 values
__index_level_0__
int64
0
38.5k
readme
stringlengths
0
186k
arampacha/DialoGPT-medium-simpsons
65c7c2888bc922202735dea59d8990bd45425df6
2021-08-04T14:41:54.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
arampacha
null
arampacha/DialoGPT-medium-simpsons
5
1
transformers
16,400
--- tags: - conversational --- # DialoGPT-medium-simpsons This is a version of [DialoGPT-medium](https://huggingface.co/microsoft/DialoGPT-medium) fine-tuned on The Simpsons scripts.
aristotletan/sc-distilbert
5d12da6bd594fed7634b07ee52e7afa4e63c6148
2021-04-19T03:04:19.000Z
[ "pytorch", "distilbert", "text-classification", "transformers" ]
text-classification
false
aristotletan
null
aristotletan/sc-distilbert
5
null
transformers
16,401
Entry not found
aristotletan/scim-distillbert
fb85223bb551dd5b1ab4609fdb373b8903c8b3c6
2021-04-19T05:32:15.000Z
[ "pytorch", "distilbert", "text-classification", "transformers" ]
text-classification
false
aristotletan
null
aristotletan/scim-distillbert
5
null
transformers
16,402
Entry not found
arjun3816/autonlp-pegas_large_samsum-15892673
f88d5c51153179bbdb883027d83fb801fc660f37
2021-10-07T15:05:32.000Z
[ "pytorch", "pegasus", "text2text-generation", "unk", "dataset:arjun3816/autonlp-data-pegas_large_samsum", "transformers", "autonlp", "autotrain_compatible" ]
text2text-generation
false
arjun3816
null
arjun3816/autonlp-pegas_large_samsum-15892673
5
null
transformers
16,403
--- tags: autonlp language: unk widget: - text: "I love AutoNLP 🤗" datasets: - arjun3816/autonlp-data-pegas_large_samsum --- # Model Trained Using AutoNLP - Problem type: Summarization - Model ID: 15892673 ## Validation Metrics - Loss: 1.3661842346191406 - Rouge1: 50.8868 - Rouge2: 26.996 - RougeL: 42.9088 - RougeLsum: 46.6748 - Gen Len: 20.716 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_HUGGINGFACE_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/arjun3816/autonlp-pegas_large_samsum-15892673 ```
arnolfokam/roberta-base-swa
c7fe48353e0ecb9171ff813908219ea820154d9c
2021-11-24T11:41:03.000Z
[ "pytorch", "roberta", "token-classification", "swa", "dataset:masakhaner", "transformers", "NER", "license:apache-2.0", "autotrain_compatible" ]
token-classification
false
arnolfokam
null
arnolfokam/roberta-base-swa
5
null
transformers
16,404
--- language: - swa tags: - NER datasets: - masakhaner metrics: - f1 - precision - recall license: apache-2.0 widget: - text: "Wizara ya afya ya Tanzania imeripoti Jumatatu kuwa, watu takriban 14 zaidi wamepata maambukizi ya Covid-19." --- # Model description **roberta-base-swa** is a model based on the fine-tuned RoBERTa base model. It has been trained to recognize four types of entities: - dates & time (DATE) - Location (LOC) - Organizations (ORG) - Person (PER) # Intended Use - Intended to be used for research purposes concerning Named Entity Recognition for African Languages. - Not intended for practical purposes. # Training Data This model was fine-tuned on the Swahili corpus **(swa)** of the [MasakhaNER](https://github.com/masakhane-io/masakhane-ner) dataset. However, we thresholded the number of entity groups per sentence in this dataset to 10 entity groups. # Training procedure This model was trained on a single NVIDIA P5000 from [Paperspace](https://www.paperspace.com) #### Hyperparameters - **Learning Rate:** 5e-5 - **Batch Size:** 32 - **Maximum Sequence Length:** 164 - **Epochs:** 30 # Evaluation Data We evaluated this model on the test split of the Swahili corpus **(swa)** present in the [MasakhaNER](https://github.com/masakhane-io/masakhane-ner) with no thresholding. # Metrics - Precision - Recall - F1-score # Limitations - The size of the pre-trained language model prevents its usage in anything other than research. - Lack of analysis concerning the bias and fairness in these models may make them dangerous if deployed into production system. - The train data is a less populated version of the original dataset in terms of entity groups per sentence. Therefore, this can negatively impact the performance. # Caveats and Recommendations - The topics in the dataset corpus are centered around **News**. Future training could be done with a more diverse corpus. # Results Model Name| Precision | Recall | F1-score -|-|-|- **roberta-base-swa**| 80.58 | 86.79 | 83.57 # Usage ```python from transformers import AutoTokenizer, AutoModelForTokenClassification from transformers import pipeline tokenizer = AutoTokenizer.from_pretrained("arnolfokam/roberta-base-swa") model = AutoModelForTokenClassification.from_pretrained("arnolfokam/roberta-base-swa") nlp = pipeline("ner", model=model, tokenizer=tokenizer) example = "Wizara ya afya ya Tanzania imeripoti Jumatatu kuwa, watu takriban 14 zaidi wamepata maambukizi ya Covid-19." ner_results = nlp(example) print(ner_results) ```
arogyaGurkha/koelectra-base-discriminator-finetuned-squad_kor_v1
32f5d2ea5f5073c585ecbcdfc87dcd2f6dae370c
2021-09-11T08:34:39.000Z
[ "pytorch", "tensorboard", "electra", "question-answering", "dataset:squad_kor_v1", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
question-answering
false
arogyaGurkha
null
arogyaGurkha/koelectra-base-discriminator-finetuned-squad_kor_v1
5
null
transformers
16,405
--- tags: - generated_from_trainer datasets: - squad_kor_v1 model-index: - name: koelectra-base-discriminator-finetuned-squad_kor_v1 results: - task: name: Question Answering type: question-answering dataset: name: squad_kor_v1 type: squad_kor_v1 args: squad_kor_v1 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # koelectra-base-discriminator-finetuned-squad_kor_v1 This model is a fine-tuned version of [monologg/koelectra-base-discriminator](https://huggingface.co/monologg/koelectra-base-discriminator) on the squad_kor_v1 dataset. It achieves the following results on the evaluation set: - Loss: 0.5589 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.5774 | 1.0 | 4025 | 0.5589 | ### Framework versions - Transformers 4.10.2 - Pytorch 1.9.0+cu102 - Datasets 1.11.0 - Tokenizers 0.10.3
lmqg/bart-large-squad-default
dabb36d74d01536b8a1381027ab637566de6d9da
2022-06-01T00:21:11.000Z
[ "pytorch", "bart", "text2text-generation", "en", "dataset:squad", "transformers", "question generation", "question answer generation", "license:mit", "autotrain_compatible" ]
text2text-generation
false
lmqg
null
lmqg/bart-large-squad-default
5
null
transformers
16,406
--- language: - en tags: - question generation - question answer generation license: mit datasets: - squad metrics: - bleu - meteor - rouge widget: - text: "<hl> Beyonce <hl> further expanded her acting career, starring as blues singer Etta James in the 2008 musical biopic, Cadillac Records." example_title: "Example 1" - text: "Beyonce further expanded her acting career, starring as blues singer <hl> Etta James <hl> in the 2008 musical biopic, Cadillac Records." example_title: "Example 2" - text: "Beyonce further expanded her acting career, starring as blues singer Etta James in the 2008 musical biopic, <hl> Cadillac Records <hl> ." example_title: "Example 3" --- # T5 finetuned on Question Generation T5 model for question generation. Please visit [our repository](https://github.com/asahi417/t5-question-generation) for more detail.
lmqg/t5-base-squad-default
9d86dfb2fc5a7b37f2dff741621e4527b1e70f0a
2022-06-01T00:21:43.000Z
[ "pytorch", "t5", "text2text-generation", "en", "dataset:squad", "transformers", "question generation", "question answer generation", "license:mit", "autotrain_compatible" ]
text2text-generation
false
lmqg
null
lmqg/t5-base-squad-default
5
null
transformers
16,407
--- language: - en tags: - question generation - question answer generation license: mit datasets: - squad metrics: - bleu - meteor - rouge widget: - text: "generate question: <hl> Beyonce <hl> further expanded her acting career, starring as blues singer Etta James in the 2008 musical biopic, Cadillac Records." example_title: "Example 1" - text: "generate question: Beyonce further expanded her acting career, starring as blues singer <hl> Etta James <hl> in the 2008 musical biopic, Cadillac Records." example_title: "Example 2" - text: "generate question: Beyonce further expanded her acting career, starring as blues singer Etta James in the 2008 musical biopic, <hl> Cadillac Records <hl> ." example_title: "Example 3" --- # T5 finetuned on Question Generation T5 model for question generation. Please visit [our repository](https://github.com/asahi417/t5-question-generation) for more detail.
asahi417/lmqg-t5-base-squad
97bd8ba5a0a4b14327fa599466ede49423ced1dd
2022-06-09T18:14:14.000Z
[ "pytorch", "t5", "text2text-generation", "en", "dataset:asahi417/qg_squad", "transformers", "question generation", "license:cc-by-4.0", "autotrain_compatible" ]
text2text-generation
false
asahi417
null
asahi417/lmqg-t5-base-squad
5
null
transformers
16,408
--- language: en tags: - question generation license: cc-by-4.0 datasets: - asahi417/qg_squad metrics: - bleu - meteor - rouge - bertscore - moverscore widget: - text: "generate question: <hl> Beyonce <hl> further expanded her acting career, starring as blues singer Etta James in the 2008 musical biopic, Cadillac Records." example_title: "Question Generation Example 1" - text: "generate question: Beyonce further expanded her acting career, starring as blues singer <hl> Etta James <hl> in the 2008 musical biopic, Cadillac Records." example_title: "Question Generation Example 2" - text: "generate question: Beyonce further expanded her acting career, starring as blues singer Etta James in the 2008 musical biopic, <hl> Cadillac Records <hl> ." example_title: "Question Generation Example 3" pipeline_tag: text2text-generation --- # T5 BASE fine-tuned for English Question Generation T5 BASE Model fine-tuned on English question generation dataset (SQuAD) with an extensive hyper-parameter search. - [Online Demo](https://autoqg.net/) - [Project Repository](https://github.com/asahi417/lm-question-generation) ## Overview **Language model:** t5-base **Language:** English (en) **Downstream-task:** Question Generation **Training data:** SQuAD **Eval data:** SQuAD **Code:** See [our repository](https://github.com/asahi417/lm-question-generation) ## Usage ### In Transformers ```python from transformers import pipeline model_path = 'asahi417/lmqg-t5-base-squad' pipe = pipeline("text2text-generation", model_path) paragraph = 'Beyonce further expanded her acting career, starring as blues singer Etta James in the 2008 musical biopic, Cadillac Records.' # highlight an answer in the paragraph to generate question answer = 'Etta James' highlight_token = '<hl>' input_text = paragraph.replace(answer, '{0} {1} {0}'.format(highlight_token, answer)) input_text = 'generate question: {}'.format(input_text) # add task specific prefix generation = pipe(input_text) print(generation) >>> [{'generated_text': 'What is the name of the biopic that Beyonce starred in?'}] ``` ## Evaluations Evaluation on the test set of [SQuAD QG dataset](https://huggingface.co/datasets/asahi417/qg_squad). The results are comparable with the [leaderboard](https://paperswithcode.com/sota/question-generation-on-squad11) and previous works. All evaluations were done using our [evaluation script](https://github.com/asahi417/lm-question-generation). | BLEU 4 | ROUGE L | METEOR | BERTScore | MoverScore | | ------ | -------- | ------ | --------- | ---------- | | 26.12 | 53.33 | 26.96 | 90.59 | 64.74 | - [metric file](https://huggingface.co/asahi417/lmqg-t5-base-squad/raw/main/eval/metric.first.sentence.paragraph_answer.question.asahi417_qg_squad.default.json) ## Fine-tuning Parameters We ran grid search to find the best hyper-parameters and continued fine-tuning until the validation metric decrease. The best hyper-parameters can be found [here](https://huggingface.co/asahi417/lmqg-t5-base-squad/raw/main/trainer_config.json), and fine-tuning script is released in [our repository](https://github.com/asahi417/lm-question-generation). ## Citation TBA
asini/wav2vec_tuto
008553bc941b7a0c864002e26110a5bb752bcccf
2022-02-28T09:22:27.000Z
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
asini
null
asini/wav2vec_tuto
5
null
transformers
16,409
Entry not found
athar/distilbert-base-uncased-finetuned-cola
9f6b5675703e15841c8c6b824b849a03dbf5e648
2021-10-13T23:50:52.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:glue", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
athar
null
athar/distilbert-base-uncased-finetuned-cola
5
null
transformers
16,410
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - matthews_correlation model-index: - name: distilbert-base-uncased-finetuned-cola results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue args: cola metrics: - name: Matthews Correlation type: matthews_correlation value: 0.5451837431775948 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-cola This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.8508 - Matthews Correlation: 0.5452 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.5221 | 1.0 | 535 | 0.5370 | 0.4246 | | 0.3462 | 2.0 | 1070 | 0.5157 | 0.5183 | | 0.2332 | 3.0 | 1605 | 0.6324 | 0.5166 | | 0.1661 | 4.0 | 2140 | 0.7616 | 0.5370 | | 0.1263 | 5.0 | 2675 | 0.8508 | 0.5452 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.9.0+cu111 - Datasets 1.13.0 - Tokenizers 0.10.3
auychai/distilbert-base-uncased-finetuned-emotion
a8a7acdda010c3631c34b5b3fedc6f15cdcfd51f
2021-12-24T11:58:02.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "transformers" ]
text-classification
false
auychai
null
auychai/distilbert-base-uncased-finetuned-emotion
5
null
transformers
16,411
Entry not found
aviator-neural/bert-base-uncased-sst2
faf75b9164ca81f6c051646ec3adf55486d551cf
2022-01-20T12:00:52.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
aviator-neural
null
aviator-neural/bert-base-uncased-sst2
5
null
transformers
16,412
Entry not found
aviator-neural/gpt2-donald_trump
b85afa0a22bb0a27b83eb7a43418885b693b4236
2022-01-24T22:09:58.000Z
[ "pytorch", "tensorboard", "gpt2", "text-generation", "transformers", "generated_from_trainer", "license:mit", "model-index" ]
text-generation
false
aviator-neural
null
aviator-neural/gpt2-donald_trump
5
null
transformers
16,413
--- license: mit tags: - generated_from_trainer model-index: - name: gpt2-donald_trump results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt2-donald_trump This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.8721 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 391 | 2.8721 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.18.0 - Tokenizers 0.10.3
ayameRushia/wav2vec2-large-xls-r-300m-el
14ca917d055814167cee709043950157d8b22934
2022-05-09T01:56:56.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "el", "dataset:mozilla-foundation/common_voice_8_0", "transformers", "generated_from_trainer", "hf-asr-leaderboard", "mozilla-foundation/common_voice_8_0", "robust-speech-event", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
ayameRushia
null
ayameRushia/wav2vec2-large-xls-r-300m-el
5
null
transformers
16,414
--- language: - el license: apache-2.0 tags: - automatic-speech-recognition - generated_from_trainer - hf-asr-leaderboard - mozilla-foundation/common_voice_8_0 - robust-speech-event datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: wav2vec2-large-xls-r-300m-el results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: el metrics: - name: Test WER using LM type: wer value: 20.9 - name: Test CER using LM type: cer value: 6.0466 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - EL dataset. It achieves the following results on the evaluation set: - Loss: 0.3218 - Wer: 0.3095 ## Training and evaluation data Evaluation is conducted in Notebook, you can see within the repo "notebook_evaluation_wav2vec2_el.ipynb" Test WER without LM wer = 31.1294 % cer = 7.9509 % Test WER using LM wer = 20.7340 % cer = 6.0466 % How to use eval.py ``` huggingface-cli login #login to huggingface for getting auth token to access the common voice v8 #running with LM !python eval.py --model_id ayameRushia/wav2vec2-large-xls-r-300m-el --dataset mozilla-foundation/common_voice_8_0 --config el --split test # running without LM !python eval.py --model_id ayameRushia/wav2vec2-large-xls-r-300m-el --dataset mozilla-foundation/common_voice_8_0 --config el --split test --greedy ``` ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 400 - num_epochs: 80.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 6.3683 | 8.77 | 500 | 3.1280 | 1.0 | | 1.9915 | 17.54 | 1000 | 0.6600 | 0.6444 | | 0.6565 | 26.32 | 1500 | 0.4208 | 0.4486 | | 0.4484 | 35.09 | 2000 | 0.3885 | 0.4006 | | 0.3573 | 43.86 | 2500 | 0.3548 | 0.3626 | | 0.3063 | 52.63 | 3000 | 0.3375 | 0.3430 | | 0.2751 | 61.4 | 3500 | 0.3359 | 0.3241 | | 0.2511 | 70.18 | 4000 | 0.3222 | 0.3108 | | 0.2361 | 78.95 | 4500 | 0.3205 | 0.3084 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.18.3 - Tokenizers 0.11.0
bada/test_gpt
15bce292b158715989fe5c79f352003d28cfbbb3
2021-05-21T13:52:48.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "transformers" ]
text-generation
false
bada
null
bada/test_gpt
5
null
transformers
16,415
Entry not found
begar/xlm-roberta-base-finetuned-marc
f72e36f9da9ec87750ac8a05181bab4bf3ee795b
2022-01-08T11:35:02.000Z
[ "pytorch", "tensorboard", "xlm-roberta", "text-classification", "dataset:amazon_reviews_multi", "transformers", "generated_from_trainer", "license:mit", "model-index" ]
text-classification
false
begar
null
begar/xlm-roberta-base-finetuned-marc
5
null
transformers
16,416
--- license: mit tags: - generated_from_trainer datasets: - amazon_reviews_multi model-index: - name: xlm-roberta-base-finetuned-marc results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-marc This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the amazon_reviews_multi dataset. It achieves the following results on the evaluation set: - Loss: 1.0276 - Mae: 0.5310 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Mae | |:-------------:|:-----:|:----:|:---------------:|:------:| | 1.1582 | 1.0 | 308 | 1.0625 | 0.5221 | | 1.0091 | 2.0 | 616 | 1.0276 | 0.5310 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
benschlagman/tapas_fine_tuning
a3e35033d43987f95230c764b3812341c2b5a6be
2022-01-28T17:02:43.000Z
[ "pytorch", "tf", "tapas", "table-question-answering", "transformers" ]
table-question-answering
false
benschlagman
null
benschlagman/tapas_fine_tuning
5
null
transformers
16,417
Entry not found
beomi/beep-kcbert-base-hate
e901938f58ad0ab8024f7b2a1658c11d04dad8d0
2021-10-23T05:53:53.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
beomi
null
beomi/beep-kcbert-base-hate
5
null
transformers
16,418
Entry not found
beomi/detox-kcbert-base
32ad7a48d09f59ca5d16c676b4d888b028b3d300
2021-08-20T09:10:15.000Z
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
beomi
null
beomi/detox-kcbert-base
5
null
transformers
16,419
Entry not found
beomus/lotr-gpt
27d8583f2e6abcfcff8718dedc458f1a359305d9
2021-09-09T07:34:45.000Z
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
false
beomus
null
beomus/lotr-gpt
5
null
transformers
16,420
Entry not found
binwang/xlnet-base-cased
553f39a80df4454432399c22ec250a54047acbfc
2020-12-11T21:34:38.000Z
[ "pytorch", "xlnet", "text-generation", "transformers" ]
text-generation
false
binwang
null
binwang/xlnet-base-cased
5
null
transformers
16,421
This model is pre-trained **XLNET** with 12 layers. It comes with paper: SBERT-WK: A Sentence Embedding Method By Dissecting BERT-based Word Models Project Page: [SBERT-WK](https://github.com/BinWang28/SBERT-WK-Sentence-Embedding)
blackbird/alberta-base-mnli-v1
d1ad74838d1fcaaebdd166411032d256e1d71ec9
2021-06-04T02:36:43.000Z
[ "pytorch", "roberta", "text-classification", "transformers" ]
text-classification
false
blackbird
null
blackbird/alberta-base-mnli-v1
5
null
transformers
16,422
blinjrm/finsent
89653bd7d2a27ad62845c6a27ab80610fb497a7e
2021-05-20T14:28:23.000Z
[ "pytorch", "jax", "roberta", "text-classification", "transformers" ]
text-classification
false
blinjrm
null
blinjrm/finsent
5
null
transformers
16,423
Entry not found
bochaowei/t5-small-finetuned-xsum-wei2
4b473ae6974a64b5a19d52828882d0b0f67b6445
2021-10-21T07:21:16.000Z
[ "pytorch", "tensorboard", "t5", "text2text-generation", "dataset:xsum", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
text2text-generation
false
bochaowei
null
bochaowei/t5-small-finetuned-xsum-wei2
5
null
transformers
16,424
--- license: apache-2.0 tags: - generated_from_trainer datasets: - xsum metrics: - rouge model-index: - name: t5-small-finetuned-xsum-wei2 results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: xsum type: xsum args: default metrics: - name: Rouge1 type: rouge value: 29.2287 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-xsum-wei2 This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the xsum dataset. It achieves the following results on the evaluation set: - Loss: 2.4131 - Rouge1: 29.2287 - Rouge2: 8.4073 - Rougel: 23.0934 - Rougelsum: 23.0954 - Gen Len: 18.8236 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4e-05 - train_batch_size: 12 - eval_batch_size: 12 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:------:|:-------:|:---------:|:-------:| | 2.633 | 1.0 | 17004 | 2.4131 | 29.2287 | 8.4073 | 23.0934 | 23.0954 | 18.8236 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.9.0+cu111 - Datasets 1.14.0 - Tokenizers 0.10.3
bochrasaffar/T5_description_generation
7d689a2e1632b57ff5c773bdc72a2ab2017c5608
2021-12-02T11:46:48.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
bochrasaffar
null
bochrasaffar/T5_description_generation
5
null
transformers
16,425
Entry not found
boronbrown48/sentiment_others_v1
7b8717c5ad7df23bac1767619a6f97723514eb56
2021-11-26T09:05:14.000Z
[ "pytorch", "camembert", "text-classification", "transformers" ]
text-classification
false
boronbrown48
null
boronbrown48/sentiment_others_v1
5
null
transformers
16,426
Entry not found
boychaboy/MNLI_bert-base-cased_3
28a18d4691bc7c6e85a2f53dc5f923d170137e15
2021-05-19T13:13:50.000Z
[ "pytorch", "jax", "bert", "text-classification", "transformers" ]
text-classification
false
boychaboy
null
boychaboy/MNLI_bert-base-cased_3
5
null
transformers
16,427
Entry not found
boychaboy/SNLI_bert-base-cased
e700ed44d8bb35240a459eeb81ef1cb8eca3fe4d
2021-05-19T13:23:58.000Z
[ "pytorch", "jax", "bert", "text-classification", "transformers" ]
text-classification
false
boychaboy
null
boychaboy/SNLI_bert-base-cased
5
null
transformers
16,428
Entry not found
boychaboy/kobias_klue-bert-base
d1cc940005c6fe287b1add127b1a2e361dd3001e
2021-07-07T05:02:18.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
boychaboy
null
boychaboy/kobias_klue-bert-base
5
null
transformers
16,429
Entry not found
bshlgrs/autonlp-classification_with_all_labellers-9532137
42bf20bfc611544ecce5bb845d2733d5efa54c90
2021-09-04T21:03:27.000Z
[ "pytorch", "bert", "text-classification", "en", "dataset:bshlgrs/autonlp-data-classification_with_all_labellers", "transformers", "autonlp" ]
text-classification
false
bshlgrs
null
bshlgrs/autonlp-classification_with_all_labellers-9532137
5
null
transformers
16,430
--- tags: autonlp language: en widget: - text: "I love AutoNLP 🤗" datasets: - bshlgrs/autonlp-data-classification_with_all_labellers --- # Model Trained Using AutoNLP - Problem type: Multi-class Classification - Model ID: 9532137 ## Validation Metrics - Loss: 0.34556105732917786 - Accuracy: 0.8749890724713699 - Macro F1: 0.5243623959669343 - Micro F1: 0.8749890724713699 - Weighted F1: 0.8638030768409057 - Macro Precision: 0.5016762404900895 - Micro Precision: 0.8749890724713699 - Weighted Precision: 0.8547962562614184 - Macro Recall: 0.5529674694200845 - Micro Recall: 0.8749890724713699 - Weighted Recall: 0.8749890724713699 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/bshlgrs/autonlp-classification_with_all_labellers-9532137 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("bshlgrs/autonlp-classification_with_all_labellers-9532137", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("bshlgrs/autonlp-classification_with_all_labellers-9532137", use_auth_token=True) inputs = tokenizer("I love AutoNLP", return_tensors="pt") outputs = model(**inputs) ```
byeongal/bert-base-uncased
8982c367fb9c0e1259862c5d5c63ceaafd0b3b97
2021-06-11T03:25:48.000Z
[ "pytorch", "bert", "fill-mask", "en", "dataset:bookcorpus", "dataset:wikipedia", "arxiv:1810.04805", "transformers", "exbert", "license:apache-2.0", "autotrain_compatible" ]
fill-mask
false
byeongal
null
byeongal/bert-base-uncased
5
null
transformers
16,431
--- language: en tags: - exbert license: apache-2.0 datasets: - bookcorpus - wikipedia --- # BERT base model (uncased) for Teachable NLP - This model forked from [bert-base-uncased](https://huggingface.co/bert-base-uncased) for fine tune [Teachable NLP](https://ainize.ai/teachable-nlp). Pretrained model on English language using a masked language modeling (MLM) objective. It was introduced in [this paper](https://arxiv.org/abs/1810.04805) and first released in [this repository](https://github.com/google-research/bert). This model is uncased: it does not make a difference between english and English. Disclaimer: The team releasing BERT did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description BERT is a transformers model pretrained on a large corpus of English data in a self-supervised fashion. This means it was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots of publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, it was pretrained with two objectives: - Masked language modeling (MLM): taking a sentence, the model randomly masks 15% of the words in the input then run the entire masked sentence through the model and has to predict the masked words. This is different from traditional recurrent neural networks (RNNs) that usually see the words one after the other, or from autoregressive models like GPT which internally mask the future tokens. It allows the model to learn a bidirectional representation of the sentence. - Next sentence prediction (NSP): the models concatenates two masked sentences as inputs during pretraining. Sometimes they correspond to sentences that were next to each other in the original text, sometimes not. The model then has to predict if the two sentences were following each other or not. This way, the model learns an inner representation of the English language that can then be used to extract features useful for downstream tasks: if you have a dataset of labeled sentences for instance, you can train a standard classifier using the features produced by the BERT model as inputs. ## Intended uses & limitations You can use the raw model for either masked language modeling or next sentence prediction, but it's mostly intended to be fine-tuned on a downstream task. See the [model hub](https://huggingface.co/models?filter=bert) to look for fine-tuned versions on a task that interests you. Note that this model is primarily aimed at being fine-tuned on tasks that use the whole sentence (potentially masked) to make decisions, such as sequence classification, token classification or question answering. For tasks such as text generation you should look at model like GPT2. ### How to use You can use this model directly with a pipeline for masked language modeling: ```python >>> from transformers import pipeline >>> unmasker = pipeline('fill-mask', model='bert-base-uncased') >>> unmasker("Hello I'm a [MASK] model.") [{'sequence': "[CLS] hello i'm a fashion model. [SEP]", 'score': 0.1073106899857521, 'token': 4827, 'token_str': 'fashion'}, {'sequence': "[CLS] hello i'm a role model. [SEP]", 'score': 0.08774490654468536, 'token': 2535, 'token_str': 'role'}, {'sequence': "[CLS] hello i'm a new model. [SEP]", 'score': 0.05338378623127937, 'token': 2047, 'token_str': 'new'}, {'sequence': "[CLS] hello i'm a super model. [SEP]", 'score': 0.04667217284440994, 'token': 3565, 'token_str': 'super'}, {'sequence': "[CLS] hello i'm a fine model. [SEP]", 'score': 0.027095865458250046, 'token': 2986, 'token_str': 'fine'}] ``` Here is how to use this model to get the features of a given text in PyTorch: ```python from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') model = BertModel.from_pretrained("bert-base-uncased") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` and in TensorFlow: ```python from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') model = TFBertModel.from_pretrained("bert-base-uncased") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` ### Limitations and bias Even if the training data used for this model could be characterized as fairly neutral, this model can have biased predictions: ```python >>> from transformers import pipeline >>> unmasker = pipeline('fill-mask', model='bert-base-uncased') >>> unmasker("The man worked as a [MASK].") [{'sequence': '[CLS] the man worked as a carpenter. [SEP]', 'score': 0.09747550636529922, 'token': 10533, 'token_str': 'carpenter'}, {'sequence': '[CLS] the man worked as a waiter. [SEP]', 'score': 0.0523831807076931, 'token': 15610, 'token_str': 'waiter'}, {'sequence': '[CLS] the man worked as a barber. [SEP]', 'score': 0.04962705448269844, 'token': 13362, 'token_str': 'barber'}, {'sequence': '[CLS] the man worked as a mechanic. [SEP]', 'score': 0.03788609802722931, 'token': 15893, 'token_str': 'mechanic'}, {'sequence': '[CLS] the man worked as a salesman. [SEP]', 'score': 0.037680890411138535, 'token': 18968, 'token_str': 'salesman'}] >>> unmasker("The woman worked as a [MASK].") [{'sequence': '[CLS] the woman worked as a nurse. [SEP]', 'score': 0.21981462836265564, 'token': 6821, 'token_str': 'nurse'}, {'sequence': '[CLS] the woman worked as a waitress. [SEP]', 'score': 0.1597415804862976, 'token': 13877, 'token_str': 'waitress'}, {'sequence': '[CLS] the woman worked as a maid. [SEP]', 'score': 0.1154729500412941, 'token': 10850, 'token_str': 'maid'}, {'sequence': '[CLS] the woman worked as a prostitute. [SEP]', 'score': 0.037968918681144714, 'token': 19215, 'token_str': 'prostitute'}, {'sequence': '[CLS] the woman worked as a cook. [SEP]', 'score': 0.03042375110089779, 'token': 5660, 'token_str': 'cook'}] ``` This bias will also affect all fine-tuned versions of this model. ## Training data The BERT model was pretrained on [BookCorpus](https://yknzhu.wixsite.com/mbweb), a dataset consisting of 11,038 unpublished books and [English Wikipedia](https://en.wikipedia.org/wiki/English_Wikipedia) (excluding lists, tables and headers). ## Training procedure ### Preprocessing The texts are lowercased and tokenized using WordPiece and a vocabulary size of 30,000. The inputs of the model are then of the form: ``` [CLS] Sentence A [SEP] Sentence B [SEP] ``` With probability 0.5, sentence A and sentence B correspond to two consecutive sentences in the original corpus and in the other cases, it's another random sentence in the corpus. Note that what is considered a sentence here is a consecutive span of text usually longer than a single sentence. The only constrain is that the result with the two "sentences" has a combined length of less than 512 tokens. The details of the masking procedure for each sentence are the following: - 15% of the tokens are masked. - In 80% of the cases, the masked tokens are replaced by `[MASK]`. - In 10% of the cases, the masked tokens are replaced by a random token (different) from the one they replace. - In the 10% remaining cases, the masked tokens are left as is. ### Pretraining The model was trained on 4 cloud TPUs in Pod configuration (16 TPU chips total) for one million steps with a batch size of 256. The sequence length was limited to 128 tokens for 90% of the steps and 512 for the remaining 10%. The optimizer used is Adam with a learning rate of 1e-4, \\(\beta*{1} = 0.9\\) and \\(\beta*{2} = 0.999\\), a weight decay of 0.01, learning rate warmup for 10,000 steps and linear decay of the learning rate after. ## Evaluation results When fine-tuned on downstream tasks, this model achieves the following results: Glue test results: | Task | MNLI-(m/mm) | QQP | QNLI | SST-2 | CoLA | STS-B | MRPC | RTE | Average | | :--: | :---------: | :--: | :--: | :---: | :--: | :---: | :--: | :--: | :-----: | | | 84.6/83.4 | 71.2 | 90.5 | 93.5 | 52.1 | 85.8 | 88.9 | 66.4 | 79.6 | ### BibTeX entry and citation info ```bibtex @article{DBLP:journals/corr/abs-1810-04805, author = {Jacob Devlin and Ming{-}Wei Chang and Kenton Lee and Kristina Toutanova}, title = {{BERT:} Pre-training of Deep Bidirectional Transformers for Language Understanding}, journal = {CoRR}, volume = {abs/1810.04805}, year = {2018}, url = {http://arxiv.org/abs/1810.04805}, archivePrefix = {arXiv}, eprint = {1810.04805}, timestamp = {Tue, 30 Oct 2018 20:39:56 +0100}, biburl = {https://dblp.org/rec/journals/corr/abs-1810-04805.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ``` <a href="https://huggingface.co/exbert/?model=bert-base-uncased"> <img width="300px" src="https://cdn-media.huggingface.co/exbert/button.png"> </a>
byeongal/gpt2
04d52b2deab9822a606b7775b78f058a90430f08
2021-06-22T02:37:59.000Z
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "license:mit" ]
text-generation
false
byeongal
null
byeongal/gpt2
5
null
transformers
16,432
--- language: en tags: - gpt2 license: mit --- # GPT-2 - This model forked from [gpt2](https://huggingface.co/gpt2) for fine tune [Teachable NLP](https://ainize.ai/teachable-nlp). Test the whole generation capabilities here: https://transformer.huggingface.co/doc/gpt2-large Pretrained model on English language using a causal language modeling (CLM) objective. It was introduced in [this paper](https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf) and first released at [this page](https://openai.com/blog/better-language-models/). Disclaimer: The team releasing GPT-2 also wrote a [model card](https://github.com/openai/gpt-2/blob/master/model_card.md) for their model. Content from this model card has been written by the Hugging Face team to complete the information they provided and give specific examples of bias. ## Model description GPT-2 is a transformers model pretrained on a very large corpus of English data in a self-supervised fashion. This means it was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots of publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, it was trained to guess the next word in sentences. More precisely, inputs are sequences of continuous text of a certain length and the targets are the same sequence, shifted one token (word or piece of word) to the right. The model uses internally a mask-mechanism to make sure the predictions for the token `i` only uses the inputs from `1` to `i` but not the future tokens. This way, the model learns an inner representation of the English language that can then be used to extract features useful for downstream tasks. The model is best at what it was pretrained for however, which is generating texts from a prompt. ## Intended uses & limitations You can use the raw model for text generation or fine-tune it to a downstream task. See the [model hub](https://huggingface.co/models?filter=gpt2) to look for fine-tuned versions on a task that interests you. ### How to use You can use this model directly with a pipeline for text generation. Since the generation relies on some randomness, we set a seed for reproducibility: ```python >>> from transformers import pipeline, set_seed >>> generator = pipeline('text-generation', model='gpt2') >>> set_seed(42) >>> generator("Hello, I'm a language model,", max_length=30, num_return_sequences=5) [{'generated_text': "Hello, I'm a language model, a language for thinking, a language for expressing thoughts."}, {'generated_text': "Hello, I'm a language model, a compiler, a compiler library, I just want to know how I build this kind of stuff. I don"}, {'generated_text': "Hello, I'm a language model, and also have more than a few of your own, but I understand that they're going to need some help"}, {'generated_text': "Hello, I'm a language model, a system model. I want to know my language so that it might be more interesting, more user-friendly"}, {'generated_text': 'Hello, I\'m a language model, not a language model"\n\nThe concept of "no-tricks" comes in handy later with new'}] ``` Here is how to use this model to get the features of a given text in PyTorch: ```python from transformers import GPT2Tokenizer, GPT2Model tokenizer = GPT2Tokenizer.from_pretrained('gpt2') model = GPT2Model.from_pretrained('gpt2') text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` and in TensorFlow: ```python from transformers import GPT2Tokenizer, TFGPT2Model tokenizer = GPT2Tokenizer.from_pretrained('gpt2') model = TFGPT2Model.from_pretrained('gpt2') text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` ### Limitations and bias The training data used for this model has not been released as a dataset one can browse. We know it contains a lot of unfiltered content from the internet, which is far from neutral. As the openAI team themselves point out in their [model card](https://github.com/openai/gpt-2/blob/master/model_card.md#out-of-scope-use-cases): > Because large-scale language models like GPT-2 do not distinguish fact from fiction, we don’t support use-cases > that require the generated text to be true. > > Additionally, language models like GPT-2 reflect the biases inherent to the systems they were trained on, so we do > not recommend that they be deployed into systems that interact with humans > unless the deployers first carry out a > study of biases relevant to the intended use-case. We found no statistically significant difference in gender, race, > and religious bias probes between 774M and 1.5B, implying all versions of GPT-2 should be approached with similar > levels of caution around use cases that are sensitive to biases around human attributes. Here's an example of how the model can have biased predictions: ```python >>> from transformers import pipeline, set_seed >>> generator = pipeline('text-generation', model='gpt2') >>> set_seed(42) >>> generator("The White man worked as a", max_length=10, num_return_sequences=5) [{'generated_text': 'The White man worked as a mannequin for'}, {'generated_text': 'The White man worked as a maniser of the'}, {'generated_text': 'The White man worked as a bus conductor by day'}, {'generated_text': 'The White man worked as a plumber at the'}, {'generated_text': 'The White man worked as a journalist. He had'}] >>> set_seed(42) >>> generator("The Black man worked as a", max_length=10, num_return_sequences=5) [{'generated_text': 'The Black man worked as a man at a restaurant'}, {'generated_text': 'The Black man worked as a car salesman in a'}, {'generated_text': 'The Black man worked as a police sergeant at the'}, {'generated_text': 'The Black man worked as a man-eating monster'}, {'generated_text': 'The Black man worked as a slave, and was'}] ``` This bias will also affect all fine-tuned versions of this model. ## Training data The OpenAI team wanted to train this model on a corpus as large as possible. To build it, they scraped all the web pages from outbound links on Reddit which received at least 3 karma. Note that all Wikipedia pages were removed from this dataset, so the model was not trained on any part of Wikipedia. The resulting dataset (called WebText) weights 40GB of texts but has not been publicly released. You can find a list of the top 1,000 domains present in WebText [here](https://github.com/openai/gpt-2/blob/master/domains.txt). ## Training procedure ### Preprocessing The texts are tokenized using a byte-level version of Byte Pair Encoding (BPE) (for unicode characters) and a vocabulary size of 50,257. The inputs are sequences of 1024 consecutive tokens. The larger model was trained on 256 cloud TPU v3 cores. The training duration was not disclosed, nor were the exact details of training. ## Evaluation results The model achieves the following results without any fine-tuning (zero-shot): | Dataset | LAMBADA | LAMBADA | CBT-CN | CBT-NE | WikiText2 | PTB | enwiki8 | text8 | WikiText103 | 1BW | |:--------:|:-------:|:-------:|:------:|:------:|:---------:|:------:|:-------:|:------:|:-----------:|:-----:| | (metric) | (PPL) | (ACC) | (ACC) | (ACC) | (PPL) | (PPL) | (BPB) | (BPC) | (PPL) | (PPL) | | | 35.13 | 45.99 | 87.65 | 83.4 | 29.41 | 65.85 | 1.16 | 1,17 | 37.50 | 75.20 | ### BibTeX entry and citation info ```bibtex @article{radford2019language, title={Language Models are Unsupervised Multitask Learners}, author={Radford, Alec and Wu, Jeff and Child, Rewon and Luan, David and Amodei, Dario and Sutskever, Ilya}, year={2019} } ``` <a href="https://huggingface.co/exbert/?model=gpt2"> <img width="300px" src="https://cdn-media.huggingface.co/exbert/button.png"> </a>
cahya/wav2vec2-base-turkish-artificial
510562070480b3e920ba7319a84641815761f475
2022-02-02T15:44:36.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "tr", "dataset:common_voice", "transformers", "audio", "speech", "xlsr-fine-tuning-week", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
cahya
null
cahya/wav2vec2-base-turkish-artificial
5
1
transformers
16,433
--- language: tr datasets: - common_voice metrics: - wer tags: - audio - automatic-speech-recognition - speech - xlsr-fine-tuning-week license: apache-2.0 model-index: - name: Wav2Vec2 Base Turkish with Artificial Voices by Cahya results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice tr type: common_voice args: tr metrics: - name: Test WER type: wer value: 57.60 --- # Wav2Vec2-Large-XLSR-Turkish Fine-tuned [ceyda/wav2vec2-base-760](https://huggingface.co/ceyda/wav2vec2-base-760) on the [Turkish Artificial Common Voice dataset](https://cloud.uncool.ai/index.php/f/2165181). When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "tr", split="test[:2%]") processor = Wav2Vec2Processor.from_pretrained("cahya/wav2vec2-large-xlsr-turkish-artificial") model = Wav2Vec2ForCTC.from_pretrained("cahya/wav2vec2-large-xlsr-turkish-artificial") # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) resampler = torchaudio.transforms.Resample(sampling_rate, 16_000) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset[:2]["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset[:2]["sentence"]) ``` ## Evaluation The model can be evaluated as follows on the Turkish test data of Common Voice. ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re test_dataset = load_dataset("common_voice", "tr", split="test") wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("cahya/wav2vec2-large-xlsr-turkish-artificial") model = Wav2Vec2ForCTC.from_pretrained("cahya/wav2vec2-large-xlsr-turkish-artificial") model.to("cuda") chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“\‘\”\'\`…\’»«]' # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() speech_array, sampling_rate = torchaudio.load(batch["path"]) resampler = torchaudio.transforms.Resample(sampling_rate, 16_000) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the aduio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ``` **Test Result**: 57.60 % ## Training The Artificial Common Voice `train`, `validation` is used to fine tune the model The script used for training can be found [here](https://github.com/cahya-wirawan/indonesian-speech-recognition)
cahya/wav2vec2-base-turkish-cv7
055befea6cb02e67c2a2bc1f7443f8617221acca
2022-02-02T22:05:14.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "tr", "dataset:common_voice", "transformers", "mozilla-foundation/common_voice_7_0", "generated_from_trainer", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
cahya
null
cahya/wav2vec2-base-turkish-cv7
5
null
transformers
16,434
--- language: - tr license: apache-2.0 tags: - automatic-speech-recognition - mozilla-foundation/common_voice_7_0 - generated_from_trainer datasets: - common_voice model-index: - name: '' results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model is a fine-tuned version of [cahya/wav2vec2-base-turkish-artificial](https://huggingface.co/cahya/wav2vec2-base-turkish-artificial) on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - TR dataset. It achieves the following results on the evaluation set: - Loss: 0.2893 - Wer: 0.2713 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 128 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 512 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - num_epochs: 100.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 1.8647 | 14.28 | 200 | 0.2758 | 0.2568 | | 1.3376 | 28.56 | 400 | 0.2754 | 0.2722 | | 1.1975 | 42.84 | 600 | 0.2929 | 0.2901 | | 1.1024 | 57.14 | 800 | 0.2904 | 0.2928 | | 1.0257 | 71.42 | 1000 | 0.2915 | 0.2823 | | 0.9628 | 85.7 | 1200 | 0.2936 | 0.2749 | | 0.9109 | 99.98 | 1400 | 0.2893 | 0.2713 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.3 - Tokenizers 0.11.0
cahya/wav2vec2-base-turkish-cv8
83453d2e9d1471f1ea5ecbd39ba69f53605d612f
2022-02-04T14:30:19.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "tr", "dataset:common_voice", "transformers", "mozilla-foundation/common_voice_8_0", "generated_from_trainer", "model-index" ]
automatic-speech-recognition
false
cahya
null
cahya/wav2vec2-base-turkish-cv8
5
0
transformers
16,435
--- language: - tr tags: - automatic-speech-recognition - mozilla-foundation/common_voice_8_0 - generated_from_trainer datasets: - common_voice model-index: - name: '' results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model is a fine-tuned version of [./checkpoint-1000](https://huggingface.co/./checkpoint-1000) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - TR dataset. It achieves the following results on the evaluation set: - Loss: 0.3282 - Wer: 0.2836 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 96 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 192 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - num_epochs: 100.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 1.0671 | 2.04 | 200 | 0.3079 | 0.2752 | | 0.6433 | 4.08 | 400 | 0.2728 | 0.2848 | | 0.5687 | 6.12 | 600 | 0.2882 | 0.3036 | | 0.5355 | 8.16 | 800 | 0.2778 | 0.2920 | | 0.5116 | 10.2 | 1000 | 0.2906 | 0.3014 | | 0.5313 | 9.16 | 1200 | 0.2984 | 0.3273 | | 0.4996 | 10.69 | 1400 | 0.3170 | 0.3344 | | 0.4845 | 12.21 | 1600 | 0.3202 | 0.3634 | | 0.5092 | 13.74 | 1800 | 0.3167 | 0.3373 | | 0.4777 | 15.27 | 2000 | 0.3292 | 0.3386 | | 0.4651 | 16.79 | 2200 | 0.3070 | 0.3427 | | 0.461 | 18.32 | 2400 | 0.3149 | 0.3561 | | 0.4481 | 19.85 | 2600 | 0.3292 | 0.3441 | | 0.4479 | 21.37 | 2800 | 0.3142 | 0.3209 | | 0.4305 | 22.9 | 3000 | 0.3525 | 0.3547 | | 0.4254 | 24.43 | 3200 | 0.3414 | 0.3400 | | 0.4066 | 25.95 | 3400 | 0.3118 | 0.3207 | | 0.4043 | 27.48 | 3600 | 0.3418 | 0.3483 | | 0.3985 | 29.01 | 3800 | 0.3254 | 0.3166 | | 0.3982 | 30.53 | 4000 | 0.3306 | 0.3453 | | 0.3929 | 32.06 | 4200 | 0.3262 | 0.3229 | | 0.378 | 33.59 | 4400 | 0.3546 | 0.3336 | | 0.4062 | 35.11 | 4600 | 0.3174 | 0.3457 | | 0.3648 | 36.64 | 4800 | 0.3377 | 0.3357 | | 0.3609 | 38.17 | 5000 | 0.3346 | 0.3520 | | 0.3483 | 39.69 | 5200 | 0.3350 | 0.3526 | | 0.3548 | 41.22 | 5400 | 0.3330 | 0.3406 | | 0.3446 | 42.75 | 5600 | 0.3398 | 0.3372 | | 0.3346 | 44.27 | 5800 | 0.3449 | 0.3288 | | 0.3309 | 45.8 | 6000 | 0.3320 | 0.3144 | | 0.326 | 47.33 | 6200 | 0.3400 | 0.3279 | | 0.3189 | 48.85 | 6400 | 0.3400 | 0.3150 | | 0.3165 | 50.38 | 6600 | 0.3359 | 0.2995 | | 0.3132 | 51.91 | 6800 | 0.3343 | 0.3096 | | 0.3092 | 53.44 | 7000 | 0.3224 | 0.3029 | | 0.2995 | 54.96 | 7200 | 0.3205 | 0.2985 | | 0.304 | 56.49 | 7400 | 0.3523 | 0.3034 | | 0.2952 | 58.02 | 7600 | 0.3289 | 0.2934 | | 0.2875 | 59.54 | 7800 | 0.3350 | 0.3008 | | 0.2868 | 61.07 | 8000 | 0.3537 | 0.3227 | | 0.2875 | 62.6 | 8200 | 0.3389 | 0.2970 | | 0.2778 | 64.12 | 8400 | 0.3370 | 0.2960 | | 0.2706 | 65.65 | 8600 | 0.3250 | 0.2802 | | 0.2669 | 67.18 | 8800 | 0.3351 | 0.2903 | | 0.2615 | 68.7 | 9000 | 0.3382 | 0.2989 | | 0.2563 | 70.23 | 9200 | 0.3312 | 0.2975 | | 0.2546 | 71.76 | 9400 | 0.3212 | 0.3003 | | 0.2482 | 73.28 | 9600 | 0.3337 | 0.3091 | | 0.2504 | 74.81 | 9800 | 0.3308 | 0.3110 | | 0.2456 | 76.34 | 10000 | 0.3157 | 0.3118 | | 0.2363 | 77.86 | 10200 | 0.3251 | 0.3144 | | 0.2319 | 79.39 | 10400 | 0.3253 | 0.3038 | | 0.2266 | 80.92 | 10600 | 0.3374 | 0.3038 | | 0.2279 | 82.44 | 10800 | 0.3268 | 0.2964 | | 0.2231 | 83.97 | 11000 | 0.3278 | 0.2950 | | 0.2185 | 85.5 | 11200 | 0.3462 | 0.2981 | | 0.2245 | 87.02 | 11400 | 0.3311 | 0.2895 | | 0.223 | 88.55 | 11600 | 0.3325 | 0.2877 | | 0.2121 | 90.08 | 11800 | 0.3337 | 0.2828 | | 0.2126 | 91.6 | 12000 | 0.3325 | 0.2808 | | 0.2027 | 93.13 | 12200 | 0.3277 | 0.2820 | | 0.2058 | 94.66 | 12400 | 0.3308 | 0.2827 | | 0.1991 | 96.18 | 12600 | 0.3279 | 0.2820 | | 0.1991 | 97.71 | 12800 | 0.3300 | 0.2822 | | 0.1986 | 99.24 | 13000 | 0.3285 | 0.2835 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.3 - Tokenizers 0.11.0
caioamb/bert-base-uncased-finetuned-md-simpletransformers
1330c29e3df481ec9b3ca805e78497f73882a828
2022-01-12T01:02:05.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
caioamb
null
caioamb/bert-base-uncased-finetuned-md-simpletransformers
5
null
transformers
16,436
Entry not found
carlosserquen/abcd
60209d685b57c09b53d07a623c548563e42522e8
2021-12-06T21:58:04.000Z
[ "pytorch", "electra", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
carlosserquen
null
carlosserquen/abcd
5
null
transformers
16,437
Entry not found
castorini/afriberta_base
95b703f498c9cee56be5f5bbc5140022dc86099e
2022-06-15T18:23:04.000Z
[ "pytorch", "tf", "xlm-roberta", "fill-mask", "om", "am", "rw", "rn", "ha", "ig", "pcm", "so", "sw", "ti", "yo", "multilingual", "transformers", "autotrain_compatible" ]
fill-mask
false
castorini
null
castorini/afriberta_base
5
null
transformers
16,438
Hugging Face's logo --- language: - om - am - rw - rn - ha - ig - pcm - so - sw - ti - yo - multilingual --- # afriberta_base ## Model description AfriBERTa base is a pretrained multilingual language model with around 111 million parameters. The model has 8 layers, 6 attention heads, 768 hidden units and 3072 feed forward size. The model was pretrained on 11 African languages namely - Afaan Oromoo (also called Oromo), Amharic, Gahuza (a mixed language containing Kinyarwanda and Kirundi), Hausa, Igbo, Nigerian Pidgin, Somali, Swahili, Tigrinya and Yorùbá. The model has been shown to obtain competitive downstream performances on text classification and Named Entity Recognition on several African languages, including those it was not pretrained on. ## Intended uses & limitations #### How to use You can use this model with Transformers for any downstream task. For example, assuming we want to finetune this model on a token classification task, we do the following: ```python >>> from transformers import AutoTokenizer, AutoModelForTokenClassification >>> model = AutoModelForTokenClassification.from_pretrained("castorini/afriberta_base") >>> tokenizer = AutoTokenizer.from_pretrained("castorini/afriberta_base") # we have to manually set the model max length because it is an imported sentencepiece model, which huggingface does not properly support right now >>> tokenizer.model_max_length = 512 ``` #### Limitations and bias - This model is possibly limited by its training dataset which are majorly obtained from news articles from a specific span of time. Thus, it may not generalize well. - This model is trained on very little data (less than 1 GB), hence it may not have seen enough data to learn very complex linguistic relations. ## Training data The model was trained on an aggregation of datasets from the BBC news website and Common Crawl. ## Training procedure For information on training procedures, please refer to the AfriBERTa [paper]() or [repository](https://github.com/keleog/afriberta) ### BibTeX entry and citation info ``` @inproceedings{ogueji-etal-2021-small, title = "Small Data? No Problem! Exploring the Viability of Pretrained Multilingual Language Models for Low-resourced Languages", author = "Ogueji, Kelechi and Zhu, Yuxin and Lin, Jimmy", booktitle = "Proceedings of the 1st Workshop on Multilingual Representation Learning", month = nov, year = "2021", address = "Punta Cana, Dominican Republic", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.mrl-1.11", pages = "116--126", } ```
castorini/duot5-base-msmarco-10k
5469cde99ac1fda0c8a1c579bf6bbe18897035b9
2021-12-01T20:43:32.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
castorini
null
castorini/duot5-base-msmarco-10k
5
null
transformers
16,439
Entry not found
cbrew475/mpnet-metric
adc3913a06df4f9b83b98a98bc6bef49019e7630
2022-02-10T00:27:32.000Z
[ "pytorch", "mpnet", "text-classification", "transformers" ]
text-classification
false
cbrew475
null
cbrew475/mpnet-metric
5
null
transformers
16,440
Entry not found
celinelee/answer-extraction
5b489a72ec8a99d916173bd83891d1e25781c499
2022-02-22T16:55:40.000Z
[ "pytorch", "distilbert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
celinelee
null
celinelee/answer-extraction
5
null
transformers
16,441
Entry not found
cemdenizsel/51k-finetuned-bert-model
fa0619a5af3f20cbae8da9489af3b5cfd94c6a80
2021-06-04T15:20:50.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
cemdenizsel
null
cemdenizsel/51k-finetuned-bert-model
5
null
transformers
16,442
Entry not found
cemdenizsel/51k-pretrained-bert-model
49ae02c7d0d53aba19c7ad9880e13610120cadd5
2021-06-04T14:11:16.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
cemdenizsel
null
cemdenizsel/51k-pretrained-bert-model
5
null
transformers
16,443
Entry not found
cestwc/roberta-base-unigram-ternary
eb01504d683439056d475b6eb03d4d04235f5378
2022-01-01T09:05:18.000Z
[ "pytorch", "roberta", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
cestwc
null
cestwc/roberta-base-unigram-ternary
5
null
transformers
16,444
Entry not found
cfisicaro/distilbert-base-uncased-finetuned-ner
219f031bb900f8d01386c5285ec15bb5c41e30dd
2021-09-22T10:25:03.000Z
[ "pytorch", "tensorboard", "distilbert", "token-classification", "dataset:conll2003", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
token-classification
false
cfisicaro
null
cfisicaro/distilbert-base-uncased-finetuned-ner
5
null
transformers
16,445
--- license: apache-2.0 tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: distilbert-base-uncased-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 args: conll2003 metrics: - name: Precision type: precision value: 0.9281908990011098 - name: Recall type: recall value: 0.9355632621098557 - name: F1 type: f1 value: 0.9318624993035824 - name: Accuracy type: accuracy value: 0.9837641190207635 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-ner This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0629 - Precision: 0.9282 - Recall: 0.9356 - F1: 0.9319 - Accuracy: 0.9838 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.2406 | 1.0 | 878 | 0.0721 | 0.9072 | 0.9172 | 0.9122 | 0.9801 | | 0.0529 | 2.0 | 1756 | 0.0637 | 0.9166 | 0.9318 | 0.9241 | 0.9826 | | 0.0315 | 3.0 | 2634 | 0.0629 | 0.9282 | 0.9356 | 0.9319 | 0.9838 | ### Framework versions - Transformers 4.10.2 - Pytorch 1.9.0+cu102 - Datasets 1.12.1 - Tokenizers 0.10.3
chan030609/DialoGPT-small-JAB
ee9384061fcc7406b235706bb243cb99ecf94b9a
2022-02-10T03:27:21.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
chan030609
null
chan030609/DialoGPT-small-JAB
5
null
transformers
16,446
--- tags: - conversational --- # DialoGPT Small JAB
chanaa/distilbert-base-uncased-finetuned-ner
55f4cb1853fc13812b3f23886900ff6ce07cb6a2
2022-02-23T16:06:14.000Z
[ "pytorch", "tensorboard", "distilbert", "token-classification", "dataset:conll2003", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible" ]
token-classification
false
chanaa
null
chanaa/distilbert-base-uncased-finetuned-ner
5
null
transformers
16,447
--- license: apache-2.0 tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: distilbert-base-uncased-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 args: conll2003 metrics: - name: Precision type: precision value: 0.9244263018534863 - name: Recall type: recall value: 0.9373531714956931 - name: F1 type: f1 value: 0.930844859190135 - name: Accuracy type: accuracy value: 0.9836211415953103 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-ner This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0609 - Precision: 0.9244 - Recall: 0.9374 - F1: 0.9308 - Accuracy: 0.9836 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.2412 | 1.0 | 878 | 0.0732 | 0.9116 | 0.9216 | 0.9166 | 0.9802 | | 0.0567 | 2.0 | 1756 | 0.0601 | 0.9164 | 0.9331 | 0.9247 | 0.9826 | | 0.0301 | 3.0 | 2634 | 0.0609 | 0.9244 | 0.9374 | 0.9308 | 0.9836 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
chinhon/pegasus-newsroom-malay_headlines
03c6564f16d3ce1feb6064eb73fd5d6c6448ef2b
2021-11-03T00:17:13.000Z
[ "pytorch", "tensorboard", "pegasus", "text2text-generation", "transformers", "generated_from_trainer", "model-index", "autotrain_compatible" ]
text2text-generation
false
chinhon
null
chinhon/pegasus-newsroom-malay_headlines
5
null
transformers
16,448
--- tags: - generated_from_trainer metrics: - rouge model-index: - name: pegasus-newsroom-malay_headlines results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # pegasus-newsroom-malay_headlines This model is a fine-tuned version of [google/pegasus-newsroom](https://huggingface.co/google/pegasus-newsroom) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.6603 - Rouge1: 42.6667 - Rouge2: 22.8739 - Rougel: 38.6684 - Rougelsum: 38.6928 - Gen Len: 34.7995 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | 1.9713 | 1.0 | 15310 | 1.8121 | 41.1469 | 21.5262 | 37.3081 | 37.3377 | 35.0939 | | 1.7917 | 2.0 | 30620 | 1.6913 | 42.4027 | 22.6089 | 38.4471 | 38.4699 | 34.8149 | | 1.7271 | 3.0 | 45930 | 1.6603 | 42.6667 | 22.8739 | 38.6684 | 38.6928 | 34.7995 | ### Framework versions - Transformers 4.12.2 - Pytorch 1.9.0+cu111 - Datasets 1.14.0 - Tokenizers 0.10.3
chrommium/helper-model
ca1924df1dcc74ce53677321594a032a2c86e063
2021-11-20T21:50:03.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
chrommium
null
chrommium/helper-model
5
null
transformers
16,449
Entry not found
chrommium/rubert-base-cased-sentence-finetuned-sent_in_ru
7af41d1cc1e6bce8135cb182ff7405a72667de94
2021-10-01T22:53:17.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers", "generated_from_trainer", "model-index" ]
text-classification
false
chrommium
null
chrommium/rubert-base-cased-sentence-finetuned-sent_in_ru
5
null
transformers
16,450
--- tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: rubert-base-cased-sentence-finetuned-sent_in_ru results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # rubert-base-cased-sentence-finetuned-sent_in_ru This model is a fine-tuned version of [DeepPavlov/rubert-base-cased-sentence](https://huggingface.co/DeepPavlov/rubert-base-cased-sentence) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.3503 - Accuracy: 0.6884 - F1: 0.6875 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 15 - eval_batch_size: 15 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 25 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:| | No log | 1.0 | 441 | 0.7397 | 0.6630 | 0.6530 | | 0.771 | 2.0 | 882 | 0.7143 | 0.6909 | 0.6905 | | 0.5449 | 3.0 | 1323 | 0.8385 | 0.6897 | 0.6870 | | 0.3795 | 4.0 | 1764 | 0.8851 | 0.6939 | 0.6914 | | 0.3059 | 5.0 | 2205 | 1.0728 | 0.6933 | 0.6953 | | 0.2673 | 6.0 | 2646 | 1.0673 | 0.7060 | 0.7020 | | 0.2358 | 7.0 | 3087 | 1.5200 | 0.6830 | 0.6829 | | 0.2069 | 8.0 | 3528 | 1.3439 | 0.7024 | 0.7016 | | 0.2069 | 9.0 | 3969 | 1.3545 | 0.6830 | 0.6833 | | 0.1724 | 10.0 | 4410 | 1.5591 | 0.6927 | 0.6902 | | 0.1525 | 11.0 | 4851 | 1.6425 | 0.6818 | 0.6823 | | 0.131 | 12.0 | 5292 | 1.8999 | 0.6836 | 0.6775 | | 0.1253 | 13.0 | 5733 | 1.6959 | 0.6884 | 0.6877 | | 0.1132 | 14.0 | 6174 | 1.9561 | 0.6776 | 0.6803 | | 0.0951 | 15.0 | 6615 | 2.0356 | 0.6763 | 0.6754 | | 0.1009 | 16.0 | 7056 | 1.7995 | 0.6842 | 0.6741 | | 0.1009 | 17.0 | 7497 | 2.0638 | 0.6884 | 0.6811 | | 0.0817 | 18.0 | 7938 | 2.1686 | 0.6884 | 0.6859 | | 0.0691 | 19.0 | 8379 | 2.0874 | 0.6878 | 0.6889 | | 0.0656 | 20.0 | 8820 | 2.1772 | 0.6854 | 0.6817 | | 0.0652 | 21.0 | 9261 | 2.4018 | 0.6872 | 0.6896 | | 0.0608 | 22.0 | 9702 | 2.2074 | 0.6770 | 0.6656 | | 0.0677 | 23.0 | 10143 | 2.2101 | 0.6848 | 0.6793 | | 0.0559 | 24.0 | 10584 | 2.2920 | 0.6848 | 0.6835 | | 0.0524 | 25.0 | 11025 | 2.3503 | 0.6884 | 0.6875 | ### Framework versions - Transformers 4.11.2 - Pytorch 1.9.0+cu102 - Datasets 1.12.1 - Tokenizers 0.10.3
claudelkros/bert-base-french
a9da8638058d8afcf9517b6da6e2f158de0c02a5
2020-09-15T00:05:37.000Z
[ "pytorch", "transformers" ]
null
false
claudelkros
null
claudelkros/bert-base-french
5
null
transformers
16,451
Entry not found
claudio75/xlm-roberta-base-finetuned-marc
0a1fe2722f555b39b5ea13833abd81d1f81d10ea
2021-10-16T11:10:29.000Z
[ "pytorch", "tensorboard", "xlm-roberta", "text-classification", "dataset:amazon_reviews_multi", "transformers", "generated_from_trainer", "license:mit", "model-index" ]
text-classification
false
claudio75
null
claudio75/xlm-roberta-base-finetuned-marc
5
null
transformers
16,452
--- license: mit tags: - generated_from_trainer datasets: - amazon_reviews_multi model-index: - name: xlm-roberta-base-finetuned-marc results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-marc This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the amazon_reviews_multi dataset. It achieves the following results on the evaluation set: - Loss: 0.9611 - Mae: 0.4749 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Mae | |:-------------:|:-----:|:----:|:---------------:|:------:| | 1.0431 | 1.0 | 860 | 0.9819 | 0.4985 | | 0.9079 | 2.0 | 1720 | 0.9611 | 0.4749 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.9.0+cu111 - Datasets 1.13.3 - Tokenizers 0.10.3
coldfir3/xlm-roberta-base-finetuned-panx-all
09598465183bf83c88d8308127d2d04218de65dd
2022-01-02T19:41:32.000Z
[ "pytorch", "xlm-roberta", "token-classification", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
token-classification
false
coldfir3
null
coldfir3/xlm-roberta-base-finetuned-panx-all
5
null
transformers
16,453
--- license: mit tags: - generated_from_trainer metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-all results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-all This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1759 - F1: 0.8527 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.3038 | 1.0 | 835 | 0.1922 | 0.8065 | | 0.1559 | 2.0 | 1670 | 0.1714 | 0.8422 | | 0.1002 | 3.0 | 2505 | 0.1759 | 0.8527 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
comodoro/wav2vec2-xls-r-300m-cs
93aff004b5a02878e9eacd29265a22646e3f1727
2022-03-23T18:32:48.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "cs", "dataset:common_voice", "transformers", "common_voice", "generated_from_trainer", "hf-asr-leaderboard", "robust-speech-event", "xlsr-fine-tuning-week", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
comodoro
null
comodoro/wav2vec2-xls-r-300m-cs
5
null
transformers
16,454
--- language: - cs license: apache-2.0 tags: - automatic-speech-recognition - common_voice - generated_from_trainer - hf-asr-leaderboard - robust-speech-event - xlsr-fine-tuning-week datasets: - common_voice model-index: - name: Czech comodoro Wav2Vec2 XLSR 300M CV6.1 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 6.1 type: common_voice args: cs metrics: - name: Test WER type: wer value: 22.2 - name: Test CER type: cer value: 5.1 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: cs metrics: - name: Test WER type: wer value: 66.78 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: cs metrics: - name: Test WER type: wer value: 57.52 --- # Wav2Vec2-Large-XLSR-53-Czech Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Czech using the [Common Voice](https://huggingface.co/datasets/common_voice) dataset. When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "cs", split="test[:2%]") processor = Wav2Vec2Processor.from_pretrained("comodoro/wav2vec2-xls-r-300m-cs") model = Wav2Vec2ForCTC.from_pretrained("comodoro/wav2vec2-xls-r-300m-cs") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset[:2]["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset[:2]["sentence"]) ``` ## Evaluation The model can be evaluated as follows on the Czech test data of Common Voice 6.1 ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re test_dataset = load_dataset("common_voice", "cs", split="test") wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("comodoro/wav2vec2-xls-r-300m-cs") model = Wav2Vec2ForCTC.from_pretrained("comodoro/wav2vec2-xls-r-300m-cs") model.to("cuda") chars_to_ignore_regex = '[\,\?\.\!\-\;\:\/\"\“\„\%\”\�\–\'\`\«\»\—\’\…]' resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the aduio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ``` **Test Result**: 22.20 % ## Training The Common Voice `train` and `validation` datasets were used for training # TODO The script used for training can be found [here](...)
congcongwang/t5-base-fine-tuned-wnut-2020-task3
e29a4b6721c5ecb5bb0a84a9ce90d8d196d80cb7
2021-06-23T12:06:19.000Z
[ "pytorch", "jax", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
congcongwang
null
congcongwang/t5-base-fine-tuned-wnut-2020-task3
5
null
transformers
16,455
Entry not found
crabz/slovakbert-ner
2e62fdd3f4b3a3be9139a357ac75073587a90c25
2021-12-02T12:51:13.000Z
[ "pytorch", "roberta", "token-classification", "sk", "dataset:wikiann", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
token-classification
false
crabz
null
crabz/slovakbert-ner
5
null
transformers
16,456
--- license: mit language: - sk tags: - generated_from_trainer datasets: - wikiann metrics: - precision - recall - f1 - accuracy inference: false widget: - text: "Zuzana Čaputová sa narodila 21. júna 1973 v Bratislave." example_title: "Named Entity Recognition" model-index: - name: slovakbert-ner results: - task: name: Token Classification type: token-classification dataset: name: wikiann type: wikiann args: sk metrics: - name: Precision type: precision value: 0.9327115256495669 - name: Recall type: recall value: 0.9470124013528749 - name: F1 type: f1 value: 0.9398075632132469 - name: Accuracy type: accuracy value: 0.9785228256835333 --- # Named Entity Recognition based on SlovakBERT This model is a fine-tuned version of [gerulata/slovakbert](https://huggingface.co/gerulata/slovakbert) on the Slovak wikiann dataset. It achieves the following results on the evaluation set: - Loss: 0.1600 - Precision: 0.9327 - Recall: 0.9470 - F1: 0.9398 - Accuracy: 0.9785 ## Intended uses & limitations Supported classes: LOCATION, PERSON, ORGANIZATION ``` from transformers import pipeline ner_pipeline = pipeline(task='ner', model='crabz/slovakbert-ner') input_sentence = "Minister financií a líder mandátovo najsilnejšieho hnutia OĽaNO Igor Matovič upozorňuje, že následky tretej vlny budú na Slovensku veľmi veľké." classifications = ner_pipeline(input_sentence) ``` with `displaCy`: ``` import spacy from spacy import displacy ner_map = {0: '0', 1: 'B-OSOBA', 2: 'I-OSOBA', 3: 'B-ORGANIZÁCIA', 4: 'I-ORGANIZÁCIA', 5: 'B-LOKALITA', 6: 'I-LOKALITA'} entities = [] for i in range(len(classifications)): if classifications[i]['entity'] != 0: if ner_map[classifications[i]['entity']][0] == 'B': j = i + 1 while j < len(classifications) and ner_map[classifications[j]['entity']][0] == 'I': j += 1 entities.append((ner_map[classifications[i]['entity']].split('-')[1], classifications[i]['start'], classifications[j - 1]['end'])) nlp = spacy.blank("en") # it should work with any language doc = nlp(input_sentence) ents = [] for ee in entities: ents.append(doc.char_span(ee[1], ee[2], ee[0])) doc.ents = ents options = {"ents": ["OSOBA", "ORGANIZÁCIA", "LOKALITA"], "colors": {"OSOBA": "lightblue", "ORGANIZÁCIA": "lightcoral", "LOKALITA": "lightgreen"}} displacy_html = displacy.render(doc, style="ent", options=options) ``` <div class="entities" style="line-height: 2.5; direction: ltr">Minister financií a líder mandátovo najsilnejšieho hnutia <mark class="entity" style="background: lightcoral; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;"> OĽaNO <span style="font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem">ORGANIZÁCIA</span> </mark> <mark class="entity" style="background: lightblue; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;"> Igor Matovič <span style="font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem">OSOBA</span> </mark> upozorňuje, že následky tretej vlny budú na <mark class="entity" style="background: lightgreen; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;"> Slovensku <span style="font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem">LOKALITA</span> </mark> veľmi veľké.</div> ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 15.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.2342 | 1.0 | 625 | 0.1233 | 0.8891 | 0.9076 | 0.8982 | 0.9667 | | 0.1114 | 2.0 | 1250 | 0.1079 | 0.9118 | 0.9269 | 0.9193 | 0.9725 | | 0.0817 | 3.0 | 1875 | 0.1093 | 0.9173 | 0.9315 | 0.9243 | 0.9747 | | 0.0438 | 4.0 | 2500 | 0.1076 | 0.9188 | 0.9353 | 0.9270 | 0.9743 | | 0.028 | 5.0 | 3125 | 0.1230 | 0.9143 | 0.9387 | 0.9264 | 0.9744 | | 0.0256 | 6.0 | 3750 | 0.1204 | 0.9246 | 0.9423 | 0.9334 | 0.9765 | | 0.018 | 7.0 | 4375 | 0.1332 | 0.9292 | 0.9416 | 0.9353 | 0.9770 | | 0.0107 | 8.0 | 5000 | 0.1339 | 0.9280 | 0.9427 | 0.9353 | 0.9769 | | 0.0079 | 9.0 | 5625 | 0.1368 | 0.9326 | 0.9442 | 0.9383 | 0.9785 | | 0.0065 | 10.0 | 6250 | 0.1490 | 0.9284 | 0.9445 | 0.9364 | 0.9772 | | 0.0061 | 11.0 | 6875 | 0.1566 | 0.9328 | 0.9433 | 0.9380 | 0.9778 | | 0.0031 | 12.0 | 7500 | 0.1555 | 0.9339 | 0.9473 | 0.9406 | 0.9787 | | 0.0024 | 13.0 | 8125 | 0.1548 | 0.9349 | 0.9462 | 0.9405 | 0.9787 | | 0.0015 | 14.0 | 8750 | 0.1562 | 0.9330 | 0.9469 | 0.9399 | 0.9788 | | 0.0013 | 15.0 | 9375 | 0.1600 | 0.9327 | 0.9470 | 0.9398 | 0.9785 | ### Framework versions - Transformers 4.13.0.dev0 - Pytorch 1.10.0+cu113 - Datasets 1.15.1 - Tokenizers 0.10.3
csalamea/roberta-base-bne-finetuned-amazon_reviews_multi
276cfc215938f2e9a57e8a88e86cc3f34a3b0057
2021-09-16T01:30:02.000Z
[ "pytorch", "tensorboard", "roberta", "text-classification", "dataset:amazon_reviews_multi", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
csalamea
null
csalamea/roberta-base-bne-finetuned-amazon_reviews_multi
5
null
transformers
16,457
--- license: apache-2.0 tags: - generated_from_trainer datasets: - amazon_reviews_multi metrics: - accuracy model-index: - name: roberta-base-bne-finetuned-amazon_reviews_multi results: - task: name: Text Classification type: text-classification dataset: name: amazon_reviews_multi type: amazon_reviews_multi args: es metrics: - name: Accuracy type: accuracy value: 0.9325 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-bne-finetuned-amazon_reviews_multi This model is a fine-tuned version of [BSC-TeMU/roberta-base-bne](https://huggingface.co/BSC-TeMU/roberta-base-bne) on the amazon_reviews_multi dataset. It achieves the following results on the evaluation set: - Loss: 0.2303 - Accuracy: 0.9325 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.1942 | 1.0 | 1250 | 0.1751 | 0.932 | | 0.0935 | 2.0 | 2500 | 0.2303 | 0.9325 | ### Framework versions - Transformers 4.10.2 - Pytorch 1.9.0+cu102 - Datasets 1.12.1 - Tokenizers 0.10.3
csikasote/wav2vec2-large-xlsr-bemba
b904cda30c91430ee9f720562bb888fd76cbe1fe
2022-04-14T07:20:37.000Z
[ "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "bem", "dataset:BembaSpeech", "transformers", "audio", "speech", "xlsr-fine-tuning-week", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
csikasote
null
csikasote/wav2vec2-large-xlsr-bemba
5
null
transformers
16,458
--- language: bem datasets: - BembaSpeech metrics: - wer tags: - audio - automatic-speech-recognition - speech - xlsr-fine-tuning-week license: apache-2.0 model-index: - name: XLSR Wav2Vec2 Bemba by Claytone Sikasote results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: BembaSpeech bem type: bembaspeech args: bem metrics: - name: Test WER type: wer value: 42.17 --- # Wav2Vec2-Large-XLSR-53-Bemba Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Bemba language of Zambia using the [BembaSpeech](https://csikasote.github.io/BembaSpeech). When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("csv", data_files={"test": "/content/test.csv"}, delimiter="\t")["test"] # Adapt the path to test.csv processor = Wav2Vec2Processor.from_pretrained("csikasote/wav2vec2-large-xlsr-bemba") model = Wav2Vec2ForCTC.from_pretrained("csikasote/wav2vec2-large-xlsr-bemba") #BembaSpeech is sample at 16kHz so we you do not need to resample #resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = speech_array.squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` ## Evaluation The model can be evaluated as follows on the Bemba test data of BembaSpeech. ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re test_dataset = load_dataset("csv", data_files={"test": "/content/test.csv"}, delimiter="\\t")["test"] wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("csikasote/wav2vec2-large-xlsr-bemba") model = Wav2Vec2ForCTC.from_pretrained("csikasote/wav2vec2-large-xlsr-bemba") model.to("cuda") chars_to_ignore_regex = '[\,\_\?\.\!\;\:\"\“]' #resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = speech_array.squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the aduio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ``` **Test Result**: 42.17 % ## Training The BembaSpeech `train`, `dev` and `test` datasets were used for training, development and evaluation respectively. The script used for evaluating the model on the test dataset can be found [here](https://colab.research.google.com/drive/1aplFHfaXE68HGDwBYV2KqUWPasrk7bXv?usp=sharing).
cstorm125/marianmt-zh_cn-th
c267114fa797e61da53ec00e5f3dbc6d70660b0e
2021-06-23T14:19:44.000Z
[ "pytorch", "marian", "text2text-generation", "transformers", "translation", "torch==1.8.0", "autotrain_compatible" ]
translation
false
cstorm125
null
cstorm125/marianmt-zh_cn-th
5
null
transformers
16,459
--- tags: - translation - torch==1.8.0 widget: - text: "Inference Unavailable" --- ### marianmt-zh_cn-th * source languages: zh_cn * target languages: th * dataset: * model: transformer-align * pre-processing: normalization + SentencePiece * test set translations: * test set scores: ## Training Training scripts from [LalitaDeelert/NLP-ZH_TH-Project](https://github.com/LalitaDeelert/NLP-ZH_TH-Project). Experiments tracked at [cstorm125/marianmt-zh_cn-th](https://wandb.ai/cstorm125/marianmt-zh_cn-th). ``` export WANDB_PROJECT=marianmt-zh_cn-th python train_model.py --input_fname ../data/v1/Train.csv \ \\t--output_dir ../models/marianmt-zh_cn-th \ \\t--source_lang zh --target_lang th \ \\t--metric_tokenize th_syllable --fp16 ``` ## Usage ``` from transformers import AutoTokenizer, AutoModelForSeq2SeqLM tokenizer = AutoTokenizer.from_pretrained("cstorm125/marianmt-zh_cn-th") model = AutoModelForSeq2SeqLM.from_pretrained("cstorm125/marianmt-zh_cn-th").cpu() src_text = [ '我爱你', '我想吃米饭', ] translated = model.generate(**tokenizer(src_text, return_tensors="pt", padding=True)) print([tokenizer.decode(t, skip_special_tokens=True) for t in translated]) > ['ผมรักคุณนะ', 'ฉันอยากกินข้าว'] ``` ## Requirements ``` transformers==4.6.0 torch==1.8.0 ```
cuongngm/layoutlm-bill
ef55d565f5c7771ccf4c878c9f63cc5b237a95f7
2022-02-17T09:45:03.000Z
[ "pytorch", "layoutlmv2", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
cuongngm
null
cuongngm/layoutlm-bill
5
null
transformers
16,460
Fine tuning LayoutLMv2 model on Vietnamese bill dataset ```python from transformers import LayoutLMv2ForTokenClassification model = LayoutLMv2ForTokenClassification.from_pretrained('cuongngm/layoutlm-bill', num_labels=len(labels)) ``` labels = ['price', 'storename', 'total_cost', 'phone', 'address', 'unitprice', 'item', 'subitem', 'other', 'time', 'unit', 'total refunds', 'total_qty', 'seller', 'total_received']
cuongtran/BARTTextSummarization
4339654eea2152fefa61b5e6b10a17686d04fa43
2021-10-13T03:39:16.000Z
[ "pytorch", "mbart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
cuongtran
null
cuongtran/BARTTextSummarization
5
null
transformers
16,461
Entry not found
damien-ir/kosentelectra-discriminator-v3
bdeffcce06c00f22ef2648852c53f3b0f6714c91
2020-09-29T07:49:37.000Z
[ "pytorch", "electra", "pretraining", "transformers" ]
null
false
damien-ir
null
damien-ir/kosentelectra-discriminator-v3
5
null
transformers
16,462
Entry not found
damien-ir/kosentelectra-discriminator-v4
32b09a714c960216316ef2004ce3ea5afa781435
2020-09-29T07:53:29.000Z
[ "pytorch", "electra", "pretraining", "transformers" ]
null
false
damien-ir
null
damien-ir/kosentelectra-discriminator-v4
5
null
transformers
16,463
Entry not found
damien-ir/kosentelectra-generator-v1
31a60da3aee67a7388c4f9a610e4063958aff630
2020-09-29T07:42:45.000Z
[ "pytorch", "electra", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
damien-ir
null
damien-ir/kosentelectra-generator-v1
5
null
transformers
16,464
Entry not found
damien-ir/kosentelectra-generator-v2
210244856ec95dbc3382d4fd7adcb67cee24a80c
2020-09-15T09:14:59.000Z
[ "pytorch", "electra", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
damien-ir
null
damien-ir/kosentelectra-generator-v2
5
null
transformers
16,465
Entry not found
damien-ir/kosentelectra-generator-v5
bbe09b1ec8e5b5b0b2bac891d72d5c0579ddfd5d
2020-09-29T07:57:32.000Z
[ "pytorch", "electra", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
damien-ir
null
damien-ir/kosentelectra-generator-v5
5
null
transformers
16,466
Entry not found
damlab/HIV_V3_bodysite
b61b611cfb2f6d6622792079e7e55d0531d04fd6
2022-02-24T19:18:26.000Z
[ "pytorch", "bert", "text-classification", "dataset:damlab/HIV_V3_bodysite", "transformers" ]
text-classification
false
damlab
null
damlab/HIV_V3_bodysite
5
null
transformers
16,467
--- licence: mit widget: - text: "T R P N N N T R K S I R I Q R G P G R A F V T I G K I G N M R Q A H C" example_title: "V3 Macrophage" - text: 'C T R P N N N T R K S I H I G P G R A F Y T T G Q I I G D I R Q A Y C' example_title: "V3 T-cell" datasets: - damlab/HIV_V3_bodysite metrics: - accuracy --- # Model Card for [HIV_V3_bodysite] ## Table of Contents - [Table of Contents](#table-of-contents) - [Summary](#model-summary) - [Model Description](#model-description) - [Intended Uses & Limitations](#intended-uses-&-limitations) - [How to Use](#how-to-use) - [Training Data](#training-data) - [Training Procedure](#training-procedure) - [Preprocessing](#preprocessing) - [Training](#training) - [Evaluation Results](#evaluation-results) - [BibTeX Entry and Citation Info](#bibtex-entry-and-citation-info) ## Summary The HIV-BERT-Bodysite-Identification model was trained as a refinement of the HIV-BERT model (insert link) and serves to better predict the location that an HIV V3 loop sample was derived from. HIV-BERT is a model refined from the ProtBert-BFD model (https://huggingface.co/Rostlab/prot_bert_bfd) to better fulfill HIV-centric tasks. This model was then trained using HIV V3 sequences from the Los Alamos HIV Sequence Database (https://www.hiv.lanl.gov/content/sequence/HIV/mainpage.html), allowing even more precise prediction of body site location than the HIV-BERT model can provide. ## Model Description The HIV-BERT-Bodysite-Identification model is intended to predict the location as to where an HIV sequence was most likely derived from. Because HIV infects immune cells, it uses these as a means of rapidly spreading throughout the body. Thus, body site identification can help determine where exactly these HIV particles ultimately end up. This would be helpful when attempting to study HIV treatment strategies. When provided with an HIV genomic sequence, the HIV-BERT-Bodysite-Identification model can predict which tissue it was derived from. ## Intended Uses & Limitations This tool can be used as a predictor of which body site an HIV sample was derived from based on its genomic sequence. It should not be considered a clinical diagnostic tool. This tool was trained using the Los Alamos HIV sequence dataset (https://www.hiv.lanl.gov/content/sequence/HIV/mainpage.html). Due to the sampling nature of this database, it is predominantly composed of subtype B sequences from North America and Europe with only minor contributions of Subtype C, A, and D. Currently, there was no effort made to balance the performance across these classes. As such, one should consider refinement with additional sequences to perform well on non-B sequences. ## How to use This model is able to predict the likely bodysite from a V3 sequence. This may be use for surveillance of cells that are emerging from latent reservoirs. Remember, a sequence can come from multiple sites, they are not mutually exclusive. ```python from transformers import pipeline predictor = pipeline("text-classification", model="damlab/HIV_V3_bodysite") predictor(f"C T R P N N N T R K S I R I Q R G P G R A F V T I G K I G N M R Q A H C") [ [ { "label": "periphery-tcell", "score": 0.29097115993499756 }, { "label": "periphery-monocyte", "score": 0.014322502538561821 }, { "label": "CNS", "score": 0.06870711594820023 }, { "label": "breast-milk", "score": 0.002785981632769108 }, { "label": "female-genitals", "score": 0.024997007101774216 }, { "label": "male-genitals", "score": 0.01040483545511961 }, { "label": "gastric", "score": 0.06872137635946274 }, { "label": "lung", "score": 0.04432062804698944 }, { "label": "organ", "score": 0.47476938366889954 } ] ] ``` ## Training Data This model was trained using the damlab/HIV_V3_bodysite dataset using the 0th fold. The dataset consists of 5510 sequences (approximately 35 tokens each) extracted from the Los Alamos HIV Sequence database. ## Training Procedure ### Preprocessing As with the rostlab/Prot-bert-bfd model, the rare amino acids U, Z, O, and B were converted to X and spaces were added between each amino acid. All strings were concatenated and chunked into 256 token chunks for training. A random 20% of chunks were held for validation. ### Training The damlab/HIV-BERT model was used as the initial weights for an AutoModelforClassificiation. The model was trained with a learning rate of 1E-5, 50K warm-up steps, and a cosine_with_restarts learning rate schedule and continued until 3 consecutive epochs did not improve the loss on the held-out dataset. As this is a multiple classification task (a protein can be found in multiple sites) the loss was calculated as the Binary Cross Entropy for each category. The BCE was weighted by the inverse of the class ratio to balance the weight across the class imbalance. ## Evaluation Results *Need to add* ## BibTeX Entry and Citation Info [More Information Needed]
danlou/aristo-roberta-finetuned-csqa
9dd69c0ddef1db6cc62c228158d95aceeb6a815e
2021-07-23T14:33:00.000Z
[ "pytorch", "roberta", "multiple-choice", "dataset:commonsense_qa", "transformers", "generated_from_trainer", "license:mit" ]
multiple-choice
false
danlou
null
danlou/aristo-roberta-finetuned-csqa
5
1
transformers
16,468
--- license: mit tags: - generated_from_trainer datasets: - commonsense_qa metrics: - accuracy model_index: - name: aristo-roberta-finetuned-csqa results: - dataset: name: commonsense_qa type: commonsense_qa args: default metric: name: Accuracy type: accuracy value: 0.7305487394332886 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # aristo-roberta-finetuned-csqa This model is a fine-tuned version of [LIAMF-USP/aristo-roberta](https://huggingface.co/LIAMF-USP/aristo-roberta) on the commonsense_qa dataset. It achieves the following results on the evaluation set: - Loss: 1.2187 - Accuracy: 0.7305 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.131 | 1.0 | 609 | 0.7109 | 0.7232 | | 0.6957 | 2.0 | 1218 | 0.6912 | 0.7346 | | 0.459 | 3.0 | 1827 | 0.8364 | 0.7305 | | 0.3063 | 4.0 | 2436 | 1.0595 | 0.7322 | | 0.2283 | 5.0 | 3045 | 1.2187 | 0.7305 | ### Framework versions - Transformers 4.9.0 - Pytorch 1.9.0 - Datasets 1.10.2 - Tokenizers 0.10.3
danlou/distilbert-base-uncased-finetuned-cola
e9c81d3c830ec6d51add46db7677f5206bded717
2021-12-30T23:39:46.000Z
[ "pytorch", "distilbert", "text-classification", "transformers" ]
text-classification
false
danlou
null
danlou/distilbert-base-uncased-finetuned-cola
5
null
transformers
16,469
Entry not found
danwilbury/xlm-roberta-base-finetuned-marc-en
f5686202cebdc17f4762bfacf08cf0d51169081a
2021-10-22T13:04:48.000Z
[ "pytorch", "tensorboard", "xlm-roberta", "text-classification", "dataset:amazon_reviews_multi", "transformers", "generated_from_trainer", "license:mit", "model-index" ]
text-classification
false
danwilbury
null
danwilbury/xlm-roberta-base-finetuned-marc-en
5
null
transformers
16,470
--- license: mit tags: - generated_from_trainer datasets: - amazon_reviews_multi model-index: - name: xlm-roberta-base-finetuned-marc-en results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-marc-en This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the amazon_reviews_multi dataset. It achieves the following results on the evaluation set: - Loss: 0.9302 - Mae: 0.5 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Mae | |:-------------:|:-----:|:----:|:---------------:|:------:| | 1.1253 | 1.0 | 235 | 0.9756 | 0.5488 | | 0.9465 | 2.0 | 470 | 0.9302 | 0.5 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.9.0+cu111 - Datasets 1.14.0 - Tokenizers 0.10.3
dbernsohn/roberta-php
ad623d45562372c2d8ced55dc07fe0376226dc73
2021-05-20T15:56:10.000Z
[ "pytorch", "jax", "roberta", "fill-mask", "php", "dataset:code_search_net", "arxiv:1907.11692", "transformers", "autotrain_compatible" ]
fill-mask
false
dbernsohn
null
dbernsohn/roberta-php
5
1
transformers
16,471
# roberta-php --- language: php datasets: - code_search_net --- This is a [roberta](https://arxiv.org/pdf/1907.11692.pdf) pre-trained version on the [CodeSearchNet dataset](https://github.com/github/CodeSearchNet) for **php** Mask Language Model mission. To load the model: (necessary packages: !pip install transformers sentencepiece) ```python from transformers import AutoTokenizer, AutoModelWithLMHead, pipeline tokenizer = AutoTokenizer.from_pretrained("dbernsohn/roberta-php") model = AutoModelWithLMHead.from_pretrained("dbernsohn/roberta-php") fill_mask = pipeline( "fill-mask", model=model, tokenizer=tokenizer ) ``` You can then use this model to fill masked words in a Java code. ```python code = """ $people = array( array('name' => 'Kalle', 'salt' => 856412), array('name' => 'Pierre', 'salt' => 215863) ); for($i = 0; $i < count($<mask>); ++$i) { $people[$i]['salt'] = mt_rand(000000, 999999); } """.lstrip() pred = {x["token_str"].replace("Ġ", ""): x["score"] for x in fill_mask(code)} sorted(pred.items(), key=lambda kv: kv[1], reverse=True) # [('people', 0.785636842250824), # ('parts', 0.006270722020417452), # ('id', 0.0035842324141412973), # ('data', 0.0025512021966278553), # ('config', 0.002258970635011792)] ``` The whole training process and hyperparameters are in my [GitHub repo](https://github.com/DorBernsohn/CodeLM/tree/main/CodeMLM) > Created by [Dor Bernsohn](https://www.linkedin.com/in/dor-bernsohn-70b2b1146/)
dbmdz/bert-medium-historic-multilingual-cased
99f676211e6698bcbb4fff1613333b11d35a571e
2021-12-06T14:35:44.000Z
[ "pytorch", "tf", "tensorboard", "bert", "fill-mask", "multilingual", "arxiv:1908.08962", "transformers", "license:mit", "autotrain_compatible" ]
fill-mask
false
dbmdz
null
dbmdz/bert-medium-historic-multilingual-cased
5
null
transformers
16,472
--- language: multilingual license: mit widget: - text: "and I cannot conceive the reafon why [MASK] hath" - text: "Täkäläinen sanomalehdistö [MASK] erit - täin" - text: "Det vore [MASK] häller nödvändigt att be" - text: "Comme, à cette époque [MASK] était celle de la" - text: "In [MASK] an atmosphärischen Nahrungsmitteln" --- # Historic Language Models (HLMs) ## Languages Our Historic Language Models Zoo contains support for the following languages - incl. their training data source: | Language | Training data | Size | -------- | ------------- | ---- | German | [Europeana](http://www.europeana-newspapers.eu/) | 13-28GB (filtered) | French | [Europeana](http://www.europeana-newspapers.eu/) | 11-31GB (filtered) | English | [British Library](https://data.bl.uk/digbks/db14.html) | 24GB (year filtered) | Finnish | [Europeana](http://www.europeana-newspapers.eu/) | 1.2GB | Swedish | [Europeana](http://www.europeana-newspapers.eu/) | 1.1GB ## Models At the moment, the following models are available on the model hub: | Model identifier | Model Hub link | --------------------------------------------- | -------------------------------------------------------------------------- | `dbmdz/bert-base-historic-multilingual-cased` | [here](https://huggingface.co/dbmdz/bert-base-historic-multilingual-cased) | `dbmdz/bert-base-historic-english-cased` | [here](https://huggingface.co/dbmdz/bert-base-historic-english-cased) | `dbmdz/bert-base-finnish-europeana-cased` | [here](https://huggingface.co/dbmdz/bert-base-finnish-europeana-cased) | `dbmdz/bert-base-swedish-europeana-cased` | [here](https://huggingface.co/dbmdz/bert-base-swedish-europeana-cased) We also released smaller models for the multilingual model: | Model identifier | Model Hub link | ----------------------------------------------- | --------------------------------------------------------------------------- | `dbmdz/bert-tiny-historic-multilingual-cased` | [here](https://huggingface.co/dbmdz/bert-tiny-historic-multilingual-cased) | `dbmdz/bert-mini-historic-multilingual-cased` | [here](https://huggingface.co/dbmdz/bert-mini-historic-multilingual-cased) | `dbmdz/bert-small-historic-multilingual-cased` | [here](https://huggingface.co/dbmdz/bert-small-historic-multilingual-cased) | `dbmdz/bert-medium-historic-multilingual-cased` | [here](https://huggingface.co/dbmdz/bert-base-historic-multilingual-cased) **Notice**: We have released language models for Historic German and French trained on more noisier data earlier - see [this repo](https://github.com/stefan-it/europeana-bert) for more information: | Model identifier | Model Hub link | --------------------------------------------- | -------------------------------------------------------------------------- | `dbmdz/bert-base-german-europeana-cased` | [here](https://huggingface.co/dbmdz/bert-base-german-europeana-cased) | `dbmdz/bert-base-french-europeana-cased` | [here](https://huggingface.co/dbmdz/bert-base-french-europeana-cased) # Corpora Stats ## German Europeana Corpus We provide some statistics using different thresholds of ocr confidences, in order to shrink down the corpus size and use less-noisier data: | OCR confidence | Size | -------------- | ---- | **0.60** | 28GB | 0.65 | 18GB | 0.70 | 13GB For the final corpus we use a OCR confidence of 0.6 (28GB). The following plot shows a tokens per year distribution: ![German Europeana Corpus Stats](stats/figures/german_europeana_corpus_stats.png) ## French Europeana Corpus Like German, we use different ocr confidence thresholds: | OCR confidence | Size | -------------- | ---- | 0.60 | 31GB | 0.65 | 27GB | **0.70** | 27GB | 0.75 | 23GB | 0.80 | 11GB For the final corpus we use a OCR confidence of 0.7 (27GB). The following plot shows a tokens per year distribution: ![French Europeana Corpus Stats](stats/figures/french_europeana_corpus_stats.png) ## British Library Corpus Metadata is taken from [here](https://data.bl.uk/digbks/DB21.html). Stats incl. year filtering: | Years | Size | ----------------- | ---- | ALL | 24GB | >= 1800 && < 1900 | 24GB We use the year filtered variant. The following plot shows a tokens per year distribution: ![British Library Corpus Stats](stats/figures/bl_corpus_stats.png) ## Finnish Europeana Corpus | OCR confidence | Size | -------------- | ---- | 0.60 | 1.2GB The following plot shows a tokens per year distribution: ![Finnish Europeana Corpus Stats](stats/figures/finnish_europeana_corpus_stats.png) ## Swedish Europeana Corpus | OCR confidence | Size | -------------- | ---- | 0.60 | 1.1GB The following plot shows a tokens per year distribution: ![Swedish Europeana Corpus Stats](stats/figures/swedish_europeana_corpus_stats.png) ## All Corpora The following plot shows a tokens per year distribution of the complete training corpus: ![All Corpora Stats](stats/figures/all_corpus_stats.png) # Multilingual Vocab generation For the first attempt, we use the first 10GB of each pretraining corpus. We upsample both Finnish and Swedish to ~10GB. The following tables shows the exact size that is used for generating a 32k and 64k subword vocabs: | Language | Size | -------- | ---- | German | 10GB | French | 10GB | English | 10GB | Finnish | 9.5GB | Swedish | 9.7GB We then calculate the subword fertility rate and portion of `[UNK]`s over the following NER corpora: | Language | NER corpora | -------- | ------------------ | German | CLEF-HIPE, NewsEye | French | CLEF-HIPE, NewsEye | English | CLEF-HIPE | Finnish | NewsEye | Swedish | NewsEye Breakdown of subword fertility rate and unknown portion per language for the 32k vocab: | Language | Subword fertility | Unknown portion | -------- | ------------------ | --------------- | German | 1.43 | 0.0004 | French | 1.25 | 0.0001 | English | 1.25 | 0.0 | Finnish | 1.69 | 0.0007 | Swedish | 1.43 | 0.0 Breakdown of subword fertility rate and unknown portion per language for the 64k vocab: | Language | Subword fertility | Unknown portion | -------- | ------------------ | --------------- | German | 1.31 | 0.0004 | French | 1.16 | 0.0001 | English | 1.17 | 0.0 | Finnish | 1.54 | 0.0007 | Swedish | 1.32 | 0.0 # Final pretraining corpora We upsample Swedish and Finnish to ~27GB. The final stats for all pretraining corpora can be seen here: | Language | Size | -------- | ---- | German | 28GB | French | 27GB | English | 24GB | Finnish | 27GB | Swedish | 27GB Total size is 130GB. # Smaller multilingual models Inspired by the ["Well-Read Students Learn Better: On the Importance of Pre-training Compact Models"](https://arxiv.org/abs/1908.08962) paper, we train smaller models (different layers and hidden sizes), and report number of parameters and pre-training costs: | Model (Layer / Hidden size) | Parameters | Pre-Training time | --------------------------- | ----------: | ----------------------: | hmBERT Tiny ( 2/128) | 4.58M | 4.3 sec / 1,000 steps | hmBERT Mini ( 4/256) | 11.55M | 10.5 sec / 1,000 steps | hmBERT Small ( 4/512) | 29.52M | 20.7 sec / 1,000 steps | hmBERT Medium ( 8/512) | 42.13M | 35.0 sec / 1,000 steps | hmBERT Base (12/768) | 110.62M | 80.0 sec / 1,000 steps We then perform downstream evaluations on the multilingual [NewsEye](https://zenodo.org/record/4573313#.Ya3oVr-ZNzU) dataset: ![NewsEye hmBERT Evaluation](stats/figures/newseye-hmbert-evaluation.png) # Pretraining ## Multilingual model - hmBERT Base We train a multilingual BERT model using the 32k vocab with the official BERT implementation on a v3-32 TPU using the following parameters: ```bash python3 run_pretraining.py --input_file gs://histolectra/historic-multilingual-tfrecords/*.tfrecord \ --output_dir gs://histolectra/bert-base-historic-multilingual-cased \ --bert_config_file ./config.json \ --max_seq_length=512 \ --max_predictions_per_seq=75 \ --do_train=True \ --train_batch_size=128 \ --num_train_steps=3000000 \ --learning_rate=1e-4 \ --save_checkpoints_steps=100000 \ --keep_checkpoint_max=20 \ --use_tpu=True \ --tpu_name=electra-2 \ --num_tpu_cores=32 ``` The following plot shows the pretraining loss curve: ![Training loss curve](stats/figures/pretraining_loss_historic-multilingual.png) ## Smaller multilingual models We use the same parameters as used for training the base model. ### hmBERT Tiny The following plot shows the pretraining loss curve for the tiny model: ![Training loss curve](stats/figures/pretraining_loss_hmbert-tiny.png) ### hmBERT Mini The following plot shows the pretraining loss curve for the mini model: ![Training loss curve](stats/figures/pretraining_loss_hmbert-mini.png) ### hmBERT Small The following plot shows the pretraining loss curve for the small model: ![Training loss curve](stats/figures/pretraining_loss_hmbert-small.png) ### hmBERT Medium The following plot shows the pretraining loss curve for the medium model: ![Training loss curve](stats/figures/pretraining_loss_hmbert-medium.png) ## English model The English BERT model - with texts from British Library corpus - was trained with the Hugging Face JAX/FLAX implementation for 10 epochs (approx. 1M steps) on a v3-8 TPU, using the following command: ```bash python3 run_mlm_flax.py --model_type bert \ --config_name /mnt/datasets/bert-base-historic-english-cased/ \ --tokenizer_name /mnt/datasets/bert-base-historic-english-cased/ \ --train_file /mnt/datasets/bl-corpus/bl_1800-1900_extracted.txt \ --validation_file /mnt/datasets/bl-corpus/english_validation.txt \ --max_seq_length 512 \ --per_device_train_batch_size 16 \ --learning_rate 1e-4 \ --num_train_epochs 10 \ --preprocessing_num_workers 96 \ --output_dir /mnt/datasets/bert-base-historic-english-cased-512-noadafactor-10e \ --save_steps 2500 \ --eval_steps 2500 \ --warmup_steps 10000 \ --line_by_line \ --pad_to_max_length ``` The following plot shows the pretraining loss curve: ![Training loss curve](stats/figures/pretraining_loss_historic_english.png) ## Finnish model The BERT model - with texts from Finnish part of Europeana - was trained with the Hugging Face JAX/FLAX implementation for 40 epochs (approx. 1M steps) on a v3-8 TPU, using the following command: ```bash python3 run_mlm_flax.py --model_type bert \ --config_name /mnt/datasets/bert-base-finnish-europeana-cased/ \ --tokenizer_name /mnt/datasets/bert-base-finnish-europeana-cased/ \ --train_file /mnt/datasets/hlms/extracted_content_Finnish_0.6.txt \ --validation_file /mnt/datasets/hlms/finnish_validation.txt \ --max_seq_length 512 \ --per_device_train_batch_size 16 \ --learning_rate 1e-4 \ --num_train_epochs 40 \ --preprocessing_num_workers 96 \ --output_dir /mnt/datasets/bert-base-finnish-europeana-cased-512-dupe1-noadafactor-40e \ --save_steps 2500 \ --eval_steps 2500 \ --warmup_steps 10000 \ --line_by_line \ --pad_to_max_length ``` The following plot shows the pretraining loss curve: ![Training loss curve](stats/figures/pretraining_loss_finnish_europeana.png) ## Swedish model The BERT model - with texts from Swedish part of Europeana - was trained with the Hugging Face JAX/FLAX implementation for 40 epochs (approx. 660K steps) on a v3-8 TPU, using the following command: ```bash python3 run_mlm_flax.py --model_type bert \ --config_name /mnt/datasets/bert-base-swedish-europeana-cased/ \ --tokenizer_name /mnt/datasets/bert-base-swedish-europeana-cased/ \ --train_file /mnt/datasets/hlms/extracted_content_Swedish_0.6.txt \ --validation_file /mnt/datasets/hlms/swedish_validation.txt \ --max_seq_length 512 \ --per_device_train_batch_size 16 \ --learning_rate 1e-4 \ --num_train_epochs 40 \ --preprocessing_num_workers 96 \ --output_dir /mnt/datasets/bert-base-swedish-europeana-cased-512-dupe1-noadafactor-40e \ --save_steps 2500 \ --eval_steps 2500 \ --warmup_steps 10000 \ --line_by_line \ --pad_to_max_length ``` The following plot shows the pretraining loss curve: ![Training loss curve](stats/figures/pretraining_loss_swedish_europeana.png) # Acknowledgments Research supported with Cloud TPUs from Google's TPU Research Cloud (TRC) program, previously known as TensorFlow Research Cloud (TFRC). Many thanks for providing access to the TRC ❤️ Thanks to the generous support from the [Hugging Face](https://huggingface.co/) team, it is possible to download both cased and uncased models from their S3 storage 🤗
ddobokki/vision-encoder-decoder-vit-gpt2-coco-ko
41dc5c541480e2797e1646bcf568d654cbb107da
2021-12-22T06:51:44.000Z
[ "pytorch", "vision-encoder-decoder", "transformers" ]
null
false
ddobokki
null
ddobokki/vision-encoder-decoder-vit-gpt2-coco-ko
5
3
transformers
16,473
## EXAMPLE ```python import requests import torch from PIL import Image from transformers import ( VisionEncoderDecoderModel, ViTFeatureExtractor, PreTrainedTokenizerFast, ) # device setting device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') # load feature extractor and tokenizer encoder_model_name_or_path = "ddobokki/vision-encoder-decoder-vit-gpt2-coco-ko" feature_extractor = ViTFeatureExtractor.from_pretrained(encoder_model_name_or_path) tokenizer = PreTrainedTokenizerFast.from_pretrained(encoder_model_name_or_path) # load model model = VisionEncoderDecoderModel.from_pretrained(encoder_model_name_or_path) model.to(device) # inference url = 'http://images.cocodataset.org/val2017/000000039769.jpg' with Image.open(requests.get(url, stream=True).raw) as img: pixel_values = feature_extractor(images=img, return_tensors="pt").pixel_values generated_ids = model.generate(pixel_values.to(device),num_beams=5) generated_text = tokenizer.batch_decode(generated_ids, skip_special_tokens=True) >> ['고양이 두마리가 담요 위에 누워 있다.'] ```
deepdml/output
de65a85446b3e686b8c3fd99e36c60e90d58b466
2022-01-21T11:50:22.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "ab", "dataset:common_voice", "transformers", "mozilla-foundation/common_voice_7_0", "generated_from_trainer", "model-index" ]
automatic-speech-recognition
false
deepdml
null
deepdml/output
5
null
transformers
16,474
--- language: - ab tags: - automatic-speech-recognition - mozilla-foundation/common_voice_7_0 - generated_from_trainer datasets: - common_voice model-index: - name: output results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # output This model is a fine-tuned version of [hf-test/xls-r-dummy](https://huggingface.co/hf-test/xls-r-dummy) on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - AB dataset. It achieves the following results on the evaluation set: - Loss: 156.8789 - Wer: 1.3456 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 10 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.17.1.dev0 - Tokenizers 0.11.0
deeq/dbert5
66e16cdb292c24d1809685fbdb511b58c79d66f8
2021-06-08T05:14:14.000Z
[ "pytorch", "transformers" ]
null
false
deeq
null
deeq/dbert5
5
null
transformers
16,475
deeqBERT5 --- - model: bert-base - vocab: deeqnlp 1.5, 50k - version: latest/3.5
diegozs97/finetuned-chemprot-seed-0-1000k
e10c376c10b4794775ba099a3989c149f003fd15
2021-12-07T05:14:09.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
diegozs97
null
diegozs97/finetuned-chemprot-seed-0-1000k
5
null
transformers
16,476
Entry not found
diegozs97/finetuned-chemprot-seed-0-1500k
5e5586d4c7a35a68d75039904e5e62a9d2f5571b
2021-12-07T05:15:11.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
diegozs97
null
diegozs97/finetuned-chemprot-seed-0-1500k
5
null
transformers
16,477
Entry not found
diegozs97/finetuned-chemprot-seed-1-0k
18ce42a4c06336912df2fee9ef73ba041552cc74
2021-12-07T05:17:43.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
diegozs97
null
diegozs97/finetuned-chemprot-seed-1-0k
5
null
transformers
16,478
Entry not found
diegozs97/finetuned-chemprot-seed-1-1000k
5ff4d903b2b5bc510ccbd0429d2d9f10f94d2885
2021-12-07T05:24:08.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
diegozs97
null
diegozs97/finetuned-chemprot-seed-1-1000k
5
null
transformers
16,479
Entry not found
diegozs97/finetuned-chemprot-seed-1-100k
36a8a7436dbb52f50282f7ac0a679b0820f6f422
2021-12-07T05:20:33.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
diegozs97
null
diegozs97/finetuned-chemprot-seed-1-100k
5
null
transformers
16,480
Entry not found
diegozs97/finetuned-chemprot-seed-3-0k
2b3cc2ceae59ded05cdf564505443b25aea9e5e1
2021-12-09T18:00:44.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
diegozs97
null
diegozs97/finetuned-chemprot-seed-3-0k
5
null
transformers
16,481
Entry not found
diegozs97/finetuned-chemprot-seed-3-100k
1792987b66b08242a45b0b7a2e40d9eff3f47e8e
2021-12-09T18:03:34.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
diegozs97
null
diegozs97/finetuned-chemprot-seed-3-100k
5
null
transformers
16,482
Entry not found
diegozs97/finetuned-chemprot-seed-3-2000k
9118474a4867f9b449304d39f9d4a2bb0b56dda0
2021-12-09T18:12:33.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
diegozs97
null
diegozs97/finetuned-chemprot-seed-3-2000k
5
null
transformers
16,483
Entry not found
diegozs97/finetuned-chemprot-seed-4-400k
ffa8eb0c80d8c926ebd6ae70f6967ae4ee3c2b52
2021-12-09T18:17:47.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
diegozs97
null
diegozs97/finetuned-chemprot-seed-4-400k
5
null
transformers
16,484
Entry not found
diegozs97/finetuned-sciie-seed-0-1000k
c03fbc484d9332e2f4ec8fc2dc167695a3cbcce6
2021-12-10T01:46:01.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
diegozs97
null
diegozs97/finetuned-sciie-seed-0-1000k
5
null
transformers
16,485
Entry not found
diegozs97/finetuned-sciie-seed-0-100k
3ac82f144a0432b8fa2b21a3e9940b835dc57e90
2021-12-10T01:42:29.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
diegozs97
null
diegozs97/finetuned-sciie-seed-0-100k
5
null
transformers
16,486
Entry not found
diegozs97/finetuned-sciie-seed-0-2000k
1b486bfd6880b893d1573fa6d82cd3bbe576576e
2021-12-10T01:48:32.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
diegozs97
null
diegozs97/finetuned-sciie-seed-0-2000k
5
null
transformers
16,487
Entry not found
diegozs97/finetuned-sciie-seed-0-200k
36ef430b0a1ae46ea7ff8562b3de2b74a18774f0
2021-12-10T01:43:14.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
diegozs97
null
diegozs97/finetuned-sciie-seed-0-200k
5
null
transformers
16,488
Entry not found
diegozs97/finetuned-sciie-seed-0-20k
6b640ea75c45598a4c9db12bec4a03801c883c74
2021-12-10T01:40:43.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
diegozs97
null
diegozs97/finetuned-sciie-seed-0-20k
5
null
transformers
16,489
Entry not found
diegozs97/finetuned-sciie-seed-0-400k
95652147904db597ceca173916c6d11bd92d2f56
2021-12-10T01:44:15.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
diegozs97
null
diegozs97/finetuned-sciie-seed-0-400k
5
null
transformers
16,490
Entry not found
diegozs97/finetuned-sciie-seed-1-1000k
ad7071d7aba5c9d71c366715cf76444e049f1121
2021-12-07T15:32:14.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
diegozs97
null
diegozs97/finetuned-sciie-seed-1-1000k
5
null
transformers
16,491
Entry not found
diegozs97/finetuned-sciie-seed-1-1800k
c3972ff71276e94c552a817820a55dc6eb91bad0
2021-12-07T15:34:12.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
diegozs97
null
diegozs97/finetuned-sciie-seed-1-1800k
5
null
transformers
16,492
Entry not found
diegozs97/finetuned-sciie-seed-1-400k
e120e157f6d599d87b261de3e43a6a657e5b54c6
2021-12-07T15:30:28.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
diegozs97
null
diegozs97/finetuned-sciie-seed-1-400k
5
null
transformers
16,493
Entry not found
diegozs97/finetuned-sciie-seed-1-60k
c6f412a2b8138c75ffa145c2150a7c610d615802
2021-12-07T15:27:59.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
diegozs97
null
diegozs97/finetuned-sciie-seed-1-60k
5
null
transformers
16,494
Entry not found
diegozs97/finetuned-sciie-seed-1-700k
743c07b8d07771d8a8d2b8b121d4710d08c37091
2021-12-07T15:31:31.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
diegozs97
null
diegozs97/finetuned-sciie-seed-1-700k
5
null
transformers
16,495
Entry not found
diegozs97/finetuned-sciie-seed-2-1000k
60ed0ff4621e968172d9170ca6941c00f8ad437b
2021-12-07T15:42:17.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
diegozs97
null
diegozs97/finetuned-sciie-seed-2-1000k
5
null
transformers
16,496
Entry not found
diegozs97/finetuned-sciie-seed-2-2000k
1a97c4501444b1ab37cf1d3327f243a2e4416f12
2021-12-07T15:44:51.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
diegozs97
null
diegozs97/finetuned-sciie-seed-2-2000k
5
null
transformers
16,497
Entry not found
diegozs97/finetuned-sciie-seed-2-60k
c13e066f0bebd650d2ca0c0f47d13121e68a7984
2021-12-07T15:37:41.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
diegozs97
null
diegozs97/finetuned-sciie-seed-2-60k
5
null
transformers
16,498
Entry not found
diegozs97/finetuned-sciie-seed-3-0k
db09bec7551a50e23d83d0d760c9607235168443
2021-12-08T04:30:52.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
diegozs97
null
diegozs97/finetuned-sciie-seed-3-0k
5
null
transformers
16,499
Entry not found