modelId
stringlengths
4
112
sha
stringlengths
40
40
lastModified
stringlengths
24
24
tags
list
pipeline_tag
stringclasses
29 values
private
bool
1 class
author
stringlengths
2
38
config
null
id
stringlengths
4
112
downloads
float64
0
36.8M
likes
float64
0
712
library_name
stringclasses
17 values
__index_level_0__
int64
0
38.5k
readme
stringlengths
0
186k
NaliniK/distilbert-base-uncased-finetuned-cola
f7126fddee9250ae8d1c61a5372df687633689c3
2021-12-03T17:21:08.000Z
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:glue", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
NaliniK
null
NaliniK/distilbert-base-uncased-finetuned-cola
5
null
transformers
16,200
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - matthews_correlation model-index: - name: distilbert-base-uncased-finetuned-cola results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue args: cola metrics: - name: Matthews Correlation type: matthews_correlation value: 0.5494735380761103 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-cola This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.8239 - Matthews Correlation: 0.5495 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.5235 | 1.0 | 535 | 0.5402 | 0.4156 | | 0.3484 | 2.0 | 1070 | 0.5272 | 0.5233 | | 0.2381 | 3.0 | 1605 | 0.6665 | 0.5050 | | 0.1746 | 4.0 | 2140 | 0.7512 | 0.5429 | | 0.1308 | 5.0 | 2675 | 0.8239 | 0.5495 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.10.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3
NanniKirby/bapismall
910d5da2a39e6b4183c8e0708a7bb6246a0841de
2021-09-26T22:00:35.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
NanniKirby
null
NanniKirby/bapismall
5
null
transformers
16,201
--- tags: - conversational --- # Bapibot
NbAiLab/nb-bert-base-samisk
087648d16ad0256b8e1c805813784dea5c003b54
2022-02-16T15:43:52.000Z
[ "pytorch", "bert", "text-classification", "transformers", "license:apache-2.0" ]
text-classification
false
NbAiLab
null
NbAiLab/nb-bert-base-samisk
5
null
transformers
16,202
--- license: apache-2.0 ---
NbAiLab/nb-roberta-base-scandinavian
c581921c5163fa42bdaf577b1b5c382557f058d4
2021-11-29T12:08:45.000Z
[ "pytorch", "jax", "tensorboard", "roberta", "fill-mask", "no", "transformers", "norwegian", "license:cc-by-4.0", "autotrain_compatible" ]
fill-mask
false
NbAiLab
null
NbAiLab/nb-roberta-base-scandinavian
5
null
transformers
16,203
--- language: no license: cc-by-4.0 tags: - norwegian - roberta pipeline_tag: fill-mask widget: - text: På biblioteket kan du <mask> en bok. - text: Dette er et <mask> eksempel. - text: Av og til kan en språkmodell gi et <mask> resultat. - text: Som ansat får du <mask> for at bidrage til borgernes adgang til dansk kulturarv, til forskning og til samfundets demokratiske udvikling. --- # This is just a Test Model. Do NOT use for anything! Continued pretrained from the nb-roberta-base. The domain specific pretraining is done on the 102GB (Scandinavian corpus)[https://huggingface.co/datasets/NbAiLab/scandinavian]. ## Train for 180k steps for 128 sequences: ```bash ./run_mlm_flax_stream.py \ --output_dir="./" \ --model_type="roberta" \ --config_name="./" \ --tokenizer_name="./" \ --model_name_or_path="./" \ --dataset_name="NbAiLab/scandinavian" \ --max_seq_length="128" \ --weight_decay="0.01" \ --per_device_train_batch_size="128" \ --per_device_eval_batch_size="128" \ --learning_rate="6e-5" \ --warmup_steps="5000" \ --overwrite_output_dir \ --cache_dir /mnt/disks/flaxdisk/cache/ \ --num_train_steps="180000" \ --adam_beta1="0.9" \ --adam_beta2="0.98" \ --logging_steps="10000" \ --save_steps="10000" \ --eval_steps="10000" \ --preprocessing_num_workers 96 \ --auth_token True \ --adafactor \ --push_to_hub ``` ## Train for 20k steps for 512 sequences: ```bash ./run_mlm_flax_stream.py \ --output_dir="./" \ --model_type="roberta" \ --config_name="./" \ --tokenizer_name="./" \ --model_name_or_path="./" \ --dataset_name="NbAiLab/scandinavian" \ --max_seq_length="512" \ --weight_decay="0.01" \ --per_device_train_batch_size="48" \ --per_device_eval_batch_size="48" \ --learning_rate="3e-5" \ --warmup_steps="5000" \ --overwrite_output_dir \ --cache_dir /mnt/disks/flaxdisk/cache/ \ --num_train_steps="20000" \ --adam_beta1="0.9" \ --adam_beta2="0.98" \ --logging_steps="20000" \ --save_steps="10000" \ --eval_steps="10000" \ --preprocessing_num_workers 96 \ --auth_token True \ --adafactor \ --push_to_hub ``` Approximate additional training time: 1 week.
NimaBoscarino/aot-gan-celebahq
8394b1abc3ac29c92f321cc884c8a98240ca4787
2022-01-25T08:38:46.000Z
[ "pytorch", "dataset:celeba-hq", "transformers", "face-recognition", "face-generation", "face-segmentation", "generative-adversarial-network" ]
null
false
NimaBoscarino
null
NimaBoscarino/aot-gan-celebahq
5
null
transformers
16,204
--- tags: - face-recognition - face-generation - face-segmentation - generative-adversarial-network metrics: - L1 - PSNR - SSIM - FID datasets: - celeba-hq --- # AOT-GAN CelebA-HQ AOT-GAN is a model that can be used for image in-painting. The CelebA-HQ checkpoint is trained on synthetic human faces, which should make it suitable for touching up and restoring portraits. This model was generated using [AOT-GAN-for-Inpainting](https://github.com/researchmm/AOT-GAN-for-Inpainting), cited as ``` @inproceedings{yan2021agg, author = {Zeng, Yanhong and Fu, Jianlong and Chao, Hongyang and Guo, Baining}, title = {Aggregated Contextual Transformations for High-Resolution Image Inpainting}, booktitle = {Arxiv}, pages={-}, year = {2020} } ``` ## Dataset The CelebA-HQ dataset was created with this codebase: https://github.com/tkarras/progressive_growing_of_gans, owned by NVidia and licensed under Creative Commons Attribution-NonCommercial 4.0 International.
Norod78/english-sienfeld-distilgpt2
d33653417800d63a4e936bf8fcbfa7069c96fd66
2021-05-21T10:58:11.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "transformers" ]
text-generation
false
Norod78
null
Norod78/english-sienfeld-distilgpt2
5
null
transformers
16,205
Entry not found
Norod78/hebrew-project_ben_yehuda-gpt_neo-small
fecba22315ec10cbebc2dd13649b7ed13f31eadc
2022-07-04T07:28:02.000Z
[ "pytorch", "gpt_neo", "text-generation", "he", "transformers", "license:mit" ]
text-generation
false
Norod78
null
Norod78/hebrew-project_ben_yehuda-gpt_neo-small
5
null
transformers
16,206
--- language: he thumbnail: https://avatars1.githubusercontent.com/u/3617152?norod.jpg widget: - text: "יום אחד, " - text: "זה עתה התעורר" - text: "וזה הצחוק, אמרו חכ" - text: "אשה צעי" license: mit --- # hebrew-project_ben_yehuda-gpt_neo-small Hebrew story text generation model, in the style of the texts available in [Project Ben Yehuda](https://benyehuda.org/) fined tuned upon [hebrew-gpt_neo-small](https://huggingface.co/Norod78/hebrew-gpt_neo-small) which was trained using [EleutherAI's gpt-neo](https://github.com/EleutherAI/gpt-neo). ## Dataset Stripped text dump from [project ben-yehuda public_domain_dump 2021-02](https://github.com/projectbenyehuda/public_domain_dump/releases/tag/2021-02)
Nuwaisir/Quran_speech_recognizer
0c21ef1cde1202b91e1fdd8d4c25aaef3065a0be
2022-02-21T12:39:51.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
false
Nuwaisir
null
Nuwaisir/Quran_speech_recognizer
5
null
transformers
16,207
Entry not found
Ogayo/Hel-ach-en
fadb45e9ce9cd667866b878245be08153f762362
2020-12-11T21:30:01.000Z
[ "pytorch", "marian", "text2text-generation", "ach", "en", "dataset:JW300", "transformers", "translation", "license:cc-by-4.0", "autotrain_compatible" ]
translation
false
Ogayo
null
Ogayo/Hel-ach-en
5
null
transformers
16,208
--- language: - ach - en tags: - translation license: cc-by-4.0 datasets: - JW300 metrics: - bleu --- # HEL-ACH-EN ## Model description MT model translating Acholi to English initialized with weights from [opus-mt-luo-en](https://huggingface.co/Helsinki-NLP/opus-mt-luo-en) on HuggingFace. ## Intended uses & limitations Machine Translation experiments. Do not use for sensitive tasks. #### How to use ```python # You can include sample code which will be formatted from transformers import AutoTokenizer, AutoModelForSeq2SeqLM tokenizer = AutoTokenizer.from_pretrained("Ogayo/Hel-ach-en") model = AutoModelForSeq2SeqLM.from_pretrained("Ogayo/Hel-ach-en") ``` #### Limitations and bias Trained on Jehovah Witnesses data so contains theirs and Christian views. ## Training data Trained on OPUS JW300 data. Initialized with weights from [opus-mt-luo-en](https://huggingface.co/Helsinki-NLP/opus-mt-luo-en?text=Bed+gi+nyasi+mar+chieng%27+nyuol+mopong%27+gi+mor%21#model_card) ## Training procedure Remove duplicates and rows with no alphabetic characters. Used GPU ## Eval results testset | BLEU --- | --- JW300.luo.en| 46.1
Omar2027/Author_identification
c305f6f7abfc209d5473e9ba6278ba34ab926a4b
2021-12-26T20:58:45.000Z
[ "pytorch", "jax", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
Omar2027
null
Omar2027/Author_identification
5
null
transformers
16,209
PedroR/xlm-roberta-4-pretrained-with-tokenizer
3431260c2a571657d7729f53add3db743bdb451c
2021-07-29T17:06:32.000Z
[ "pytorch", "xlm-roberta", "feature-extraction", "transformers" ]
feature-extraction
false
PedroR
null
PedroR/xlm-roberta-4-pretrained-with-tokenizer
5
null
transformers
16,210
Entry not found
PedroR/xlm-roberta-6
5c61eb6405d1e958537a37fbcafb2033f646db6a
2021-07-27T22:03:13.000Z
[ "pytorch", "xlm-roberta", "feature-extraction", "transformers" ]
feature-extraction
false
PedroR
null
PedroR/xlm-roberta-6
5
null
transformers
16,211
Entry not found
Peter/in_g_2
00fd7c3dbe8b0019864eeeca0cb60ed96787a859
2021-07-22T18:58:40.000Z
[ "pytorch", "gpt_neo", "text-generation", "transformers" ]
text-generation
false
Peter
null
Peter/in_g_2
5
null
transformers
16,212
Entry not found
Plim/xls-r-300m-fr
8be1703f53d4715450cae8905af598076985ffaf
2022-03-24T11:57:31.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "fr", "dataset:mozilla-foundation/common_voice_7_0", "transformers", "mozilla-foundation/common_voice_7_0", "generated_from_trainer", "robust-speech-event", "hf-asr-leaderboard", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
Plim
null
Plim/xls-r-300m-fr
5
null
transformers
16,213
--- language: - fr license: apache-2.0 tags: - automatic-speech-recognition - mozilla-foundation/common_voice_7_0 - generated_from_trainer - robust-speech-event - hf-asr-leaderboard datasets: - mozilla-foundation/common_voice_7_0 model-index: - name: XLS-R-300M - French results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 7 type: mozilla-foundation/common_voice_7_0 args: fr metrics: - name: Test WER type: wer value: 24.56 - name: Test CER type: cer value: 7.3 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: fr metrics: - name: Test WER type: wer value: 63.62 - name: Test CER type: cer value: 17.2 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: fr metrics: - name: Test WER type: wer value: 66.45 --- --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> ## Model description This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - FR dataset. ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7.5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2000 - num_epochs: 2.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.495 | 0.16 | 500 | 3.3883 | 1.0 | | 2.9095 | 0.32 | 1000 | 2.9152 | 1.0000 | | 1.8434 | 0.49 | 1500 | 1.0473 | 0.7446 | | 1.4298 | 0.65 | 2000 | 0.5729 | 0.5130 | | 1.1937 | 0.81 | 2500 | 0.3795 | 0.3450 | | 1.1248 | 0.97 | 3000 | 0.3321 | 0.3052 | | 1.0835 | 1.13 | 3500 | 0.3038 | 0.2805 | | 1.0479 | 1.3 | 4000 | 0.2910 | 0.2689 | | 1.0413 | 1.46 | 4500 | 0.2798 | 0.2593 | | 1.014 | 1.62 | 5000 | 0.2727 | 0.2512 | | 1.004 | 1.78 | 5500 | 0.2646 | 0.2471 | | 0.9949 | 1.94 | 6000 | 0.2619 | 0.2457 | It achieves the best result on STEP 6000 on the validation set: - Loss: 0.2619 - Wer: 0.2457 ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2.dev0 - Tokenizers 0.11.0 ### Evaluation Commands 1. To evaluate on `mozilla-foundation/common_voice_7` with split `test` ```bash python eval.py --model_id Plim/xls-r-300m-fr --dataset mozilla-foundation/common_voice_7_0 --config fr --split test ``` 2. To evaluate on `speech-recognition-community-v2/dev_data` ```bash python eval.py --model_id Plim/xls-r-300m-fr --dataset speech-recognition-community-v2/dev_data --config fr --split validation --chunk_length_s 5.0 --stride_length_s 1.0 ```
Pollawat/mt5-small-thai-qg
185de717a3062ae7847ce85802f89018d93e0147
2021-06-23T14:57:30.000Z
[ "pytorch", "mt5", "text2text-generation", "thai", "th", "dataset:NSC2018", "transformers", "question-generation", "license:mit", "autotrain_compatible" ]
text2text-generation
false
Pollawat
null
Pollawat/mt5-small-thai-qg
5
null
transformers
16,214
--- tags: - question-generation language: - thai - th datasets: - NSC2018 license: mit --- [Google's mT5](https://github.com/google-research/multilingual-t5) This is a model for generating questions from Thai texts. It was fine-tuned on NSC2018 corpus ```python from transformers import T5Tokenizer, MT5ForConditionalGeneration tokenizer = T5Tokenizer.from_pretrained("Pollawat/mt5-small-thai-qg") model = MT5ForConditionalGeneration.from_pretrained("Pollawat/mt5-small-thai-qg") text = "กรุงเทพมหานคร เป็นเมืองหลวงและนครที่มีประชากรมากที่สุดของประเทศไทย เป็นศูนย์กลางการปกครอง การศึกษา การคมนาคมขนส่ง การเงินการธนาคาร การพาณิชย์ การสื่อสาร และความเจริญของประเทศ เป็นเมืองที่มีชื่อยาวที่สุดในโลก ตั้งอยู่บนสามเหลี่ยมปากแม่น้ำเจ้าพระยา มีแม่น้ำเจ้าพระยาไหลผ่านและแบ่งเมืองออกเป็น 2 ฝั่ง คือ ฝั่งพระนครและฝั่งธนบุรี กรุงเทพมหานครมีพื้นที่ทั้งหมด 1,568.737 ตร.กม. มีประชากรตามทะเบียนราษฎรกว่า 5 ล้านคน ทำให้กรุงเทพมหานครเป็นเอกนคร (Primate City) จัด มีผู้กล่าวว่า กรุงเทพมหานครเป็น 'เอกนครที่สุดในโลก' เพราะมีประชากรมากกว่านครที่มีประชากรมากเป็นอันดับ 2 ถึง 40 เท่า[3]" input_ids = tokenizer.encode(text, return_tensors='pt') beam_output = model.generate( input_ids, max_length=50, num_beams=5, early_stopping=True ) print(tokenizer.decode(beam_output[0], skip_special_tokens=True)) >> <extra_id_0>ของกรุงเทพมหานครเป็นเมืองหลวงของประเทศใด ```
Poly-Pixel/shrek-medium
f95caac8f776b6f231bebb602e942ae5d59a418f
2021-08-30T21:16:39.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
Poly-Pixel
null
Poly-Pixel/shrek-medium
5
null
transformers
16,215
--- tags: - conversational --- Shrek
Pratibha/xlm-roberta-base-finetuned-marc-en
740773d8020781d00b06d321a01ef2730e660f00
2021-10-22T15:22:30.000Z
[ "pytorch", "tensorboard", "xlm-roberta", "text-classification", "dataset:amazon_reviews_multi", "transformers", "generated_from_trainer", "license:mit", "model-index" ]
text-classification
false
Pratibha
null
Pratibha/xlm-roberta-base-finetuned-marc-en
5
null
transformers
16,216
--- license: mit tags: - generated_from_trainer datasets: - amazon_reviews_multi model-index: - name: xlm-roberta-base-finetuned-marc-en results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-marc-en This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the amazon_reviews_multi dataset. It achieves the following results on the evaluation set: - Loss: 0.9575 - Mae: 0.5488 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Mae | |:-------------:|:-----:|:----:|:---------------:|:------:| | 1.1253 | 1.0 | 235 | 0.9960 | 0.5366 | | 0.9708 | 2.0 | 470 | 0.9575 | 0.5488 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.9.0+cu111 - Datasets 1.14.0 - Tokenizers 0.10.3
Prompsit/paraphrase-roberta-es
fc56355d720d89e0f6dbdc639f58306513bda56e
2021-12-23T12:07:06.000Z
[ "pytorch", "roberta", "text-classification", "es", "transformers" ]
text-classification
false
Prompsit
null
Prompsit/paraphrase-roberta-es
5
2
transformers
16,217
--- pipeline_tag: text-classification inference: false language: es tags: - transformers --- # Prompsit/paraphrase-roberta-es This model allows to evaluate paraphrases for a given phrase. We have fine-tuned this model from pretrained "PlanTL-GOB-ES/roberta-base-bne". Model built under a TSI-100905-2019-4 project, co-financed by Ministry of Economic Affairs and Digital Transformation from the Government of Spain. # How to use it The model answer the following question: Is "phrase B" a paraphrase of "phrase A". Please note that we're considering phrases instead of sentences. Therefore, we must take into account that the model doesn't expect to find punctuation marks or long pieces of text. Resulting probabilities correspond to classes: * 0: Not a paraphrase * 1: It's a paraphrase So, considering the phrase "se buscarán acuerdos" and a candidate paraphrase like "se deberá obtener el acuerdo", you can use the model like this: ``` import torch from transformers import AutoTokenizer, AutoModelForSequenceClassification tokenizer = AutoTokenizer.from_pretrained("Prompsit/paraphrase-roberta-es") model = AutoModelForSequenceClassification.from_pretrained("Prompsit/paraphrase-roberta-es") input = tokenizer('se buscarán acuerdos','se deberá obtener el acuerdo',return_tensors='pt') logits = model(**input).logits soft = torch.nn.Softmax(dim=1) print(soft(logits)) ``` Code output is: ``` tensor([[0.2266, 0.7734]], grad_fn=<SoftmaxBackward>) ``` As the probability of 1 (=It's a paraphrase) is 0.77 and the probability of 0 (=It is not a paraphrase) is 0.22, we can conclude, for our previous example, that "se deberá obtener el acuerdo" is a paraphrase of "se buscarán acuerdos". # Evaluation results We have used as test dataset 16500 pairs of phrases human tagged. Metrics obtained are: ``` metrics={ 'test_loss': 0.4869941473007202, 'test_accuracy': 0.8003636363636364, 'test_precision': 0.6692456479690522, 'test_recall': 0.5896889646357052, 'test_f1': 0.6269535673839184, 'test_matthews_correlation': 0.49324489316659575, 'test_runtime': 27.1537, 'test_samples_per_second': 607.652, 'test_steps_per_second': 19.003 } ```
PubChimps/dl-bert
b38ffe5d428543493d3636b57d67a6c929988ed1
2021-05-20T12:18:03.000Z
[ "pytorch", "jax", "roberta", "text-classification", "transformers" ]
text-classification
false
PubChimps
null
PubChimps/dl-bert
5
null
transformers
16,218
Entry not found
Pyke/1
668d19426d63b4648cac3c7995239814e2f991e0
2021-08-22T13:16:01.000Z
[ "pytorch", "bart", "feature-extraction", "transformers" ]
feature-extraction
false
Pyke
null
Pyke/1
5
null
transformers
16,219
Entry not found
Pyke/DS-config-22
2fae762ce010951fda69cc4b9ab2597380e9795a
2021-08-23T16:30:59.000Z
[ "pytorch", "bart", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
Pyke
null
Pyke/DS-config-22
5
null
transformers
16,220
Entry not found
RASMUS/wav2vec2-xlsr-fi-train-aug-lm-1B
5ae7d70afb956d960da5ad7597b175b1c88f60bf
2022-03-24T11:53:21.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "fi", "dataset:mozilla-foundation/common_voice_7_0", "transformers", "generated_from_trainer", "mozilla-foundation/common_voice_7_0", "audio", "speech", "robust-speech-event", "hf-asr-leaderboard", "model-index" ]
automatic-speech-recognition
false
RASMUS
null
RASMUS/wav2vec2-xlsr-fi-train-aug-lm-1B
5
null
transformers
16,221
--- language: fi datasets: - mozilla-foundation/common_voice_7_0 metrics: - wer - cer tags: - generated_from_trainer - mozilla-foundation/common_voice_7_0 - audio - automatic-speech-recognition - speech - robust-speech-event - hf-asr-leaderboard model-index: - name: XLS-R 1B Wav2Vec2 Finnish by Rasmus Toivanen results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 7 type: mozilla-foundation/common_voice_7_0 args: fi metrics: - name: Test WER type: wer value: 10.96 - name: Test CER type: cer value: 2.81 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-xlsr-fi-train-aug-lm-1B This model was trained from scratch on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1499 - Wer: 0.1955 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - num_epochs: 4 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.6473 | 0.29 | 400 | 0.2857 | 0.3825 | | 0.6039 | 0.58 | 800 | 0.2459 | 0.3476 | | 0.4757 | 0.87 | 1200 | 0.2338 | 0.3274 | | 0.4473 | 1.15 | 1600 | 0.2246 | 0.3128 | | 0.4322 | 1.44 | 2000 | 0.1962 | 0.2805 | | 0.3961 | 1.73 | 2400 | 0.2070 | 0.2797 | | 0.3642 | 2.02 | 2800 | 0.1790 | 0.2473 | | 0.3561 | 2.31 | 3200 | 0.1769 | 0.2375 | | 0.282 | 2.6 | 3600 | 0.1672 | 0.2263 | | 0.2978 | 2.89 | 4000 | 0.1636 | 0.2192 | | 0.2722 | 3.17 | 4400 | 0.1637 | 0.2102 | | 0.2924 | 3.46 | 4800 | 0.1506 | 0.2021 | | 0.2631 | 3.75 | 5200 | 0.1499 | 0.1955 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.17.1.dev0 - Tokenizers 0.11.0
REZERO/DialoGPT-medium-saitama
ecc66974f805ff1972819dfb72e56e8e00ac57c5
2021-09-13T17:55:24.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
REZERO
null
REZERO/DialoGPT-medium-saitama
5
null
transformers
16,222
--- tags: - conversational --- # Saitama DialoGPT Model
RameshArvind/roberta_long_answer_nq
35bb2707b720f4dd6e9b1abb74f3ac784b5d3fe8
2021-05-20T12:20:29.000Z
[ "pytorch", "jax", "roberta", "text-classification", "transformers" ]
text-classification
false
RameshArvind
null
RameshArvind/roberta_long_answer_nq
5
null
transformers
16,223
Entry not found
Raychanan/chinese-roberta-wwm-ext-FineTuned-Binary
4f36ebddd198b633f73fe6bb49b8b828779f3e77
2021-05-18T21:56:59.000Z
[ "pytorch", "jax", "bert", "text-classification", "transformers" ]
text-classification
false
Raychanan
null
Raychanan/chinese-roberta-wwm-ext-FineTuned-Binary
5
null
transformers
16,224
DO NOT USE THIS
Riad/finetuned-bert-mrpc
cd9ee0acb9406eac0439fb375f6b507ad3e9ed69
2021-09-15T12:45:15.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "dataset:glue", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
Riad
null
Riad/finetuned-bert-mrpc
5
null
transformers
16,225
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy - f1 model-index: - name: finetuned-bert-mrpc results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue args: mrpc metrics: - name: Accuracy type: accuracy value: 0.8676470588235294 - name: F1 type: f1 value: 0.9084745762711864 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuned-bert-mrpc This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.4382 - Accuracy: 0.8676 - F1: 0.9085 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.5454 | 1.0 | 230 | 0.4396 | 0.8309 | 0.8871 | | 0.3387 | 2.0 | 460 | 0.3783 | 0.8529 | 0.8976 | | 0.1956 | 3.0 | 690 | 0.4382 | 0.8676 | 0.9085 | ### Framework versions - Transformers 4.10.0 - Pytorch 1.9.0+cu102 - Datasets 1.11.0 - Tokenizers 0.10.3
Ritvik/nlp_model_mini
0a4db4ebf484175a19f5d530a9f24fe5a71c1a2d
2021-10-21T21:10:11.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
Ritvik
null
Ritvik/nlp_model_mini
5
null
transformers
16,226
Entry not found
RonnieTheCat/QG-System
fe4792c03a4265cfd81c58f155aa3b94e52af843
2021-08-31T15:58:31.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
RonnieTheCat
null
RonnieTheCat/QG-System
5
null
transformers
16,227
Entry not found
Ruizhou/bert-base-uncased-finetuned-mrpc
9b817487ca23af56207e0cdca7f1a86f50b87756
2021-10-03T07:50:03.000Z
[ "pytorch", "tensorboard", "bert", "text-classification", "transformers" ]
text-classification
false
Ruizhou
null
Ruizhou/bert-base-uncased-finetuned-mrpc
5
null
transformers
16,228
Entry not found
RuudVelo/wav2vec2-large-xls-r-300m-nl
e81607e997f53018ff6c5fe14356437ceafe1f32
2022-03-23T18:29:49.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "nl", "dataset:common_voice", "transformers", "common_voice", "generated_from_trainer", "hf-asr-leaderboard", "model_for_talk", "robust-speech-event", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
RuudVelo
null
RuudVelo/wav2vec2-large-xls-r-300m-nl
5
1
transformers
16,229
--- language: - nl license: apache-2.0 tags: - automatic-speech-recognition - common_voice - generated_from_trainer - hf-asr-leaderboard - model_for_talk - nl - robust-speech-event datasets: - common_voice model-index: - name: wav2vec2-large-xls-r-300m-nl results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: common_voice type: common_voice args: nl metrics: - name: Test WER type: wer value: 17.17 - name: Test CER type: cer value: 5.13 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: nl metrics: - name: Test WER type: wer value: 35.76 - name: Test CER type: cer value: 13.99 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: nl metrics: - name: Test WER type: wer value: 37.19 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-nl This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the test set: - Loss: 0.3923 - Wer: 0.1748 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7.5e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 1.5787 | 0.89 | 400 | 0.6354 | 0.5643 | | 0.3036 | 1.78 | 800 | 0.3690 | 0.3552 | | 0.188 | 2.67 | 1200 | 0.3239 | 0.2958 | | 0.1434 | 3.56 | 1600 | 0.3093 | 0.2515 | | 0.1245 | 4.44 | 2000 | 0.3024 | 0.2433 | | 0.1095 | 5.33 | 2400 | 0.3249 | 0.2643 | | 0.0979 | 6.22 | 2800 | 0.3191 | 0.2281 | | 0.0915 | 7.11 | 3200 | 0.3152 | 0.2216 | | 0.0829 | 8.0 | 3600 | 0.3419 | 0.2218 | | 0.0777 | 8.89 | 4000 | 0.3432 | 0.2132 | | 0.073 | 9.78 | 4400 | 0.3223 | 0.2131 | | 0.0688 | 10.67 | 4800 | 0.3094 | 0.2152 | | 0.0647 | 11.56 | 5200 | 0.3411 | 0.2152 | | 0.0639 | 12.44 | 5600 | 0.3762 | 0.2135 | | 0.0599 | 13.33 | 6000 | 0.3790 | 0.2137 | | 0.0572 | 14.22 | 6400 | 0.3693 | 0.2118 | | 0.0563 | 15.11 | 6800 | 0.3495 | 0.2139 | | 0.0521 | 16.0 | 7200 | 0.3800 | 0.2023 | | 0.0508 | 16.89 | 7600 | 0.3678 | 0.2033 | | 0.0513 | 17.78 | 8000 | 0.3845 | 0.1987 | | 0.0476 | 18.67 | 8400 | 0.3511 | 0.2037 | | 0.045 | 19.56 | 8800 | 0.3794 | 0.1994 | | 0.044 | 20.44 | 9200 | 0.3525 | 0.2050 | | 0.043 | 21.33 | 9600 | 0.4082 | 0.2007 | | 0.0409 | 22.22 | 10000 | 0.3866 | 0.2004 | | 0.0393 | 23.11 | 10400 | 0.3899 | 0.2008 | | 0.0382 | 24.0 | 10800 | 0.3626 | 0.1951 | | 0.039 | 24.89 | 11200 | 0.3936 | 0.1953 | | 0.0361 | 25.78 | 11600 | 0.4262 | 0.1928 | | 0.0362 | 26.67 | 12000 | 0.3796 | 0.1934 | | 0.033 | 27.56 | 12400 | 0.3616 | 0.1934 | | 0.0321 | 28.44 | 12800 | 0.3742 | 0.1933 | | 0.0325 | 29.33 | 13200 | 0.3582 | 0.1869 | | 0.0309 | 30.22 | 13600 | 0.3717 | 0.1874 | | 0.029 | 31.11 | 14000 | 0.3814 | 0.1894 | | 0.0296 | 32.0 | 14400 | 0.3698 | 0.1877 | | 0.0281 | 32.89 | 14800 | 0.3976 | 0.1899 | | 0.0275 | 33.78 | 15200 | 0.3854 | 0.1858 | | 0.0264 | 34.67 | 15600 | 0.4021 | 0.1889 | | 0.0261 | 35.56 | 16000 | 0.3850 | 0.1830 | | 0.0242 | 36.44 | 16400 | 0.4091 | 0.1878 | | 0.0245 | 37.33 | 16800 | 0.4012 | 0.1846 | | 0.0243 | 38.22 | 17200 | 0.3996 | 0.1833 | | 0.0223 | 39.11 | 17600 | 0.3962 | 0.1815 | | 0.0223 | 40.0 | 18000 | 0.3898 | 0.1832 | | 0.0219 | 40.89 | 18400 | 0.4019 | 0.1822 | | 0.0211 | 41.78 | 18800 | 0.4035 | 0.1809 | | 0.021 | 42.67 | 19200 | 0.3915 | 0.1826 | | 0.0208 | 43.56 | 19600 | 0.3934 | 0.1784 | | 0.0188 | 44.44 | 20000 | 0.3912 | 0.1787 | | 0.0195 | 45.33 | 20400 | 0.3989 | 0.1766 | | 0.0186 | 46.22 | 20800 | 0.3887 | 0.1773 | | 0.0188 | 47.11 | 21200 | 0.3982 | 0.1758 | | 0.0175 | 48.0 | 21600 | 0.3933 | 0.1755 | | 0.0172 | 48.89 | 22000 | 0.3921 | 0.1749 | | 0.0187 | 49.78 | 22400 | 0.3923 | 0.1748 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.17.1.dev0 - Tokenizers 0.11.0
SEBIS/code_trans_t5_base_code_comment_generation_java_multitask_finetune
be12bbcaac6d335ce826181a0913ab4ca4af2057
2021-06-23T04:08:25.000Z
[ "pytorch", "jax", "t5", "feature-extraction", "transformers", "summarization" ]
summarization
false
SEBIS
null
SEBIS/code_trans_t5_base_code_comment_generation_java_multitask_finetune
5
null
transformers
16,230
--- tags: - summarization widget: - text: "protected String renderUri ( URI uri ) { return uri . toASCIIString ( ) ; }" --- # CodeTrans model for code comment generation java Pretrained model on programming language java using the t5 base model architecture. It was first released in [this repository](https://github.com/agemagician/CodeTrans). This model is trained on tokenized java code functions: it works best with tokenized java functions. ## Model description This CodeTrans model is based on the `t5-base` model. It has its own SentencePiece vocabulary model. It used multi-task training on 13 supervised tasks in the software development domain and 7 unsupervised datasets. It is then fine-tuned on the code comment generation task for the java function/method. ## Intended uses & limitations The model could be used to generate the description for the java function or be fine-tuned on other java code tasks. It can be used on unparsed and untokenized java code. However, if the java code is tokenized, the performance should be better. ### How to use Here is how to use this model to generate java function documentation using Transformers SummarizationPipeline: ```python from transformers import AutoTokenizer, AutoModelWithLMHead, SummarizationPipeline pipeline = SummarizationPipeline( model=AutoModelWithLMHead.from_pretrained("SEBIS/code_trans_t5_base_code_comment_generation_java_multitask_finetune"), tokenizer=AutoTokenizer.from_pretrained("SEBIS/code_trans_t5_base_code_comment_generation_java_multitask_finetune", skip_special_tokens=True), device=0 ) tokenized_code = "protected String renderUri ( URI uri ) { return uri . toASCIIString ( ) ; }" pipeline([tokenized_code]) ``` Run this example in [colab notebook](https://github.com/agemagician/CodeTrans/blob/main/prediction/multitask/fine-tuning/code%20comment%20generation/base_model.ipynb). ## Training data The supervised training tasks datasets can be downloaded on [Link](https://www.dropbox.com/sh/488bq2of10r4wvw/AACs5CGIQuwtsD7j_Ls_JAORa/finetuning_dataset?dl=0&subfolder_nav_tracking=1) ## Training procedure ### Multi-task Pretraining The model was trained on a single TPU Pod V3-8 for 260,000 steps in total, using sequence length 512 (batch size 4096). It has a total of approximately 220M parameters and was trained using the encoder-decoder architecture. The optimizer used is AdaFactor with inverse square root learning rate schedule for pre-training. ### Fine-tuning This model was then fine-tuned on a single TPU Pod V2-8 for 60,000 steps in total, using sequence length 512 (batch size 256), using only the dataset only containing java code. ## Evaluation results For the code documentation tasks, different models achieves the following results on different programming languages (in BLEU score): Test results : | Language / Model | Java | | -------------------- | :------------: | | CodeTrans-ST-Small | 37.98 | | CodeTrans-ST-Base | 38.07 | | CodeTrans-TF-Small | 38.56 | | CodeTrans-TF-Base | 39.06 | | CodeTrans-TF-Large | **39.50** | | CodeTrans-MT-Small | 20.15 | | CodeTrans-MT-Base | 27.44 | | CodeTrans-MT-Large | 34.69 | | CodeTrans-MT-TF-Small | 38.37 | | CodeTrans-MT-TF-Base | 38.90 | | CodeTrans-MT-TF-Large | 39.25 | | State of the art | 38.17 | > Created by [Ahmed Elnaggar](https://twitter.com/Elnaggar_AI) | [LinkedIn](https://www.linkedin.com/in/prof-ahmed-elnaggar/) and Wei Ding | [LinkedIn](https://www.linkedin.com/in/wei-ding-92561270/)
SEBIS/code_trans_t5_base_code_documentation_generation_php_multitask
d6a07bcb4ea7fcb52482821774b9fb835da3860c
2021-06-23T04:36:53.000Z
[ "pytorch", "jax", "t5", "feature-extraction", "transformers", "summarization" ]
summarization
false
SEBIS
null
SEBIS/code_trans_t5_base_code_documentation_generation_php_multitask
5
null
transformers
16,231
--- tags: - summarization widget: - text: "public static function update ( $ table ) { if ( ! is_array ( $ table ) ) { $ table = json_decode ( $ table , true ) ; } if ( ! SchemaManager :: tableExists ( $ table [ 'oldName' ] ) ) { throw SchemaException :: tableDoesNotExist ( $ table [ 'oldName' ] ) ; } $ updater = new self ( $ table ) ; $ updater -> updateTable ( ) ; }" --- # CodeTrans model for code documentation generation php Pretrained model on programming language php using the t5 base model architecture. It was first released in [this repository](https://github.com/agemagician/CodeTrans). This model is trained on tokenized php code functions: it works best with tokenized php functions. ## Model description This CodeTrans model is based on the `t5-base` model. It has its own SentencePiece vocabulary model. It used multi-task training on 13 supervised tasks in the software development domain and 7 unsupervised datasets. ## Intended uses & limitations The model could be used to generate the description for the php function or be fine-tuned on other php code tasks. It can be used on unparsed and untokenized php code. However, if the php code is tokenized, the performance should be better. ### How to use Here is how to use this model to generate php function documentation using Transformers SummarizationPipeline: ```python from transformers import AutoTokenizer, AutoModelWithLMHead, SummarizationPipeline pipeline = SummarizationPipeline( model=AutoModelWithLMHead.from_pretrained("SEBIS/code_trans_t5_base_code_documentation_generation_php_multitask"), tokenizer=AutoTokenizer.from_pretrained("SEBIS/code_trans_t5_base_code_documentation_generation_php_multitask", skip_special_tokens=True), device=0 ) tokenized_code = "public static function update ( $ table ) { if ( ! is_array ( $ table ) ) { $ table = json_decode ( $ table , true ) ; } if ( ! SchemaManager :: tableExists ( $ table [ 'oldName' ] ) ) { throw SchemaException :: tableDoesNotExist ( $ table [ 'oldName' ] ) ; } $ updater = new self ( $ table ) ; $ updater -> updateTable ( ) ; }" pipeline([tokenized_code]) ``` Run this example in [colab notebook](https://github.com/agemagician/CodeTrans/blob/main/prediction/multitask/pre-training/function%20documentation%20generation/php/base_model.ipynb). ## Training data The supervised training tasks datasets can be downloaded on [Link](https://www.dropbox.com/sh/488bq2of10r4wvw/AACs5CGIQuwtsD7j_Ls_JAORa/finetuning_dataset?dl=0&subfolder_nav_tracking=1) ## Training procedure ### Multi-task Pretraining The model was trained on a single TPU Pod V3-8 for 360,000 steps in total, using sequence length 512 (batch size 4096). It has a total of approximately 220M parameters and was trained using the encoder-decoder architecture. The optimizer used is AdaFactor with inverse square root learning rate schedule for pre-training. Test results : | Language / Model | Python | Java | Go | Php | Ruby | JavaScript | | -------------------- | :------------: | :------------: | :------------: | :------------: | :------------: | :------------: | | CodeTrans-ST-Small | 17.31 | 16.65 | 16.89 | 23.05 | 9.19 | 13.7 | | CodeTrans-ST-Base | 16.86 | 17.17 | 17.16 | 22.98 | 8.23 | 13.17 | | CodeTrans-TF-Small | 19.93 | 19.48 | 18.88 | 25.35 | 13.15 | 17.23 | | CodeTrans-TF-Base | 20.26 | 20.19 | 19.50 | 25.84 | 14.07 | 18.25 | | CodeTrans-TF-Large | 20.35 | 20.06 | **19.54** | 26.18 | 14.94 | **18.98** | | CodeTrans-MT-Small | 19.64 | 19.00 | 19.15 | 24.68 | 14.91 | 15.26 | | CodeTrans-MT-Base | **20.39** | 21.22 | 19.43 | **26.23** | **15.26** | 16.11 | | CodeTrans-MT-Large | 20.18 | **21.87** | 19.38 | 26.08 | 15.00 | 16.23 | | CodeTrans-MT-TF-Small | 19.77 | 20.04 | 19.36 | 25.55 | 13.70 | 17.24 | | CodeTrans-MT-TF-Base | 19.77 | 21.12 | 18.86 | 25.79 | 14.24 | 18.62 | | CodeTrans-MT-TF-Large | 18.94 | 21.42 | 18.77 | 26.20 | 14.19 | 18.83 | | State of the art | 19.06 | 17.65 | 18.07 | 25.16 | 12.16 | 14.90 | > Created by [Ahmed Elnaggar](https://twitter.com/Elnaggar_AI) | [LinkedIn](https://www.linkedin.com/in/prof-ahmed-elnaggar/) and Wei Ding | [LinkedIn](https://www.linkedin.com/in/wei-ding-92561270/)
SEBIS/code_trans_t5_base_code_documentation_generation_ruby_transfer_learning_finetune
7a01c81ba90047da6cefbb705325cc63221453bb
2021-06-23T04:55:29.000Z
[ "pytorch", "jax", "t5", "feature-extraction", "transformers", "summarization" ]
summarization
false
SEBIS
null
SEBIS/code_trans_t5_base_code_documentation_generation_ruby_transfer_learning_finetune
5
null
transformers
16,232
--- tags: - summarization widget: - text: "def add ( severity , progname , & block ) return true if io . nil? || severity < level message = format_message ( severity , progname , yield ) MUTEX . synchronize { io . write ( message ) } true end" --- # CodeTrans model for code documentation generation ruby Pretrained model on programming language ruby using the t5 base model architecture. It was first released in [this repository](https://github.com/agemagician/CodeTrans). This model is trained on tokenized ruby code functions: it works best with tokenized ruby functions. ## Model description This CodeTrans model is based on the `t5-base` model. It has its own SentencePiece vocabulary model. It used transfer-learning pre-training on 7 unsupervised datasets in the software development domain. It is then fine-tuned on the code documentation generation task for the ruby function/method. ## Intended uses & limitations The model could be used to generate the description for the ruby function or be fine-tuned on other ruby code tasks. It can be used on unparsed and untokenized ruby code. However, if the ruby code is tokenized, the performance should be better. ### How to use Here is how to use this model to generate ruby function documentation using Transformers SummarizationPipeline: ```python from transformers import AutoTokenizer, AutoModelWithLMHead, SummarizationPipeline pipeline = SummarizationPipeline( model=AutoModelWithLMHead.from_pretrained("SEBIS/code_trans_t5_base_code_documentation_generation_ruby_transfer_learning_finetune"), tokenizer=AutoTokenizer.from_pretrained("SEBIS/code_trans_t5_base_code_documentation_generation_ruby_transfer_learning_finetune", skip_special_tokens=True), device=0 ) tokenized_code = "def add ( severity , progname , & block ) return true if io . nil? || severity < level message = format_message ( severity , progname , yield ) MUTEX . synchronize { io . write ( message ) } true end" pipeline([tokenized_code]) ``` Run this example in [colab notebook](https://github.com/agemagician/CodeTrans/blob/main/prediction/transfer%20learning%20fine-tuning/function%20documentation%20generation/ruby/base_model.ipynb). ## Training data The supervised training tasks datasets can be downloaded on [Link](https://www.dropbox.com/sh/488bq2of10r4wvw/AACs5CGIQuwtsD7j_Ls_JAORa/finetuning_dataset?dl=0&subfolder_nav_tracking=1) ## Training procedure ### Transfer-learning Pretraining The model was trained on a single TPU Pod V3-8 for half million steps in total, using sequence length 512 (batch size 4096). It has a total of approximately 220M parameters and was trained using the encoder-decoder architecture. The optimizer used is AdaFactor with inverse square root learning rate schedule for pre-training. ### Fine-tuning This model was then fine-tuned on a single TPU Pod V2-8 for 5000 steps in total, using sequence length 512 (batch size 256), using only the dataset only containing ruby code. ## Evaluation results For the code documentation tasks, different models achieves the following results on different programming languages (in BLEU score): Test results : | Language / Model | Python | Java | Go | Php | Ruby | JavaScript | | -------------------- | :------------: | :------------: | :------------: | :------------: | :------------: | :------------: | | CodeTrans-ST-Small | 17.31 | 16.65 | 16.89 | 23.05 | 9.19 | 13.7 | | CodeTrans-ST-Base | 16.86 | 17.17 | 17.16 | 22.98 | 8.23 | 13.17 | | CodeTrans-TF-Small | 19.93 | 19.48 | 18.88 | 25.35 | 13.15 | 17.23 | | CodeTrans-TF-Base | 20.26 | 20.19 | 19.50 | 25.84 | 14.07 | 18.25 | | CodeTrans-TF-Large | 20.35 | 20.06 | **19.54** | 26.18 | 14.94 | **18.98** | | CodeTrans-MT-Small | 19.64 | 19.00 | 19.15 | 24.68 | 14.91 | 15.26 | | CodeTrans-MT-Base | **20.39** | 21.22 | 19.43 | **26.23** | **15.26** | 16.11 | | CodeTrans-MT-Large | 20.18 | **21.87** | 19.38 | 26.08 | 15.00 | 16.23 | | CodeTrans-MT-TF-Small | 19.77 | 20.04 | 19.36 | 25.55 | 13.70 | 17.24 | | CodeTrans-MT-TF-Base | 19.77 | 21.12 | 18.86 | 25.79 | 14.24 | 18.62 | | CodeTrans-MT-TF-Large | 18.94 | 21.42 | 18.77 | 26.20 | 14.19 | 18.83 | | State of the art | 19.06 | 17.65 | 18.07 | 25.16 | 12.16 | 14.90 | > Created by [Ahmed Elnaggar](https://twitter.com/Elnaggar_AI) | [LinkedIn](https://www.linkedin.com/in/prof-ahmed-elnaggar/) and Wei Ding | [LinkedIn](https://www.linkedin.com/in/wei-ding-92561270/)
SEBIS/code_trans_t5_base_program_synthese_multitask
b5baf27b3497355bd3f24c9fd08ba4c9f051e520
2021-06-23T05:07:00.000Z
[ "pytorch", "jax", "t5", "feature-extraction", "transformers", "summarization" ]
summarization
false
SEBIS
null
SEBIS/code_trans_t5_base_program_synthese_multitask
5
null
transformers
16,233
--- tags: - summarization widget: - text: "you are given an array of numbers a and a number b , compute the difference of elements in a and b" --- # CodeTrans model for program synthesis Pretrained model on programming language lisp inspired DSL using the t5 base model architecture. It was first released in [this repository](https://github.com/agemagician/CodeTrans). ## Model description This CodeTrans model is based on the `t5-base` model. It has its own SentencePiece vocabulary model. It used multi-task training on 13 supervised tasks in the software development domain and 7 unsupervised datasets. ## Intended uses & limitations The model could be used to generate lisp inspired DSL code given the human language description tasks. ### How to use Here is how to use this model to generate lisp inspired DSL code using Transformers SummarizationPipeline: ```python from transformers import AutoTokenizer, AutoModelWithLMHead, SummarizationPipeline pipeline = SummarizationPipeline( model=AutoModelWithLMHead.from_pretrained("SEBIS/code_trans_t5_base_program_synthese_multitask"), tokenizer=AutoTokenizer.from_pretrained("SEBIS/code_trans_t5_base_program_synthese_multitask", skip_special_tokens=True), device=0 ) tokenized_code = "you are given an array of numbers a and a number b , compute the difference of elements in a and b" pipeline([tokenized_code]) ``` Run this example in [colab notebook](https://github.com/agemagician/CodeTrans/blob/main/prediction/multitask/pre-training/program%20synthesis/base_model.ipynb). ## Training data The supervised training tasks datasets can be downloaded on [Link](https://www.dropbox.com/sh/488bq2of10r4wvw/AACs5CGIQuwtsD7j_Ls_JAORa/finetuning_dataset?dl=0&subfolder_nav_tracking=1) ## Training procedure ### Multi-task Pretraining The model was trained on a single TPU Pod V3-8 for 360,000 steps in total, using sequence length 512 (batch size 4096). It has a total of approximately 220M parameters and was trained using the encoder-decoder architecture. The optimizer used is AdaFactor with inverse square root learning rate schedule for pre-training. ## Evaluation results For the code documentation tasks, different models achieves the following results on different programming languages (in BLEU score): Test results : | Language / Model | LISP | | -------------------- | :------------: | | CodeTrans-ST-Small | 89.43 | | CodeTrans-ST-Base | 89.65 | | CodeTrans-TF-Small | 90.30 | | CodeTrans-TF-Base | 90.24 | | CodeTrans-TF-Large | 90.21 | | CodeTrans-MT-Small | 82.88 | | CodeTrans-MT-Base | 86.99 | | CodeTrans-MT-Large | 90.27 | | CodeTrans-MT-TF-Small | **90.31** | | CodeTrans-MT-TF-Base | 90.30 | | CodeTrans-MT-TF-Large | 90.17 | | State of the art | 85.80 | > Created by [Ahmed Elnaggar](https://twitter.com/Elnaggar_AI) | [LinkedIn](https://www.linkedin.com/in/prof-ahmed-elnaggar/) and Wei Ding | [LinkedIn](https://www.linkedin.com/in/wei-ding-92561270/)
SEBIS/code_trans_t5_base_source_code_summarization_sql_multitask_finetune
8199a3a938e68ec5c2a5275fe67343c0e26c412d
2021-06-23T05:32:32.000Z
[ "pytorch", "jax", "t5", "feature-extraction", "transformers", "summarization" ]
summarization
false
SEBIS
null
SEBIS/code_trans_t5_base_source_code_summarization_sql_multitask_finetune
5
null
transformers
16,234
--- tags: - summarization widget: - text: "select time ( col0 ) from tab0" --- # CodeTrans model for source code summarization sql Pretrained model on programming language sql using the t5 base model architecture. It was first released in [this repository](https://github.com/agemagician/CodeTrans). This model is trained on tokenized sql code functions: it works best with tokenized sql functions. ## Model description This CodeTrans model is based on the `t5-base` model. It has its own SentencePiece vocabulary model. It used multi-task training on 13 supervised tasks in the software development domain and 7 unsupervised datasets. It is then fine-tuned on the source code summarization task for the sql code snippets. ## Intended uses & limitations The model could be used to generate the description for the sql function or be fine-tuned on other sql code tasks. It can be used on unparsed and untokenized sql code. However, if the sql code is tokenized, the performance should be better. ### How to use Here is how to use this model to generate sql function documentation using Transformers SummarizationPipeline: ```python from transformers import AutoTokenizer, AutoModelWithLMHead, SummarizationPipeline pipeline = SummarizationPipeline( model=AutoModelWithLMHead.from_pretrained("SEBIS/code_trans_t5_base_source_code_summarization_sql_multitask_finetune"), tokenizer=AutoTokenizer.from_pretrained("SEBIS/code_trans_t5_base_source_code_summarization_sql_multitask_finetune", skip_special_tokens=True), device=0 ) tokenized_code = "select time ( col0 ) from tab0" pipeline([tokenized_code]) ``` Run this example in [colab notebook](https://github.com/agemagician/CodeTrans/blob/main/prediction/multitask/fine-tuning/source%20code%20summarization/sql/base_model.ipynb). ## Training data The supervised training tasks datasets can be downloaded on [Link](https://www.dropbox.com/sh/488bq2of10r4wvw/AACs5CGIQuwtsD7j_Ls_JAORa/finetuning_dataset?dl=0&subfolder_nav_tracking=1) ## Training procedure ### Multi-task Pretraining The model was trained on a single TPU Pod V3-8 for 500,000 steps in total, using sequence length 512 (batch size 4096). It has a total of approximately 220M parameters and was trained using the encoder-decoder architecture. The optimizer used is AdaFactor with inverse square root learning rate schedule for pre-training. ### Fine-tuning This model was then fine-tuned on a single TPU Pod V2-8 for 500 steps in total, using sequence length 512 (batch size 256), using only the dataset only containing sql code. ## Evaluation results For the source code summarization tasks, different models achieves the following results on different programming languages (in BLEU score): Test results : | Language / Model | Python | SQL | C# | | -------------------- | :------------: | :------------: | :------------: | | CodeTrans-ST-Small | 8.45 | 17.55 | 19.74 | | CodeTrans-ST-Base | 9.12 | 15.00 | 18.65 | | CodeTrans-TF-Small | 10.06 | 17.71 | 20.40 | | CodeTrans-TF-Base | 10.94 | 17.66 | 21.12 | | CodeTrans-TF-Large | 12.41 | 18.40 | 21.43 | | CodeTrans-MT-Small | 13.11 | 19.15 | 22.39 | | CodeTrans-MT-Base | **13.37** | 19.24 | 23.20 | | CodeTrans-MT-Large | 13.24 | 19.40 | **23.57** | | CodeTrans-MT-TF-Small | 12.10 | 18.25 | 22.03 | | CodeTrans-MT-TF-Base | 10.64 | 16.91 | 21.40 | | CodeTrans-MT-TF-Large | 12.14 | **19.98** | 21.10 | | CODE-NN | -- | 18.40 | 20.50 | > Created by [Ahmed Elnaggar](https://twitter.com/Elnaggar_AI) | [LinkedIn](https://www.linkedin.com/in/prof-ahmed-elnaggar/) and Wei Ding | [LinkedIn](https://www.linkedin.com/in/wei-ding-92561270/)
SEBIS/code_trans_t5_base_transfer_learning_pretrain
d8def2832ca81ee62e0168f14ca81bf6e31220e8
2021-06-23T05:35:59.000Z
[ "pytorch", "jax", "t5", "feature-extraction", "transformers" ]
feature-extraction
false
SEBIS
null
SEBIS/code_trans_t5_base_transfer_learning_pretrain
5
null
transformers
16,235
# CodeTrans transfer learning pre-trained model Pretrained model on programming languages using the t5 base model architecture. It was first released in [this repository](https://github.com/agemagician/CodeTrans). ## Model description This CodeTrans model is based on the `t5-base` model. It has its own SentencePiece vocabulary model. It used transfer-learning pre-training on 7 unsupervised datasets in the software development domain. The model was trained on a single TPU Pod V3-8 for half million steps in total, using sequence length 512 (batch size 4096). It has a total of approximately 220M parameters and was trained using the encoder-decoder architecture. The optimizer used is AdaFactor with inverse square root learning rate schedule for pre-training. It could be used to fine-tune other tasks in the software development domain. > Created by [Ahmed Elnaggar](https://twitter.com/Elnaggar_AI) | [LinkedIn](https://www.linkedin.com/in/prof-ahmed-elnaggar/) and Wei Ding | [LinkedIn](https://www.linkedin.com/in/wei-ding-92561270/)
SEBIS/code_trans_t5_large_code_documentation_generation_php_transfer_learning_finetune
010079372166f91ee5fc7aae8865cc31fc81b8c1
2021-06-23T07:27:48.000Z
[ "pytorch", "jax", "t5", "feature-extraction", "transformers", "summarization" ]
summarization
false
SEBIS
null
SEBIS/code_trans_t5_large_code_documentation_generation_php_transfer_learning_finetune
5
null
transformers
16,236
--- tags: - summarization widget: - text: "public static function update ( $ table ) { if ( ! is_array ( $ table ) ) { $ table = json_decode ( $ table , true ) ; } if ( ! SchemaManager :: tableExists ( $ table [ 'oldName' ] ) ) { throw SchemaException :: tableDoesNotExist ( $ table [ 'oldName' ] ) ; } $ updater = new self ( $ table ) ; $ updater -> updateTable ( ) ; }" --- # CodeTrans model for code documentation generation php Pretrained model on programming language php using the t5 large model architecture. It was first released in [this repository](https://github.com/agemagician/CodeTrans). This model is trained on tokenized php code functions: it works best with tokenized php functions. ## Model description This CodeTrans model is based on the `t5-large` model. It has its own SentencePiece vocabulary model. It used transfer-learning pre-training on 7 unsupervised datasets in the software development domain. It is then fine-tuned on the code documentation generation task for the php function/method. ## Intended uses & limitations The model could be used to generate the description for the php function or be fine-tuned on other php code tasks. It can be used on unparsed and untokenized php code. However, if the php code is tokenized, the performance should be better. ### How to use Here is how to use this model to generate php function documentation using Transformers SummarizationPipeline: ```python from transformers import AutoTokenizer, AutoModelWithLMHead, SummarizationPipeline pipeline = SummarizationPipeline( model=AutoModelWithLMHead.from_pretrained("SEBIS/code_trans_t5_large_code_documentation_generation_php_transfer_learning_finetune"), tokenizer=AutoTokenizer.from_pretrained("SEBIS/code_trans_t5_large_code_documentation_generation_php_transfer_learning_finetune", skip_special_tokens=True), device=0 ) tokenized_code = "public static function update ( $ table ) { if ( ! is_array ( $ table ) ) { $ table = json_decode ( $ table , true ) ; } if ( ! SchemaManager :: tableExists ( $ table [ 'oldName' ] ) ) { throw SchemaException :: tableDoesNotExist ( $ table [ 'oldName' ] ) ; } $ updater = new self ( $ table ) ; $ updater -> updateTable ( ) ; }" pipeline([tokenized_code]) ``` Run this example in [colab notebook](https://github.com/agemagician/CodeTrans/blob/main/prediction/transfer%20learning%20fine-tuning/function%20documentation%20generation/php/large_model.ipynb). ## Training data The supervised training tasks datasets can be downloaded on [Link](https://www.dropbox.com/sh/488bq2of10r4wvw/AACs5CGIQuwtsD7j_Ls_JAORa/finetuning_dataset?dl=0&subfolder_nav_tracking=1) ## Training procedure ### Transfer-learning Pretraining The model was trained on a single TPU Pod V3-8 for 240,000 steps in total, using sequence length 512 (batch size 4096). It has a total of approximately 220M parameters and was trained using the encoder-decoder architecture. The optimizer used is AdaFactor with inverse square root learning rate schedule for pre-training. ### Fine-tuning This model was then fine-tuned on a single TPU Pod V2-8 for 18,000 steps in total, using sequence length 512 (batch size 256), using only the dataset only containing php code. ## Evaluation results For the code documentation tasks, different models achieves the following results on different programming languages (in BLEU score): Test results : | Language / Model | Python | Java | Go | Php | Ruby | JavaScript | | -------------------- | :------------: | :------------: | :------------: | :------------: | :------------: | :------------: | | CodeTrans-ST-Small | 17.31 | 16.65 | 16.89 | 23.05 | 9.19 | 13.7 | | CodeTrans-ST-Base | 16.86 | 17.17 | 17.16 | 22.98 | 8.23 | 13.17 | | CodeTrans-TF-Small | 19.93 | 19.48 | 18.88 | 25.35 | 13.15 | 17.23 | | CodeTrans-TF-Base | 20.26 | 20.19 | 19.50 | 25.84 | 14.07 | 18.25 | | CodeTrans-TF-Large | 20.35 | 20.06 | **19.54** | 26.18 | 14.94 | **18.98** | | CodeTrans-MT-Small | 19.64 | 19.00 | 19.15 | 24.68 | 14.91 | 15.26 | | CodeTrans-MT-Base | **20.39** | 21.22 | 19.43 | **26.23** | **15.26** | 16.11 | | CodeTrans-MT-Large | 20.18 | **21.87** | 19.38 | 26.08 | 15.00 | 16.23 | | CodeTrans-MT-TF-Small | 19.77 | 20.04 | 19.36 | 25.55 | 13.70 | 17.24 | | CodeTrans-MT-TF-Base | 19.77 | 21.12 | 18.86 | 25.79 | 14.24 | 18.62 | | CodeTrans-MT-TF-Large | 18.94 | 21.42 | 18.77 | 26.20 | 14.19 | 18.83 | | State of the art | 19.06 | 17.65 | 18.07 | 25.16 | 12.16 | 14.90 | > Created by [Ahmed Elnaggar](https://twitter.com/Elnaggar_AI) | [LinkedIn](https://www.linkedin.com/in/prof-ahmed-elnaggar/) and Wei Ding | [LinkedIn](https://www.linkedin.com/in/wei-ding-92561270/)
SEBIS/code_trans_t5_large_source_code_summarization_sql_multitask_finetune
e9ee9476df92c0b68d707d8039f69ac21c6057c0
2021-06-23T09:43:47.000Z
[ "pytorch", "jax", "t5", "feature-extraction", "transformers", "summarization" ]
summarization
false
SEBIS
null
SEBIS/code_trans_t5_large_source_code_summarization_sql_multitask_finetune
5
null
transformers
16,237
--- tags: - summarization widget: - text: "select time ( col0 ) from tab0" --- # CodeTrans model for source code summarization sql Pretrained model on programming language sql using the t5 large model architecture. It was first released in [this repository](https://github.com/agemagician/CodeTrans). This model is trained on tokenized sql code functions: it works best with tokenized sql functions. ## Model description This CodeTrans model is based on the `t5-large` model. It has its own SentencePiece vocabulary model. It used multi-task training on 13 supervised tasks in the software development domain and 7 unsupervised datasets. It is then fine-tuned on the source code summarization task for the sql code snippets. ## Intended uses & limitations The model could be used to generate the description for the sql function or be fine-tuned on other sql code tasks. It can be used on unparsed and untokenized sql code. However, if the sql code is tokenized, the performance should be better. ### How to use Here is how to use this model to generate sql function documentation using Transformers SummarizationPipeline: ```python from transformers import AutoTokenizer, AutoModelWithLMHead, SummarizationPipeline pipeline = SummarizationPipeline( model=AutoModelWithLMHead.from_pretrained("SEBIS/code_trans_t5_large_source_code_summarization_sql_multitask_finetune"), tokenizer=AutoTokenizer.from_pretrained("SEBIS/code_trans_t5_large_source_code_summarization_sql_multitask_finetune", skip_special_tokens=True), device=0 ) tokenized_code = "select time ( col0 ) from tab0" pipeline([tokenized_code]) ``` Run this example in [colab notebook](https://github.com/agemagician/CodeTrans/blob/main/prediction/multitask/fine-tuning/source%20code%20summarization/sql/large_model.ipynb). ## Training data The supervised training tasks datasets can be downloaded on [Link](https://www.dropbox.com/sh/488bq2of10r4wvw/AACs5CGIQuwtsD7j_Ls_JAORa/finetuning_dataset?dl=0&subfolder_nav_tracking=1) ## Training procedure ### Multi-task Pretraining The model was trained on a single TPU Pod V3-8 for 260,000 steps in total, using sequence length 512 (batch size 4096). It has a total of approximately 220M parameters and was trained using the encoder-decoder architecture. The optimizer used is AdaFactor with inverse square root learning rate schedule for pre-training. ### Fine-tuning This model was then fine-tuned on a single TPU Pod V2-8 for 100 steps in total, using sequence length 512 (batch size 256), using only the dataset only containing sql code. ## Evaluation results For the source code summarization tasks, different models achieves the following results on different programming languages (in BLEU score): Test results : | Language / Model | Python | SQL | C# | | -------------------- | :------------: | :------------: | :------------: | | CodeTrans-ST-Small | 8.45 | 17.55 | 19.74 | | CodeTrans-ST-Base | 9.12 | 15.00 | 18.65 | | CodeTrans-TF-Small | 10.06 | 17.71 | 20.40 | | CodeTrans-TF-Base | 10.94 | 17.66 | 21.12 | | CodeTrans-TF-Large | 12.41 | 18.40 | 21.43 | | CodeTrans-MT-Small | 13.11 | 19.15 | 22.39 | | CodeTrans-MT-Base | **13.37** | 19.24 | 23.20 | | CodeTrans-MT-Large | 13.24 | 19.40 | **23.57** | | CodeTrans-MT-TF-Small | 12.10 | 18.25 | 22.03 | | CodeTrans-MT-TF-Base | 10.64 | 16.91 | 21.40 | | CodeTrans-MT-TF-Large | 12.14 | **19.98** | 21.10 | | CODE-NN | -- | 18.40 | 20.50 | > Created by [Ahmed Elnaggar](https://twitter.com/Elnaggar_AI) | [LinkedIn](https://www.linkedin.com/in/prof-ahmed-elnaggar/) and Wei Ding | [LinkedIn](https://www.linkedin.com/in/wei-ding-92561270/)
SEBIS/code_trans_t5_large_source_code_summarization_sql_transfer_learning_finetune
3c68c4338e86e6d91ca4450d045ed7499a0d9f6b
2021-06-23T09:49:31.000Z
[ "pytorch", "t5", "feature-extraction", "transformers", "summarization" ]
summarization
false
SEBIS
null
SEBIS/code_trans_t5_large_source_code_summarization_sql_transfer_learning_finetune
5
null
transformers
16,238
--- tags: - summarization widget: - text: "select time ( col0 ) from tab0" --- # CodeTrans model for source code summarization sql Pretrained model on programming language sql using the t5 large model architecture. It was first released in [this repository](https://github.com/agemagician/CodeTrans). This model is trained on tokenized sql code functions: it works best with tokenized sql functions. ## Model description This CodeTrans model is based on the `t5-large` model. It has its own SentencePiece vocabulary model. It used transfer-learning pre-training on 7 unsupervised datasets in the software development domain. It is then fine-tuned on the source code summarization task for the sql code snippets. ## Intended uses & limitations The model could be used to generate the description for the sql function or be fine-tuned on other sql code tasks. It can be used on unparsed and untokenized sql code. However, if the sql code is tokenized, the performance should be better. ### How to use Here is how to use this model to generate sql function documentation using Transformers SummarizationPipeline: ```python from transformers import AutoTokenizer, AutoModelWithLMHead, SummarizationPipeline pipeline = SummarizationPipeline( model=AutoModelWithLMHead.from_pretrained("SEBIS/code_trans_t5_large_source_code_summarization_sql_transfer_learning_finetune"), tokenizer=AutoTokenizer.from_pretrained("SEBIS/code_trans_t5_large_source_code_summarization_sql_transfer_learning_finetune", skip_special_tokens=True), device=0 ) tokenized_code = "select time ( col0 ) from tab0" pipeline([tokenized_code]) ``` Run this example in [colab notebook](https://github.com/agemagician/CodeTrans/blob/main/prediction/transfer%20learning%20fine-tuning/source%20code%20summarization/sql/large_model.ipynb). ## Training data The supervised training tasks datasets can be downloaded on [Link](https://www.dropbox.com/sh/488bq2of10r4wvw/AACs5CGIQuwtsD7j_Ls_JAORa/finetuning_dataset?dl=0&subfolder_nav_tracking=1) ## Training procedure ### Transfer-learning Pretraining The model was trained on a single TPU Pod V3-8 for 240,000 steps in total, using sequence length 512 (batch size 4096). It has a total of approximately 220M parameters and was trained using the encoder-decoder architecture. The optimizer used is AdaFactor with inverse square root learning rate schedule for pre-training. ### Fine-tuning This model was then fine-tuned on a single TPU Pod V2-8 for 200 steps in total, using sequence length 512 (batch size 256), using only the dataset only containing sql code. ## Evaluation results For the source code summarization tasks, different models achieves the following results on different programming languages (in BLEU score): Test results : | Language / Model | Python | SQL | C# | | -------------------- | :------------: | :------------: | :------------: | | CodeTrans-ST-Small | 8.45 | 17.55 | 19.74 | | CodeTrans-ST-Base | 9.12 | 15.00 | 18.65 | | CodeTrans-TF-Small | 10.06 | 17.71 | 20.40 | | CodeTrans-TF-Base | 10.94 | 17.66 | 21.12 | | CodeTrans-TF-Large | 12.41 | 18.40 | 21.43 | | CodeTrans-MT-Small | 13.11 | 19.15 | 22.39 | | CodeTrans-MT-Base | **13.37** | 19.24 | 23.20 | | CodeTrans-MT-Large | 13.24 | 19.40 | **23.57** | | CodeTrans-MT-TF-Small | 12.10 | 18.25 | 22.03 | | CodeTrans-MT-TF-Base | 10.64 | 16.91 | 21.40 | | CodeTrans-MT-TF-Large | 12.14 | **19.98** | 21.10 | | CODE-NN | -- | 18.40 | 20.50 | > Created by [Ahmed Elnaggar](https://twitter.com/Elnaggar_AI) | [LinkedIn](https://www.linkedin.com/in/prof-ahmed-elnaggar/) and Wei Ding | [LinkedIn](https://www.linkedin.com/in/wei-ding-92561270/)
SEBIS/code_trans_t5_small_code_documentation_generation_javascript_multitask
1ab70cdf3efc16e54a491633342ae90121d885d4
2021-06-23T10:04:56.000Z
[ "pytorch", "jax", "t5", "feature-extraction", "transformers", "summarization" ]
summarization
false
SEBIS
null
SEBIS/code_trans_t5_small_code_documentation_generation_javascript_multitask
5
null
transformers
16,239
--- tags: - summarization widget: - text: "function isStandardBrowserEnv ( ) { if ( typeof navigator !== 'undefined' && ( navigator . product === 'ReactNative' || navigator . product === 'NativeScript' || navigator . product === 'NS' ) ) { return false ; } return ( typeof window !== 'undefined' && typeof document !== 'undefined' ) ; }" --- # CodeTrans model for code documentation generation javascript Pretrained model on programming language javascript using the t5 small model architecture. It was first released in [this repository](https://github.com/agemagician/CodeTrans). This model is trained on tokenized javascript code functions: it works best with tokenized javascript functions. ## Model description This CodeTrans model is based on the `t5-small` model. It has its own SentencePiece vocabulary model. It used multi-task training on 13 supervised tasks in the software development domain and 7 unsupervised datasets. ## Intended uses & limitations The model could be used to generate the description for the javascript function or be fine-tuned on other javascript code tasks. It can be used on unparsed and untokenized javascript code. However, if the javascript code is tokenized, the performance should be better. ### How to use Here is how to use this model to generate javascript function documentation using Transformers SummarizationPipeline: ```python from transformers import AutoTokenizer, AutoModelWithLMHead, SummarizationPipeline pipeline = SummarizationPipeline( model=AutoModelWithLMHead.from_pretrained("SEBIS/code_trans_t5_small_code_documentation_generation_javascript_multitask"), tokenizer=AutoTokenizer.from_pretrained("SEBIS/code_trans_t5_small_code_documentation_generation_javascript_multitask", skip_special_tokens=True), device=0 ) tokenized_code = "function isStandardBrowserEnv ( ) { if ( typeof navigator !== 'undefined' && ( navigator . product === 'ReactNative' || navigator . product === 'NativeScript' || navigator . product === 'NS' ) ) { return false ; } return ( typeof window !== 'undefined' && typeof document !== 'undefined' ) ; }" pipeline([tokenized_code]) ``` Run this example in [colab notebook](https://github.com/agemagician/CodeTrans/blob/main/prediction/multitask/pre-training/function%20documentation%20generation/javascript/small_model.ipynb). ## Training data The supervised training tasks datasets can be downloaded on [Link](https://www.dropbox.com/sh/488bq2of10r4wvw/AACs5CGIQuwtsD7j_Ls_JAORa/finetuning_dataset?dl=0&subfolder_nav_tracking=1) ## Training procedure ### Multi-task Pretraining The model was trained on a single TPU Pod V3-8 for 500,000 steps in total, using sequence length 512 (batch size 4096). It has a total of approximately 220M parameters and was trained using the encoder-decoder architecture. The optimizer used is AdaFactor with inverse square root learning rate schedule for pre-training. ## Evaluation results For the code documentation tasks, different models achieves the following results on different programming languages (in BLEU score): Test results : | Language / Model | Python | Java | Go | Php | Ruby | JavaScript | | -------------------- | :------------: | :------------: | :------------: | :------------: | :------------: | :------------: | | CodeTrans-ST-Small | 17.31 | 16.65 | 16.89 | 23.05 | 9.19 | 13.7 | | CodeTrans-ST-Base | 16.86 | 17.17 | 17.16 | 22.98 | 8.23 | 13.17 | | CodeTrans-TF-Small | 19.93 | 19.48 | 18.88 | 25.35 | 13.15 | 17.23 | | CodeTrans-TF-Base | 20.26 | 20.19 | 19.50 | 25.84 | 14.07 | 18.25 | | CodeTrans-TF-Large | 20.35 | 20.06 | **19.54** | 26.18 | 14.94 | **18.98** | | CodeTrans-MT-Small | 19.64 | 19.00 | 19.15 | 24.68 | 14.91 | 15.26 | | CodeTrans-MT-Base | **20.39** | 21.22 | 19.43 | **26.23** | **15.26** | 16.11 | | CodeTrans-MT-Large | 20.18 | **21.87** | 19.38 | 26.08 | 15.00 | 16.23 | | CodeTrans-MT-TF-Small | 19.77 | 20.04 | 19.36 | 25.55 | 13.70 | 17.24 | | CodeTrans-MT-TF-Base | 19.77 | 21.12 | 18.86 | 25.79 | 14.24 | 18.62 | | CodeTrans-MT-TF-Large | 18.94 | 21.42 | 18.77 | 26.20 | 14.19 | 18.83 | | State of the art | 19.06 | 17.65 | 18.07 | 25.16 | 12.16 | 14.90 | > Created by [Ahmed Elnaggar](https://twitter.com/Elnaggar_AI) | [LinkedIn](https://www.linkedin.com/in/prof-ahmed-elnaggar/) and Wei Ding | [LinkedIn](https://www.linkedin.com/in/wei-ding-92561270/)
SEBIS/code_trans_t5_small_code_documentation_generation_python_transfer_learning_finetune
98110513f6daacfa6a70a8daced4d11780e66086
2021-06-23T10:11:17.000Z
[ "pytorch", "jax", "t5", "feature-extraction", "transformers", "summarization" ]
summarization
false
SEBIS
null
SEBIS/code_trans_t5_small_code_documentation_generation_python_transfer_learning_finetune
5
null
transformers
16,240
--- tags: - summarization widget: - text: "def e ( message , exit_code = None ) : print_log ( message , YELLOW , BOLD ) if exit_code is not None : sys . exit ( exit_code )" --- # CodeTrans model for code documentation generation python Pretrained model on programming language python using the t5 small model architecture. It was first released in [this repository](https://github.com/agemagician/CodeTrans). This model is trained on tokenized python code functions: it works best with tokenized python functions. ## Model description This CodeTrans model is based on the `t5-small` model. It has its own SentencePiece vocabulary model. It used transfer-learning pre-training on 7 unsupervised datasets in the software development domain. It is then fine-tuned on the code documentation generation task for the python function/method. ## Intended uses & limitations The model could be used to generate the description for the python function or be fine-tuned on other python code tasks. It can be used on unparsed and untokenized python code. However, if the python code is tokenized, the performance should be better. ### How to use Here is how to use this model to generate python function documentation using Transformers SummarizationPipeline: ```python from transformers import AutoTokenizer, AutoModelWithLMHead, SummarizationPipeline pipeline = SummarizationPipeline( model=AutoModelWithLMHead.from_pretrained("SEBIS/code_trans_t5_small_code_documentation_generation_python_transfer_learning_finetune"), tokenizer=AutoTokenizer.from_pretrained("SEBIS/code_trans_t5_small_code_documentation_generation_python_transfer_learning_finetune", skip_special_tokens=True), device=0 ) tokenized_code = "def e ( message , exit_code = None ) : print_log ( message , YELLOW , BOLD ) if exit_code is not None : sys . exit ( exit_code )" pipeline([tokenized_code]) ``` Run this example in [colab notebook](https://github.com/agemagician/CodeTrans/blob/main/prediction/transfer%20learning%20fine-tuning/function%20documentation%20generation/python/small_model.ipynb). ## Training data The supervised training tasks datasets can be downloaded on [Link](https://www.dropbox.com/sh/488bq2of10r4wvw/AACs5CGIQuwtsD7j_Ls_JAORa/finetuning_dataset?dl=0&subfolder_nav_tracking=1) ## Training procedure ### Transfer-learning Pretraining The model was trained on a single TPU Pod V3-8 for half million steps in total, using sequence length 512 (batch size 4096). It has a total of approximately 220M parameters and was trained using the encoder-decoder architecture. The optimizer used is AdaFactor with inverse square root learning rate schedule for pre-training. ### Fine-tuning This model was then fine-tuned on a single TPU Pod V2-8 for 2000 steps in total, using sequence length 512 (batch size 256), using only the dataset only containing python code. ## Evaluation results For the code documentation tasks, different models achieves the following results on different programming languages (in BLEU score): Test results : | Language / Model | Python | Java | Go | Php | Ruby | JavaScript | | -------------------- | :------------: | :------------: | :------------: | :------------: | :------------: | :------------: | | CodeTrans-ST-Small | 17.31 | 16.65 | 16.89 | 23.05 | 9.19 | 13.7 | | CodeTrans-ST-Base | 16.86 | 17.17 | 17.16 | 22.98 | 8.23 | 13.17 | | CodeTrans-TF-Small | 19.93 | 19.48 | 18.88 | 25.35 | 13.15 | 17.23 | | CodeTrans-TF-Base | 20.26 | 20.19 | 19.50 | 25.84 | 14.07 | 18.25 | | CodeTrans-TF-Large | 20.35 | 20.06 | **19.54** | 26.18 | 14.94 | **18.98** | | CodeTrans-MT-Small | 19.64 | 19.00 | 19.15 | 24.68 | 14.91 | 15.26 | | CodeTrans-MT-Base | **20.39** | 21.22 | 19.43 | **26.23** | **15.26** | 16.11 | | CodeTrans-MT-Large | 20.18 | **21.87** | 19.38 | 26.08 | 15.00 | 16.23 | | CodeTrans-MT-TF-Small | 19.77 | 20.04 | 19.36 | 25.55 | 13.70 | 17.24 | | CodeTrans-MT-TF-Base | 19.77 | 21.12 | 18.86 | 25.79 | 14.24 | 18.62 | | CodeTrans-MT-TF-Large | 18.94 | 21.42 | 18.77 | 26.20 | 14.19 | 18.83 | | State of the art | 19.06 | 17.65 | 18.07 | 25.16 | 12.16 | 14.90 | > Created by [Ahmed Elnaggar](https://twitter.com/Elnaggar_AI) | [LinkedIn](https://www.linkedin.com/in/prof-ahmed-elnaggar/) and Wei Ding | [LinkedIn](https://www.linkedin.com/in/wei-ding-92561270/)
SEBIS/code_trans_t5_small_code_documentation_generation_ruby
82e2839c8ef193ebbe553fca1a95fd4243b5ba29
2021-06-23T10:11:41.000Z
[ "pytorch", "t5", "feature-extraction", "transformers", "summarization" ]
summarization
false
SEBIS
null
SEBIS/code_trans_t5_small_code_documentation_generation_ruby
5
null
transformers
16,241
--- tags: - summarization widget: - text: "def add ( severity , progname , & block ) return true if io . nil? || severity < level message = format_message ( severity , progname , yield ) MUTEX . synchronize { io . write ( message ) } true end" --- # CodeTrans model for code documentation generation ruby Pretrained model on programming language ruby using the t5 small model architecture. It was first released in [this repository](https://github.com/agemagician/CodeTrans). This model is trained on tokenized ruby code functions: it works best with tokenized ruby functions. ## Model description This CodeTrans model is based on the `t5-small` model. It has its own SentencePiece vocabulary model. It used single-task training on CodeSearchNet Corpus ruby dataset. ## Intended uses & limitations The model could be used to generate the description for the ruby function or be fine-tuned on other ruby code tasks. It can be used on unparsed and untokenized ruby code. However, if the ruby code is tokenized, the performance should be better. ### How to use Here is how to use this model to generate ruby function documentation using Transformers SummarizationPipeline: ```python from transformers import AutoTokenizer, AutoModelWithLMHead, SummarizationPipeline pipeline = SummarizationPipeline( model=AutoModelWithLMHead.from_pretrained("SEBIS/code_trans_t5_small_code_documentation_generation_ruby"), tokenizer=AutoTokenizer.from_pretrained("SEBIS/code_trans_t5_small_code_documentation_generation_ruby", skip_special_tokens=True), device=0 ) tokenized_code = "def add ( severity , progname , & block ) return true if io . nil? || severity < level message = format_message ( severity , progname , yield ) MUTEX . synchronize { io . write ( message ) } true end" pipeline([tokenized_code]) ``` Run this example in [colab notebook](https://github.com/agemagician/CodeTrans/blob/main/prediction/single%20task/function%20documentation%20generation/ruby/small_model.ipynb). ## Training data The supervised training tasks datasets can be downloaded on [Link](https://www.dropbox.com/sh/488bq2of10r4wvw/AACs5CGIQuwtsD7j_Ls_JAORa/finetuning_dataset?dl=0&subfolder_nav_tracking=1) ## Evaluation results For the code documentation tasks, different models achieves the following results on different programming languages (in BLEU score): Test results : | Language / Model | Python | Java | Go | Php | Ruby | JavaScript | | -------------------- | :------------: | :------------: | :------------: | :------------: | :------------: | :------------: | | CodeTrans-ST-Small | 17.31 | 16.65 | 16.89 | 23.05 | 9.19 | 13.7 | | CodeTrans-ST-Base | 16.86 | 17.17 | 17.16 | 22.98 | 8.23 | 13.17 | | CodeTrans-TF-Small | 19.93 | 19.48 | 18.88 | 25.35 | 13.15 | 17.23 | | CodeTrans-TF-Base | 20.26 | 20.19 | 19.50 | 25.84 | 14.07 | 18.25 | | CodeTrans-TF-Large | 20.35 | 20.06 | **19.54** | 26.18 | 14.94 | **18.98** | | CodeTrans-MT-Small | 19.64 | 19.00 | 19.15 | 24.68 | 14.91 | 15.26 | | CodeTrans-MT-Base | **20.39** | 21.22 | 19.43 | **26.23** | **15.26** | 16.11 | | CodeTrans-MT-Large | 20.18 | **21.87** | 19.38 | 26.08 | 15.00 | 16.23 | | CodeTrans-MT-TF-Small | 19.77 | 20.04 | 19.36 | 25.55 | 13.70 | 17.24 | | CodeTrans-MT-TF-Base | 19.77 | 21.12 | 18.86 | 25.79 | 14.24 | 18.62 | | CodeTrans-MT-TF-Large | 18.94 | 21.42 | 18.77 | 26.20 | 14.19 | 18.83 | | State of the art | 19.06 | 17.65 | 18.07 | 25.16 | 12.16 | 14.90 | > Created by [Ahmed Elnaggar](https://twitter.com/Elnaggar_AI) | [LinkedIn](https://www.linkedin.com/in/prof-ahmed-elnaggar/) and Wei Ding | [LinkedIn](https://www.linkedin.com/in/wei-ding-92561270/)
SEBIS/code_trans_t5_small_code_documentation_generation_ruby_transfer_learning_finetune
6b2c0be17085fde897908696eb33a8c5c27b5c6a
2021-06-23T10:13:18.000Z
[ "pytorch", "jax", "t5", "feature-extraction", "transformers", "summarization" ]
summarization
false
SEBIS
null
SEBIS/code_trans_t5_small_code_documentation_generation_ruby_transfer_learning_finetune
5
null
transformers
16,242
--- tags: - summarization widget: - text: "def add ( severity , progname , & block ) return true if io . nil? || severity < level message = format_message ( severity , progname , yield ) MUTEX . synchronize { io . write ( message ) } true end" --- # CodeTrans model for code documentation generation ruby Pretrained model on programming language ruby using the t5 small model architecture. It was first released in [this repository](https://github.com/agemagician/CodeTrans). This model is trained on tokenized ruby code functions: it works best with tokenized ruby functions. ## Model description This CodeTrans model is based on the `t5-small` model. It has its own SentencePiece vocabulary model. It used transfer-learning pre-training on 7 unsupervised datasets in the software development domain. It is then fine-tuned on the code documentation generation task for the ruby function/method. ## Intended uses & limitations The model could be used to generate the description for the ruby function or be fine-tuned on other ruby code tasks. It can be used on unparsed and untokenized ruby code. However, if the ruby code is tokenized, the performance should be better. ### How to use Here is how to use this model to generate ruby function documentation using Transformers SummarizationPipeline: ```python from transformers import AutoTokenizer, AutoModelWithLMHead, SummarizationPipeline pipeline = SummarizationPipeline( model=AutoModelWithLMHead.from_pretrained("SEBIS/code_trans_t5_small_code_documentation_generation_ruby_transfer_learning_finetune"), tokenizer=AutoTokenizer.from_pretrained("SEBIS/code_trans_t5_small_code_documentation_generation_ruby_transfer_learning_finetune", skip_special_tokens=True), device=0 ) tokenized_code = "def add ( severity , progname , & block ) return true if io . nil? || severity < level message = format_message ( severity , progname , yield ) MUTEX . synchronize { io . write ( message ) } true end" pipeline([tokenized_code]) ``` Run this example in [colab notebook](https://github.com/agemagician/CodeTrans/blob/main/prediction/transfer%20learning%20fine-tuning/function%20documentation%20generation/ruby/small_model.ipynb). ## Training data The supervised training tasks datasets can be downloaded on [Link](https://www.dropbox.com/sh/488bq2of10r4wvw/AACs5CGIQuwtsD7j_Ls_JAORa/finetuning_dataset?dl=0&subfolder_nav_tracking=1) ## Training procedure ### Transfer-learning Pretraining The model was trained on a single TPU Pod V3-8 for half million steps in total, using sequence length 512 (batch size 4096). It has a total of approximately 220M parameters and was trained using the encoder-decoder architecture. The optimizer used is AdaFactor with inverse square root learning rate schedule for pre-training. ### Fine-tuning This model was then fine-tuned on a single TPU Pod V2-8 for 5000 steps in total, using sequence length 512 (batch size 256), using only the dataset only containing ruby code. ## Evaluation results For the code documentation tasks, different models achieves the following results on different programming languages (in BLEU score): Test results : | Language / Model | Python | Java | Go | Php | Ruby | JavaScript | | -------------------- | :------------: | :------------: | :------------: | :------------: | :------------: | :------------: | | CodeTrans-ST-Small | 17.31 | 16.65 | 16.89 | 23.05 | 9.19 | 13.7 | | CodeTrans-ST-Base | 16.86 | 17.17 | 17.16 | 22.98 | 8.23 | 13.17 | | CodeTrans-TF-Small | 19.93 | 19.48 | 18.88 | 25.35 | 13.15 | 17.23 | | CodeTrans-TF-Base | 20.26 | 20.19 | 19.50 | 25.84 | 14.07 | 18.25 | | CodeTrans-TF-Large | 20.35 | 20.06 | **19.54** | 26.18 | 14.94 | **18.98** | | CodeTrans-MT-Small | 19.64 | 19.00 | 19.15 | 24.68 | 14.91 | 15.26 | | CodeTrans-MT-Base | **20.39** | 21.22 | 19.43 | **26.23** | **15.26** | 16.11 | | CodeTrans-MT-Large | 20.18 | **21.87** | 19.38 | 26.08 | 15.00 | 16.23 | | CodeTrans-MT-TF-Small | 19.77 | 20.04 | 19.36 | 25.55 | 13.70 | 17.24 | | CodeTrans-MT-TF-Base | 19.77 | 21.12 | 18.86 | 25.79 | 14.24 | 18.62 | | CodeTrans-MT-TF-Large | 18.94 | 21.42 | 18.77 | 26.20 | 14.19 | 18.83 | | State of the art | 19.06 | 17.65 | 18.07 | 25.16 | 12.16 | 14.90 | > Created by [Ahmed Elnaggar](https://twitter.com/Elnaggar_AI) | [LinkedIn](https://www.linkedin.com/in/prof-ahmed-elnaggar/) and Wei Ding | [LinkedIn](https://www.linkedin.com/in/wei-ding-92561270/)
SEBIS/code_trans_t5_small_source_code_summarization_csharp_multitask_finetune
31934e052595d478dc70400734dd940f9a118ecb
2021-06-23T10:20:50.000Z
[ "pytorch", "jax", "t5", "feature-extraction", "transformers", "summarization" ]
summarization
false
SEBIS
null
SEBIS/code_trans_t5_small_source_code_summarization_csharp_multitask_finetune
5
null
transformers
16,243
--- tags: - summarization widget: - text: "public static DateTime ParseUnixDateTime ( double unixTime ) { var dt = new DateTime ( CODE_INTEGER , CODE_INTEGER , CODE_INTEGER , CODE_INTEGER , CODE_INTEGER , CODE_INTEGER , CODE_INTEGER , System . DateTimeKind . Utc ) ; dt = dt . AddSeconds ( unixTimeStamp ) . ToLocalTime ( ) ; return dt ; }" --- # CodeTrans model for source code summarization csharp Pretrained model on programming language csharp using the t5 small model architecture. It was first released in [this repository](https://github.com/agemagician/CodeTrans). This model is trained on tokenized csharp code functions: it works best with tokenized csharp functions. ## Model description This CodeTrans model is based on the `t5-small` model. It has its own SentencePiece vocabulary model. It used multi-task training on 13 supervised tasks in the software development domain and 7 unsupervised datasets. It is then fine-tuned on the source code summarization task for the csharp code snippets. ## Intended uses & limitations The model could be used to generate the description for the csharp function or be fine-tuned on other csharp code tasks. It can be used on unparsed and untokenized csharp code. However, if the csharp code is tokenized, the performance should be better. ### How to use Here is how to use this model to generate csharp function documentation using Transformers SummarizationPipeline: ```python from transformers import AutoTokenizer, AutoModelWithLMHead, SummarizationPipeline pipeline = SummarizationPipeline( model=AutoModelWithLMHead.from_pretrained("SEBIS/code_trans_t5_small_source_code_summarization_csharp_multitask_finetune"), tokenizer=AutoTokenizer.from_pretrained("SEBIS/code_trans_t5_small_source_code_summarization_csharp_multitask_finetune", skip_special_tokens=True), device=0 ) tokenized_code = "public static DateTime ParseUnixDateTime ( double unixTime ) { var dt = new DateTime ( CODE_INTEGER , CODE_INTEGER , CODE_INTEGER , CODE_INTEGER , CODE_INTEGER , CODE_INTEGER , CODE_INTEGER , System . DateTimeKind . Utc ) ; dt = dt . AddSeconds ( unixTimeStamp ) . ToLocalTime ( ) ; return dt ; }" pipeline([tokenized_code]) ``` Run this example in [colab notebook](https://github.com/agemagician/CodeTrans/blob/main/prediction/multitask/fine-tuning/source%20code%20summarization/csharp/small_model.ipynb). ## Training data The supervised training tasks datasets can be downloaded on [Link](https://www.dropbox.com/sh/488bq2of10r4wvw/AACs5CGIQuwtsD7j_Ls_JAORa/finetuning_dataset?dl=0&subfolder_nav_tracking=1) ## Training procedure ### Multi-task Pretraining The model was trained on a single TPU Pod V3-8 for 500,000 steps in total, using sequence length 512 (batch size 4096). It has a total of approximately 220M parameters and was trained using the encoder-decoder architecture. The optimizer used is AdaFactor with inverse square root learning rate schedule for pre-training. ### Fine-tuning This model was then fine-tuned on a single TPU Pod V2-8 for 1200 steps in total, using sequence length 512 (batch size 256), using only the dataset only containing csharp code. ## Evaluation results For the source code summarization tasks, different models achieves the following results on different programming languages (in BLEU score): Test results : | Language / Model | Python | SQL | C# | | -------------------- | :------------: | :------------: | :------------: | | CodeTrans-ST-Small | 8.45 | 17.55 | 19.74 | | CodeTrans-ST-Base | 9.12 | 15.00 | 18.65 | | CodeTrans-TF-Small | 10.06 | 17.71 | 20.40 | | CodeTrans-TF-Base | 10.94 | 17.66 | 21.12 | | CodeTrans-TF-Large | 12.41 | 18.40 | 21.43 | | CodeTrans-MT-Small | 13.11 | 19.15 | 22.39 | | CodeTrans-MT-Base | **13.37** | 19.24 | 23.20 | | CodeTrans-MT-Large | 13.24 | 19.40 | **23.57** | | CodeTrans-MT-TF-Small | 12.10 | 18.25 | 22.03 | | CodeTrans-MT-TF-Base | 10.64 | 16.91 | 21.40 | | CodeTrans-MT-TF-Large | 12.14 | **19.98** | 21.10 | | CODE-NN | -- | 18.40 | 20.50 | > Created by [Ahmed Elnaggar](https://twitter.com/Elnaggar_AI) | [LinkedIn](https://www.linkedin.com/in/prof-ahmed-elnaggar/) and Wei Ding | [LinkedIn](https://www.linkedin.com/in/wei-ding-92561270/)
SEBIS/code_trans_t5_small_source_code_summarization_csharp_transfer_learning_finetune
2510289910fafe984f891e1ec5dba74725ced382
2021-06-23T10:21:27.000Z
[ "pytorch", "jax", "t5", "feature-extraction", "transformers", "summarization" ]
summarization
false
SEBIS
null
SEBIS/code_trans_t5_small_source_code_summarization_csharp_transfer_learning_finetune
5
null
transformers
16,244
--- tags: - summarization widget: - text: "public static DateTime ParseUnixDateTime ( double unixTime ) { var dt = new DateTime ( CODE_INTEGER , CODE_INTEGER , CODE_INTEGER , CODE_INTEGER , CODE_INTEGER , CODE_INTEGER , CODE_INTEGER , System . DateTimeKind . Utc ) ; dt = dt . AddSeconds ( unixTimeStamp ) . ToLocalTime ( ) ; return dt ; }" --- # CodeTrans model for source code summarization csharp Pretrained model on programming language csharp using the t5 small model architecture. It was first released in [this repository](https://github.com/agemagician/CodeTrans). This model is trained on tokenized csharp code functions: it works best with tokenized csharp functions. ## Model description This CodeTrans model is based on the `t5-small` model. It has its own SentencePiece vocabulary model. It used transfer-learning pre-training on 7 unsupervised datasets in the software development domain. It is then fine-tuned on the source code summarization task for the csharp code snippets. ## Intended uses & limitations The model could be used to generate the description for the csharp function or be fine-tuned on other csharp code tasks. It can be used on unparsed and untokenized csharp code. However, if the csharp code is tokenized, the performance should be better. ### How to use Here is how to use this model to generate csharp function documentation using Transformers SummarizationPipeline: ```python from transformers import AutoTokenizer, AutoModelWithLMHead, SummarizationPipeline pipeline = SummarizationPipeline( model=AutoModelWithLMHead.from_pretrained("SEBIS/code_trans_t5_small_source_code_summarization_csharp_transfer_learning_finetune"), tokenizer=AutoTokenizer.from_pretrained("SEBIS/code_trans_t5_small_source_code_summarization_csharp_transfer_learning_finetune", skip_special_tokens=True), device=0 ) tokenized_code = "public static DateTime ParseUnixDateTime ( double unixTime ) { var dt = new DateTime ( CODE_INTEGER , CODE_INTEGER , CODE_INTEGER , CODE_INTEGER , CODE_INTEGER , CODE_INTEGER , CODE_INTEGER , System . DateTimeKind . Utc ) ; dt = dt . AddSeconds ( unixTimeStamp ) . ToLocalTime ( ) ; return dt ; }" pipeline([tokenized_code]) ``` Run this example in [colab notebook](https://github.com/agemagician/CodeTrans/blob/main/prediction/transfer%20learning%20fine-tuning/source%20code%20summarization/csharp/small_model.ipynb). ## Training data The supervised training tasks datasets can be downloaded on [Link](https://www.dropbox.com/sh/488bq2of10r4wvw/AACs5CGIQuwtsD7j_Ls_JAORa/finetuning_dataset?dl=0&subfolder_nav_tracking=1) ## Training procedure ### Transfer-learning Pretraining The model was trained on a single TPU Pod V3-8 for 500,000 steps in total, using sequence length 512 (batch size 4096). It has a total of approximately 220M parameters and was trained using the encoder-decoder architecture. The optimizer used is AdaFactor with inverse square root learning rate schedule for pre-training. ### Fine-tuning This model was then fine-tuned on a single TPU Pod V2-8 for 2000 steps in total, using sequence length 512 (batch size 256), using only the dataset only containing csharp code. ## Evaluation results For the source code summarization tasks, different models achieves the following results on different programming languages (in BLEU score): Test results : | Language / Model | Python | SQL | C# | | -------------------- | :------------: | :------------: | :------------: | | CodeTrans-ST-Small | 8.45 | 17.55 | 19.74 | | CodeTrans-ST-Base | 9.12 | 15.00 | 18.65 | | CodeTrans-TF-Small | 10.06 | 17.71 | 20.40 | | CodeTrans-TF-Base | 10.94 | 17.66 | 21.12 | | CodeTrans-TF-Large | 12.41 | 18.40 | 21.43 | | CodeTrans-MT-Small | 13.11 | 19.15 | 22.39 | | CodeTrans-MT-Base | **13.37** | 19.24 | 23.20 | | CodeTrans-MT-Large | 13.24 | 19.40 | **23.57** | | CodeTrans-MT-TF-Small | 12.10 | 18.25 | 22.03 | | CodeTrans-MT-TF-Base | 10.64 | 16.91 | 21.40 | | CodeTrans-MT-TF-Large | 12.14 | **19.98** | 21.10 | | CODE-NN | -- | 18.40 | 20.50 | > Created by [Ahmed Elnaggar](https://twitter.com/Elnaggar_AI) | [LinkedIn](https://www.linkedin.com/in/prof-ahmed-elnaggar/) and Wei Ding | [LinkedIn](https://www.linkedin.com/in/wei-ding-92561270/)
SEBIS/legal_t5_small_cls_en
edb51f7610de9456267b70afca9ec31e91cb2b4f
2021-06-23T10:28:36.000Z
[ "pytorch", "jax", "t5", "text2text-generation", "English", "dataset:jrc-acquis", "transformers", "classification English model", "autotrain_compatible" ]
text2text-generation
false
SEBIS
null
SEBIS/legal_t5_small_cls_en
5
null
transformers
16,245
--- language: English tags: - classification English model datasets: - jrc-acquis widget: - text: "Appointment of members of the Conciliation Body instituted by Commission Decision 94/442/EC of 1 July 1994 setting up a conciliation procedure in the context of the clearance of the accounts of the European Agricultural Guidance and Guarantee Fund (EAGGF) Guarantee Section (2006/C 193/09) (1) The Commission has renewed the term of office of: Mr José Luis SAENZ GARCIA-BAQUERO (ES) (from 1 August 2006 to 31 July 2007). (2) The Commission has appointed as members: - Mr Peter BAUMANN (DA) (from 1 August 2006 to 31 July 2009); - Mr Daniel PERRIN (FR) (from 1 August 2006 to 31 July 2009). (3) The Commission has appointed as substitute members: - Mr Robert BURIAN (A) (from 1 August 2006); - Mr Eduardo DIEZ PATIER (ES) (from 1 August 2006). --------------------------------------------------" --- # legal_t5_small_cls_en model Model for classification of legal text written in English. It was first released in [this repository](https://github.com/agemagician/LegalTrans). This model is trained on three parallel corpus from jrc-acquis. ## Model description legal_t5_small_cls_en is based on the `t5-small` model and was trained on a large corpus of parallel text. This is a smaller model, which scales the baseline model of t5 down by using `dmodel = 512`, `dff = 2,048`, 8-headed attention, and only 6 layers each in the encoder and decoder. This variant has about 60 million parameters. ## Intended uses & limitations The model could be used for classification of legal texts written in English. ### How to use Here is how to use this model to classify legal text written in English in PyTorch: ```python from transformers import AutoTokenizer, AutoModelWithLMHead, TranslationPipeline pipeline = TranslationPipeline( model=AutoModelWithLMHead.from_pretrained("SEBIS/legal_t5_small_cls_en"), tokenizer=AutoTokenizer.from_pretrained(pretrained_model_name_or_path = "SEBIS/legal_t5_small_cls_en", do_lower_case=False, skip_special_tokens=True), device=0 ) en_text = "Appointment of members of the Conciliation Body instituted by Commission Decision 94/442/EC of 1 July 1994 setting up a conciliation procedure in the context of the clearance of the accounts of the European Agricultural Guidance and Guarantee Fund (EAGGF) Guarantee Section (2006/C 193/09) (1) The Commission has renewed the term of office of: Mr José Luis SAENZ GARCIA-BAQUERO (ES) (from 1 August 2006 to 31 July 2007). (2) The Commission has appointed as members: - Mr Peter BAUMANN (DA) (from 1 August 2006 to 31 July 2009); - Mr Daniel PERRIN (FR) (from 1 August 2006 to 31 July 2009). (3) The Commission has appointed as substitute members: - Mr Robert BURIAN (A) (from 1 August 2006); - Mr Eduardo DIEZ PATIER (ES) (from 1 August 2006). --------------------------------------------------" pipeline([en_text], max_length=512) ``` ## Training data The legal_t5_small_cls_en model was trained on [JRC-ACQUIS](https://wt-public.emm4u.eu/Acquis/index_2.2.html) dataset consisting of 19 Thousand texts. ## Training procedure The model was trained on a single TPU Pod V3-8 for 250K steps in total, using sequence length 512 (batch size 64). It has a total of approximately 220M parameters and was trained using the encoder-decoder architecture. The optimizer used is AdaFactor with inverse square root learning rate schedule for pre-training. ### Preprocessing An unigram model trained with 88M lines of text from the parallel corpus (of all possible language pairs) to get the vocabulary (with byte pair encoding), which is used with this model. ### Pretraining ## Evaluation results When the model is used for classification test dataset, achieves the following results: Test results : | Model | F1 score | |:-----:|:-----:| | legal_t5_small_cls_en | 0.6247| ### BibTeX entry and citation info > Created by [Ahmed Elnaggar/@Elnaggar_AI](https://twitter.com/Elnaggar_AI) | [LinkedIn](https://www.linkedin.com/in/prof-ahmed-elnaggar/)
SEBIS/legal_t5_small_multitask_es_sv
af5d1a19c8df74802d22c39fbf6897b02a2916e1
2021-06-23T11:06:05.000Z
[ "pytorch", "jax", "t5", "text2text-generation", "Spanish Swedish", "dataset:dcep europarl jrc-acquis", "transformers", "translation Spanish Swedish model", "autotrain_compatible" ]
text2text-generation
false
SEBIS
null
SEBIS/legal_t5_small_multitask_es_sv
5
null
transformers
16,246
--- language: Spanish Swedish tags: - translation Spanish Swedish model datasets: - dcep europarl jrc-acquis widget: - text: "Tiempo de uso de la palabra ( artículo 149 del Reglamento PE)" --- # legal_t5_small_multitask_es_sv model Model on translating legal text from Spanish to Swedish. It was first released in [this repository](https://github.com/agemagician/LegalTrans). The model is parallely trained on the three parallel corpus with 42 language pair from jrc-acquis, europarl and dcep along with the unsupervised task where the model followed the task of prediction in a masked language model. ## Model description No pretraining is involved in case of legal_t5_small_multitask_es_sv model, rather the unsupervised task is added with all the translation task to realize the multitask learning scenario. ## Intended uses & limitations The model could be used for translation of legal texts from Spanish to Swedish. ### How to use Here is how to use this model to translate legal text from Spanish to Swedish in PyTorch: ```python from transformers import AutoTokenizer, AutoModelWithLMHead, TranslationPipeline pipeline = TranslationPipeline( model=AutoModelWithLMHead.from_pretrained("SEBIS/legal_t5_small_multitask_es_sv"), tokenizer=AutoTokenizer.from_pretrained(pretrained_model_name_or_path = "SEBIS/legal_t5_small_multitask_es_sv", do_lower_case=False, skip_special_tokens=True), device=0 ) es_text = "Tiempo de uso de la palabra ( artículo 149 del Reglamento PE)" pipeline([es_text], max_length=512) ``` ## Training data The legal_t5_small_multitask_es_sv model (the supervised task which involved only the corresponding langauge pair and as well as unsupervised task where all of the data of all language pairs were available) model was trained on [JRC-ACQUIS](https://wt-public.emm4u.eu/Acquis/index_2.2.html), [EUROPARL](https://www.statmt.org/europarl/), and [DCEP](https://ec.europa.eu/jrc/en/language-technologies/dcep) dataset consisting of 8 Million parallel texts. ## Training procedure The model was trained on a single TPU Pod V3-8 for 250K steps in total, using sequence length 512 (batch size 4096). It has a total of approximately 220M parameters and was trained using the encoder-decoder architecture. The optimizer used is AdaFactor with inverse square root learning rate schedule. ### Preprocessing An unigram model trained with 88M lines of text from the parallel corpus (of all possible language pairs) to get the vocabulary (with byte pair encoding), which is used with this model. ### Pretraining ## Evaluation results When the model is used for translation test dataset, achieves the following results: Test results : | Model | BLEU score | |:-----:|:-----:| | legal_t5_small_multitask_es_sv | 37.975| ### BibTeX entry and citation info > Created by [Ahmed Elnaggar/@Elnaggar_AI](https://twitter.com/Elnaggar_AI) | [LinkedIn](https://www.linkedin.com/in/prof-ahmed-elnaggar/)
SEBIS/legal_t5_small_trans_cs_es
f4bee452ffb5108a11c07ae7fcbf2a506d93421c
2021-06-23T11:32:25.000Z
[ "pytorch", "jax", "t5", "text2text-generation", "Cszech Spanish", "dataset:dcep europarl jrc-acquis", "transformers", "translation Cszech Spanish model", "autotrain_compatible" ]
text2text-generation
false
SEBIS
null
SEBIS/legal_t5_small_trans_cs_es
5
null
transformers
16,247
--- language: Cszech Spanish tags: - translation Cszech Spanish model datasets: - dcep europarl jrc-acquis widget: - text: "k návrhu směrnice Evropského parlamentu a Rady o bezpečnosti hraček" --- # legal_t5_small_trans_cs_es model Model on translating legal text from Cszech to Spanish. It was first released in [this repository](https://github.com/agemagician/LegalTrans). This model is trained on three parallel corpus from jrc-acquis, europarl and dcep. ## Model description legal_t5_small_trans_cs_es is based on the `t5-small` model and was trained on a large corpus of parallel text. This is a smaller model, which scales the baseline model of t5 down by using `dmodel = 512`, `dff = 2,048`, 8-headed attention, and only 6 layers each in the encoder and decoder. This variant has about 60 million parameters. ## Intended uses & limitations The model could be used for translation of legal texts from Cszech to Spanish. ### How to use Here is how to use this model to translate legal text from Cszech to Spanish in PyTorch: ```python from transformers import AutoTokenizer, AutoModelWithLMHead, TranslationPipeline pipeline = TranslationPipeline( model=AutoModelWithLMHead.from_pretrained("SEBIS/legal_t5_small_trans_cs_es"), tokenizer=AutoTokenizer.from_pretrained(pretrained_model_name_or_path = "SEBIS/legal_t5_small_trans_cs_es", do_lower_case=False, skip_special_tokens=True), device=0 ) cs_text = "k návrhu směrnice Evropského parlamentu a Rady o bezpečnosti hraček" pipeline([cs_text], max_length=512) ``` ## Training data The legal_t5_small_trans_cs_es model was trained on [JRC-ACQUIS](https://wt-public.emm4u.eu/Acquis/index_2.2.html), [EUROPARL](https://www.statmt.org/europarl/), and [DCEP](https://ec.europa.eu/jrc/en/language-technologies/dcep) dataset consisting of 5 Million parallel texts. ## Training procedure The model was trained on a single TPU Pod V3-8 for 250K steps in total, using sequence length 512 (batch size 4096). It has a total of approximately 220M parameters and was trained using the encoder-decoder architecture. The optimizer used is AdaFactor with inverse square root learning rate schedule for pre-training. ### Preprocessing An unigram model trained with 88M lines of text from the parallel corpus (of all possible language pairs) to get the vocabulary (with byte pair encoding), which is used with this model. ### Pretraining ## Evaluation results When the model is used for translation test dataset, achieves the following results: Test results : | Model | BLEU score | |:-----:|:-----:| | legal_t5_small_trans_cs_es | 50.77| ### BibTeX entry and citation info > Created by [Ahmed Elnaggar/@Elnaggar_AI](https://twitter.com/Elnaggar_AI) | [LinkedIn](https://www.linkedin.com/in/prof-ahmed-elnaggar/)
SEBIS/legal_t5_small_trans_de_es
59317022df13612cfe3eb8922cfbdf629d74477d
2021-06-23T09:29:03.000Z
[ "pytorch", "jax", "t5", "text2text-generation", "Deustch Spanish", "dataset:dcep europarl jrc-acquis", "transformers", "translation Deustch Spanish model", "autotrain_compatible" ]
text2text-generation
false
SEBIS
null
SEBIS/legal_t5_small_trans_de_es
5
null
transformers
16,248
--- language: Deustch Spanish tags: - translation Deustch Spanish model datasets: - dcep europarl jrc-acquis widget: - text: "7. betont, dass die Kommission und die Mitgliedstaaten die Rolle der Frauen in der Sozialwirtschaft aufgrund der hohen Frauenerwerbstätigkeit in dem Sektor und der Bedeutung der Dienstleistungen, die er für die Förderung der Vereinbarkeit von Beruf und Privatleben bietet, aufwerten, unterstützen und verstärken müssen;" --- # legal_t5_small_trans_de_es model Model on translating legal text from Deustch to Spanish. It was first released in [this repository](https://github.com/agemagician/LegalTrans). This model is trained on three parallel corpus from jrc-acquis, europarl and dcep. ## Model description legal_t5_small_trans_de_es is based on the `t5-small` model and was trained on a large corpus of parallel text. This is a smaller model, which scales the baseline model of t5 down by using `dmodel = 512`, `dff = 2,048`, 8-headed attention, and only 6 layers each in the encoder and decoder. This variant has about 60 million parameters. ## Intended uses & limitations The model could be used for translation of legal texts from Deustch to Spanish. ### How to use Here is how to use this model to translate legal text from Deustch to Spanish in PyTorch: ```python from transformers import AutoTokenizer, AutoModelWithLMHead, TranslationPipeline pipeline = TranslationPipeline( model=AutoModelWithLMHead.from_pretrained("SEBIS/legal_t5_small_trans_de_es"), tokenizer=AutoTokenizer.from_pretrained(pretrained_model_name_or_path = "SEBIS/legal_t5_small_trans_de_es", do_lower_case=False, skip_special_tokens=True), device=0 ) de_text = "7. betont, dass die Kommission und die Mitgliedstaaten die Rolle der Frauen in der Sozialwirtschaft aufgrund der hohen Frauenerwerbstätigkeit in dem Sektor und der Bedeutung der Dienstleistungen, die er für die Förderung der Vereinbarkeit von Beruf und Privatleben bietet, aufwerten, unterstützen und verstärken müssen;" pipeline([de_text], max_length=512) ``` ## Training data The legal_t5_small_trans_de_es model was trained on [JRC-ACQUIS](https://wt-public.emm4u.eu/Acquis/index_2.2.html), [EUROPARL](https://www.statmt.org/europarl/), and [DCEP](https://ec.europa.eu/jrc/en/language-technologies/dcep) dataset consisting of 5 Million parallel texts. ## Training procedure The model was trained on a single TPU Pod V3-8 for 250K steps in total, using sequence length 512 (batch size 4096). It has a total of approximately 220M parameters and was trained using the encoder-decoder architecture. The optimizer used is AdaFactor with inverse square root learning rate schedule for pre-training. ### Preprocessing An unigram model trained with 88M lines of text from the parallel corpus (of all possible language pairs) to get the vocabulary (with byte pair encoding), which is used with this model. ### Pretraining ## Evaluation results When the model is used for translation test dataset, achieves the following results: Test results : | Model | BLEU score | |:-----:|:-----:| | legal_t5_small_trans_de_es | 47.24| ### BibTeX entry and citation info > Created by [Ahmed Elnaggar/@Elnaggar_AI](https://twitter.com/Elnaggar_AI) | [LinkedIn](https://www.linkedin.com/in/prof-ahmed-elnaggar/)
SEBIS/legal_t5_small_trans_en_de_small_finetuned
62bd32401ccdb4c3b33ddbb4b6db4d3775b1350a
2021-06-23T09:35:50.000Z
[ "pytorch", "jax", "t5", "text2text-generation", "English Deustch", "dataset:dcep europarl jrc-acquis", "transformers", "translation English Deustch model", "autotrain_compatible" ]
text2text-generation
false
SEBIS
null
SEBIS/legal_t5_small_trans_en_de_small_finetuned
5
null
transformers
16,249
--- language: English Deustch tags: - translation English Deustch model datasets: - dcep europarl jrc-acquis widget: - text: "The reference framework for the free movement of workers is laid down in Council Regulation (EEC) No 1612/68 on freedom of movement for workers within the Community and has been revised several times." --- # legal_t5_small_trans_en_de_small_finetuned model Model on translating legal text from English to Deustch. It was first released in [this repository](https://github.com/agemagician/LegalTrans). This model is first pretrained all the translation data over some unsupervised task. Then the model is trained on three parallel corpus from jrc-acquis, europarl and dcep. ## Model description legal_t5_small_trans_en_de_small_finetuned is initially pretrained on unsupervised task with the all of the data of the training set. The unsupervised task was "masked language modelling". legal_t5_small_trans_en_de_small_finetuned is based on the `t5-small` model and was trained on a large corpus of parallel text. This is a smaller model, which scales the baseline model of t5 down by using `dmodel = 512`, `dff = 2,048`, 8-headed attention, and only 6 layers each in the encoder and decoder. This variant has about 60 million parameters. ## Intended uses & limitations The model could be used for translation of legal texts from English to Deustch. ### How to use Here is how to use this model to translate legal text from English to Deustch in PyTorch: ```python from transformers import AutoTokenizer, AutoModelWithLMHead, TranslationPipeline pipeline = TranslationPipeline( model=AutoModelWithLMHead.from_pretrained("SEBIS/legal_t5_small_trans_en_de_small_finetuned"), tokenizer=AutoTokenizer.from_pretrained(pretrained_model_name_or_path = "SEBIS/legal_t5_small_trans_en_de", do_lower_case=False, skip_special_tokens=True), device=0 ) en_text = "The reference framework for the free movement of workers is laid down in Council Regulation (EEC) No 1612/68 on freedom of movement for workers within the Community and has been revised several times." pipeline([en_text], max_length=512) ``` ## Training data The legal_t5_small_trans_en_de_small_finetuned (the supervised task which involved only the corresponding langauge pair and as well as unsupervised task where all of the data of all language pairs were available) model was trained on [JRC-ACQUIS](https://wt-public.emm4u.eu/Acquis/index_2.2.html), [EUROPARL](https://www.statmt.org/europarl/), and [DCEP](https://ec.europa.eu/jrc/en/language-technologies/dcep) dataset consisting of 9 Million parallel texts. ## Training procedure The model was trained on a single TPU Pod V3-8 for 250K steps in total, using sequence length 512 (batch size 4096). It has a total of approximately 220M parameters and was trained using the encoder-decoder architecture. The optimizer used is AdaFactor with inverse square root learning rate schedule for pre-training. ### Preprocessing An unigram model trained with 88M lines of text from the parallel corpus (of all possible language pairs) to get the vocabulary (with byte pair encoding), which is used with this model. ### Pretraining The pre-training data was the combined data from all the 42 language pairs. The task for the model was to predict the portions of a sentence which were masked randomly. ## Evaluation results When the model is used for translation test dataset, achieves the following results: Test results : | Model | BLEU score | |:-----:|:-----:| | legal_t5_small_trans_en_de_small_finetuned | 43.636| ### BibTeX entry and citation info > Created by [Ahmed Elnaggar/@Elnaggar_AI](https://twitter.com/Elnaggar_AI) | [LinkedIn](https://www.linkedin.com/in/prof-ahmed-elnaggar/)
SEBIS/legal_t5_small_trans_es_sv_small_finetuned
c2c678ec5992f340cb8ced22e74c1f8426ead1b7
2021-06-23T09:49:16.000Z
[ "pytorch", "jax", "t5", "text2text-generation", "Spanish Swedish", "dataset:dcep europarl jrc-acquis", "transformers", "translation Spanish Swedish model", "autotrain_compatible" ]
text2text-generation
false
SEBIS
null
SEBIS/legal_t5_small_trans_es_sv_small_finetuned
5
null
transformers
16,250
--- language: Spanish Swedish tags: - translation Spanish Swedish model datasets: - dcep europarl jrc-acquis widget: - text: "Marie Anne Isler Béguin ," --- # legal_t5_small_trans_es_sv_small_finetuned model Model on translating legal text from Spanish to Swedish. It was first released in [this repository](https://github.com/agemagician/LegalTrans). This model is first pretrained all the translation data over some unsupervised task. Then the model is trained on three parallel corpus from jrc-acquis, europarl and dcep. ## Model description legal_t5_small_trans_es_sv_small_finetuned is initially pretrained on unsupervised task with the all of the data of the training set. The unsupervised task was "masked language modelling". legal_t5_small_trans_es_sv_small_finetuned is based on the `t5-small` model and was trained on a large corpus of parallel text. This is a smaller model, which scales the baseline model of t5 down by using `dmodel = 512`, `dff = 2,048`, 8-headed attention, and only 6 layers each in the encoder and decoder. This variant has about 60 million parameters. ## Intended uses & limitations The model could be used for translation of legal texts from Spanish to Swedish. ### How to use Here is how to use this model to translate legal text from Spanish to Swedish in PyTorch: ```python from transformers import AutoTokenizer, AutoModelWithLMHead, TranslationPipeline pipeline = TranslationPipeline( model=AutoModelWithLMHead.from_pretrained("SEBIS/legal_t5_small_trans_es_sv_small_finetuned"), tokenizer=AutoTokenizer.from_pretrained(pretrained_model_name_or_path = "SEBIS/legal_t5_small_trans_es_sv", do_lower_case=False, skip_special_tokens=True), device=0 ) es_text = "Marie Anne Isler Béguin ," pipeline([es_text], max_length=512) ``` ## Training data The legal_t5_small_trans_es_sv_small_finetuned (the supervised task which involved only the corresponding langauge pair and as well as unsupervised task where all of the data of all language pairs were available) model was trained on [JRC-ACQUIS](https://wt-public.emm4u.eu/Acquis/index_2.2.html), [EUROPARL](https://www.statmt.org/europarl/), and [DCEP](https://ec.europa.eu/jrc/en/language-technologies/dcep) dataset consisting of 8 Million parallel texts. ## Training procedure The model was trained on a single TPU Pod V3-8 for 250K steps in total, using sequence length 512 (batch size 4096). It has a total of approximately 220M parameters and was trained using the encoder-decoder architecture. The optimizer used is AdaFactor with inverse square root learning rate schedule for pre-training. ### Preprocessing An unigram model trained with 88M lines of text from the parallel corpus (of all possible language pairs) to get the vocabulary (with byte pair encoding), which is used with this model. ### Pretraining The pre-training data was the combined data from all the 42 language pairs. The task for the model was to predict the portions of a sentence which were masked randomly. ## Evaluation results When the model is used for translation test dataset, achieves the following results: Test results : | Model | BLEU score | |:-----:|:-----:| | legal_t5_small_trans_es_sv_small_finetuned | 43.838| ### BibTeX entry and citation info > Created by [Ahmed Elnaggar/@Elnaggar_AI](https://twitter.com/Elnaggar_AI) | [LinkedIn](https://www.linkedin.com/in/prof-ahmed-elnaggar/)
SEBIS/legal_t5_small_trans_fr_cs_small_finetuned
a31ba74a9fa86b3adc5e45ec5c35544255188e69
2021-06-23T09:51:00.000Z
[ "pytorch", "jax", "t5", "text2text-generation", "French Cszech", "dataset:dcep europarl jrc-acquis", "transformers", "translation French Cszech model", "autotrain_compatible" ]
text2text-generation
false
SEBIS
null
SEBIS/legal_t5_small_trans_fr_cs_small_finetuned
5
null
transformers
16,251
--- language: French Cszech tags: - translation French Cszech model datasets: - dcep europarl jrc-acquis widget: - text: "Compte rendu de la délégation à la Convention-cadre des Nations unies sur le changement climatique (COP17) à Durban (Afrique du Sud)" --- # legal_t5_small_trans_fr_cs_small_finetuned model Model on translating legal text from French to Cszech. It was first released in [this repository](https://github.com/agemagician/LegalTrans). This model is first pretrained all the translation data over some unsupervised task. Then the model is trained on three parallel corpus from jrc-acquis, europarl and dcep. ## Model description legal_t5_small_trans_fr_cs_small_finetuned is initially pretrained on unsupervised task with the all of the data of the training set. The unsupervised task was "masked language modelling". legal_t5_small_trans_fr_cs_small_finetuned is based on the `t5-small` model and was trained on a large corpus of parallel text. This is a smaller model, which scales the baseline model of t5 down by using `dmodel = 512`, `dff = 2,048`, 8-headed attention, and only 6 layers each in the encoder and decoder. This variant has about 60 million parameters. ## Intended uses & limitations The model could be used for translation of legal texts from French to Cszech. ### How to use Here is how to use this model to translate legal text from French to Cszech in PyTorch: ```python from transformers import AutoTokenizer, AutoModelWithLMHead, TranslationPipeline pipeline = TranslationPipeline( model=AutoModelWithLMHead.from_pretrained("SEBIS/legal_t5_small_trans_fr_cs_small_finetuned"), tokenizer=AutoTokenizer.from_pretrained(pretrained_model_name_or_path = "SEBIS/legal_t5_small_trans_fr_cs", do_lower_case=False, skip_special_tokens=True), device=0 ) fr_text = "Compte rendu de la délégation à la Convention-cadre des Nations unies sur le changement climatique (COP17) à Durban (Afrique du Sud)" pipeline([fr_text], max_length=512) ``` ## Training data The legal_t5_small_trans_fr_cs_small_finetuned (the supervised task which involved only the corresponding langauge pair and as well as unsupervised task where all of the data of all language pairs were available) model was trained on [JRC-ACQUIS](https://wt-public.emm4u.eu/Acquis/index_2.2.html), [EUROPARL](https://www.statmt.org/europarl/), and [DCEP](https://ec.europa.eu/jrc/en/language-technologies/dcep) dataset consisting of 5 Million parallel texts. ## Training procedure The model was trained on a single TPU Pod V3-8 for 250K steps in total, using sequence length 512 (batch size 4096). It has a total of approximately 220M parameters and was trained using the encoder-decoder architecture. The optimizer used is AdaFactor with inverse square root learning rate schedule for pre-training. ### Preprocessing An unigram model trained with 88M lines of text from the parallel corpus (of all possible language pairs) to get the vocabulary (with byte pair encoding), which is used with this model. ### Pretraining The pre-training data was the combined data from all the 42 language pairs. The task for the model was to predict the portions of a sentence which were masked randomly. ## Evaluation results When the model is used for translation test dataset, achieves the following results: Test results : | Model | BLEU score | |:-----:|:-----:| | legal_t5_small_trans_fr_cs_small_finetuned | 44.410| ### BibTeX entry and citation info > Created by [Ahmed Elnaggar/@Elnaggar_AI](https://twitter.com/Elnaggar_AI) | [LinkedIn](https://www.linkedin.com/in/prof-ahmed-elnaggar/)
SEBIS/legal_t5_small_trans_it_cs_small_finetuned
367441417bfeff16a1af9e49620e7056f3daed87
2021-06-23T09:58:54.000Z
[ "pytorch", "jax", "t5", "text2text-generation", "Italian Cszech", "dataset:dcep europarl jrc-acquis", "transformers", "translation Italian Cszech model", "autotrain_compatible" ]
text2text-generation
false
SEBIS
null
SEBIS/legal_t5_small_trans_it_cs_small_finetuned
5
null
transformers
16,252
--- language: Italian Cszech tags: - translation Italian Cszech model datasets: - dcep europarl jrc-acquis widget: - text: "Il consiglio di amministrazione è assistito da un comitato esecutivo." --- # legal_t5_small_trans_it_cs_small_finetuned model Model on translating legal text from Italian to Cszech. It was first released in [this repository](https://github.com/agemagician/LegalTrans). This model is first pretrained all the translation data over some unsupervised task. Then the model is trained on three parallel corpus from jrc-acquis, europarl and dcep. ## Model description legal_t5_small_trans_it_cs_small_finetuned is initially pretrained on unsupervised task with the all of the data of the training set. The unsupervised task was "masked language modelling". legal_t5_small_trans_it_cs_small_finetuned is based on the `t5-small` model and was trained on a large corpus of parallel text. This is a smaller model, which scales the baseline model of t5 down by using `dmodel = 512`, `dff = 2,048`, 8-headed attention, and only 6 layers each in the encoder and decoder. This variant has about 60 million parameters. ## Intended uses & limitations The model could be used for translation of legal texts from Italian to Cszech. ### How to use Here is how to use this model to translate legal text from Italian to Cszech in PyTorch: ```python from transformers import AutoTokenizer, AutoModelWithLMHead, TranslationPipeline pipeline = TranslationPipeline( model=AutoModelWithLMHead.from_pretrained("SEBIS/legal_t5_small_trans_it_cs_small_finetuned"), tokenizer=AutoTokenizer.from_pretrained(pretrained_model_name_or_path = "SEBIS/legal_t5_small_trans_it_cs", do_lower_case=False, skip_special_tokens=True), device=0 ) it_text = "Il consiglio di amministrazione è assistito da un comitato esecutivo." pipeline([it_text], max_length=512) ``` ## Training data The legal_t5_small_trans_it_cs_small_finetuned (the supervised task which involved only the corresponding langauge pair and as well as unsupervised task where all of the data of all language pairs were available) model was trained on [JRC-ACQUIS](https://wt-public.emm4u.eu/Acquis/index_2.2.html), [EUROPARL](https://www.statmt.org/europarl/), and [DCEP](https://ec.europa.eu/jrc/en/language-technologies/dcep) dataset consisting of 5 Million parallel texts. ## Training procedure The model was trained on a single TPU Pod V3-8 for 250K steps in total, using sequence length 512 (batch size 4096). It has a total of approximately 220M parameters and was trained using the encoder-decoder architecture. The optimizer used is AdaFactor with inverse square root learning rate schedule for pre-training. ### Preprocessing An unigram model trained with 88M lines of text from the parallel corpus (of all possible language pairs) to get the vocabulary (with byte pair encoding), which is used with this model. ### Pretraining The pre-training data was the combined data from all the 42 language pairs. The task for the model was to predict the portions of a sentence which were masked randomly. ## Evaluation results When the model is used for translation test dataset, achieves the following results: Test results : | Model | BLEU score | |:-----:|:-----:| | legal_t5_small_trans_it_cs_small_finetuned | 43.236| ### BibTeX entry and citation info > Created by [Ahmed Elnaggar/@Elnaggar_AI](https://twitter.com/Elnaggar_AI) | [LinkedIn](https://www.linkedin.com/in/prof-ahmed-elnaggar/)
SEBIS/legal_t5_small_trans_it_sv
0e312f3d33c84bbc00c05d0acf2c9382000c93ab
2021-06-23T10:04:14.000Z
[ "pytorch", "jax", "t5", "text2text-generation", "Italian Swedish", "dataset:dcep europarl jrc-acquis", "transformers", "translation Italian Swedish model", "autotrain_compatible" ]
text2text-generation
false
SEBIS
null
SEBIS/legal_t5_small_trans_it_sv
5
null
transformers
16,253
--- language: Italian Swedish tags: - translation Italian Swedish model datasets: - dcep europarl jrc-acquis widget: - text: "K. considerando che, come avviene con tutti i sistemi di sanità elettronica, la progettazione, lo sviluppo e l’attuazione di sistemi abilitati alla tecnologia RFID presuppongono il coinvolgimento diretto dei professionisti sanitari, dei pazienti e delle commissioni competenti (per esempio, sulla protezione dei dati e sull’etica)," --- # legal_t5_small_trans_it_sv model Model on translating legal text from Italian to Swedish. It was first released in [this repository](https://github.com/agemagician/LegalTrans). This model is trained on three parallel corpus from jrc-acquis, europarl and dcep. ## Model description legal_t5_small_trans_it_sv is based on the `t5-small` model and was trained on a large corpus of parallel text. This is a smaller model, which scales the baseline model of t5 down by using `dmodel = 512`, `dff = 2,048`, 8-headed attention, and only 6 layers each in the encoder and decoder. This variant has about 60 million parameters. ## Intended uses & limitations The model could be used for translation of legal texts from Italian to Swedish. ### How to use Here is how to use this model to translate legal text from Italian to Swedish in PyTorch: ```python from transformers import AutoTokenizer, AutoModelWithLMHead, TranslationPipeline pipeline = TranslationPipeline( model=AutoModelWithLMHead.from_pretrained("SEBIS/legal_t5_small_trans_it_sv"), tokenizer=AutoTokenizer.from_pretrained(pretrained_model_name_or_path = "SEBIS/legal_t5_small_trans_it_sv", do_lower_case=False, skip_special_tokens=True), device=0 ) it_text = "K. considerando che, come avviene con tutti i sistemi di sanità elettronica, la progettazione, lo sviluppo e l’attuazione di sistemi abilitati alla tecnologia RFID presuppongono il coinvolgimento diretto dei professionisti sanitari, dei pazienti e delle commissioni competenti (per esempio, sulla protezione dei dati e sull’etica)," pipeline([it_text], max_length=512) ``` ## Training data The legal_t5_small_trans_it_sv model was trained on [JRC-ACQUIS](https://wt-public.emm4u.eu/Acquis/index_2.2.html), [EUROPARL](https://www.statmt.org/europarl/), and [DCEP](https://ec.europa.eu/jrc/en/language-technologies/dcep) dataset consisting of 5 Million parallel texts. ## Training procedure The model was trained on a single TPU Pod V3-8 for 250K steps in total, using sequence length 512 (batch size 4096). It has a total of approximately 220M parameters and was trained using the encoder-decoder architecture. The optimizer used is AdaFactor with inverse square root learning rate schedule for pre-training. ### Preprocessing An unigram model trained with 88M lines of text from the parallel corpus (of all possible language pairs) to get the vocabulary (with byte pair encoding), which is used with this model. ### Pretraining ## Evaluation results When the model is used for translation test dataset, achieves the following results: Test results : | Model | BLEU score | |:-----:|:-----:| | legal_t5_small_trans_it_sv | 41.508| ### BibTeX entry and citation info > Created by [Ahmed Elnaggar/@Elnaggar_AI](https://twitter.com/Elnaggar_AI) | [LinkedIn](https://www.linkedin.com/in/prof-ahmed-elnaggar/)
SanayCo/model_output
eb4a7800627109837a7943ae0e4c3cb00396fa75
2021-05-18T22:31:51.000Z
[ "pytorch", "jax", "bert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
SanayCo
null
SanayCo/model_output
5
null
transformers
16,254
Entry not found
SaulLu/markuplm-base
70f114dc23b7b5fb72acfc16f9319985623515c5
2022-01-10T19:17:34.000Z
[ "pytorch", "markuplm", "arxiv:2110.08518", "transformers" ]
null
false
SaulLu
null
SaulLu/markuplm-base
5
null
transformers
16,255
# MarkupLM **Multimodal (text +markup language) pre-training for [Document AI](https://www.microsoft.com/en-us/research/project/document-ai/)** ## Introduction MarkupLM is a simple but effective multi-modal pre-training method of text and markup language for visually-rich document understanding and information extraction tasks, such as webpage QA and webpage information extraction. MarkupLM archives the SOTA results on multiple datasets. For more details, please refer to our paper: [MarkupLM: Pre-training of Text and Markup Language for Visually-rich Document Understanding](https://arxiv.org/abs/2110.08518) Junlong Li, Yiheng Xu, Lei Cui, Furu Wei
SauravMaheshkar/clr-finetuned-bert-base-uncased
1a07b37c37dab3d6112544c2b5b32ea8da319491
2021-09-23T15:57:37.000Z
[ "pytorch", "bert", "fill-mask", "dataset:Commonlit-Readibility", "transformers", "kaggle", "license:cc0-1.0", "autotrain_compatible" ]
fill-mask
false
SauravMaheshkar
null
SauravMaheshkar/clr-finetuned-bert-base-uncased
5
null
transformers
16,256
--- thumbnail: https://github.com/SauravMaheshkar/CommonLit-Readibility/blob/main/assets/CommonLit%20-%20Big%20Banner.png?raw=true tags: - kaggle license: cc0-1.0 datasets: - Commonlit-Readibility --- ![](https://github.com/SauravMaheshkar/CommonLit-Readibility/blob/main/assets/CommonLit%20-%20Big%20Banner.png?raw=true) # FineTuning | **Architecture** | **Weights** | **Training Loss** | **Validation Loss** | |:-----------------------:|:---------------:|:----------------:|:----------------------:| | roberta-base | [huggingface/hub](https://huggingface.co/SauravMaheshkar/clr-finetuned-roberta-base) | **0.641** | **0.4728** | | bert-base-uncased | [huggingface/hub](https://huggingface.co/SauravMaheshkar/clr-finetuned-bert-base-uncased) | 0.6781 | 0.4977 | | albert-base | [huggingface/hub](https://huggingface.co/SauravMaheshkar/clr-finetuned-albert-base) | 0.7119 | 0.5155 | | xlm-roberta-base | [huggingface/hub](https://huggingface.co/SauravMaheshkar/clr-finetuned-xlm-roberta-base) | 0.7225 | 0.525 | | bert-large-uncased | [huggingface/hub](https://huggingface.co/SauravMaheshkar/clr-finetuned-bert-large-uncased) | 0.7482 | 0.5161 | | albert-large | [huggingface/hub](https://huggingface.co/SauravMaheshkar/clr-finetuned-albert-large) | 1.075 | 0.9921 | | roberta-large | [huggingface/hub](https://huggingface.co/SauravMaheshkar/clr-finetuned-roberta-large) | 2.749 | 1.075 |
SauravMaheshkar/clr-pretrained-bert-base-uncased
6e5aef095215a79852335480305808c7502e4a56
2021-09-23T15:57:53.000Z
[ "pytorch", "bert", "fill-mask", "dataset:Commonlit-Readibility", "transformers", "kaggle", "license:cc0-1.0", "autotrain_compatible" ]
fill-mask
false
SauravMaheshkar
null
SauravMaheshkar/clr-pretrained-bert-base-uncased
5
null
transformers
16,257
--- thumbnail: https://github.com/SauravMaheshkar/CommonLit-Readibility/blob/main/assets/CommonLit%20-%20Big%20Banner.png?raw=true tags: - kaggle license: cc0-1.0 datasets: - Commonlit-Readibility metrics: - Perplexity --- ![](https://github.com/SauravMaheshkar/CommonLit-Readibility/blob/main/assets/CommonLit%20-%20Big%20Banner.png?raw=true) # PreTraining | **Architecture** | **Weights** | **PreTraining Loss** | **PreTraining Perplexity** | |:-----------------------:|:---------------:|:----------------:|:----------------------:| | roberta-base | [huggingface/hub](https://huggingface.co/SauravMaheshkar/clr-pretrained-roberta-base) | **0.3488** | **3.992** | | bert-base-uncased | [huggingface/hub](https://huggingface.co/SauravMaheshkar/clr-pretrained-bert-base-uncased) | 0.3909 | 6.122 | | electra-large | [huggingface/hub](https://huggingface.co/SauravMaheshkar/clr-pretrained-electra-large) | 0.723 | 6.394 | | albert-base | [huggingface/hub](https://huggingface.co/SauravMaheshkar/clr-pretrained-albert-base) | 0.7343 | 7.76 | | electra-small | [huggingface/hub](https://huggingface.co/SauravMaheshkar/clr-pretrained-electra-small) | 0.9226 | 11.098 | | electra-base | [huggingface/hub](https://huggingface.co/SauravMaheshkar/clr-pretrained-electra-base) | 0.9468 | 8.783 | | distilbert-base-uncased | [huggingface/hub](https://huggingface.co/SauravMaheshkar/clr-pretrained-distilbert-base-uncased) | 1.082 | 7.963 |
SauravMaheshkar/clr-pretrained-electra-small
2d8afb136e5eb5e793892e7a3e0c5f2530f1997f
2021-09-23T15:58:03.000Z
[ "pytorch", "electra", "pretraining", "dataset:Commonlit-Readibility", "transformers", "kaggle", "license:cc0-1.0" ]
null
false
SauravMaheshkar
null
SauravMaheshkar/clr-pretrained-electra-small
5
null
transformers
16,258
--- thumbnail: https://github.com/SauravMaheshkar/CommonLit-Readibility/blob/main/assets/CommonLit%20-%20Big%20Banner.png?raw=true tags: - kaggle license: cc0-1.0 datasets: - Commonlit-Readibility metrics: - Perplexity --- ![](https://github.com/SauravMaheshkar/CommonLit-Readibility/blob/main/assets/CommonLit%20-%20Big%20Banner.png?raw=true) # PreTraining | **Architecture** | **Weights** | **PreTraining Loss** | **PreTraining Perplexity** | |:-----------------------:|:---------------:|:----------------:|:----------------------:| | roberta-base | [huggingface/hub](https://huggingface.co/SauravMaheshkar/clr-pretrained-roberta-base) | **0.3488** | **3.992** | | bert-base-uncased | [huggingface/hub](https://huggingface.co/SauravMaheshkar/clr-pretrained-bert-base-uncased) | 0.3909 | 6.122 | | electra-large | [huggingface/hub](https://huggingface.co/SauravMaheshkar/clr-pretrained-electra-large) | 0.723 | 6.394 | | albert-base | [huggingface/hub](https://huggingface.co/SauravMaheshkar/clr-pretrained-albert-base) | 0.7343 | 7.76 | | electra-small | [huggingface/hub](https://huggingface.co/SauravMaheshkar/clr-pretrained-electra-small) | 0.9226 | 11.098 | | electra-base | [huggingface/hub](https://huggingface.co/SauravMaheshkar/clr-pretrained-electra-base) | 0.9468 | 8.783 | | distilbert-base-uncased | [huggingface/hub](https://huggingface.co/SauravMaheshkar/clr-pretrained-distilbert-base-uncased) | 1.082 | 7.963 |
SetFit/deberta-v3-base__sst2__all-train
25781a34c7fb89c19d359a20e5f68491335f370e
2022-02-08T08:20:33.000Z
[ "pytorch", "deberta-v2", "text-classification", "transformers", "generated_from_trainer", "license:mit", "model-index" ]
text-classification
false
SetFit
null
SetFit/deberta-v3-base__sst2__all-train
5
null
transformers
16,259
--- license: mit tags: - generated_from_trainer metrics: - accuracy model-index: - name: deberta-v3-base__sst2__all-train results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # deberta-v3-base__sst2__all-train This model is a fine-tuned version of [microsoft/deberta-v3-base](https://huggingface.co/microsoft/deberta-v3-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.6964 - Accuracy: 0.49 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 7 | 0.6964 | 0.49 | | No log | 2.0 | 14 | 0.7010 | 0.49 | | No log | 3.0 | 21 | 0.7031 | 0.49 | | No log | 4.0 | 28 | 0.7054 | 0.49 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
SetFit/deberta-v3-large__sst2__train-16-1
228bfec581d0eb46c966c9b8fcc4e6bafb6d0806
2022-02-10T10:27:26.000Z
[ "pytorch", "deberta-v2", "text-classification", "transformers", "generated_from_trainer", "license:mit", "model-index" ]
text-classification
false
SetFit
null
SetFit/deberta-v3-large__sst2__train-16-1
5
null
transformers
16,260
--- license: mit tags: - generated_from_trainer metrics: - accuracy model-index: - name: deberta-v3-large__sst2__train-16-1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # deberta-v3-large__sst2__train-16-1 This model is a fine-tuned version of [microsoft/deberta-v3-large](https://huggingface.co/microsoft/deberta-v3-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6804 - Accuracy: 0.5497 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.7086 | 1.0 | 7 | 0.7176 | 0.2857 | | 0.6897 | 2.0 | 14 | 0.7057 | 0.2857 | | 0.6491 | 3.0 | 21 | 0.6582 | 0.8571 | | 0.567 | 4.0 | 28 | 0.4480 | 0.8571 | | 0.4304 | 5.0 | 35 | 0.5465 | 0.7143 | | 0.0684 | 6.0 | 42 | 0.5408 | 0.8571 | | 0.0339 | 7.0 | 49 | 0.6501 | 0.8571 | | 0.0082 | 8.0 | 56 | 0.9152 | 0.8571 | | 0.0067 | 9.0 | 63 | 2.5162 | 0.5714 | | 0.0045 | 10.0 | 70 | 1.1136 | 0.8571 | | 0.0012 | 11.0 | 77 | 1.1668 | 0.8571 | | 0.0007 | 12.0 | 84 | 1.2071 | 0.8571 | | 0.0005 | 13.0 | 91 | 1.2310 | 0.8571 | | 0.0006 | 14.0 | 98 | 1.2476 | 0.8571 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
SetFit/deberta-v3-large__sst2__train-16-2
3c7cceb43b7ac991ff1942f53cd9c690184c689e
2022-02-10T10:33:22.000Z
[ "pytorch", "deberta-v2", "text-classification", "transformers", "generated_from_trainer", "license:mit", "model-index" ]
text-classification
false
SetFit
null
SetFit/deberta-v3-large__sst2__train-16-2
5
null
transformers
16,261
--- license: mit tags: - generated_from_trainer metrics: - accuracy model-index: - name: deberta-v3-large__sst2__train-16-2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # deberta-v3-large__sst2__train-16-2 This model is a fine-tuned version of [microsoft/deberta-v3-large](https://huggingface.co/microsoft/deberta-v3-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6959 - Accuracy: 0.5008 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.7079 | 1.0 | 7 | 0.7361 | 0.2857 | | 0.6815 | 2.0 | 14 | 0.7659 | 0.2857 | | 0.6938 | 3.0 | 21 | 0.7944 | 0.2857 | | 0.4584 | 4.0 | 28 | 1.2441 | 0.2857 | | 0.4949 | 5.0 | 35 | 1.2285 | 0.5714 | | 0.0574 | 6.0 | 42 | 1.7796 | 0.5714 | | 0.0156 | 7.0 | 49 | 2.6027 | 0.5714 | | 0.0051 | 8.0 | 56 | 2.8717 | 0.5714 | | 0.0017 | 9.0 | 63 | 2.8491 | 0.5714 | | 0.0023 | 10.0 | 70 | 1.7149 | 0.7143 | | 0.001 | 11.0 | 77 | 1.1101 | 0.7143 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
SetFit/deberta-v3-large__sst2__train-16-3
cb77f1f59502787c1b84ce9681eb4104e5aaa92a
2022-02-10T10:41:12.000Z
[ "pytorch", "deberta-v2", "text-classification", "transformers", "generated_from_trainer", "license:mit", "model-index" ]
text-classification
false
SetFit
null
SetFit/deberta-v3-large__sst2__train-16-3
5
null
transformers
16,262
--- license: mit tags: - generated_from_trainer metrics: - accuracy model-index: - name: deberta-v3-large__sst2__train-16-3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # deberta-v3-large__sst2__train-16-3 This model is a fine-tuned version of [microsoft/deberta-v3-large](https://huggingface.co/microsoft/deberta-v3-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6286 - Accuracy: 0.7068 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6955 | 1.0 | 7 | 0.7370 | 0.2857 | | 0.6919 | 2.0 | 14 | 0.6855 | 0.4286 | | 0.6347 | 3.0 | 21 | 0.5872 | 0.7143 | | 0.4016 | 4.0 | 28 | 0.6644 | 0.7143 | | 0.3097 | 5.0 | 35 | 0.5120 | 0.7143 | | 0.0785 | 6.0 | 42 | 0.5845 | 0.7143 | | 0.024 | 7.0 | 49 | 0.6951 | 0.7143 | | 0.0132 | 8.0 | 56 | 0.8972 | 0.7143 | | 0.0037 | 9.0 | 63 | 1.5798 | 0.7143 | | 0.0034 | 10.0 | 70 | 1.5178 | 0.7143 | | 0.003 | 11.0 | 77 | 1.3511 | 0.7143 | | 0.0012 | 12.0 | 84 | 1.1346 | 0.7143 | | 0.0007 | 13.0 | 91 | 0.9752 | 0.7143 | | 0.0008 | 14.0 | 98 | 0.8531 | 0.7143 | | 0.0007 | 15.0 | 105 | 0.8149 | 0.7143 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
SetFit/deberta-v3-large__sst2__train-16-6
a4dc0b0b7f6bbd3ea2a1b0269af5d361dcff077c
2022-02-10T11:01:55.000Z
[ "pytorch", "deberta-v2", "text-classification", "transformers", "generated_from_trainer", "license:mit", "model-index" ]
text-classification
false
SetFit
null
SetFit/deberta-v3-large__sst2__train-16-6
5
null
transformers
16,263
--- license: mit tags: - generated_from_trainer metrics: - accuracy model-index: - name: deberta-v3-large__sst2__train-16-6 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # deberta-v3-large__sst2__train-16-6 This model is a fine-tuned version of [microsoft/deberta-v3-large](https://huggingface.co/microsoft/deberta-v3-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6846 - Accuracy: 0.5058 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6673 | 1.0 | 7 | 0.7580 | 0.2857 | | 0.5896 | 2.0 | 14 | 0.7885 | 0.5714 | | 0.5294 | 3.0 | 21 | 1.0040 | 0.4286 | | 0.3163 | 4.0 | 28 | 1.1761 | 0.5714 | | 0.1315 | 5.0 | 35 | 1.4315 | 0.4286 | | 0.0312 | 6.0 | 42 | 2.6115 | 0.2857 | | 0.1774 | 7.0 | 49 | 2.1631 | 0.5714 | | 0.0052 | 8.0 | 56 | 2.3838 | 0.4286 | | 0.0043 | 9.0 | 63 | 2.6553 | 0.4286 | | 0.0032 | 10.0 | 70 | 2.2774 | 0.4286 | | 0.0015 | 11.0 | 77 | 1.9467 | 0.7143 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
SetFit/deberta-v3-large__sst2__train-8-3
a94388f5838e52237579af6dddbcc34669525690
2022-02-10T08:43:40.000Z
[ "pytorch", "deberta-v2", "text-classification", "transformers", "generated_from_trainer", "license:mit", "model-index" ]
text-classification
false
SetFit
null
SetFit/deberta-v3-large__sst2__train-8-3
5
null
transformers
16,264
--- license: mit tags: - generated_from_trainer metrics: - accuracy model-index: - name: deberta-v3-large__sst2__train-8-3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # deberta-v3-large__sst2__train-8-3 This model is a fine-tuned version of [microsoft/deberta-v3-large](https://huggingface.co/microsoft/deberta-v3-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6421 - Accuracy: 0.6310 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6696 | 1.0 | 3 | 0.7917 | 0.25 | | 0.6436 | 2.0 | 6 | 0.8107 | 0.25 | | 0.6923 | 3.0 | 9 | 0.8302 | 0.25 | | 0.5051 | 4.0 | 12 | 0.9828 | 0.25 | | 0.3688 | 5.0 | 15 | 0.7402 | 0.25 | | 0.2671 | 6.0 | 18 | 0.5820 | 0.75 | | 0.1935 | 7.0 | 21 | 0.8356 | 0.5 | | 0.0815 | 8.0 | 24 | 1.0431 | 0.25 | | 0.0591 | 9.0 | 27 | 0.9679 | 0.75 | | 0.0276 | 10.0 | 30 | 1.0659 | 0.75 | | 0.0175 | 11.0 | 33 | 0.9689 | 0.75 | | 0.0152 | 12.0 | 36 | 0.8820 | 0.75 | | 0.006 | 13.0 | 39 | 0.8337 | 0.75 | | 0.0041 | 14.0 | 42 | 0.7650 | 0.75 | | 0.0036 | 15.0 | 45 | 0.6960 | 0.75 | | 0.0034 | 16.0 | 48 | 0.6548 | 0.75 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
SetFit/deberta-v3-large__sst2__train-8-4
a805b1e3d59a63b4a5c2e8a965f7e4829988e6ac
2022-02-10T09:02:04.000Z
[ "pytorch", "deberta-v2", "text-classification", "transformers", "generated_from_trainer", "license:mit", "model-index" ]
text-classification
false
SetFit
null
SetFit/deberta-v3-large__sst2__train-8-4
5
null
transformers
16,265
--- license: mit tags: - generated_from_trainer metrics: - accuracy model-index: - name: deberta-v3-large__sst2__train-8-4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # deberta-v3-large__sst2__train-8-4 This model is a fine-tuned version of [microsoft/deberta-v3-large](https://huggingface.co/microsoft/deberta-v3-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.3023 - Accuracy: 0.7057 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6816 | 1.0 | 3 | 0.8072 | 0.25 | | 0.6672 | 2.0 | 6 | 0.8740 | 0.25 | | 0.6667 | 3.0 | 9 | 0.8578 | 0.25 | | 0.5346 | 4.0 | 12 | 1.0353 | 0.25 | | 0.4517 | 5.0 | 15 | 1.1030 | 0.25 | | 0.3095 | 6.0 | 18 | 0.9986 | 0.25 | | 0.2464 | 7.0 | 21 | 0.9286 | 0.5 | | 0.1342 | 8.0 | 24 | 0.4063 | 1.0 | | 0.0851 | 9.0 | 27 | 0.2210 | 1.0 | | 0.0491 | 10.0 | 30 | 0.2302 | 1.0 | | 0.0211 | 11.0 | 33 | 0.4020 | 0.75 | | 0.017 | 12.0 | 36 | 0.2382 | 1.0 | | 0.0084 | 13.0 | 39 | 0.0852 | 1.0 | | 0.0051 | 14.0 | 42 | 0.0354 | 1.0 | | 0.0047 | 15.0 | 45 | 0.0208 | 1.0 | | 0.0029 | 16.0 | 48 | 0.0155 | 1.0 | | 0.0022 | 17.0 | 51 | 0.0139 | 1.0 | | 0.0019 | 18.0 | 54 | 0.0144 | 1.0 | | 0.0016 | 19.0 | 57 | 0.0168 | 1.0 | | 0.0013 | 20.0 | 60 | 0.0231 | 1.0 | | 0.0011 | 21.0 | 63 | 0.0369 | 1.0 | | 0.0009 | 22.0 | 66 | 0.0528 | 1.0 | | 0.001 | 23.0 | 69 | 0.0639 | 1.0 | | 0.0009 | 24.0 | 72 | 0.0670 | 1.0 | | 0.0009 | 25.0 | 75 | 0.0526 | 1.0 | | 0.0008 | 26.0 | 78 | 0.0425 | 1.0 | | 0.0011 | 27.0 | 81 | 0.0135 | 1.0 | | 0.0007 | 28.0 | 84 | 0.0076 | 1.0 | | 0.0007 | 29.0 | 87 | 0.0057 | 1.0 | | 0.0007 | 30.0 | 90 | 0.0049 | 1.0 | | 0.0008 | 31.0 | 93 | 0.0045 | 1.0 | | 0.0007 | 32.0 | 96 | 0.0044 | 1.0 | | 0.0008 | 33.0 | 99 | 0.0043 | 1.0 | | 0.0005 | 34.0 | 102 | 0.0044 | 1.0 | | 0.0006 | 35.0 | 105 | 0.0045 | 1.0 | | 0.0006 | 36.0 | 108 | 0.0046 | 1.0 | | 0.0007 | 37.0 | 111 | 0.0048 | 1.0 | | 0.0006 | 38.0 | 114 | 0.0049 | 1.0 | | 0.0005 | 39.0 | 117 | 0.0050 | 1.0 | | 0.0005 | 40.0 | 120 | 0.0050 | 1.0 | | 0.0004 | 41.0 | 123 | 0.0051 | 1.0 | | 0.0005 | 42.0 | 126 | 0.0051 | 1.0 | | 0.0004 | 43.0 | 129 | 0.0051 | 1.0 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
SetFit/deberta-v3-large__sst2__train-8-6
fcca7b07e29d3e61d8c7c82db2cf48d61bb1ec3d
2022-02-10T09:46:57.000Z
[ "pytorch", "deberta-v2", "text-classification", "transformers", "generated_from_trainer", "license:mit", "model-index" ]
text-classification
false
SetFit
null
SetFit/deberta-v3-large__sst2__train-8-6
5
null
transformers
16,266
--- license: mit tags: - generated_from_trainer metrics: - accuracy model-index: - name: deberta-v3-large__sst2__train-8-6 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # deberta-v3-large__sst2__train-8-6 This model is a fine-tuned version of [microsoft/deberta-v3-large](https://huggingface.co/microsoft/deberta-v3-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.4331 - Accuracy: 0.7106 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6486 | 1.0 | 3 | 0.7901 | 0.25 | | 0.6418 | 2.0 | 6 | 0.9259 | 0.25 | | 0.6169 | 3.0 | 9 | 1.0574 | 0.25 | | 0.5639 | 4.0 | 12 | 1.1372 | 0.25 | | 0.4562 | 5.0 | 15 | 0.6090 | 0.5 | | 0.3105 | 6.0 | 18 | 0.4435 | 1.0 | | 0.2303 | 7.0 | 21 | 0.2804 | 1.0 | | 0.1388 | 8.0 | 24 | 0.2205 | 1.0 | | 0.0918 | 9.0 | 27 | 0.1282 | 1.0 | | 0.0447 | 10.0 | 30 | 0.0643 | 1.0 | | 0.0297 | 11.0 | 33 | 0.0361 | 1.0 | | 0.0159 | 12.0 | 36 | 0.0211 | 1.0 | | 0.0102 | 13.0 | 39 | 0.0155 | 1.0 | | 0.0061 | 14.0 | 42 | 0.0158 | 1.0 | | 0.0049 | 15.0 | 45 | 0.0189 | 1.0 | | 0.0035 | 16.0 | 48 | 0.0254 | 1.0 | | 0.0027 | 17.0 | 51 | 0.0305 | 1.0 | | 0.0021 | 18.0 | 54 | 0.0287 | 1.0 | | 0.0016 | 19.0 | 57 | 0.0215 | 1.0 | | 0.0016 | 20.0 | 60 | 0.0163 | 1.0 | | 0.0014 | 21.0 | 63 | 0.0138 | 1.0 | | 0.0015 | 22.0 | 66 | 0.0131 | 1.0 | | 0.001 | 23.0 | 69 | 0.0132 | 1.0 | | 0.0014 | 24.0 | 72 | 0.0126 | 1.0 | | 0.0011 | 25.0 | 75 | 0.0125 | 1.0 | | 0.001 | 26.0 | 78 | 0.0119 | 1.0 | | 0.0008 | 27.0 | 81 | 0.0110 | 1.0 | | 0.0007 | 28.0 | 84 | 0.0106 | 1.0 | | 0.0008 | 29.0 | 87 | 0.0095 | 1.0 | | 0.0009 | 30.0 | 90 | 0.0089 | 1.0 | | 0.0008 | 31.0 | 93 | 0.0083 | 1.0 | | 0.0007 | 32.0 | 96 | 0.0075 | 1.0 | | 0.0008 | 33.0 | 99 | 0.0066 | 1.0 | | 0.0006 | 34.0 | 102 | 0.0059 | 1.0 | | 0.0007 | 35.0 | 105 | 0.0054 | 1.0 | | 0.0008 | 36.0 | 108 | 0.0051 | 1.0 | | 0.0007 | 37.0 | 111 | 0.0049 | 1.0 | | 0.0007 | 38.0 | 114 | 0.0047 | 1.0 | | 0.0006 | 39.0 | 117 | 0.0045 | 1.0 | | 0.0006 | 40.0 | 120 | 0.0046 | 1.0 | | 0.0005 | 41.0 | 123 | 0.0045 | 1.0 | | 0.0006 | 42.0 | 126 | 0.0044 | 1.0 | | 0.0006 | 43.0 | 129 | 0.0043 | 1.0 | | 0.0006 | 44.0 | 132 | 0.0044 | 1.0 | | 0.0005 | 45.0 | 135 | 0.0045 | 1.0 | | 0.0006 | 46.0 | 138 | 0.0043 | 1.0 | | 0.0006 | 47.0 | 141 | 0.0043 | 1.0 | | 0.0006 | 48.0 | 144 | 0.0041 | 1.0 | | 0.0007 | 49.0 | 147 | 0.0042 | 1.0 | | 0.0005 | 50.0 | 150 | 0.0042 | 1.0 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
SetFit/deberta-v3-large__sst2__train-8-9
3d9b0c95622815f22bf9355b0f6740accbb289c7
2022-02-10T10:10:14.000Z
[ "pytorch", "deberta-v2", "text-classification", "transformers", "generated_from_trainer", "license:mit", "model-index" ]
text-classification
false
SetFit
null
SetFit/deberta-v3-large__sst2__train-8-9
5
null
transformers
16,267
--- license: mit tags: - generated_from_trainer metrics: - accuracy model-index: - name: deberta-v3-large__sst2__train-8-9 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # deberta-v3-large__sst2__train-8-9 This model is a fine-tuned version of [microsoft/deberta-v3-large](https://huggingface.co/microsoft/deberta-v3-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6013 - Accuracy: 0.7210 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6757 | 1.0 | 3 | 0.7810 | 0.25 | | 0.6506 | 2.0 | 6 | 0.8102 | 0.25 | | 0.6463 | 3.0 | 9 | 0.8313 | 0.25 | | 0.5813 | 4.0 | 12 | 0.8858 | 0.25 | | 0.4635 | 5.0 | 15 | 0.8220 | 0.25 | | 0.3992 | 6.0 | 18 | 0.7226 | 0.5 | | 0.3281 | 7.0 | 21 | 0.6707 | 0.75 | | 0.2276 | 8.0 | 24 | 0.7515 | 0.75 | | 0.1674 | 9.0 | 27 | 0.6971 | 0.75 | | 0.0873 | 10.0 | 30 | 0.5419 | 0.75 | | 0.0525 | 11.0 | 33 | 0.5025 | 0.75 | | 0.0286 | 12.0 | 36 | 0.5229 | 0.75 | | 0.0149 | 13.0 | 39 | 0.5660 | 0.75 | | 0.0082 | 14.0 | 42 | 0.6954 | 0.75 | | 0.006 | 15.0 | 45 | 0.8649 | 0.75 | | 0.0043 | 16.0 | 48 | 1.0011 | 0.75 | | 0.0035 | 17.0 | 51 | 1.0909 | 0.75 | | 0.0021 | 18.0 | 54 | 1.1615 | 0.75 | | 0.0017 | 19.0 | 57 | 1.2147 | 0.75 | | 0.0013 | 20.0 | 60 | 1.2585 | 0.75 | | 0.0016 | 21.0 | 63 | 1.2917 | 0.75 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
SetFit/distilbert-base-uncased__hate_speech_offensive__train-16-1
752da4bb58b9d36dec8cb28e47885386f82ae71b
2022-02-10T07:50:12.000Z
[ "pytorch", "distilbert", "text-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
SetFit
null
SetFit/distilbert-base-uncased__hate_speech_offensive__train-16-1
5
null
transformers
16,268
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: distilbert-base-uncased__hate_speech_offensive__train-16-1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__hate_speech_offensive__train-16-1 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.0424 - Accuracy: 0.5355 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.0989 | 1.0 | 10 | 1.1049 | 0.1 | | 1.0641 | 2.0 | 20 | 1.0768 | 0.3 | | 0.9742 | 3.0 | 30 | 1.0430 | 0.4 | | 0.8765 | 4.0 | 40 | 1.0058 | 0.4 | | 0.6979 | 5.0 | 50 | 0.8488 | 0.7 | | 0.563 | 6.0 | 60 | 0.7221 | 0.7 | | 0.4135 | 7.0 | 70 | 0.6587 | 0.8 | | 0.2509 | 8.0 | 80 | 0.5577 | 0.7 | | 0.0943 | 9.0 | 90 | 0.5840 | 0.7 | | 0.0541 | 10.0 | 100 | 0.6959 | 0.7 | | 0.0362 | 11.0 | 110 | 0.6884 | 0.6 | | 0.0254 | 12.0 | 120 | 0.9263 | 0.6 | | 0.0184 | 13.0 | 130 | 0.7992 | 0.6 | | 0.0172 | 14.0 | 140 | 0.7351 | 0.6 | | 0.0131 | 15.0 | 150 | 0.7664 | 0.6 | | 0.0117 | 16.0 | 160 | 0.8262 | 0.6 | | 0.0101 | 17.0 | 170 | 0.8839 | 0.6 | | 0.0089 | 18.0 | 180 | 0.9018 | 0.6 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
SetFit/distilbert-base-uncased__hate_speech_offensive__train-16-2
f3d788beeb9ffef46052da43d3cd775355f4f8a2
2022-02-10T07:51:21.000Z
[ "pytorch", "distilbert", "text-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
SetFit
null
SetFit/distilbert-base-uncased__hate_speech_offensive__train-16-2
5
null
transformers
16,269
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: distilbert-base-uncased__hate_speech_offensive__train-16-2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__hate_speech_offensive__train-16-2 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.9210 - Accuracy: 0.5635 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.0915 | 1.0 | 10 | 1.1051 | 0.4 | | 1.0663 | 2.0 | 20 | 1.0794 | 0.3 | | 1.0307 | 3.0 | 30 | 1.0664 | 0.5 | | 0.9443 | 4.0 | 40 | 1.0729 | 0.5 | | 0.8373 | 5.0 | 50 | 1.0175 | 0.4 | | 0.6892 | 6.0 | 60 | 0.9624 | 0.5 | | 0.538 | 7.0 | 70 | 0.9924 | 0.5 | | 0.4173 | 8.0 | 80 | 1.0136 | 0.6 | | 0.1846 | 9.0 | 90 | 1.0683 | 0.6 | | 0.1125 | 10.0 | 100 | 1.2376 | 0.6 | | 0.0754 | 11.0 | 110 | 1.2537 | 0.6 | | 0.0401 | 12.0 | 120 | 1.4387 | 0.6 | | 0.0285 | 13.0 | 130 | 1.5702 | 0.6 | | 0.0241 | 14.0 | 140 | 1.6795 | 0.6 | | 0.0175 | 15.0 | 150 | 1.7228 | 0.6 | | 0.0147 | 16.0 | 160 | 1.7892 | 0.6 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
SetFit/distilbert-base-uncased__hate_speech_offensive__train-16-3
1b1023bb8dcac244acb35d3c68c5afcd2a6e6b08
2022-02-10T07:52:27.000Z
[ "pytorch", "distilbert", "text-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
SetFit
null
SetFit/distilbert-base-uncased__hate_speech_offensive__train-16-3
5
null
transformers
16,270
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: distilbert-base-uncased__hate_speech_offensive__train-16-3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__hate_speech_offensive__train-16-3 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.0675 - Accuracy: 0.44 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.0951 | 1.0 | 10 | 1.1346 | 0.1 | | 1.0424 | 2.0 | 20 | 1.1120 | 0.2 | | 0.957 | 3.0 | 30 | 1.1002 | 0.3 | | 0.7889 | 4.0 | 40 | 1.0838 | 0.4 | | 0.6162 | 5.0 | 50 | 1.0935 | 0.5 | | 0.4849 | 6.0 | 60 | 1.0867 | 0.5 | | 0.3089 | 7.0 | 70 | 1.1145 | 0.5 | | 0.2145 | 8.0 | 80 | 1.1278 | 0.6 | | 0.0805 | 9.0 | 90 | 1.2801 | 0.6 | | 0.0497 | 10.0 | 100 | 1.3296 | 0.6 | | 0.0328 | 11.0 | 110 | 1.2913 | 0.6 | | 0.0229 | 12.0 | 120 | 1.3692 | 0.6 | | 0.0186 | 13.0 | 130 | 1.4642 | 0.6 | | 0.0161 | 14.0 | 140 | 1.5568 | 0.6 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
SetFit/distilbert-base-uncased__hate_speech_offensive__train-16-4
559e5ec22d824b31ed009b42a02706092925e935
2022-02-10T07:53:38.000Z
[ "pytorch", "distilbert", "text-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
SetFit
null
SetFit/distilbert-base-uncased__hate_speech_offensive__train-16-4
5
null
transformers
16,271
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: distilbert-base-uncased__hate_speech_offensive__train-16-4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__hate_speech_offensive__train-16-4 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.0903 - Accuracy: 0.4805 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.0974 | 1.0 | 10 | 1.1139 | 0.1 | | 1.0637 | 2.0 | 20 | 1.0988 | 0.1 | | 0.9758 | 3.0 | 30 | 1.1013 | 0.1 | | 0.9012 | 4.0 | 40 | 1.0769 | 0.3 | | 0.6993 | 5.0 | 50 | 1.0484 | 0.6 | | 0.5676 | 6.0 | 60 | 1.0223 | 0.6 | | 0.4069 | 7.0 | 70 | 0.9190 | 0.6 | | 0.3192 | 8.0 | 80 | 1.1370 | 0.6 | | 0.1112 | 9.0 | 90 | 1.1728 | 0.6 | | 0.07 | 10.0 | 100 | 1.1998 | 0.6 | | 0.0397 | 11.0 | 110 | 1.3700 | 0.6 | | 0.027 | 12.0 | 120 | 1.3329 | 0.6 | | 0.021 | 13.0 | 130 | 1.2697 | 0.6 | | 0.0177 | 14.0 | 140 | 1.4195 | 0.6 | | 0.0142 | 15.0 | 150 | 1.5342 | 0.6 | | 0.0118 | 16.0 | 160 | 1.5999 | 0.6 | | 0.0108 | 17.0 | 170 | 1.6327 | 0.6 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
SetFit/distilbert-base-uncased__hate_speech_offensive__train-16-5
c35fde6d8f4447e859572569cdfd6cba483f4b4b
2022-02-10T07:54:46.000Z
[ "pytorch", "distilbert", "text-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
SetFit
null
SetFit/distilbert-base-uncased__hate_speech_offensive__train-16-5
5
null
transformers
16,272
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: distilbert-base-uncased__hate_speech_offensive__train-16-5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__hate_speech_offensive__train-16-5 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.9907 - Accuracy: 0.49 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.0941 | 1.0 | 10 | 1.1287 | 0.2 | | 1.0481 | 2.0 | 20 | 1.1136 | 0.2 | | 0.9498 | 3.0 | 30 | 1.1200 | 0.2 | | 0.8157 | 4.0 | 40 | 1.0771 | 0.2 | | 0.65 | 5.0 | 50 | 0.9733 | 0.4 | | 0.5021 | 6.0 | 60 | 1.0626 | 0.4 | | 0.3358 | 7.0 | 70 | 1.0787 | 0.4 | | 0.2017 | 8.0 | 80 | 1.3183 | 0.4 | | 0.088 | 9.0 | 90 | 1.2204 | 0.5 | | 0.0527 | 10.0 | 100 | 1.6892 | 0.4 | | 0.0337 | 11.0 | 110 | 1.6967 | 0.5 | | 0.0238 | 12.0 | 120 | 1.5436 | 0.5 | | 0.0183 | 13.0 | 130 | 1.7447 | 0.4 | | 0.0159 | 14.0 | 140 | 1.8999 | 0.4 | | 0.014 | 15.0 | 150 | 1.9004 | 0.4 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
SetFit/distilbert-base-uncased__hate_speech_offensive__train-16-6
e2f121b3afd16e0406cfba80e63cf2ddaae85597
2022-02-10T07:55:56.000Z
[ "pytorch", "distilbert", "text-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
SetFit
null
SetFit/distilbert-base-uncased__hate_speech_offensive__train-16-6
5
null
transformers
16,273
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: distilbert-base-uncased__hate_speech_offensive__train-16-6 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__hate_speech_offensive__train-16-6 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.8331 - Accuracy: 0.625 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.0881 | 1.0 | 10 | 1.1248 | 0.1 | | 1.0586 | 2.0 | 20 | 1.1162 | 0.2 | | 0.9834 | 3.0 | 30 | 1.1199 | 0.3 | | 0.9271 | 4.0 | 40 | 1.0740 | 0.3 | | 0.7663 | 5.0 | 50 | 1.0183 | 0.5 | | 0.6042 | 6.0 | 60 | 1.0259 | 0.5 | | 0.4482 | 7.0 | 70 | 0.8699 | 0.7 | | 0.3072 | 8.0 | 80 | 1.0615 | 0.5 | | 0.1458 | 9.0 | 90 | 1.0164 | 0.5 | | 0.0838 | 10.0 | 100 | 1.0620 | 0.5 | | 0.055 | 11.0 | 110 | 1.1829 | 0.5 | | 0.0347 | 12.0 | 120 | 1.2815 | 0.4 | | 0.0244 | 13.0 | 130 | 1.2607 | 0.6 | | 0.0213 | 14.0 | 140 | 1.3695 | 0.5 | | 0.0169 | 15.0 | 150 | 1.4397 | 0.5 | | 0.0141 | 16.0 | 160 | 1.4388 | 0.6 | | 0.0122 | 17.0 | 170 | 1.4242 | 0.6 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
SetFit/distilbert-base-uncased__hate_speech_offensive__train-16-9
6ca41b234ffd7dead95be68ada9e8288974e1479
2022-02-10T07:59:15.000Z
[ "pytorch", "distilbert", "text-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
SetFit
null
SetFit/distilbert-base-uncased__hate_speech_offensive__train-16-9
5
null
transformers
16,274
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: distilbert-base-uncased__hate_speech_offensive__train-16-9 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__hate_speech_offensive__train-16-9 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.1121 - Accuracy: 0.16 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.1038 | 1.0 | 10 | 1.1243 | 0.1 | | 1.0859 | 2.0 | 20 | 1.1182 | 0.2 | | 1.0234 | 3.0 | 30 | 1.1442 | 0.3 | | 0.9493 | 4.0 | 40 | 1.2239 | 0.1 | | 0.8114 | 5.0 | 50 | 1.2023 | 0.4 | | 0.6464 | 6.0 | 60 | 1.2329 | 0.4 | | 0.4731 | 7.0 | 70 | 1.2971 | 0.5 | | 0.3355 | 8.0 | 80 | 1.3913 | 0.4 | | 0.1268 | 9.0 | 90 | 1.4670 | 0.5 | | 0.0747 | 10.0 | 100 | 1.7961 | 0.4 | | 0.0449 | 11.0 | 110 | 1.8168 | 0.5 | | 0.0307 | 12.0 | 120 | 1.9307 | 0.4 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
SetFit/distilbert-base-uncased__hate_speech_offensive__train-32-0
0fc8ee51756ab85370c4e5799bcb7eb20cc97f5b
2022-02-10T08:00:38.000Z
[ "pytorch", "distilbert", "text-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
SetFit
null
SetFit/distilbert-base-uncased__hate_speech_offensive__train-32-0
5
null
transformers
16,275
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: distilbert-base-uncased__hate_speech_offensive__train-32-0 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__hate_speech_offensive__train-32-0 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7714 - Accuracy: 0.705 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.0871 | 1.0 | 19 | 1.0704 | 0.45 | | 1.0019 | 2.0 | 38 | 1.0167 | 0.55 | | 0.8412 | 3.0 | 57 | 0.9134 | 0.55 | | 0.6047 | 4.0 | 76 | 0.8430 | 0.6 | | 0.3746 | 5.0 | 95 | 0.8315 | 0.6 | | 0.1885 | 6.0 | 114 | 0.8585 | 0.6 | | 0.0772 | 7.0 | 133 | 0.9443 | 0.65 | | 0.0312 | 8.0 | 152 | 1.1019 | 0.65 | | 0.0161 | 9.0 | 171 | 1.1420 | 0.65 | | 0.0102 | 10.0 | 190 | 1.2773 | 0.65 | | 0.0077 | 11.0 | 209 | 1.2454 | 0.65 | | 0.0064 | 12.0 | 228 | 1.2785 | 0.65 | | 0.006 | 13.0 | 247 | 1.3834 | 0.65 | | 0.0045 | 14.0 | 266 | 1.4139 | 0.65 | | 0.0043 | 15.0 | 285 | 1.4056 | 0.65 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
SetFit/distilbert-base-uncased__hate_speech_offensive__train-32-2
44b2982c8c1676a2612f6be9437ba37b58435e1d
2022-02-10T08:02:54.000Z
[ "pytorch", "distilbert", "text-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
SetFit
null
SetFit/distilbert-base-uncased__hate_speech_offensive__train-32-2
5
null
transformers
16,276
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: distilbert-base-uncased__hate_speech_offensive__train-32-2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__hate_speech_offensive__train-32-2 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7136 - Accuracy: 0.679 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.1052 | 1.0 | 19 | 1.0726 | 0.45 | | 1.0421 | 2.0 | 38 | 1.0225 | 0.5 | | 0.9173 | 3.0 | 57 | 0.9164 | 0.6 | | 0.6822 | 4.0 | 76 | 0.8251 | 0.7 | | 0.4407 | 5.0 | 95 | 0.8908 | 0.5 | | 0.2367 | 6.0 | 114 | 0.6772 | 0.75 | | 0.1145 | 7.0 | 133 | 0.7792 | 0.65 | | 0.0479 | 8.0 | 152 | 1.0657 | 0.6 | | 0.0186 | 9.0 | 171 | 1.2228 | 0.65 | | 0.0111 | 10.0 | 190 | 1.1100 | 0.6 | | 0.0083 | 11.0 | 209 | 1.1991 | 0.65 | | 0.0067 | 12.0 | 228 | 1.2654 | 0.65 | | 0.0061 | 13.0 | 247 | 1.2837 | 0.65 | | 0.0046 | 14.0 | 266 | 1.2860 | 0.6 | | 0.0043 | 15.0 | 285 | 1.3160 | 0.65 | | 0.0037 | 16.0 | 304 | 1.3323 | 0.65 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
SetFit/distilbert-base-uncased__hate_speech_offensive__train-32-5
5bcadc624a6deb964d7548f2429632bb19f85d98
2022-02-10T08:06:38.000Z
[ "pytorch", "distilbert", "text-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
SetFit
null
SetFit/distilbert-base-uncased__hate_speech_offensive__train-32-5
5
null
transformers
16,277
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: distilbert-base-uncased__hate_speech_offensive__train-32-5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__hate_speech_offensive__train-32-5 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.1327 - Accuracy: 0.57 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.0972 | 1.0 | 19 | 1.0470 | 0.45 | | 0.9738 | 2.0 | 38 | 0.9244 | 0.65 | | 0.7722 | 3.0 | 57 | 0.8612 | 0.65 | | 0.4929 | 4.0 | 76 | 0.6759 | 0.75 | | 0.2435 | 5.0 | 95 | 0.7273 | 0.7 | | 0.0929 | 6.0 | 114 | 0.6444 | 0.85 | | 0.0357 | 7.0 | 133 | 0.7671 | 0.8 | | 0.0173 | 8.0 | 152 | 0.7599 | 0.75 | | 0.0121 | 9.0 | 171 | 0.8140 | 0.8 | | 0.0081 | 10.0 | 190 | 0.7861 | 0.8 | | 0.0066 | 11.0 | 209 | 0.8318 | 0.8 | | 0.0057 | 12.0 | 228 | 0.8777 | 0.8 | | 0.0053 | 13.0 | 247 | 0.8501 | 0.8 | | 0.004 | 14.0 | 266 | 0.8603 | 0.8 | | 0.004 | 15.0 | 285 | 0.8787 | 0.8 | | 0.0034 | 16.0 | 304 | 0.8969 | 0.8 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
SetFit/distilbert-base-uncased__hate_speech_offensive__train-32-9
7c047362b64c3e987550dc859e15a11c68d8e058
2022-02-10T08:11:34.000Z
[ "pytorch", "distilbert", "text-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
SetFit
null
SetFit/distilbert-base-uncased__hate_speech_offensive__train-32-9
5
null
transformers
16,278
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: distilbert-base-uncased__hate_speech_offensive__train-32-9 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__hate_speech_offensive__train-32-9 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7075 - Accuracy: 0.692 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.1054 | 1.0 | 19 | 1.0938 | 0.35 | | 1.0338 | 2.0 | 38 | 1.0563 | 0.65 | | 0.8622 | 3.0 | 57 | 0.9372 | 0.6 | | 0.5919 | 4.0 | 76 | 0.8461 | 0.6 | | 0.3357 | 5.0 | 95 | 1.0206 | 0.45 | | 0.1621 | 6.0 | 114 | 0.9802 | 0.7 | | 0.0637 | 7.0 | 133 | 1.2434 | 0.65 | | 0.0261 | 8.0 | 152 | 1.3865 | 0.65 | | 0.0156 | 9.0 | 171 | 1.4414 | 0.7 | | 0.01 | 10.0 | 190 | 1.5502 | 0.7 | | 0.0079 | 11.0 | 209 | 1.6102 | 0.7 | | 0.0062 | 12.0 | 228 | 1.6525 | 0.7 | | 0.0058 | 13.0 | 247 | 1.6884 | 0.7 | | 0.0046 | 14.0 | 266 | 1.7479 | 0.7 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
SetFit/distilbert-base-uncased__hate_speech_offensive__train-8-1
33a423bec09c69cc4f799d1a4abdfb4830cdc964
2022-02-10T07:40:19.000Z
[ "pytorch", "distilbert", "text-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
SetFit
null
SetFit/distilbert-base-uncased__hate_speech_offensive__train-8-1
5
null
transformers
16,279
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: distilbert-base-uncased__hate_speech_offensive__train-8-1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__hate_speech_offensive__train-8-1 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.1013 - Accuracy: 0.0915 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.0866 | 1.0 | 5 | 1.1363 | 0.0 | | 1.0439 | 2.0 | 10 | 1.1803 | 0.0 | | 1.0227 | 3.0 | 15 | 1.2162 | 0.2 | | 0.9111 | 4.0 | 20 | 1.2619 | 0.0 | | 0.8243 | 5.0 | 25 | 1.2929 | 0.2 | | 0.7488 | 6.0 | 30 | 1.3010 | 0.2 | | 0.62 | 7.0 | 35 | 1.3011 | 0.2 | | 0.5054 | 8.0 | 40 | 1.2931 | 0.4 | | 0.4191 | 9.0 | 45 | 1.3274 | 0.4 | | 0.4107 | 10.0 | 50 | 1.3259 | 0.4 | | 0.3376 | 11.0 | 55 | 1.2800 | 0.4 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
SetFit/distilbert-base-uncased__hate_speech_offensive__train-8-2
95a95894a3c90c6325a2ff58746156223e3f9a63
2022-02-10T07:41:07.000Z
[ "pytorch", "distilbert", "text-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
SetFit
null
SetFit/distilbert-base-uncased__hate_speech_offensive__train-8-2
5
null
transformers
16,280
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: distilbert-base-uncased__hate_speech_offensive__train-8-2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__hate_speech_offensive__train-8-2 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.1019 - Accuracy: 0.139 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.1082 | 1.0 | 5 | 1.1432 | 0.0 | | 1.0524 | 2.0 | 10 | 1.1613 | 0.0 | | 1.0641 | 3.0 | 15 | 1.1547 | 0.0 | | 0.9592 | 4.0 | 20 | 1.1680 | 0.0 | | 0.9085 | 5.0 | 25 | 1.1762 | 0.0 | | 0.8508 | 6.0 | 30 | 1.1809 | 0.2 | | 0.7263 | 7.0 | 35 | 1.1912 | 0.2 | | 0.6448 | 8.0 | 40 | 1.2100 | 0.2 | | 0.5378 | 9.0 | 45 | 1.2037 | 0.2 | | 0.5031 | 10.0 | 50 | 1.2096 | 0.2 | | 0.4041 | 11.0 | 55 | 1.2203 | 0.2 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
SetFit/distilbert-base-uncased__hate_speech_offensive__train-8-3
e5c25c54a54737e08629a07b56944111f9bdd10f
2022-02-10T07:42:05.000Z
[ "pytorch", "distilbert", "text-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
SetFit
null
SetFit/distilbert-base-uncased__hate_speech_offensive__train-8-3
5
null
transformers
16,281
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: distilbert-base-uncased__hate_speech_offensive__train-8-3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__hate_speech_offensive__train-8-3 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.9681 - Accuracy: 0.549 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.1073 | 1.0 | 5 | 1.1393 | 0.0 | | 1.0392 | 2.0 | 10 | 1.1729 | 0.0 | | 1.0302 | 3.0 | 15 | 1.1694 | 0.2 | | 0.9176 | 4.0 | 20 | 1.1846 | 0.2 | | 0.8339 | 5.0 | 25 | 1.1663 | 0.2 | | 0.7533 | 6.0 | 30 | 1.1513 | 0.4 | | 0.6327 | 7.0 | 35 | 1.1474 | 0.4 | | 0.4402 | 8.0 | 40 | 1.1385 | 0.4 | | 0.3752 | 9.0 | 45 | 1.0965 | 0.2 | | 0.3448 | 10.0 | 50 | 1.0357 | 0.2 | | 0.2582 | 11.0 | 55 | 1.0438 | 0.2 | | 0.1903 | 12.0 | 60 | 1.0561 | 0.2 | | 0.1479 | 13.0 | 65 | 1.0569 | 0.2 | | 0.1129 | 14.0 | 70 | 1.0455 | 0.2 | | 0.1071 | 15.0 | 75 | 1.0416 | 0.4 | | 0.0672 | 16.0 | 80 | 1.1164 | 0.4 | | 0.0561 | 17.0 | 85 | 1.1846 | 0.6 | | 0.0463 | 18.0 | 90 | 1.2040 | 0.6 | | 0.0431 | 19.0 | 95 | 1.2078 | 0.6 | | 0.0314 | 20.0 | 100 | 1.2368 | 0.6 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
SetFit/distilbert-base-uncased__hate_speech_offensive__train-8-4
1680542a3adb1f19763cbc446572d810c2e8847c
2022-02-10T07:42:59.000Z
[ "pytorch", "distilbert", "text-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
SetFit
null
SetFit/distilbert-base-uncased__hate_speech_offensive__train-8-4
5
null
transformers
16,282
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: distilbert-base-uncased__hate_speech_offensive__train-8-4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__hate_speech_offensive__train-8-4 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.1045 - Accuracy: 0.128 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.1115 | 1.0 | 5 | 1.1174 | 0.0 | | 1.0518 | 2.0 | 10 | 1.1379 | 0.0 | | 1.0445 | 3.0 | 15 | 1.1287 | 0.0 | | 0.9306 | 4.0 | 20 | 1.1324 | 0.2 | | 0.8242 | 5.0 | 25 | 1.1219 | 0.2 | | 0.7986 | 6.0 | 30 | 1.1369 | 0.4 | | 0.7369 | 7.0 | 35 | 1.1732 | 0.2 | | 0.534 | 8.0 | 40 | 1.1828 | 0.6 | | 0.4285 | 9.0 | 45 | 1.1482 | 0.6 | | 0.3691 | 10.0 | 50 | 1.1401 | 0.6 | | 0.3215 | 11.0 | 55 | 1.1286 | 0.6 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
SetFit/distilbert-base-uncased__hate_speech_offensive__train-8-9
3c2056a99d306db9801478e400ac0081d61a518e
2022-02-10T07:47:46.000Z
[ "pytorch", "distilbert", "text-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
SetFit
null
SetFit/distilbert-base-uncased__hate_speech_offensive__train-8-9
5
null
transformers
16,283
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: distilbert-base-uncased__hate_speech_offensive__train-8-9 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__hate_speech_offensive__train-8-9 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.0959 - Accuracy: 0.093 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.1068 | 1.0 | 5 | 1.1545 | 0.0 | | 1.0494 | 2.0 | 10 | 1.1971 | 0.0 | | 1.0612 | 3.0 | 15 | 1.2164 | 0.0 | | 0.9517 | 4.0 | 20 | 1.2545 | 0.0 | | 0.8874 | 5.0 | 25 | 1.2699 | 0.0 | | 0.8598 | 6.0 | 30 | 1.2835 | 0.0 | | 0.7006 | 7.0 | 35 | 1.3139 | 0.0 | | 0.5969 | 8.0 | 40 | 1.3116 | 0.2 | | 0.4769 | 9.0 | 45 | 1.3124 | 0.4 | | 0.4352 | 10.0 | 50 | 1.3541 | 0.4 | | 0.3231 | 11.0 | 55 | 1.3919 | 0.4 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
SetFit/distilbert-base-uncased__sst2__train-16-1
c4278da3a761698eac84bdfa926b7e46ed270c68
2022-02-10T07:19:37.000Z
[ "pytorch", "distilbert", "text-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
SetFit
null
SetFit/distilbert-base-uncased__sst2__train-16-1
5
null
transformers
16,284
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: distilbert-base-uncased__sst2__train-16-1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__sst2__train-16-1 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6012 - Accuracy: 0.6766 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6983 | 1.0 | 7 | 0.7036 | 0.2857 | | 0.6836 | 2.0 | 14 | 0.7181 | 0.2857 | | 0.645 | 3.0 | 21 | 0.7381 | 0.2857 | | 0.5902 | 4.0 | 28 | 0.7746 | 0.2857 | | 0.5799 | 5.0 | 35 | 0.7242 | 0.5714 | | 0.3584 | 6.0 | 42 | 0.6935 | 0.5714 | | 0.2596 | 7.0 | 49 | 0.7041 | 0.5714 | | 0.1815 | 8.0 | 56 | 0.5930 | 0.7143 | | 0.0827 | 9.0 | 63 | 0.6976 | 0.7143 | | 0.0613 | 10.0 | 70 | 0.7346 | 0.7143 | | 0.0356 | 11.0 | 77 | 0.6992 | 0.5714 | | 0.0158 | 12.0 | 84 | 0.7328 | 0.5714 | | 0.013 | 13.0 | 91 | 0.7819 | 0.5714 | | 0.0103 | 14.0 | 98 | 0.8589 | 0.5714 | | 0.0087 | 15.0 | 105 | 0.9177 | 0.5714 | | 0.0076 | 16.0 | 112 | 0.9519 | 0.5714 | | 0.0078 | 17.0 | 119 | 0.9556 | 0.5714 | | 0.006 | 18.0 | 126 | 0.9542 | 0.5714 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
SetFit/distilbert-base-uncased__sst2__train-32-1
b433654fe3de0c798a9c21f413cdca7ef2f88fe8
2022-02-10T07:29:19.000Z
[ "pytorch", "distilbert", "text-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
SetFit
null
SetFit/distilbert-base-uncased__sst2__train-32-1
5
null
transformers
16,285
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: distilbert-base-uncased__sst2__train-32-1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__sst2__train-32-1 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6492 - Accuracy: 0.6551 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.7106 | 1.0 | 13 | 0.6850 | 0.6154 | | 0.631 | 2.0 | 26 | 0.6632 | 0.6923 | | 0.5643 | 3.0 | 39 | 0.6247 | 0.7692 | | 0.3992 | 4.0 | 52 | 0.5948 | 0.7692 | | 0.1928 | 5.0 | 65 | 0.5803 | 0.7692 | | 0.0821 | 6.0 | 78 | 0.6404 | 0.6923 | | 0.0294 | 7.0 | 91 | 0.7387 | 0.6923 | | 0.0141 | 8.0 | 104 | 0.8270 | 0.6923 | | 0.0082 | 9.0 | 117 | 0.8496 | 0.6923 | | 0.0064 | 10.0 | 130 | 0.8679 | 0.6923 | | 0.005 | 11.0 | 143 | 0.8914 | 0.6923 | | 0.0036 | 12.0 | 156 | 0.9278 | 0.6923 | | 0.0031 | 13.0 | 169 | 0.9552 | 0.6923 | | 0.0029 | 14.0 | 182 | 0.9745 | 0.6923 | | 0.0028 | 15.0 | 195 | 0.9785 | 0.6923 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
SetFit/distilbert-base-uncased__sst2__train-32-4
80f38513cce15ca1b4ec577dde7560298c106fe3
2022-02-10T07:32:01.000Z
[ "pytorch", "distilbert", "text-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
SetFit
null
SetFit/distilbert-base-uncased__sst2__train-32-4
5
null
transformers
16,286
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: distilbert-base-uncased__sst2__train-32-4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__sst2__train-32-4 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5001 - Accuracy: 0.7650 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.7175 | 1.0 | 13 | 0.6822 | 0.5385 | | 0.6559 | 2.0 | 26 | 0.6533 | 0.6154 | | 0.6052 | 3.0 | 39 | 0.5762 | 0.7692 | | 0.4587 | 4.0 | 52 | 0.4477 | 0.8462 | | 0.2459 | 5.0 | 65 | 0.4288 | 0.7692 | | 0.1001 | 6.0 | 78 | 0.5219 | 0.7692 | | 0.0308 | 7.0 | 91 | 0.8540 | 0.7692 | | 0.014 | 8.0 | 104 | 0.7789 | 0.7692 | | 0.0083 | 9.0 | 117 | 0.7996 | 0.7692 | | 0.0064 | 10.0 | 130 | 0.8342 | 0.7692 | | 0.0049 | 11.0 | 143 | 0.8612 | 0.7692 | | 0.0036 | 12.0 | 156 | 0.8834 | 0.7692 | | 0.0032 | 13.0 | 169 | 0.9067 | 0.7692 | | 0.003 | 14.0 | 182 | 0.9332 | 0.7692 | | 0.0028 | 15.0 | 195 | 0.9511 | 0.7692 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
SetFit/distilbert-base-uncased__sst2__train-32-8
b3a0768ce23436a27322dc546979320473ff546b
2022-02-10T07:35:34.000Z
[ "pytorch", "distilbert", "text-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
SetFit
null
SetFit/distilbert-base-uncased__sst2__train-32-8
5
null
transformers
16,287
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: distilbert-base-uncased__sst2__train-32-8 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__sst2__train-32-8 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6880 - Accuracy: 0.5014 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.712 | 1.0 | 13 | 0.6936 | 0.5385 | | 0.665 | 2.0 | 26 | 0.6960 | 0.3846 | | 0.6112 | 3.0 | 39 | 0.7138 | 0.3846 | | 0.4521 | 4.0 | 52 | 0.8243 | 0.4615 | | 0.2627 | 5.0 | 65 | 0.7723 | 0.6154 | | 0.0928 | 6.0 | 78 | 1.2666 | 0.5385 | | 0.0312 | 7.0 | 91 | 1.2306 | 0.6154 | | 0.0132 | 8.0 | 104 | 1.3385 | 0.6154 | | 0.0082 | 9.0 | 117 | 1.4584 | 0.6154 | | 0.0063 | 10.0 | 130 | 1.5429 | 0.6154 | | 0.0049 | 11.0 | 143 | 1.5913 | 0.6154 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
SetFit/distilbert-base-uncased__subj__train-8-4
00703a6c60e53799c895da5db58d043f259f752c
2022-02-09T20:25:34.000Z
[ "pytorch", "distilbert", "text-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
false
SetFit
null
SetFit/distilbert-base-uncased__subj__train-8-4
5
null
transformers
16,288
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: distilbert-base-uncased__subj__train-8-4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__subj__train-8-4 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3305 - Accuracy: 0.8565 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6991 | 1.0 | 3 | 0.6772 | 0.75 | | 0.6707 | 2.0 | 6 | 0.6704 | 0.75 | | 0.6402 | 3.0 | 9 | 0.6608 | 1.0 | | 0.5789 | 4.0 | 12 | 0.6547 | 0.75 | | 0.5211 | 5.0 | 15 | 0.6434 | 0.75 | | 0.454 | 6.0 | 18 | 0.6102 | 1.0 | | 0.4187 | 7.0 | 21 | 0.5701 | 1.0 | | 0.3401 | 8.0 | 24 | 0.5289 | 1.0 | | 0.3107 | 9.0 | 27 | 0.4737 | 1.0 | | 0.2381 | 10.0 | 30 | 0.4255 | 1.0 | | 0.1982 | 11.0 | 33 | 0.3685 | 1.0 | | 0.1631 | 12.0 | 36 | 0.3200 | 1.0 | | 0.1234 | 13.0 | 39 | 0.2798 | 1.0 | | 0.0993 | 14.0 | 42 | 0.2455 | 1.0 | | 0.0781 | 15.0 | 45 | 0.2135 | 1.0 | | 0.0586 | 16.0 | 48 | 0.1891 | 1.0 | | 0.0513 | 17.0 | 51 | 0.1671 | 1.0 | | 0.043 | 18.0 | 54 | 0.1427 | 1.0 | | 0.0307 | 19.0 | 57 | 0.1225 | 1.0 | | 0.0273 | 20.0 | 60 | 0.1060 | 1.0 | | 0.0266 | 21.0 | 63 | 0.0920 | 1.0 | | 0.0233 | 22.0 | 66 | 0.0823 | 1.0 | | 0.0185 | 23.0 | 69 | 0.0751 | 1.0 | | 0.0173 | 24.0 | 72 | 0.0698 | 1.0 | | 0.0172 | 25.0 | 75 | 0.0651 | 1.0 | | 0.0142 | 26.0 | 78 | 0.0613 | 1.0 | | 0.0151 | 27.0 | 81 | 0.0583 | 1.0 | | 0.0117 | 28.0 | 84 | 0.0563 | 1.0 | | 0.0123 | 29.0 | 87 | 0.0546 | 1.0 | | 0.0121 | 30.0 | 90 | 0.0531 | 1.0 | | 0.0123 | 31.0 | 93 | 0.0511 | 1.0 | | 0.0112 | 32.0 | 96 | 0.0496 | 1.0 | | 0.0103 | 33.0 | 99 | 0.0481 | 1.0 | | 0.0086 | 34.0 | 102 | 0.0468 | 1.0 | | 0.0096 | 35.0 | 105 | 0.0457 | 1.0 | | 0.0107 | 36.0 | 108 | 0.0447 | 1.0 | | 0.0095 | 37.0 | 111 | 0.0439 | 1.0 | | 0.0102 | 38.0 | 114 | 0.0429 | 1.0 | | 0.0077 | 39.0 | 117 | 0.0422 | 1.0 | | 0.0092 | 40.0 | 120 | 0.0415 | 1.0 | | 0.0083 | 41.0 | 123 | 0.0409 | 1.0 | | 0.0094 | 42.0 | 126 | 0.0404 | 1.0 | | 0.0084 | 43.0 | 129 | 0.0400 | 1.0 | | 0.0085 | 44.0 | 132 | 0.0396 | 1.0 | | 0.0092 | 45.0 | 135 | 0.0392 | 1.0 | | 0.0076 | 46.0 | 138 | 0.0389 | 1.0 | | 0.0073 | 47.0 | 141 | 0.0388 | 1.0 | | 0.0085 | 48.0 | 144 | 0.0387 | 1.0 | | 0.0071 | 49.0 | 147 | 0.0386 | 1.0 | | 0.0079 | 50.0 | 150 | 0.0386 | 1.0 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
SetFit/distilbert-base-uncased__tweet_eval_stance__all-train
a2c5535e0d9a914022b3fd38952379de3f8362dc
2022-01-26T21:01:20.000Z
[ "pytorch", "distilbert", "text-classification", "transformers" ]
text-classification
false
SetFit
null
SetFit/distilbert-base-uncased__tweet_eval_stance__all-train
5
null
transformers
16,289
Entry not found
SharanSMenon/22-languages-bert-base-cased
4f721dcc6a206f2039e1540ebe304bf134952663
2022-01-15T19:54:58.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
SharanSMenon
null
SharanSMenon/22-languages-bert-base-cased
5
2
transformers
16,290
--- metrics: - accuracy widget: - text: "In war resolution, in defeat defiance, in victory magnanimity" - text: "en la guerra resolución en la derrota desafío en la victoria magnanimidad" --- [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1dqeUwS_DZ-urrmYzB29nTCBUltwJxhbh?usp=sharing) # 22 Language Identifier - BERT This model is trained to identify the following 22 different languages. - Arabic - Chinese - Dutch - English - Estonian - French - Hindi - Indonesian - Japanese - Korean - Latin - Persian - Portugese - Pushto - Romanian - Russian - Spanish - Swedish - Tamil - Thai - Turkish - Urdu ## Loading the model ```python from transformers import AutoTokenizer, AutoModelForSequenceClassification tokenizer = AutoTokenizer.from_pretrained("SharanSMenon/22-languages-bert-base-cased") model = AutoModelForSequenceClassification.from_pretrained("SharanSMenon/22-languages-bert-base-cased") ``` ## Inference ```python def predict(sentence): tokenized = tokenizer(sentence, return_tensors="pt") outputs = model(**tokenized) return model.config.id2label[outputs.logits.argmax(dim=1).item()] ``` ### Examples ```python sentence1 = "in war resolution, in defeat defiance, in victory magnanimity" predict(sentence1) # English sentence2 = "en la guerra resolución en la derrota desafío en la victoria magnanimidad" predict(sentence2) # Spanish sentence3 = "هذا هو أعظم إله على الإطلاق" predict(sentence3) # Arabic ```
SoLID/sgd-input-plan-constructor
3486f321ba871d3cd76f1bde03b09216dda9f988
2021-12-30T10:00:23.000Z
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
SoLID
null
SoLID/sgd-input-plan-constructor
5
null
transformers
16,291
Entry not found
SongRb/distilbert-base-uncased-finetuned-ner
d0f43d5fdc0593beb636232fa47e914609092272
2021-08-31T10:59:42.000Z
[ "pytorch", "tensorboard", "distilbert", "token-classification", "dataset:conll2003", "transformers", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible" ]
token-classification
false
SongRb
null
SongRb/distilbert-base-uncased-finetuned-ner
5
null
transformers
16,292
--- license: apache-2.0 tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model_index: - name: distilbert-base-uncased-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 args: conll2003 metric: name: Accuracy type: accuracy value: 0.9850826886110537 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-ner This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0746 - Precision: 0.9347 - Recall: 0.9426 - F1: 0.9386 - Accuracy: 0.9851 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0832 | 1.0 | 3511 | 0.0701 | 0.9317 | 0.9249 | 0.9283 | 0.9827 | | 0.0384 | 2.0 | 7022 | 0.0701 | 0.9282 | 0.9410 | 0.9346 | 0.9845 | | 0.0222 | 3.0 | 10533 | 0.0746 | 0.9347 | 0.9426 | 0.9386 | 0.9851 | ### Framework versions - Transformers 4.10.0.dev0 - Pytorch 1.8.1 - Datasets 1.11.0 - Tokenizers 0.10.3
SophieTr/PPO_training
8b24f77d6b4d12e6f0398aae75b226fb782aea28
2022-04-16T06:00:08.000Z
[ "pytorch", "pegasus", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
SophieTr
null
SophieTr/PPO_training
5
null
transformers
16,293
Entry not found
Sunbird/sunbird-mul-en
752f122551f006479555553ebac2196fd5c705b4
2022-01-05T15:24:57.000Z
[ "pytorch", "marian", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
Sunbird
null
Sunbird/sunbird-mul-en
5
null
transformers
16,294
Entry not found
SuperAI2-Machima/mt5-small-thai-qg
5e119d28031a230c1157f546ad60420725a49c11
2022-02-23T06:20:38.000Z
[ "pytorch", "mt5", "text2text-generation", "thai", "th", "dataset:NSC2018", "dataset:wiki-documents-nsc", "dataset:ThaiQACorpus-DevelopmentDataset", "transformers", "question-generation", "license:mit", "autotrain_compatible" ]
text2text-generation
false
SuperAI2-Machima
null
SuperAI2-Machima/mt5-small-thai-qg
5
4
transformers
16,295
--- tags: - question-generation language: - thai - th datasets: - NSC2018 - wiki-documents-nsc - ThaiQACorpus-DevelopmentDataset widget: - text: "โรงเรียนบ้านขุนด่าน ตั้งอยู่ที่ขุนด่าน จ.นครนายก" example_title: "Example 01" - text: "พลเอก ประยุทธ์ จันทร์โอชา (เกิด 21 มีนาคม พ.ศ. 2497) ชื่อเล่น ตู่ เป็นนักการเมืองและอดีตนายทหารบกชาวไทย" example_title: "Example 02" - text: "วันที่ 1 กันยายน 2550 12:00 น. ตำรวจภูธรจ.บุรีรัมย์บุกตรวจยึดไม้แปรรูปหวงห้ามกว่า 80 แผ่น" example_title: "Example 03" license: mit --- [SuperAI Engineer Season 2](https://superai.aiat.or.th/) , [Machima](https://machchima.superai.me/) [Google's mT5](https://github.com/google-research/multilingual-t5) , [Pollawat](https://huggingface.co/Pollawat/mt5-small-thai-qg) ```python from transformers import T5Tokenizer, T5ForConditionalGeneration, T5Config model = T5ForConditionalGeneration.from_pretrained('SuperAI2-Machima/mt5-small-thai-qg') tokenizer = T5Tokenizer.from_pretrained('SuperAI2-Machima/mt5-small-thai-qg') source_text = 'บุกยึดไม้เถื่อน อดีต ส.ส.บุรีรัมย์ เตรียมสร้างคฤหาสน์ทรงไทย 1 กันยายน 2550 12:00 น. ตำรวจภูธรจ.บุรีรัมย์บุกตรวจยึดไม้แปรรูปหวงห้ามกว่า 80 แผ่น' print('Predicted Summary Text : ') tokenized_text = tokenizer.encode(source_text, return_tensors="pt").to(device) summary_ids = model.generate(tokenized_text, num_beams=4, no_repeat_ngram_size=2, max_length=50, early_stopping=True) output = tokenizer.decode(summary_ids[0], skip_special_tokens=True) print(output) #Predicted Summary Text : #answer: 80 แผ่น question: ตํารวจภูธรจ.บุรีรัมย์บุกตรวจยึดไม้แปรรูปหวงห้ามกว่ากี่แผ่น ```
TehranNLP/bert-base-uncased-mnli
02962fb786a52d0d7d4025386b4d706c9d0a8b6d
2021-06-03T10:44:09.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
TehranNLP
null
TehranNLP/bert-base-uncased-mnli
5
null
transformers
16,296
Entry not found
TehranNLP-org/albert-base-v2-avg-mnli
48cd20c15492c7cdce2b56169ea1cb8e000334ff
2021-07-07T07:39:48.000Z
[ "pytorch", "albert", "text-classification", "transformers" ]
text-classification
false
TehranNLP-org
null
TehranNLP-org/albert-base-v2-avg-mnli
5
null
transformers
16,297
Entry not found
TehranNLP-org/bert-base-cased-avg-mnli
328781cdef3395b7ec3afea79607b44b34668ae4
2021-07-06T19:15:01.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
TehranNLP-org
null
TehranNLP-org/bert-base-cased-avg-mnli
5
null
transformers
16,298
Entry not found
TehranNLP-org/bert-base-uncased-avg-mnli
fda7128556981fa40859edcf477bf609f97cc5e2
2021-07-06T22:54:16.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
TehranNLP-org
null
TehranNLP-org/bert-base-uncased-avg-mnli
5
null
transformers
16,299
Entry not found