modelId
stringlengths
4
112
sha
stringlengths
40
40
lastModified
stringlengths
24
24
tags
sequence
pipeline_tag
stringclasses
29 values
private
bool
1 class
author
stringlengths
2
38
config
null
id
stringlengths
4
112
downloads
float64
0
36.8M
likes
float64
0
712
library_name
stringclasses
17 values
__index_level_0__
int64
0
38.5k
readme
stringlengths
0
186k
ai4bharat/IndicBARTSS
4b2669d25bc24a46ad2501c2b759451b7a4a1a26
2022-03-15T05:48:12.000Z
[ "pytorch", "mbart", "text2text-generation", "arxiv:2109.02903", "transformers", "autotrain_compatible" ]
text2text-generation
false
ai4bharat
null
ai4bharat/IndicBARTSS
2,151
2
transformers
1,300
IndicBARTSS is a multilingual, sequence-to-sequence pre-trained model focusing on Indic languages and English. It currently supports 11 Indian languages and is based on the mBART architecture. You can use IndicBARTSS model to build natural language generation applications for Indian languages by finetuning the model with supervised training data for tasks like machine translation, summarization, question generation, etc. Some salient features of the IndicBARTSS are: <ul> <li >Supported languages: Assamese, Bengali, Gujarati, Hindi, Marathi, Odiya, Punjabi, Kannada, Malayalam, Tamil, Telugu and English. Not all of these languages are supported by mBART50 and mT5. </li> <li >The model is much smaller than the mBART and mT5(-base) models, so less computationally expensive for finetuning and decoding. </li> <li> Trained on large Indic language corpora (452 million sentences and 9 billion tokens) which also includes Indian English content. </li> <li> Unlike ai4bharat/IndicBART each language is written in its own script so you do not need to perform any script mapping to/from Devanagari. </li> </ul> You can read more about IndicBARTSS in this <a href="https://arxiv.org/abs/2109.02903">paper</a>. For detailed documentation, look here: https://github.com/AI4Bharat/indic-bart/ and https://indicnlp.ai4bharat.org/indic-bart/ # Pre-training corpus We used the <a href="https://indicnlp.ai4bharat.org/corpora/">IndicCorp</a> data spanning 12 languages with 452 million sentences (9 billion tokens). The model was trained using the text-infilling objective used in mBART. # Usage: ``` from transformers import MBartForConditionalGeneration, AutoModelForSeq2SeqLM from transformers import AlbertTokenizer, AutoTokenizer tokenizer = AutoTokenizer.from_pretrained("ai4bharat/IndicBARTSS", do_lower_case=False, use_fast=False, keep_accents=True) # Or use tokenizer = AlbertTokenizer.from_pretrained("ai4bharat/IndicBARTSS", do_lower_case=False, use_fast=False, keep_accents=True) model = AutoModelForSeq2SeqLM.from_pretrained("ai4bharat/IndicBARTSS") # Or use model = MBartForConditionalGeneration.from_pretrained("ai4bharat/IndicBARTSS") # Some initial mapping bos_id = tokenizer._convert_token_to_id_with_added_voc("<s>") eos_id = tokenizer._convert_token_to_id_with_added_voc("</s>") pad_id = tokenizer._convert_token_to_id_with_added_voc("<pad>") # To get lang_id use any of ['<2as>', '<2bn>', '<2en>', '<2gu>', '<2hi>', '<2kn>', '<2ml>', '<2mr>', '<2or>', '<2pa>', '<2ta>', '<2te>'] # First tokenize the input and outputs. The format below is how IndicBARTSS was trained so the input should be "Sentence </s> <2xx>" where xx is the language code. Similarly, the output should be "<2yy> Sentence </s>". inp = tokenizer("I am a boy </s> <2en>", add_special_tokens=False, return_tensors="pt", padding=True).input_ids # tensor([[ 466, 1981, 80, 25573, 64001, 64004]]) out = tokenizer("<2hi> मैं एक लड़का हूँ </s>", add_special_tokens=False, return_tensors="pt", padding=True).input_ids # tensor([[64006, 942, 43, 32720, 8384, 64001]]) model_outputs=model(input_ids=inp, decoder_input_ids=out[:,0:-1], labels=out[:,1:]) # For loss model_outputs.loss ## This is not label smoothed. # For logits model_outputs.logits # For generation. Pardon the messiness. Note the decoder_start_token_id. model.eval() # Set dropouts to zero model_output=model.generate(inp, use_cache=True, num_beams=4, max_length=20, min_length=1, early_stopping=True, pad_token_id=pad_id, bos_token_id=bos_id, eos_token_id=eos_id, decoder_start_token_id=tokenizer._convert_token_to_id_with_added_voc("<2en>")) # Decode to get output strings decoded_output=tokenizer.decode(model_output[0], skip_special_tokens=True, clean_up_tokenization_spaces=False) print(decoded_output) # I am a boy # What if we mask? inp = tokenizer("I am [MASK] </s> <2en>", add_special_tokens=False, return_tensors="pt", padding=True).input_ids model_output=model.generate(inp, use_cache=True, num_beams=4, max_length=20, min_length=1, early_stopping=True, pad_token_id=pad_id, bos_token_id=bos_id, eos_token_id=eos_id, decoder_start_token_id=tokenizer._convert_token_to_id_with_added_voc("<2en>")) decoded_output=tokenizer.decode(model_output[0], skip_special_tokens=True, clean_up_tokenization_spaces=False) print(decoded_output) # I am happy inp = tokenizer("मैं [MASK] हूँ </s> <2hi>", add_special_tokens=False, return_tensors="pt", padding=True).input_ids model_output=model.generate(inp, use_cache=True, num_beams=4, max_length=20, min_length=1, early_stopping=True, pad_token_id=pad_id, bos_token_id=bos_id, eos_token_id=eos_id, decoder_start_token_id=tokenizer._convert_token_to_id_with_added_voc("<2en>")) decoded_output=tokenizer.decode(model_output[0], skip_special_tokens=True, clean_up_tokenization_spaces=False) print(decoded_output) # मैं जानता हूँ inp = tokenizer("मला [MASK] पाहिजे </s> <2mr>", add_special_tokens=False, return_tensors="pt", padding=True).input_ids model_output=model.generate(inp, use_cache=True, num_beams=4, max_length=20, min_length=1, early_stopping=True, pad_token_id=pad_id, bos_token_id=bos_id, eos_token_id=eos_id, decoder_start_token_id=tokenizer._convert_token_to_id_with_added_voc("<2en>")) decoded_output=tokenizer.decode(model_output[0], skip_special_tokens=True, clean_up_tokenization_spaces=False) print(decoded_output) # मला ओळखलं पाहिजे ``` # Notes: 1. This is compatible with the latest version of transformers but was developed with version 4.3.2 so consider using 4.3.2 if possible. 2. While I have only shown how to get logits and loss and how to generate outputs, you can do pretty much everything the MBartForConditionalGeneration class can do as in https://huggingface.co/docs/transformers/model_doc/mbart#transformers.MBartForConditionalGeneration 3. Note that the tokenizer I have used is based on sentencepiece and not BPE. Therefore, I used the AlbertTokenizer class and not the MBartTokenizer class. # Fine-tuning on a downstream task 1. If you wish to fine-tune this model, then you can do so using the <a href="https://github.com/prajdabre/yanmtt">YANMTT</a> toolkit, following the instructions <a href="https://github.com/AI4Bharat/indic-bart ">here</a>. 2. (Untested) Alternatively, you may use the official huggingface scripts for <a href="https://github.com/huggingface/transformers/tree/master/examples/pytorch/translation">translation</a> and <a href="https://github.com/huggingface/transformers/tree/master/examples/pytorch/summarization">summarization</a>. # Contributors <ul> <li> Raj Dabre </li> <li> Himani Shrotriya </li> <li> Anoop Kunchukuttan </li> <li> Ratish Puduppully </li> <li> Mitesh M. Khapra </li> <li> Pratyush Kumar </li> </ul> # Paper If you use IndicBARTSS, please cite the following paper: ``` @misc{dabre2021indicbart, title={IndicBART: A Pre-trained Model for Natural Language Generation of Indic Languages}, author={Raj Dabre and Himani Shrotriya and Anoop Kunchukuttan and Ratish Puduppully and Mitesh M. Khapra and Pratyush Kumar}, year={2021}, eprint={2109.02903}, archivePrefix={arXiv}, primaryClass={cs.CL} } ``` # License The model is available under the MIT License.
zjukg/OntoProtein
d27d23e56e1b565958a5016eaf82847fa08a427a
2022-04-12T14:42:54.000Z
[ "pytorch", "bert", "fill-mask", "protein", "dataset:ProteinKG25", "transformers", "protein language model", "autotrain_compatible" ]
fill-mask
false
zjukg
null
zjukg/OntoProtein
2,150
3
transformers
1,301
--- language: protein tags: - protein language model datasets: - ProteinKG25 widget: - text: "D L I P T S S K L V V [MASK] D T S L Q V K K A F F A L V T" --- # OntoProtein model Pretrained model on protein sequences using masked language modeling (MLM) and knowledge embedding (KE) objective objective. It was introduced in [this paper](https://openreview.net/pdf?id=yfe1VMYAXa4) and first released in [this repository](https://github.com/zjunlp/OntoProtein). This model is trained on uppercase amino acids: it only works with capital letter amino acids. ## Model description OntoProtein is the first general framework that makes use of structure in GO (Gene Ontology) into protein pre-training models. We construct a novel large-scale knowledge graph that consists of GO and its related proteins, and gene annotation texts or protein sequences describe all nodes in the graph. We propose novel contrastive learning with knowledge-aware negative sampling to jointly optimize the knowledge graph and protein embedding during pre-training. ### BibTeX entry and citation info ```bibtex @article{zhang2022ontoprotein, title={OntoProtein: Protein Pretraining With Gene Ontology Embedding}, author={Zhang, Ningyu and Bi, Zhen and Liang, Xiaozhuan and Cheng, Siyuan and Hong, Haosen and Deng, Shumin and Lian, Jiazhang and Zhang, Qiang and Chen, Huajun}, journal={arXiv preprint arXiv:2201.11147}, year={2022} } ```
prajjwal1/bert-medium-mnli
82e4a3118f63cba6e97875aa1b7e6a674a193063
2021-10-05T17:56:07.000Z
[ "pytorch", "jax", "bert", "text-classification", "arxiv:1908.08962", "arxiv:2110.01518", "transformers" ]
text-classification
false
prajjwal1
null
prajjwal1/bert-medium-mnli
2,149
null
transformers
1,302
The following model is a Pytorch pre-trained model obtained from converting Tensorflow checkpoint found in the [official Google BERT repository](https://github.com/google-research/bert). These BERT variants were introduced in the paper [Well-Read Students Learn Better: On the Importance of Pre-training Compact Models](https://arxiv.org/abs/1908.08962). These models are trained on MNLI. If you use the model, please consider citing the paper ``` @misc{bhargava2021generalization, title={Generalization in NLI: Ways (Not) To Go Beyond Simple Heuristics}, author={Prajjwal Bhargava and Aleksandr Drozd and Anna Rogers}, year={2021}, eprint={2110.01518}, archivePrefix={arXiv}, primaryClass={cs.CL} } ``` Original Implementation and more info can be found in [this Github repository](https://github.com/prajjwal1/generalize_lm_nli). ``` MNLI: 75.86% MNLI-mm: 77.03% ``` These models are trained for 4 epochs. [@prajjwal_1](https://twitter.com/prajjwal_1)
sentence-transformers/all-MiniLM-L12-v1
c8f1d5b49a00a0b0025e540ceca2c38101fc926f
2021-08-30T20:01:21.000Z
[ "pytorch", "bert", "en", "arxiv:1904.06472", "arxiv:2102.07033", "arxiv:2104.08727", "arxiv:1704.05179", "arxiv:1810.09305", "sentence-transformers", "feature-extraction", "sentence-similarity", "license:apache-2.0" ]
sentence-similarity
false
sentence-transformers
null
sentence-transformers/all-MiniLM-L12-v1
2,148
2
sentence-transformers
1,303
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity language: en license: apache-2.0 --- # all-MiniLM-L12-v1 This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 384 dimensional dense vector space and can be used for tasks like clustering or semantic search. ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('sentence-transformers/all-MiniLM-L12-v1') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch import torch.nn.functional as F #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('sentence-transformers/all-MiniLM-L12-v1') model = AutoModel.from_pretrained('sentence-transformers/all-MiniLM-L12-v1') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) # Normalize embeddings sentence_embeddings = F.normalize(sentence_embeddings, p=2, dim=1) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=sentence-transformers/all-MiniLM-L12-v1) ------ ## Background The project aims to train sentence embedding models on very large sentence level datasets using a self-supervised contrastive learning objective. We used the pretrained [`microsoft/MiniLM-L12-H384-uncased`](https://huggingface.co/microsoft/MiniLM-L12-H384-uncased) model and fine-tuned in on a 1B sentence pairs dataset. We use a contrastive learning objective: given a sentence from the pair, the model should predict which out of a set of randomly sampled other sentences, was actually paired with it in our dataset. We developped this model during the [Community week using JAX/Flax for NLP & CV](https://discuss.huggingface.co/t/open-to-the-community-community-week-using-jax-flax-for-nlp-cv/7104), organized by Hugging Face. We developped this model as part of the project: [Train the Best Sentence Embedding Model Ever with 1B Training Pairs](https://discuss.huggingface.co/t/train-the-best-sentence-embedding-model-ever-with-1b-training-pairs/7354). We benefited from efficient hardware infrastructure to run the project: 7 TPUs v3-8, as well as intervention from Googles Flax, JAX, and Cloud team member about efficient deep learning frameworks. ## Intended uses Our model is intented to be used as a sentence and short paragraph encoder. Given an input text, it ouptuts a vector which captures the semantic information. The sentence vector may be used for information retrieval, clustering or sentence similarity tasks. By default, input text longer than 128 word pieces is truncated. ## Training procedure ### Pre-training We use the pretrained [`microsoft/MiniLM-L12-H384-uncased`](https://huggingface.co/microsoft/MiniLM-L12-H384-uncased). Please refer to the model card for more detailed information about the pre-training procedure. ### Fine-tuning We fine-tune the model using a contrastive objective. Formally, we compute the cosine similarity from each possible sentence pairs from the batch. We then apply the cross entropy loss by comparing with true pairs. #### Hyper parameters We trained ou model on a TPU v3-8. We train the model during 540k steps using a batch size of 1024 (128 per TPU core). We use a learning rate warm up of 500. The sequence length was limited to 128 tokens. We used the AdamW optimizer with a 2e-5 learning rate. The full training script is accessible in this current repository: `train_script.py`. #### Training data We use the concatenation from multiple datasets to fine-tune our model. The total number of sentence pairs is above 1 billion sentences. We sampled each dataset given a weighted probability which configuration is detailed in the `data_config.json` file. | Dataset | Paper | Number of training tuples | |--------------------------------------------------------|:----------------------------------------:|:--------------------------:| | [Reddit comments (2015-2018)](https://github.com/PolyAI-LDN/conversational-datasets/tree/master/reddit) | [paper](https://arxiv.org/abs/1904.06472) | 726,484,430 | | [S2ORC](https://github.com/allenai/s2orc) Citation pairs (Abstracts) | [paper](https://aclanthology.org/2020.acl-main.447/) | 116,288,806 | | [WikiAnswers](https://github.com/afader/oqa#wikianswers-corpus) Duplicate question pairs | [paper](https://doi.org/10.1145/2623330.2623677) | 77,427,422 | | [PAQ](https://github.com/facebookresearch/PAQ) (Question, Answer) pairs | [paper](https://arxiv.org/abs/2102.07033) | 64,371,441 | | [S2ORC](https://github.com/allenai/s2orc) Citation pairs (Titles) | [paper](https://aclanthology.org/2020.acl-main.447/) | 52,603,982 | | [S2ORC](https://github.com/allenai/s2orc) (Title, Abstract) | [paper](https://aclanthology.org/2020.acl-main.447/) | 41,769,185 | | [Stack Exchange](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_xml) (Title, Body) pairs | - | 25,316,456 | | [MS MARCO](https://microsoft.github.io/msmarco/) triplets | [paper](https://doi.org/10.1145/3404835.3462804) | 9,144,553 | | [GOOAQ: Open Question Answering with Diverse Answer Types](https://github.com/allenai/gooaq) | [paper](https://arxiv.org/pdf/2104.08727.pdf) | 3,012,496 | | [Yahoo Answers](https://www.kaggle.com/soumikrakshit/yahoo-answers-dataset) (Title, Answer) | [paper](https://proceedings.neurips.cc/paper/2015/hash/250cf8b51c773f3f8dc8b4be867a9a02-Abstract.html) | 1,198,260 | | [Code Search](https://huggingface.co/datasets/code_search_net) | - | 1,151,414 | | [COCO](https://cocodataset.org/#home) Image captions | [paper](https://link.springer.com/chapter/10.1007%2F978-3-319-10602-1_48) | 828,395| | [SPECTER](https://github.com/allenai/specter) citation triplets | [paper](https://doi.org/10.18653/v1/2020.acl-main.207) | 684,100 | | [Yahoo Answers](https://www.kaggle.com/soumikrakshit/yahoo-answers-dataset) (Question, Answer) | [paper](https://proceedings.neurips.cc/paper/2015/hash/250cf8b51c773f3f8dc8b4be867a9a02-Abstract.html) | 681,164 | | [Yahoo Answers](https://www.kaggle.com/soumikrakshit/yahoo-answers-dataset) (Title, Question) | [paper](https://proceedings.neurips.cc/paper/2015/hash/250cf8b51c773f3f8dc8b4be867a9a02-Abstract.html) | 659,896 | | [SearchQA](https://huggingface.co/datasets/search_qa) | [paper](https://arxiv.org/abs/1704.05179) | 582,261 | | [Eli5](https://huggingface.co/datasets/eli5) | [paper](https://doi.org/10.18653/v1/p19-1346) | 325,475 | | [Flickr 30k](https://shannon.cs.illinois.edu/DenotationGraph/) | [paper](https://transacl.org/ojs/index.php/tacl/article/view/229/33) | 317,695 | | [Stack Exchange](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_xml) Duplicate questions (titles) | | 304,525 | | AllNLI ([SNLI](https://nlp.stanford.edu/projects/snli/) and [MultiNLI](https://cims.nyu.edu/~sbowman/multinli/) | [paper SNLI](https://doi.org/10.18653/v1/d15-1075), [paper MultiNLI](https://doi.org/10.18653/v1/n18-1101) | 277,230 | | [Stack Exchange](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_xml) Duplicate questions (bodies) | | 250,519 | | [Stack Exchange](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_xml) Duplicate questions (titles+bodies) | | 250,460 | | [Sentence Compression](https://github.com/google-research-datasets/sentence-compression) | [paper](https://www.aclweb.org/anthology/D13-1155/) | 180,000 | | [Wikihow](https://github.com/pvl/wikihow_pairs_dataset) | [paper](https://arxiv.org/abs/1810.09305) | 128,542 | | [Altlex](https://github.com/chridey/altlex/) | [paper](https://aclanthology.org/P16-1135.pdf) | 112,696 | | [Quora Question Triplets](https://quoradata.quora.com/First-Quora-Dataset-Release-Question-Pairs) | - | 103,663 | | [Simple Wikipedia](https://cs.pomona.edu/~dkauchak/simplification/) | [paper](https://www.aclweb.org/anthology/P11-2117/) | 102,225 | | [Natural Questions (NQ)](https://ai.google.com/research/NaturalQuestions) | [paper](https://transacl.org/ojs/index.php/tacl/article/view/1455) | 100,231 | | [SQuAD2.0](https://rajpurkar.github.io/SQuAD-explorer/) | [paper](https://aclanthology.org/P18-2124.pdf) | 87,599 | | [TriviaQA](https://huggingface.co/datasets/trivia_qa) | - | 73,346 | | **Total** | | **1,124,818,467** |
shahrukhx01/roberta-base-boolq
87b8505e8f651d5aadedb50ea6737871a45a83b8
2022-06-02T08:36:14.000Z
[ "pytorch", "roberta", "text-classification", "en", "transformers", "boolean-qa" ]
text-classification
false
shahrukhx01
null
shahrukhx01/roberta-base-boolq
2,147
null
transformers
1,304
--- language: "en" tags: - boolean-qa widget: - text: "Is Berlin the smallest city of Germany? <s> Berlin is the capital and largest city of Germany by both area and population. Its 3.8 million inhabitants make it the European Union's most populous city, according to the population within city limits " --- # Labels Map LABEL_0 => **"NO"** <br/> LABEL_1 => **"YES"** ```python from transformers import ( AutoModelForSequenceClassification, AutoTokenizer, ) model = AutoModelForSequenceClassification.from_pretrained("shahrukhx01/roberta-base-boolq") model.to(device) #model.push_to_hub("roberta-base-boolq") tokenizer = AutoTokenizer.from_pretrained("shahrukhx01/roberta-base-boolq") def predict(question, passage): sequence = tokenizer.encode_plus(question, passage, return_tensors="pt")['input_ids'].to(device) logits = model(sequence)[0] probabilities = torch.softmax(logits, dim=1).detach().cpu().tolist()[0] proba_yes = round(probabilities[1], 2) proba_no = round(probabilities[0], 2) print(f"Question: {question}, Yes: {proba_yes}, No: {proba_no}") passage = """Berlin is the capital and largest city of Germany by both area and population. Its 3.8 million inhabitants make it the European Union's most populous city, according to the population within city limits.""" question = "Is Berlin the smallest city of Germany?" predict(s_question, passage) ```
artemnech/enrut5-base
13523cbed3ee1390197d050cc52b0e6f9aa3ea45
2022-07-25T05:17:35.000Z
[ "pytorch", "mt5", "text2text-generation", "ru", "en", "transformers", "russian", "license:mit", "autotrain_compatible" ]
text2text-generation
false
artemnech
null
artemnech/enrut5-base
2,146
null
transformers
1,305
--- language: ["ru", "en"] tags: - russian license: mit widget: - text: "translate ru to en: Интересный момент. Модель не видела русских диалогов, но может их понимать" --- This pruned model of mt5-base [google/mt5-base](https://huggingface.co/google/mt5-base) with only some Rusian and English embeddings left. The model has been fine-tuned for several tasks: * translation (opus100 dataset) * dialog (daily dialog dataset) How to use: ``` # !pip install transformers sentencepiece from transformers import AutoModelForSeq2SeqLM, AutoTokenizer, T5Tokenizer import torch model_name = 'artemnech/enrut5-base' model = AutoModelForSeq2SeqLM.from_pretrained(model_name) tokenizer = AutoTokenizer.from_pretrained(model_name) def generate(text, **kwargs): model.eval() inputs = tokenizer(text, return_tensors='pt') with torch.no_grad(): hypotheses = model.generate(**inputs, **kwargs) return tokenizer.decode(hypotheses[0], skip_special_tokens=True) print(generate('translate ru to en: Интересный момент. Модель не видела русских диалогов, но может их понимать', num_beams=4,)) # The Model didn't see Russian dialogues, but can understand them. print(generate("translate en to ru: The Model didn't see Russian dialogues, but can understand them.", num_beams=4,)) # Модель не видела русских диалога, но может понимать их. print(generate('dialog: user1>>: Hello', num_beams=2)) # Hi print(generate('dialog: user1>>: Hello user2>>: Hi user1>>: Would you like to drink something?', num_beams=2)) # I'd like to drink a cup of coffee. #An interesting point. The model has not seen Russian dialogues, but can understand them print(generate('dialog: user1>>: Привет')) # Hi print(generate('dialog: user1>>: Привет user2>>: Hi user1>>: Хочешь выпить что-нибудь?', num_beams=2)) # I'd like to have a cup of coffee. ```
whaleloops/phrase-bert
6f68f4dc2d28aadefa038c79023dc7dfd51f6495
2021-11-03T15:04:02.000Z
[ "pytorch", "bert", "feature-extraction", "arxiv:2109.06304", "sentence-transformers", "sentence-similarity", "transformers" ]
sentence-similarity
false
whaleloops
null
whaleloops/phrase-bert
2,144
5
sentence-transformers
1,306
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # whaleloops/phrase-bert This is the official repository for the EMNLP 2021 long paper [Phrase-BERT: Improved Phrase Embeddings from BERT with an Application to Corpus Exploration](https://arxiv.org/abs/2109.06304). We provide [code](https://github.com/sf-wa-326/phrase-bert-topic-model) for training and evaluating Phrase-BERT in addition to the datasets used in the paper. ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Our model is tested on pytorch=1.9.0, tranformers=4.8.1, sentence-tranformers = 2.1.0 TODO Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer phrase_list = [ 'play an active role', 'participate actively', 'active lifestyle'] model = SentenceTransformer('whaleloops/phrase-bert') phrase_embs = model.encode( phrase_list ) [p1, p2, p3] = phrase_embs ``` As in sentence-BERT, the default output is a list of numpy arrays: ```` for phrase, embedding in zip(phrase_list, phrase_embs): print("Phrase:", phrase) print("Embedding:", embedding) print("") ```` An example of computing the dot product of phrase embeddings: ```` import numpy as np print(f'The dot product between phrase 1 and 2 is: {np.dot(p1, p2)}') print(f'The dot product between phrase 1 and 3 is: {np.dot(p1, p3)}') print(f'The dot product between phrase 2 and 3 is: {np.dot(p2, p3)}') ```` An example of computing cosine similarity of phrase embeddings: ```` import torch from torch import nn cos_sim = nn.CosineSimilarity(dim=0) print(f'The cosine similarity between phrase 1 and 2 is: {cos_sim( torch.tensor(p1), torch.tensor(p2))}') print(f'The cosine similarity between phrase 1 and 3 is: {cos_sim( torch.tensor(p1), torch.tensor(p3))}') print(f'The cosine similarity between phrase 2 and 3 is: {cos_sim( torch.tensor(p2), torch.tensor(p3))}') ```` The output should look like: ```` The dot product between phrase 1 and 2 is: 218.43600463867188 The dot product between phrase 1 and 3 is: 165.48483276367188 The dot product between phrase 2 and 3 is: 160.51708984375 The cosine similarity between phrase 1 and 2 is: 0.8142536282539368 The cosine similarity between phrase 1 and 3 is: 0.6130303144454956 The cosine similarity between phrase 2 and 3 is: 0.584893524646759 ```` ## Evaluation Given the lack of a unified phrase embedding evaluation benchmark, we collect the following five phrase semantics evaluation tasks, which are described further in our paper: * Turney [[Download](https://storage.googleapis.com/phrase-bert/turney/data.txt) ] * BiRD [[Download](https://storage.googleapis.com/phrase-bert/bird/data.txt)] * PPDB [[Download](https://storage.googleapis.com/phrase-bert/ppdb/examples.json)] * PPDB-filtered [[Download](https://storage.googleapis.com/phrase-bert/ppdb_exact/examples.json)] * PAWS-short [[Download Train-split](https://storage.googleapis.com/phrase-bert/paws_short/train_examples.json) ] [[Download Dev-split](https://storage.googleapis.com/phrase-bert/paws_short/dev_examples.json) ] [[Download Test-split](https://storage.googleapis.com/phrase-bert/paws_short/test_examples.json) ] Change `config/model_path.py` with the model path according to your directories and * For evaluation on Turney, run `python eval_turney.py` * For evaluation on BiRD, run `python eval_bird.py` * for evaluation on PPDB / PPDB-filtered / PAWS-short, run `eval_ppdb_paws.py` with: ```` nohup python -u eval_ppdb_paws.py \ --full_run_mode \ --task <task-name> \ --data_dir <input-data-dir> \ --result_dir <result-storage-dr> \ >./output.txt 2>&1 & ```` ## Train your own Phrase-BERT If you would like to go beyond using the pre-trained Phrase-BERT model, you may train your own Phrase-BERT using data from the domain you are interested in. Please refer to `phrase-bert/phrase_bert_finetune.py` The datasets we used to fine-tune Phrase-BERT are here: [training data csv file](https://storage.googleapis.com/phrase-bert/phrase-bert-ft-data/pooled_context_para_triples_p%3D0.8_train.csv) and [validation data csv file](https://storage.googleapis.com/phrase-bert/phrase-bert-ft-data/pooled_context_para_triples_p%3D0.8_valid.csv). To re-produce the trained Phrase-BERT, please run: export INPUT_DATA_PATH=<directory-of-phrasebert-finetuning-data> export TRAIN_DATA_FILE=<training-data-filename.csv> export VALID_DATA_FILE=<validation-data-filename.csv> export INPUT_MODEL_PATH=bert-base-nli-stsb-mean-tokens export OUTPUT_MODEL_PATH=<directory-of-saved-model> python -u phrase_bert_finetune.py \ --input_data_path $INPUT_DATA_PATH \ --train_data_file $TRAIN_DATA_FILE \ --valid_data_file $VALID_DATA_FILE \ --input_model_path $INPUT_MODEL_PATH \ --output_model_path $OUTPUT_MODEL_PATH ## Citation: Please cite us if you find this useful: ```` @inproceedings{phrasebertwang2021, author={Shufan Wang and Laure Thompson and Mohit Iyyer}, Booktitle = {Empirical Methods in Natural Language Processing}, Year = "2021", Title={Phrase-BERT: Improved Phrase Embeddings from BERT with an Application to Corpus Exploration} } ````
michaelrglass/albert-base-rci-wikisql-col
d51bdace09428c72213107d0fe12709c1d7d5d2f
2021-06-16T15:58:03.000Z
[ "pytorch", "albert", "text-classification", "transformers" ]
text-classification
false
michaelrglass
null
michaelrglass/albert-base-rci-wikisql-col
2,143
null
transformers
1,307
Entry not found
jjzha/jobspanbert-base-cased
0565591b92a2f8da7094dbf05c3ec6e2b93c0987
2022-07-26T08:15:15.000Z
[ "pytorch", "bert", "en", "transformers", "continuous pretraining", "job postings", "JobSpanBERT" ]
null
false
jjzha
null
jjzha/jobspanbert-base-cased
2,140
null
transformers
1,308
--- language: - en tags: - continuous pretraining - job postings - JobSpanBERT --- # JobSpanBERT This is the JobSpanBERT model from: Mike Zhang, Kristian Nørgaard Jensen, Sif Dam Sonniks, and Barbara Plank. __SkillSpan: Hard and Soft Skill Extraction from Job Postings__. Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. This model is continuously pre-trained from a spanbert-base-cased checkpoint (which can also be found in our repository) on ~3.2M sentences from job postings. More information can be found in the paper. If you use this model, please cite the following paper: ``` @inproceedings{zhang-etal-2022-skillspan, title = "{S}kill{S}pan: Hard and Soft Skill Extraction from {E}nglish Job Postings", author = "Zhang, Mike and Jensen, Kristian N{\o}rgaard and Sonniks, Sif and Plank, Barbara", booktitle = "Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies", month = jul, year = "2022", address = "Seattle, United States", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2022.naacl-main.366", pages = "4962--4984", abstract = "Skill Extraction (SE) is an important and widely-studied task useful to gain insights into labor market dynamics. However, there is a lacuna of datasets and annotation guidelines; available datasets are few and contain crowd-sourced labels on the span-level or labels from a predefined skill inventory. To address this gap, we introduce SKILLSPAN, a novel SE dataset consisting of 14.5K sentences and over 12.5K annotated spans. We release its respective guidelines created over three different sources annotated for hard and soft skills by domain experts. We introduce a BERT baseline (Devlin et al., 2019). To improve upon this baseline, we experiment with language models that are optimized for long spans (Joshi et al., 2020; Beltagy et al., 2020), continuous pre-training on the job posting domain (Han and Eisenstein, 2019; Gururangan et al., 2020), and multi-task learning (Caruana, 1997). Our results show that the domain-adapted models significantly outperform their non-adapted counterparts, and single-task outperforms multi-task learning.", } ```
Laggrif/DialoGPT-medium-Luke
36fcfc7f3d7209dcb7a349804a7a6f5dab2ddd94
2022-06-21T17:50:07.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
Laggrif
null
Laggrif/DialoGPT-medium-Luke
2,138
null
transformers
1,309
--- tags: - conversational --- # Luke DialoGPT Model
GroNLP/gpt2-small-italian
9a5b0043f33d9adacd23d53e3a8e9c70f71febc9
2021-05-21T09:58:53.000Z
[ "pytorch", "tf", "jax", "gpt2", "text-generation", "it", "arxiv:2012.05628", "transformers", "adaption", "recycled", "gpt2-small" ]
text-generation
false
GroNLP
null
GroNLP/gpt2-small-italian
2,136
null
transformers
1,310
--- language: it tags: - adaption - recycled - gpt2-small pipeline_tag: text-generation --- # GPT-2 recycled for Italian (small) [Wietse de Vries](https://www.semanticscholar.org/author/Wietse-de-Vries/144611157) • [Malvina Nissim](https://www.semanticscholar.org/author/M.-Nissim/2742475) ## Model description This model is based on the small OpenAI GPT-2 ([`gpt2`](https://huggingface.co/gpt2)) model. For details, check out our paper on [arXiv](https://arxiv.org/abs/2012.05628) and the code on [Github](https://github.com/wietsedv/gpt2-recycle). ## Related models ### Dutch - [`gpt2-small-dutch-embeddings`](https://huggingface.co/GroNLP/gpt2-small-dutch-embeddings): Small model size with only retrained lexical embeddings. - [`gpt2-small-dutch`](https://huggingface.co/GroNLP/gpt2-small-dutch): Small model size with retrained lexical embeddings and additional fine-tuning of the full model. (**Recommended**) - [`gpt2-medium-dutch-embeddings`](https://huggingface.co/GroNLP/gpt2-medium-dutch-embeddings): Medium model size with only retrained lexical embeddings. ### Italian - [`gpt2-small-italian-embeddings`](https://huggingface.co/GroNLP/gpt2-small-italian-embeddings): Small model size with only retrained lexical embeddings. - [`gpt2-small-italian`](https://huggingface.co/GroNLP/gpt2-small-italian): Small model size with retrained lexical embeddings and additional fine-tuning of the full model. (**Recommended**) - [`gpt2-medium-italian-embeddings`](https://huggingface.co/GroNLP/gpt2-medium-italian-embeddings): Medium model size with only retrained lexical embeddings. ## How to use ```python from transformers import pipeline pipe = pipeline("text-generation", model="GroNLP/gpt2-small-italian") ``` ```python from transformers import AutoTokenizer, AutoModel, TFAutoModel tokenizer = AutoTokenizer.from_pretrained("GroNLP/gpt2-small-italian") model = AutoModel.from_pretrained("GroNLP/gpt2-small-italian") # PyTorch model = TFAutoModel.from_pretrained("GroNLP/gpt2-small-italian") # Tensorflow ``` ## BibTeX entry ```bibtex @misc{devries2020good, title={As good as new. How to successfully recycle English GPT-2 to make models for other languages}, author={Wietse de Vries and Malvina Nissim}, year={2020}, eprint={2012.05628}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
hf-internal-testing/tiny-random-unispeech
a90315fed34d4891a62a539637210f2bdd30e68f
2022-01-26T13:56:35.000Z
[ "pytorch", "unispeech", "audio-classification", "transformers" ]
audio-classification
false
hf-internal-testing
null
hf-internal-testing/tiny-random-unispeech
2,136
null
transformers
1,311
Entry not found
mrsinghania/asr-question-detection
90b29f15265e6819044d484039b1ae9ca683342d
2021-09-21T06:44:23.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
mrsinghania
null
mrsinghania/asr-question-detection
2,136
2
transformers
1,312
<i>Question vs Statement classifier</i> trained on more than 7k samples which were coming from spoken data in an interview setting <b>Code for using in Transformers:</b> from transformers import AutoTokenizer, AutoModelForSequenceClassification tokenizer = AutoTokenizer.from_pretrained("mrsinghania/asr-question-detection") model = AutoModelForSequenceClassification.from_pretrained("mrsinghania/asr-question-detection")
ktrapeznikov/biobert_v1.1_pubmed_squad_v2
351a8218e59777dcb0a1b454ead77a0c39014bc5
2021-05-19T21:10:03.000Z
[ "pytorch", "jax", "bert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
false
ktrapeznikov
null
ktrapeznikov/biobert_v1.1_pubmed_squad_v2
2,135
1
transformers
1,313
### Model **[`monologg/biobert_v1.1_pubmed`](https://huggingface.co/monologg/biobert_v1.1_pubmed)** fine-tuned on **[`SQuAD V2`](https://rajpurkar.github.io/SQuAD-explorer/)** using **[`run_squad.py`](https://github.com/huggingface/transformers/blob/master/examples/question-answering/run_squad.py)** This model is cased. ### Training Parameters Trained on 4 NVIDIA GeForce RTX 2080 Ti 11Gb ```bash BASE_MODEL=monologg/biobert_v1.1_pubmed python run_squad.py \ --version_2_with_negative \ --model_type albert \ --model_name_or_path $BASE_MODEL \ --output_dir $OUTPUT_MODEL \ --do_eval \ --do_lower_case \ --train_file $SQUAD_DIR/train-v2.0.json \ --predict_file $SQUAD_DIR/dev-v2.0.json \ --per_gpu_train_batch_size 18 \ --per_gpu_eval_batch_size 64 \ --learning_rate 3e-5 \ --num_train_epochs 3.0 \ --max_seq_length 384 \ --doc_stride 128 \ --save_steps 2000 \ --threads 24 \ --warmup_steps 550 \ --gradient_accumulation_steps 1 \ --fp16 \ --logging_steps 50 \ --do_train ``` ### Evaluation Evaluation on the dev set. I did not sweep for best threshold. | | val | |-------------------|-------------------| | exact | 75.97068980038743 | | f1 | 79.37043950121722 | | total | 11873.0 | | HasAns_exact | 74.13967611336032 | | HasAns_f1 | 80.94892513460755 | | HasAns_total | 5928.0 | | NoAns_exact | 77.79646761984861 | | NoAns_f1 | 77.79646761984861 | | NoAns_total | 5945.0 | | best_exact | 75.97068980038743 | | best_exact_thresh | 0.0 | | best_f1 | 79.37043950121729 | | best_f1_thresh | 0.0 | ### Usage See [huggingface documentation](https://huggingface.co/transformers/model_doc/bert.html#bertforquestionanswering). Training on `SQuAD V2` allows the model to score if a paragraph contains an answer: ```python start_scores, end_scores = model(input_ids) span_scores = start_scores.softmax(dim=1).log()[:,:,None] + end_scores.softmax(dim=1).log()[:,None,:] ignore_score = span_scores[:,0,0] #no answer scores ```
aware-ai/wav2vec2-xls-r-1b-5gram-german
4bfed40b06b3286744027db0cf211efdfb1c7aa6
2022-06-01T13:33:48.000Z
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "de", "dataset:common_voice", "transformers", "audio", "speech", "hf-asr-leaderboard", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
aware-ai
null
aware-ai/wav2vec2-xls-r-1b-5gram-german
2,127
1
transformers
1,314
--- language: de datasets: - common_voice metrics: - wer - cer tags: - audio - automatic-speech-recognition - speech - hf-asr-leaderboard license: apache-2.0 model-index: - name: wav2vec2-xls-r-1b-5gram-german with LM by Florian Zimmermeister @A\\Ware results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice de type: common_voice args: de metrics: - name: Test WER type: wer value: 4.382541642219636 - name: Test CER type: cer value: 1.6235493024026488 - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 de type: mozilla-foundation/common_voice_8_0 args: de metrics: - name: Test WER type: wer value: 4.382541642219636 - name: Test CER type: cer value: 1.6235493024026488 --- ## Evaluation The model can be evaluated as follows on the German test data of Common Voice. ```python import torch from transformers import AutoModelForCTC, AutoProcessor from unidecode import unidecode import re from datasets import load_dataset, load_metric import datasets counter = 0 wer_counter = 0 cer_counter = 0 device = "cuda" if torch.cuda.is_available() else "cpu" special_chars = [["Ä"," AE "], ["Ö"," OE "], ["Ü"," UE "], ["ä"," ae "], ["ö"," oe "], ["ü"," ue "]] def clean_text(sentence): for special in special_chars: sentence = sentence.replace(special[0], special[1]) sentence = unidecode(sentence) for special in special_chars: sentence = sentence.replace(special[1], special[0]) sentence = re.sub("[^a-zA-Z0-9öäüÖÄÜ ,.!?]", " ", sentence) return sentence def main(model_id): print("load model") model = AutoModelForCTC.from_pretrained(model_id).to(device) print("load processor") processor = AutoProcessor.from_pretrained(processor_id) print("load metrics") wer = load_metric("wer") cer = load_metric("cer") ds = load_dataset("mozilla-foundation/common_voice_8_0","de") ds = ds["test"] ds = ds.cast_column( "audio", datasets.features.Audio(sampling_rate=16_000) ) def calculate_metrics(batch): global counter, wer_counter, cer_counter resampled_audio = batch["audio"]["array"] input_values = processor(resampled_audio, return_tensors="pt", sampling_rate=16_000).input_values with torch.no_grad(): logits = model(input_values.to(device)).logits.cpu().numpy()[0] decoded = processor.decode(logits) pred = decoded.text.lower() ref = clean_text(batch["sentence"]).lower() wer_result = wer.compute(predictions=[pred], references=[ref]) cer_result = cer.compute(predictions=[pred], references=[ref]) counter += 1 wer_counter += wer_result cer_counter += cer_result if counter % 100 == True: print(f"WER: {(wer_counter/counter)*100} | CER: {(cer_counter/counter)*100}") return batch ds.map(calculate_metrics, remove_columns=ds.column_names) print(f"WER: {(wer_counter/counter)*100} | CER: {(cer_counter/counter)*100}") model_id = "flozi00/wav2vec2-xls-r-1b-5gram-german" main(model_id) ```
readerbench/RoBERT-large
2677d2cc3bc009380161e71eda03515abfb5feb4
2021-05-20T04:07:47.000Z
[ "pytorch", "tf", "jax", "bert", "ro", "transformers" ]
null
false
readerbench
null
readerbench/RoBERT-large
2,125
null
transformers
1,315
Model card for RoBERT-large --- language: - ro --- # RoBERT-large ## Pretrained BERT model for Romanian Pretrained model on Romanian language using a masked language modeling (MLM) and next sentence prediction (NSP) objective. It was introduced in this [paper](https://www.aclweb.org/anthology/2020.coling-main.581/). Three BERT models were released: RoBERT-small, RoBERT-base and **RoBERT-large**, all versions uncased. | Model | Weights | L | H | A | MLM accuracy | NSP accuracy | |----------------|:---------:|:------:|:------:|:------:|:--------------:|:--------------:| | RoBERT-small | 19M | 12 | 256 | 8 | 0.5363 | 0.9687 | | RoBERT-base | 114M | 12 | 768 | 12 | 0.6511 | 0.9802 | | *RoBERT-large* | *341M* | *24* | *1024* | *24* | *0.6929* | *0.9843* | All models are available: * [RoBERT-small](https://huggingface.co/readerbench/RoBERT-small) * [RoBERT-base](https://huggingface.co/readerbench/RoBERT-base) * [RoBERT-large](https://huggingface.co/readerbench/RoBERT-large) #### How to use ```python # tensorflow from transformers import AutoModel, AutoTokenizer, TFAutoModel tokenizer = AutoTokenizer.from_pretrained("readerbench/RoBERT-large") model = TFAutoModel.from_pretrained("readerbench/RoBERT-large") inputs = tokenizer("exemplu de propoziție", return_tensors="tf") outputs = model(inputs) # pytorch from transformers import AutoModel, AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("readerbench/RoBERT-large") model = AutoModel.from_pretrained("readerbench/RoBERT-large") inputs = tokenizer("exemplu de propoziție", return_tensors="pt") outputs = model(**inputs) ``` ## Training data The model is trained on the following compilation of corpora. Note that we present the statistics after the cleaning process. | Corpus | Words | Sentences | Size (GB)| |-----------|:---------:|:---------:|:--------:| | Oscar | 1.78B | 87M | 10.8 | | RoTex | 240M | 14M | 1.5 | | RoWiki | 50M | 2M | 0.3 | | **Total** | **2.07B** | **103M** | **12.6** | ## Downstream performance ### Sentiment analysis We report Macro-averaged F1 score (in %) | Model | Dev | Test | |------------------|:--------:|:--------:| | multilingual-BERT| 68.96 | 69.57 | | XLM-R-base | 71.26 | 71.71 | | BERT-base-ro | 70.49 | 71.02 | | RoBERT-small | 66.32 | 66.37 | | RoBERT-base | 70.89 | 71.61 | | *RoBERT-large* | **72.48**| **72.11**| ### Moldavian vs. Romanian Dialect and Cross-dialect Topic identification We report results on [VarDial 2019](https://sites.google.com/view/vardial2019/campaign) Moldavian vs. Romanian Cross-dialect Topic identification Challenge, as Macro-averaged F1 score (in %). | Model | Dialect Classification | MD to RO | RO to MD | |-------------------|:----------------------:|:--------:|:--------:| | 2-CNN + SVM | 93.40 | 65.09 | 75.21 | | Char+Word SVM | 96.20 | 69.08 | 81.93 | | BiGRU | 93.30 | **70.10**| 80.30 | | multilingual-BERT | 95.34 | 68.76 | 78.24 | | XLM-R-base | 96.28 | 69.93 | 82.28 | | BERT-base-ro | 96.20 | 69.93 | 78.79 | | RoBERT-small | 95.67 | 69.01 | 80.40 | | RoBERT-base | 97.39 | 68.30 | 81.09 | | *RoBERT-large* | **97.78** | *69.91* | **83.65**| ### Diacritics Restoration Challenge can be found [here](https://diacritics-challenge.speed.pub.ro/). We report results on the official test set, as accuracies in %. | Model | word level | char level | |-----------------------------|:----------:|:----------:| | BiLSTM | 99.42 | - | | CharCNN | 98.40 | 99.65 | | CharCNN + multilingual-BERT | 99.72 | 99.94 | | CharCNN + XLM-R-base | 99.76 | **99.95** | | CharCNN + BERT-base-ro | **99.79** | **99.95** | | CharCNN + RoBERT-small | 99.73 | 99.94 | | CharCNN + RoBERT-base | 99.78 | **99.95** | | *CharCNN + RoBERT-large* | *99.76* | **99.95** | ### BibTeX entry and citation info ```bibtex @inproceedings{masala2020robert, title={RoBERT--A Romanian BERT Model}, author={Masala, Mihai and Ruseti, Stefan and Dascalu, Mihai}, booktitle={Proceedings of the 28th International Conference on Computational Linguistics}, pages={6626--6637}, year={2020} } ```
IDEA-CCNL/Erlangshen-Roberta-110M-Sentiment
21ff55d0bd2f7904d2a5380165ac2fd6d0d74b81
2022-05-27T07:59:44.000Z
[ "pytorch", "bert", "text-classification", "zh", "transformers", "NLU", "Sentiment", "Chinese", "license:apache-2.0" ]
text-classification
false
IDEA-CCNL
null
IDEA-CCNL/Erlangshen-Roberta-110M-Sentiment
2,124
4
transformers
1,316
--- language: - zh license: apache-2.0 tags: - bert - NLU - Sentiment - Chinese inference: true widget: - text: "今天心情不好" --- # Erlangshen-Roberta-110M-Semtiment, model (Chinese),one model of [Fengshenbang-LM](https://github.com/IDEA-CCNL/Fengshenbang-LM). We collect 8 sentiment datasets in the Chinese domain for finetune, with a total of 227347 samples. Our model is mainly based on [roberta](https://huggingface.co/hfl/chinese-roberta-wwm-ext) ## Usage ```python from transformers import BertForSequenceClassification from transformers import BertTokenizer import torch tokenizer=BertTokenizer.from_pretrained('IDEA-CCNL/Erlangshen-Roberta-110M-Sentiment') model=BertForSequenceClassification.from_pretrained('IDEA-CCNL/Erlangshen-Roberta-110M-Sentiment') text='今天心情不好' output=model(torch.tensor([tokenizer.encode(text)])) print(torch.nn.functional.softmax(output.logits,dim=-1)) ``` ## Scores on downstream chinese tasks | Model | ASAP-SENT | ASAP-ASPECT | ChnSentiCorp | | :--------: | :-----: | :----: | :-----: | | Erlangshen-Roberta-110M-Sentiment | 97.77 | 97.31 | 96.61 | | Erlangshen-Roberta-330M-Sentiment | 97.9 | 97.51 | 96.66 | | Erlangshen-MegatronBert-1.3B-Sentiment | 98.1 | 97.8 | 97 | ## Citation If you find the resource is useful, please cite the following website in your paper. ``` @misc{Fengshenbang-LM, title={Fengshenbang-LM}, author={IDEA-CCNL}, year={2021}, howpublished={\url{https://github.com/IDEA-CCNL/Fengshenbang-LM}}, } ```
facebook/contriever-msmarco
abe8c1493371369031bcb1e02acb754cf4e162fa
2022-06-25T17:19:59.000Z
[ "pytorch", "bert", "arxiv:2112.09118", "transformers", "feature-extraction" ]
feature-extraction
false
facebook
null
facebook/contriever-msmarco
2,121
null
transformers
1,317
--- tags: - feature-extraction pipeline_tag: feature-extraction --- This model is the finetuned version of the pre-trained contriever model available here https://huggingface.co/facebook/contriever, following the approach described in [Towards Unsupervised Dense Information Retrieval with Contrastive Learning](https://arxiv.org/abs/2112.09118). The associated GitHub repository is available here https://github.com/facebookresearch/contriever. ## Usage (HuggingFace Transformers) Using the model directly available in HuggingFace transformers requires to add a mean pooling operation to obtain a sentence embedding. ```python import torch from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained('facebook/contriever-msmarco') model = AutoModel.from_pretrained('facebook/contriever-msmarco') sentences = [ "Where was Marie Curie born?", "Maria Sklodowska, later known as Marie Curie, was born on November 7, 1867.", "Born in Paris on 15 May 1859, Pierre Curie was the son of Eugène Curie, a doctor of French Catholic origin from Alsace." ] # Apply tokenizer inputs = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings outputs = model(**inputs) # Mean pooling def mean_pooling(token_embeddings, mask): token_embeddings = token_embeddings.masked_fill(~mask[..., None].bool(), 0.) sentence_embeddings = token_embeddings.sum(dim=1) / mask.sum(dim=1)[..., None] return sentence_embeddings embeddings = mean_pooling(outputs[0], inputs['attention_mask']) ```
textattack/distilbert-base-cased-CoLA
73fd8dc841293aab1caea98581bb57481c87ff55
2020-06-09T16:45:43.000Z
[ "pytorch", "distilbert", "text-classification", "transformers" ]
text-classification
false
textattack
null
textattack/distilbert-base-cased-CoLA
2,120
null
transformers
1,318
Entry not found
SEBIS/legal_t5_small_trans_fr_en
2940039b5f8da8f9a6f3c09be0c9667be9d7a9a9
2021-06-23T09:52:57.000Z
[ "pytorch", "jax", "t5", "text2text-generation", "French English", "dataset:dcep europarl jrc-acquis", "transformers", "translation French English model", "autotrain_compatible" ]
text2text-generation
false
SEBIS
null
SEBIS/legal_t5_small_trans_fr_en
2,119
null
transformers
1,319
--- language: French English tags: - translation French English model datasets: - dcep europarl jrc-acquis widget: - text: "quels montants ont été attribués et quelles sommes ont été effectivement utilisées dans chaque État membre? 4." --- # legal_t5_small_trans_fr_en model Model on translating legal text from French to English. It was first released in [this repository](https://github.com/agemagician/LegalTrans). This model is trained on three parallel corpus from jrc-acquis, europarl and dcep. ## Model description legal_t5_small_trans_fr_en is based on the `t5-small` model and was trained on a large corpus of parallel text. This is a smaller model, which scales the baseline model of t5 down by using `dmodel = 512`, `dff = 2,048`, 8-headed attention, and only 6 layers each in the encoder and decoder. This variant has about 60 million parameters. ## Intended uses & limitations The model could be used for translation of legal texts from French to English. ### How to use Here is how to use this model to translate legal text from French to English in PyTorch: ```python from transformers import AutoTokenizer, AutoModelWithLMHead, TranslationPipeline pipeline = TranslationPipeline( model=AutoModelWithLMHead.from_pretrained("SEBIS/legal_t5_small_trans_fr_en"), tokenizer=AutoTokenizer.from_pretrained(pretrained_model_name_or_path = "SEBIS/legal_t5_small_trans_fr_en", do_lower_case=False, skip_special_tokens=True), device=0 ) fr_text = "quels montants ont été attribués et quelles sommes ont été effectivement utilisées dans chaque État membre? 4." pipeline([fr_text], max_length=512) ``` ## Training data The legal_t5_small_trans_fr_en model was trained on [JRC-ACQUIS](https://wt-public.emm4u.eu/Acquis/index_2.2.html), [EUROPARL](https://www.statmt.org/europarl/), and [DCEP](https://ec.europa.eu/jrc/en/language-technologies/dcep) dataset consisting of 5 Million parallel texts. ## Training procedure The model was trained on a single TPU Pod V3-8 for 250K steps in total, using sequence length 512 (batch size 4096). It has a total of approximately 220M parameters and was trained using the encoder-decoder architecture. The optimizer used is AdaFactor with inverse square root learning rate schedule for pre-training. ### Preprocessing An unigram model trained with 88M lines of text from the parallel corpus (of all possible language pairs) to get the vocabulary (with byte pair encoding), which is used with this model. ### Pretraining ## Evaluation results When the model is used for translation test dataset, achieves the following results: Test results : | Model | BLEU score | |:-----:|:-----:| | legal_t5_small_trans_fr_en | 51.44| ### BibTeX entry and citation info > Created by [Ahmed Elnaggar/@Elnaggar_AI](https://twitter.com/Elnaggar_AI) | [LinkedIn](https://www.linkedin.com/in/prof-ahmed-elnaggar/)
dbmdz/convbert-base-turkish-cased
6d9b09e4e6f249c477aac7b73f3bcf9aa78ed1a8
2021-03-15T23:29:04.000Z
[ "pytorch", "tf", "convbert", "feature-extraction", "tr", "arxiv:2008.02496", "transformers", "license:mit" ]
feature-extraction
false
dbmdz
null
dbmdz/convbert-base-turkish-cased
2,119
null
transformers
1,320
--- language: tr license: mit --- # 🤗 + 📚 dbmdz Turkish ConvBERT model In this repository the MDZ Digital Library team (dbmdz) at the Bavarian State Library open sources a cased ConvBERT model for Turkish 🎉 # 🇹🇷 ConvBERTurk ConvBERTurk is a community-driven cased ConvBERT model for Turkish. In addition to the BERT and ELECTRA based models, we also trained a ConvBERT model. The ConvBERT architecture is presented in the ["ConvBERT: Improving BERT with Span-based Dynamic Convolution"](https://arxiv.org/abs/2008.02496) paper. We follow a different training procedure: instead of using a two-phase approach, that pre-trains the model for 90% with 128 sequence length and 10% with 512 sequence length, we pre-train the model with 512 sequence length for 1M steps on a v3-32 TPU. ## Stats The current version of the model is trained on a filtered and sentence segmented version of the Turkish [OSCAR corpus](https://traces1.inria.fr/oscar/), a recent Wikipedia dump, various [OPUS corpora](http://opus.nlpl.eu/) and a special corpus provided by [Kemal Oflazer](http://www.andrew.cmu.edu/user/ko/). The final training corpus has a size of 35GB and 44,04,976,662 tokens. Thanks to Google's TensorFlow Research Cloud (TFRC) we could train a cased model on a TPU v3-32! ## Usage With Transformers >= 4.3 our cased ConvBERT model can be loaded like: ```python from transformers import AutoModel, AutoTokenizer model_name = "dbmdz/convbert-base-turkish-cased" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModel.from_pretrained(model_name) ``` ## Results For results on PoS tagging, NER and Question Answering downstream tasks, please refer to [this repository](https://github.com/stefan-it/turkish-bert). # Huggingface model hub All models are available on the [Huggingface model hub](https://huggingface.co/dbmdz). # Contact (Bugs, Feedback, Contribution and more) For questions about our DBMDZ BERT models in general, just open an issue [here](https://github.com/dbmdz/berts/issues/new) 🤗 # Acknowledgments Thanks to [Kemal Oflazer](http://www.andrew.cmu.edu/user/ko/) for providing us additional large corpora for Turkish. Many thanks to Reyyan Yeniterzi for providing us the Turkish NER dataset for evaluation. Research supported with Cloud TPUs from Google's TensorFlow Research Cloud (TFRC). Thanks for providing access to the TFRC ❤️ Thanks to the generous support from the [Hugging Face](https://huggingface.co/) team, it is possible to download both cased and uncased models from their S3 storage 🤗
valurank/distilroberta-bias
c1e4a2773522c3acc929a7b2c9af2b7e4137b96d
2022-06-08T20:44:39.000Z
[ "pytorch", "roberta", "text-classification", "en", "dataset:valurank/wikirev-bias", "transformers", "license:other" ]
text-classification
false
valurank
null
valurank/distilroberta-bias
2,114
null
transformers
1,321
--- license: other language: en datasets: - valurank/wikirev-bias --- # DistilROBERTA fine-tuned for bias detection This model is based on [distilroberta-base](https://huggingface.co/distilroberta-base) pretrained weights, with a classification head fine-tuned to classify text into 2 categories (neutral, biased). ## Training data The dataset used to fine-tune the model is [wikirev-bias](https://huggingface.co/datasets/valurank/wikirev-bias), extracted from English wikipedia revisions, see https://github.com/rpryzant/neutralizing-bias for details on the WNC wiki edits corpus. ## Inputs Similar to its base model, this model accepts inputs with a maximum length of 512 tokens.
fhswf/bert_de_ner
97b17ba2e2bfe2e9d1b8d6e348cb60e0e82fc0b4
2021-05-19T16:49:54.000Z
[ "pytorch", "tf", "jax", "bert", "token-classification", "de", "dataset:germeval_14", "transformers", "German", "NER", "license:cc-by-sa-4.0", "autotrain_compatible" ]
token-classification
false
fhswf
null
fhswf/bert_de_ner
2,113
2
transformers
1,322
--- language: de license: cc-by-sa-4.0 datasets: - germeval_14 tags: - German - de - NER --- # BERT-DE-NER ## What is it? This is a German BERT model fine-tuned for named entity recognition. ## Base model & training This model is based on [bert-base-german-dbmdz-cased](https://huggingface.co/bert-base-german-dbmdz-cased) and has been fine-tuned for NER on the training data from [GermEval2014](https://sites.google.com/site/germeval2014ner). ## Model results The results on the test data from GermEval2014 are (entities only): | Precision | Recall | F1-Score | |----------:|-------:|---------:| | 0.817 | 0.842 | 0.829 | ## How to use ```Python >>> from transformers import pipeline >>> classifier = pipeline('ner', model="fhswf/bert_de_ner") >>> classifier('Von der Organisation „medico international“ hieß es, die EU entziehe sich seit vielen Jahren der Verantwortung für die Menschen an ihren Außengrenzen.') [{'word': 'med', 'score': 0.9996621608734131, 'entity': 'B-ORG', 'index': 6}, {'word': '##ico', 'score': 0.9995362162590027, 'entity': 'I-ORG', 'index': 7}, {'word': 'international', 'score': 0.9996932744979858, 'entity': 'I-ORG', 'index': 8}, {'word': 'eu', 'score': 0.9997008442878723, 'entity': 'B-ORG', 'index': 14}] ```
ixa-ehu/SciBERT-SQuAD-QuAC
df352e10c506e443875447c166a679b6a5ee34e9
2021-06-29T22:55:53.000Z
[ "pytorch", "bert", "question-answering", "en", "arxiv:1808.07036", "transformers", "autotrain_compatible" ]
question-answering
false
ixa-ehu
null
ixa-ehu/SciBERT-SQuAD-QuAC
2,110
null
transformers
1,323
--- language: en --- # SciBERT-SQuAD-QuAC This is the [SciBERT language representation model](https://huggingface.co/allenai/scibert_scivocab_uncased) fine tuned for Question Answering. SciBERT is a pre-trained language model based on BERT that has been trained on a large corpus of scientific text. When fine tuning for Question Answering we combined [SQuAD2.0](https://www.aclweb.org/anthology/P18-2124/) and [QuAC](https://arxiv.org/abs/1808.07036) datasets. If using this model, please cite the following paper: ``` @inproceedings{otegi-etal-2020-automatic, title = "Automatic Evaluation vs. User Preference in Neural Textual {Q}uestion{A}nswering over {COVID}-19 Scientific Literature", author = "Otegi, Arantxa and Campos, Jon Ander and Azkune, Gorka and Soroa, Aitor and Agirre, Eneko", booktitle = "Proceedings of the 1st Workshop on {NLP} for {COVID}-19 (Part 2) at {EMNLP} 2020", month = dec, year = "2020", address = "Online", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/2020.nlpcovid19-2.15", doi = "10.18653/v1/2020.nlpcovid19-2.15", } ```
hf-internal-testing/tiny-random-blenderbot
9432cd260adf10352afc43e7080b154ca0313105
2021-09-17T19:25:13.000Z
[ "pytorch", "tf", "blenderbot", "transformers" ]
null
false
hf-internal-testing
null
hf-internal-testing/tiny-random-blenderbot
2,106
null
transformers
1,324
Entry not found
JamesStratford/PLord-bot-DialoGPT-medium
a1f8100aa348ae0b41363d6089d81529e0ac3484
2022-07-08T01:37:51.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
JamesStratford
null
JamesStratford/PLord-bot-DialoGPT-medium
2,105
null
transformers
1,325
--- tags: - conversational --- # PlordBot - medium
ktrapeznikov/gpt2-medium-topic-news
d079f5fb6ab7eaf5a38dc2a72bd708a60879d23c
2021-05-23T06:18:56.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "en", "transformers" ]
text-generation
false
ktrapeznikov
null
ktrapeznikov/gpt2-medium-topic-news
2,101
1
transformers
1,326
--- language: - en thumbnail: widget: - text: "topic: climate article:" --- # GPT2-medium-topic-news ## Model description GPT2-medium fine tuned on a large news corpus conditioned on a topic ## Intended uses & limitations #### How to use To generate a news article text conditioned on a topic, prompt model with: `topic: climate article:` The following tags were used during training: `arts law international science business politics disaster world conflict football sport sports artanddesign environment music film lifeandstyle business health commentisfree books technology media education politics travel stage uk society us money culture religion science news tv fashion uk australia cities global childrens sustainable global voluntary housing law local healthcare theguardian` Zero shot generation works pretty well as long as `topic` is a single word and not too specific. ```python device = "cuda:0" tokenizer = AutoTokenizer.from_pretrained("ktrapeznikov/gpt2-medium-topic-news") model = AutoModelWithLMHead.from_pretrained("ktrapeznikov/gpt2-medium-topic-news") model.to(device) topic = "climate" prompt = tokenizer(f"topic: {topic} article:", return_tensors="pt") out = model.generate(prompt["input_ids"].to(device), do_sample=True,max_length=500, early_stopping=True, top_p=.9) print(tokenizer.decode(list(out.cpu()[0]))) ``` ## Training data ## Training procedure
Qishuai/distilbert_punctuator_en
3b5050a2775440ef59b76082ad75eb9574973ad3
2021-12-13T14:47:49.000Z
[ "pytorch", "distilbert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
Qishuai
null
Qishuai/distilbert_punctuator_en
2,098
5
transformers
1,327
# Punctuator for Uncased English The model is fine-tuned based on `DistilBertForTokenClassification` for adding punctuations to plain text (uncased English) ## Usage ```python from transformers import DistilBertForTokenClassification, DistilBertTokenizerFast model = DistilBertForTokenClassification.from_pretrained("Qishuai/distilbert_punctuator_en") tokenizer = DistilBertTokenizerFast.from_pretrained("Qishuai/distilbert_punctuator_en") ``` ## Model Overview ### Training data Combination of following three dataset: - BBC news: From BBC news website corresponding to stories in five topical areas from 2004-2005. [Reference](https://www.kaggle.com/hgultekin/bbcnewsarchive) - News articles: 20000 samples of short news articles scraped from Hindu, Indian times and Guardian between Feb 2017 and Aug 2017 [Reference](https://www.kaggle.com/sunnysai12345/news-summary?select=news_summary_more.csv) - Ted talks: transcripts of over 4,000 TED talks between 2004 and 2019 [Reference](https://www.kaggle.com/miguelcorraljr/ted-ultimate-dataset) ### Model Performance - Validation with 500 samples of dataset scraped from https://www.thenews.com.pk website. [Reference](https://www.kaggle.com/asad1m9a9h6mood/news-articles) - Metrics Report: | | precision | recall | f1-score | support | |:--------------:|:---------:|:------:|:--------:|:-------:| | COMMA | 0.66 | 0.55 | 0.60 | 7064 | | EXLAMATIONMARK | 1.00 | 0.00 | 0.00 | 5 | | PERIOD | 0.73 | 0.63 | 0.68 | 6573 | | QUESTIONMARK | 0.54 | 0.41 | 0.47 | 17 | | micro avg | 0.69 | 0.59 | 0.64 | 13659 | | macro avg | 0.73 | 0.40 | 0.44 | 13659 | | weighted avg | 0.69 | 0.59 | 0.64 | 13659 | - Validation with 86 news ted talks of 2020 which are not included in training dataset [Reference](https://www.kaggle.com/thegupta/ted-talk) - Metrics Report: | | precision | recall | f1-score | support | |:--------------:|:---------:|:------:|:--------:|:-------:| | COMMA | 0.71 | 0.56 | 0.63 | 10712 | | EXLAMATIONMARK | 0.45 | 0.07 | 0.12 | 75 | | PERIOD | 0.75 | 0.65 | 0.70 | 7921 | | QUESTIONMARK | 0.73 | 0.67 | 0.70 | 827 | | micro avg | 0.73 | 0.60 | 0.66 | 19535 | | macro avg | 0.66 | 0.49 | 0.53 | 19535 | | weighted avg | 0.73 | 0.60 | 0.66 | 19535 |
johngiorgi/declutr-base
3a644f1c78aae97f6e7ed0e2463bcbbaef2e7383
2022-03-11T14:47:09.000Z
[ "pytorch", "jax", "roberta", "fill-mask", "arxiv:2006.03659", "transformers", "autotrain_compatible" ]
fill-mask
false
johngiorgi
null
johngiorgi/declutr-base
2,095
1
transformers
1,328
# DeCLUTR-base ## Model description The "DeCLUTR-base" model from our paper: [DeCLUTR: Deep Contrastive Learning for Unsupervised Textual Representations](https://arxiv.org/abs/2006.03659). ## Intended uses & limitations The model is intended to be used as a universal sentence encoder, similar to [Google's Universal Sentence Encoder](https://tfhub.dev/google/universal-sentence-encoder/4) or [Sentence Transformers](https://github.com/UKPLab/sentence-transformers). #### How to use Please see [our repo](https://github.com/JohnGiorgi/DeCLUTR) for full details. A simple example is shown below. ##### With [SentenceTransformers](https://www.sbert.net/) ```python from scipy.spatial.distance import cosine from sentence_transformers import SentenceTransformer # Load the model model = SentenceTransformer("johngiorgi/declutr-base") # Prepare some text to embed texts = [ "A smiling costumed woman is holding an umbrella.", "A happy woman in a fairy costume holds an umbrella.", ] # Embed the text embeddings = model.encode(texts) # Compute a semantic similarity via the cosine distance semantic_sim = 1 - cosine(embeddings[0], embeddings[1]) ``` ##### With 🤗 Transformers ```python import torch from scipy.spatial.distance import cosine from transformers import AutoModel, AutoTokenizer # Load the model tokenizer = AutoTokenizer.from_pretrained("johngiorgi/declutr-base") model = AutoModel.from_pretrained("johngiorgi/declutr-base") # Prepare some text to embed text = [ "A smiling costumed woman is holding an umbrella.", "A happy woman in a fairy costume holds an umbrella.", ] inputs = tokenizer(text, padding=True, truncation=True, return_tensors="pt") # Embed the text with torch.no_grad(): sequence_output = model(**inputs)[0] # Mean pool the token-level embeddings to get sentence-level embeddings embeddings = torch.sum( sequence_output * inputs["attention_mask"].unsqueeze(-1), dim=1 ) / torch.clamp(torch.sum(inputs["attention_mask"], dim=1, keepdims=True), min=1e-9) # Compute a semantic similarity via the cosine distance semantic_sim = 1 - cosine(embeddings[0], embeddings[1]) ``` ### BibTeX entry and citation info ```bibtex @article{Giorgi2020DeCLUTRDC, title={DeCLUTR: Deep Contrastive Learning for Unsupervised Textual Representations}, author={John M Giorgi and Osvald Nitski and Gary D. Bader and Bo Wang}, journal={ArXiv}, year={2020}, volume={abs/2006.03659} } ```
LeBenchmark/wav2vec2-FR-7K-large
970d57910b508c27e9cafd52b781fee76cebfc8b
2021-11-23T17:54:37.000Z
[ "pytorch", "wav2vec2", "feature-extraction", "fr", "transformers", "license:apache-2.0" ]
feature-extraction
false
LeBenchmark
null
LeBenchmark/wav2vec2-FR-7K-large
2,092
3
transformers
1,329
--- language: "fr" thumbnail: tags: - wav2vec2 license: "apache-2.0" --- # LeBenchmark: wav2vec2 large model trained on 7K hours of French speech LeBenchmark provides an ensemble of pretrained wav2vec2 models on different French datasets containing spontaneous, read, and broadcasted speech. For more information on the different benchmarks that can be used to evaluate the wav2vec2 models, please refer to our paper at: [Task Agnostic and Task Specific Self-Supervised Learning from Speech with LeBenchmark](https://openreview.net/pdf?id=TSvj5dmuSd) ## Model and data descriptions We release four different models that can be found under our HuggingFace organization. Two different wav2vec2 architectures *Base* and *Large* are coupled with our small (1K), medium (3K), and large (7K) corpus. A larger one should come later. In short: - [wav2vec2-FR-7K-large](https://huggingface.co/LeBenchmark/wav2vec2-FR-7K-large): Large wav2vec2 trained on 7.6K hours of French speech (1.8K Males / 1.0K Females / 4.8K unknown). - [wav2vec2-FR-7K-base](https://huggingface.co/LeBenchmark/wav2vec2-FR-7K-base): Base wav2vec2 trained on 7.6K hours of French speech (1.8K Males / 1.0K Females / 4.8K unknown). - [wav2vec2-FR-3K-large](https://huggingface.co/LeBenchmark/wav2vec2-FR-3K-large): Large wav2vec2 trained on 2.9K hours of French speech (1.8K Males / 1.0K Females / 0.1K unknown). - [wav2vec2-FR-3K-base](https://huggingface.co/LeBenchmark/wav2vec2-FR-3K-base): Base wav2vec2 trained on 2.9K hours of French speech (1.8K Males / 1.0K Females / 0.1K unknown). - [wav2vec2-FR-2.6K-base](https://huggingface.co/LeBenchmark/wav2vec2-FR-2.6K-base): Base wav2vec2 trained on 2.6K hours of French speech (**no spontaneous speech**). - [wav2vec2-FR-1K-large](https://huggingface.co/LeBenchmark/wav2vec2-FR-1K-large): Large wav2vec2 trained on 1K hours of French speech (0.5K Males / 0.5K Females). - [wav2vec2-FR-1K-base](https://huggingface.co/LeBenchmark/wav2vec2-FR-1K-base): Base wav2vec2 trained on 1K hours of French speech (0.5K Males / 0.5K Females). ## Intended uses & limitations Pretrained wav2vec2 models are distributed under the Apache-2.0 license. Hence, they can be reused extensively without strict limitations. However, benchmarks and data may be linked to corpora that are not completely open-sourced. ## Fine-tune with Fairseq for ASR with CTC As our wav2vec2 models were trained with Fairseq, then can be used in the different tools that they provide to fine-tune the model for ASR with CTC. The full procedure has been nicely summarized in [this blogpost](https://huggingface.co/blog/fine-tune-wav2vec2-english). Please note that due to the nature of CTC, speech-to-text results aren't expected to be state-of-the-art. Moreover, future features might appear depending on the involvement of Fairseq and HuggingFace on this part. ## Integrate to SpeechBrain for ASR, Speaker, Source Separation ... Pretrained wav2vec models recently gained in popularity. At the same time, [SpeechBrain toolkit](https://speechbrain.github.io) came out, proposing a new and simpler way of dealing with state-of-the-art speech & deep-learning technologies. While it currently is in beta, SpeechBrain offers two different ways of nicely integrating wav2vec2 models that were trained with Fairseq i.e our LeBenchmark models! 1. Extract wav2vec2 features on-the-fly (with a frozen wav2vec2 encoder) to be combined with any speech-related architecture. Examples are: E2E ASR with CTC+Att+Language Models; Speaker Recognition or Verification, Source Separation ... 2. *Experimental:* To fully benefit from wav2vec2, the best solution remains to fine-tune the model while you train your downstream task. This is very simply allowed within SpeechBrain as just a flag needs to be turned on. Thus, our wav2vec2 models can be fine-tuned while training your favorite ASR pipeline or Speaker Recognizer. **If interested, simply follow this [tutorial](https://colab.research.google.com/drive/17Hu1pxqhfMisjkSgmM2CnZxfqDyn2hSY?usp=sharing)** ## Referencing LeBenchmark ``` @article{Evain2021LeBenchmarkAR, title={LeBenchmark: A Reproducible Framework for Assessing Self-Supervised Representation Learning from Speech}, author={Sol{\`e}ne Evain and Ha Nguyen and Hang Le and Marcely Zanon Boito and Salima Mdhaffar and Sina Alisamir and Ziyi Tong and N. Tomashenko and Marco Dinarelli and Titouan Parcollet and A. Allauzen and Y. Est{\`e}ve and B. Lecouteux and F. Portet and S. Rossato and F. Ringeval and D. Schwab and L. Besacier}, journal={ArXiv}, year={2021}, volume={abs/2104.11462} } ```
hustvl/yolos-small
5f960fd774250e41a01086ccbbf5e44d9d603c14
2022-06-27T08:37:45.000Z
[ "pytorch", "yolos", "object-detection", "dataset:coco", "arxiv:2106.00666", "transformers", "vision", "license:apache-2.0" ]
object-detection
false
hustvl
null
hustvl/yolos-small
2,089
10
transformers
1,330
--- license: apache-2.0 tags: - object-detection - vision datasets: - coco widget: - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/savanna.jpg example_title: Savanna - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/football-match.jpg example_title: Football Match - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/airport.jpg example_title: Airport --- # YOLOS (small-sized) model YOLOS model fine-tuned on COCO 2017 object detection (118k annotated images). It was introduced in the paper [You Only Look at One Sequence: Rethinking Transformer in Vision through Object Detection](https://arxiv.org/abs/2106.00666) by Fang et al. and first released in [this repository](https://github.com/hustvl/YOLOS). Disclaimer: The team releasing YOLOS did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description YOLOS is a Vision Transformer (ViT) trained using the DETR loss. Despite its simplicity, a base-sized YOLOS model is able to achieve 42 AP on COCO validation 2017 (similar to DETR and more complex frameworks such as Faster R-CNN). The model is trained using a "bipartite matching loss": one compares the predicted classes + bounding boxes of each of the N = 100 object queries to the ground truth annotations, padded up to the same length N (so if an image only contains 4 objects, 96 annotations will just have a "no object" as class and "no bounding box" as bounding box). The Hungarian matching algorithm is used to create an optimal one-to-one mapping between each of the N queries and each of the N annotations. Next, standard cross-entropy (for the classes) and a linear combination of the L1 and generalized IoU loss (for the bounding boxes) are used to optimize the parameters of the model. ## Intended uses & limitations You can use the raw model for object detection. See the [model hub](https://huggingface.co/models?search=hustvl/yolos) to look for all available YOLOS models. ### How to use Here is how to use this model: ```python from transformers import YolosFeatureExtractor, YolosForObjectDetection from PIL import Image import requests url = 'http://images.cocodataset.org/val2017/000000039769.jpg' image = Image.open(requests.get(url, stream=True).raw) feature_extractor = YolosFeatureExtractor.from_pretrained('hustvl/yolos-small') model = YolosForObjectDetection.from_pretrained('hustvl/yolos-small') inputs = feature_extractor(images=image, return_tensors="pt") outputs = model(**inputs) # model predicts bounding boxes and corresponding COCO classes logits = outputs.logits bboxes = outputs.pred_boxes ``` Currently, both the feature extractor and model support PyTorch. ## Training data The YOLOS model was pre-trained on [ImageNet-1k](https://huggingface.co/datasets/imagenet2012) and fine-tuned on [COCO 2017 object detection](https://cocodataset.org/#download), a dataset consisting of 118k/5k annotated images for training/validation respectively. ### Training The model was pre-trained for 200 epochs on ImageNet-1k and fine-tuned for 150 epochs on COCO. ## Evaluation results This model achieves an AP (average precision) of **36.1** on COCO 2017 validation. For more details regarding evaluation results, we refer to table 1 of the original paper. ### BibTeX entry and citation info ```bibtex @article{DBLP:journals/corr/abs-2106-00666, author = {Yuxin Fang and Bencheng Liao and Xinggang Wang and Jiemin Fang and Jiyang Qi and Rui Wu and Jianwei Niu and Wenyu Liu}, title = {You Only Look at One Sequence: Rethinking Transformer in Vision through Object Detection}, journal = {CoRR}, volume = {abs/2106.00666}, year = {2021}, url = {https://arxiv.org/abs/2106.00666}, eprinttype = {arXiv}, eprint = {2106.00666}, timestamp = {Fri, 29 Apr 2022 19:49:16 +0200}, biburl = {https://dblp.org/rec/journals/corr/abs-2106-00666.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ```
hyunwoongko/kobart
b5a881942b2536ed7851752a77d7da36d58f2e49
2022-04-11T01:19:27.000Z
[ "pytorch", "bart", "text2text-generation", "ko", "transformers", "license:mit", "autotrain_compatible" ]
text2text-generation
false
hyunwoongko
null
hyunwoongko/kobart
2,083
1
transformers
1,331
--- language: ko tags: - bart license: mit --- ## KoBART-base-v2 With the addition of chatting data, the model is trained to handle the semantics of sequences longer than KoBART. ```python from transformers import PreTrainedTokenizerFast, BartModel tokenizer = PreTrainedTokenizerFast.from_pretrained('hyunwoongko/kobart') model = BartModel.from_pretrained('hyunwoongko/kobart') ``` ### Performance NSMC - acc. : 0.901 ### hyunwoongko/kobart - Added bos/eos post processor - Removed token_type_ids
richielleisart/Childe
5da9de8d7f9e9cfde2c126b6ac6531b3ddff606a
2022-01-19T18:52:50.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
richielleisart
null
richielleisart/Childe
2,080
null
transformers
1,332
--- tags: - conversational --- # Childe Chatbot Model
nvidia/mit-b5
9707ed6bec8a37b67fc9b6d03fe6fbb0e8020f76
2022-07-29T13:15:56.000Z
[ "pytorch", "tf", "segformer", "image-classification", "dataset:imagenet_1k", "arxiv:2105.15203", "transformers", "vision", "license:apache-2.0" ]
image-classification
false
nvidia
null
nvidia/mit-b5
2,076
null
transformers
1,333
--- license: apache-2.0 tags: - vision datasets: - imagenet_1k widget: - src: https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg example_title: House - src: https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000002.jpg example_title: Castle --- # SegFormer (b5-sized) encoder pre-trained-only SegFormer encoder fine-tuned on Imagenet-1k. It was introduced in the paper [SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers](https://arxiv.org/abs/2105.15203) by Xie et al. and first released in [this repository](https://github.com/NVlabs/SegFormer). Disclaimer: The team releasing SegFormer did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description SegFormer consists of a hierarchical Transformer encoder and a lightweight all-MLP decode head to achieve great results on semantic segmentation benchmarks such as ADE20K and Cityscapes. The hierarchical Transformer is first pre-trained on ImageNet-1k, after which a decode head is added and fine-tuned altogether on a downstream dataset. This repository only contains the pre-trained hierarchical Transformer, hence it can be used for fine-tuning purposes. ## Intended uses & limitations You can use the model for fine-tuning of semantic segmentation. See the [model hub](https://huggingface.co/models?other=segformer) to look for fine-tuned versions on a task that interests you. ### How to use Here is how to use this model to classify an image of the COCO 2017 dataset into one of the 1,000 ImageNet classes: ```python from transformers import SegformerFeatureExtractor, SegformerForImageClassification from PIL import Image import requests url = "http://images.cocodataset.org/val2017/000000039769.jpg" image = Image.open(requests.get(url, stream=True).raw) feature_extractor = SegformerFeatureExtractor.from_pretrained("nvidia/mit-b5") model = SegformerForImageClassification.from_pretrained("nvidia/mit-b5") inputs = feature_extractor(images=image, return_tensors="pt") outputs = model(**inputs) logits = outputs.logits # model predicts one of the 1000 ImageNet classes predicted_class_idx = logits.argmax(-1).item() print("Predicted class:", model.config.id2label[predicted_class_idx]) ``` For more code examples, we refer to the [documentation](https://huggingface.co/transformers/model_doc/segformer.html#). ### BibTeX entry and citation info ```bibtex @article{DBLP:journals/corr/abs-2105-15203, author = {Enze Xie and Wenhai Wang and Zhiding Yu and Anima Anandkumar and Jose M. Alvarez and Ping Luo}, title = {SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers}, journal = {CoRR}, volume = {abs/2105.15203}, year = {2021}, url = {https://arxiv.org/abs/2105.15203}, eprinttype = {arXiv}, eprint = {2105.15203}, timestamp = {Wed, 02 Jun 2021 11:46:42 +0200}, biburl = {https://dblp.org/rec/journals/corr/abs-2105-15203.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ```
microsoft/deberta-v2-xlarge-mnli
5272422ce68b8d61766079390b96b033a64414d2
2021-05-21T20:08:15.000Z
[ "pytorch", "deberta-v2", "text-classification", "en", "arxiv:2006.03654", "transformers", "deberta", "deberta-mnli", "license:mit" ]
text-classification
false
microsoft
null
microsoft/deberta-v2-xlarge-mnli
2,075
2
transformers
1,334
--- language: en tags: - deberta - deberta-mnli tasks: mnli thumbnail: https://huggingface.co/front/thumbnails/microsoft.png license: mit widget: - text: "[CLS] I love you. [SEP] I like you. [SEP]" --- ## DeBERTa: Decoding-enhanced BERT with Disentangled Attention [DeBERTa](https://arxiv.org/abs/2006.03654) improves the BERT and RoBERTa models using disentangled attention and enhanced mask decoder. It outperforms BERT and RoBERTa on majority of NLU tasks with 80GB training data. Please check the [official repository](https://github.com/microsoft/DeBERTa) for more details and updates. This the DeBERTa V2 xlarge model fine-tuned with MNLI task, 24 layers, 1536 hidden size. Total parameters 900M. ### Fine-tuning on NLU tasks We present the dev results on SQuAD 1.1/2.0 and several GLUE benchmark tasks. | Model | SQuAD 1.1 | SQuAD 2.0 | MNLI-m/mm | SST-2 | QNLI | CoLA | RTE | MRPC | QQP |STS-B | |---------------------------|-----------|-----------|-------------|-------|------|------|--------|-------|-------|------| | | F1/EM | F1/EM | Acc | Acc | Acc | MCC | Acc |Acc/F1 |Acc/F1 |P/S | | BERT-Large | 90.9/84.1 | 81.8/79.0 | 86.6/- | 93.2 | 92.3 | 60.6 | 70.4 | 88.0/- | 91.3/- |90.0/- | | RoBERTa-Large | 94.6/88.9 | 89.4/86.5 | 90.2/- | 96.4 | 93.9 | 68.0 | 86.6 | 90.9/- | 92.2/- |92.4/- | | XLNet-Large | 95.1/89.7 | 90.6/87.9 | 90.8/- | 97.0 | 94.9 | 69.0 | 85.9 | 90.8/- | 92.3/- |92.5/- | | [DeBERTa-Large](https://huggingface.co/microsoft/deberta-large)<sup>1</sup> | 95.5/90.1 | 90.7/88.0 | 91.3/91.1| 96.5|95.3| 69.5| 91.0| 92.6/94.6| 92.3/- |92.8/92.5 | | [DeBERTa-XLarge](https://huggingface.co/microsoft/deberta-xlarge)<sup>1</sup> | -/- | -/- | 91.5/91.2| 97.0 | - | - | 93.1 | 92.1/94.3 | - |92.9/92.7| | [DeBERTa-V2-XLarge](https://huggingface.co/microsoft/deberta-v2-xlarge)<sup>1</sup>|95.8/90.8| 91.4/88.9|91.7/91.6| **97.5**| 95.8|71.1|**93.9**|92.0/94.2|92.3/89.8|92.9/92.9| |**[DeBERTa-V2-XXLarge](https://huggingface.co/microsoft/deberta-v2-xxlarge)<sup>1,2</sup>**|**96.1/91.4**|**92.2/89.7**|**91.7/91.9**|97.2|**96.0**|**72.0**| 93.5| **93.1/94.9**|**92.7/90.3** |**93.2/93.1** | -------- #### Notes. - <sup>1</sup> Following RoBERTa, for RTE, MRPC, STS-B, we fine-tune the tasks based on [DeBERTa-Large-MNLI](https://huggingface.co/microsoft/deberta-large-mnli), [DeBERTa-XLarge-MNLI](https://huggingface.co/microsoft/deberta-xlarge-mnli), [DeBERTa-V2-XLarge-MNLI](https://huggingface.co/microsoft/deberta-v2-xlarge-mnli), [DeBERTa-V2-XXLarge-MNLI](https://huggingface.co/microsoft/deberta-v2-xxlarge-mnli). The results of SST-2/QQP/QNLI/SQuADv2 will also be slightly improved when start from MNLI fine-tuned models, however, we only report the numbers fine-tuned from pretrained base models for those 4 tasks. - <sup>2</sup> To try the **XXLarge** model with **[HF transformers](https://huggingface.co/transformers/main_classes/trainer.html)**, you need to specify **--sharded_ddp** ```bash cd transformers/examples/text-classification/ export TASK_NAME=mrpc python -m torch.distributed.launch --nproc_per_node=8 run_glue.py --model_name_or_path microsoft/deberta-v2-xxlarge \\ --task_name $TASK_NAME --do_train --do_eval --max_seq_length 128 --per_device_train_batch_size 4 \\ --learning_rate 3e-6 --num_train_epochs 3 --output_dir /tmp/$TASK_NAME/ --overwrite_output_dir --sharded_ddp --fp16 ``` ### Citation If you find DeBERTa useful for your work, please cite the following paper: ``` latex @inproceedings{ he2021deberta, title={DEBERTA: DECODING-ENHANCED BERT WITH DISENTANGLED ATTENTION}, author={Pengcheng He and Xiaodong Liu and Jianfeng Gao and Weizhu Chen}, booktitle={International Conference on Learning Representations}, year={2021}, url={https://openreview.net/forum?id=XPZIaotutsD} } ```
hf-internal-testing/tiny-random-longformer
5690941b3c077e091b13b5f992b42e2ead18b35d
2021-09-17T19:24:34.000Z
[ "pytorch", "tf", "longformer", "transformers" ]
null
false
hf-internal-testing
null
hf-internal-testing/tiny-random-longformer
2,070
1
transformers
1,335
Entry not found
CAMeL-Lab/bert-base-arabic-camelbert-mix-sentiment
6ef16021f303c8a2bac02fd5af16601593e665d2
2021-10-17T12:09:14.000Z
[ "pytorch", "tf", "bert", "text-classification", "ar", "arxiv:2103.06678", "transformers", "license:apache-2.0" ]
text-classification
false
CAMeL-Lab
null
CAMeL-Lab/bert-base-arabic-camelbert-mix-sentiment
2,064
2
transformers
1,336
--- language: - ar license: apache-2.0 widget: - text: "أنا بخير" --- # CAMeLBERT Mix SA Model ## Model description **CAMeLBERT Mix SA Model** is a Sentiment Analysis (SA) model that was built by fine-tuning the [CAMeLBERT Mix](https://huggingface.co/CAMeL-Lab/bert-base-arabic-camelbert-mix/) model. For the fine-tuning, we used the [ASTD](https://aclanthology.org/D15-1299.pdf), [ArSAS](http://lrec-conf.org/workshops/lrec2018/W30/pdf/22_W30.pdf), and [SemEval](https://aclanthology.org/S17-2088.pdf) datasets. Our fine-tuning procedure and the hyperparameters we used can be found in our paper *"[The Interplay of Variant, Size, and Task Type in Arabic Pre-trained Language Models](https://arxiv.org/abs/2103.06678)."* Our fine-tuning code can be found [here](https://github.com/CAMeL-Lab/CAMeLBERT). ## Intended uses You can use the CAMeLBERT Mix SA model directly as part of our [CAMeL Tools](https://github.com/CAMeL-Lab/camel_tools) SA component (*recommended*) or as part of the transformers pipeline. #### How to use To use the model with the [CAMeL Tools](https://github.com/CAMeL-Lab/camel_tools) SA component: ```python >>> from camel_tools.sentiment import SentimentAnalyzer >>> sa = SentimentAnalyzer("CAMeL-Lab/bert-base-arabic-camelbert-mix-sentiment") >>> sentences = ['أنا بخير', 'أنا لست بخير'] >>> sa.predict(sentences) >>> ['positive', 'negative'] ``` You can also use the SA model directly with a transformers pipeline: ```python >>> from transformers import pipeline >>> sa = pipeline('sentiment-analysis', model='CAMeL-Lab/bert-base-arabic-camelbert-mix-sentiment') >>> sentences = ['أنا بخير', 'أنا لست بخير'] >>> sa(sentences) [{'label': 'positive', 'score': 0.9616648554801941}, {'label': 'negative', 'score': 0.9779177904129028}] ``` *Note*: to download our models, you would need `transformers>=3.5.0`. Otherwise, you could download the models manually. ## Citation ```bibtex @inproceedings{inoue-etal-2021-interplay, title = "The Interplay of Variant, Size, and Task Type in {A}rabic Pre-trained Language Models", author = "Inoue, Go and Alhafni, Bashar and Baimukan, Nurpeiis and Bouamor, Houda and Habash, Nizar", booktitle = "Proceedings of the Sixth Arabic Natural Language Processing Workshop", month = apr, year = "2021", address = "Kyiv, Ukraine (Online)", publisher = "Association for Computational Linguistics", abstract = "In this paper, we explore the effects of language variants, data sizes, and fine-tuning task types in Arabic pre-trained language models. To do so, we build three pre-trained language models across three variants of Arabic: Modern Standard Arabic (MSA), dialectal Arabic, and classical Arabic, in addition to a fourth language model which is pre-trained on a mix of the three. We also examine the importance of pre-training data size by building additional models that are pre-trained on a scaled-down set of the MSA variant. We compare our different models to each other, as well as to eight publicly available models by fine-tuning them on five NLP tasks spanning 12 datasets. Our results suggest that the variant proximity of pre-training data to fine-tuning data is more important than the pre-training data size. We exploit this insight in defining an optimized system selection model for the studied tasks.", } ```
flax-sentence-embeddings/multi-QA_v1-mpnet-asymmetric-A
dce2aa07b3e1e5c91c2f411c5534b399462f7b16
2021-07-25T21:33:06.000Z
[ "pytorch", "mpnet", "fill-mask", "arxiv:2102.07033", "arxiv:2104.08727", "sentence-transformers", "feature-extraction", "sentence-similarity" ]
sentence-similarity
false
flax-sentence-embeddings
null
flax-sentence-embeddings/multi-QA_v1-mpnet-asymmetric-A
2,064
1
sentence-transformers
1,337
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity --- # multi-QA_v1-mpnet-asymmetric-A ## Model Description SentenceTransformers is a set of models and frameworks that enable training and generating sentence embeddings from given data. The generated sentence embeddings can be utilized for Clustering, Semantic Search and other tasks. We used two separate pretrained [mpnet-base](https://huggingface.co/microsoft/mpnet-base) models and trained them using contrastive learning objective. Question and answer pairs from StackExchange and other datasets were used as training data to make the model robust to Question / Answer embedding similarity. We developed this model during the [Community week using JAX/Flax for NLP & CV](https://discuss.huggingface.co/t/open-to-the-community-community-week-using-jax-flax-for-nlp-cv/7104), organized by Hugging Face. We developed this model as part of the project: [Train the Best Sentence Embedding Model Ever with 1B Training Pairs](https://discuss.huggingface.co/t/train-the-best-sentence-embedding-model-ever-with-1b-training-pairs/7354). We benefited from efficient hardware infrastructure to run the project: 7 TPUs v3-8, as well as assistance from Google’s Flax, JAX, and Cloud team members about efficient deep learning frameworks. ## Intended uses This model set is intended to be used as a sentence encoder for a search engine. Given an input sentence, it ouptuts a vector which captures the sentence semantic information. The sentence vector may be used for semantic-search, clustering or sentence similarity tasks. Two models should be used on conjunction for Semantic Search purposes. 1. [multi-QA_v1-mpnet-asymmetric-Q](https://huggingface.co/flax-sentence-embeddings/multi-QA_v1-mpnet-asymmetric-Q) - Model to encode Questions 1. [multi-QA_v1-mpnet-asymmetric-A](https://huggingface.co/flax-sentence-embeddings/multi-QA_v1-mpnet-asymmetric-A) - Model to encode Answers ## How to use Here is how to use this model to get the features of a given text using [SentenceTransformers](https://github.com/UKPLab/sentence-transformers) library: ```python from sentence_transformers import SentenceTransformer model_Q = SentenceTransformer('flax-sentence-embeddings/multi-QA_v1-mpnet-asymmetric-Q') model_A = SentenceTransformer('flax-sentence-embeddings/multi-QA_v1-mpnet-asymmetric-A') question = "Replace me by any question you'd like." question_embbedding = model_Q.encode(text) answer = "Replace me by any answer you'd like." answer_embbedding = model_A.encode(text) answer_likeliness = cosine_similarity(question_embedding, answer_embedding) ``` # Training procedure ## Pre-training We use the pretrained [`Mpnet-base`](https://huggingface.co/microsoft/mpnet-base). Please refer to the model card for more detailed information about the pre-training procedure. ## Fine-tuning We fine-tune the model using a contrastive objective. Formally, we compute the cosine similarity from each possible sentence pairs from the batch. We then apply the cross entropy loss by comparing with true pairs. ### Hyper parameters We trained on model on a TPU v3-8. We train the model during 80k steps using a batch size of 1024 (128 per TPU core). We use a learning rate warm up of 500. The sequence length was limited to 128 tokens. We used the AdamW optimizer with a 2e-5 learning rate. The full training script is accessible in this current repository. ### Training data We used the concatenation from multiple Stackexchange Question-Answer datasets to fine-tune our model. MSMARCO, NQ & other question-answer datasets were also used. | Dataset | Paper | Number of training tuples | |:--------------------------------------------------------:|:----------------------------------------:|:--------------------------:| | [Stack Exchange QA - Title & Answer](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_title_best_voted_answer_jsonl) | - | 4,750,619 | | [Stack Exchange](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_title_body_jsonl) | - | 364,001 | | [TriviaqQA](https://huggingface.co/datasets/trivia_qa) | - | 73,346 | | [SQuAD2.0](https://rajpurkar.github.io/SQuAD-explorer/) | [paper](https://aclanthology.org/P18-2124.pdf) | 87,599 | | [Quora Question Pairs](https://quoradata.quora.com/First-Quora-Dataset-Release-Question-Pairs) | - | 103,663 | | [Eli5](https://huggingface.co/datasets/eli5) | [paper](https://doi.org/10.18653/v1/p19-1346) | 325,475 | | [PAQ](https://github.com/facebookresearch/PAQ) | [paper](https://arxiv.org/abs/2102.07033) | 64,371,441 | | [WikiAnswers](https://github.com/afader/oqa#wikianswers-corpus) | [paper](https://doi.org/10.1145/2623330.2623677) | 77,427,422 | | [MS MARCO](https://microsoft.github.io/msmarco/) | [paper](https://doi.org/10.1145/3404835.3462804) | 9,144,553 | | [GOOAQ: Open Question Answering with Diverse Answer Types](https://github.com/allenai/gooaq) | [paper](https://arxiv.org/pdf/2104.08727.pdf) | 3,012,496 | | [Yahoo Answers](https://www.kaggle.com/soumikrakshit/yahoo-answers-dataset) Question/Answer | [paper](https://proceedings.neurips.cc/paper/2015/hash/250cf8b51c773f3f8dc8b4be867a9a02-Abstract.html) | 681,164 | | SearchQA | - | 582,261 | | [Natural Questions (NQ)](https://ai.google.com/research/NaturalQuestions) | [paper](https://transacl.org/ojs/index.php/tacl/article/view/1455) | 100,231 |
transfaeries/DialoGPT-medium-Discord-1.0
fdd1f5fa445bd30233a0a2d854d89741fad3fa80
2021-09-02T04:19:36.000Z
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
false
transfaeries
null
transfaeries/DialoGPT-medium-Discord-1.0
2,062
null
transformers
1,338
--- tags: - conversational --- # Discord Model Medium 7 epochs
hf-internal-testing/tiny-random-t5-v1.1
95197e7dc6c034b9ae97b124952afb5e15ed0fb2
2021-11-02T21:08:45.000Z
[ "pytorch", "tf", "t5", "transformers" ]
null
false
hf-internal-testing
null
hf-internal-testing/tiny-random-t5-v1.1
2,060
null
transformers
1,339
Entry not found
M-CLIP/M-BERT-Distil-40
ff20c09c1a088589cb65a169d165b5ddcbe792ca
2021-03-21T15:39:15.000Z
[ "pytorch", "distilbert", "feature-extraction", "transformers" ]
feature-extraction
false
M-CLIP
null
M-CLIP/M-BERT-Distil-40
2,056
1
transformers
1,340
<br /> <p align="center"> <h1 align="center">M-BERT Distil 40</h1> <p align="center"> <a href="https://github.com/FreddeFrallan/Multilingual-CLIP/tree/main/Model%20Cards/M-BERT%20Distil%2040">Github Model Card</a> </p> </p> ## Usage To use this model along with the original CLIP vision encoder you need to download the code and additional linear weights from the [Multilingual-CLIP Github](https://github.com/FreddeFrallan/Multilingual-CLIP). Once this is done, you can load and use the model with the following code ```python from src import multilingual_clip model = multilingual_clip.load_model('M-BERT-Distil-40') embeddings = model(['Älgen är skogens konung!', 'Wie leben Eisbären in der Antarktis?', 'Вы знали, что все белые медведи левши?']) print(embeddings.shape) # Yields: torch.Size([3, 640]) ``` <!-- ABOUT THE PROJECT --> ## About A [distilbert-base-multilingual](https://huggingface.co/distilbert-base-multilingual-cased) tuned to match the embedding space for [40 languages](https://github.com/FreddeFrallan/Multilingual-CLIP/blob/main/Model%20Cards/M-BERT%20Distil%2040/Fine-Tune-Languages.md), to the embedding space of the CLIP text encoder which accompanies the Res50x4 vision encoder. <br> A full list of the 100 languages used during pre-training can be found [here](https://github.com/google-research/bert/blob/master/multilingual.md#list-of-languages), and a list of the 40 languages used during fine-tuning can be found in [SupportedLanguages.md](Fine-Tune-Languages.md). Training data pairs was generated by sampling 40k sentences for each language from the combined descriptions of [GCC](https://ai.google.com/research/ConceptualCaptions/) + [MSCOCO](https://cocodataset.org/#home) + [VizWiz](https://vizwiz.org/tasks-and-datasets/image-captioning/), and translating them into the corresponding language. All translation was done using the [AWS translate service](https://aws.amazon.com/translate/), the quality of these translations have currently not been analyzed, but one can assume the quality varies between the 40 languages. ## Evaluation [These results can be viewed at Github](https://github.com/FreddeFrallan/Multilingual-CLIP/tree/main/Model%20Cards/M-BERT%20Distil%2040). <br> A non-rigorous qualitative evaluation shows that for the languages French, German, Spanish, Russian, Swedish and Greek it seemingly yields respectable results for most instances. The exception being that Greeks are apparently unable to recognize happy persons. <br> When testing on Kannada, a language which was included during pre-training but not fine-tuning, it performed close to random
voidful/albert_chinese_base
549e8a023d81bd68e70cf3e2b4aa621e145695ed
2021-08-03T05:02:21.000Z
[ "pytorch", "albert", "fill-mask", "zh", "transformers", "autotrain_compatible" ]
fill-mask
false
voidful
null
voidful/albert_chinese_base
2,054
4
transformers
1,341
--- language: zh pipeline_tag: fill-mask widget: - text: "今天[MASK]情很好" --- # albert_chinese_base This a albert_chinese_base model from [Google's github](https://github.com/google-research/ALBERT) converted by huggingface's [script](https://github.com/huggingface/transformers/blob/master/src/transformers/convert_albert_original_tf_checkpoint_to_pytorch.py) ## Notice *Support AutoTokenizer* Since sentencepiece is not used in albert_chinese_base model you have to call BertTokenizer instead of AlbertTokenizer !!! we can eval it using an example on MaskedLM 由於 albert_chinese_base 模型沒有用 sentencepiece 用AlbertTokenizer會載不進詞表,因此需要改用BertTokenizer !!! 我們可以跑MaskedLM預測來驗證這個做法是否正確 ## Justify (驗證有效性) ```python from transformers import AutoTokenizer, AlbertForMaskedLM import torch from torch.nn.functional import softmax pretrained = 'voidful/albert_chinese_base' tokenizer = AutoTokenizer.from_pretrained(pretrained) model = AlbertForMaskedLM.from_pretrained(pretrained) inputtext = "今天[MASK]情很好" maskpos = tokenizer.encode(inputtext, add_special_tokens=True).index(103) input_ids = torch.tensor(tokenizer.encode(inputtext, add_special_tokens=True)).unsqueeze(0) # Batch size 1 outputs = model(input_ids, labels=input_ids) loss, prediction_scores = outputs[:2] logit_prob = softmax(prediction_scores[0, maskpos],dim=-1).data.tolist() predicted_index = torch.argmax(prediction_scores[0, maskpos]).item() predicted_token = tokenizer.convert_ids_to_tokens([predicted_index])[0] print(predicted_token, logit_prob[predicted_index]) ``` Result: `感 0.36333346366882324`
M-CLIP/XLM-Roberta-Large-Vit-B-32
cfb9f55a6aad08a948167a8360fc11bce171d941
2022-06-02T23:23:21.000Z
[ "pytorch", "tf", "M-CLIP", "multilingual", "transformers" ]
null
false
M-CLIP
null
M-CLIP/XLM-Roberta-Large-Vit-B-32
2,052
null
transformers
1,342
--- language: multilingual --- ## Multilingual-clip: XLM-Roberta-Large-Vit-B-32 Multilingual-CLIP extends OpenAI's English text encoders to multiple other languages. This model *only* contains the multilingual text encoder. The corresponding image model `ViT-B-32` can be retrieved via instructions found on OpenAI's [CLIP repository on Github](https://github.com/openai/CLIP). We provide a usage example below. ## Requirements To use both the multilingual text encoder and corresponding image encoder, we need to install the packages [`multilingual-clip`](https://github.com/FreddeFrallan/Multilingual-CLIP) and [`clip`](https://github.com/openai/CLIP). ``` pip install multilingual-clip pip install git+https://github.com/openai/CLIP.git ``` ## Usage Extracting embeddings from the text encoder can be done in the following way: ```python from multilingual_clip import pt_multilingual_clip import transformers texts = [ 'Three blind horses listening to Mozart.', 'Älgen är skogens konung!', 'Wie leben Eisbären in der Antarktis?', 'Вы знали, что все белые медведи левши?' ] model_name = 'M-CLIP/XLM-Roberta-Large-Vit-B-32' # Load Model & Tokenizer model = pt_multilingual_clip.MultilingualCLIP.from_pretrained(model_name) tokenizer = transformers.AutoTokenizer.from_pretrained(model_name) embeddings = model.forward(texts, tokenizer) print("Text features shape:", embeddings.shape) ``` Extracting embeddings from the corresponding image encoder: ```python import torch import clip import requests from PIL import Image device = "cuda" if torch.cuda.is_available() else "cpu" model, preprocess = clip.load("ViT-B/32", device=device) url = "http://images.cocodataset.org/val2017/000000039769.jpg" image = Image.open(requests.get(url, stream=True).raw) image = preprocess(image).unsqueeze(0).to(device) with torch.no_grad(): image_features = model.encode_image(image) print("Image features shape:", image_features.shape) ``` ## Evaluation results None of the M-CLIP models have been extensivly evaluated, but testing them on Txt2Img retrieval on the humanly translated MS-COCO dataset, we see the following **R@10** results: | Name | En | De | Es | Fr | Zh | It | Pl | Ko | Ru | Tr | Jp | | ----------------------------------|:-----: |:-----: |:-----: |:-----: | :-----: |:-----: |:-----: |:-----: |:-----: |:-----: |:-----: | | [OpenAI CLIP Vit-B/32](https://github.com/openai/CLIP)| 90.3 | - | - | - | - | - | - | - | - | - | - | | [OpenAI CLIP Vit-L/14](https://github.com/openai/CLIP)| 91.8 | - | - | - | - | - | - | - | - | - | - | | [OpenCLIP ViT-B-16+-](https://github.com/openai/CLIP)| 94.3 | - | - | - | - | - | - | - | - | - | - | | [LABSE Vit-L/14](https://huggingface.co/M-CLIP/LABSE-Vit-L-14)| 91.6 | 89.6 | 89.5 | 89.9 | 88.9 | 90.1 | 89.8 | 80.8 | 85.5 | 89.8 | 73.9 | | [XLM-R Large Vit-B/32](https://huggingface.co/M-CLIP/XLM-Roberta-Large-Vit-B-32)| 91.8 | 88.7 | 89.1 | 89.4 | 89.3 | 89.8| 91.4 | 82.1 | 86.1 | 88.8 | 81.0 | | [XLM-R Vit-L/14](https://huggingface.co/M-CLIP/XLM-Roberta-Large-Vit-L-14)| 92.4 | 90.6 | 91.0 | 90.0 | 89.7 | 91.1 | 91.3 | 85.2 | 85.8 | 90.3 | 81.9 | | [XLM-R Large Vit-B/16+](https://huggingface.co/M-CLIP/XLM-Roberta-Large-Vit-B-16Plus)| **95.0** | **93.0** | **93.6** | **93.1** | **94.0** | **93.1** | **94.4** | **89.0** | **90.0** | **93.0** | **84.2** | ## Training/Model details Further details about the model training and data can be found in the [model card](https://github.com/FreddeFrallan/Multilingual-CLIP/blob/main/larger_mclip.md).
textattack/roberta-base-MNLI
6f2e633322381bc5897405e417ec531ea3633a3f
2021-05-20T22:06:43.000Z
[ "pytorch", "jax", "roberta", "text-classification", "transformers" ]
text-classification
false
textattack
null
textattack/roberta-base-MNLI
2,037
1
transformers
1,343
Entry not found
philschmid/MiniLM-L6-H384-uncased-sst2
0c0ecdc39368f87291727ec084111e89e30b45b2
2021-09-24T09:53:36.000Z
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
false
philschmid
null
philschmid/MiniLM-L6-H384-uncased-sst2
2,034
null
transformers
1,344
Entry not found
lidiya/bart-base-samsum
eeb19117db15f1388c7188cb455e7a98af647792
2022-07-20T14:56:27.000Z
[ "pytorch", "bart", "text2text-generation", "en", "dataset:samsum", "transformers", "seq2seq", "summarization", "license:apache-2.0", "model-index", "autotrain_compatible" ]
summarization
false
lidiya
null
lidiya/bart-base-samsum
2,030
1
transformers
1,345
--- language: en tags: - bart - seq2seq - summarization license: apache-2.0 datasets: - samsum widget: - text: "Jeff: Can I train a \U0001F917 Transformers model on Amazon SageMaker? \n\ Philipp: Sure you can use the new Hugging Face Deep Learning Container. \nJeff:\ \ ok.\nJeff: and how can I get started? \nJeff: where can I find documentation?\ \ \nPhilipp: ok, ok you can find everything here. https://huggingface.co/blog/the-partnership-amazon-sagemaker-and-hugging-face\n" model-index: - name: bart-base-samsum results: - task: name: Abstractive Text Summarization type: abstractive-text-summarization dataset: name: 'SAMSum Corpus: A Human-annotated Dialogue Dataset for Abstractive Summarization' type: samsum metrics: - name: Validation ROUGE-1 type: rouge-1 value: 46.6619 - name: Validation ROUGE-2 type: rouge-2 value: 23.3285 - name: Validation ROUGE-L type: rouge-l value: 39.4811 - name: Test ROUGE-1 type: rouge-1 value: 44.9932 - name: Test ROUGE-2 type: rouge-2 value: 21.7286 - name: Test ROUGE-L type: rouge-l value: 38.1921 - task: type: summarization name: Summarization dataset: name: samsum type: samsum config: samsum split: test metrics: - name: ROUGE-1 type: rouge value: 45.0148 verified: true - name: ROUGE-2 type: rouge value: 21.6861 verified: true - name: ROUGE-L type: rouge value: 38.1728 verified: true - name: ROUGE-LSUM type: rouge value: 41.2794 verified: true - name: loss type: loss value: 1.597476601600647 verified: true - name: gen_len type: gen_len value: 17.6606 verified: true --- ## `bart-base-samsum` This model was obtained by fine-tuning `facebook/bart-base` on Samsum dataset. ## Usage ```python from transformers import pipeline summarizer = pipeline("summarization", model="lidiya/bart-base-samsum") conversation = '''Jeff: Can I train a 🤗 Transformers model on Amazon SageMaker? Philipp: Sure you can use the new Hugging Face Deep Learning Container. Jeff: ok. Jeff: and how can I get started? Jeff: where can I find documentation? Philipp: ok, ok you can find everything here. https://huggingface.co/blog/the-partnership-amazon-sagemaker-and-hugging-face ''' summarizer(conversation) ``` ## Training procedure - Colab notebook: https://colab.research.google.com/drive/1RInRjLLso9E2HG_xjA6j8JO3zXzSCBRF?usp=sharing ## Results | key | value | | --- | ----- | | eval_rouge1 | 46.6619 | | eval_rouge2 | 23.3285 | | eval_rougeL | 39.4811 | | eval_rougeLsum | 43.0482 | | test_rouge1 | 44.9932 | | test_rouge2 | 21.7286 | | test_rougeL | 38.1921 | | test_rougeLsum | 41.2672 |
akdeniz27/roberta-large-cuad
32cd27aa93ae12e576f214c40c558bdcc5081220
2021-11-14T08:43:30.000Z
[ "pytorch", "roberta", "question-answering", "en", "dataset:cuad", "transformers", "autotrain_compatible" ]
question-answering
false
akdeniz27
null
akdeniz27/roberta-large-cuad
2,024
null
transformers
1,346
--- language: en datasets: - cuad --- # RoBERTa Large Model fine-tuned with CUAD dataset This model is the fine-tuned version of "RoBERTa Large" using CUAD dataset https://huggingface.co/datasets/cuad Link for model checkpoint: https://github.com/TheAtticusProject/cuad For the use of the model with CUAD: https://github.com/marshmellow77/cuad-demo and https://huggingface.co/spaces/akdeniz27/contract-understanding-atticus-dataset-demo
deepset/tapas-large-nq-hn-reader
3b9b9fcfd1789686d05a3b63d8492ac162c7d9fc
2022-01-23T14:58:08.000Z
[ "pytorch", "tapas", "en", "transformers", "license:apache-2.0" ]
null
false
deepset
null
deepset/tapas-large-nq-hn-reader
2,024
null
transformers
1,347
--- language: en tags: - tapas license: apache-2.0 --- This model contains the converted PyTorch checkpoint of the original Tensorflow model available in the [TaPas repository](https://github.com/google-research/tapas/blob/master/DENSE_TABLE_RETRIEVER.md#reader-models). It is described in Herzig et al.'s (2021) [paper](https://aclanthology.org/2021.naacl-main.43/) _Open Domain Question Answering over Tables via Dense Retrieval_. This model has 2 versions which can be used differing only in the table scoring head. The default one has an adapted table scoring head in order to be able to generate probabilities out of the logits. The other (non-default) version corredponds to the original checkpoint from the TaPas repository and can be accessed setting `revision="original"`. # Usage ## In Haystack If you want to use this model for question-answering over tables, you can load it in [Haystack](https://github.com/deepset-ai/haystack/): ```python from haystack.nodes import TableReader table_reader = TableReader(model_name_or_path="deepset/tapas-large-nq-hn-reader") ```
facebook/wav2vec2-large-robust
2493a2c576276145c3e066d9243b0e391fab673a
2021-11-05T12:45:27.000Z
[ "pytorch", "wav2vec2", "pretraining", "en", "dataset:libri_light", "dataset:common_voice", "dataset:switchboard", "dataset:fisher", "arxiv:2104.01027", "transformers", "speech", "license:apache-2.0" ]
null
false
facebook
null
facebook/wav2vec2-large-robust
2,021
9
transformers
1,348
--- language: en datasets: - libri_light - common_voice - switchboard - fisher tags: - speech license: apache-2.0 --- # Wav2Vec2-Large-Robust [Facebook's Wav2Vec2](https://ai.facebook.com/blog/wav2vec-20-learning-the-structure-of-speech-from-raw-audio/) The large model pretrained on 16kHz sampled speech audio. Speech datasets from multiple domains were used to pretrain the model: - [Libri-Light](https://github.com/facebookresearch/libri-light): open-source audio books from the LibriVox project; clean, read-out audio data - [CommonVoice](https://huggingface.co/datasets/common_voice): crowd-source collected audio data; read-out text snippets - [Switchboard](https://catalog.ldc.upenn.edu/LDC97S62): telephone speech corpus; noisy telephone data - [Fisher](https://catalog.ldc.upenn.edu/LDC2004T19): conversational telephone speech; noisy telephone data When using the model make sure that your speech input is also sampled at 16Khz. **Note**: This model does not have a tokenizer as it was pretrained on audio alone. In order to use this model **speech recognition**, a tokenizer should be created and the model should be fine-tuned on labeled text data. Check out [this blog](https://huggingface.co/blog/fine-tune-wav2vec2-english) for more in-detail explanation of how to fine-tune the model. [Paper Robust Wav2Vec2](https://arxiv.org/abs/2104.01027) Authors: Wei-Ning Hsu, Anuroop Sriram, Alexei Baevski, Tatiana Likhomanenko, Qiantong Xu, Vineel Pratap, Jacob Kahn, Ann Lee, Ronan Collobert, Gabriel Synnaeve, Michael Auli **Abstract** Self-supervised learning of speech representations has been a very active research area but most work is focused on a single domain such as read audio books for which there exist large quantities of labeled and unlabeled data. In this paper, we explore more general setups where the domain of the unlabeled data for pre-training data differs from the domain of the labeled data for fine-tuning, which in turn may differ from the test data domain. Our experiments show that using target domain data during pre-training leads to large performance improvements across a variety of setups. On a large-scale competitive setup, we show that pre-training on unlabeled in-domain data reduces the gap between models trained on in-domain and out-of-domain labeled data by 66%-73%. This has obvious practical implications since it is much easier to obtain unlabeled target domain data than labeled data. Moreover, we find that pre-training on multiple domains improves generalization performance on domains not seen during training. Code and models will be made available at this https URL. The original model can be found under https://github.com/pytorch/fairseq/tree/master/examples/wav2vec#wav2vec-20. # Usage See [this notebook](https://colab.research.google.com/drive/1FjTsqbYKphl9kL-eILgUc-bl4zVThL8F?usp=sharing) for more information on how to fine-tune the model.
hf-internal-testing/tiny-random-deberta
449491e17107f61f2e8df35a0e20a55e9c4afd3c
2021-09-17T19:22:32.000Z
[ "pytorch", "tf", "deberta", "transformers" ]
null
false
hf-internal-testing
null
hf-internal-testing/tiny-random-deberta
2,019
null
transformers
1,349
Entry not found
Helsinki-NLP/opus-mt-ur-en
c803d32b6f7a3a7a8cb1ba91d2947de0009f8cdc
2020-08-21T14:42:51.000Z
[ "pytorch", "marian", "text2text-generation", "ur", "en", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-ur-en
2,017
1
transformers
1,350
--- language: - ur - en tags: - translation license: apache-2.0 --- ### urd-eng * source group: Urdu * target group: English * OPUS readme: [urd-eng](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/urd-eng/README.md) * model: transformer-align * source language(s): urd * target language(s): eng * model: transformer-align * pre-processing: normalization + SentencePiece (spm32k,spm32k) * download original weights: [opus-2020-06-17.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/urd-eng/opus-2020-06-17.zip) * test set translations: [opus-2020-06-17.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/urd-eng/opus-2020-06-17.test.txt) * test set scores: [opus-2020-06-17.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/urd-eng/opus-2020-06-17.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba-test.urd.eng | 23.2 | 0.435 | ### System Info: - hf_name: urd-eng - source_languages: urd - target_languages: eng - opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/urd-eng/README.md - original_repo: Tatoeba-Challenge - tags: ['translation'] - languages: ['ur', 'en'] - src_constituents: {'urd'} - tgt_constituents: {'eng'} - src_multilingual: False - tgt_multilingual: False - prepro: normalization + SentencePiece (spm32k,spm32k) - url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/urd-eng/opus-2020-06-17.zip - url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/urd-eng/opus-2020-06-17.test.txt - src_alpha3: urd - tgt_alpha3: eng - short_pair: ur-en - chrF2_score: 0.435 - bleu: 23.2 - brevity_penalty: 0.975 - ref_len: 12029.0 - src_name: Urdu - tgt_name: English - train_date: 2020-06-17 - src_alpha2: ur - tgt_alpha2: en - prefer_old: False - long_pair: urd-eng - helsinki_git_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535 - transformers_git_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b - port_machine: brutasse - port_time: 2020-08-21-14:41
aychang/roberta-base-imdb
cb6bcadd0540b61c9623bd6295d51ac445ceb135
2021-05-20T14:25:56.000Z
[ "pytorch", "jax", "roberta", "text-classification", "en", "dataset:imdb", "transformers", "license:mit" ]
text-classification
false
aychang
null
aychang/roberta-base-imdb
2,017
1
transformers
1,351
--- language: - en thumbnail: tags: - text-classification license: mit datasets: - imdb metrics: --- # IMDB Sentiment Task: roberta-base ## Model description A simple base roBERTa model trained on the "imdb" dataset. ## Intended uses & limitations #### How to use ##### Transformers ```python # Load model and tokenizer from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForQuestionAnswering.from_pretrained(model_name) tokenizer = AutoTokenizer.from_pretrained(model_name) # Use pipeline from transformers import pipeline model_name = "aychang/roberta-base-imdb" nlp = pipeline("sentiment-analysis", model=model_name, tokenizer=model_name) results = nlp(["I didn't really like it because it was so terrible.", "I love how easy it is to watch and get good results."]) ``` ##### AdaptNLP ```python from adaptnlp import EasySequenceClassifier model_name = "aychang/roberta-base-imdb" texts = ["I didn't really like it because it was so terrible.", "I love how easy it is to watch and get good results."] classifer = EasySequenceClassifier results = classifier.tag_text(text=texts, model_name_or_path=model_name, mini_batch_size=2) ``` #### Limitations and bias This is minimal language model trained on a benchmark dataset. ## Training data IMDB https://huggingface.co/datasets/imdb ## Training procedure #### Hardware One V100 #### Hyperparameters and Training Args ```python from transformers import TrainingArguments training_args = TrainingArguments( output_dir='./models', overwrite_output_dir=False, num_train_epochs=2, per_device_train_batch_size=8, per_device_eval_batch_size=8, warmup_steps=500, weight_decay=0.01, evaluation_strategy="steps", logging_dir='./logs', fp16=False, eval_steps=800, save_steps=300000 ) ``` ## Eval results ``` {'epoch': 2.0, 'eval_accuracy': 0.94668, 'eval_f1': array([0.94603457, 0.94731017]), 'eval_loss': 0.2578844428062439, 'eval_precision': array([0.95762642, 0.93624502]), 'eval_recall': array([0.93472, 0.95864]), 'eval_runtime': 244.7522, 'eval_samples_per_second': 102.144} ```
stas/pegasus-cnn_dailymail-tiny-random
600d1e9bb307c4c4c7361688317e80fc2612bc5c
2021-07-01T05:33:00.000Z
[ "pytorch", "pegasus", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
false
stas
null
stas/pegasus-cnn_dailymail-tiny-random
2,015
null
transformers
1,352
This is a tiny random pegasus-cnn_dailymail model used for testing. See `make-pegasus-cnn_dailymail-tiny-random.py` for how it was created.
hf-internal-testing/tiny-random-big_bird
0ab074a1d464a4cc6846332560f1f2abca400a71
2022-03-25T17:49:02.000Z
[ "pytorch", "big_bird", "transformers" ]
null
false
hf-internal-testing
null
hf-internal-testing/tiny-random-big_bird
2,010
null
transformers
1,353
Entry not found
stas/tiny-m2m_100
4df2a26e27b5f4823e2e797424de47f14c2e1b27
2022-04-29T23:57:25.000Z
[ "pytorch", "m2m_100", "text2text-generation", "en", "transformers", "testing", "license:apache-2.0", "autotrain_compatible" ]
text2text-generation
false
stas
null
stas/tiny-m2m_100
2,009
null
transformers
1,354
--- language: - en thumbnail: tags: - testing license: apache-2.0 --- # Tiny M2M100 model This is a tiny model that is used in the `transformers` test suite. It doesn't do anything useful beyond functional testing. Do not try to use it for anything that requires quality. The model is indeed 4MB in size. You can see how it was created [here](https://huggingface.co/stas/tiny-m2m_100/blob/main/m2m-make-tiny-model.py) If you're looking for the real model, please go to [https://huggingface.co/facebook/m2m100_418M](https://huggingface.co/facebook/m2m100_418M).
hf-internal-testing/tiny-random-mpnet
490e676cf9e1714ddd21f9169dc14652e9a9e7f4
2021-09-17T19:25:01.000Z
[ "pytorch", "tf", "mpnet", "transformers" ]
null
false
hf-internal-testing
null
hf-internal-testing/tiny-random-mpnet
2,008
null
transformers
1,355
Entry not found
hf-internal-testing/tiny-electra
7479c5defabc4a550d08c170f7f4fb0b0e6be19b
2021-07-16T01:27:58.000Z
[ "pytorch", "electra", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
hf-internal-testing
null
hf-internal-testing/tiny-electra
2,005
null
transformers
1,356
This is a tiny-electra random model to be used for basic testing.
hf-internal-testing/tiny-random-funnel
ec246a681806cada4b3c073569afba96f7ac8eb8
2021-09-17T19:25:04.000Z
[ "pytorch", "tf", "funnel", "transformers" ]
null
false
hf-internal-testing
null
hf-internal-testing/tiny-random-funnel
2,002
null
transformers
1,357
Entry not found
Helsinki-NLP/opus-mt-en-sv
13d9f7f708dd86e1edf61f0cd438298267b83850
2021-09-09T21:39:27.000Z
[ "pytorch", "rust", "marian", "text2text-generation", "en", "sv", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-en-sv
1,998
1
transformers
1,358
--- tags: - translation license: apache-2.0 --- ### opus-mt-en-sv * source languages: en * target languages: sv * OPUS readme: [en-sv](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/en-sv/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-02-26.zip](https://object.pouta.csc.fi/OPUS-MT-models/en-sv/opus-2020-02-26.zip) * test set translations: [opus-2020-02-26.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/en-sv/opus-2020-02-26.test.txt) * test set scores: [opus-2020-02-26.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/en-sv/opus-2020-02-26.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba.en.sv | 60.1 | 0.736 |
hf-internal-testing/tiny-random-prophetnet
d5071e4655fd0413b0e71405a91dfb4280e31b81
2021-09-17T19:24:57.000Z
[ "pytorch", "prophetnet", "transformers" ]
null
false
hf-internal-testing
null
hf-internal-testing/tiny-random-prophetnet
1,998
null
transformers
1,359
Entry not found
hf-internal-testing/tiny-random-mobilebert
1f919a6d77ef448d41e0de29f79f854ace43bc4c
2021-09-17T19:24:24.000Z
[ "pytorch", "tf", "mobilebert", "transformers" ]
null
false
hf-internal-testing
null
hf-internal-testing/tiny-random-mobilebert
1,996
null
transformers
1,360
Entry not found
hf-internal-testing/tiny-random-squeezebert
da3eaaeb3b2fa22836d34097046f192db387e961
2021-09-17T19:25:10.000Z
[ "pytorch", "squeezebert", "transformers" ]
null
false
hf-internal-testing
null
hf-internal-testing/tiny-random-squeezebert
1,995
null
transformers
1,361
Entry not found
Helsinki-NLP/opus-mt-tc-big-en-tr
dc016b6b79636a066052e581101c734ca5934667
2022-06-01T13:01:51.000Z
[ "pytorch", "marian", "text2text-generation", "en", "tr", "transformers", "translation", "opus-mt-tc", "license:cc-by-4.0", "model-index", "autotrain_compatible" ]
translation
false
Helsinki-NLP
null
Helsinki-NLP/opus-mt-tc-big-en-tr
1,995
1
transformers
1,362
--- language: - en - tr tags: - translation - opus-mt-tc license: cc-by-4.0 model-index: - name: opus-mt-tc-big-en-tr results: - task: name: Translation eng-tur type: translation args: eng-tur dataset: name: flores101-devtest type: flores_101 args: eng tur devtest metrics: - name: BLEU type: bleu value: 31.4 - task: name: Translation eng-tur type: translation args: eng-tur dataset: name: newsdev2016 type: newsdev2016 args: eng-tur metrics: - name: BLEU type: bleu value: 21.9 - task: name: Translation eng-tur type: translation args: eng-tur dataset: name: tatoeba-test-v2021-08-07 type: tatoeba_mt args: eng-tur metrics: - name: BLEU type: bleu value: 42.3 - task: name: Translation eng-tur type: translation args: eng-tur dataset: name: newstest2016 type: wmt-2016-news args: eng-tur metrics: - name: BLEU type: bleu value: 23.4 - task: name: Translation eng-tur type: translation args: eng-tur dataset: name: newstest2017 type: wmt-2017-news args: eng-tur metrics: - name: BLEU type: bleu value: 25.4 - task: name: Translation eng-tur type: translation args: eng-tur dataset: name: newstest2018 type: wmt-2018-news args: eng-tur metrics: - name: BLEU type: bleu value: 22.6 --- # opus-mt-tc-big-en-tr Neural machine translation model for translating from English (en) to Turkish (tr). This model is part of the [OPUS-MT project](https://github.com/Helsinki-NLP/Opus-MT), an effort to make neural machine translation models widely available and accessible for many languages in the world. All models are originally trained using the amazing framework of [Marian NMT](https://marian-nmt.github.io/), an efficient NMT implementation written in pure C++. The models have been converted to pyTorch using the transformers library by huggingface. Training data is taken from [OPUS](https://opus.nlpl.eu/) and training pipelines use the procedures of [OPUS-MT-train](https://github.com/Helsinki-NLP/Opus-MT-train). * Publications: [OPUS-MT – Building open translation services for the World](https://aclanthology.org/2020.eamt-1.61/) and [The Tatoeba Translation Challenge – Realistic Data Sets for Low Resource and Multilingual MT](https://aclanthology.org/2020.wmt-1.139/) (Please, cite if you use this model.) ``` @inproceedings{tiedemann-thottingal-2020-opus, title = "{OPUS}-{MT} {--} Building open translation services for the World", author = {Tiedemann, J{\"o}rg and Thottingal, Santhosh}, booktitle = "Proceedings of the 22nd Annual Conference of the European Association for Machine Translation", month = nov, year = "2020", address = "Lisboa, Portugal", publisher = "European Association for Machine Translation", url = "https://aclanthology.org/2020.eamt-1.61", pages = "479--480", } @inproceedings{tiedemann-2020-tatoeba, title = "The Tatoeba Translation Challenge {--} Realistic Data Sets for Low Resource and Multilingual {MT}", author = {Tiedemann, J{\"o}rg}, booktitle = "Proceedings of the Fifth Conference on Machine Translation", month = nov, year = "2020", address = "Online", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2020.wmt-1.139", pages = "1174--1182", } ``` ## Model info * Release: 2022-02-25 * source language(s): eng * target language(s): tur * model: transformer-big * data: opusTCv20210807+bt ([source](https://github.com/Helsinki-NLP/Tatoeba-Challenge)) * tokenization: SentencePiece (spm32k,spm32k) * original model: [opusTCv20210807+bt_transformer-big_2022-02-25.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/eng-tur/opusTCv20210807+bt_transformer-big_2022-02-25.zip) * more information released models: [OPUS-MT eng-tur README](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/eng-tur/README.md) ## Usage A short example code: ```python from transformers import MarianMTModel, MarianTokenizer src_text = [ "I know Tom didn't want to eat that.", "On Sundays, we would get up early and go fishing." ] model_name = "pytorch-models/opus-mt-tc-big-en-tr" tokenizer = MarianTokenizer.from_pretrained(model_name) model = MarianMTModel.from_pretrained(model_name) translated = model.generate(**tokenizer(src_text, return_tensors="pt", padding=True)) for t in translated: print( tokenizer.decode(t, skip_special_tokens=True) ) # expected output: # Tom'un bunu yemek istemediğini biliyorum. # Pazar günleri erkenden kalkıp balık tutmaya giderdik. ``` You can also use OPUS-MT models with the transformers pipelines, for example: ```python from transformers import pipeline pipe = pipeline("translation", model="Helsinki-NLP/opus-mt-tc-big-en-tr") print(pipe("I know Tom didn't want to eat that.")) # expected output: Tom'un bunu yemek istemediğini biliyorum. ``` ## Benchmarks * test set translations: [opusTCv20210807+bt_transformer-big_2022-02-25.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/eng-tur/opusTCv20210807+bt_transformer-big_2022-02-25.test.txt) * test set scores: [opusTCv20210807+bt_transformer-big_2022-02-25.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/eng-tur/opusTCv20210807+bt_transformer-big_2022-02-25.eval.txt) * benchmark results: [benchmark_results.txt](benchmark_results.txt) * benchmark output: [benchmark_translations.zip](benchmark_translations.zip) | langpair | testset | chr-F | BLEU | #sent | #words | |----------|---------|-------|-------|-------|--------| | eng-tur | tatoeba-test-v2021-08-07 | 0.68726 | 42.3 | 13907 | 84364 | | eng-tur | flores101-devtest | 0.62829 | 31.4 | 1012 | 20253 | | eng-tur | newsdev2016 | 0.58947 | 21.9 | 1001 | 15958 | | eng-tur | newstest2016 | 0.57624 | 23.4 | 3000 | 50782 | | eng-tur | newstest2017 | 0.58858 | 25.4 | 3007 | 51977 | | eng-tur | newstest2018 | 0.57848 | 22.6 | 3000 | 53731 | ## Acknowledgements The work is supported by the [European Language Grid](https://www.european-language-grid.eu/) as [pilot project 2866](https://live.european-language-grid.eu/catalogue/#/resource/projects/2866), by the [FoTran project](https://www.helsinki.fi/en/researchgroups/natural-language-understanding-with-cross-lingual-grounding), funded by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 771113), and the [MeMAD project](https://memad.eu/), funded by the European Union’s Horizon 2020 Research and Innovation Programme under grant agreement No 780069. We are also grateful for the generous computational resources and IT infrastructure provided by [CSC -- IT Center for Science](https://www.csc.fi/), Finland. ## Model conversion info * transformers version: 4.16.2 * OPUS-MT git hash: 3405783 * port time: Wed Apr 13 18:11:39 EEST 2022 * port machine: LM0-400-22516.local
hf-internal-testing/tiny-layoutlm
7bc6366344bf3e7363a5e0e2f4fdd3087ab68e4a
2021-08-04T04:33:04.000Z
[ "pytorch", "layoutlm", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
hf-internal-testing
null
hf-internal-testing/tiny-layoutlm
1,992
null
transformers
1,363
This is a tiny-layoutlm random model to be used for basic testing.
hf-internal-testing/tiny-random-gpt_neo
b95a8110971dfc560caa02c286c3b8aa0118941a
2021-09-17T19:25:26.000Z
[ "pytorch", "gpt_neo", "transformers" ]
null
false
hf-internal-testing
null
hf-internal-testing/tiny-random-gpt_neo
1,992
null
transformers
1,364
Entry not found
hf-internal-testing/tiny-random-led
2774e58f25d3fdda4c0d86b140cca8e049ee6a9f
2021-09-17T19:24:21.000Z
[ "pytorch", "tf", "led", "transformers" ]
null
false
hf-internal-testing
null
hf-internal-testing/tiny-random-led
1,992
null
transformers
1,365
Entry not found
hf-internal-testing/tiny-random-deberta-v2
924b47948998e199d88e95e1df46ab125e0f325a
2021-09-17T19:23:17.000Z
[ "pytorch", "tf", "deberta-v2", "transformers" ]
null
false
hf-internal-testing
null
hf-internal-testing/tiny-random-deberta-v2
1,991
null
transformers
1,366
Entry not found
lincoln/mbart-mlsum-automatic-summarization
17a3a2e474932a90e664ef2c75c5e46ef964fc1a
2021-09-07T08:21:55.000Z
[ "pytorch", "tf", "mbart", "text2text-generation", "fr", "dataset:MLSUM", "arxiv:2004.14900", "transformers", "summarization", "bart", "license:mit", "autotrain_compatible" ]
summarization
false
lincoln
null
lincoln/mbart-mlsum-automatic-summarization
1,991
3
transformers
1,367
--- language: - fr license: mit datasets: - MLSUM pipeline_tag: "summarization" widget: - text: « La veille de l’ouverture, je vais faire venir un coach pour les salariés qui reprendront le travail. Cela va me coûter 300 euros, mais après des mois d’oisiveté obligatoire, la reprise n’est pas simple. Certains sont au chômage partiel depuis mars 2020 », raconte Alain Fontaine, propriétaire du restaurant Le Mesturet, dans le quartier de la Bourse, à Paris. Cette date d’ouverture, désormais, il la connaît. Emmanuel Macron a, en effet, donné le feu vert pour un premier accueil des clients en terrasse, mercredi 19 mai. M. Fontaine imagine même faire venir un orchestre ce jour-là pour fêter l’événement. Il lui reste toutefois à construire sa terrasse. Il pensait que les ouvriers passeraient samedi 1er mai pour l’installer, mais, finalement, le rendez-vous a été décalé. Pour l’instant, le tas de bois est entreposé dans la salle de restaurant qui n’a plus accueilli de convives depuis le 29 octobre 2020, quand le couperet de la fermeture administrative est tombé.M. Fontaine, président de l’Association française des maîtres restaurateurs, ne manquera pas de concurrents prêts à profiter de ce premier temps de réouverture des bars et restaurants. Même si le couvre-feu limite le service à 21 heures. D’autant que la Mairie de Paris vient d’annoncer le renouvellement des terrasses éphémères installées en 2020 et leur gratuité jusqu’à la fin de l’été. tags: - summarization - mbart - bart --- # Résumé automatique d'article de presses Ce modèles est basé sur le modèle [`facebook/mbart-large-50`](https://huggingface.co/facebook/mbart-large-50) et été fine-tuné en utilisant des articles de presse issus de la base de données MLSUM. L'hypothèse à été faite que les chapeaux des articles faisaient de bon résumés de référence. ## Entrainement Nous avons testé deux architecture de modèles (T5 et BART) avec des textes en entrée de 512 ou 1024 tokens. Finallement c'est le modèle BART avec 512 tokens qui à été retenu. Il a été entrainé sur 2 epochs (~700K articles) sur une Tesla V100 (32 heures d'entrainement). ## Résultats ![Score de novelty](assets/novelty.png) Nous avons comparé notre modèle (`mbart-large-512-full` sur le graphique) à deux références: * MBERT qui correspond aux performances du modèle entrainé par l'équipe à l'origine de la base d'articles MLSUM * Barthez qui est un autre modèle basé sur des articles de presses issus de la base de données OrangeSum On voit que le score de novelty (cf papier MLSUM) de notre modèle n'est pas encore comparable à ces deux références et encore moins à une production humaine néanmoins les résumés générés sont dans l'ensemble de bonne qualité. ## Utilisation ```python from transformers import AutoModelForSeq2SeqLM, AutoTokenizer from transformers import SummarizationPipeline model_name = 'lincoln/mbart-mlsum-automatic-summarization' loaded_tokenizer = AutoTokenizer.from_pretrained(model_name) loaded_model = AutoModelForSeq2SeqLM.from_pretrained(model_name) nlp = SummarizationPipeline(model=loaded_model, tokenizer=loaded_tokenizer) nlp(""" « La veille de l’ouverture, je vais faire venir un coach pour les salariés qui reprendront le travail. Cela va me coûter 300 euros, mais après des mois d’oisiveté obligatoire, la reprise n’est pas simple. Certains sont au chômage partiel depuis mars 2020 », raconte Alain Fontaine, propriétaire du restaurant Le Mesturet, dans le quartier de la Bourse, à Paris. Cette date d’ouverture, désormais, il la connaît. Emmanuel Macron a, en effet, donné le feu vert pour un premier accueil des clients en terrasse, mercredi 19 mai. M. Fontaine imagine même faire venir un orchestre ce jour-là pour fêter l’événement. Il lui reste toutefois à construire sa terrasse. Il pensait que les ouvriers passeraient samedi 1er mai pour l’installer, mais, finalement, le rendez-vous a été décalé. Pour l’instant, le tas de bois est entreposé dans la salle de restaurant qui n’a plus accueilli de convives depuis le 29 octobre 2020, quand le couperet de la fermeture administrative est tombé.M. Fontaine, président de l’Association française des maîtres restaurateurs, ne manquera pas de concurrents prêts à profiter de ce premier temps de réouverture des bars et restaurants. Même si le couvre-feu limite le service à 21 heures. D’autant que la Mairie de Paris vient d’annoncer le renouvellement des terrasses éphémères installées en 2020 et leur gratuité jusqu’à la fin de l’été. """) ``` ## Citation ```bibtex @article{scialom2020mlsum, title={MLSUM: The Multilingual Summarization Corpus}, author={Thomas Scialom and Paul-Alexis Dray and Sylvain Lamprier and Benjamin Piwowarski and Jacopo Staiano}, year={2020}, eprint={2004.14900}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
hf-internal-testing/tiny-random-camembert
8fa65c628a3f475b1ed4e8dff6adf09db1b6bb83
2022-07-27T10:07:32.000Z
[ "pytorch", "camembert", "feature-extraction", "transformers" ]
feature-extraction
false
hf-internal-testing
null
hf-internal-testing/tiny-random-camembert
1,990
null
transformers
1,368
Entry not found
microsoft/DialogRPT-human-vs-rand
7206b425c2c016dd5533e2a99e665ba3546e5ce0
2021-05-23T09:18:07.000Z
[ "pytorch", "gpt2", "text-classification", "arxiv:2009.06978", "transformers" ]
text-classification
false
microsoft
null
microsoft/DialogRPT-human-vs-rand
1,986
1
transformers
1,369
# Demo Please try this [➤➤➤ Colab Notebook Demo (click me!)](https://colab.research.google.com/drive/1cAtfkbhqsRsT59y3imjR1APw3MHDMkuV?usp=sharing) | Context | Response | `human_vs_rand` score | | :------ | :------- | :------------: | | I love NLP! | He is a great basketball player. | 0.027 | | I love NLP! | Can you tell me how it works? | 0.754 | | I love NLP! | Me too! | 0.631 | The `human_vs_rand` score predicts how likely the response is corresponding to the given context, rather than a random response. # DialogRPT-human-vs-rand ### Dialog Ranking Pretrained Transformers > How likely a dialog response is upvoted 👍 and/or gets replied 💬? This is what [**DialogRPT**](https://github.com/golsun/DialogRPT) is learned to predict. It is a set of dialog response ranking models proposed by [Microsoft Research NLP Group](https://www.microsoft.com/en-us/research/group/natural-language-processing/) trained on 100 + millions of human feedback data. It can be used to improve existing dialog generation model (e.g., [DialoGPT](https://huggingface.co/microsoft/DialoGPT-medium)) by re-ranking the generated response candidates. Quick Links: * [EMNLP'20 Paper](https://arxiv.org/abs/2009.06978/) * [Dataset, training, and evaluation](https://github.com/golsun/DialogRPT) * [Colab Notebook Demo](https://colab.research.google.com/drive/1cAtfkbhqsRsT59y3imjR1APw3MHDMkuV?usp=sharing) We considered the following tasks and provided corresponding pretrained models. |Task | Description | Pretrained model | | :------------- | :----------- | :-----------: | | **Human feedback** | **given a context and its two human responses, predict...**| | `updown` | ... which gets more upvotes? | [model card](https://huggingface.co/microsoft/DialogRPT-updown) | | `width`| ... which gets more direct replies? | [model card](https://huggingface.co/microsoft/DialogRPT-width) | | `depth`| ... which gets longer follow-up thread? | [model card](https://huggingface.co/microsoft/DialogRPT-depth) | | **Human-like** (human vs fake) | **given a context and one human response, distinguish it with...** | | `human_vs_rand`| ... a random human response | this model | | `human_vs_machine`| ... a machine generated response | [model card](https://huggingface.co/microsoft/DialogRPT-human-vs-machine) | ### Contact: Please create an issue on [our repo](https://github.com/golsun/DialogRPT) ### Citation: ``` @inproceedings{gao2020dialogrpt, title={Dialogue Response RankingTraining with Large-Scale Human Feedback Data}, author={Xiang Gao and Yizhe Zhang and Michel Galley and Chris Brockett and Bill Dolan}, year={2020}, booktitle={EMNLP} } ```
dbmdz/bert-base-italian-uncased
d91243bae3a97a72691e9a6bfdf5d9f8fa4be9e4
2021-05-19T15:00:42.000Z
[ "pytorch", "tf", "jax", "bert", "fill-mask", "it", "dataset:wikipedia", "transformers", "license:mit", "autotrain_compatible" ]
fill-mask
false
dbmdz
null
dbmdz/bert-base-italian-uncased
1,984
2
transformers
1,370
--- language: it license: mit datasets: - wikipedia --- # 🤗 + 📚 dbmdz BERT and ELECTRA models In this repository the MDZ Digital Library team (dbmdz) at the Bavarian State Library open sources Italian BERT and ELECTRA models 🎉 # Italian BERT The source data for the Italian BERT model consists of a recent Wikipedia dump and various texts from the [OPUS corpora](http://opus.nlpl.eu/) collection. The final training corpus has a size of 13GB and 2,050,057,573 tokens. For sentence splitting, we use NLTK (faster compared to spacy). Our cased and uncased models are training with an initial sequence length of 512 subwords for ~2-3M steps. For the XXL Italian models, we use the same training data from OPUS and extend it with data from the Italian part of the [OSCAR corpus](https://traces1.inria.fr/oscar/). Thus, the final training corpus has a size of 81GB and 13,138,379,147 tokens. Note: Unfortunately, a wrong vocab size was used when training the XXL models. This explains the mismatch of the "real" vocab size of 31102, compared to the vocab size specified in `config.json`. However, the model is working and all evaluations were done under those circumstances. See [this issue](https://github.com/dbmdz/berts/issues/7) for more information. The Italian ELECTRA model was trained on the "XXL" corpus for 1M steps in total using a batch size of 128. We pretty much following the ELECTRA training procedure as used for [BERTurk](https://github.com/stefan-it/turkish-bert/tree/master/electra). ## Model weights Currently only PyTorch-[Transformers](https://github.com/huggingface/transformers) compatible weights are available. If you need access to TensorFlow checkpoints, please raise an issue! | Model | Downloads | ---------------------------------------------------- | --------------------------------------------------------------------------------------------------------------- | `dbmdz/bert-base-italian-cased` | [`config.json`](https://cdn.huggingface.co/dbmdz/bert-base-italian-cased/config.json) • [`pytorch_model.bin`](https://cdn.huggingface.co/dbmdz/bert-base-italian-cased/pytorch_model.bin) • [`vocab.txt`](https://cdn.huggingface.co/dbmdz/bert-base-italian-cased/vocab.txt) | `dbmdz/bert-base-italian-uncased` | [`config.json`](https://cdn.huggingface.co/dbmdz/bert-base-italian-uncased/config.json) • [`pytorch_model.bin`](https://cdn.huggingface.co/dbmdz/bert-base-italian-uncased/pytorch_model.bin) • [`vocab.txt`](https://cdn.huggingface.co/dbmdz/bert-base-italian-uncased/vocab.txt) | `dbmdz/bert-base-italian-xxl-cased` | [`config.json`](https://cdn.huggingface.co/dbmdz/bert-base-italian-xxl-cased/config.json) • [`pytorch_model.bin`](https://cdn.huggingface.co/dbmdz/bert-base-italian-xxl-cased/pytorch_model.bin) • [`vocab.txt`](https://cdn.huggingface.co/dbmdz/bert-base-italian-xxl-cased/vocab.txt) | `dbmdz/bert-base-italian-xxl-uncased` | [`config.json`](https://cdn.huggingface.co/dbmdz/bert-base-italian-xxl-uncased/config.json) • [`pytorch_model.bin`](https://cdn.huggingface.co/dbmdz/bert-base-italian-xxl-uncased/pytorch_model.bin) • [`vocab.txt`](https://cdn.huggingface.co/dbmdz/bert-base-italian-xxl-uncased/vocab.txt) | `dbmdz/electra-base-italian-xxl-cased-discriminator` | [`config.json`](https://s3.amazonaws.com/models.huggingface.co/bert/dbmdz/electra-base-italian-xxl-cased-discriminator/config.json) • [`pytorch_model.bin`](https://cdn.huggingface.co/dbmdz/electra-base-italian-xxl-cased-discriminator/pytorch_model.bin) • [`vocab.txt`](https://cdn.huggingface.co/dbmdz/electra-base-italian-xxl-cased-discriminator/vocab.txt) | `dbmdz/electra-base-italian-xxl-cased-generator` | [`config.json`](https://s3.amazonaws.com/models.huggingface.co/bert/dbmdz/electra-base-italian-xxl-cased-generator/config.json) • [`pytorch_model.bin`](https://cdn.huggingface.co/dbmdz/electra-base-italian-xxl-cased-generator/pytorch_model.bin) • [`vocab.txt`](https://cdn.huggingface.co/dbmdz/electra-base-italian-xxl-cased-generator/vocab.txt) ## Results For results on downstream tasks like NER or PoS tagging, please refer to [this repository](https://github.com/stefan-it/italian-bertelectra). ## Usage With Transformers >= 2.3 our Italian BERT models can be loaded like: ```python from transformers import AutoModel, AutoTokenizer model_name = "dbmdz/bert-base-italian-cased" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModel.from_pretrained(model_name) ``` To load the (recommended) Italian XXL BERT models, just use: ```python from transformers import AutoModel, AutoTokenizer model_name = "dbmdz/bert-base-italian-xxl-cased" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModel.from_pretrained(model_name) ``` To load the Italian XXL ELECTRA model (discriminator), just use: ```python from transformers import AutoModel, AutoTokenizer model_name = "dbmdz/electra-base-italian-xxl-cased-discriminator" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelWithLMHead.from_pretrained(model_name) ``` # Huggingface model hub All models are available on the [Huggingface model hub](https://huggingface.co/dbmdz). # Contact (Bugs, Feedback, Contribution and more) For questions about our BERT/ELECTRA models just open an issue [here](https://github.com/dbmdz/berts/issues/new) 🤗 # Acknowledgments Research supported with Cloud TPUs from Google's TensorFlow Research Cloud (TFRC). Thanks for providing access to the TFRC ❤️ Thanks to the generous support from the [Hugging Face](https://huggingface.co/) team, it is possible to download both cased and uncased models from their S3 storage 🤗
MoritzLaurer/DeBERTa-v3-large-mnli-fever-anli-ling-wanli
1b7b1b212ea53c7a64546076569fbb01c3df8fbd
2022-07-28T16:24:07.000Z
[ "pytorch", "deberta-v2", "text-classification", "en", "dataset:multi_nli", "dataset:anli", "dataset:fever", "dataset:lingnli", "dataset:alisawuffles/WANLI", "arxiv:2104.07179", "arxiv:2111.09543", "transformers", "zero-shot-classification", "license:mit", "model-index" ]
zero-shot-classification
false
MoritzLaurer
null
MoritzLaurer/DeBERTa-v3-large-mnli-fever-anli-ling-wanli
1,980
4
transformers
1,371
--- language: - en tags: - text-classification - zero-shot-classification license: mit metrics: - accuracy datasets: - multi_nli - anli - fever - lingnli - alisawuffles/WANLI pipeline_tag: zero-shot-classification #- text-classification #widget: #- text: "I first thought that I really liked the movie, but upon second thought it was actually disappointing. [SEP] The movie was not good." model-index: # info: https://github.com/huggingface/hub-docs/blame/main/modelcard.md - name: DeBERTa-v3-large-mnli-fever-anli-ling-wanli results: - task: type: text-classification # Required. Example: automatic-speech-recognition name: Natural Language Inference # Optional. Example: Speech Recognition dataset: type: multi_nli # Required. Example: common_voice. Use dataset id from https://hf.co/datasets name: MultiNLI-matched # Required. A pretty name for the dataset. Example: Common Voice (French) split: validation_matched # Optional. Example: test metrics: - type: accuracy # Required. Example: wer. Use metric id from https://hf.co/metrics value: 0,912 # Required. Example: 20.90 #name: # Optional. Example: Test WER verified: false # Optional. If true, indicates that evaluation was generated by Hugging Face (vs. self-reported). - task: type: text-classification # Required. Example: automatic-speech-recognition name: Natural Language Inference # Optional. Example: Speech Recognition dataset: type: multi_nli # Required. Example: common_voice. Use dataset id from https://hf.co/datasets name: MultiNLI-mismatched # Required. A pretty name for the dataset. Example: Common Voice (French) split: validation_mismatched # Optional. Example: test metrics: - type: accuracy # Required. Example: wer. Use metric id from https://hf.co/metrics value: 0,908 # Required. Example: 20.90 #name: # Optional. Example: Test WER verified: false # Optional. If true, indicates that evaluation was generated by Hugging Face (vs. self-reported). - task: type: text-classification # Required. Example: automatic-speech-recognition name: Natural Language Inference # Optional. Example: Speech Recognition dataset: type: anli # Required. Example: common_voice. Use dataset id from https://hf.co/datasets name: ANLI-all # Required. A pretty name for the dataset. Example: Common Voice (French) split: test_r1+test_r2+test_r3 # Optional. Example: test metrics: - type: accuracy # Required. Example: wer. Use metric id from https://hf.co/metrics value: 0,702 # Required. Example: 20.90 #name: # Optional. Example: Test WER verified: false # Optional. If true, indicates that evaluation was generated by Hugging Face (vs. self-reported). - task: type: text-classification # Required. Example: automatic-speech-recognition name: Natural Language Inference # Optional. Example: Speech Recognition dataset: type: anli # Required. Example: common_voice. Use dataset id from https://hf.co/datasets name: ANLI-r3 # Required. A pretty name for the dataset. Example: Common Voice (French) split: test_r3 # Optional. Example: test metrics: - type: accuracy # Required. Example: wer. Use metric id from https://hf.co/metrics value: 0,64 # Required. Example: 20.90 #name: # Optional. Example: Test WER verified: false # Optional. If true, indicates that evaluation was generated by Hugging Face (vs. self-reported). - task: type: text-classification # Required. Example: automatic-speech-recognition name: Natural Language Inference # Optional. Example: Speech Recognition dataset: type: alisawuffles/WANLI # Required. Example: common_voice. Use dataset id from https://hf.co/datasets name: WANLI # Required. A pretty name for the dataset. Example: Common Voice (French) split: test # Optional. Example: test metrics: - type: accuracy # Required. Example: wer. Use metric id from https://hf.co/metrics value: 0,77 # Required. Example: 20.90 #name: # Optional. Example: Test WER verified: false # Optional. If true, indicates that evaluation was generated by Hugging Face (vs. self-reported). - task: type: text-classification # Required. Example: automatic-speech-recognition name: Natural Language Inference # Optional. Example: Speech Recognition dataset: type: lingnli # Required. Example: common_voice. Use dataset id from https://hf.co/datasets name: LingNLI # Required. A pretty name for the dataset. Example: Common Voice (French) split: test # Optional. Example: test metrics: - type: accuracy # Required. Example: wer. Use metric id from https://hf.co/metrics value: 0,87 # Required. Example: 20.90 #name: # Optional. Example: Test WER verified: false # Optional. If true, indicates that evaluation was generated by Hugging Face (vs. self-reported). --- # DeBERTa-v3-large-mnli-fever-anli-ling-wanli ## Model description This model was fine-tuned on the [MultiNLI](https://huggingface.co/datasets/multi_nli), [Fever-NLI](https://github.com/easonnie/combine-FEVER-NSMN/blob/master/other_resources/nli_fever.md), Adversarial-NLI ([ANLI](https://huggingface.co/datasets/anli)), [LingNLI](https://arxiv.org/pdf/2104.07179.pdf) and [WANLI](https://huggingface.co/datasets/alisawuffles/WANLI) datasets, which comprise 885 242 NLI hypothesis-premise pairs. This model is the best performing NLI model on the Hugging Face Hub as of 06.06.22 and can be used for zero-shot classification. It significantly outperforms all other large models on the [ANLI benchmark](https://github.com/facebookresearch/anli). The foundation model is [DeBERTa-v3-large from Microsoft](https://huggingface.co/microsoft/deberta-v3-large). DeBERTa-v3 combines several recent innovations compared to classical Masked Language Models like BERT, RoBERTa etc., see the [paper](https://arxiv.org/abs/2111.09543) ## Intended uses & limitations #### How to use the model ```python from transformers import AutoTokenizer, AutoModelForSequenceClassification import torch device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu") model_name = "MoritzLaurer/DeBERTa-v3-large-mnli-fever-anli-ling-wanli" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForSequenceClassification.from_pretrained(model_name) premise = "I first thought that I liked the movie, but upon second thought it was actually disappointing." hypothesis = "The movie was not good." input = tokenizer(premise, hypothesis, truncation=True, return_tensors="pt") output = model(input["input_ids"].to(device)) # device = "cuda:0" or "cpu" prediction = torch.softmax(output["logits"][0], -1).tolist() label_names = ["entailment", "neutral", "contradiction"] prediction = {name: round(float(pred) * 100, 1) for pred, name in zip(prediction, label_names)} print(prediction) ``` ### Training data DeBERTa-v3-large-mnli-fever-anli-ling-wanli was trained on the [MultiNLI](https://huggingface.co/datasets/multi_nli), [Fever-NLI](https://github.com/easonnie/combine-FEVER-NSMN/blob/master/other_resources/nli_fever.md), Adversarial-NLI ([ANLI](https://huggingface.co/datasets/anli)), [LingNLI](https://arxiv.org/pdf/2104.07179.pdf) and [WANLI](https://huggingface.co/datasets/alisawuffles/WANLI) datasets, which comprise 885 242 NLI hypothesis-premise pairs. Note that [SNLI](https://huggingface.co/datasets/snli) was explicitly excluded due to quality issues with the dataset. More data does not necessarily make for better NLI models. ### Training procedure DeBERTa-v3-large-mnli-fever-anli-ling-wanli was trained using the Hugging Face trainer with the following hyperparameters. Note that longer training with more epochs hurt performance in my tests (overfitting). ``` training_args = TrainingArguments( num_train_epochs=4, # total number of training epochs learning_rate=5e-06, per_device_train_batch_size=16, # batch size per device during training gradient_accumulation_steps=2, # doubles the effective batch_size to 32, while decreasing memory requirements per_device_eval_batch_size=64, # batch size for evaluation warmup_ratio=0.06, # number of warmup steps for learning rate scheduler weight_decay=0.01, # strength of weight decay fp16=True # mixed precision training ) ``` ### Eval results The model was evaluated using the test sets for MultiNLI, ANLI, LingNLI, WANLI and the dev set for Fever-NLI. The metric used is accuracy. The model achieves state-of-the-art performance on each dataset. Surprisingly, it outperforms the previous [state-of-the-art on ANLI](https://github.com/facebookresearch/anli) (ALBERT-XXL) by 8,3%. I assume that this is because ANLI was created to fool masked language models like RoBERTa (or ALBERT), while DeBERTa-v3 uses a better pre-training objective (RTD), disentangled attention and I fine-tuned it on higher quality NLI data. |Datasets|mnli_test_m|mnli_test_mm|anli_test|anli_test_r3|ling_test|wanli_test| | :---: | :---: | :---: | :---: | :---: | :---: | :---: | |Accuracy|0.912|0.908|0.702|0.64|0.87|0.77| |Speed (text/sec, A100 GPU)|696.0|697.0|488.0|425.0|828.0|980.0| ## Limitations and bias Please consult the original DeBERTa-v3 paper and literature on different NLI datasets for more information on the training data and potential biases. The model will reproduce statistical patterns in the training data. ## Citation If you use this model, please cite: Laurer, Moritz, Wouter van Atteveldt, Andreu Salleras Casas, and Kasper Welbers. 2022. ‘Less Annotating, More Classifying – Addressing the Data Scarcity Issue of Supervised Machine Learning with Deep Transfer Learning and BERT - NLI’. Preprint, June. Open Science Framework. https://osf.io/74b8k. ### Ideas for cooperation or questions? If you have questions or ideas for cooperation, contact me at m{dot}laurer{at}vu{dot}nl or [LinkedIn](https://www.linkedin.com/in/moritz-laurer/) ### Debugging and issues Note that DeBERTa-v3 was released on 06.12.21 and older versions of HF Transformers seem to have issues running the model (e.g. resulting in an issue with the tokenizer). Using Transformers>=4.13 might solve some issues.
kamalkraj/bioelectra-base-discriminator-pubmed
b08ce00d5a23e2682a20e9d33356730530bdecd1
2021-09-07T13:52:16.000Z
[ "pytorch", "electra", "pretraining", "transformers" ]
null
false
kamalkraj
null
kamalkraj/bioelectra-base-discriminator-pubmed
1,978
3
transformers
1,372
## BioELECTRA:Pretrained Biomedical text Encoder using Discriminators Recent advancements in pretraining strategies in NLP have shown a significant improvement in the performance of models on various text mining tasks. In this paper, we introduce BioELECTRA, a biomedical domain-specific language encoder model that adapts ELECTRA (Clark et al., 2020) for the Biomedical domain. BioELECTRA outperforms the previous models and achieves state of the art (SOTA) on all the 13 datasets in BLURB benchmark and on all the 4 Clinical datasets from BLUE Benchmark across 7 NLP tasks. BioELECTRA pretrained on PubMed and PMC full text articles performs very well on Clinical datasets as well. BioELECTRA achieves new SOTA 86.34%(1.39% accuracy improvement) on MedNLI and 64% (2.98% accuracy improvement) on PubMedQA dataset. For a detailed description and experimental results, please refer to our paper [BioELECTRA:Pretrained Biomedical text Encoder using Discriminators](https://www.aclweb.org/anthology/2021.bionlp-1.16/). Cite our paper using below citation ``` @inproceedings{kanakarajan-etal-2021-bioelectra, title = "{B}io{ELECTRA}:Pretrained Biomedical text Encoder using Discriminators", author = "Kanakarajan, Kamal raj and Kundumani, Bhuvana and Sankarasubbu, Malaikannan", booktitle = "Proceedings of the 20th Workshop on Biomedical Language Processing", month = jun, year = "2021", address = "Online", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.bionlp-1.16", doi = "10.18653/v1/2021.bionlp-1.16", pages = "143--154", abstract = "Recent advancements in pretraining strategies in NLP have shown a significant improvement in the performance of models on various text mining tasks. We apply {`}replaced token detection{'} pretraining technique proposed by ELECTRA and pretrain a biomedical language model from scratch using biomedical text and vocabulary. We introduce BioELECTRA, a biomedical domain-specific language encoder model that adapts ELECTRA for the Biomedical domain. WE evaluate our model on the BLURB and BLUE biomedical NLP benchmarks. BioELECTRA outperforms the previous models and achieves state of the art (SOTA) on all the 13 datasets in BLURB benchmark and on all the 4 Clinical datasets from BLUE Benchmark across 7 different NLP tasks. BioELECTRA pretrained on PubMed and PMC full text articles performs very well on Clinical datasets as well. BioELECTRA achieves new SOTA 86.34{\%}(1.39{\%} accuracy improvement) on MedNLI and 64{\%} (2.98{\%} accuracy improvement) on PubMedQA dataset.", } ``` ## How to use the discriminator in `transformers` ```python from transformers import ElectraForPreTraining, ElectraTokenizerFast import torch discriminator = ElectraForPreTraining.from_pretrained("kamalkraj/bioelectra-base-discriminator-pubmed") tokenizer = ElectraTokenizerFast.from_pretrained("kamalkraj/bioelectra-base-discriminator-pubmed") sentence = "The quick brown fox jumps over the lazy dog" fake_sentence = "The quick brown fox fake over the lazy dog" fake_tokens = tokenizer.tokenize(fake_sentence) fake_inputs = tokenizer.encode(fake_sentence, return_tensors="pt") discriminator_outputs = discriminator(fake_inputs) predictions = torch.round((torch.sign(discriminator_outputs[0]) + 1) / 2) [print("%7s" % token, end="") for token in fake_tokens] [print("%7s" % int(prediction), end="") for prediction in predictions[0].tolist()] ```
mbartolo/roberta-large-synqa
1ae8322fd562c2b2193a7d2b8d0887177b616d62
2022-07-25T23:36:39.000Z
[ "pytorch", "roberta", "question-answering", "en", "dataset:adversarial_qa", "dataset:mbartolo/synQA", "dataset:squad", "arxiv:2002.00293", "arxiv:2104.08678", "transformers", "license:apache-2.0", "model-index", "autotrain_compatible" ]
question-answering
false
mbartolo
null
mbartolo/roberta-large-synqa
1,973
null
transformers
1,373
--- language: - en tags: - question-answering license: apache-2.0 datasets: - adversarial_qa - mbartolo/synQA - squad metrics: - exact_match - f1 model-index: - name: mbartolo/roberta-large-synqa results: - task: type: question-answering name: Question Answering dataset: name: squad type: squad config: plain_text split: validation metrics: - name: Exact Match type: exact_match value: 89.6529 verified: true - name: F1 type: f1 value: 94.8172 verified: true - task: type: question-answering name: Question Answering dataset: name: adversarial_qa type: adversarial_qa config: adversarialQA split: validation metrics: - name: Exact Match type: exact_match value: 55.3333 verified: true - name: F1 type: f1 value: 66.7464 verified: true --- # Model Overview This is a RoBERTa-Large QA Model trained from https://huggingface.co/roberta-large in two stages. First, it is trained on synthetic adversarial data generated using a BART-Large question generator on Wikipedia passages from SQuAD, and then it is trained on SQuAD and AdversarialQA (https://arxiv.org/abs/2002.00293) in a second stage of fine-tuning. # Data Training data: SQuAD + AdversarialQA Evaluation data: SQuAD + AdversarialQA # Training Process Approx. 1 training epoch on the synthetic data and 2 training epochs on the manually-curated data. # Additional Information Please refer to https://arxiv.org/abs/2104.08678 for full details.
sberbank-ai/ruT5-large
4d14102f32e730d68b1950bfaeb7a4988c978737
2021-09-28T15:56:17.000Z
[ "pytorch", "t5", "text2text-generation", "ru", "transformers", "PyTorch", "Transformers", "autotrain_compatible" ]
text2text-generation
false
sberbank-ai
null
sberbank-ai/ruT5-large
1,962
7
transformers
1,374
--- language: - ru tags: - PyTorch - Transformers thumbnail: "https://github.com/sberbank-ai/model-zoo" --- # ruT5-large Model was trained by [SberDevices](https://sberdevices.ru/) team. * Task: `text2text generation` * Type: `encoder-decoder` * Tokenizer: `bpe` * Dict size: `32 101 ` * Num Parameters: `737 M` * Training Data Volume `300 GB`
mrm8488/GPT-2-finetuned-covid-bio-medrxiv
9f18ece8499d11cd7e0679e14be9e32ac9148f5e
2021-08-25T21:38:35.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "en", "transformers" ]
text-generation
false
mrm8488
null
mrm8488/GPT-2-finetuned-covid-bio-medrxiv
1,961
null
transformers
1,375
--- language: en thumbnail: widget: - text: "Old people with COVID-19 tends to suffer" --- # GPT-2 + bio/medrxiv files from CORD19: 🦠 ✍ ⚕ **GPT-2** fine-tuned on **biorxiv_medrxiv** files from [CORD-19](https://www.kaggle.com/allen-institute-for-ai/CORD-19-research-challenge) dataset. ## Datasets details: | Dataset | # Files | | ---------------------- | ----- | | biorxiv_medrxiv | 885 | ## Model training: The model was trained on a Tesla P100 GPU and 25GB of RAM with the following command: ```bash export TRAIN_FILE=/path/to/dataset/train.txt python run_language_modeling.py \\n --model_type gpt2 \\n --model_name_or_path gpt2 \\n --do_train \\n --train_data_file $TRAIN_FILE \\n --num_train_epochs 4 \\n --output_dir model_output \\n --overwrite_output_dir \\n --save_steps 2000 \\n --per_gpu_train_batch_size 3 ``` ## Model in action / Example of usage: ✒ You can get the following script [here](https://github.com/huggingface/transformers/blob/master/examples/text-generation/run_generation.py) ```bash python run_generation.py \\n --model_type gpt2 \\n --model_name_or_path mrm8488/GPT-2-finetuned-CORD19 \\n --length 200 ``` ```txt 👵👴🦠 # Input: Old people with COVID-19 tends to suffer # Output: === GENERATED SEQUENCE 1 === Old people with COVID-19 tends to suffer more symptom onset time and death. It is well known that many people with COVID-19 have high homozygous ZIKV infection in the face of severe symptoms in both severe and severe cases. The origin of Wuhan Fever was investigated by Prof. Shen Jiang at the outbreak of Wuhan Fever [34]. As Huanan Province is the epicenter of this outbreak, Huanan, the epicenter of epidemic Wuhan Fever, is the most potential location for the direct transmission of infection (source: Zhongzhen et al., 2020). A negative risk ratio indicates more frequent underlying signs in the people in Huanan Province with COVID-19 patients. Further analysis of reported Huanan Fever onset data in the past two years indicated that the intensity of exposure is the key risk factor for developing MERS-CoV infection in this region, especially among children and elderly. To be continued to develop infected patients would be a very important area for ``` ![Model in action](https://media.giphy.com/media/TgUdO72Iwk9h7hhm7G/giphy.gif) > Created by [Manuel Romero/@mrm8488](https://twitter.com/mrm8488) | [LinkedIn](https://www.linkedin.com/in/manuel-romero-cs/) > Made with <span style="color: #e25555;">&hearts;</span> in Spain
Jiva/xlm-roberta-large-it-mnli
c6e64469ec4aa17fedbd1b2522256f90a90b5b86
2021-12-10T14:56:38.000Z
[ "pytorch", "xlm-roberta", "text-classification", "it", "dataset:multi_nli", "dataset:glue", "arxiv:1911.02116", "transformers", "tensorflow", "license:mit", "zero-shot-classification" ]
zero-shot-classification
false
Jiva
null
Jiva/xlm-roberta-large-it-mnli
1,960
4
transformers
1,376
--- language: it tags: - text-classification - pytorch - tensorflow datasets: - multi_nli - glue license: mit pipeline_tag: zero-shot-classification widget: - text: "La seconda guerra mondiale vide contrapporsi, tra il 1939 e il 1945, le cosiddette potenze dell'Asse e gli Alleati che, come già accaduto ai belligeranti della prima guerra mondiale, si combatterono su gran parte del pianeta; il conflitto ebbe inizio il 1º settembre 1939 con l'attacco della Germania nazista alla Polonia e terminò, nel teatro europeo, l'8 maggio 1945 con la resa tedesca e, in quello asiatico, il successivo 2 settembre con la resa dell'Impero giapponese dopo i bombardamenti atomici di Hiroshima e Nagasaki." candidate_labels: "guerra, storia, moda, cibo" multi_class: true --- # XLM-roBERTa-large-it-mnli ## Version 0.1 | | matched-it acc | mismatched-it acc | | -------------------------------------------------------------------------------- |----------------|-------------------| | XLM-roBERTa-large-it-mnli | 84.75 | 85.39 | ## Model Description This model takes [xlm-roberta-large](https://huggingface.co/xlm-roberta-large) and fine-tunes it on a subset of NLI data taken from a automatically translated version of the MNLI corpus. It is intended to be used for zero-shot text classification, such as with the Hugging Face [ZeroShotClassificationPipeline](https://huggingface.co/transformers/master/main_classes/pipelines.html#transformers.ZeroShotClassificationPipeline). ## Intended Usage This model is intended to be used for zero-shot text classification of italian texts. Since the base model was pre-trained trained on 100 different languages, the model has shown some effectiveness in languages beyond those listed above as well. See the full list of pre-trained languages in appendix A of the [XLM Roberata paper](https://arxiv.org/abs/1911.02116) For English-only classification, it is recommended to use [bart-large-mnli](https://huggingface.co/facebook/bart-large-mnli) or [a distilled bart MNLI model](https://huggingface.co/models?filter=pipeline_tag%3Azero-shot-classification&search=valhalla). #### With the zero-shot classification pipeline The model can be loaded with the `zero-shot-classification` pipeline like so: ```python from transformers import pipeline classifier = pipeline("zero-shot-classification", model="Jiva/xlm-roberta-large-it-mnli", device=0, use_fast=True, multi_label=True) ``` You can then classify in any of the above languages. You can even pass the labels in one language and the sequence to classify in another: ```python # we will classify the following wikipedia entry about Sardinia" sequence_to_classify = "La Sardegna è una regione italiana a statuto speciale di 1 592 730 abitanti con capoluogo Cagliari, la cui denominazione bilingue utilizzata nella comunicazione ufficiale è Regione Autonoma della Sardegna / Regione Autònoma de Sardigna." # we can specify candidate labels in Italian: candidate_labels = ["geografia", "politica", "macchine", "cibo", "moda"] classifier(sequence_to_classify, candidate_labels) # {'labels': ['geografia', 'moda', 'politica', 'macchine', 'cibo'], # 'scores': [0.38871392607688904, 0.22633370757102966, 0.19398456811904907, 0.13735772669315338, 0.13708525896072388]} ``` The default hypothesis template is the English, `This text is {}`. With this model better results are achieving when providing a translated template: ```python sequence_to_classify = "La Sardegna è una regione italiana a statuto speciale di 1 592 730 abitanti con capoluogo Cagliari, la cui denominazione bilingue utilizzata nella comunicazione ufficiale è Regione Autonoma della Sardegna / Regione Autònoma de Sardigna." candidate_labels = ["geografia", "politica", "macchine", "cibo", "moda"] hypothesis_template = "si parla di {}" # classifier(sequence_to_classify, candidate_labels, hypothesis_template=hypothesis_template) # 'scores': [0.6068345904350281, 0.34715887904167175, 0.32433947920799255, 0.3068877160549164, 0.18744681775569916]} ``` #### With manual PyTorch ```python # pose sequence as a NLI premise and label as a hypothesis from transformers import AutoModelForSequenceClassification, AutoTokenizer nli_model = AutoModelForSequenceClassification.from_pretrained('Jiva/xlm-roberta-large-it-mnli') tokenizer = AutoTokenizer.from_pretrained('Jiva/xlm-roberta-large-it-mnli') premise = sequence hypothesis = f'si parla di {}.' # run through model pre-trained on MNLI x = tokenizer.encode(premise, hypothesis, return_tensors='pt', truncation_strategy='only_first') logits = nli_model(x.to(device))[0] # we throw away "neutral" (dim 1) and take the probability of # "entailment" (2) as the probability of the label being true entail_contradiction_logits = logits[:,[0,2]] probs = entail_contradiction_logits.softmax(dim=1) prob_label_is_true = probs[:,1] ``` ## Training ## Version 0.1 The model has been now retrained on the full training set. Around 1000 sentences pairs have been removed from the set because their translation was botched by the translation model. | metric | value | |----------------- |------- | | learning_rate | 4e-6 | | optimizer | AdamW | | batch_size | 80 | | mcc | 0.77 | | train_loss | 0.34 | | eval_loss | 0.40 | | stopped_at_step | 9754 | ## Version 0.0 This model was pre-trained on set of 100 languages, as described in [the original paper](https://arxiv.org/abs/1911.02116). It was then fine-tuned on the task of NLI on an Italian translation of the MNLI dataset (85% of the train set only so far). The model used for translating the texts is Helsinki-NLP/opus-mt-en-it, with a max output sequence lenght of 120. The model has been trained for 1 epoch with learning rate 4e-6 and batch size 80, currently it scores 82 acc. on the remaining 15% of the training.
ltgoslo/norbert
44815f7e109b53547cccdf3c6847f4c28b989816
2022-03-25T16:02:00.000Z
[ "pytorch", "tf", "jax", "bert", "fill-mask", "no", "arxiv:2104.06546", "transformers", "norwegian", "license:cc-by-4.0", "autotrain_compatible" ]
fill-mask
false
ltgoslo
null
ltgoslo/norbert
1,956
6
transformers
1,377
--- language: no license: cc-by-4.0 pipeline_tag: fill-mask tags: - norwegian - bert thumbnail: https://raw.githubusercontent.com/ltgoslo/NorBERT/main/Norbert.png --- ## Quickstart **Release 1.1** (February 13, 2021) Please check also our newer model: [NorBERT 2](https://huggingface.co/ltgoslo/norbert2), trained on a much larger corpus. Download the model here: * Cased Norwegian BERT Base: [216.zip](http://vectors.nlpl.eu/repository/20/216.zip) More about NorBERT training corpora and training procedure: http://norlm.nlpl.eu/ Associated code: https://github.com/ltgoslo/NorBERT Check this paper for more details: _Andrey Kutuzov, Jeremy Barnes, Erik Velldal, Lilja Øvrelid, Stephan Oepen. [Large-Scale Contextualised Language Modelling for Norwegian](https://arxiv.org/abs/2104.06546), NoDaLiDa'21 (2021)_ NorBERT was trained as a part of NorLM, a joint initiative of the projects [EOSC-Nordic](https://www.eosc-nordic.eu/) (European Open Science Cloud) and [SANT](https://www.mn.uio.no/ifi/english/research/projects/sant/index.html) (Sentiment Analysis for Norwegian), coordinated by the [Language Technology Group](https://www.mn.uio.no/ifi/english/research/groups/ltg/) (LTG) at the University of Oslo. The computations were performed on resources provided by UNINETT Sigma2 - the National Infrastructure for High Performance Computing and Data Storage in Norway.
hf-internal-testing/test_dynamic_model_with_util
b731e5fae6d80a4a775461251c4388886fb7a249
2022-01-26T17:54:17.000Z
[ "pytorch", "new-model", "transformers" ]
null
false
hf-internal-testing
null
hf-internal-testing/test_dynamic_model_with_util
1,953
null
transformers
1,378
Entry not found
facebook/wav2vec2-large-960h-lv60
8e7d14742e8f98c6bbb24e5231406af321a8f9ce
2022-04-05T16:42:07.000Z
[ "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "en", "dataset:librispeech_asr", "arxiv:2006.11477", "transformers", "speech", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
false
facebook
null
facebook/wav2vec2-large-960h-lv60
1,947
5
transformers
1,379
--- language: en datasets: - librispeech_asr tags: - speech license: apache-2.0 model-index: - name: wav2vec2-large-960h-lv60 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Librispeech (clean) type: librispeech_asr args: en metrics: - name: Test WER type: wer value: 2.2 --- # Wav2Vec2-Large-960h-Lv60 [Facebook's Wav2Vec2](https://ai.facebook.com/blog/wav2vec-20-learning-the-structure-of-speech-from-raw-audio/) The large model pretrained and fine-tuned on 960 hours of Libri-Light and Librispeech on 16kHz sampled speech audio. When using the model make sure that your speech input is also sampled at 16Khz. [Paper](https://arxiv.org/abs/2006.11477) Authors: Alexei Baevski, Henry Zhou, Abdelrahman Mohamed, Michael Auli **Abstract** We show for the first time that learning powerful representations from speech audio alone followed by fine-tuning on transcribed speech can outperform the best semi-supervised methods while being conceptually simpler. wav2vec 2.0 masks the speech input in the latent space and solves a contrastive task defined over a quantization of the latent representations which are jointly learned. Experiments using all labeled data of Librispeech achieve 1.8/3.3 WER on the clean/other test sets. When lowering the amount of labeled data to one hour, wav2vec 2.0 outperforms the previous state of the art on the 100 hour subset while using 100 times less labeled data. Using just ten minutes of labeled data and pre-training on 53k hours of unlabeled data still achieves 4.8/8.2 WER. This demonstrates the feasibility of speech recognition with limited amounts of labeled data. The original model can be found under https://github.com/pytorch/fairseq/tree/master/examples/wav2vec#wav2vec-20. # Usage To transcribe audio files the model can be used as a standalone acoustic model as follows: ```python from transformers import Wav2Vec2Processor, Wav2Vec2ForCTC from datasets import load_dataset import torch # load model and processor processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-large-960h-lv60") model = Wav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-large-960h-lv60") # load dummy dataset and read soundfiles ds = load_dataset("patrickvonplaten/librispeech_asr_dummy", "clean", split="validation") # tokenize input_values = processor(ds[0]["audio"]["array"], return_tensors="pt", padding="longest").input_values # Batch size 1 # retrieve logits logits = model(input_values).logits # take argmax and decode predicted_ids = torch.argmax(logits, dim=-1) transcription = processor.batch_decode(predicted_ids) ``` ## Evaluation This code snippet shows how to evaluate **facebook/wav2vec2-large-960h-lv60** on LibriSpeech's "clean" and "other" test data. ```python from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import torch from jiwer import wer librispeech_eval = load_dataset("librispeech_asr", "clean", split="test") model = Wav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-large-960h-lv60").to("cuda") processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-large-960h-lv60") def map_to_pred(batch): inputs = processor(batch["audio"]["array"], return_tensors="pt", padding="longest") input_values = inputs.input_values.to("cuda") attention_mask = inputs.attention_mask.to("cuda") with torch.no_grad(): logits = model(input_values, attention_mask=attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) transcription = processor.batch_decode(predicted_ids) batch["transcription"] = transcription return batch result = librispeech_eval.map(map_to_pred, batched=True, batch_size=16, remove_columns=["speech"]) print("WER:", wer(result["text"], result["transcription"])) ``` *Result (WER)*: | "clean" | "other" | |---|---| | 2.2 | 4.5 |
nikokons/gpt2-greek
b2bb85c722742ce6ea0b9e025d50425e061181c8
2022-07-20T09:59:03.000Z
[ "pytorch", "jax", "gpt2", "text-generation", "el", "transformers" ]
text-generation
false
nikokons
null
nikokons/gpt2-greek
1,944
null
transformers
1,380
--- language: el --- ## gpt2-greek ## Dataset: The model is trained on a collection of almost 5GB Greek texts, with the main source to be from Greek Wikipedia. The content is extracted using the Wikiextractor tool (Attardi, 2012). The dataset is constructed as 5 sentences per sample (about 3.7 millions of samples) and the end of document is marked with the string <|endoftext|> providing the model with paragraph information, as done for the original GPT-2 training set by Radford . The input sentences are pre-processed and tokenized using 22,000 merges of byte-pair encoding. ## Model: The model is the "small" version of GPT-2 (12-layer, 768-hidden, 12-heads) with the only difference that the maximum sequence length is set at 512 tokens instead of 1024. ## Training details: It is trained from scratch a generative Transformer model as GPT-2 on a large corpus of Greek text so that the model can generate long stretches of contiguous coherent text. Attention dropouts with a rate of 0.1 are used for regularization on all layers and L2 weight decay of 0,01. In addition, a batch size of 4 and accumulated gradients over 8 iterations are used, resulting in an effective batch size of 32. The model uses the Adam optimization scheme with a learning rate of 1e-4 and is trained for 20 epochs. The learning rate increases linearly from zero over the first 9000 updates and decreases linearly by using a linear schedule. The implementation is based on the open-source PyTorch-transformer library (HuggingFace 2019).
nghuyong/ernie-gram-zh
257fee0915f1cba8dbea92c976493dcdd0491174
2022-04-04T06:00:26.000Z
[ "pytorch", "bert", "feature-extraction", "zh", "arxiv:2010.12148", "transformers" ]
feature-extraction
false
nghuyong
null
nghuyong/ernie-gram-zh
1,943
null
transformers
1,381
--- language: zh --- # ERNIE-Gram-zh ## Introduction ERNIE-Gram: Pre-Training with Explicitly N-Gram Masked Language Modeling for Natural Language Understanding More detail: https://arxiv.org/abs/2010.12148 ## Released Model Info |Model Name|Language|Model Structure| |:---:|:---:|:---:| |ernie-gram-zh| Chinese |Layer:12, Hidden:768, Heads:12| This released Pytorch model is converted from the officially released PaddlePaddle ERNIE model and a series of experiments have been conducted to check the accuracy of the conversion. - Official PaddlePaddle ERNIE repo: https://github.com/PaddlePaddle/ERNIE - Pytorch Conversion repo: https://github.com/nghuyong/ERNIE-Pytorch ## How to use ```Python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("nghuyong/ernie-gram-zh") model = AutoModel.from_pretrained("nghuyong/ernie-gram-zh") ```
monologg/distilkobert
cfbce1328041f68781414250c9013128e77e82d2
2020-05-13T03:37:29.000Z
[ "pytorch", "distilbert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
monologg
null
monologg/distilkobert
1,941
2
transformers
1,382
Entry not found
sentence-transformers/msmarco-distilbert-base-dot-prod-v3
0bafe057815532ca7ee37f002d9d1413d78b6d67
2022-06-15T22:20:51.000Z
[ "pytorch", "tf", "distilbert", "feature-extraction", "arxiv:1908.10084", "sentence-transformers", "sentence-similarity", "transformers", "license:apache-2.0" ]
sentence-similarity
false
sentence-transformers
null
sentence-transformers/msmarco-distilbert-base-dot-prod-v3
1,936
1
sentence-transformers
1,383
--- pipeline_tag: sentence-similarity license: apache-2.0 tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # sentence-transformers/msmarco-distilbert-base-dot-prod-v3 This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('sentence-transformers/msmarco-distilbert-base-dot-prod-v3') embeddings = model.encode(sentences) print(embeddings) ``` ## Evaluation Results For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=sentence-transformers/msmarco-distilbert-base-dot-prod-v3) ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: DistilBertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) (2): Dense({'in_features': 768, 'out_features': 768, 'bias': False, 'activation_function': 'torch.nn.modules.linear.Identity'}) ) ``` ## Citing & Authors This model was trained by [sentence-transformers](https://www.sbert.net/). If you find this model helpful, feel free to cite our publication [Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks](https://arxiv.org/abs/1908.10084): ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "http://arxiv.org/abs/1908.10084", } ```
cahya/bert-base-indonesian-522M
7baa8f5fa385e6eff31184f11876d0d19bf5eb6c
2021-05-19T13:38:45.000Z
[ "pytorch", "tf", "jax", "bert", "fill-mask", "id", "dataset:wikipedia", "transformers", "license:mit", "autotrain_compatible" ]
fill-mask
false
cahya
null
cahya/bert-base-indonesian-522M
1,934
3
transformers
1,384
--- language: "id" license: "mit" datasets: - wikipedia widget: - text: "Ibu ku sedang bekerja [MASK] sawah." --- # Indonesian BERT base model (uncased) ## Model description It is BERT-base model pre-trained with indonesian Wikipedia using a masked language modeling (MLM) objective. This model is uncased: it does not make a difference between indonesia and Indonesia. This is one of several other language models that have been pre-trained with indonesian datasets. More detail about its usage on downstream tasks (text classification, text generation, etc) is available at [Transformer based Indonesian Language Models](https://github.com/cahya-wirawan/indonesian-language-models/tree/master/Transformers) ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for masked language modeling: ```python >>> from transformers import pipeline >>> unmasker = pipeline('fill-mask', model='cahya/bert-base-indonesian-522M') >>> unmasker("Ibu ku sedang bekerja [MASK] supermarket") [{'sequence': '[CLS] ibu ku sedang bekerja di supermarket [SEP]', 'score': 0.7983310222625732, 'token': 1495}, {'sequence': '[CLS] ibu ku sedang bekerja. supermarket [SEP]', 'score': 0.090003103017807, 'token': 17}, {'sequence': '[CLS] ibu ku sedang bekerja sebagai supermarket [SEP]', 'score': 0.025469014421105385, 'token': 1600}, {'sequence': '[CLS] ibu ku sedang bekerja dengan supermarket [SEP]', 'score': 0.017966199666261673, 'token': 1555}, {'sequence': '[CLS] ibu ku sedang bekerja untuk supermarket [SEP]', 'score': 0.016971781849861145, 'token': 1572}] ``` Here is how to use this model to get the features of a given text in PyTorch: ```python from transformers import BertTokenizer, BertModel model_name='cahya/bert-base-indonesian-522M' tokenizer = BertTokenizer.from_pretrained(model_name) model = BertModel.from_pretrained(model_name) text = "Silakan diganti dengan text apa saja." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` and in Tensorflow: ```python from transformers import BertTokenizer, TFBertModel model_name='cahya/bert-base-indonesian-522M' tokenizer = BertTokenizer.from_pretrained(model_name) model = TFBertModel.from_pretrained(model_name) text = "Silakan diganti dengan text apa saja." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` ## Training data This model was pre-trained with 522MB of indonesian Wikipedia. The texts are lowercased and tokenized using WordPiece and a vocabulary size of 32,000. The inputs of the model are then of the form: ```[CLS] Sentence A [SEP] Sentence B [SEP]```
phiyodr/bert-base-finetuned-squad2
c73e3f22381ce4c230b49844ea7b8c703887385c
2021-05-20T02:34:19.000Z
[ "pytorch", "jax", "bert", "question-answering", "en", "dataset:squad2", "arxiv:1810.04805", "arxiv:1806.03822", "transformers", "autotrain_compatible" ]
question-answering
false
phiyodr
null
phiyodr/bert-base-finetuned-squad2
1,934
null
transformers
1,385
--- language: en tags: - pytorch - question-answering datasets: - squad2 metrics: - exact - f1 widget: - text: "What discipline did Winkelmann create?" context: "Johann Joachim Winckelmann was a German art historian and archaeologist. He was a pioneering Hellenist who first articulated the difference between Greek, Greco-Roman and Roman art. The prophet and founding hero of modern archaeology, Winckelmann was one of the founders of scientific archaeology and first applied the categories of style on a large, systematic basis to the history of art." --- # bert-base-finetuned-squad2 ## Model description This model is based on **[bert-base-uncased](https://huggingface.co/bert-base-uncased)** and was finetuned on **[SQuAD2.0](https://rajpurkar.github.io/SQuAD-explorer/)**. The corresponding papers you can found [here (model)](https://arxiv.org/abs/1810.04805) and [here (data)](https://arxiv.org/abs/1806.03822). ## How to use ```python from transformers.pipelines import pipeline model_name = "phiyodr/bert-base-finetuned-squad2" nlp = pipeline('question-answering', model=model_name, tokenizer=model_name) inputs = { 'question': 'What discipline did Winkelmann create?', 'context': 'Johann Joachim Winckelmann was a German art historian and archaeologist. He was a pioneering Hellenist who first articulated the difference between Greek, Greco-Roman and Roman art. "The prophet and founding hero of modern archaeology", Winckelmann was one of the founders of scientific archaeology and first applied the categories of style on a large, systematic basis to the history of art. ' } nlp(inputs) ``` ## Training procedure ``` { "base_model": "bert-base-uncased", "do_lower_case": True, "learning_rate": 3e-5, "num_train_epochs": 4, "max_seq_length": 384, "doc_stride": 128, "max_query_length": 64, "batch_size": 96 } ``` ## Eval results - Data: [dev-v2.0.json](https://rajpurkar.github.io/SQuAD-explorer/dataset/dev-v2.0.json) - Script: [evaluate-v2.0.py](https://worksheets.codalab.org/rest/bundles/0x6b567e1cf2e041ec80d7098f031c5c9e/contents/blob/) (original script from [here](https://github.com/huggingface/transformers/blob/master/examples/question-answering/README.md)) ``` { "exact": 70.3950138970774, "f1": 73.90527661873521, "total": 11873, "HasAns_exact": 71.4574898785425, "HasAns_f1": 78.48808186475087, "HasAns_total": 5928, "NoAns_exact": 69.33557611438184, "NoAns_f1": 69.33557611438184, "NoAns_total": 5945 } ```
microsoft/xlm-align-base
3e2a40ea5f9c75353ad2769bd74f7cb425fce671
2021-08-04T15:23:10.000Z
[ "pytorch", "xlm-roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
microsoft
null
microsoft/xlm-align-base
1,932
3
transformers
1,386
# XLM-Align **XLM-Align** (ACL 2021, [paper](https://aclanthology.org/2021.acl-long.265/), [repo](https://github.com/CZWin32768/XLM-Align), [model](https://huggingface.co/microsoft/xlm-align-base)) Improving Pretrained Cross-Lingual Language Models via Self-Labeled Word Alignment XLM-Align is a pretrained cross-lingual language model that supports 94 languages. See details in our [paper](https://aclanthology.org/2021.acl-long.265/). ## Example ``` model = AutoModel.from_pretrained("microsoft/xlm-align-base") ``` ## Evaluation Results XTREME cross-lingual understanding tasks: | Model | POS | NER | XQuAD | MLQA | TyDiQA | XNLI | PAWS-X | Avg | |:----:|:----:|:----:|:----:|:-----:|:----:|:-----:|:----:|:----:| | XLM-R_base | 75.6 | 61.8 | 71.9 / 56.4 | 65.1 / 47.2 | 55.4 / 38.3 | 75.0 | 84.9 | 66.4 | | XLM-Align | **76.0** | **63.7** | **74.7 / 59.0** | **68.1 / 49.8** | **62.1 / 44.8** | **76.2** | **86.8** | **68.9** | ## MD5 ``` b9d214025837250ede2f69c9385f812c config.json 6005db708eb4bab5b85fa3976b9db85b pytorch_model.bin bf25eb5120ad92ef5c7d8596b5dc4046 sentencepiece.bpe.model eedbd60a7268b9fc45981b849664f747 tokenizer.json ``` ## About Contact: chizewen\@outlook.com BibTeX: ``` @inproceedings{xlmalign, title = "Improving Pretrained Cross-Lingual Language Models via Self-Labeled Word Alignment", author={Zewen Chi and Li Dong and Bo Zheng and Shaohan Huang and Xian-Ling Mao and Heyan Huang and Furu Wei}, booktitle = "Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)", month = aug, year = "2021", address = "Online", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.acl-long.265", doi = "10.18653/v1/2021.acl-long.265", pages = "3418--3430",} ```
Alireza1044/albert-base-v2-sst2
e406771b99e1913921a68fbb95d121b582d1ecb7
2021-07-26T14:02:35.000Z
[ "pytorch", "tensorboard", "albert", "text-classification", "en", "dataset:glue", "transformers", "generated_from_trainer", "license:apache-2.0" ]
text-classification
false
Alireza1044
null
Alireza1044/albert-base-v2-sst2
1,930
null
transformers
1,387
--- language: - en license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy model_index: - name: sst2 results: - task: name: Text Classification type: text-classification dataset: name: GLUE SST2 type: glue args: sst2 metric: name: Accuracy type: accuracy value: 0.9231651376146789 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # sst2 This model is a fine-tuned version of [albert-base-v2](https://huggingface.co/albert-base-v2) on the GLUE SST2 dataset. It achieves the following results on the evaluation set: - Loss: 0.3808 - Accuracy: 0.9232 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4.0 ### Training results ### Framework versions - Transformers 4.9.0 - Pytorch 1.9.0+cu102 - Datasets 1.10.2 - Tokenizers 0.10.3
google/bert_uncased_L-2_H-256_A-4
4e937a8675e5afd9a4836735c186ec01695bc3ea
2021-05-19T17:28:46.000Z
[ "pytorch", "jax", "bert", "arxiv:1908.08962", "transformers", "license:apache-2.0" ]
null
false
google
null
google/bert_uncased_L-2_H-256_A-4
1,928
1
transformers
1,388
--- thumbnail: https://huggingface.co/front/thumbnails/google.png license: apache-2.0 --- BERT Miniatures === This is the set of 24 BERT models referenced in [Well-Read Students Learn Better: On the Importance of Pre-training Compact Models](https://arxiv.org/abs/1908.08962) (English only, uncased, trained with WordPiece masking). We have shown that the standard BERT recipe (including model architecture and training objective) is effective on a wide range of model sizes, beyond BERT-Base and BERT-Large. The smaller BERT models are intended for environments with restricted computational resources. They can be fine-tuned in the same manner as the original BERT models. However, they are most effective in the context of knowledge distillation, where the fine-tuning labels are produced by a larger and more accurate teacher. Our goal is to enable research in institutions with fewer computational resources and encourage the community to seek directions of innovation alternative to increasing model capacity. You can download the 24 BERT miniatures either from the [official BERT Github page](https://github.com/google-research/bert/), or via HuggingFace from the links below: | |H=128|H=256|H=512|H=768| |---|:---:|:---:|:---:|:---:| | **L=2** |[**2/128 (BERT-Tiny)**][2_128]|[2/256][2_256]|[2/512][2_512]|[2/768][2_768]| | **L=4** |[4/128][4_128]|[**4/256 (BERT-Mini)**][4_256]|[**4/512 (BERT-Small)**][4_512]|[4/768][4_768]| | **L=6** |[6/128][6_128]|[6/256][6_256]|[6/512][6_512]|[6/768][6_768]| | **L=8** |[8/128][8_128]|[8/256][8_256]|[**8/512 (BERT-Medium)**][8_512]|[8/768][8_768]| | **L=10** |[10/128][10_128]|[10/256][10_256]|[10/512][10_512]|[10/768][10_768]| | **L=12** |[12/128][12_128]|[12/256][12_256]|[12/512][12_512]|[**12/768 (BERT-Base)**][12_768]| Note that the BERT-Base model in this release is included for completeness only; it was re-trained under the same regime as the original model. Here are the corresponding GLUE scores on the test set: |Model|Score|CoLA|SST-2|MRPC|STS-B|QQP|MNLI-m|MNLI-mm|QNLI(v2)|RTE|WNLI|AX| |---|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:| |BERT-Tiny|64.2|0.0|83.2|81.1/71.1|74.3/73.6|62.2/83.4|70.2|70.3|81.5|57.2|62.3|21.0| |BERT-Mini|65.8|0.0|85.9|81.1/71.8|75.4/73.3|66.4/86.2|74.8|74.3|84.1|57.9|62.3|26.1| |BERT-Small|71.2|27.8|89.7|83.4/76.2|78.8/77.0|68.1/87.0|77.6|77.0|86.4|61.8|62.3|28.6| |BERT-Medium|73.5|38.0|89.6|86.6/81.6|80.4/78.4|69.6/87.9|80.0|79.1|87.7|62.2|62.3|30.5| For each task, we selected the best fine-tuning hyperparameters from the lists below, and trained for 4 epochs: - batch sizes: 8, 16, 32, 64, 128 - learning rates: 3e-4, 1e-4, 5e-5, 3e-5 If you use these models, please cite the following paper: ``` @article{turc2019, title={Well-Read Students Learn Better: On the Importance of Pre-training Compact Models}, author={Turc, Iulia and Chang, Ming-Wei and Lee, Kenton and Toutanova, Kristina}, journal={arXiv preprint arXiv:1908.08962v2 }, year={2019} } ``` [2_128]: https://huggingface.co/google/bert_uncased_L-2_H-128_A-2 [2_256]: https://huggingface.co/google/bert_uncased_L-2_H-256_A-4 [2_512]: https://huggingface.co/google/bert_uncased_L-2_H-512_A-8 [2_768]: https://huggingface.co/google/bert_uncased_L-2_H-768_A-12 [4_128]: https://huggingface.co/google/bert_uncased_L-4_H-128_A-2 [4_256]: https://huggingface.co/google/bert_uncased_L-4_H-256_A-4 [4_512]: https://huggingface.co/google/bert_uncased_L-4_H-512_A-8 [4_768]: https://huggingface.co/google/bert_uncased_L-4_H-768_A-12 [6_128]: https://huggingface.co/google/bert_uncased_L-6_H-128_A-2 [6_256]: https://huggingface.co/google/bert_uncased_L-6_H-256_A-4 [6_512]: https://huggingface.co/google/bert_uncased_L-6_H-512_A-8 [6_768]: https://huggingface.co/google/bert_uncased_L-6_H-768_A-12 [8_128]: https://huggingface.co/google/bert_uncased_L-8_H-128_A-2 [8_256]: https://huggingface.co/google/bert_uncased_L-8_H-256_A-4 [8_512]: https://huggingface.co/google/bert_uncased_L-8_H-512_A-8 [8_768]: https://huggingface.co/google/bert_uncased_L-8_H-768_A-12 [10_128]: https://huggingface.co/google/bert_uncased_L-10_H-128_A-2 [10_256]: https://huggingface.co/google/bert_uncased_L-10_H-256_A-4 [10_512]: https://huggingface.co/google/bert_uncased_L-10_H-512_A-8 [10_768]: https://huggingface.co/google/bert_uncased_L-10_H-768_A-12 [12_128]: https://huggingface.co/google/bert_uncased_L-12_H-128_A-2 [12_256]: https://huggingface.co/google/bert_uncased_L-12_H-256_A-4 [12_512]: https://huggingface.co/google/bert_uncased_L-12_H-512_A-8 [12_768]: https://huggingface.co/google/bert_uncased_L-12_H-768_A-12
indobenchmark/indobart
73bead20e4a67f578f6f3b3f7038040304dc7065
2022-06-21T17:52:16.000Z
[ "pytorch", "mbart", "text2text-generation", "id", "dataset:Indo4B+", "arxiv:2104.08200", "transformers", "indogpt", "indobenchmark", "indonlg", "license:mit", "autotrain_compatible" ]
text2text-generation
false
indobenchmark
null
indobenchmark/indobart
1,923
1
transformers
1,389
--- language: id tags: - indogpt - indobenchmark - indonlg license: mit inference: false datasets: - Indo4B+ --- # IndoBART Model [IndoBART](https://arxiv.org/abs/2104.08200) is a state-of-the-art language model for Indonesian based on the BART model. The pretrained model is trained using the BART training objective. ## All Pre-trained Models | Model | #params | Training data | |--------------------------------|--------------------------------|-----------------------------------| | `indobenchmark/indobart` | 132M | Indo4B-Plus (23.79 GB of text) | ## Authors <b>IndoBART</b> was trained and evaluated by Samuel Cahyawijaya*, Genta Indra Winata*, Bryan Wilie*, Karissa Vincentio*, Xiaohong Li*, Adhiguna Kuncoro*, Sebastian Ruder, Zhi Yuan Lim, Syafri Bahar, Masayu Leylia Khodra, Ayu Purwarianti, Pascale Fung ## Citation If you use our work, please cite: ```bibtex @article{cahyawijaya2021indonlg, title={IndoNLG: Benchmark and Resources for Evaluating Indonesian Natural Language Generation}, author={Cahyawijaya, Samuel and Winata, Genta Indra and Wilie, Bryan and Vincentio, Karissa and Li, Xiaohong and Kuncoro, Adhiguna and Ruder, Sebastian and Lim, Zhi Yuan and Bahar, Syafri and Khodra, Masayu Leylia and others}, journal={arXiv preprint arXiv:2104.08200}, year={2021} } ```
microsoft/CodeGPT-small-py
97ebaaa7103f64e3085e88f0ecd28d1ffeb01bea
2021-05-23T09:01:50.000Z
[ "pytorch", "tf", "jax", "gpt2", "text-generation", "transformers" ]
text-generation
false
microsoft
null
microsoft/CodeGPT-small-py
1,922
1
transformers
1,390
Entry not found
saattrupdan/nbailab-base-ner-scandi
8635b40703c27f868a29a36d99e264facddc6610
2022-02-09T15:21:05.000Z
[ "pytorch", "bert", "token-classification", "da", "no", "nb", "nn", "sv", "fo", "is", "dataset:dane", "dataset:norne", "dataset:wikiann", "dataset:suc3.0", "arxiv:1911.12146", "transformers", "license:mit", "model-index", "autotrain_compatible" ]
token-classification
false
saattrupdan
null
saattrupdan/nbailab-base-ner-scandi
1,921
8
transformers
1,391
--- language: - da - no - nb - nn - sv - fo - is license: mit datasets: - dane - norne - wikiann - suc3.0 model-index: - name: nbailab-base-ner-scandi results: [] widget: - "Hans er en professor på Københavns Universitetet i København, og han er en rigtig københavner. Hans kat, altså Hans' kat, Lisa, er supersød. Han fik købt en Mona Lisa på tilbud i Netto og gav den til sin kat, og nu er Mona Lisa'en Lisa's kæreste eje. Hans bror Peter og Hans besluttede, at Peterskirken skulle have fint besøg. Men nu har de begge Corona." inference: parameters: aggregation_strategy: "first" --- # ScandiNER - Named Entity Recognition model for Scandinavian Languages This model is a fine-tuned version of [NbAiLab/nb-bert-base](https://huggingface.co/NbAiLab/nb-bert-base) for Named Entity Recognition for Danish, Norwegian (both Bokmål and Nynorsk), Swedish, Icelandic and Faroese. It has been fine-tuned on the concatenation of [DaNE](https://aclanthology.org/2020.lrec-1.565/), [NorNE](https://arxiv.org/abs/1911.12146), [SUC 3.0](https://spraakbanken.gu.se/en/resources/suc3) and the Icelandic and Faroese parts of the [WikiANN](https://aclanthology.org/P17-1178/) dataset. It also works reasonably well on English sentences, given the fact that the pretrained model is also trained on English data along with Scandinavian languages. The model will predict the following four entities: | **Tag** | **Name** | **Description** | | :------ | :------- | :-------------- | | `PER` | Person | The name of a person (e.g., *Birgitte* and *Mohammed*) | | `LOC` | Location | The name of a location (e.g., *Tyskland* and *Djurgården*) | | `ORG` | Organisation | The name of an organisation (e.g., *Bunnpris* and *Landsbankinn*) | | `MISC` | Miscellaneous | A named entity of a different kind (e.g., *Ūjķnustu pund* and *Mona Lisa*) | ## Quick start You can use this model in your scripts as follows: ```python >>> from transformers import pipeline >>> import pandas as pd >>> ner = pipeline(task='ner', ... model='saattrupdan/nbailab-base-ner-scandi', ... aggregation_strategy='first') >>> result = ner('Borghild kjøper seg inn i Bunnpris') >>> pd.DataFrame.from_records(result) entity_group score word start end 0 PER 0.981257 Borghild 0 8 1 ORG 0.974099 Bunnpris 26 34 ``` ## Performance The following is the Micro-F1 NER performance on Scandinavian NER test datasets, compared with the current state-of-the-art. The models have been evaluated on the test set along with 9 bootstrapped versions of it, with the mean and 95% confidence interval shown here: | **Model ID** | **DaNE** | **NorNE-NB** | **NorNE-NN** | **SUC 3.0** | **WikiANN-IS** | **WikiANN-FO** | **Average** | | :----------- | -------: | -----------: | -----------: | ----------: | -------------: | -------------: | ----------: | | saattrupdan/nbailab-base-ner-scandi | **87.44 ± 0.81** | **91.06 ± 0.26** | **90.42 ± 0.61** | **88.37 ± 0.17** | **88.61 ± 0.41** | **90.22 ± 0.46** | **89.08 ± 0.46** | | chcaa/da\_dacy\_large\_trf | 83.61 ± 1.18 | 78.90 ± 0.49 | 72.62 ± 0.58 | 53.35 ± 0.17 | 50.57 ± 0.46 | 51.72 ± 0.52 | 63.00 ± 0.57 | | RecordedFuture/Swedish-NER | 64.09 ± 0.97 | 61.74 ± 0.50 | 56.67 ± 0.79 | 66.60 ± 0.27 | 34.54 ± 0.73 | 42.16 ± 0.83 | 53.32 ± 0.69 | | Maltehb/danish-bert-botxo-ner-dane | 69.25 ± 1.17 | 60.57 ± 0.27 | 35.60 ± 1.19 | 38.37 ± 0.26 | 21.00 ± 0.57 | 27.88 ± 0.48 | 40.92 ± 0.64 | | Maltehb/-l-ctra-danish-electra-small-uncased-ner-dane | 70.41 ± 1.19 | 48.76 ± 0.70 | 27.58 ± 0.61 | 35.39 ± 0.38 | 26.22 ± 0.52 | 28.30 ± 0.29 | 39.70 ± 0.61 | | radbrt/nb\_nocy\_trf | 56.82 ± 1.63 | 68.20 ± 0.75 | 69.22 ± 1.04 | 31.63 ± 0.29 | 20.32 ± 0.45 | 12.91 ± 0.50 | 38.08 ± 0.75 | Aside from its high accuracy, it's also substantially **smaller** and **faster** than the previous state-of-the-art: | **Model ID** | **Samples/second** | **Model size** | | :----------- | -----------------: | -------------: | | saattrupdan/nbailab-base-ner-scandi | 4.16 ± 0.18 | 676 MB | | chcaa/da\_dacy\_large\_trf | 0.65 ± 0.01 | 2,090 MB | ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 90135.90000000001 - num_epochs: 1000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Micro F1 | Micro F1 No Misc | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:----------------:| | 0.6682 | 1.0 | 2816 | 0.0872 | 0.6916 | 0.7306 | | 0.0684 | 2.0 | 5632 | 0.0464 | 0.8167 | 0.8538 | | 0.0444 | 3.0 | 8448 | 0.0367 | 0.8485 | 0.8783 | | 0.0349 | 4.0 | 11264 | 0.0316 | 0.8684 | 0.8920 | | 0.0282 | 5.0 | 14080 | 0.0290 | 0.8820 | 0.9033 | | 0.0231 | 6.0 | 16896 | 0.0283 | 0.8854 | 0.9060 | | 0.0189 | 7.0 | 19712 | 0.0253 | 0.8964 | 0.9156 | | 0.0155 | 8.0 | 22528 | 0.0260 | 0.9016 | 0.9201 | | 0.0123 | 9.0 | 25344 | 0.0266 | 0.9059 | 0.9233 | | 0.0098 | 10.0 | 28160 | 0.0280 | 0.9091 | 0.9279 | | 0.008 | 11.0 | 30976 | 0.0309 | 0.9093 | 0.9287 | | 0.0065 | 12.0 | 33792 | 0.0313 | 0.9103 | 0.9284 | | 0.0053 | 13.0 | 36608 | 0.0322 | 0.9078 | 0.9257 | | 0.0046 | 14.0 | 39424 | 0.0343 | 0.9075 | 0.9256 | ### Framework versions - Transformers 4.10.3 - Pytorch 1.9.0+cu102 - Datasets 1.12.1 - Tokenizers 0.10.3
studio-ousia/luke-large-finetuned-conll-2003
2508abe6e591d7a9142d5ee9ab2eb5dccd7741fd
2021-04-26T16:09:42.000Z
[ "pytorch", "luke", "transformers" ]
null
false
studio-ousia
null
studio-ousia/luke-large-finetuned-conll-2003
1,920
null
transformers
1,392
Entry not found
m-polignano-uniba/bert_uncased_L-12_H-768_A-12_italian_alb3rt0
4454cfbc82952da79729e33e81c37a72dc095b4b
2021-05-19T22:20:54.000Z
[ "pytorch", "tf", "jax", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
false
m-polignano-uniba
null
m-polignano-uniba/bert_uncased_L-12_H-768_A-12_italian_alb3rt0
1,917
3
transformers
1,393
Entry not found
klue/roberta-small
f360e3d753b17f3b7508154fefdb042c706db147
2021-10-20T16:13:01.000Z
[ "pytorch", "roberta", "fill-mask", "ko", "arxiv:2105.09680", "transformers", "korean", "klue", "autotrain_compatible" ]
fill-mask
false
klue
null
klue/roberta-small
1,911
null
transformers
1,394
--- language: ko tags: - korean - klue mask_token: "[MASK]" widget: - text: 대한민국의 수도는 [MASK] 입니다. --- # KLUE RoBERTa small Pretrained RoBERTa Model on Korean Language. See [Github](https://github.com/KLUE-benchmark/KLUE) and [Paper](https://arxiv.org/abs/2105.09680) for more details. ## How to use _NOTE:_ Use `BertTokenizer` instead of RobertaTokenizer. (`AutoTokenizer` will load `BertTokenizer`) ```python from transformers import AutoModel, AutoTokenizer model = AutoModel.from_pretrained("klue/roberta-small") tokenizer = AutoTokenizer.from_pretrained("klue/roberta-small") ``` ## BibTeX entry and citation info ```bibtex @misc{park2021klue, title={KLUE: Korean Language Understanding Evaluation}, author={Sungjoon Park and Jihyung Moon and Sungdong Kim and Won Ik Cho and Jiyoon Han and Jangwon Park and Chisung Song and Junseong Kim and Yongsook Song and Taehwan Oh and Joohong Lee and Juhyun Oh and Sungwon Lyu and Younghoon Jeong and Inkwon Lee and Sangwoo Seo and Dongjun Lee and Hyunwoo Kim and Myeonghwa Lee and Seongbo Jang and Seungwon Do and Sunkyoung Kim and Kyungtae Lim and Jongwon Lee and Kyumin Park and Jamin Shin and Seonghyun Kim and Lucy Park and Alice Oh and Jungwoo Ha and Kyunghyun Cho}, year={2021}, eprint={2105.09680}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
monologg/koelectra-base-v3-naver-ner
7fe2d3297113e0753716d7f2c85d4880d288542d
2020-11-30T11:55:35.000Z
[ "pytorch", "electra", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
false
monologg
null
monologg/koelectra-base-v3-naver-ner
1,911
null
transformers
1,395
Entry not found
hf-internal-testing/tiny-random-rembert
917e1c9f997b17fc81d9ed84713f5de8abe57c1b
2022-03-08T13:50:53.000Z
[ "pytorch", "tf", "rembert", "feature-extraction", "transformers", "generated_from_keras_callback", "model-index" ]
feature-extraction
false
hf-internal-testing
null
hf-internal-testing/tiny-random-rembert
1,909
null
transformers
1,396
--- tags: - generated_from_keras_callback model-index: - name: tiny-random-rembert results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # tiny-random-rembert This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set: ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: None - training_precision: float32 ### Training results ### Framework versions - Transformers 4.18.0.dev0 - TensorFlow 2.7.0 - Datasets 1.18.3 - Tokenizers 0.11.0
textattack/bert-base-uncased-MNLI
3a97f689528cbd91bcc71ab29ea6c20c089d8f28
2021-05-20T07:31:58.000Z
[ "pytorch", "jax", "bert", "text-classification", "transformers" ]
text-classification
false
textattack
null
textattack/bert-base-uncased-MNLI
1,908
null
transformers
1,397
Entry not found
google/mt5-xxl
d4ac5e6d5125f8d30cba8763cd0ad71e5d34c17b
2022-05-27T15:06:56.000Z
[ "pytorch", "tf", "mt5", "text2text-generation", "multilingual", "af", "am", "ar", "az", "be", "bg", "bn", "ca", "ceb", "co", "cs", "cy", "da", "de", "el", "en", "eo", "es", "et", "eu", "fa", "fi", "fil", "fr", "fy", "ga", "gd", "gl", "gu", "ha", "haw", "hi", "hmn", "ht", "hu", "hy", "ig", "is", "it", "iw", "ja", "jv", "ka", "kk", "km", "kn", "ko", "ku", "ky", "la", "lb", "lo", "lt", "lv", "mg", "mi", "mk", "ml", "mn", "mr", "ms", "mt", "my", "ne", "nl", "no", "ny", "pa", "pl", "ps", "pt", "ro", "ru", "sd", "si", "sk", "sl", "sm", "sn", "so", "sq", "sr", "st", "su", "sv", "sw", "ta", "te", "tg", "th", "tr", "uk", "und", "ur", "uz", "vi", "xh", "yi", "yo", "zh", "zu", "dataset:mc4", "arxiv:2010.11934", "transformers", "license:apache-2.0", "autotrain_compatible" ]
text2text-generation
false
google
null
google/mt5-xxl
1,906
8
transformers
1,398
--- language: - multilingual - af - am - ar - az - be - bg - bn - ca - ceb - co - cs - cy - da - de - el - en - eo - es - et - eu - fa - fi - fil - fr - fy - ga - gd - gl - gu - ha - haw - hi - hmn - ht - hu - hy - ig - is - it - iw - ja - jv - ka - kk - km - kn - ko - ku - ky - la - lb - lo - lt - lv - mg - mi - mk - ml - mn - mr - ms - mt - my - ne - nl - no - ny - pa - pl - ps - pt - ro - ru - sd - si - sk - sl - sm - sn - so - sq - sr - st - su - sv - sw - ta - te - tg - th - tr - uk - und - ur - uz - vi - xh - yi - yo - zh - zu datasets: - mc4 license: apache-2.0 --- [Google's mT5](https://github.com/google-research/multilingual-t5) mT5 is pretrained on the [mC4](https://www.tensorflow.org/datasets/catalog/c4#c4multilingual) corpus, covering 101 languages: Afrikaans, Albanian, Amharic, Arabic, Armenian, Azerbaijani, Basque, Belarusian, Bengali, Bulgarian, Burmese, Catalan, Cebuano, Chichewa, Chinese, Corsican, Czech, Danish, Dutch, English, Esperanto, Estonian, Filipino, Finnish, French, Galician, Georgian, German, Greek, Gujarati, Haitian Creole, Hausa, Hawaiian, Hebrew, Hindi, Hmong, Hungarian, Icelandic, Igbo, Indonesian, Irish, Italian, Japanese, Javanese, Kannada, Kazakh, Khmer, Korean, Kurdish, Kyrgyz, Lao, Latin, Latvian, Lithuanian, Luxembourgish, Macedonian, Malagasy, Malay, Malayalam, Maltese, Maori, Marathi, Mongolian, Nepali, Norwegian, Pashto, Persian, Polish, Portuguese, Punjabi, Romanian, Russian, Samoan, Scottish Gaelic, Serbian, Shona, Sindhi, Sinhala, Slovak, Slovenian, Somali, Sotho, Spanish, Sundanese, Swahili, Swedish, Tajik, Tamil, Telugu, Thai, Turkish, Ukrainian, Urdu, Uzbek, Vietnamese, Welsh, West Frisian, Xhosa, Yiddish, Yoruba, Zulu. **Note**: mT5 was only pre-trained on mC4 excluding any supervised training. Therefore, this model has to be fine-tuned before it is useable on a downstream task. Pretraining Dataset: [mC4](https://www.tensorflow.org/datasets/catalog/c4#c4multilingual) Other Community Checkpoints: [here](https://huggingface.co/models?search=mt5) Paper: [mT5: A massively multilingual pre-trained text-to-text transformer](https://arxiv.org/abs/2010.11934) Authors: *Linting Xue, Noah Constant, Adam Roberts, Mihir Kale, Rami Al-Rfou, Aditya Siddhant, Aditya Barua, Colin Raffel* ## Abstract The recent "Text-to-Text Transfer Transformer" (T5) leveraged a unified text-to-text format and scale to attain state-of-the-art results on a wide variety of English-language NLP tasks. In this paper, we introduce mT5, a multilingual variant of T5 that was pre-trained on a new Common Crawl-based dataset covering 101 languages. We describe the design and modified training of mT5 and demonstrate its state-of-the-art performance on many multilingual benchmarks. All of the code and model checkpoints used in this work are publicly available.
ml6team/keyphrase-extraction-kbir-inspec
70c7250d0cb932f4ee3332c50a73583b7cd7995d
2022-06-16T14:51:11.000Z
[ "pytorch", "roberta", "token-classification", "en", "dataset:midas/inspec", "arxiv:2112.08547", "transformers", "keyphrase-extraction", "license:mit", "model-index", "autotrain_compatible" ]
token-classification
false
ml6team
null
ml6team/keyphrase-extraction-kbir-inspec
1,906
2
transformers
1,399
--- language: en license: mit tags: - keyphrase-extraction datasets: - midas/inspec metrics: - seqeval widget: - text: "Keyphrase extraction is a technique in text analysis where you extract the important keyphrases from a document. Thanks to these keyphrases humans can understand the content of a text very quickly and easily without reading it completely. Keyphrase extraction was first done primarily by human annotators, who read the text in detail and then wrote down the most important keyphrases. The disadvantage is that if you work with a lot of documents, this process can take a lot of time. Here is where Artificial Intelligence comes in. Currently, classical machine learning methods, that use statistical and linguistic features, are widely used for the extraction process. Now with deep learning, it is possible to capture the semantic meaning of a text even better than these classical methods. Classical methods look at the frequency, occurrence and order of words in the text, whereas these neural approaches can capture long-term semantic dependencies and context of words in a text." example_title: "Example 1" - text: "In this work, we explore how to learn task specific language models aimed towards learning rich representation of keyphrases from text documents. We experiment with different masking strategies for pre-training transformer language models (LMs) in discriminative as well as generative settings. In the discriminative setting, we introduce a new pre-training objective - Keyphrase Boundary Infilling with Replacement (KBIR), showing large gains in performance (up to 9.26 points in F1) over SOTA, when LM pre-trained using KBIR is fine-tuned for the task of keyphrase extraction. In the generative setting, we introduce a new pre-training setup for BART - KeyBART, that reproduces the keyphrases related to the input text in the CatSeq format, instead of the denoised original input. This also led to gains in performance (up to 4.33 points inF1@M) over SOTA for keyphrase generation. Additionally, we also fine-tune the pre-trained language models on named entity recognition(NER), question answering (QA), relation extraction (RE), abstractive summarization and achieve comparable performance with that of the SOTA, showing that learning rich representation of keyphrases is indeed beneficial for many other fundamental NLP tasks." example_title: "Example 2" model-index: - name: DeDeckerThomas/keyphrase-extraction-kbir-inspec results: - task: type: keyphrase-extraction name: Keyphrase Extraction dataset: type: midas/inspec name: inspec metrics: - type: F1 (Seqeval) value: 0.588 name: F1 (Seqeval) - type: F1@M value: 0.564 name: F1@M --- # 🔑 Keyphrase Extraction Model: KBIR-inspec Keyphrase extraction is a technique in text analysis where you extract the important keyphrases from a document. Thanks to these keyphrases humans can understand the content of a text very quickly and easily without reading it completely. Keyphrase extraction was first done primarily by human annotators, who read the text in detail and then wrote down the most important keyphrases. The disadvantage is that if you work with a lot of documents, this process can take a lot of time ⏳. Here is where Artificial Intelligence 🤖 comes in. Currently, classical machine learning methods, that use statistical and linguistic features, are widely used for the extraction process. Now with deep learning, it is possible to capture the semantic meaning of a text even better than these classical methods. Classical methods look at the frequency, occurrence and order of words in the text, whereas these neural approaches can capture long-term semantic dependencies and context of words in a text. ## 📓 Model Description This model uses [KBIR](https://huggingface.co/bloomberg/KBIR) as its base model and fine-tunes it on the [Inspec dataset](https://huggingface.co/datasets/midas/inspec). KBIR or Keyphrase Boundary Infilling with Replacement is a pre-trained model which utilizes a multi-task learning setup for optimizing a combined loss of Masked Language Modeling (MLM), Keyphrase Boundary Infilling (KBI) and Keyphrase Replacement Classification (KRC). You can find more information about the architecture in this [paper](https://arxiv.org/abs/2112.08547). Keyphrase extraction models are transformer models fine-tuned as a token classification problem where each word in the document is classified as being part of a keyphrase or not. | Label | Description | | ----- | ------------------------------- | | B-KEY | At the beginning of a keyphrase | | I-KEY | Inside a keyphrase | | O | Outside a keyphrase | Kulkarni, Mayank, Debanjan Mahata, Ravneet Arora, and Rajarshi Bhowmik. "Learning Rich Representation of Keyphrases from Text." arXiv preprint arXiv:2112.08547 (2021). Sahrawat, Dhruva, Debanjan Mahata, Haimin Zhang, Mayank Kulkarni, Agniv Sharma, Rakesh Gosangi, Amanda Stent, Yaman Kumar, Rajiv Ratn Shah, and Roger Zimmermann. "Keyphrase extraction as sequence labeling using contextualized embeddings." In European Conference on Information Retrieval, pp. 328-335. Springer, Cham, 2020. ## ✋ Intended Uses & Limitations ### 🛑 Limitations * This keyphrase extraction model is very domain-specific and will perform very well on abstracts of scientific papers. It's not recommended to use this model for other domains, but you are free to test it out. * Only works for English documents. * For a custom model, please consult the [training notebook]() for more information. ### ❓ How To Use ```python from transformers import ( TokenClassificationPipeline, AutoModelForTokenClassification, AutoTokenizer, ) from transformers.pipelines import AggregationStrategy import numpy as np # Define keyphrase extraction pipeline class KeyphraseExtractionPipeline(TokenClassificationPipeline): def __init__(self, model, *args, **kwargs): super().__init__( model=AutoModelForTokenClassification.from_pretrained(model), tokenizer=AutoTokenizer.from_pretrained(model), *args, **kwargs ) def postprocess(self, model_outputs): results = super().postprocess( model_outputs=model_outputs, aggregation_strategy=AggregationStrategy.SIMPLE, ) return np.unique([result.get("word").strip() for result in results]) ``` ```python # Load pipeline model_name = "ml6team/keyphrase-extraction-kbir-inspec" extractor = KeyphraseExtractionPipeline(model=model_name) ``` ```python # Inference text = """ Keyphrase extraction is a technique in text analysis where you extract the important keyphrases from a document. Thanks to these keyphrases humans can understand the content of a text very quickly and easily without reading it completely. Keyphrase extraction was first done primarily by human annotators, who read the text in detail and then wrote down the most important keyphrases. The disadvantage is that if you work with a lot of documents, this process can take a lot of time. Here is where Artificial Intelligence comes in. Currently, classical machine learning methods, that use statistical and linguistic features, are widely used for the extraction process. Now with deep learning, it is possible to capture the semantic meaning of a text even better than these classical methods. Classical methods look at the frequency, occurrence and order of words in the text, whereas these neural approaches can capture long-term semantic dependencies and context of words in a text. """.replace("\n", " ") keyphrases = extractor(text) print(keyphrases) ``` ``` # Output ['Artificial Intelligence' 'Keyphrase extraction' 'deep learning' 'linguistic features' 'machine learning' 'semantic meaning' 'text analysis'] ``` ## 📚 Training Dataset [Inspec](https://huggingface.co/datasets/midas/inspec) is a keyphrase extraction/generation dataset consisting of 2000 English scientific papers from the scientific domains of Computers and Control and Information Technology published between 1998 to 2002. The keyphrases are annotated by professional indexers or editors. You can find more information in the [paper](https://dl.acm.org/doi/10.3115/1119355.1119383). ## 👷‍♂️ Training Procedure For more in detail information, you can take a look at the [training notebook](). ### Training Parameters | Parameter | Value | | --------- | ------| | Learning Rate | 1e-4 | | Epochs | 50 | | Early Stopping Patience | 3 | ### Preprocessing The documents in the dataset are already preprocessed into list of words with the corresponding labels. The only thing that must be done is tokenization and the realignment of the labels so that they correspond with the right subword tokens. ```python from datasets import load_dataset from transformers import AutoTokenizer # Labels label_list = ["B", "I", "O"] lbl2idx = {"B": 0, "I": 1, "O": 2} idx2label = {0: "B", 1: "I", 2: "O"} # Tokenizer tokenizer = AutoTokenizer.from_pretrained("bloomberg/KBIR", add_prefix_space=True) max_length = 512 # Dataset parameters dataset_full_name = "midas/inspec" dataset_subset = "raw" dataset_document_column = "document" dataset_biotags_column = "doc_bio_tags" def preprocess_fuction(all_samples_per_split): tokenized_samples = tokenizer.batch_encode_plus( all_samples_per_split[dataset_document_column], padding="max_length", truncation=True, is_split_into_words=True, max_length=max_length, ) total_adjusted_labels = [] for k in range(0, len(tokenized_samples["input_ids"])): prev_wid = -1 word_ids_list = tokenized_samples.word_ids(batch_index=k) existing_label_ids = all_samples_per_split[dataset_biotags_column][k] i = -1 adjusted_label_ids = [] for wid in word_ids_list: if wid is None: adjusted_label_ids.append(lbl2idx["O"]) elif wid != prev_wid: i = i + 1 adjusted_label_ids.append(lbl2idx[existing_label_ids[i]]) prev_wid = wid else: adjusted_label_ids.append( lbl2idx[ f"{'I' if existing_label_ids[i] == 'B' else existing_label_ids[i]}" ] ) total_adjusted_labels.append(adjusted_label_ids) tokenized_samples["labels"] = total_adjusted_labels return tokenized_samples # Load dataset dataset = load_dataset(dataset_full_name, dataset_subset) # Preprocess dataset tokenized_dataset = dataset.map(preprocess_fuction, batched=True) ``` ### Postprocessing (Without Pipeline Function) If you do not use the pipeline function, you must filter out the B and I labeled tokens. Each B and I will then be merged into a keyphrase. Finally, you need to strip the keyphrases to make sure all unnecessary spaces have been removed. ```python # Define post_process functions def concat_tokens_by_tag(keyphrases): keyphrase_tokens = [] for id, label in keyphrases: if label == "B": keyphrase_tokens.append([id]) elif label == "I": if len(keyphrase_tokens) > 0: keyphrase_tokens[len(keyphrase_tokens) - 1].append(id) return keyphrase_tokens def extract_keyphrases(example, predictions, tokenizer, index=0): keyphrases_list = [ (id, idx2label[label]) for id, label in zip( np.array(example["input_ids"]).squeeze().tolist(), predictions[index] ) if idx2label[label] in ["B", "I"] ] processed_keyphrases = concat_tokens_by_tag(keyphrases_list) extracted_kps = tokenizer.batch_decode( processed_keyphrases, skip_special_tokens=True, clean_up_tokenization_spaces=True, ) return np.unique([kp.strip() for kp in extracted_kps]) ``` ## 📝 Evaluation Results Traditional evaluation methods are the precision, recall and F1-score @k,m where k is the number that stands for the first k predicted keyphrases and m for the average amount of predicted keyphrases. The model achieves the following results on the Inspec test set: | Dataset | P@5 | R@5 | F1@5 | P@10 | R@10 | F1@10 | P@M | R@M | F1@M | |:-----------------:|:----:|:----:|:----:|:----:|:----:|:-----:|:----:|:----:|:----:| | Inspec Test Set | 0.53 | 0.47 | 0.46 | 0.36 | 0.58 | 0.41 | 0.58 | 0.60 | 0.56 | For more information on the evaluation process, you can take a look at the keyphrase extraction [evaluation notebook](). ## 🚨 Issues Please feel free to start discussions in the Community Tab.