task_url
stringlengths 30
116
| task_name
stringlengths 2
86
| task_description
stringlengths 0
14.4k
| language_url
stringlengths 2
53
| language_name
stringlengths 1
52
| code
stringlengths 0
61.9k
|
---|---|---|---|---|---|
http://rosettacode.org/wiki/Algebraic_data_types | Algebraic data types | Some languages offer direct support for algebraic data types and pattern matching on them. While this of course can always be simulated with manual tagging and conditionals, it allows for terse code which is easy to read, and can represent the algorithm directly.
Task
As an example, implement insertion in a red-black-tree.
A red-black-tree is a binary tree where each internal node has a color attribute red or black. Moreover, no red node can have a red child, and every path from the root to an empty node must contain the same number of black nodes. As a consequence, the tree is balanced, and must be re-balanced after an insertion.
Reference
Red-Black Trees in a Functional Setting
| #Bracmat | Bracmat | ( ( balance
= a x b y c zd
. !arg
: ( B
. ( ( R
. ((R.?a,?x,?b),?y,?c)
| (?a,?x,(R.?b,?y,?c))
)
, ?zd
)
| ( ?a
, ?x
, ( R
. ((R.?b,?y,?c),?zd)
| (?b,?y,(R.?c,?zd))
)
)
)
& (R.(B.!a,!x,!b),!y,(B.!c,!zd))
| !arg
)
& ( ins
= C X tree a m z
. !arg:(?X.?tree)
& !tree:(?C.?a,?m,?z)
& ( !X:<!m
& balance$(!C.ins$(!X.!a),!m,!z)
| !X:>!m
& balance$(!C.!a,!m,ins$(!X.!z))
| !tree
)
| (R.,!X,)
)
& ( insert
= X tree
. !arg:(?X.?tree)
& ins$(!X.!tree):(?.?X)
& (B.!X)
)
& ( insertMany
= L R tree
. !arg:(%?L_%?R.?tree)
& insertMany$(!L.!tree):?tree
& insertMany$(!R.!tree)
| insert$!arg
)
); |
http://rosettacode.org/wiki/Almost_prime | Almost prime | A k-Almost-prime is a natural number
n
{\displaystyle n}
that is the product of
k
{\displaystyle k}
(possibly identical) primes.
Example
1-almost-primes, where
k
=
1
{\displaystyle k=1}
, are the prime numbers themselves.
2-almost-primes, where
k
=
2
{\displaystyle k=2}
, are the semiprimes.
Task
Write a function/method/subroutine/... that generates k-almost primes and use it to create a table here of the first ten members of k-Almost primes for
1
<=
K
<=
5
{\displaystyle 1<=K<=5}
.
Related tasks
Semiprime
Category:Prime Numbers
| #AWK | AWK |
# syntax: GAWK -f ALMOST_PRIME.AWK
BEGIN {
for (k=1; k<=5; k++) {
printf("%d:",k)
c = 0
i = 1
while (c < 10) {
if (kprime(++i,k)) {
printf(" %d",i)
c++
}
}
printf("\n")
}
exit(0)
}
function kprime(n,k, f,p) {
for (p=2; f<k && p*p<=n; p++) {
while (n % p == 0) {
n /= p
f++
}
}
return(f + (n > 1) == k)
}
|
http://rosettacode.org/wiki/Anagrams | Anagrams | When two or more words are composed of the same characters, but in a different order, they are called anagrams.
Task[edit]
Using the word list at http://wiki.puzzlers.org/pub/wordlists/unixdict.txt,
find the sets of words that share the same characters that contain the most words in them.
Related tasks
Word plays
Ordered words
Palindrome detection
Semordnilap
Anagrams
Anagrams/Deranged anagrams
Other tasks related to string operations:
Metrics
Array length
String length
Copy a string
Empty string (assignment)
Counting
Word frequency
Letter frequency
Jewels and stones
I before E except after C
Bioinformatics/base count
Count occurrences of a substring
Count how many vowels and consonants occur in a string
Remove/replace
XXXX redacted
Conjugate a Latin verb
Remove vowels from a string
String interpolation (included)
Strip block comments
Strip comments from a string
Strip a set of characters from a string
Strip whitespace from a string -- top and tail
Strip control codes and extended characters from a string
Anagrams/Derangements/shuffling
Word wheel
ABC problem
Sattolo cycle
Knuth shuffle
Ordered words
Superpermutation minimisation
Textonyms (using a phone text pad)
Anagrams
Anagrams/Deranged anagrams
Permutations/Derangements
Find/Search/Determine
ABC words
Odd words
Word ladder
Semordnilap
Word search
Wordiff (game)
String matching
Tea cup rim text
Alternade words
Changeable words
State name puzzle
String comparison
Unique characters
Unique characters in each string
Extract file extension
Levenshtein distance
Palindrome detection
Common list elements
Longest common suffix
Longest common prefix
Compare a list of strings
Longest common substring
Find common directory path
Words from neighbour ones
Change e letters to i in words
Non-continuous subsequences
Longest common subsequence
Longest palindromic substrings
Longest increasing subsequence
Words containing "the" substring
Sum of the digits of n is substring of n
Determine if a string is numeric
Determine if a string is collapsible
Determine if a string is squeezable
Determine if a string has all unique characters
Determine if a string has all the same characters
Longest substrings without repeating characters
Find words which contains all the vowels
Find words which contains most consonants
Find words which contains more than 3 vowels
Find words which first and last three letters are equals
Find words which odd letters are consonants and even letters are vowels or vice_versa
Formatting
Substring
Rep-string
Word wrap
String case
Align columns
Literals/String
Repeat a string
Brace expansion
Brace expansion using ranges
Reverse a string
Phrase reversals
Comma quibbling
Special characters
String concatenation
Substring/Top and tail
Commatizing numbers
Reverse words in a string
Suffixation of decimal numbers
Long literals, with continuations
Numerical and alphabetical suffixes
Abbreviations, easy
Abbreviations, simple
Abbreviations, automatic
Song lyrics/poems/Mad Libs/phrases
Mad Libs
Magic 8-ball
99 Bottles of Beer
The Name Game (a song)
The Old lady swallowed a fly
The Twelve Days of Christmas
Tokenize
Text between
Tokenize a string
Word break problem
Tokenize a string with escaping
Split a character string based on change of character
Sequences
Show ASCII table
De Bruijn sequences
Self-referential sequences
Generate lower case ASCII alphabet
| #ABAP | ABAP | report zz_anagrams no standard page heading.
define update_progress.
call function 'SAPGUI_PROGRESS_INDICATOR'
exporting
text = &1.
end-of-definition.
" Selection screen segment allowing the person to choose which file will act as input.
selection-screen begin of block file_choice.
parameters p_file type string lower case.
selection-screen end of block file_choice.
" When the user requests help with input, run the routine to allow them to navigate the presentation server.
at selection-screen on value-request for p_file.
perform getfile using p_file.
at selection-screen output.
%_p_file_%_app_%-text = 'Input File: '.
start-of-selection.
data: gt_data type table of string.
" Read the specified file from the presentation server into memory.
perform readfile using p_file changing gt_data.
" After the file has been read into memory, loop through it line-by-line and make anagrams.
perform anagrams using gt_data.
" Subroutine for generating a list of anagrams.
" The supplied input is a table, with each entry corresponding to a word.
form anagrams using it_data like gt_data.
types begin of ty_map.
types key type string.
types value type string.
types end of ty_map.
data: lv_char type c,
lv_len type i,
lv_string type string,
ls_entry type ty_map,
lt_anagrams type standard table of ty_map,
lt_c_tab type table of string.
field-symbols: <fs_raw> type string.
" Loop through each word in the table, and make an associative array.
loop at gt_data assigning <fs_raw>.
" First, we need to re-order the word alphabetically. This generated a key. All anagrams will use this same key.
" Add each character to a table, which we will then sort alphabetically.
lv_len = strlen( <fs_raw> ).
refresh lt_c_tab.
do lv_len times.
lv_len = sy-index - 1.
append <fs_raw>+lv_len(1) to lt_c_tab.
enddo.
sort lt_c_tab as text.
" Now append the characters to a string and add it as a key into the map.
clear lv_string.
loop at lt_c_tab into lv_char.
concatenate lv_char lv_string into lv_string respecting blanks.
endloop.
ls_entry-key = lv_string.
ls_entry-value = <fs_raw>.
append ls_entry to lt_anagrams.
endloop.
" After we're done processing, output a list of the anagrams.
clear lv_string.
loop at lt_anagrams into ls_entry.
" Is it part of the same key --> Output in the same line, else a new entry.
if lv_string = ls_entry-key.
write: ', ', ls_entry-value.
else.
if sy-tabix <> 1.
write: ']'.
endif.
write: / '[', ls_entry-value.
endif.
lv_string = ls_entry-key.
endloop.
" Close last entry.
write ']'.
endform.
" Read a specified file from the presentation server.
form readfile using i_file type string changing it_raw like gt_data.
data: l_datat type string,
l_msg(2048),
l_lines(10).
" Read the file into memory.
update_progress 'Reading file...'.
call method cl_gui_frontend_services=>gui_upload
exporting
filename = i_file
changing
data_tab = it_raw
exceptions
others = 1.
" Output error if the file could not be uploaded.
if sy-subrc <> 0.
write : / 'Error reading the supplied file!'.
return.
endif.
endform. |
http://rosettacode.org/wiki/Angle_difference_between_two_bearings | Angle difference between two bearings | Finding the angle between two bearings is often confusing.[1]
Task
Find the angle which is the result of the subtraction b2 - b1, where b1 and b2 are the bearings.
Input bearings are expressed in the range -180 to +180 degrees.
The result is also expressed in the range -180 to +180 degrees.
Compute the angle for the following pairs:
20 degrees (b1) and 45 degrees (b2)
-45 and 45
-85 and 90
-95 and 90
-45 and 125
-45 and 145
29.4803 and -88.6381
-78.3251 and -159.036
Optional extra
Allow the input bearings to be any (finite) value.
Test cases
-70099.74233810938 and 29840.67437876723
-165313.6666297357 and 33693.9894517456
1174.8380510598456 and -154146.66490124757
60175.77306795546 and 42213.07192354373
| #J | J | relativeBearing=: (180 -~ 360 | 180 + -~)/"1 |
http://rosettacode.org/wiki/Anagrams/Deranged_anagrams | Anagrams/Deranged anagrams | Two or more words are said to be anagrams if they have the same characters, but in a different order.
By analogy with derangements we define a deranged anagram as two words with the same characters, but in which the same character does not appear in the same position in both words.
Task[edit]
Use the word list at unixdict to find and display the longest deranged anagram.
Related tasks
Permutations/Derangements
Best shuffle
Word plays
Ordered words
Palindrome detection
Semordnilap
Anagrams
Anagrams/Deranged anagrams
Other tasks related to string operations:
Metrics
Array length
String length
Copy a string
Empty string (assignment)
Counting
Word frequency
Letter frequency
Jewels and stones
I before E except after C
Bioinformatics/base count
Count occurrences of a substring
Count how many vowels and consonants occur in a string
Remove/replace
XXXX redacted
Conjugate a Latin verb
Remove vowels from a string
String interpolation (included)
Strip block comments
Strip comments from a string
Strip a set of characters from a string
Strip whitespace from a string -- top and tail
Strip control codes and extended characters from a string
Anagrams/Derangements/shuffling
Word wheel
ABC problem
Sattolo cycle
Knuth shuffle
Ordered words
Superpermutation minimisation
Textonyms (using a phone text pad)
Anagrams
Anagrams/Deranged anagrams
Permutations/Derangements
Find/Search/Determine
ABC words
Odd words
Word ladder
Semordnilap
Word search
Wordiff (game)
String matching
Tea cup rim text
Alternade words
Changeable words
State name puzzle
String comparison
Unique characters
Unique characters in each string
Extract file extension
Levenshtein distance
Palindrome detection
Common list elements
Longest common suffix
Longest common prefix
Compare a list of strings
Longest common substring
Find common directory path
Words from neighbour ones
Change e letters to i in words
Non-continuous subsequences
Longest common subsequence
Longest palindromic substrings
Longest increasing subsequence
Words containing "the" substring
Sum of the digits of n is substring of n
Determine if a string is numeric
Determine if a string is collapsible
Determine if a string is squeezable
Determine if a string has all unique characters
Determine if a string has all the same characters
Longest substrings without repeating characters
Find words which contains all the vowels
Find words which contains most consonants
Find words which contains more than 3 vowels
Find words which first and last three letters are equals
Find words which odd letters are consonants and even letters are vowels or vice_versa
Formatting
Substring
Rep-string
Word wrap
String case
Align columns
Literals/String
Repeat a string
Brace expansion
Brace expansion using ranges
Reverse a string
Phrase reversals
Comma quibbling
Special characters
String concatenation
Substring/Top and tail
Commatizing numbers
Reverse words in a string
Suffixation of decimal numbers
Long literals, with continuations
Numerical and alphabetical suffixes
Abbreviations, easy
Abbreviations, simple
Abbreviations, automatic
Song lyrics/poems/Mad Libs/phrases
Mad Libs
Magic 8-ball
99 Bottles of Beer
The Name Game (a song)
The Old lady swallowed a fly
The Twelve Days of Christmas
Tokenize
Text between
Tokenize a string
Word break problem
Tokenize a string with escaping
Split a character string based on change of character
Sequences
Show ASCII table
De Bruijn sequences
Self-referential sequences
Generate lower case ASCII alphabet
| #Lasso | Lasso | local(
anagrams = map,
words = include_url('http://www.puzzlers.org/pub/wordlists/unixdict.txt') -> split('\n'),
key,
max = 0,
wordsize,
findings = array,
derangedtest = { // this code snippet is not executed until the variable is invoked. It will return true if the compared words are a deranged anagram
local(
w1 = #1,
w2 = #2,
testresult = true
)
loop(#w1 -> size) => {
#w1 -> get(loop_count) == #w2 -> get(loop_count) ? #testresult = false
}
return #testresult
}
)
// find all anagrams
with word in #words do {
#key = #word -> split('') -> sort& -> join('')
not(#anagrams >> #key) ? #anagrams -> insert(#key = array)
#anagrams -> find(#key) -> insert(#word)
}
// step thru each set of anagrams to find deranged ones
with ana in #anagrams
let ana_size = #ana -> size
where #ana_size > 1
do {
#wordsize = #ana -> first -> size
if(#wordsize >= #max) => {
loop(#ana_size - 1) => {
if(#derangedtest -> detach & invoke(#ana -> get(loop_count), #ana -> get(loop_count + 1))) => {
// we only care to save the found deranged anagram if it is longer than the previous longest one
if(#wordsize > #max) => {
#findings = array(#ana -> get(loop_count) + ', ' + #ana -> get(loop_count + 1))
else
#findings -> insert(#ana -> get(loop_count) + ', ' + #ana -> get(loop_count + 1))
}
#max = #wordsize
}
}
}
}
#findings -> join('<br />\n') |
http://rosettacode.org/wiki/Anonymous_recursion | Anonymous recursion | While implementing a recursive function, it often happens that we must resort to a separate helper function to handle the actual recursion.
This is usually the case when directly calling the current function would waste too many resources (stack space, execution time), causing unwanted side-effects, and/or the function doesn't have the right arguments and/or return values.
So we end up inventing some silly name like foo2 or foo_helper. I have always found it painful to come up with a proper name, and see some disadvantages:
You have to think up a name, which then pollutes the namespace
Function is created which is called from nowhere else
The program flow in the source code is interrupted
Some languages allow you to embed recursion directly in-place. This might work via a label, a local gosub instruction, or some special keyword.
Anonymous recursion can also be accomplished using the Y combinator.
Task
If possible, demonstrate this by writing the recursive version of the fibonacci function (see Fibonacci sequence) which checks for a negative argument before doing the actual recursion.
| #J | J | fibN=: (-&2 +&$: -&1)^:(1&<) M."0 |
http://rosettacode.org/wiki/Amicable_pairs | Amicable pairs | Two integers
N
{\displaystyle N}
and
M
{\displaystyle M}
are said to be amicable pairs if
N
≠
M
{\displaystyle N\neq M}
and the sum of the proper divisors of
N
{\displaystyle N}
(
s
u
m
(
p
r
o
p
D
i
v
s
(
N
)
)
{\displaystyle \mathrm {sum} (\mathrm {propDivs} (N))}
)
=
M
{\displaystyle =M}
as well as
s
u
m
(
p
r
o
p
D
i
v
s
(
M
)
)
=
N
{\displaystyle \mathrm {sum} (\mathrm {propDivs} (M))=N}
.
Example
1184 and 1210 are an amicable pair, with proper divisors:
1, 2, 4, 8, 16, 32, 37, 74, 148, 296, 592 and
1, 2, 5, 10, 11, 22, 55, 110, 121, 242, 605 respectively.
Task
Calculate and show here the Amicable pairs below 20,000; (there are eight).
Related tasks
Proper divisors
Abundant, deficient and perfect number classifications
Aliquot sequence classifications and its amicable classification.
| #F.23 | F# |
[2..20000 - 1]
|> List.map (fun n-> n, ([1..n/2] |> List.filter (fun x->n % x = 0) |> List.sum))
|> List.map (fun (a,b) ->if a<b then (a,b) else (b,a))
|> List.groupBy id
|> List.map snd
|> List.filter (List.length >> ((=) 2))
|> List.map List.head
|> List.iter (printfn "%A")
|
http://rosettacode.org/wiki/Animation | Animation |
Animation is integral to many parts of GUIs, including both the fancy effects when things change used in window managers, and of course games. The core of any animation system is a scheme for periodically changing the display while still remaining responsive to the user. This task demonstrates this.
Task
Create a window containing the string "Hello World! " (the trailing space is significant).
Make the text appear to be rotating right by periodically removing one letter from the end of the string and attaching it to the front.
When the user clicks on the (windowed) text, it should reverse its direction.
| #Oz | Oz | functor
import
Application
QTk at 'x-oz://system/wp/QTk.ozf'
define
proc {Start}
Label
Window = {CreateWindow ?Label}
Animation = {New LabelAnimation init(Label delay:125)}
in
{Window show}
{Animation go}
end
fun {CreateWindow ?Label}
Courier = {QTk.newFont font(family:courier size:14)}
GUI = td(
title:"Basic Animation"
label(text:"Hello World! " handle:Label font:Courier)
action:proc {$} {Application.exit 0} end
)
in
{QTk.build GUI}
end
class LabelAnimation from Time.repeat
attr
activeShifter:ShiftRight
otherShifter:ShiftLeft
feat
label
meth init(Label delay:Delay<=100)
self.label = Label
{self setRepAll(action:Animate delay:Delay)}
{Label bind(event:"<Button-1>" action:self#Revert)}
end
meth Animate
OldText = {self.label get(text:$)}
NewText = {@activeShifter OldText}
in
{self.label set(text:NewText)}
end
meth Revert
otherShifter := (activeShifter := @otherShifter)
end
end
fun {ShiftRight Xs}
{List.last Xs}|{List.take Xs {Length Xs}-1}
end
fun {ShiftLeft Xs}
{Append Xs.2 [Xs.1]}
end
{Start}
end |
http://rosettacode.org/wiki/Animate_a_pendulum | Animate a pendulum |
One good way of making an animation is by simulating a physical system and illustrating the variables in that system using a dynamically changing graphical display.
The classic such physical system is a simple gravity pendulum.
Task
Create a simple physical model of a pendulum and animate it.
| #HicEst | HicEst | REAL :: msec=10, Lrod=1, dBob=0.03, g=9.81, Theta(2), dTheta(2)
BobMargins = ALIAS(ls, rs, ts, bs) ! box margins to draw the bob
Theta = (1, 0) ! initial angle and velocity
start_t = TIME()
DO i = 1, 1E100 ! "forever"
end_t = TIME() ! to integrate in real-time sections:
DIFFEQ(Callback="pendulum", T=end_t, Y=Theta, DY=dTheta, T0=start_t)
xBob = (SIN(Theta(1)) + 1) / 2
yBob = COS(Theta(1)) - dBob
! create or clear window and draw pendulum bob at (xBob, yBob):
WINDOW(WIN=wh, LeftSpace=0, RightSpace=0, TopSpace=0, BottomSpace=0, Up=999)
BobMargins = (xBob-dBob, 1-xBob-dBob, yBob-dBob, 1-yBob-dBob)
WINDOW(WIN=wh, LeftSpace=ls, RightSpace=rs, TopSpace=ts, BottomSpace=bs)
WRITE(WIN=wh, DeCoRation='EL=4, BC=4') ! flooded red ellipse as bob
! draw the rod hanging from the center of the window:
WINDOW(WIN=wh, LeftSpace=0.5, TopSpace=0, RightSpace=rs+dBob)
WRITE(WIN=wh, DeCoRation='LI=0 0; 1 1, FC=4.02') ! red pendulum rod
SYSTEM(WAIT=msec)
start_t = end_t
ENDDO
END
SUBROUTINE pendulum ! Theta" = - (g/Lrod) * SIN(Theta)
dTheta(1) = Theta(2) ! Theta' = Theta(2) substitution
dTheta(2) = -g/Lrod*SIN(Theta(1)) ! Theta" = Theta(2)' = -g/Lrod*SIN(Theta(1))
END |
http://rosettacode.org/wiki/Almkvist-Giullera_formula_for_pi | Almkvist-Giullera formula for pi | The Almkvist-Giullera formula for calculating 1/π2 is based on the Calabi-Yau
differential equations of order 4 and 5, which were originally used to describe certain manifolds
in string theory.
The formula is:
1/π2 = (25/3) ∑0∞ ((6n)! / (n!6))(532n2 + 126n + 9) / 10002n+1
This formula can be used to calculate the constant π-2, and thus to calculate π.
Note that, because the product of all terms but the power of 1000 can be calculated as an integer,
the terms in the series can be separated into a large integer term:
(25) (6n)! (532n2 + 126n + 9) / (3(n!)6) (***)
multiplied by a negative integer power of 10:
10-(6n + 3)
Task
Print the integer portions (the starred formula, which is without the power of 1000 divisor) of the first 10 terms of the series.
Use the complete formula to calculate and print π to 70 decimal digits of precision.
Reference
Gert Almkvist and Jesús Guillera, Ramanujan-like series for 1/π2 and string theory, Experimental Mathematics, 21 (2012), page 2, formula 1.
| #Quackery | Quackery | [ $ "bigrat.qky" loadfile ] now!
[ 1 swap times [ i^ 1+ * ] ] is ! ( n --> n )
[ dup dup 2 ** 532 *
over 126 * + 9 +
swap 6 * ! * 32 *
swap ! 6 ** 3 * / ] is intterm ( n --> n )
[ dup intterm
10 rot 6 * 3 + **
reduce ] is vterm ( n --> n/d )
10 times [ i^ intterm echo cr ] cr
0 n->v
53 times [ i^ vterm v+ ]
1/v 70 vsqrt drop
70 point$ echo$ cr |
http://rosettacode.org/wiki/Almkvist-Giullera_formula_for_pi | Almkvist-Giullera formula for pi | The Almkvist-Giullera formula for calculating 1/π2 is based on the Calabi-Yau
differential equations of order 4 and 5, which were originally used to describe certain manifolds
in string theory.
The formula is:
1/π2 = (25/3) ∑0∞ ((6n)! / (n!6))(532n2 + 126n + 9) / 10002n+1
This formula can be used to calculate the constant π-2, and thus to calculate π.
Note that, because the product of all terms but the power of 1000 can be calculated as an integer,
the terms in the series can be separated into a large integer term:
(25) (6n)! (532n2 + 126n + 9) / (3(n!)6) (***)
multiplied by a negative integer power of 10:
10-(6n + 3)
Task
Print the integer portions (the starred formula, which is without the power of 1000 divisor) of the first 10 terms of the series.
Use the complete formula to calculate and print π to 70 decimal digits of precision.
Reference
Gert Almkvist and Jesús Guillera, Ramanujan-like series for 1/π2 and string theory, Experimental Mathematics, 21 (2012), page 2, formula 1.
| #Raku | Raku | # 20201013 Raku programming solution
use BigRoot;
use Rat::Precise;
use experimental :cached;
BigRoot.precision = 75 ;
my $Precision = 70 ;
my $AGcache = 0 ;
sub postfix:<!>(Int $n --> Int) is cached { [*] 1 .. $n }
sub Integral(Int $n --> Int) is cached {
(2⁵*(6*$n)! * (532*$n² + 126*$n + 9)) div (3*($n!)⁶)
}
sub A-G(Int $n --> FatRat) is cached { # Almkvist-Giullera
Integral($n).FatRat / (10**(6*$n + 3)).FatRat
}
sub Pi(Int $n --> Str) {
(1/(BigRoot.newton's-sqrt: $AGcache += A-G $n)).precise($Precision)
}
say "First 10 integer portions : ";
say $_, "\t", Integral $_ for ^10;
my $target = Pi my $Nth = 0;
loop { $target eq ( my $next = Pi ++$Nth ) ?? ( last ) !! $target = $next }
say "π to $Precision decimal places is :\n$target" |
http://rosettacode.org/wiki/Amb | Amb | Define and give an example of the Amb operator.
The Amb operator (short for "ambiguous") expresses nondeterminism. This doesn't refer to randomness (as in "nondeterministic universe") but is closely related to the term as it is used in automata theory ("non-deterministic finite automaton").
The Amb operator takes a variable number of expressions (or values if that's simpler in the language) and yields a correct one which will satisfy a constraint in some future computation, thereby avoiding failure.
Problems whose solution the Amb operator naturally expresses can be approached with other tools, such as explicit nested iterations over data sets, or with pattern matching. By contrast, the Amb operator appears integrated into the language. Invocations of Amb are not wrapped in any visible loops or other search patterns; they appear to be independent.
Essentially Amb(x, y, z) splits the computation into three possible futures: a future in which the value x is yielded, a future in which the value y is yielded and a future in which the value z is yielded. The future which leads to a successful subsequent computation is chosen. The other "parallel universes" somehow go away. Amb called with no arguments fails.
For simplicity, one of the domain values usable with Amb may denote failure, if that is convenient. For instance, it is convenient if a Boolean false denotes failure, so that Amb(false) fails, and thus constraints can be expressed using Boolean expressions like Amb(x * y == 8) which unless x and y add to four.
A pseudo-code program which satisfies this constraint might look like:
let x = Amb(1, 2, 3)
let y = Amb(7, 6, 4, 5)
Amb(x * y = 8)
print x, y
The output is 2 4 because Amb(1, 2, 3) correctly chooses the future in which x has value 2, Amb(7, 6, 4, 5) chooses 4 and consequently Amb(x * y = 8) produces a success.
Alternatively, failure could be represented using strictly Amb():
unless x * y = 8 do Amb()
Or else Amb could take the form of two operators or functions: one for producing values and one for enforcing constraints:
let x = Ambsel(1, 2, 3)
let y = Ambsel(4, 5, 6)
Ambassert(x * y = 8)
print x, y
where Ambassert behaves like Amb() if the Boolean expression is false, otherwise it allows the future computation to take place, without yielding any value.
The task is to somehow implement Amb, and demonstrate it with a program which chooses one word from each of the following four sets of character strings to generate a four-word sentence:
"the" "that" "a"
"frog" "elephant" "thing"
"walked" "treaded" "grows"
"slowly" "quickly"
The constraint to be satisfied is that the last character of each word (other than the last) is the same as the first character of its successor.
The only successful sentence is "that thing grows slowly"; other combinations do not satisfy the constraint and thus fail.
The goal of this task isn't to simply process the four lists of words with explicit, deterministic program flow such as nested iteration, to trivially demonstrate the correct output. The goal is to implement the Amb operator, or a facsimile thereof that is possible within the language limitations.
| #Ada | Ada | with Ada.Strings.Unbounded; use Ada.Strings.Unbounded;
with Ada.Text_IO; use Ada.Text_IO;
procedure Test_Amb is
type Alternatives is array (Positive range <>) of Unbounded_String;
type Amb (Count : Positive) is record
This : Positive := 1;
Left : access Amb;
List : Alternatives (1..Count);
end record;
function Image (L : Amb) return String is
begin
return To_String (L.List (L.This));
end Image;
function "/" (L, R : String) return Amb is
Result : Amb (2);
begin
Append (Result.List (1), L);
Append (Result.List (2), R);
return Result;
end "/";
function "/" (L : Amb; R : String) return Amb is
Result : Amb (L.Count + 1);
begin
Result.List (1..L.Count) := L.List ;
Append (Result.List (Result.Count), R);
return Result;
end "/";
function "=" (L, R : Amb) return Boolean is
Left : Unbounded_String renames L.List (L.This);
begin
return Element (Left, Length (Left)) = Element (R.List (R.This), 1);
end "=";
procedure Failure (L : in out Amb) is
begin
loop
if L.This < L.Count then
L.This := L.This + 1;
else
L.This := 1;
Failure (L.Left.all);
end if;
exit when L.Left = null or else L.Left.all = L;
end loop;
end Failure;
procedure Join (L : access Amb; R : in out Amb) is
begin
R.Left := L;
while L.all /= R loop
Failure (R);
end loop;
end Join;
W_1 : aliased Amb := "the" / "that" / "a";
W_2 : aliased Amb := "frog" / "elephant" / "thing";
W_3 : aliased Amb := "walked" / "treaded" / "grows";
W_4 : aliased Amb := "slowly" / "quickly";
begin
Join (W_1'Access, W_2);
Join (W_2'Access, W_3);
Join (W_3'Access, W_4);
Put_Line (Image (W_1) & ' ' & Image (W_2) & ' ' & Image (W_3) & ' ' & Image (W_4));
end Test_Amb; |
http://rosettacode.org/wiki/Algebraic_data_types | Algebraic data types | Some languages offer direct support for algebraic data types and pattern matching on them. While this of course can always be simulated with manual tagging and conditionals, it allows for terse code which is easy to read, and can represent the algorithm directly.
Task
As an example, implement insertion in a red-black-tree.
A red-black-tree is a binary tree where each internal node has a color attribute red or black. Moreover, no red node can have a red child, and every path from the root to an empty node must contain the same number of black nodes. As a consequence, the tree is balanced, and must be re-balanced after an insertion.
Reference
Red-Black Trees in a Functional Setting
| #C.2B.2B | C++ | enum Color { R, B };
template<Color, class, auto, class> struct T;
struct E;
template<Color col, class a, auto x, class b> struct balance {
using type = T<col, a, x, b>;
};
template<class a, auto x, class b, auto y, class c, auto z, class d>
struct balance<B, T<R, T<R, a, x, b>, y, c>, z, d> {
using type = T<R, T<B, a, x, b>, y, T<B, c, z, d>>;
};
template<class a, auto x, class b, auto y, class c, auto z, class d>
struct balance<B, T<R, a, x, T<R, b, y, c>>, z, d> {
using type = T<R, T<B, a, x, b>, y, T<B, c, z, d>>;
};
template<class a, auto x, class b, auto y, class c, auto z, class d>
struct balance<B, a, x, T<R, T<R, b, y, c>, z, d>> {
using type = T<R, T<B, a, x, b>, y, T<B, c, z, d>>;
};
template<class a, auto x, class b, auto y, class c, auto z, class d>
struct balance<B, a, x, T<R, b, y, T<R, c, z, d>>> {
using type = T<R, T<B, a, x, b>, y, T<B, c, z, d>>;
};
template<auto x, class s> struct insert {
template<class, class = void> struct ins;
template<class _> struct ins<E, _> { using type = T<R, E, x, E>; };
template<Color col, class a, auto y, class b> struct ins<T<col, a, y, b>> {
template<int, class = void> struct cond;
template<class _> struct cond<-1, _> : balance<col, typename ins<a>::type, y, b> {};
template<class _> struct cond<1, _> : balance<col, a, y, typename ins<b>::type> {};
template<class _> struct cond<0, _> { using type = T<col, a, y, b>; };
using type = typename cond<x < y ? -1 : y < x ? 1 : 0>::type;
};
template<class> struct repaint;
template<Color col, class a, auto y, class b>
struct repaint<T<col, a, y, b>> { using type = T<B, a, y, b>; };
using type = typename repaint<typename ins<s>::type>::type;
};
template<auto x, class s> using insert_t = typename insert<x, s>::type;
template<class> void print();
int main() {
print<insert_t<1, insert_t<2, insert_t<0, insert_t<4, E>>>>>();
} |
http://rosettacode.org/wiki/Almost_prime | Almost prime | A k-Almost-prime is a natural number
n
{\displaystyle n}
that is the product of
k
{\displaystyle k}
(possibly identical) primes.
Example
1-almost-primes, where
k
=
1
{\displaystyle k=1}
, are the prime numbers themselves.
2-almost-primes, where
k
=
2
{\displaystyle k=2}
, are the semiprimes.
Task
Write a function/method/subroutine/... that generates k-almost primes and use it to create a table here of the first ten members of k-Almost primes for
1
<=
K
<=
5
{\displaystyle 1<=K<=5}
.
Related tasks
Semiprime
Category:Prime Numbers
| #BASIC | BASIC | 10 DEFINT A-Z
20 FOR K=1 TO 5
30 PRINT USING "K = #:";K;
40 I=2: C=0
50 F=0: P=2: N=I
60 IF F >= K OR P*P > N THEN 100
70 IF N MOD P = 0 THEN N = N/P: F = F+1: GOTO 70
80 P = P+1
90 GOTO 60
100 IF N > 1 THEN F = F+1
110 IF F = K THEN C = C+1: PRINT USING " ###";I;
120 I = I+1
130 IF C < 10 THEN 50
140 PRINT
150 NEXT K |
http://rosettacode.org/wiki/Almost_prime | Almost prime | A k-Almost-prime is a natural number
n
{\displaystyle n}
that is the product of
k
{\displaystyle k}
(possibly identical) primes.
Example
1-almost-primes, where
k
=
1
{\displaystyle k=1}
, are the prime numbers themselves.
2-almost-primes, where
k
=
2
{\displaystyle k=2}
, are the semiprimes.
Task
Write a function/method/subroutine/... that generates k-almost primes and use it to create a table here of the first ten members of k-Almost primes for
1
<=
K
<=
5
{\displaystyle 1<=K<=5}
.
Related tasks
Semiprime
Category:Prime Numbers
| #BASIC256 | BASIC256 | function kPrime(n, k)
f = 0
for i = 2 to n
while n mod i = 0
if f = k then return False
f += 1
n /= i
end while
next i
return f = k
end function
for k = 1 to 5
print "k = "; k; " :";
i = 2
c = 0
while c < 10
if kPrime(i, k) then
print rjust (string(i), 4);
c += 1
end if
i += 1
end while
print
next k
end |
http://rosettacode.org/wiki/Anagrams | Anagrams | When two or more words are composed of the same characters, but in a different order, they are called anagrams.
Task[edit]
Using the word list at http://wiki.puzzlers.org/pub/wordlists/unixdict.txt,
find the sets of words that share the same characters that contain the most words in them.
Related tasks
Word plays
Ordered words
Palindrome detection
Semordnilap
Anagrams
Anagrams/Deranged anagrams
Other tasks related to string operations:
Metrics
Array length
String length
Copy a string
Empty string (assignment)
Counting
Word frequency
Letter frequency
Jewels and stones
I before E except after C
Bioinformatics/base count
Count occurrences of a substring
Count how many vowels and consonants occur in a string
Remove/replace
XXXX redacted
Conjugate a Latin verb
Remove vowels from a string
String interpolation (included)
Strip block comments
Strip comments from a string
Strip a set of characters from a string
Strip whitespace from a string -- top and tail
Strip control codes and extended characters from a string
Anagrams/Derangements/shuffling
Word wheel
ABC problem
Sattolo cycle
Knuth shuffle
Ordered words
Superpermutation minimisation
Textonyms (using a phone text pad)
Anagrams
Anagrams/Deranged anagrams
Permutations/Derangements
Find/Search/Determine
ABC words
Odd words
Word ladder
Semordnilap
Word search
Wordiff (game)
String matching
Tea cup rim text
Alternade words
Changeable words
State name puzzle
String comparison
Unique characters
Unique characters in each string
Extract file extension
Levenshtein distance
Palindrome detection
Common list elements
Longest common suffix
Longest common prefix
Compare a list of strings
Longest common substring
Find common directory path
Words from neighbour ones
Change e letters to i in words
Non-continuous subsequences
Longest common subsequence
Longest palindromic substrings
Longest increasing subsequence
Words containing "the" substring
Sum of the digits of n is substring of n
Determine if a string is numeric
Determine if a string is collapsible
Determine if a string is squeezable
Determine if a string has all unique characters
Determine if a string has all the same characters
Longest substrings without repeating characters
Find words which contains all the vowels
Find words which contains most consonants
Find words which contains more than 3 vowels
Find words which first and last three letters are equals
Find words which odd letters are consonants and even letters are vowels or vice_versa
Formatting
Substring
Rep-string
Word wrap
String case
Align columns
Literals/String
Repeat a string
Brace expansion
Brace expansion using ranges
Reverse a string
Phrase reversals
Comma quibbling
Special characters
String concatenation
Substring/Top and tail
Commatizing numbers
Reverse words in a string
Suffixation of decimal numbers
Long literals, with continuations
Numerical and alphabetical suffixes
Abbreviations, easy
Abbreviations, simple
Abbreviations, automatic
Song lyrics/poems/Mad Libs/phrases
Mad Libs
Magic 8-ball
99 Bottles of Beer
The Name Game (a song)
The Old lady swallowed a fly
The Twelve Days of Christmas
Tokenize
Text between
Tokenize a string
Word break problem
Tokenize a string with escaping
Split a character string based on change of character
Sequences
Show ASCII table
De Bruijn sequences
Self-referential sequences
Generate lower case ASCII alphabet
| #Ada | Ada | with Ada.Text_IO; use Ada.Text_IO;
with Ada.Containers.Indefinite_Ordered_Maps;
with Ada.Containers.Indefinite_Ordered_Sets;
procedure Words_Of_Equal_Characters is
package Set_Of_Words is new Ada.Containers.Indefinite_Ordered_Sets (String);
use Ada.Containers, Set_Of_Words;
package Anagrams is new Ada.Containers.Indefinite_Ordered_Maps (String, Set);
use Anagrams;
File : File_Type;
Result : Map;
Max : Count_Type := 1;
procedure Put (Position : Anagrams.Cursor) is
First : Boolean := True;
List : Set renames Element (Position);
procedure Put (Position : Set_Of_Words.Cursor) is
begin
if First then
First := False;
else
Put (',');
end if;
Put (Element (Position));
end Put;
begin
if List.Length = Max then
Iterate (List, Put'Access);
New_Line;
end if;
end Put;
begin
Open (File, In_File, "unixdict.txt");
loop
declare
Word : constant String := Get_Line (File);
Key : String (Word'Range) := (others => Character'Last);
List : Set;
Position : Anagrams.Cursor;
begin
for I in Word'Range loop
for J in Word'Range loop
if Key (J) > Word (I) then
Key (J + 1..I) := Key (J..I - 1);
Key (J) := Word (I);
exit;
end if;
end loop;
end loop;
Position := Find (Result, Key);
if Has_Element (Position) then
List := Element (Position);
Insert (List, Word);
Replace_Element (Result, Position, List);
else
Insert (List, Word);
Include (Result, Key, List);
end if;
Max := Count_Type'Max (Max, Length (List));
end;
end loop;
exception
when End_Error =>
Iterate (Result, Put'Access);
Close (File);
end Words_Of_Equal_Characters; |
http://rosettacode.org/wiki/Angle_difference_between_two_bearings | Angle difference between two bearings | Finding the angle between two bearings is often confusing.[1]
Task
Find the angle which is the result of the subtraction b2 - b1, where b1 and b2 are the bearings.
Input bearings are expressed in the range -180 to +180 degrees.
The result is also expressed in the range -180 to +180 degrees.
Compute the angle for the following pairs:
20 degrees (b1) and 45 degrees (b2)
-45 and 45
-85 and 90
-95 and 90
-45 and 125
-45 and 145
29.4803 and -88.6381
-78.3251 and -159.036
Optional extra
Allow the input bearings to be any (finite) value.
Test cases
-70099.74233810938 and 29840.67437876723
-165313.6666297357 and 33693.9894517456
1174.8380510598456 and -154146.66490124757
60175.77306795546 and 42213.07192354373
| #Java | Java | public class AngleDifference {
public static double getDifference(double b1, double b2) {
double r = (b2 - b1) % 360.0;
if (r < -180.0)
r += 360.0;
if (r >= 180.0)
r -= 360.0;
return r;
}
public static void main(String[] args) {
System.out.println("Input in -180 to +180 range");
System.out.println(getDifference(20.0, 45.0));
System.out.println(getDifference(-45.0, 45.0));
System.out.println(getDifference(-85.0, 90.0));
System.out.println(getDifference(-95.0, 90.0));
System.out.println(getDifference(-45.0, 125.0));
System.out.println(getDifference(-45.0, 145.0));
System.out.println(getDifference(-45.0, 125.0));
System.out.println(getDifference(-45.0, 145.0));
System.out.println(getDifference(29.4803, -88.6381));
System.out.println(getDifference(-78.3251, -159.036));
System.out.println("Input in wider range");
System.out.println(getDifference(-70099.74233810938, 29840.67437876723));
System.out.println(getDifference(-165313.6666297357, 33693.9894517456));
System.out.println(getDifference(1174.8380510598456, -154146.66490124757));
System.out.println(getDifference(60175.77306795546, 42213.07192354373));
}
} |
http://rosettacode.org/wiki/Anagrams/Deranged_anagrams | Anagrams/Deranged anagrams | Two or more words are said to be anagrams if they have the same characters, but in a different order.
By analogy with derangements we define a deranged anagram as two words with the same characters, but in which the same character does not appear in the same position in both words.
Task[edit]
Use the word list at unixdict to find and display the longest deranged anagram.
Related tasks
Permutations/Derangements
Best shuffle
Word plays
Ordered words
Palindrome detection
Semordnilap
Anagrams
Anagrams/Deranged anagrams
Other tasks related to string operations:
Metrics
Array length
String length
Copy a string
Empty string (assignment)
Counting
Word frequency
Letter frequency
Jewels and stones
I before E except after C
Bioinformatics/base count
Count occurrences of a substring
Count how many vowels and consonants occur in a string
Remove/replace
XXXX redacted
Conjugate a Latin verb
Remove vowels from a string
String interpolation (included)
Strip block comments
Strip comments from a string
Strip a set of characters from a string
Strip whitespace from a string -- top and tail
Strip control codes and extended characters from a string
Anagrams/Derangements/shuffling
Word wheel
ABC problem
Sattolo cycle
Knuth shuffle
Ordered words
Superpermutation minimisation
Textonyms (using a phone text pad)
Anagrams
Anagrams/Deranged anagrams
Permutations/Derangements
Find/Search/Determine
ABC words
Odd words
Word ladder
Semordnilap
Word search
Wordiff (game)
String matching
Tea cup rim text
Alternade words
Changeable words
State name puzzle
String comparison
Unique characters
Unique characters in each string
Extract file extension
Levenshtein distance
Palindrome detection
Common list elements
Longest common suffix
Longest common prefix
Compare a list of strings
Longest common substring
Find common directory path
Words from neighbour ones
Change e letters to i in words
Non-continuous subsequences
Longest common subsequence
Longest palindromic substrings
Longest increasing subsequence
Words containing "the" substring
Sum of the digits of n is substring of n
Determine if a string is numeric
Determine if a string is collapsible
Determine if a string is squeezable
Determine if a string has all unique characters
Determine if a string has all the same characters
Longest substrings without repeating characters
Find words which contains all the vowels
Find words which contains most consonants
Find words which contains more than 3 vowels
Find words which first and last three letters are equals
Find words which odd letters are consonants and even letters are vowels or vice_versa
Formatting
Substring
Rep-string
Word wrap
String case
Align columns
Literals/String
Repeat a string
Brace expansion
Brace expansion using ranges
Reverse a string
Phrase reversals
Comma quibbling
Special characters
String concatenation
Substring/Top and tail
Commatizing numbers
Reverse words in a string
Suffixation of decimal numbers
Long literals, with continuations
Numerical and alphabetical suffixes
Abbreviations, easy
Abbreviations, simple
Abbreviations, automatic
Song lyrics/poems/Mad Libs/phrases
Mad Libs
Magic 8-ball
99 Bottles of Beer
The Name Game (a song)
The Old lady swallowed a fly
The Twelve Days of Christmas
Tokenize
Text between
Tokenize a string
Word break problem
Tokenize a string with escaping
Split a character string based on change of character
Sequences
Show ASCII table
De Bruijn sequences
Self-referential sequences
Generate lower case ASCII alphabet
| #Liberty_BASIC | Liberty BASIC | print "Loading dictionary file."
open "unixdict.txt" for input as #1
a$=input$(#1,lof(#1))
close #1
dim theWord$(30000)
dim ssWord$(30000)
c10$ = chr$(10)
i = 1
print "Creating array of words."
while instr(a$,c10$,i) <> 0
j = instr(a$,c10$,i)
ln = j - i
again = 1
sWord$ = mid$(a$,i,j-i)
n = n + 1
theWord$(n) = sWord$
while again = 1
again = 0
for kk = 1 to len(sWord$) - 1
if mid$(sWord$,kk,1) > mid$(sWord$,kk +1,1) then
sWord$ = left$(sWord$,kk-1);mid$(sWord$,kk+1,1);mid$(sWord$,kk,1);mid$(sWord$,kk+2)
again = 1
end if
next kk
wend
ssWord$(n) = sWord$
i = j + 1
wend
print "Checking for deranged anagrams."
for i = 1 to n
if len(theWord$(i)) > maxLen then
for j = 1 to n
if ssWord$(i) = ssWord$(j) and i <> j then
cnt = 0
for k = 1 to len(theWord$(i))
if mid$(theWord$(i),k,1) = mid$(theWord$(j),k,1) then cnt = cnt + 1
next k
if cnt = 0 then
maxLen = len(theWord$(i))
maxPtrI = i
maxPtrJ = j
end if
end if
next j
end if
next i
print theWord$(maxPtrI);" => ";theWord$(maxPtrJ)
end |
http://rosettacode.org/wiki/Anonymous_recursion | Anonymous recursion | While implementing a recursive function, it often happens that we must resort to a separate helper function to handle the actual recursion.
This is usually the case when directly calling the current function would waste too many resources (stack space, execution time), causing unwanted side-effects, and/or the function doesn't have the right arguments and/or return values.
So we end up inventing some silly name like foo2 or foo_helper. I have always found it painful to come up with a proper name, and see some disadvantages:
You have to think up a name, which then pollutes the namespace
Function is created which is called from nowhere else
The program flow in the source code is interrupted
Some languages allow you to embed recursion directly in-place. This might work via a label, a local gosub instruction, or some special keyword.
Anonymous recursion can also be accomplished using the Y combinator.
Task
If possible, demonstrate this by writing the recursive version of the fibonacci function (see Fibonacci sequence) which checks for a negative argument before doing the actual recursion.
| #Java | Java | public static long fib(int n) {
if (n < 0)
throw new IllegalArgumentException("n can not be a negative number");
return new Object() {
private long fibInner(int n) {
return (n < 2) ? n : (fibInner(n - 1) + fibInner(n - 2));
}
}.fibInner(n);
} |
http://rosettacode.org/wiki/Amicable_pairs | Amicable pairs | Two integers
N
{\displaystyle N}
and
M
{\displaystyle M}
are said to be amicable pairs if
N
≠
M
{\displaystyle N\neq M}
and the sum of the proper divisors of
N
{\displaystyle N}
(
s
u
m
(
p
r
o
p
D
i
v
s
(
N
)
)
{\displaystyle \mathrm {sum} (\mathrm {propDivs} (N))}
)
=
M
{\displaystyle =M}
as well as
s
u
m
(
p
r
o
p
D
i
v
s
(
M
)
)
=
N
{\displaystyle \mathrm {sum} (\mathrm {propDivs} (M))=N}
.
Example
1184 and 1210 are an amicable pair, with proper divisors:
1, 2, 4, 8, 16, 32, 37, 74, 148, 296, 592 and
1, 2, 5, 10, 11, 22, 55, 110, 121, 242, 605 respectively.
Task
Calculate and show here the Amicable pairs below 20,000; (there are eight).
Related tasks
Proper divisors
Abundant, deficient and perfect number classifications
Aliquot sequence classifications and its amicable classification.
| #Factor | Factor |
USING: grouping math.primes.factors math.ranges ;
: pdivs ( n -- seq ) divisors but-last ;
: dsum ( n -- sum ) pdivs sum ;
: dsum= ( n m -- ? ) dsum = ;
: both-dsum= ( n m -- ? ) [ dsum= ] [ swap dsum= ] 2bi and ;
: amicable? ( n m -- ? ) [ both-dsum= ] [ = not ] 2bi and ;
: drange ( -- seq ) 2 20000 [a,b) ;
: dsums ( -- seq ) drange [ dsum ] map ;
: is-am?-seq ( -- seq ) dsums drange [ amicable? ] 2map ;
: am-nums ( -- seq ) t is-am?-seq indices ;
: am-nums-c ( -- seq ) am-nums [ 2 + ] map ;
: am-pairs ( -- seq ) am-nums-c 2 group ;
: print-am ( -- ) am-pairs [ >array . ] each ;
print-am
|
http://rosettacode.org/wiki/Animation | Animation |
Animation is integral to many parts of GUIs, including both the fancy effects when things change used in window managers, and of course games. The core of any animation system is a scheme for periodically changing the display while still remaining responsive to the user. This task demonstrates this.
Task
Create a window containing the string "Hello World! " (the trailing space is significant).
Make the text appear to be rotating right by periodically removing one letter from the end of the string and attaching it to the front.
When the user clicks on the (windowed) text, it should reverse its direction.
| #Pascal | Pascal | program HelloWorldAnimatedGUI;
uses {$IFDEF UNIX} {$IFDEF UseCThreads}
cthreads, {$ENDIF} {$ENDIF}
Interfaces, // this includes the LCL widgetset
Forms,
Classes,
Controls,
StdCtrls,
ExtCtrls;
type
{ TFrmHelloWorldAnim }
TFrmHelloWorldAnim = class(TForm)
constructor CreateNew(AOwner: TComponent; Num: integer = 0); override;
procedure lblTextAnimateClick(Sender: TObject);
procedure tmrAnimateTimer(Sender: TObject);
private
{ private declarations }
lblTextAnimate: TLabel;
tmrAnimate: TTimer;
FDirection: boolean;
public
{ public declarations }
end;
var
FrmHelloWorldAnim: TFrmHelloWorldAnim;
{ TFrmHelloWorldAnim }
constructor TFrmHelloWorldAnim.CreateNew(AOwner: TComponent; Num: integer);
begin
inherited CreateNew(AOwner, Num);
Height := 50;
lblTextAnimate := TLabel.Create(self);
with lblTextAnimate do
begin
Caption := 'Hello World! ';
Align := alClient;
Alignment := taCenter;
font.Name := 'Courier New';
font.size := 20;
OnClick := @lblTextAnimateClick;
Parent := self;
end;
tmrAnimate := TTimer.Create(self);
with tmrAnimate do
begin
Interval := 100;
OnTimer := @tmrAnimateTimer;
end;
end;
procedure TFrmHelloWorldAnim.lblTextAnimateClick(Sender: TObject);
begin
FDirection := not FDirection;
end;
procedure TFrmHelloWorldAnim.tmrAnimateTimer(Sender: TObject);
begin
if FDirection then
lblTextAnimate.Caption :=
copy(lblTextAnimate.Caption, length(lblTextAnimate.Caption), 1) +
copy(lblTextAnimate.Caption, 1, length(lblTextAnimate.Caption) - 1)
else
lblTextAnimate.Caption :=
copy(lblTextAnimate.Caption, 2, length(lblTextAnimate.Caption) - 1) +
copy(lblTextAnimate.Caption, 1, 1);
end;
begin
RequireDerivedFormResource := False;
Application.Initialize;
Application.CreateForm(TFrmHelloWorldAnim, FrmHelloWorldAnim);
Application.Run;
end. |
http://rosettacode.org/wiki/Animate_a_pendulum | Animate a pendulum |
One good way of making an animation is by simulating a physical system and illustrating the variables in that system using a dynamically changing graphical display.
The classic such physical system is a simple gravity pendulum.
Task
Create a simple physical model of a pendulum and animate it.
| #Icon_and_Unicon | Icon and Unicon |
import gui
$include "guih.icn"
# some constants to define the display and pendulum
$define HEIGHT 400
$define WIDTH 500
$define STRING_LENGTH 200
$define HOME_X 250
$define HOME_Y 21
$define SIZE 30
$define START_ANGLE 80
class WindowApp : Dialog ()
# draw the pendulum on given context_window, at position (x,y)
method draw_pendulum (x, y)
# reference to current screen area to draw on
cw := Clone(self.cwin)
# clear screen
WAttrib (cw, "bg=grey")
EraseRectangle (cw, 0, 0, WIDTH, HEIGHT)
# draw the display
WAttrib (cw, "fg=dark gray")
DrawLine (cw, 10, 20, WIDTH-20, 20)
WAttrib (cw, "fg=black")
DrawLine (cw, HOME_X, HOME_Y, x, y)
FillCircle (cw, x, y, SIZE+2)
WAttrib (cw, "fg=yellow")
FillCircle (cw, x, y, SIZE)
# free reference to screen area
Uncouple (cw)
end
# find the average of given two arguments
method avg (a, b)
return (a + b) / 2
end
# this method gets called by the ticker
# it computes the next position of the pendulum and
# requests a redraw
method tick ()
static x, y
static theta := START_ANGLE
static d_theta := 0
# update x,y of pendulum
scaling := 3000.0 / (STRING_LENGTH * STRING_LENGTH)
# -- first estimate
first_dd_theta := -(sin (dtor (theta)) * scaling)
mid_d_theta := d_theta + first_dd_theta
mid_theta := theta + avg (d_theta, mid_d_theta)
# -- second estimate
mid_dd_theta := - (sin (dtor (mid_theta)) * scaling)
mid_d_theta_2 := d_theta + avg (first_dd_theta, mid_dd_theta)
mid_theta_2 := theta + avg (d_theta, mid_d_theta_2)
# -- again first
mid_dd_theta_2 := -(sin (dtor (mid_theta_2)) * scaling)
last_d_theta := mid_d_theta_2 + mid_dd_theta_2
last_theta := mid_theta_2 + avg (mid_d_theta_2, last_d_theta)
# -- again second
last_dd_theta := - (sin (dtor (last_theta)) * scaling)
last_d_theta_2 := mid_d_theta_2 + avg (mid_dd_theta_2, last_dd_theta)
last_theta_2 := mid_theta_2 + avg (mid_d_theta_2, last_d_theta_2)
# -- update stored angles
d_theta := last_d_theta_2
theta := last_theta_2
# -- update x, y
pendulum_angle := dtor (theta)
x := HOME_X + STRING_LENGTH * sin (pendulum_angle)
y := HOME_Y + STRING_LENGTH * cos (pendulum_angle)
# draw pendulum
draw_pendulum (x, y)
end
# set up the window
method component_setup ()
# some cosmetic settings for the window
attrib("size="||WIDTH||","||HEIGHT, "bg=light gray", "label=Pendulum")
# make sure we respond to window close event
connect (self, "dispose", CLOSE_BUTTON_EVENT)
# start the ticker, to update the display periodically
self.set_ticker (20)
end
end
procedure main ()
w := WindowApp ()
w.show_modal ()
end
|
http://rosettacode.org/wiki/Almkvist-Giullera_formula_for_pi | Almkvist-Giullera formula for pi | The Almkvist-Giullera formula for calculating 1/π2 is based on the Calabi-Yau
differential equations of order 4 and 5, which were originally used to describe certain manifolds
in string theory.
The formula is:
1/π2 = (25/3) ∑0∞ ((6n)! / (n!6))(532n2 + 126n + 9) / 10002n+1
This formula can be used to calculate the constant π-2, and thus to calculate π.
Note that, because the product of all terms but the power of 1000 can be calculated as an integer,
the terms in the series can be separated into a large integer term:
(25) (6n)! (532n2 + 126n + 9) / (3(n!)6) (***)
multiplied by a negative integer power of 10:
10-(6n + 3)
Task
Print the integer portions (the starred formula, which is without the power of 1000 divisor) of the first 10 terms of the series.
Use the complete formula to calculate and print π to 70 decimal digits of precision.
Reference
Gert Almkvist and Jesús Guillera, Ramanujan-like series for 1/π2 and string theory, Experimental Mathematics, 21 (2012), page 2, formula 1.
| #REXX | REXX | /*REXX program uses the Almkvist─Giullera formula for 1 / (pi**2) [or pi ** -2]. */
numeric digits length( pi() ) + length(.); w= 102
say $( , 3) $( , w%2) $('power', 5) $( , w)
say $('N', 3) $('integer term', w%2) $('of 10', 5) $('Nth term', w)
say $( , 3, "─") $( , w%2, "─") $( , 5, "─") $( , w, "─")
s= 0 /*initialize S (the sum) to zero. */
do n=0 until old=s; old= s /*use the "older" value of S for OLD.*/
a= 2**5 * !(6*n) * (532 * n**2 + 126*n + 9) / (3 * !(n)**6)
z= 10 ** (- (6*n + 3) )
s= s + a * z
if n>10 then do; do 3*(n==11); say ' .'; end; iterate; end
say $(n, 3) right(a, w%2) $(powX(z), 5) right( lowE( format(a*z, 1, w-6, 2, 0)), w)
end /*n*/
say
say 'The calculation of pi took ' n " iterations with " digits() ,
" decimal digits precision using" subword( sourceLine(1), 4, 3).
say
numeric digits length( pi() ) - length(.); d= digits() - length(.); @= ' ↓↓↓ '
say center(@ 'calculated pi to ' d " fractional decimal digits (below) is "@, d+4, '─')
say ' 'sqrt(1/s); say
say ' 'pi(); @= ' ↑↑↑ '
say center(@ 'the true pi to ' d " fractional decimal digits (above) is" @, d+4, '─')
exit 0 /*stick a fork in it, we're all done. */
/*──────────────────────────────────────────────────────────────────────────────────────*/
$: procedure; parse arg text,width,fill; return center(text, width, left(fill, 1) )
!: procedure; parse arg x; !=1;; do j=2 to x; != !*j; end; return !
lowE: procedure; parse arg x; return translate(x, 'e', "E")
powX: procedure; parse arg p; return right( format( p, 1, 3, 2, 0), 3) + 0
/*──────────────────────────────────────────────────────────────────────────────────────*/
pi: pi=3.141592653589793238462643383279502884197169399375105820974944592307816406286208,
||9986280348253421170679821480865132823066470938446095505822317253594081284811174503
return pi
/*──────────────────────────────────────────────────────────────────────────────────────*/
sqrt: procedure; parse arg x; if x=0 then return 0; d=digits(); numeric digits; h=d+6
m.=9; numeric form; parse value format(x,2,1,,0) 'E0' with g 'E' _ .; g=g*.5'e'_ % 2
do j=0 while h>9; m.j= h; h= h % 2 + 1; end /*j*/
do k=j+5 to 0 by -1; numeric digits m.k; g= (g + x/g) * .5; end /*k*/
numeric digits d; return g/1 |
http://rosettacode.org/wiki/Amb | Amb | Define and give an example of the Amb operator.
The Amb operator (short for "ambiguous") expresses nondeterminism. This doesn't refer to randomness (as in "nondeterministic universe") but is closely related to the term as it is used in automata theory ("non-deterministic finite automaton").
The Amb operator takes a variable number of expressions (or values if that's simpler in the language) and yields a correct one which will satisfy a constraint in some future computation, thereby avoiding failure.
Problems whose solution the Amb operator naturally expresses can be approached with other tools, such as explicit nested iterations over data sets, or with pattern matching. By contrast, the Amb operator appears integrated into the language. Invocations of Amb are not wrapped in any visible loops or other search patterns; they appear to be independent.
Essentially Amb(x, y, z) splits the computation into three possible futures: a future in which the value x is yielded, a future in which the value y is yielded and a future in which the value z is yielded. The future which leads to a successful subsequent computation is chosen. The other "parallel universes" somehow go away. Amb called with no arguments fails.
For simplicity, one of the domain values usable with Amb may denote failure, if that is convenient. For instance, it is convenient if a Boolean false denotes failure, so that Amb(false) fails, and thus constraints can be expressed using Boolean expressions like Amb(x * y == 8) which unless x and y add to four.
A pseudo-code program which satisfies this constraint might look like:
let x = Amb(1, 2, 3)
let y = Amb(7, 6, 4, 5)
Amb(x * y = 8)
print x, y
The output is 2 4 because Amb(1, 2, 3) correctly chooses the future in which x has value 2, Amb(7, 6, 4, 5) chooses 4 and consequently Amb(x * y = 8) produces a success.
Alternatively, failure could be represented using strictly Amb():
unless x * y = 8 do Amb()
Or else Amb could take the form of two operators or functions: one for producing values and one for enforcing constraints:
let x = Ambsel(1, 2, 3)
let y = Ambsel(4, 5, 6)
Ambassert(x * y = 8)
print x, y
where Ambassert behaves like Amb() if the Boolean expression is false, otherwise it allows the future computation to take place, without yielding any value.
The task is to somehow implement Amb, and demonstrate it with a program which chooses one word from each of the following four sets of character strings to generate a four-word sentence:
"the" "that" "a"
"frog" "elephant" "thing"
"walked" "treaded" "grows"
"slowly" "quickly"
The constraint to be satisfied is that the last character of each word (other than the last) is the same as the first character of its successor.
The only successful sentence is "that thing grows slowly"; other combinations do not satisfy the constraint and thus fail.
The goal of this task isn't to simply process the four lists of words with explicit, deterministic program flow such as nested iteration, to trivially demonstrate the correct output. The goal is to implement the Amb operator, or a facsimile thereof that is possible within the language limitations.
| #ALGOL_68 | ALGOL 68 | MODE PAGE = FLEX[0]STRING;
MODE YIELDPAGE = PROC(PAGE)VOID;
MODE ITERPAGE = PROC(YIELDPAGE)VOID;
OP INITITERPAGE = (PAGE self)ITERPAGE:
(YIELDPAGE yield)VOID: # scope violation #
FOR i TO UPB self DO
yield(self[i])
OD;
OP + = (ITERPAGE for strings, PAGE b)ITERPAGE:
(YIELDPAGE yield)VOID: # scope violation #
for strings((PAGE amb)VOID:(
[UPB amb + 1]STRING joined;
joined[:UPB amb] := amb;
STRING last string := amb[UPB amb];
CHAR last char := last string[UPB last string];
FOR i TO UPB b DO
IF last char = b[i][1] THEN
joined[UPB joined] := b[i];
yield(joined)
FI
OD
));
OP + = (PAGE a, PAGE b)ITERPAGE: INITITERPAGE a + b;
ITERPAGE gen amb :=
PAGE("the", "that", "a") +
PAGE("frog", "elephant", "thing") +
PAGE("walked", "treaded", "grows") +
PAGE("slowly", "quickly");
PAGE sep;
#FOR PAGE amb IN # gen amb( # ) DO #
## (PAGE amb)VOID:
print((amb[1]+" "+amb[2]+" "+amb[3]+" "+amb[4], new line))
#OD# ) |
http://rosettacode.org/wiki/Algebraic_data_types | Algebraic data types | Some languages offer direct support for algebraic data types and pattern matching on them. While this of course can always be simulated with manual tagging and conditionals, it allows for terse code which is easy to read, and can represent the algorithm directly.
Task
As an example, implement insertion in a red-black-tree.
A red-black-tree is a binary tree where each internal node has a color attribute red or black. Moreover, no red node can have a red child, and every path from the root to an empty node must contain the same number of black nodes. As a consequence, the tree is balanced, and must be re-balanced after an insertion.
Reference
Red-Black Trees in a Functional Setting
| #C.23 | C# | using System;
class Tree
{
public static void Main() {
Tree tree = Tree.E;
for (int i = 1; i <= 16; i++) {
tree = tree.Insert(i);
}
tree.Print();
}
private const bool B = false, R = true;
public static readonly Tree E = new Tree(B, null, 0, null);
private Tree(bool c, Tree? l, int v, Tree? r) => (IsRed, Left, Value, Right) = (c, l ?? this, v, r ?? this);
public bool IsRed { get; private set; }
public int Value { get; }
public Tree Left { get; }
public Tree Right { get; }
public static implicit operator Tree((bool c, Tree l, int v, Tree r) t) => new Tree(t.c, t.l, t.v, t.r);
public void Deconstruct(out bool c, out Tree l, out int v, out Tree r) => (c, l, v, r) = (IsRed, Left, Value, Right);
public override string ToString() => this == E ? "[]" : $"[{(IsRed ? 'R' : 'B')}{Value}]";
public Tree Insert(int x) => Ins(x).MakeBlack();
private Tree MakeBlack() { IsRed = false; return this; }
public void Print(int indent = 0) {
if (this != E) Right.Print(indent + 1);
Console.WriteLine(new string(' ', indent * 4) + ToString());
if (this != E) Left.Print(indent + 1);
}
private Tree Ins(int x) => Math.Sign(x.CompareTo(Value)) switch {
_ when this == E => (R, E, x, E),
-1 => new Tree(IsRed, Left.Ins(x) , Value, Right).Balance(),
1 => new Tree(IsRed, Left , Value, Right.Ins(x)).Balance(),
_ => this
};
private Tree Balance() => this switch {
(B, (R, (R, var a, var x, var b), var y, var c), var z, var d) => (R, (B, a, x, b), y, (B, c, z, d)),
(B, (R, var a, var x, (R, var b, var y, var c)), var z, var d) => (R, (B, a, x, b), y, (B, c, z, d)),
(B, var a, var x, (R, (R, var b, var y, var c), var z, var d)) => (R, (B, a, x, b), y, (B, c, z, d)),
(B, var a, var x, (R, var b, var y, (R, var c, var z, var d))) => (R, (B, a, x, b), y, (B, c, z, d)),
_ => this
};
} |
http://rosettacode.org/wiki/Almost_prime | Almost prime | A k-Almost-prime is a natural number
n
{\displaystyle n}
that is the product of
k
{\displaystyle k}
(possibly identical) primes.
Example
1-almost-primes, where
k
=
1
{\displaystyle k=1}
, are the prime numbers themselves.
2-almost-primes, where
k
=
2
{\displaystyle k=2}
, are the semiprimes.
Task
Write a function/method/subroutine/... that generates k-almost primes and use it to create a table here of the first ten members of k-Almost primes for
1
<=
K
<=
5
{\displaystyle 1<=K<=5}
.
Related tasks
Semiprime
Category:Prime Numbers
| #BCPL | BCPL | get "libhdr"
let kprime(n, k) = valof
$( let f, p = 0, 2
while f<k & p*p<=n do
$( while n rem p = 0 do
$( n := n/p
f := f+1
$)
p := p+1
$)
if n > 1 then f := f + 1
resultis f = k
$)
let start() be
$( for k=1 to 5 do
$( let i, c = 2, 0
writef("k = %N:", k)
while c < 10 do
$( if kprime(i, k) then
$( writed(i, 4)
c := c+1
$)
i := i+1
$)
wrch('*N')
$)
$) |
http://rosettacode.org/wiki/Almost_prime | Almost prime | A k-Almost-prime is a natural number
n
{\displaystyle n}
that is the product of
k
{\displaystyle k}
(possibly identical) primes.
Example
1-almost-primes, where
k
=
1
{\displaystyle k=1}
, are the prime numbers themselves.
2-almost-primes, where
k
=
2
{\displaystyle k=2}
, are the semiprimes.
Task
Write a function/method/subroutine/... that generates k-almost primes and use it to create a table here of the first ten members of k-Almost primes for
1
<=
K
<=
5
{\displaystyle 1<=K<=5}
.
Related tasks
Semiprime
Category:Prime Numbers
| #Befunge | Befunge | 1>::48*"= k",,,,02p.":",01v
|^ v0!`\*:g40:<p402p300:+1<
K| >2g03g`*#v_ 1`03g+02g->|
F@>/03g1+03p>vpv+1\.:,*48 <
P#|!\g40%g40:<4>:9`>#v_\1^|
|^>#!1#`+#50#:^#+1,+5>#5$<| |
http://rosettacode.org/wiki/Anagrams | Anagrams | When two or more words are composed of the same characters, but in a different order, they are called anagrams.
Task[edit]
Using the word list at http://wiki.puzzlers.org/pub/wordlists/unixdict.txt,
find the sets of words that share the same characters that contain the most words in them.
Related tasks
Word plays
Ordered words
Palindrome detection
Semordnilap
Anagrams
Anagrams/Deranged anagrams
Other tasks related to string operations:
Metrics
Array length
String length
Copy a string
Empty string (assignment)
Counting
Word frequency
Letter frequency
Jewels and stones
I before E except after C
Bioinformatics/base count
Count occurrences of a substring
Count how many vowels and consonants occur in a string
Remove/replace
XXXX redacted
Conjugate a Latin verb
Remove vowels from a string
String interpolation (included)
Strip block comments
Strip comments from a string
Strip a set of characters from a string
Strip whitespace from a string -- top and tail
Strip control codes and extended characters from a string
Anagrams/Derangements/shuffling
Word wheel
ABC problem
Sattolo cycle
Knuth shuffle
Ordered words
Superpermutation minimisation
Textonyms (using a phone text pad)
Anagrams
Anagrams/Deranged anagrams
Permutations/Derangements
Find/Search/Determine
ABC words
Odd words
Word ladder
Semordnilap
Word search
Wordiff (game)
String matching
Tea cup rim text
Alternade words
Changeable words
State name puzzle
String comparison
Unique characters
Unique characters in each string
Extract file extension
Levenshtein distance
Palindrome detection
Common list elements
Longest common suffix
Longest common prefix
Compare a list of strings
Longest common substring
Find common directory path
Words from neighbour ones
Change e letters to i in words
Non-continuous subsequences
Longest common subsequence
Longest palindromic substrings
Longest increasing subsequence
Words containing "the" substring
Sum of the digits of n is substring of n
Determine if a string is numeric
Determine if a string is collapsible
Determine if a string is squeezable
Determine if a string has all unique characters
Determine if a string has all the same characters
Longest substrings without repeating characters
Find words which contains all the vowels
Find words which contains most consonants
Find words which contains more than 3 vowels
Find words which first and last three letters are equals
Find words which odd letters are consonants and even letters are vowels or vice_versa
Formatting
Substring
Rep-string
Word wrap
String case
Align columns
Literals/String
Repeat a string
Brace expansion
Brace expansion using ranges
Reverse a string
Phrase reversals
Comma quibbling
Special characters
String concatenation
Substring/Top and tail
Commatizing numbers
Reverse words in a string
Suffixation of decimal numbers
Long literals, with continuations
Numerical and alphabetical suffixes
Abbreviations, easy
Abbreviations, simple
Abbreviations, automatic
Song lyrics/poems/Mad Libs/phrases
Mad Libs
Magic 8-ball
99 Bottles of Beer
The Name Game (a song)
The Old lady swallowed a fly
The Twelve Days of Christmas
Tokenize
Text between
Tokenize a string
Word break problem
Tokenize a string with escaping
Split a character string based on change of character
Sequences
Show ASCII table
De Bruijn sequences
Self-referential sequences
Generate lower case ASCII alphabet
| #ALGOL_68 | ALGOL 68 | # find longest list(s) of words that are anagrams in a list of words #
# use the associative array in the Associate array/iteration task #
PR read "aArray.a68" PR
# returns the number of occurances of ch in text #
PROC count = ( STRING text, CHAR ch )INT:
BEGIN
INT result := 0;
FOR c FROM LWB text TO UPB text DO IF text[ c ] = ch THEN result +:= 1 FI OD;
result
END # count # ;
# returns text with the characters sorted into ascending order #
PROC char sort = ( STRING text )STRING:
BEGIN
STRING sorted := text;
FOR end pos FROM UPB sorted - 1 BY -1 TO LWB sorted
WHILE
BOOL swapped := FALSE;
FOR pos FROM LWB sorted TO end pos DO
IF sorted[ pos ] > sorted[ pos + 1 ]
THEN
CHAR t := sorted[ pos ];
sorted[ pos ] := sorted[ pos + 1 ];
sorted[ pos + 1 ] := t;
swapped := TRUE
FI
OD;
swapped
DO SKIP OD;
sorted
END # char sort # ;
# read the list of words and store in an associative array #
CHAR separator = "|"; # character that will separate the anagrams #
IF FILE input file;
STRING file name = "unixdict.txt";
open( input file, file name, stand in channel ) /= 0
THEN
# failed to open the file #
print( ( "Unable to open """ + file name + """", newline ) )
ELSE
# file opened OK #
BOOL at eof := FALSE;
# set the EOF handler for the file #
on logical file end( input file, ( REF FILE f )BOOL:
BEGIN
# note that we reached EOF on the #
# latest read #
at eof := TRUE;
# return TRUE so processing can continue #
TRUE
END
);
REF AARRAY words := INIT LOC AARRAY;
STRING word;
WHILE NOT at eof
DO
STRING word;
get( input file, ( word, newline ) );
words // char sort( word ) +:= separator + word
OD;
# close the file #
close( input file );
# find the maximum number of anagrams #
INT max anagrams := 0;
REF AAELEMENT e := FIRST words;
WHILE e ISNT nil element DO
IF INT anagrams := count( value OF e, separator );
anagrams > max anagrams
THEN
max anagrams := anagrams
FI;
e := NEXT words
OD;
print( ( "Maximum number of anagrams: ", whole( max anagrams, -4 ), newline ) );
# show the anagrams with the maximum number #
e := FIRST words;
WHILE e ISNT nil element DO
IF INT anagrams := count( value OF e, separator );
anagrams = max anagrams
THEN
print( ( ( value OF e )[ ( LWB value OF e ) + 1: ], newline ) )
FI;
e := NEXT words
OD
FI |
http://rosettacode.org/wiki/Angle_difference_between_two_bearings | Angle difference between two bearings | Finding the angle between two bearings is often confusing.[1]
Task
Find the angle which is the result of the subtraction b2 - b1, where b1 and b2 are the bearings.
Input bearings are expressed in the range -180 to +180 degrees.
The result is also expressed in the range -180 to +180 degrees.
Compute the angle for the following pairs:
20 degrees (b1) and 45 degrees (b2)
-45 and 45
-85 and 90
-95 and 90
-45 and 125
-45 and 145
29.4803 and -88.6381
-78.3251 and -159.036
Optional extra
Allow the input bearings to be any (finite) value.
Test cases
-70099.74233810938 and 29840.67437876723
-165313.6666297357 and 33693.9894517456
1174.8380510598456 and -154146.66490124757
60175.77306795546 and 42213.07192354373
| #JavaScript | JavaScript | function relativeBearing(b1Rad, b2Rad)
{
b1y = Math.cos(b1Rad);
b1x = Math.sin(b1Rad);
b2y = Math.cos(b2Rad);
b2x = Math.sin(b2Rad);
crossp = b1y * b2x - b2y * b1x;
dotp = b1x * b2x + b1y * b2y;
if(crossp > 0.)
return Math.acos(dotp);
return -Math.acos(dotp);
}
function test()
{
var deg2rad = 3.14159265/180.0;
var rad2deg = 180.0/3.14159265;
return "Input in -180 to +180 range\n"
+relativeBearing(20.0*deg2rad, 45.0*deg2rad)*rad2deg+"\n"
+relativeBearing(-45.0*deg2rad, 45.0*deg2rad)*rad2deg+"\n"
+relativeBearing(-85.0*deg2rad, 90.0*deg2rad)*rad2deg+"\n"
+relativeBearing(-95.0*deg2rad, 90.0*deg2rad)*rad2deg+"\n"
+relativeBearing(-45.0*deg2rad, 125.0*deg2rad)*rad2deg+"\n"
+relativeBearing(-45.0*deg2rad, 145.0*deg2rad)*rad2deg+"\n"
+relativeBearing(29.4803*deg2rad, -88.6381*deg2rad)*rad2deg+"\n"
+relativeBearing(-78.3251*deg2rad, -159.036*deg2rad)*rad2deg+"\n"
+ "Input in wider range\n"
+relativeBearing(-70099.74233810938*deg2rad, 29840.67437876723*deg2rad)*rad2deg+"\n"
+relativeBearing(-165313.6666297357*deg2rad, 33693.9894517456*deg2rad)*rad2deg+"\n"
+relativeBearing(1174.8380510598456*deg2rad, -154146.66490124757*deg2rad)*rad2deg+"\n"
+relativeBearing(60175.77306795546*deg2rad, 42213.07192354373*deg2rad)*rad2deg+"\n";
} |
http://rosettacode.org/wiki/Anagrams/Deranged_anagrams | Anagrams/Deranged anagrams | Two or more words are said to be anagrams if they have the same characters, but in a different order.
By analogy with derangements we define a deranged anagram as two words with the same characters, but in which the same character does not appear in the same position in both words.
Task[edit]
Use the word list at unixdict to find and display the longest deranged anagram.
Related tasks
Permutations/Derangements
Best shuffle
Word plays
Ordered words
Palindrome detection
Semordnilap
Anagrams
Anagrams/Deranged anagrams
Other tasks related to string operations:
Metrics
Array length
String length
Copy a string
Empty string (assignment)
Counting
Word frequency
Letter frequency
Jewels and stones
I before E except after C
Bioinformatics/base count
Count occurrences of a substring
Count how many vowels and consonants occur in a string
Remove/replace
XXXX redacted
Conjugate a Latin verb
Remove vowels from a string
String interpolation (included)
Strip block comments
Strip comments from a string
Strip a set of characters from a string
Strip whitespace from a string -- top and tail
Strip control codes and extended characters from a string
Anagrams/Derangements/shuffling
Word wheel
ABC problem
Sattolo cycle
Knuth shuffle
Ordered words
Superpermutation minimisation
Textonyms (using a phone text pad)
Anagrams
Anagrams/Deranged anagrams
Permutations/Derangements
Find/Search/Determine
ABC words
Odd words
Word ladder
Semordnilap
Word search
Wordiff (game)
String matching
Tea cup rim text
Alternade words
Changeable words
State name puzzle
String comparison
Unique characters
Unique characters in each string
Extract file extension
Levenshtein distance
Palindrome detection
Common list elements
Longest common suffix
Longest common prefix
Compare a list of strings
Longest common substring
Find common directory path
Words from neighbour ones
Change e letters to i in words
Non-continuous subsequences
Longest common subsequence
Longest palindromic substrings
Longest increasing subsequence
Words containing "the" substring
Sum of the digits of n is substring of n
Determine if a string is numeric
Determine if a string is collapsible
Determine if a string is squeezable
Determine if a string has all unique characters
Determine if a string has all the same characters
Longest substrings without repeating characters
Find words which contains all the vowels
Find words which contains most consonants
Find words which contains more than 3 vowels
Find words which first and last three letters are equals
Find words which odd letters are consonants and even letters are vowels or vice_versa
Formatting
Substring
Rep-string
Word wrap
String case
Align columns
Literals/String
Repeat a string
Brace expansion
Brace expansion using ranges
Reverse a string
Phrase reversals
Comma quibbling
Special characters
String concatenation
Substring/Top and tail
Commatizing numbers
Reverse words in a string
Suffixation of decimal numbers
Long literals, with continuations
Numerical and alphabetical suffixes
Abbreviations, easy
Abbreviations, simple
Abbreviations, automatic
Song lyrics/poems/Mad Libs/phrases
Mad Libs
Magic 8-ball
99 Bottles of Beer
The Name Game (a song)
The Old lady swallowed a fly
The Twelve Days of Christmas
Tokenize
Text between
Tokenize a string
Word break problem
Tokenize a string with escaping
Split a character string based on change of character
Sequences
Show ASCII table
De Bruijn sequences
Self-referential sequences
Generate lower case ASCII alphabet
| #Lua | Lua | string.tacnoc = function(str) -- 'inverse' of table.concat
local arr={}
for ch in str:gmatch(".") do arr[#arr+1]=ch end
return arr
end
local function deranged(s1, s2)
if s1==s2 then return false end
local t1, t2 = s1:tacnoc(), s2:tacnoc()
for i,v in ipairs(t1) do if t2[i]==v then return false end end
return true
end
local dict = {}
local f = io.open("unixdict.txt", "r")
for word in f:lines() do
local ltrs = word:tacnoc()
table.sort(ltrs)
local hash = table.concat(ltrs)
dict[hash] = dict[hash] or {}
table.insert(dict[hash], word)
end
local answer = { word="", anag="", len=0 }
for _,list in pairs(dict) do
if #list>1 and #list[1]>answer.len then
for _,word in ipairs(list) do
for _,anag in ipairs(list) do
if deranged(word, anag) then
answer.word, answer.anag, answer.len = word, anag, #word
end
end
end
end
end
print(answer.word, answer.anag, answer.len) |
http://rosettacode.org/wiki/Anonymous_recursion | Anonymous recursion | While implementing a recursive function, it often happens that we must resort to a separate helper function to handle the actual recursion.
This is usually the case when directly calling the current function would waste too many resources (stack space, execution time), causing unwanted side-effects, and/or the function doesn't have the right arguments and/or return values.
So we end up inventing some silly name like foo2 or foo_helper. I have always found it painful to come up with a proper name, and see some disadvantages:
You have to think up a name, which then pollutes the namespace
Function is created which is called from nowhere else
The program flow in the source code is interrupted
Some languages allow you to embed recursion directly in-place. This might work via a label, a local gosub instruction, or some special keyword.
Anonymous recursion can also be accomplished using the Y combinator.
Task
If possible, demonstrate this by writing the recursive version of the fibonacci function (see Fibonacci sequence) which checks for a negative argument before doing the actual recursion.
| #JavaScript | JavaScript | function fibo(n) {
if (n < 0) { throw "Argument cannot be negative"; }
return (function(n) {
return (n < 2) ? 1 : arguments.callee(n-1) + arguments.callee(n-2);
})(n);
} |
http://rosettacode.org/wiki/Amicable_pairs | Amicable pairs | Two integers
N
{\displaystyle N}
and
M
{\displaystyle M}
are said to be amicable pairs if
N
≠
M
{\displaystyle N\neq M}
and the sum of the proper divisors of
N
{\displaystyle N}
(
s
u
m
(
p
r
o
p
D
i
v
s
(
N
)
)
{\displaystyle \mathrm {sum} (\mathrm {propDivs} (N))}
)
=
M
{\displaystyle =M}
as well as
s
u
m
(
p
r
o
p
D
i
v
s
(
M
)
)
=
N
{\displaystyle \mathrm {sum} (\mathrm {propDivs} (M))=N}
.
Example
1184 and 1210 are an amicable pair, with proper divisors:
1, 2, 4, 8, 16, 32, 37, 74, 148, 296, 592 and
1, 2, 5, 10, 11, 22, 55, 110, 121, 242, 605 respectively.
Task
Calculate and show here the Amicable pairs below 20,000; (there are eight).
Related tasks
Proper divisors
Abundant, deficient and perfect number classifications
Aliquot sequence classifications and its amicable classification.
| #Forth | Forth | : proper-divisors ( n -- 1..n )
dup 2 / 1+ 1 ?do
dup i mod 0= if i swap then
loop drop ;
: divisors-sum ( 1..n -- n )
dup 1 = if exit then
begin over + swap
1 = until ;
: pair ( n -- n )
dup 1 = if exit then
proper-divisors divisors-sum ;
: ?paired ( n -- t | f )
dup pair 2dup pair
= >r < r> and ;
: amicable-list
1+ 1 do
i ?paired if cr i . i pair . then
loop ;
20000 amicable-list |
http://rosettacode.org/wiki/Animation | Animation |
Animation is integral to many parts of GUIs, including both the fancy effects when things change used in window managers, and of course games. The core of any animation system is a scheme for periodically changing the display while still remaining responsive to the user. This task demonstrates this.
Task
Create a window containing the string "Hello World! " (the trailing space is significant).
Make the text appear to be rotating right by periodically removing one letter from the end of the string and attaching it to the front.
When the user clicks on the (windowed) text, it should reverse its direction.
| #Perl | Perl | use Tk;
use Time::HiRes qw(sleep);
my $msg = 'Hello World! ';
my $first = '.+';
my $second = '.';
my $mw = Tk::MainWindow->new(-title => 'Animated side-scroller',-bg=>"white");
$mw->geometry ("400x150+0+0");
$mw->optionAdd('*Label.font', 'Courier 24 bold' );
my $scroller = $mw->Label(-text => "$msg")->grid(-row=>0,-column=>0);
$mw->bind('all'=> '<Key-Escape>' => sub {exit;});
$mw->bind("<Button>" => sub { ($second,$first) = ($first,$second) });
$scroller->after(1, \&display );
MainLoop;
sub display {
while () {
sleep 0.25;
$msg =~ s/($first)($second)/$2$1/;
$scroller->configure(-text=>"$msg");
$mw->update();
}
} |
http://rosettacode.org/wiki/Animate_a_pendulum | Animate a pendulum |
One good way of making an animation is by simulating a physical system and illustrating the variables in that system using a dynamically changing graphical display.
The classic such physical system is a simple gravity pendulum.
Task
Create a simple physical model of a pendulum and animate it.
| #J | J | require 'gl2 trig'
coinsert 'jgl2'
DT =: %30 NB. seconds
ANGLE=: 0.45p1 NB. radians
L =: 1 NB. metres
G =: 9.80665 NB. ms_2
VEL =: 0 NB. ms_1
PEND=: noun define
pc pend;pn "Pendulum";
xywh 0 0 320 200;cc isi isigraph rightmove bottommove;
pas 0 0;pcenter;
rem form end;
)
pend_run =: verb def ' wd PEND,'';pshow;timer '',":DT * 1000 '
pend_close =: verb def ' wd ''timer 0; pclose'' '
pend_isi_paint=: verb def ' drawPendulum ANGLE '
sys_timer_z_=: verb define
recalcAngle ''
wd 'psel pend; setinvalid isi'
)
recalcAngle=: verb define
accel=. - (G % L) * sin ANGLE
VEL =: VEL + accel * DT
ANGLE=: ANGLE + VEL * DT
)
drawPendulum=: verb define
width=. {. glqwh''
ps=. (-: width) , 40
pe=. ps + 280 <.@* (cos , sin) 0.5p1 + y NB. adjust orientation
glbrush glrgb 91 91 91
gllines ps , pe
glellipse (,~ ps - -:) 40 15
glellipse (,~ pe - -:) 20 20
glrect 0 0 ,width, 40
)
pend_run'' NB. run animation |
http://rosettacode.org/wiki/Almkvist-Giullera_formula_for_pi | Almkvist-Giullera formula for pi | The Almkvist-Giullera formula for calculating 1/π2 is based on the Calabi-Yau
differential equations of order 4 and 5, which were originally used to describe certain manifolds
in string theory.
The formula is:
1/π2 = (25/3) ∑0∞ ((6n)! / (n!6))(532n2 + 126n + 9) / 10002n+1
This formula can be used to calculate the constant π-2, and thus to calculate π.
Note that, because the product of all terms but the power of 1000 can be calculated as an integer,
the terms in the series can be separated into a large integer term:
(25) (6n)! (532n2 + 126n + 9) / (3(n!)6) (***)
multiplied by a negative integer power of 10:
10-(6n + 3)
Task
Print the integer portions (the starred formula, which is without the power of 1000 divisor) of the first 10 terms of the series.
Use the complete formula to calculate and print π to 70 decimal digits of precision.
Reference
Gert Almkvist and Jesús Guillera, Ramanujan-like series for 1/π2 and string theory, Experimental Mathematics, 21 (2012), page 2, formula 1.
| #Sidef | Sidef | func almkvist_giullera(n) {
(32 * (14*n * (38*n + 9) + 9) * (6*n)!) / (3 * n!**6)
}
func almkvist_giullera_pi(prec = 70) {
local Num!PREC = (4*(prec+1)).numify
var sum = 0
var target = -1
for n in (0..Inf) {
sum += (almkvist_giullera(n) / (10**(6*n + 3)))
var curr = (sum**-.5).as_dec
return target if (target == curr)
target = curr
}
}
say 'First 10 integer portions: '
10.of {|n|
say "#{n} #{almkvist_giullera(n)}"
}
with(70) {|n|
say "π to #{n} decimal places is:"
say almkvist_giullera_pi(n)
} |
http://rosettacode.org/wiki/Almkvist-Giullera_formula_for_pi | Almkvist-Giullera formula for pi | The Almkvist-Giullera formula for calculating 1/π2 is based on the Calabi-Yau
differential equations of order 4 and 5, which were originally used to describe certain manifolds
in string theory.
The formula is:
1/π2 = (25/3) ∑0∞ ((6n)! / (n!6))(532n2 + 126n + 9) / 10002n+1
This formula can be used to calculate the constant π-2, and thus to calculate π.
Note that, because the product of all terms but the power of 1000 can be calculated as an integer,
the terms in the series can be separated into a large integer term:
(25) (6n)! (532n2 + 126n + 9) / (3(n!)6) (***)
multiplied by a negative integer power of 10:
10-(6n + 3)
Task
Print the integer portions (the starred formula, which is without the power of 1000 divisor) of the first 10 terms of the series.
Use the complete formula to calculate and print π to 70 decimal digits of precision.
Reference
Gert Almkvist and Jesús Guillera, Ramanujan-like series for 1/π2 and string theory, Experimental Mathematics, 21 (2012), page 2, formula 1.
| #Visual_Basic_.NET | Visual Basic .NET | Imports System, BI = System.Numerics.BigInteger, System.Console
Module Module1
Function isqrt(ByVal x As BI) As BI
Dim t As BI, q As BI = 1, r As BI = 0
While q <= x : q <<= 2 : End While
While q > 1 : q >>= 2 : t = x - r - q : r >>= 1
If t >= 0 Then x = t : r += q
End While : Return r
End Function
Function dump(ByVal digs As Integer, ByVal Optional show As Boolean = False) As String
digs += 1
Dim z As Integer, gb As Integer = 1, dg As Integer = digs + gb
Dim te As BI, t1 As BI = 1, t2 As BI = 9, t3 As BI = 1, su As BI = 0, t As BI = BI.Pow(10, If(dg <= 60, 0, dg - 60)), d As BI = -1, fn As BI = 1
For n As BI = 0 To dg - 1
If n > 0 Then t3 = t3 * BI.Pow(n, 6)
te = t1 * t2 / t3 : z = dg - 1 - CInt(n) * 6
If z > 0 Then te = te * BI.Pow(10, z) Else te = te / BI.Pow(10, -z)
If show AndAlso n < 10 Then WriteLine("{0,2} {1,62}", n, te * 32 / 3 / t)
su += te : If te < 10 Then
digs -= 1
If show Then WriteLine(vbLf & "{0} iterations required for {1} digits " & _
"after the decimal point." & vbLf, n, digs)
Exit For
End If
For j As BI = n * 6 + 1 To n * 6 + 6
t1 = t1 * j : Next
d += 2 : t2 += 126 + 532 * d
Next
Dim s As String = String.Format("{0}", isqrt(BI.Pow(10, dg * 2 + 3) _
/ su / 32 * 3 * BI.Pow(CType(10, BI), dg + 5)))
Return s(0) & "." & s.Substring(1, digs)
End Function
Sub Main(ByVal args As String())
WriteLine(dump(70, true))
End Sub
End Module |
http://rosettacode.org/wiki/Amb | Amb | Define and give an example of the Amb operator.
The Amb operator (short for "ambiguous") expresses nondeterminism. This doesn't refer to randomness (as in "nondeterministic universe") but is closely related to the term as it is used in automata theory ("non-deterministic finite automaton").
The Amb operator takes a variable number of expressions (or values if that's simpler in the language) and yields a correct one which will satisfy a constraint in some future computation, thereby avoiding failure.
Problems whose solution the Amb operator naturally expresses can be approached with other tools, such as explicit nested iterations over data sets, or with pattern matching. By contrast, the Amb operator appears integrated into the language. Invocations of Amb are not wrapped in any visible loops or other search patterns; they appear to be independent.
Essentially Amb(x, y, z) splits the computation into three possible futures: a future in which the value x is yielded, a future in which the value y is yielded and a future in which the value z is yielded. The future which leads to a successful subsequent computation is chosen. The other "parallel universes" somehow go away. Amb called with no arguments fails.
For simplicity, one of the domain values usable with Amb may denote failure, if that is convenient. For instance, it is convenient if a Boolean false denotes failure, so that Amb(false) fails, and thus constraints can be expressed using Boolean expressions like Amb(x * y == 8) which unless x and y add to four.
A pseudo-code program which satisfies this constraint might look like:
let x = Amb(1, 2, 3)
let y = Amb(7, 6, 4, 5)
Amb(x * y = 8)
print x, y
The output is 2 4 because Amb(1, 2, 3) correctly chooses the future in which x has value 2, Amb(7, 6, 4, 5) chooses 4 and consequently Amb(x * y = 8) produces a success.
Alternatively, failure could be represented using strictly Amb():
unless x * y = 8 do Amb()
Or else Amb could take the form of two operators or functions: one for producing values and one for enforcing constraints:
let x = Ambsel(1, 2, 3)
let y = Ambsel(4, 5, 6)
Ambassert(x * y = 8)
print x, y
where Ambassert behaves like Amb() if the Boolean expression is false, otherwise it allows the future computation to take place, without yielding any value.
The task is to somehow implement Amb, and demonstrate it with a program which chooses one word from each of the following four sets of character strings to generate a four-word sentence:
"the" "that" "a"
"frog" "elephant" "thing"
"walked" "treaded" "grows"
"slowly" "quickly"
The constraint to be satisfied is that the last character of each word (other than the last) is the same as the first character of its successor.
The only successful sentence is "that thing grows slowly"; other combinations do not satisfy the constraint and thus fail.
The goal of this task isn't to simply process the four lists of words with explicit, deterministic program flow such as nested iteration, to trivially demonstrate the correct output. The goal is to implement the Amb operator, or a facsimile thereof that is possible within the language limitations.
| #ATS | ATS |
(* ****** ****** *)
//
#include
"share/atspre_staload.hats"
#include
"share/HATS/atspre_staload_libats_ML.hats"
//
(* ****** ****** *)
//
staload "libats/ML/SATS/monad_list.sats"
staload _ = "libats/ML/DATS/monad_list.dats"
//
(* ****** ****** *)
//
datatype
words =
| Sing of stringGt(0)
| Comb of (words, words)
//
(* ****** ****** *)
//
extern
fun words_get_beg(words): char
extern
fun words_get_end(words): char
//
(* ****** ****** *)
//
implement
words_get_beg(w0) =
(
case+ w0 of
| Sing(cs) => cs[0]
| Comb(w1, w2) => words_get_beg(w1)
)
//
implement
words_get_end(w0) =
(
case+ w0 of
| Sing(cs) => cs[pred(length(cs))]
| Comb(w1, w2) => words_get_end(w2)
)
//
(* ****** ****** *)
//
fun
words_comb
(
w1: words, w2: words
) : list0(words) =
if (words_get_end(w1)=words_get_beg(w2))
then list0_sing(Comb(w1, w2)) else list0_nil()
//
(* ****** ****** *)
//
extern
fun
fprint_words: fprint_type(words)
//
overload fprint with fprint_words
//
implement
fprint_words(out, ws) =
(
case+ ws of
| Sing(w) => fprint(out, w)
| Comb(w1, w2) => fprint!(out, w1, ' ', w2)
)
//
implement fprint_val<words> = fprint_words
//
(* ****** ****** *)
//
typedef
a = stringGt(0) and b = words
//
val ws1 =
$list{a}("this", "that", "a")
val ws1 =
list_map_fun<a><b>(ws1, lam(x) => Sing(x))
val ws1 = monad_list_list(list0_of_list_vt(ws1))
//
val ws2 =
$list{a}("frog", "elephant", "thing")
val ws2 =
list_map_fun<a><b>(ws2, lam(x) => Sing(x))
val ws2 = monad_list_list(list0_of_list_vt(ws2))
//
val ws3 =
$list{a}("walked", "treaded", "grows")
val ws3 =
list_map_fun<a><b>(ws3, lam(x) => Sing(x))
val ws3 = monad_list_list(list0_of_list_vt(ws3))
//
val ws4 =
$list{a}("slowly", "quickly")
val ws4 =
list_map_fun<a><b>(ws4, lam(x) => Sing(x))
val ws4 = monad_list_list(list0_of_list_vt(ws4))
//
(* ****** ****** *)
//
val
ws12 =
monad_bind2<b,b><b>
(ws1, ws2, lam (w1, w2) => monad_list_list(words_comb(w1, w2)))
val
ws123 =
monad_bind2<b,b><b>
(ws12, ws3, lam (w12, w3) => monad_list_list(words_comb(w12, w3)))
val
ws1234 =
monad_bind2<b,b><b>
(ws123, ws4, lam (w123, w4) => monad_list_list(words_comb(w123, w4)))
//
(* ****** ****** *)
implement main0 () =
{
val () = fprintln! (stdout_ref, "ws1234 = ", ws1234)
}
(* ****** ****** *)
|
http://rosettacode.org/wiki/Address_of_a_variable | Address of a variable |
Basic Data Operation
This is a basic data operation. It represents a fundamental action on a basic data type.
You may see other such operations in the Basic Data Operations category, or:
Integer Operations
Arithmetic |
Comparison
Boolean Operations
Bitwise |
Logical
String Operations
Concatenation |
Interpolation |
Comparison |
Matching
Memory Operations
Pointers & references |
Addresses
Task
Demonstrate how to get the address of a variable and how to set the address of a variable.
| #360_Assembly | 360 Assembly | LA R3,I load address of I
...
I DS F |
http://rosettacode.org/wiki/Algebraic_data_types | Algebraic data types | Some languages offer direct support for algebraic data types and pattern matching on them. While this of course can always be simulated with manual tagging and conditionals, it allows for terse code which is easy to read, and can represent the algorithm directly.
Task
As an example, implement insertion in a red-black-tree.
A red-black-tree is a binary tree where each internal node has a color attribute red or black. Moreover, no red node can have a red child, and every path from the root to an empty node must contain the same number of black nodes. As a consequence, the tree is balanced, and must be re-balanced after an insertion.
Reference
Red-Black Trees in a Functional Setting
| #Clojure | Clojure | (mapc #'use-package '(#:toadstool #:toadstool-system))
(defstruct (red-black-tree (:constructor tree (color left val right)))
color left val right)
(defcomponent tree (operator macro-mixin))
(defexpand tree (color left val right)
`(class red-black-tree red-black-tree-color ,color
red-black-tree-left ,left
red-black-tree-val ,val
red-black-tree-right ,right))
(pushnew 'tree *used-components*)
(defun balance (color left val right)
(toad-ecase (color left val right)
(('black (tree 'red (tree 'red a x b) y c) z d)
(tree 'red (tree 'black a x b) y
(tree 'black c z d)))
(('black (tree 'red a x (tree 'red b y c)) z d)
(tree 'red (tree 'black a x b) y (tree 'black c z d)))
(('black a x (tree 'red (tree 'red b y c) z d))
(tree 'red (tree 'black a x b) y (tree 'black c z d)))
(('black a x (tree 'red b y (tree 'red c z d)))
(tree 'red (tree 'black a x b) y (tree 'black c z d)))
((color a x b)
(tree color a x b))))
(defun %insert (x s)
(toad-ecase1 s
(nil (tree 'red nil x nil))
((tree color a y b)
(cond ((< x y)
(balance color (%insert x a) y b))
((> x y)
(balance color a y (%insert x b)))
(t s)))))
(defun insert (x s)
(toad-ecase1 (%insert x s)
((tree t a y b) (tree 'black a y b)))) |
http://rosettacode.org/wiki/Almost_prime | Almost prime | A k-Almost-prime is a natural number
n
{\displaystyle n}
that is the product of
k
{\displaystyle k}
(possibly identical) primes.
Example
1-almost-primes, where
k
=
1
{\displaystyle k=1}
, are the prime numbers themselves.
2-almost-primes, where
k
=
2
{\displaystyle k=2}
, are the semiprimes.
Task
Write a function/method/subroutine/... that generates k-almost primes and use it to create a table here of the first ten members of k-Almost primes for
1
<=
K
<=
5
{\displaystyle 1<=K<=5}
.
Related tasks
Semiprime
Category:Prime Numbers
| #C | C | #include <stdio.h>
int kprime(int n, int k)
{
int p, f = 0;
for (p = 2; f < k && p*p <= n; p++)
while (0 == n % p)
n /= p, f++;
return f + (n > 1) == k;
}
int main(void)
{
int i, c, k;
for (k = 1; k <= 5; k++) {
printf("k = %d:", k);
for (i = 2, c = 0; c < 10; i++)
if (kprime(i, k)) {
printf(" %d", i);
c++;
}
putchar('\n');
}
return 0;
} |
http://rosettacode.org/wiki/Anagrams | Anagrams | When two or more words are composed of the same characters, but in a different order, they are called anagrams.
Task[edit]
Using the word list at http://wiki.puzzlers.org/pub/wordlists/unixdict.txt,
find the sets of words that share the same characters that contain the most words in them.
Related tasks
Word plays
Ordered words
Palindrome detection
Semordnilap
Anagrams
Anagrams/Deranged anagrams
Other tasks related to string operations:
Metrics
Array length
String length
Copy a string
Empty string (assignment)
Counting
Word frequency
Letter frequency
Jewels and stones
I before E except after C
Bioinformatics/base count
Count occurrences of a substring
Count how many vowels and consonants occur in a string
Remove/replace
XXXX redacted
Conjugate a Latin verb
Remove vowels from a string
String interpolation (included)
Strip block comments
Strip comments from a string
Strip a set of characters from a string
Strip whitespace from a string -- top and tail
Strip control codes and extended characters from a string
Anagrams/Derangements/shuffling
Word wheel
ABC problem
Sattolo cycle
Knuth shuffle
Ordered words
Superpermutation minimisation
Textonyms (using a phone text pad)
Anagrams
Anagrams/Deranged anagrams
Permutations/Derangements
Find/Search/Determine
ABC words
Odd words
Word ladder
Semordnilap
Word search
Wordiff (game)
String matching
Tea cup rim text
Alternade words
Changeable words
State name puzzle
String comparison
Unique characters
Unique characters in each string
Extract file extension
Levenshtein distance
Palindrome detection
Common list elements
Longest common suffix
Longest common prefix
Compare a list of strings
Longest common substring
Find common directory path
Words from neighbour ones
Change e letters to i in words
Non-continuous subsequences
Longest common subsequence
Longest palindromic substrings
Longest increasing subsequence
Words containing "the" substring
Sum of the digits of n is substring of n
Determine if a string is numeric
Determine if a string is collapsible
Determine if a string is squeezable
Determine if a string has all unique characters
Determine if a string has all the same characters
Longest substrings without repeating characters
Find words which contains all the vowels
Find words which contains most consonants
Find words which contains more than 3 vowels
Find words which first and last three letters are equals
Find words which odd letters are consonants and even letters are vowels or vice_versa
Formatting
Substring
Rep-string
Word wrap
String case
Align columns
Literals/String
Repeat a string
Brace expansion
Brace expansion using ranges
Reverse a string
Phrase reversals
Comma quibbling
Special characters
String concatenation
Substring/Top and tail
Commatizing numbers
Reverse words in a string
Suffixation of decimal numbers
Long literals, with continuations
Numerical and alphabetical suffixes
Abbreviations, easy
Abbreviations, simple
Abbreviations, automatic
Song lyrics/poems/Mad Libs/phrases
Mad Libs
Magic 8-ball
99 Bottles of Beer
The Name Game (a song)
The Old lady swallowed a fly
The Twelve Days of Christmas
Tokenize
Text between
Tokenize a string
Word break problem
Tokenize a string with escaping
Split a character string based on change of character
Sequences
Show ASCII table
De Bruijn sequences
Self-referential sequences
Generate lower case ASCII alphabet
| #APL | APL |
anagrams←{
tie←⍵ ⎕NTIE 0
dict←⎕NREAD tie 80(⎕NSIZE tie)0
boxes←((⎕UCS 10)≠dict)⊆dict
ana←(({⍵[⍋⍵]}¨boxes)({⍵}⌸)boxes)
({~' '∊¨(⊃/¯1↑[2]⍵)}ana)⌿ana ⋄ ⎕NUNTIE
}
|
http://rosettacode.org/wiki/Angle_difference_between_two_bearings | Angle difference between two bearings | Finding the angle between two bearings is often confusing.[1]
Task
Find the angle which is the result of the subtraction b2 - b1, where b1 and b2 are the bearings.
Input bearings are expressed in the range -180 to +180 degrees.
The result is also expressed in the range -180 to +180 degrees.
Compute the angle for the following pairs:
20 degrees (b1) and 45 degrees (b2)
-45 and 45
-85 and 90
-95 and 90
-45 and 125
-45 and 145
29.4803 and -88.6381
-78.3251 and -159.036
Optional extra
Allow the input bearings to be any (finite) value.
Test cases
-70099.74233810938 and 29840.67437876723
-165313.6666297357 and 33693.9894517456
1174.8380510598456 and -154146.66490124757
60175.77306795546 and 42213.07192354373
| #Jsish | Jsish | /* Angle difference between bearings, in Jsish */
function angleDifference(bearing1:number, bearing2:number):number {
var angle = (bearing2 - bearing1) % 360;
if (angle < -180) angle += 360;
if (angle >= 180) angle -= 360;
return angle;
}
if (Interp.conf('unitTest')) {
var dataSet = [[20, 45], [-45, 45], [-85, 90], [-95, 90], [-45, 125], [-45, 145],
[29.4803, -88.6381], [-78.3251, -159.036],
[-70099.74233810938, 29840.67437876723],
[-165313.6666297357, 33693.9894517456],
[1174.8380510598456, -154146.66490124757],
[60175.77306795546, 42213.07192354373]];
printf(" Bearing 1 Bearing 2 Difference\n");
for (var i = 0; i < dataSet.length; i++) {
printf("%17S° %17S° %17S°\n", dataSet[i][0], dataSet[i][1],
angleDifference(dataSet[i][0], dataSet[i][1])
);
}
}
/*
=!EXPECTSTART!=
Bearing 1 Bearing 2 Difference
20° 45° 25°
-45° 45° 90°
-85° 90° 175°
-95° 90° -175°
-45° 125° 170°
-45° 145° -170°
29.4803° -88.6381° -118.1184°
-78.3251° -159.036° -80.7109°
-70099.7423381094° 29840.6743787672° -139.583283123386°
-165313.666629736° 33693.9894517456° -72.3439185186871°
1174.83805105985° -154146.664901248° -161.502952307404°
60175.7730679555° 42213.0719235437° 37.2988555882694°
=!EXPECTEND!=
*/ |
http://rosettacode.org/wiki/Anagrams/Deranged_anagrams | Anagrams/Deranged anagrams | Two or more words are said to be anagrams if they have the same characters, but in a different order.
By analogy with derangements we define a deranged anagram as two words with the same characters, but in which the same character does not appear in the same position in both words.
Task[edit]
Use the word list at unixdict to find and display the longest deranged anagram.
Related tasks
Permutations/Derangements
Best shuffle
Word plays
Ordered words
Palindrome detection
Semordnilap
Anagrams
Anagrams/Deranged anagrams
Other tasks related to string operations:
Metrics
Array length
String length
Copy a string
Empty string (assignment)
Counting
Word frequency
Letter frequency
Jewels and stones
I before E except after C
Bioinformatics/base count
Count occurrences of a substring
Count how many vowels and consonants occur in a string
Remove/replace
XXXX redacted
Conjugate a Latin verb
Remove vowels from a string
String interpolation (included)
Strip block comments
Strip comments from a string
Strip a set of characters from a string
Strip whitespace from a string -- top and tail
Strip control codes and extended characters from a string
Anagrams/Derangements/shuffling
Word wheel
ABC problem
Sattolo cycle
Knuth shuffle
Ordered words
Superpermutation minimisation
Textonyms (using a phone text pad)
Anagrams
Anagrams/Deranged anagrams
Permutations/Derangements
Find/Search/Determine
ABC words
Odd words
Word ladder
Semordnilap
Word search
Wordiff (game)
String matching
Tea cup rim text
Alternade words
Changeable words
State name puzzle
String comparison
Unique characters
Unique characters in each string
Extract file extension
Levenshtein distance
Palindrome detection
Common list elements
Longest common suffix
Longest common prefix
Compare a list of strings
Longest common substring
Find common directory path
Words from neighbour ones
Change e letters to i in words
Non-continuous subsequences
Longest common subsequence
Longest palindromic substrings
Longest increasing subsequence
Words containing "the" substring
Sum of the digits of n is substring of n
Determine if a string is numeric
Determine if a string is collapsible
Determine if a string is squeezable
Determine if a string has all unique characters
Determine if a string has all the same characters
Longest substrings without repeating characters
Find words which contains all the vowels
Find words which contains most consonants
Find words which contains more than 3 vowels
Find words which first and last three letters are equals
Find words which odd letters are consonants and even letters are vowels or vice_versa
Formatting
Substring
Rep-string
Word wrap
String case
Align columns
Literals/String
Repeat a string
Brace expansion
Brace expansion using ranges
Reverse a string
Phrase reversals
Comma quibbling
Special characters
String concatenation
Substring/Top and tail
Commatizing numbers
Reverse words in a string
Suffixation of decimal numbers
Long literals, with continuations
Numerical and alphabetical suffixes
Abbreviations, easy
Abbreviations, simple
Abbreviations, automatic
Song lyrics/poems/Mad Libs/phrases
Mad Libs
Magic 8-ball
99 Bottles of Beer
The Name Game (a song)
The Old lady swallowed a fly
The Twelve Days of Christmas
Tokenize
Text between
Tokenize a string
Word break problem
Tokenize a string with escaping
Split a character string based on change of character
Sequences
Show ASCII table
De Bruijn sequences
Self-referential sequences
Generate lower case ASCII alphabet
| #Maple | Maple | with(StringTools):
dict:=Split([HTTP:-Get("www.puzzlers.org/pub/wordlists/unixdict.txt")][2]):
L:=[seq(select(t->HammingDistance(t,w)=length(w),[Anagrams(w,dict)])[],w=dict)]:
len:=length(ListTools:-FindMaximalElement(L,(a,b)->length(a)<length(b))):
select(w->length(w)=len,L)[]; |
http://rosettacode.org/wiki/Anonymous_recursion | Anonymous recursion | While implementing a recursive function, it often happens that we must resort to a separate helper function to handle the actual recursion.
This is usually the case when directly calling the current function would waste too many resources (stack space, execution time), causing unwanted side-effects, and/or the function doesn't have the right arguments and/or return values.
So we end up inventing some silly name like foo2 or foo_helper. I have always found it painful to come up with a proper name, and see some disadvantages:
You have to think up a name, which then pollutes the namespace
Function is created which is called from nowhere else
The program flow in the source code is interrupted
Some languages allow you to embed recursion directly in-place. This might work via a label, a local gosub instruction, or some special keyword.
Anonymous recursion can also be accomplished using the Y combinator.
Task
If possible, demonstrate this by writing the recursive version of the fibonacci function (see Fibonacci sequence) which checks for a negative argument before doing the actual recursion.
| #Joy | Joy | fib == [small] [] [pred dup pred] [+] binrec; |
http://rosettacode.org/wiki/Amicable_pairs | Amicable pairs | Two integers
N
{\displaystyle N}
and
M
{\displaystyle M}
are said to be amicable pairs if
N
≠
M
{\displaystyle N\neq M}
and the sum of the proper divisors of
N
{\displaystyle N}
(
s
u
m
(
p
r
o
p
D
i
v
s
(
N
)
)
{\displaystyle \mathrm {sum} (\mathrm {propDivs} (N))}
)
=
M
{\displaystyle =M}
as well as
s
u
m
(
p
r
o
p
D
i
v
s
(
M
)
)
=
N
{\displaystyle \mathrm {sum} (\mathrm {propDivs} (M))=N}
.
Example
1184 and 1210 are an amicable pair, with proper divisors:
1, 2, 4, 8, 16, 32, 37, 74, 148, 296, 592 and
1, 2, 5, 10, 11, 22, 55, 110, 121, 242, 605 respectively.
Task
Calculate and show here the Amicable pairs below 20,000; (there are eight).
Related tasks
Proper divisors
Abundant, deficient and perfect number classifications
Aliquot sequence classifications and its amicable classification.
| #Fortran | Fortran | Perfect!! 6
Perfect!! 28
Amicable! 220 284
Perfect!! 496
Amicable! 1184 1210
Amicable! 2620 2924
Amicable! 5020 5564
Amicable! 6232 6368
Perfect!! 8128
Amicable! 10744 10856
Amicable! 12285 14595
Amicable! 17296 18416
|
http://rosettacode.org/wiki/Animation | Animation |
Animation is integral to many parts of GUIs, including both the fancy effects when things change used in window managers, and of course games. The core of any animation system is a scheme for periodically changing the display while still remaining responsive to the user. This task demonstrates this.
Task
Create a window containing the string "Hello World! " (the trailing space is significant).
Make the text appear to be rotating right by periodically removing one letter from the end of the string and attaching it to the front.
When the user clicks on the (windowed) text, it should reverse its direction.
| #Phix | Phix | -- demo\rosetta\Animation.exw
with javascript_semantics
include pGUI.e
string hw = "Hello World! "
bool direction = true
Ihandle label
function button_cb(Ihandle /*ih*/, integer /*button*/, pressed, /*x*/, /*y*/, atom /*pStatus*/)
if pressed then
direction = not direction
end if
return IUP_CONTINUE
end function
function timer_cb(Ihandle /*ih*/)
hw = iff(direction ? hw[$] & hw[1..-2]
: hw[2..$] & hw[1])
IupSetAttribute(label,"TITLE",hw)
return IUP_IGNORE
end function
procedure main()
IupOpen()
label = IupLabel(hw,`FONT="Verdana, 18"`)
IupSetCallback(label, "BUTTON_CB", Icallback("button_cb"))
Ihandle dlg = IupDialog(label,"TITLE=Animation, DIALOGFRAME=YES, CHILDOFFSET=70x40, SIZE=200x80")
IupShow(dlg)
Ihandle hTimer = IupTimer(Icallback("timer_cb"), 160)
if platform()!=JS then
IupMainLoop()
IupClose()
end if
end procedure
main()
|
http://rosettacode.org/wiki/Animate_a_pendulum | Animate a pendulum |
One good way of making an animation is by simulating a physical system and illustrating the variables in that system using a dynamically changing graphical display.
The classic such physical system is a simple gravity pendulum.
Task
Create a simple physical model of a pendulum and animate it.
| #Java | Java | import java.awt.*;
import javax.swing.*;
public class Pendulum extends JPanel implements Runnable {
private double angle = Math.PI / 2;
private int length;
public Pendulum(int length) {
this.length = length;
setDoubleBuffered(true);
}
@Override
public void paint(Graphics g) {
g.setColor(Color.WHITE);
g.fillRect(0, 0, getWidth(), getHeight());
g.setColor(Color.BLACK);
int anchorX = getWidth() / 2, anchorY = getHeight() / 4;
int ballX = anchorX + (int) (Math.sin(angle) * length);
int ballY = anchorY + (int) (Math.cos(angle) * length);
g.drawLine(anchorX, anchorY, ballX, ballY);
g.fillOval(anchorX - 3, anchorY - 4, 7, 7);
g.fillOval(ballX - 7, ballY - 7, 14, 14);
}
public void run() {
double angleAccel, angleVelocity = 0, dt = 0.1;
while (true) {
angleAccel = -9.81 / length * Math.sin(angle);
angleVelocity += angleAccel * dt;
angle += angleVelocity * dt;
repaint();
try { Thread.sleep(15); } catch (InterruptedException ex) {}
}
}
@Override
public Dimension getPreferredSize() {
return new Dimension(2 * length + 50, length / 2 * 3);
}
public static void main(String[] args) {
JFrame f = new JFrame("Pendulum");
Pendulum p = new Pendulum(200);
f.add(p);
f.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
f.pack();
f.setVisible(true);
new Thread(p).start();
}
} |
http://rosettacode.org/wiki/Almkvist-Giullera_formula_for_pi | Almkvist-Giullera formula for pi | The Almkvist-Giullera formula for calculating 1/π2 is based on the Calabi-Yau
differential equations of order 4 and 5, which were originally used to describe certain manifolds
in string theory.
The formula is:
1/π2 = (25/3) ∑0∞ ((6n)! / (n!6))(532n2 + 126n + 9) / 10002n+1
This formula can be used to calculate the constant π-2, and thus to calculate π.
Note that, because the product of all terms but the power of 1000 can be calculated as an integer,
the terms in the series can be separated into a large integer term:
(25) (6n)! (532n2 + 126n + 9) / (3(n!)6) (***)
multiplied by a negative integer power of 10:
10-(6n + 3)
Task
Print the integer portions (the starred formula, which is without the power of 1000 divisor) of the first 10 terms of the series.
Use the complete formula to calculate and print π to 70 decimal digits of precision.
Reference
Gert Almkvist and Jesús Guillera, Ramanujan-like series for 1/π2 and string theory, Experimental Mathematics, 21 (2012), page 2, formula 1.
| #Wren | Wren | import "/big" for BigInt, BigRat
import "/fmt" for Fmt
var factorial = Fn.new { |n|
if (n < 2) return BigInt.one
var fact = BigInt.one
for (i in 2..n) fact = fact * i
return fact
}
var almkvistGiullera = Fn.new { |n, print|
var t1 = factorial.call(6*n) * 32
var t2 = 532*n*n + 126*n + 9
var t3 = factorial.call(n).pow(6)*3
var ip = t1 * t2 / t3
var pw = 6*n + 3
var tm = BigRat.new(ip, BigInt.ten.pow(pw))
if (print) {
Fmt.print("$d $44i $3d $-35s", n, ip, -pw, tm.toDecimal(33))
} else {
return tm
}
}
System.print("N Integer Portion Pow Nth Term (33 dp)")
System.print("-" * 89)
for (n in 0..9) {
almkvistGiullera.call(n, true)
}
var sum = BigRat.zero
var prev = BigRat.zero
var prec = BigRat.new(BigInt.one, BigInt.ten.pow(70))
var n = 0
while(true) {
var term = almkvistGiullera.call(n, false)
sum = sum + term
if ((sum-prev).abs < prec) break
prev = sum
n = n + 1
}
var pi = BigRat.one/sum.sqrt(70)
System.print("\nPi to 70 decimal places is:")
System.print(pi.toDecimal(70)) |
http://rosettacode.org/wiki/Amb | Amb | Define and give an example of the Amb operator.
The Amb operator (short for "ambiguous") expresses nondeterminism. This doesn't refer to randomness (as in "nondeterministic universe") but is closely related to the term as it is used in automata theory ("non-deterministic finite automaton").
The Amb operator takes a variable number of expressions (or values if that's simpler in the language) and yields a correct one which will satisfy a constraint in some future computation, thereby avoiding failure.
Problems whose solution the Amb operator naturally expresses can be approached with other tools, such as explicit nested iterations over data sets, or with pattern matching. By contrast, the Amb operator appears integrated into the language. Invocations of Amb are not wrapped in any visible loops or other search patterns; they appear to be independent.
Essentially Amb(x, y, z) splits the computation into three possible futures: a future in which the value x is yielded, a future in which the value y is yielded and a future in which the value z is yielded. The future which leads to a successful subsequent computation is chosen. The other "parallel universes" somehow go away. Amb called with no arguments fails.
For simplicity, one of the domain values usable with Amb may denote failure, if that is convenient. For instance, it is convenient if a Boolean false denotes failure, so that Amb(false) fails, and thus constraints can be expressed using Boolean expressions like Amb(x * y == 8) which unless x and y add to four.
A pseudo-code program which satisfies this constraint might look like:
let x = Amb(1, 2, 3)
let y = Amb(7, 6, 4, 5)
Amb(x * y = 8)
print x, y
The output is 2 4 because Amb(1, 2, 3) correctly chooses the future in which x has value 2, Amb(7, 6, 4, 5) chooses 4 and consequently Amb(x * y = 8) produces a success.
Alternatively, failure could be represented using strictly Amb():
unless x * y = 8 do Amb()
Or else Amb could take the form of two operators or functions: one for producing values and one for enforcing constraints:
let x = Ambsel(1, 2, 3)
let y = Ambsel(4, 5, 6)
Ambassert(x * y = 8)
print x, y
where Ambassert behaves like Amb() if the Boolean expression is false, otherwise it allows the future computation to take place, without yielding any value.
The task is to somehow implement Amb, and demonstrate it with a program which chooses one word from each of the following four sets of character strings to generate a four-word sentence:
"the" "that" "a"
"frog" "elephant" "thing"
"walked" "treaded" "grows"
"slowly" "quickly"
The constraint to be satisfied is that the last character of each word (other than the last) is the same as the first character of its successor.
The only successful sentence is "that thing grows slowly"; other combinations do not satisfy the constraint and thus fail.
The goal of this task isn't to simply process the four lists of words with explicit, deterministic program flow such as nested iteration, to trivially demonstrate the correct output. The goal is to implement the Amb operator, or a facsimile thereof that is possible within the language limitations.
| #AutoHotkey | AutoHotkey | set1 := "the that a"
set2 := "frog elephant thing"
set3 := "walked treaded grows"
set4 := "slowly quickly"
MsgBox % amb( "", set1, set2, set3, set4 )
; this takes a total of 17 iterations to complete
amb( char = "", set1 = "", set2 = "", set3 = "", set4 = "" )
{ ; original call to amb must leave char param blank
Loop, Parse, set1, %A_Space%
If (char = (idxchar := SubStr(A_LoopField, 1, 1)) && set2 = ""
|| (char = idxchar || char = "") && ((retval:= amb(SubStr(A_LoopField, 0, 1), set2, set3, set4)) != ""))
Return A_LoopField " " retval
Return ""
} |
http://rosettacode.org/wiki/Address_of_a_variable | Address of a variable |
Basic Data Operation
This is a basic data operation. It represents a fundamental action on a basic data type.
You may see other such operations in the Basic Data Operations category, or:
Integer Operations
Arithmetic |
Comparison
Boolean Operations
Bitwise |
Logical
String Operations
Concatenation |
Interpolation |
Comparison |
Matching
Memory Operations
Pointers & references |
Addresses
Task
Demonstrate how to get the address of a variable and how to set the address of a variable.
| #6502_Assembly | 6502 Assembly | ;;;;;;; zero page RAM memory addresses
CursorX equ $00
CursorY equ $01
temp equ $02
;;;;;;; memory-mapped hardware registers
BorderColor equ $D020
Joystick1 equ $DC01
Joystick2 equ $DC00 |
http://rosettacode.org/wiki/Address_of_a_variable | Address of a variable |
Basic Data Operation
This is a basic data operation. It represents a fundamental action on a basic data type.
You may see other such operations in the Basic Data Operations category, or:
Integer Operations
Arithmetic |
Comparison
Boolean Operations
Bitwise |
Logical
String Operations
Concatenation |
Interpolation |
Comparison |
Matching
Memory Operations
Pointers & references |
Addresses
Task
Demonstrate how to get the address of a variable and how to set the address of a variable.
| #68000_Assembly | 68000 Assembly | UserRam equ $100000
Cursor_X equ UserRam ;$100000, byte length
Cursor_Y equ UserRam+1 ;$100001, byte length
SixteenBitData equ UserRam+2 ;$100002, word length (VASM doesn't allow labels to begin with numbers.)
ThirtyTwoBitData equ UserRam+4 ;$100004, long length
;GET THE ADDRESS
LEA ThirtyTwoBitData,A0 ;load $100004 into A0. |
http://rosettacode.org/wiki/Address_of_a_variable | Address of a variable |
Basic Data Operation
This is a basic data operation. It represents a fundamental action on a basic data type.
You may see other such operations in the Basic Data Operations category, or:
Integer Operations
Arithmetic |
Comparison
Boolean Operations
Bitwise |
Logical
String Operations
Concatenation |
Interpolation |
Comparison |
Matching
Memory Operations
Pointers & references |
Addresses
Task
Demonstrate how to get the address of a variable and how to set the address of a variable.
| #8086_Assembly | 8086 Assembly | .model small
.stack 1024
.data
UserRam 256 DUP (0) ;define the next 256 bytes as user RAM, initialize them all to zero.
.code
mov ax, seg UserRam ;load into AX the segment where UserRam is stored.
mov es, ax ;load that value into the Extra Segment register
mov ax, offset UserRam ;load into AX the address of UserRam
mov di, ax ;load that value into the destination index register |
http://rosettacode.org/wiki/Algebraic_data_types | Algebraic data types | Some languages offer direct support for algebraic data types and pattern matching on them. While this of course can always be simulated with manual tagging and conditionals, it allows for terse code which is easy to read, and can represent the algorithm directly.
Task
As an example, implement insertion in a red-black-tree.
A red-black-tree is a binary tree where each internal node has a color attribute red or black. Moreover, no red node can have a red child, and every path from the root to an empty node must contain the same number of black nodes. As a consequence, the tree is balanced, and must be re-balanced after an insertion.
Reference
Red-Black Trees in a Functional Setting
| #Common_Lisp | Common Lisp | (mapc #'use-package '(#:toadstool #:toadstool-system))
(defstruct (red-black-tree (:constructor tree (color left val right)))
color left val right)
(defcomponent tree (operator macro-mixin))
(defexpand tree (color left val right)
`(class red-black-tree red-black-tree-color ,color
red-black-tree-left ,left
red-black-tree-val ,val
red-black-tree-right ,right))
(pushnew 'tree *used-components*)
(defun balance (color left val right)
(toad-ecase (color left val right)
(('black (tree 'red (tree 'red a x b) y c) z d)
(tree 'red (tree 'black a x b) y
(tree 'black c z d)))
(('black (tree 'red a x (tree 'red b y c)) z d)
(tree 'red (tree 'black a x b) y (tree 'black c z d)))
(('black a x (tree 'red (tree 'red b y c) z d))
(tree 'red (tree 'black a x b) y (tree 'black c z d)))
(('black a x (tree 'red b y (tree 'red c z d)))
(tree 'red (tree 'black a x b) y (tree 'black c z d)))
((color a x b)
(tree color a x b))))
(defun %insert (x s)
(toad-ecase1 s
(nil (tree 'red nil x nil))
((tree color a y b)
(cond ((< x y)
(balance color (%insert x a) y b))
((> x y)
(balance color a y (%insert x b)))
(t s)))))
(defun insert (x s)
(toad-ecase1 (%insert x s)
((tree t a y b) (tree 'black a y b)))) |
http://rosettacode.org/wiki/Almost_prime | Almost prime | A k-Almost-prime is a natural number
n
{\displaystyle n}
that is the product of
k
{\displaystyle k}
(possibly identical) primes.
Example
1-almost-primes, where
k
=
1
{\displaystyle k=1}
, are the prime numbers themselves.
2-almost-primes, where
k
=
2
{\displaystyle k=2}
, are the semiprimes.
Task
Write a function/method/subroutine/... that generates k-almost primes and use it to create a table here of the first ten members of k-Almost primes for
1
<=
K
<=
5
{\displaystyle 1<=K<=5}
.
Related tasks
Semiprime
Category:Prime Numbers
| #C.23 | C# | using System;
using System.Collections.Generic;
using System.Linq;
namespace AlmostPrime
{
class Program
{
static void Main(string[] args)
{
foreach (int k in Enumerable.Range(1, 5))
{
KPrime kprime = new KPrime() { K = k };
Console.WriteLine("k = {0}: {1}",
k, string.Join<int>(" ", kprime.GetFirstN(10)));
}
}
}
class KPrime
{
public int K { get; set; }
public bool IsKPrime(int number)
{
int primes = 0;
for (int p = 2; p * p <= number && primes < K; ++p)
{
while (number % p == 0 && primes < K)
{
number /= p;
++primes;
}
}
if (number > 1)
{
++primes;
}
return primes == K;
}
public List<int> GetFirstN(int n)
{
List<int> result = new List<int>();
for (int number = 2; result.Count < n; ++number)
{
if (IsKPrime(number))
{
result.Add(number);
}
}
return result;
}
}
} |
http://rosettacode.org/wiki/Anagrams | Anagrams | When two or more words are composed of the same characters, but in a different order, they are called anagrams.
Task[edit]
Using the word list at http://wiki.puzzlers.org/pub/wordlists/unixdict.txt,
find the sets of words that share the same characters that contain the most words in them.
Related tasks
Word plays
Ordered words
Palindrome detection
Semordnilap
Anagrams
Anagrams/Deranged anagrams
Other tasks related to string operations:
Metrics
Array length
String length
Copy a string
Empty string (assignment)
Counting
Word frequency
Letter frequency
Jewels and stones
I before E except after C
Bioinformatics/base count
Count occurrences of a substring
Count how many vowels and consonants occur in a string
Remove/replace
XXXX redacted
Conjugate a Latin verb
Remove vowels from a string
String interpolation (included)
Strip block comments
Strip comments from a string
Strip a set of characters from a string
Strip whitespace from a string -- top and tail
Strip control codes and extended characters from a string
Anagrams/Derangements/shuffling
Word wheel
ABC problem
Sattolo cycle
Knuth shuffle
Ordered words
Superpermutation minimisation
Textonyms (using a phone text pad)
Anagrams
Anagrams/Deranged anagrams
Permutations/Derangements
Find/Search/Determine
ABC words
Odd words
Word ladder
Semordnilap
Word search
Wordiff (game)
String matching
Tea cup rim text
Alternade words
Changeable words
State name puzzle
String comparison
Unique characters
Unique characters in each string
Extract file extension
Levenshtein distance
Palindrome detection
Common list elements
Longest common suffix
Longest common prefix
Compare a list of strings
Longest common substring
Find common directory path
Words from neighbour ones
Change e letters to i in words
Non-continuous subsequences
Longest common subsequence
Longest palindromic substrings
Longest increasing subsequence
Words containing "the" substring
Sum of the digits of n is substring of n
Determine if a string is numeric
Determine if a string is collapsible
Determine if a string is squeezable
Determine if a string has all unique characters
Determine if a string has all the same characters
Longest substrings without repeating characters
Find words which contains all the vowels
Find words which contains most consonants
Find words which contains more than 3 vowels
Find words which first and last three letters are equals
Find words which odd letters are consonants and even letters are vowels or vice_versa
Formatting
Substring
Rep-string
Word wrap
String case
Align columns
Literals/String
Repeat a string
Brace expansion
Brace expansion using ranges
Reverse a string
Phrase reversals
Comma quibbling
Special characters
String concatenation
Substring/Top and tail
Commatizing numbers
Reverse words in a string
Suffixation of decimal numbers
Long literals, with continuations
Numerical and alphabetical suffixes
Abbreviations, easy
Abbreviations, simple
Abbreviations, automatic
Song lyrics/poems/Mad Libs/phrases
Mad Libs
Magic 8-ball
99 Bottles of Beer
The Name Game (a song)
The Old lady swallowed a fly
The Twelve Days of Christmas
Tokenize
Text between
Tokenize a string
Word break problem
Tokenize a string with escaping
Split a character string based on change of character
Sequences
Show ASCII table
De Bruijn sequences
Self-referential sequences
Generate lower case ASCII alphabet
| #AppleScript | AppleScript | use AppleScript version "2.3.1" -- OS X 10.9 (Mavericks) or later — for these 'use' commands!
-- Uses the customisable AppleScript-coded sort shown at <https://macscripter.net/viewtopic.php?pid=194430#p194430>.
-- It's assumed scripters will know how and where to install it as a library.
use sorter : script "Custom Iterative Ternary Merge Sort"
use scripting additions
on largestAnagramGroups(listOfWords)
script o
property wordList : listOfWords
property doctoredWords : {}
property longestRanges : {}
property output : {}
end script
ignoring case
-- Build another list containing doctored versions of the input words with their characters lexically sorted.
set astid to AppleScript's text item delimiters
set AppleScript's text item delimiters to ""
repeat with thisWord in o's wordList
set theseChars to thisWord's characters
-- A straight ascending in-place sort here.
tell sorter to sort(theseChars, 1, -1, {}) -- Params: (list, start index, end index, customisation spec.).
set end of o's doctoredWords to theseChars as text
end repeat
set AppleScript's text item delimiters to astid
-- Sort the list of doctored words to group them, rearranging the original-word list in parallel.
tell sorter to sort(o's doctoredWords, 1, -1, {slave:{o's wordList}})
-- Find the range(s) of the longest run(s) of equal texts in the doctored-word list.
set longestRunLength to 1
set i to 1
set currentText to beginning of o's doctoredWords
repeat with j from 2 to (count o's doctoredWords)
set thisText to item j of o's doctoredWords
if (thisText is not currentText) then
set thisRunLength to j - i
if (thisRunLength > longestRunLength) then
set o's longestRanges to {{i, j - 1}}
set longestRunLength to thisRunLength
else if (thisRunLength = longestRunLength) then
set end of o's longestRanges to {i, j - 1}
end if
set currentText to thisText
set i to j
end if
end repeat
set finalRunLength to j - i + 1
if (finalRunLength > longestRunLength) then
set o's longestRanges to {{i, j}}
else if (finalRunLength = longestRunLength) then
set end of o's longestRanges to {i, j}
end if
-- Get the group(s) of words occupying the same range(s) in the original-word list.
-- The stable parallel sort above will have kept each group's words in the same order with respect to each other.
repeat with thisRange in o's longestRanges
set {i, j} to thisRange
set end of o's output to items i thru j of o's wordList
end repeat
-- As a final flourish, sort the list of groups by their first items.
script byFirstItem
on isGreater(a, b)
return (a's beginning > b's beginning)
end isGreater
end script
tell sorter to sort(o's output, 1, -1, {comparer:byFirstItem})
end ignoring
return o's output
end largestAnagramGroups
-- The closing values of AppleScript 'run handler' variables not explicity declared local are
-- saved back to the script file afterwards — and "unixdict.txt" contains 25,104 words!
local wordFile, wordList
-- The words in "unixdict.txt" are arranged one per line in alphabetical order.
-- Some contain punctuation characters, so they're best extracted as 'paragraphs' rather than as 'words'.
set wordFile to ((path to desktop as text) & "unixdict.txt") as «class furl»
set wordList to paragraphs of (read wordFile as «class utf8»)
return largestAnagramGroups(wordList) |
http://rosettacode.org/wiki/Angle_difference_between_two_bearings | Angle difference between two bearings | Finding the angle between two bearings is often confusing.[1]
Task
Find the angle which is the result of the subtraction b2 - b1, where b1 and b2 are the bearings.
Input bearings are expressed in the range -180 to +180 degrees.
The result is also expressed in the range -180 to +180 degrees.
Compute the angle for the following pairs:
20 degrees (b1) and 45 degrees (b2)
-45 and 45
-85 and 90
-95 and 90
-45 and 125
-45 and 145
29.4803 and -88.6381
-78.3251 and -159.036
Optional extra
Allow the input bearings to be any (finite) value.
Test cases
-70099.74233810938 and 29840.67437876723
-165313.6666297357 and 33693.9894517456
1174.8380510598456 and -154146.66490124757
60175.77306795546 and 42213.07192354373
| #jq | jq | # Angles are in degrees; the result is rounded to 4 decimal places:
def subtract($b1; $b2):
10000 as $scale
| (($scale * ($b2 - $b1)) % (360 * $scale)) | round / $scale
| if . < -180 then . + 360
elif . >= 180 then . - 360
else .
end;
def pairs:
[ 20, 45],
[-45, 45],
[-85, 90],
[-95, 90],
[-45, 125],
[-45, 145],
[ 29.4803, -88.6381],
[-78.3251, -159.036],
[-70099.74233810938, 29840.67437876723],
[-165313.6666297357, 33693.9894517456],
[1174.8380510598456, -154146.66490124757],
[60175.77306795546, 42213.07192354373] ;
"Differences (to 4dp) between these bearings:",
( pairs as [$p0, $p1]
| subtract($p0; $p1) as $diff
| (if $p0 < 0 then " " else " " end) as $offset
| "\($offset)\($p0) and \($p1) -> \($diff)" ) |
http://rosettacode.org/wiki/Anagrams/Deranged_anagrams | Anagrams/Deranged anagrams | Two or more words are said to be anagrams if they have the same characters, but in a different order.
By analogy with derangements we define a deranged anagram as two words with the same characters, but in which the same character does not appear in the same position in both words.
Task[edit]
Use the word list at unixdict to find and display the longest deranged anagram.
Related tasks
Permutations/Derangements
Best shuffle
Word plays
Ordered words
Palindrome detection
Semordnilap
Anagrams
Anagrams/Deranged anagrams
Other tasks related to string operations:
Metrics
Array length
String length
Copy a string
Empty string (assignment)
Counting
Word frequency
Letter frequency
Jewels and stones
I before E except after C
Bioinformatics/base count
Count occurrences of a substring
Count how many vowels and consonants occur in a string
Remove/replace
XXXX redacted
Conjugate a Latin verb
Remove vowels from a string
String interpolation (included)
Strip block comments
Strip comments from a string
Strip a set of characters from a string
Strip whitespace from a string -- top and tail
Strip control codes and extended characters from a string
Anagrams/Derangements/shuffling
Word wheel
ABC problem
Sattolo cycle
Knuth shuffle
Ordered words
Superpermutation minimisation
Textonyms (using a phone text pad)
Anagrams
Anagrams/Deranged anagrams
Permutations/Derangements
Find/Search/Determine
ABC words
Odd words
Word ladder
Semordnilap
Word search
Wordiff (game)
String matching
Tea cup rim text
Alternade words
Changeable words
State name puzzle
String comparison
Unique characters
Unique characters in each string
Extract file extension
Levenshtein distance
Palindrome detection
Common list elements
Longest common suffix
Longest common prefix
Compare a list of strings
Longest common substring
Find common directory path
Words from neighbour ones
Change e letters to i in words
Non-continuous subsequences
Longest common subsequence
Longest palindromic substrings
Longest increasing subsequence
Words containing "the" substring
Sum of the digits of n is substring of n
Determine if a string is numeric
Determine if a string is collapsible
Determine if a string is squeezable
Determine if a string has all unique characters
Determine if a string has all the same characters
Longest substrings without repeating characters
Find words which contains all the vowels
Find words which contains most consonants
Find words which contains more than 3 vowels
Find words which first and last three letters are equals
Find words which odd letters are consonants and even letters are vowels or vice_versa
Formatting
Substring
Rep-string
Word wrap
String case
Align columns
Literals/String
Repeat a string
Brace expansion
Brace expansion using ranges
Reverse a string
Phrase reversals
Comma quibbling
Special characters
String concatenation
Substring/Top and tail
Commatizing numbers
Reverse words in a string
Suffixation of decimal numbers
Long literals, with continuations
Numerical and alphabetical suffixes
Abbreviations, easy
Abbreviations, simple
Abbreviations, automatic
Song lyrics/poems/Mad Libs/phrases
Mad Libs
Magic 8-ball
99 Bottles of Beer
The Name Game (a song)
The Old lady swallowed a fly
The Twelve Days of Christmas
Tokenize
Text between
Tokenize a string
Word break problem
Tokenize a string with escaping
Split a character string based on change of character
Sequences
Show ASCII table
De Bruijn sequences
Self-referential sequences
Generate lower case ASCII alphabet
| #Mathematica_.2F_Wolfram_Language | Mathematica / Wolfram Language | words=First/@Import["http://www.puzzlers.org/pub/wordlists/unixdict.txt","Table"];
anagramDegrangement=Function[{w1,w2},
Module[{c1=ToCharacterCode@w1,c2=ToCharacterCode@w2},
Sort@c1==Sort@c2&&Select[c1-c2,#==0&,1]==={}]];
gs=Select[GatherBy[words,{StringLength@#,Union@ToCharacterCode@#}&],Length@#>=2&];
First@Flatten[Function[ws,Select[Join@@Outer[List,ws,ws,1],anagramDegrangement@@#&]]/@SortBy[gs,-StringLength@First@#&],1] |
http://rosettacode.org/wiki/Anonymous_recursion | Anonymous recursion | While implementing a recursive function, it often happens that we must resort to a separate helper function to handle the actual recursion.
This is usually the case when directly calling the current function would waste too many resources (stack space, execution time), causing unwanted side-effects, and/or the function doesn't have the right arguments and/or return values.
So we end up inventing some silly name like foo2 or foo_helper. I have always found it painful to come up with a proper name, and see some disadvantages:
You have to think up a name, which then pollutes the namespace
Function is created which is called from nowhere else
The program flow in the source code is interrupted
Some languages allow you to embed recursion directly in-place. This might work via a label, a local gosub instruction, or some special keyword.
Anonymous recursion can also be accomplished using the Y combinator.
Task
If possible, demonstrate this by writing the recursive version of the fibonacci function (see Fibonacci sequence) which checks for a negative argument before doing the actual recursion.
| #jq | jq | 0 | recurse(. + 1) |
http://rosettacode.org/wiki/Amicable_pairs | Amicable pairs | Two integers
N
{\displaystyle N}
and
M
{\displaystyle M}
are said to be amicable pairs if
N
≠
M
{\displaystyle N\neq M}
and the sum of the proper divisors of
N
{\displaystyle N}
(
s
u
m
(
p
r
o
p
D
i
v
s
(
N
)
)
{\displaystyle \mathrm {sum} (\mathrm {propDivs} (N))}
)
=
M
{\displaystyle =M}
as well as
s
u
m
(
p
r
o
p
D
i
v
s
(
M
)
)
=
N
{\displaystyle \mathrm {sum} (\mathrm {propDivs} (M))=N}
.
Example
1184 and 1210 are an amicable pair, with proper divisors:
1, 2, 4, 8, 16, 32, 37, 74, 148, 296, 592 and
1, 2, 5, 10, 11, 22, 55, 110, 121, 242, 605 respectively.
Task
Calculate and show here the Amicable pairs below 20,000; (there are eight).
Related tasks
Proper divisors
Abundant, deficient and perfect number classifications
Aliquot sequence classifications and its amicable classification.
| #FreeBASIC | FreeBASIC |
' FreeBASIC v1.05.0 win64
Function SumProperDivisors(number As Integer) As Integer
If number < 2 Then Return 0
Dim sum As Integer = 0
For i As Integer = 1 To number \ 2
If number Mod i = 0 Then sum += i
Next
Return sum
End Function
Dim As Integer n, f
Dim As Integer sum(19999)
For n = 1 To 19999
sum(n) = SumProperDivisors(n)
Next
Print "The pairs of amicable numbers below 20,000 are :"
Print
For n = 1 To 19998
' f = SumProperDivisors(n)
f = sum(n)
If f <= n OrElse f < 1 OrElse f > 19999 Then Continue For
If f = sum(n) AndAlso n = sum(f) Then
Print Using "#####"; n;
Print " and "; Using "#####"; sum(n)
End If
Next
Print
Print "Press any key to exit the program"
Sleep
End
|
http://rosettacode.org/wiki/Animation | Animation |
Animation is integral to many parts of GUIs, including both the fancy effects when things change used in window managers, and of course games. The core of any animation system is a scheme for periodically changing the display while still remaining responsive to the user. This task demonstrates this.
Task
Create a window containing the string "Hello World! " (the trailing space is significant).
Make the text appear to be rotating right by periodically removing one letter from the end of the string and attaching it to the front.
When the user clicks on the (windowed) text, it should reverse its direction.
| #PicoLisp | PicoLisp | #!/usr/bin/picolisp /usr/lib/picolisp/lib.l
(prin "^[[?9h") # Mouse reporting on
(setq Dir 1 Text (chop "Hello World! "))
(loop
(prin (do Dir (rot Text)))
(when (= "^[" (key 200))
(key) (key)
(when (= " " (key)) # Left button
(setq Dir (if (= 1 Dir) 12 1)) )
(key) (key) )
(do (length Text) (prin "^H")) ) |
http://rosettacode.org/wiki/Animation | Animation |
Animation is integral to many parts of GUIs, including both the fancy effects when things change used in window managers, and of course games. The core of any animation system is a scheme for periodically changing the display while still remaining responsive to the user. This task demonstrates this.
Task
Create a window containing the string "Hello World! " (the trailing space is significant).
Make the text appear to be rotating right by periodically removing one letter from the end of the string and attaching it to the front.
When the user clicks on the (windowed) text, it should reverse its direction.
| #Processing | Processing | String txt = "Hello, world! ";
boolean dir = true;
void draw(){
background(128);
text(txt, 10, height/2);
if(frameCount%10==0){
if(dir) {
txt = rotate(txt, 1);
} else {
txt = rotate(txt, txt.length()-1);
}
}
}
void mouseReleased(){
dir = !dir;
}
String rotate(String text, int startIdx) {
char[] rotated = new char[text.length()];
for (int i = 0; i < text.length(); i++) {
rotated[i] = text.charAt((i + startIdx) % text.length());
}
return String.valueOf(rotated);
} |
http://rosettacode.org/wiki/Animate_a_pendulum | Animate a pendulum |
One good way of making an animation is by simulating a physical system and illustrating the variables in that system using a dynamically changing graphical display.
The classic such physical system is a simple gravity pendulum.
Task
Create a simple physical model of a pendulum and animate it.
| #JavaScript | JavaScript | <html><head>
<title>Pendulum</title>
</head><body style="background: gray;">
<canvas id="canvas" width="600" height="600">
<p>Sorry, your browser does not support the <canvas> used to display the pendulum animation.</p>
</canvas>
<script>
function PendulumSim(length_m, gravity_mps2, initialAngle_rad, timestep_ms, callback) {
var velocity = 0;
var angle = initialAngle_rad;
var k = -gravity_mps2/length_m;
var timestep_s = timestep_ms / 1000;
return setInterval(function () {
var acceleration = k * Math.sin(angle);
velocity += acceleration * timestep_s;
angle += velocity * timestep_s;
callback(angle);
}, timestep_ms);
}
var canvas = document.getElementById('canvas');
var context = canvas.getContext('2d');
var prev=0;
var sim = PendulumSim(1, 9.80665, Math.PI*99/100, 10, function (angle) {
var rPend = Math.min(canvas.width, canvas.height) * 0.47;
var rBall = Math.min(canvas.width, canvas.height) * 0.02;
var rBar = Math.min(canvas.width, canvas.height) * 0.005;
var ballX = Math.sin(angle) * rPend;
var ballY = Math.cos(angle) * rPend;
context.fillStyle = "rgba(255,255,255,0.51)";
context.globalCompositeOperation = "destination-out";
context.fillRect(0, 0, canvas.width, canvas.height);
context.fillStyle = "yellow";
context.strokeStyle = "rgba(0,0,0,"+Math.max(0,1-Math.abs(prev-angle)*10)+")";
context.globalCompositeOperation = "source-over";
context.save();
context.translate(canvas.width/2, canvas.height/2);
context.rotate(angle);
context.beginPath();
context.rect(-rBar, -rBar, rBar*2, rPend+rBar*2);
context.fill();
context.stroke();
context.beginPath();
context.arc(0, rPend, rBall, 0, Math.PI*2, false);
context.fill();
context.stroke();
context.restore();
prev=angle;
});
</script>
</body></html> |
http://rosettacode.org/wiki/Amb | Amb | Define and give an example of the Amb operator.
The Amb operator (short for "ambiguous") expresses nondeterminism. This doesn't refer to randomness (as in "nondeterministic universe") but is closely related to the term as it is used in automata theory ("non-deterministic finite automaton").
The Amb operator takes a variable number of expressions (or values if that's simpler in the language) and yields a correct one which will satisfy a constraint in some future computation, thereby avoiding failure.
Problems whose solution the Amb operator naturally expresses can be approached with other tools, such as explicit nested iterations over data sets, or with pattern matching. By contrast, the Amb operator appears integrated into the language. Invocations of Amb are not wrapped in any visible loops or other search patterns; they appear to be independent.
Essentially Amb(x, y, z) splits the computation into three possible futures: a future in which the value x is yielded, a future in which the value y is yielded and a future in which the value z is yielded. The future which leads to a successful subsequent computation is chosen. The other "parallel universes" somehow go away. Amb called with no arguments fails.
For simplicity, one of the domain values usable with Amb may denote failure, if that is convenient. For instance, it is convenient if a Boolean false denotes failure, so that Amb(false) fails, and thus constraints can be expressed using Boolean expressions like Amb(x * y == 8) which unless x and y add to four.
A pseudo-code program which satisfies this constraint might look like:
let x = Amb(1, 2, 3)
let y = Amb(7, 6, 4, 5)
Amb(x * y = 8)
print x, y
The output is 2 4 because Amb(1, 2, 3) correctly chooses the future in which x has value 2, Amb(7, 6, 4, 5) chooses 4 and consequently Amb(x * y = 8) produces a success.
Alternatively, failure could be represented using strictly Amb():
unless x * y = 8 do Amb()
Or else Amb could take the form of two operators or functions: one for producing values and one for enforcing constraints:
let x = Ambsel(1, 2, 3)
let y = Ambsel(4, 5, 6)
Ambassert(x * y = 8)
print x, y
where Ambassert behaves like Amb() if the Boolean expression is false, otherwise it allows the future computation to take place, without yielding any value.
The task is to somehow implement Amb, and demonstrate it with a program which chooses one word from each of the following four sets of character strings to generate a four-word sentence:
"the" "that" "a"
"frog" "elephant" "thing"
"walked" "treaded" "grows"
"slowly" "quickly"
The constraint to be satisfied is that the last character of each word (other than the last) is the same as the first character of its successor.
The only successful sentence is "that thing grows slowly"; other combinations do not satisfy the constraint and thus fail.
The goal of this task isn't to simply process the four lists of words with explicit, deterministic program flow such as nested iteration, to trivially demonstrate the correct output. The goal is to implement the Amb operator, or a facsimile thereof that is possible within the language limitations.
| #BaCon | BaCon | DECLARE (*ambassert)() TYPE NUMBER
FUNCTION amb_recurse$(text$[], nr, total, result$)
LOCAL ctr
LOCAL str$, test$
FOR ctr = 1 TO AMOUNT(text$[nr])
str$ = APPEND$(result$, 0, TOKEN$(text$[nr], ctr))
IF nr = total-1 THEN
IF ambassert(str$) THEN RETURN str$
ELSE
test$ = amb_recurse$(text$, nr+1, total, str$)
IF AMOUNT(test$) = total THEN RETURN test$
ENDIF
NEXT
RETURN ""
ENDFUNC
FUNCTION ambsel$(VAR data$ SIZE dim)
RETURN IIF$(dim < 2, "ambsel$ needs more than 1 argument", amb_recurse$(data$, 0, dim, ""))
ENDFUNC
FUNCTION this_is_some_constraint(var$)
DOTIMES AMOUNT(var$)-1
IF RIGHT$(TOKEN$(var$, _), 1) != LEFT$(TOKEN$(var$, _+1), 1) THEN RETURN FALSE
DONE
RETURN TRUE
ENDFUNC
' AMBASSERT: pointing to a constraint function
ambassert = this_is_some_constraint
' AMBSEL$: generate result from arguments in delimited string format
PRINT ambsel$("the that a", "frog elephant thing", "walked treaded grows", "slowly quickly") |
http://rosettacode.org/wiki/Aliquot_sequence_classifications | Aliquot sequence classifications | An aliquot sequence of a positive integer K is defined recursively as the first member
being K and subsequent members being the sum of the Proper divisors of the previous term.
If the terms eventually reach 0 then the series for K is said to terminate.
There are several classifications for non termination:
If the second term is K then all future terms are also K and so the sequence repeats from the first term with period 1 and K is called perfect.
If the third term would be repeating K then the sequence repeats with period 2 and K is called amicable.
If the Nth term would be repeating K for the first time, with N > 3 then the sequence repeats with period N - 1 and K is called sociable.
Perfect, amicable and sociable numbers eventually repeat the original number K; there are other repetitions...
Some K have a sequence that eventually forms a periodic repetition of period 1 but of a number other than K, for example 95 which forms the sequence 95, 25, 6, 6, 6, ... such K are called aspiring.
K that have a sequence that eventually forms a periodic repetition of period >= 2 but of a number other than K, for example 562 which forms the sequence 562, 284, 220, 284, 220, ... such K are called cyclic.
And finally:
Some K form aliquot sequences that are not known to be either terminating or periodic; these K are to be called non-terminating.
For the purposes of this task, K is to be classed as non-terminating if it has not been otherwise classed after generating 16 terms or if any term of the sequence is greater than 2**47 = 140,737,488,355,328.
Task
Create routine(s) to generate the aliquot sequence of a positive integer enough to classify it according to the classifications given above.
Use it to display the classification and sequences of the numbers one to ten inclusive.
Use it to show the classification and sequences of the following integers, in order:
11, 12, 28, 496, 220, 1184, 12496, 1264460, 790, 909, 562, 1064, 1488, and optionally 15355717786080.
Show all output on this page.
Related tasks
Abundant, deficient and perfect number classifications. (Classifications from only the first two members of the whole sequence).
Proper divisors
Amicable pairs
| #11l | 11l | F pdsum(n)
R sum((1 .. (n + 1) I/ 2).filter(x -> @n % x == 0 & @n != x))
F aliquot(n, maxlen = 16, maxterm = 2 ^ 30)
I n == 0
R (‘terminating’, [0])
V s = [n]
V slen = 1
V new = n
L slen <= maxlen & new < maxterm
new = pdsum(s.last)
I new C s
I s[0] == new
I slen == 1
R (‘perfect’, s)
E I slen == 2
R (‘amicable’, s)
E
R (‘sociable of length #.’.format(slen), s)
E I s.last == new
R (‘aspiring’, s)
E
R (‘cyclic back to #.’.format(new), s)
E I new == 0
R (‘terminating’, s [+] [0])
E
s.append(new)
slen++
L.was_no_break
R (‘non-terminating’, s)
L(n) 1..10
V (cls, seq) = aliquot(n)
print(‘#.: #.’.format(cls, seq))
print()
L(n) [11, 12, 28, 496, 220, 1184, 12496, 1264460, 790, 909, 562, 1064, 1488]
V (cls, seq) = aliquot(n)
print(‘#.: #.’.format(cls, seq)) |
http://rosettacode.org/wiki/Address_of_a_variable | Address of a variable |
Basic Data Operation
This is a basic data operation. It represents a fundamental action on a basic data type.
You may see other such operations in the Basic Data Operations category, or:
Integer Operations
Arithmetic |
Comparison
Boolean Operations
Bitwise |
Logical
String Operations
Concatenation |
Interpolation |
Comparison |
Matching
Memory Operations
Pointers & references |
Addresses
Task
Demonstrate how to get the address of a variable and how to set the address of a variable.
| #AArch64_Assembly | AArch64 Assembly |
/* ARM assembly AArch64 Raspberry PI 3B */
/* program adrvar.s */
/*************************************/
/* Constantes */
/*************************************/
.equ STDOUT, 1
.equ WRITE, 64
.equ EXIT, 93
/*************************************/
/* Initialized data */
/*************************************/
.data
szMessage: .asciz "Hello. \n" // message
szRetourLigne: .asciz "\n"
qValDeb: .quad 5 // value 5 in array of 8 bytes
/*************************************/
/* No Initialized data */
/*************************************/
.bss
qValeur: .skip 8 // reserve 8 bytes in memory
/*************************************/
/* Program code */
/*************************************/
.text
.global main
main:
ldr x0,=szMessage // adresse of message short program
bl affichageMess // call function
// or
ldr x0,qAdrszMessage // adresse of message big program (size code > 4K)
bl affichageMess // call function
ldr x1,=qValDeb // adresse of variable -> x1 short program
ldr x0,[x1] // value of iValdeb -> x0
ldr x1,qAdriValDeb // adresse of variable -> x1 big program
ldr x0,[x1] // value of iValdeb -> x0
/* set variables */
ldr x1,=qValeur // adresse of variable -> x1 short program
str x0,[x1] // value of x0 -> iValeur
ldr x1,qAdriValeur // adresse of variable -> x1 big program
str x0,[x1] // value of x0 -> iValeur
/* end of program */
mov x0,0 // return code
mov x8,EXIT // request to exit program
svc 0 // perform the system call
qAdriValDeb: .quad qValDeb
qAdriValeur: .quad qValeur
qAdrszMessage: .quad szMessage
qAdrszRetourLigne: .quad szRetourLigne
/******************************************************************/
/* String display with size compute */
/******************************************************************/
/* x0 contains string address (string ended with zero binary) */
affichageMess:
stp x0,x1,[sp,-16]! // save registers
stp x2,x8,[sp,-16]! // save registers
mov x2,0 // size counter
1: // loop start
ldrb w1,[x0,x2] // load a byte
cbz w1,2f // if zero -> end string
add x2,x2,#1 // else increment counter
b 1b // and loop
2: // x2 = string size
mov x1,x0 // string address
mov x0,STDOUT // output Linux standard
mov x8,WRITE // code call system "write"
svc 0 // call systeme Linux
ldp x2,x8,[sp],16 // restaur 2 registres
ldp x0,x1,[sp],16 // restaur 2 registres
ret // retour adresse lr x30
|
http://rosettacode.org/wiki/Address_of_a_variable | Address of a variable |
Basic Data Operation
This is a basic data operation. It represents a fundamental action on a basic data type.
You may see other such operations in the Basic Data Operations category, or:
Integer Operations
Arithmetic |
Comparison
Boolean Operations
Bitwise |
Logical
String Operations
Concatenation |
Interpolation |
Comparison |
Matching
Memory Operations
Pointers & references |
Addresses
Task
Demonstrate how to get the address of a variable and how to set the address of a variable.
| #Action.21 | Action! | PROC Main()
BYTE v=[123]
PrintF("Value of variable: %B%E",v)
PrintF("Address of variable: %H%E",@v)
RETURN |
http://rosettacode.org/wiki/Address_of_a_variable | Address of a variable |
Basic Data Operation
This is a basic data operation. It represents a fundamental action on a basic data type.
You may see other such operations in the Basic Data Operations category, or:
Integer Operations
Arithmetic |
Comparison
Boolean Operations
Bitwise |
Logical
String Operations
Concatenation |
Interpolation |
Comparison |
Matching
Memory Operations
Pointers & references |
Addresses
Task
Demonstrate how to get the address of a variable and how to set the address of a variable.
| #Ada | Ada | The_Address : System.Address;
I : Integer;
The_Address := I'Address; |
http://rosettacode.org/wiki/Algebraic_data_types | Algebraic data types | Some languages offer direct support for algebraic data types and pattern matching on them. While this of course can always be simulated with manual tagging and conditionals, it allows for terse code which is easy to read, and can represent the algorithm directly.
Task
As an example, implement insertion in a red-black-tree.
A red-black-tree is a binary tree where each internal node has a color attribute red or black. Moreover, no red node can have a red child, and every path from the root to an empty node must contain the same number of black nodes. As a consequence, the tree is balanced, and must be re-balanced after an insertion.
Reference
Red-Black Trees in a Functional Setting
| #E | E | def balance(tree) {
return if (
tree =~ term`tree(black, tree(red, tree(red, @a, @x, @b), @y, @c), @z, @d)` ||
tree =~ term`tree(black, tree(red, @a, @x, tree(red, @b, @y, @c)), @z, @d)` ||
tree =~ term`tree(black, @a, @x, tree(red, tree(red, @b, @y, @c), @z, @d))` ||
tree =~ term`tree(black, @a, @x, tree(red, @b, @y, tree(red, @c, @z, @d)))`
) {
term`tree(red, tree(black, $a, $x, $b), $y, tree(black, $c, $z, $d))`
} else { tree }
}
def insert(elem, tree) {
def ins(tree) {
return switch (tree) {
match term`empty` { term`tree(red, empty, $elem, empty)` }
match term`tree(@color, @a, @y, @b)` {
if (elem < y) {
balance(term`tree($color, ${ins(a)}, $y, $b)`)
} else if (elem > y) {
balance(term`tree($color, $a, $y, ${ins(b)})`)
} else {
tree
}
}
}
}
def term`tree(@_, @a, @y, @b)` := ins(tree)
return term`tree(black, $a, $y, $b)`
}
|
http://rosettacode.org/wiki/Algebraic_data_types | Algebraic data types | Some languages offer direct support for algebraic data types and pattern matching on them. While this of course can always be simulated with manual tagging and conditionals, it allows for terse code which is easy to read, and can represent the algorithm directly.
Task
As an example, implement insertion in a red-black-tree.
A red-black-tree is a binary tree where each internal node has a color attribute red or black. Moreover, no red node can have a red child, and every path from the root to an empty node must contain the same number of black nodes. As a consequence, the tree is balanced, and must be re-balanced after an insertion.
Reference
Red-Black Trees in a Functional Setting
| #EchoLisp | EchoLisp |
;; code adapted from Racket and Common Lisp
;; Illustrates matching on structures
(require 'match)
(require 'struct)
(define (N-tostring n) (format "%s %d" (N-color n) (N-value n)))
(struct N (color left value right) #:tostring N-tostring)
(define (balance t)
(match t
[(N '⚫️ (N '🔴 (N '🔴 a x b) y c) z d) (N '🔴 (N '⚫️ a x b) y (N '⚫️ c z d))]
[(N '⚫️ (N '🔴 a x (N '🔴 b y c)) z d) (N '🔴 (N '⚫️ a x b) y (N '⚫️ c z d))]
[(N '⚫️ a x (N '🔴 (N '🔴 b y c) z d)) (N '🔴 (N '⚫️ a x b) y (N '⚫️ c z d))]
[(N '⚫️ a x (N '🔴 b y (N '🔴 c z d))) (N '🔴 (N '⚫️ a x b) y (N '⚫️ c z d))]
[else t]))
(define (ins value: x tree: t)
(match t
['empty (N '🔴 'empty x 'empty)]
[(N c l v r) (cond [(< x v) (balance (N c (ins x l) v r))]
[(> x v) (balance (N c l v (ins x r)))]
[else t])]))
(define (insert value: x tree: s)
(match (ins x s) [(N _ l v r) (N '⚫️ l v r)]))
|
http://rosettacode.org/wiki/Almost_prime | Almost prime | A k-Almost-prime is a natural number
n
{\displaystyle n}
that is the product of
k
{\displaystyle k}
(possibly identical) primes.
Example
1-almost-primes, where
k
=
1
{\displaystyle k=1}
, are the prime numbers themselves.
2-almost-primes, where
k
=
2
{\displaystyle k=2}
, are the semiprimes.
Task
Write a function/method/subroutine/... that generates k-almost primes and use it to create a table here of the first ten members of k-Almost primes for
1
<=
K
<=
5
{\displaystyle 1<=K<=5}
.
Related tasks
Semiprime
Category:Prime Numbers
| #C.2B.2B | C++ | #include <cstdlib>
#include <iostream>
#include <sstream>
#include <iomanip>
#include <list>
bool k_prime(unsigned n, unsigned k) {
unsigned f = 0;
for (unsigned p = 2; f < k && p * p <= n; p++)
while (0 == n % p) { n /= p; f++; }
return f + (n > 1 ? 1 : 0) == k;
}
std::list<unsigned> primes(unsigned k, unsigned n) {
std::list<unsigned> list;
for (unsigned i = 2;list.size() < n;i++)
if (k_prime(i, k)) list.push_back(i);
return list;
}
int main(const int argc, const char* argv[]) {
using namespace std;
for (unsigned k = 1; k <= 5; k++) {
ostringstream os("");
const list<unsigned> l = primes(k, 10);
for (list<unsigned>::const_iterator i = l.begin(); i != l.end(); i++)
os << setw(4) << *i;
cout << "k = " << k << ':' << os.str() << endl;
}
return EXIT_SUCCESS;
} |
http://rosettacode.org/wiki/Anagrams | Anagrams | When two or more words are composed of the same characters, but in a different order, they are called anagrams.
Task[edit]
Using the word list at http://wiki.puzzlers.org/pub/wordlists/unixdict.txt,
find the sets of words that share the same characters that contain the most words in them.
Related tasks
Word plays
Ordered words
Palindrome detection
Semordnilap
Anagrams
Anagrams/Deranged anagrams
Other tasks related to string operations:
Metrics
Array length
String length
Copy a string
Empty string (assignment)
Counting
Word frequency
Letter frequency
Jewels and stones
I before E except after C
Bioinformatics/base count
Count occurrences of a substring
Count how many vowels and consonants occur in a string
Remove/replace
XXXX redacted
Conjugate a Latin verb
Remove vowels from a string
String interpolation (included)
Strip block comments
Strip comments from a string
Strip a set of characters from a string
Strip whitespace from a string -- top and tail
Strip control codes and extended characters from a string
Anagrams/Derangements/shuffling
Word wheel
ABC problem
Sattolo cycle
Knuth shuffle
Ordered words
Superpermutation minimisation
Textonyms (using a phone text pad)
Anagrams
Anagrams/Deranged anagrams
Permutations/Derangements
Find/Search/Determine
ABC words
Odd words
Word ladder
Semordnilap
Word search
Wordiff (game)
String matching
Tea cup rim text
Alternade words
Changeable words
State name puzzle
String comparison
Unique characters
Unique characters in each string
Extract file extension
Levenshtein distance
Palindrome detection
Common list elements
Longest common suffix
Longest common prefix
Compare a list of strings
Longest common substring
Find common directory path
Words from neighbour ones
Change e letters to i in words
Non-continuous subsequences
Longest common subsequence
Longest palindromic substrings
Longest increasing subsequence
Words containing "the" substring
Sum of the digits of n is substring of n
Determine if a string is numeric
Determine if a string is collapsible
Determine if a string is squeezable
Determine if a string has all unique characters
Determine if a string has all the same characters
Longest substrings without repeating characters
Find words which contains all the vowels
Find words which contains most consonants
Find words which contains more than 3 vowels
Find words which first and last three letters are equals
Find words which odd letters are consonants and even letters are vowels or vice_versa
Formatting
Substring
Rep-string
Word wrap
String case
Align columns
Literals/String
Repeat a string
Brace expansion
Brace expansion using ranges
Reverse a string
Phrase reversals
Comma quibbling
Special characters
String concatenation
Substring/Top and tail
Commatizing numbers
Reverse words in a string
Suffixation of decimal numbers
Long literals, with continuations
Numerical and alphabetical suffixes
Abbreviations, easy
Abbreviations, simple
Abbreviations, automatic
Song lyrics/poems/Mad Libs/phrases
Mad Libs
Magic 8-ball
99 Bottles of Beer
The Name Game (a song)
The Old lady swallowed a fly
The Twelve Days of Christmas
Tokenize
Text between
Tokenize a string
Word break problem
Tokenize a string with escaping
Split a character string based on change of character
Sequences
Show ASCII table
De Bruijn sequences
Self-referential sequences
Generate lower case ASCII alphabet
| #ARM_Assembly | ARM Assembly |
/* ARM assembly Raspberry PI */
/* program anagram.s */
/* REMARK 1 : this program use routines in a include file
see task Include a file language arm assembly
for the routine affichageMess conversion10
see at end of this program the instruction include */
/* for constantes see task include a file in arm assembly */
/************************************/
/* Constantes */
/************************************/
.include "../constantes.inc"
.equ MAXI, 40000
.equ BUFFERSIZE, 300000
.equ READ, 3 @ system call
.equ OPEN, 5 @ system call
.equ CLOSE, 6 @ system call
.equ O_RDWR, 0x0002 @ open for reading and writing
/*********************************/
/* Initialized data */
/*********************************/
.data
szFileName: .asciz "./listword.txt"
szMessErreur: .asciz "FILE ERROR."
szCarriageReturn: .asciz "\n"
szMessSpace: .asciz " "
ptBuffer1: .int sBuffer1
/*********************************/
/* UnInitialized data */
/*********************************/
.bss
ptTabBuffer: .skip 4 * MAXI
ptTabAna: .skip 4 * MAXI
tbiCptAna: .skip 4 * MAXI
iNBword: .skip 4
sBuffer: .skip BUFFERSIZE
sBuffer1: .skip BUFFERSIZE
/*********************************/
/* code section */
/*********************************/
.text
.global main
main: @ entry of program
mov r4,#0 @ loop indice
ldr r0,iAdrszFileName @ file name
mov r1,#O_RDWR @ flags
mov r2,#0 @ mode
mov r7,#OPEN @
svc 0
cmp r0,#0 @ error open
ble 99f
mov r8,r0 @ FD save Fd
ldr r1,iAdrsBuffer @ buffer address
ldr r2,iSizeBuf @ buffersize
mov r7, #READ
svc 0
cmp r0,#0 @ error read ?
blt 99f
mov r5,r0 @ save size read bytes
ldr r4,iAdrsBuffer @ buffer address
ldr r0,iAdrsBuffer @ start word address
mov r2,#0
mov r1,#0 @ word length
1:
cmp r2,r5
bge 2f
ldrb r3,[r4,r2]
cmp r3,#0xD @ end word ?
addne r1,r1,#1 @ increment word length
addne r2,r2,#1 @ increment indice
bne 1b @ and loop
mov r3,#0
strb r3,[r4,r2] @ store final zero
bl anaWord @ sort word letters
add r2,r2,#2 @ jump OD and 0A
add r0,r4,r2 @ new address begin word
mov r1,#0 @ init length
b 1b @ and loop
2:
mov r3,#0 @ last word
strb r3,[r4,r2]
bl anaWord
mov r0,r8 @ file Fd
mov r7, #CLOSE
svc 0
cmp r0,#0 @ error close ?
blt 99f
ldr r0,iAdrptTabAna @ address sorted string area
mov r1,#0 @ first indice
ldr r2,iAdriNBword
ldr r2,[r2] @ last indice
ldr r3,iAdrptTabBuffer @ address sorted string area
bl triRapide @ quick sort
ldr r4,iAdrptTabAna @ address sorted string area
ldr r7,iAdrptTabBuffer @ address sorted string area
ldr r10,iAdrtbiCptAna @ address counter occurences
mov r9,r2 @ size word array
mov r8,#0 @ indice first occurence
ldr r3,[r4,r8,lsl #2] @ load first value
mov r2,#1 @ loop indice
mov r6,#0 @ counter
mov r12,#0 @ counter value max
3:
ldr r5,[r4,r2,lsl #2] @ load next value
mov r0,r3
mov r1,r5
bl comparStrings
cmp r0,#0 @ sorted strings equal ?
bne 4f
add r6,r6,#1 @ yes increment counter
b 5f
4: @ no
str r6,[r10,r8,lsl #2] @ store counter in first occurence
cmp r6,r12 @ counter > value max
movgt r12,r6 @ yes counter -> value max
mov r6,#0 @ raz counter
mov r8,r2 @ init index first occurence
mov r3,r5 @ init value first occurence
5:
add r2,r2,#1 @ increment indice
cmp r2,r9 @ end word array ?
blt 3b @ no -> loop
mov r2,#0 @ raz indice
6: @ display loop
ldr r6,[r10,r2,lsl #2] @ load counter
cmp r6,r12 @ equal to max value ?
bne 8f
ldr r0,[r7,r2,lsl #2] @ load address first word
bl affichageMess
add r3,r2,#1 @ increment new indixe
mov r4,#0 @ counter
7:
ldr r0,iAdrszMessSpace
bl affichageMess
ldr r0,[r7,r3,lsl #2] @ load address other word
bl affichageMess
add r3,r3,#1 @ increment indice
add r4,r4,#1 @ increment counter
cmp r4,r6 @ max value ?
blt 7b @ no loop
ldr r0,iAdrszCarriageReturn
bl affichageMess
8:
add r2,r2,#1 @ increment indice
cmp r2,r9 @ maxi ?
blt 6b @ no -> loop
b 100f
99: @ display error
ldr r1,iAdrszMessErreur
bl displayError
100: @ standard end of the program
mov r0, #0 @ return code
mov r7, #EXIT @ request to exit program
svc #0 @ perform the system call
iAdrszCarriageReturn: .int szCarriageReturn
iAdrszFileName: .int szFileName
iAdrszMessErreur: .int szMessErreur
iAdrsBuffer: .int sBuffer
iSizeBuf: .int BUFFERSIZE
iAdrszMessSpace: .int szMessSpace
iAdrtbiCptAna: .int tbiCptAna
/******************************************************************/
/* analizing word */
/******************************************************************/
/* r0 word address */
/* r1 word length */
anaWord:
push {r1-r6,lr}
mov r5,r0
mov r6,r1
ldr r1,iAdrptTabBuffer
ldr r2,iAdriNBword
ldr r3,[r2]
str r0,[r1,r3,lsl #2]
ldr r1,iAdrptTabAna
ldr r4,iAdrptBuffer1
ldr r0,[r4]
add r6,r6,r0
add r6,r6,#1
str r6,[r4]
str r0,[r1,r3,lsl #2]
add r3,r3,#1
str r3,[r2]
mov r1,r0
mov r0,r5
bl triLetters @ sort word letters
mov r2,#0
100:
pop {r1-r6,pc}
iAdrptTabBuffer: .int ptTabBuffer
iAdrptTabAna: .int ptTabAna
iAdriNBword: .int iNBword
iAdrptBuffer1: .int ptBuffer1
/******************************************************************/
/* sort word letters */
/******************************************************************/
/* r0 address begin word */
/* r1 address recept array */
triLetters:
push {r1-r7,lr}
mov r2,#0
1:
ldrb r3,[r0,r2] @ load letter
cmp r3,#0 @ end word ?
beq 6f
cmp r2,#0 @ first letter ?
bne 2f
strb r3,[r1,r2] @ yes store in first position
add r2,r2,#1 @ increment indice
b 1b @ and loop
2:
mov r4,#0
3: @ begin loop to search insertion position
ldrb r5,[r1,r4] @ load letter
cmp r3,r5 @ compare
blt 4f @ to low -> insertion
add r4,r4,#1 @ increment indice
cmp r4,r2 @ compare to letters number in place
blt 3b @ search loop
strb r3,[r1,r2] @ else store in last position
add r2,r2,#1
b 1b @ and loop
4: @ move first letters in one position
sub r6,r2,#1 @ start indice
5:
ldrb r5,[r1,r6] @ load letter
add r7,r6,#1 @ store indice - 1
strb r5,[r1,r7] @ store letter
sub r6,r6,#1 @ decrement indice
cmp r6,r4 @ end ?
bge 5b @ no loop
strb r3,[r1,r4] @ else store letter in free position
add r2,r2,#1
b 1b @ and loop
6:
mov r3,#0 @ final zéro
strb r3,[r1,r2]
100:
pop {r1-r7,pc}
/***************************************************/
/* Appel récursif Tri Rapide quicksort */
/***************************************************/
/* r0 contains the address of table */
/* r1 contains index of first item */
/* r2 contains the number of elements > 0 */
/* r3 contains the address of table 2 */
triRapide:
push {r2-r6,lr} @ save registers
mov r6,r3
sub r2,#1 @ last item index
cmp r1,r2 @ first > last ?
bge 100f @ yes -> end
mov r4,r0 @ save r0
mov r5,r2 @ save r2
mov r3,r6
bl partition1 @ cutting into 2 parts
mov r2,r0 @ index partition
mov r0,r4 @ table address
bl triRapide @ sort lower part
mov r0,r4 @ table address
add r1,r2,#1 @ index begin = index partition + 1
add r2,r5,#1 @ number of elements
bl triRapide @ sort higter part
100: @ end function
pop {r2-r6,lr} @ restaur registers
bx lr @ return
/******************************************************************/
/* Partition table elements */
/******************************************************************/
/* r0 contains the address of table */
/* r1 contains index of first item */
/* r2 contains index of last item */
/* r3 contains the address of table 2 */
partition1:
push {r1-r12,lr} @ save registers
mov r8,r0 @ save address table 2
mov r9,r1
ldr r10,[r8,r2,lsl #2] @ load string address last index
mov r4,r9 @ init with first index
mov r5,r9 @ init with first index
1: @ begin loop
ldr r6,[r8,r5,lsl #2] @ load string address
mov r0,r6
mov r1,r10
bl comparStrings
cmp r0,#0
ldrlt r7,[r8,r4,lsl #2] @ if < swap value table
strlt r6,[r8,r4,lsl #2]
strlt r7,[r8,r5,lsl #2]
ldrlt r7,[r3,r4,lsl #2] @ swap array 2
ldrlt r12,[r3,r5,lsl #2]
strlt r7,[r3,r5,lsl #2]
strlt r12,[r3,r4,lsl #2]
addlt r4,#1 @ and increment index 1
add r5,#1 @ increment index 2
cmp r5,r2 @ end ?
blt 1b @ no -> loop
ldr r7,[r8,r4,lsl #2] @ swap value
str r10,[r8,r4,lsl #2]
str r7,[r8,r2,lsl #2]
ldr r7,[r3,r4,lsl #2] @ swap array 2
ldr r12,[r3,r2,lsl #2]
str r7,[r3,r2,lsl #2]
str r12,[r3,r4,lsl #2]
mov r0,r4 @ return index partition
100:
pop {r1-r12,lr}
bx lr
/************************************/
/* Strings case sensitive comparisons */
/************************************/
/* r0 et r1 contains the address of strings */
/* return 0 in r0 if equals */
/* return -1 if string r0 < string r1 */
/* return 1 if string r0 > string r1 */
comparStrings:
push {r1-r4} @ save des registres
mov r2,#0 @ counter
1:
ldrb r3,[r0,r2] @ byte string 1
ldrb r4,[r1,r2] @ byte string 2
cmp r3,r4
movlt r0,#-1 @ small
movgt r0,#1 @ greather
bne 100f @ not equals
cmp r3,#0 @ 0 end string
moveq r0,#0 @ equals
beq 100f @ end string
add r2,r2,#1 @ else add 1 in counter
b 1b @ and loop
100:
pop {r1-r4}
bx lr
/***************************************************/
/* ROUTINES INCLUDE */
/***************************************************/
.include "../affichage.inc"
|
http://rosettacode.org/wiki/Angle_difference_between_two_bearings | Angle difference between two bearings | Finding the angle between two bearings is often confusing.[1]
Task
Find the angle which is the result of the subtraction b2 - b1, where b1 and b2 are the bearings.
Input bearings are expressed in the range -180 to +180 degrees.
The result is also expressed in the range -180 to +180 degrees.
Compute the angle for the following pairs:
20 degrees (b1) and 45 degrees (b2)
-45 and 45
-85 and 90
-95 and 90
-45 and 125
-45 and 145
29.4803 and -88.6381
-78.3251 and -159.036
Optional extra
Allow the input bearings to be any (finite) value.
Test cases
-70099.74233810938 and 29840.67437876723
-165313.6666297357 and 33693.9894517456
1174.8380510598456 and -154146.66490124757
60175.77306795546 and 42213.07192354373
| #Julia | Julia | using Printf
function angdiff(a, b)
r = (b - a) % 360.0
if r ≥ 180.0
r -= 360.0
end
return r
end
println("Input in -180 to +180 range:")
for (a, b) in [(20.0, 45.0), (-45.0, 45.0), (-85.0, 90.0), (-95.0, 90.0), (-45.0, 125.0), (-45.0, 145.0),
(-45.0, 125.0), (-45.0, 145.0), (29.4803, -88.6381), (-78.3251, -159.036)]
@printf("% 6.1f - % 6.1f = % 6.1f\n", a, b, angdiff(a, b))
end
println("\nInput in wider range:")
for (a, b) in [(-70099.74233810938, 29840.67437876723), (-165313.6666297357, 33693.9894517456),
(1174.8380510598456, -154146.66490124757), (60175.77306795546, 42213.07192354373)]
@printf("% 9.1f - % 9.1f = % 6.1f\n", a, b, angdiff(a, b))
end |
http://rosettacode.org/wiki/Anagrams/Deranged_anagrams | Anagrams/Deranged anagrams | Two or more words are said to be anagrams if they have the same characters, but in a different order.
By analogy with derangements we define a deranged anagram as two words with the same characters, but in which the same character does not appear in the same position in both words.
Task[edit]
Use the word list at unixdict to find and display the longest deranged anagram.
Related tasks
Permutations/Derangements
Best shuffle
Word plays
Ordered words
Palindrome detection
Semordnilap
Anagrams
Anagrams/Deranged anagrams
Other tasks related to string operations:
Metrics
Array length
String length
Copy a string
Empty string (assignment)
Counting
Word frequency
Letter frequency
Jewels and stones
I before E except after C
Bioinformatics/base count
Count occurrences of a substring
Count how many vowels and consonants occur in a string
Remove/replace
XXXX redacted
Conjugate a Latin verb
Remove vowels from a string
String interpolation (included)
Strip block comments
Strip comments from a string
Strip a set of characters from a string
Strip whitespace from a string -- top and tail
Strip control codes and extended characters from a string
Anagrams/Derangements/shuffling
Word wheel
ABC problem
Sattolo cycle
Knuth shuffle
Ordered words
Superpermutation minimisation
Textonyms (using a phone text pad)
Anagrams
Anagrams/Deranged anagrams
Permutations/Derangements
Find/Search/Determine
ABC words
Odd words
Word ladder
Semordnilap
Word search
Wordiff (game)
String matching
Tea cup rim text
Alternade words
Changeable words
State name puzzle
String comparison
Unique characters
Unique characters in each string
Extract file extension
Levenshtein distance
Palindrome detection
Common list elements
Longest common suffix
Longest common prefix
Compare a list of strings
Longest common substring
Find common directory path
Words from neighbour ones
Change e letters to i in words
Non-continuous subsequences
Longest common subsequence
Longest palindromic substrings
Longest increasing subsequence
Words containing "the" substring
Sum of the digits of n is substring of n
Determine if a string is numeric
Determine if a string is collapsible
Determine if a string is squeezable
Determine if a string has all unique characters
Determine if a string has all the same characters
Longest substrings without repeating characters
Find words which contains all the vowels
Find words which contains most consonants
Find words which contains more than 3 vowels
Find words which first and last three letters are equals
Find words which odd letters are consonants and even letters are vowels or vice_versa
Formatting
Substring
Rep-string
Word wrap
String case
Align columns
Literals/String
Repeat a string
Brace expansion
Brace expansion using ranges
Reverse a string
Phrase reversals
Comma quibbling
Special characters
String concatenation
Substring/Top and tail
Commatizing numbers
Reverse words in a string
Suffixation of decimal numbers
Long literals, with continuations
Numerical and alphabetical suffixes
Abbreviations, easy
Abbreviations, simple
Abbreviations, automatic
Song lyrics/poems/Mad Libs/phrases
Mad Libs
Magic 8-ball
99 Bottles of Beer
The Name Game (a song)
The Old lady swallowed a fly
The Twelve Days of Christmas
Tokenize
Text between
Tokenize a string
Word break problem
Tokenize a string with escaping
Split a character string based on change of character
Sequences
Show ASCII table
De Bruijn sequences
Self-referential sequences
Generate lower case ASCII alphabet
| #Nim | Nim | import algorithm
import tables
import times
var anagrams: Table[seq[char], seq[string]] # Mapping sorted_list_of chars -> list of anagrams.
#---------------------------------------------------------------------------------------------------
func deranged(s1, s2: string): bool =
## Return true if "s1" and "s2" are deranged anagrams.
for i, c in s1:
if s2[i] == c:
return false
result = true
#---------------------------------------------------------------------------------------------------
let t0 = getTime()
# Build the anagrams table.
for word in lines("unixdict.txt"):
anagrams.mgetOrPut(sorted(word), @[]).add(word)
# Find the longest deranged anagrams.
var bestLen = 0
var best1, best2: string
for (key, list) in anagrams.pairs:
if key.len > bestLen:
var s1 = list[0]
for i in 1..list.high:
let s2 = list[i]
if deranged(s1, s2):
# Found a better pair.
best1 = s1
best2 = s2
bestLen = s1.len
break
echo "Longest deranged anagram pair: ", best1, " ", best2
echo "Processing time: ", (getTime() - t0).inMilliseconds, " ms." |
http://rosettacode.org/wiki/Anonymous_recursion | Anonymous recursion | While implementing a recursive function, it often happens that we must resort to a separate helper function to handle the actual recursion.
This is usually the case when directly calling the current function would waste too many resources (stack space, execution time), causing unwanted side-effects, and/or the function doesn't have the right arguments and/or return values.
So we end up inventing some silly name like foo2 or foo_helper. I have always found it painful to come up with a proper name, and see some disadvantages:
You have to think up a name, which then pollutes the namespace
Function is created which is called from nowhere else
The program flow in the source code is interrupted
Some languages allow you to embed recursion directly in-place. This might work via a label, a local gosub instruction, or some special keyword.
Anonymous recursion can also be accomplished using the Y combinator.
Task
If possible, demonstrate this by writing the recursive version of the fibonacci function (see Fibonacci sequence) which checks for a negative argument before doing the actual recursion.
| #Julia | Julia | function fib(n)
if n < 0
throw(ArgumentError("negative arguments not allowed"))
end
aux(m) = m < 2 ? one(m) : aux(m-1) + aux(m-2)
aux(n)
end |
http://rosettacode.org/wiki/Amicable_pairs | Amicable pairs | Two integers
N
{\displaystyle N}
and
M
{\displaystyle M}
are said to be amicable pairs if
N
≠
M
{\displaystyle N\neq M}
and the sum of the proper divisors of
N
{\displaystyle N}
(
s
u
m
(
p
r
o
p
D
i
v
s
(
N
)
)
{\displaystyle \mathrm {sum} (\mathrm {propDivs} (N))}
)
=
M
{\displaystyle =M}
as well as
s
u
m
(
p
r
o
p
D
i
v
s
(
M
)
)
=
N
{\displaystyle \mathrm {sum} (\mathrm {propDivs} (M))=N}
.
Example
1184 and 1210 are an amicable pair, with proper divisors:
1, 2, 4, 8, 16, 32, 37, 74, 148, 296, 592 and
1, 2, 5, 10, 11, 22, 55, 110, 121, 242, 605 respectively.
Task
Calculate and show here the Amicable pairs below 20,000; (there are eight).
Related tasks
Proper divisors
Abundant, deficient and perfect number classifications
Aliquot sequence classifications and its amicable classification.
| #Frink | Frink |
n = 1
seen = new set
do
{
n = n + 1
if seen.contains[n]
next
sum = sum[allFactors[n, true, false, false]]
if sum != n and sum[allFactors[sum, true, false, false]] == n
{
println["$n, $sum"]
seen.put[sum]
}
} while n <= 20000
|
http://rosettacode.org/wiki/Animation | Animation |
Animation is integral to many parts of GUIs, including both the fancy effects when things change used in window managers, and of course games. The core of any animation system is a scheme for periodically changing the display while still remaining responsive to the user. This task demonstrates this.
Task
Create a window containing the string "Hello World! " (the trailing space is significant).
Make the text appear to be rotating right by periodically removing one letter from the end of the string and attaching it to the front.
When the user clicks on the (windowed) text, it should reverse its direction.
| #Prolog | Prolog | :- use_module(library(pce)).
animation :-
new(D, window('Animation')),
new(Label, label(hello, 'Hello world ! ')),
send(D, display, Label, point(1,10)),
new(@animation, animation(Label)),
send(D, recogniser,
new(_G, my_click_gesture(left, ''))),
send(D, done_message, and(message(@animation, free),
message(@receiver, destroy))),
send(D, open),
send(@animation?mytimer, start).
:- pce_begin_class(animation(label), object).
variable(label, object, both, "Display window").
variable(delta, object, both, "increment of the angle").
variable(mytimer, timer, both, "timer of the animation").
initialise(P, W:object) :->
"Creation of the object"::
send(P, label, W),
send(P, delta, to_left),
send(P, mytimer, new(_, timer(0.5,message(P, anim_message)))).
% method called when the object is destroyed
% first the timer is stopped
% then all the resources are freed
unlink(P) :->
send(P?mytimer, stop),
send(P, send_super, unlink).
% message processed by the timer
anim_message(P) :->
get(P, label, L),
get(L, selection, S),
get(P, delta, Delta),
compute(Delta, S, S1),
new(A, name(S1)),
send(L, selection, A).
:- pce_end_class.
:- pce_begin_class(my_click_gesture, click_gesture,
"Click in a window").
class_variable(button, button_name, left,
"By default click with left button").
terminate(G, Ev:event) :->
send(G, send_super, terminate, Ev),
get(@animation, delta, D),
( D = to_left -> D1 = to_right; D1 = to_left),
send(@animation, delta, D1).
:- pce_end_class.
% compute next text to be dispalyed
compute(to_right, S, S1) :-
get(S, size, Len),
Len1 is Len - 1,
get(S, sub, Len1, Str),
get(S, delete_suffix, Str, V),
get(Str, append, V, S1).
compute(to_left, S, S1) :-
get(S, sub, 0, 1, Str),
get(S, delete_prefix, Str, V),
get(V, append, Str, S1).
|
http://rosettacode.org/wiki/Animate_a_pendulum | Animate a pendulum |
One good way of making an animation is by simulating a physical system and illustrating the variables in that system using a dynamically changing graphical display.
The classic such physical system is a simple gravity pendulum.
Task
Create a simple physical model of a pendulum and animate it.
| #Julia | Julia | using Luxor
using Colors
using BoundaryValueDiffEq
# constants for differential equations and movie
const g = 9.81
const L = 1.0 # pendulum length in meters
const bobd = 0.10 # pendulum bob diameter in meters
const framerate = 50.0 # intended frame rate/sec
const t0 = 0.0 # start time (s)
const tf = 2.3 # end simulation time (s)
const dtframe = 1.0/framerate # time increment per frame
const tspan = LinRange(t0, tf, Int(floor(tf*framerate))) # array of time points in animation
const bgcolor = "black" # gif background
const leaderhue = (0.80, 0.70, 0.20) # gif swing arm hue light gold
const hslcolors = [HSL(col) for col in (distinguishable_colors(
Int(floor(tf*framerate)+3),[RGB(1,1,1)])[2:end])]
const giffilename = "pendulum.gif" # output file
# differential equations
simplependulum(du, u, p, t) = (θ=u[1]; dθ=u[2]; du[1]=dθ; du[2]=-(g/L)*sin(θ))
bc2(residual, u, p, t) = (residual[1] = u[end÷2][1] + pi/2; residual[2] = u[end][1] - pi/2)
bvp2 = BVProblem(simplependulum, bc2, [pi/2,pi/2], (tspan[1],tspan[end]))
sol2 = solve(bvp2, MIRK4(), dt=dtframe) # use the MIRK4 solver for TwoPointBVProblem
# movie making background
backdrop(scene, framenumber) = background(bgcolor)
function frame(scene, framenumber)
u1, u2 = sol2.u[framenumber]
y, x = L*cos(u1), L*sin(u1)
sethue(leaderhue)
poly([Point(-4.0, 0.0), Point(4.0, 0.0),
Point(160.0x,160.0y)], :fill)
sethue(Colors.HSV(framenumber*4.0, 1, 1))
circle(Point(160.0x,160.0y), 160bobd, :fill)
text(string("frame $framenumber of $(scene.framerange.stop)"),
Point(0.0, -190.0),
halign=:center)
end
muv = Movie(400, 400, "Pendulum Demo", 1:length(tspan))
animate(muv, [Scene(muv, backdrop),
Scene(muv, frame, easingfunction=easeinoutcubic)],
creategif=true, pathname=giffilename)
|
http://rosettacode.org/wiki/Amb | Amb | Define and give an example of the Amb operator.
The Amb operator (short for "ambiguous") expresses nondeterminism. This doesn't refer to randomness (as in "nondeterministic universe") but is closely related to the term as it is used in automata theory ("non-deterministic finite automaton").
The Amb operator takes a variable number of expressions (or values if that's simpler in the language) and yields a correct one which will satisfy a constraint in some future computation, thereby avoiding failure.
Problems whose solution the Amb operator naturally expresses can be approached with other tools, such as explicit nested iterations over data sets, or with pattern matching. By contrast, the Amb operator appears integrated into the language. Invocations of Amb are not wrapped in any visible loops or other search patterns; they appear to be independent.
Essentially Amb(x, y, z) splits the computation into three possible futures: a future in which the value x is yielded, a future in which the value y is yielded and a future in which the value z is yielded. The future which leads to a successful subsequent computation is chosen. The other "parallel universes" somehow go away. Amb called with no arguments fails.
For simplicity, one of the domain values usable with Amb may denote failure, if that is convenient. For instance, it is convenient if a Boolean false denotes failure, so that Amb(false) fails, and thus constraints can be expressed using Boolean expressions like Amb(x * y == 8) which unless x and y add to four.
A pseudo-code program which satisfies this constraint might look like:
let x = Amb(1, 2, 3)
let y = Amb(7, 6, 4, 5)
Amb(x * y = 8)
print x, y
The output is 2 4 because Amb(1, 2, 3) correctly chooses the future in which x has value 2, Amb(7, 6, 4, 5) chooses 4 and consequently Amb(x * y = 8) produces a success.
Alternatively, failure could be represented using strictly Amb():
unless x * y = 8 do Amb()
Or else Amb could take the form of two operators or functions: one for producing values and one for enforcing constraints:
let x = Ambsel(1, 2, 3)
let y = Ambsel(4, 5, 6)
Ambassert(x * y = 8)
print x, y
where Ambassert behaves like Amb() if the Boolean expression is false, otherwise it allows the future computation to take place, without yielding any value.
The task is to somehow implement Amb, and demonstrate it with a program which chooses one word from each of the following four sets of character strings to generate a four-word sentence:
"the" "that" "a"
"frog" "elephant" "thing"
"walked" "treaded" "grows"
"slowly" "quickly"
The constraint to be satisfied is that the last character of each word (other than the last) is the same as the first character of its successor.
The only successful sentence is "that thing grows slowly"; other combinations do not satisfy the constraint and thus fail.
The goal of this task isn't to simply process the four lists of words with explicit, deterministic program flow such as nested iteration, to trivially demonstrate the correct output. The goal is to implement the Amb operator, or a facsimile thereof that is possible within the language limitations.
| #Bracmat | Bracmat | ( ( Amb
= first last list words word solution
. !arg:(?first.?list)
& ( !list:
| !list:(.?words) ?list
& !words
: ?
%( @(?word:!first ? @?last)
& Amb$(!last.!list):?solution
& !word !solution:?solution
)
?
& !solution
)
)
& Amb
$ (
. (.the that a)
(.frog elephant thing)
(.walked treaded grows)
(.slowly quickly)
)
) |
http://rosettacode.org/wiki/Aliquot_sequence_classifications | Aliquot sequence classifications | An aliquot sequence of a positive integer K is defined recursively as the first member
being K and subsequent members being the sum of the Proper divisors of the previous term.
If the terms eventually reach 0 then the series for K is said to terminate.
There are several classifications for non termination:
If the second term is K then all future terms are also K and so the sequence repeats from the first term with period 1 and K is called perfect.
If the third term would be repeating K then the sequence repeats with period 2 and K is called amicable.
If the Nth term would be repeating K for the first time, with N > 3 then the sequence repeats with period N - 1 and K is called sociable.
Perfect, amicable and sociable numbers eventually repeat the original number K; there are other repetitions...
Some K have a sequence that eventually forms a periodic repetition of period 1 but of a number other than K, for example 95 which forms the sequence 95, 25, 6, 6, 6, ... such K are called aspiring.
K that have a sequence that eventually forms a periodic repetition of period >= 2 but of a number other than K, for example 562 which forms the sequence 562, 284, 220, 284, 220, ... such K are called cyclic.
And finally:
Some K form aliquot sequences that are not known to be either terminating or periodic; these K are to be called non-terminating.
For the purposes of this task, K is to be classed as non-terminating if it has not been otherwise classed after generating 16 terms or if any term of the sequence is greater than 2**47 = 140,737,488,355,328.
Task
Create routine(s) to generate the aliquot sequence of a positive integer enough to classify it according to the classifications given above.
Use it to display the classification and sequences of the numbers one to ten inclusive.
Use it to show the classification and sequences of the following integers, in order:
11, 12, 28, 496, 220, 1184, 12496, 1264460, 790, 909, 562, 1064, 1488, and optionally 15355717786080.
Show all output on this page.
Related tasks
Abundant, deficient and perfect number classifications. (Classifications from only the first two members of the whole sequence).
Proper divisors
Amicable pairs
| #AArch64_Assembly | AArch64 Assembly |
/* ARM assembly AARCH64 Raspberry PI 3B or android 64 bits */
/* program aliquotSeq64.s */
/*******************************************/
/* Constantes file */
/*******************************************/
/* for this file see task include a file in language AArch64 assembly*/
.include "../includeConstantesARM64.inc"
.equ MAXINUM, 10
.equ MAXI, 16
.equ NBDIVISORS, 1000
/*******************************************/
/* Initialized data */
/*******************************************/
.data
szMessStartPgm: .asciz "Program 64 bits start \n"
szMessEndPgm: .asciz "Program normal end.\n"
szMessErrorArea: .asciz "\033[31mError : area divisors too small.\033[0m \n"
szMessError: .asciz "\033[31m\nError !!!\033[0m \n"
szMessErrGen: .asciz "\033[31mError end program.\033[0m \n"
szMessOverflow: .asciz "\033[31mOverflow function isPrime.\033[0m \n"
szCarriageReturn: .asciz "\n"
szLibPerf: .asciz "Perfect \n"
szLibAmic: .asciz "Amicable \n"
szLibSoc: .asciz "Sociable \n"
szLibAspi: .asciz "Aspiring \n"
szLibCycl: .asciz "Cyclic \n"
szLibTerm: .asciz "Terminating \n"
szLibNoTerm: .asciz "No terminating\n"
/* datas message display */
szMessResult: .asciz " @ "
szMessResHead: .asciz "Number @ :"
.align 4
tbNumber: .quad 11,12,28,496,220,1184,12496,1264460,790,909,562,1064,1488
.equ NBNUMBER, (. - tbNumber ) / 8
/*******************************************/
/* UnInitialized data */
/*******************************************/
.bss
.align 4
sZoneConv: .skip 24
tbZoneDecom: .skip 8 * NBDIVISORS // facteur 4 octets
tbNumberSucc: .skip 8 * MAXI
/*******************************************/
/* code section */
/*******************************************/
.text
.global main
main: // program start
ldr x0,qAdrszMessStartPgm // display start message
bl affichageMess
mov x4,#1
1:
mov x0,x4 // number
bl aliquotClassif // aliquot classification
cmp x0,#-1 // error ?
beq 99f
add x4,x4,#1
cmp x4,#MAXINUM
ble 1b
ldr x5,qAdrtbNumber // number array
mov x4,#0
2:
ldr x0,[x5,x4,lsl #3] // load a number
bl aliquotClassif // aliquot classification
cmp x0,#-1 // error ?
beq 99f
add x4,x4,#1 // next number
cmp x4,#NBNUMBER // maxi ?
blt 2b // no -> loop
ldr x0,qAdrszMessEndPgm // display end message
bl affichageMess
b 100f
99: // display error message
ldr x0,qAdrszMessError
bl affichageMess
100: // standard end of the program
mov x0, #0 // return code
mov x8, #EXIT // request to exit program
svc 0 // perform system call
qAdrszMessStartPgm: .quad szMessStartPgm
qAdrszMessEndPgm: .quad szMessEndPgm
qAdrszMessError: .quad szMessError
qAdrszCarriageReturn: .quad szCarriageReturn
qAdrtbZoneDecom: .quad tbZoneDecom
qAdrszMessResult: .quad szMessResult
qAdrsZoneConv: .quad sZoneConv
qAdrtbNumber: .quad tbNumber
/******************************************************************/
/* function aliquot classification */
/******************************************************************/
/* x0 contains number */
aliquotClassif:
stp x4,lr,[sp,-16]! // save registres
stp x5,x6,[sp,-16]! // save registres
stp x7,x8,[sp,-16]! // save registres
mov x5,x0 // save number
ldr x1,qAdrsZoneConv
bl conversion10 // convert ascii string
strb wzr,[x1,x0]
ldr x0,qAdrszMessResHead
ldr x1,qAdrsZoneConv
bl strInsertAtCharInc // put in head message
bl affichageMess // and display
mov x0,x5 // restaur number
ldr x7,qAdrtbNumberSucc // number successif array
mov x4,#0 // counter number successif
1:
mov x6,x0 // previous number
ldr x1,qAdrtbZoneDecom
bl decompFact // create area of divisors
cmp x0,#0 // error ?
blt 99f
sub x3,x1,x6 // sum
mov x0,x3
ldr x1,qAdrsZoneConv
bl conversion10 // convert ascii string
strb wzr,[x1,x0]
ldr x0,qAdrszMessResult
ldr x1,qAdrsZoneConv
bl strInsertAtCharInc // and put in message
bl affichageMess
cmp x3,#0 // sum = zero
bne 11f
ldr x0,qAdrszLibTerm // terminating
bl affichageMess
b 100f
11:
cmp x5,x3 // compare number and sum
bne 4f
cmp x4,#0 // first loop ?
bne 2f
ldr x0,qAdrszLibPerf // perfect
bl affichageMess
b 100f
2:
cmp x4,#1 // second loop ?
bne 3f
ldr x0,qAdrszLibAmic // amicable
bl affichageMess
b 100f
3: // other loop
ldr x0,qAdrszLibSoc // sociable
bl affichageMess
b 100f
4:
cmp x6,x3 // compare sum and (sum - 1)
bne 5f
ldr x0,qAdrszLibAspi // aspirant
bl affichageMess
b 100f
5:
cmp x3,#1 // if one ,no search in array
beq 7f
mov x2,#0 // search indice
6: // search number in array
ldr x9,[x7,x2,lsl #3]
cmp x9,x3 // equal ?
beq 8f // yes -> cycling
add x2,x2,#1 // increment indice
cmp x2,x4 // end ?
blt 6b // no -> loop
7:
cmp x4,#MAXI
blt 10f
ldr x0,qAdrszLibNoTerm // no terminating
bl affichageMess
b 100f
8: // cycling
ldr x0,qAdrszLibCycl
bl affichageMess
b 100f
10:
str x3,[x7,x4,lsl #3] // store new sum in array
add x4,x4,#1 // increment counter
mov x0,x3 // new number = new sum
b 1b // and loop
99: // display error
ldr x0,qAdrszMessError
bl affichageMess
mov x0,-1
100:
ldp x7,x8,[sp],16 // restaur des 2 registres
ldp x5,x6,[sp],16 // restaur des 2 registres
ldp x4,lr,[sp],16 // restaur des 2 registres
ret
qAdrszMessResHead: .quad szMessResHead
qAdrszLibPerf: .quad szLibPerf
qAdrszLibAmic: .quad szLibAmic
qAdrszLibSoc: .quad szLibSoc
qAdrszLibCycl: .quad szLibCycl
qAdrszLibAspi: .quad szLibAspi
qAdrszLibNoTerm: .quad szLibNoTerm
qAdrszLibTerm: .quad szLibTerm
qAdrtbNumberSucc: .quad tbNumberSucc
/******************************************************************/
/* decomposition en facteur */
/******************************************************************/
/* x0 contient le nombre à decomposer */
/* x1 contains factor area address */
decompFact:
stp x3,lr,[sp,-16]! // save registres
stp x4,x5,[sp,-16]! // save registres
stp x6,x7,[sp,-16]! // save registres
stp x8,x9,[sp,-16]! // save registres
stp x10,x11,[sp,-16]! // save registres
mov x5,x1
mov x1,x0
cmp x0,1
beq 100f
mov x8,x0 // save number
bl isPrime // prime ?
cmp x0,#1
beq 98f // yes is prime
mov x1,#1
str x1,[x5] // first factor
mov x12,#1 // divisors sum
mov x4,#1 // indice divisors table
mov x1,#2 // first divisor
mov x6,#0 // previous divisor
mov x7,#0 // number of same divisors
2:
mov x0,x8 // dividende
udiv x2,x0,x1 // x1 divisor x2 quotient x3 remainder
msub x3,x2,x1,x0
cmp x3,#0
bne 5f // if remainder <> zero -> no divisor
mov x8,x2 // else quotient -> new dividende
cmp x1,x6 // same divisor ?
beq 4f // yes
mov x7,x4 // number factors in table
mov x9,#0 // indice
21:
ldr x10,[x5,x9,lsl #3 ] // load one factor
mul x10,x1,x10 // multiply
str x10,[x5,x7,lsl #3] // and store in the table
adds x12,x12,x10
bcs 99f
add x7,x7,#1 // and increment counter
add x9,x9,#1
cmp x9,x4
blt 21b
mov x4,x7
mov x6,x1 // new divisor
b 7f
4: // same divisor
sub x9,x4,#1
mov x7,x4
41:
ldr x10,[x5,x9,lsl #3 ]
cmp x10,x1
sub x13,x9,1
csel x9,x13,x9,ne
bne 41b
sub x9,x4,x9
42:
ldr x10,[x5,x9,lsl #3 ]
mul x10,x1,x10
str x10,[x5,x7,lsl #3] // and store in the table
adds x12,x12,x10
bcs 99f
add x7,x7,#1 // and increment counter
add x9,x9,#1
cmp x9,x4
blt 42b
mov x4,x7
b 7f // and loop
/* not divisor -> increment next divisor */
5:
cmp x1,#2 // if divisor = 2 -> add 1
add x13,x1,#1 // add 1
add x14,x1,#2 // else add 2
csel x1,x13,x14,eq
b 2b
/* divisor -> test if new dividende is prime */
7:
mov x3,x1 // save divisor
cmp x8,#1 // dividende = 1 ? -> end
beq 10f
mov x0,x8 // new dividende is prime ?
mov x1,#0
bl isPrime // the new dividende is prime ?
cmp x0,#1
bne 10f // the new dividende is not prime
cmp x8,x6 // else dividende is same divisor ?
beq 9f // yes
mov x7,x4 // number factors in table
mov x9,#0 // indice
71:
ldr x10,[x5,x9,lsl #3 ] // load one factor
mul x10,x8,x10 // multiply
str x10,[x5,x7,lsl #3] // and store in the table
adds x12,x12,x10
bcs 99f
add x7,x7,#1 // and increment counter
add x9,x9,#1
cmp x9,x4
blt 71b
mov x4,x7
mov x7,#0
b 11f
9:
sub x9,x4,#1
mov x7,x4
91:
ldr x10,[x5,x9,lsl #3 ]
cmp x10,x8
sub x13,x9,#1
csel x9,x13,x9,ne
bne 91b
sub x9,x4,x9
92:
ldr x10,[x5,x9,lsl #3 ]
mul x10,x8,x10
str x10,[x5,x7,lsl #3] // and store in the table
adds x12,x12,x10
bcs 99f // overflow
add x7,x7,#1 // and increment counter
add x9,x9,#1
cmp x9,x4
blt 92b
mov x4,x7
b 11f
10:
mov x1,x3 // current divisor = new divisor
cmp x1,x8 // current divisor > new dividende ?
ble 2b // no -> loop
/* end decomposition */
11:
mov x0,x4 // return number of table items
mov x1,x12 // return sum
mov x3,#0
str x3,[x5,x4,lsl #3] // store zéro in last table item
b 100f
98:
add x1,x8,1
mov x0,#0 // return code
b 100f
99:
ldr x0,qAdrszMessError
bl affichageMess
mov x0,#-1 // error code
b 100f
100:
ldp x10,x11,[sp],16 // restaur des 2 registres
ldp x8,x9,[sp],16 // restaur des 2 registres
ldp x6,x7,[sp],16 // restaur des 2 registres
ldp x4,x5,[sp],16 // restaur des 2 registres
ldp x3,lr,[sp],16 // restaur des 2 registres
ret // retour adresse lr x30
qAdrszMessErrGen: .quad szMessErrGen
/***************************************************/
/* Verification si un nombre est premier */
/***************************************************/
/* x0 contient le nombre à verifier */
/* x0 retourne 1 si premier 0 sinon */
isPrime:
stp x1,lr,[sp,-16]! // save registres
stp x2,x3,[sp,-16]! // save registres
mov x2,x0
sub x1,x0,#1
cmp x2,0
beq 99f // retourne zéro
cmp x2,2 // pour 1 et 2 retourne 1
ble 2f
mov x0,#2
bl moduloPux64
bcs 100f // erreur overflow
cmp x0,#1
bne 99f // Pas premier
cmp x2,3
beq 2f
mov x0,#3
bl moduloPux64
blt 100f // erreur overflow
cmp x0,#1
bne 99f
cmp x2,5
beq 2f
mov x0,#5
bl moduloPux64
bcs 100f // erreur overflow
cmp x0,#1
bne 99f // Pas premier
cmp x2,7
beq 2f
mov x0,#7
bl moduloPux64
bcs 100f // erreur overflow
cmp x0,#1
bne 99f // Pas premier
cmp x2,11
beq 2f
mov x0,#11
bl moduloPux64
bcs 100f // erreur overflow
cmp x0,#1
bne 99f // Pas premier
cmp x2,13
beq 2f
mov x0,#13
bl moduloPux64
bcs 100f // erreur overflow
cmp x0,#1
bne 99f // Pas premier
2:
cmn x0,0 // carry à zero pas d'erreur
mov x0,1 // premier
b 100f
99:
cmn x0,0 // carry à zero pas d'erreur
mov x0,#0 // Pas premier
100:
ldp x2,x3,[sp],16 // restaur des 2 registres
ldp x1,lr,[sp],16 // restaur des 2 registres
ret // retour adresse lr x30
/**************************************************************/
/********************************************************/
/* Calcul modulo de b puissance e modulo m */
/* Exemple 4 puissance 13 modulo 497 = 445 */
/********************************************************/
/* x0 nombre */
/* x1 exposant */
/* x2 modulo */
moduloPux64:
stp x1,lr,[sp,-16]! // save registres
stp x3,x4,[sp,-16]! // save registres
stp x5,x6,[sp,-16]! // save registres
stp x7,x8,[sp,-16]! // save registres
stp x9,x10,[sp,-16]! // save registres
cbz x0,100f
cbz x1,100f
mov x8,x0
mov x7,x1
mov x6,1 // resultat
udiv x4,x8,x2
msub x9,x4,x2,x8 // contient le reste
1:
tst x7,1
beq 2f
mul x4,x9,x6
umulh x5,x9,x6
mov x6,x4
mov x0,x6
mov x1,x5
bl divisionReg128U
cbnz x1,99f // overflow
mov x6,x3
2:
mul x8,x9,x9
umulh x5,x9,x9
mov x0,x8
mov x1,x5
bl divisionReg128U
cbnz x1,99f // overflow
mov x9,x3
lsr x7,x7,1
cbnz x7,1b
mov x0,x6 // result
cmn x0,0 // carry à zero pas d'erreur
b 100f
99:
ldr x0,qAdrszMessOverflow
bl affichageMess
cmp x0,0 // carry à un car erreur
mov x0,-1 // code erreur
100:
ldp x9,x10,[sp],16 // restaur des 2 registres
ldp x7,x8,[sp],16 // restaur des 2 registres
ldp x5,x6,[sp],16 // restaur des 2 registres
ldp x3,x4,[sp],16 // restaur des 2 registres
ldp x1,lr,[sp],16 // restaur des 2 registres
ret // retour adresse lr x30
qAdrszMessOverflow: .quad szMessOverflow
/***************************************************/
/* division d un nombre de 128 bits par un nombre de 64 bits */
/***************************************************/
/* x0 contient partie basse dividende */
/* x1 contient partie haute dividente */
/* x2 contient le diviseur */
/* x0 retourne partie basse quotient */
/* x1 retourne partie haute quotient */
/* x3 retourne le reste */
divisionReg128U:
stp x6,lr,[sp,-16]! // save registres
stp x4,x5,[sp,-16]! // save registres
mov x5,#0 // raz du reste R
mov x3,#128 // compteur de boucle
mov x4,#0 // dernier bit
1:
lsl x5,x5,#1 // on decale le reste de 1
tst x1,1<<63 // test du bit le plus à gauche
lsl x1,x1,#1 // on decale la partie haute du quotient de 1
beq 2f
orr x5,x5,#1 // et on le pousse dans le reste R
2:
tst x0,1<<63
lsl x0,x0,#1 // puis on decale la partie basse
beq 3f
orr x1,x1,#1 // et on pousse le bit de gauche dans la partie haute
3:
orr x0,x0,x4 // position du dernier bit du quotient
mov x4,#0 // raz du bit
cmp x5,x2
blt 4f
sub x5,x5,x2 // on enleve le diviseur du reste
mov x4,#1 // dernier bit à 1
4:
// et boucle
subs x3,x3,#1
bgt 1b
lsl x1,x1,#1 // on decale le quotient de 1
tst x0,1<<63
lsl x0,x0,#1 // puis on decale la partie basse
beq 5f
orr x1,x1,#1
5:
orr x0,x0,x4 // position du dernier bit du quotient
mov x3,x5
100:
ldp x4,x5,[sp],16 // restaur des 2 registres
ldp x6,lr,[sp],16 // restaur des 2 registres
ret // retour adresse lr x30
/********************************************************/
/* File Include fonctions */
/********************************************************/
/* for this file see task include a file in language AArch64 assembly */
.include "../includeARM64.inc"
|
http://rosettacode.org/wiki/Address_of_a_variable | Address of a variable |
Basic Data Operation
This is a basic data operation. It represents a fundamental action on a basic data type.
You may see other such operations in the Basic Data Operations category, or:
Integer Operations
Arithmetic |
Comparison
Boolean Operations
Bitwise |
Logical
String Operations
Concatenation |
Interpolation |
Comparison |
Matching
Memory Operations
Pointers & references |
Addresses
Task
Demonstrate how to get the address of a variable and how to set the address of a variable.
| #ALGOL_68 | ALGOL 68 | [4]INT test := (222,444,666,888);
REF INT reference := test[3];
REF INT(reference) := reference + 111;
print(("test value is now: ",test)) |
http://rosettacode.org/wiki/Address_of_a_variable | Address of a variable |
Basic Data Operation
This is a basic data operation. It represents a fundamental action on a basic data type.
You may see other such operations in the Basic Data Operations category, or:
Integer Operations
Arithmetic |
Comparison
Boolean Operations
Bitwise |
Logical
String Operations
Concatenation |
Interpolation |
Comparison |
Matching
Memory Operations
Pointers & references |
Addresses
Task
Demonstrate how to get the address of a variable and how to set the address of a variable.
| #Applesoft_BASIC | Applesoft BASIC | N = N : PRINT PEEK (131) + PEEK (132) * 256 |
http://rosettacode.org/wiki/Address_of_a_variable | Address of a variable |
Basic Data Operation
This is a basic data operation. It represents a fundamental action on a basic data type.
You may see other such operations in the Basic Data Operations category, or:
Integer Operations
Arithmetic |
Comparison
Boolean Operations
Bitwise |
Logical
String Operations
Concatenation |
Interpolation |
Comparison |
Matching
Memory Operations
Pointers & references |
Addresses
Task
Demonstrate how to get the address of a variable and how to set the address of a variable.
| #Argile | Argile | use std, array (: array.arg also defines pointer operators :)
let var = 42
let ptr = &var (: value of ptr is address of var :)
print var (: prints 42 :)
(*ptr)++ (: increments value pointed by ptr :)
print var (: prints 43 :) |
http://rosettacode.org/wiki/AKS_test_for_primes | AKS test for primes | The AKS algorithm for testing whether a number is prime is a polynomial-time algorithm based on an elementary theorem about Pascal triangles.
The theorem on which the test is based can be stated as follows:
a number
p
{\displaystyle p}
is prime if and only if all the coefficients of the polynomial expansion of
(
x
−
1
)
p
−
(
x
p
−
1
)
{\displaystyle (x-1)^{p}-(x^{p}-1)}
are divisible by
p
{\displaystyle p}
.
Example
Using
p
=
3
{\displaystyle p=3}
:
(x-1)^3 - (x^3 - 1)
= (x^3 - 3x^2 + 3x - 1) - (x^3 - 1)
= -3x^2 + 3x
And all the coefficients are divisible by 3, so 3 is prime.
Note:
This task is not the AKS primality test. It is an inefficient exponential time algorithm discovered in the late 1600s and used as an introductory lemma in the AKS derivation.
Task
Create a function/subroutine/method that given
p
{\displaystyle p}
generates the coefficients of the expanded polynomial representation of
(
x
−
1
)
p
{\displaystyle (x-1)^{p}}
.
Use the function to show here the polynomial expansions of
(
x
−
1
)
p
{\displaystyle (x-1)^{p}}
for
p
{\displaystyle p}
in the range 0 to at least 7, inclusive.
Use the previous function in creating another function that when given
p
{\displaystyle p}
returns whether
p
{\displaystyle p}
is prime using the theorem.
Use your test to generate a list of all primes under 35.
As a stretch goal, generate all primes under 50 (needs integers larger than 31-bit).
References
Agrawal-Kayal-Saxena (AKS) primality test (Wikipedia)
Fool-Proof Test for Primes - Numberphile (Video). The accuracy of this video is disputed -- at best it is an oversimplification.
| #11l | 11l | F expand_x_1(p)
V ex = [BigInt(1)]
L(i) 0 .< p
ex.append(ex.last * -(p - i) I/ (i + 1))
R reversed(ex)
F aks_test(p)
I p < 2
R 0B
V ex = expand_x_1(p)
ex[0]++
R !any(ex[0 .< (len)-1].map(mult -> mult % @p != 0))
print(‘# p: (x-1)^p for small p’)
L(p) 12
print(‘#3: #.’.format(p, enumerate(expand_x_1(p)).map((n, e) -> ‘#.#.#.’.format(‘+’ * (e >= 0), e, I n {(‘x^#.’.format(n))} E ‘’)).join(‘ ’)))
print("\n# small primes using the aks test")
print((0..100).filter(p -> aks_test(p))) |
http://rosettacode.org/wiki/Additive_primes | Additive primes | Definitions
In mathematics, additive primes are prime numbers for which the sum of their decimal digits are also primes.
Task
Write a program to determine (and show here) all additive primes less than 500.
Optionally, show the number of additive primes.
Also see
the OEIS entry: A046704 additive primes.
the prime-numbers entry: additive primes.
the geeks for geeks entry: additive prime number.
the prime-numbers fandom: additive primes.
| #11l | 11l | F is_prime(a)
I a == 2
R 1B
I a < 2 | a % 2 == 0
R 0B
L(i) (3 .. Int(sqrt(a))).step(2)
I a % i == 0
R 0B
R 1B
F digit_sum(=n)
V sum = 0
L n > 0
sum += n % 10
n I/= 10
R sum
V additive_primes = 0
L(i) 2..499
I is_prime(i) & is_prime(digit_sum(i))
additive_primes++
print(i, end' ‘ ’)
print("\nFound "additive_primes‘ additive primes less than 500’) |
http://rosettacode.org/wiki/Algebraic_data_types | Algebraic data types | Some languages offer direct support for algebraic data types and pattern matching on them. While this of course can always be simulated with manual tagging and conditionals, it allows for terse code which is easy to read, and can represent the algorithm directly.
Task
As an example, implement insertion in a red-black-tree.
A red-black-tree is a binary tree where each internal node has a color attribute red or black. Moreover, no red node can have a red child, and every path from the root to an empty node must contain the same number of black nodes. As a consequence, the tree is balanced, and must be re-balanced after an insertion.
Reference
Red-Black Trees in a Functional Setting
| #Elixir | Elixir | defmodule RBtree do
def find(nil, _), do: :not_found
def find({ key, value, _, _, _ }, key), do: { :found, { key, value } }
def find({ key1, _, _, left, _ }, key) when key < key1, do: find(left, key)
def find({ key1, _, _, _, right }, key) when key > key1, do: find(right, key)
def new(key, value), do: ins(nil, key, value) |> make_black
def insert(tree, key, value), do: ins(tree, key, value) |> make_black
defp ins(nil, key, value),
do: { key, value, :r, nil, nil }
defp ins({ key, _, color, left, right }, key, value),
do: { key, value, color, left, right }
defp ins({ ky, vy, cy, ly, ry }, key, value) when key < ky,
do: balance({ ky, vy, cy, ins(ly, key, value), ry })
defp ins({ ky, vy, cy, ly, ry }, key, value) when key > ky,
do: balance({ ky, vy, cy, ly, ins(ry, key, value) })
defp make_black({ key, value, _, left, right }),
do: { key, value, :b, left, right }
defp balance({ kx, vx, :b, lx, { ky, vy, :r, ly, { kz, vz, :r, lz, rz } } }),
do: { ky, vy, :r, { kx, vx, :b, lx, ly }, { kz, vz, :b, lz, rz } }
defp balance({ kx, vx, :b, lx, { ky, vy, :r, { kz, vz, :r, lz, rz }, ry } }),
do: { kz, vz, :r, { kx, vx, :b, lx, lz }, { ky, vy, :b, rz, ry } }
defp balance({ kx, vx, :b, { ky, vy, :r, { kz, vz, :r, lz, rz }, ry }, rx }),
do: { ky, vy, :r, { kz, vz, :b, lz, rz }, { kx, vx, :b, ry, rx } }
defp balance({ kx, vx, :b, { ky, vy, :r, ly, { kz, vz, :r, lz, rz } }, rx }),
do: { kz, vz, :r, { ky, vy, :b, ly, lz }, { kx, vx, :b, rz, rx } }
defp balance(t),
do: t
end
RBtree.new(0,3) |> IO.inspect
|> RBtree.insert(1,5) |> IO.inspect
|> RBtree.insert(2,-1) |> IO.inspect
|> RBtree.insert(3,7) |> IO.inspect
|> RBtree.insert(4,-3) |> IO.inspect
|> RBtree.insert(5,0) |> IO.inspect
|> RBtree.insert(6,-1) |> IO.inspect
|> RBtree.insert(7,0) |> IO.inspect
|> RBtree.find(4) |> IO.inspect |
http://rosettacode.org/wiki/Algebraic_data_types | Algebraic data types | Some languages offer direct support for algebraic data types and pattern matching on them. While this of course can always be simulated with manual tagging and conditionals, it allows for terse code which is easy to read, and can represent the algorithm directly.
Task
As an example, implement insertion in a red-black-tree.
A red-black-tree is a binary tree where each internal node has a color attribute red or black. Moreover, no red node can have a red child, and every path from the root to an empty node must contain the same number of black nodes. As a consequence, the tree is balanced, and must be re-balanced after an insertion.
Reference
Red-Black Trees in a Functional Setting
| #Emacs_Lisp | Emacs Lisp | (defun rbt-balance (tree)
(pcase tree
(`(B (R (R ,a ,x ,b) ,y ,c) ,z ,d) `(R (B ,a ,x ,b) ,y (B ,c ,z ,d)))
(`(B (R ,a ,x (R ,b ,y ,c)) ,z ,d) `(R (B ,a ,x ,b) ,y (B ,c ,z ,d)))
(`(B ,a ,x (R (R ,b ,y ,c) ,z ,d)) `(R (B ,a ,x ,b) ,y (B ,c ,z ,d)))
(`(B ,a ,x (R ,b ,y (R ,c ,z ,d))) `(R (B ,a ,x ,b) ,y (B ,c ,z ,d)))
(_ tree)))
(defun rbt-insert- (x s)
(pcase s
(`nil `(R nil ,x nil))
(`(,color ,a ,y ,b) (cond ((< x y)
(rbt-balance `(,color ,(rbt-insert- x a) ,y ,b)))
((> x y)
(rbt-balance `(,color ,a ,y ,(rbt-insert- x b))))
(t
s)))
(_ (error "Expected tree: %S" s))))
(defun rbt-insert (x s)
(pcase (rbt-insert- x s)
(`(,_ ,a ,y ,b) `(B ,a ,y ,b))
(_ (error "Internal error: %S" s))))
(let ((s nil))
(dotimes (i 16)
(setq s (rbt-insert (1+ i) s)))
(pp s)) |
http://rosettacode.org/wiki/Almost_prime | Almost prime | A k-Almost-prime is a natural number
n
{\displaystyle n}
that is the product of
k
{\displaystyle k}
(possibly identical) primes.
Example
1-almost-primes, where
k
=
1
{\displaystyle k=1}
, are the prime numbers themselves.
2-almost-primes, where
k
=
2
{\displaystyle k=2}
, are the semiprimes.
Task
Write a function/method/subroutine/... that generates k-almost primes and use it to create a table here of the first ten members of k-Almost primes for
1
<=
K
<=
5
{\displaystyle 1<=K<=5}
.
Related tasks
Semiprime
Category:Prime Numbers
| #Clojure | Clojure |
(ns clojure.examples.almostprime
(:gen-class))
(defn divisors [n]
" Finds divisors by looping through integers 2, 3,...i.. up to sqrt (n) [note: rather than compute sqrt(), test with i*i <=n] "
(let [div (some #(if (= 0 (mod n %)) % nil) (take-while #(<= (* % %) n) (iterate inc 2)))]
(if div ; div = nil (if no divisor found else its the divisor)
(into [] (concat (divisors div) (divisors (/ n div)))) ; Concat the two divisors of the two divisors
[n]))) ; Number is prime so only itself as a divisor
(defn divisors-k [k n]
" Finds n numbers with k divisors. Does this by looping through integers 2, 3, ... filtering (passing) ones with k divisors and
taking the first n "
(->> (iterate inc 2) ; infinite sequence of numbers starting at 2
(map divisors) ; compute divisor of each element of sequence
(filter #(= (count %) k)) ; filter to take only elements with k divisors
(take n) ; take n elements from filtered sequence
(map #(apply * %)))) ; compute number by taking product of divisors
(println (for [k (range 1 6)]
(println "k:" k (divisors-k k 10))))
} |
http://rosettacode.org/wiki/Anagrams | Anagrams | When two or more words are composed of the same characters, but in a different order, they are called anagrams.
Task[edit]
Using the word list at http://wiki.puzzlers.org/pub/wordlists/unixdict.txt,
find the sets of words that share the same characters that contain the most words in them.
Related tasks
Word plays
Ordered words
Palindrome detection
Semordnilap
Anagrams
Anagrams/Deranged anagrams
Other tasks related to string operations:
Metrics
Array length
String length
Copy a string
Empty string (assignment)
Counting
Word frequency
Letter frequency
Jewels and stones
I before E except after C
Bioinformatics/base count
Count occurrences of a substring
Count how many vowels and consonants occur in a string
Remove/replace
XXXX redacted
Conjugate a Latin verb
Remove vowels from a string
String interpolation (included)
Strip block comments
Strip comments from a string
Strip a set of characters from a string
Strip whitespace from a string -- top and tail
Strip control codes and extended characters from a string
Anagrams/Derangements/shuffling
Word wheel
ABC problem
Sattolo cycle
Knuth shuffle
Ordered words
Superpermutation minimisation
Textonyms (using a phone text pad)
Anagrams
Anagrams/Deranged anagrams
Permutations/Derangements
Find/Search/Determine
ABC words
Odd words
Word ladder
Semordnilap
Word search
Wordiff (game)
String matching
Tea cup rim text
Alternade words
Changeable words
State name puzzle
String comparison
Unique characters
Unique characters in each string
Extract file extension
Levenshtein distance
Palindrome detection
Common list elements
Longest common suffix
Longest common prefix
Compare a list of strings
Longest common substring
Find common directory path
Words from neighbour ones
Change e letters to i in words
Non-continuous subsequences
Longest common subsequence
Longest palindromic substrings
Longest increasing subsequence
Words containing "the" substring
Sum of the digits of n is substring of n
Determine if a string is numeric
Determine if a string is collapsible
Determine if a string is squeezable
Determine if a string has all unique characters
Determine if a string has all the same characters
Longest substrings without repeating characters
Find words which contains all the vowels
Find words which contains most consonants
Find words which contains more than 3 vowels
Find words which first and last three letters are equals
Find words which odd letters are consonants and even letters are vowels or vice_versa
Formatting
Substring
Rep-string
Word wrap
String case
Align columns
Literals/String
Repeat a string
Brace expansion
Brace expansion using ranges
Reverse a string
Phrase reversals
Comma quibbling
Special characters
String concatenation
Substring/Top and tail
Commatizing numbers
Reverse words in a string
Suffixation of decimal numbers
Long literals, with continuations
Numerical and alphabetical suffixes
Abbreviations, easy
Abbreviations, simple
Abbreviations, automatic
Song lyrics/poems/Mad Libs/phrases
Mad Libs
Magic 8-ball
99 Bottles of Beer
The Name Game (a song)
The Old lady swallowed a fly
The Twelve Days of Christmas
Tokenize
Text between
Tokenize a string
Word break problem
Tokenize a string with escaping
Split a character string based on change of character
Sequences
Show ASCII table
De Bruijn sequences
Self-referential sequences
Generate lower case ASCII alphabet
| #Arturo | Arturo | wordset: map read.lines relative "unixdict.txt" => strip
anagrams: #[]
loop wordset 'word [
anagram: sort to [:char] word
unless key? anagrams anagram ->
anagrams\[anagram]: new []
anagrams\[anagram]: anagrams\[anagram] ++ word
]
loop select values anagrams 'x [5 =< size x] 'words ->
print join.with:", " words |
http://rosettacode.org/wiki/Angle_difference_between_two_bearings | Angle difference between two bearings | Finding the angle between two bearings is often confusing.[1]
Task
Find the angle which is the result of the subtraction b2 - b1, where b1 and b2 are the bearings.
Input bearings are expressed in the range -180 to +180 degrees.
The result is also expressed in the range -180 to +180 degrees.
Compute the angle for the following pairs:
20 degrees (b1) and 45 degrees (b2)
-45 and 45
-85 and 90
-95 and 90
-45 and 125
-45 and 145
29.4803 and -88.6381
-78.3251 and -159.036
Optional extra
Allow the input bearings to be any (finite) value.
Test cases
-70099.74233810938 and 29840.67437876723
-165313.6666297357 and 33693.9894517456
1174.8380510598456 and -154146.66490124757
60175.77306795546 and 42213.07192354373
| #K | K |
/ Angle difference between two angles
/ angledif.k
angdif: {[b1;b2]; :[(r:(b2-b1)!360.0)<-180.0;r+:360.0;r>180.0;r-:360.0];:r}
|
http://rosettacode.org/wiki/Anagrams/Deranged_anagrams | Anagrams/Deranged anagrams | Two or more words are said to be anagrams if they have the same characters, but in a different order.
By analogy with derangements we define a deranged anagram as two words with the same characters, but in which the same character does not appear in the same position in both words.
Task[edit]
Use the word list at unixdict to find and display the longest deranged anagram.
Related tasks
Permutations/Derangements
Best shuffle
Word plays
Ordered words
Palindrome detection
Semordnilap
Anagrams
Anagrams/Deranged anagrams
Other tasks related to string operations:
Metrics
Array length
String length
Copy a string
Empty string (assignment)
Counting
Word frequency
Letter frequency
Jewels and stones
I before E except after C
Bioinformatics/base count
Count occurrences of a substring
Count how many vowels and consonants occur in a string
Remove/replace
XXXX redacted
Conjugate a Latin verb
Remove vowels from a string
String interpolation (included)
Strip block comments
Strip comments from a string
Strip a set of characters from a string
Strip whitespace from a string -- top and tail
Strip control codes and extended characters from a string
Anagrams/Derangements/shuffling
Word wheel
ABC problem
Sattolo cycle
Knuth shuffle
Ordered words
Superpermutation minimisation
Textonyms (using a phone text pad)
Anagrams
Anagrams/Deranged anagrams
Permutations/Derangements
Find/Search/Determine
ABC words
Odd words
Word ladder
Semordnilap
Word search
Wordiff (game)
String matching
Tea cup rim text
Alternade words
Changeable words
State name puzzle
String comparison
Unique characters
Unique characters in each string
Extract file extension
Levenshtein distance
Palindrome detection
Common list elements
Longest common suffix
Longest common prefix
Compare a list of strings
Longest common substring
Find common directory path
Words from neighbour ones
Change e letters to i in words
Non-continuous subsequences
Longest common subsequence
Longest palindromic substrings
Longest increasing subsequence
Words containing "the" substring
Sum of the digits of n is substring of n
Determine if a string is numeric
Determine if a string is collapsible
Determine if a string is squeezable
Determine if a string has all unique characters
Determine if a string has all the same characters
Longest substrings without repeating characters
Find words which contains all the vowels
Find words which contains most consonants
Find words which contains more than 3 vowels
Find words which first and last three letters are equals
Find words which odd letters are consonants and even letters are vowels or vice_versa
Formatting
Substring
Rep-string
Word wrap
String case
Align columns
Literals/String
Repeat a string
Brace expansion
Brace expansion using ranges
Reverse a string
Phrase reversals
Comma quibbling
Special characters
String concatenation
Substring/Top and tail
Commatizing numbers
Reverse words in a string
Suffixation of decimal numbers
Long literals, with continuations
Numerical and alphabetical suffixes
Abbreviations, easy
Abbreviations, simple
Abbreviations, automatic
Song lyrics/poems/Mad Libs/phrases
Mad Libs
Magic 8-ball
99 Bottles of Beer
The Name Game (a song)
The Old lady swallowed a fly
The Twelve Days of Christmas
Tokenize
Text between
Tokenize a string
Word break problem
Tokenize a string with escaping
Split a character string based on change of character
Sequences
Show ASCII table
De Bruijn sequences
Self-referential sequences
Generate lower case ASCII alphabet
| #OCaml | OCaml | let sort_chars s =
let r = String.copy s in
for i = 0 to (String.length r) - 2 do
for j = i + 1 to (String.length r) - 1 do
if r.[i] > r.[j] then begin
let tmp = r.[i] in
r.[i] <- r.[j];
r.[j] <- tmp;
end
done
done;
(r)
let deranged (s1, s2) =
let len1 = String.length s1
and len2 = String.length s2 in
if len1 <> len2 then false else
try
for i = 0 to pred len1 do
if s1.[i] = s2.[i] then raise Exit
done;
true
with Exit -> false
let pairs_of_list lst =
let rec aux acc = function
| [] -> acc
| x::xs ->
aux (List.fold_left (fun acc y -> (x,y)::acc) acc xs) xs
in
aux [] lst
let () =
let h = Hashtbl.create 3571 in
let ic = open_in "unixdict.txt" in
try while true do
let word = input_line ic in
let key = sort_chars word in
let l =
try Hashtbl.find h key
with Not_found -> []
in
Hashtbl.replace h key (word::l);
done with End_of_file ->
close_in ic;
let lst =
Hashtbl.fold (fun _ lw acc ->
if List.length lw < 2 then acc else lw::acc) h []
in
let lst =
List.fold_left (fun acc anagrams ->
let pairs = pairs_of_list anagrams in
(List.filter deranged pairs) @ acc
) [] lst
in
let res, _ =
List.fold_left (fun (res, n) (w1, w2) ->
let len = String.length w1 in
match Pervasives.compare len n with
| 0 -> ((w1, w2)::res, n)
| 1 -> ([w1, w2], len)
| _ -> (res, n)
) ([], 0) lst
in
List.iter (fun (w1, w2) -> Printf.printf "%s, %s\n" w1 w2) res |
http://rosettacode.org/wiki/Anonymous_recursion | Anonymous recursion | While implementing a recursive function, it often happens that we must resort to a separate helper function to handle the actual recursion.
This is usually the case when directly calling the current function would waste too many resources (stack space, execution time), causing unwanted side-effects, and/or the function doesn't have the right arguments and/or return values.
So we end up inventing some silly name like foo2 or foo_helper. I have always found it painful to come up with a proper name, and see some disadvantages:
You have to think up a name, which then pollutes the namespace
Function is created which is called from nowhere else
The program flow in the source code is interrupted
Some languages allow you to embed recursion directly in-place. This might work via a label, a local gosub instruction, or some special keyword.
Anonymous recursion can also be accomplished using the Y combinator.
Task
If possible, demonstrate this by writing the recursive version of the fibonacci function (see Fibonacci sequence) which checks for a negative argument before doing the actual recursion.
| #K | K | fib: {:[x<0; "Error Negative Number"; {:[x<2;x;_f[x-2]+_f[x-1]]}x]} |
http://rosettacode.org/wiki/Amicable_pairs | Amicable pairs | Two integers
N
{\displaystyle N}
and
M
{\displaystyle M}
are said to be amicable pairs if
N
≠
M
{\displaystyle N\neq M}
and the sum of the proper divisors of
N
{\displaystyle N}
(
s
u
m
(
p
r
o
p
D
i
v
s
(
N
)
)
{\displaystyle \mathrm {sum} (\mathrm {propDivs} (N))}
)
=
M
{\displaystyle =M}
as well as
s
u
m
(
p
r
o
p
D
i
v
s
(
M
)
)
=
N
{\displaystyle \mathrm {sum} (\mathrm {propDivs} (M))=N}
.
Example
1184 and 1210 are an amicable pair, with proper divisors:
1, 2, 4, 8, 16, 32, 37, 74, 148, 296, 592 and
1, 2, 5, 10, 11, 22, 55, 110, 121, 242, 605 respectively.
Task
Calculate and show here the Amicable pairs below 20,000; (there are eight).
Related tasks
Proper divisors
Abundant, deficient and perfect number classifications
Aliquot sequence classifications and its amicable classification.
| #Futhark | Futhark |
fun divisors(n: int): []int =
filter (fn x => n%x == 0) (map (1+) (iota (n/2)))
fun amicable((n: int, nd: int), (m: int, md: int)): bool =
n < m && nd == m && md == n
fun getPair (divs: [upper](int, int)) (flat_i: int): ((int,int), (int,int)) =
let i = flat_i / upper
let j = flat_i % upper
in unsafe (divs[i], divs[j])
fun main(upper: int): [][2]int =
let range = map (1+) (iota upper)
let divs = zip range (map (fn n => reduce (+) 0 (divisors n)) range)
let amicable = filter amicable (map (getPair divs) (iota (upper*upper)))
in map (fn (np,mp) => [#1 np, #1 mp]) amicable
|
http://rosettacode.org/wiki/Animation | Animation |
Animation is integral to many parts of GUIs, including both the fancy effects when things change used in window managers, and of course games. The core of any animation system is a scheme for periodically changing the display while still remaining responsive to the user. This task demonstrates this.
Task
Create a window containing the string "Hello World! " (the trailing space is significant).
Make the text appear to be rotating right by periodically removing one letter from the end of the string and attaching it to the front.
When the user clicks on the (windowed) text, it should reverse its direction.
| #PureBasic | PureBasic | OpenWindow(0,0,0,500,100,"Hello World!",#PB_Window_ScreenCentered|#PB_Window_SystemMenu)
text$ = "Hello World! "
direction = 1
LoadFont(0,"",60)
ButtonGadget(0,2,2,496,96,text$) : SetGadgetFont(0,FontID(0))
Repeat
event = WaitWindowEvent(50)
Select event
Case #PB_Event_Gadget
If EventGadget() = 0
direction*-1
EndIf
Case #PB_Event_CloseWindow
End
EndSelect
If ElapsedMilliseconds()-tick > 400
offset+direction
If offset > Len(text$)-1
offset = 0
ElseIf offset < 0
offset = Len(text$)-1
EndIf
SetGadgetText(0,Mid(text$,offset+1)+Left(text$,offset))
tick = ElapsedMilliseconds()
EndIf
ForEver |
http://rosettacode.org/wiki/Animate_a_pendulum | Animate a pendulum |
One good way of making an animation is by simulating a physical system and illustrating the variables in that system using a dynamically changing graphical display.
The classic such physical system is a simple gravity pendulum.
Task
Create a simple physical model of a pendulum and animate it.
| #Kotlin | Kotlin | import java.awt.*
import java.util.concurrent.*
import javax.swing.*
class Pendulum(private val length: Int) : JPanel(), Runnable {
init {
val f = JFrame("Pendulum")
f.add(this)
f.defaultCloseOperation = JFrame.EXIT_ON_CLOSE
f.pack()
f.isVisible = true
isDoubleBuffered = true
}
override fun paint(g: Graphics) {
with(g) {
color = Color.WHITE
fillRect(0, 0, width, height)
color = Color.BLACK
val anchor = Element(width / 2, height / 4)
val ball = Element((anchor.x + Math.sin(angle) * length).toInt(), (anchor.y + Math.cos(angle) * length).toInt())
drawLine(anchor.x, anchor.y, ball.x, ball.y)
fillOval(anchor.x - 3, anchor.y - 4, 7, 7)
fillOval(ball.x - 7, ball.y - 7, 14, 14)
}
}
override fun run() {
angleVelocity += -9.81 / length * Math.sin(angle) * dt
angle += angleVelocity * dt
repaint()
}
override fun getPreferredSize() = Dimension(2 * length + 50, length / 2 * 3)
private data class Element(val x: Int, val y: Int)
private val dt = 0.1
private var angle = Math.PI / 2
private var angleVelocity = 0.0
}
fun main(a: Array<String>) {
val executor = Executors.newSingleThreadScheduledExecutor()
executor.scheduleAtFixedRate(Pendulum(200), 0, 15, TimeUnit.MILLISECONDS)
} |
http://rosettacode.org/wiki/Amb | Amb | Define and give an example of the Amb operator.
The Amb operator (short for "ambiguous") expresses nondeterminism. This doesn't refer to randomness (as in "nondeterministic universe") but is closely related to the term as it is used in automata theory ("non-deterministic finite automaton").
The Amb operator takes a variable number of expressions (or values if that's simpler in the language) and yields a correct one which will satisfy a constraint in some future computation, thereby avoiding failure.
Problems whose solution the Amb operator naturally expresses can be approached with other tools, such as explicit nested iterations over data sets, or with pattern matching. By contrast, the Amb operator appears integrated into the language. Invocations of Amb are not wrapped in any visible loops or other search patterns; they appear to be independent.
Essentially Amb(x, y, z) splits the computation into three possible futures: a future in which the value x is yielded, a future in which the value y is yielded and a future in which the value z is yielded. The future which leads to a successful subsequent computation is chosen. The other "parallel universes" somehow go away. Amb called with no arguments fails.
For simplicity, one of the domain values usable with Amb may denote failure, if that is convenient. For instance, it is convenient if a Boolean false denotes failure, so that Amb(false) fails, and thus constraints can be expressed using Boolean expressions like Amb(x * y == 8) which unless x and y add to four.
A pseudo-code program which satisfies this constraint might look like:
let x = Amb(1, 2, 3)
let y = Amb(7, 6, 4, 5)
Amb(x * y = 8)
print x, y
The output is 2 4 because Amb(1, 2, 3) correctly chooses the future in which x has value 2, Amb(7, 6, 4, 5) chooses 4 and consequently Amb(x * y = 8) produces a success.
Alternatively, failure could be represented using strictly Amb():
unless x * y = 8 do Amb()
Or else Amb could take the form of two operators or functions: one for producing values and one for enforcing constraints:
let x = Ambsel(1, 2, 3)
let y = Ambsel(4, 5, 6)
Ambassert(x * y = 8)
print x, y
where Ambassert behaves like Amb() if the Boolean expression is false, otherwise it allows the future computation to take place, without yielding any value.
The task is to somehow implement Amb, and demonstrate it with a program which chooses one word from each of the following four sets of character strings to generate a four-word sentence:
"the" "that" "a"
"frog" "elephant" "thing"
"walked" "treaded" "grows"
"slowly" "quickly"
The constraint to be satisfied is that the last character of each word (other than the last) is the same as the first character of its successor.
The only successful sentence is "that thing grows slowly"; other combinations do not satisfy the constraint and thus fail.
The goal of this task isn't to simply process the four lists of words with explicit, deterministic program flow such as nested iteration, to trivially demonstrate the correct output. The goal is to implement the Amb operator, or a facsimile thereof that is possible within the language limitations.
| #C | C | typedef const char * amb_t;
amb_t amb(size_t argc, ...)
{
amb_t *choices;
va_list ap;
int i;
if(argc) {
choices = malloc(argc*sizeof(amb_t));
va_start(ap, argc);
i = 0;
do { choices[i] = va_arg(ap, amb_t); } while(++i < argc);
va_end(ap);
i = 0;
do { TRY(choices[i]); } while(++i < argc);
free(choices);
}
FAIL;
}
int joins(const char *left, const char *right) { return left[strlen(left)-1] == right[0]; }
int _main() {
const char *w1,*w2,*w3,*w4;
w1 = amb(3, "the", "that", "a");
w2 = amb(3, "frog", "elephant", "thing");
w3 = amb(3, "walked", "treaded", "grows");
w4 = amb(2, "slowly", "quickly");
if(!joins(w1, w2)) amb(0);
if(!joins(w2, w3)) amb(0);
if(!joins(w3, w4)) amb(0);
printf("%s %s %s %s\n", w1, w2, w3, w4);
return EXIT_SUCCESS;
} |
http://rosettacode.org/wiki/Aliquot_sequence_classifications | Aliquot sequence classifications | An aliquot sequence of a positive integer K is defined recursively as the first member
being K and subsequent members being the sum of the Proper divisors of the previous term.
If the terms eventually reach 0 then the series for K is said to terminate.
There are several classifications for non termination:
If the second term is K then all future terms are also K and so the sequence repeats from the first term with period 1 and K is called perfect.
If the third term would be repeating K then the sequence repeats with period 2 and K is called amicable.
If the Nth term would be repeating K for the first time, with N > 3 then the sequence repeats with period N - 1 and K is called sociable.
Perfect, amicable and sociable numbers eventually repeat the original number K; there are other repetitions...
Some K have a sequence that eventually forms a periodic repetition of period 1 but of a number other than K, for example 95 which forms the sequence 95, 25, 6, 6, 6, ... such K are called aspiring.
K that have a sequence that eventually forms a periodic repetition of period >= 2 but of a number other than K, for example 562 which forms the sequence 562, 284, 220, 284, 220, ... such K are called cyclic.
And finally:
Some K form aliquot sequences that are not known to be either terminating or periodic; these K are to be called non-terminating.
For the purposes of this task, K is to be classed as non-terminating if it has not been otherwise classed after generating 16 terms or if any term of the sequence is greater than 2**47 = 140,737,488,355,328.
Task
Create routine(s) to generate the aliquot sequence of a positive integer enough to classify it according to the classifications given above.
Use it to display the classification and sequences of the numbers one to ten inclusive.
Use it to show the classification and sequences of the following integers, in order:
11, 12, 28, 496, 220, 1184, 12496, 1264460, 790, 909, 562, 1064, 1488, and optionally 15355717786080.
Show all output on this page.
Related tasks
Abundant, deficient and perfect number classifications. (Classifications from only the first two members of the whole sequence).
Proper divisors
Amicable pairs
| #ALGOL_68 | ALGOL 68 | BEGIN
# aliquot sequence classification #
# maximum sequence length we consider #
INT max sequence length = 16;
# possible classifications #
STRING perfect classification = "perfect ";
STRING amicable classification = "amicable ";
STRING sociable classification = "sociable ";
STRING aspiring classification = "aspiring ";
STRING cyclic classification = "cyclic ";
STRING terminating classification = "terminating ";
STRING non terminating classification = "non terminating";
# structure to hold an aliquot sequence and its classification #
MODE ALIQUOT = STRUCT( STRING classification
, [ 1 : max sequence length ]LONG INT sequence
, INT length
);
# maximum value for sequence elements - if any element is more than this, #
# we assume it is non-teriminating #
LONG INT max element = 140 737 488 355 328;
# returns the sum of the proper divisors of n #
OP DIVISORSUM = ( LONG INT n )LONG INT:
BEGIN
LONG INT abs n = ABS n;
IF abs n < 2 THEN
0 # -1, 0 and 1 have no proper divisors #
ELSE
# have a number with possible divisors #
LONG INT result := 1; # 1 is always a divisor #
# a FOR loop counter can only be an INT, hence the WHILE loop #
LONG INT d := ENTIER long sqrt( abs n );
WHILE d > 1 DO
IF abs n MOD d = 0 THEN
# found another divisor #
result +:= d;
IF d * d /= abs n THEN
# add the other divisor #
result +:= abs n OVER d
FI
FI;
d -:= 1
OD;
result
FI
END # DIVISORSUM # ;
# generates the aliquot sequence of the number k and its classification #
# at most max elements of the sequence are considered #
OP CLASSIFY = ( LONG INT k )ALIQUOT :
BEGIN
ALIQUOT result;
classification OF result := "non-terminating";
INT lb = LWB sequence OF result;
INT ub = UPB sequence OF result;
( sequence OF result )[ lb ] := k; # the first element is always k #
length OF result := 1;
FOR i FROM lb + 1 TO ub DO
( sequence OF result )[ i ] := 0
OD;
BOOL classified := FALSE;
LONG INT prev k := k;
FOR i FROM lb + 1 TO ub WHILE NOT classified DO
length OF result +:= 1;
LONG INT next k := ( sequence OF result )[ i ] := DIVISORSUM prev k;
classified := TRUE;
IF next k = 0 THEN # the sequence terminates #
classification OF result := terminating classification
ELIF next k > max element THEN # the sequence gets too large #
classification OF result := non terminating classification
ELIF next k = k THEN # the sequence that returns to k #
classification OF result
:= IF i = lb + 1 THEN perfect classification
ELIF i = lb + 2 THEN amicable classification
ELSE sociable classification
FI
ELIF next k = prev k THEN # the sequence repeats with non-k #
classification OF result := aspiring classification
ELSE # check for repeating sequence with a period more than 1 #
classified := FALSE;
FOR prev pos FROM lb TO i - 2 WHILE NOT classified DO
IF classified := ( sequence OF result )[ prev pos ] = next k THEN
# found a repeatition #
classification OF result := cyclic classification
FI
OD
FI;
prev k := next k
OD;
result
END # CLASSIFY # ;
# test cases as per the task #
[]LONG INT test cases =
( 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
, 11, 12, 28, 496, 220, 1184, 12496, 1264460, 790, 909
, 562, 1064, 1488
, 15355717786080
);
FOR i FROM LWB test cases TO UPB test cases DO
LONG INT k := test cases[ i ];
ALIQUOT seq = CLASSIFY k;
print( ( whole( k, -14 ), ": ", classification OF seq, ":" ) );
FOR e FROM LWB sequence OF seq + 1 TO length OF seq DO
print( ( " ", whole( ( sequence OF seq )[ e ], 0 ) ) )
OD;
print( ( newline ) )
OD
END |
http://rosettacode.org/wiki/Address_of_a_variable | Address of a variable |
Basic Data Operation
This is a basic data operation. It represents a fundamental action on a basic data type.
You may see other such operations in the Basic Data Operations category, or:
Integer Operations
Arithmetic |
Comparison
Boolean Operations
Bitwise |
Logical
String Operations
Concatenation |
Interpolation |
Comparison |
Matching
Memory Operations
Pointers & references |
Addresses
Task
Demonstrate how to get the address of a variable and how to set the address of a variable.
| #ARM_Assembly | ARM Assembly |
/* ARM assembly Raspberry PI */
/* program adrvar.s */
/* Constantes */
.equ STDOUT, 1
.equ WRITE, 4
.equ EXIT, 1
/* Initialized data */
.data
szMessage: .asciz "Hello. \n " @ message
szRetourLigne: .asciz "\n"
iValDeb: .int 5 @ value 5 in array of 4 bytes
/* No Initialized data */
.bss
iValeur: .skip 4 @ reserve 4 bytes in memory
.text
.global main
main:
ldr r0,=szMessage @ adresse of message short program
bl affichageMess @ call function
@ or
ldr r0,iAdrszMessage @ adresse of message big program (size code > 4K)
bl affichageMess @ call function
ldr r1,=iValDeb @ adresse of variable -> r1 short program
ldr r0,[r1] @ value of iValdeb -> r0
ldr r1,iAdriValDeb @ adresse of variable -> r1 big program
ldr r0,[r1] @ value of iValdeb -> r0
/* set variables */
ldr r1,=iValeur @ adresse of variable -> r1 short program
str r0,[r1] @ value of r0 -> iValeur
ldr r1,iAdriValeur @ adresse of variable -> r1 big program
str r0,[r1] @ value of r0 -> iValeur
/* end of program */
mov r0, #0 @ return code
mov r7, #EXIT @ request to exit program
swi 0 @ perform the system call
iAdriValDeb: .int iValDeb
iAdriValeur: .int iValeur
iAdrszMessage: .int szMessage
iAdrszRetourLigne: .int szRetourLigne
/******************************************************************/
/* affichage des messages avec calcul longueur */
/******************************************************************/
/* r0 contient l adresse du message */
affichageMess:
push {fp,lr} /* save des 2 registres */
push {r0,r1,r2,r7} /* save des autres registres */
mov r2,#0 /* compteur longueur */
1: /*calcul de la longueur */
ldrb r1,[r0,r2] /* recup octet position debut + indice */
cmp r1,#0 /* si 0 c est fini */
beq 1f
add r2,r2,#1 /* sinon on ajoute 1 */
b 1b
1: /* donc ici r2 contient la longueur du message */
mov r1,r0 /* adresse du message en r1 */
mov r0,#STDOUT /* code pour écrire sur la sortie standard Linux */
mov r7, #WRITE /* code de l appel systeme 'write' */
swi #0 /* appel systeme */
pop {r0,r1,r2,r7} /* restaur des autres registres */
pop {fp,lr} /* restaur des 2 registres */
bx lr /* retour procedure */
|
http://rosettacode.org/wiki/AKS_test_for_primes | AKS test for primes | The AKS algorithm for testing whether a number is prime is a polynomial-time algorithm based on an elementary theorem about Pascal triangles.
The theorem on which the test is based can be stated as follows:
a number
p
{\displaystyle p}
is prime if and only if all the coefficients of the polynomial expansion of
(
x
−
1
)
p
−
(
x
p
−
1
)
{\displaystyle (x-1)^{p}-(x^{p}-1)}
are divisible by
p
{\displaystyle p}
.
Example
Using
p
=
3
{\displaystyle p=3}
:
(x-1)^3 - (x^3 - 1)
= (x^3 - 3x^2 + 3x - 1) - (x^3 - 1)
= -3x^2 + 3x
And all the coefficients are divisible by 3, so 3 is prime.
Note:
This task is not the AKS primality test. It is an inefficient exponential time algorithm discovered in the late 1600s and used as an introductory lemma in the AKS derivation.
Task
Create a function/subroutine/method that given
p
{\displaystyle p}
generates the coefficients of the expanded polynomial representation of
(
x
−
1
)
p
{\displaystyle (x-1)^{p}}
.
Use the function to show here the polynomial expansions of
(
x
−
1
)
p
{\displaystyle (x-1)^{p}}
for
p
{\displaystyle p}
in the range 0 to at least 7, inclusive.
Use the previous function in creating another function that when given
p
{\displaystyle p}
returns whether
p
{\displaystyle p}
is prime using the theorem.
Use your test to generate a list of all primes under 35.
As a stretch goal, generate all primes under 50 (needs integers larger than 31-bit).
References
Agrawal-Kayal-Saxena (AKS) primality test (Wikipedia)
Fool-Proof Test for Primes - Numberphile (Video). The accuracy of this video is disputed -- at best it is an oversimplification.
| #8th | 8th |
with: a
: nextrow \ a -- a
len
[ ( drop [1] ),
( drop [1,1] ),
( ' n:+ y 1 slide 1 push ) ]
swap 2 min caseof ;
;with
with: n
: .x \ n --
dup
[ ( drop ),
( drop "x" . ),
( "x^" . . ) ]
swap 2 min caseof space ;
: .term \ coef exp -- ; omit coef for 1x^n when n > 0
over 1 = over 0 > and if nip .x else swap . .x then ;
: .sgn \ +/-1 --
[ "-", null, "+" ]
swap 1+ caseof . space ;
: .lhs \ n --
"(x-1)^" . . ;
: .rhs \ a -- a
a:len 1- >r
1 swap ( third .sgn r@ rot - .term -1 * ) a:each
nip rdrop ;
: .eqn \ a -- a
a:len 1- .lhs " = " . .rhs ;
: .binomials \ --
[] ( nextrow .eqn cr ) 8 times drop ;
: primerow? \ a -- a ?
a:len 3 < if false ;then
1 a:@ >r \ 2nd position is the number to check for primality
true swap ( nip dup 1 = swap r@ mod 0 = or and ) a:each swap
rdrop ;
: .primes-via-aks \ --
[] ( nextrow primerow? if 1 a:@ . space then ) 50 times drop ;
;with
.binomials cr
"The primes upto 50 are (via AKS): " . .primes-via-aks cr
bye |
http://rosettacode.org/wiki/Additive_primes | Additive primes | Definitions
In mathematics, additive primes are prime numbers for which the sum of their decimal digits are also primes.
Task
Write a program to determine (and show here) all additive primes less than 500.
Optionally, show the number of additive primes.
Also see
the OEIS entry: A046704 additive primes.
the prime-numbers entry: additive primes.
the geeks for geeks entry: additive prime number.
the prime-numbers fandom: additive primes.
| #AArch64_Assembly | AArch64 Assembly |
/* ARM assembly AARCH64 Raspberry PI 3B or android 64 bits */
/* program additivePrime64.s */
/*******************************************/
/* Constantes file */
/*******************************************/
/* for this file see task include a file in language AArch64 assembly*/
.include "../includeConstantesARM64.inc"
.equ MAXI, 500
/*********************************/
/* Initialized data */
/*********************************/
.data
szMessResult: .asciz "Prime : @ \n"
szMessCounter: .asciz "Number found : @ \n"
szCarriageReturn: .asciz "\n"
/*********************************/
/* UnInitialized data */
/*********************************/
.bss
sZoneConv: .skip 24
TablePrime: .skip 8 * MAXI
/*********************************/
/* code section */
/*********************************/
.text
.global main
main: // entry of program
bl createArrayPrime
mov x5,x0 // prime number
ldr x4,qAdrTablePrime // address prime table
mov x10,#0 // init counter
mov x6,#0 // indice
1:
ldr x2,[x4,x6,lsl #3] // load prime
mov x9,x2 // save prime
mov x7,#0 // init digit sum
mov x1,#10 // divisor
2: // begin loop
mov x0,x2 // dividende
udiv x2,x0,x1
msub x3,x2,x1,x0 // compute remainder
add x7,x7,x3 // add digit to digit sum
cmp x2,#0 // quotient null ?
bne 2b // no -> comppute other digit
mov x8,#1 // indice
4: // prime search loop
cmp x8,x5 // maxi ?
bge 5f // yes
ldr x0,[x4,x8,lsl #3] // load prime
cmp x0,x7 // prime >= digit sum ?
add x0,x8,1
csel x8,x0,x8,lt // no -> increment indice
blt 4b // and loop
bne 5f // >
mov x0,x9 // equal
bl displayPrime
add x10,x10,#1 // increment counter
5:
add x6,x6,#1 // increment first indice
cmp x6,x5 // maxi ?
blt 1b // and loop
mov x0,x10 // number counter
ldr x1,qAdrsZoneConv
bl conversion10 // call décimal conversion
ldr x0,qAdrszMessCounter
ldr x1,qAdrsZoneConv // insert conversion in message
bl strInsertAtCharInc
bl affichageMess // display message
100: // standard end of the program
mov x0, #0 // return code
mov x8, #EXIT // request to exit program
svc #0 // perform the system call
qAdrszCarriageReturn: .quad szCarriageReturn
qAdrszMessResult: .quad szMessResult
qAdrszMessCounter: .quad szMessCounter
qAdrTablePrime: .quad TablePrime
/******************************************************************/
/* créate prime array */
/******************************************************************/
createArrayPrime:
stp x1,lr,[sp,-16]! // save registres
ldr x4,qAdrTablePrime // address prime table
mov x0,#1
str x0,[x4] // store 1 in array
mov x0,#2
str x0,[x4,#8] // store 2 in array
mov x0,#3
str x0,[x4,#16] // store 3 in array
mov x5,#3 // prine counter
mov x7,#5 // first number to test
1:
mov x6,#1 // indice
2:
mov x0,x7 // dividende
ldr x1,[x4,x6,lsl #3] // load divisor
udiv x2,x0,x1
msub x3,x2,x1,x0 // compute remainder
cmp x3,#0 // null remainder ?
beq 4f // yes -> end loop
cmp x2,x1 // quotient < divisor
bge 3f
str x7,[x4,x5,lsl #3] // dividende is prime store in array
add x5,x5,#1 // increment counter
b 4f // and end loop
3:
add x6,x6,#1 // else increment indice
cmp x6,x5 // maxi ?
blt 2b // no -> loop
4:
add x7,x7,#2 // other odd number
cmp x7,#MAXI // maxi ?
blt 1b // no -> loop
mov x0,x5 // return counter
100:
ldp x1,lr,[sp],16 // restaur des 2 registres
ret
/******************************************************************/
/* Display prime table elements */
/******************************************************************/
/* x0 contains the prime */
displayPrime:
stp x1,lr,[sp,-16]! // save registres
ldr x1,qAdrsZoneConv
bl conversion10 // call décimal conversion
ldr x0,qAdrszMessResult
ldr x1,qAdrsZoneConv // insert conversion in message
bl strInsertAtCharInc
bl affichageMess // display message
100:
ldp x1,lr,[sp],16 // restaur des 2 registres
ret
qAdrsZoneConv: .quad sZoneConv
/********************************************************/
/* File Include fonctions */
/********************************************************/
/* for this file see task include a file in language AArch64 assembly */
.include "../includeARM64.inc"
|
http://rosettacode.org/wiki/Additive_primes | Additive primes | Definitions
In mathematics, additive primes are prime numbers for which the sum of their decimal digits are also primes.
Task
Write a program to determine (and show here) all additive primes less than 500.
Optionally, show the number of additive primes.
Also see
the OEIS entry: A046704 additive primes.
the prime-numbers entry: additive primes.
the geeks for geeks entry: additive prime number.
the prime-numbers fandom: additive primes.
| #Ada | Ada | with Ada.Text_Io;
procedure Additive_Primes is
Last : constant := 499;
Columns : constant := 12;
type Prime_List is array (2 .. Last) of Boolean;
function Get_Primes return Prime_List is
Prime : Prime_List := (others => True);
begin
for P in Prime'Range loop
if Prime (P) then
for N in 2 .. Positive'Last loop
exit when N * P not in Prime'Range;
Prime (N * P) := False;
end loop;
end if;
end loop;
return Prime;
end Get_Primes;
function Sum_Of (N : Natural) return Natural is
Image : constant String := Natural'Image (N);
Sum : Natural := 0;
begin
for Char of Image loop
Sum := Sum + (if Char in '0' .. '9'
then Natural'Value ("" & Char)
else 0);
end loop;
return Sum;
end Sum_Of;
package Natural_Io is new Ada.Text_Io.Integer_Io (Natural);
use Ada.Text_Io, Natural_Io;
Prime : constant Prime_List := Get_Primes;
Count : Natural := 0;
begin
Put_Line ("Additive primes <500:");
for N in Prime'Range loop
if Prime (N) and then Prime (Sum_Of (N)) then
Count := Count + 1;
Put (N, Width => 5);
if Count mod Columns = 0 then
New_Line;
end if;
end if;
end loop;
New_Line;
Put ("There are ");
Put (Count, Width => 2);
Put (" additive primes.");
New_Line;
end Additive_Primes; |
Subsets and Splits
No saved queries yet
Save your SQL queries to embed, download, and access them later. Queries will appear here once saved.