task_url
stringlengths
30
116
task_name
stringlengths
2
86
task_description
stringlengths
0
14.4k
language_url
stringlengths
2
53
language_name
stringlengths
1
52
code
stringlengths
0
61.9k
http://rosettacode.org/wiki/Anagrams/Deranged_anagrams
Anagrams/Deranged anagrams
Two or more words are said to be anagrams if they have the same characters, but in a different order. By analogy with derangements we define a deranged anagram as two words with the same characters, but in which the same character does not appear in the same position in both words. Task[edit] Use the word list at unixdict to find and display the longest deranged anagram. Related tasks Permutations/Derangements Best shuffle Word plays Ordered words Palindrome detection Semordnilap Anagrams Anagrams/Deranged anagrams Other tasks related to string operations: Metrics Array length String length Copy a string Empty string  (assignment) Counting Word frequency Letter frequency Jewels and stones I before E except after C Bioinformatics/base count Count occurrences of a substring Count how many vowels and consonants occur in a string Remove/replace XXXX redacted Conjugate a Latin verb Remove vowels from a string String interpolation (included) Strip block comments Strip comments from a string Strip a set of characters from a string Strip whitespace from a string -- top and tail Strip control codes and extended characters from a string Anagrams/Derangements/shuffling Word wheel ABC problem Sattolo cycle Knuth shuffle Ordered words Superpermutation minimisation Textonyms (using a phone text pad) Anagrams Anagrams/Deranged anagrams Permutations/Derangements Find/Search/Determine ABC words Odd words Word ladder Semordnilap Word search Wordiff  (game) String matching Tea cup rim text Alternade words Changeable words State name puzzle String comparison Unique characters Unique characters in each string Extract file extension Levenshtein distance Palindrome detection Common list elements Longest common suffix Longest common prefix Compare a list of strings Longest common substring Find common directory path Words from neighbour ones Change e letters to i in words Non-continuous subsequences Longest common subsequence Longest palindromic substrings Longest increasing subsequence Words containing "the" substring Sum of the digits of n is substring of n Determine if a string is numeric Determine if a string is collapsible Determine if a string is squeezable Determine if a string has all unique characters Determine if a string has all the same characters Longest substrings without repeating characters Find words which contains all the vowels Find words which contains most consonants Find words which contains more than 3 vowels Find words which first and last three letters are equals Find words which odd letters are consonants and even letters are vowels or vice_versa Formatting Substring Rep-string Word wrap String case Align columns Literals/String Repeat a string Brace expansion Brace expansion using ranges Reverse a string Phrase reversals Comma quibbling Special characters String concatenation Substring/Top and tail Commatizing numbers Reverse words in a string Suffixation of decimal numbers Long literals, with continuations Numerical and alphabetical suffixes Abbreviations, easy Abbreviations, simple Abbreviations, automatic Song lyrics/poems/Mad Libs/phrases Mad Libs Magic 8-ball 99 Bottles of Beer The Name Game (a song) The Old lady swallowed a fly The Twelve Days of Christmas Tokenize Text between Tokenize a string Word break problem Tokenize a string with escaping Split a character string based on change of character Sequences Show ASCII table De Bruijn sequences Self-referential sequences Generate lower case ASCII alphabet
#Haskell
Haskell
{-# LANGUAGE TupleSections #-}   import Data.List (maximumBy, sort, unfoldr) import Data.Ord (comparing) import qualified Data.Map as M import qualified Data.Set as S   -- Lists of words grouped by their "signatures". A signature is a sorted -- list of characters. Duplicate words stored in sets. groupBySig :: [String] -> [(String, S.Set String)] groupBySig = map ((,) . sort <*> S.singleton)   -- Groups as lists of equivalent words. equivs :: [(String, S.Set String)] -> [[String]] equivs = map (S.toList . snd) . M.toList . M.fromListWith S.union   -- True if a pair of words differs in all character positions. isDerangement :: (String, String) -> Bool isDerangement (a, b) = and $ zipWith (/=) a b   -- All pairs of elements, ignoring order. pairs :: [t] -> [(t, t)] pairs = concat . unfoldr step where step (x:xs) = Just (map (x, ) xs, xs) step [] = Nothing   -- All anagram pairs in the input string. anagrams :: [String] -> [(String, String)] anagrams = concatMap pairs . equivs . groupBySig   -- The pair of words forming the longest deranged anagram. maxDerangedAnagram :: [String] -> Maybe (String, String) maxDerangedAnagram = maxByLen . filter isDerangement . anagrams where maxByLen [] = Nothing maxByLen xs = Just $ maximumBy (comparing (length . fst)) xs   main :: IO () main = do input <- readFile "unixdict.txt" case maxDerangedAnagram $ words input of Nothing -> putStrLn "No deranged anagrams were found." Just (a, b) -> putStrLn $ "Longest deranged anagrams: " <> a <> " and " <> b
http://rosettacode.org/wiki/Anonymous_recursion
Anonymous recursion
While implementing a recursive function, it often happens that we must resort to a separate   helper function   to handle the actual recursion. This is usually the case when directly calling the current function would waste too many resources (stack space, execution time), causing unwanted side-effects,   and/or the function doesn't have the right arguments and/or return values. So we end up inventing some silly name like   foo2   or   foo_helper.   I have always found it painful to come up with a proper name, and see some disadvantages:   You have to think up a name, which then pollutes the namespace   Function is created which is called from nowhere else   The program flow in the source code is interrupted Some languages allow you to embed recursion directly in-place.   This might work via a label, a local gosub instruction, or some special keyword. Anonymous recursion can also be accomplished using the   Y combinator. Task If possible, demonstrate this by writing the recursive version of the fibonacci function   (see Fibonacci sequence)   which checks for a negative argument before doing the actual recursion.
#Fortran
Fortran
integer function fib(n) integer, intent(in) :: n if (n < 0 ) then write (*,*) 'Bad argument: fib(',n,')' stop else fib = purefib(n) end if contains recursive pure integer function purefib(n) result(f) integer, intent(in) :: n if (n < 2 ) then f = n else f = purefib(n-1) + purefib(n-2) end if end function purefib end function fib
http://rosettacode.org/wiki/Angles_(geometric),_normalization_and_conversion
Angles (geometric), normalization and conversion
This task is about the normalization and/or conversion of (geometric) angles using some common scales. The angular scales that will be used in this task are:   degree   gradian   mil   radian Definitions The angular scales used or referenced here:   turn   is a full turn or 360 degrees, also shown as 360º   degree   is   1/360   of a turn   gradian   is   1/400   of a turn   mil   is   1/6400   of a turn   radian   is   1/2 π {\displaystyle \pi }   of a turn   (or   0.5/ π {\displaystyle \pi }   of a turn) Or, to put it another way,   for a full circle:   there are   360   degrees   there are   400   gradians   there are   6,400   mils   there are   2 π {\displaystyle \pi }   radians   (roughly equal to 6.283+) A   mil   is approximately equal to a   milliradian   (which is   1/1000   of a radian). There is another definition of a   mil   which is   1/1000   of a radian   ─── this definition won't be used in this Rosetta Code task. Turns   are sometimes known or shown as:   turn(s)   360 degrees   unit circle   a (full) circle Degrees   are sometimes known or shown as:   degree(s)   deg   º       (a symbol)   °       (another symbol) Gradians   are sometimes known or shown as:   gradian(s)   grad(s)   grade(s)   gon(s)   metric degree(s)   (Note that   centigrade   was used for 1/100th of a grade, see the note below.) Mils   are sometimes known or shown as:   mil(s)   NATO mil(s) Radians   are sometimes known or shown as:   radian(s)   rad(s) Notes In continental Europe, the French term   centigrade   was used for   1/100   of a grad (grade);   this was one reason for the adoption of the term   Celsius   to replace   centigrade   as the name of a temperature scale. Gradians were commonly used in civil engineering. Mils were normally used for artillery   (elevations of the gun barrel for ranging). Positive and negative angles Although the definition of the measurement of an angle doesn't support the concept of a negative angle,   it's frequently useful to impose a convention that allows positive and negative angular values to represent orientations and/or rotations in opposite directions relative to some reference.   It is this reason that negative angles will keep their sign and not be normalized to positive angles. Normalization Normalization   (for this Rosetta Code task)   will keep the same sign,   but it will reduce the magnitude to less than a full circle;   in other words, less than 360º. Normalization   shouldn't   change   -45º   to   315º, An angle of   0º,   +0º,   0.000000,   or   -0º   should be shown as   0º. Task   write a function (or equivalent) to do the normalization for each scale Suggested names: d2d,   g2g,   m2m,   and  r2r   write a function (or equivalent) to convert one scale to another Suggested names for comparison of different computer language function names: d2g,   d2m,   and   d2r   for degrees g2d,   g2m,   and   g2r   for gradians m2d,   m2g,   and   m2r   for mils r2d,   r2g,   and   r2m   for radians   normalize all angles used   (except for the "original" or "base" angle)   show the angles in every scale and convert them to all other scales   show all output here on this page For the (above) conversions,   use these dozen numbers   (in the order shown):   -2   -1   0   1   2   6.2831853   16   57.2957795   359   399   6399   1000000
#Python
Python
PI = 3.141592653589793 TWO_PI = 6.283185307179586   def normalize2deg(a): while a < 0: a += 360 while a >= 360: a -= 360 return a def normalize2grad(a): while a < 0: a += 400 while a >= 400: a -= 400 return a def normalize2mil(a): while a < 0: a += 6400 while a >= 6400: a -= 6400 return a def normalize2rad(a): while a < 0: a += TWO_PI while a >= TWO_PI: a -= TWO_PI return a   def deg2grad(a): return a * 10.0 / 9.0 def deg2mil(a): return a * 160.0 / 9.0 def deg2rad(a): return a * PI / 180.0   def grad2deg(a): return a * 9.0 / 10.0 def grad2mil(a): return a * 16.0 def grad2rad(a): return a * PI / 200.0   def mil2deg(a): return a * 9.0 / 160.0 def mil2grad(a): return a / 16.0 def mil2rad(a): return a * PI / 3200.0   def rad2deg(a): return a * 180.0 / PI def rad2grad(a): return a * 200.0 / PI def rad2mil(a): return a * 3200.0 / PI
http://rosettacode.org/wiki/Amicable_pairs
Amicable pairs
Two integers N {\displaystyle N} and M {\displaystyle M} are said to be amicable pairs if N ≠ M {\displaystyle N\neq M} and the sum of the proper divisors of N {\displaystyle N} ( s u m ( p r o p D i v s ( N ) ) {\displaystyle \mathrm {sum} (\mathrm {propDivs} (N))} ) = M {\displaystyle =M} as well as s u m ( p r o p D i v s ( M ) ) = N {\displaystyle \mathrm {sum} (\mathrm {propDivs} (M))=N} . Example 1184 and 1210 are an amicable pair, with proper divisors:   1, 2, 4, 8, 16, 32, 37, 74, 148, 296, 592   and   1, 2, 5, 10, 11, 22, 55, 110, 121, 242, 605   respectively. Task Calculate and show here the Amicable pairs below 20,000; (there are eight). Related tasks Proper divisors Abundant, deficient and perfect number classifications Aliquot sequence classifications and its amicable classification.
#D
D
void main() @safe /*@nogc*/ { import std.stdio, std.algorithm, std.range, std.typecons, std.array;   immutable properDivs = (in uint n) pure nothrow @safe /*@nogc*/ => iota(1, (n + 1) / 2 + 1).filter!(x => n % x == 0);   enum rangeMax = 20_000; auto n2d = iota(1, rangeMax + 1).map!(n => properDivs(n).sum);   foreach (immutable n, immutable divSum; n2d.enumerate(1)) if (n < divSum && divSum <= rangeMax && n2d[divSum - 1] == n) writefln("Amicable pair: %d and %d with proper divisors:\n  %s\n  %s", n, divSum, properDivs(n), properDivs(divSum)); }
http://rosettacode.org/wiki/Animation
Animation
Animation is integral to many parts of GUIs, including both the fancy effects when things change used in window managers, and of course games.   The core of any animation system is a scheme for periodically changing the display while still remaining responsive to the user.   This task demonstrates this. Task Create a window containing the string "Hello World! " (the trailing space is significant). Make the text appear to be rotating right by periodically removing one letter from the end of the string and attaching it to the front. When the user clicks on the (windowed) text, it should reverse its direction.
#JavaScript_.2B_HTML
JavaScript + HTML
<html> <head> <title>RC: Basic Animation</title> <script type="text/javascript"> function animate(id) { var element = document.getElementById(id); var textNode = element.childNodes[0]; // assuming no other children   var text = textNode.data; var reverse = false;   element.onclick = function () { reverse = !reverse; };   setInterval(function () { if (reverse) text = text.substring(1) + text[0]; else text = text[text.length - 1] + text.substring(0, text.length - 1); textNode.data = text; }, 100); } </script> </head> <body onload="animate('target')"> <pre id="target">Hello World! </pre> </body> </html>
http://rosettacode.org/wiki/Animate_a_pendulum
Animate a pendulum
One good way of making an animation is by simulating a physical system and illustrating the variables in that system using a dynamically changing graphical display. The classic such physical system is a simple gravity pendulum. Task Create a simple physical model of a pendulum and animate it.
#Euler_Math_Toolbox
Euler Math Toolbox
>g=gearth$; l=1m; >function f(x,y) := [y[2],-g*sin(y[1])/l] >function h(a) := ode("f",linspace(0,a,100),[0,2])[1,-1] >period=solve("h",2) 2.06071780729 >t=linspace(0,period,30); s=ode("f",t,[0,2])[1]; >function anim (t,s) ... $ setplot(-1,1,-1,1); $ markerstyle("o#"); $ repeat $ for i=1 to cols(t)-1; $ clg; $ hold on; $ plot([0,sin(s[i])],[1,1-cos(s[i])]); $ mark([0,sin(s[i])],[1,1-cos(s[i])]); $ hold off; $ wait(t[i+1]-t[i]); $ end; $ until testkey(); $ end $endfunction >anim(t,s); >
http://rosettacode.org/wiki/Almkvist-Giullera_formula_for_pi
Almkvist-Giullera formula for pi
The Almkvist-Giullera formula for calculating   1/π2   is based on the Calabi-Yau differential equations of order 4 and 5,   which were originally used to describe certain manifolds in string theory. The formula is: 1/π2 = (25/3) ∑0∞ ((6n)! / (n!6))(532n2 + 126n + 9) / 10002n+1 This formula can be used to calculate the constant   π-2,   and thus to calculate   π. Note that, because the product of all terms but the power of 1000 can be calculated as an integer, the terms in the series can be separated into a large integer term: (25) (6n)! (532n2 + 126n + 9) / (3(n!)6)     (***) multiplied by a negative integer power of 10: 10-(6n + 3) Task Print the integer portions (the starred formula, which is without the power of 1000 divisor) of the first 10 terms of the series. Use the complete formula to calculate and print π to 70 decimal digits of precision. Reference  Gert Almkvist and Jesús Guillera, Ramanujan-like series for 1/π2 and string theory, Experimental Mathematics, 21 (2012), page 2, formula 1.
#dc
dc
[* factorial *]sz [ 1 Sp [ d lp * sp 1 - d 1 <f ]Sf d 1 <f Lfsz sz Lp ]sF   [* nth integral term *]sz [ sn 32 6 ln * lFx 532 ln * ln * 126 ln * + 9 + * * 3 ln lFx 6 ^ * / ]sI   [* nth exponent of 10 *]sz [ 1 + 6 * 3 r - ]sE   [* nth term in series *]sz [ d lIx r 10 r lEx _1 * ^ / ]sA   [* sum of the first n terms *]sz [ [li lAx ls + ss li 1 - d si 0 r !<L]sL si 0ss lLx ls]sS   [* approximation of pi after n terms *]sz [ lSx 1 r / v ]sP   [* count digits in a number *]sz [sn 0 sd lCx ld]sD [ld 1 + sd ln 10 0k / d sn 0 !=C]sC   [* print a number in a given column width *]sz [sw d lDx si lw li <T n]sW [[ ]n li 1 + si lw li <T]sT   [* main loop: print values for first 10 terms *]sz [N. Integral part of Nth term .................. × 10^ =Actual value of Nth term]p 0 sj [ lj n [. ]n lj lIx 0k 1 / 44 lWx [ ]n lj lEx 4 lWx [ ]n lj 99k lAx 50k 1 / p lj 1 + d sj 10 >M ] sM lMx   []p   [* print resulting value of pi to 70 places *]sz [Pi after ]n 52n [ iterations:]p 99k 52 lPx 70k 1 / p
http://rosettacode.org/wiki/Almkvist-Giullera_formula_for_pi
Almkvist-Giullera formula for pi
The Almkvist-Giullera formula for calculating   1/π2   is based on the Calabi-Yau differential equations of order 4 and 5,   which were originally used to describe certain manifolds in string theory. The formula is: 1/π2 = (25/3) ∑0∞ ((6n)! / (n!6))(532n2 + 126n + 9) / 10002n+1 This formula can be used to calculate the constant   π-2,   and thus to calculate   π. Note that, because the product of all terms but the power of 1000 can be calculated as an integer, the terms in the series can be separated into a large integer term: (25) (6n)! (532n2 + 126n + 9) / (3(n!)6)     (***) multiplied by a negative integer power of 10: 10-(6n + 3) Task Print the integer portions (the starred formula, which is without the power of 1000 divisor) of the first 10 terms of the series. Use the complete formula to calculate and print π to 70 decimal digits of precision. Reference  Gert Almkvist and Jesús Guillera, Ramanujan-like series for 1/π2 and string theory, Experimental Mathematics, 21 (2012), page 2, formula 1.
#Erlang
Erlang
  -mode(compile).   % Integer math routines: factorial, power, square root, integer logarithm. % fac(N) -> fac(N, 1). fac(N, A) when N < 2 -> A; fac(N, A) -> fac(N - 1, N*A).     pow(_, N) when N < 0 -> pow_domain_error; pow(2, N) -> 1 bsl N; pow(A, N) -> ipow(A, N).   ipow(_, 0) -> 1; ipow(A, 1) -> A; ipow(A, 2) -> A*A; ipow(A, N) -> case N band 1 of 0 -> X = ipow(A, N bsr 1), X*X; 1 -> A * ipow(A, N - 1) end.   % integer logarithm, based on Zeckendorf representations of integers. % https://www.keithschwarz.com/interesting/code/?dir=zeckendorf-logarithm % we need this, since the exponents get larger than IEEE-754 double can handle.   lognext({A, B, S, T}) -> {B, A+B, T, S*T}. logprev({A, B, S, T}) -> {B-A, A, T div S, S}.   ilog(A, B) when (A =< 0) or (B < 2) -> ilog_domain_error; ilog(A, B) -> UBound = bracket(A, {0, 1, 1, B}), backlog(A, UBound, 0).   bracket(A, State = {_, _, _, T}) when T > A -> State; bracket(A, State) -> bracket(A, lognext(State)).   backlog(_, {0, _, 1, _}, Log) -> Log; backlog(N, State = {A, _, S, _}, Log) when S =< N -> backlog(N div S, logprev(State), Log + A); backlog(N, State, Log) -> backlog(N, logprev(State), Log).     isqrt(N) when N < 0 -> isqrt_domain_error; isqrt(N) -> X0 = pow(2, ilog(N, 2) div 2), iterate(N, newton(X0, N), N).   iterate(A, B, _) when A =< B -> A; iterate(_, B, N) -> iterate(B, newton(B, N), N).   newton(X, N) -> (X + N div X) div 2.     % With this out of the way, we can get down to some serious calculation. % term(N) -> { % returns numerator and log10 of the denominator. (fac(6*N)*(N*(532*N + 126) + 9) bsl 5) div (3*pow(fac(N), 6)), 6*N + 3 }.   neg_term({N, D}) -> {-N, D}. abs_term({N, D}) -> {abs(N), D}.   add_term(T1 = {_, D1}, T2 = {_, D2}) when D1 > D2 -> add_term(T2, T1); add_term({N1, D1}, {N2, D2}) -> Scale = pow(10, D2 - D1), {N1*Scale + N2, D2}.   calculate(Prec) -> calculate(Prec, {0, 0}, 0). calculate(Prec, T0, K) -> T1 = add_term(T0, term(K)), {N, D} = abs_term(add_term(neg_term(T1), T0)), Accuracy = D - ilog(N, 10), if Accuracy < Prec -> calculate(Prec, T1, K + 1); true -> T1 end.   get_pi(Prec) -> {N0, D0} = calculate(Prec), % from the term, t = n0/10^d0, calculate 1/√t % if the denominator is an odd power of 10, add 1 to the denominator and multiply the numerator by 10. {N, D} = case D0 band 1 of 0 -> {N0, D0}; 1 -> {10*N0, D0 + 1} end, [Three|Rest] = lists:sublist( integer_to_list(pow(10, D) div isqrt(N)), Prec), [Three, $. | Rest].   show_term({A, Decimals}) -> Str = integer_to_list(A), [$0, $.] ++ lists:duplicate(Decimals - length(Str), $0) ++ Str.   main(_) -> Terms = [term(N) || N <- lists:seq(0, 9)], io:format("The first 10 terms as scaled decimals are:~n"), [io:format(" ~s~n", [show_term(T)]) || T <- Terms], io:format("~nThe sum of these terms (pi^-2) is ~s~n", [show_term(lists:foldl(fun add_term/2, {0, 0}, Terms))]), Pi70 = get_pi(71), io:format("~npi to 70 decimal places:~n"), io:format("~s~n", [Pi70]).  
http://rosettacode.org/wiki/Almost_prime
Almost prime
A   k-Almost-prime   is a natural number   n {\displaystyle n}   that is the product of   k {\displaystyle k}   (possibly identical) primes. Example 1-almost-primes,   where   k = 1 {\displaystyle k=1} ,   are the prime numbers themselves. 2-almost-primes,   where   k = 2 {\displaystyle k=2} ,   are the   semiprimes. Task Write a function/method/subroutine/... that generates k-almost primes and use it to create a table here of the first ten members of k-Almost primes for   1 <= K <= 5 {\displaystyle 1<=K<=5} . Related tasks   Semiprime   Category:Prime Numbers
#11l
11l
F k_prime(k, =n) V f = 0 V p = 2 L f < k & p * p <= n L n % p == 0 n /= p f++ p++ R f + (I n > 1 {1} E 0) == k   F primes(k, n) V i = 2 [Int] list L list.len < n I k_prime(k, i) list [+]= i i++ R list   L(k) 1..5 print(‘k = ’k‘: ’primes(k, 10))
http://rosettacode.org/wiki/Angle_difference_between_two_bearings
Angle difference between two bearings
Finding the angle between two bearings is often confusing.[1] Task Find the angle which is the result of the subtraction b2 - b1, where b1 and b2 are the bearings. Input bearings are expressed in the range   -180   to   +180   degrees. The  result  is also expressed in the range   -180   to   +180   degrees. Compute the angle for the following pairs: 20 degrees (b1) and 45 degrees (b2) -45 and 45 -85 and 90 -95 and 90 -45 and 125 -45 and 145 29.4803 and -88.6381 -78.3251 and -159.036 Optional extra Allow the input bearings to be any (finite) value. Test cases -70099.74233810938 and 29840.67437876723 -165313.6666297357 and 33693.9894517456 1174.8380510598456 and -154146.66490124757 60175.77306795546 and 42213.07192354373
#Factor
Factor
USING: combinators generalizations kernel math prettyprint ; IN: rosetta-code.bearings   : delta-bearing ( x y -- z ) swap - 360 mod { { [ dup 180 > ] [ 360 - ] } { [ dup -180 < ] [ 360 + ] } [ ] } cond ;   : bearings-demo ( -- ) 20 45 -45 45 -85 90 -95 90 -45 125 -45 145 29.4803 -88.6381 -78.3251 -159.036 -70099.74233810938 29840.67437876723 -165313.6666297357 33693.9894517456 1174.8380510598456 -154146.66490124757 60175.77306795546 42213.07192354373 [ delta-bearing . ] 2 12 mnapply ;   MAIN: bearings-demo
http://rosettacode.org/wiki/Anagrams/Deranged_anagrams
Anagrams/Deranged anagrams
Two or more words are said to be anagrams if they have the same characters, but in a different order. By analogy with derangements we define a deranged anagram as two words with the same characters, but in which the same character does not appear in the same position in both words. Task[edit] Use the word list at unixdict to find and display the longest deranged anagram. Related tasks Permutations/Derangements Best shuffle Word plays Ordered words Palindrome detection Semordnilap Anagrams Anagrams/Deranged anagrams Other tasks related to string operations: Metrics Array length String length Copy a string Empty string  (assignment) Counting Word frequency Letter frequency Jewels and stones I before E except after C Bioinformatics/base count Count occurrences of a substring Count how many vowels and consonants occur in a string Remove/replace XXXX redacted Conjugate a Latin verb Remove vowels from a string String interpolation (included) Strip block comments Strip comments from a string Strip a set of characters from a string Strip whitespace from a string -- top and tail Strip control codes and extended characters from a string Anagrams/Derangements/shuffling Word wheel ABC problem Sattolo cycle Knuth shuffle Ordered words Superpermutation minimisation Textonyms (using a phone text pad) Anagrams Anagrams/Deranged anagrams Permutations/Derangements Find/Search/Determine ABC words Odd words Word ladder Semordnilap Word search Wordiff  (game) String matching Tea cup rim text Alternade words Changeable words State name puzzle String comparison Unique characters Unique characters in each string Extract file extension Levenshtein distance Palindrome detection Common list elements Longest common suffix Longest common prefix Compare a list of strings Longest common substring Find common directory path Words from neighbour ones Change e letters to i in words Non-continuous subsequences Longest common subsequence Longest palindromic substrings Longest increasing subsequence Words containing "the" substring Sum of the digits of n is substring of n Determine if a string is numeric Determine if a string is collapsible Determine if a string is squeezable Determine if a string has all unique characters Determine if a string has all the same characters Longest substrings without repeating characters Find words which contains all the vowels Find words which contains most consonants Find words which contains more than 3 vowels Find words which first and last three letters are equals Find words which odd letters are consonants and even letters are vowels or vice_versa Formatting Substring Rep-string Word wrap String case Align columns Literals/String Repeat a string Brace expansion Brace expansion using ranges Reverse a string Phrase reversals Comma quibbling Special characters String concatenation Substring/Top and tail Commatizing numbers Reverse words in a string Suffixation of decimal numbers Long literals, with continuations Numerical and alphabetical suffixes Abbreviations, easy Abbreviations, simple Abbreviations, automatic Song lyrics/poems/Mad Libs/phrases Mad Libs Magic 8-ball 99 Bottles of Beer The Name Game (a song) The Old lady swallowed a fly The Twelve Days of Christmas Tokenize Text between Tokenize a string Word break problem Tokenize a string with escaping Split a character string based on change of character Sequences Show ASCII table De Bruijn sequences Self-referential sequences Generate lower case ASCII alphabet
#Icon_and_Unicon
Icon and Unicon
link strings # for csort() procedure   procedure main() anagrams := table() # build lists of anagrams every *(word := !&input) > 1 do { canon := csort(word) /anagrams[canon] := [] put(anagrams[canon], word) }   longest := 1 # find a longest derangement every *(aList := !anagrams) > 1 do if derangement := derange(aList) then if longest <:= *derangement[1] then long := derangement   every writes((!\long||" ")|"\n") # show longest end   procedure derange(aList) # Return a single derangement from this list while aWord := get(aList) do return noMatch(aWord, !aList) end   procedure noMatch(s1,s2) # Produce pair only if s1,s2 are deranged. every i := 1 to *s1 do if s1[i] == s2[i] then fail return [s1,s2] end
http://rosettacode.org/wiki/Anonymous_recursion
Anonymous recursion
While implementing a recursive function, it often happens that we must resort to a separate   helper function   to handle the actual recursion. This is usually the case when directly calling the current function would waste too many resources (stack space, execution time), causing unwanted side-effects,   and/or the function doesn't have the right arguments and/or return values. So we end up inventing some silly name like   foo2   or   foo_helper.   I have always found it painful to come up with a proper name, and see some disadvantages:   You have to think up a name, which then pollutes the namespace   Function is created which is called from nowhere else   The program flow in the source code is interrupted Some languages allow you to embed recursion directly in-place.   This might work via a label, a local gosub instruction, or some special keyword. Anonymous recursion can also be accomplished using the   Y combinator. Task If possible, demonstrate this by writing the recursive version of the fibonacci function   (see Fibonacci sequence)   which checks for a negative argument before doing the actual recursion.
#FreeBASIC
FreeBASIC
' FB 1.05.0 Win64   #Lang "fblite"   Option Gosub '' enables Gosub to be used   ' Using gosub to simulate a nested function Function fib(n As UInteger) As UInteger Gosub nestedFib Exit Function   nestedFib: fib = IIf(n < 2, n, fib(n - 1) + fib(n - 2)) Return End Function   ' This function simulates (rather messily) gosub by using 2 gotos and would therefore work ' even in the default dialect Function fib2(n As UInteger) As UInteger Goto nestedFib   exitFib: Exit Function   nestedFib: fib2 = IIf(n < 2, n, fib2(n - 1) + fib2(n - 2)) Goto exitFib End Function   For i As Integer = 1 To 12 Print fib(i); " "; Next   Print   For j As Integer = 1 To 12 Print fib2(j); " "; Next   Print Print "Press any key to quit" Sleep
http://rosettacode.org/wiki/Angles_(geometric),_normalization_and_conversion
Angles (geometric), normalization and conversion
This task is about the normalization and/or conversion of (geometric) angles using some common scales. The angular scales that will be used in this task are:   degree   gradian   mil   radian Definitions The angular scales used or referenced here:   turn   is a full turn or 360 degrees, also shown as 360º   degree   is   1/360   of a turn   gradian   is   1/400   of a turn   mil   is   1/6400   of a turn   radian   is   1/2 π {\displaystyle \pi }   of a turn   (or   0.5/ π {\displaystyle \pi }   of a turn) Or, to put it another way,   for a full circle:   there are   360   degrees   there are   400   gradians   there are   6,400   mils   there are   2 π {\displaystyle \pi }   radians   (roughly equal to 6.283+) A   mil   is approximately equal to a   milliradian   (which is   1/1000   of a radian). There is another definition of a   mil   which is   1/1000   of a radian   ─── this definition won't be used in this Rosetta Code task. Turns   are sometimes known or shown as:   turn(s)   360 degrees   unit circle   a (full) circle Degrees   are sometimes known or shown as:   degree(s)   deg   º       (a symbol)   °       (another symbol) Gradians   are sometimes known or shown as:   gradian(s)   grad(s)   grade(s)   gon(s)   metric degree(s)   (Note that   centigrade   was used for 1/100th of a grade, see the note below.) Mils   are sometimes known or shown as:   mil(s)   NATO mil(s) Radians   are sometimes known or shown as:   radian(s)   rad(s) Notes In continental Europe, the French term   centigrade   was used for   1/100   of a grad (grade);   this was one reason for the adoption of the term   Celsius   to replace   centigrade   as the name of a temperature scale. Gradians were commonly used in civil engineering. Mils were normally used for artillery   (elevations of the gun barrel for ranging). Positive and negative angles Although the definition of the measurement of an angle doesn't support the concept of a negative angle,   it's frequently useful to impose a convention that allows positive and negative angular values to represent orientations and/or rotations in opposite directions relative to some reference.   It is this reason that negative angles will keep their sign and not be normalized to positive angles. Normalization Normalization   (for this Rosetta Code task)   will keep the same sign,   but it will reduce the magnitude to less than a full circle;   in other words, less than 360º. Normalization   shouldn't   change   -45º   to   315º, An angle of   0º,   +0º,   0.000000,   or   -0º   should be shown as   0º. Task   write a function (or equivalent) to do the normalization for each scale Suggested names: d2d,   g2g,   m2m,   and  r2r   write a function (or equivalent) to convert one scale to another Suggested names for comparison of different computer language function names: d2g,   d2m,   and   d2r   for degrees g2d,   g2m,   and   g2r   for gradians m2d,   m2g,   and   m2r   for mils r2d,   r2g,   and   r2m   for radians   normalize all angles used   (except for the "original" or "base" angle)   show the angles in every scale and convert them to all other scales   show all output here on this page For the (above) conversions,   use these dozen numbers   (in the order shown):   -2   -1   0   1   2   6.2831853   16   57.2957795   359   399   6399   1000000
#Racket
Racket
#lang racket   (define (rem n m) (let* ((m (abs m)) (-m (- m))) (let recur ((n n)) (cond [(< n -m) (recur (+ n m))] [(>= n m) (recur (- n m))] [else n]))))   (define 2.pi (* 2 pi))   (define (deg->deg a) (rem a 360)) (define (grad->grad a) (rem a 400)) (define (mil->mil a) (rem a 6400)) (define (rad->rad a) (rem a 2.pi))   (define (deg->grad a) (grad->grad (* (/ a 360) 400))) (define (deg->rad a) (rad->rad (* (/ a 360) 2.pi))) (define (deg->mil a) (mil->mil (* (/ a 360) 6400)))   (define (grad->deg a) (deg->deg (* (/ a 400) 360))) (define (grad->rad a) (rad->rad (* (/ a 400) 2.pi))) (define (grad->mil a) (mil->mil (* (/ a 400) 6400)))   (define (mil->deg a) (deg->deg (* (/ a 6400) 360))) (define (mil->grad a) (grad->grad (* (/ a 6400) 400))) (define (mil->rad a) (rad->rad (* (/ a 6400) 2.pi)))   (define (rad->deg a) (deg->deg (* (/ a 2.pi) 360))) (define (rad->grad a) (grad->grad (* (/ a 2.pi) 400))) (define (rad->mil a) (mil->mil (* (/ a 2.pi) 6400)))   (define (tabulate #:fmt (fmt (λ (v) (~a (exact->inexact v) #:align 'right #:width 15))) head . vs) (string-join (cons (~a #:width 6 head) (map fmt vs)) " | "))   (define (report-angle a) (string-join (list (tabulate #:fmt (λ (x) (~a x #:width 15 #:align 'center)) "UNIT" "VAL*" "DEG" "GRAD" "MIL" "RAD") (tabulate "Deg" a (deg->deg a) (deg->grad a) (deg->mil a) (deg->rad a)) (tabulate "Grad" a (grad->deg a) (grad->grad a) (grad->mil a) (grad->rad a)) (tabulate "Mil" a (mil->deg a) (mil->grad a) (mil->mil a) (mil->rad a)) (tabulate "Rad" a (rad->deg a) (rad->grad a) (rad->mil a) (rad->rad a))) "\n"))   (module+ test (displayln (string-join (map report-angle '(-2 -1 0 1 2 6.2831853 16 57.2957795 359 399 6399 1000000)) "\n\n")))
http://rosettacode.org/wiki/Angles_(geometric),_normalization_and_conversion
Angles (geometric), normalization and conversion
This task is about the normalization and/or conversion of (geometric) angles using some common scales. The angular scales that will be used in this task are:   degree   gradian   mil   radian Definitions The angular scales used or referenced here:   turn   is a full turn or 360 degrees, also shown as 360º   degree   is   1/360   of a turn   gradian   is   1/400   of a turn   mil   is   1/6400   of a turn   radian   is   1/2 π {\displaystyle \pi }   of a turn   (or   0.5/ π {\displaystyle \pi }   of a turn) Or, to put it another way,   for a full circle:   there are   360   degrees   there are   400   gradians   there are   6,400   mils   there are   2 π {\displaystyle \pi }   radians   (roughly equal to 6.283+) A   mil   is approximately equal to a   milliradian   (which is   1/1000   of a radian). There is another definition of a   mil   which is   1/1000   of a radian   ─── this definition won't be used in this Rosetta Code task. Turns   are sometimes known or shown as:   turn(s)   360 degrees   unit circle   a (full) circle Degrees   are sometimes known or shown as:   degree(s)   deg   º       (a symbol)   °       (another symbol) Gradians   are sometimes known or shown as:   gradian(s)   grad(s)   grade(s)   gon(s)   metric degree(s)   (Note that   centigrade   was used for 1/100th of a grade, see the note below.) Mils   are sometimes known or shown as:   mil(s)   NATO mil(s) Radians   are sometimes known or shown as:   radian(s)   rad(s) Notes In continental Europe, the French term   centigrade   was used for   1/100   of a grad (grade);   this was one reason for the adoption of the term   Celsius   to replace   centigrade   as the name of a temperature scale. Gradians were commonly used in civil engineering. Mils were normally used for artillery   (elevations of the gun barrel for ranging). Positive and negative angles Although the definition of the measurement of an angle doesn't support the concept of a negative angle,   it's frequently useful to impose a convention that allows positive and negative angular values to represent orientations and/or rotations in opposite directions relative to some reference.   It is this reason that negative angles will keep their sign and not be normalized to positive angles. Normalization Normalization   (for this Rosetta Code task)   will keep the same sign,   but it will reduce the magnitude to less than a full circle;   in other words, less than 360º. Normalization   shouldn't   change   -45º   to   315º, An angle of   0º,   +0º,   0.000000,   or   -0º   should be shown as   0º. Task   write a function (or equivalent) to do the normalization for each scale Suggested names: d2d,   g2g,   m2m,   and  r2r   write a function (or equivalent) to convert one scale to another Suggested names for comparison of different computer language function names: d2g,   d2m,   and   d2r   for degrees g2d,   g2m,   and   g2r   for gradians m2d,   m2g,   and   m2r   for mils r2d,   r2g,   and   r2m   for radians   normalize all angles used   (except for the "original" or "base" angle)   show the angles in every scale and convert them to all other scales   show all output here on this page For the (above) conversions,   use these dozen numbers   (in the order shown):   -2   -1   0   1   2   6.2831853   16   57.2957795   359   399   6399   1000000
#Raku
Raku
  my @units = { code => 'd', name => 'degrees' , number => 360 }, { code => 'g', name => 'gradians', number => 400 }, { code => 'm', name => 'mills' , number => 6400 }, { code => 'r', name => 'radians' , number => tau }, ;   my Code %cvt = (@units X @units).map: -> ($a, $b) { "{$a.<code>}2{$b.<code>}" => sub ($angle) { my $norm = $angle % $a.<number> - ( $a.<number> if $angle < 0 ); $norm * $b.<number> / $a.<number> } }   say ' Angle Unit ', @units».<name>».tc.fmt('%11s');   for -2, -1, 0, 1, 2, tau, 16, 360/tau, 360-1, 400-1, 6400-1, 1_000_000 -> $angle { say ''; for @units -> $from { my @sub_keys = @units.map: { "{$from.<code>}2{.<code>}" };   my @results = %cvt{@sub_keys}».($angle);   say join ' ', $angle .fmt('%10g'), $from.<name>.fmt('%-8s'), @results .fmt('%11g'); } }
http://rosettacode.org/wiki/Amicable_pairs
Amicable pairs
Two integers N {\displaystyle N} and M {\displaystyle M} are said to be amicable pairs if N ≠ M {\displaystyle N\neq M} and the sum of the proper divisors of N {\displaystyle N} ( s u m ( p r o p D i v s ( N ) ) {\displaystyle \mathrm {sum} (\mathrm {propDivs} (N))} ) = M {\displaystyle =M} as well as s u m ( p r o p D i v s ( M ) ) = N {\displaystyle \mathrm {sum} (\mathrm {propDivs} (M))=N} . Example 1184 and 1210 are an amicable pair, with proper divisors:   1, 2, 4, 8, 16, 32, 37, 74, 148, 296, 592   and   1, 2, 5, 10, 11, 22, 55, 110, 121, 242, 605   respectively. Task Calculate and show here the Amicable pairs below 20,000; (there are eight). Related tasks Proper divisors Abundant, deficient and perfect number classifications Aliquot sequence classifications and its amicable classification.
#Delphi
Delphi
/* Fill a given array such that for each N, * P[n] is the sum of proper divisors of N */ proc nonrec propdivs([*] word p) void: word i, j, max; max := dim(p,1)-1; for i from 0 upto max do p[i] := 0 od; for i from 1 upto max/2 do for j from i*2 by i upto max do p[j] := p[j] + i od od corp   /* Find all amicable pairs between 0 and 20,000 */ proc nonrec main() void: word MAX = 20000; word i, j; [MAX] word p; propdivs(p);   for i from 1 upto MAX-1 do for j from i+1 upto MAX-1 do if p[i]=j and p[j]=i then writeln(i:5, ", ", j:5) fi od od corp
http://rosettacode.org/wiki/Animation
Animation
Animation is integral to many parts of GUIs, including both the fancy effects when things change used in window managers, and of course games.   The core of any animation system is a scheme for periodically changing the display while still remaining responsive to the user.   This task demonstrates this. Task Create a window containing the string "Hello World! " (the trailing space is significant). Make the text appear to be rotating right by periodically removing one letter from the end of the string and attaching it to the front. When the user clicks on the (windowed) text, it should reverse its direction.
#JavaScript_.2B_SVG
JavaScript + SVG
<svg xmlns="http://www.w3.org/2000/svg" width="100" height="40"> <script type="text/javascript"> function animate(element) { var textNode = element.childNodes[0]; // assuming no other children var text = textNode.data; var reverse = false;   element.onclick = function () { reverse = !reverse; };   setInterval(function () { if (reverse) text = text.substring(1) + text[0]; else text = text[text.length - 1] + text.substring(0, text.length - 1); textNode.data = text; }, 100); } </script>   <rect width="100" height="40" fill="yellow"/> <text x="2" y="20" onload="animate(this);">Hello World! </text> </svg>
http://rosettacode.org/wiki/Animate_a_pendulum
Animate a pendulum
One good way of making an animation is by simulating a physical system and illustrating the variables in that system using a dynamically changing graphical display. The classic such physical system is a simple gravity pendulum. Task Create a simple physical model of a pendulum and animate it.
#Euphoria
Euphoria
include graphics.e include misc.e   constant dt = 1E-3 constant g = 50   sequence vc sequence suspension atom len   procedure draw_pendulum(atom color, atom len, atom alfa) sequence point point = (len*{sin(alfa),cos(alfa)} + suspension) draw_line(color, {suspension, point}) ellipse(color,0,point-{10,10},point+{10,10}) end procedure   function wait() atom t0 t0 = time() while time() = t0 do if get_key() != -1 then return 1 end if end while return 0 end function   procedure animation() atom alfa, omega, epsilon   if graphics_mode(18) then end if   vc = video_config() suspension = {vc[VC_XPIXELS]/2,vc[VC_YPIXELS]/2} len = vc[VC_YPIXELS]/2-20   alfa = PI/2 omega = 0   while 1 do draw_pendulum(BRIGHT_WHITE,len,alfa) if wait() then exit end if draw_pendulum(BLACK,len,alfa) epsilon = -len*sin(alfa)*g omega += dt*epsilon alfa += dt*omega end while   if graphics_mode(-1) then end if end procedure   animation()
http://rosettacode.org/wiki/Almkvist-Giullera_formula_for_pi
Almkvist-Giullera formula for pi
The Almkvist-Giullera formula for calculating   1/π2   is based on the Calabi-Yau differential equations of order 4 and 5,   which were originally used to describe certain manifolds in string theory. The formula is: 1/π2 = (25/3) ∑0∞ ((6n)! / (n!6))(532n2 + 126n + 9) / 10002n+1 This formula can be used to calculate the constant   π-2,   and thus to calculate   π. Note that, because the product of all terms but the power of 1000 can be calculated as an integer, the terms in the series can be separated into a large integer term: (25) (6n)! (532n2 + 126n + 9) / (3(n!)6)     (***) multiplied by a negative integer power of 10: 10-(6n + 3) Task Print the integer portions (the starred formula, which is without the power of 1000 divisor) of the first 10 terms of the series. Use the complete formula to calculate and print π to 70 decimal digits of precision. Reference  Gert Almkvist and Jesús Guillera, Ramanujan-like series for 1/π2 and string theory, Experimental Mathematics, 21 (2012), page 2, formula 1.
#F.23
F#
  // Almkvist-Giullera formula for pi. Nigel Galloway: August 17th., 2021 let factorial(n:bigint)=MathNet.Numerics.SpecialFunctions.Factorial n let fN g=(532I*g*g+126I*g+9I)*(factorial(6I*g))/(3I*(factorial g)**6) [0..9]|>Seq.iter(bigint>>fN>>(*)32I>>printfn "%A\n") let _,n=Seq.unfold(fun(n,g)->let n=n*(10I**6)+fN g in Some(Isqrt((10I**(145+6*(int g)))/(32I*n)),(n,g+1I)))(0I,0I)|>Seq.pairwise|>Seq.find(fun(n,g)->n=g) printfn $"""pi to 70 decimal places is %s{(n.ToString()).Insert(1,".")}"""  
http://rosettacode.org/wiki/Almkvist-Giullera_formula_for_pi
Almkvist-Giullera formula for pi
The Almkvist-Giullera formula for calculating   1/π2   is based on the Calabi-Yau differential equations of order 4 and 5,   which were originally used to describe certain manifolds in string theory. The formula is: 1/π2 = (25/3) ∑0∞ ((6n)! / (n!6))(532n2 + 126n + 9) / 10002n+1 This formula can be used to calculate the constant   π-2,   and thus to calculate   π. Note that, because the product of all terms but the power of 1000 can be calculated as an integer, the terms in the series can be separated into a large integer term: (25) (6n)! (532n2 + 126n + 9) / (3(n!)6)     (***) multiplied by a negative integer power of 10: 10-(6n + 3) Task Print the integer portions (the starred formula, which is without the power of 1000 divisor) of the first 10 terms of the series. Use the complete formula to calculate and print π to 70 decimal digits of precision. Reference  Gert Almkvist and Jesús Guillera, Ramanujan-like series for 1/π2 and string theory, Experimental Mathematics, 21 (2012), page 2, formula 1.
#Factor
Factor
USING: continuations formatting io kernel locals math math.factorials math.functions sequences ;   :: integer-term ( n -- m ) 32 6 n * factorial * 532 n sq * 126 n * + 9 + * n factorial 6 ^ 3 * / ;   : exponent-term ( n -- m ) 6 * 3 + neg ;   : nth-term ( n -- x ) [ integer-term ] [ exponent-term 10^ * ] bi ;   ! Factor doesn't have an arbitrary-precision square root afaik, ! so make one using Heron's method.   : sqrt-approx ( r x -- r' x ) [ over / + 2 / ] keep ;   :: almkvist-guillera ( precision -- x ) 0 0 :> ( summed! next-add! ) [ 100,000,000 <iota> [| n | summed n nth-term + next-add! next-add summed - abs precision neg 10^ < [ return ] when next-add summed! ] each ] with-return next-add ;   CONSTANT: 1/pi 113/355  ! Use as initial guess for square root approximation   : pi ( -- ) 1/pi 70 almkvist-guillera 5 [ sqrt-approx ] times drop recip "%.70f\n" printf ;   ! Task "N Integer Portion Pow Nth Term (33 dp)" print 89 CHAR: - <repetition> print 10 [ dup [ integer-term ] [ exponent-term ] [ nth-term ] tri "%d  %44d  %3d  %.33f\n" printf ] each-integer nl "Pi to 70 decimal places:" print pi
http://rosettacode.org/wiki/Almost_prime
Almost prime
A   k-Almost-prime   is a natural number   n {\displaystyle n}   that is the product of   k {\displaystyle k}   (possibly identical) primes. Example 1-almost-primes,   where   k = 1 {\displaystyle k=1} ,   are the prime numbers themselves. 2-almost-primes,   where   k = 2 {\displaystyle k=2} ,   are the   semiprimes. Task Write a function/method/subroutine/... that generates k-almost primes and use it to create a table here of the first ten members of k-Almost primes for   1 <= K <= 5 {\displaystyle 1<=K<=5} . Related tasks   Semiprime   Category:Prime Numbers
#Action.21
Action!
BYTE FUNC IsAlmostPrime(INT num BYTE k) INT f,p,v   f=0 p=2 v=num WHILE f<k AND p*p<=num DO WHILE v MOD p=0 DO v==/p f==+1 OD p==+1 OD IF v>1 THEN f==+1 FI IF f=k THEN RETURN (1) FI RETURN (0)   PROC Main() BYTE count,k INT i   FOR k=1 TO 5 DO PrintF("k=%B:",k) count=0 i=2 WHILE count<10 DO IF IsAlmostPrime(i,k) THEN PrintF(" %I",i) count==+1 FI i==+1 OD PutE() OD RETURN
http://rosettacode.org/wiki/Almost_prime
Almost prime
A   k-Almost-prime   is a natural number   n {\displaystyle n}   that is the product of   k {\displaystyle k}   (possibly identical) primes. Example 1-almost-primes,   where   k = 1 {\displaystyle k=1} ,   are the prime numbers themselves. 2-almost-primes,   where   k = 2 {\displaystyle k=2} ,   are the   semiprimes. Task Write a function/method/subroutine/... that generates k-almost primes and use it to create a table here of the first ten members of k-Almost primes for   1 <= K <= 5 {\displaystyle 1<=K<=5} . Related tasks   Semiprime   Category:Prime Numbers
#Ada
Ada
with Prime_Numbers, Ada.Text_IO;   procedure Test_Kth_Prime is   package Integer_Numbers is new Prime_Numbers (Natural, 0, 1, 2); use Integer_Numbers;   Out_Length: constant Positive := 10; -- 10 k-th almost primes N: Positive; -- the "current number" to be checked   begin for K in 1 .. 5 loop Ada.Text_IO.Put("K =" & Integer'Image(K) &": "); N := 2; for I in 1 .. Out_Length loop while Decompose(N)'Length /= K loop N := N + 1; end loop; -- now N is Kth almost prime; Ada.Text_IO.Put(Integer'Image(Integer(N))); N := N + 1; end loop; Ada.Text_IO.New_Line; end loop; end Test_Kth_Prime;
http://rosettacode.org/wiki/Angle_difference_between_two_bearings
Angle difference between two bearings
Finding the angle between two bearings is often confusing.[1] Task Find the angle which is the result of the subtraction b2 - b1, where b1 and b2 are the bearings. Input bearings are expressed in the range   -180   to   +180   degrees. The  result  is also expressed in the range   -180   to   +180   degrees. Compute the angle for the following pairs: 20 degrees (b1) and 45 degrees (b2) -45 and 45 -85 and 90 -95 and 90 -45 and 125 -45 and 145 29.4803 and -88.6381 -78.3251 and -159.036 Optional extra Allow the input bearings to be any (finite) value. Test cases -70099.74233810938 and 29840.67437876723 -165313.6666297357 and 33693.9894517456 1174.8380510598456 and -154146.66490124757 60175.77306795546 and 42213.07192354373
#Forth
Forth
  : Angle-Difference-stack ( b1 b2 - a +/-180) \ Algorithm with stack manipulation without branches ( s. Frotran Groovy) fswap f- \ Delta angle 360e fswap fover fmod \ mod 360 fover 1.5e f* f+ \ + 540 fover fmod \ mod 360 fswap f2/ f- \ - 180 ; : Angle-Difference-const ( b1 b2 - a +/-180) \ Algorithm without Branches ( s. Fotran Groovy) fswap f- 360e fmod 540e f+ 360e fmod 180e f- ;   \ Test Word for requested tests : test-ad ( b1 b2 -- ) fover fover Angle-Difference-stack f. Angle-Difference-const f. ;  
http://rosettacode.org/wiki/Anagrams/Deranged_anagrams
Anagrams/Deranged anagrams
Two or more words are said to be anagrams if they have the same characters, but in a different order. By analogy with derangements we define a deranged anagram as two words with the same characters, but in which the same character does not appear in the same position in both words. Task[edit] Use the word list at unixdict to find and display the longest deranged anagram. Related tasks Permutations/Derangements Best shuffle Word plays Ordered words Palindrome detection Semordnilap Anagrams Anagrams/Deranged anagrams Other tasks related to string operations: Metrics Array length String length Copy a string Empty string  (assignment) Counting Word frequency Letter frequency Jewels and stones I before E except after C Bioinformatics/base count Count occurrences of a substring Count how many vowels and consonants occur in a string Remove/replace XXXX redacted Conjugate a Latin verb Remove vowels from a string String interpolation (included) Strip block comments Strip comments from a string Strip a set of characters from a string Strip whitespace from a string -- top and tail Strip control codes and extended characters from a string Anagrams/Derangements/shuffling Word wheel ABC problem Sattolo cycle Knuth shuffle Ordered words Superpermutation minimisation Textonyms (using a phone text pad) Anagrams Anagrams/Deranged anagrams Permutations/Derangements Find/Search/Determine ABC words Odd words Word ladder Semordnilap Word search Wordiff  (game) String matching Tea cup rim text Alternade words Changeable words State name puzzle String comparison Unique characters Unique characters in each string Extract file extension Levenshtein distance Palindrome detection Common list elements Longest common suffix Longest common prefix Compare a list of strings Longest common substring Find common directory path Words from neighbour ones Change e letters to i in words Non-continuous subsequences Longest common subsequence Longest palindromic substrings Longest increasing subsequence Words containing "the" substring Sum of the digits of n is substring of n Determine if a string is numeric Determine if a string is collapsible Determine if a string is squeezable Determine if a string has all unique characters Determine if a string has all the same characters Longest substrings without repeating characters Find words which contains all the vowels Find words which contains most consonants Find words which contains more than 3 vowels Find words which first and last three letters are equals Find words which odd letters are consonants and even letters are vowels or vice_versa Formatting Substring Rep-string Word wrap String case Align columns Literals/String Repeat a string Brace expansion Brace expansion using ranges Reverse a string Phrase reversals Comma quibbling Special characters String concatenation Substring/Top and tail Commatizing numbers Reverse words in a string Suffixation of decimal numbers Long literals, with continuations Numerical and alphabetical suffixes Abbreviations, easy Abbreviations, simple Abbreviations, automatic Song lyrics/poems/Mad Libs/phrases Mad Libs Magic 8-ball 99 Bottles of Beer The Name Game (a song) The Old lady swallowed a fly The Twelve Days of Christmas Tokenize Text between Tokenize a string Word break problem Tokenize a string with escaping Split a character string based on change of character Sequences Show ASCII table De Bruijn sequences Self-referential sequences Generate lower case ASCII alphabet
#J
J
#words=: 'b' freads 'unixdict.txt' 25104 #anagrams=: (#~ 1 < #@>) (</.~ /:~&>) words 1303 #maybederanged=: (#~ (1 -.@e. #@~."1)@|:@:>&>) anagrams 432 #longest=: (#~ [: (= >./) #@>@{.@>) maybederanged 1 longest ┌───────────────────────┐ │┌──────────┬──────────┐│ ││excitation│intoxicate││ │└──────────┴──────────┘│ └───────────────────────┘
http://rosettacode.org/wiki/Anonymous_recursion
Anonymous recursion
While implementing a recursive function, it often happens that we must resort to a separate   helper function   to handle the actual recursion. This is usually the case when directly calling the current function would waste too many resources (stack space, execution time), causing unwanted side-effects,   and/or the function doesn't have the right arguments and/or return values. So we end up inventing some silly name like   foo2   or   foo_helper.   I have always found it painful to come up with a proper name, and see some disadvantages:   You have to think up a name, which then pollutes the namespace   Function is created which is called from nowhere else   The program flow in the source code is interrupted Some languages allow you to embed recursion directly in-place.   This might work via a label, a local gosub instruction, or some special keyword. Anonymous recursion can also be accomplished using the   Y combinator. Task If possible, demonstrate this by writing the recursive version of the fibonacci function   (see Fibonacci sequence)   which checks for a negative argument before doing the actual recursion.
#F.C5.8Drmul.C3.A6
Fōrmulæ
package main   import "fmt"   func main() { for _, n := range []int{0, 1, 2, 3, 4, 5, 10, 40, -1} { f, ok := arFib(n) if ok { fmt.Printf("fib %d = %d\n", n, f) } else { fmt.Println("fib undefined for negative numbers") } } }   func arFib(n int) (int, bool) { switch { case n < 0: return 0, false case n < 2: return n, true } return yc(func(recurse fn) fn { return func(left, term1, term2 int) int { if left == 0 { return term1+term2 } return recurse(left-1, term1+term2, term1) } })(n-2, 1, 0), true }   type fn func(int, int, int) int type ff func(fn) fn type fx func(fx) fn   func yc(f ff) fn { return func(x fx) fn { return x(x) }(func(x fx) fn { return f(func(a1, a2, a3 int) int { return x(x)(a1, a2, a3) }) }) }
http://rosettacode.org/wiki/Angles_(geometric),_normalization_and_conversion
Angles (geometric), normalization and conversion
This task is about the normalization and/or conversion of (geometric) angles using some common scales. The angular scales that will be used in this task are:   degree   gradian   mil   radian Definitions The angular scales used or referenced here:   turn   is a full turn or 360 degrees, also shown as 360º   degree   is   1/360   of a turn   gradian   is   1/400   of a turn   mil   is   1/6400   of a turn   radian   is   1/2 π {\displaystyle \pi }   of a turn   (or   0.5/ π {\displaystyle \pi }   of a turn) Or, to put it another way,   for a full circle:   there are   360   degrees   there are   400   gradians   there are   6,400   mils   there are   2 π {\displaystyle \pi }   radians   (roughly equal to 6.283+) A   mil   is approximately equal to a   milliradian   (which is   1/1000   of a radian). There is another definition of a   mil   which is   1/1000   of a radian   ─── this definition won't be used in this Rosetta Code task. Turns   are sometimes known or shown as:   turn(s)   360 degrees   unit circle   a (full) circle Degrees   are sometimes known or shown as:   degree(s)   deg   º       (a symbol)   °       (another symbol) Gradians   are sometimes known or shown as:   gradian(s)   grad(s)   grade(s)   gon(s)   metric degree(s)   (Note that   centigrade   was used for 1/100th of a grade, see the note below.) Mils   are sometimes known or shown as:   mil(s)   NATO mil(s) Radians   are sometimes known or shown as:   radian(s)   rad(s) Notes In continental Europe, the French term   centigrade   was used for   1/100   of a grad (grade);   this was one reason for the adoption of the term   Celsius   to replace   centigrade   as the name of a temperature scale. Gradians were commonly used in civil engineering. Mils were normally used for artillery   (elevations of the gun barrel for ranging). Positive and negative angles Although the definition of the measurement of an angle doesn't support the concept of a negative angle,   it's frequently useful to impose a convention that allows positive and negative angular values to represent orientations and/or rotations in opposite directions relative to some reference.   It is this reason that negative angles will keep their sign and not be normalized to positive angles. Normalization Normalization   (for this Rosetta Code task)   will keep the same sign,   but it will reduce the magnitude to less than a full circle;   in other words, less than 360º. Normalization   shouldn't   change   -45º   to   315º, An angle of   0º,   +0º,   0.000000,   or   -0º   should be shown as   0º. Task   write a function (or equivalent) to do the normalization for each scale Suggested names: d2d,   g2g,   m2m,   and  r2r   write a function (or equivalent) to convert one scale to another Suggested names for comparison of different computer language function names: d2g,   d2m,   and   d2r   for degrees g2d,   g2m,   and   g2r   for gradians m2d,   m2g,   and   m2r   for mils r2d,   r2g,   and   r2m   for radians   normalize all angles used   (except for the "original" or "base" angle)   show the angles in every scale and convert them to all other scales   show all output here on this page For the (above) conversions,   use these dozen numbers   (in the order shown):   -2   -1   0   1   2   6.2831853   16   57.2957795   359   399   6399   1000000
#REXX
REXX
/*REXX pgm normalizes an angle (in a scale), or converts angles from a scale to another.*/ numeric digits length( pi() ) - length(.) /*use the "length" of pi for precision.*/ parse arg x /*obtain optional arguments from the CL*/ if x='' | x="," then x= '-2 -1 0 1 2 6.2831853 16 57.2957795 359 399 6399 1000000' w= 20; w7= w+7 /*W: # dec digits past the dec. point.*/ @deg = 'degrees'; @grd= "gradians"; @mil = 'mils'; @rad = "radians" # = words(x) call hdr @deg @grd @mil @rad do j=1 for #; y= word(x,j) say shw(y) fmt(d2d(y)) fmt(d2g(y)) fmt(d2m(y)) fmt(d2r(y)) end /*j*/   call hdr @grd @deg @mil @rad do j=1 for #; y= word(x,j) say shw(y) fmt(g2g(y)) fmt(g2d(y)) fmt(g2m(y)) fmt(g2r(y)) end /*j*/   call hdr @mil @deg @grd @rad do j=1 for #; y= word(x,j) say shw(y) fmt(m2m(y)) fmt(m2d(y)) fmt(m2g(y)) fmt(m2r(y)) end /*j*/   call hdr @rad @deg @grd @mil do j=1 for #; y= word(x,j) say shw(y) fmt(r2r(y)) fmt(r2d(y)) fmt(r2g(y)) fmt(r2m(y)) end /*j*/ exit /*stick a fork in it, we're all done. */ /*──────────────────────────────────────────────────────────────────────────────────────*/ fmt: _= format(arg(1), 6,w); L= length(_); return left(format(_/1, 6),L) /*align a #*/ shw: _= format(arg(1),12,9); L= length(_); return left(format(_/1,12),L) /* " " "*/ pi: pi= 3.1415926535897932384626433832795028841971693993751058209749445923078; return pi d2g: return d2d(arg(1)) * 10 / 9 /*convert degrees ───► gradians. */ d2m: return d2d(arg(1)) * 160 / 9 /*convert degrees ───► mils. */ d2r: return d2d(arg(1)) * pi() / 180 /*convert degrees ───► radians. */ g2d: return g2g(arg(1)) * 0.9 /*convert gradians ───► degrees. */ g2m: return g2g(arg(1)) * 16 /*convert gradians ───► mils. */ g2r: return g2g(arg(1)) * pi() * 0.005 /*convert gradians ───► radians. */ m2d: return m2m(arg(1)) * 9 * 0.00625 /*convert mils ───► degrees. */ m2g: return m2m(arg(1)) / 16 /*convert mils ───► gradians. */ m2r: return m2m(arg(1)) * pi() / 3200 /*convert mils ───► radians. */ r2d: return r2r(arg(1)) * 180 / pi() /*convert radians ───► degrees. */ r2g: return r2r(arg(1)) * 200 / pi() /*convert radians ───► gradians. */ r2m: return r2r(arg(1)) * 3200 / pi() /*convert radians ───► mils. */ d2d: return arg(1) // 360 /*normalize degrees ───► a unit circle.*/ g2g: return arg(1) // 400 /*normalize gradians───► a unit circle.*/ m2m: return arg(1) // 6400 /*normalize mils ───► a unit circle.*/ r2r: return arg(1) // (pi() * 2) /*normalize radians ───► a unit circle.*/ /*──────────────────────────────────────────────────────────────────────────────────────*/ hdr: parse arg #o #a #b #c .; _= '═'; say /* [↓] the header line*/ @n = 'normalized' say center(#o,23 ) center(@n #o,w7) center(#a,w7 ) center(#b,w7 ) center(#c,w7 ) say center('',23,_) center('',w7, _) center('',w7,_) center('',w7,_) center('',w7,_) return /* '↑' seperator line.*/
http://rosettacode.org/wiki/Amicable_pairs
Amicable pairs
Two integers N {\displaystyle N} and M {\displaystyle M} are said to be amicable pairs if N ≠ M {\displaystyle N\neq M} and the sum of the proper divisors of N {\displaystyle N} ( s u m ( p r o p D i v s ( N ) ) {\displaystyle \mathrm {sum} (\mathrm {propDivs} (N))} ) = M {\displaystyle =M} as well as s u m ( p r o p D i v s ( M ) ) = N {\displaystyle \mathrm {sum} (\mathrm {propDivs} (M))=N} . Example 1184 and 1210 are an amicable pair, with proper divisors:   1, 2, 4, 8, 16, 32, 37, 74, 148, 296, 592   and   1, 2, 5, 10, 11, 22, 55, 110, 121, 242, 605   respectively. Task Calculate and show here the Amicable pairs below 20,000; (there are eight). Related tasks Proper divisors Abundant, deficient and perfect number classifications Aliquot sequence classifications and its amicable classification.
#Draco
Draco
/* Fill a given array such that for each N, * P[n] is the sum of proper divisors of N */ proc nonrec propdivs([*] word p) void: word i, j, max; max := dim(p,1)-1; for i from 0 upto max do p[i] := 0 od; for i from 1 upto max/2 do for j from i*2 by i upto max do p[j] := p[j] + i od od corp   /* Find all amicable pairs between 0 and 20,000 */ proc nonrec main() void: word MAX = 20000; word i, j; [MAX] word p; propdivs(p);   for i from 1 upto MAX-1 do for j from i+1 upto MAX-1 do if p[i]=j and p[j]=i then writeln(i:5, ", ", j:5) fi od od corp
http://rosettacode.org/wiki/Animation
Animation
Animation is integral to many parts of GUIs, including both the fancy effects when things change used in window managers, and of course games.   The core of any animation system is a scheme for periodically changing the display while still remaining responsive to the user.   This task demonstrates this. Task Create a window containing the string "Hello World! " (the trailing space is significant). Make the text appear to be rotating right by periodically removing one letter from the end of the string and attaching it to the front. When the user clicks on the (windowed) text, it should reverse its direction.
#Julia
Julia
  using Tk   const frameinterval = 0.12 # partial seconds between change on screen display   function windowanim(stepinterval::Float64) wind = Window("Animation", 300, 100) frm = Frame(wind) hello = "Hello World! " but = Button(frm, width=30, text=hello) rightward = true callback(s) = (rightward = !rightward) bind(but, "command", callback) pack(frm, expand=true, fill = "both") pack(but, expand=true, fill = "both") permut = [hello[i:end] * hello[1:i-1] for i in length(hello)+1:-1:2] ppos = 1 pmod = length(permut) while true but[:text] = permut[ppos] sleep(stepinterval) if rightward ppos += 1 if ppos > pmod ppos = 1 end else ppos -= 1 if ppos < 1 ppos = pmod end end end end   windowanim(frameinterval)  
http://rosettacode.org/wiki/Animation
Animation
Animation is integral to many parts of GUIs, including both the fancy effects when things change used in window managers, and of course games.   The core of any animation system is a scheme for periodically changing the display while still remaining responsive to the user.   This task demonstrates this. Task Create a window containing the string "Hello World! " (the trailing space is significant). Make the text appear to be rotating right by periodically removing one letter from the end of the string and attaching it to the front. When the user clicks on the (windowed) text, it should reverse its direction.
#Kotlin
Kotlin
// version 1.1.0   import java.awt.Dimension import java.awt.event.MouseAdapter import java.awt.event.MouseEvent import java.util.* import javax.swing.JFrame import javax.swing.JLabel   class Rotate : JFrame() { val text = "Hello World! " val label = JLabel(text) var rotRight = true var startIdx = 0   init { preferredSize = Dimension(96, 64) label.addMouseListener(object: MouseAdapter() { override fun mouseClicked(evt: MouseEvent) { rotRight = !rotRight } }) add(label) pack() defaultCloseOperation = JFrame.EXIT_ON_CLOSE isVisible = true } }   fun getRotatedText(text: String, startIdx: Int): String { val ret = StringBuilder() var i = startIdx do { ret.append(text[i++]) i %= text.length } while (i != startIdx) return ret.toString() }   fun main(args: Array<String>) { val rot = Rotate() val task = object : TimerTask() { override fun run() { if (rot.rotRight) { if (--rot.startIdx < 0) rot.startIdx += rot.text.length } else { if (++rot.startIdx >= rot.text.length) rot.startIdx -= rot.text.length } rot.label.text = getRotatedText(rot.text, rot.startIdx) } } Timer(false).schedule(task, 0, 500) }
http://rosettacode.org/wiki/Animate_a_pendulum
Animate a pendulum
One good way of making an animation is by simulating a physical system and illustrating the variables in that system using a dynamically changing graphical display. The classic such physical system is a simple gravity pendulum. Task Create a simple physical model of a pendulum and animate it.
#F.23
F#
open System open System.Drawing open System.Windows.Forms   // define units of measurement [<Measure>] type m; // metres [<Measure>] type s; // seconds   // a pendulum is represented as a record of physical quantities type Pendulum = { length  : float<m> gravity  : float<m/s^2> velocity : float<m/s> angle  : float }   // calculate the next state of a pendulum let next pendulum deltaT : Pendulum = let k = -pendulum.gravity / pendulum.length let acceleration = k * Math.Sin pendulum.angle * 1.0<m> let newVelocity = pendulum.velocity + acceleration * deltaT let newAngle = pendulum.angle + newVelocity * deltaT / 1.0<m> { pendulum with velocity = newVelocity; angle = newAngle }   // paint a pendulum (using hard-coded screen coordinates) let paint pendulum (gr: System.Drawing.Graphics) = let homeX = 160 let homeY = 50 let length = 140.0 // draw plate gr.DrawLine( new Pen(Brushes.Gray, width=2.0f), 0, homeY, 320, homeY ) // draw pivot gr.FillEllipse( Brushes.Gray, homeX-5, homeY-5, 10, 10 ) gr.DrawEllipse( new Pen(Brushes.Black), homeX-5, homeY-5, 10, 10 ) // draw the pendulum itself let x = homeX + int( length * Math.Sin pendulum.angle ) let y = homeY + int( length * Math.Cos pendulum.angle ) // draw rod gr.DrawLine( new Pen(Brushes.Black, width=3.0f), homeX, homeY, x, y ) // draw bob gr.FillEllipse( Brushes.Yellow, x-15, y-15, 30, 30 ) gr.DrawEllipse( new Pen(Brushes.Black), x-15, y-15, 30, 30 )   // defines an operator "-?" that calculates the time from t2 to t1 // where t2 is optional let (-?) (t1: DateTime) (t2: DateTime option) : float<s> = match t2 with | None -> 0.0<s> // only one timepoint given -> difference is 0 | Some t -> (t1 - t).TotalSeconds * 1.0<s>   // our main window is double-buffered form that reacts to paint events type PendulumForm() as self = inherit Form(Width=325, Height=240, Text="Pendulum") let mutable pendulum = { length = 1.0<m>; gravity = 9.81<m/s^2> velocity = 0.0<m/s> angle = Math.PI / 2.0 } let mutable lastPaintedAt = None let updateFreq = 0.01<s>   do self.DoubleBuffered <- true self.Paint.Add( fun args -> let now = DateTime.Now let deltaT = now -? lastPaintedAt |> min 0.01<s> lastPaintedAt <- Some now   pendulum <- next pendulum deltaT   let gr = args.Graphics gr.Clear( Color.LightGray ) paint pendulum gr   // initiate a new paint event after a while (non-blocking) async { do! Async.Sleep( int( 1000.0 * updateFreq / 1.0<s> ) ) self.Invalidate() } |> Async.Start )   [<STAThread>] Application.Run( new PendulumForm( Visible=true ) )
http://rosettacode.org/wiki/Almkvist-Giullera_formula_for_pi
Almkvist-Giullera formula for pi
The Almkvist-Giullera formula for calculating   1/π2   is based on the Calabi-Yau differential equations of order 4 and 5,   which were originally used to describe certain manifolds in string theory. The formula is: 1/π2 = (25/3) ∑0∞ ((6n)! / (n!6))(532n2 + 126n + 9) / 10002n+1 This formula can be used to calculate the constant   π-2,   and thus to calculate   π. Note that, because the product of all terms but the power of 1000 can be calculated as an integer, the terms in the series can be separated into a large integer term: (25) (6n)! (532n2 + 126n + 9) / (3(n!)6)     (***) multiplied by a negative integer power of 10: 10-(6n + 3) Task Print the integer portions (the starred formula, which is without the power of 1000 divisor) of the first 10 terms of the series. Use the complete formula to calculate and print π to 70 decimal digits of precision. Reference  Gert Almkvist and Jesús Guillera, Ramanujan-like series for 1/π2 and string theory, Experimental Mathematics, 21 (2012), page 2, formula 1.
#Go
Go
package main   import ( "fmt" "math/big" "strings" )   func factorial(n int64) *big.Int { var z big.Int return z.MulRange(1, n) }   var one = big.NewInt(1) var three = big.NewInt(3) var six = big.NewInt(6) var ten = big.NewInt(10) var seventy = big.NewInt(70)   func almkvistGiullera(n int64, print bool) *big.Rat { t1 := big.NewInt(32) t1.Mul(factorial(6*n), t1) t2 := big.NewInt(532*n*n + 126*n + 9) t3 := new(big.Int) t3.Exp(factorial(n), six, nil) t3.Mul(t3, three) ip := new(big.Int) ip.Mul(t1, t2) ip.Quo(ip, t3) pw := 6*n + 3 t1.SetInt64(pw) tm := new(big.Rat).SetFrac(ip, t1.Exp(ten, t1, nil)) if print { fmt.Printf("%d  %44d  %3d  %-35s\n", n, ip, -pw, tm.FloatString(33)) } return tm }   func main() { fmt.Println("N Integer Portion Pow Nth Term (33 dp)") fmt.Println(strings.Repeat("-", 89)) for n := int64(0); n < 10; n++ { almkvistGiullera(n, true) }   sum := new(big.Rat) prev := new(big.Rat) pow70 := new(big.Int).Exp(ten, seventy, nil) prec := new(big.Rat).SetFrac(one, pow70) n := int64(0) for { term := almkvistGiullera(n, false) sum.Add(sum, term) z := new(big.Rat).Sub(sum, prev) z.Abs(z) if z.Cmp(prec) < 0 { break } prev.Set(sum) n++ } sum.Inv(sum) pi := new(big.Float).SetPrec(256).SetRat(sum) pi.Sqrt(pi) fmt.Println("\nPi to 70 decimal places is:") fmt.Println(pi.Text('f', 70)) }
http://rosettacode.org/wiki/Almost_prime
Almost prime
A   k-Almost-prime   is a natural number   n {\displaystyle n}   that is the product of   k {\displaystyle k}   (possibly identical) primes. Example 1-almost-primes,   where   k = 1 {\displaystyle k=1} ,   are the prime numbers themselves. 2-almost-primes,   where   k = 2 {\displaystyle k=2} ,   are the   semiprimes. Task Write a function/method/subroutine/... that generates k-almost primes and use it to create a table here of the first ten members of k-Almost primes for   1 <= K <= 5 {\displaystyle 1<=K<=5} . Related tasks   Semiprime   Category:Prime Numbers
#ALGOL_68
ALGOL 68
BEGIN INT examples=10, classes=5; MODE SEMIPRIME = STRUCT ([examples]INT data, INT count); [classes]SEMIPRIME semi primes; PROC num facs = (INT n) INT : COMMENT Return number of not necessarily distinct prime factors of n. Not very efficient for large n ... COMMENT BEGIN INT tf := 2, residue := n, count := 1; WHILE tf < residue DO INT remainder = residue MOD tf; ( remainder = 0 | count +:= 1; residue %:= tf | tf +:= 1 ) OD; count END; PROC update table = (REF []SEMIPRIME table, INT i) BOOL : COMMENT Add i to the appropriate row of the table, if any, unless that row is already full. Return a BOOL which is TRUE when all of the table is full. COMMENT BEGIN INT k := num facs(i); IF k <= classes THEN INT c = 1 + count OF table[k]; ( c <= examples | (data OF table[k])[c] := i; count OF table[k] := c ) FI; INT sum := 0; FOR i TO classes DO sum +:= count OF table[i] OD; sum < classes * examples END; FOR i TO classes DO count OF semi primes[i] := 0 OD; FOR i FROM 2 WHILE update table (semi primes, i) DO SKIP OD; FOR i TO classes DO printf (($"k = ", d, ":", n(examples)(xg(0))l$, i, data OF semi primes[i])) OD END
http://rosettacode.org/wiki/Angle_difference_between_two_bearings
Angle difference between two bearings
Finding the angle between two bearings is often confusing.[1] Task Find the angle which is the result of the subtraction b2 - b1, where b1 and b2 are the bearings. Input bearings are expressed in the range   -180   to   +180   degrees. The  result  is also expressed in the range   -180   to   +180   degrees. Compute the angle for the following pairs: 20 degrees (b1) and 45 degrees (b2) -45 and 45 -85 and 90 -95 and 90 -45 and 125 -45 and 145 29.4803 and -88.6381 -78.3251 and -159.036 Optional extra Allow the input bearings to be any (finite) value. Test cases -70099.74233810938 and 29840.67437876723 -165313.6666297357 and 33693.9894517456 1174.8380510598456 and -154146.66490124757 60175.77306795546 and 42213.07192354373
#Fortran
Fortran
SUBROUTINE BDIFF (B1,B2) !Difference B2 - B1, as bearings. All in degrees, not radians. REAL*8 B1,B2 !Maximum precision, for large-angle folding. COMPLEX*16 CIS,Z1,Z2,Z !Scratchpads. CIS(T) = CMPLX(COSD(T),SIND(T)) !Convert an angle into a unit vector. Z1 = CIS(90 - B1) !Bearings run clockwise from north (y) around to east (x). Z2 = CIS(90 - B2) !Mathematics runs counterclockwise from x (east). Z = Z1*CONJG(Z2) !(Z1x,Z1y)(Z2x,-Z2y) = (Z1x.Z2x + Z1y.Z2y, Z1y.Z2x - Z1x.Z2y) T = ATAN2D(AIMAG(Z),REAL(Z)) !Madly, arctan(x,y) is ATAN(Y,X)! WRITE (6,10) B1,Z1,B2,Z2,T !Two sets of numbers, and a result. 10 FORMAT (2(F14.4,"(",F9.6,",",F9.6,")"),F9.3) !Two lots, and a tail. END SUBROUTINE BDIFF !Having functions in degrees saves some bother.   PROGRAM ORIENTED REAL*8 B(24) !Just prepare a wad of values. DATA B/20D0,45D0, -45D0,45D0, -85D0,90D0, -95D0,90D0, !As specified. 1 -45D0,125D0, -45D0,145D0, 29.4803D0,-88.6381D0, 2 -78.3251D0, -159.036D0, 3 -70099.74233810938D0, 29840.67437876723D0, 4 -165313.6666297357D0, 33693.9894517456D0, 5 1174.8380510598456D0, -154146.66490124757D0, 6 60175.77306795546D0, 42213.07192354373D0/   WRITE (6,1) ("B",I,"x","y", I = 1,2) !Or, one could just list them twice. 1 FORMAT (28X,"Bearing calculations, in degrees"// * 2(A13,I1,"(",A9,",",A9,")"),A9) !Compare format 10, above.   DO I = 1,23,2 !Step through the pairs. CALL BDIFF(B(I),B(I + 1)) END DO   END
http://rosettacode.org/wiki/Anagrams/Deranged_anagrams
Anagrams/Deranged anagrams
Two or more words are said to be anagrams if they have the same characters, but in a different order. By analogy with derangements we define a deranged anagram as two words with the same characters, but in which the same character does not appear in the same position in both words. Task[edit] Use the word list at unixdict to find and display the longest deranged anagram. Related tasks Permutations/Derangements Best shuffle Word plays Ordered words Palindrome detection Semordnilap Anagrams Anagrams/Deranged anagrams Other tasks related to string operations: Metrics Array length String length Copy a string Empty string  (assignment) Counting Word frequency Letter frequency Jewels and stones I before E except after C Bioinformatics/base count Count occurrences of a substring Count how many vowels and consonants occur in a string Remove/replace XXXX redacted Conjugate a Latin verb Remove vowels from a string String interpolation (included) Strip block comments Strip comments from a string Strip a set of characters from a string Strip whitespace from a string -- top and tail Strip control codes and extended characters from a string Anagrams/Derangements/shuffling Word wheel ABC problem Sattolo cycle Knuth shuffle Ordered words Superpermutation minimisation Textonyms (using a phone text pad) Anagrams Anagrams/Deranged anagrams Permutations/Derangements Find/Search/Determine ABC words Odd words Word ladder Semordnilap Word search Wordiff  (game) String matching Tea cup rim text Alternade words Changeable words State name puzzle String comparison Unique characters Unique characters in each string Extract file extension Levenshtein distance Palindrome detection Common list elements Longest common suffix Longest common prefix Compare a list of strings Longest common substring Find common directory path Words from neighbour ones Change e letters to i in words Non-continuous subsequences Longest common subsequence Longest palindromic substrings Longest increasing subsequence Words containing "the" substring Sum of the digits of n is substring of n Determine if a string is numeric Determine if a string is collapsible Determine if a string is squeezable Determine if a string has all unique characters Determine if a string has all the same characters Longest substrings without repeating characters Find words which contains all the vowels Find words which contains most consonants Find words which contains more than 3 vowels Find words which first and last three letters are equals Find words which odd letters are consonants and even letters are vowels or vice_versa Formatting Substring Rep-string Word wrap String case Align columns Literals/String Repeat a string Brace expansion Brace expansion using ranges Reverse a string Phrase reversals Comma quibbling Special characters String concatenation Substring/Top and tail Commatizing numbers Reverse words in a string Suffixation of decimal numbers Long literals, with continuations Numerical and alphabetical suffixes Abbreviations, easy Abbreviations, simple Abbreviations, automatic Song lyrics/poems/Mad Libs/phrases Mad Libs Magic 8-ball 99 Bottles of Beer The Name Game (a song) The Old lady swallowed a fly The Twelve Days of Christmas Tokenize Text between Tokenize a string Word break problem Tokenize a string with escaping Split a character string based on change of character Sequences Show ASCII table De Bruijn sequences Self-referential sequences Generate lower case ASCII alphabet
#Java
Java
import java.io.File; import java.io.IOException; import java.nio.file.Files; import java.util.ArrayList; import java.util.Arrays; import java.util.Comparator; import java.util.HashMap; import java.util.List; import java.util.Map;   public class DerangedAnagrams {   public static void main(String[] args) throws IOException { List<String> words = Files.readAllLines(new File("unixdict.txt").toPath()); printLongestDerangedAnagram(words); }   private static void printLongestDerangedAnagram(List<String> words) { words.sort(Comparator.comparingInt(String::length).reversed().thenComparing(String::toString));   Map<String, ArrayList<String>> map = new HashMap<>(); for (String word : words) { char[] chars = word.toCharArray(); Arrays.sort(chars); String key = String.valueOf(chars);   List<String> anagrams = map.computeIfAbsent(key, k -> new ArrayList<>()); for (String anagram : anagrams) { if (isDeranged(word, anagram)) { System.out.printf("%s %s%n", anagram, word); return; } } anagrams.add(word); } System.out.println("no result"); }   private static boolean isDeranged(String word1, String word2) { for (int i = 0; i < word1.length(); i++) { if (word1.charAt(i) == word2.charAt(i)) { return false; } } return true; } }
http://rosettacode.org/wiki/Anonymous_recursion
Anonymous recursion
While implementing a recursive function, it often happens that we must resort to a separate   helper function   to handle the actual recursion. This is usually the case when directly calling the current function would waste too many resources (stack space, execution time), causing unwanted side-effects,   and/or the function doesn't have the right arguments and/or return values. So we end up inventing some silly name like   foo2   or   foo_helper.   I have always found it painful to come up with a proper name, and see some disadvantages:   You have to think up a name, which then pollutes the namespace   Function is created which is called from nowhere else   The program flow in the source code is interrupted Some languages allow you to embed recursion directly in-place.   This might work via a label, a local gosub instruction, or some special keyword. Anonymous recursion can also be accomplished using the   Y combinator. Task If possible, demonstrate this by writing the recursive version of the fibonacci function   (see Fibonacci sequence)   which checks for a negative argument before doing the actual recursion.
#Go
Go
package main   import "fmt"   func main() { for _, n := range []int{0, 1, 2, 3, 4, 5, 10, 40, -1} { f, ok := arFib(n) if ok { fmt.Printf("fib %d = %d\n", n, f) } else { fmt.Println("fib undefined for negative numbers") } } }   func arFib(n int) (int, bool) { switch { case n < 0: return 0, false case n < 2: return n, true } return yc(func(recurse fn) fn { return func(left, term1, term2 int) int { if left == 0 { return term1+term2 } return recurse(left-1, term1+term2, term1) } })(n-2, 1, 0), true }   type fn func(int, int, int) int type ff func(fn) fn type fx func(fx) fn   func yc(f ff) fn { return func(x fx) fn { return x(x) }(func(x fx) fn { return f(func(a1, a2, a3 int) int { return x(x)(a1, a2, a3) }) }) }
http://rosettacode.org/wiki/Angles_(geometric),_normalization_and_conversion
Angles (geometric), normalization and conversion
This task is about the normalization and/or conversion of (geometric) angles using some common scales. The angular scales that will be used in this task are:   degree   gradian   mil   radian Definitions The angular scales used or referenced here:   turn   is a full turn or 360 degrees, also shown as 360º   degree   is   1/360   of a turn   gradian   is   1/400   of a turn   mil   is   1/6400   of a turn   radian   is   1/2 π {\displaystyle \pi }   of a turn   (or   0.5/ π {\displaystyle \pi }   of a turn) Or, to put it another way,   for a full circle:   there are   360   degrees   there are   400   gradians   there are   6,400   mils   there are   2 π {\displaystyle \pi }   radians   (roughly equal to 6.283+) A   mil   is approximately equal to a   milliradian   (which is   1/1000   of a radian). There is another definition of a   mil   which is   1/1000   of a radian   ─── this definition won't be used in this Rosetta Code task. Turns   are sometimes known or shown as:   turn(s)   360 degrees   unit circle   a (full) circle Degrees   are sometimes known or shown as:   degree(s)   deg   º       (a symbol)   °       (another symbol) Gradians   are sometimes known or shown as:   gradian(s)   grad(s)   grade(s)   gon(s)   metric degree(s)   (Note that   centigrade   was used for 1/100th of a grade, see the note below.) Mils   are sometimes known or shown as:   mil(s)   NATO mil(s) Radians   are sometimes known or shown as:   radian(s)   rad(s) Notes In continental Europe, the French term   centigrade   was used for   1/100   of a grad (grade);   this was one reason for the adoption of the term   Celsius   to replace   centigrade   as the name of a temperature scale. Gradians were commonly used in civil engineering. Mils were normally used for artillery   (elevations of the gun barrel for ranging). Positive and negative angles Although the definition of the measurement of an angle doesn't support the concept of a negative angle,   it's frequently useful to impose a convention that allows positive and negative angular values to represent orientations and/or rotations in opposite directions relative to some reference.   It is this reason that negative angles will keep their sign and not be normalized to positive angles. Normalization Normalization   (for this Rosetta Code task)   will keep the same sign,   but it will reduce the magnitude to less than a full circle;   in other words, less than 360º. Normalization   shouldn't   change   -45º   to   315º, An angle of   0º,   +0º,   0.000000,   or   -0º   should be shown as   0º. Task   write a function (or equivalent) to do the normalization for each scale Suggested names: d2d,   g2g,   m2m,   and  r2r   write a function (or equivalent) to convert one scale to another Suggested names for comparison of different computer language function names: d2g,   d2m,   and   d2r   for degrees g2d,   g2m,   and   g2r   for gradians m2d,   m2g,   and   m2r   for mils r2d,   r2g,   and   r2m   for radians   normalize all angles used   (except for the "original" or "base" angle)   show the angles in every scale and convert them to all other scales   show all output here on this page For the (above) conversions,   use these dozen numbers   (in the order shown):   -2   -1   0   1   2   6.2831853   16   57.2957795   359   399   6399   1000000
#Ruby
Ruby
module Angles BASES = {"d" => 360, "g" => 400, "m" => 6400, "r" => Math::PI*2 ,"h" => 24 }   def self.method_missing(meth, angle) from, to = BASES.values_at(*meth.to_s.split("2")) raise NoMethodError, meth if (from.nil? or to.nil?) mod = (angle.to_f * to / from) % to angle < 0 ? mod - to : mod end   end   #Demo names = Angles::BASES.keys puts " " + "%12s "*names.size % names test = [-2, -1, 0, 1, 2*Math::PI, 16, 360/(2*Math::PI), 360-1, 400-1, 6400-1, 1_000_000]   test.each do |n| names.each do |first| res = names.map{|last| Angles.send((first + "2" + last).to_sym, n)} puts first + "%12g "*names.size % res end puts end  
http://rosettacode.org/wiki/Amicable_pairs
Amicable pairs
Two integers N {\displaystyle N} and M {\displaystyle M} are said to be amicable pairs if N ≠ M {\displaystyle N\neq M} and the sum of the proper divisors of N {\displaystyle N} ( s u m ( p r o p D i v s ( N ) ) {\displaystyle \mathrm {sum} (\mathrm {propDivs} (N))} ) = M {\displaystyle =M} as well as s u m ( p r o p D i v s ( M ) ) = N {\displaystyle \mathrm {sum} (\mathrm {propDivs} (M))=N} . Example 1184 and 1210 are an amicable pair, with proper divisors:   1, 2, 4, 8, 16, 32, 37, 74, 148, 296, 592   and   1, 2, 5, 10, 11, 22, 55, 110, 121, 242, 605   respectively. Task Calculate and show here the Amicable pairs below 20,000; (there are eight). Related tasks Proper divisors Abundant, deficient and perfect number classifications Aliquot sequence classifications and its amicable classification.
#EchoLisp
EchoLisp
  ;; using (sum-divisors) from math.lib   (lib 'math) (define (amicable N) (define n 0) (for/list ((m (in-range 2 N))) (set! n (sum-divisors m)) #:continue (>= n (* 1.5 m)) ;; assume n/m < 1.5 #:continue (<= n m) ;; prevent perfect numbers #:continue (!= (sum-divisors n) m) (cons m n)))   (amicable 20000) → ((220 . 284) (1184 . 1210) (2620 . 2924) (5020 . 5564) (6232 . 6368) (10744 . 10856) (12285 . 14595) (17296 . 18416))   (amicable 1_000_000) ;; 42 pairs → (... (802725 . 863835) (879712 . 901424) (898216 . 980984) (947835 . 1125765) (998104 . 1043096))    
http://rosettacode.org/wiki/Animation
Animation
Animation is integral to many parts of GUIs, including both the fancy effects when things change used in window managers, and of course games.   The core of any animation system is a scheme for periodically changing the display while still remaining responsive to the user.   This task demonstrates this. Task Create a window containing the string "Hello World! " (the trailing space is significant). Make the text appear to be rotating right by periodically removing one letter from the end of the string and attaching it to the front. When the user clicks on the (windowed) text, it should reverse its direction.
#LabVIEW
LabVIEW
txt$ = "Hello World! " txtLength = len(txt$) direction=1   NoMainWin   open "Rosetta Task: Animation" for graphics_nsb as #demo #demo "Trapclose [quit]" #demo "down" #demo "Font Verdana 20 Bold" #demo "When leftButtonUp [changedirection]"   timer 150 , [draw] wait   [draw] if direction then txt$ = right$(txt$, 1);left$(txt$, txtLength - 1) else txt$ = right$(txt$, txtLength - 1);left$(txt$, 1) end if #demo "discard" #demo "place 50 100" #demo "\";txt$ wait   [changedirection] direction = not(direction) wait   [quit] timer 0 close #demo end
http://rosettacode.org/wiki/Animate_a_pendulum
Animate a pendulum
One good way of making an animation is by simulating a physical system and illustrating the variables in that system using a dynamically changing graphical display. The classic such physical system is a simple gravity pendulum. Task Create a simple physical model of a pendulum and animate it.
#Factor
Factor
USING: accessors alarms arrays calendar colors.constants kernel locals math math.constants math.functions math.rectangles math.vectors opengl sequences system ui ui.gadgets ui.render ; IN: pendulum   CONSTANT: g 9.81 CONSTANT: l 20 CONSTANT: theta0 0.5   : current-time ( -- time ) nano-count -9 10^ * ;   : T0 ( -- T0 ) 2 pi l g / sqrt * * ; : omega0 ( -- omega0 ) 2 pi * T0 / ; : theta ( -- theta ) current-time omega0 * cos theta0 * ;   : relative-xy ( theta l -- xy ) swap [ sin * ] [ cos * ] 2bi 2array ; : theta-to-xy ( origin theta l -- xy ) relative-xy v+ ;   TUPLE: pendulum-gadget < gadget alarm ;   : O ( gadget -- origin ) rect-bounds [ drop ] [ first 2 / ] bi* 0 2array ; : window-l ( gadget -- l ) rect-bounds [ drop ] [ second ] bi* ; : gadget-xy ( gadget -- xy ) [ O ] [ drop theta ] [ window-l ] tri theta-to-xy ;   M: pendulum-gadget draw-gadget* COLOR: black gl-color [ O ] [ gadget-xy ] bi gl-line ;   M:: pendulum-gadget graft* ( gadget -- ) [ gadget relayout-1 ] 20 milliseconds every gadget (>>alarm) ; M: pendulum-gadget ungraft* alarm>> cancel-alarm ;   : <pendulum-gadget> ( -- gadget ) pendulum-gadget new { 500 500 } >>pref-dim ; : pendulum-main ( -- ) [ <pendulum-gadget> "pendulum" open-window ] with-ui ; MAIN: pendulum-main  
http://rosettacode.org/wiki/Almkvist-Giullera_formula_for_pi
Almkvist-Giullera formula for pi
The Almkvist-Giullera formula for calculating   1/π2   is based on the Calabi-Yau differential equations of order 4 and 5,   which were originally used to describe certain manifolds in string theory. The formula is: 1/π2 = (25/3) ∑0∞ ((6n)! / (n!6))(532n2 + 126n + 9) / 10002n+1 This formula can be used to calculate the constant   π-2,   and thus to calculate   π. Note that, because the product of all terms but the power of 1000 can be calculated as an integer, the terms in the series can be separated into a large integer term: (25) (6n)! (532n2 + 126n + 9) / (3(n!)6)     (***) multiplied by a negative integer power of 10: 10-(6n + 3) Task Print the integer portions (the starred formula, which is without the power of 1000 divisor) of the first 10 terms of the series. Use the complete formula to calculate and print π to 70 decimal digits of precision. Reference  Gert Almkvist and Jesús Guillera, Ramanujan-like series for 1/π2 and string theory, Experimental Mathematics, 21 (2012), page 2, formula 1.
#Haskell
Haskell
import Control.Monad import Data.Number.CReal import GHC.Integer import Text.Printf   iterations = 52 main = do printf "N. %44s %4s %s\n" "Integral part of Nth term" "×10^" "=Actual value of Nth term"   forM_ [0..9] $ \n -> printf "%d. %44d %4d %s\n" n (almkvistGiulleraIntegral n) (tenExponent n) (showCReal 50 (almkvistGiullera n))   printf "\nPi after %d iterations:\n" iterations putStrLn $ showCReal 70 $ almkvistGiulleraPi iterations   -- The integral part of the Nth term in the Almkvist-Giullera series almkvistGiulleraIntegral n = let polynomial = (532 `timesInteger` n `timesInteger` n) `plusInteger` (126 `timesInteger` n) `plusInteger` 9 numerator = 32 `timesInteger` (facInteger (6 `timesInteger` n)) `timesInteger` polynomial denominator = 3 `timesInteger` (powInteger (facInteger n) 6) in numerator `divInteger` denominator   -- The exponent for 10 in the Nth term of the series tenExponent n = 3 `minusInteger` (6 `timesInteger` (1 `plusInteger` n))   -- The Nth term in the series (integral * 10^tenExponent) almkvistGiullera n = fromInteger (almkvistGiulleraIntegral n) / fromInteger (powInteger 10 (abs (tenExponent n)))   -- The sum of the first N terms almkvistGiulleraSum n = sum $ map almkvistGiullera [0 .. n]   -- The approximation of pi from the first N terms almkvistGiulleraPi n = sqrt $ 1 / almkvistGiulleraSum n   -- Utility: factorial for arbitrary-precision integers facInteger n = if n `leInteger` 1 then 1 else n `timesInteger` facInteger (n `minusInteger` 1)   -- Utility: exponentiation for arbitrary-precision integers powInteger 1 _ = 1 powInteger _ 0 = 1 powInteger b 1 = b powInteger b e = b `timesInteger` powInteger b (e `minusInteger` 1)  
http://rosettacode.org/wiki/Almost_prime
Almost prime
A   k-Almost-prime   is a natural number   n {\displaystyle n}   that is the product of   k {\displaystyle k}   (possibly identical) primes. Example 1-almost-primes,   where   k = 1 {\displaystyle k=1} ,   are the prime numbers themselves. 2-almost-primes,   where   k = 2 {\displaystyle k=2} ,   are the   semiprimes. Task Write a function/method/subroutine/... that generates k-almost primes and use it to create a table here of the first ten members of k-Almost primes for   1 <= K <= 5 {\displaystyle 1<=K<=5} . Related tasks   Semiprime   Category:Prime Numbers
#ALGOL-M
ALGOL-M
begin   integer function mod(a, b); integer a, b; mod := a-(a/b)*b;   integer function kprime(n, k); integer n, k; begin integer p, f; f := 0; p := 2; while f < k and p*p <= n do begin while mod(n,p) = 0 do begin n := n / p; f := f + 1; end; p := p + 1; end; if n > 1 then f := f + 1; if f = k then kprime := 1 else kprime := 0; end;   integer i, c, k; for k := 1 step 1 until 5 do begin write("k ="); writeon(k); writeon(": "); c := 0; i := 2; while c < 10 do begin if kprime(i, k) <> 0 then begin writeon(i); c := c + 1; end; i := i + 1; end; end; end
http://rosettacode.org/wiki/Angle_difference_between_two_bearings
Angle difference between two bearings
Finding the angle between two bearings is often confusing.[1] Task Find the angle which is the result of the subtraction b2 - b1, where b1 and b2 are the bearings. Input bearings are expressed in the range   -180   to   +180   degrees. The  result  is also expressed in the range   -180   to   +180   degrees. Compute the angle for the following pairs: 20 degrees (b1) and 45 degrees (b2) -45 and 45 -85 and 90 -95 and 90 -45 and 125 -45 and 145 29.4803 and -88.6381 -78.3251 and -159.036 Optional extra Allow the input bearings to be any (finite) value. Test cases -70099.74233810938 and 29840.67437876723 -165313.6666297357 and 33693.9894517456 1174.8380510598456 and -154146.66490124757 60175.77306795546 and 42213.07192354373
#FreeBASIC
FreeBASIC
' version 28-01-2019 ' compile with: fbc -s console   #Include "string.bi"   Function frmt(num As Double) As String   Dim As String temp = Format(num, "#######.#############") Dim As Integer i = Len(temp) -1   If temp[i] = Asc(".") Then temp[i] = 32 If InStr(temp, ".") = 0 Then Return Right(Space(10) + temp, 9) + Space(13) End If temp = Space(10) + temp + Space(13) Return Mid(temp, InStr(temp, ".") -8, 22)   End Function   ' ------=< MAIN >=------   Dim As Double b1, b2, bb1, bb2, diff   Print Print " b1 b2 difference" Print " -----------------------------------------------------------"   Do Read b1, b2 If b1 = 0 And b2 = 0 Then Exit Do diff = b2 - b1 diff = diff - Int(diff / 360) * 360 If diff > 180 Then diff -= 360 Print frmt(b1); frmt(b2); frmt(diff) Loop   Data 20,45, -45,45, -85,90 Data -95,90, -45,125, -45,145 Data 29.4803,-88.6381, -78.3251,-159.036 Data -70099.74233810938, 29840.67437876723 Data -165313.6666297357, 33693.9894517456 Data 1174.8380510598456, -154146.66490124757 Data 60175.77306795546, 42213.07192354373   ' empty keyboard buffer While InKey <> "" : Wend Print : Print "hit any key to end program" Sleep End
http://rosettacode.org/wiki/Anagrams/Deranged_anagrams
Anagrams/Deranged anagrams
Two or more words are said to be anagrams if they have the same characters, but in a different order. By analogy with derangements we define a deranged anagram as two words with the same characters, but in which the same character does not appear in the same position in both words. Task[edit] Use the word list at unixdict to find and display the longest deranged anagram. Related tasks Permutations/Derangements Best shuffle Word plays Ordered words Palindrome detection Semordnilap Anagrams Anagrams/Deranged anagrams Other tasks related to string operations: Metrics Array length String length Copy a string Empty string  (assignment) Counting Word frequency Letter frequency Jewels and stones I before E except after C Bioinformatics/base count Count occurrences of a substring Count how many vowels and consonants occur in a string Remove/replace XXXX redacted Conjugate a Latin verb Remove vowels from a string String interpolation (included) Strip block comments Strip comments from a string Strip a set of characters from a string Strip whitespace from a string -- top and tail Strip control codes and extended characters from a string Anagrams/Derangements/shuffling Word wheel ABC problem Sattolo cycle Knuth shuffle Ordered words Superpermutation minimisation Textonyms (using a phone text pad) Anagrams Anagrams/Deranged anagrams Permutations/Derangements Find/Search/Determine ABC words Odd words Word ladder Semordnilap Word search Wordiff  (game) String matching Tea cup rim text Alternade words Changeable words State name puzzle String comparison Unique characters Unique characters in each string Extract file extension Levenshtein distance Palindrome detection Common list elements Longest common suffix Longest common prefix Compare a list of strings Longest common substring Find common directory path Words from neighbour ones Change e letters to i in words Non-continuous subsequences Longest common subsequence Longest palindromic substrings Longest increasing subsequence Words containing "the" substring Sum of the digits of n is substring of n Determine if a string is numeric Determine if a string is collapsible Determine if a string is squeezable Determine if a string has all unique characters Determine if a string has all the same characters Longest substrings without repeating characters Find words which contains all the vowels Find words which contains most consonants Find words which contains more than 3 vowels Find words which first and last three letters are equals Find words which odd letters are consonants and even letters are vowels or vice_versa Formatting Substring Rep-string Word wrap String case Align columns Literals/String Repeat a string Brace expansion Brace expansion using ranges Reverse a string Phrase reversals Comma quibbling Special characters String concatenation Substring/Top and tail Commatizing numbers Reverse words in a string Suffixation of decimal numbers Long literals, with continuations Numerical and alphabetical suffixes Abbreviations, easy Abbreviations, simple Abbreviations, automatic Song lyrics/poems/Mad Libs/phrases Mad Libs Magic 8-ball 99 Bottles of Beer The Name Game (a song) The Old lady swallowed a fly The Twelve Days of Christmas Tokenize Text between Tokenize a string Word break problem Tokenize a string with escaping Split a character string based on change of character Sequences Show ASCII table De Bruijn sequences Self-referential sequences Generate lower case ASCII alphabet
#JavaScript
JavaScript
#!/usr/bin/env js   function main() { var wordList = read('unixdict.txt').split(/\s+/); var anagrams = findAnagrams(wordList); var derangedAnagrams = findDerangedAnagrams(anagrams); var longestPair = findLongestDerangedPair(derangedAnagrams); print(longestPair.join(' '));   }   function findLongestDerangedPair(danas) { var longestLen = danas[0][0].length; var longestPair = danas[0]; for (var i in danas) { if (danas[i][0].length > longestLen) { longestLen = danas[i][0].length; longestPair = danas[i]; } } return longestPair; }   function findDerangedAnagrams(anagrams) { var deranged = [];   function isDeranged(w1, w2) { for (var c = 0; c < w1.length; c++) { if (w1[c] == w2[c]) { return false; } } return true; }   function findDeranged(anas) { for (var a = 0; a < anas.length; a++) { for (var b = a + 1; b < anas.length; b++) { if (isDeranged(anas[a], anas[b])) { deranged.push([anas[a], anas[b]]); } } } }   for (var a in anagrams) { var anas = anagrams[a]; findDeranged(anas); }   return deranged; }   function findAnagrams(wordList) { var anagrams = {};   for (var wordNum in wordList) { var word = wordList[wordNum]; var key = word.split('').sort().join(''); if (!(key in anagrams)) { anagrams[key] = []; } anagrams[key].push(word); }   for (var a in anagrams) { if (anagrams[a].length < 2) { delete(anagrams[a]); } }   return anagrams; }   main();
http://rosettacode.org/wiki/Anonymous_recursion
Anonymous recursion
While implementing a recursive function, it often happens that we must resort to a separate   helper function   to handle the actual recursion. This is usually the case when directly calling the current function would waste too many resources (stack space, execution time), causing unwanted side-effects,   and/or the function doesn't have the right arguments and/or return values. So we end up inventing some silly name like   foo2   or   foo_helper.   I have always found it painful to come up with a proper name, and see some disadvantages:   You have to think up a name, which then pollutes the namespace   Function is created which is called from nowhere else   The program flow in the source code is interrupted Some languages allow you to embed recursion directly in-place.   This might work via a label, a local gosub instruction, or some special keyword. Anonymous recursion can also be accomplished using the   Y combinator. Task If possible, demonstrate this by writing the recursive version of the fibonacci function   (see Fibonacci sequence)   which checks for a negative argument before doing the actual recursion.
#Groovy
Groovy
def fib = { assert it > -1 {i -> i < 2 ? i : {j -> owner.call(j)}(i-1) + {k -> owner.call(k)}(i-2)}(it) }
http://rosettacode.org/wiki/Angles_(geometric),_normalization_and_conversion
Angles (geometric), normalization and conversion
This task is about the normalization and/or conversion of (geometric) angles using some common scales. The angular scales that will be used in this task are:   degree   gradian   mil   radian Definitions The angular scales used or referenced here:   turn   is a full turn or 360 degrees, also shown as 360º   degree   is   1/360   of a turn   gradian   is   1/400   of a turn   mil   is   1/6400   of a turn   radian   is   1/2 π {\displaystyle \pi }   of a turn   (or   0.5/ π {\displaystyle \pi }   of a turn) Or, to put it another way,   for a full circle:   there are   360   degrees   there are   400   gradians   there are   6,400   mils   there are   2 π {\displaystyle \pi }   radians   (roughly equal to 6.283+) A   mil   is approximately equal to a   milliradian   (which is   1/1000   of a radian). There is another definition of a   mil   which is   1/1000   of a radian   ─── this definition won't be used in this Rosetta Code task. Turns   are sometimes known or shown as:   turn(s)   360 degrees   unit circle   a (full) circle Degrees   are sometimes known or shown as:   degree(s)   deg   º       (a symbol)   °       (another symbol) Gradians   are sometimes known or shown as:   gradian(s)   grad(s)   grade(s)   gon(s)   metric degree(s)   (Note that   centigrade   was used for 1/100th of a grade, see the note below.) Mils   are sometimes known or shown as:   mil(s)   NATO mil(s) Radians   are sometimes known or shown as:   radian(s)   rad(s) Notes In continental Europe, the French term   centigrade   was used for   1/100   of a grad (grade);   this was one reason for the adoption of the term   Celsius   to replace   centigrade   as the name of a temperature scale. Gradians were commonly used in civil engineering. Mils were normally used for artillery   (elevations of the gun barrel for ranging). Positive and negative angles Although the definition of the measurement of an angle doesn't support the concept of a negative angle,   it's frequently useful to impose a convention that allows positive and negative angular values to represent orientations and/or rotations in opposite directions relative to some reference.   It is this reason that negative angles will keep their sign and not be normalized to positive angles. Normalization Normalization   (for this Rosetta Code task)   will keep the same sign,   but it will reduce the magnitude to less than a full circle;   in other words, less than 360º. Normalization   shouldn't   change   -45º   to   315º, An angle of   0º,   +0º,   0.000000,   or   -0º   should be shown as   0º. Task   write a function (or equivalent) to do the normalization for each scale Suggested names: d2d,   g2g,   m2m,   and  r2r   write a function (or equivalent) to convert one scale to another Suggested names for comparison of different computer language function names: d2g,   d2m,   and   d2r   for degrees g2d,   g2m,   and   g2r   for gradians m2d,   m2g,   and   m2r   for mils r2d,   r2g,   and   r2m   for radians   normalize all angles used   (except for the "original" or "base" angle)   show the angles in every scale and convert them to all other scales   show all output here on this page For the (above) conversions,   use these dozen numbers   (in the order shown):   -2   -1   0   1   2   6.2831853   16   57.2957795   359   399   6399   1000000
#Rust
Rust
use std::{ marker::PhantomData, f64::consts::PI, };   pub trait AngleUnit: Copy { const TURN: f64; const NAME: &'static str; }   macro_rules! unit { ($name:ident, $value:expr, $string:expr) => ( #[derive(Debug, Copy, Clone)] struct $name; impl AngleUnit for $name { const TURN: f64 = $value; const NAME: &'static str = $string; } ); }   unit!(Degrees, 360.0, "Degrees"); unit!(Radians, PI * 2.0, "Radians"); unit!(Gradians, 400.0, "Gradians"); unit!(Mils, 6400.0, "Mils");   #[derive(Copy, Clone, PartialEq, PartialOrd)] struct Angle<T: AngleUnit>(f64, PhantomData<T>);   impl<T: AngleUnit> Angle<T> { pub fn new(val: f64) -> Self { Self(val, PhantomData) }   pub fn normalize(self) -> Self { Self(self.0 % T::TURN, PhantomData) }   pub fn val(self) -> f64 { self.0 }   pub fn convert<U: AngleUnit>(self) -> Angle<U> { Angle::new(self.0 * U::TURN / T::TURN) }   pub fn name(self) -> &'static str { T::NAME } }   fn print_angles<T: AngleUnit>() { let angles = [-2.0, -1.0, 0.0, 1.0, 2.0, 6.2831853, 16.0, 57.2957795, 359.0, 399.0, 6399.0, 1000000.0]; println!("{:<12} {:<12} {:<12} {:<12} {:<12} {:<12}", "Angle", "Unit", "Degrees", "Gradians", "Mils", "Radians");   for &angle in &angles { let deg = Angle::<T>::new(angle).normalize(); println!("{:<12} {:<12} {:<12.4} {:<12.4} {:<12.4} {:<12.4}", angle, deg.name(), deg.convert::<Degrees>().val(), deg.convert::<Gradians>().val(), deg.convert::<Mils>().val(), deg.convert::<Radians>().val(), ); }   println!(); }   fn main() { print_angles::<Degrees>(); print_angles::<Gradians>(); print_angles::<Mils>(); print_angles::<Radians>(); }
http://rosettacode.org/wiki/Angles_(geometric),_normalization_and_conversion
Angles (geometric), normalization and conversion
This task is about the normalization and/or conversion of (geometric) angles using some common scales. The angular scales that will be used in this task are:   degree   gradian   mil   radian Definitions The angular scales used or referenced here:   turn   is a full turn or 360 degrees, also shown as 360º   degree   is   1/360   of a turn   gradian   is   1/400   of a turn   mil   is   1/6400   of a turn   radian   is   1/2 π {\displaystyle \pi }   of a turn   (or   0.5/ π {\displaystyle \pi }   of a turn) Or, to put it another way,   for a full circle:   there are   360   degrees   there are   400   gradians   there are   6,400   mils   there are   2 π {\displaystyle \pi }   radians   (roughly equal to 6.283+) A   mil   is approximately equal to a   milliradian   (which is   1/1000   of a radian). There is another definition of a   mil   which is   1/1000   of a radian   ─── this definition won't be used in this Rosetta Code task. Turns   are sometimes known or shown as:   turn(s)   360 degrees   unit circle   a (full) circle Degrees   are sometimes known or shown as:   degree(s)   deg   º       (a symbol)   °       (another symbol) Gradians   are sometimes known or shown as:   gradian(s)   grad(s)   grade(s)   gon(s)   metric degree(s)   (Note that   centigrade   was used for 1/100th of a grade, see the note below.) Mils   are sometimes known or shown as:   mil(s)   NATO mil(s) Radians   are sometimes known or shown as:   radian(s)   rad(s) Notes In continental Europe, the French term   centigrade   was used for   1/100   of a grad (grade);   this was one reason for the adoption of the term   Celsius   to replace   centigrade   as the name of a temperature scale. Gradians were commonly used in civil engineering. Mils were normally used for artillery   (elevations of the gun barrel for ranging). Positive and negative angles Although the definition of the measurement of an angle doesn't support the concept of a negative angle,   it's frequently useful to impose a convention that allows positive and negative angular values to represent orientations and/or rotations in opposite directions relative to some reference.   It is this reason that negative angles will keep their sign and not be normalized to positive angles. Normalization Normalization   (for this Rosetta Code task)   will keep the same sign,   but it will reduce the magnitude to less than a full circle;   in other words, less than 360º. Normalization   shouldn't   change   -45º   to   315º, An angle of   0º,   +0º,   0.000000,   or   -0º   should be shown as   0º. Task   write a function (or equivalent) to do the normalization for each scale Suggested names: d2d,   g2g,   m2m,   and  r2r   write a function (or equivalent) to convert one scale to another Suggested names for comparison of different computer language function names: d2g,   d2m,   and   d2r   for degrees g2d,   g2m,   and   g2r   for gradians m2d,   m2g,   and   m2r   for mils r2d,   r2g,   and   r2m   for radians   normalize all angles used   (except for the "original" or "base" angle)   show the angles in every scale and convert them to all other scales   show all output here on this page For the (above) conversions,   use these dozen numbers   (in the order shown):   -2   -1   0   1   2   6.2831853   16   57.2957795   359   399   6399   1000000
#Swift
Swift
import Foundation   func normalize(_ f: Double, N: Double) -> Double { var a = f   while a < -N { a += N } while a >= N { a -= N }   return a }   func normalizeToDeg(_ f: Double) -> Double { return normalize(f, N: 360) }   func normalizeToGrad(_ f: Double) -> Double { return normalize(f, N: 400) }   func normalizeToMil(_ f: Double) -> Double { return normalize(f, N: 6400) }   func normalizeToRad(_ f: Double) -> Double { return normalize(f, N: 2 * .pi) }   func d2g(_ f: Double) -> Double { f * 10 / 9 } func d2m(_ f: Double) -> Double { f * 160 / 9 } func d2r(_ f: Double) -> Double { f * .pi / 180 }   func g2d(_ f: Double) -> Double { f * 9 / 10 } func g2m(_ f: Double) -> Double { f * 16 } func g2r(_ f: Double) -> Double { f * .pi / 200 }   func m2d(_ f: Double) -> Double { f * 9 / 160 } func m2g(_ f: Double) -> Double { f / 16 } func m2r(_ f: Double) -> Double { f * .pi / 3200 }   func r2d(_ f: Double) -> Double { f * 180 / .pi } func r2g(_ f: Double) -> Double { f * 200 / .pi } func r2m(_ f: Double) -> Double { f * 3200 / .pi }   let angles = [-2, -1, 0, 1, 2, 6.2831853, 16, 57.2957795, 359, 6399, 1_000_000] let names = ["Degrees", "Gradians", "Mils", "Radians"] let fmt = { String(format: "%.4f", $0) }   let normal = [normalizeToDeg, normalizeToGrad, normalizeToMil, normalizeToRad] let convert = [ [{ $0 }, d2g, d2m, d2r], [g2d, { $0 }, g2m, g2r], [m2d, m2g, { $0 }, m2r], [r2d, r2g, r2m, { $0 }] ]   let ans = angles.map({ angle in (0..<4).map({ ($0, normal[$0](angle)) }).map({ (fmt(angle), fmt($0.1), names[$0.0], fmt(convert[$0.0][0]($0.1)), fmt(convert[$0.0][1]($0.1)), fmt(convert[$0.0][2]($0.1)), fmt(convert[$0.0][3]($0.1)) ) }) })   print("angle", "normalized", "unit", "degrees", "grads", "mils", "radians")   for res in ans { for unit in res { print(unit) }   print() }
http://rosettacode.org/wiki/Amicable_pairs
Amicable pairs
Two integers N {\displaystyle N} and M {\displaystyle M} are said to be amicable pairs if N ≠ M {\displaystyle N\neq M} and the sum of the proper divisors of N {\displaystyle N} ( s u m ( p r o p D i v s ( N ) ) {\displaystyle \mathrm {sum} (\mathrm {propDivs} (N))} ) = M {\displaystyle =M} as well as s u m ( p r o p D i v s ( M ) ) = N {\displaystyle \mathrm {sum} (\mathrm {propDivs} (M))=N} . Example 1184 and 1210 are an amicable pair, with proper divisors:   1, 2, 4, 8, 16, 32, 37, 74, 148, 296, 592   and   1, 2, 5, 10, 11, 22, 55, 110, 121, 242, 605   respectively. Task Calculate and show here the Amicable pairs below 20,000; (there are eight). Related tasks Proper divisors Abundant, deficient and perfect number classifications Aliquot sequence classifications and its amicable classification.
#Ela
Ela
open monad io number list   divisors n = filter ((0 ==) << (n `mod`)) [1..(n `div` 2)] range = [1 .. 20000] divs = zip range $ map (sum << divisors) range pairs = [(n, m) \\ (n, nd) <- divs, (m, md) <- divs | n < m && nd == m && md == n]   do putLn pairs ::: IO
http://rosettacode.org/wiki/Animation
Animation
Animation is integral to many parts of GUIs, including both the fancy effects when things change used in window managers, and of course games.   The core of any animation system is a scheme for periodically changing the display while still remaining responsive to the user.   This task demonstrates this. Task Create a window containing the string "Hello World! " (the trailing space is significant). Make the text appear to be rotating right by periodically removing one letter from the end of the string and attaching it to the front. When the user clicks on the (windowed) text, it should reverse its direction.
#Liberty_BASIC
Liberty BASIC
txt$ = "Hello World! " txtLength = len(txt$) direction=1   NoMainWin   open "Rosetta Task: Animation" for graphics_nsb as #demo #demo "Trapclose [quit]" #demo "down" #demo "Font Verdana 20 Bold" #demo "When leftButtonUp [changedirection]"   timer 150 , [draw] wait   [draw] if direction then txt$ = right$(txt$, 1);left$(txt$, txtLength - 1) else txt$ = right$(txt$, txtLength - 1);left$(txt$, 1) end if #demo "discard" #demo "place 50 100" #demo "\";txt$ wait   [changedirection] direction = not(direction) wait   [quit] timer 0 close #demo end
http://rosettacode.org/wiki/Animate_a_pendulum
Animate a pendulum
One good way of making an animation is by simulating a physical system and illustrating the variables in that system using a dynamically changing graphical display. The classic such physical system is a simple gravity pendulum. Task Create a simple physical model of a pendulum and animate it.
#FBSL
FBSL
#INCLUDE <Include\Windows.inc>   FBSLSETTEXT(ME, "Pendulum") FBSL.SETTIMER(ME, 1000, 10) RESIZE(ME, 0, 0, 300, 200) CENTER(ME) SHOW(ME)   BEGIN EVENTS SELECT CASE CBMSG CASE WM_TIMER ' Request redraw InvalidateRect(ME, NULL, FALSE) RETURN 0 CASE WM_PAINT Swing() CASE WM_CLOSE FBSL.KILLTIMER(ME, 1000) END SELECT END EVENTS   SUB Swing() TYPE RECT: %rcLeft, %rcTop, %rcRight, %rcBottom: END TYPE STATIC rc AS RECT, !!acceleration, !!velocity, !!angle = M_PI_2, %pendulum = 100   GetClientRect(ME, @rc)   ' Recalculate DIM headX = rc.rcRight / 2, headY = rc.rcBottom / 4 DIM tailX = headX + SIN(angle) * pendulum DIM tailY = headY + COS(angle) * pendulum   acceleration = -9.81 / pendulum * SIN(angle) INCR(velocity, acceleration * 0.1)(angle, velocity * 0.1)   ' Create backbuffer CreateCompatibleDC(GetDC(ME)) SelectObject(CreateCompatibleDC, CreateCompatibleBitmap(GetDC, rc.rcRight, rc.rcBottom))   ' Draw to backbuffer FILLSTYLE(FILL_SOLID): FILLCOLOR(RGB(200, 200, 0)) LINE(CreateCompatibleDC, 0, 0, rc.rcRight, rc.rcBottom, GetSysColor(COLOR_BTNHILIGHT), TRUE, TRUE) LINE(CreateCompatibleDC, 0, headY, rc.rcRight, headY, GetSysColor(COLOR_3DSHADOW)) DRAWWIDTH(3) LINE(CreateCompatibleDC, headX, headY, tailX, tailY, RGB(200, 0, 0)) DRAWWIDTH(1) CIRCLE(CreateCompatibleDC, headX, headY, 2, GetSysColor, 0, 360, 1, TRUE) CIRCLE(CreateCompatibleDC, tailX, tailY, 10, GetSysColor, 0, 360, 1, FALSE)   ' Blit to window BitBlt(GetDC, 0, 0, rc.rcRight, rc.rcBottom, CreateCompatibleDC, 0, 0, SRCCOPY) ReleaseDC(ME, GetDC)   ' Delete backbuffer DeleteObject(SelectObject(CreateCompatibleDC, SelectObject)) DeleteDC(CreateCompatibleDC) END SUB
http://rosettacode.org/wiki/Almkvist-Giullera_formula_for_pi
Almkvist-Giullera formula for pi
The Almkvist-Giullera formula for calculating   1/π2   is based on the Calabi-Yau differential equations of order 4 and 5,   which were originally used to describe certain manifolds in string theory. The formula is: 1/π2 = (25/3) ∑0∞ ((6n)! / (n!6))(532n2 + 126n + 9) / 10002n+1 This formula can be used to calculate the constant   π-2,   and thus to calculate   π. Note that, because the product of all terms but the power of 1000 can be calculated as an integer, the terms in the series can be separated into a large integer term: (25) (6n)! (532n2 + 126n + 9) / (3(n!)6)     (***) multiplied by a negative integer power of 10: 10-(6n + 3) Task Print the integer portions (the starred formula, which is without the power of 1000 divisor) of the first 10 terms of the series. Use the complete formula to calculate and print π to 70 decimal digits of precision. Reference  Gert Almkvist and Jesús Guillera, Ramanujan-like series for 1/π2 and string theory, Experimental Mathematics, 21 (2012), page 2, formula 1.
#J
J
  numerator =: monad define "0 (3 * (! x: y)^6) %~ 32 * (!6x*y) * (y*(126 + 532*y)) + 9x )   term =: numerator % 10x ^ 3 + 6&*   echo 'The first 10 numerators are:' echo ,. numerator i.10   echo '' echo 'The sum of the first 10 terms (pi^-2) is ', 0j15 ": +/ term i.10   heron =: [: -: ] + %   sqrt =: dyad define NB. usage: x0 tolerance sqrt x NB. e.g.: (1, %10^100x) sqrt 2 -> √2 to 100 decimals as a ratio p/q x0 =. }: x eps =. }. x x1 =. y heron x0 while. (| x1 - x0) > eps do. x2 =. y heron x1 x0 =. x1 x1 =. x2 end. x1 )   pi70 =. (355r113, %10^70x) sqrt % +/ term i.53 echo '' echo 'pi to 70 decimals: ', 0j70 ": pi70 exit ''  
http://rosettacode.org/wiki/Almkvist-Giullera_formula_for_pi
Almkvist-Giullera formula for pi
The Almkvist-Giullera formula for calculating   1/π2   is based on the Calabi-Yau differential equations of order 4 and 5,   which were originally used to describe certain manifolds in string theory. The formula is: 1/π2 = (25/3) ∑0∞ ((6n)! / (n!6))(532n2 + 126n + 9) / 10002n+1 This formula can be used to calculate the constant   π-2,   and thus to calculate   π. Note that, because the product of all terms but the power of 1000 can be calculated as an integer, the terms in the series can be separated into a large integer term: (25) (6n)! (532n2 + 126n + 9) / (3(n!)6)     (***) multiplied by a negative integer power of 10: 10-(6n + 3) Task Print the integer portions (the starred formula, which is without the power of 1000 divisor) of the first 10 terms of the series. Use the complete formula to calculate and print π to 70 decimal digits of precision. Reference  Gert Almkvist and Jesús Guillera, Ramanujan-like series for 1/π2 and string theory, Experimental Mathematics, 21 (2012), page 2, formula 1.
#JavaScript
JavaScript
import esMain from 'es-main'; import { BigFloat, set_precision as SetPrecision } from 'bigfloat-esnext';   const Iterations = 52;   export const demo = function() { SetPrecision(-75); console.log("N." + "Integral part of Nth term".padStart(45) + " ×10^ =Actual value of Nth term"); for (let i=0; i<10; i++) { let line = `${i}. `; line += `${integral(i)} `.padStart(45); line += `${tenExponent(i)} `.padStart(5); line += nthTerm(i); console.log(line); }   let pi = approximatePi(Iterations); SetPrecision(-70); pi = pi.dividedBy(100000).times(100000); console.log(`\nPi after ${Iterations} iterations: ${pi}`) }   export const bigFactorial = n => n <= 1n ? 1n : n * bigFactorial(n-1n);   // the nth integer term export const integral = function(i) { let n = BigInt(i); const polynomial = 532n * n * n + 126n * n + 9n; const numerator = 32n * bigFactorial(6n * n) * polynomial; const denominator = 3n * bigFactorial(n) ** 6n; return numerator / denominator; }   // the exponent for 10 in the nth term of the series export const tenExponent = n => 3n - 6n * (BigInt(n) + 1n);   // the nth term of the series export const nthTerm = n => new BigFloat(integral(n)).dividedBy(new BigFloat(10n ** -tenExponent(n)))   // the sum of the first n terms export const sumThrough = function(n) { let sum = new BigFloat(0); for (let i=0; i<=n; ++i) { sum = sum.plus(nthTerm(i)); } return sum; }   // the approximation to pi after n terms export const approximatePi = n => new BigFloat(1).dividedBy(sumThrough(n)).sqrt();   if (esMain(import.meta)) demo();  
http://rosettacode.org/wiki/Almost_prime
Almost prime
A   k-Almost-prime   is a natural number   n {\displaystyle n}   that is the product of   k {\displaystyle k}   (possibly identical) primes. Example 1-almost-primes,   where   k = 1 {\displaystyle k=1} ,   are the prime numbers themselves. 2-almost-primes,   where   k = 2 {\displaystyle k=2} ,   are the   semiprimes. Task Write a function/method/subroutine/... that generates k-almost primes and use it to create a table here of the first ten members of k-Almost primes for   1 <= K <= 5 {\displaystyle 1<=K<=5} . Related tasks   Semiprime   Category:Prime Numbers
#ALGOL_W
ALGOL W
begin logical procedure kPrime( integer value nv, k ) ; begin integer p, f, n; n := nv; f := 0; while f <= k and not odd( n ) do begin n := n div 2; f := f + 1 end while_not_odd_n ; p := 3; while f <= k and p * p <= n do begin while n rem p = 0 do begin n := n div p; f := f + 1 end while_n_rem_p_eq_0 ; p := p + 2 end while_f_le_k_and_p_is_a_factor ; if n > 1 then f := f + 1; f = k end kPrime ; begin for k := 1 until 5 do begin integer c, i; write( i_w := 1, s_w := 0, "k = ", k , ": " ); c := 0; i := 2; while c < 10 do begin if kPrime( i, k ) then begin writeon( i_w := 3, s_w := 0, " ", i ); c := c + 1 end if_kPrime_i_k ; i := i + 1 end while_c_lt_10 end for_k end end.
http://rosettacode.org/wiki/Almost_prime
Almost prime
A   k-Almost-prime   is a natural number   n {\displaystyle n}   that is the product of   k {\displaystyle k}   (possibly identical) primes. Example 1-almost-primes,   where   k = 1 {\displaystyle k=1} ,   are the prime numbers themselves. 2-almost-primes,   where   k = 2 {\displaystyle k=2} ,   are the   semiprimes. Task Write a function/method/subroutine/... that generates k-almost primes and use it to create a table here of the first ten members of k-Almost primes for   1 <= K <= 5 {\displaystyle 1<=K<=5} . Related tasks   Semiprime   Category:Prime Numbers
#APL
APL
f←{↑r⊣⍵∘{r,∘⊂←⍺↑∪{⍵[⍋⍵]},f∘.×⍵}⍣(⍺-1)⊃r←⊂f←pco¨⍳⍵}
http://rosettacode.org/wiki/Angle_difference_between_two_bearings
Angle difference between two bearings
Finding the angle between two bearings is often confusing.[1] Task Find the angle which is the result of the subtraction b2 - b1, where b1 and b2 are the bearings. Input bearings are expressed in the range   -180   to   +180   degrees. The  result  is also expressed in the range   -180   to   +180   degrees. Compute the angle for the following pairs: 20 degrees (b1) and 45 degrees (b2) -45 and 45 -85 and 90 -95 and 90 -45 and 125 -45 and 145 29.4803 and -88.6381 -78.3251 and -159.036 Optional extra Allow the input bearings to be any (finite) value. Test cases -70099.74233810938 and 29840.67437876723 -165313.6666297357 and 33693.9894517456 1174.8380510598456 and -154146.66490124757 60175.77306795546 and 42213.07192354373
#Go
Go
package main   import "fmt"   type bearing float64   var testCases = []struct{ b1, b2 bearing }{ {20, 45}, {-45, 45}, {-85, 90}, {-95, 90}, {-45, 125}, {-45, 145}, {29.4803, -88.6381}, {-78.3251, -159.036}, }   func main() { for _, tc := range testCases { fmt.Println(tc.b2.Sub(tc.b1)) } }   func (b2 bearing) Sub(b1 bearing) bearing { switch d := b2 - b1; { case d < -180: return d + 360 case d > 180: return d - 360 default: return d } }
http://rosettacode.org/wiki/Anagrams/Deranged_anagrams
Anagrams/Deranged anagrams
Two or more words are said to be anagrams if they have the same characters, but in a different order. By analogy with derangements we define a deranged anagram as two words with the same characters, but in which the same character does not appear in the same position in both words. Task[edit] Use the word list at unixdict to find and display the longest deranged anagram. Related tasks Permutations/Derangements Best shuffle Word plays Ordered words Palindrome detection Semordnilap Anagrams Anagrams/Deranged anagrams Other tasks related to string operations: Metrics Array length String length Copy a string Empty string  (assignment) Counting Word frequency Letter frequency Jewels and stones I before E except after C Bioinformatics/base count Count occurrences of a substring Count how many vowels and consonants occur in a string Remove/replace XXXX redacted Conjugate a Latin verb Remove vowels from a string String interpolation (included) Strip block comments Strip comments from a string Strip a set of characters from a string Strip whitespace from a string -- top and tail Strip control codes and extended characters from a string Anagrams/Derangements/shuffling Word wheel ABC problem Sattolo cycle Knuth shuffle Ordered words Superpermutation minimisation Textonyms (using a phone text pad) Anagrams Anagrams/Deranged anagrams Permutations/Derangements Find/Search/Determine ABC words Odd words Word ladder Semordnilap Word search Wordiff  (game) String matching Tea cup rim text Alternade words Changeable words State name puzzle String comparison Unique characters Unique characters in each string Extract file extension Levenshtein distance Palindrome detection Common list elements Longest common suffix Longest common prefix Compare a list of strings Longest common substring Find common directory path Words from neighbour ones Change e letters to i in words Non-continuous subsequences Longest common subsequence Longest palindromic substrings Longest increasing subsequence Words containing "the" substring Sum of the digits of n is substring of n Determine if a string is numeric Determine if a string is collapsible Determine if a string is squeezable Determine if a string has all unique characters Determine if a string has all the same characters Longest substrings without repeating characters Find words which contains all the vowels Find words which contains most consonants Find words which contains more than 3 vowels Find words which first and last three letters are equals Find words which odd letters are consonants and even letters are vowels or vice_versa Formatting Substring Rep-string Word wrap String case Align columns Literals/String Repeat a string Brace expansion Brace expansion using ranges Reverse a string Phrase reversals Comma quibbling Special characters String concatenation Substring/Top and tail Commatizing numbers Reverse words in a string Suffixation of decimal numbers Long literals, with continuations Numerical and alphabetical suffixes Abbreviations, easy Abbreviations, simple Abbreviations, automatic Song lyrics/poems/Mad Libs/phrases Mad Libs Magic 8-ball 99 Bottles of Beer The Name Game (a song) The Old lady swallowed a fly The Twelve Days of Christmas Tokenize Text between Tokenize a string Word break problem Tokenize a string with escaping Split a character string based on change of character Sequences Show ASCII table De Bruijn sequences Self-referential sequences Generate lower case ASCII alphabet
#jq
jq
# Input: an array of strings # Output: a stream of arrays def anagrams: reduce .[] as $word ( {table: {}, max: 0}; # state ($word | explode | sort | implode) as $hash | .table[$hash] += [ $word ] | .max = ([ .max, ( .table[$hash] | length) ] | max ) ) | .table | .[] | select(length>1);   # Check whether the input and y are deranged, # on the assumption that they are anagrams: def deranged(y): explode as $x # explode is fast | (y | explode) as $y | all( range(0;length); $x[.] != $y[.] );   # The task: loop through the anagrams, # retaining only the best set of deranged anagrams so far. split("\n") | select(length>0) # read all the words as an array | reduce anagrams as $words ([]; # loop through all the anagrams reduce $words[] as $v (.; reduce ($words - [$v])[] as $w (.; # $v and $w are distinct members of $words if $v|deranged($w) then if length == 0 then [$v,$w] elif ($v|length) == (.[0]|length) then . + [$v,$w] elif ($v|length) > (.[0]|length) then [$v,$w] else . end else . end) ) ) | unique
http://rosettacode.org/wiki/Anonymous_recursion
Anonymous recursion
While implementing a recursive function, it often happens that we must resort to a separate   helper function   to handle the actual recursion. This is usually the case when directly calling the current function would waste too many resources (stack space, execution time), causing unwanted side-effects,   and/or the function doesn't have the right arguments and/or return values. So we end up inventing some silly name like   foo2   or   foo_helper.   I have always found it painful to come up with a proper name, and see some disadvantages:   You have to think up a name, which then pollutes the namespace   Function is created which is called from nowhere else   The program flow in the source code is interrupted Some languages allow you to embed recursion directly in-place.   This might work via a label, a local gosub instruction, or some special keyword. Anonymous recursion can also be accomplished using the   Y combinator. Task If possible, demonstrate this by writing the recursive version of the fibonacci function   (see Fibonacci sequence)   which checks for a negative argument before doing the actual recursion.
#Haskell
Haskell
fib :: Integer -> Maybe Integer fib n | n < 0 = Nothing | otherwise = Just $ real n where real 0 = 1 real 1 = 1 real n = real (n-1) + real (n-2)
http://rosettacode.org/wiki/Angles_(geometric),_normalization_and_conversion
Angles (geometric), normalization and conversion
This task is about the normalization and/or conversion of (geometric) angles using some common scales. The angular scales that will be used in this task are:   degree   gradian   mil   radian Definitions The angular scales used or referenced here:   turn   is a full turn or 360 degrees, also shown as 360º   degree   is   1/360   of a turn   gradian   is   1/400   of a turn   mil   is   1/6400   of a turn   radian   is   1/2 π {\displaystyle \pi }   of a turn   (or   0.5/ π {\displaystyle \pi }   of a turn) Or, to put it another way,   for a full circle:   there are   360   degrees   there are   400   gradians   there are   6,400   mils   there are   2 π {\displaystyle \pi }   radians   (roughly equal to 6.283+) A   mil   is approximately equal to a   milliradian   (which is   1/1000   of a radian). There is another definition of a   mil   which is   1/1000   of a radian   ─── this definition won't be used in this Rosetta Code task. Turns   are sometimes known or shown as:   turn(s)   360 degrees   unit circle   a (full) circle Degrees   are sometimes known or shown as:   degree(s)   deg   º       (a symbol)   °       (another symbol) Gradians   are sometimes known or shown as:   gradian(s)   grad(s)   grade(s)   gon(s)   metric degree(s)   (Note that   centigrade   was used for 1/100th of a grade, see the note below.) Mils   are sometimes known or shown as:   mil(s)   NATO mil(s) Radians   are sometimes known or shown as:   radian(s)   rad(s) Notes In continental Europe, the French term   centigrade   was used for   1/100   of a grad (grade);   this was one reason for the adoption of the term   Celsius   to replace   centigrade   as the name of a temperature scale. Gradians were commonly used in civil engineering. Mils were normally used for artillery   (elevations of the gun barrel for ranging). Positive and negative angles Although the definition of the measurement of an angle doesn't support the concept of a negative angle,   it's frequently useful to impose a convention that allows positive and negative angular values to represent orientations and/or rotations in opposite directions relative to some reference.   It is this reason that negative angles will keep their sign and not be normalized to positive angles. Normalization Normalization   (for this Rosetta Code task)   will keep the same sign,   but it will reduce the magnitude to less than a full circle;   in other words, less than 360º. Normalization   shouldn't   change   -45º   to   315º, An angle of   0º,   +0º,   0.000000,   or   -0º   should be shown as   0º. Task   write a function (or equivalent) to do the normalization for each scale Suggested names: d2d,   g2g,   m2m,   and  r2r   write a function (or equivalent) to convert one scale to another Suggested names for comparison of different computer language function names: d2g,   d2m,   and   d2r   for degrees g2d,   g2m,   and   g2r   for gradians m2d,   m2g,   and   m2r   for mils r2d,   r2g,   and   r2m   for radians   normalize all angles used   (except for the "original" or "base" angle)   show the angles in every scale and convert them to all other scales   show all output here on this page For the (above) conversions,   use these dozen numbers   (in the order shown):   -2   -1   0   1   2   6.2831853   16   57.2957795   359   399   6399   1000000
#Vlang
Vlang
import math import strconv fn d2d(d f64) f64 { return math.mod(d, 360) } fn g2g(g f64) f64 { return math.mod(g, 400) } fn m2m(m f64) f64 { return math.mod(m, 6400) } fn r2r(r f64) f64 { return math.mod(r, 2*math.pi) } fn d2g(d f64) f64 { return d2d(d) * 400 / 360 } fn d2m(d f64) f64 { return d2d(d) * 6400 / 360 } fn d2r(d f64) f64 { return d2d(d) * math.pi / 180 } fn g2d(g f64) f64 { return g2g(g) * 360 / 400 } fn g2m(g f64) f64 { return g2g(g) * 6400 / 400 } fn g2r(g f64) f64 { return g2g(g) * math.pi / 200 } fn m2d(m f64) f64 { return m2m(m) * 360 / 6400 } fn m2g(m f64) f64 { return m2m(m) * 400 / 6400 } fn m2r(m f64) f64 { return m2m(m) * math.pi / 3200 } fn r2d(r f64) f64 { return r2r(r) * 180 / math.pi } fn r2g(r f64) f64 { return r2r(r) * 200 / math.pi } fn r2m(r f64) f64 { return r2r(r) * 3200 / math.pi }   fn s(f f64) string { wf := strconv.format_fl(f, strconv.BF_param{ len0: 15 len1: 7 positive: f>=0 }).split('.') if wf[1] == '0000000' { return "${wf[0]:7} " } mut le := wf[1].len if le > 7 { le = 7 } return "${wf[0]:7}.${wf[1][..le]:-7}" } fn main() { angles := [-2.0, -1, 0, 1, 2, 6.2831853, 16, 57.2957795, 359, 399, 6399, 1000000] println(" degrees normalized degs gradians mils radians") for a in angles { println('${s(a)} ${s(d2d(a))} ${s(d2g(a))} ${s(d2m(a))} ${s(d2r(a))}') } println("\n gradians normalized grds degrees mils radians") for a in angles { println('${s(a)} ${s(g2g(a))} ${s(g2d(a))} ${s(g2m(a))} ${s(g2r(a))}') } println("\n mils normalized mils degrees gradians radians") for a in angles { println('${s(a)} ${s(m2m(a))} ${s(m2d(a))} ${s(m2g(a))} ${s(m2r(a))}') } println("\n radians normalized rads degrees gradians mils ") for a in angles { println('${s(a)} ${s(r2r(a))} ${s(r2d(a))} ${s(r2g(a))} ${s(r2m(a))}') } }
http://rosettacode.org/wiki/Angles_(geometric),_normalization_and_conversion
Angles (geometric), normalization and conversion
This task is about the normalization and/or conversion of (geometric) angles using some common scales. The angular scales that will be used in this task are:   degree   gradian   mil   radian Definitions The angular scales used or referenced here:   turn   is a full turn or 360 degrees, also shown as 360º   degree   is   1/360   of a turn   gradian   is   1/400   of a turn   mil   is   1/6400   of a turn   radian   is   1/2 π {\displaystyle \pi }   of a turn   (or   0.5/ π {\displaystyle \pi }   of a turn) Or, to put it another way,   for a full circle:   there are   360   degrees   there are   400   gradians   there are   6,400   mils   there are   2 π {\displaystyle \pi }   radians   (roughly equal to 6.283+) A   mil   is approximately equal to a   milliradian   (which is   1/1000   of a radian). There is another definition of a   mil   which is   1/1000   of a radian   ─── this definition won't be used in this Rosetta Code task. Turns   are sometimes known or shown as:   turn(s)   360 degrees   unit circle   a (full) circle Degrees   are sometimes known or shown as:   degree(s)   deg   º       (a symbol)   °       (another symbol) Gradians   are sometimes known or shown as:   gradian(s)   grad(s)   grade(s)   gon(s)   metric degree(s)   (Note that   centigrade   was used for 1/100th of a grade, see the note below.) Mils   are sometimes known or shown as:   mil(s)   NATO mil(s) Radians   are sometimes known or shown as:   radian(s)   rad(s) Notes In continental Europe, the French term   centigrade   was used for   1/100   of a grad (grade);   this was one reason for the adoption of the term   Celsius   to replace   centigrade   as the name of a temperature scale. Gradians were commonly used in civil engineering. Mils were normally used for artillery   (elevations of the gun barrel for ranging). Positive and negative angles Although the definition of the measurement of an angle doesn't support the concept of a negative angle,   it's frequently useful to impose a convention that allows positive and negative angular values to represent orientations and/or rotations in opposite directions relative to some reference.   It is this reason that negative angles will keep their sign and not be normalized to positive angles. Normalization Normalization   (for this Rosetta Code task)   will keep the same sign,   but it will reduce the magnitude to less than a full circle;   in other words, less than 360º. Normalization   shouldn't   change   -45º   to   315º, An angle of   0º,   +0º,   0.000000,   or   -0º   should be shown as   0º. Task   write a function (or equivalent) to do the normalization for each scale Suggested names: d2d,   g2g,   m2m,   and  r2r   write a function (or equivalent) to convert one scale to another Suggested names for comparison of different computer language function names: d2g,   d2m,   and   d2r   for degrees g2d,   g2m,   and   g2r   for gradians m2d,   m2g,   and   m2r   for mils r2d,   r2g,   and   r2m   for radians   normalize all angles used   (except for the "original" or "base" angle)   show the angles in every scale and convert them to all other scales   show all output here on this page For the (above) conversions,   use these dozen numbers   (in the order shown):   -2   -1   0   1   2   6.2831853   16   57.2957795   359   399   6399   1000000
#Wren
Wren
import "/fmt" for Fmt   var d2d = Fn.new { |d| d % 360 } var g2g = Fn.new { |g| g % 400 } var m2m = Fn.new { |m| m % 6400 } var r2r = Fn.new { |r| r % (2*Num.pi) } var d2g = Fn.new { |d| d2d.call(d) * 400 / 360 } var d2m = Fn.new { |d| d2d.call(d) * 6400 / 360 } var d2r = Fn.new { |d| d2d.call(d) * Num.pi / 180 } var g2d = Fn.new { |g| g2g.call(g) * 360 / 400 } var g2m = Fn.new { |g| g2g.call(g) * 6400 / 400 } var g2r = Fn.new { |g| g2g.call(g) * Num.pi / 200 } var m2d = Fn.new { |m| m2m.call(m) * 360 / 6400 } var m2g = Fn.new { |m| m2m.call(m) * 400 / 6400 } var m2r = Fn.new { |m| m2m.call(m) * Num.pi / 3200 } var r2d = Fn.new { |r| r2r.call(r) * 180 / Num.pi } var r2g = Fn.new { |r| r2r.call(r) * 200 / Num.pi } var r2m = Fn.new { |r| r2r.call(r) * 3200 / Num.pi }   var f1 = "$15m $15m $15m $15m $15m" var f2 = "$15.7g $15.7g $15.7g $15.7g $15.7g" var angles = [-2, -1, 0, 1, 2, 6.2831853, 16, 57.2957795, 359, 399, 6399, 1000000] Fmt.print(f1, "degrees", "normalized degs", "gradians", "mils", "radians") for (a in angles) { Fmt.print(f2, a, d2d.call(a), d2g.call(a), d2m.call(a), d2r.call(a)) } f1 = "\n" + f1 Fmt.print(f1, "gradians", "normalized grds", "degrees", "mils", "radians") for (a in angles) { Fmt.print(f2, a, g2g.call(a), g2d.call(a), g2m.call(a), g2r.call(a)) } Fmt.print(f1, "mils", "normalized mils", "degrees", "gradians", "radians") for (a in angles) { Fmt.print(f2, a, m2m.call(a), m2d.call(a), m2g.call(a), m2r.call(a)) } Fmt.print(f1, "radians", "normalized rads", "degrees", "gradians", "mils") for (a in angles) { Fmt.print(f2, a, r2r.call(a), r2d.call(a), r2g.call(a), r2m.call(a)) }
http://rosettacode.org/wiki/Amicable_pairs
Amicable pairs
Two integers N {\displaystyle N} and M {\displaystyle M} are said to be amicable pairs if N ≠ M {\displaystyle N\neq M} and the sum of the proper divisors of N {\displaystyle N} ( s u m ( p r o p D i v s ( N ) ) {\displaystyle \mathrm {sum} (\mathrm {propDivs} (N))} ) = M {\displaystyle =M} as well as s u m ( p r o p D i v s ( M ) ) = N {\displaystyle \mathrm {sum} (\mathrm {propDivs} (M))=N} . Example 1184 and 1210 are an amicable pair, with proper divisors:   1, 2, 4, 8, 16, 32, 37, 74, 148, 296, 592   and   1, 2, 5, 10, 11, 22, 55, 110, 121, 242, 605   respectively. Task Calculate and show here the Amicable pairs below 20,000; (there are eight). Related tasks Proper divisors Abundant, deficient and perfect number classifications Aliquot sequence classifications and its amicable classification.
#Elena
Elena
import extensions; import system'routines;   const int N = 20000;   extension op { ProperDivisors = Range.new(1,self / 2).filterBy:(n => self.mod:n == 0);   get AmicablePairs() { var divsums := Range .new(0, self + 1) .selectBy:(i => i.ProperDivisors.summarize(Integer.new())) .toArray();   ^ 1.repeatTill(divsums.Length) .filterBy:(i) { var ii := i;   var sum := divsums[i]; ^ (i < sum) && (sum < divsums.Length) && (divsums[sum] == i) } .selectBy:(i => new { Item1 = i; Item2 = divsums[i]; }) } }   public program() { N.AmicablePairs.forEach:(pair) { console.printLine(pair.Item1, " ", pair.Item2) } }
http://rosettacode.org/wiki/Animation
Animation
Animation is integral to many parts of GUIs, including both the fancy effects when things change used in window managers, and of course games.   The core of any animation system is a scheme for periodically changing the display while still remaining responsive to the user.   This task demonstrates this. Task Create a window containing the string "Hello World! " (the trailing space is significant). Make the text appear to be rotating right by periodically removing one letter from the end of the string and attaching it to the front. When the user clicks on the (windowed) text, it should reverse its direction.
#Logo
Logo
to rotate.left :thing output lput first :thing butfirst :thing end to rotate.right :thing output fput last :thing butlast :thing end   make "text "|Hello World! | make "right? "true   to step.animation label :text ; graphical  ; type char 13 type :text ; textual wait 6 ; 1/10 second if button <> 0 [make "right? not :right?] make "text ifelse :right? [rotate.right :text] [rotate.left :text] end   hideturtle until [key?] [step.animation]
http://rosettacode.org/wiki/Animation
Animation
Animation is integral to many parts of GUIs, including both the fancy effects when things change used in window managers, and of course games.   The core of any animation system is a scheme for periodically changing the display while still remaining responsive to the user.   This task demonstrates this. Task Create a window containing the string "Hello World! " (the trailing space is significant). Make the text appear to be rotating right by periodically removing one letter from the end of the string and attaching it to the front. When the user clicks on the (windowed) text, it should reverse its direction.
#Lua
Lua
function love.load() text = "Hello World! " length = string.len(text)     update_time = 0.3 timer = 0 right_direction = true     local width, height = love.graphics.getDimensions( )   local size = 100 local font = love.graphics.setNewFont( size ) local twidth = font:getWidth( text ) local theight = font:getHeight( ) x = width/2 - twidth/2 y = height/2-theight/2   end     function love.update(dt) timer = timer + dt if timer > update_time then timer = timer - update_time if right_direction then text = string.sub(text, 2, length) .. string.sub(text, 1, 1) else text = string.sub(text, length, length) .. string.sub(text, 1, length-1) end end end     function love.draw() love.graphics.print (text, x, y) end   function love.keypressed(key, scancode, isrepeat) if false then elseif key == "escape" then love.event.quit() end end   function love.mousepressed( x, y, button, istouch, presses ) right_direction = not right_direction end
http://rosettacode.org/wiki/Animate_a_pendulum
Animate a pendulum
One good way of making an animation is by simulating a physical system and illustrating the variables in that system using a dynamically changing graphical display. The classic such physical system is a simple gravity pendulum. Task Create a simple physical model of a pendulum and animate it.
#Fortran
Fortran
  !Implemented by Anant Dixit (October, 2014) program animated_pendulum implicit none double precision, parameter :: pi = 4.0D0*atan(1.0D0), l = 1.0D-1, dt = 1.0D-2, g = 9.8D0 integer :: io double precision :: s_ang, c_ang, p_ang, n_ang   write(*,*) 'Enter starting angle (in degrees):' do read(*,*,iostat=io) s_ang if(io.ne.0 .or. s_ang.lt.-90.0D0 .or. s_ang.gt.90.0D0) then write(*,*) 'Please enter an angle between 90 and -90 degrees:' else exit end if end do call execute_command_line('cls')   c_ang = s_ang*pi/180.0D0 p_ang = c_ang   call display(c_ang) do call next_time_step(c_ang,p_ang,g,l,dt,n_ang) if(abs(c_ang-p_ang).ge.0.05D0) then call execute_command_line('cls') call display(c_ang) end if end do end program   subroutine next_time_step(c_ang,p_ang,g,l,dt,n_ang) double precision :: c_ang, p_ang, g, l, dt, n_ang n_ang = (-g*sin(c_ang)/l)*2.0D0*dt**2 + 2.0D0*c_ang - p_ang p_ang = c_ang c_ang = n_ang end subroutine   subroutine display(c_ang) double precision :: c_ang character (len=*), parameter :: cfmt = '(A1)' double precision :: rx, ry integer :: x, y, i, j rx = 45.0D0*sin(c_ang) ry = 22.5D0*cos(c_ang) x = int(rx)+51 y = int(ry)+2 do i = 1,32 do j = 1,100 if(i.eq.y .and. j.eq.x) then write(*,cfmt,advance='no') 'O' else if(i.eq.y .and. (j.eq.(x-1).or.j.eq.(x+1))) then write(*,cfmt,advance='no') 'G' else if(j.eq.x .and. (i.eq.(y-1).or.i.eq.(y+1))) then write(*,cfmt,advance='no') 'G' else if(i.eq.y .and. (j.eq.(x-2).or.j.eq.(x+2))) then write(*,cfmt,advance='no') '#' else if(j.eq.x .and. (i.eq.(y-2).or.i.eq.(y+2))) then write(*,cfmt,advance='no') 'G' else if((i.eq.(y+1).and.j.eq.(x+1)) .or. (i.eq.(y-1).and.j.eq.(x-1))) then write(*,cfmt,advance='no') '#' else if((i.eq.(y+1).and.j.eq.(x-1)) .or. (i.eq.(y-1).and.j.eq.(x+1))) then write(*,cfmt,advance='no') '#' else if(j.eq.50) then write(*,cfmt,advance='no') '|' else if(i.eq.2) then write(*,cfmt,advance='no') '-' else write(*,cfmt,advance='no') ' ' end if end do write(*,*) end do end subroutine  
http://rosettacode.org/wiki/Almkvist-Giullera_formula_for_pi
Almkvist-Giullera formula for pi
The Almkvist-Giullera formula for calculating   1/π2   is based on the Calabi-Yau differential equations of order 4 and 5,   which were originally used to describe certain manifolds in string theory. The formula is: 1/π2 = (25/3) ∑0∞ ((6n)! / (n!6))(532n2 + 126n + 9) / 10002n+1 This formula can be used to calculate the constant   π-2,   and thus to calculate   π. Note that, because the product of all terms but the power of 1000 can be calculated as an integer, the terms in the series can be separated into a large integer term: (25) (6n)! (532n2 + 126n + 9) / (3(n!)6)     (***) multiplied by a negative integer power of 10: 10-(6n + 3) Task Print the integer portions (the starred formula, which is without the power of 1000 divisor) of the first 10 terms of the series. Use the complete formula to calculate and print π to 70 decimal digits of precision. Reference  Gert Almkvist and Jesús Guillera, Ramanujan-like series for 1/π2 and string theory, Experimental Mathematics, 21 (2012), page 2, formula 1.
#jq
jq
# A reminder to include the "rational" module: # include "rational";   def lpad($len): tostring | ($len - length) as $l | (" " * $l)[:$l] + .;   # To take advantage of gojq's arbitrary-precision integer arithmetic: def power($b): . as $in | reduce range(0;$b) as $i (1; . * $in);   def factorial: if . < 2 then 1 else reduce range(2;.+1) as $i (1; .*$i) end;
http://rosettacode.org/wiki/Almkvist-Giullera_formula_for_pi
Almkvist-Giullera formula for pi
The Almkvist-Giullera formula for calculating   1/π2   is based on the Calabi-Yau differential equations of order 4 and 5,   which were originally used to describe certain manifolds in string theory. The formula is: 1/π2 = (25/3) ∑0∞ ((6n)! / (n!6))(532n2 + 126n + 9) / 10002n+1 This formula can be used to calculate the constant   π-2,   and thus to calculate   π. Note that, because the product of all terms but the power of 1000 can be calculated as an integer, the terms in the series can be separated into a large integer term: (25) (6n)! (532n2 + 126n + 9) / (3(n!)6)     (***) multiplied by a negative integer power of 10: 10-(6n + 3) Task Print the integer portions (the starred formula, which is without the power of 1000 divisor) of the first 10 terms of the series. Use the complete formula to calculate and print π to 70 decimal digits of precision. Reference  Gert Almkvist and Jesús Guillera, Ramanujan-like series for 1/π2 and string theory, Experimental Mathematics, 21 (2012), page 2, formula 1.
#Julia
Julia
using Formatting   setprecision(BigFloat, 300)   function integerterm(n) p = BigInt(532) * n * n + BigInt(126) * n + 9 return (p * BigInt(2)^5 * factorial(BigInt(6) * n)) ÷ (3 * factorial(BigInt(n))^6) end   exponentterm(n) = -(6n + 3)   nthterm(n) = integerterm(n) * big"10.0"^exponentterm(n)   println(" N Integer Term Power of 10 Nth Term") println("-"^90) for n in 0:9 println(lpad(n, 3), lpad(integerterm(n), 48), lpad(exponentterm(n), 4), lpad(format("{1:22.19e}", nthterm(n)), 35)) end   function AlmkvistGuillera(floatprecision) summed = nthterm(0) for n in 1:10000000 next = summed + nthterm(n) if abs(next - summed) < big"10.0"^(-floatprecision) return next end summed = next end end   println("\nπ to 70 digits is ", format(big"1.0" / sqrt(AlmkvistGuillera(70)), precision=70))   println("Computer π is ", format(π + big"0.0", precision=70))  
http://rosettacode.org/wiki/Almkvist-Giullera_formula_for_pi
Almkvist-Giullera formula for pi
The Almkvist-Giullera formula for calculating   1/π2   is based on the Calabi-Yau differential equations of order 4 and 5,   which were originally used to describe certain manifolds in string theory. The formula is: 1/π2 = (25/3) ∑0∞ ((6n)! / (n!6))(532n2 + 126n + 9) / 10002n+1 This formula can be used to calculate the constant   π-2,   and thus to calculate   π. Note that, because the product of all terms but the power of 1000 can be calculated as an integer, the terms in the series can be separated into a large integer term: (25) (6n)! (532n2 + 126n + 9) / (3(n!)6)     (***) multiplied by a negative integer power of 10: 10-(6n + 3) Task Print the integer portions (the starred formula, which is without the power of 1000 divisor) of the first 10 terms of the series. Use the complete formula to calculate and print π to 70 decimal digits of precision. Reference  Gert Almkvist and Jesús Guillera, Ramanujan-like series for 1/π2 and string theory, Experimental Mathematics, 21 (2012), page 2, formula 1.
#Mathematica.2FWolfram_Language
Mathematica/Wolfram Language
ClearAll[numerator, denominator] numerator[n_] := (2^5) ((6 n)!) (532 n^2 + 126 n + 9)/(3 (n!)^6) denominator[n_] := 10^(6 n + 3) numerator /@ Range[0, 9] val = 1/Sqrt[Total[numerator[#]/denominator[#] & /@ Range[0, 100]]]; N[val, 70]
http://rosettacode.org/wiki/Almost_prime
Almost prime
A   k-Almost-prime   is a natural number   n {\displaystyle n}   that is the product of   k {\displaystyle k}   (possibly identical) primes. Example 1-almost-primes,   where   k = 1 {\displaystyle k=1} ,   are the prime numbers themselves. 2-almost-primes,   where   k = 2 {\displaystyle k=2} ,   are the   semiprimes. Task Write a function/method/subroutine/... that generates k-almost primes and use it to create a table here of the first ten members of k-Almost primes for   1 <= K <= 5 {\displaystyle 1<=K<=5} . Related tasks   Semiprime   Category:Prime Numbers
#ARM_Assembly
ARM Assembly
  /* ARM assembly Raspberry PI */ /* program kprime.s */   /************************************/ /* Constantes */ /************************************/ .equ STDOUT, 1 @ Linux output console .equ EXIT, 1 @ Linux syscall .equ WRITE, 4 @ Linux syscall   .equ MAXI, 10 .equ MAXIK, 5 /*********************************/ /* Initialized data */ /*********************************/ .data sMessDeb: .ascii "k=" sMessValeurDeb: .fill 11, 1, ' ' @ size => 11   sMessResult: .ascii " " sMessValeur: .fill 11, 1, ' ' @ size => 11   szCarriageReturn: .asciz "\n"     /*********************************/ /* UnInitialized data */ /*********************************/ .bss /*********************************/ /* code section */ /*********************************/ .text .global main main: @ entry of program mov r3,#1 @ k 1: @ start loop k mov r0,r3 ldr r1,iAdrsMessValeurDeb bl conversion10 @ call conversion decimal ldr r0,iAdrsMessValeurDeb mov r1,#':' strb r1,[r0,#2] @ write : after k value mov r1,#0 strb r1,[r0,#3] @ final zéro ldr r0,iAdrsMessDeb bl affichageMess @ display message mov r4,#2 @ n mov r5,#0 @ result counter 2: @ start loop n mov r0,r4 mov r1,r3 bl kprime @ is kprine ? cmp r0,#0 beq 3f @ no mov r0,r4 ldr r1,iAdrsMessValeur bl conversion10 @ call conversion decimal ldr r0,iAdrsMessValeur mov r1,#0 strb r1,[r0,#4] @ final zéro ldr r0,iAdrsMessResult bl affichageMess @ display message add r5,#1 @ increment counter 3: add r4,#1 @ increment n cmp r5,#MAXI @ maxi ? blt 2b @ no -> loop ldr r0,iAdrszCarriageReturn bl affichageMess @ display carriage return add r3,#1 @ increment k cmp r3,#MAXIK @ maxi ? ble 1b @ no -> loop   100: @ standard end of the program mov r0, #0 @ return code mov r7, #EXIT @ request to exit program svc #0 @ perform the system call   iAdrsMessValeur: .int sMessValeur iAdrszCarriageReturn: .int szCarriageReturn iAdrsMessResult: .int sMessResult iAdrsMessValeurDeb: .int sMessValeurDeb iAdrsMessDeb: .int sMessDeb /******************************************************************/ /* compute kprime (n,k) */ /******************************************************************/ /* r0 contains n */ /* r1 contains k */ kprime: push {r1-r7,lr} @ save registers mov r5,r0 @ save n mov r7,r1 @ save k mov r4,#0 @ counter product mov r1,#2 @ divisor 1: @ start loop cmp r4,r7 @ counter >= k bge 4f @ yes -> end mul r6,r1,r1 @ compute product cmp r6,r5 @ > n bgt 4f @ yes -> end 2: @ start loop division mov r0,r5 @ dividende bl division @ by r1 cmp r3,#0 @ remainder = 0 ? bne 3f @ no mov r5,r2 @ yes -> n = n / r1 add r4,#1 @ increment counter b 2b @ and loop 3: add r1,#1 @ increment divisor b 1b @ and loop 4: @ end compute cmp r5,#1 @ n > 1 addgt r4,#1 @ yes increment counter cmp r4,r7 @ counter = k ? movne r0,#0 @ no -> no kprime moveq r0,#1 @ yes -> kprime 100: pop {r1-r7,lr} @ restaur registers bx lr @return /******************************************************************/ /* display text with size calculation */ /******************************************************************/ /* r0 contains the address of the message */ affichageMess: push {r0,r1,r2,r7,lr} @ save registres mov r2,#0 @ counter length 1: @ loop length calculation ldrb r1,[r0,r2] @ read octet start position + index cmp r1,#0 @ if 0 its over addne r2,r2,#1 @ else add 1 in the length bne 1b @ and loop @ so here r2 contains the length of the message mov r1,r0 @ address message in r1 mov r0,#STDOUT @ code to write to the standard output Linux mov r7, #WRITE @ code call system "write" svc #0 @ call systeme pop {r0,r1,r2,r7,lr} @ restaur des 2 registres */ bx lr @ return /******************************************************************/ /* Converting a register to a decimal unsigned */ /******************************************************************/ /* r0 contains value and r1 address area */ /* r0 return size of result (no zero final in area) */ /* area size => 11 bytes */ .equ LGZONECAL, 10 conversion10: push {r1-r4,lr} @ save registers mov r3,r1 mov r2,#LGZONECAL 1: @ start loop bl divisionpar10U @ unsigned r0 <- dividende. quotient ->r0 reste -> r1 add r1,#48 @ digit strb r1,[r3,r2] @ store digit on area cmp r0,#0 @ stop if quotient = 0 subne r2,#1 @ else previous position bne 1b @ and loop @ and move digit from left of area mov r4,#0 2: ldrb r1,[r3,r2] strb r1,[r3,r4] add r2,#1 add r4,#1 cmp r2,#LGZONECAL ble 2b @ and move spaces in end on area mov r0,r4 @ result length mov r1,#' ' @ space 3: strb r1,[r3,r4] @ store space in area add r4,#1 @ next position cmp r4,#LGZONECAL ble 3b @ loop if r4 <= area size   100: pop {r1-r4,lr} @ restaur registres bx lr @return   /***************************************************/ /* division par 10 unsigned */ /***************************************************/ /* r0 dividende */ /* r0 quotient */ /* r1 remainder */ divisionpar10U: push {r2,r3,r4, lr} mov r4,r0 @ save value ldr r3,iMagicNumber @ r3 <- magic_number raspberry 1 2 umull r1, r2, r3, r0 @ r1<- Lower32Bits(r1*r0) r2<- Upper32Bits(r1*r0) mov r0, r2, LSR #3 @ r2 <- r2 >> shift 3 add r2,r0,r0, lsl #2 @ r2 <- r0 * 5 sub r1,r4,r2, lsl #1 @ r1 <- r4 - (r2 * 2) = r4 - (r0 * 10) pop {r2,r3,r4,lr} bx lr @ leave function iMagicNumber: .int 0xCCCCCCCD /***************************************************/ /* integer division unsigned */ /***************************************************/ division: /* r0 contains dividend */ /* r1 contains divisor */ /* r2 returns quotient */ /* r3 returns remainder */ push {r4, lr} mov r2, #0 @ init quotient mov r3, #0 @ init remainder mov r4, #32 @ init counter bits b 2f 1: @ loop movs r0, r0, LSL #1 @ r0 <- r0 << 1 updating cpsr (sets C if 31st bit of r0 was 1) adc r3, r3, r3 @ r3 <- r3 + r3 + C. This is equivalent to r3 ? (r3 << 1) + C cmp r3, r1 @ compute r3 - r1 and update cpsr subhs r3, r3, r1 @ if r3 >= r1 (C=1) then r3 <- r3 - r1 adc r2, r2, r2 @ r2 <- r2 + r2 + C. This is equivalent to r2 <- (r2 << 1) + C 2: subs r4, r4, #1 @ r4 <- r4 - 1 bpl 1b @ if r4 >= 0 (N=0) then loop pop {r4, lr} bx lr  
http://rosettacode.org/wiki/Anagrams
Anagrams
When two or more words are composed of the same characters, but in a different order, they are called anagrams. Task[edit] Using the word list at   http://wiki.puzzlers.org/pub/wordlists/unixdict.txt, find the sets of words that share the same characters that contain the most words in them. Related tasks Word plays Ordered words Palindrome detection Semordnilap Anagrams Anagrams/Deranged anagrams Other tasks related to string operations: Metrics Array length String length Copy a string Empty string  (assignment) Counting Word frequency Letter frequency Jewels and stones I before E except after C Bioinformatics/base count Count occurrences of a substring Count how many vowels and consonants occur in a string Remove/replace XXXX redacted Conjugate a Latin verb Remove vowels from a string String interpolation (included) Strip block comments Strip comments from a string Strip a set of characters from a string Strip whitespace from a string -- top and tail Strip control codes and extended characters from a string Anagrams/Derangements/shuffling Word wheel ABC problem Sattolo cycle Knuth shuffle Ordered words Superpermutation minimisation Textonyms (using a phone text pad) Anagrams Anagrams/Deranged anagrams Permutations/Derangements Find/Search/Determine ABC words Odd words Word ladder Semordnilap Word search Wordiff  (game) String matching Tea cup rim text Alternade words Changeable words State name puzzle String comparison Unique characters Unique characters in each string Extract file extension Levenshtein distance Palindrome detection Common list elements Longest common suffix Longest common prefix Compare a list of strings Longest common substring Find common directory path Words from neighbour ones Change e letters to i in words Non-continuous subsequences Longest common subsequence Longest palindromic substrings Longest increasing subsequence Words containing "the" substring Sum of the digits of n is substring of n Determine if a string is numeric Determine if a string is collapsible Determine if a string is squeezable Determine if a string has all unique characters Determine if a string has all the same characters Longest substrings without repeating characters Find words which contains all the vowels Find words which contains most consonants Find words which contains more than 3 vowels Find words which first and last three letters are equals Find words which odd letters are consonants and even letters are vowels or vice_versa Formatting Substring Rep-string Word wrap String case Align columns Literals/String Repeat a string Brace expansion Brace expansion using ranges Reverse a string Phrase reversals Comma quibbling Special characters String concatenation Substring/Top and tail Commatizing numbers Reverse words in a string Suffixation of decimal numbers Long literals, with continuations Numerical and alphabetical suffixes Abbreviations, easy Abbreviations, simple Abbreviations, automatic Song lyrics/poems/Mad Libs/phrases Mad Libs Magic 8-ball 99 Bottles of Beer The Name Game (a song) The Old lady swallowed a fly The Twelve Days of Christmas Tokenize Text between Tokenize a string Word break problem Tokenize a string with escaping Split a character string based on change of character Sequences Show ASCII table De Bruijn sequences Self-referential sequences Generate lower case ASCII alphabet
#11l
11l
DefaultDict[String, Array[String]] anagram L(word) File(‘unixdict.txt’).read().split("\n") anagram[sorted(word).join(‘’)].append(word)   V count = max(anagram.values().map(ana -> ana.len))   L(ana) anagram.values() I ana.len == count print(ana)
http://rosettacode.org/wiki/Angle_difference_between_two_bearings
Angle difference between two bearings
Finding the angle between two bearings is often confusing.[1] Task Find the angle which is the result of the subtraction b2 - b1, where b1 and b2 are the bearings. Input bearings are expressed in the range   -180   to   +180   degrees. The  result  is also expressed in the range   -180   to   +180   degrees. Compute the angle for the following pairs: 20 degrees (b1) and 45 degrees (b2) -45 and 45 -85 and 90 -95 and 90 -45 and 125 -45 and 145 29.4803 and -88.6381 -78.3251 and -159.036 Optional extra Allow the input bearings to be any (finite) value. Test cases -70099.74233810938 and 29840.67437876723 -165313.6666297357 and 33693.9894517456 1174.8380510598456 and -154146.66490124757 60175.77306795546 and 42213.07192354373
#Groovy
Groovy
def angleDifferenceA(double b1, double b2) { r = (b2 - b1) % 360.0 (r > 180.0 ? r - 360.0  : r <= -180.0 ? r + 360.0  : r) }
http://rosettacode.org/wiki/Anagrams/Deranged_anagrams
Anagrams/Deranged anagrams
Two or more words are said to be anagrams if they have the same characters, but in a different order. By analogy with derangements we define a deranged anagram as two words with the same characters, but in which the same character does not appear in the same position in both words. Task[edit] Use the word list at unixdict to find and display the longest deranged anagram. Related tasks Permutations/Derangements Best shuffle Word plays Ordered words Palindrome detection Semordnilap Anagrams Anagrams/Deranged anagrams Other tasks related to string operations: Metrics Array length String length Copy a string Empty string  (assignment) Counting Word frequency Letter frequency Jewels and stones I before E except after C Bioinformatics/base count Count occurrences of a substring Count how many vowels and consonants occur in a string Remove/replace XXXX redacted Conjugate a Latin verb Remove vowels from a string String interpolation (included) Strip block comments Strip comments from a string Strip a set of characters from a string Strip whitespace from a string -- top and tail Strip control codes and extended characters from a string Anagrams/Derangements/shuffling Word wheel ABC problem Sattolo cycle Knuth shuffle Ordered words Superpermutation minimisation Textonyms (using a phone text pad) Anagrams Anagrams/Deranged anagrams Permutations/Derangements Find/Search/Determine ABC words Odd words Word ladder Semordnilap Word search Wordiff  (game) String matching Tea cup rim text Alternade words Changeable words State name puzzle String comparison Unique characters Unique characters in each string Extract file extension Levenshtein distance Palindrome detection Common list elements Longest common suffix Longest common prefix Compare a list of strings Longest common substring Find common directory path Words from neighbour ones Change e letters to i in words Non-continuous subsequences Longest common subsequence Longest palindromic substrings Longest increasing subsequence Words containing "the" substring Sum of the digits of n is substring of n Determine if a string is numeric Determine if a string is collapsible Determine if a string is squeezable Determine if a string has all unique characters Determine if a string has all the same characters Longest substrings without repeating characters Find words which contains all the vowels Find words which contains most consonants Find words which contains more than 3 vowels Find words which first and last three letters are equals Find words which odd letters are consonants and even letters are vowels or vice_versa Formatting Substring Rep-string Word wrap String case Align columns Literals/String Repeat a string Brace expansion Brace expansion using ranges Reverse a string Phrase reversals Comma quibbling Special characters String concatenation Substring/Top and tail Commatizing numbers Reverse words in a string Suffixation of decimal numbers Long literals, with continuations Numerical and alphabetical suffixes Abbreviations, easy Abbreviations, simple Abbreviations, automatic Song lyrics/poems/Mad Libs/phrases Mad Libs Magic 8-ball 99 Bottles of Beer The Name Game (a song) The Old lady swallowed a fly The Twelve Days of Christmas Tokenize Text between Tokenize a string Word break problem Tokenize a string with escaping Split a character string based on change of character Sequences Show ASCII table De Bruijn sequences Self-referential sequences Generate lower case ASCII alphabet
#Julia
Julia
using Base.isless # Let's define the less than operator for any two vectors that have the same type: # This does lexicographic comparison, we use it on vectors of chars in this task. function Base.isless(t1, t2) for (a, b) in zip(t1, t2) # zip only to the shorter length if !isequal(a, b) return isless(a, b) end end return length(t1) < length(t2) end   # The sort function of Julia doesn't work on strings, so we write one: # This returns a sorted vector of the chars of the given string sortchars(s::AbstractString) = sort(collect(Char, s))   # Custom comparator function for sorting the loaded wordlist sortanagr(s1::AbstractString, s2::AbstractString) = if length(s1) != length(s2) length(s1) < length(s2) else sortchars(s1) < sortchars(s2) end   # Tests if two strings are deranged anagrams, returns a bool: # in our case s2 is never longer than s1 function deranged(s1::AbstractString, s2::AbstractString) # Tests for derangement first for (a, b) in zip(s1, s2) if a == b return false end end # s1 and s2 are deranged, but are they anagrams at all? return sortchars(s1) == sortchars(s2) end   # Task starts here, we load the wordlist line by line, strip eol char, and sort the wordlist # in a way that ensures that longer words come first and anagrams go next to each other words = sort(open(readlines, "./data/unixdict.txt"), rev = true, lt = sortanagr)   # Now we just look for deranged anagrams in the neighbouring words of the sorted wordlist for i in 1:length(words)-1 if deranged(words[i], words[i+1]) # The first match is guaranteed to be the longest due to the custom sorting println("The longest deranged anagrams are $(words[i]) and $(words[i+1])") break end end
http://rosettacode.org/wiki/Anonymous_recursion
Anonymous recursion
While implementing a recursive function, it often happens that we must resort to a separate   helper function   to handle the actual recursion. This is usually the case when directly calling the current function would waste too many resources (stack space, execution time), causing unwanted side-effects,   and/or the function doesn't have the right arguments and/or return values. So we end up inventing some silly name like   foo2   or   foo_helper.   I have always found it painful to come up with a proper name, and see some disadvantages:   You have to think up a name, which then pollutes the namespace   Function is created which is called from nowhere else   The program flow in the source code is interrupted Some languages allow you to embed recursion directly in-place.   This might work via a label, a local gosub instruction, or some special keyword. Anonymous recursion can also be accomplished using the   Y combinator. Task If possible, demonstrate this by writing the recursive version of the fibonacci function   (see Fibonacci sequence)   which checks for a negative argument before doing the actual recursion.
#Icon_and_Unicon
Icon and Unicon
procedure main(A) every write("fib(",a := numeric(!A),")=",fib(a)) end   procedure fib(n) local source, i static cache initial { cache := table() cache[0] := 0 cache[1] := 1 } if type(n) == "integer" & n >= 0 then return n @ makeProc {{ i := @(source := &source) # 1 /cache[i] := ((i-1)@makeProc(^&current)+(i-2)@makeProc(^&current)) # 2 cache[i] @ source # 3 }} end   procedure makeProc(A) A := if type(A) == "list" then A[1] return (@A, A) # prime and return end
http://rosettacode.org/wiki/Angles_(geometric),_normalization_and_conversion
Angles (geometric), normalization and conversion
This task is about the normalization and/or conversion of (geometric) angles using some common scales. The angular scales that will be used in this task are:   degree   gradian   mil   radian Definitions The angular scales used or referenced here:   turn   is a full turn or 360 degrees, also shown as 360º   degree   is   1/360   of a turn   gradian   is   1/400   of a turn   mil   is   1/6400   of a turn   radian   is   1/2 π {\displaystyle \pi }   of a turn   (or   0.5/ π {\displaystyle \pi }   of a turn) Or, to put it another way,   for a full circle:   there are   360   degrees   there are   400   gradians   there are   6,400   mils   there are   2 π {\displaystyle \pi }   radians   (roughly equal to 6.283+) A   mil   is approximately equal to a   milliradian   (which is   1/1000   of a radian). There is another definition of a   mil   which is   1/1000   of a radian   ─── this definition won't be used in this Rosetta Code task. Turns   are sometimes known or shown as:   turn(s)   360 degrees   unit circle   a (full) circle Degrees   are sometimes known or shown as:   degree(s)   deg   º       (a symbol)   °       (another symbol) Gradians   are sometimes known or shown as:   gradian(s)   grad(s)   grade(s)   gon(s)   metric degree(s)   (Note that   centigrade   was used for 1/100th of a grade, see the note below.) Mils   are sometimes known or shown as:   mil(s)   NATO mil(s) Radians   are sometimes known or shown as:   radian(s)   rad(s) Notes In continental Europe, the French term   centigrade   was used for   1/100   of a grad (grade);   this was one reason for the adoption of the term   Celsius   to replace   centigrade   as the name of a temperature scale. Gradians were commonly used in civil engineering. Mils were normally used for artillery   (elevations of the gun barrel for ranging). Positive and negative angles Although the definition of the measurement of an angle doesn't support the concept of a negative angle,   it's frequently useful to impose a convention that allows positive and negative angular values to represent orientations and/or rotations in opposite directions relative to some reference.   It is this reason that negative angles will keep their sign and not be normalized to positive angles. Normalization Normalization   (for this Rosetta Code task)   will keep the same sign,   but it will reduce the magnitude to less than a full circle;   in other words, less than 360º. Normalization   shouldn't   change   -45º   to   315º, An angle of   0º,   +0º,   0.000000,   or   -0º   should be shown as   0º. Task   write a function (or equivalent) to do the normalization for each scale Suggested names: d2d,   g2g,   m2m,   and  r2r   write a function (or equivalent) to convert one scale to another Suggested names for comparison of different computer language function names: d2g,   d2m,   and   d2r   for degrees g2d,   g2m,   and   g2r   for gradians m2d,   m2g,   and   m2r   for mils r2d,   r2g,   and   r2m   for radians   normalize all angles used   (except for the "original" or "base" angle)   show the angles in every scale and convert them to all other scales   show all output here on this page For the (above) conversions,   use these dozen numbers   (in the order shown):   -2   -1   0   1   2   6.2831853   16   57.2957795   359   399   6399   1000000
#XPL0
XPL0
def Pi = 3.14159265358979323846, N=12, Tab=9; func real D2D; real D; return Mod(D, 360.); func real G2G; real G; return Mod(G, 400.); func real M2M; real M; return Mod(M, 6400.); func real R2R; real R; return Mod(R, 2.*Pi); func real D2G; real D; return 400. * D2D(D) / 360.; func real D2M; real D; return 6400.* D2D(D) / 360.; func real D2R; real D; return 2.*Pi* D2D(D) / 360.; func real G2D; real G; return 360. * G2G(G) / 400.; func real G2M; real G; return 6400.* G2G(G) / 400.; func real G2R; real G; return 2.*Pi* G2G(G) / 400.; func real M2D; real M; return 360. * M2M(M) / 6400.; func real M2G; real M; return 400. * M2M(M) / 6400.; func real M2R; real M; return 2.*Pi* M2M(M) / 6400.; func real R2D; real R; return 360. * R2R(R) / (2.*Pi); func real R2G; real R; return 400. * R2R(R) / (2.*Pi); func real R2M; real R; return 6400.* R2R(R) / (2.*Pi);   real Angle; int I; [Angle:= [-2., -1., 0., 1., 2., 6.2831853, 16., 57.2957795, 359., 399., 6399., 1000000.]; Format(7, 7); Text(0, " Degrees Normalized Gradians Mils Radians "); for I:= 0 to N-1 do [RlOut(0, Angle(I)); ChOut(0, Tab); RlOut(0, D2D(Angle(I))); ChOut(0, Tab); RlOut(0, D2G(Angle(I))); ChOut(0, Tab); RlOut(0, D2M(Angle(I))); ChOut(0, Tab); RlOut(0, D2R(Angle(I))); CrLf(0); ]; Text(0, " Gradians Normalized Degrees Mils Radians "); for I:= 0 to N-1 do [RlOut(0, Angle(I)); ChOut(0, Tab); RlOut(0, G2G(Angle(I))); ChOut(0, Tab); RlOut(0, G2D(Angle(I))); ChOut(0, Tab); RlOut(0, G2M(Angle(I))); ChOut(0, Tab); RlOut(0, G2R(Angle(I))); CrLf(0); ]; Text(0, " Mils Normalized Degrees Gradians Radians "); for I:= 0 to N-1 do [RlOut(0, Angle(I)); ChOut(0, Tab); RlOut(0, M2M(Angle(I))); ChOut(0, Tab); RlOut(0, M2D(Angle(I))); ChOut(0, Tab); RlOut(0, M2G(Angle(I))); ChOut(0, Tab); RlOut(0, M2R(Angle(I))); CrLf(0); ]; Text(0, " Radians Normalized Degrees Gradians Mils "); for I:= 0 to N-1 do [RlOut(0, Angle(I)); ChOut(0, Tab); RlOut(0, R2R(Angle(I))); ChOut(0, Tab); RlOut(0, R2D(Angle(I))); ChOut(0, Tab); RlOut(0, R2G(Angle(I))); ChOut(0, Tab); RlOut(0, R2M(Angle(I))); CrLf(0); ]; ]
http://rosettacode.org/wiki/Angles_(geometric),_normalization_and_conversion
Angles (geometric), normalization and conversion
This task is about the normalization and/or conversion of (geometric) angles using some common scales. The angular scales that will be used in this task are:   degree   gradian   mil   radian Definitions The angular scales used or referenced here:   turn   is a full turn or 360 degrees, also shown as 360º   degree   is   1/360   of a turn   gradian   is   1/400   of a turn   mil   is   1/6400   of a turn   radian   is   1/2 π {\displaystyle \pi }   of a turn   (or   0.5/ π {\displaystyle \pi }   of a turn) Or, to put it another way,   for a full circle:   there are   360   degrees   there are   400   gradians   there are   6,400   mils   there are   2 π {\displaystyle \pi }   radians   (roughly equal to 6.283+) A   mil   is approximately equal to a   milliradian   (which is   1/1000   of a radian). There is another definition of a   mil   which is   1/1000   of a radian   ─── this definition won't be used in this Rosetta Code task. Turns   are sometimes known or shown as:   turn(s)   360 degrees   unit circle   a (full) circle Degrees   are sometimes known or shown as:   degree(s)   deg   º       (a symbol)   °       (another symbol) Gradians   are sometimes known or shown as:   gradian(s)   grad(s)   grade(s)   gon(s)   metric degree(s)   (Note that   centigrade   was used for 1/100th of a grade, see the note below.) Mils   are sometimes known or shown as:   mil(s)   NATO mil(s) Radians   are sometimes known or shown as:   radian(s)   rad(s) Notes In continental Europe, the French term   centigrade   was used for   1/100   of a grad (grade);   this was one reason for the adoption of the term   Celsius   to replace   centigrade   as the name of a temperature scale. Gradians were commonly used in civil engineering. Mils were normally used for artillery   (elevations of the gun barrel for ranging). Positive and negative angles Although the definition of the measurement of an angle doesn't support the concept of a negative angle,   it's frequently useful to impose a convention that allows positive and negative angular values to represent orientations and/or rotations in opposite directions relative to some reference.   It is this reason that negative angles will keep their sign and not be normalized to positive angles. Normalization Normalization   (for this Rosetta Code task)   will keep the same sign,   but it will reduce the magnitude to less than a full circle;   in other words, less than 360º. Normalization   shouldn't   change   -45º   to   315º, An angle of   0º,   +0º,   0.000000,   or   -0º   should be shown as   0º. Task   write a function (or equivalent) to do the normalization for each scale Suggested names: d2d,   g2g,   m2m,   and  r2r   write a function (or equivalent) to convert one scale to another Suggested names for comparison of different computer language function names: d2g,   d2m,   and   d2r   for degrees g2d,   g2m,   and   g2r   for gradians m2d,   m2g,   and   m2r   for mils r2d,   r2g,   and   r2m   for radians   normalize all angles used   (except for the "original" or "base" angle)   show the angles in every scale and convert them to all other scales   show all output here on this page For the (above) conversions,   use these dozen numbers   (in the order shown):   -2   -1   0   1   2   6.2831853   16   57.2957795   359   399   6399   1000000
#zkl
zkl
var [const] tau=(0.0).pi*2, units=Dictionary( // code:(name, units in circle) "d", T("degrees", 360.0), "g",T("gradians",400.0), "m", T("mills", 6400.0), "r",T("radians", tau) ), cvtNm="%s-->%s".fmt, cvt= // "d-->r":fcn(angle){}, "r-->d":fcn(angle){} ... Walker.cproduct(units.keys,units.keys).pump(Dictionary(),fcn([(a,b)]){ return(cvtNm(a,b), // "d-->r" 'wrap(angle){ angle=angle.toFloat(); u:=units[a][1]; (angle%u)*units[b][1] / u }) }) ;
http://rosettacode.org/wiki/Amicable_pairs
Amicable pairs
Two integers N {\displaystyle N} and M {\displaystyle M} are said to be amicable pairs if N ≠ M {\displaystyle N\neq M} and the sum of the proper divisors of N {\displaystyle N} ( s u m ( p r o p D i v s ( N ) ) {\displaystyle \mathrm {sum} (\mathrm {propDivs} (N))} ) = M {\displaystyle =M} as well as s u m ( p r o p D i v s ( M ) ) = N {\displaystyle \mathrm {sum} (\mathrm {propDivs} (M))=N} . Example 1184 and 1210 are an amicable pair, with proper divisors:   1, 2, 4, 8, 16, 32, 37, 74, 148, 296, 592   and   1, 2, 5, 10, 11, 22, 55, 110, 121, 242, 605   respectively. Task Calculate and show here the Amicable pairs below 20,000; (there are eight). Related tasks Proper divisors Abundant, deficient and perfect number classifications Aliquot sequence classifications and its amicable classification.
#Elixir
Elixir
defmodule Proper do def divisors(1), do: [] def divisors(n), do: [1 | divisors(2,n,:math.sqrt(n))] |> Enum.sort   defp divisors(k,_n,q) when k>q, do: [] defp divisors(k,n,q) when rem(n,k)>0, do: divisors(k+1,n,q) defp divisors(k,n,q) when k * k == n, do: [k | divisors(k+1,n,q)] defp divisors(k,n,q) , do: [k,div(n,k) | divisors(k+1,n,q)] end   map = Map.new(1..20000, fn n -> {n, Proper.divisors(n) |> Enum.sum} end) Enum.filter(map, fn {n,sum} -> map[sum] == n and n < sum end) |> Enum.sort |> Enum.each(fn {i,j} -> IO.puts "#{i} and #{j}" end)
http://rosettacode.org/wiki/Animation
Animation
Animation is integral to many parts of GUIs, including both the fancy effects when things change used in window managers, and of course games.   The core of any animation system is a scheme for periodically changing the display while still remaining responsive to the user.   This task demonstrates this. Task Create a window containing the string "Hello World! " (the trailing space is significant). Make the text appear to be rotating right by periodically removing one letter from the end of the string and attaching it to the front. When the user clicks on the (windowed) text, it should reverse its direction.
#M2000_Interpreter
M2000 Interpreter
  Module UseBlink { Def boolean direction=True rotating$ =lambda$ a$="Hello World! " (direction as boolean)->{ =a$ a$=if$(direction->right$(a$,1)+mid$(a$,1, len(a$)-1), mid$(a$,2)+left$(a$,1)) } Declare MyForm Form Declare MyButton Button Form MyForm With MyButton, "Caption" as MyButtonCaption$, "Blink", 200 Method MyForm,"Move", 1000,1000,6000,4000 Method MyButton,"Move", 1000,1700,4000,600 Function MyButton.Blink { Rem Stack : Refresh ' to refresh the console window MyButtonCaption$=rotating$(direction) } Function MyButton.Click { direction~ } Function MyForm.Click { direction~ } With MyForm, "Title", "Animation" Method MyForm, "Show", 1 Threads Erase } UseBlink    
http://rosettacode.org/wiki/Animation
Animation
Animation is integral to many parts of GUIs, including both the fancy effects when things change used in window managers, and of course games.   The core of any animation system is a scheme for periodically changing the display while still remaining responsive to the user.   This task demonstrates this. Task Create a window containing the string "Hello World! " (the trailing space is significant). Make the text appear to be rotating right by periodically removing one letter from the end of the string and attaching it to the front. When the user clicks on the (windowed) text, it should reverse its direction.
#Maple
Maple
  ScrollText(GP("Text",value),"Forward",65);  
http://rosettacode.org/wiki/Animate_a_pendulum
Animate a pendulum
One good way of making an animation is by simulating a physical system and illustrating the variables in that system using a dynamically changing graphical display. The classic such physical system is a simple gravity pendulum. Task Create a simple physical model of a pendulum and animate it.
#Groovy
Groovy
  import java.awt.*; import javax.swing.*;   class Pendulum extends JPanel implements Runnable {   private angle = Math.PI / 2; private length;   Pendulum(length) { this.length = length; setDoubleBuffered(true); }   @Override void paint(Graphics g) { g.setColor(Color.WHITE); g.fillRect(0, 0, getWidth(), getHeight()); g.setColor(Color.BLACK); int anchorX = getWidth() / 2, anchorY = getHeight() / 4; def ballX = anchorX + (Math.sin(angle) * length) as int; def ballY = anchorY + (Math.cos(angle) * length) as int; g.drawLine(anchorX, anchorY, ballX, ballY); g.fillOval(anchorX - 3, anchorY - 4, 7, 7); g.fillOval(ballX - 7, ballY - 7, 14, 14); }   void run() { def angleAccel, angleVelocity = 0, dt = 0.1; while (true) { angleAccel = -9.81 / length * Math.sin(angle); angleVelocity += angleAccel * dt; angle += angleVelocity * dt; repaint(); try { Thread.sleep(15); } catch (InterruptedException ex) {} } }   @Override Dimension getPreferredSize() { return new Dimension(2 * length + 50, (length / 2 * 3) as int); }   static void main(String[] args) { def f = new JFrame("Pendulum"); def p = new Pendulum(200); f.add(p); f.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE); f.pack(); f.setVisible(true); new Thread(p).start(); } }  
http://rosettacode.org/wiki/Almkvist-Giullera_formula_for_pi
Almkvist-Giullera formula for pi
The Almkvist-Giullera formula for calculating   1/π2   is based on the Calabi-Yau differential equations of order 4 and 5,   which were originally used to describe certain manifolds in string theory. The formula is: 1/π2 = (25/3) ∑0∞ ((6n)! / (n!6))(532n2 + 126n + 9) / 10002n+1 This formula can be used to calculate the constant   π-2,   and thus to calculate   π. Note that, because the product of all terms but the power of 1000 can be calculated as an integer, the terms in the series can be separated into a large integer term: (25) (6n)! (532n2 + 126n + 9) / (3(n!)6)     (***) multiplied by a negative integer power of 10: 10-(6n + 3) Task Print the integer portions (the starred formula, which is without the power of 1000 divisor) of the first 10 terms of the series. Use the complete formula to calculate and print π to 70 decimal digits of precision. Reference  Gert Almkvist and Jesús Guillera, Ramanujan-like series for 1/π2 and string theory, Experimental Mathematics, 21 (2012), page 2, formula 1.
#Nim
Nim
import strformat, strutils import decimal   proc fact(n: int): DecimalType = result = newDecimal(1) if n < 2: return for i in 2..n: result *= i   proc almkvistGiullera(n: int): DecimalType = ## Return the integer portion of the nth term of Almkvist-Giullera sequence. let t1 = fact(6 * n) * 32 let t2 = 532 * n * n + 126 * n + 9 let t3 = fact(n) ^ 6 * 3 result = t1 * t2 / t3   let One = newDecimal(1)   setPrec(78) echo "N Integer portion" echo repeat('-', 47) for n in 0..9: echo &"{n} {almkvistGiullera(n):>44}" echo()   echo "Pi to 70 decimal places:" var sum = newDecimal(0) prev = newDecimal(0) prec = One.scaleb(newDecimal(-70)) n = 0 while true: sum += almkvistGiullera(n) / One.scaleb(newDecimal(6 * n + 3)) if abs(sum - prev) < prec: break prev = sum.clone inc n let pi = 1 / sqrt(sum) echo ($pi)[0..71]
http://rosettacode.org/wiki/Almkvist-Giullera_formula_for_pi
Almkvist-Giullera formula for pi
The Almkvist-Giullera formula for calculating   1/π2   is based on the Calabi-Yau differential equations of order 4 and 5,   which were originally used to describe certain manifolds in string theory. The formula is: 1/π2 = (25/3) ∑0∞ ((6n)! / (n!6))(532n2 + 126n + 9) / 10002n+1 This formula can be used to calculate the constant   π-2,   and thus to calculate   π. Note that, because the product of all terms but the power of 1000 can be calculated as an integer, the terms in the series can be separated into a large integer term: (25) (6n)! (532n2 + 126n + 9) / (3(n!)6)     (***) multiplied by a negative integer power of 10: 10-(6n + 3) Task Print the integer portions (the starred formula, which is without the power of 1000 divisor) of the first 10 terms of the series. Use the complete formula to calculate and print π to 70 decimal digits of precision. Reference  Gert Almkvist and Jesús Guillera, Ramanujan-like series for 1/π2 and string theory, Experimental Mathematics, 21 (2012), page 2, formula 1.
#Perl
Perl
use strict; use warnings; use feature qw(say); use Math::AnyNum qw(:overload factorial);   sub almkvist_giullera_integral { my($n) = @_; (32 * (14*$n * (38*$n + 9) + 9) * factorial(6*$n)) / (3*factorial($n)**6); }   sub almkvist_giullera { my($n) = @_; almkvist_giullera_integral($n) / (10**(6*$n + 3)); }   sub almkvist_giullera_pi { my ($prec) = @_;   local $Math::AnyNum::PREC = 4*($prec+1);   my $sum = 0; my $target = '';   for (my $n = 0; ; ++$n) { $sum += almkvist_giullera($n); my $curr = ($sum**-.5)->as_dec; return $target if ($curr eq $target); $target = $curr; } }   say 'First 10 integer portions: '; say "$_ " . almkvist_giullera_integral($_) for 0..9;   my $precision = 70;   printf("π to %s decimal places is:\n%s\n", $precision, almkvist_giullera_pi($precision));
http://rosettacode.org/wiki/Almost_prime
Almost prime
A   k-Almost-prime   is a natural number   n {\displaystyle n}   that is the product of   k {\displaystyle k}   (possibly identical) primes. Example 1-almost-primes,   where   k = 1 {\displaystyle k=1} ,   are the prime numbers themselves. 2-almost-primes,   where   k = 2 {\displaystyle k=2} ,   are the   semiprimes. Task Write a function/method/subroutine/... that generates k-almost primes and use it to create a table here of the first ten members of k-Almost primes for   1 <= K <= 5 {\displaystyle 1<=K<=5} . Related tasks   Semiprime   Category:Prime Numbers
#Arturo
Arturo
almostPrime: function [k, listLen][ result: new [] test: 2 c: 0   while [c < listLen][ i: 2 m: 0 n: test   while [i =< n][ if? zero? n % i [ n: n / i m: m + 1 ] else -> i: i + 1 ] if m = k [ 'result ++ test c: c + 1 ] test: test + 1 ] return result ]   loop 1..5 'x -> print ["k:" x "=>" almostPrime x 10]
http://rosettacode.org/wiki/Anagrams
Anagrams
When two or more words are composed of the same characters, but in a different order, they are called anagrams. Task[edit] Using the word list at   http://wiki.puzzlers.org/pub/wordlists/unixdict.txt, find the sets of words that share the same characters that contain the most words in them. Related tasks Word plays Ordered words Palindrome detection Semordnilap Anagrams Anagrams/Deranged anagrams Other tasks related to string operations: Metrics Array length String length Copy a string Empty string  (assignment) Counting Word frequency Letter frequency Jewels and stones I before E except after C Bioinformatics/base count Count occurrences of a substring Count how many vowels and consonants occur in a string Remove/replace XXXX redacted Conjugate a Latin verb Remove vowels from a string String interpolation (included) Strip block comments Strip comments from a string Strip a set of characters from a string Strip whitespace from a string -- top and tail Strip control codes and extended characters from a string Anagrams/Derangements/shuffling Word wheel ABC problem Sattolo cycle Knuth shuffle Ordered words Superpermutation minimisation Textonyms (using a phone text pad) Anagrams Anagrams/Deranged anagrams Permutations/Derangements Find/Search/Determine ABC words Odd words Word ladder Semordnilap Word search Wordiff  (game) String matching Tea cup rim text Alternade words Changeable words State name puzzle String comparison Unique characters Unique characters in each string Extract file extension Levenshtein distance Palindrome detection Common list elements Longest common suffix Longest common prefix Compare a list of strings Longest common substring Find common directory path Words from neighbour ones Change e letters to i in words Non-continuous subsequences Longest common subsequence Longest palindromic substrings Longest increasing subsequence Words containing "the" substring Sum of the digits of n is substring of n Determine if a string is numeric Determine if a string is collapsible Determine if a string is squeezable Determine if a string has all unique characters Determine if a string has all the same characters Longest substrings without repeating characters Find words which contains all the vowels Find words which contains most consonants Find words which contains more than 3 vowels Find words which first and last three letters are equals Find words which odd letters are consonants and even letters are vowels or vice_versa Formatting Substring Rep-string Word wrap String case Align columns Literals/String Repeat a string Brace expansion Brace expansion using ranges Reverse a string Phrase reversals Comma quibbling Special characters String concatenation Substring/Top and tail Commatizing numbers Reverse words in a string Suffixation of decimal numbers Long literals, with continuations Numerical and alphabetical suffixes Abbreviations, easy Abbreviations, simple Abbreviations, automatic Song lyrics/poems/Mad Libs/phrases Mad Libs Magic 8-ball 99 Bottles of Beer The Name Game (a song) The Old lady swallowed a fly The Twelve Days of Christmas Tokenize Text between Tokenize a string Word break problem Tokenize a string with escaping Split a character string based on change of character Sequences Show ASCII table De Bruijn sequences Self-referential sequences Generate lower case ASCII alphabet
#8th
8th
  \ \ anagrams.8th \ Rosetta Code - Anagrams problem \ Using the word list at: \ http://wiki.puzzlers.org/pub/wordlists/unixdict.txt, \ find the sets of words that share the same characters \ that contain the most words in them. \   ns: anagrams   m:new var, anamap a:new var, anaptr 0 var, analen   \ sort a string : s:sort \ s -- s \ null s:/ \ a ' s:cmpi a:sort \ a "" a:join \ s  ;   : process-words \ word -- \ word s:lc \ word dup \ word word >r \ word | word \ 1. we create a sorted version of the curret word (sword) s:sort \ sword | word \ We check if sword can be found in map anamap anamap @ \ sword anamap | word over \ sword anamap sword | word m:exists? \ sword anamap boolean | word if \ sword anamap | word \ If sword already exists in anamap: \ - get mapvalue, which is an array \ - add the original word to that array \ - store the array in the map with key sword over \ sword anamap sword | word m:@ \ sword anamap array | word r> \ sword anamap array word a:push \ sword anamap array rot \ anamap array sword swap \ anamap sword array m:! \ anamap else \ sword anamap | word \ If sword does not yet exist in anamap: \ - create empty array \ - put the original word into that array \ - store the array in the map with key sword swap \ anamap sword | word a:new \ anamap sword array | word r> \ anamap sword array word a:push \ anamap sword array m:! \ anamap then drop \  ;   \ Read and check all words in array analist : read-and-check-words \ -- \ "analist.txt" \ fname f:open-ro \ f ' process-words f:eachline \ f f:close \  ;   : len< \ key array arraylen -- \ key array arraylen 2drop \ key drop \  ;   : len= \ key array arraylen -- \ key array arraylen 2drop \ key anaptr @ \ key anaptr swap \ anaptr key a:push \ anaptr drop \  ;   : len> \ key array arraylen -- \ key array arraylen analen \ key array arraylen analen  ! \ key array drop \ key anaptr @ \ key anaptr a:clear \ key anaptr swap \ anaptr key a:push \ anaptr drop \  ;   : fetch-longest-list \ key array -- \ key array a:len \ key array arraylen analen @ \ key array arraylen analen 2dup \ key array arraylen analen arraylen analen n:cmp \ key array arraylen analen value 1 n:+ \ key array arraylen analen value nip \ key array arraylen value [ ' len< , ' len= , ' len> ] \ key array arraylen value swarr swap \ key array arraylen swarr value caseof \  ;   : list-words-1 \ ix value -- \ ix value nip \ value "\t" . . \  ;   : list-words \ ix value -- \ ix value nip \ value anamap @ \ value anamap swap \ anamap value m:@ \ anamap array nip \ array ' list-words-1 a:each \ array cr \ array drop \  ;   : app:main   \ Create a map, where the values are arrays, containing all words \ which are the same when sorted (sword); sword is used as key read-and-check-words   \ Create an array that holds the keys for anamap, for which the value, \ which is the array of anagrams, has the biggest length found. anamap @ ' fetch-longest-list m:each   \ Dump the resulting words to the console anaptr @ ' list-words a:each drop bye  ;  
http://rosettacode.org/wiki/Angle_difference_between_two_bearings
Angle difference between two bearings
Finding the angle between two bearings is often confusing.[1] Task Find the angle which is the result of the subtraction b2 - b1, where b1 and b2 are the bearings. Input bearings are expressed in the range   -180   to   +180   degrees. The  result  is also expressed in the range   -180   to   +180   degrees. Compute the angle for the following pairs: 20 degrees (b1) and 45 degrees (b2) -45 and 45 -85 and 90 -95 and 90 -45 and 125 -45 and 145 29.4803 and -88.6381 -78.3251 and -159.036 Optional extra Allow the input bearings to be any (finite) value. Test cases -70099.74233810938 and 29840.67437876723 -165313.6666297357 and 33693.9894517456 1174.8380510598456 and -154146.66490124757 60175.77306795546 and 42213.07192354373
#Haskell
Haskell
import Control.Monad (join) import Data.Bifunctor (bimap) import Text.Printf (printf)   type Radians = Float   type Degrees = Float   ---------- ANGLE DIFFERENCE BETWEEN TWO BEARINGS ---------   bearingDelta :: (Radians, Radians) -> Radians bearingDelta (a, b) -- sign * dot-product = sign * acos ((ax * bx) + (ay * by)) where (ax, ay) = (sin a, cos a) (bx, by) = (sin b, cos b) sign | ((ay * bx) - (by * ax)) > 0 = 1 | otherwise = -1   angleBetweenDegrees :: (Degrees, Degrees) -> Degrees angleBetweenDegrees = degrees . bearingDelta . join bimap radians   --------------------------- TEST ------------------------- main :: IO () main = putStrLn . unlines $ fmap ( uncurry (printf "%6.2f° - %6.2f° ->  %7.2f°") <*> angleBetweenDegrees ) [ (20.0, 45.0), (-45.0, 45.0), (-85.0, 90.0), (-95.0, 90.0), (-45.0, 125.0), (-45.0, 145.0) ]   ------------------------- GENERIC ------------------------   degrees :: Radians -> Degrees degrees = (/ pi) . (180 *)   radians :: Degrees -> Radians radians = (/ 180) . (pi *)
http://rosettacode.org/wiki/Anagrams/Deranged_anagrams
Anagrams/Deranged anagrams
Two or more words are said to be anagrams if they have the same characters, but in a different order. By analogy with derangements we define a deranged anagram as two words with the same characters, but in which the same character does not appear in the same position in both words. Task[edit] Use the word list at unixdict to find and display the longest deranged anagram. Related tasks Permutations/Derangements Best shuffle Word plays Ordered words Palindrome detection Semordnilap Anagrams Anagrams/Deranged anagrams Other tasks related to string operations: Metrics Array length String length Copy a string Empty string  (assignment) Counting Word frequency Letter frequency Jewels and stones I before E except after C Bioinformatics/base count Count occurrences of a substring Count how many vowels and consonants occur in a string Remove/replace XXXX redacted Conjugate a Latin verb Remove vowels from a string String interpolation (included) Strip block comments Strip comments from a string Strip a set of characters from a string Strip whitespace from a string -- top and tail Strip control codes and extended characters from a string Anagrams/Derangements/shuffling Word wheel ABC problem Sattolo cycle Knuth shuffle Ordered words Superpermutation minimisation Textonyms (using a phone text pad) Anagrams Anagrams/Deranged anagrams Permutations/Derangements Find/Search/Determine ABC words Odd words Word ladder Semordnilap Word search Wordiff  (game) String matching Tea cup rim text Alternade words Changeable words State name puzzle String comparison Unique characters Unique characters in each string Extract file extension Levenshtein distance Palindrome detection Common list elements Longest common suffix Longest common prefix Compare a list of strings Longest common substring Find common directory path Words from neighbour ones Change e letters to i in words Non-continuous subsequences Longest common subsequence Longest palindromic substrings Longest increasing subsequence Words containing "the" substring Sum of the digits of n is substring of n Determine if a string is numeric Determine if a string is collapsible Determine if a string is squeezable Determine if a string has all unique characters Determine if a string has all the same characters Longest substrings without repeating characters Find words which contains all the vowels Find words which contains most consonants Find words which contains more than 3 vowels Find words which first and last three letters are equals Find words which odd letters are consonants and even letters are vowels or vice_versa Formatting Substring Rep-string Word wrap String case Align columns Literals/String Repeat a string Brace expansion Brace expansion using ranges Reverse a string Phrase reversals Comma quibbling Special characters String concatenation Substring/Top and tail Commatizing numbers Reverse words in a string Suffixation of decimal numbers Long literals, with continuations Numerical and alphabetical suffixes Abbreviations, easy Abbreviations, simple Abbreviations, automatic Song lyrics/poems/Mad Libs/phrases Mad Libs Magic 8-ball 99 Bottles of Beer The Name Game (a song) The Old lady swallowed a fly The Twelve Days of Christmas Tokenize Text between Tokenize a string Word break problem Tokenize a string with escaping Split a character string based on change of character Sequences Show ASCII table De Bruijn sequences Self-referential sequences Generate lower case ASCII alphabet
#K
K
/ anagram clusters a:{x g@&1<#:'g:={x@<x}'x}@0:"unixdict.txt";   / derangements in these clusters b@&c=|/c:{#x[0]}'b:a@&{0=+//{x=y}':x}'a ("excitation" "intoxicate")
http://rosettacode.org/wiki/Anonymous_recursion
Anonymous recursion
While implementing a recursive function, it often happens that we must resort to a separate   helper function   to handle the actual recursion. This is usually the case when directly calling the current function would waste too many resources (stack space, execution time), causing unwanted side-effects,   and/or the function doesn't have the right arguments and/or return values. So we end up inventing some silly name like   foo2   or   foo_helper.   I have always found it painful to come up with a proper name, and see some disadvantages:   You have to think up a name, which then pollutes the namespace   Function is created which is called from nowhere else   The program flow in the source code is interrupted Some languages allow you to embed recursion directly in-place.   This might work via a label, a local gosub instruction, or some special keyword. Anonymous recursion can also be accomplished using the   Y combinator. Task If possible, demonstrate this by writing the recursive version of the fibonacci function   (see Fibonacci sequence)   which checks for a negative argument before doing the actual recursion.
#Io
Io
fib := method(x, if(x < 0, Exception raise("Negative argument not allowed!")) fib2 := method(n, if(n < 2, n, fib2(n-1) + fib2(n-2)) ) fib2(x floor) )
http://rosettacode.org/wiki/Amicable_pairs
Amicable pairs
Two integers N {\displaystyle N} and M {\displaystyle M} are said to be amicable pairs if N ≠ M {\displaystyle N\neq M} and the sum of the proper divisors of N {\displaystyle N} ( s u m ( p r o p D i v s ( N ) ) {\displaystyle \mathrm {sum} (\mathrm {propDivs} (N))} ) = M {\displaystyle =M} as well as s u m ( p r o p D i v s ( M ) ) = N {\displaystyle \mathrm {sum} (\mathrm {propDivs} (M))=N} . Example 1184 and 1210 are an amicable pair, with proper divisors:   1, 2, 4, 8, 16, 32, 37, 74, 148, 296, 592   and   1, 2, 5, 10, 11, 22, 55, 110, 121, 242, 605   respectively. Task Calculate and show here the Amicable pairs below 20,000; (there are eight). Related tasks Proper divisors Abundant, deficient and perfect number classifications Aliquot sequence classifications and its amicable classification.
#Erlang
Erlang
  -module(properdivs). -export([amicable/1,divs/1,sumdivs/1]).   amicable(Limit) -> amicable(Limit,[],3,2).   amicable(Limit,List,_Current,Acc) when Acc >= Limit -> List; amicable(Limit,List,Current,Acc) when Current =< Acc/2 -> amicable(Limit,List,Acc,Acc+1); amicable(Limit,List,Current,Acc) -> CS = sumdivs(Current), AS = sumdivs(Acc), if CS == Acc andalso AS == Current andalso Acc =/= Current -> io:format("A: ~w, B: ~w, ~nL: ~w~w~n", [Current,Acc,divs(Current),divs(Acc)]), NL = List ++ [{Current,Acc}], amicable(Limit,NL,Acc+1,Acc+1); true -> amicable(Limit,List,Current-1,Acc) end.   divs(0) -> []; divs(1) -> []; divs(N) -> lists:sort(divisors(1,N)).   divisors(1,N) -> [1] ++ divisors(2,N,math:sqrt(N)).   divisors(K,_N,Q) when K > Q -> []; divisors(K,N,_Q) when N rem K =/= 0 -> [] ++ divisors(K+1,N,math:sqrt(N)); divisors(K,N,_Q) when K * K == N -> [K] ++ divisors(K+1,N,math:sqrt(N)); divisors(K,N,_Q) -> [K, N div K] ++ divisors(K+1,N,math:sqrt(N)).   sumdivs(N) -> lists:sum(divs(N)).  
http://rosettacode.org/wiki/Animation
Animation
Animation is integral to many parts of GUIs, including both the fancy effects when things change used in window managers, and of course games.   The core of any animation system is a scheme for periodically changing the display while still remaining responsive to the user.   This task demonstrates this. Task Create a window containing the string "Hello World! " (the trailing space is significant). Make the text appear to be rotating right by periodically removing one letter from the end of the string and attaching it to the front. When the user clicks on the (windowed) text, it should reverse its direction.
#Mathematica_.2F_Wolfram_Language
Mathematica / Wolfram Language
mystring = "Hello World! "; Scroll[str_, dir_] := StringJoin @@ RotateLeft[str // Characters, dir]; GiveString[dir_] := (mystring = Scroll[mystring, dir]); CreateDialog[{ DynamicModule[{direction = -1}, EventHandler[ Dynamic[TextCell[ Refresh[GiveString[direction], UpdateInterval -> 1/8]], TrackedSymbols -> {}], {"MouseClicked" :> (direction *= -1)}]] }];
http://rosettacode.org/wiki/Animation
Animation
Animation is integral to many parts of GUIs, including both the fancy effects when things change used in window managers, and of course games.   The core of any animation system is a scheme for periodically changing the display while still remaining responsive to the user.   This task demonstrates this. Task Create a window containing the string "Hello World! " (the trailing space is significant). Make the text appear to be rotating right by periodically removing one letter from the end of the string and attaching it to the front. When the user clicks on the (windowed) text, it should reverse its direction.
#MAXScript
MAXScript
  try destroydialog animGUI catch ()   global userDirection = "right"   fn reverseStr str: direction: = ( local lastChar = str[str.count] local firstChar = str[1] local newStr = "" local dir   if direction == unsupplied then dir = "left" else dir = direction   case dir of ( "right": (newstr = lastChar + (substring str 1 (str.count-1))) "left": (newstr = (substring str 2 (str.count))+firstChar) )   return newstr )   rollout animGUI "Hello World" width:200 ( button switchToLeft "<--" pos:[40,0] height:15 label HelloWorldLabel "Hello World! " pos:[80,0] button switchToRight "-->" pos:[150,0] height:15   timer activeTimer interval:70 active:true   on activeTimer tick do ( HelloWorldLabel.text = reverseStr str:(HelloWorldLabel.text) direction:userDirection )   on switchToLeft pressed do ( userDirection = "left" )   on switchToRight pressed do ( userDirection = "right" ) )   createdialog animGUI  
http://rosettacode.org/wiki/Animate_a_pendulum
Animate a pendulum
One good way of making an animation is by simulating a physical system and illustrating the variables in that system using a dynamically changing graphical display. The classic such physical system is a simple gravity pendulum. Task Create a simple physical model of a pendulum and animate it.
#Go
Go
package main   import ( "github.com/google/gxui" "github.com/google/gxui/drivers/gl" "github.com/google/gxui/math" "github.com/google/gxui/themes/dark" omath "math" "time" )   //Two pendulums animated //Top: Mathematical pendulum with small-angle approxmiation (not appropiate with PHI_ZERO=pi/2) //Bottom: Simulated with differential equation phi'' = g/l * sin(phi)   const ( ANIMATION_WIDTH int = 480 ANIMATION_HEIGHT int = 320 BALL_RADIUS float32 = 25.0 METER_PER_PIXEL float64 = 1.0 / 20.0 PHI_ZERO float64 = omath.Pi * 0.5 )   var ( l float64 = float64(ANIMATION_HEIGHT) * 0.5 freq float64 = omath.Sqrt(9.81 / (l * METER_PER_PIXEL)) )   type Pendulum interface { GetPhi() float64 }   type mathematicalPendulum struct { start time.Time }   func (p *mathematicalPendulum) GetPhi() float64 { if (p.start == time.Time{}) { p.start = time.Now() } t := float64(time.Since(p.start).Nanoseconds()) / omath.Pow10(9) return PHI_ZERO * omath.Cos(t*freq) }   type numericalPendulum struct { currentPhi float64 angAcc float64 angVel float64 lastTime time.Time }   func (p *numericalPendulum) GetPhi() float64 { dt := 0.0 if (p.lastTime != time.Time{}) { dt = float64(time.Since(p.lastTime).Nanoseconds()) / omath.Pow10(9) } p.lastTime = time.Now()   p.angAcc = -9.81 / (float64(l) * METER_PER_PIXEL) * omath.Sin(p.currentPhi) p.angVel += p.angAcc * dt p.currentPhi += p.angVel * dt   return p.currentPhi }   func draw(p Pendulum, canvas gxui.Canvas, x, y int) { attachment := math.Point{X: ANIMATION_WIDTH/2 + x, Y: y}   phi := p.GetPhi() ball := math.Point{X: x + ANIMATION_WIDTH/2 + math.Round(float32(l*omath.Sin(phi))), Y: y + math.Round(float32(l*omath.Cos(phi)))}   line := gxui.Polygon{gxui.PolygonVertex{attachment, 0}, gxui.PolygonVertex{ball, 0}}   canvas.DrawLines(line, gxui.DefaultPen)   m := math.Point{int(BALL_RADIUS), int(BALL_RADIUS)} rect := math.Rect{ball.Sub(m), ball.Add(m)} canvas.DrawRoundedRect(rect, BALL_RADIUS, BALL_RADIUS, BALL_RADIUS, BALL_RADIUS, gxui.TransparentPen, gxui.CreateBrush(gxui.Yellow)) }   func appMain(driver gxui.Driver) { theme := dark.CreateTheme(driver)   window := theme.CreateWindow(ANIMATION_WIDTH, 2*ANIMATION_HEIGHT, "Pendulum") window.SetBackgroundBrush(gxui.CreateBrush(gxui.Gray50))   image := theme.CreateImage()   ticker := time.NewTicker(time.Millisecond * 15) pendulum := &mathematicalPendulum{} pendulum2 := &numericalPendulum{PHI_ZERO, 0.0, 0.0, time.Time{}}   go func() { for _ = range ticker.C { canvas := driver.CreateCanvas(math.Size{ANIMATION_WIDTH, 2 * ANIMATION_HEIGHT}) canvas.Clear(gxui.White)   draw(pendulum, canvas, 0, 0) draw(pendulum2, canvas, 0, ANIMATION_HEIGHT)   canvas.Complete() driver.Call(func() { image.SetCanvas(canvas) }) } }()   window.AddChild(image)   window.OnClose(ticker.Stop) window.OnClose(driver.Terminate) }   func main() { gl.StartDriver(appMain) }
http://rosettacode.org/wiki/Almkvist-Giullera_formula_for_pi
Almkvist-Giullera formula for pi
The Almkvist-Giullera formula for calculating   1/π2   is based on the Calabi-Yau differential equations of order 4 and 5,   which were originally used to describe certain manifolds in string theory. The formula is: 1/π2 = (25/3) ∑0∞ ((6n)! / (n!6))(532n2 + 126n + 9) / 10002n+1 This formula can be used to calculate the constant   π-2,   and thus to calculate   π. Note that, because the product of all terms but the power of 1000 can be calculated as an integer, the terms in the series can be separated into a large integer term: (25) (6n)! (532n2 + 126n + 9) / (3(n!)6)     (***) multiplied by a negative integer power of 10: 10-(6n + 3) Task Print the integer portions (the starred formula, which is without the power of 1000 divisor) of the first 10 terms of the series. Use the complete formula to calculate and print π to 70 decimal digits of precision. Reference  Gert Almkvist and Jesús Guillera, Ramanujan-like series for 1/π2 and string theory, Experimental Mathematics, 21 (2012), page 2, formula 1.
#Phix
Phix
with javascript_semantics requires("1.0.0") include mpfr.e mpfr_set_default_precision(-70) function almkvistGiullera(integer n, bool bPrint) mpz {t1,t2,ip} = mpz_inits(3) mpz_fac_ui(t1,6*n) mpz_mul_si(t1,t1,32) -- t1:=2^5*(6n)! mpz_fac_ui(t2,n) mpz_pow_ui(t2,t2,6) mpz_mul_si(t2,t2,3) -- t2:=3*(n!)^6 mpz_mul_si(ip,t1,532*n*n+126*n+9) -- ip:=t1*(532n^2+126n+9) mpz_fdiv_q(ip,ip,t2) -- ip:=ip/t2 integer pw := 6*n+3 mpz_ui_pow_ui(t1,10,pw) -- t1 := 10^(6n+3) mpq tm = mpq_init_set_z(ip,t1) -- tm := rat(ip/t1) if bPrint then string ips = mpz_get_str(ip), tms = mpfr_get_fixed(mpfr_init_set_q(tm),50) tms = trim_tail(tms,"0") printf(1,"%d  %44s  %3d  %s\n", {n, ips, -pw, tms}) end if return tm end function constant hdr = "N --------------- Integer portion ------------- Pow ----------------- Nth term (50 dp) -----------------" printf(1,"%s\n%s\n",{hdr,repeat('-',length(hdr))}) for n=0 to 9 do {} = almkvistGiullera(n, true) end for mpq {res,prev,z} = mpq_inits(3), prec = mpq_init_set_str(sprintf("1/1%s",repeat('0',70))) integer n = 0 while true do mpq term := almkvistGiullera(n, false) mpq_add(res,res,term) mpq_sub(z,res,prev) mpq_abs(z,z) if mpq_cmp(z,prec) < 0 then exit end if mpq_set(prev,res) n += 1 end while mpq_inv(res,res) mpfr pi = mpfr_init_set_q(res) mpfr_sqrt(pi,pi) printf(1,"\nCalculation of pi took %d iterations using the Almkvist-Giullera formula.\n\n",n) printf(1,"Pi to 70 d.p.: %s\n",mpfr_get_fixed(pi,70)) mpfr_const_pi(pi) printf(1,"Pi (builtin) : %s\n",mpfr_get_fixed(pi,70))
http://rosettacode.org/wiki/Almost_prime
Almost prime
A   k-Almost-prime   is a natural number   n {\displaystyle n}   that is the product of   k {\displaystyle k}   (possibly identical) primes. Example 1-almost-primes,   where   k = 1 {\displaystyle k=1} ,   are the prime numbers themselves. 2-almost-primes,   where   k = 2 {\displaystyle k=2} ,   are the   semiprimes. Task Write a function/method/subroutine/... that generates k-almost primes and use it to create a table here of the first ten members of k-Almost primes for   1 <= K <= 5 {\displaystyle 1<=K<=5} . Related tasks   Semiprime   Category:Prime Numbers
#ASIC
ASIC
  REM Almost prime FOR K = 1 TO 5 S$ = STR$(K) S$ = LTRIM$(S$) S$ = "k = " + S$ S$ = S$ + ":" PRINT S$; I = 2 C = 0 WHILE C < 10 AN = I GOSUB CHECKKPRIME: IF ISKPRIME <> 0 THEN PRINT I; C = C + 1 ENDIF I = I + 1 WEND PRINT NEXT K END   CHECKKPRIME: REM Check if N (AN) is a K prime (result: ISKPRIME) F = 0 J = 2 LOOPFOR: ANMODJ = AN MOD J LOOPWHILE: IF ANMODJ <> 0 THEN AFTERWHILE: IF F = K THEN FEQK: F = F + 1 AN = AN / J ANMODJ = AN MOD J GOTO LOOPWHILE: AFTERWHILE: J = J + 1 IF J <= AN THEN LOOPFOR: IF F = K THEN ISKPRIME = -1 ELSE ISKPRIME = 0 ENDIF RETURN FEQK: ISKPRIME = 0 RETURN  
http://rosettacode.org/wiki/Almost_prime
Almost prime
A   k-Almost-prime   is a natural number   n {\displaystyle n}   that is the product of   k {\displaystyle k}   (possibly identical) primes. Example 1-almost-primes,   where   k = 1 {\displaystyle k=1} ,   are the prime numbers themselves. 2-almost-primes,   where   k = 2 {\displaystyle k=2} ,   are the   semiprimes. Task Write a function/method/subroutine/... that generates k-almost primes and use it to create a table here of the first ten members of k-Almost primes for   1 <= K <= 5 {\displaystyle 1<=K<=5} . Related tasks   Semiprime   Category:Prime Numbers
#AutoHotkey
AutoHotkey
kprime(n,k) { p:=2, f:=0 while( (f<k) && (p*p<=n) ) { while ( 0==mod(n,p) ) { n/=p f++ } p++ } return f + (n>1) == k }   k:=1, results:="" while( k<=5 ) { i:=2, c:=0, results:=results "k =" k ":" while( c<10 ) { if (kprime(i,k)) { results:=results " " i c++ } i++ } results:=results "`n" k++ }   MsgBox % results
http://rosettacode.org/wiki/Anagrams
Anagrams
When two or more words are composed of the same characters, but in a different order, they are called anagrams. Task[edit] Using the word list at   http://wiki.puzzlers.org/pub/wordlists/unixdict.txt, find the sets of words that share the same characters that contain the most words in them. Related tasks Word plays Ordered words Palindrome detection Semordnilap Anagrams Anagrams/Deranged anagrams Other tasks related to string operations: Metrics Array length String length Copy a string Empty string  (assignment) Counting Word frequency Letter frequency Jewels and stones I before E except after C Bioinformatics/base count Count occurrences of a substring Count how many vowels and consonants occur in a string Remove/replace XXXX redacted Conjugate a Latin verb Remove vowels from a string String interpolation (included) Strip block comments Strip comments from a string Strip a set of characters from a string Strip whitespace from a string -- top and tail Strip control codes and extended characters from a string Anagrams/Derangements/shuffling Word wheel ABC problem Sattolo cycle Knuth shuffle Ordered words Superpermutation minimisation Textonyms (using a phone text pad) Anagrams Anagrams/Deranged anagrams Permutations/Derangements Find/Search/Determine ABC words Odd words Word ladder Semordnilap Word search Wordiff  (game) String matching Tea cup rim text Alternade words Changeable words State name puzzle String comparison Unique characters Unique characters in each string Extract file extension Levenshtein distance Palindrome detection Common list elements Longest common suffix Longest common prefix Compare a list of strings Longest common substring Find common directory path Words from neighbour ones Change e letters to i in words Non-continuous subsequences Longest common subsequence Longest palindromic substrings Longest increasing subsequence Words containing "the" substring Sum of the digits of n is substring of n Determine if a string is numeric Determine if a string is collapsible Determine if a string is squeezable Determine if a string has all unique characters Determine if a string has all the same characters Longest substrings without repeating characters Find words which contains all the vowels Find words which contains most consonants Find words which contains more than 3 vowels Find words which first and last three letters are equals Find words which odd letters are consonants and even letters are vowels or vice_versa Formatting Substring Rep-string Word wrap String case Align columns Literals/String Repeat a string Brace expansion Brace expansion using ranges Reverse a string Phrase reversals Comma quibbling Special characters String concatenation Substring/Top and tail Commatizing numbers Reverse words in a string Suffixation of decimal numbers Long literals, with continuations Numerical and alphabetical suffixes Abbreviations, easy Abbreviations, simple Abbreviations, automatic Song lyrics/poems/Mad Libs/phrases Mad Libs Magic 8-ball 99 Bottles of Beer The Name Game (a song) The Old lady swallowed a fly The Twelve Days of Christmas Tokenize Text between Tokenize a string Word break problem Tokenize a string with escaping Split a character string based on change of character Sequences Show ASCII table De Bruijn sequences Self-referential sequences Generate lower case ASCII alphabet
#AArch64_Assembly
AArch64 Assembly
  /* ARM assembly AARCH64 Raspberry PI 3B */ /* program anagram64.s */   /*******************************************/ /* Constantes file */ /*******************************************/ /* for this file see task include a file in language AArch64 assembly*/ .include "../includeConstantesARM64.inc"   .equ MAXI, 40000 .equ BUFFERSIZE, 300000   /*********************************/ /* Initialized data */ /*********************************/ .data szFileName: .asciz "./listword.txt" szMessErreur: .asciz "FILE ERROR." szCarriageReturn: .asciz "\n" szMessSpace: .asciz " "   ptBuffex1: .quad sBuffex1 /*********************************/ /* UnInitialized data */ /*********************************/ .bss ptTabBuffer: .skip 8 * MAXI ptTabAna: .skip 8 * MAXI tbiCptAna: .skip 8 * MAXI iNBword: .skip 8 sBuffer: .skip BUFFERSIZE sBuffex1: .skip BUFFERSIZE   /*********************************/ /* code section */ /*********************************/ .text .global main main: // entry of program mov x4,#0 // loop indice mov x0,AT_FDCWD // current directory ldr x1,qAdrszFileName // file name mov x2,#O_RDWR // flags mov x3,#0 // mode mov x8,#OPEN // svc 0 cmp x0,#0 // error open ble 99f mov x19,x0 // FD save Fd ldr x1,qAdrsBuffer // buffer address ldr x2,qSizeBuf // buffersize mov x8, #READ svc 0 cmp x0,#0 // error read ? blt 99f mov x5,x0 // save size read bytes ldr x4,qAdrsBuffer // buffer address ldr x0,qAdrsBuffer // start word address mov x2,#0 mov x1,#0 // word length 1: cmp x2,x5 bge 2f ldrb w3,[x4,x2] cmp w3,#0xD // end word ? cinc x1,x1,ne // increment word length cinc x2,x2,ne // increment indice bne 1b // and loop strb wzr,[x4,x2] // store final zero bl anaWord // sort word letters add x2,x2,#2 // jump OD and 0A add x0,x4,x2 // new address begin word mov x1,#0 // init length b 1b // and loop   2: strb wzr,[x4,x2] // zero final bl anaWord // last word   mov x0,x19 // file Fd mov x8, #CLOSE svc 0 cmp x0,#0 // error close ? blt 99f   ldr x0,qAdrptTabAna // address sorted string area mov x1,#0 // first indice ldr x2,qAdriNBword ldr x2,[x2] // last indice ldr x3,qAdrptTabBuffer // address sorted string area bl triRapide // quick sort ldr x4,qAdrptTabAna // address sorted string area ldr x7,qAdrptTabBuffer // address sorted string area ldr x10,qAdrtbiCptAna // address counter occurences mov x9,x2 // size word array mov x8,#0 // indice first occurence ldr x3,[x4,x8,lsl #3] // load first value mov x2,#1 // loop indice mov x6,#0 // counter mov x12,#0 // counter value max 3: ldr x5,[x4,x2,lsl #3] // load next value mov x0,x3 mov x1,x5 bl comparStrings cmp x0,#0 // sorted strings equal ? bne 4f add x6,x6,#1 // yes increment counter b 5f 4: // no str x6,[x10,x8,lsl #3] // store counter in first occurence cmp x6,x12 // counter > value max csel x12,x6,x12,gt // yes counter -> value max //movgt x12,x6 // yes counter -> value max mov x6,#0 // raz counter mov x8,x2 // init index first occurence mov x3,x5 // init value first occurence 5: add x2,x2,#1 // increment indice cmp x2,x9 // end word array ? blt 3b // no -> loop   mov x2,#0 // raz indice 6: // display loop ldr x6,[x10,x2,lsl #3] // load counter cmp x6,x12 // equal to max value ? bne 8f ldr x0,[x7,x2,lsl #3] // load address first word bl affichageMess add x3,x2,#1 // increment new indixe mov x4,#0 // counter 7: ldr x0,qAdrszMessSpace bl affichageMess ldr x0,[x7,x3,lsl #3] // load address other word bl affichageMess add x3,x3,#1 // increment indice add x4,x4,#1 // increment counter cmp x4,x6 // max value ? blt 7b // no loop ldr x0,qAdrszCarriageReturn bl affichageMess 8: add x2,x2,#1 // increment indice cmp x2,x9 // maxi ? blt 6b // no -> loop   b 100f 99: // display error ldr x0,qAdrszMessErreur bl affichageMess   100: // standard end of the program mov x0, #0 // return code mov x8, #EXIT // request to exit program svc #0 // perform the system call qAdrszCarriageReturn: .quad szCarriageReturn qAdrszFileName: .quad szFileName qAdrszMessErreur: .quad szMessErreur qAdrsBuffer: .quad sBuffer qSizeBuf: .quad BUFFERSIZE qAdrszMessSpace: .quad szMessSpace qAdrtbiCptAna: .quad tbiCptAna /******************************************************************/ /* analizing word */ /******************************************************************/ /* x0 word address */ /* x1 word length */ anaWord: stp x1,lr,[sp,-16]! // save registers stp x2,x3,[sp,-16]! // save registers stp x4,x5,[sp,-16]! // save registers stp x6,x7,[sp,-16]! // save registers mov x5,x0 mov x6,x1 ldr x1,qAdrptTabBuffer ldr x2,qAdriNBword ldr x3,[x2] str x0,[x1,x3,lsl #3]   ldr x1,qAdrptTabAna ldr x4,qAdrptBuffex1 ldr x0,[x4] add x6,x6,x0 add x6,x6,#1 str x6,[x4] str x0,[x1,x3,lsl #3]   add x3,x3,#1 str x3,[x2] mov x1,x0 mov x0,x5 bl triLetters // sort word letters mov x2,#0 100: ldp x6,x7,[sp],16 // restaur 2 registers ldp x4,x5,[sp],16 // restaur 2 registers ldp x2,x3,[sp],16 // restaur 2 registers ldp x1,lr,[sp],16 // restaur 2 registers ret // return to address lr x30 qAdrptTabBuffer: .quad ptTabBuffer qAdrptTabAna: .quad ptTabAna qAdriNBword: .quad iNBword qAdrptBuffex1: .quad ptBuffex1 /******************************************************************/ /* sort word letters */ /******************************************************************/ /* x0 address begin word */ /* x1 address recept array */ triLetters: stp x1,lr,[sp,-16]! // save registers stp x2,x3,[sp,-16]! // save registers stp x4,x5,[sp,-16]! // save registers stp x6,x7,[sp,-16]! // save registers mov x2,#0 1: ldrb w3,[x0,x2] // load letter cmp w3,#0 // end word ? beq 6f cmp x2,#0 // first letter ? bne 2f strb w3,[x1,x2] // yes store in first position add x2,x2,#1 // increment indice b 1b // and loop 2: mov x4,#0 3: // begin loop to search insertion position ldrb w5,[x1,x4] // load letter cmp w3,w5 // compare blt 4f // to low -> insertion add x4,x4,#1 // increment indice cmp x4,x2 // compare to letters number in place blt 3b // search loop strb w3,[x1,x2] // else store in last position add x2,x2,#1 b 1b // and loop 4: // move first letters in one position sub x6,x2,#1 // start indice 5: ldrb w5,[x1,x6] // load letter add x7,x6,#1 // store indice - 1 strb w5,[x1,x7] // store letter sub x6,x6,#1 // decrement indice cmp x6,x4 // end ? bge 5b // no loop strb w3,[x1,x4] // else store letter in free position add x2,x2,#1 b 1b // and loop 6: strb wzr,[x1,x2] // final zéro 100: ldp x6,x7,[sp],16 // restaur 2 registers ldp x4,x5,[sp],16 // restaur 2 registers ldp x2,x3,[sp],16 // restaur 2 registers ldp x1,lr,[sp],16 // restaur 2 registers ret // return to address lr x30 /***************************************************/ /* Appel récursif Tri Rapide quicksort */ /***************************************************/ /* x0 contains the address of table */ /* x1 contains index of first item */ /* x2 contains the number of elements > 0 */ /* x3 contains the address of table 2 */ triRapide: stp x1,lr,[sp,-16]! // save registers stp x2,x3,[sp,-16]! // save registers stp x4,x5,[sp,-16]! // save registers stp x6,x7,[sp,-16]! // save registers mov x6,x3 sub x2,x2,#1 // last item index cmp x1,x2 // first > last ? bge 100f // yes -> end mov x4,x0 // save x0 mov x5,x2 // save x2 mov x3,x6 bl partition1 // cutting.quado 2 parts mov x2,x0 // index partition mov x0,x4 // table address bl triRapide // sort lower part mov x0,x4 // table address add x1,x2,#1 // index begin = index partition + 1 add x2,x5,#1 // number of elements bl triRapide // sort higter part   100: // end function ldp x6,x7,[sp],16 // restaur 2 registers ldp x4,x5,[sp],16 // restaur 2 registers ldp x2,x3,[sp],16 // restaur 2 registers ldp x1,lr,[sp],16 // restaur 2 registers ret // return to address lr x30   /******************************************************************/ /* Partition table elements */ /******************************************************************/ /* x0 contains the address of table */ /* x1 contains index of first item */ /* x2 contains index of last item */ /* x3 contains the address of table 2 */ partition1: stp x1,lr,[sp,-16]! // save registers stp x2,x3,[sp,-16]! // save registers stp x4,x5,[sp,-16]! // save registers stp x6,x7,[sp,-16]! // save registers stp x8,x9,[sp,-16]! // save registers stp x10,x12,[sp,-16]! // save registers mov x8,x0 // save address table 2 mov x9,x1 ldr x10,[x8,x2,lsl #3] // load string address last index mov x4,x9 // init with first index mov x5,x9 // init with first index 1: // begin loop ldr x6,[x8,x5,lsl #3] // load string address mov x0,x6 mov x1,x10 bl comparStrings cmp x0,#0 bge 2f ldr x7,[x8,x4,lsl #3] // if < swap value table str x6,[x8,x4,lsl #3] str x7,[x8,x5,lsl #3] ldr x7,[x3,x4,lsl #3] // swap array 2 ldr x12,[x3,x5,lsl #3] str x7,[x3,x5,lsl #3] str x12,[x3,x4,lsl #3] add x4,x4,#1 // and increment index 1 2: add x5,x5,#1 // increment index 2 cmp x5,x2 // end ? blt 1b // no -> loop ldr x7,[x8,x4,lsl #3] // swap value str x10,[x8,x4,lsl #3] str x7,[x8,x2,lsl #3] ldr x7,[x3,x4,lsl #3] // swap array 2 ldr x12,[x3,x2,lsl #3] str x7,[x3,x2,lsl #3] str x12,[x3,x4,lsl #3]   mov x0,x4 // return index partition 100: ldp x10,x12,[sp],16 // restaur 2 registers ldp x8,x9,[sp],16 // restaur 2 registers ldp x6,x7,[sp],16 // restaur 2 registers ldp x4,x5,[sp],16 // restaur 2 registers ldp x2,x3,[sp],16 // restaur 2 registers ldp x1,lr,[sp],16 // restaur 2 registers ret // return to address lr x30 /************************************/ /* Strings case sensitive comparisons */ /************************************/ /* x0 et x1 contains the address of strings */ /* return 0 in x0 if equals */ /* return -1 if string x0 < string x1 */ /* return 1 if string x0 > string x1 */ comparStrings: stp x1,lr,[sp,-16]! // save registers stp x2,x3,[sp,-16]! // save registers stp x4,x5,[sp,-16]! // save registers mov x2,#0 // counter 1: ldrb w3,[x0,x2] // byte string 1 ldrb w4,[x1,x2] // byte string 2 cmp w3,w4 blt 2f // small bgt 3f // greather cmp x3,#0 // 0 end string beq 4f // end string add x2,x2,#1 // else add 1 in counter b 1b // and loop 2: mov x0,#-1 // small b 100f 3: mov x0,#1 // greather b 100f 4: mov x0,#0 // equal 100: ldp x4,x5,[sp],16 // restaur 2 registers ldp x2,x3,[sp],16 // restaur 2 registers ldp x1,lr,[sp],16 // restaur 2 registers ret // return to address lr x30 /********************************************************/ /* File Include fonctions */ /********************************************************/ /* for this file see task include a file in language AArch64 assembly */ .include "../includeARM64.inc"  
http://rosettacode.org/wiki/Angle_difference_between_two_bearings
Angle difference between two bearings
Finding the angle between two bearings is often confusing.[1] Task Find the angle which is the result of the subtraction b2 - b1, where b1 and b2 are the bearings. Input bearings are expressed in the range   -180   to   +180   degrees. The  result  is also expressed in the range   -180   to   +180   degrees. Compute the angle for the following pairs: 20 degrees (b1) and 45 degrees (b2) -45 and 45 -85 and 90 -95 and 90 -45 and 125 -45 and 145 29.4803 and -88.6381 -78.3251 and -159.036 Optional extra Allow the input bearings to be any (finite) value. Test cases -70099.74233810938 and 29840.67437876723 -165313.6666297357 and 33693.9894517456 1174.8380510598456 and -154146.66490124757 60175.77306795546 and 42213.07192354373
#IS-BASIC
IS-BASIC
100 INPUT PROMPT "1. angle: ":A1 110 INPUT PROMPT "2. angle: ":A2 120 LET B=MOD(A2-A1,360) 130 IF B>180 THEN LET B=B-360 140 IF B<-180 THEN LET B=B+360 150 PRINT "Difference: ";B
http://rosettacode.org/wiki/Anagrams/Deranged_anagrams
Anagrams/Deranged anagrams
Two or more words are said to be anagrams if they have the same characters, but in a different order. By analogy with derangements we define a deranged anagram as two words with the same characters, but in which the same character does not appear in the same position in both words. Task[edit] Use the word list at unixdict to find and display the longest deranged anagram. Related tasks Permutations/Derangements Best shuffle Word plays Ordered words Palindrome detection Semordnilap Anagrams Anagrams/Deranged anagrams Other tasks related to string operations: Metrics Array length String length Copy a string Empty string  (assignment) Counting Word frequency Letter frequency Jewels and stones I before E except after C Bioinformatics/base count Count occurrences of a substring Count how many vowels and consonants occur in a string Remove/replace XXXX redacted Conjugate a Latin verb Remove vowels from a string String interpolation (included) Strip block comments Strip comments from a string Strip a set of characters from a string Strip whitespace from a string -- top and tail Strip control codes and extended characters from a string Anagrams/Derangements/shuffling Word wheel ABC problem Sattolo cycle Knuth shuffle Ordered words Superpermutation minimisation Textonyms (using a phone text pad) Anagrams Anagrams/Deranged anagrams Permutations/Derangements Find/Search/Determine ABC words Odd words Word ladder Semordnilap Word search Wordiff  (game) String matching Tea cup rim text Alternade words Changeable words State name puzzle String comparison Unique characters Unique characters in each string Extract file extension Levenshtein distance Palindrome detection Common list elements Longest common suffix Longest common prefix Compare a list of strings Longest common substring Find common directory path Words from neighbour ones Change e letters to i in words Non-continuous subsequences Longest common subsequence Longest palindromic substrings Longest increasing subsequence Words containing "the" substring Sum of the digits of n is substring of n Determine if a string is numeric Determine if a string is collapsible Determine if a string is squeezable Determine if a string has all unique characters Determine if a string has all the same characters Longest substrings without repeating characters Find words which contains all the vowels Find words which contains most consonants Find words which contains more than 3 vowels Find words which first and last three letters are equals Find words which odd letters are consonants and even letters are vowels or vice_versa Formatting Substring Rep-string Word wrap String case Align columns Literals/String Repeat a string Brace expansion Brace expansion using ranges Reverse a string Phrase reversals Comma quibbling Special characters String concatenation Substring/Top and tail Commatizing numbers Reverse words in a string Suffixation of decimal numbers Long literals, with continuations Numerical and alphabetical suffixes Abbreviations, easy Abbreviations, simple Abbreviations, automatic Song lyrics/poems/Mad Libs/phrases Mad Libs Magic 8-ball 99 Bottles of Beer The Name Game (a song) The Old lady swallowed a fly The Twelve Days of Christmas Tokenize Text between Tokenize a string Word break problem Tokenize a string with escaping Split a character string based on change of character Sequences Show ASCII table De Bruijn sequences Self-referential sequences Generate lower case ASCII alphabet
#Kotlin
Kotlin
// version 1.0.6   import java.io.BufferedReader import java.io.InputStreamReader import java.net.URL   fun isDeranged(s1: String, s2: String): Boolean { return (0 until s1.length).none { s1[it] == s2[it] } }   fun main(args: Array<String>) { val url = URL("http://www.puzzlers.org/pub/wordlists/unixdict.txt") val isr = InputStreamReader(url.openStream()) val reader = BufferedReader(isr) val anagrams = mutableMapOf<String, MutableList<String>>() var count = 0 var word = reader.readLine() while (word != null) { val chars = word.toCharArray() chars.sort() val key = chars.joinToString("") if (!anagrams.containsKey(key)) { anagrams.put(key, mutableListOf<String>()) anagrams[key]!!.add(word) } else { val deranged = anagrams[key]!!.any { isDeranged(it, word) } if (deranged) { anagrams[key]!!.add(word) count = Math.max(count, word.length) } } word = reader.readLine() } reader.close() anagrams.values .filter { it.size > 1 && it[0].length == count } .forEach { println(it) } }
http://rosettacode.org/wiki/Anonymous_recursion
Anonymous recursion
While implementing a recursive function, it often happens that we must resort to a separate   helper function   to handle the actual recursion. This is usually the case when directly calling the current function would waste too many resources (stack space, execution time), causing unwanted side-effects,   and/or the function doesn't have the right arguments and/or return values. So we end up inventing some silly name like   foo2   or   foo_helper.   I have always found it painful to come up with a proper name, and see some disadvantages:   You have to think up a name, which then pollutes the namespace   Function is created which is called from nowhere else   The program flow in the source code is interrupted Some languages allow you to embed recursion directly in-place.   This might work via a label, a local gosub instruction, or some special keyword. Anonymous recursion can also be accomplished using the   Y combinator. Task If possible, demonstrate this by writing the recursive version of the fibonacci function   (see Fibonacci sequence)   which checks for a negative argument before doing the actual recursion.
#IS-BASIC
IS-BASIC
100 PROGRAM "Fibonacc.bas" 110 FOR I=0 TO 10 120 PRINT FIB(I); 130 NEXT 140 DEF FIB(K) 150 SELECT CASE K 160 CASE IS<0 170 PRINT "Negative parameter to Fibonacci.":STOP 180 CASE 0 190 LET FIB=0 200 CASE 1 210 LET FIB=1 220 CASE ELSE 230 LET FIB=FIB(K-1)+FIB(K-2) 240 END SELECT 250 END DEF
http://rosettacode.org/wiki/Amicable_pairs
Amicable pairs
Two integers N {\displaystyle N} and M {\displaystyle M} are said to be amicable pairs if N ≠ M {\displaystyle N\neq M} and the sum of the proper divisors of N {\displaystyle N} ( s u m ( p r o p D i v s ( N ) ) {\displaystyle \mathrm {sum} (\mathrm {propDivs} (N))} ) = M {\displaystyle =M} as well as s u m ( p r o p D i v s ( M ) ) = N {\displaystyle \mathrm {sum} (\mathrm {propDivs} (M))=N} . Example 1184 and 1210 are an amicable pair, with proper divisors:   1, 2, 4, 8, 16, 32, 37, 74, 148, 296, 592   and   1, 2, 5, 10, 11, 22, 55, 110, 121, 242, 605   respectively. Task Calculate and show here the Amicable pairs below 20,000; (there are eight). Related tasks Proper divisors Abundant, deficient and perfect number classifications Aliquot sequence classifications and its amicable classification.
#ERRE
ERRE
PROGRAM AMICABLE   CONST LIMIT=20000   PROCEDURE SUMPROP(NUM->M) IF NUM<2 THEN M=0 EXIT PROCEDURE SUM=1 ROOT=SQR(NUM) FOR I=2 TO ROOT-1 DO IF (NUM=I*INT(NUM/I)) THEN SUM=SUM+I+NUM/I END IF IF (NUM=ROOT*INT(NUM/ROOT)) THEN SUM=SUM+ROOT END IF END FOR M=SUM END PROCEDURE   BEGIN PRINT(CHR$(12);) ! CLS PRINT("Amicable pairs < ";LIMIT) FOR N=1 TO LIMIT DO SUMPROP(N->M1) SUMPROP(M1->M2) IF (N=M2 AND N<M1) THEN PRINT(N,M1) END FOR END PROGRAM
http://rosettacode.org/wiki/Animation
Animation
Animation is integral to many parts of GUIs, including both the fancy effects when things change used in window managers, and of course games.   The core of any animation system is a scheme for periodically changing the display while still remaining responsive to the user.   This task demonstrates this. Task Create a window containing the string "Hello World! " (the trailing space is significant). Make the text appear to be rotating right by periodically removing one letter from the end of the string and attaching it to the front. When the user clicks on the (windowed) text, it should reverse its direction.
#MiniScript
MiniScript
clear text.inverse = true s = "Hello World! " while not key.available text.row = 12 text.column = 15 print " " + s + " " wait 0.1 s = s[-1] + s[:-1] end while text.inverse = false key.clear
http://rosettacode.org/wiki/Animation
Animation
Animation is integral to many parts of GUIs, including both the fancy effects when things change used in window managers, and of course games.   The core of any animation system is a scheme for periodically changing the display while still remaining responsive to the user.   This task demonstrates this. Task Create a window containing the string "Hello World! " (the trailing space is significant). Make the text appear to be rotating right by periodically removing one letter from the end of the string and attaching it to the front. When the user clicks on the (windowed) text, it should reverse its direction.
#Nim
Nim
import gintro/[glib, gobject, gdk, gtk, gio]   type   # Scrolling direction. ScrollDirection = enum toLeft, toRight   # Data transmitted to update callback. UpdateData = ref object label: Label scrollDir: ScrollDirection   #---------------------------------------------------------------------------------------------------   proc update(data: UpdateData): gboolean = ## Update the text, scrolling to the right or to the left according to "data.scrollDir".   data.label.setText(if data.scrollDir == toRight: data.label.text[^1] & data.label.text[0..^2] else: data.label.text[1..^1] & data.label.text[0]) result = gboolean(1)   #---------------------------------------------------------------------------------------------------   proc changeScrollingDir(evtBox: EventBox; event: EventButton; data: UpdateData): bool = ## Change scrolling direction.   data.scrollDir = ScrollDirection(1 - ord(data.scrollDir))   #---------------------------------------------------------------------------------------------------   proc activate(app: Application) = ## Activate the application.   let window = app.newApplicationWindow() window.setSizeRequest(150, 50) window.setTitle("Animation")   # Create an event box to catch the button press event. let evtBox = newEventBox() window.add(evtBox)   # Create the label and add it to the event box. let label = newLabel("Hello World! ") evtBox.add(label)   # Create the update data. let data = UpdateData(label: label, scrollDir: toRight)   # Connect the "button-press-event" to the callback to change scrolling direction. discard evtBox.connect("button-press-event", changeScrollingDir, data)   # Create a timer to update the label and simulate scrolling. timeoutAdd(200, update, data)   window.showAll()   #———————————————————————————————————————————————————————————————————————————————————————————————————   let app = newApplication(Application, "Rosetta.animation") discard app.connect("activate", activate) discard app.run()
http://rosettacode.org/wiki/Animate_a_pendulum
Animate a pendulum
One good way of making an animation is by simulating a physical system and illustrating the variables in that system using a dynamically changing graphical display. The classic such physical system is a simple gravity pendulum. Task Create a simple physical model of a pendulum and animate it.
#Haskell
Haskell
import Graphics.HGL.Draw.Monad (Graphic, ) import Graphics.HGL.Draw.Picture import Graphics.HGL.Utils import Graphics.HGL.Window import Graphics.HGL.Run   import Control.Exception (bracket, ) import Control.Arrow   toInt = fromIntegral.round   pendulum = runGraphics $ bracket (openWindowEx "Pendulum animation task" Nothing (600,400) DoubleBuffered (Just 30)) closeWindow (\w -> mapM_ ((\ g -> setGraphic w g >> getWindowTick w). (\ (x, y) -> overGraphic (line (300, 0) (x, y)) (ellipse (x - 12, y + 12) (x + 12, y - 12)) )) pts) where dt = 1/30 t = - pi/4 l = 1 g = 9.812 nextAVT (a,v,t) = (a', v', t + v' * dt) where a' = - (g / l) * sin t v' = v + a' * dt pts = map (\(_,t,_) -> (toInt.(300+).(300*).cos &&& toInt. (300*).sin) (pi/2+0.6*t) ) $ iterate nextAVT (- (g / l) * sin t, t, 0)
http://rosettacode.org/wiki/Almkvist-Giullera_formula_for_pi
Almkvist-Giullera formula for pi
The Almkvist-Giullera formula for calculating   1/π2   is based on the Calabi-Yau differential equations of order 4 and 5,   which were originally used to describe certain manifolds in string theory. The formula is: 1/π2 = (25/3) ∑0∞ ((6n)! / (n!6))(532n2 + 126n + 9) / 10002n+1 This formula can be used to calculate the constant   π-2,   and thus to calculate   π. Note that, because the product of all terms but the power of 1000 can be calculated as an integer, the terms in the series can be separated into a large integer term: (25) (6n)! (532n2 + 126n + 9) / (3(n!)6)     (***) multiplied by a negative integer power of 10: 10-(6n + 3) Task Print the integer portions (the starred formula, which is without the power of 1000 divisor) of the first 10 terms of the series. Use the complete formula to calculate and print π to 70 decimal digits of precision. Reference  Gert Almkvist and Jesús Guillera, Ramanujan-like series for 1/π2 and string theory, Experimental Mathematics, 21 (2012), page 2, formula 1.
#PicoLisp
PicoLisp
(scl 70) (de fact (N) (if (=0 N) 1 (* N (fact (dec N))) ) ) (de almkvist (N) (let (A (* 32 (fact (* 6 N))) B (+ (* 532 N N) (* 126 N) 9) C (* (** (fact N) 6) 3) ) (/ (* A B) C) ) ) (de integral (N) (*/ 1.0 (almkvist N) (** 10 (+ 3 (* 6 N))) ) ) (let (S 0 N -1) (do 10 (println (inc 'N) (almkvist N)) ) (prinl) (setq N -1) (while (gt0 (integral (inc 'N))) (inc 'S @) ) (setq S (sqrt (*/ 1.0 1.0 S) 1.0)) (prinl "Pi to 70 decimal places is:") (prinl (format S *Scl)) )
http://rosettacode.org/wiki/Almkvist-Giullera_formula_for_pi
Almkvist-Giullera formula for pi
The Almkvist-Giullera formula for calculating   1/π2   is based on the Calabi-Yau differential equations of order 4 and 5,   which were originally used to describe certain manifolds in string theory. The formula is: 1/π2 = (25/3) ∑0∞ ((6n)! / (n!6))(532n2 + 126n + 9) / 10002n+1 This formula can be used to calculate the constant   π-2,   and thus to calculate   π. Note that, because the product of all terms but the power of 1000 can be calculated as an integer, the terms in the series can be separated into a large integer term: (25) (6n)! (532n2 + 126n + 9) / (3(n!)6)     (***) multiplied by a negative integer power of 10: 10-(6n + 3) Task Print the integer portions (the starred formula, which is without the power of 1000 divisor) of the first 10 terms of the series. Use the complete formula to calculate and print π to 70 decimal digits of precision. Reference  Gert Almkvist and Jesús Guillera, Ramanujan-like series for 1/π2 and string theory, Experimental Mathematics, 21 (2012), page 2, formula 1.
#Python
Python
import mpmath as mp   with mp.workdps(72):   def integer_term(n): p = 532 * n * n + 126 * n + 9 return (p * 2**5 * mp.factorial(6 * n)) / (3 * mp.factorial(n)**6)   def exponent_term(n): return -(mp.mpf("6.0") * n + 3)   def nthterm(n): return integer_term(n) * mp.mpf("10.0")**exponent_term(n)     for n in range(10): print("Term ", n, ' ', int(integer_term(n)))     def almkvist_guillera(floatprecision): summed, nextadd = mp.mpf('0.0'), mp.mpf('0.0') for n in range(100000000): nextadd = summed + nthterm(n) if abs(nextadd - summed) < 10.0**(-floatprecision): break   summed = nextadd   return nextadd     print('\nπ to 70 digits is ', end='') mp.nprint(mp.mpf(1.0 / mp.sqrt(almkvist_guillera(70))), 71) print('mpmath π is ', end='') mp.nprint(mp.pi, 71)  
http://rosettacode.org/wiki/Amb
Amb
Define and give an example of the Amb operator. The Amb operator (short for "ambiguous") expresses nondeterminism. This doesn't refer to randomness (as in "nondeterministic universe") but is closely related to the term as it is used in automata theory ("non-deterministic finite automaton"). The Amb operator takes a variable number of expressions (or values if that's simpler in the language) and yields a correct one which will satisfy a constraint in some future computation, thereby avoiding failure. Problems whose solution the Amb operator naturally expresses can be approached with other tools, such as explicit nested iterations over data sets, or with pattern matching. By contrast, the Amb operator appears integrated into the language. Invocations of Amb are not wrapped in any visible loops or other search patterns; they appear to be independent. Essentially Amb(x, y, z) splits the computation into three possible futures: a future in which the value x is yielded, a future in which the value y is yielded and a future in which the value z is yielded. The future which leads to a successful subsequent computation is chosen. The other "parallel universes" somehow go away. Amb called with no arguments fails. For simplicity, one of the domain values usable with Amb may denote failure, if that is convenient. For instance, it is convenient if a Boolean false denotes failure, so that Amb(false) fails, and thus constraints can be expressed using Boolean expressions like Amb(x * y == 8) which unless x and y add to four. A pseudo-code program which satisfies this constraint might look like: let x = Amb(1, 2, 3) let y = Amb(7, 6, 4, 5) Amb(x * y = 8) print x, y The output is 2 4 because Amb(1, 2, 3) correctly chooses the future in which x has value 2, Amb(7, 6, 4, 5) chooses 4 and consequently Amb(x * y = 8) produces a success. Alternatively, failure could be represented using strictly Amb(): unless x * y = 8 do Amb() Or else Amb could take the form of two operators or functions: one for producing values and one for enforcing constraints: let x = Ambsel(1, 2, 3) let y = Ambsel(4, 5, 6) Ambassert(x * y = 8) print x, y where Ambassert behaves like Amb() if the Boolean expression is false, otherwise it allows the future computation to take place, without yielding any value. The task is to somehow implement Amb, and demonstrate it with a program which chooses one word from each of the following four sets of character strings to generate a four-word sentence: "the" "that" "a" "frog" "elephant" "thing" "walked" "treaded" "grows" "slowly" "quickly" The constraint to be satisfied is that the last character of each word (other than the last) is the same as the first character of its successor. The only successful sentence is "that thing grows slowly"; other combinations do not satisfy the constraint and thus fail. The goal of this task isn't to simply process the four lists of words with explicit, deterministic program flow such as nested iteration, to trivially demonstrate the correct output. The goal is to implement the Amb operator, or a facsimile thereof that is possible within the language limitations.
#11l
11l
F amb(comp, options, prev = ‘’) -> Array[String] I options.empty R []   L(opt) options[0] // If this is the base call, prev is empty and we need to continue. I prev != ‘’ & !comp(prev, opt) L.continue   // Take care of the case where we have no options left. I options.len == 1 R [opt]   // Traverse into the tree. V res = amb(comp, options[1..], opt)   // If it was a failure, try the next one. if !res.empty R opt [+] res // We have a match   R []   V sets = [[‘the’, ‘that’, ‘a’], [‘frog’, ‘elephant’, ‘thing’], [‘walked’, ‘treaded’, ‘grows’], [‘slowly’, ‘quickly’]]   V result = amb((s, t) -> s.last == t[0], sets) print(result.join(‘ ’))