text
stringlengths
505
4.3k
▁value . ▁In ▁most ▁cases ▁the ▁value ▁is ▁emphas ized , ▁as ▁in ▁the ▁assertion ▁" the ▁set ▁of ▁all ▁linear ▁combinations ▁of ▁v 1 ,..., vn ▁always ▁forms ▁a ▁sub space ". ▁However , ▁one ▁could ▁also ▁say ▁" two ▁different ▁linear ▁combinations ▁can ▁have ▁the ▁same ▁value " ▁in ▁which ▁case ▁the ▁reference ▁is ▁to ▁the ▁expression . ▁The ▁subt le ▁difference ▁between ▁these ▁uses ▁is ▁the ▁ess ence ▁of ▁the ▁notion ▁of ▁linear ▁dependence : ▁a ▁family ▁F ▁of ▁vectors ▁is ▁linear ly ▁independent ▁precisely ▁if ▁any ▁linear ▁combination ▁of ▁the ▁vectors ▁in ▁F ▁( as ▁value ) ▁is ▁uniqu ely ▁so ▁( as ▁expression ). ▁In ▁any ▁case , ▁even ▁when ▁viewed ▁as ▁expressions , ▁all ▁that ▁matters ▁about ▁a ▁linear ▁combination ▁is ▁the ▁coefficient ▁of ▁each ▁vi ; ▁trivial ▁modifications ▁such ▁as ▁perm uting ▁the ▁terms ▁or ▁adding ▁terms ▁with ▁zero ▁coefficient ▁do ▁not ▁produce ▁distinct ▁linear ▁combinations . ▁ ▁In ▁a ▁given ▁situation , ▁K ▁and ▁V ▁may ▁be ▁specified ▁explicitly , ▁or ▁they ▁may ▁be ▁obvious ▁from ▁context . ▁In ▁that ▁case , ▁we ▁often ▁speak ▁of ▁a ▁linear ▁combination ▁of ▁the ▁vectors ▁v 1 ,..., vn , ▁with ▁the ▁coefficients ▁un spec ified ▁( except ▁that ▁they ▁must ▁belong ▁to ▁K ). ▁Or , ▁if ▁S ▁is ▁a ▁subset ▁of ▁V , ▁we ▁may ▁speak ▁of ▁a ▁linear ▁combination ▁of ▁vectors ▁in ▁S , ▁where ▁both ▁the ▁coefficients ▁and ▁the ▁vectors ▁are ▁un spec ified , ▁except ▁that ▁the ▁vectors ▁must ▁belong ▁to ▁the ▁set
▁S ▁( and ▁the ▁coefficients ▁must ▁belong ▁to ▁K ). ▁Finally , ▁we ▁may ▁speak ▁simply ▁of ▁a ▁linear ▁combination , ▁where ▁nothing ▁is ▁specified ▁( except ▁that ▁the ▁vectors ▁must ▁belong ▁to ▁V ▁and ▁the ▁coefficients ▁must ▁belong ▁to ▁K ); ▁in ▁this ▁case ▁one ▁is ▁probably ▁referring ▁to ▁the ▁expression , ▁since ▁every ▁vector ▁in ▁V ▁is ▁certainly ▁the ▁value ▁of ▁some ▁linear ▁combination . ▁ ▁Note ▁that ▁by ▁definition , ▁a ▁linear ▁combination ▁involves ▁only ▁finit ely ▁many ▁vectors ▁( except ▁as ▁described ▁in ▁General izations ▁below ). ▁However , ▁the ▁set ▁S ▁that ▁the ▁vectors ▁are ▁taken ▁from ▁( if ▁one ▁is ▁mentioned ) ▁can ▁still ▁be ▁infinite ; ▁each ▁individual ▁linear ▁combination ▁will ▁only ▁involve ▁finit ely ▁many ▁vectors . ▁Also , ▁there ▁is ▁no ▁reason ▁that ▁n ▁cannot ▁be ▁zero ; ▁in ▁that ▁case , ▁we ▁declare ▁by ▁convention ▁that ▁the ▁result ▁of ▁the ▁linear ▁combination ▁is ▁the ▁zero ▁vector ▁in ▁V . ▁ ▁Ex amples ▁and ▁counter examples ▁ ▁E uclidean ▁vectors ▁ ▁Let ▁the ▁field ▁K ▁be ▁the ▁set ▁R ▁of ▁real ▁numbers , ▁and ▁let ▁the ▁vector ▁space ▁V ▁be ▁the ▁E uclidean ▁space ▁R 3 . ▁Consider ▁the ▁vectors ▁e 1   = ▁( 1 , 0 , 0 ), ▁e 2   = ▁( 0 , 1 , 0 ) ▁and ▁e 3   = ▁( 0 , 0 , 1 ). ▁Then ▁any ▁vector ▁in ▁R 3 ▁is ▁a ▁linear ▁combination ▁of ▁e 1 , ▁e 2 ▁and   e 3
. ▁ ▁To ▁see ▁that ▁this ▁is ▁so , ▁take ▁an ▁arbitrary ▁vector ▁( a 1 , a 2 , a 3 ) ▁in ▁R 3 , ▁and ▁write : ▁ ▁Function s ▁ ▁Let ▁K ▁be ▁the ▁set ▁C ▁of ▁all ▁complex ▁numbers , ▁and ▁let ▁V ▁be ▁the ▁set ▁CC ( R ) ▁of ▁all ▁continuous ▁functions ▁from ▁the ▁real ▁line ▁R ▁to ▁the ▁complex ▁plane ▁C . ▁Consider ▁the ▁vectors ▁( functions ) ▁f ▁and ▁g ▁defined ▁by ▁f ( t )   := ▁e it ▁and ▁g ( t )   := ▁e − it . ▁( Here , ▁e ▁is ▁the ▁base ▁of ▁the ▁natural ▁log arith m , ▁about ▁ 2 . 7 1 8 2 8 ..., ▁and ▁i ▁is ▁the ▁imag inary ▁unit , ▁a ▁square ▁root ▁of ▁− 1 .) ▁Some ▁linear ▁combinations ▁of ▁f ▁and ▁g   are : ▁▁▁▁ ▁On ▁the ▁other ▁hand , ▁the ▁constant ▁function ▁ 3 ▁is ▁not ▁a ▁linear ▁combination ▁of ▁f ▁and ▁g . ▁To ▁see ▁this , ▁suppose ▁that ▁ 3 ▁could ▁be ▁written ▁as ▁a ▁linear ▁combination ▁of ▁e it ▁and ▁e − it . ▁This ▁means ▁that ▁there ▁would ▁exist ▁complex ▁scal ars ▁a ▁and ▁b ▁such ▁that ▁a e it ▁+ ▁be − it ▁= ▁ 3 ▁for ▁all ▁real ▁numbers ▁t . ▁Setting ▁t ▁= ▁ 0 ▁and ▁t ▁= ▁ π ▁gives ▁the ▁equations ▁a ▁+ ▁b ▁= ▁ 3 ▁and ▁a ▁+ ▁b ▁= ▁− 3 , ▁and ▁clearly ▁this
▁cannot ▁happen . ▁ ▁See ▁E uler ' s ▁identity . ▁ ▁Pol ynomial s ▁ ▁Let ▁K ▁be ▁R , ▁C , ▁or ▁any ▁field , ▁and ▁let ▁V ▁be ▁the ▁set ▁P ▁of ▁all ▁polynomials ▁with ▁coefficients ▁taken ▁from ▁the ▁field ▁K . ▁Consider ▁the ▁vectors ▁( pol ynomial s ) ▁p 1   :=   1 , ▁p 2   := ▁x   +   1 , ▁and ▁p 3   := ▁x 2   +   x   +   1 . ▁ ▁Is ▁the ▁polynomial ▁x 2   −   1 ▁a ▁linear ▁combination ▁of ▁p 1 , ▁p 2 , ▁and ▁p 3 ? ▁To ▁find ▁out , ▁consider ▁an ▁arbitrary ▁linear ▁combination ▁of ▁these ▁vectors ▁and ▁try ▁to ▁see ▁when ▁it ▁equals ▁the ▁desired ▁vector ▁x 2   −   1 . ▁Pick ing ▁arbitrary ▁coefficients ▁a 1 , ▁a 2 , ▁and ▁a 3 , ▁we   w ant ▁ ▁Mult ip lying ▁the ▁polynomials ▁out , ▁this   me ans ▁▁ ▁and ▁collect ing ▁like ▁powers ▁of ▁x , ▁we   get ▁▁ ▁Two ▁polynomials ▁are ▁equal ▁if ▁and ▁only ▁if ▁their ▁corresponding ▁coefficients ▁are ▁equal , ▁so ▁we ▁can ▁conclude ▁▁ ▁This ▁system ▁of ▁linear ▁equations ▁can ▁easily ▁be ▁solved . ▁First , ▁the ▁first ▁equation ▁simply ▁says ▁that ▁a 3 ▁is ▁ 1 . ▁Know ing ▁that , ▁we ▁can ▁solve ▁the ▁second ▁equation ▁for ▁a 2 , ▁which ▁comes ▁out ▁to ▁− 1 . ▁Finally , ▁the ▁last ▁equation ▁tells ▁us
▁that ▁a 1 ▁is ▁also ▁− 1 . ▁Therefore , ▁the ▁only ▁possible ▁way ▁to ▁get ▁a ▁linear ▁combination ▁is ▁with ▁these ▁coefficients . ▁Indeed , ▁ ▁so ▁x 2   −   1 ▁is ▁a ▁linear ▁combination ▁of ▁p 1 , ▁p 2 , ▁and   p 3 . ▁ ▁On ▁the ▁other ▁hand , ▁what ▁about ▁the ▁polynomial ▁x 3   −   1 ? ▁If ▁we ▁try ▁to ▁make ▁this ▁vector ▁a ▁linear ▁combination ▁of ▁p 1 , ▁p 2 , ▁and ▁p 3 , ▁then ▁following ▁the ▁same ▁process ▁as ▁before , ▁we ▁get ▁the ▁equation ▁ ▁However , ▁when ▁we ▁set ▁corresponding ▁coefficients ▁equal ▁in ▁this ▁case , ▁the ▁equation ▁for ▁x 3   is ▁▁ ▁which ▁is ▁always ▁false . ▁Therefore , ▁there ▁is ▁no ▁way ▁for ▁this ▁to ▁work , ▁and ▁x 3   −   1 ▁is ▁not ▁a ▁linear ▁combination ▁of ▁p 1 , ▁p 2 , ▁and   p 3 . ▁ ▁The ▁linear ▁span ▁▁ ▁Take ▁an ▁arbitrary ▁field ▁K , ▁an ▁arbitrary ▁vector ▁space ▁V , ▁and ▁let ▁v 1 ,..., vn ▁be ▁vectors ▁( in ▁V ). ▁It ’ s ▁interesting ▁to ▁consider ▁the ▁set ▁of ▁all ▁linear ▁combinations ▁of ▁these ▁vectors . ▁This ▁set ▁is ▁called ▁the ▁linear ▁span ▁( or ▁just ▁span ) ▁of ▁the ▁vectors , ▁say ▁S ▁= { v 1 ,..., vn }. ▁We ▁write ▁the ▁span ▁of ▁S ▁as ▁span ( S ) ▁or ▁sp ( S ): ▁ ▁Linear ▁independence ▁▁ ▁For ▁some
▁sets ▁of ▁vectors ▁v 1 ,..., vn , ▁a ▁single ▁vector ▁can ▁be ▁written ▁in ▁two ▁different ▁ways ▁as ▁a ▁linear ▁combination ▁of ▁them : ▁ ▁Equ ival ently , ▁by ▁subtract ing ▁these ▁() ▁a ▁non - t rivial ▁combination ▁is ▁zero : ▁ ▁If ▁that ▁is ▁possible , ▁then ▁v 1 ,..., vn ▁are ▁called ▁linear ly ▁dependent ; ▁otherwise , ▁they ▁are ▁linear ly ▁independent . ▁Similarly , ▁we ▁can ▁speak ▁of ▁linear ▁dependence ▁or ▁independence ▁of ▁an ▁arbitrary ▁set ▁S ▁of ▁vectors . ▁ ▁If ▁S ▁is ▁linear ly ▁independent ▁and ▁the ▁span ▁of ▁S ▁equals ▁V , ▁then ▁S ▁is ▁a ▁basis ▁for ▁V . ▁ ▁Aff ine , ▁con ical , ▁and ▁convex ▁combinations ▁ ▁By ▁restrict ing ▁the ▁coefficients ▁used ▁in ▁linear ▁combinations , ▁one ▁can ▁define ▁the ▁related ▁concepts ▁of ▁aff ine ▁combination , ▁con ical ▁combination , ▁and ▁convex ▁combination , ▁and ▁the ▁associated ▁not ions ▁of ▁sets ▁closed ▁under ▁these ▁operations . ▁ ▁Because ▁these ▁are ▁more ▁restricted ▁operations , ▁more ▁subsets ▁will ▁be ▁closed ▁under ▁them , ▁so ▁aff ine ▁subsets , ▁convex ▁con es , ▁and ▁convex ▁sets ▁are ▁general izations ▁of ▁vector ▁sub spaces : ▁a ▁vector ▁sub space ▁is ▁also ▁an ▁aff ine ▁sub space , ▁a ▁convex ▁cone , ▁and ▁a ▁convex ▁set , ▁but ▁a ▁convex ▁set ▁need ▁not ▁be ▁a ▁vector ▁sub space , ▁aff ine , ▁or ▁a ▁convex ▁cone . ▁ ▁These ▁concepts ▁often ▁arise ▁when ▁one ▁can ▁take ▁certain ▁linear ▁combinations ▁of ▁objects
, ▁but ▁not ▁any : ▁for ▁example , ▁probability ▁distributions ▁are ▁closed ▁under ▁convex ▁combination ▁( they ▁form ▁a ▁convex ▁set ), ▁but ▁not ▁con ical ▁or ▁aff ine ▁combinations ▁( or ▁linear ), ▁and ▁positive ▁measures ▁are ▁closed ▁under ▁con ical ▁combination ▁but ▁not ▁aff ine ▁or ▁linear ▁– ▁hence ▁one ▁defines ▁signed ▁measures ▁as ▁the ▁linear ▁closure . ▁ ▁Linear ▁and ▁aff ine ▁combinations ▁can ▁be ▁defined ▁over ▁any ▁field ▁( or ▁ring ), ▁but ▁con ical ▁and ▁convex ▁combination ▁require ▁a ▁notion ▁of ▁" pos itive ", ▁and ▁hence ▁can ▁only ▁be ▁defined ▁over ▁an ▁ordered ▁field ▁( or ▁ordered ▁ring ), ▁generally ▁the ▁real ▁numbers . ▁ ▁If ▁one ▁allows ▁only ▁scalar ▁multiplication , ▁not ▁addition , ▁one ▁obtain s ▁a ▁( not ▁necessarily ▁convex ) ▁cone ; ▁one ▁often ▁restrict s ▁the ▁definition ▁to ▁only ▁allowing ▁multiplication ▁by ▁positive ▁scal ars . ▁ ▁All ▁of ▁these ▁concepts ▁are ▁usually ▁defined ▁as ▁subsets ▁of ▁an ▁ambient ▁vector ▁space ▁( except ▁for ▁aff ine ▁spaces , ▁which ▁are ▁also ▁considered ▁as ▁" vector ▁spaces ▁forget ting ▁the ▁origin "), ▁rather ▁than ▁being ▁ax iom at ized ▁independently . ▁ ▁Oper ad ▁theory ▁▁ ▁More ▁abstract ly , ▁in ▁the ▁language ▁of ▁oper ad ▁theory , ▁one ▁can ▁consider ▁vector ▁spaces ▁to ▁be ▁al gebras ▁over ▁the ▁oper ad ▁ ▁( the ▁infinite ▁direct ▁sum , ▁so ▁only ▁finit ely ▁many ▁terms ▁are ▁non - zero ; ▁this ▁corresponds ▁to ▁only ▁taking ▁finite ▁sums ), ▁which ▁paramet riz es ▁linear ▁combinations
: ▁the ▁vector ▁ ▁for ▁instance ▁corresponds ▁to ▁the ▁linear ▁combination ▁. ▁Similarly , ▁one ▁can ▁consider ▁aff ine ▁combinations , ▁con ical ▁combinations , ▁and ▁convex ▁combinations ▁to ▁correspond ▁to ▁the ▁sub - oper ads ▁where ▁the ▁terms ▁sum ▁to ▁ 1 , ▁the ▁terms ▁are ▁all ▁non - negative , ▁or ▁both , ▁respectively . ▁Graph ically , ▁these ▁are ▁the ▁infinite ▁aff ine ▁hyper plane , ▁the ▁infinite ▁hyper - oct ant , ▁and ▁the ▁infinite ▁simple x . ▁This ▁formal izes ▁what ▁is ▁meant ▁by ▁ ▁being ▁or ▁the ▁standard ▁simple x ▁being ▁model ▁spaces , ▁and ▁such ▁observations ▁as ▁that ▁every ▁bounded ▁convex ▁poly to pe ▁is ▁the ▁image ▁of ▁a ▁simple x . ▁Here ▁sub oper ads ▁correspond ▁to ▁more ▁restricted ▁operations ▁and ▁thus ▁more ▁general ▁theories . ▁ ▁From ▁this ▁point ▁of ▁view , ▁we ▁can ▁think ▁of ▁linear ▁combinations ▁as ▁the ▁most ▁general ▁sort ▁of ▁operation ▁on ▁a ▁vector ▁space ▁– ▁saying ▁that ▁a ▁vector ▁space ▁is ▁an ▁algebra ▁over ▁the ▁oper ad ▁of ▁linear ▁combinations ▁is ▁precisely ▁the ▁statement ▁that ▁all ▁possible ▁algebraic ▁operations ▁in ▁a ▁vector ▁space ▁are ▁linear ▁combinations . ▁ ▁The ▁basic ▁operations ▁of ▁addition ▁and ▁scalar ▁multiplication , ▁together ▁with ▁the ▁existence ▁of ▁an ▁add itive ▁identity ▁and ▁add itive ▁in vers es , ▁cannot ▁be ▁combined ▁in ▁any ▁more ▁complicated ▁way ▁than ▁the ▁generic ▁linear ▁combination : ▁the ▁basic ▁operations ▁are ▁a ▁generating ▁set ▁for ▁the ▁oper ad ▁of ▁all ▁linear ▁combinations . ▁ ▁Ult imately , ▁this ▁fact
▁lies ▁at ▁the ▁heart ▁of ▁the ▁useful ness ▁of ▁linear ▁combinations ▁in ▁the ▁study ▁of ▁vector ▁spaces . ▁ ▁General izations ▁If ▁V ▁is ▁a ▁topological ▁vector ▁space , ▁then ▁there ▁may ▁be ▁a ▁way ▁to ▁make ▁sense ▁of ▁certain ▁infinite ▁linear ▁combinations , ▁using ▁the ▁topology ▁of ▁V . ▁For ▁example , ▁we ▁might ▁be ▁able ▁to ▁speak ▁of ▁a 1 v 1   + ▁a 2 v 2   + ▁a 3 v 3   +   ..., ▁going ▁on ▁forever . ▁Such ▁infinite ▁linear ▁combinations ▁do ▁not ▁always ▁make ▁sense ; ▁we ▁call ▁them ▁conver gent ▁when ▁they ▁do . ▁Allow ing ▁more ▁linear ▁combinations ▁in ▁this ▁case ▁can ▁also ▁lead ▁to ▁a ▁different ▁concept ▁of ▁span , ▁linear ▁independence , ▁and ▁basis . ▁The ▁articles ▁on ▁the ▁various ▁flav ours ▁of ▁topological ▁vector ▁spaces ▁go ▁into ▁more ▁detail ▁about ▁these . ▁ ▁If ▁K ▁is ▁a ▁commut ative ▁ring ▁instead ▁of ▁a ▁field , ▁then ▁everything ▁that ▁has ▁been ▁said ▁above ▁about ▁linear ▁combinations ▁general izes ▁to ▁this ▁case ▁without ▁change . ▁The ▁only ▁difference ▁is ▁that ▁we ▁call ▁spaces ▁like ▁this ▁V ▁modules ▁instead ▁of ▁vector ▁spaces . ▁If ▁K ▁is ▁a ▁non comm ut ative ▁ring , ▁then ▁the ▁concept ▁still ▁general izes , ▁with ▁one ▁cave at : ▁Since ▁modules ▁over ▁non comm ut ative ▁rings ▁come ▁in ▁left ▁and ▁right ▁versions , ▁our ▁linear ▁combinations ▁may ▁also ▁come ▁in ▁either ▁of ▁these ▁versions , ▁whatever ▁is ▁appropriate ▁for ▁the ▁given ▁module . ▁This ▁is ▁simply
▁a ▁matter ▁of ▁doing ▁scalar ▁multiplication ▁on ▁the ▁correct ▁side . ▁ ▁A ▁more ▁complicated ▁tw ist ▁comes ▁when ▁V ▁is ▁a ▁b im od ule ▁over ▁two ▁rings , ▁K L ▁and ▁K R . ▁In ▁that ▁case , ▁the ▁most ▁general ▁linear ▁combination ▁looks ▁like ▁▁ ▁where ▁a 1 ,..., an ▁belong ▁to ▁K L , ▁b 1 ,..., bn ▁belong ▁to ▁K R , ▁and ▁v 1 ,..., vn ▁belong ▁to ▁V . ▁ ▁Application ▁ ▁An ▁important ▁application ▁of ▁linear ▁combinations ▁is ▁to ▁wave ▁functions ▁in ▁quantum ▁mechan ics . ▁ ▁References ▁ ▁External ▁links ▁▁ ▁Linear ▁Com bin ations ▁and ▁Span : ▁Under standing ▁linear ▁combinations ▁and ▁sp ans ▁of ▁vectors , ▁k han ac ade my . org . ▁ ▁Category : Linear ▁algebra <0x0A> </s> ▁Ad rian ▁Bow yer ▁▁ ▁is ▁an ▁English ▁engineer ▁and ▁math ematic ian , ▁formerly ▁an ▁academic ▁at ▁the ▁University ▁of ▁Bath . ▁ ▁Born ▁in ▁ 1 9 5 2 ▁in ▁London , ▁Bow yer ▁is ▁the ▁older ▁child ▁of ▁the ▁late ▁Ros em ary ▁and ▁John ▁Bow yer ; ▁the ▁latter ▁was ▁a ▁writer , ▁painter ▁and ▁one ▁of ▁the ▁found ers ▁of ▁Z is man , ▁Bow yer ▁and ▁Part ners , ▁consult ing ▁engine ers . ▁ ▁Bow yer ▁was ▁educated ▁at ▁Wood ro ffe ▁School , ▁L yme ▁Reg is ▁and ▁Imperial ▁College ▁London . ▁ ▁In ▁ 1 9 7 7 ▁he ▁joined ▁the ▁Mathemat ics ▁Department ▁at ▁the ▁University ▁of ▁Bath . ▁Short ly
▁after ▁that ▁he ▁received ▁a ▁doctor ate ▁from ▁Imperial ▁College ▁London ▁for ▁research ▁in ▁fr iction - indu ced ▁v ibration . ▁Wh ilst ▁working ▁in ▁the ▁Mathemat ics ▁Department ▁he ▁invent ed ▁( at ▁the ▁same ▁time ▁as ▁David ▁Watson ) ▁the ▁algorithm ▁for ▁computing ▁Vor ono i ▁diag rams ▁that ▁be ars ▁their ▁names ▁( the ▁Bow yer – W at son ▁algorithm ). ▁ ▁He ▁then ▁spent ▁twenty - two ▁years ▁as ▁a ▁lect urer ▁then ▁senior ▁lect urer ▁in ▁the ▁ ▁Mechan ical ▁Engineering ▁Department ▁at ▁the ▁University ▁of ▁Bath . ▁ ▁He ▁retired ▁from ▁academic ▁life ▁in ▁ 2 0 1 2 , ▁though ▁he ▁is ▁still ▁a ▁director ▁of ▁the ▁company ▁Rep R ap ▁Ltd ▁He ▁invent ed ▁the ▁Rep R ap ▁Project ▁– ▁an ▁open - source ▁ 3 D ▁printer ▁that ▁can ▁produce ▁pl astic ▁parts . ▁The ▁Guardian ▁said ▁of ▁this , ▁"[ Rep R ap ] ▁has ▁been ▁called ▁the ▁in vention ▁that ▁will ▁bring ▁down ▁global ▁capital ism , ▁start ▁a ▁second ▁industrial ▁revolution ▁and ▁save ▁the ▁environment ..." ▁ ▁In ▁ 2 0 1 7 ▁Bow yer ▁received ▁the ▁ 3 D ▁Print ing ▁Indust ry ▁Out standing ▁Cont ribution ▁to ▁ 3 D ▁Print ing ▁Award ▁ ▁and ▁was ▁induct ed ▁into ▁the ▁T CT ▁Hall ▁of ▁Fame ▁. ▁He ▁was ▁appointed ▁a ▁Member ▁of ▁the ▁Order ▁of ▁the ▁British ▁Empire ▁( MB E ) ▁in ▁the ▁ 2 0 1 9 ▁New ▁Year ▁Hon ours ▁for ▁services ▁to ▁
3 D ▁Print ing . ▁ ▁His ▁wife ▁is ▁a ▁retired ▁school ▁teacher ; ▁they ▁have ▁one ▁adult ▁daughter . ▁ ▁References ▁ ▁External ▁links ▁ ▁Ad rian ▁Bow yer ' s ▁home ▁page ▁ ▁Rep R ap L td . com ▁ ▁We alth ▁Without ▁M oney , ▁Ad rian ▁Bow yer ▁at ▁Med ial ab - Pr ado ▁In ▁the ▁future ▁everyone ▁will ▁work ▁for ▁ 1 5 ▁minutes , ▁Ad rian ▁Bow yer ▁presentation ▁ ▁Category : 1 9 5 2 ▁birth s ▁Category : L iving ▁people ▁Category : Engine ers ▁from ▁London ▁Category : A cadem ics ▁of ▁the ▁University ▁of ▁Bath ▁Category : Art icles ▁containing ▁video ▁cli ps ▁Category : Rep R ap ▁project ▁Category : Al umn i ▁of ▁Imperial ▁College ▁London ▁Category : Date ▁of ▁birth ▁missing ▁( l iving ▁people ) ▁Category : 3 D ▁printing ▁special ists ▁Category : Math emat icians ▁from ▁London ▁Category : M embers ▁of ▁the ▁Order ▁of ▁the ▁British ▁Empire <0x0A> </s> ▁Valent ino ▁P ug li ese ▁( born ▁ 1 8 ▁July ▁ 1 9 9 7 ) ▁is ▁a ▁Swiss ▁professional ▁footballer ▁who ▁plays ▁as ▁a ▁mid f iel der ▁for ▁Lok om ot iv ▁P lov div ▁in ▁the ▁Bulgar ian ▁First ▁League . ▁He ▁has ▁previously ▁played ▁for ▁Wil , ▁Sch aff hausen ▁and ▁Chi asso ▁in ▁the ▁Swiss ▁Challenge ▁League . ▁ ▁References ▁ ▁External ▁links ▁▁▁ ▁Category : 1 9 9 7 ▁birth s ▁Category : L iving ▁people ▁Category
: Sw iss ▁football ers ▁Category : Sw iss ▁Challenge ▁League ▁players ▁Category : First ▁Professional ▁Football ▁League ▁( B ul g aria ) ▁players ▁Category : FC ▁Wil ▁ 1 9 0 0 ▁players ▁Category : FC ▁Sch aff hausen ▁players ▁Category : FC ▁Chi asso ▁players ▁Category : P FC ▁Lok om ot iv ▁P lov div ▁players ▁Category : Ex pat ri ate ▁football ers ▁in ▁Bulg aria ▁Category : Sw iss ▁exp atri ate ▁sports people ▁in ▁Bulg aria ▁Category : Associ ation ▁football ▁mid field ers <0x0A> </s> ▁Manuel ▁S ánchez ▁López ▁( born ▁ 1 3 ▁April ▁ 1 9 8 8 ), ▁known ▁as ▁Man ol ín ▁or ▁simply ▁Manuel , ▁is ▁a ▁Spanish ▁footballer ▁who ▁plays ▁for ▁El che ▁CF . ▁Main ly ▁a ▁def ensive ▁mid f iel der , ▁he ▁can ▁also ▁play ▁as ▁a ▁central ▁def ender . ▁ ▁Club ▁career ▁Born ▁in ▁C ór dob a , ▁And alus ia , ▁Manuel ▁graduated ▁from ▁C ór dob a ▁CF ' s ▁youth ▁a cademy , ▁and ▁made ▁his ▁debut ▁as ▁a ▁senior ▁with ▁É cija ▁Bal om pi é ▁in ▁ 2 0 0 7 , ▁in ▁Segunda ▁División ▁B . ▁On ▁ 2 ▁August ▁ 2 0 0 9 , ▁he ▁moved ▁to ▁Pol ide port ivo ▁Ej ido ▁also ▁of ▁the ▁third ▁level . ▁ ▁On ▁ 3 1 ▁August ▁ 2 0 1 0 , ▁Manuel ▁returned ▁to ▁the ▁Verd ib lan cos , ▁being ▁assigned ▁to ▁the
▁res erves ▁who ▁competed ▁in ▁Ter cera ▁División . ▁In ▁the ▁summer ▁of ▁ 2 0 1 1 ▁he ▁moved ▁back ▁to ▁the ▁third ▁level , ▁signing ▁for ▁CF ▁La ▁Un ión . ▁ ▁Manuel ▁remained ▁in ▁division ▁three ▁in ▁the ▁following ▁years , ▁representing ▁CD ▁Gu ij uel o , ▁La ▁Ho ya ▁Lor ca ▁CF ▁and ▁SD ▁H ues ca . ▁He ▁appeared ▁in ▁ 3 8 ▁matches ▁and ▁scored ▁two ▁goals ▁during ▁the ▁season ▁with ▁the ▁latter ▁club , ▁as ▁it ▁returned ▁to ▁Segunda ▁División ▁after ▁a ▁two - year ▁absence . ▁ ▁Manuel ▁made ▁his ▁professional ▁debut ▁on ▁ 2 2 ▁August ▁ 2 0 1 5 ▁at ▁the ▁age ▁of ▁ 2 7 , ▁playing ▁the ▁full ▁ 9 0 ▁minutes ▁in ▁a ▁ 2 – 3 ▁home ▁loss ▁against ▁Deport ivo ▁A lav és . ▁On ▁ 1 0 ▁January ▁of ▁the ▁following ▁year , ▁after ▁termin ating ▁his ▁contract , ▁he ▁joined ▁CA ▁Os as una ▁also ▁in ▁the ▁second ▁tier . ▁ ▁On ▁ 2 3 ▁June ▁ 2 0 1 6 , ▁after ▁ach ieving ▁promotion ▁to ▁La ▁Liga , ▁Manuel ▁was ▁released ▁and ▁signed ▁with ▁second ▁division ▁side ▁AD ▁Al cor c ón . ▁On ▁ 2 0 ▁December , ▁after ▁appearing ▁rarely , ▁he ▁became ▁a ▁free ▁agent ▁and ▁joined ▁fellow ▁league ▁team ▁U C AM ▁Mur cia ▁CF ▁three ▁days ▁later . ▁ ▁On ▁ 2 0 ▁July ▁ 2 0 1 7 , ▁Manuel ▁agreed ▁to ▁a ▁deal ▁at ▁El
che ▁CF . ▁He ▁won ▁promotion ▁to ▁the ▁second ▁tier ▁at ▁the ▁end ▁of ▁his ▁debut ▁campaign , ▁contrib uting ▁with ▁ 3 4 ▁games ▁and ▁four ▁goals ▁to ▁the ▁fe at . ▁ ▁References ▁ ▁External ▁links ▁ ▁Category : 1 9 8 8 ▁birth s ▁Category : L iving ▁people ▁Category : S ports people ▁from ▁C ór dob a , ▁Spain ▁Category : Span ish ▁football ers ▁Category : And alus ian ▁football ers ▁Category : Associ ation ▁football ▁def enders ▁Category : Associ ation ▁football ▁mid field ers ▁Category : Associ ation ▁football ▁utility ▁players ▁Category : Seg unda ▁División ▁players ▁Category : Seg unda ▁División ▁B ▁players ▁Category : T erc era ▁División ▁players ▁Category : É cija ▁Bal om pi é ▁players ▁Category : Pol ide port ivo ▁Ej ido ▁football ers ▁Category : C ór dob a ▁CF ▁B ▁players ▁Category : CF ▁La ▁Un ión ▁players ▁Category : CD ▁Gu ij uel o ▁football ers ▁Category : L or ca ▁FC ▁players ▁Category : SD ▁H ues ca ▁football ers ▁Category : CA ▁Os as una ▁players ▁Category : AD ▁Al cor c ón ▁football ers ▁Category : UC AM ▁Mur cia ▁CF ▁players ▁Category : El che ▁CF ▁players <0x0A> </s> ▁Aless andro ▁But ti ▁( b . ▁ 1 8 9 3 ▁– ▁d . ▁ 1 9 5 9 ▁in ▁Tur in ) ▁was ▁an ▁Italian ▁type ▁designer ▁who ▁lived ▁and ▁worked ▁mostly ▁in ▁Tur in ▁where ▁he ▁was ▁art ▁director ▁of
▁the ▁Neb i olo ▁type ▁found ry . ▁He ▁also ▁taught ▁at ▁the ▁Sc uola ▁V igli ani - Par avia . ▁ ▁Micro gram ma ▁is ▁his ▁most ▁famous ▁face . ▁ ▁After ▁But ti ' s ▁death , ▁his ▁collabor ator ▁on ▁that ▁face , ▁Ald o ▁Nov ar ese , ▁added ▁a ▁lower ▁case ▁which ▁was ▁then ▁called ▁Euro st ile . ▁ ▁Font s ▁designed ▁by ▁Aless andro ▁But ti ▁ ▁References ▁Jas pert , ▁W . ▁P inc us , ▁W . ▁Turner ▁Ber ry ▁and ▁A . F . ▁Johnson . ▁The ▁Encyclopedia ▁of ▁Type ▁F aces . ▁B land ford ▁Press ▁L ts .: ▁ 1 9 5 3 , ▁ 1 9 8 3 . ▁. ▁Fried l , ▁Ott , ▁and ▁Stein , ▁Typ ography : ▁an ▁Encyclop edic ▁Survey ▁of ▁Type ▁Design ▁and ▁Te chni ques ▁Through out ▁History . ▁Black ▁Dog ▁& ▁Le vin th al ▁Publish ers : ▁ 1 9 9 8 . ▁. ▁Font ▁Design er ▁- ▁Aless andro ▁But ti ▁My Font s ▁- ▁Aless andro ▁But ti ▁ ▁Category : 1 8 9 3 ▁birth s ▁Category : 1 9 5 9 ▁death s ▁Category : Ital ian ▁art ▁direct ors ▁Category : Ital ian ▁graph ic ▁design ers ▁Category : Ital ian ▁typ ograph ers <0x0A> </s> ▁Kr z ysz kow ice ▁ ▁is ▁a ▁village ▁in ▁the ▁administrative ▁district ▁of ▁G mina ▁Pr zy ty k , ▁within ▁Rad om ▁County , ▁Mas ov ian
▁Vo iv odes hip , ▁in ▁east - central ▁Poland . ▁ ▁References ▁ ▁Kr z ysz kow ice <0x0A> </s> ▁In ▁mathematics , ▁the ▁H odge ▁conject ure ▁is ▁a ▁major ▁un sol ved ▁problem ▁in ▁the ▁field ▁of ▁algebraic ▁geometry ▁that ▁rel ates ▁the ▁algebraic ▁topology ▁of ▁a ▁non - sing ular ▁complex ▁algebraic ▁variety ▁to ▁its ▁sub vari eties . ▁More ▁specifically , ▁the ▁conject ure ▁states ▁that ▁certain ▁de ▁R ham ▁coh om ology ▁classes ▁are ▁algebraic ; ▁that ▁is , ▁they ▁are ▁sums ▁of ▁Po inc ar é ▁du als ▁of ▁the ▁hom ology ▁classes ▁of ▁sub vari eties . ▁It ▁was ▁form ulated ▁by ▁the ▁Scottish ▁math ematic ian ▁William ▁Vall ance ▁Douglas ▁H odge ▁as ▁a ▁result ▁of ▁a ▁work ▁in ▁between ▁ 1 9 3 0 ▁and ▁ 1 9 4 0 ▁to ▁en rich ▁the ▁description ▁of ▁de ▁R ham ▁coh om ology ▁to ▁include ▁extra ▁structure ▁that ▁is ▁present ▁in ▁the ▁case ▁of ▁complex ▁algebraic ▁vari eties . ▁It ▁received ▁little ▁attention ▁before ▁H odge ▁presented ▁it ▁in ▁an ▁address ▁during ▁the ▁ 1 9 5 0 ▁International ▁Congress ▁of ▁Mathemat icians , ▁held ▁in ▁Cambridge , ▁Massachusetts . ▁The ▁H odge ▁conject ure ▁is ▁one ▁of ▁the ▁Clay ▁Mathemat ics ▁Institute ' s ▁Mill en ni um ▁Prize ▁Problem s , ▁with ▁a ▁prize ▁of ▁$ 1 , 0 0 0 , 0 0 0 ▁for ▁who ever ▁can ▁prove ▁or ▁dis pro ve ▁the ▁H odge ▁conject ure . ▁ ▁Mot
iv ation ▁ ▁Let ▁X ▁be ▁a ▁compact ▁complex ▁manifold ▁of ▁complex ▁dimension ▁n . ▁Then ▁X ▁is ▁an ▁orient able ▁smooth ▁manifold ▁of ▁real ▁dimension ▁, ▁so ▁its ▁coh om ology ▁groups ▁lie ▁in ▁degrees ▁zero ▁through ▁. ▁ ▁Assume ▁X ▁is ▁a ▁K äh ler ▁manifold , ▁so ▁that ▁there ▁is ▁a ▁decomposition ▁on ▁its ▁coh om ology ▁with ▁complex ▁coefficients ▁ ▁where ▁ ▁is ▁the ▁subgroup ▁of ▁coh om ology ▁classes ▁which ▁are ▁represented ▁by ▁harm onic ▁forms ▁of ▁type ▁. ▁That ▁is , ▁these ▁are ▁the ▁coh om ology ▁classes ▁represented ▁by ▁differential ▁forms ▁which , ▁in ▁some ▁choice ▁of ▁local ▁coordinates ▁, ▁can ▁be ▁written ▁as ▁a ▁harm onic ▁function ▁times ▁ ▁( See ▁H odge ▁theory ▁for ▁more ▁details .) ▁ ▁T aking ▁w edge ▁products ▁of ▁these ▁harm onic ▁represent atives ▁corresponds ▁to ▁the ▁cup ▁product ▁in ▁coh om ology , ▁so ▁the ▁cup ▁product ▁is ▁compatible ▁with ▁the ▁H odge ▁decomposition : ▁ ▁Since ▁X ▁is ▁a ▁compact ▁orient ed ▁manifold , ▁X ▁has ▁a ▁fundamental ▁class . ▁ ▁Let ▁Z ▁be ▁a ▁complex ▁sub man if old ▁of ▁X ▁of ▁dimension ▁k , ▁and ▁let ▁ ▁be ▁the ▁inclusion ▁map . ▁ ▁Cho ose ▁a ▁differential ▁form ▁ ▁of ▁type ▁. ▁ ▁We ▁can ▁integrate ▁ ▁over ▁Z : ▁ ▁To ▁evaluate ▁this ▁integral , ▁choose ▁a ▁point ▁of ▁Z ▁and ▁call ▁it ▁ 0 . ▁ ▁Ar ound ▁ 0 , ▁we ▁can ▁choose ▁local ▁coordinates ▁ ▁on ▁X ▁such ▁that ▁Z ▁is
▁just ▁. ▁ ▁If ▁, ▁then ▁ ▁must ▁contain ▁some ▁ ▁where ▁ ▁pull s ▁back ▁to ▁zero ▁on ▁Z . ▁ ▁The ▁same ▁is ▁true ▁if ▁. ▁ ▁Con sequently , ▁this ▁integral ▁is ▁zero ▁if ▁. ▁ ▁More ▁abstract ly , ▁the ▁integral ▁can ▁be ▁written ▁as ▁the ▁cap ▁product ▁of ▁the ▁hom ology ▁class ▁of ▁Z ▁and ▁the ▁coh om ology ▁class ▁represented ▁by ▁. ▁ ▁By ▁Po inc ar é ▁du ality , ▁the ▁hom ology ▁class ▁of ▁Z ▁is ▁dual ▁to ▁a ▁coh om ology ▁class ▁which ▁we ▁will ▁call ▁[ Z ], ▁and ▁the ▁cap ▁product ▁can ▁be ▁computed ▁by ▁taking ▁the ▁cup ▁product ▁of ▁[ Z ] ▁and ▁α ▁and ▁c apping ▁with ▁the ▁fundamental ▁class ▁of ▁X . ▁ ▁Because ▁[ Z ] ▁is ▁a ▁coh om ology ▁class , ▁it ▁has ▁a ▁H odge ▁decomposition . ▁ ▁By ▁the ▁computation ▁we ▁did ▁above , ▁if ▁we ▁cup ▁this ▁class ▁with ▁any ▁class ▁of ▁type ▁, ▁then ▁we ▁get ▁zero . ▁ ▁Because ▁, ▁we ▁conclude ▁that ▁[ Z ] ▁must ▁lie ▁in ▁. ▁ ▁Lo os ely ▁speaking , ▁the ▁H odge ▁conject ure ▁asks : ▁ ▁Which ▁coh om ology ▁classes ▁in ▁ ▁come ▁from ▁complex ▁sub vari eties ▁Z ? ▁ ▁Stat ement ▁of ▁the ▁H odge ▁conject ure ▁ ▁Let : ▁ ▁We ▁call ▁this ▁the ▁group ▁of ▁H odge ▁classes ▁of ▁degree ▁ 2 k ▁on ▁X . ▁ ▁The ▁modern ▁statement ▁of ▁the ▁H odge ▁conject ure ▁is :
▁ ▁H odge ▁conject ure . ▁ ▁Let ▁X ▁be ▁a ▁non - sing ular ▁complex ▁project ive ▁manifold . ▁ ▁Then ▁every ▁H odge ▁class ▁on ▁X ▁is ▁a ▁linear ▁combination ▁with ▁rational ▁coefficients ▁of ▁the ▁coh om ology ▁classes ▁of ▁complex ▁sub vari eties ▁of ▁X . ▁ ▁A ▁project ive ▁complex ▁manifold ▁is ▁a ▁complex ▁manifold ▁which ▁can ▁be ▁embedded ▁in ▁complex ▁project ive ▁space . ▁ ▁Because ▁project ive ▁space ▁car ries ▁a ▁K äh ler ▁metric , ▁the ▁F ub ini – St ud y ▁metric , ▁such ▁a ▁manifold ▁is ▁always ▁a ▁K äh ler ▁manifold . ▁ ▁By ▁Ch ow ' s ▁theorem , ▁a ▁project ive ▁complex ▁manifold ▁is ▁also ▁a ▁smooth ▁project ive ▁algebraic ▁variety , ▁that ▁is , ▁it ▁is ▁the ▁zero ▁set ▁of ▁a ▁collection ▁of ▁hom ogeneous ▁polynomials . ▁ ▁Reform ulation ▁in ▁terms ▁of ▁algebraic ▁cycles ▁ ▁Another ▁way ▁of ▁phr asing ▁the ▁H odge ▁conject ure ▁involves ▁the ▁idea ▁of ▁an ▁algebraic ▁cycle . ▁ ▁An ▁algebraic ▁cycle ▁on ▁X ▁is ▁a ▁formal ▁combination ▁of ▁sub vari eties ▁of ▁X ; ▁that ▁is , ▁it ▁is ▁something ▁of ▁the ▁form : ▁▁▁▁ ▁The ▁coefficients ▁are ▁usually ▁taken ▁to ▁be ▁integral ▁or ▁rational . ▁ ▁We ▁define ▁the ▁coh om ology ▁class ▁of ▁an ▁algebraic ▁cycle ▁to ▁be ▁the ▁sum ▁of ▁the ▁coh om ology ▁classes ▁of ▁its ▁components . ▁This ▁is ▁an ▁example ▁of ▁the ▁cycle ▁class ▁map ▁of ▁de ▁R ham ▁coh om ology , ▁see ▁We il
▁coh om ology . ▁ ▁For ▁example , ▁the ▁coh om ology ▁class ▁of ▁the ▁above ▁cycle ▁would ▁be : ▁ ▁Such ▁a ▁coh om ology ▁class ▁is ▁called ▁algebraic . ▁ ▁With ▁this ▁notation , ▁the ▁H odge ▁conject ure ▁becomes : ▁ ▁Let ▁X ▁be ▁a ▁project ive ▁complex ▁manifold . ▁ ▁Then ▁every ▁H odge ▁class ▁on ▁X ▁is ▁algebraic . ▁ ▁The ▁assumption ▁in ▁the ▁H odge ▁conject ure ▁that ▁X ▁be ▁algebraic ▁( project ive ▁complex ▁manifold ) ▁cannot ▁be ▁weak ened . ▁In ▁ 1 9 7 7 ▁Steven ▁Z ucker ▁showed ▁that ▁it ▁is ▁possible ▁to ▁construct ▁a ▁counter example ▁to ▁the ▁H odge ▁conject ure ▁as ▁complex ▁t ori ▁with ▁analyt ic ▁rational ▁coh om ology ▁of ▁type ▁, ▁which ▁is ▁not ▁project ive ▁algebraic . ▁( see ▁append ix ▁B ▁of ▁) ▁ ▁Kn own ▁cases ▁of ▁the ▁H odge ▁conject ure ▁ ▁Low ▁dimension ▁and ▁cod im ension ▁ ▁The ▁first ▁result ▁on ▁the ▁H odge ▁conject ure ▁is ▁due ▁to ▁. ▁ ▁In ▁fact , ▁it ▁pred ates ▁the ▁conject ure ▁and ▁provided ▁some ▁of ▁H odge ' s ▁motiv ation . ▁ ▁Theorem ▁( L ef sch etz ▁theorem ▁on ▁( 1 , 1 )- classes ) ▁ ▁Any ▁element ▁of ▁ ▁is ▁the ▁coh om ology ▁class ▁of ▁a ▁divis or ▁on ▁. ▁ ▁In ▁particular , ▁the ▁H odge ▁conject ure ▁is ▁true ▁for ▁. ▁ ▁A ▁very ▁quick ▁proof ▁can ▁be ▁given ▁using ▁she af ▁coh om ology
▁and ▁the ▁exponential ▁exact ▁sequence . ▁ ▁( The ▁coh om ology ▁class ▁of ▁a ▁divis or ▁turns ▁out ▁to ▁equal ▁to ▁its ▁first ▁Ch ern ▁class .) ▁ ▁Le f sch etz ' s ▁original ▁proof ▁proceeded ▁by ▁normal ▁functions , ▁which ▁were ▁introduced ▁by ▁Henri ▁Po inc ar é . ▁ ▁However , ▁the ▁Griff ith s ▁trans vers ality ▁theorem ▁shows ▁that ▁this ▁approach ▁cannot ▁prove ▁the ▁H odge ▁conject ure ▁for ▁higher ▁cod im ensional ▁sub vari eties . ▁ ▁By ▁the ▁Hard ▁Le f sch etz ▁theorem , ▁one ▁can ▁prove : ▁ ▁Theorem . ▁ ▁If ▁the ▁H odge ▁conject ure ▁holds ▁for ▁H odge ▁classes ▁of ▁degree ▁, ▁for ▁all ▁, ▁then ▁the ▁H odge ▁conject ure ▁holds ▁for ▁H odge ▁classes ▁of ▁degree ▁. ▁ ▁Com bin ing ▁the ▁above ▁two ▁the or ems ▁implies ▁that ▁H odge ▁conject ure ▁is ▁true ▁for ▁H odge ▁classes ▁of ▁degree ▁. ▁ ▁This ▁proves ▁the ▁H odge ▁conject ure ▁when ▁ ▁has ▁dimension ▁at ▁most ▁three . ▁ ▁The ▁Le f sch etz ▁theorem ▁on ▁( 1 , 1 )- classes ▁also ▁implies ▁that ▁if ▁all ▁H odge ▁classes ▁are ▁generated ▁by ▁the ▁H odge ▁classes ▁of ▁divis ors , ▁then ▁the ▁H odge ▁conject ure ▁is ▁true : ▁ ▁Cor ollary . ▁ ▁If ▁the ▁algebra ▁ ▁is ▁generated ▁by ▁, ▁then ▁the ▁H odge ▁conject ure ▁holds ▁for ▁. ▁ ▁Hyp ers ur faces ▁ ▁By ▁the ▁strong ▁and ▁weak ▁Le f sch etz ▁theorem
, ▁the ▁only ▁non - t rivial ▁part ▁of ▁the ▁H odge ▁conject ure ▁for ▁hyp ers ur faces ▁is ▁the ▁degree ▁m ▁part ▁( i . e ., ▁the ▁middle ▁coh om ology ) ▁of ▁a ▁ 2 m - dimensional ▁hyp ers ur face ▁. ▁If ▁the ▁degree ▁d ▁is ▁ 2 , ▁i . e ., ▁X ▁is ▁a ▁quad ric , ▁the ▁H odge ▁conject ure ▁holds ▁for ▁all ▁m . ▁For ▁, ▁i . e ., ▁four f olds , ▁the ▁H odge ▁conject ure ▁is ▁known ▁for ▁. ▁ ▁Ab elian ▁vari eties ▁ ▁For ▁most ▁ab elian ▁vari eties , ▁the ▁algebra ▁H dg *( X ) ▁is ▁generated ▁in ▁degree ▁one , ▁so ▁the ▁H odge ▁conject ure ▁holds . ▁ ▁In ▁particular , ▁the ▁H odge ▁conject ure ▁holds ▁for ▁sufficiently ▁general ▁ab elian ▁vari eties , ▁for ▁products ▁of ▁elli ptic ▁curves , ▁and ▁for ▁simple ▁ab elian ▁vari eties ▁of ▁prime ▁dimension . ▁ ▁However , ▁ ▁constructed ▁an ▁example ▁of ▁an ▁ab elian ▁variety ▁where ▁H dg 2 ( X ) ▁is ▁not ▁generated ▁by ▁products ▁of ▁divis or ▁classes . ▁▁ ▁generalized ▁this ▁example ▁by ▁showing ▁that ▁whenever ▁the ▁variety ▁has ▁complex ▁multiplication ▁by ▁an ▁imag inary ▁quadratic ▁field , ▁then ▁H dg 2 ( X ) ▁is ▁not ▁generated ▁by ▁products ▁of ▁divis or ▁classes . ▁▁ ▁proved ▁that ▁in ▁dimension ▁less ▁than ▁ 5 , ▁either ▁H dg *( X ) ▁is ▁generated ▁in ▁degree ▁one , ▁or
▁the ▁variety ▁has ▁complex ▁multiplication ▁by ▁an ▁imag inary ▁quadratic ▁field . ▁ ▁In ▁the ▁latter ▁case , ▁the ▁H odge ▁conject ure ▁is ▁only ▁known ▁in ▁special ▁cases . ▁ ▁General izations ▁ ▁The ▁integral ▁H odge ▁conject ure ▁ ▁H odge ' s ▁original ▁conject ure ▁was : ▁ ▁Integr al ▁H odge ▁conject ure . ▁ ▁Let ▁ ▁be ▁a ▁project ive ▁complex ▁manifold . ▁ ▁Then ▁every ▁coh om ology ▁class ▁in ▁ ▁is ▁the ▁coh om ology ▁class ▁of ▁an ▁algebraic ▁cycle ▁with ▁integral ▁coefficients ▁on ▁▁ ▁This ▁is ▁now ▁known ▁to ▁be ▁false . ▁ ▁The ▁first ▁counter example ▁was ▁constructed ▁by ▁. ▁ ▁Using ▁K - theory , ▁they ▁constructed ▁an ▁example ▁of ▁a ▁t ors ion ▁coh om ology ▁class — that ▁is , ▁a ▁coh om ology ▁class ▁ ▁such ▁that ▁ ▁for ▁some ▁positive ▁integer ▁— which ▁is ▁not ▁the ▁class ▁of ▁an ▁algebraic ▁cycle . ▁ ▁Such ▁a ▁class ▁is ▁necessarily ▁a ▁H odge ▁class . ▁▁ ▁re inter pre ted ▁their ▁result ▁in ▁the ▁framework ▁of ▁c ob ord ism ▁and ▁found ▁many ▁examples ▁of ▁such ▁classes . ▁ ▁The ▁simplest ▁adjust ment ▁of ▁the ▁integral ▁H odge ▁conject ure ▁is : ▁ ▁Integr al ▁H odge ▁conject ure ▁mod ulo ▁t ors ion . ▁ ▁Let ▁ ▁be ▁a ▁project ive ▁complex ▁manifold . ▁ ▁Then ▁every ▁coh om ology ▁class ▁in ▁▁ ▁is ▁the ▁sum ▁of ▁a ▁t ors ion ▁class ▁and ▁the ▁coh om ology ▁class ▁of ▁an
▁algebraic ▁cycle ▁with ▁integral ▁coefficients ▁on ▁▁ ▁Equ ival ently , ▁after ▁div iding ▁ ▁by ▁t ors ion ▁classes , ▁every ▁class ▁is ▁the ▁image ▁of ▁the ▁coh om ology ▁class ▁of ▁an ▁integral ▁algebraic ▁cycle . ▁ ▁This ▁is ▁also ▁false . ▁▁ ▁found ▁an ▁example ▁of ▁a ▁H odge ▁class ▁ ▁which ▁is ▁not ▁algebraic , ▁but ▁which ▁has ▁an ▁integral ▁multiple ▁which ▁is ▁algebraic . ▁▁ ▁have ▁shown ▁that ▁in ▁order ▁to ▁obtain ▁a ▁correct ▁integral ▁H odge ▁conject ure , ▁one ▁needs ▁to ▁replace ▁Ch ow ▁groups , ▁which ▁can ▁also ▁be ▁expressed ▁as ▁motiv ic ▁coh om ology ▁groups , ▁by ▁a ▁variant ▁known ▁as ▁ét ale ▁( or ▁L ichten baum ) ▁motiv ic ▁coh om ology . ▁They ▁show ▁that ▁the ▁rational ▁H odge ▁conject ure ▁is ▁equivalent ▁to ▁an ▁integral ▁H odge ▁conject ure ▁for ▁this ▁modified ▁motiv ic ▁coh om ology . ▁ ▁The ▁H odge ▁conject ure ▁for ▁K äh ler ▁vari eties ▁ ▁A ▁natural ▁general ization ▁of ▁the ▁H odge ▁conject ure ▁would ▁ask : ▁ ▁H odge ▁conject ure ▁for ▁K äh ler ▁vari eties , ▁na ive ▁version . ▁ ▁Let ▁X ▁be ▁a ▁complex ▁K äh ler ▁manifold . ▁ ▁Then ▁every ▁H odge ▁class ▁on ▁X ▁is ▁a ▁linear ▁combination ▁with ▁rational ▁coefficients ▁of ▁the ▁coh om ology ▁classes ▁of ▁complex ▁sub vari eties ▁of ▁X . ▁ ▁This ▁is ▁too ▁optim istic , ▁because ▁there ▁are ▁not ▁enough ▁sub vari eties ▁to ▁make ▁this ▁work
. ▁ ▁A ▁possible ▁substitute ▁is ▁to ▁ask ▁instead ▁one ▁of ▁the ▁two ▁following ▁questions : ▁ ▁H odge ▁conject ure ▁for ▁K äh ler ▁vari eties , ▁vector ▁bundle ▁version . ▁ ▁Let ▁X ▁be ▁a ▁complex ▁K äh ler ▁manifold . ▁ ▁Then ▁every ▁H odge ▁class ▁on ▁X ▁is ▁a ▁linear ▁combination ▁with ▁rational ▁coefficients ▁of ▁Ch ern ▁classes ▁of ▁vector ▁bund les ▁on ▁X . ▁H odge ▁conject ure ▁for ▁K äh ler ▁vari eties , ▁coh er ent ▁she af ▁version . ▁ ▁Let ▁X ▁be ▁a ▁complex ▁K äh ler ▁manifold . ▁ ▁Then ▁every ▁H odge ▁class ▁on ▁X ▁is ▁a ▁linear ▁combination ▁with ▁rational ▁coefficients ▁of ▁Ch ern ▁classes ▁of ▁coh er ent ▁she aves ▁on ▁X . ▁▁ ▁proved ▁that ▁the ▁Ch ern ▁classes ▁of ▁coh er ent ▁she aves ▁give ▁strictly ▁more ▁H odge ▁classes ▁than ▁the ▁Ch ern ▁classes ▁of ▁vector ▁bund les ▁and ▁that ▁the ▁Ch ern ▁classes ▁of ▁coh er ent ▁she aves ▁are ▁ins u fficient ▁to ▁generate ▁all ▁the ▁H odge ▁classes . ▁ ▁Con sequently , ▁the ▁only ▁known ▁form ulations ▁of ▁the ▁H odge ▁conject ure ▁for ▁K äh ler ▁vari eties ▁are ▁false . ▁ ▁The ▁generalized ▁H odge ▁conject ure ▁ ▁H odge ▁made ▁an ▁additional , ▁stronger ▁conject ure ▁than ▁the ▁integral ▁H odge ▁conject ure . ▁ ▁Say ▁that ▁a ▁coh om ology ▁class ▁on ▁X ▁is ▁of ▁co - level ▁c ▁( con iveau ▁c ) ▁if ▁it ▁is ▁the ▁push
forward ▁of ▁a ▁coh om ology ▁class ▁on ▁a ▁c - cod im ensional ▁sub vari ety ▁of ▁X . ▁ ▁The ▁coh om ology ▁classes ▁of ▁co - level ▁at ▁least ▁c ▁filter ▁the ▁coh om ology ▁of ▁X , ▁and ▁it ▁is ▁easy ▁to ▁see ▁that ▁the ▁c th ▁step ▁of ▁the ▁fil tr ation ▁N H ( X , ▁Z ) ▁satisfies ▁ ▁H odge ' s ▁original ▁statement ▁was : ▁General ized ▁H odge ▁conject ure , ▁H odge ' s ▁version . ▁▁▁ ▁observed ▁that ▁this ▁cannot ▁be ▁true , ▁even ▁with ▁rational ▁coefficients , ▁because ▁the ▁right - hand ▁side ▁is ▁not ▁always ▁a ▁H odge ▁structure . ▁ ▁His ▁corrected ▁form ▁of ▁the ▁H odge ▁conject ure ▁is : ▁General ized ▁H odge ▁conject ure . ▁ ▁N H ( X , ▁Q ) ▁is ▁the ▁largest ▁sub - H odge ▁structure ▁of ▁H ( X , ▁Z ) ▁contained ▁in ▁ ▁This ▁version ▁is ▁open . ▁ ▁Al gebra icity ▁of ▁H odge ▁lo ci ▁ ▁The ▁strong est ▁evidence ▁in ▁favor ▁of ▁the ▁H odge ▁conject ure ▁is ▁the ▁algebraic ity ▁result ▁of ▁. ▁ ▁Suppose ▁that ▁we ▁vary ▁the ▁complex ▁structure ▁of ▁X ▁over ▁a ▁simply ▁connected ▁base . ▁ ▁Then ▁the ▁topological ▁coh om ology ▁of ▁X ▁does ▁not ▁change , ▁but ▁the ▁H odge ▁decomposition ▁does ▁change . ▁ ▁It ▁is ▁known ▁that ▁if ▁the ▁H odge ▁conject ure ▁is ▁true , ▁then ▁the ▁loc us ▁of ▁all ▁points ▁on ▁the
▁base ▁where ▁the ▁coh om ology ▁of ▁a ▁fi ber ▁is ▁a ▁H odge ▁class ▁is ▁in ▁fact ▁an ▁algebraic ▁subset , ▁that ▁is , ▁it ▁is ▁cut ▁out ▁by ▁polynomial ▁equations . ▁ ▁C att ani , ▁Del igne ▁& ▁Kap lan ▁( 1 9 9 5 ) ▁proved ▁that ▁this ▁is ▁always ▁true , ▁without ▁assuming ▁the ▁H odge ▁conject ure . ▁ ▁See ▁also ▁ ▁T ate ▁conject ure ▁H odge ▁theory ▁H odge ▁structure ▁Period ▁mapping ▁ ▁References ▁▁▁ ▁Av ailable ▁from ▁the ▁Hir z ebru ch ▁collection ▁( pdf ). ▁. ▁. ▁. ▁. ▁ ▁Re print ed ▁in ▁. ▁. ▁. ▁ ▁. ▁. ▁ ▁External ▁links ▁▁▁▁▁ ▁Popular ▁lecture ▁on ▁H odge ▁Con ject ure ▁by ▁Dan ▁Fre ed ▁( Univers ity ▁of ▁Texas ) ▁( Real ▁Video ) ▁▁ ▁( Sl ides ) ▁▁▁ ▁B urt ▁Tot aro , ▁Why ▁believe ▁the ▁H odge ▁Con ject ure ? ▁ ▁Cla ire ▁Vo is in , ▁H odge ▁lo ci ▁ ▁Category : Hom ology ▁theory ▁Category : H odge ▁theory ▁Category : Con ject ures ▁Category : Mill en ni um ▁Prize ▁Problem s ▁Category : Al gebra ic ▁geometry <0x0A> </s> ▁Mak sim ▁Mo ise ye v ▁( ; ▁; ▁born ▁ 8 ▁February ▁ 1 9 8 7 ) ▁is ▁a ▁retired ▁Bel arus ian ▁professional ▁footballer . ▁His ▁latest ▁club ▁was ▁V ite b sk . ▁ ▁External ▁links ▁ ▁Profile ▁at ▁teams . by ▁ ▁Category : 1 9 8 7
▁birth s ▁Category : L iving ▁people ▁Category : Bel arus ian ▁football ers ▁Category : Associ ation ▁football ▁goal keep ers ▁Category : FC ▁Bel sh ina ▁Bob ru isk ▁players ▁Category : FC ▁V ite b sk ▁players ▁Category : FC ▁S lav ia ▁Mo zy r ▁players ▁Category : FC ▁Sm org on ▁players <0x0A> </s> ▁Fern and ▁H ib bert ▁( 3 ▁October ▁ 1 8 7 3 ▁- ▁ 1 9 2 8 ) ▁was ▁a ▁H ait ian ▁novel ist ▁and ▁is ▁one ▁of ▁the ▁most ▁widely ▁read ▁H ait ian ▁authors . ▁He ▁is ▁known ▁for ▁his ▁sat ir ic ▁and ▁hum orous ▁nov els . ▁ ▁Born ▁in ▁Mi rag o â ne , ▁H ib bert ▁was ▁educated ▁in ▁Paris , ▁France , ▁where ▁he ▁studied ▁law ▁and ▁political ▁science . ▁After ▁returning ▁to ▁H ait i ▁in ▁ 1 8 9 4 , ▁he ▁worked ▁as ▁a ▁teacher , ▁politician , ▁and ▁diplom at . ▁Al ong ▁with ▁his ▁contempor aries ▁Fr éd éric ▁Marcel in ▁and ▁Justin ▁L h ér isson ▁he ▁worked ▁to ▁establish ▁a ▁uniqu ely ▁H ait ian ▁novel . ▁His ▁ 1 9 0 8 ▁nov ella ▁Rom ulus ▁was ▁translated ▁into ▁English ▁in ▁ 2 0 1 3 . ▁ ▁Selected ▁works ▁▁▁ ▁Sé na ▁( 1 9 0 5 ) ▁ ▁Les ▁Th azar ▁( 1 9 0 7 ) ▁ ▁Rom ulus ▁( 1 9 0 8 ) ▁ ▁Mas ques ▁et ▁Vis ages ▁(
1 9 1 0 ) ▁ ▁Man us crit ▁de ▁mon ▁Am i ▁( 1 9 2 3 ) ▁ ▁Sim ul ac res ▁( 1 9 2 3 ) ▁ ▁Rom ulus . ▁Trans l ated ▁into ▁English . ▁A yl mer , ▁Q C : ▁Deux ▁Vo ili ers , ▁ 2 0 1 3 . ▁▁ ▁P ret enders . ▁Les ▁Sim ul ac res ▁translated ▁into ▁English . ▁A yl mer , ▁Q C : ▁Deux ▁Vo ili ers , ▁ 2 0 1 8 . ▁ ▁Notes ▁ ▁References ▁▁▁▁ ▁Category : 1 8 7 3 ▁birth s ▁Category : 1 9 2 8 ▁death s ▁Category : H ait ian ▁diplom ats ▁Category : H ait ian ▁educ ators ▁Category : H ait ian ▁male ▁novel ists ▁Category : H ait ian ▁polit icians ▁Category : Pe ople ▁from ▁Mi rag o â ne ▁Category : 2 0 th - century ▁H ait ian ▁novel ists ▁Category : 2 0 th - century ▁male ▁writers <0x0A> </s> ▁Cal li otrop is ▁o str ides l ith os ▁is ▁a ▁species ▁of ▁sea ▁sn ail , ▁a ▁marine ▁g ast rop od ▁m oll usk ▁in ▁the ▁family ▁Eu cy cl idae . ▁ ▁Description ▁The ▁size ▁of ▁the ▁shell ▁var ies ▁between ▁ 3   mm ▁and ▁ 6   mm . ▁ ▁Distribution ▁C . ▁o str ides l ith os ▁can ▁be ▁found ▁in ▁the ▁waters ▁surrounding ▁F iji . ▁and ▁the ▁Sol omon ▁Islands
. ▁ ▁References ▁▁ ▁Vil vens ▁C . ▁( 2 0 0 7 ) ▁New ▁records ▁and ▁new ▁species ▁of ▁Cal li otrop is ▁from ▁Ind o - P ac ific . ▁Nov ape x ▁ 8 ▁( H ors ▁S érie ▁ 5 ): ▁ 1 – 7 2 ▁ ▁External ▁links ▁▁▁ ▁o str ides l ith os ▁Category : G ast rop ods ▁described ▁in ▁ 2 0 0 7 <0x0A> </s> ▁Bernard ▁Hey berger ▁( born ▁ 1 9 5 4 ) ▁is ▁a ▁French ▁historian . ▁  He ▁special izes ▁in ▁the ▁history ▁of ▁Middle ▁Eastern ▁Christian ity ▁from ▁the ▁six teenth ▁century ▁to ▁the ▁present ; ▁modern ▁Catholic ism ▁and ▁Catholic ▁miss ions ; ▁and ▁the ▁Arab ▁provinces ▁of ▁the ▁late ▁Ott oman ▁Empire , ▁especially ▁Sy ria . ▁  He ▁is ▁a ▁Director ▁of ▁Studies ▁at ▁the ▁É cole ▁des ▁Haut es ▁Ét udes ▁en ▁Sciences ▁Social es ▁( E HE SS ) ▁in ▁Paris , ▁and ▁simultaneously ▁holds ▁a ▁chair ▁as ▁Director ▁of ▁Studies ▁in ▁the ▁Relig ious ▁Sciences ▁section ▁at ▁the ▁É cole ▁Pr atique ▁des ▁Haut es ▁Ét udes ▁( EP HE ), ▁also ▁in ▁Paris . ▁ ▁Early ▁life ▁and ▁family ▁ ▁Hey berger ▁was ▁born ▁in ▁Saint - H ipp oly te , ▁a ▁village ▁in ▁the ▁Haut - R hin ▁department ▁in ▁Als ace ▁( n ort he astern ▁France ), ▁to ▁a ▁family ▁of ▁small ▁far mers ▁and ▁win em akers . ▁His ▁parents ▁were ▁Antoine ▁Hey berger ▁and
▁Jean ne ▁Bog ner . ▁  B ern ard ▁Hey berger ▁grew ▁up ▁speaking ▁Als at ian ▁A lem ann isch , ▁a ▁German ic ▁language , ▁as ▁his ▁native ▁tongue . ▁He ▁is ▁married ▁to ▁Co lette ▁Thom mer et ▁and ▁has ▁two ▁sons . ▁ ▁Education ▁ ▁After ▁gradu ating ▁from ▁the ▁l yc ée ▁of ▁Rib eau v illé ▁in ▁ 1 9 7 2 , ▁Bernard ▁Hey berger ▁studied ▁history ▁at ▁the ▁University ▁of ▁Str as bourg . ▁He ▁received ▁the ▁C AP ES ▁( Cert ific at ▁d ' A pt itude ▁au ▁Professor at ▁de ▁l ' En se ign ement ▁du ▁Second ▁D egr é ) ▁in ▁History ▁and ▁Geography ▁in ▁ 1 9 7 9 , ▁and ▁achieved ▁the ▁rank ▁of ▁agr ég ation ▁in ▁history ▁in ▁ 1 9 8 0 . ▁From ▁ 1 9 7 9 ▁to ▁ 1 9 8 9 , ▁he ▁taught ▁in ▁various ▁secondary ▁schools . ▁  He ▁spent ▁the ▁ 1 9 8 9 - 9 0 ▁year ▁in ▁Dam asc us , ▁studying ▁Arab ic ▁with ▁a ▁grant ▁from ▁the ▁Institut ▁français ▁d ’ ét udes ▁arab es . ▁  From ▁ 1 9 9 0 ▁to ▁ 1 9 9 3 , ▁he ▁was ▁a ▁research ▁associate ▁in ▁the ▁É cole ▁Fran çaise ▁de ▁Rome . ▁He ▁completed ▁his ▁Ph D ▁dis sert ation , ▁entitled , ▁“ Les ▁Chr ét iens ▁du ▁Pro che - Ori ent ▁au ▁temps ▁de ▁la ▁Ré form e
▁c athol ique ”, ▁under ▁the ▁super vision ▁of ▁the ▁late ▁Louis ▁Ch ât el lier ▁in ▁Nancy ▁in ▁ 1 9 9 3 . ▁ ▁Career ▁and ▁publications ▁ ▁Hey berger ▁published ▁his ▁Ph D ▁dis sert ation ▁as ▁a ▁book ▁in ▁ 1 9 9 4 ; ▁a ▁second ▁edition ▁appeared ▁in ▁ 2 0 1 4 . ▁Ent itled , ▁Les ▁Chr ét iens ▁du ▁Pro che - Ori ent ▁au ▁temps ▁de ▁la ▁Ré form e ▁C athol ique ▁( S y rie , ▁Lib an , ▁Palest ine , ▁XVII e - XV III e ▁siècle ) ▁( “ Christ ians ▁of ▁the ▁Near ▁East ▁in ▁the ▁Era ▁of ▁Catholic ▁Reform ▁[ S y ria , ▁Leb anon , ▁Palest ine , ▁ 1 7 th - 1 8 th Cent uries ] ” ), ▁this ▁book ▁appeared ▁from ▁the ▁press ▁of ▁the ▁É cole ▁Fran çaise ▁de ▁Rome . ▁  F oc using ▁especially ▁on ▁the ▁Sy rian ▁city ▁of ▁Ale ppo , ▁and ▁drawing ▁heavily ▁upon ▁records ▁from ▁the ▁Pro pag anda ▁F ide ▁( the ▁Roman ▁Catholic ▁church ’ s ▁mission ary ▁ag ency ), ▁the ▁book ▁cons iders ▁the ▁historical ▁anth rop ology ▁of ▁Middle ▁Eastern ▁Christian ▁communities ▁in ▁a ▁period ▁when ▁Jes uit ▁and ▁other ▁Catholic ▁mission aries ▁were ▁active ▁among ▁them . ▁  The ▁book ▁cons iders ▁how ▁Middle ▁Eastern ▁Christians ’ ▁material , ▁social , ▁and ▁religious ▁lives ▁changed , ▁and ▁also ▁how ▁they ▁interact ed ▁with ▁Ott oman ▁state ▁authorities
▁and ▁with ▁Muslim ▁communities ▁around ▁them . ▁  Les ▁Chr ét iens ▁du ▁Pro che - Ori ent ▁au ▁temps ▁de ▁la ▁Ré form e ▁C athol ique ▁makes ▁an ▁important ▁contribution ▁to ▁the ▁study ▁of ▁conf essional ization ▁and ▁sect arian ism ▁in ▁the ▁Ott oman ▁Empire . ▁It ▁pays ▁particular ▁attention ▁to ▁the ▁impact ▁of ▁Catholic ▁mission aries ▁on ▁gender ▁dynamics ▁within ▁Arab ▁Christian ▁soci eties , ▁while ▁pointing ▁to ▁what ▁Hey berger ▁has ▁called ▁the ▁“ f em in ization ” ▁of ▁Middle ▁Eastern ▁Christian ity ▁through ▁the ▁assertion ▁of ▁female ▁dev otion . ▁ ▁Hey berger ▁published ▁a ▁second ▁book , ▁entitled , ▁H indi y ya ▁( 1 7 2 0 - 1 7 9 8 ): ▁myst ique ▁et ▁cr imin elle , ▁in ▁ 2 0 0 1 . ▁  This ▁book ▁is ▁a ▁bi ographical ▁study ▁of ▁the ▁eigh teenth - century ▁Mar on ite ▁Christian ▁myst ic ▁and ▁mem oir ist , ▁H indi y ya ▁‘ U j ay mi , ▁who ▁claimed ▁to ▁experience ▁visit ations ▁from ▁Christ . ▁  Tra ined ▁by ▁the ▁Jes uits ▁in ▁Ale ppo , ▁Sy ria , ▁where ▁she ▁grew ▁up , ▁H indi y ya ▁founded ▁a ▁convent ▁in ▁Mount ▁Leb anon ▁but ▁became ▁m ired ▁in ▁controvers y ▁following ▁the ▁death s ▁of ▁two ▁n uns , ▁from ▁tort ure , ▁which ▁occurred ▁in ▁her ▁convent . ▁  H ey berger ’ s ▁book ▁appeared ▁in ▁English ▁translation ▁as ▁H indi y ya ,
▁Myst ic ▁and ▁C riminal ▁( 1 7 2 0 - 1 7 9 8 ): ▁A ▁Political ▁and ▁Relig ious ▁Cris is ▁in ▁Leb anon , ▁in ▁ 2 0 1 3 ; ▁an ▁Arab ic ▁edition ▁also ▁appeared ▁in ▁ 2 0 1 0 . ▁To ▁write ▁this ▁story ▁of ▁the ▁woman ▁who ▁had ▁an ▁“ ir on ▁will ” ▁for ▁her ▁times , ▁Hey berger ▁drew ▁deeply ▁upon ▁arch ives ▁in ▁the ▁Pro pag anda ▁F ide ▁in ▁Rome ▁– ▁including ▁records ▁of ▁in quis itions ▁sent ▁to ▁investigate ▁her ▁– ▁along ▁with ▁Mar on ite ▁sources ▁from ▁the ▁patri arch ate ▁in ▁B ki ri ki , ▁Leb anon . ▁ ▁Hey berger ▁also ▁wrote ▁two ▁books ▁respond ing ▁to ▁the ▁major ▁challeng es ▁that ▁have ▁faced ▁Middle ▁Eastern ▁Christian ▁communities ▁in ▁the ▁post - 9 / 1 1 ▁era , ▁especially ▁in ▁light ▁of ▁social ▁up he av als ▁caused ▁by ▁the ▁U . S . ▁invasion ▁of ▁Ira q ▁in ▁ 2 0 0 3 , ▁and , ▁from ▁ 2 0 1 1 , ▁the ▁Sy rian ▁Civil ▁War . ▁  Th ese ▁books ▁are ▁Les ▁Chr ét iens ▁au ▁Pro che - Ori ent : ▁De ▁la ▁comp ass ion ▁à ▁la ▁compr é h ension ▁( 2 0 1 3 ); ▁and ▁Les ▁Chr ét iens ▁d ’ Ori ent ▁( 2 0 1 7 ). ▁  The ▁latter ▁cons iders ▁the ▁long ▁and ▁ambigu ous ▁impact ▁of ▁European ▁– ▁and ▁especially ▁French ,
▁British , ▁and ▁Russian ▁– ▁inter vention ▁in ▁the ▁region ▁relative ▁to ▁Middle ▁Eastern ▁Christian ▁communities . ▁  This ▁book ▁takes ▁the ▁story ▁of ▁Middle ▁Eastern ▁Christians ▁into ▁the ▁early ▁twenty - first ▁century ▁while ▁comment ing ▁on ▁the ▁Islam ist ▁milit ant ▁movement ▁known ▁as ▁IS IS ▁or ▁Da ’ esh . ▁  ▁ ▁Hey berger ▁has ▁also ▁edited ▁or ▁co - ed ited ▁more ▁than ▁a ▁dozen ▁edited ▁volumes ▁on ▁Christians ▁and ▁Muslim s ▁in ▁the ▁Ott oman ▁world . ▁  He ▁has ▁appeared ▁frequently ▁as ▁a ▁media ▁comment ator ▁in ▁France ▁and ▁has ▁given ▁many ▁public ▁lect ures . ▁ ▁With ▁Paul ▁F ah mé - Th i é ry ▁and ▁J ér ôme ▁L entin , ▁Bernard ▁Hey berger ▁published ▁in ▁ 2 0 1 5 ▁a ▁French ▁translation ▁of ▁the ▁Arab ic ▁travel og ue ▁of ▁H anna ▁Di y ab ▁of ▁Ale ppo , ▁who ▁visited ▁Paris ▁in ▁ 1 7 0 8 - 9 . ▁ ▁In ▁Paris , ▁H anna ▁Di y ab ▁met ▁the ▁French ▁Oriental ist , ▁Antoine ▁Gall and , ▁who ▁was ▁collect ing ▁the ▁tales ▁that ▁he ▁later ▁published ▁as ▁the ▁One ▁Th ous and ▁and ▁One ▁N ights . ▁ ▁H anna ▁Di y ab ▁told ▁Gall and ▁some ▁of ▁stories ▁in ▁that ▁collection ▁which ▁have ▁since ▁become ▁most ▁famous : ▁he ▁was ▁the ▁sole ▁source ▁of ▁" Al add in ▁and ▁the ▁L amp " ▁and ▁" A lib aba ▁and ▁the ▁Fort y ▁Th ieves ". ▁ ▁Hey
berger ▁wrote ▁the ▁introduction ▁to ▁this ▁volume , ▁in ▁which ▁he ▁suggested ▁that ▁H anna ▁Di y ab ▁may ▁have ▁mode led ▁the ▁character ▁of ▁Al add in ▁on ▁himself , ▁or ▁vice ▁vers a ▁– ▁an ▁idea ▁which , ▁in ▁the ▁words ▁of ▁a ▁rev iewer , ▁" will ▁no ▁doubt ▁keep ▁a ▁generation ▁of ▁sch ol ars ▁very ▁busy ." ▁ ▁Hey berger ▁has ▁taught ▁or ▁super vised ▁students ▁at ▁several ▁institutions ▁over ▁the ▁course ▁of ▁his ▁career . ▁  Th ese ▁institutions ▁include ▁the ▁Univers ité ▁de ▁Ha ute - Al s ace ▁in ▁Mul house , ▁C N RS ▁Str as bourg , ▁Univers ité ▁François - R abel ais ▁in ▁T ours , ▁and , ▁in ▁Paris , ▁the ▁É cole ▁des ▁Haut es ▁Ét udes ▁en ▁Sciences ▁Social es ▁( E HE SS ), ▁and ▁the ▁É cole ▁Pr atique ▁des ▁Haut es ▁Ét udes ▁( EP HE ). ▁He ▁held ▁the ▁distinction ▁award ▁of ▁Senior ▁Fellow ▁of ▁the ▁Institut ▁Univers itaire ▁de ▁France ▁( 2 0 0 5 - 2 0 1 0 ), ▁and ▁served ▁as ▁Director ▁of ▁the ▁Institut ▁d ’ ét udes ▁de ▁l ’ I sl am ▁et ▁des ▁Soci étés ▁du ▁Monde ▁Mus ul man ▁( II S MM ) ▁at ▁E HE SS ▁from ▁ 2 0 1 0 ▁to ▁ 2 0 1 4 . ▁ ▁References ▁▁ ▁Category : L iving ▁people ▁Category : 1 9 5 4 ▁birth s ▁Category : Pe ople ▁from ▁Haut - R
hin ▁Category : F rench ▁histor ians <0x0A> </s> ▁Georg y ▁Aleks and rov ich ▁T ov ston og ov ▁( , ▁ ▁– ▁ 2 3 ▁May ▁ 1 9 8 9 ) ▁was ▁a ▁Russian ▁theatre ▁director . ▁ ▁He ▁was ▁the ▁leader ▁of ▁the ▁G ork y ▁Bol sh oi ▁D rama ▁Theater ▁which ▁was ▁renamed ▁after ▁him ▁in ▁ 1 9 9 2 . ▁ ▁Biography ▁ ▁Georg y ▁T ov ston og ov ▁was ▁born ▁in ▁T bil isi ▁( now ▁Georgia ), ▁or ▁in ▁St . ▁Petersburg ▁on ▁ 2 8 ▁September ▁ 1 9 1 5 , ▁to ▁a ▁Russian ▁noble ▁and ▁a ▁Georg ian ▁classical ▁singer ▁Tam ara ▁Pap it ash v ili . ▁ ▁In ▁ 1 9 3 8 ▁he ▁graduated ▁from ▁the ▁State ▁Institute ▁of ▁The atr ical ▁Art ▁in ▁Moscow . ▁From ▁ 1 9 3 8 ▁to ▁ 1 9 4 6 , ▁he ▁worked ▁as ▁a ▁director ▁in ▁the ▁T bil isi ▁G ri bo ed ov ▁Theater , ▁from ▁ 1 9 4 6 ▁to ▁ 1 9 4 9 ▁in ▁the ▁Central ▁Children ' s ▁Theater ▁in ▁Moscow , ▁from ▁ 1 9 5 0 ▁to ▁ 1 9 5 6 ▁in ▁the ▁L ening rad ▁Len in sky ▁K oms om ol ▁Theater , ▁and ▁from ▁ 1 9 5 6 ▁until ▁his ▁death ▁in ▁ 1 9 8 9 ▁in ▁the ▁Bol sh oi ▁Academ ic ▁G ork y ▁Theater . ▁He ▁was ▁a ▁professor
▁at ▁the ▁L ening rad ▁State ▁Institute ▁of ▁Theatre , ▁Music ▁and ▁Cinema ▁since ▁ 1 9 6 0 . ▁In ▁ 1 9 5 7 ▁he ▁became ▁a ▁People ' s ▁Art ist ▁of ▁the ▁USS R . ▁He ▁won ▁the ▁St alin ▁Prize ▁thr ice ▁( 1 9 5 0 , ▁ 1 9 5 2 , ▁ 1 9 5 6 ), ▁and ▁got ▁two ▁Or ders ▁of ▁Len in ▁and ▁many ▁other ▁Soviet ▁awards . ▁In ▁ 1 9 7 2 , ▁he ▁produced ▁the ▁book ▁The ▁Prof ession ▁of ▁the ▁Stage - Direct or , ▁which ▁is ▁the ▁best ▁example ▁of ▁his ▁direct ing ▁style , ▁and ▁in ▁which ▁he ▁shares ▁his ▁honest ▁opinions ▁on ▁Lee ▁Str as berg ▁and ▁Konst antin ▁Stanis lav sky . ▁On ▁May ▁ 2 3 , ▁ 1 9 8 9 ▁T ov ton og ov ▁died ▁of ▁heart ▁attack ▁in ▁his ▁car ▁returning ▁home ▁after ▁general ▁re he ars al ▁of ▁his ▁new ▁production ▁The ▁Vis it ▁by ▁Friedrich ▁D ür ren m att . ▁ ▁Main ▁works ▁▁ ▁T ov ston og ov ▁was ▁the ▁first ▁who ▁returned ▁F y odor ▁D osto ev sky ▁into ▁Soviet ▁the ater , ▁by ▁his ▁produ ctions ▁of ▁The ▁Ins ult ed ▁and ▁Hum ili ated ▁( 1 9 5 6 ▁in ▁L ening rad ▁Len in sky ▁K oms om ol ▁Theater ) ▁and ▁The ▁Id iot ▁( 1 9 5 7 ▁in ▁G ork y ▁Theater ). ▁ ▁Among ▁other ▁famous
▁performances ▁are : ▁ ▁The ▁Three ▁Sister s ▁( 1 9 6 5 ) ▁and ▁Uncle ▁V anya ▁( 1 9 8 2 ) ▁by ▁Anton ▁Che kh ov ▁ ▁Five ▁even ings ▁( 1 9 5 8 ) ▁and ▁My ▁big ▁sister ▁( 1 9 6 1 ) ▁by ▁Alexander ▁Vol od in ▁ ▁Ir k usk ▁Story ▁by ▁Ale k sey ▁Ar bu z ov ▁( 1 9 6 0 ) ▁ ▁Wit ▁Works ▁W oe ▁( 1 9 6 2 ) ▁by ▁Alexander ▁G ri bo ed ov ▁ ▁Barb ari ans ▁( 1 9 5 9 ) ▁and ▁M esch ane ▁( 1 9 6 6 ) ▁by ▁Maxim ▁G ork y ▁ ▁Once ▁again ▁about ▁Love ▁( 1 9 6 4 ) ▁by ▁Ed vard ▁Rad zin sky ▁ ▁Henry ▁IV , ▁Part ▁ 1 ▁( 1 9 6 9 ) ▁by ▁William ▁Shakespeare ▁ ▁Re visor ▁by ▁Nikol ay ▁G og ol ▁( 1 9 7 2 ) ▁ ▁Last ▁summer ▁in ▁Ch ul im sk ▁by ▁Alexander ▁V amp il ov ▁( 1 9 7 4 ) ▁ ▁Ener get ic ▁people ▁by ▁Vas ily ▁Sh uk sh in ▁( 1 9 7 4 ) ▁ ▁History ▁of ▁a ▁Hor se ▁after ▁Leo ▁Tol sto y ' s ▁K hol st omer ▁( 1 9 7 5 ) ▁ ▁He ▁was ▁also ▁responsible ▁for ▁producing ▁mass ▁spect acles . ▁ ▁During ▁his ▁prime ▁T ov ston og ov ▁was ▁considered ▁one ▁of ▁the ▁best ▁theatre ▁direct
ors ▁of ▁Europe . ▁The ▁prominent ▁members ▁of ▁his ▁tr oupe ▁include ▁Alice ▁Fre ind lich , ▁Z ina ida ▁Sh ark o , ▁Ly ud m ila ▁Mak ar ova , ▁Tat iana ▁Dor on ina , ▁S vet l ana ▁K ry uch k ova , ▁Kir ill ▁Lav rov , ▁Inn ok enty ▁Sm ok t un ov sky , ▁P avel ▁L us pe ka ev , ▁Y ef im ▁Kop ely an , ▁Serge y ▁Y ur sky , ▁Vlad is lav ▁Str z hel ch ik , ▁Y ev gen i ▁Leb ede v , ▁and ▁O leg ▁Bas il ash v ili . ▁His ▁contribution ▁to ▁the ▁Russian ▁tradition ▁of ▁theatre ▁education ▁is ▁important , ▁especially ▁where ▁it ▁comes ▁to ▁education ▁of ▁theatre ▁direct ors . ▁His ▁theories ▁continue ▁to ▁have ▁large ▁influence , ▁especially ▁in ▁Russian ▁and ▁Sc and in av ian ▁theatre ▁education . ▁ ▁Mov ies ▁about ▁T ov ston og ov ▁ ▁Document aries ▁▁ ▁Dem i ur ge ▁( 2 0 0 8 ), ▁directed ▁by ▁Tig ran ▁Mut af yan , ▁features ▁Tat iana ▁Dor on ina , ▁Ale k sey ▁German , ▁Z ina ida ▁Sh ark o , ▁K ama ▁G ink as , ▁Gen ri etta ▁Yan ov sk aya , ▁Edu ard ▁Koch er gin , ▁G enn ady ▁Tro st ian en ck iy , ▁and ▁Nat ella ▁T ov ston og ova . ▁ ▁References ▁ ▁External ▁links ▁▁▁ ▁Biography ▁ ▁Biography ▁ ▁Category
: 1 9 1 5 ▁birth s ▁Category : 1 9 8 9 ▁death s ▁Category : Pe ople ▁from ▁T bil isi ▁Category : Pe ople ▁from ▁T if lis ▁Governor ate ▁Category : Russ ian ▁and ▁Soviet ▁theatre ▁direct ors ▁Category : Russ ian ▁Academy ▁of ▁Theatre ▁Arts ▁al umn i ▁Category : Pe ople ' s ▁Art ists ▁of ▁the ▁USS R ▁Category : Russ ian ▁people ▁of ▁Georg ian ▁descent ▁Category : Re cip ients ▁of ▁the ▁Order ▁of ▁Len in ▁Category : Pe ople ' s ▁Art ists ▁of ▁the ▁R S FS R ▁Category : Len in ▁Prize ▁w inners ▁Category : Re cip ients ▁of ▁the ▁USS R ▁State ▁Prize ▁Category : St alin ▁Prize ▁w inners ▁Category : B ur ial s ▁at ▁T ikh vin ▁C emetery <0x0A> </s> ▁The ▁list ▁shows ▁air ports ▁that ▁are ▁served ▁by ▁Heb ei ▁Airlines ▁as ▁part ▁of ▁its ▁scheduled ▁passenger ▁services . ▁The ▁list ▁includes ▁the ▁city , ▁country , ▁the ▁codes ▁of ▁the ▁International ▁Air ▁Transport ▁Association ▁( I ATA ▁air port ▁code ) ▁and ▁the ▁International ▁Civil ▁A viation ▁Organ ization ▁( IC A O ▁air port ▁code ), ▁and ▁the ▁air port ' s ▁name , ▁with ▁the ▁air line ' s ▁hub s ▁and ▁terminated ▁stations ▁marked . ▁ ▁List ▁ ▁References ▁ ▁Category : List s ▁of ▁air line ▁destin ations <0x0A> </s> ▁V l ady k ina ▁G ora ▁() ▁is ▁a ▁rural ▁local ity ▁( a ▁village ) ▁in ▁Ch
us he v it sko ye ▁R ural ▁S ett lement , ▁Ver kh ov az h sky ▁District , ▁V olog da ▁O blast , ▁Russia . ▁The ▁population ▁was ▁ 1 0 0 ▁as ▁of ▁ 2 0 0 2 . ▁ ▁Geography ▁ ▁The ▁distance ▁to ▁Ver kh ov az h ye ▁is ▁ 5 2 . 8 ▁km , ▁to ▁Ch us he v its y ▁is ▁ 9 ▁km . ▁Tol st uk ha ▁is ▁the ▁nearest ▁rural ▁local ity . ▁ ▁References ▁▁ ▁Category : R ural ▁local ities ▁in ▁V olog da ▁O blast ▁Category : R ural ▁local ities ▁in ▁Ver kh ov az h sky ▁District <0x0A> </s> ▁Kat ir an - e ▁B ala ▁( , ▁also ▁Roman ized ▁as ▁Kat ī r ā n - e ▁B ā l ā ; ▁also ▁known ▁as ▁Kat ī r ā n - e ▁‘ O ly ā ) ▁is ▁a ▁village ▁in ▁N ahr - e ▁M ian ▁R ural ▁District , ▁Z al ian ▁District , ▁Sh az and ▁County , ▁Mark azi ▁Province , ▁Iran . ▁At ▁the ▁ 2 0 0 6 ▁census , ▁its ▁population ▁was ▁ 2 4 7 , ▁in ▁ 6 5 ▁families . ▁ ▁References ▁▁ ▁Category : Pop ulated ▁places ▁in ▁Sh az and ▁County <0x0A> </s> ▁Moh amm ad ▁J av ad ▁F ath i ▁() ▁is ▁an ▁Iran ian ▁academic , ▁lawyer ▁and ▁reform ist ▁politician ▁who ▁is ▁member ▁of ▁the ▁Parliament ▁of
▁Iran ▁representing ▁Te h ran , ▁Rey , ▁Sh em ir an at ▁and ▁E sl am sh ahr ▁elect oral ▁district . ▁He ▁res igned ▁on ▁ 2 5 ▁June ▁ 2 0 1 8 , ▁saying ▁that ▁he ▁has ▁no ▁hope ▁for ▁change ▁in ▁the ▁current ▁system . ▁ ▁Career ▁ ▁F ath i ▁is ▁a ▁professor ▁of ▁University ▁of ▁Te h ran ▁in ▁law . ▁ ▁Elect oral ▁history ▁ ▁References ▁ ▁Category : 1 9 6 5 ▁birth s ▁Category : L iving ▁people ▁Category : M embers ▁of ▁the ▁ 1 0 th ▁Islam ic ▁Cons ult ative ▁Assembly ▁Category : I ran ian ▁law y ers ▁Category : I ran ian ▁jur ists ▁Category : I ran ian ▁reform ists ▁Category : Univers ity ▁of ▁Te h ran ▁fac ulty ▁Category : Vol unte er ▁Bas ij ▁personnel ▁of ▁the ▁Iran – I ra q ▁War ▁Category : Pe ople ▁from ▁Kh uz est an ▁Province <0x0A> </s> ▁George ▁Ke ath ley ▁may ▁refer ▁to : ▁ ▁George ▁D . ▁Ke ath ley ▁( 1 9 1 7 – 1 9 4 4 ), ▁staff ▁ser ge ant ▁in ▁the ▁United ▁States ▁Army ▁George ▁Ke ath ley ▁( the ater ▁director ) <0x0A> </s> ▁The ▁One ▁Dim ension ▁Group ▁( Al ▁Bu ' d ▁al ▁W ah ad ) ▁was ▁a ▁modern ▁art ▁group ▁founded ▁in ▁Ira q , ▁by ▁Sh ak ir ▁Hass an ▁Al ▁Sa id ▁in ▁ 1 9 7 1 ▁which ▁attempted ▁to
▁combine ▁medieval ▁S uf i ▁trad itions ▁with ▁contemporary , ▁abstract ▁art . ▁Although ▁ ▁the ▁One ▁Dim ension ▁Group ▁was ▁founded ▁in ▁Ira q , ▁its ▁members ▁origin ated ▁from ▁across ▁Arab ▁nations , ▁and ▁its ▁influence ▁was ▁felt ▁across ▁the ▁Arab ▁art ▁world . ▁ ▁Background ▁ ▁One ▁Dim ension ▁is ▁one ▁of ▁a ▁number ▁of ▁art ▁groups ▁that ▁formed ▁in ▁ 2 0 th - century ▁Ira q . ▁During ▁the ▁first ▁world ▁war , ▁a ▁small ▁group ▁of ▁European ▁officers ▁and ▁artists ▁settled ▁in ▁Ira q , ▁expos ing ▁young ▁artists ▁to ▁Western ▁art ▁trad itions ▁and ▁techniques . ▁While ▁local ▁artists ▁and ▁middle ▁classes ▁developed ▁an ▁appreci ation ▁for ▁European ▁art , ▁the ▁arts ▁community ▁searched ▁for ▁ways ▁of ▁synth es ising ▁ind igen ous ▁art ▁with ▁international ▁tr ends . ▁In ▁effect , ▁these ▁groups ▁were ▁seeking ▁to ▁for ge ▁an ▁Arab ic ▁art ▁a est h etic ▁and ▁to ▁use ▁art ▁to ▁help ▁their ▁nations ▁re assert ▁a ▁sense ▁of ▁national ▁identity . ▁ ▁Between ▁the ▁ 1 9 3 0 s ▁and ▁the ▁early ▁ 1 9 7 0 s , ▁more ▁than ▁six ▁different ▁art ▁groups ▁were ▁formed : ▁The ▁P ione ers ▁formed ▁in ▁the ▁ 1 9 3 0 s ; ▁The ▁Av ant gar de ▁Group ▁formed ▁in ▁ 1 9 5 0 ; ▁ ▁The ▁Bag hd ad ▁Modern ▁Art ▁Group ▁formed ▁in ▁ 1 9 5 1 ; ▁The ▁Im pression ists ▁formed ▁in ▁ 1 9 5 3
; ▁The ▁Corn ers ▁Group ▁founded ▁in ▁ 1 9 6 1 ; ▁The ▁In nov ation ists ▁founded ▁in ▁ 1 9 6 3 ; ▁The ▁New ▁V ision ▁founded ▁in ▁ 1 9 6 8 ▁and ▁One ▁Dim ension ▁founded ▁in ▁ 1 9 7 1 . ▁Some ▁of ▁these ▁groups ▁end ured ▁for ▁dec ades , ▁while ▁others ▁were ▁short - l ived ▁and ▁abandoned ▁within ▁a ▁few ▁years ▁of ▁their ▁formation .< ref > S ab rah , S . A . ▁and ▁Ali , ▁M ., " ▁Ira qi ▁Art work ▁Red ▁List : ▁A ▁Part ial ▁List ▁of ▁the ▁Art works ▁Miss ing ▁from ▁the ▁National ▁Museum ▁of ▁Modern ▁Art , ▁Bag hd ad , ▁Ira q , ▁ 2 0 1 0 , ▁pp ▁ 7 - 9 ; ▁L ack , ▁J ., ▁Why ▁Are ▁We ▁' Art ists ' ?: ▁ 1 0 0 ▁World ▁Art ▁Man ifest os , ▁P engu in , ▁ 2 0 1 7 , ▁[ E - book ▁edition ], ▁n . p . ▁See ▁section ▁M 1 2 </ ref > ▁ ▁Each ▁of ▁these ▁groups ▁developed ▁different ▁ideas ▁about ▁how ▁to ▁combine ▁her itage ▁and ▁modern ity ▁and ▁developed ▁a ▁different ▁vision ▁for ▁a ▁national ▁art ▁a est h etic . ▁Although ▁there ▁were ▁t ensions ▁in ▁the ▁different ▁vis ions ▁of ▁these ▁groups , ▁collect ively , ▁they ▁act ively ▁searched ▁for ▁new ▁national ▁vision ▁which ▁would ▁enable ▁the ▁country ▁to ▁develop ▁internally , ▁as
▁well ▁as ▁take ▁its ▁place ▁on ▁a ▁world ▁stage . ▁ ▁Of ▁these ▁art ▁groups , ▁the ▁Bag hd ad ▁Modern ▁Art ▁Group ▁and ▁the ▁One ▁Dim ension ▁Group ▁are ▁the ▁most ▁frequently ▁c ited . ▁ ▁Br ief ▁history ▁and ▁philosophy ▁The ▁One ▁Dim ension ▁Group ▁was ▁established ▁formally ▁in ▁ 1 9 7 1 ▁by ▁the ▁prominent ▁Bag hd adi ▁artist ▁and ▁intellectual , ▁Sh ak ir ▁Hass an ▁Al ▁Sa id , ▁when ▁he ▁published ▁a ▁manif esto ▁for ▁the ▁group . ▁Al ▁Sa id ▁had ▁previously ▁been ▁a ▁found ing ▁member ▁of ▁the ▁Bag hd ad ▁Group ▁for ▁Modern ▁Art ▁( J ama ' at ▁Bag hd ad ▁l il - F ann ▁al - H ad ith ) ▁together ▁with ▁J aw ad ▁S ale em ▁( 1 9 1 9 - 1 9 6 1 ) ▁and ▁J ab ra ▁I bra him ▁J ab ra ▁( 1 9 1 9 - 1 9 9 4 ), ▁but ▁he ▁along ▁with ▁several ▁high ▁profile ▁artists , ▁had ▁with dra wn ▁from ▁that ▁group ▁when ▁it ▁lost ▁its ▁sense ▁of ▁direction , ▁following ▁the ▁death ▁of ▁its ▁founder , ▁J aw ad ▁S ale em ▁in ▁ 1 9 6 1 . ▁ ▁The ▁One ▁Dim ension ▁manif esto ▁gives ▁voice ▁to ▁the ▁group ' s ▁commit ment ▁to ▁both ▁her itage ▁and ▁modern ity ▁and ▁sought ▁to ▁distance ▁itself ▁from ▁the ▁modern ▁Arab ▁artists ▁which ▁they ▁perce ived ▁as ▁following ▁European ▁art istic ▁trad itions . ▁One
▁Dim ension ' s ▁object ives ▁are ▁complex ▁and ▁s oph istic ated ; ▁it ▁is ▁philosophy , ▁technique , ▁style ▁and ▁a ▁relationship ▁between ▁time ▁and ▁space , ▁between ▁the ▁visual ▁and ▁the ▁non - visual . ▁The ▁" one ▁dimension " ▁is ▁an ▁ob lique ▁reference ▁to ▁S uf ism , ▁which ▁has ▁been ▁described ▁as ▁" the ▁inner ▁dimension ▁of ▁Islam ." ▁The ▁object ives ▁of ▁the ▁One ▁Dim ension ▁Group ▁were ▁multi - dimensional ▁and ▁complex . ▁At ▁the ▁most ▁basic ▁level , ▁the ▁group ▁rejected ▁two ▁and ▁three - two ▁dimensional ▁art work ▁in ▁favour ▁of ▁a ▁single ▁" inner ▁dimension ". ▁This ▁approach ▁was ▁influenced ▁by ▁both ▁the ▁philosophy ▁of ▁Martin ▁He ide g ger ▁and ▁the ▁trad itions ▁of ▁Arab ic ▁call ig raph y ▁and ▁associated ▁S uf i ▁movements . ▁In ▁practice , ▁a ▁single ▁inner ▁dimension ▁was ▁difficult ▁to ▁real ise ▁because ▁most ▁art works ▁are ▁produced ▁on ▁two - dimensional ▁surfaces . ▁The ▁One ▁Dim ension ▁Group ▁was ▁very ▁significant ▁to ▁the ▁so - called ▁School ▁of ▁Call ig raph ic ▁Art ▁( also ▁known ▁as ▁the ▁Hur uf iy ya ▁movement ) ▁which ▁compr ised ▁groups ▁of ▁artists ▁that ▁had ▁emer ged ▁independently ▁across ▁North ▁Africa ▁and ▁the ▁Middle ▁East ▁in ▁the ▁second ▁half ▁of ▁the ▁ 2 0 th ▁century , ▁with ▁the ▁common ▁thread ▁being ▁that ▁each ▁group ▁searched ▁for ▁ways ▁to ▁integrate ▁tradition ▁and ▁modern ity ▁in ▁a ▁way ▁that ▁would ▁contributed ▁to ▁a ▁distinct ▁national ▁style .
▁ ▁Although ▁each ▁of ▁these ▁groups ▁developed ▁locally , ▁and ▁went ▁by ▁different ▁labels ▁at ▁the ▁local ▁level , ▁collect ively , ▁these ▁groups ▁and ▁their ▁pract ition ers ▁would ▁become ▁known ▁as ▁the ▁School ▁of ▁Call ig raph y ▁( or ▁Hur uf iy ya ▁movement ). ▁In ▁Jordan , ▁the ▁movement ▁emer ged ▁in ▁the ▁ 1 9 5 0 s ▁and ▁was ▁known ▁as ▁the ▁Al - h ur uf i yy ah ▁movement , ▁while ▁in ▁Ira q , ▁the ▁movement ▁was ▁known ▁as ▁Al ▁Bu ' d ▁al ▁W ah ad ▁( or ▁the ▁One ▁Dim ension ▁Group )", ▁and ▁in ▁Iran , ▁the ▁Sa qq a - K h ane h ▁movement . ▁In ▁Sud an , ▁art works ▁took ▁on ▁a ▁slightly ▁different ▁form ▁- ▁since ▁artists ▁rejected ▁Western ▁art ▁trad itions ▁and ▁included ▁both ▁Islam ic ▁call ig raph y ▁and ▁West ▁African ▁mot ifs . ▁In ▁Sud an , ▁the ▁movement ▁was ▁known ▁as ▁the ▁Old ▁Kh art ou m ▁School . '' ▁▁ ▁Original ▁members ▁of ▁the ▁One ▁Dim ension ▁group ▁include : ▁Raf a ▁al - N asi ri , ▁Moh ammed ▁Gh ani ▁H ik mat , ▁N uri ▁al - Raw i , ▁Dia ▁Az za wi , ▁J amil ▁Ham oud i , ▁Hash em ▁Sam arch i ▁( b . ▁ 1 9 3 9 ), ▁Hash im ▁al - Bag hd adi ▁( 1 9 1 7 - 1 9 7 3 ) ▁and ▁Sa ad ▁Sh
aker ▁( 1 9 3 5 - 2 0 0 5 ). ▁ ▁See ▁also ▁▁ ▁Arab ic ▁art ▁ ▁Ira qi ▁art ▁ ▁Islam ic ▁art ▁ ▁Islam ic ▁call ig raph y ▁ ▁Hur uf iy ya ▁movement ▁ ▁List ▁of ▁Muslim ▁pain ters ▁ ▁List ▁of ▁Ira qi ▁artists ▁ ▁References ▁ ▁Category : 1 9 7 1 ▁establish ments ▁in ▁Ira q ▁Category : A rab ▁artists ▁Category : Ar ts ▁organizations ▁Category : Art ▁soci eties ▁Category : I ra qi ▁art ▁Category : S uf i ▁art <0x0A> </s> ▁Victoria ▁in ▁D over ▁( G erman ▁title : ▁M äd chen j ah re ▁einer ▁K ön igin ) ▁is ▁a ▁ 1 9 3 6 ▁German ▁rom antic ▁comedy ▁film ▁directed ▁by ▁Er ich ▁Engel ▁and ▁st arring ▁Jen ny ▁Jug o , ▁Ol ga ▁Lim burg ▁and ▁Ren ée ▁Sto b raw a . ▁It ▁is ▁based ▁on ▁a ▁play ▁by ▁Ge za ▁Sil ber er . ▁The ▁film ▁was ▁re made ▁in ▁ 1 9 5 4 ▁with ▁Rom y ▁Schne ider . ▁ ▁Syn opsis ▁After ▁her ▁Prime ▁Minister ▁Lord ▁Melbourne ▁arr anges ▁a ▁marriage ▁for ▁her ▁with ▁the ▁German ▁Prince ▁Albert , ▁the ▁young ▁Queen ▁Victoria ▁dec ides ▁to ▁leave ▁London ▁and ▁spend ▁some ▁time ▁in ▁Kent . ▁While ▁there ▁she ▁meets ▁a ▁hand some ▁young ▁German ▁and ▁falls ▁in ▁love , ▁una ware ▁that ▁he ▁is ▁her ▁intended ▁husband ▁Albert . ▁ ▁Cast ▁ ▁Jen ny ▁Jug o ▁as ▁Victoria ▁▁▁
▁Ol ga ▁Lim burg ▁as ▁Duch ess ▁of ▁Kent ▁▁▁ ▁Ren ée ▁Sto b raw a ▁as ▁Baron ess ▁Le h zen ▁▁▁ ▁Otto ▁Tre ß ler ▁as ▁Lord ▁Melbourne ▁ ▁Friedrich ▁Ben fer ▁as ▁Prince ▁Albert ▁▁▁ ▁Ernst ▁G . ▁Schiff ner ▁as ▁King ▁William ▁IV ▁of ▁the ▁United ▁Kingdom ▁▁▁ ▁Erik ▁O de ▁as ▁the ▁Prince ▁of ▁Orange ▁▁ ▁Ang elo ▁Ferr ari ▁as ▁Grand ▁Duke ▁Alexander ▁of ▁Russia ▁▁▁ ▁Paul ▁Hen ck els ▁as ▁King ▁Leopold ▁I ▁of ▁Belg ium ▁▁ ▁Werner ▁P led ath ▁as ▁Lord ▁C unning ham ▁▁▁ ▁Ernst ▁Rot mund ▁as ▁Baron ▁Brun ow , ▁Russian ▁amb assador ▁▁ ▁Julius ▁Brand t ▁as ▁the ▁Arch bishop ▁of ▁Can ter bury ▁▁▁ ▁Herbert ▁H üb ner ▁as ▁Sir ▁John ▁Con roy ▁▁▁ ▁Fritz ▁Ny gr in ▁as ▁Tag l ione , ▁a ▁dan cing ▁master ▁▁ ▁Gustav ▁Wald au ▁as ▁Professor ▁L enk mann ▁▁▁ ▁Hein z ▁S alf ner ▁as ▁George ▁- ▁a ▁foot man ▁▁▁ ▁Rudolf ▁Es se k ▁as ▁Lord ▁Pal mer ston ▁▁ ▁Gab rie le ▁Hoff mann ▁as ▁Lady ▁Land sd ow ne ▁ ▁El fried e ▁John ▁as ▁Lady ▁L ittel ton ▁ ▁L otte ▁S pi ra ▁as ▁Lady ▁Flora ▁H ast ings ▁ ▁Ernst ▁St imm el ▁as ▁Mr . ▁Davis ▁▁ ▁Otto ▁Sto e ck el ▁as ▁Lord ▁Russ el ▁ ▁References ▁ ▁Bibli ography ▁▁ ▁F rit sche , ▁Maria . ▁Hom em ade ▁Men ▁in ▁Post war ▁Aust rian ▁Cinema : ▁Nation hood , ▁Gen re
▁and ▁Mas cul inity . ▁Berg h ahn ▁Books , ▁ 2 0 1 3 . ▁ ▁External ▁links ▁▁▁ ▁Category : 1 9 3 6 ▁films ▁Category : G erman ▁films ▁Category : G erman ▁rom antic ▁comedy ▁films ▁Category : G erman ▁historical ▁comedy ▁films ▁Category : 1 9 3 0 s ▁historical ▁comedy ▁films ▁Category : 1 9 3 0 s ▁rom antic ▁comedy ▁films ▁Category : C ult ural ▁dep ict ions ▁of ▁Queen ▁Victoria ▁on ▁film ▁Category : Fil ms ▁set ▁in ▁London ▁Category : Fil ms ▁set ▁in ▁Kent ▁Category : Fil ms ▁set ▁in ▁the ▁ 1 8 3 0 s ▁Category : G erman - language ▁films ▁Category : Fil ms ▁directed ▁by ▁Er ich ▁Engel ▁Category : Fil ms ▁of ▁Naz i ▁Germany ▁Category : G erman ▁black - and - white ▁films ▁Category : G erman ▁historical ▁rom ance ▁films <0x0A> </s> ▁Sch uy ler ▁B ail ar ▁is ▁an ▁American ▁sw immer , ▁and ▁the ▁first ▁open ly ▁trans gender ▁NCAA ▁Division ▁I ▁sw immer . ▁He ▁is ▁also ▁the ▁first ▁public ly ▁documented ▁NCAA ▁D 1 ▁trans gender ▁man ▁to ▁comp ete ▁as ▁a ▁man ▁in ▁any ▁sport . ▁He ▁was ▁rec ru ited ▁by ▁Harvard ▁University ▁and ▁sw am ▁on ▁the ▁Harvard ▁Men ' s ▁Sw imming ▁and ▁D iving ▁team ▁under ▁coach ▁Kevin ▁T yr rell ; ▁he ▁was ▁a ▁member ▁of ▁the ▁Harvard ▁Class ▁of ▁ 2 0 1 9 . ▁B ail ar ▁was ▁originally ▁rec ru
ited ▁in ▁ 2 0 1 3 ▁as ▁a ▁member ▁of ▁the ▁women ' s ▁team ▁by ▁Harvard ▁Women ’ s ▁Sw imming ▁and ▁D iving ▁head ▁coach ▁Steph anie ▁Mor aw ski . ▁After ▁transition ing ▁during ▁a ▁gap ▁year , ▁B ail ar ▁was ▁also ▁offered ▁a ▁spot ▁on ▁the ▁men ’ s ▁team ▁by ▁coach ▁T yr rell , ▁allowing ▁B ail ar ▁the ▁choice ▁of ▁either ▁team . ▁He ▁elected ▁to ▁sw im ▁on ▁the ▁men ’ s ▁team . ▁ ▁Early ▁life ▁▁ ▁B ail ar ▁was ▁born ▁in ▁New ▁York ▁City ▁to ▁parents ▁Greg or ▁B ail ar ▁and ▁Terry ▁Hong ▁and ▁is ▁of ▁Korean ▁descent . ▁B ail ar ▁grew ▁up ▁in ▁Mc Le an , ▁Virginia ▁where ▁he ▁lived ▁until ▁att ending ▁college . ▁B ail ar ▁attended ▁Ge or get own ▁Day ▁School ▁from ▁kind erg arten ▁through ▁ 1 2 th ▁grade . ▁He ▁has ▁one ▁brother , ▁Jin won , ▁who ▁also ▁sw ims . ▁ ▁Sw imming ▁▁ ▁B ail ar ▁started ▁sw imming ▁when ▁he ▁was ▁about ▁one ▁year ▁old . ▁When ▁he ▁was ▁four , ▁his ▁family ▁joined ▁a ▁neighborhood ▁summer ▁club ▁and ▁he ▁began ▁sw imming ▁for ▁the ▁Lang ley ▁Wild th ings ▁at ▁the ▁Lang ley ▁Sw im ▁and ▁Tennis ▁Club . ▁The ▁Wild th ings ▁are ▁a ▁part ▁of ▁the ▁stor ied ▁Northern ▁Virginia ▁Sw imming ▁League ▁for ▁which ▁B ail ar ▁would ▁eventually ▁pod ium ▁in ▁their ▁overall ▁All - Star ▁champion ships . ▁B
ail ar ▁sw am ▁for ▁the ▁Wild th ings ▁nearly ▁every ▁summer ▁as ▁his ▁love ▁for ▁sw imming ▁grew . ▁In ▁ 2 0 0 5 , ▁at ▁the ▁age ▁of ▁nine , ▁B ail ar ▁joined ▁Sea ▁Dev il ▁Sw imming ▁( pre viously ▁known ▁as ▁the ▁Capit ol ▁Sea ▁Dev ils ), ▁a ▁year - round ▁USA ▁Sw imming ▁san ction ed ▁club ▁team . ▁Under ▁coach ▁Ron ▁L ark in , ▁his ▁true ▁love ▁of ▁compet itive ▁sw imming ▁began . ▁B ail ar ▁competed ▁in ▁the ▁Pot om ac ▁Valley ▁L SC ▁of ▁USA ▁Sw imming ▁and ▁quickly ▁rose ▁through ▁the ▁lad der ▁of ▁sw imming ▁champion ships . ▁At ▁age ▁ 1 0 ▁he ▁competed ▁at ▁the ▁ 2 0 0 7 ▁Pot om ac ▁Valley ▁Junior ▁Olympics . ▁He ▁continued ▁up ▁the ▁lad der ▁to ▁the ▁ 2 0 0 8 , ▁ 2 0 0 9 , ▁ 2 0 1 0 , ▁ 2 0 1 1 ▁J Os ▁and ▁the ▁ 2 0 1 0 , ▁ 2 0 1 1 , ▁ 2 0 1 2 ▁Eastern ▁Z ones . ▁ ▁B ail ar ▁set ▁school ▁records ▁in ▁nearly ▁every ▁event ▁at ▁Ge or get own ▁Day ▁School . ▁B ail ar ’ s ▁bro ader ▁high ▁school ▁titles ▁include ▁ 1 st ▁place ▁in ▁both ▁ 2 0 1 3 ▁and ▁ 2 0 1 4 ▁in ▁ 1 0 0 yd ▁breast stroke ▁at ▁the ▁Washington , ▁D . C .
▁Independent ▁School ▁League ▁Championships ▁( a . k . a . ▁IS L s ), ▁the ▁Washington , ▁D . C . ▁Metropolitan ▁Pre par atory ▁School ▁Sw imming ▁and ▁D iving ▁League ▁( a . k . a . ▁W MP SS DL s ) ▁Championships ▁and ▁the ▁Washington , ▁D . C . ▁Metropolitan ▁Inter sch ol astic ▁Sw imming ▁and ▁D iving ▁Championships ▁( a . k . a . ▁Met ros ). ▁B ail ar ▁was ▁a ▁ 2 - time ▁All ▁American ▁( N IC SA ) ▁for ▁ 1 0 0 yd ▁breast , ▁A ▁Pot om ac ▁Valley ▁Sch olar ▁Ath lete ▁and ▁a ▁USA ▁Sw imming ▁Sch ol astic ▁All ▁American . ▁ ▁At ▁the ▁national ▁level ▁of ▁compet itive ▁sw imming , ▁B ail ar ▁won ▁many ▁hon ors ▁in ▁both ▁high ▁school ▁and ▁club ▁sw imming ▁including ▁setting ▁a ▁USA ▁Sw imming ▁National ▁Age ▁Group ▁record ▁in ▁the ▁ 4 0 0 yd ▁Med ley ▁Rel ay ▁at ▁the ▁ 2 0 1 3 ▁USA ▁Sw imming ▁AT & T ▁National ▁Championships ▁with ▁team m ates ▁K atie ▁L ede ck y , ▁Jan et ▁Hu , ▁and ▁K yl ie ▁Jordan . ▁B ail ar ▁sw am ▁for ▁the ▁celebrated ▁Nation ’ s ▁Capital ▁Sw im ▁Club ▁( NC AP ) ▁at ▁that ▁meet ; ▁and ▁the ▁team ▁won ▁the ▁ 2 0 1 3 ▁USA ▁Sw imming ▁AT & T ▁National ▁Championship ▁title . ▁B ail ar ' s ▁ 1
0 0 ▁yard ▁breast stroke ▁sw im ▁at ▁the ▁ 2 0 1 3 ▁NC SA ▁Junior ▁National ▁Championships ▁qualified ▁for ▁the ▁U . S . ▁Open , ▁the ▁fast est ▁national ▁championship ▁meet . ▁B ail ar ▁is ▁also ▁multi - year ▁qual ifier ▁for ▁the ▁NC SA ▁Jr . ▁National s . ▁In ▁ 2 0 1 9 , ▁B ail ar ▁completed ▁his ▁college ▁career ▁posting ▁the ▁" third ▁fast est " ▁time ▁for ▁ 1 0 0 - yard - bre ast stroke ▁for ▁the ▁Harvard ▁team ▁in ▁the ▁ 2 0 1 8 - 2 0 1 9 ▁season ▁and ▁won ▁his ▁third ▁I vy - Le ague ▁Championship ▁ring ▁as ▁part ▁of ▁the ▁C rim son ' s ▁highest ▁ranked ▁team ▁since ▁the 1 9 6 0 / 1 9 6 1 ▁season ▁- ▁ 8 th ▁at ▁the ▁ 2 0 1 9 ▁NCAA ▁Championships . ▁Although ▁B ail ar ▁began ▁his ▁college ▁sw imming ▁career ▁with ▁low ▁expect ations , ▁his ▁final ▁ 1 0 0 - yard ▁breast stroke ▁time ▁ranked ▁him ▁in ▁the ▁top ▁ 1 5 % ▁of ▁all ▁NCAA ▁sw ims ▁for ▁the ▁season ▁and ▁in ▁the ▁top ▁ 3 4 % ▁of ▁all ▁NCAA ▁Division ▁ 1 ▁sw ims ▁for ▁the ▁season . ▁ ▁Activ ism ▁and ▁acc laim ▁B ail ar ▁is ▁an ▁ener get ic ▁advoc ate ▁for ▁L GB T Q ▁rights ▁and ▁inclusion . ▁He ▁has ▁assist ed ▁with ▁and ▁is ▁featured ▁in ▁the ▁USA ▁Sw
imming ▁cultural ▁inclusion ▁gu ides ▁for ▁both ▁L GB T Q ▁and ▁Asian ▁American ▁athlet es . ▁He ▁also ▁attended ▁the ▁NCAA ▁Common ▁Gr ound ▁initi ative , ▁a ▁group ▁of ▁selected ▁athlet es , ▁coach es ▁and ▁sports ▁constitu ents ▁who ▁met ▁to ▁discuss ▁inclusion ▁in ▁NCAA ▁activities . ▁B ail ar ' s ▁primary ▁activ ism ▁is ▁on ▁the ▁speaking ▁circuit , ▁appearing ▁at ▁schools , ▁corpor ations ▁and ▁non - prof its . ▁After ▁gradu ating ▁from ▁Harvard ▁in ▁ 2 0 1 9 , ▁he ▁began ▁working ▁full ▁time ▁as ▁a ▁public ▁speaker . ▁B ail ar ▁was ▁awarded ▁the ▁SM Y AL ▁Community ▁Adv oc ate ▁Award ▁for ▁ 2 0 1 6 ▁for ▁his ▁work ▁as ▁" a ▁vocal ▁advoc ate ▁for ▁L GB T ▁rights ." ▁The ▁ 6 0 ▁Min utes ▁profile ▁of ▁Sch uy ler ▁entitled ▁" Switch ing ▁Teams " ▁was ▁nominated ▁for ▁the ▁ 2 8 th ▁Ann ual ▁G LA AD ▁Media ▁Awards . ▁On ▁June ▁ 2 8 th , ▁ 2 0 1 7 ▁B ail ar ▁was ▁profile d ▁by ▁the ▁International ▁Olympic ▁Committee ▁in ▁a ▁series ▁entitled ▁ID ENT IF Y ▁for ▁his ▁activ ism ▁in ▁prom oting ▁gender ▁inclusion ▁in ▁sports . ▁B ail ar ▁was ▁featured ▁as ▁a ▁member ▁of ▁the ▁ 2 0 1 7 ▁Out ▁Magazine ▁OUT ▁ 1 0 0 ▁and ▁in ▁another ▁first , ▁was ▁the ▁only ▁L GB T ▁ath lete ▁included ▁in ▁the ▁el ite ▁listing ▁for ▁ 2
0 1 7 . ▁In ▁ 2 0 1 8 , ▁B ail ar ▁received ▁several ▁acc ol ades : ▁He ▁was ▁named ▁to ▁The ▁Adv oc ate ' s ▁Champions ▁of ▁P ride ▁list ▁of ▁Top ▁L GB T Q ▁activ ists ▁in ▁each ▁state . ▁He ▁was ▁named ▁to ▁the ▁Gold ▁House ▁A 1 0 0 ▁list ▁of ▁the ▁most ▁influ ential ▁Asian ▁Americans . ▁In ▁ 2 0 1 9 , ▁B ail ar ▁was ▁awarded ▁the ▁N B IC ▁Best - of - the ▁Best ▁Vis ibility ▁Award , ▁hosted ▁by ▁the ▁N GL CC ▁for ▁his ▁" cou rage ous ▁and ▁life - ch anging " ▁example ▁as ▁an ▁out ▁and ▁vocal ▁trans ▁ath lete . ▁As ▁a ▁notable ▁gradu ate ▁of ▁the ▁class ▁of ▁ 2 0 1 9 , ▁he ▁received ▁the ▁Harvard ▁Athletics ▁Director ' s ▁Award ▁for ▁the ▁ath lete ▁who ▁makes ▁an ▁out standing ▁contribution ▁to ▁athlet ics ▁through ▁education . ▁ ▁Health ▁and ▁transition ▁ ▁B ail ar ▁began ▁struggling ▁with ▁mental ▁health ▁issues ▁in ▁the ▁fall ▁of ▁ 2 0 1 2 , ▁his ▁junior ▁year ▁in ▁high ▁school . ▁He ▁went ▁to ▁ther apy ▁and ▁later ▁en rolled ▁at ▁Oliver - Py att ▁Cent ers , ▁a ▁resident ial ▁treatment ▁center ▁for ▁e ating ▁dis orders , ▁where ▁he ▁was ▁first ▁able ▁to ▁discuss ▁his ▁gender ▁identity ▁al oud . ▁B ail ar ▁attended ▁gender ▁work sh ops ▁at ▁the ▁YES ! ▁Institute ▁in ▁Miami , ▁Florida , ▁which ▁he
▁says ▁helped ▁him ▁realize ▁and ▁come ▁to ▁terms ▁with ▁his ▁gender . ▁Short ly ▁after ▁his ▁dis charge ▁from ▁the ▁center ▁in ▁October ▁ 2 0 1 4 , ▁he ▁began ▁transition ing . ▁He ▁under w ent ▁top ▁surg ery ▁in ▁March ▁ 2 0 1 5 ▁and ▁began ▁h orm one ▁replacement ▁ther apy ▁in ▁June . ▁He ▁reported ▁on ▁his ▁progress ▁via ▁social ▁media , ▁and ▁MTV ▁selected ▁the ▁Washington ▁Post ▁coverage ▁of ▁B ail ar ▁for ▁ 2 0 1 5 ' s ▁Best ▁M om ents ▁for ▁the ▁Trans ▁Community . ▁ ▁References ▁▁ ▁Category : L iving ▁people ▁Category : Trans gender ▁and ▁trans sex ual ▁sports people ▁Category : Trans gender ▁and ▁trans sex ual ▁men ▁Category : Har vard ▁C rim son ▁men ' s ▁sw imm ers ▁Category : L GB T ▁sports people ▁from ▁the ▁United ▁States ▁Category : L GB T ▁American ▁people ▁of ▁Asian ▁descent ▁Category : L GB T ▁sw imm ers ▁Category : 1 9 9 6 ▁birth s ▁Category : S ports people ▁from ▁New ▁York ▁City ▁Category : Sw imm ers ▁from ▁New ▁York ▁( state ) ▁Category : Ge or get own ▁Day ▁School ▁al umn i <0x0A> </s> ▁Al lah ud ien ▁Pale ker ▁( born ▁ 1 ▁January ▁ 1 9 7 8 ) ▁is ▁a ▁South ▁African ▁cr icket ▁u mp ire ▁and ▁former ▁cr ick eter ▁of ▁Mah ar as ht rian ▁descent ▁with ▁roots ▁trac ing ▁back ▁to ▁Rat n ag
iri ▁district ▁in ▁Mah ar as ht ra . ▁He ▁is ▁now ▁an ▁u mp ire ▁and ▁has ▁stood ▁in ▁matches ▁in ▁the ▁ 2 0 1 5 – 1 6 ▁Ram ▁S lam ▁T 2 0 ▁Challenge . ▁He ▁is ▁part ▁of ▁Cr icket ▁South ▁Africa ' s ▁u mp ire ▁panel ▁for ▁first - class ▁matches . ▁ ▁In ▁November ▁ 2 0 1 7 , ▁he ▁was ▁promoted ▁to ▁the ▁I CC ▁International ▁P anel ▁of ▁U mp ires . ▁He ▁stood ▁in ▁his ▁first ▁Tw enty 2 0 ▁International ▁( T 2 0 I ) ▁match , ▁between ▁South ▁Africa ▁and ▁India ▁at ▁Cent ur ion ▁Park , ▁on ▁ 2 1 ▁February ▁ 2 0 1 8 . ▁On ▁ 1 9 ▁January ▁ 2 0 1 9 , ▁he ▁stood ▁in ▁his ▁first ▁One ▁Day ▁International ▁( O DI ) ▁match , ▁between ▁South ▁Africa ▁and ▁Pakistan ▁at ▁St . ▁George ' s ▁Park . ▁ ▁In ▁October ▁ 2 0 1 9 , ▁he ▁was ▁appointed ▁as ▁one ▁of ▁the ▁twelve ▁u mp ires ▁to ▁offici ate ▁matches ▁in ▁the ▁ 2 0 1 9 ▁I CC ▁T 2 0 ▁World ▁Cup ▁Qual ifier ▁tournament ▁in ▁the ▁United ▁Arab ▁Em ir ates . ▁ ▁See ▁also ▁ ▁List ▁of ▁One ▁Day ▁International ▁cr icket ▁u mp ires ▁ ▁List ▁of ▁Tw enty 2 0 ▁International ▁cr icket ▁u mp ires ▁ ▁References ▁ ▁External ▁links ▁▁▁ ▁Category : 1 9 7 8 ▁birth s ▁Category :
L iving ▁people ▁Category : S outh ▁African ▁cr ick eters ▁Category : S outh ▁African ▁cr icket ▁u mp ires ▁Category : S outh ▁African ▁One ▁Day ▁International ▁cr icket ▁u mp ires ▁Category : S outh ▁African ▁Tw enty 2 0 ▁International ▁cr icket ▁u mp ires ▁Category : N or ther ns ▁cr ick eters ▁Category : West ern ▁Province ▁cr ick eters ▁Category : S ports people ▁from ▁Cape ▁Town ▁Category : S outh ▁African ▁people ▁of ▁Indian ▁descent <0x0A> </s> ▁Mal vern ▁Well s ▁is ▁a ▁village ▁and ▁civil ▁parish ▁south ▁of ▁Great ▁Mal vern ▁in ▁the ▁Mal vern ▁Hills ▁district ▁of ▁Wor c esters hire , ▁England . ▁The ▁parish , ▁once ▁known ▁as ▁South ▁Mal vern , ▁was ▁formed ▁in ▁ 1 8 9 4 ▁from ▁parts ▁of ▁the ▁civil ▁par ishes ▁of ▁Han ley ▁Castle , ▁Well and , ▁and ▁the ▁former ▁parish ▁of ▁Great ▁Mal vern , ▁and ▁ow es ▁its ▁development ▁to ▁the ▁ 1 9 th - century ▁bo om ▁years ▁of ▁Mal vern ▁as ▁a ▁sp a ▁town . ▁Mal vern ▁Well s ▁is ▁a ▁centre ▁of ▁commercial ▁bott ling ▁of ▁Mal vern ▁water . ▁The ▁population ▁of ▁the ▁par ishes ▁of ▁Mal vern ▁Well s ▁and ▁Little ▁Mal vern ▁was ▁recorded ▁in ▁ 2 0 1 1 ▁as ▁ 3 , 1 9 6 . ▁ ▁Location ▁Mal vern ▁Well s ▁lies ▁on ▁the ▁eastern ▁s lop es ▁of ▁the ▁Mal vern ▁Hills ▁south ▁of ▁Great ▁Mal vern ▁( the
▁town ▁centre ▁of ▁Mal vern ) ▁and ▁north ▁of ▁Little ▁Mal vern . ▁It ▁takes ▁its ▁name ▁from ▁the ▁Mal vern ▁water ▁issu ing ▁from ▁spr ings ▁on ▁the ▁hills , ▁princip ally ▁from ▁the ▁Holy ▁Well ▁and ▁the ▁E ye ▁Well . ▁The ▁northern ▁end ▁of ▁the ▁parish ▁includes ▁the ▁Wy che ▁C ut ting , ▁the ▁historic ▁salt ▁route ▁pass ▁through ▁the ▁hills , ▁which ▁form ▁the ▁border ▁between ▁the ▁count ies ▁of ▁Here ford shire ▁( on ▁the ▁western ▁side ) ▁and ▁Wor c esters hire . ▁The ▁actual ▁cutting ▁through ▁the ▁gran ite ▁hill ▁face ▁is ▁at ▁a ▁height ▁of ▁ 8 5 6 ▁feet ▁above ▁sea ▁level . ▁ ▁The ▁northern ▁part ▁of ▁the ▁parish ▁includes ▁the ▁" F ruit lands " ▁housing ▁estate . ▁In ▁the ▁southern ▁part ▁of ▁the ▁parish ▁is ▁the ▁settlement ▁of ▁Upper ▁Well and . ▁To ▁the ▁east ▁of ▁the ▁village ▁of ▁Mal vern ▁Well s , ▁and ▁also ▁in ▁the ▁parish , ▁is ▁the ▁Three ▁Count ies ▁Show ground . ▁ ▁Well s ▁ ▁In ▁ 1 5 5 8 ▁Queen ▁Elizabeth ▁I ▁granted ▁the ▁land ▁to ▁John ▁Horn y old , ▁lord ▁of ▁the ▁man or , ▁under ▁the ▁prem ise ▁that ▁any ▁pil gr im ▁or ▁trav eller ▁should ▁be ▁able ▁to ▁draw ▁rest ▁and ▁refresh ment ▁from ▁the ▁Holy ▁Well , ▁a ▁c oven ant ▁which ▁still ▁stands ▁today . ▁The ▁first ▁record ▁of ▁spring ▁water ▁being ▁bott led ▁in ▁the ▁UK ▁is ▁from ▁ 1 6 2 2
, ▁at ▁Holy ▁Well . ▁Holy ▁Well ▁was ▁later ▁used ▁by ▁the ▁Schwe pp es ▁Company ▁as ▁the ▁source ▁for ▁bott led ▁Mal vern ▁Water ▁sold ▁at ▁the ▁Great ▁Ex hib ition ▁of ▁ 1 8 5 1 . ▁ ▁A men ities ▁All ▁Sain ts , ▁the ▁parish ▁church , ▁was ▁built ▁by ▁a ▁local ▁builder , ▁William ▁Por ter , ▁to ▁a ▁design ▁by ▁T roy te ▁Griff ith ▁– ▁a ▁friend ▁of ▁Edward ▁El gar ▁who ▁is ▁dep icted ▁in ▁the ▁" En igma ▁Vari ations ". ▁The ▁church ▁was ▁consec r ated ▁on ▁ 1 9 ▁November ▁ 1 9 0 3 . ▁There ▁is ▁evidence ▁to ▁suggest ▁that ▁El gar ▁composed ▁part ▁of ▁the ▁" En igma ▁Vari ations " ▁in ▁the ▁church , ▁but ▁his ▁offer ▁of ▁the ▁original ▁manuscript ▁of ▁his ▁or atorio ▁" The ▁Apost les ", ▁as ▁a ▁gift ▁to ▁the ▁church , ▁was ▁refused ▁by ▁the ▁Ang lic an ▁church ▁authorities ▁because ▁El gar ▁was ▁a ▁Roman ▁Catholic ▁and ▁the ▁or atorio ▁was ▁heavily ▁based ▁in ▁that ▁tradition . ▁Next ▁to ▁the ▁church ▁is ▁the ▁Wy che ▁School ; ▁" Land ▁of ▁Hope ▁and ▁Gl ory ", ▁set ▁to ▁El gar ' s ▁Pom p ▁and ▁Circ um st ance ▁March ▁No . ▁ 1 , ▁was ▁first ▁performed ▁there ▁in ▁the ▁presence ▁of ▁El gar . ▁In ▁later ▁life ▁El gar ▁came ▁to ▁t ire ▁of ▁the ▁work ▁for ▁" its ▁j ingo ism ▁and ▁the ▁fact ▁it ▁over shadow ed ▁everything
▁else ▁he ▁wrote ." ▁ ▁The ▁Mal vern ▁Well s ▁War ▁Memorial ▁hon ours ▁local ▁people ▁killed ▁and ▁injured ▁in ▁the ▁First ▁and ▁Second ▁World ▁Wars . ▁It ▁was ▁designed ▁by ▁the ▁Arts ▁and ▁C raft s ▁architect ▁and ▁designer ▁C . F . A . ▁Vo y sey , ▁and ▁was ▁un ve iled ▁in ▁ 1 9 2 0 . ▁The ▁village ▁has ▁a ▁pet rol ▁station , ▁a ▁convenience ▁store , ▁a ▁post ▁office ▁and ▁several ▁other ▁small ▁business es . ▁ ▁Education ▁Ab bey ▁College , ▁a ▁secondary ▁school ▁and ▁English ▁language ▁centre ▁mainly ▁for ▁international ▁students , ▁is ▁found ▁at ▁ 2 5 3 ▁Well s ▁Road . ▁Primary ▁education ▁is ▁provided ▁by ▁Mal vern ▁Well s ▁Church ▁of ▁England ▁School ▁and ▁the ▁Wy che ▁Church ▁of ▁England ▁School , ▁which ▁feed ▁the ▁two ▁Mal vern ▁secondary ▁schools ▁of ▁The ▁Ch ase ▁in ▁Bar n ards ▁Green , ▁and ▁D ys on ▁Per r ins ▁in ▁Mal vern ▁Link . ▁Well s ▁House ▁School , ▁a ▁prepar atory ▁school ▁for ▁boys , ▁closed ▁in ▁ 1 9 9 1 . ▁ ▁Transport ▁The ▁near er ▁of ▁the ▁two ▁Mal vern ▁railway ▁stations ▁to ▁the ▁village ▁is ▁Great ▁Mal vern ▁on ▁the ▁Wor c ester ▁to ▁Here ford ▁line . ▁It ▁has ▁services ▁to ▁B irmingham ▁and ▁to ▁London ▁P adding ton ▁station . ▁The ▁village ▁is ▁served ▁by ▁a ▁daily ▁long - distance ▁coach ▁service ▁between ▁Wor c ester ▁and ▁London ▁Victoria . ▁There ▁are ▁regular ▁bus ▁links
▁with ▁Great ▁Mal vern ▁and ▁Mal vern ▁Link . ▁ ▁Railway ▁history ▁Mal vern ▁Well s ▁railway ▁station , ▁as ▁part ▁of ▁the ▁Wor c ester ▁and ▁Here ford ▁Railway ▁( which ▁became ▁part ▁of ▁the ▁West ▁Mid land ▁Railway ▁then ▁the ▁Great ▁Western ▁Railway ), ▁opened ▁on ▁ 2 5 ▁May ▁ 1 8 6 0 , ▁then ▁closed ▁again ▁on ▁ 1 9 ▁January ▁ 1 8 6 1 ▁before ▁re open ing ▁ 1 ▁February ▁ 1 8 6 4 . ▁It ▁was ▁closed ▁finally ▁on ▁ 5 ▁April ▁ 1 9 6 5 . ▁ ▁Pre viously ▁served ▁by ▁Mal vern ▁Han ley ▁Road ▁railway ▁station ▁on ▁the ▁T ew kes bury ▁and ▁Mal vern ▁Railway ▁was ▁a ▁branch ▁of ▁the ▁Mid land ▁Railway ▁which ▁ran ▁from ▁Ash ch urch ▁via ▁T ew kes bury ▁to ▁Great ▁Mal vern . ▁This ▁opened ▁on ▁ 1 6 ▁May ▁ 1 8 6 4 . ▁With ▁the ▁re group ing ▁in ▁ 1 9 2 3 , ▁it ▁became ▁part ▁of ▁the ▁London ▁Mid land ▁and ▁Scottish ▁Railway . ▁The ▁section ▁from ▁Mal vern ▁to ▁U pton - up on - S ever n ▁was ▁closed ▁in ▁December ▁ 1 9 5 2 . ▁The ▁remainder ▁closed ▁to ▁passengers ▁on ▁ 1 4 ▁August ▁ 1 9 6 1 . ▁Fre ight ▁continued ▁to ▁be ▁carried ▁to ▁U pton ▁until ▁July ▁ 1 9 6 3 ▁and ▁to ▁T ew kes bury ▁until ▁December ▁ 1 9 6 4 . ▁
▁Notable ▁people ▁In ▁birth ▁order : ▁Georg iana ▁Ch atter ton ▁( 1 8 0 6 – 1 8 7 6 ), ▁novel ist ▁and ▁travel ▁writer , ▁died ▁here ▁on ▁ 6 ▁February ▁ 1 8 7 6 . ▁Edward ▁El gar ▁( 1 8 5 7 – 1 9 3 4 ), ▁composer . ▁El gar ▁and ▁his ▁wife ▁le ased ▁a ▁house ▁they ▁named ▁Craig ▁Le a , ▁an ▁an agram ▁of ▁the ▁family ▁initial s , ▁at ▁ 8 6 ▁Well s ▁Road , ▁Mal vern ▁Well s . ▁Hor ace ▁Mill ich amp ▁Moore - J ones ▁( 1 8 6 8 – 1 9 2 2 ), ▁New ▁Zealand ▁artist ▁and ▁Gal lip oli ▁veter an , ▁was ▁born ▁here . ▁John ▁Har ber ▁( 1 8 8 9 – 1 9 6 2 ), ▁first - class ▁cr ick eter , ▁was ▁born ▁here . ▁Rick ▁Stein ▁( born ▁ 1 9 4 7 ), ▁master ▁chef ▁and ▁television ▁broad c aster , ▁attended ▁Well s ▁House ▁School ▁in ▁Mal vern ▁Well s . ▁ ▁References ▁ ▁External ▁links ▁ ▁Mal vern ▁Well s ▁Par ish ▁Council ▁Historical ▁information ▁ ▁Category : H oly ▁well s ▁in ▁England ▁Category : V ill ages ▁in ▁Wor c esters hire ▁Category : C ivil ▁par ishes ▁in ▁Wor c esters hire <0x0A> </s> ▁Nep al ▁Bah ud al ▁Party ▁is ▁a ▁political ▁party ▁in ▁Nep al . ▁The ▁party ▁is ▁registered ▁with ▁the ▁E lection ▁Commission ▁of ▁Nep
al ▁ahead ▁of ▁the ▁ 2 0 0 8 ▁Const itu ent ▁Assembly ▁election . ▁ ▁References ▁ ▁Category : Pol it ical ▁parties ▁in ▁Nep al <0x0A> </s> ▁The ▁III ▁Central ▁American ▁Games ▁( Span ish : ▁III ▁Ju egos ▁Deport ivos ▁Centro amer ican os ) ▁was ▁a ▁multi - s port ▁event ▁that ▁took ▁place ▁between ▁ 4 – 1 0 ▁January ▁ 1 9 8 6 . ▁▁ ▁Initial ly , ▁the ▁Games ▁were ▁scheduled ▁for ▁ 1 9 8 1 ▁in ▁Man agua , ▁Nic ar agua , ▁but ▁were ▁cancel led ▁due ▁to ▁the ▁un stable ▁political ▁situation . ▁ ▁The ▁Games ▁were ▁called ▁the ▁" Pe ace ▁Games " ▁( Span ish : ▁Ju egos ▁de ▁la ▁Paz ). ▁▁ ▁The ▁official ▁song ▁was ▁the ▁" H ymn ▁of ▁the ▁Peace ▁Games " ▁( Span ish : ▁Him no ▁de ▁los ▁Ju egos ▁de ▁la ▁Paz ) ▁composed ▁by ▁Alfonso ▁Ag ull ó . ▁▁ ▁Long ▁distance ▁runner ▁Mate o ▁Fl ores ▁was ▁hon oured ▁to ▁light ▁the ▁tor ch ▁in ▁the ▁stad ium ▁bearing ▁his ▁name . ▁▁ ▁A ▁complete ▁list ▁of ▁medal ▁w inners ▁can ▁be ▁found ▁on ▁the ▁M ás G oles ▁webpage ▁( click ▁on ▁" J UE G OS ▁C ENT RO AM ER IC AN OS " ▁in ▁the ▁low ▁right ▁corner ). ▁ ▁Part icip ation ▁Athlet es ▁from ▁ 5 ▁countries ▁were ▁reported ▁to ▁particip ate : ▁ ▁Sports ▁The ▁competition ▁featured ▁ 2 0 ▁sports ▁( plus
▁bad m inton , ▁row ing , ▁and ▁sail ing ▁as ▁exhibition ). ▁ ▁Aqu atic ▁sports ▁() ▁ ▁Sw imming ▁() ▁ ▁Water ▁pol o ▁() ▁ ▁Athletics ▁() ▁ ▁Bad m inton ▁() † ▁ ▁Baseball ▁() ▁ ▁Basketball ▁() ▁ ▁Bow ling ▁() ▁ ▁Box ing ▁() ▁▁ ▁Ch ess ▁() ▁ ▁Cy cling ▁() ▁ ▁E quest rian ▁() ▁ ▁F encing ▁() ▁ ▁Football ▁() ▁ ▁G ymn ast ics ▁() ▁ ▁J udo ▁() ▁ ▁Row ing ▁() † ▁▁ ▁S ail ing ▁() † ▁ ▁Sho oting ▁() ▁ ▁So ft ball ▁() ▁ ▁Table ▁tennis ▁() ▁ ▁Tennis ▁() ▁ ▁Vol ley ball ▁() ▁ ▁We ight l ifting ▁() ▁ ▁Wrestling ▁() ▁ ▁† : ▁Ex hib ition ▁event ▁ ▁Medal ▁table ▁ ▁The ▁table ▁below ▁is ▁taken ▁from ▁El ▁Di ario ▁de ▁Ho y , ▁San ▁Salvador , ▁El ▁Salvador , ▁and ▁from ▁El ▁Nue vo ▁Di ario , ▁Man agua , ▁Nic ar agua . ▁ ▁References ▁▁ ▁Category : Cent ral ▁American ▁Games ▁Central ▁American ▁Games ▁Category : Intern ational ▁sports ▁compet itions ▁hosted ▁by ▁Gu atem ala ▁Central ▁American ▁Games ▁Cent ▁Category : Multi - s port ▁events ▁in ▁Gu atem ala <0x0A> </s> ▁O leg ▁Mark ov ich ▁G ov or un ▁( , ▁born ▁ 1 5 ▁January ▁ 1 9 6 9 ▁in ▁Br at sk ) ▁is ▁a ▁Russian ▁politician ▁and ▁since ▁May ▁ 2 0 1 2 ▁the ▁Minister ▁of ▁Regional ▁Development . ▁ ▁In
▁ 1 9 7 6 - 1 9 8 6 , ▁he ▁studied ▁in ▁school ▁№ 9 ▁in ▁the ▁town ▁of ▁P ush k ino , ▁Moscow ▁O blast . ▁. ▁Between ▁ 1 9 8 7 - 1 9 8 9 , ▁he ▁did ▁his ▁mand atory ▁service ▁in ▁the ▁Soviet ▁Ar med ▁Forces . ▁In ▁ 1 9 9 3 , ▁he ▁graduated ▁from ▁the ▁Moscow ▁State ▁Forest ▁University ▁major ing ▁in ▁" chem ical ▁engineer ". ▁He ▁worked ▁as ▁Deput y ▁Head ▁of ▁Department ▁for ▁Rel ations ▁with ▁Public ▁Author ities ▁at ▁Al fa - B ank . ▁In ▁ 2 0 0 0 - 2 0 0 4 , ▁he ▁was ▁Deput y ▁Chief ▁of ▁Territ orial ▁Administration ▁of ▁the ▁President ▁of ▁the ▁Russian ▁Federation ▁and ▁in ▁ 2 0 0 4 ▁to ▁ 2 0 0 6 ▁he ▁was ▁deput y ▁head ▁of ▁the ▁Russian ▁President ial ▁Administration ▁for ▁Dom estic ▁Policy . ▁In ▁November ▁ 2 0 0 8 , ▁he ▁became ▁a ▁member ▁of ▁the ▁Supreme ▁Council ▁of ▁United ▁Russia ▁party . ▁On ▁September ▁ 6 , ▁ 2 0 1 1 , ▁he ▁was ▁appointed ▁as ▁the ▁representative ▁of ▁the ▁Russian ▁President ▁in ▁Central ▁Federal ▁District . ▁On ▁ 1 4 ▁September ▁ 2 0 1 1 , ▁he ▁became ▁a ▁member ▁of ▁the ▁Security ▁Council ▁of ▁Russia . ▁On ▁May ▁ 2 1 , ▁ 2 0 1 2 ▁he ▁was ▁appointed ▁to ▁the ▁Minister ▁of ▁Regional ▁Development ▁in ▁D mit ry ▁Med ved
ev ' s ▁Cab inet . ▁In ▁April ▁ 2 0 1 8 , ▁the ▁United ▁States ▁im posed ▁san ctions ▁on ▁him ▁and ▁ 2 3 ▁other ▁Russian ▁national s . ▁ ▁Awards ▁and ▁decor ations ▁ ▁Medal ▁of ▁the ▁Order ▁" For ▁Mer it ▁to ▁the ▁Father land " ▁II ▁class ▁( 2 9 ▁December ▁ 2 0 0 3 ) ▁— ▁for ▁achiev ements ▁in ▁the ▁development ▁of ▁state ▁legal ▁institutions ▁in ▁the ▁Che chen ▁Republic ▁ ▁Order ▁of ▁Friend ship ▁( 2 0 0 8 ) ▁ ▁Order ▁of ▁Hon our ▁( 2 0 0 9 ) ▁ ▁Russian ▁Federation ▁President ial ▁Cert ificate ▁of ▁Gr at itude ▁( 2 ▁September ▁ 2 0 0 6 ) ▁— ▁for ▁contribution ▁to ▁the ▁prepar ation ▁and ▁conduct ▁of ▁the ▁election ▁to ▁the ▁Che chen ▁Republic ' s ▁Parliament ▁ ▁References ▁ ▁External ▁links ▁O leg ▁G ov or un , ▁Minister ▁of ▁Regional ▁Development ▁- ▁ ▁The ▁Vo ice ▁of ▁Russia ▁ ▁Category : 1 9 6 9 ▁birth s ▁Category : Un ited ▁Russia ▁polit icians ▁Category : 2 1 st - century ▁Russian ▁polit icians ▁Category : L iving ▁people ▁Category : M osc ow ▁State ▁Forest ▁University ▁al umn i ▁Category : Pe ople ▁from ▁Br at sk ▁Category : Re cip ients ▁of ▁the ▁Order ▁of ▁Hon our ▁( Russ ia ) ▁Category : Re cip ients ▁of ▁the ▁Order ▁of ▁Friend ship ▁Category : Re cip ients ▁of ▁the ▁Medal ▁of ▁the ▁Order ▁" For
▁Mer it ▁to ▁the ▁Father land " ▁II ▁class <0x0A> </s> ▁Z r ink o ▁is ▁a ▁S lav ic ▁name ▁of ▁Cro at ian ▁origin ▁and ▁is ▁derived ▁from ▁the ▁name ▁of ▁the ▁place ▁Z rin ▁which ▁is ▁situated ▁in ▁the ▁region ▁of ▁Ban ov ina , ▁Cro atia . ▁▁ ▁This ▁name ▁may ▁refer ▁to : ▁ ▁Z r ink o ▁O gr esta , ▁a ▁Cro at ian ▁film ▁director ▁Z r ink o ▁T uti ć , ▁a ▁Cro at ian ▁song writer ▁ ▁See ▁also ▁ ▁Cro at ian ▁name ▁ ▁S lav ic ▁names ▁ ▁Category : C ro at ian ▁mascul ine ▁given ▁names ▁Category : S lav ic ▁mascul ine ▁given ▁names <0x0A> </s> ▁Barbara ▁H . ▁Stein ▁( 1 9 1 6 ▁– ▁ 9 ▁December ▁ 2 0 0 5 ▁Pr inc eton , ▁N . J .) ▁was ▁a ▁scholar ▁and ▁bibli ograph er ▁of ▁Latin ▁American ▁and ▁I ber ia ▁at ▁the ▁Pr inc eton ▁University ▁Library . ▁She ▁and ▁her ▁husband ▁Stanley ▁J . ▁Stein ▁published ▁works ▁on ▁Spain ▁and ▁Spanish ▁America , ▁analyz ing ▁the ▁rise ▁and ▁fall ▁of ▁the ▁Spanish ▁Empire . ▁Stein ▁was ▁hon ored ▁with ▁the ▁American ▁Historical ▁Association ’ s ▁Award ▁for ▁Sch olar ly ▁Dist inction ▁in ▁ 1 9 9 6 , ▁recogn izing ▁her ▁career ▁contributions ▁to ▁I ber ian ▁and ▁Spanish ▁American ▁history . ▁In ▁ 2 0 1 8 , ▁Pr inc eton ▁University ▁acquired ▁a ▁valuable ▁collection ▁of ▁Brazil
ian ▁manuscript s . ▁" The ▁ac quisition ▁hon ors ▁Stanley ▁and ▁Barbara ▁Stein ' s ▁contributions ▁to ▁the ▁library ' s ▁Latin ▁American ▁collections ▁and ▁to ▁Latin ▁American ▁studies ▁at ▁Pr inc eton ." ▁ ▁Early ▁life ▁and ▁career ▁Born ▁Barbara ▁Had ley ▁to ▁a ▁New ▁England ▁family ▁that ▁traces ▁its ▁roots ▁back ▁to ▁the ▁sevent e enth ▁century , ▁she ▁attended ▁pre - col lege ▁schools ▁that ▁sh aped ▁her ▁wide ▁perspective ▁on ▁the ▁world . ▁Two ▁schools ▁were ▁in ▁Europe , ▁the ▁International ▁School ▁in ▁Switzerland ▁and ▁the ▁O den val d ▁School ▁in ▁Germany , ▁and ▁she ▁returned ▁to ▁the ▁U . S . ▁att ending ▁Con cord ▁Academy ▁in ▁Massachusetts , ▁and ▁the ▁Qu aker ' s ▁George ▁School ▁in ▁Pen ns yl via . ▁She ▁entered ▁Smith ▁College ▁and ▁studied ▁with ▁V era ▁Brown ▁Hol mes , ▁a ▁scholar ▁of ▁Latin ▁America ▁and ▁I ber ian ▁who ▁had ▁been ▁awarded ▁a ▁G ug gen heim ▁Fellow ship ▁in ▁ 1 9 3 1 . ▁Stein ▁graduated ▁mag na ▁cum ▁la ude ▁from ▁Smith , ▁and ▁entered ▁gradu ate ▁school ▁at ▁University ▁of ▁California , ▁Ber keley , ▁where ▁she ▁earned ▁an ▁M . A . ▁th esis ▁on ▁AP RA , ▁Peru ’ s ▁oldest ▁political ▁party . ▁ ▁She ▁emb ark ed ▁on ▁doctor al ▁study ▁on ▁the ▁abol ition ▁of ▁sla very ▁in ▁Brazil , ▁with ▁a ▁U . S . ▁State ▁Department ▁Cord ell ▁H ull ▁fellow ship ▁to ▁support ▁her ▁research . ▁She
▁conducted ▁research ▁on ▁the ▁social ▁and ▁political ▁aspects ▁of ▁abol ition ism , ▁purs uing ▁arch ival ▁work ▁in ▁Fort ale za , ▁Rec ife , ▁Salvador ▁de ▁Bah ia , ▁Rio ▁de ▁Janeiro , ▁and ▁São ▁Paulo . ▁While ▁in ▁Brazil , ▁she ▁met ▁anth rop ologist ▁Mel ville ▁H ers kov its ▁and ▁his ▁wife ▁Frances . ▁She ▁also ▁met ▁Stanley ▁Stein , ▁a ▁gradu ate ▁student ▁at ▁Harvard ▁in ▁Latin ▁American ▁history , ▁whom ▁she ▁married ▁in ▁ 1 9 4 3 . ▁Stein ▁and ▁Stein ▁collected ▁Af ro - B raz ilian ▁songs , ▁called ▁, ▁which ▁have ▁recently ▁received ▁scholar ly ▁attention . ▁ ▁She ▁had ▁a ▁variety ▁of ▁life ▁experiences ▁that ▁sh aped ▁her ▁scholar ly ▁interest ▁on ▁power ▁relations ▁included ▁teaching ▁school ▁in ▁rural ▁Mich o ac an , ▁Mexico , ▁working ▁in ▁a ▁California ▁can n ery , ▁working ▁as ▁a ▁census ▁tak er ▁in ▁California ▁for ▁the ▁ 1 9 4 0 ▁census , ▁and ▁as ▁a ▁labor ▁econom ist ▁in ▁the ▁U . S . ▁Department ▁of ▁Labor ▁and ▁Nelson ▁Rock ef eller ’ s ▁Office ▁of ▁Co ordin ator ▁of ▁Inter - American ▁Affairs , ▁in ▁Washington , ▁D . C . ▁ ▁Following ▁her ▁marriage ▁to ▁Stanley ▁Stein , ▁the ▁couple ▁moved ▁to ▁Pr inc eton , ▁N . J ., ▁where ▁she ▁became ▁the ▁first ▁Latin ▁American ▁bibli ograph er ▁at ▁the ▁Pr inc eton ▁University ▁Library , ▁and ▁continued ▁to ▁do ▁research ▁and ▁writing ▁on ▁Latin ▁America ▁and ▁I
ber ia . ▁ ▁Starting ▁in ▁ 1 9 7 0 , ▁she ▁and ▁her ▁husband ▁published ▁a ▁series ▁of ▁works ▁on ▁the ▁Spain ▁and ▁its ▁relationship ▁with ▁its ▁over se as ▁poss essions ▁within ▁the ▁context ▁of ▁the ▁Atlantic ▁world . ▁ ▁The ▁first ▁joint ly ▁published ▁work , ▁The ▁Col onial ▁Heritage ▁of ▁Latin ▁America ▁( 1 9 7 0 ) ▁has ▁made ▁an ▁end uring ▁impact ▁on ▁the ▁field . ▁ ▁Histor ian ▁Vincent ▁Pel oso ▁says ▁of ▁this ▁work , ▁" It ▁is ▁fair ▁to ▁say ▁that ▁no ▁one ▁who ▁studied ▁Latin ▁American ▁history ▁over ▁the ▁last ▁ 3 5 ▁years ▁would ▁have ▁failed ▁to ▁eng age ▁the ▁sl im , ▁eleg antly ▁written ▁synth esis ." ▁ ▁Following ▁this ▁work , ▁the ▁couple ’ s ▁research ▁resulted ▁in ▁three ▁major ▁academic ▁publications : ▁Silver , ▁trade , ▁and ▁war : ▁Spain ▁and ▁America ▁in ▁the ▁M aking ▁of ▁Early ▁Modern ▁Europe . ▁Joh ns ▁Hop kins ▁University ▁Press ▁( 2 0 0 0 ); ▁Ap og ee ▁of ▁Empire : ▁Spain ▁and ▁New ▁Spain ▁in ▁the ▁Age ▁of ▁Charles ▁III , ▁ 1 7 5 9 – 1 7 8 9 . ▁Joh ns ▁Hop kins ▁University ▁Press ▁ 2 0 0 3 ▁and ▁Edge ▁of ▁Cris is : ▁War ▁and ▁Trade ▁in ▁the ▁Spanish ▁Atlantic , ▁ 1 7 8 9 – 1 8 0 8 . ▁Joh ns ▁Hop kins ▁Press ▁ 2 0 0 9 . ▁The ▁final ▁volume ▁revers es ▁the ▁previous ▁order ▁of
▁the ▁authors ' ▁names , ▁placing ▁hers ▁first . ▁Barbara ▁Stein ▁was ▁recognized ▁as ▁a ▁full ▁partner ▁in ▁the ▁intellectual ▁enter prise ▁of ▁dec ades , ▁in ▁an ▁era ▁when ▁many ▁w ives ▁of ▁male ▁academ ics ▁were ▁silent ▁intellectual ▁partners . ▁The ▁Ste ins ' ▁significant ▁works ▁gar ner ed ▁them ▁both ▁the ▁American ▁Historical ▁Association ’ s ▁highest ▁award ▁for ▁senior ▁sch ol ars . ▁ ▁Hon ors ▁▁ 1 9 9 6 ▁American ▁Historical ▁Association , ▁Dist ingu ished ▁Sch olar ▁Award . ▁ ▁Works ▁▁ 1 9 7 7 . ▁Latin ▁America : ▁A ▁Guide ▁to ▁the ▁S ources ▁in ▁the ▁Pr inc eton ▁University ▁Library . ▁ 1 9 7 0 . ▁The ▁colonial ▁her itage ▁of ▁Latin ▁America . ▁With ▁Stanley ▁J . ▁Stein . ▁Vol . ▁ 1 0 . ▁New ▁York : ▁Oxford ▁University ▁Press . ▁ 1 9 7 0 . ▁La ▁her encia ▁colonial ▁de ▁América ▁Lat ina / Col onial ▁her itage ▁of ▁Latin ▁America . ▁Sig lo ▁x xi , ▁ 1 9 7 0 . ▁ 2 0 0 0 . ▁Silver , ▁trade , ▁and ▁war : ▁Spain ▁and ▁America ▁in ▁the ▁making ▁of ▁early ▁modern ▁Europe . ▁With ▁Stanley ▁J . ▁Stein . ▁ ▁Joh ns ▁Hop kins ▁University ▁Press . ▁ 2 0 0 3 . ▁Ap og ee ▁of ▁emp ire : ▁Spain ▁and ▁New ▁Spain ▁in ▁the ▁age ▁of ▁Charles ▁III , ▁ 1 7 5 9 – 1 7 8 9 . ▁With ▁Stanley
▁J . ▁Stein . ▁Joh ns ▁Hop kins ▁University ▁Press . ▁▁▁ 2 0 0 9 . ▁Edge ▁of ▁crisis : ▁War ▁and ▁trade ▁in ▁the ▁Spanish ▁Atlantic , ▁ 1 7 8 9 – 1 8 0 8 . ▁Joh ns ▁Hop kins ▁University ▁Press , ▁ 2 0 0 9 . ▁With ▁Stanley ▁J . ▁ ▁Stein ▁ ▁References ▁ ▁External ▁links ▁ ▁Peter ▁T . ▁Johnson , ▁" Bar bara ▁Had ley ▁Stein ▁( 1 9 1 6 - 2 0 0 5 ). " ▁Pers pect ives ▁on ▁History , ▁American ▁Historical ▁Association , ▁May ▁ 2 0 0 6 ▁Sch olar ly ▁Dist inction ▁Award , ▁American ▁Historical ▁Association ▁ ▁Pr inc eton ▁University ▁Library , ▁Brazil ian ▁Collection ▁acquired ▁hon oring ▁Barbara ▁H . ▁Stein ▁and ▁Stanley ▁J . ▁Stein ▁announ cement ▁ 1 7 ▁May ▁ 2 0 1 8 ▁ ▁Category : 1 9 1 6 ▁birth s ▁Category : 2 0 0 5 ▁death s ▁Category : Smith ▁College ▁al umn i ▁Category : Univers ity ▁of ▁California , ▁Ber keley ▁al umn i ▁Category : H istor ians ▁of ▁Latin ▁America ▁Category : H istor ians ▁of ▁Spain ▁Category : American ▁li br ari ans ▁Category : Pr inc eton ▁University ▁li br ari ans <0x0A> </s> ▁The ▁Fra ey lem ab org ▁() ▁is ▁a ▁b org ▁in ▁the ▁village ▁of ▁Slo chter en ▁in ▁the ▁Netherlands . ▁At ▁present ▁the ▁Fra ey lem ab org ▁is ▁a ▁historic ▁house ▁museum .
▁The ▁museum ▁had ▁ ▁in ▁ 2 0 1 3 . ▁ ▁Building ▁history ▁ ▁Fra ey lem ab org ▁is ▁the ▁most ▁important ▁of ▁the ▁b orgen ▁in ▁the ▁province ▁of ▁G ron ingen . ▁These ▁strong ▁houses ▁or ▁keeps ▁were ▁built ▁in ▁the ▁Middle ▁A ges ▁to ▁store ▁har v ests ▁and ▁to ▁protect ▁their ▁produce ▁from ▁ro bb ers . ▁Besides ▁churches , ▁these ▁structures ▁were ▁the ▁only ▁buildings ▁that ▁used ▁dur able ▁stone ▁and ▁m ason ry . ▁In ▁due ▁time ▁they ▁grew ▁to ▁become ▁cent res ▁of ▁power ▁and ▁wealth . ▁The ▁Fra ey lem ab org ▁is ▁located ▁in ▁the ▁middle ▁of ▁the ▁town ▁of ▁Slo chter en ▁which ▁upon ▁its ▁discovery ▁in ▁ 1 9 5 9 ▁gave ▁its ▁name ▁to ▁the ▁largest ▁gas field ▁in ▁the ▁world . ▁ ▁In ▁ 1 4 7 5 ▁there ▁was ▁already ▁a ▁farm ▁with ▁the ▁name ▁Fre ale ma he erd . ▁In ▁the ▁arch ives ▁of ▁ 1 5 0 4 ▁the ▁name ▁is ▁found ▁of ▁one ▁Rem mer ▁Fra ey le ma . ▁The ▁building ▁origin ates ▁from ▁the ▁ 1 6 th ▁century . ▁The ▁left ▁wing ▁was ▁built ▁in ▁the ▁ 1 7 th ▁century . ▁In ▁ 1 6 8 0 ▁the ▁b org ▁was ▁sold ▁by ▁E vert ▁R engers , ▁son ▁of ▁the ▁former ▁lord ▁of ▁the ▁man or , ▁because ▁of ▁his ▁family ▁deb ts . ▁It ▁was ▁bought ▁by ▁Hen ric ▁Pic card t ▁( mar ried ▁to ▁Anna
▁Elizabeth ▁R engers , ▁E vert ' s ▁sister ), ▁who ▁borrow ed ▁the ▁necessary ▁funds ▁from ▁Stad th older ▁William ▁III . ▁Pic card t ▁extens ively ▁re built ▁the ▁b org ▁and ▁he ▁also ▁land sc aped ▁a ▁huge ▁formal ▁garden ▁in ▁the ▁style ▁of ▁Louis ▁XIV ' s ▁France . ▁After ▁Pic card t ' s ▁death ▁the ▁b org ▁fell ▁into ▁dis rep air . ▁In ▁ 1 7 8 1 ▁the ▁Fra ey lem ab org ▁was ▁sold ▁to ▁Hend rik ▁de ▁Sand ra ▁V eld man . ▁He ▁re built ▁it ▁into ▁the ▁shape ▁it ▁has ▁today . ▁Among ▁his ▁innov ations ▁was ▁the ▁removal ▁of ▁two ▁to wers ▁which ▁had ▁g rac ed ▁the ▁front ▁square . ▁ ▁Garden ▁ ▁Administration ▁▁ ▁Mar jon ▁Ed zes - Post hum us ▁is ▁the ▁museum ▁director ▁and ▁Hen ny ▁van ▁H arten - Bo ers ▁is ▁the ▁cur ator ▁of ▁the ▁Fra ey lem ab org . ▁ ▁In ▁the ▁period ▁ 2 0 0 6 – 2 0 1 4 , ▁the ▁museum ▁had ▁between ▁ 2 6 , 2 4 5 ▁and ▁ ▁per ▁year . ▁The ▁museum ▁had ▁ ▁in ▁ 2 0 1 4 . ▁It ▁is ▁one ▁the ▁most - vis ited ▁museum s ▁in ▁the ▁province ▁of ▁G ron ingen . ▁ ▁The ▁Fra ey lem ab org ▁is ▁a ▁member ▁of ▁Museum h uis ▁G ron ingen ▁( G ron ingen ▁Museum ▁House ), ▁which ▁is ▁an ▁um bre lla ▁organization
▁for ▁museum s ▁and ▁her itage ▁institutions ▁in ▁the ▁province ▁of ▁G ron ingen . ▁ ▁References ▁▁▁ ▁K alk wie k , ▁K . A ., ▁A . I . J . M . ▁Sch ell art , ▁H . P . H . ▁J ansen ▁& ▁P . W . ▁Ge ude ke , ▁Atlas ▁van ▁de ▁Nederlandse ▁k ast elen , ▁Al phen ▁aan ▁den ▁R ijn ▁ 1 9 8 0 ▁() ▁ ▁Hels d ingen , ▁H . W . ▁van , ▁G ids ▁voor ▁de ▁Nederlandse ▁k ast elen ▁en ▁bu iten pla ats en , ▁Amsterdam ▁ 1 9 6 6 ▁ ▁T rom p , ▁H . M . J ., ▁K ijk ▁op ▁k ast elen ▁Amsterdam ▁ 1 9 7 9 ▁() ▁ ▁Batt jes , ▁Jan , ▁& ▁Lad rak , ▁Hans , ▁De ▁tor en ▁uit ▁het ▁m idden . ▁Bou wh istor ie ▁en ▁ont wer pm ethod iek ▁van ▁de ▁Fra ey lem ab org ▁en ▁het ▁Slo chter bos , ▁G ron ingen : ▁Mon nier ▁ 2 0 1 0 ▁() ▁ ▁External ▁links ▁▁▁ ▁, ▁official ▁website ▁ ▁Category : B org s ▁in ▁G ron ingen ▁( prov ince ) ▁Category : H istor ic ▁house ▁museum s ▁in ▁the ▁Netherlands ▁Category : M useum s ▁in ▁G ron ingen ▁( prov ince ) ▁Category : R ij ks mon uments ▁in ▁G ron ingen ▁( prov ince ) ▁Category : S lo chter en
<0x0A> </s> ▁W L WD ▁may ▁refer ▁to : ▁ ▁W L WD - LD ▁( channel ▁ 2 0 ), ▁a ▁low - power ▁television ▁station ▁lic ensed ▁to ▁serve ▁Spring field , ▁Ohio , ▁United ▁States , ▁which ▁serves ▁as ▁a ▁repe ater ▁of ▁the ▁Day star ▁network ▁W DT N ▁( channel ▁ 2 ), ▁a ▁television ▁station ▁lic ensed ▁to ▁serve ▁Day ton , ▁Ohio , ▁United ▁States ▁which ▁formerly ▁held ▁the ▁W L WD ▁call sign ▁W B KS ▁( 9 3 . 9 ▁FM ), ▁a ▁radio ▁station ▁lic ensed ▁to ▁serve ▁Columb us ▁Gro ve , ▁Ohio , ▁United ▁States ▁which ▁formerly ▁held ▁the ▁W L WD ▁call sign <0x0A> </s> ▁Computer - ass isted ▁tele phone ▁interview ing ▁( CAT I ) ▁is ▁a ▁tele phone ▁surve ying ▁technique ▁in ▁which ▁the ▁inter v iewer ▁follows ▁a ▁script ▁provided ▁by ▁a ▁software ▁application . ▁It ▁is ▁a ▁struct ured ▁system ▁of ▁micro data ▁collection ▁by ▁tele phone ▁that ▁spe eds ▁up ▁the ▁collection ▁and ▁editing ▁of ▁micro data ▁and ▁also ▁perm its ▁the ▁inter v iewer ▁to ▁educ ate ▁the ▁respond ents ▁on ▁the ▁importance ▁of ▁tim ely ▁and ▁accurate ▁data . ▁The ▁software ▁is ▁able ▁to ▁custom ize ▁the ▁flow ▁of ▁the ▁question naire ▁based ▁on ▁the ▁answers ▁provided , ▁as ▁well ▁as ▁information ▁already ▁known ▁about ▁the ▁particip ant . ▁It ▁is ▁used ▁in ▁B 2 B ▁services ▁and ▁corpor ate ▁sales . ▁ ▁C AT I ▁may ▁function ▁in ▁the ▁following ▁manner
: ▁▁ ▁A ▁computer ized ▁question naire ▁is ▁admin ister ed ▁to ▁respond ents ▁over ▁the ▁tele phone . ▁ ▁The ▁inter v iewer ▁s its ▁in ▁front ▁of ▁a ▁computer ▁screen . ▁ ▁Upon ▁command , ▁the ▁computer ▁d ial s ▁the ▁tele phone ▁number ▁to ▁be ▁called . ▁ ▁When ▁contact ▁is ▁made , ▁the ▁inter v iewer ▁reads ▁the ▁questions ▁pos ed ▁on ▁the ▁computer ▁screen ▁and ▁records ▁the ▁respond ent ' s ▁answers ▁directly ▁into ▁the ▁computer . ▁ ▁Inter im ▁and ▁update ▁reports ▁can ▁be ▁compiled ▁instant ane ously , ▁as ▁the ▁data ▁are ▁being ▁collected . ▁ ▁C AT I ▁software ▁has ▁built - in ▁logic , ▁which ▁also ▁enh ances ▁data ▁accuracy . ▁ ▁The ▁program ▁will ▁personal ize ▁questions ▁and ▁control ▁for ▁log ically ▁incorrect ▁answers , ▁such ▁as ▁percentage ▁answers ▁that ▁do ▁not ▁add ▁up ▁to ▁ 1 0 0 ▁percent . ▁ ▁The ▁software ▁has ▁built - in ▁branch ing ▁logic , ▁which ▁will ▁skip ▁questions ▁that ▁are ▁not ▁applicable ▁or ▁will ▁pro be ▁for ▁more ▁detail ▁when ▁war r anted . ▁ ▁Autom ated ▁d ial ers ▁are ▁usually ▁deployed ▁to ▁lower ▁the ▁waiting ▁time ▁for ▁the ▁inter v iewer , ▁as ▁well ▁as ▁to ▁record ▁the ▁interview ▁for ▁quality ▁purposes . ▁ ▁Autom ated ▁computer ▁tele phone ▁interview ing ▁Autom ated ▁computer ▁tele phone ▁interview ing ▁( ACT I ) ▁is ▁a ▁technique ▁by ▁which ▁a ▁computer ▁with ▁speaker - in dependent ▁voice ▁recognition ▁capabilities ▁asks ▁respond ents ▁a ▁series ▁of
▁questions , ▁recogn izes ▁then ▁stores ▁the ▁answers , ▁and ▁is ▁able ▁to ▁follow ▁script ed ▁logic ▁and ▁branch ▁intellig ently ▁according ▁to ▁the ▁flow ▁of ▁the ▁question naire ▁based ▁on ▁the ▁answers ▁provided , ▁as ▁well ▁as ▁information ▁known ▁about ▁the ▁particip ant . ▁This ▁technique ▁is ▁also ▁referred ▁to ▁as ▁interactive ▁voice ▁response ▁( IV R ). ▁ ▁See ▁also ▁▁ ▁Computer - ass isted ▁personal ▁interview ing ▁ ▁Computer - ass isted ▁web ▁interview ing ▁ ▁Random ▁digit ▁di alling ▁ ▁References ▁▁▁▁ ▁Mark eting ▁Research . ▁School ▁of ▁Business ▁& ▁Account ancy , ▁N ge e ▁Ann ▁Poly techn ic . ▁Jon as ▁Lee . ▁Pear son . ▁ ▁Category : Spe aker ▁recognition ▁Category : Sur vey ▁method ology <0x0A> </s> ▁Sir ▁Thomas ▁Dun lop , ▁ 1 st ▁Baron et ▁ ▁( 2 ▁August ▁ 1 8 5 5 ▁– ▁ 2 9 ▁January ▁ 1 9 3 8 ) ▁was ▁a ▁Scottish ▁business man . ▁ ▁Life ▁ ▁Dun lop ▁was ▁the ▁el dest ▁son ▁of ▁Thomas ▁Dun lop ▁( 1 8 3 1 – 1 8 9 3 ), ▁a ▁gra in ▁merchant ▁and ▁founder ▁of ▁the ▁sh ipping ▁company , ▁Thomas ▁Dun lop ▁& ▁S ons , ▁and ▁his ▁wife , ▁Rob ina ▁Jack . ▁He ▁became ▁a ▁senior ▁partner ▁in ▁his ▁father ' s ▁company ▁and ▁later ▁a ▁director ▁of ▁the ▁Royal ▁Bank ▁of ▁Scotland , ▁Bruce ▁Pe eb les ▁Ltd ▁and ▁the ▁Scottish ▁Union ▁and ▁National ▁In sur ance ▁Company . ▁▁
▁In ▁ 1 9 1 4 , ▁he ▁became ▁Lord ▁Prov ost ▁of ▁Glasgow ▁and ▁was ▁created ▁a ▁baron et ▁in ▁ 1 9 1 6 ▁due ▁to ▁this ▁position ▁and ▁appointed ▁a ▁Knight ▁Grand ▁Cross ▁of ▁the ▁Order ▁of ▁the ▁British ▁Empire ▁( GB E ) ▁in ▁ 1 9 1 8 . ▁ ▁Dun lop ▁is ▁buried ▁with ▁his ▁family ▁in ▁the ▁Glasgow ▁N ec ropol is . ▁The ▁grave ▁lies ▁on ▁the ▁southern ▁path ▁of ▁the ▁main ▁upper ▁section . ▁ ▁Family ▁ ▁In ▁ 1 8 7 9 ▁Dun lop ▁was ▁married ▁to ▁Dor othy ▁Eu ph emia ▁Mitchell ▁( 1 8 5 5 - 1 8 9 2 ), ▁daughter ▁of ▁Peter ▁Mitchell ▁of ▁Long n idd ry . ▁When ▁she ▁died ▁he ▁married ▁her ▁younger ▁sister , ▁Margaret ▁Mitchell ▁( 1 8 5 7 - 1 9 5 2 ). ▁ ▁When ▁he ▁died ▁the ▁baron et cy ▁fell ▁to ▁his ▁el dest ▁son , ▁Thomas ▁Dun lop ▁( 1 8 8 1 - 1 9 6 3 ). ▁ ▁References ▁ ▁Category : Sc ott ish ▁business people ▁Category : Bar on ets ▁in ▁the ▁Baron et age ▁of ▁the ▁United ▁Kingdom ▁Category : K n ights ▁Grand ▁Cross ▁of ▁the ▁Order ▁of ▁the ▁British ▁Empire ▁Category : L ord ▁Prov ost s ▁of ▁Glasgow ▁Category : De put y ▁Lie uten ants ▁of ▁Glasgow ▁Category : 1 8 5 5 ▁birth s ▁Category : 1 9 3 8 ▁death s ▁Category : De put y
▁Lie uten ants ▁of ▁Lan ark shire ▁Category : Ro yal ▁Bank ▁of ▁Scotland ▁people <0x0A> </s> ▁Char lemagne ▁Mass é na ▁P éral te ▁( 1 8 8 6 ▁- ▁ 1 ▁November ▁ 1 9 1 9 ) ▁was ▁a ▁H ait ian ▁national ist ▁leader ▁who ▁opposed ▁the ▁United ▁States ▁occupation ▁of ▁H ait i ▁in ▁ 1 9 1 5 . ▁Le ading ▁gu err illa ▁f igh ters ▁called ▁the ▁C ac os , ▁he ▁pos ed ▁such ▁a ▁challenge ▁to ▁the ▁US ▁forces ▁in ▁H ait i ▁that ▁the ▁occup ying ▁forces ▁had ▁to ▁upgrade ▁their ▁presence ▁in ▁the ▁country . ▁P éral te ▁remains ▁a ▁highly ▁pra ised ▁hero ▁in ▁H ait i . ▁ ▁Early ▁life ▁P éral te ▁was ▁born ▁October ▁ 1 0 th ▁ 1 8 8 5 ▁( or ▁ 1 8 8 6 ) ▁in ▁the ▁city ▁of ▁Hin che . ▁His ▁father ▁was ▁General ▁Rem i ▁Mass ena ▁Per al te . ▁ ▁Gu err illa ▁resistance ▁An ▁officer ▁by ▁career , ▁Char lemagne ▁P éral te ▁was ▁the ▁military ▁chief ▁of ▁the ▁city ▁of ▁Lé og â ne ▁when ▁the ▁US ▁Mar ines ▁inv aded ▁H ait i ▁in ▁July ▁ 1 9 1 5 . ▁ ▁Ref using ▁to ▁surrender ▁to ▁foreign ▁troops ▁without ▁fighting , ▁P éral te ▁res igned ▁from ▁his ▁position ▁and ▁returned ▁to ▁his ▁native ▁town ▁of ▁Hin che ▁to ▁take ▁care ▁of ▁his ▁family ' s ▁land . ▁In ▁ 1 9
1 7 , ▁he ▁was ▁arrested ▁for ▁a ▁bot ched ▁ra id ▁on ▁the ▁Hin che ▁g endar mer ie ▁pay roll , ▁and ▁was ▁sent enced ▁to ▁five ▁years ▁of ▁forced ▁labor . ▁Esc aping ▁his ▁capt ivity , ▁Char lemagne ▁P éral te ▁gathered ▁a ▁group ▁of ▁national ist ▁reb els ▁and ▁started ▁gu err illa ▁war fare ▁against ▁the ▁US ▁troops . ▁ ▁The ▁troops ▁led ▁by ▁P éral te ▁were ▁called ▁" C ac os ", ▁a ▁name ▁that ▁h ark ed ▁back ▁to ▁rural ▁troops ▁that ▁histor ically ▁took ▁part ▁in ▁the ▁political ▁tur mo il ▁of ▁late ▁ 1 9 th ▁century ▁H ait i . ▁The ▁gu err illa ▁war riors ▁of ▁the ▁C ac os ▁were ▁such ▁strong ▁advers aries ▁that ▁the ▁United ▁States ▁upgrad ed ▁the ▁US ▁Marine ▁cont ing ent ▁in ▁H ait i ▁and ▁even ▁employed ▁air plan es ▁for ▁counter - gu err illa ▁war fare . ▁His ▁forces ▁attacked ▁Port - au - Pr ince ▁in ▁ 1 9 1 9 , ▁but ▁were ▁driven ▁off . ▁ ▁Death ▁and ▁after math ▁ ▁After ▁two ▁years ▁of ▁gu err illa ▁war fare , ▁leading ▁P éral te ▁to ▁declare ▁a ▁prov is ional ▁government ▁in ▁the ▁north ▁of ▁H ait i , ▁Char lemagne ▁P éral te ▁was ▁bet rayed ▁by ▁one ▁of ▁his ▁officers , ▁Jean - B apt iste ▁Con z é , ▁who ▁led ▁dis gu ised ▁US ▁Mar ines ▁Serge ant ▁H erman ▁H . ▁Han
ne ken ▁( l ater ▁mer itor iously ▁promoted ▁to ▁Second ▁Lieutenant ▁for ▁his ▁explo its ) ▁and ▁Corpor al ▁William ▁Button ▁into ▁the ▁reb els ▁camp , ▁near ▁Grand - R iv ière ▁Du ▁Nord . ▁ ▁P éral te ▁was ▁shot ▁in ▁the ▁heart ▁at ▁close ▁range . ▁Han ne ken ▁and ▁his ▁men ▁then ▁fled ▁with ▁Per al te ' s ▁body ▁stra pped ▁onto ▁a ▁m ule . ▁ ▁In ▁order ▁to ▁disc ou rage ▁re bel ▁support ▁from ▁the ▁H ait ian ▁population , ▁the ▁US ▁troops ▁took ▁a ▁picture ▁of ▁Char lemagne ▁P éral te ' s ▁body ▁tied ▁to ▁a ▁door , ▁and ▁distributed ▁it ▁in ▁the ▁country . ▁However , ▁it ▁had ▁the ▁opposite ▁effect , ▁with ▁the ▁image ' s ▁res embl ance ▁to ▁a ▁cru c if ix ion ▁making ▁it ▁an ▁icon ▁of ▁the ▁resistance ▁and ▁establish ing ▁P éral te ▁as ▁a ▁mart yr . ▁ ▁Char lemagne ▁P éral te ' s ▁remains ▁were ▁un ear th ed ▁after ▁the ▁end ▁of ▁the ▁US ▁occupation ▁in ▁ 1 9 3 5 . ▁ ▁A ▁national ▁fun eral , ▁attended ▁by ▁the ▁then - Pres ident ▁of ▁H ait i , ▁St én io ▁Vincent , ▁was ▁held ▁in ▁Cap - Ha ï t ien , ▁where ▁his ▁grave ▁can ▁still ▁be ▁seen ▁today . ▁ ▁A ▁portrait ▁of ▁Char lemagne ▁P éral te ▁can ▁now ▁be ▁seen ▁on ▁the ▁H ait ian ▁co ins ▁issued ▁by ▁the ▁government ▁of ▁Jean
- Ber tr and ▁Arist ide ▁after ▁his ▁ 1 9 9 4 ▁return ▁under ▁the ▁protection ▁of ▁US ▁troops . ▁ ▁Con sequently , ▁for ▁their ▁d aring ▁explo it , ▁Corpor al ▁Button ▁( 1 8 9 5 – 1 9 2 1 ) ▁and ▁Serge ant ▁Han ne ken ▁( 1 8 9 3 – 1 9 8 6 ) ▁were ▁both ▁awarded ▁the ▁Medal ▁of ▁Honor ▁for ▁killing ▁the ▁" sup reme ▁band it ▁of ▁H ait i ". ▁Han ne ken ▁later ▁served ▁in ▁World ▁War ▁II , ▁not ably ▁at ▁Gu adal can al ▁and ▁ended ▁his ▁career ▁as ▁a ▁brig ad ier ▁general . ▁In ▁his ▁later ▁days , ▁he ▁constantly ▁decl ined ▁to ▁comment ▁on ▁his ▁explo its ▁in ▁H ait i , ▁not ably ▁to ▁H ait ian ▁journal ists ▁asking ▁for ▁inter views ▁on ▁the ▁ 1 0 0 th ▁anni versary ▁of ▁P éral te ' s ▁birth , ▁in ▁ 1 9 8 6 . ▁ ▁References ▁▁ ▁Category : 1 8 8 0 s ▁birth s ▁Category : 1 9 1 9 ▁death s ▁Category : H ait ian ▁national ists ▁Category : H ait ian ▁reb els ▁Category : H ait ian ▁people ▁of ▁Mul atto ▁descent ▁Category : Pe ople ▁from ▁Hin che ▁Category : De ath s ▁by ▁fire arm ▁in ▁H ait i ▁Category : G uer r illas ▁killed ▁in ▁action ▁Category : Ind ep end ence ▁activ ists ▁Category : Pe ople ▁of ▁the
▁Ban ana ▁Wars <0x0A> </s> ▁Tar an is ▁mo er ch ii ▁is ▁a ▁species ▁of ▁sea ▁sn ail , ▁a ▁marine ▁g ast rop od ▁m oll usk ▁in ▁the ▁family ▁R aph it om idae . ▁ ▁Description ▁The ▁length ▁of ▁the ▁shell ▁var ies ▁between ▁ 2 ▁mm ▁and ▁ 4 ▁mm . ▁ ▁The ▁two ▁spec im ens ▁from ▁station ▁ 2 0 7 7 , ▁in ▁ 1 2 5 5 ▁f ath oms , ▁are ▁somewhat ▁st outer ▁than ▁those ▁previously ▁obtained , ▁and ▁have ▁the ▁principal ▁car ina , ▁forming ▁the ▁shoulder , ▁larger ▁and ▁more ▁prominent ▁than ▁usual , ▁but ▁it ▁be ars ▁only ▁very ▁minute ▁t uber cles , ▁corresponding ▁to ▁the ▁very ▁fine ▁and ▁close ▁r ible ts ▁which ▁cross ▁the ▁wide ▁and ▁ab rupt ly ▁s lop ing ▁subs ut ural ▁ ▁band ▁ob liqu ely , ▁and ▁are ▁about ▁twice ▁as ▁numerous ▁and ▁much ▁fin er ▁than ▁in ▁the ▁ordinary ▁variety . ▁On ▁the ▁body ▁wh or l ▁there ▁are ▁about ▁six ▁prominent , ▁distant , ▁revol ving ▁c ing uli ▁below ▁the ▁shoulder , ▁besides ▁some ▁faint ▁ones ▁on ▁the ▁base ▁of ▁the ▁si ph onal ▁canal . ▁The ▁space ▁between ▁the ▁upp erm ost ▁of ▁these ▁and ▁the ▁shoulder - car ina ▁is ▁greater ▁than ▁usual . ▁The ▁lines ▁of ▁growth ▁are ▁much ▁fin er ▁than ▁in ▁the ▁ordinary ▁form ▁and ▁do ▁not ▁take ▁the ▁appearance ▁of ▁r ible ts ▁on ▁the ▁body ▁wh or l , ▁nor ▁do
▁they ▁render ▁the ▁c ing uli ▁nod ul ous . ▁The ▁s uture ▁is ▁sharp ly ▁im pressed , ▁and ▁the ▁raised ▁revol ving ▁line ▁usually ▁present ▁just ▁below ▁the ▁s uture ▁is ▁absent . ▁This ▁form , ▁therefore , ▁is ▁character ized ▁by ▁the ▁relative ▁pre domin ance ▁of ▁the ▁spir al ▁sculpt ure ▁over ▁the ▁trans verse , ▁and ▁by ▁the ▁absence ▁of ▁distinct ▁nod ules ▁at ▁the ▁crossing ▁of ▁the ▁two ▁systems ▁of ▁lines . ▁ ▁( des cribed ▁as ▁Tar an is ▁mo er ch ii ▁var . ▁torn ata ) ▁ ▁Distribution ▁This ▁marine ▁species ▁occurs ▁off ▁the ▁Far o es ; ▁Northern ▁Norway ▁to ▁the ▁Mediter rane an ▁Sea . ▁ ▁References ▁▁ ▁Mal m , ▁A . W . ▁( 1 8 6 1 ). ▁[ E ] n ▁Ra ek ke ▁af ▁F iske , ▁Kre b sd yr ▁og ▁Bl ø dd yr , ▁som ▁ere ▁n ye ▁for ▁den ▁sk and in av iske ▁Fa una , ▁og ▁med de elte ▁de ▁n eden an f ør te ▁B ema erk ninger ▁om ▁disse ▁Ar ter . ▁For hand ling er ▁ved ▁de ▁Sk and in av iske ▁Natur for sk eres , ▁ 8 : ▁ 6 1 6 – 6 2 4 . ▁For hand ling er ▁ved ▁de ▁Sk and in av iske ▁Natur for sk eres . ▁ 8 : ▁ 6 1 6 - 6 2 4 ▁ ▁Bru gn one , ▁G . A . ▁( 1
8 6 2 ) ▁Mem oria ▁sop ra ▁alcuni ▁ple uro tom i ▁foss ili ▁dei ▁d int or ni ▁di ▁Pal ermo . ▁F . ▁La o , ▁Pal ermo , ▁ 4 1 ▁pp ., ▁ 1 ▁pl . ▁ ▁St ur any ▁R . ▁( 1 8 9 6 ). ▁Zo ologische ▁Ergeb nisse ▁VII . ▁M oll us ken ▁I ▁( Pro sob ranch ier ▁und ▁O pis th ob ranch ier ; ▁Sc aph op oden ; ▁Lam el lib ranch ier ) ▁ges amm elt ▁von ▁S . M . ▁Schiff ▁" P ola " ▁ 1 8 9 0 - 1 8 9 4 . ▁Den k sch riften ▁der ▁Kaiser lichen ▁Akademie ▁der ▁Wissenschaft en , ▁Mathemat ische - N atur wissenschaft l ischen ▁Cl asse , ▁ 6 3 : ▁ 1 - 3 6 , ▁pl . 1 - 2 ▁ ▁G of as , ▁S .; ▁Le ▁Ren ard , ▁J .; ▁B ouch et , ▁P . ▁( 2 0 0 1 ). ▁M oll us ca . ▁in : ▁Cost ello , ▁M . J . ▁et ▁al . ▁( eds ), ▁European ▁Register ▁of ▁Marine ▁Species : ▁a ▁check - list ▁of ▁the ▁marine ▁species ▁in ▁Europe ▁and ▁a ▁bibli ography ▁of ▁gu ides ▁to ▁their ▁identification . ▁Pat r imo ines ▁Nature ls . ▁ 5 0 : ▁ 1 8 0 - 2 1 3 . ▁ ▁External ▁links ▁ ▁Bi ol ib . cz ▁: ▁Tar
an is ▁mo er ch ii ▁ ▁Gast rop ods . com : ▁Tar an is ▁mo er ch ii ▁▁▁ ▁T iber i , ▁N . ▁( 1 8 6 8 ). ▁Nova ▁Mediter rane a ▁test ace a . ▁Journal ▁de ▁Con chy li ologie . ▁ 1 6 : ▁ 1 7 9 - 1 8 0 ▁ ▁Loc ard ▁A . ▁( 1 8 9 7 - 1 8 9 8 ). ▁Exp éd itions ▁scient if iques ▁du ▁Tra v aille ur ▁et ▁du ▁T alis man ▁pendant ▁les ▁années ▁ 1 8 8 0 , ▁ 1 8 8 1 , ▁ 1 8 8 2 ▁et ▁ 1 8 8 3 . ▁M oll us ques ▁test ac és . ▁Paris , ▁Mass on . ▁vol . ▁ 1 ▁[ 1 8 9 7 , ▁p . ▁ 1 - 5 1 6 ▁pl . ▁ 1 - 2 2 ; ▁vol . ▁ 2 ▁[ 1 8 9 8 ], ▁p . ▁ 1 - 5 1 5 , ▁pl . ▁ 1 - 1 8 ] ▁▁ ▁Census ▁of ▁Marine ▁Life ▁( 2 0 1 2 ). ▁SY N DE EP : ▁Tow ards ▁a ▁first ▁global ▁synth esis ▁of ▁b iod iversity , ▁bi oge ography ▁and ▁e cos ystem ▁function ▁in ▁the ▁deep ▁sea . ▁Un pub lished ▁data ▁( dataset ID : ▁ 2 0 ) ▁ ▁D yntax a . ▁( 2 0 1 3 ). ▁Swedish ▁Tax onom ic
▁Database . ▁ ▁Check ▁List ▁of ▁European ▁Marine ▁M oll us ca ▁( C LE MA M ) ▁ ▁mo er ch ii ▁Category : G ast rop ods ▁described ▁in ▁ 1 8 6 1 <0x0A> </s> ▁Mer cer ▁Street ▁Historic ▁District ▁is ▁a ▁national ▁historic ▁district ▁ ▁located ▁at ▁Pr inc eton , ▁Mer cer ▁County , ▁West ▁Virginia . ▁ ▁The ▁district ▁includes ▁ 2 8 ▁contrib uting ▁buildings ▁in ▁the ▁central ▁business ▁district ▁of ▁Pr inc eton . ▁The ▁buildings ▁are ▁primarily ▁two ▁and ▁three - story , ▁m ason ry ▁commercial ▁buildings ▁with ▁store front s ▁on ▁the ▁first ▁floor ▁and ▁housing ▁in ▁the ▁upper ▁stories . ▁Al most ▁all ▁of ▁the ▁buildings ▁date ▁from ▁the ▁opening ▁of ▁the ▁Virgin ian ▁Railway ▁in ▁ 1 9 0 8 ▁and ▁ 1 9 0 9 . ▁ ▁Notable ▁buildings ▁include ▁the ▁Old ▁St ag ▁Cl othing ▁Store , ▁Mer cer ▁County ▁School s ▁W are house ▁( c . ▁ 1 9 3 0 ), ▁C lean ers ▁and ▁Lau nd ry ▁Building ▁( c . ▁ 1 9 1 5 ), ▁S ively ▁Company ▁Building ▁( 1 9 1 3 ), ▁M ull ins ▁Brothers ▁Building ▁( 1 9 1 2 ), ▁and ▁D & D ▁S addle ▁and ▁T ack ▁Building ▁( c . ▁ 1 9 1 5 ). ▁ ▁It ▁was ▁listed ▁on ▁the ▁National ▁Register ▁of ▁Historic ▁Places ▁in ▁ 2 0 0 3 . ▁ ▁References ▁ ▁Category : Com mer cial ▁buildings
▁on ▁the ▁National ▁Register ▁of ▁Historic ▁Places ▁in ▁West ▁Virginia ▁Category : H istor ic ▁districts ▁in ▁Mer cer ▁County , ▁West ▁Virginia ▁Category : National ▁Register ▁of ▁Historic ▁Places ▁in ▁Mer cer ▁County , ▁West ▁Virginia ▁Category : H istor ic ▁districts ▁on ▁the ▁National ▁Register ▁of ▁Historic ▁Places ▁in ▁West ▁Virginia ▁Category : Pr inc eton , ▁West ▁Virginia <0x0A> </s> ▁The ▁Order ▁of ▁Hon our ▁() ▁is ▁a ▁state ▁order ▁of ▁the ▁Russian ▁Federation ▁established ▁by ▁President ial ▁Dec ree ▁No . ▁ 4 4 2 ▁of ▁March ▁ 2 , ▁ 1 9 9 4 ▁to ▁recogn ise ▁high ▁achiev ements ▁in ▁government , ▁economic , ▁scientific , ▁soci oc ult ural , ▁public , ▁sport ▁and ▁char itable ▁activities . ▁ ▁Its ▁stat ute ▁was ▁am ended ▁by ▁dec ree ▁No . ▁ 1 9 ▁of ▁January ▁ 6 , ▁ 1 9 9 9 ▁and ▁more ▁l ately ▁by ▁dec ree ▁No . ▁ 1 0 9 9 ▁of ▁January ▁ 7 , ▁ 2 0 1 0 ▁ ▁which ▁defined ▁its ▁present ▁status . ▁It ▁should ▁not ▁be ▁confused ▁with ▁the ▁Soviet ▁Order ▁of ▁the ▁Bad ge ▁of ▁Hon our , ▁although ▁the ▁current ▁order ▁maintain s ▁continu ity ▁with ▁it . ▁ ▁Award ▁stat ute ▁The ▁Order ▁of ▁Hon our ▁is ▁awarded ▁to ▁citizens ▁of ▁the ▁Russian ▁Federation : ▁ ▁For ▁high ▁achiev ements ▁in ▁production ▁and ▁economic ▁indic ators ▁in ▁industry , ▁construction , ▁agricult ure , ▁communic ations , ▁energy ▁and ▁transport ,
▁couple d ▁with ▁the ▁pre domin ant ▁use ▁of ▁innov ative ▁techn ologies ▁in ▁the ▁production ▁process ▁ ▁For ▁a ▁significant ▁increase ▁in ▁the ▁level ▁of ▁so cio - e conom ic ▁development ▁of ▁the ▁Russian ▁Federation ; ▁for ▁achiev ements ▁in ▁modern izing ▁the ▁Russian ▁health ▁care ▁system , ▁aim ed ▁at ▁significantly ▁impro ving ▁the ▁quality ▁of ▁the ▁provision ▁of ▁medical ▁services , ▁as ▁well ▁as ▁the ▁development ▁and ▁w ides p read ▁practical ▁applications ▁of ▁modern ▁and ▁innov ative ▁methods ▁of ▁diagn osing ▁and ▁tre ating ▁dise ases ▁ ▁For ▁achiev ements ▁in ▁scientific ▁research ▁resulting ▁in ▁significant ▁Russian ▁scientific ▁and ▁techn ological ▁advantage ▁in ▁various ▁fields ▁of ▁science , ▁increased ▁domestic ▁production ▁of ▁compet itive ▁high - tech ▁products ▁ ▁For ▁services ▁to ▁improve ▁the ▁Russian ▁education ▁system ▁aim ed ▁at ▁dram atically ▁impro ving ▁the ▁quality ▁of ▁the ▁education ▁provided , ▁the ▁system ▁of ▁training ▁special ists ▁for ▁the ▁Russian ▁economy ▁and ▁increasing ▁international ▁prest ige ▁of ▁Russian ▁educational ▁institutions ▁ ▁For ▁significant ▁contribution ▁to ▁the ▁pres ervation , ▁promotion ▁and ▁development ▁of ▁Russian ▁culture , ▁art , ▁history ▁and ▁the ▁Russian ▁language , ▁associated ▁with ▁increased ▁levels ▁of ▁cultural ▁and ▁human itar ian ▁development ▁of ▁civil ▁and ▁patri otic ▁education ▁of ▁the ▁younger ▁generation ▁ ▁For ▁very ▁fruit ful ▁public , ▁char itable ▁and ▁community ▁activities ▁ ▁For ▁mer it ▁in ▁the ▁promotion , ▁and ▁support ▁of ▁youth ▁sports , ▁as ▁well ▁as ▁professional ▁sport , ▁consider ably ▁increasing ▁the ▁level ▁of ▁physical ▁activity ▁and ▁making ▁Russia
▁a ▁World ▁leader ▁in ▁individual ▁sports ▁ ▁The ▁Order ▁may ▁also ▁be ▁con ferred ▁on ▁foreign ▁citizens ▁who ▁have ▁performed ▁out standing ▁service ▁to ▁improve ▁bil ater al ▁relations ▁with ▁Russia . ▁ ▁The ▁Order ▁of ▁Hon our ▁is ▁worn ▁on ▁the ▁left ▁side ▁of ▁the ▁ch est ▁and ▁when ▁in ▁the ▁presence ▁of ▁other ▁med als ▁and ▁orders ▁of ▁the ▁Russian ▁Federation , ▁is ▁situated ▁immediately ▁after ▁the ▁Order ▁" For ▁Naval ▁Mer it ". ▁ ▁Award ▁description ▁ ▁The ▁Order ▁is ▁struck ▁from ▁silver ▁and ▁covered ▁with ▁en am els , ▁it ▁is ▁sh aped ▁as ▁a ▁ 4 2   mm ▁in ▁diameter ▁oct ag onal ▁cross ▁en am elled ▁in ▁blue ▁on ▁its ▁ob verse ▁except ▁for ▁a ▁ 2   mm ▁wide ▁band ▁along ▁its ▁entire ▁outer ▁edge ▁which ▁remains ▁bare ▁silver . ▁ ▁The ▁ob verse ▁be ars ▁a ▁white ▁en am elled ▁central ▁med all ion ▁border ed ▁by ▁a ▁silver ▁la ure l ▁w re ath , ▁the ▁med all ion ▁be ars ▁the ▁silver ▁state ▁symbol ▁of ▁the ▁Russian ▁Federation . ▁ ▁On ▁the ▁otherwise ▁plain ▁reverse , ▁two ▁riv ets ▁and ▁the ▁award ▁serial ▁number ▁at ▁the ▁bottom . ▁ ▁The ▁Order ▁of ▁Hon our ▁is ▁susp ended ▁by ▁a ▁ring ▁through ▁the ▁bad ge ' s ▁susp ension ▁loop ▁to ▁a ▁standard ▁Russian ▁pent ag onal ▁mount ▁covered ▁by ▁a ▁ 2 4   mm ▁wide ▁over la pping ▁blue ▁sil k ▁mo ir é ▁rib bon ▁with ▁a ▁ 2 .
5   mm ▁wide ▁white ▁stri pe ▁situated ▁ 5   mm ▁from ▁the ▁rib bon ' s ▁right ▁edge . ▁ ▁Notable ▁recip ients ▁( partial ▁list ) ▁The ▁individuals ▁below ▁are ▁recip ients ▁of ▁the ▁Order ▁of ▁Hon our ". ▁ ▁Mik h ail ▁G orb ache v , ▁last ▁General ▁Secretary ▁of ▁the ▁Commun ist ▁Party ▁of ▁the ▁Soviet ▁Union , ▁first ▁and ▁only ▁elected ▁President ▁of ▁the ▁USS R ▁P avel ▁Roman ov ich ▁Pop ov ich , ▁cos mon aut ▁Via ches lav ▁" S lava " ▁Alexand rov ich ▁F et is ov , ▁former ▁Minister ▁of ▁Sport ▁of ▁Russia ▁Vladimir ▁Vol f ov ich ▁Zh ir in ov sky , ▁politician , ▁Vice - Ch air man ▁of ▁the ▁State ▁D uma ▁Mos he ▁Kant or , ▁peace ▁activ ist ▁T ik hon ▁Nikol ay ev ich ▁K hr enn ik ov , ▁composer , ▁pian ist ▁and ▁political ▁activ ist ▁Muslim ▁Mah amm ad ▁og lu ▁Mag om ay ev , ▁( mus ician ) ▁singer ▁Mik h ail ▁Y ef im ov ich ▁F rad kov , ▁former ▁Prime ▁Minister ▁of ▁Russia ▁Serge y ▁Vik tor ov ich ▁Lav rov , ▁diplom at , ▁Russia ' s ▁amb assador ▁to ▁the ▁United ▁Nations ▁( 1 9 9 4 – 2 0 0 4 ), ▁Russia ' s ▁Foreign ▁Minister ▁( 2 0 0 4 – present ) ▁Serge i ▁Konst antin ov ich ▁K rik ale v , ▁cos mon aut ▁Y uli ▁Mik
h ail ov ich ▁Vor ont so v , ▁diplom at , ▁former ▁Russian ▁Amb assador ▁to ▁the ▁United ▁States ▁D mit ry ▁Tim of ey ev ich ▁Y az ov , ▁Marsh al ▁of ▁the ▁Soviet ▁Union ▁Y ury ▁Mik h ay lov ich ▁Lu zh kov , ▁former ▁Mayor ▁of ▁Moscow ▁Serge y ▁T ety uk hin ▁vol ley ball ▁player ▁Serge y ▁K uz hu get ov ich ▁Sho y gu , ▁former ▁Minister ▁of ▁Emer gency ▁Situ ations , ▁Minister ▁of ▁Def ense ▁( 2 0 1 2 – present ) ▁Vik tor ▁Pet rov ich ▁Sav iny kh , ▁cos mon aut ▁Sher ig - ool ▁D iz iz h ik ov ich ▁O or zh ak , ▁former ▁leader ▁of ▁the ▁Tu va ▁Juan ▁Antonio ▁Sam ar anch , ▁sevent h ▁President ▁of ▁the ▁International ▁Olympic ▁Committee ▁V ital y ▁G enn ady ev ich ▁Sav ely ev , ▁Director ▁General ▁and ▁CE O ▁of ▁Aer of lot ▁An atol y ▁Y ury ev ich ▁Rav ik ov ich , ▁actor ▁Aleks andr ▁Y ur ' ev ich ▁Rum y ant se v , ▁minister , ▁scient ist , ▁academic , ▁and ▁amb assador ▁And rey ▁Tok are v , ▁Par al ym pic ▁medal ist ▁Val ery ▁Le ont iev , ▁pop ▁singer ▁Vladimir ▁Put in , ▁former ▁Director ▁of ▁the ▁F SB ▁( Hold ing ▁the ▁rank ▁of ▁Colonel ▁in ▁the ▁K GB ), ▁former ▁Prime ▁Minister ▁of ▁Russia , ▁and ▁the ▁ 2 nd
▁and ▁the ▁ 4 th ▁( current ) ▁President ▁of ▁Russia ▁Ev gen iy ▁Mir on ov , ▁Art istic ▁Director ▁of ▁the ▁Federal ▁State ▁Institution ▁of ▁Culture ▁" The ▁State ▁Theatre ▁of ▁Nations " ▁An at oli y ▁Aleks and rov , ▁R ector ▁of ▁Ba uman ▁State ▁Techn ical ▁University ▁Christ ophe ▁de ▁Mar ger ie ▁( post hum ously ), ▁CE O ▁and ▁Chair man ▁of ▁Total ▁S . A . ▁Alexander ▁Z ald ost an ov , ▁leader ▁of ▁the ▁Night ▁Wol ves ▁Ev gen y ▁Pl ush en ko , ▁sk ater , ▁Olympic ▁Champion ▁Ali ya ▁Must af ina , ▁art istic ▁g ymn ast , ▁two ▁time ▁Olympic ▁Champion ▁Philipp ▁Kir kor ov , ▁pop ▁singer ▁Alexander ▁O ve ch kin , ▁N HL ▁ice ▁hockey ▁player , ▁seven ▁time ▁K har lam ov ▁Tro phy ▁winner ▁Val ery ▁K hal il ov , ▁Russian ▁military ▁conduct or ▁K ass ym - J om art ▁Tok ay ev , ▁President ▁of ▁Kaz akh stan ▁ ▁See ▁also ▁Awards ▁and ▁decor ations ▁of ▁the ▁Russian ▁Federation ▁Order ▁of ▁the ▁Bad ge ▁of ▁Hon our ▁( U SS R ) ▁Order ▁of ▁Hon our ▁( Bel arus ) ▁Order ▁of ▁Kur met ▁( K az akh stan ) ▁ ▁References ▁ ▁External ▁links ▁The ▁Commission ▁on ▁State ▁Awards ▁under ▁the ▁President ▁of ▁the ▁Russian ▁Federation ▁The ▁Russian ▁Gazette ▁Site ▁of ▁the ▁President ▁of ▁the ▁Russian ▁Federation ▁ ▁Category : Or ders , ▁decor ations , ▁and ▁med als
▁of ▁Russia ▁Category : C ivil ▁awards ▁and ▁decor ations ▁of ▁Russia ▁Category : Russ ian ▁awards ▁Category : A wards ▁established ▁in ▁ 1 9 9 4 ▁Category : 1 9 9 4 ▁establish ments ▁in ▁Russia <0x0A> </s> ▁Jackson ▁Township ▁is ▁one ▁of ▁four teen ▁town ships ▁in ▁Miami ▁County , ▁Indiana , ▁United ▁States . ▁As ▁of ▁the ▁ 2 0 1 0 ▁census , ▁its ▁population ▁was ▁ 1 , 9 5 6 ▁and ▁it ▁contained ▁ 8 4 3 ▁housing ▁units . ▁ ▁History ▁The ▁first ▁settlement ▁at ▁Jackson ▁Township ▁was ▁made ▁in ▁ 1 8 4 2 . ▁Jackson ▁Township ▁was ▁organized ▁in ▁ 1 8 4 6 . ▁The ▁town ship ▁is ▁named ▁for ▁Andrew ▁Jackson , ▁sevent h ▁President ▁of ▁the ▁United ▁States . ▁ ▁Geography ▁According ▁to ▁the ▁ 2 0 1 0 ▁census , ▁the ▁town ship ▁has ▁a ▁total ▁area ▁of ▁, ▁of ▁which ▁ ▁( or ▁ 9 9 . 7 0 %) ▁is ▁land ▁and ▁ ▁( or ▁ 0 . 3 4 %) ▁is ▁water . ▁ ▁C ities , ▁towns , ▁villages ▁ ▁Am boy ▁ ▁Con verse ▁( partial ) ▁ ▁C em eter ies ▁The ▁town ship ▁contains ▁four ▁c em eter ies : ▁Bond , ▁Fri ends , ▁Park ▁La wn ▁and ▁Pi pe ▁Creek . ▁ ▁Major ▁high ways ▁▁ ▁Indiana ▁State ▁Road ▁ 1 8 ▁▁ ▁Indiana ▁State ▁Road ▁ 1 9 ▁ ▁Air ports ▁and ▁landing ▁stri ps ▁ ▁Con verse ▁Airport
▁ ▁L akes ▁ ▁Fox ▁Lake ▁ ▁Education ▁ ▁Oak ▁Hill ▁United ▁School ▁Corporation ▁ ▁Jackson ▁Township ▁residents ▁may ▁obtain ▁a ▁free ▁library ▁card ▁from ▁the ▁Con verse - Jack son ▁Township ▁Public ▁Library ▁in ▁Con verse . ▁ ▁Political ▁districts ▁ ▁Indiana ' s ▁ 5 th ▁con gression al ▁district ▁ ▁State ▁House ▁District ▁ 3 2 ▁ ▁State ▁Senate ▁District ▁ 1 8 ▁ ▁References ▁▁▁ ▁United ▁States ▁Census ▁Bureau ▁ 2 0 0 8 ▁T IG ER / Line ▁Sh ape files ▁ ▁Indiana Map ▁ ▁External ▁links ▁ ▁Indiana ▁Township ▁Association ▁ ▁United ▁Township ▁Association ▁of ▁Indiana ▁ ▁City - Data . com ▁page ▁for ▁Jackson ▁Township ▁ ▁Category : T own ships ▁in ▁Miami ▁County , ▁Indiana <0x0A> </s> ▁The ▁history ▁of ▁painting ▁reaches ▁back ▁in ▁time ▁to ▁artifact s ▁from ▁pre - histor ic ▁humans , ▁and ▁sp ans ▁all ▁cult ures . ▁It ▁represents ▁a ▁continuous , ▁though ▁period ically ▁dis rupted , ▁tradition ▁from ▁Anti qu ity . ▁Ac ross ▁cult ures , ▁and ▁sp anning ▁contin ents ▁and ▁mill enn ia , ▁the ▁history ▁of ▁painting ▁is ▁an ▁on going ▁river ▁of ▁cre ativity , ▁that ▁continues ▁into ▁the ▁ 2 1 st ▁century . ▁Until ▁the ▁early ▁ 2 0 th ▁century ▁it ▁re lied ▁primarily ▁on ▁represent ational , ▁religious ▁and ▁classical ▁mot ifs , ▁after ▁which ▁time ▁more ▁purely ▁abstract ▁and ▁concept ual ▁approaches ▁gained ▁favor . ▁ ▁Develop ments ▁in ▁Eastern ▁painting ▁histor ically ▁parallel ▁those ▁in ▁Western ▁painting