task_url
stringlengths
30
116
task_name
stringlengths
2
86
task_description
stringlengths
0
14.4k
language_url
stringlengths
2
53
language_name
stringlengths
1
52
code
stringlengths
0
61.9k
http://rosettacode.org/wiki/Animation
Animation
Animation is integral to many parts of GUIs, including both the fancy effects when things change used in window managers, and of course games.   The core of any animation system is a scheme for periodically changing the display while still remaining responsive to the user.   This task demonstrates this. Task Create a window containing the string "Hello World! " (the trailing space is significant). Make the text appear to be rotating right by periodically removing one letter from the end of the string and attaching it to the front. When the user clicks on the (windowed) text, it should reverse its direction.
#Dart
Dart
import 'package:flutter/material.dart'; import 'dart:async' show Timer;   void main() {   var timer = const Duration( milliseconds: 75 ); // How often to update i.e. how fast the animation is   runApp(MaterialApp ( home: Scaffold ( body: Center ( child: AnimatedText( timer ) ) ) )); }   class AnimatedText extends StatefulWidget {   final Duration period; // Time period for update   AnimatedText( this.period ); @override _AnimatedText createState() => _AnimatedText( period ); }     class _AnimatedText extends State<AnimatedText> {   bool forward = true; // Text should go forward?   Timer timer; // Timer Objects allow us to do things based on a period of time // We want to get an array of characters, but Dart does not have a char type // Below is the equivalent code var _text = 'Hello World! '.runes // .runes gives us the unicode number of each character .map( (code) => String.fromCharCode(code) ) // Map all these codes to Strings containing the single character .toList(); // Conver to a List   _AnimatedText( Duration period ){ timer = Timer.periodic( period , (_){ setState((){ // Set state forces the gui elements to be redrawn shiftText();   }); }); }   String get text => _text.join(''); // Getter, joins the list of chars into a string   void shiftText() { if (forward) { // If we should go forward var last = _text.removeLast(); // Remove the last char   _text.insert( 0, last); // Insert it at the front   } else { // If we should go backward var first = _text.removeAt(0); // Remove the first char   _text.insert( _text.length, first ); // Insert it at the end }   }   @override Widget build(BuildContext context) { return GestureDetector( // GestureDetector lets us capture events onTap: () => forward = !forward, // on Tap (Click in browser) invert the forward bool child: Text( text, // Call the text getter to get the shifted string style: TextStyle( // Styling fontSize: 50, color: Colors.grey[600] ) )   ); }   }  
http://rosettacode.org/wiki/Animate_a_pendulum
Animate a pendulum
One good way of making an animation is by simulating a physical system and illustrating the variables in that system using a dynamically changing graphical display. The classic such physical system is a simple gravity pendulum. Task Create a simple physical model of a pendulum and animate it.
#Amazing_Hopper
Amazing Hopper
  #include <flow.h> #include <flow-term.h>   DEF-MAIN(argv,argc)   SET( Pen, 0 ) LET( Pen := STR-TO-UTF8(CHAR(219)) )   CLR-SCR HIDE-CURSOR   GOSUB( Animate a Pendulum )   SHOW-CURSOR END   RUTINES   DEF-FUN( Animate a Pendulum ) MSET( accel, speed, bx, by ) SET( theta, M_PI_2 ) // pi/2 constant --> flow.h SET( g, 9.81 ) SET( l, 1 ) SET( px, 65 ) SET( py, 7 )   LOOP( Animate All ) LET( bx := ADD( px, MUL( MUL( l, 23 ), SIN(theta) ) ) ) LET( by := SUB( py, MUL( MUL( l, 23 ), COS(theta) ) ) )   CLR-SCR {px,py,bx,by} GOSUB( LINE ) {bx, by, 3} GOSUB( CIRCLE )   LET( accel := MUL(g, SIN(theta) DIV-INTO(l) DIV-INTO(4) ) ) LET( speed := ADD( speed, DIV(accel, 100) ) ) LET( theta := ADD( theta, speed ) ) LOCATE (1, 62) PRNL("PENDULUM") LOCATE (2, 55) PRNL("Press any key to quit") SLEEP( 0.1 ) BACK-IF ( NOT( KEY-PRESSED? ), Animate All )   RET   /* DDA Algorithm */ DEF-FUN(LINE, x1, y1, x2, y2) MSET( x, y, dx, dy, paso, i, gm )   STOR( SUB(x2, x1) SUB(y2, y1), dx, dy ) LET( paso := IF( GE?( ABS(dx) » (DX), ABS(dy)»(DY) ), DX, DY ) )   // increment: STOR( DIV(dx, paso) DIV(dy, paso), dx, dy )   // print line: SET( i, 0 ) WHILE( LE?(i, paso), ++i ) LOCATE( y1, x1 ), PRNL( Pen ) STOR( ADD( x1, dx) ADD( y1, dy ), x1, y1 ) WEND RET   DEF-FUN( Plot Points, xc, yc ,x1 ,y1 ) LOCATE( ADD(xc,x1), ADD( yc, y1) ), PRN( Pen ) LOCATE( SUB(xc,x1), ADD( yc, y1) ), PRN( Pen ) LOCATE( ADD(xc,x1), SUB( yc, y1) ), PRN( Pen ) LOCATE( SUB(xc,x1), SUB( yc, y1) ), PRN( Pen ) LOCATE( ADD(xc,y1), ADD( yc, x1) ), PRN( Pen ) LOCATE( SUB(xc,y1), ADD( yc, x1) ), PRN( Pen ) LOCATE( ADD(xc,y1), SUB( yc, x1) ), PRN( Pen ) LOCATE( SUB(xc,y1), SUB( yc, x1) ), PRNL( Pen ) RET   DEF-FUN( CIRCLE, xc, yc, ratio ) MSET( x, p )   SET( y, ratio ) LOCATE( yc,xc ), PRNL("O") {yc, xc, y, x} GOSUB( Plot Points ) LET( p := SUB( 1, ratio ) ) LOOP( Print Circle ) ++x COND( LT?( p, 0 ) ) LET( p := ADD( p, MUL(2,x) ) PLUS(1) ) ELS --y LET( p := ADD( p, MUL(2, SUB(x,y))) PLUS(1) ) CEND {yc, xc, y, x} GOSUB( Plot Points ) BACK-IF-LT( x, y, Print Circle ) RET  
http://rosettacode.org/wiki/Angle_difference_between_two_bearings
Angle difference between two bearings
Finding the angle between two bearings is often confusing.[1] Task Find the angle which is the result of the subtraction b2 - b1, where b1 and b2 are the bearings. Input bearings are expressed in the range   -180   to   +180   degrees. The  result  is also expressed in the range   -180   to   +180   degrees. Compute the angle for the following pairs: 20 degrees (b1) and 45 degrees (b2) -45 and 45 -85 and 90 -95 and 90 -45 and 125 -45 and 145 29.4803 and -88.6381 -78.3251 and -159.036 Optional extra Allow the input bearings to be any (finite) value. Test cases -70099.74233810938 and 29840.67437876723 -165313.6666297357 and 33693.9894517456 1174.8380510598456 and -154146.66490124757 60175.77306795546 and 42213.07192354373
#BASIC256
BASIC256
# Rosetta Code problem: http://rosettacode.org/wiki/Angle_difference_between_two_bearings # by Jjuanhdez, 06/2022   print "Input in -180 to +180 range:" call getDifference(20.0, 45.0) call getDifference(-45.0, 45.0) call getDifference(-85.0, 90.0) call getDifference(-95.0, 90.0) call getDifference(-45.0, 125.0) call getDifference(-45.0, 145.0) call getDifference(-45.0, 125.0) call getDifference(-45.0, 145.0) call getDifference(29.4803, -88.6381) call getDifference(-78.3251, -159.036) print print "Input in wider range:" call getDifference(-70099.74233810938, 29840.67437876723) call getDifference(-165313.6666297357, 33693.9894517456) call getDifference(1174.8380510598456, -154146.66490124757) end   subroutine getDifference(b1, b2) r = (b2 - b1) mod 360 if r >= 180.0 then r -= 360.0 print ljust(b1,16); ljust(b2,16); ljust(r,12) end subroutine
http://rosettacode.org/wiki/Anagrams/Deranged_anagrams
Anagrams/Deranged anagrams
Two or more words are said to be anagrams if they have the same characters, but in a different order. By analogy with derangements we define a deranged anagram as two words with the same characters, but in which the same character does not appear in the same position in both words. Task[edit] Use the word list at unixdict to find and display the longest deranged anagram. Related tasks Permutations/Derangements Best shuffle Word plays Ordered words Palindrome detection Semordnilap Anagrams Anagrams/Deranged anagrams Other tasks related to string operations: Metrics Array length String length Copy a string Empty string  (assignment) Counting Word frequency Letter frequency Jewels and stones I before E except after C Bioinformatics/base count Count occurrences of a substring Count how many vowels and consonants occur in a string Remove/replace XXXX redacted Conjugate a Latin verb Remove vowels from a string String interpolation (included) Strip block comments Strip comments from a string Strip a set of characters from a string Strip whitespace from a string -- top and tail Strip control codes and extended characters from a string Anagrams/Derangements/shuffling Word wheel ABC problem Sattolo cycle Knuth shuffle Ordered words Superpermutation minimisation Textonyms (using a phone text pad) Anagrams Anagrams/Deranged anagrams Permutations/Derangements Find/Search/Determine ABC words Odd words Word ladder Semordnilap Word search Wordiff  (game) String matching Tea cup rim text Alternade words Changeable words State name puzzle String comparison Unique characters Unique characters in each string Extract file extension Levenshtein distance Palindrome detection Common list elements Longest common suffix Longest common prefix Compare a list of strings Longest common substring Find common directory path Words from neighbour ones Change e letters to i in words Non-continuous subsequences Longest common subsequence Longest palindromic substrings Longest increasing subsequence Words containing "the" substring Sum of the digits of n is substring of n Determine if a string is numeric Determine if a string is collapsible Determine if a string is squeezable Determine if a string has all unique characters Determine if a string has all the same characters Longest substrings without repeating characters Find words which contains all the vowels Find words which contains most consonants Find words which contains more than 3 vowels Find words which first and last three letters are equals Find words which odd letters are consonants and even letters are vowels or vice_versa Formatting Substring Rep-string Word wrap String case Align columns Literals/String Repeat a string Brace expansion Brace expansion using ranges Reverse a string Phrase reversals Comma quibbling Special characters String concatenation Substring/Top and tail Commatizing numbers Reverse words in a string Suffixation of decimal numbers Long literals, with continuations Numerical and alphabetical suffixes Abbreviations, easy Abbreviations, simple Abbreviations, automatic Song lyrics/poems/Mad Libs/phrases Mad Libs Magic 8-ball 99 Bottles of Beer The Name Game (a song) The Old lady swallowed a fly The Twelve Days of Christmas Tokenize Text between Tokenize a string Word break problem Tokenize a string with escaping Split a character string based on change of character Sequences Show ASCII table De Bruijn sequences Self-referential sequences Generate lower case ASCII alphabet
#D
D
void main() { import std.stdio, std.file, std.algorithm, std.string, std.array;   string[][dstring] anags; foreach (const w; "unixdict.txt".readText.split) anags[w.array.sort().release.idup] ~= w;   anags .byValue .map!(words => words.cartesianProduct(words) .filter!q{ a[].equal!q{ a != b }}) .join .minPos!q{ a[0].length > b[0].length }[0] .writeln; }
http://rosettacode.org/wiki/Anonymous_recursion
Anonymous recursion
While implementing a recursive function, it often happens that we must resort to a separate   helper function   to handle the actual recursion. This is usually the case when directly calling the current function would waste too many resources (stack space, execution time), causing unwanted side-effects,   and/or the function doesn't have the right arguments and/or return values. So we end up inventing some silly name like   foo2   or   foo_helper.   I have always found it painful to come up with a proper name, and see some disadvantages:   You have to think up a name, which then pollutes the namespace   Function is created which is called from nowhere else   The program flow in the source code is interrupted Some languages allow you to embed recursion directly in-place.   This might work via a label, a local gosub instruction, or some special keyword. Anonymous recursion can also be accomplished using the   Y combinator. Task If possible, demonstrate this by writing the recursive version of the fibonacci function   (see Fibonacci sequence)   which checks for a negative argument before doing the actual recursion.
#D.C3.A9j.C3.A0_Vu
Déjà Vu
Y f: labda y: labda: f y @y call dup   labda fib n: if <= n 1: 1 else: fib - n 1 fib - n 2 + Y set :fibo   for j range 0 10: !print fibo j
http://rosettacode.org/wiki/Angles_(geometric),_normalization_and_conversion
Angles (geometric), normalization and conversion
This task is about the normalization and/or conversion of (geometric) angles using some common scales. The angular scales that will be used in this task are:   degree   gradian   mil   radian Definitions The angular scales used or referenced here:   turn   is a full turn or 360 degrees, also shown as 360º   degree   is   1/360   of a turn   gradian   is   1/400   of a turn   mil   is   1/6400   of a turn   radian   is   1/2 π {\displaystyle \pi }   of a turn   (or   0.5/ π {\displaystyle \pi }   of a turn) Or, to put it another way,   for a full circle:   there are   360   degrees   there are   400   gradians   there are   6,400   mils   there are   2 π {\displaystyle \pi }   radians   (roughly equal to 6.283+) A   mil   is approximately equal to a   milliradian   (which is   1/1000   of a radian). There is another definition of a   mil   which is   1/1000   of a radian   ─── this definition won't be used in this Rosetta Code task. Turns   are sometimes known or shown as:   turn(s)   360 degrees   unit circle   a (full) circle Degrees   are sometimes known or shown as:   degree(s)   deg   º       (a symbol)   °       (another symbol) Gradians   are sometimes known or shown as:   gradian(s)   grad(s)   grade(s)   gon(s)   metric degree(s)   (Note that   centigrade   was used for 1/100th of a grade, see the note below.) Mils   are sometimes known or shown as:   mil(s)   NATO mil(s) Radians   are sometimes known or shown as:   radian(s)   rad(s) Notes In continental Europe, the French term   centigrade   was used for   1/100   of a grad (grade);   this was one reason for the adoption of the term   Celsius   to replace   centigrade   as the name of a temperature scale. Gradians were commonly used in civil engineering. Mils were normally used for artillery   (elevations of the gun barrel for ranging). Positive and negative angles Although the definition of the measurement of an angle doesn't support the concept of a negative angle,   it's frequently useful to impose a convention that allows positive and negative angular values to represent orientations and/or rotations in opposite directions relative to some reference.   It is this reason that negative angles will keep their sign and not be normalized to positive angles. Normalization Normalization   (for this Rosetta Code task)   will keep the same sign,   but it will reduce the magnitude to less than a full circle;   in other words, less than 360º. Normalization   shouldn't   change   -45º   to   315º, An angle of   0º,   +0º,   0.000000,   or   -0º   should be shown as   0º. Task   write a function (or equivalent) to do the normalization for each scale Suggested names: d2d,   g2g,   m2m,   and  r2r   write a function (or equivalent) to convert one scale to another Suggested names for comparison of different computer language function names: d2g,   d2m,   and   d2r   for degrees g2d,   g2m,   and   g2r   for gradians m2d,   m2g,   and   m2r   for mils r2d,   r2g,   and   r2m   for radians   normalize all angles used   (except for the "original" or "base" angle)   show the angles in every scale and convert them to all other scales   show all output here on this page For the (above) conversions,   use these dozen numbers   (in the order shown):   -2   -1   0   1   2   6.2831853   16   57.2957795   359   399   6399   1000000
#Factor
Factor
USING: accessors combinators formatting inverse kernel math math.constants quotations qw sequences units.si ; IN: rosetta-code.angles   ALIAS: degrees arc-deg : gradiens ( n -- d ) 9/10 * degrees ; : mils ( n -- d ) 9/160 * degrees ; : normalize ( d -- d' ) [ 2 pi * mod ] change-value ; CONSTANT: units { degrees gradiens mils radians }   : .row ( angle unit -- ) 2dup "%-12u%-12s" printf ( x -- x ) execute-effect normalize units [ 1quotation [undo] call( x -- x ) ] with map "%-12.4f%-12.4f%-12.4f%-12.4f\n" vprintf ;   : .header ( -- ) qw{ angle unit } units append "%-12s%-12s%-12s%-12s%-12s%-12s\n" vprintf ;   : angles ( -- ) .header { -2 -1 0 1 2 6.2831853 16 57.2957795 359 399 6399 1000000 } units [ .row ] cartesian-each ;   MAIN: angles
http://rosettacode.org/wiki/Angles_(geometric),_normalization_and_conversion
Angles (geometric), normalization and conversion
This task is about the normalization and/or conversion of (geometric) angles using some common scales. The angular scales that will be used in this task are:   degree   gradian   mil   radian Definitions The angular scales used or referenced here:   turn   is a full turn or 360 degrees, also shown as 360º   degree   is   1/360   of a turn   gradian   is   1/400   of a turn   mil   is   1/6400   of a turn   radian   is   1/2 π {\displaystyle \pi }   of a turn   (or   0.5/ π {\displaystyle \pi }   of a turn) Or, to put it another way,   for a full circle:   there are   360   degrees   there are   400   gradians   there are   6,400   mils   there are   2 π {\displaystyle \pi }   radians   (roughly equal to 6.283+) A   mil   is approximately equal to a   milliradian   (which is   1/1000   of a radian). There is another definition of a   mil   which is   1/1000   of a radian   ─── this definition won't be used in this Rosetta Code task. Turns   are sometimes known or shown as:   turn(s)   360 degrees   unit circle   a (full) circle Degrees   are sometimes known or shown as:   degree(s)   deg   º       (a symbol)   °       (another symbol) Gradians   are sometimes known or shown as:   gradian(s)   grad(s)   grade(s)   gon(s)   metric degree(s)   (Note that   centigrade   was used for 1/100th of a grade, see the note below.) Mils   are sometimes known or shown as:   mil(s)   NATO mil(s) Radians   are sometimes known or shown as:   radian(s)   rad(s) Notes In continental Europe, the French term   centigrade   was used for   1/100   of a grad (grade);   this was one reason for the adoption of the term   Celsius   to replace   centigrade   as the name of a temperature scale. Gradians were commonly used in civil engineering. Mils were normally used for artillery   (elevations of the gun barrel for ranging). Positive and negative angles Although the definition of the measurement of an angle doesn't support the concept of a negative angle,   it's frequently useful to impose a convention that allows positive and negative angular values to represent orientations and/or rotations in opposite directions relative to some reference.   It is this reason that negative angles will keep their sign and not be normalized to positive angles. Normalization Normalization   (for this Rosetta Code task)   will keep the same sign,   but it will reduce the magnitude to less than a full circle;   in other words, less than 360º. Normalization   shouldn't   change   -45º   to   315º, An angle of   0º,   +0º,   0.000000,   or   -0º   should be shown as   0º. Task   write a function (or equivalent) to do the normalization for each scale Suggested names: d2d,   g2g,   m2m,   and  r2r   write a function (or equivalent) to convert one scale to another Suggested names for comparison of different computer language function names: d2g,   d2m,   and   d2r   for degrees g2d,   g2m,   and   g2r   for gradians m2d,   m2g,   and   m2r   for mils r2d,   r2g,   and   r2m   for radians   normalize all angles used   (except for the "original" or "base" angle)   show the angles in every scale and convert them to all other scales   show all output here on this page For the (above) conversions,   use these dozen numbers   (in the order shown):   -2   -1   0   1   2   6.2831853   16   57.2957795   359   399   6399   1000000
#FreeBASIC
FreeBASIC
#define PI 3.1415926535897932384626433832795028842 #define INVALID -99999   function clamp( byval n as double, lo as double, hi as double ) as double while n <= lo n += (hi - lo)/2 wend while n >= hi n += (lo - hi)/2 wend return n end function   function anglenc( byval angle as double, byval source as string, byval targ as string ) as double source = ucase(source) targ = ucase(targ) select case source case "D": angle = clamp(angle, -360, 360) select case targ case "D": return angle case "G": return angle*10/9 case "M": return angle*160/9 case "R": return angle*PI/180 case "T": return angle/360 case else return INVALID end select case "G": angle = clamp(angle, -400, 400) select case targ case "D": return angle*9/10 case "G": return angle case "M": return angle*16 case "R": return angle*PI/200 case "T": return angle/400 case else return INVALID end select case "M": angle = clamp(angle, -6400, 6400) select case targ case "D": return angle*9/160 case "G": return angle/16 case "M": return angle case "R": return angle*PI/3200 case "T": return angle/6400 case else return INVALID end select case "R": angle = clamp(angle, -2*PI, 2*PI) select case targ case "D": return angle*180/PI case "G": return angle*200/PI case "M": return angle*3200/PI case "R": return angle case "T": return angle/(2*PI) case else return INVALID end select case "T": angle = clamp(angle, -1, 1) select case targ case "D": return angle*360 case "G": return angle*400 case "M": return angle*6400 case "R": return angle*2*PI case "T": return angle case else return INVALID end select case else: return INVALID end select end function   function clip( st as string, num as uinteger ) as string if len(st)<num then return st return left(st, num) end function   dim as string scales = "DGMRT", source, targ dim as double angles(12) = {-2, -1, 0, 1, 2, 6.2831853, 16, 57.2957795, 359, 399, 6399, 1000000} print "Angle Normalised Unit | D G M R T" for k as ubyte = 0 to 11 for i as ubyte = 1 to 5 source = mid(scales,i,1) print angles(k), clip(str(anglenc(angles(k), source, source )), 10), source, "|", for j as ubyte = 1 to 5 targ = mid(scales, j, 1) print clip(str(anglenc(angles(k), source, targ )), 10), next j print next i next k  
http://rosettacode.org/wiki/Amicable_pairs
Amicable pairs
Two integers N {\displaystyle N} and M {\displaystyle M} are said to be amicable pairs if N ≠ M {\displaystyle N\neq M} and the sum of the proper divisors of N {\displaystyle N} ( s u m ( p r o p D i v s ( N ) ) {\displaystyle \mathrm {sum} (\mathrm {propDivs} (N))} ) = M {\displaystyle =M} as well as s u m ( p r o p D i v s ( M ) ) = N {\displaystyle \mathrm {sum} (\mathrm {propDivs} (M))=N} . Example 1184 and 1210 are an amicable pair, with proper divisors:   1, 2, 4, 8, 16, 32, 37, 74, 148, 296, 592   and   1, 2, 5, 10, 11, 22, 55, 110, 121, 242, 605   respectively. Task Calculate and show here the Amicable pairs below 20,000; (there are eight). Related tasks Proper divisors Abundant, deficient and perfect number classifications Aliquot sequence classifications and its amicable classification.
#AWK
AWK
  #!/bin/awk -f function sumprop(num, i,sum,root) { if (num < 2) return 0 sum=1 root=sqrt(num) for ( i=2; i < root; i++) { if (num % i == 0 ) { sum = sum + i + num/i } } if (num % root == 0) { sum = sum + root } return sum }   BEGIN{ limit=20000 print "Amicable pairs < ",limit for (n=1; n < limit+1; n++) { m=sumprop(n) if (n == sumprop(m) && n < m) print n,m } } }
http://rosettacode.org/wiki/Animation
Animation
Animation is integral to many parts of GUIs, including both the fancy effects when things change used in window managers, and of course games.   The core of any animation system is a scheme for periodically changing the display while still remaining responsive to the user.   This task demonstrates this. Task Create a window containing the string "Hello World! " (the trailing space is significant). Make the text appear to be rotating right by periodically removing one letter from the end of the string and attaching it to the front. When the user clicks on the (windowed) text, it should reverse its direction.
#Delphi
Delphi
  unit Main;   interface   uses Winapi.Windows, System.SysUtils, System.Classes, Vcl.Controls, Vcl.Forms, Vcl.StdCtrls, Vcl.ExtCtrls;   type TForm1 = class(TForm) lblAniText: TLabel; tmrAniFrame: TTimer; procedure lblAniTextClick(Sender: TObject); procedure tmrAniFrameTimer(Sender: TObject); end;   var Form1: TForm1; Reverse: boolean = false;   implementation   {$R *.dfm}   procedure TForm1.lblAniTextClick(Sender: TObject); begin Reverse := not Reverse; end;   function Shift(text: string; direction: boolean): string; begin if direction then result := text[text.Length] + text.Substring(0, text.Length - 1) else result := text.Substring(1, text.Length) + text[1]; end;   procedure TForm1.tmrAniFrameTimer(Sender: TObject); begin with lblAniText do Caption := Shift(Caption, Reverse); end; end.
http://rosettacode.org/wiki/Animate_a_pendulum
Animate a pendulum
One good way of making an animation is by simulating a physical system and illustrating the variables in that system using a dynamically changing graphical display. The classic such physical system is a simple gravity pendulum. Task Create a simple physical model of a pendulum and animate it.
#AutoHotkey
AutoHotkey
SetBatchlines,-1 ;settings SizeGUI:={w:650,h:400} ;Guisize pendulum:={length:300,maxangle:90,speed:2,size:30,center:{x:Sizegui.w//2,y:10}} ;pendulum length, size, center, speed and maxangle   pendulum.maxangle:=pendulum.maxangle*0.01745329252 p_Token:=Gdip_Startup() Gui,+LastFound Gui,show,% "w" SizeGUI.w " h" SizeGUI.h hwnd:=WinActive() hdc:=GetDC(hwnd) start:=A_TickCount/1000 G:=Gdip_GraphicsFromHDC(hdc) pBitmap:=Gdip_CreateBitmap(650, 450) G2:=Gdip_GraphicsFromImage(pBitmap) Gdip_SetSmoothingMode(G2, 4) pBrush := Gdip_BrushCreateSolid(0xff0000FF) pBrush2 := Gdip_BrushCreateSolid(0xFF777700) pPen:=Gdip_CreatePenFromBrush(pBrush2, 10) SetTimer,Update,10   Update: Gdip_GraphicsClear(G2,0xFFFFFFFF) time:=start-(A_TickCount/1000*pendulum.speed) angle:=sin(time)*pendulum.maxangle x2:=sin(angle)*pendulum.length+pendulum.center.x y2:=cos(angle)*pendulum.length+pendulum.center.y Gdip_DrawLine(G2,pPen,pendulum.center.x,pendulum.center.y,x2,y2) GDIP_DrawCircle(G2,pBrush,pendulum.center.x,pendulum.center.y,15) GDIP_DrawCircle(G2,pBrush2,x2,y2,pendulum.size) Gdip_DrawImage(G, pBitmap) return   GDIP_DrawCircle(g,b,x,y,r){ Gdip_FillEllipse(g, b, x-r//2,y-r//2 , r, r) }   GuiClose: ExitApp
http://rosettacode.org/wiki/Angle_difference_between_two_bearings
Angle difference between two bearings
Finding the angle between two bearings is often confusing.[1] Task Find the angle which is the result of the subtraction b2 - b1, where b1 and b2 are the bearings. Input bearings are expressed in the range   -180   to   +180   degrees. The  result  is also expressed in the range   -180   to   +180   degrees. Compute the angle for the following pairs: 20 degrees (b1) and 45 degrees (b2) -45 and 45 -85 and 90 -95 and 90 -45 and 125 -45 and 145 29.4803 and -88.6381 -78.3251 and -159.036 Optional extra Allow the input bearings to be any (finite) value. Test cases -70099.74233810938 and 29840.67437876723 -165313.6666297357 and 33693.9894517456 1174.8380510598456 and -154146.66490124757 60175.77306795546 and 42213.07192354373
#Befunge
Befunge
012pv1 2 3 4 5 6 7 8 >&:v >859**%:459**1-`#v_ >12g!:12p#v_\-:459**1-`#v_ >.> >0`#^_8v >859**-^ >859**-^ ^:+**95< > ^  
http://rosettacode.org/wiki/Anagrams/Deranged_anagrams
Anagrams/Deranged anagrams
Two or more words are said to be anagrams if they have the same characters, but in a different order. By analogy with derangements we define a deranged anagram as two words with the same characters, but in which the same character does not appear in the same position in both words. Task[edit] Use the word list at unixdict to find and display the longest deranged anagram. Related tasks Permutations/Derangements Best shuffle Word plays Ordered words Palindrome detection Semordnilap Anagrams Anagrams/Deranged anagrams Other tasks related to string operations: Metrics Array length String length Copy a string Empty string  (assignment) Counting Word frequency Letter frequency Jewels and stones I before E except after C Bioinformatics/base count Count occurrences of a substring Count how many vowels and consonants occur in a string Remove/replace XXXX redacted Conjugate a Latin verb Remove vowels from a string String interpolation (included) Strip block comments Strip comments from a string Strip a set of characters from a string Strip whitespace from a string -- top and tail Strip control codes and extended characters from a string Anagrams/Derangements/shuffling Word wheel ABC problem Sattolo cycle Knuth shuffle Ordered words Superpermutation minimisation Textonyms (using a phone text pad) Anagrams Anagrams/Deranged anagrams Permutations/Derangements Find/Search/Determine ABC words Odd words Word ladder Semordnilap Word search Wordiff  (game) String matching Tea cup rim text Alternade words Changeable words State name puzzle String comparison Unique characters Unique characters in each string Extract file extension Levenshtein distance Palindrome detection Common list elements Longest common suffix Longest common prefix Compare a list of strings Longest common substring Find common directory path Words from neighbour ones Change e letters to i in words Non-continuous subsequences Longest common subsequence Longest palindromic substrings Longest increasing subsequence Words containing "the" substring Sum of the digits of n is substring of n Determine if a string is numeric Determine if a string is collapsible Determine if a string is squeezable Determine if a string has all unique characters Determine if a string has all the same characters Longest substrings without repeating characters Find words which contains all the vowels Find words which contains most consonants Find words which contains more than 3 vowels Find words which first and last three letters are equals Find words which odd letters are consonants and even letters are vowels or vice_versa Formatting Substring Rep-string Word wrap String case Align columns Literals/String Repeat a string Brace expansion Brace expansion using ranges Reverse a string Phrase reversals Comma quibbling Special characters String concatenation Substring/Top and tail Commatizing numbers Reverse words in a string Suffixation of decimal numbers Long literals, with continuations Numerical and alphabetical suffixes Abbreviations, easy Abbreviations, simple Abbreviations, automatic Song lyrics/poems/Mad Libs/phrases Mad Libs Magic 8-ball 99 Bottles of Beer The Name Game (a song) The Old lady swallowed a fly The Twelve Days of Christmas Tokenize Text between Tokenize a string Word break problem Tokenize a string with escaping Split a character string based on change of character Sequences Show ASCII table De Bruijn sequences Self-referential sequences Generate lower case ASCII alphabet
#Delphi
Delphi
program Anagrams_Deranged;   {$APPTYPE CONSOLE}   {$R *.res}   uses System.SysUtils, System.Classes, System.Diagnostics;   function Sort(s: string): string; var c: Char; i, j, aLength: Integer; begin aLength := s.Length;   if aLength = 0 then exit('');   Result := s;   for i := 1 to aLength - 1 do for j := i + 1 to aLength do if result[i] > result[j] then begin c := result[i]; result[i] := result[j]; result[j] := c; end; end;   function IsAnagram(s1, s2: string): Boolean; begin if s1.Length <> s2.Length then exit(False);   Result := Sort(s1) = Sort(s2);   end;   function CompareLength(List: TStringList; Index1, Index2: Integer): Integer; begin result := List[Index1].Length - List[Index2].Length; if Result = 0 then Result := CompareText(Sort(List[Index2]), Sort(List[Index1])); end;   function IsDerangement(word1, word2: string): Boolean; var i: Integer; begin for i := 1 to word1.Length do if word1[i] = word2[i] then exit(False); Result := True; end;   var Dict: TStringList; Count, Index: Integer; words: string; StopWatch: TStopwatch;   begin StopWatch := TStopwatch.Create; StopWatch.Start;   Dict := TStringList.Create(); Dict.LoadFromFile('unixdict.txt');   Dict.CustomSort(CompareLength);   Index := Dict.Count - 1; words := ''; Count := 1;   while Index - Count >= 0 do begin if IsAnagram(Dict[Index], Dict[Index - Count]) then begin if IsDerangement(Dict[Index], Dict[Index - Count]) then begin words := Dict[Index] + ' - ' + Dict[Index - Count]; Break; end; Inc(Count); end else begin Dec(Index, Count); Count := 1; end; end;   StopWatch.Stop;   Writeln(Format('Time pass: %d ms [i7-4500U Windows 7]', [StopWatch.ElapsedMilliseconds]));   writeln(#10'Longest derangement words are:'#10#10, words);   Dict.Free; Readln; end.
http://rosettacode.org/wiki/Anonymous_recursion
Anonymous recursion
While implementing a recursive function, it often happens that we must resort to a separate   helper function   to handle the actual recursion. This is usually the case when directly calling the current function would waste too many resources (stack space, execution time), causing unwanted side-effects,   and/or the function doesn't have the right arguments and/or return values. So we end up inventing some silly name like   foo2   or   foo_helper.   I have always found it painful to come up with a proper name, and see some disadvantages:   You have to think up a name, which then pollutes the namespace   Function is created which is called from nowhere else   The program flow in the source code is interrupted Some languages allow you to embed recursion directly in-place.   This might work via a label, a local gosub instruction, or some special keyword. Anonymous recursion can also be accomplished using the   Y combinator. Task If possible, demonstrate this by writing the recursive version of the fibonacci function   (see Fibonacci sequence)   which checks for a negative argument before doing the actual recursion.
#Delphi
Delphi
  program AnonymousRecursion;   {$APPTYPE CONSOLE}   uses SysUtils;   function Fib(X: Integer): integer;   function DoFib(N: Integer): Integer; begin if N < 2 then Result:=N else Result:=DoFib(N-1) + DoFib(N-2); end;   begin if X < 0 then raise Exception.Create('Argument < 0') else Result:=DoFib(X); end;     var I: integer;   begin for I:=-1 to 15 do begin try WriteLn(I:3,' - ',Fib(I):3); except WriteLn(I,' - Error'); end; end; WriteLn('Hit Any Key'); ReadLn; end.  
http://rosettacode.org/wiki/Angles_(geometric),_normalization_and_conversion
Angles (geometric), normalization and conversion
This task is about the normalization and/or conversion of (geometric) angles using some common scales. The angular scales that will be used in this task are:   degree   gradian   mil   radian Definitions The angular scales used or referenced here:   turn   is a full turn or 360 degrees, also shown as 360º   degree   is   1/360   of a turn   gradian   is   1/400   of a turn   mil   is   1/6400   of a turn   radian   is   1/2 π {\displaystyle \pi }   of a turn   (or   0.5/ π {\displaystyle \pi }   of a turn) Or, to put it another way,   for a full circle:   there are   360   degrees   there are   400   gradians   there are   6,400   mils   there are   2 π {\displaystyle \pi }   radians   (roughly equal to 6.283+) A   mil   is approximately equal to a   milliradian   (which is   1/1000   of a radian). There is another definition of a   mil   which is   1/1000   of a radian   ─── this definition won't be used in this Rosetta Code task. Turns   are sometimes known or shown as:   turn(s)   360 degrees   unit circle   a (full) circle Degrees   are sometimes known or shown as:   degree(s)   deg   º       (a symbol)   °       (another symbol) Gradians   are sometimes known or shown as:   gradian(s)   grad(s)   grade(s)   gon(s)   metric degree(s)   (Note that   centigrade   was used for 1/100th of a grade, see the note below.) Mils   are sometimes known or shown as:   mil(s)   NATO mil(s) Radians   are sometimes known or shown as:   radian(s)   rad(s) Notes In continental Europe, the French term   centigrade   was used for   1/100   of a grad (grade);   this was one reason for the adoption of the term   Celsius   to replace   centigrade   as the name of a temperature scale. Gradians were commonly used in civil engineering. Mils were normally used for artillery   (elevations of the gun barrel for ranging). Positive and negative angles Although the definition of the measurement of an angle doesn't support the concept of a negative angle,   it's frequently useful to impose a convention that allows positive and negative angular values to represent orientations and/or rotations in opposite directions relative to some reference.   It is this reason that negative angles will keep their sign and not be normalized to positive angles. Normalization Normalization   (for this Rosetta Code task)   will keep the same sign,   but it will reduce the magnitude to less than a full circle;   in other words, less than 360º. Normalization   shouldn't   change   -45º   to   315º, An angle of   0º,   +0º,   0.000000,   or   -0º   should be shown as   0º. Task   write a function (or equivalent) to do the normalization for each scale Suggested names: d2d,   g2g,   m2m,   and  r2r   write a function (or equivalent) to convert one scale to another Suggested names for comparison of different computer language function names: d2g,   d2m,   and   d2r   for degrees g2d,   g2m,   and   g2r   for gradians m2d,   m2g,   and   m2r   for mils r2d,   r2g,   and   r2m   for radians   normalize all angles used   (except for the "original" or "base" angle)   show the angles in every scale and convert them to all other scales   show all output here on this page For the (above) conversions,   use these dozen numbers   (in the order shown):   -2   -1   0   1   2   6.2831853   16   57.2957795   359   399   6399   1000000
#Go
Go
package main   import ( "fmt" "math" "strconv" "strings" )   func d2d(d float64) float64 { return math.Mod(d, 360) }   func g2g(g float64) float64 { return math.Mod(g, 400) }   func m2m(m float64) float64 { return math.Mod(m, 6400) }   func r2r(r float64) float64 { return math.Mod(r, 2*math.Pi) }   func d2g(d float64) float64 { return d2d(d) * 400 / 360 }   func d2m(d float64) float64 { return d2d(d) * 6400 / 360 }   func d2r(d float64) float64 { return d2d(d) * math.Pi / 180 }   func g2d(g float64) float64 { return g2g(g) * 360 / 400 }   func g2m(g float64) float64 { return g2g(g) * 6400 / 400 }   func g2r(g float64) float64 { return g2g(g) * math.Pi / 200 }   func m2d(m float64) float64 { return m2m(m) * 360 / 6400 }   func m2g(m float64) float64 { return m2m(m) * 400 / 6400 }   func m2r(m float64) float64 { return m2m(m) * math.Pi / 3200 }   func r2d(r float64) float64 { return r2r(r) * 180 / math.Pi }   func r2g(r float64) float64 { return r2r(r) * 200 / math.Pi }   func r2m(r float64) float64 { return r2r(r) * 3200 / math.Pi }   // Aligns number to decimal point assuming 7 characters before and after. func s(f float64) string { wf := strings.Split(strconv.FormatFloat(f, 'g', 15, 64), ".") if len(wf) == 1 { return fmt.Sprintf("%7s ", wf[0]) } le := len(wf[1]) if le > 7 { le = 7 } return fmt.Sprintf("%7s.%-7s", wf[0], wf[1][:le]) }   func main() { angles := []float64{-2, -1, 0, 1, 2, 6.2831853, 16, 57.2957795, 359, 399, 6399, 1000000} ft := "%s %s %s %s %s\n" fmt.Printf(ft, " degrees ", "normalized degs", " gradians ", " mils ", " radians") for _, a := range angles { fmt.Printf(ft, s(a), s(d2d(a)), s(d2g(a)), s(d2m(a)), s(d2r(a))) } fmt.Printf(ft, "\n gradians ", "normalized grds", " degrees ", " mils ", " radians") for _, a := range angles { fmt.Printf(ft, s(a), s(g2g(a)), s(g2d(a)), s(g2m(a)), s(g2r(a))) } fmt.Printf(ft, "\n mils ", "normalized mils", " degrees ", " gradians ", " radians") for _, a := range angles { fmt.Printf(ft, s(a), s(m2m(a)), s(m2d(a)), s(m2g(a)), s(m2r(a))) } fmt.Printf(ft, "\n radians ", "normalized rads", " degrees ", " gradians ", " mils ") for _, a := range angles { fmt.Printf(ft, s(a), s(r2r(a)), s(r2d(a)), s(r2g(a)), s(r2m(a))) } }
http://rosettacode.org/wiki/Amicable_pairs
Amicable pairs
Two integers N {\displaystyle N} and M {\displaystyle M} are said to be amicable pairs if N ≠ M {\displaystyle N\neq M} and the sum of the proper divisors of N {\displaystyle N} ( s u m ( p r o p D i v s ( N ) ) {\displaystyle \mathrm {sum} (\mathrm {propDivs} (N))} ) = M {\displaystyle =M} as well as s u m ( p r o p D i v s ( M ) ) = N {\displaystyle \mathrm {sum} (\mathrm {propDivs} (M))=N} . Example 1184 and 1210 are an amicable pair, with proper divisors:   1, 2, 4, 8, 16, 32, 37, 74, 148, 296, 592   and   1, 2, 5, 10, 11, 22, 55, 110, 121, 242, 605   respectively. Task Calculate and show here the Amicable pairs below 20,000; (there are eight). Related tasks Proper divisors Abundant, deficient and perfect number classifications Aliquot sequence classifications and its amicable classification.
#BASIC256
BASIC256
function SumProperDivisors(number) if number < 2 then return 0 sum = 0 for i = 1 to number \ 2 if number mod i = 0 then sum += i next i return sum end function   dim sum(20000) for n = 1 to 19999 sum[n] = SumProperDivisors(n) next n   print "The pairs of amicable numbers below 20,000 are :" print   for n = 1 to 19998 f = sum[n] if f <= n or f < 1 or f > 19999 then continue for if f = sum[n] and n = sum[f] then print rjust(string(n), 5); " and "; sum[n] end if next n end
http://rosettacode.org/wiki/Animation
Animation
Animation is integral to many parts of GUIs, including both the fancy effects when things change used in window managers, and of course games.   The core of any animation system is a scheme for periodically changing the display while still remaining responsive to the user.   This task demonstrates this. Task Create a window containing the string "Hello World! " (the trailing space is significant). Make the text appear to be rotating right by periodically removing one letter from the end of the string and attaching it to the front. When the user clicks on the (windowed) text, it should reverse its direction.
#E
E
# State var text := "Hello World! " var leftward := false   # Window def w := <swing:makeJFrame>("RC: Basic Animation")   # Text in window w.setContentPane(def l := <swing:makeJLabel>(text)) l.setOpaque(true) # repaints badly if not set! l.addMouseListener(def mouseListener { to mouseClicked(_) { leftward := !leftward } match _ {} })   # Animation def anim := timer.every(100, fn _ { # milliseconds def s := text.size() l.setText(text := if (leftward) { text(1, s) + text(0, 1) } else { text(s - 1, s) + text(0, s - 1) }) })   # Set up window shape and close behavior w.pack() w.setLocationRelativeTo(null) w.addWindowListener(def windowListener { to windowClosing(_) { anim.stop() } match _ {} })   # Start everything w.show() anim.start()
http://rosettacode.org/wiki/Animate_a_pendulum
Animate a pendulum
One good way of making an animation is by simulating a physical system and illustrating the variables in that system using a dynamically changing graphical display. The classic such physical system is a simple gravity pendulum. Task Create a simple physical model of a pendulum and animate it.
#BASIC
BASIC
MODE 8 *FLOAT 64 VDU 23,23,4;0;0;0; : REM Set line thickness   theta = RAD(40) : REM initial displacement g = 9.81 : REM acceleration due to gravity l = 0.50 : REM length of pendulum in metres   REPEAT PROCpendulum(theta, l) WAIT 1 PROCpendulum(theta, l) accel = - g * SIN(theta) / l / 100 speed += accel / 100 theta += speed UNTIL FALSE END   DEF PROCpendulum(a, l) LOCAL pivotX, pivotY, bobX, bobY pivotX = 640 pivotY = 800 bobX = pivotX + l * 1000 * SIN(a) bobY = pivotY - l * 1000 * COS(a) GCOL 3,6 LINE pivotX, pivotY, bobX, bobY GCOL 3,11 CIRCLE FILL bobX + 24 * SIN(a), bobY - 24 * COS(a), 24 ENDPROC
http://rosettacode.org/wiki/Angle_difference_between_two_bearings
Angle difference between two bearings
Finding the angle between two bearings is often confusing.[1] Task Find the angle which is the result of the subtraction b2 - b1, where b1 and b2 are the bearings. Input bearings are expressed in the range   -180   to   +180   degrees. The  result  is also expressed in the range   -180   to   +180   degrees. Compute the angle for the following pairs: 20 degrees (b1) and 45 degrees (b2) -45 and 45 -85 and 90 -95 and 90 -45 and 125 -45 and 145 29.4803 and -88.6381 -78.3251 and -159.036 Optional extra Allow the input bearings to be any (finite) value. Test cases -70099.74233810938 and 29840.67437876723 -165313.6666297357 and 33693.9894517456 1174.8380510598456 and -154146.66490124757 60175.77306795546 and 42213.07192354373
#C
C
  #include<stdlib.h> #include<stdio.h> #include<math.h>   void processFile(char* name){   int i,records; double diff,b1,b2; FILE* fp = fopen(name,"r");   fscanf(fp,"%d\n",&records);   for(i=0;i<records;i++){ fscanf(fp,"%lf%lf",&b1,&b2);   diff = fmod(b2-b1,360.0); printf("\nDifference between b2(%lf) and b1(%lf) is %lf",b2,b1,(diff<-180)?diff+360:((diff>=180)?diff-360:diff)); }   fclose(fp); }   int main(int argC,char* argV[]) { double diff;   if(argC < 2) printf("Usage : %s <bearings separated by a space OR full file name which contains the bearing list>",argV[0]); else if(argC == 2) processFile(argV[1]); else{ diff = fmod(atof(argV[2])-atof(argV[1]),360.0); printf("Difference between b2(%s) and b1(%s) is %lf",argV[2],argV[1],(diff<-180)?diff+360:((diff>=180)?diff-360:diff)); }   return 0; }  
http://rosettacode.org/wiki/Anagrams/Deranged_anagrams
Anagrams/Deranged anagrams
Two or more words are said to be anagrams if they have the same characters, but in a different order. By analogy with derangements we define a deranged anagram as two words with the same characters, but in which the same character does not appear in the same position in both words. Task[edit] Use the word list at unixdict to find and display the longest deranged anagram. Related tasks Permutations/Derangements Best shuffle Word plays Ordered words Palindrome detection Semordnilap Anagrams Anagrams/Deranged anagrams Other tasks related to string operations: Metrics Array length String length Copy a string Empty string  (assignment) Counting Word frequency Letter frequency Jewels and stones I before E except after C Bioinformatics/base count Count occurrences of a substring Count how many vowels and consonants occur in a string Remove/replace XXXX redacted Conjugate a Latin verb Remove vowels from a string String interpolation (included) Strip block comments Strip comments from a string Strip a set of characters from a string Strip whitespace from a string -- top and tail Strip control codes and extended characters from a string Anagrams/Derangements/shuffling Word wheel ABC problem Sattolo cycle Knuth shuffle Ordered words Superpermutation minimisation Textonyms (using a phone text pad) Anagrams Anagrams/Deranged anagrams Permutations/Derangements Find/Search/Determine ABC words Odd words Word ladder Semordnilap Word search Wordiff  (game) String matching Tea cup rim text Alternade words Changeable words State name puzzle String comparison Unique characters Unique characters in each string Extract file extension Levenshtein distance Palindrome detection Common list elements Longest common suffix Longest common prefix Compare a list of strings Longest common substring Find common directory path Words from neighbour ones Change e letters to i in words Non-continuous subsequences Longest common subsequence Longest palindromic substrings Longest increasing subsequence Words containing "the" substring Sum of the digits of n is substring of n Determine if a string is numeric Determine if a string is collapsible Determine if a string is squeezable Determine if a string has all unique characters Determine if a string has all the same characters Longest substrings without repeating characters Find words which contains all the vowels Find words which contains most consonants Find words which contains more than 3 vowels Find words which first and last three letters are equals Find words which odd letters are consonants and even letters are vowels or vice_versa Formatting Substring Rep-string Word wrap String case Align columns Literals/String Repeat a string Brace expansion Brace expansion using ranges Reverse a string Phrase reversals Comma quibbling Special characters String concatenation Substring/Top and tail Commatizing numbers Reverse words in a string Suffixation of decimal numbers Long literals, with continuations Numerical and alphabetical suffixes Abbreviations, easy Abbreviations, simple Abbreviations, automatic Song lyrics/poems/Mad Libs/phrases Mad Libs Magic 8-ball 99 Bottles of Beer The Name Game (a song) The Old lady swallowed a fly The Twelve Days of Christmas Tokenize Text between Tokenize a string Word break problem Tokenize a string with escaping Split a character string based on change of character Sequences Show ASCII table De Bruijn sequences Self-referential sequences Generate lower case ASCII alphabet
#EchoLisp
EchoLisp
(lib 'hash) (lib 'struct) (lib 'sql) (lib 'words)     (define H (make-hash))   (define (deranged w1 w2) (for ((a w1) (b w2)) #:break (string=? a b) => #f #t))   (define (anagrams (normal) (name) (twins)) (for ((w *words*)) (set! name (word-name w)) (set! normal (list->string (list-sort string<? (string->list name)))) (set! twins (or (hash-ref H normal) null)) #:continue (member name twins) #:when (or (null? twins) (for/or ((anagram twins)) (deranged name anagram))) (hash-set H normal (cons name twins))))     (define (task (lmin 8)) (anagrams) (for ((lw (hash-values H))) ;; lw = list of words #:continue (= (length lw) 1) #:continue (< (string-length (first lw)) lmin) (set! lmin (string-length (first lw))) (write lmin) (for-each write lw) (writeln)))  
http://rosettacode.org/wiki/Anonymous_recursion
Anonymous recursion
While implementing a recursive function, it often happens that we must resort to a separate   helper function   to handle the actual recursion. This is usually the case when directly calling the current function would waste too many resources (stack space, execution time), causing unwanted side-effects,   and/or the function doesn't have the right arguments and/or return values. So we end up inventing some silly name like   foo2   or   foo_helper.   I have always found it painful to come up with a proper name, and see some disadvantages:   You have to think up a name, which then pollutes the namespace   Function is created which is called from nowhere else   The program flow in the source code is interrupted Some languages allow you to embed recursion directly in-place.   This might work via a label, a local gosub instruction, or some special keyword. Anonymous recursion can also be accomplished using the   Y combinator. Task If possible, demonstrate this by writing the recursive version of the fibonacci function   (see Fibonacci sequence)   which checks for a negative argument before doing the actual recursion.
#EchoLisp
EchoLisp
  (define (fib n) (let _fib ((a 1) (b 1) (n n)) (if (<= n 1) a (_fib b (+ a b) (1- n)))))  
http://rosettacode.org/wiki/Angles_(geometric),_normalization_and_conversion
Angles (geometric), normalization and conversion
This task is about the normalization and/or conversion of (geometric) angles using some common scales. The angular scales that will be used in this task are:   degree   gradian   mil   radian Definitions The angular scales used or referenced here:   turn   is a full turn or 360 degrees, also shown as 360º   degree   is   1/360   of a turn   gradian   is   1/400   of a turn   mil   is   1/6400   of a turn   radian   is   1/2 π {\displaystyle \pi }   of a turn   (or   0.5/ π {\displaystyle \pi }   of a turn) Or, to put it another way,   for a full circle:   there are   360   degrees   there are   400   gradians   there are   6,400   mils   there are   2 π {\displaystyle \pi }   radians   (roughly equal to 6.283+) A   mil   is approximately equal to a   milliradian   (which is   1/1000   of a radian). There is another definition of a   mil   which is   1/1000   of a radian   ─── this definition won't be used in this Rosetta Code task. Turns   are sometimes known or shown as:   turn(s)   360 degrees   unit circle   a (full) circle Degrees   are sometimes known or shown as:   degree(s)   deg   º       (a symbol)   °       (another symbol) Gradians   are sometimes known or shown as:   gradian(s)   grad(s)   grade(s)   gon(s)   metric degree(s)   (Note that   centigrade   was used for 1/100th of a grade, see the note below.) Mils   are sometimes known or shown as:   mil(s)   NATO mil(s) Radians   are sometimes known or shown as:   radian(s)   rad(s) Notes In continental Europe, the French term   centigrade   was used for   1/100   of a grad (grade);   this was one reason for the adoption of the term   Celsius   to replace   centigrade   as the name of a temperature scale. Gradians were commonly used in civil engineering. Mils were normally used for artillery   (elevations of the gun barrel for ranging). Positive and negative angles Although the definition of the measurement of an angle doesn't support the concept of a negative angle,   it's frequently useful to impose a convention that allows positive and negative angular values to represent orientations and/or rotations in opposite directions relative to some reference.   It is this reason that negative angles will keep their sign and not be normalized to positive angles. Normalization Normalization   (for this Rosetta Code task)   will keep the same sign,   but it will reduce the magnitude to less than a full circle;   in other words, less than 360º. Normalization   shouldn't   change   -45º   to   315º, An angle of   0º,   +0º,   0.000000,   or   -0º   should be shown as   0º. Task   write a function (or equivalent) to do the normalization for each scale Suggested names: d2d,   g2g,   m2m,   and  r2r   write a function (or equivalent) to convert one scale to another Suggested names for comparison of different computer language function names: d2g,   d2m,   and   d2r   for degrees g2d,   g2m,   and   g2r   for gradians m2d,   m2g,   and   m2r   for mils r2d,   r2g,   and   r2m   for radians   normalize all angles used   (except for the "original" or "base" angle)   show the angles in every scale and convert them to all other scales   show all output here on this page For the (above) conversions,   use these dozen numbers   (in the order shown):   -2   -1   0   1   2   6.2831853   16   57.2957795   359   399   6399   1000000
#Groovy
Groovy
import java.lang.reflect.Constructor   abstract class Angle implements Comparable<? extends Angle> { double value   Angle(double value = 0) { this.value = normalize(value) }   abstract Number unitCircle() abstract String unitName()   Number normalize(double n) { n % this.unitCircle() }   def <B extends Angle> B asType(Class<B> bClass){ if (bClass == this.class) return this bClass.getConstructor(Number.class).newInstance(0).tap { value = this.value * unitCircle() / this.unitCircle() } }   String toString() { "${String.format('%14.8f',value)}${this.unitName()}" }   int hashCode() { value.hashCode() + 17 * unit().hashCode() }   int compareTo(Angle that) { this.value * that.unitCircle() <=> that.value * this.unitCircle() }   boolean equals(that) { this.is(that) ? true  : that instanceof Angle ? (this <=> that) == 0  : that instanceof Number ? this.value == this.normalize(that)  : super.equals(that) } }   class Degrees extends Angle { static final int UNIT_CIRCLE = 360 Number unitCircle() { UNIT_CIRCLE } static final String UNIT = "º " String unitName() { UNIT } Degrees(Number value = 0) { super(value) } }   class Gradians extends Angle { static final int UNIT_CIRCLE = 400 Number unitCircle() { UNIT_CIRCLE } static final String UNIT = " grad" String unitName() { UNIT } Gradians(Number value = 0) { super(value) } }   class Mils extends Angle { static final int UNIT_CIRCLE = 6400 Number unitCircle() { UNIT_CIRCLE } static final String UNIT = " mil " String unitName() { UNIT } Mils(Number value = 0) { super(value) } }   class Radians extends Angle { static final double UNIT_CIRCLE = Math.PI*2 Number unitCircle() { UNIT_CIRCLE } static final String UNIT = " rad " String unitName() { UNIT } Radians(Number value = 0) { super(value) } }
http://rosettacode.org/wiki/Amicable_pairs
Amicable pairs
Two integers N {\displaystyle N} and M {\displaystyle M} are said to be amicable pairs if N ≠ M {\displaystyle N\neq M} and the sum of the proper divisors of N {\displaystyle N} ( s u m ( p r o p D i v s ( N ) ) {\displaystyle \mathrm {sum} (\mathrm {propDivs} (N))} ) = M {\displaystyle =M} as well as s u m ( p r o p D i v s ( M ) ) = N {\displaystyle \mathrm {sum} (\mathrm {propDivs} (M))=N} . Example 1184 and 1210 are an amicable pair, with proper divisors:   1, 2, 4, 8, 16, 32, 37, 74, 148, 296, 592   and   1, 2, 5, 10, 11, 22, 55, 110, 121, 242, 605   respectively. Task Calculate and show here the Amicable pairs below 20,000; (there are eight). Related tasks Proper divisors Abundant, deficient and perfect number classifications Aliquot sequence classifications and its amicable classification.
#BCPL
BCPL
get "libhdr"   manifest $( MAXIMUM = 20000 $)   // Calculate proper divisors for 1..N let propDivSums(n) = valof $( let v = getvec(n) for i = 1 to n do v!i := 1 for i = 2 to n/2 do $( let j = i*2 while j < n do $( v!j := v!j + i j := j + i $) $) resultis v $)   // Are A and B an amicable pair, given the list of sums of proper divisors? let amicable(pdiv, a, b) = a = pdiv!b & b = pdiv!a   let start() be $( let pds = propDivSums(MAXIMUM) for x = 1 to MAXIMUM do for y = x+1 to MAXIMUM do if amicable(pds, x, y) do writef("%N, %N*N", x, y) $)
http://rosettacode.org/wiki/Animation
Animation
Animation is integral to many parts of GUIs, including both the fancy effects when things change used in window managers, and of course games.   The core of any animation system is a scheme for periodically changing the display while still remaining responsive to the user.   This task demonstrates this. Task Create a window containing the string "Hello World! " (the trailing space is significant). Make the text appear to be rotating right by periodically removing one letter from the end of the string and attaching it to the front. When the user clicks on the (windowed) text, it should reverse its direction.
#Elm
Elm
module Main exposing (..)   import Browser import Html exposing (Html, div, pre, text) import Html.Events exposing (onClick) import Time     message : String message = "Hello World! "     main : Program () Model Msg main = Browser.element { init = init , update = update , subscriptions = subscriptions , view = view }       -- MODEL     type Direction = Forwards | Backwards     type alias Model = { time : Int , direction : Direction }     init : () -> ( Model, Cmd Msg ) init _ = ( { time = 0, direction = Forwards }, Cmd.none )       -- UPDATE     type Msg = Tick | SwitchDirection     switchDirection : Direction -> Direction switchDirection d = case d of Forwards -> Backwards   Backwards -> Forwards     update : Msg -> Model -> ( Model, Cmd Msg ) update msg model = let nextTime = case model.direction of Forwards -> model.time - 1   Backwards -> model.time + 1 in case msg of Tick -> ( { model | time = modBy (String.length message) nextTime }, Cmd.none )   SwitchDirection -> ( { model | direction = switchDirection model.direction }, Cmd.none )       -- SUBSCRIPTIONS     subscriptions : Model -> Sub Msg subscriptions _ = Time.every 200 (\_ -> Tick)       -- VIEW     rotate : String -> Int -> String rotate m x = let end = String.slice x (String.length m) m   beginning = String.slice 0 x m in end ++ beginning     view : Model -> Html Msg view model = div [] [ pre [ onClick SwitchDirection ] [ text <| rotate message model.time ] ]  
http://rosettacode.org/wiki/Animation
Animation
Animation is integral to many parts of GUIs, including both the fancy effects when things change used in window managers, and of course games.   The core of any animation system is a scheme for periodically changing the display while still remaining responsive to the user.   This task demonstrates this. Task Create a window containing the string "Hello World! " (the trailing space is significant). Make the text appear to be rotating right by periodically removing one letter from the end of the string and attaching it to the front. When the user clicks on the (windowed) text, it should reverse its direction.
#F.23
F#
open System.Windows   let str = "Hello world! " let mutable i = 0 let mutable d = 1   [<System.STAThread>] do let button = Controls.Button() button.Click.Add(fun _ -> d <- str.Length - d) let update _ = i <- (i + d) % str.Length button.Content <- str.[i..] + str.[..i-1] Media.CompositionTarget.Rendering.Add update (Application()).Run(Window(Content=button)) |> ignore
http://rosettacode.org/wiki/Animate_a_pendulum
Animate a pendulum
One good way of making an animation is by simulating a physical system and illustrating the variables in that system using a dynamically changing graphical display. The classic such physical system is a simple gravity pendulum. Task Create a simple physical model of a pendulum and animate it.
#C
C
#include <stdlib.h> #include <math.h> #include <GL/glut.h> #include <GL/gl.h> #include <sys/time.h>   #define length 5 #define g 9.8 double alpha, accl, omega = 0, E; struct timeval tv;   double elappsed() { struct timeval now; gettimeofday(&now, 0); int ret = (now.tv_sec - tv.tv_sec) * 1000000 + now.tv_usec - tv.tv_usec; tv = now; return ret / 1.e6; }   void resize(int w, int h) { glViewport(0, 0, w, h); glMatrixMode(GL_PROJECTION); glLoadIdentity();   glMatrixMode(GL_MODELVIEW); glLoadIdentity(); glOrtho(0, w, h, 0, -1, 1); }   void render() { double x = 320 + 300 * sin(alpha), y = 300 * cos(alpha); resize(640, 320); glClear(GL_COLOR_BUFFER_BIT);   glBegin(GL_LINES); glVertex2d(320, 0); glVertex2d(x, y); glEnd(); glFlush();   double us = elappsed(); alpha += (omega + us * accl / 2) * us; omega += accl * us;   /* don't let precision error go out of hand */ if (length * g * (1 - cos(alpha)) >= E) { alpha = (alpha < 0 ? -1 : 1) * acos(1 - E / length / g); omega = 0; } accl = -g / length * sin(alpha); }   void init_gfx(int *c, char **v) { glutInit(c, v); glutInitDisplayMode(GLUT_RGB); glutInitWindowSize(640, 320); glutIdleFunc(render); glutCreateWindow("Pendulum"); }   int main(int c, char **v) { alpha = 4 * atan2(1, 1) / 2.1; E = length * g * (1 - cos(alpha));   accl = -g / length * sin(alpha); omega = 0;   gettimeofday(&tv, 0); init_gfx(&c, v); glutMainLoop(); return 0; }
http://rosettacode.org/wiki/Angle_difference_between_two_bearings
Angle difference between two bearings
Finding the angle between two bearings is often confusing.[1] Task Find the angle which is the result of the subtraction b2 - b1, where b1 and b2 are the bearings. Input bearings are expressed in the range   -180   to   +180   degrees. The  result  is also expressed in the range   -180   to   +180   degrees. Compute the angle for the following pairs: 20 degrees (b1) and 45 degrees (b2) -45 and 45 -85 and 90 -95 and 90 -45 and 125 -45 and 145 29.4803 and -88.6381 -78.3251 and -159.036 Optional extra Allow the input bearings to be any (finite) value. Test cases -70099.74233810938 and 29840.67437876723 -165313.6666297357 and 33693.9894517456 1174.8380510598456 and -154146.66490124757 60175.77306795546 and 42213.07192354373
#C.23
C#
using System;   namespace Angle_difference_between_two_bearings { class Program { public static void Main(string[] args) { Console.WriteLine(); Console.WriteLine("Hello World!"); Console.WriteLine();   // Calculate standard test cases Console.WriteLine(Delta_Bearing( 20M,45)); Console.WriteLine(Delta_Bearing(-45M,45M)); Console.WriteLine(Delta_Bearing(-85M,90M)); Console.WriteLine(Delta_Bearing(-95M,90M)); Console.WriteLine(Delta_Bearing(-45M,125M)); Console.WriteLine(Delta_Bearing(-45M,145M)); Console.WriteLine(Delta_Bearing( 29.4803M,-88.6381M)); Console.WriteLine(Delta_Bearing(-78.3251M, -159.036M));   // Calculate optional test cases Console.WriteLine(Delta_Bearing(-70099.74233810938M, 29840.67437876723M)); Console.WriteLine(Delta_Bearing(-165313.6666297357M, 33693.9894517456M)); Console.WriteLine(Delta_Bearing( 1174.8380510598456M, -154146.66490124757M)); Console.WriteLine(Delta_Bearing( 60175.77306795546M, 42213.07192354373M));   Console.WriteLine(); Console.Write("Press any key to continue . . . "); Console.ReadKey(true); }   static decimal Delta_Bearing(decimal b1, decimal b2) { /* * Optimal solution * decimal d = 0;   d = (b2-b1)%360;   if(d>180) d -= 360; else if(d<-180) d += 360;   return d; * * */     // // // decimal d = 0;   // Convert bearing to W.C.B if(b1<0) b1 += 360; if(b2<0) b2 += 360;   ///Calculate delta bearing //and //Convert result value to Q.B. d = (b2 - b1)%360;   if(d>180) d -= 360; else if(d<-180) d += 360;   return d;   // // // } } }
http://rosettacode.org/wiki/Anagrams/Deranged_anagrams
Anagrams/Deranged anagrams
Two or more words are said to be anagrams if they have the same characters, but in a different order. By analogy with derangements we define a deranged anagram as two words with the same characters, but in which the same character does not appear in the same position in both words. Task[edit] Use the word list at unixdict to find and display the longest deranged anagram. Related tasks Permutations/Derangements Best shuffle Word plays Ordered words Palindrome detection Semordnilap Anagrams Anagrams/Deranged anagrams Other tasks related to string operations: Metrics Array length String length Copy a string Empty string  (assignment) Counting Word frequency Letter frequency Jewels and stones I before E except after C Bioinformatics/base count Count occurrences of a substring Count how many vowels and consonants occur in a string Remove/replace XXXX redacted Conjugate a Latin verb Remove vowels from a string String interpolation (included) Strip block comments Strip comments from a string Strip a set of characters from a string Strip whitespace from a string -- top and tail Strip control codes and extended characters from a string Anagrams/Derangements/shuffling Word wheel ABC problem Sattolo cycle Knuth shuffle Ordered words Superpermutation minimisation Textonyms (using a phone text pad) Anagrams Anagrams/Deranged anagrams Permutations/Derangements Find/Search/Determine ABC words Odd words Word ladder Semordnilap Word search Wordiff  (game) String matching Tea cup rim text Alternade words Changeable words State name puzzle String comparison Unique characters Unique characters in each string Extract file extension Levenshtein distance Palindrome detection Common list elements Longest common suffix Longest common prefix Compare a list of strings Longest common substring Find common directory path Words from neighbour ones Change e letters to i in words Non-continuous subsequences Longest common subsequence Longest palindromic substrings Longest increasing subsequence Words containing "the" substring Sum of the digits of n is substring of n Determine if a string is numeric Determine if a string is collapsible Determine if a string is squeezable Determine if a string has all unique characters Determine if a string has all the same characters Longest substrings without repeating characters Find words which contains all the vowels Find words which contains most consonants Find words which contains more than 3 vowels Find words which first and last three letters are equals Find words which odd letters are consonants and even letters are vowels or vice_versa Formatting Substring Rep-string Word wrap String case Align columns Literals/String Repeat a string Brace expansion Brace expansion using ranges Reverse a string Phrase reversals Comma quibbling Special characters String concatenation Substring/Top and tail Commatizing numbers Reverse words in a string Suffixation of decimal numbers Long literals, with continuations Numerical and alphabetical suffixes Abbreviations, easy Abbreviations, simple Abbreviations, automatic Song lyrics/poems/Mad Libs/phrases Mad Libs Magic 8-ball 99 Bottles of Beer The Name Game (a song) The Old lady swallowed a fly The Twelve Days of Christmas Tokenize Text between Tokenize a string Word break problem Tokenize a string with escaping Split a character string based on change of character Sequences Show ASCII table De Bruijn sequences Self-referential sequences Generate lower case ASCII alphabet
#Eiffel
Eiffel
class ANAGRAMS_DERANGED   create make   feature   make -- Longest deranged anagram. local deranged_anagrams: LINKED_LIST [STRING] count: INTEGER do read_wordlist across words as wo loop deranged_anagrams := check_list_for_deranged (wo.item) if not deranged_anagrams.is_empty and deranged_anagrams [1].count > count then count := deranged_anagrams [1].count end wo.item.wipe_out wo.item.append (deranged_anagrams) end across words as wo loop across wo.item as w loop if w.item.count = count then io.put_string (w.item + "%T") io.new_line end end end end   original_list: STRING = "unixdict.txt"   feature {NONE}   check_list_for_deranged (list: LINKED_LIST [STRING]): LINKED_LIST [STRING] -- Deranged anagrams in 'list'. do create Result.make across 1 |..| list.count as i loop across (i.item + 1) |..| list.count as j loop if check_for_deranged (list [i.item], list [j.item]) then Result.extend (list [i.item]) Result.extend (list [j.item]) end end end end   check_for_deranged (a, b: STRING): BOOLEAN -- Are 'a' and 'b' deranged anagrams? local n: INTEGER do across 1 |..| a.count as i loop if a [i.item] = b [i.item] then n := n + 1 end end Result := n = 0 end   read_wordlist -- Hashtable 'words' with alphabetically sorted Strings used as key. local l_file: PLAIN_TEXT_FILE sorted: STRING empty_list: LINKED_LIST [STRING] do create l_file.make_open_read_write (original_list) l_file.read_stream (l_file.count) wordlist := l_file.last_string.split ('%N') l_file.close create words.make (wordlist.count) across wordlist as w loop create empty_list.make sorted := sort_letters (w.item) words.put (empty_list, sorted) if attached words.at (sorted) as ana then ana.extend (w.item) end end end   wordlist: LIST [STRING]   sort_letters (word: STRING): STRING --Alphabetically sorted. local letters: SORTED_TWO_WAY_LIST [STRING] do create letters.make create Result.make_empty across 1 |..| word.count as i loop letters.extend (word.at (i.item).out) end across letters as s loop Result.append (s.item) end end   words: HASH_TABLE [LINKED_LIST [STRING], STRING]   end
http://rosettacode.org/wiki/Anonymous_recursion
Anonymous recursion
While implementing a recursive function, it often happens that we must resort to a separate   helper function   to handle the actual recursion. This is usually the case when directly calling the current function would waste too many resources (stack space, execution time), causing unwanted side-effects,   and/or the function doesn't have the right arguments and/or return values. So we end up inventing some silly name like   foo2   or   foo_helper.   I have always found it painful to come up with a proper name, and see some disadvantages:   You have to think up a name, which then pollutes the namespace   Function is created which is called from nowhere else   The program flow in the source code is interrupted Some languages allow you to embed recursion directly in-place.   This might work via a label, a local gosub instruction, or some special keyword. Anonymous recursion can also be accomplished using the   Y combinator. Task If possible, demonstrate this by writing the recursive version of the fibonacci function   (see Fibonacci sequence)   which checks for a negative argument before doing the actual recursion.
#Ela
Ela
fib n | n < 0 = fail "Negative n" | else = fix (\f n -> if n < 2 then n else f (n - 1) + f (n - 2)) n
http://rosettacode.org/wiki/Angles_(geometric),_normalization_and_conversion
Angles (geometric), normalization and conversion
This task is about the normalization and/or conversion of (geometric) angles using some common scales. The angular scales that will be used in this task are:   degree   gradian   mil   radian Definitions The angular scales used or referenced here:   turn   is a full turn or 360 degrees, also shown as 360º   degree   is   1/360   of a turn   gradian   is   1/400   of a turn   mil   is   1/6400   of a turn   radian   is   1/2 π {\displaystyle \pi }   of a turn   (or   0.5/ π {\displaystyle \pi }   of a turn) Or, to put it another way,   for a full circle:   there are   360   degrees   there are   400   gradians   there are   6,400   mils   there are   2 π {\displaystyle \pi }   radians   (roughly equal to 6.283+) A   mil   is approximately equal to a   milliradian   (which is   1/1000   of a radian). There is another definition of a   mil   which is   1/1000   of a radian   ─── this definition won't be used in this Rosetta Code task. Turns   are sometimes known or shown as:   turn(s)   360 degrees   unit circle   a (full) circle Degrees   are sometimes known or shown as:   degree(s)   deg   º       (a symbol)   °       (another symbol) Gradians   are sometimes known or shown as:   gradian(s)   grad(s)   grade(s)   gon(s)   metric degree(s)   (Note that   centigrade   was used for 1/100th of a grade, see the note below.) Mils   are sometimes known or shown as:   mil(s)   NATO mil(s) Radians   are sometimes known or shown as:   radian(s)   rad(s) Notes In continental Europe, the French term   centigrade   was used for   1/100   of a grad (grade);   this was one reason for the adoption of the term   Celsius   to replace   centigrade   as the name of a temperature scale. Gradians were commonly used in civil engineering. Mils were normally used for artillery   (elevations of the gun barrel for ranging). Positive and negative angles Although the definition of the measurement of an angle doesn't support the concept of a negative angle,   it's frequently useful to impose a convention that allows positive and negative angular values to represent orientations and/or rotations in opposite directions relative to some reference.   It is this reason that negative angles will keep their sign and not be normalized to positive angles. Normalization Normalization   (for this Rosetta Code task)   will keep the same sign,   but it will reduce the magnitude to less than a full circle;   in other words, less than 360º. Normalization   shouldn't   change   -45º   to   315º, An angle of   0º,   +0º,   0.000000,   or   -0º   should be shown as   0º. Task   write a function (or equivalent) to do the normalization for each scale Suggested names: d2d,   g2g,   m2m,   and  r2r   write a function (or equivalent) to convert one scale to another Suggested names for comparison of different computer language function names: d2g,   d2m,   and   d2r   for degrees g2d,   g2m,   and   g2r   for gradians m2d,   m2g,   and   m2r   for mils r2d,   r2g,   and   r2m   for radians   normalize all angles used   (except for the "original" or "base" angle)   show the angles in every scale and convert them to all other scales   show all output here on this page For the (above) conversions,   use these dozen numbers   (in the order shown):   -2   -1   0   1   2   6.2831853   16   57.2957795   359   399   6399   1000000
#Haskell
Haskell
{-# LANGUAGE RankNTypes #-} {-# LANGUAGE TypeApplications #-} {-# LANGUAGE GeneralizedNewtypeDeriving #-}   import Text.Printf   class (Num a, Fractional a, RealFrac a) => Angle a where fullTurn :: a -- value of the whole turn mkAngle :: Double -> a value :: a -> Double fromTurn :: Double -> a toTurn :: a -> Double normalize :: a -> a   -- conversion of angles to rotations in linear case fromTurn t = angle t * fullTurn toTurn a = value $ a / fullTurn   -- normalizer for linear angular unit normalize a = a `modulo` fullTurn where modulo x r | x == r = r | x < 0 = signum x * abs x `modulo` r | x >= 0 = x - fromInteger (floor (x / r)) * r   -- smart constructor angle :: Angle a => Double -> a angle = normalize . mkAngle   -- Two transformers differ only in the order of type application. from :: forall a b. (Angle a, Angle b) => a -> b from = fromTurn . toTurn   to :: forall b a. (Angle a, Angle b) => a -> b to = fromTurn . toTurn
http://rosettacode.org/wiki/Amicable_pairs
Amicable pairs
Two integers N {\displaystyle N} and M {\displaystyle M} are said to be amicable pairs if N ≠ M {\displaystyle N\neq M} and the sum of the proper divisors of N {\displaystyle N} ( s u m ( p r o p D i v s ( N ) ) {\displaystyle \mathrm {sum} (\mathrm {propDivs} (N))} ) = M {\displaystyle =M} as well as s u m ( p r o p D i v s ( M ) ) = N {\displaystyle \mathrm {sum} (\mathrm {propDivs} (M))=N} . Example 1184 and 1210 are an amicable pair, with proper divisors:   1, 2, 4, 8, 16, 32, 37, 74, 148, 296, 592   and   1, 2, 5, 10, 11, 22, 55, 110, 121, 242, 605   respectively. Task Calculate and show here the Amicable pairs below 20,000; (there are eight). Related tasks Proper divisors Abundant, deficient and perfect number classifications Aliquot sequence classifications and its amicable classification.
#Befunge
Befunge
v_@#-*8*:"2":$_:#!2#*8#g*#6:#0*#!:#-*#<v>*/.55+, 1>$$:28*:*:*%\28*:*:*/`06p28*:*:*/\2v %%^:*:<>*v +|!:-1g60/*:*:*82::+**:*:<<>:#**#8:#<*^>.28*^8 : :v>>*:*%/\28*:*:*%+\v>8+#$^#_+#`\:#0<:\`1/*:*2#< 2v^:*82\/*:*:*82:::_v#!%%*:*:*82\/*:*:*82::<_^#< >>06p:28*:*:**1+01-\>1+::28*:*:*/\28*:*:*%:*\`!^
http://rosettacode.org/wiki/Animation
Animation
Animation is integral to many parts of GUIs, including both the fancy effects when things change used in window managers, and of course games.   The core of any animation system is a scheme for periodically changing the display while still remaining responsive to the user.   This task demonstrates this. Task Create a window containing the string "Hello World! " (the trailing space is significant). Make the text appear to be rotating right by periodically removing one letter from the end of the string and attaching it to the front. When the user clicks on the (windowed) text, it should reverse its direction.
#Factor
Factor
USING: accessors timers calendar kernel models sequences ui ui.gadgets ui.gadgets.labels ui.gestures ; FROM: models => change-model ; IN: rosetta.animation   CONSTANT: sentence "Hello World! "   TUPLE: animated-label < label-control reversed alarm ; : <animated-label> ( model -- <animated-model> ) sentence animated-label new-label swap >>model monospace-font >>font ; : update-string ( str reverse -- str ) [ unclip-last prefix ] [ unclip suffix ] if ; : update-model ( model reversed? -- ) [ update-string ] curry change-model ;   animated-label H{ { T{ button-down } [ [ not ] change-reversed drop ] } } set-gestures   M: animated-label graft* [ [ [ model>> ] [ reversed>> ] bi update-model ] curry 400 milliseconds every ] keep alarm<< ; M: animated-label ungraft* alarm>> stop-timer ; : main ( -- ) [ sentence <model> <animated-label> "Rosetta" open-window ] with-ui ;   MAIN: main
http://rosettacode.org/wiki/Animation
Animation
Animation is integral to many parts of GUIs, including both the fancy effects when things change used in window managers, and of course games.   The core of any animation system is a scheme for periodically changing the display while still remaining responsive to the user.   This task demonstrates this. Task Create a window containing the string "Hello World! " (the trailing space is significant). Make the text appear to be rotating right by periodically removing one letter from the end of the string and attaching it to the front. When the user clicks on the (windowed) text, it should reverse its direction.
#Fantom
Fantom
  using concurrent using fwt using gfx   const class RotateString : Actor { new make (Label label) : super (ActorPool ()) { Actor.locals["rotate-label"] = label Actor.locals["rotate-string"] = label.text Actor.locals["direction"] = "forward" sendLater (1sec, "update") }   // responsible for calling appropriate methods to process each message override Obj? receive (Obj? msg) { switch (msg) { case "update": Desktop.callAsync |->| { update } // make sure we update GUI in event thread sendLater (1sec, "update") case "reverse": Desktop.callAsync |->| { reverse } }   return null }   // change the stored string indicating the direction to rotate Void reverse () { Actor.locals["direction"] = (Actor.locals["direction"] == "forward" ? "backward" : "forward") }   // update the text on the label according to the stored direction Void update () { label := Actor.locals["rotate-label"] as Label str := Actor.locals["rotate-string"] as Str if (label != null) { newStr := "" if (Actor.locals["direction"] == "forward") newStr = str[1..-1] + str[0].toChar else newStr = str[-1].toChar + str[0..<-1] label.text = newStr Actor.locals["rotate-string"] = newStr } } }   class Animate { public static Void main () { label := Label { text = "Hello world! " halign = Halign.center } ticker := RotateString (label) label.onMouseDown.add |Event e| { ticker.send ("reverse") } Window { title = "Animate" label, }.open } }  
http://rosettacode.org/wiki/Animate_a_pendulum
Animate a pendulum
One good way of making an animation is by simulating a physical system and illustrating the variables in that system using a dynamically changing graphical display. The classic such physical system is a simple gravity pendulum. Task Create a simple physical model of a pendulum and animate it.
#C.23
C#
  using System; using System.Drawing; using System.Windows.Forms;   class CSharpPendulum { Form _form; Timer _timer;   double _angle = Math.PI / 2, _angleAccel, _angleVelocity = 0, _dt = 0.1;   int _length = 50;   [STAThread] static void Main() { var p = new CSharpPendulum(); }   public CSharpPendulum() { _form = new Form() { Text = "Pendulum", Width = 200, Height = 200 }; _timer = new Timer() { Interval = 30 };   _timer.Tick += delegate(object sender, EventArgs e) { int anchorX = (_form.Width / 2) - 12, anchorY = _form.Height / 4, ballX = anchorX + (int)(Math.Sin(_angle) * _length), ballY = anchorY + (int)(Math.Cos(_angle) * _length);   _angleAccel = -9.81 / _length * Math.Sin(_angle); _angleVelocity += _angleAccel * _dt; _angle += _angleVelocity * _dt;   Bitmap dblBuffer = new Bitmap(_form.Width, _form.Height); Graphics g = Graphics.FromImage(dblBuffer); Graphics f = Graphics.FromHwnd(_form.Handle);   g.DrawLine(Pens.Black, new Point(anchorX, anchorY), new Point(ballX, ballY)); g.FillEllipse(Brushes.Black, anchorX - 3, anchorY - 4, 7, 7); g.FillEllipse(Brushes.DarkGoldenrod, ballX - 7, ballY - 7, 14, 14);   f.Clear(Color.White); f.DrawImage(dblBuffer, new Point(0, 0)); };   _timer.Start(); Application.Run(_form); } }  
http://rosettacode.org/wiki/Angle_difference_between_two_bearings
Angle difference between two bearings
Finding the angle between two bearings is often confusing.[1] Task Find the angle which is the result of the subtraction b2 - b1, where b1 and b2 are the bearings. Input bearings are expressed in the range   -180   to   +180   degrees. The  result  is also expressed in the range   -180   to   +180   degrees. Compute the angle for the following pairs: 20 degrees (b1) and 45 degrees (b2) -45 and 45 -85 and 90 -95 and 90 -45 and 125 -45 and 145 29.4803 and -88.6381 -78.3251 and -159.036 Optional extra Allow the input bearings to be any (finite) value. Test cases -70099.74233810938 and 29840.67437876723 -165313.6666297357 and 33693.9894517456 1174.8380510598456 and -154146.66490124757 60175.77306795546 and 42213.07192354373
#C.2B.2B
C++
#include <cmath> #include <iostream> using namespace std;   double getDifference(double b1, double b2) { double r = fmod(b2 - b1, 360.0); if (r < -180.0) r += 360.0; if (r >= 180.0) r -= 360.0; return r; }   int main() { cout << "Input in -180 to +180 range" << endl; cout << getDifference(20.0, 45.0) << endl; cout << getDifference(-45.0, 45.0) << endl; cout << getDifference(-85.0, 90.0) << endl; cout << getDifference(-95.0, 90.0) << endl; cout << getDifference(-45.0, 125.0) << endl; cout << getDifference(-45.0, 145.0) << endl; cout << getDifference(-45.0, 125.0) << endl; cout << getDifference(-45.0, 145.0) << endl; cout << getDifference(29.4803, -88.6381) << endl; cout << getDifference(-78.3251, -159.036) << endl;   cout << "Input in wider range" << endl; cout << getDifference(-70099.74233810938, 29840.67437876723) << endl; cout << getDifference(-165313.6666297357, 33693.9894517456) << endl; cout << getDifference(1174.8380510598456, -154146.66490124757) << endl; cout << getDifference(60175.77306795546, 42213.07192354373) << endl;   return 0; }
http://rosettacode.org/wiki/Anagrams/Deranged_anagrams
Anagrams/Deranged anagrams
Two or more words are said to be anagrams if they have the same characters, but in a different order. By analogy with derangements we define a deranged anagram as two words with the same characters, but in which the same character does not appear in the same position in both words. Task[edit] Use the word list at unixdict to find and display the longest deranged anagram. Related tasks Permutations/Derangements Best shuffle Word plays Ordered words Palindrome detection Semordnilap Anagrams Anagrams/Deranged anagrams Other tasks related to string operations: Metrics Array length String length Copy a string Empty string  (assignment) Counting Word frequency Letter frequency Jewels and stones I before E except after C Bioinformatics/base count Count occurrences of a substring Count how many vowels and consonants occur in a string Remove/replace XXXX redacted Conjugate a Latin verb Remove vowels from a string String interpolation (included) Strip block comments Strip comments from a string Strip a set of characters from a string Strip whitespace from a string -- top and tail Strip control codes and extended characters from a string Anagrams/Derangements/shuffling Word wheel ABC problem Sattolo cycle Knuth shuffle Ordered words Superpermutation minimisation Textonyms (using a phone text pad) Anagrams Anagrams/Deranged anagrams Permutations/Derangements Find/Search/Determine ABC words Odd words Word ladder Semordnilap Word search Wordiff  (game) String matching Tea cup rim text Alternade words Changeable words State name puzzle String comparison Unique characters Unique characters in each string Extract file extension Levenshtein distance Palindrome detection Common list elements Longest common suffix Longest common prefix Compare a list of strings Longest common substring Find common directory path Words from neighbour ones Change e letters to i in words Non-continuous subsequences Longest common subsequence Longest palindromic substrings Longest increasing subsequence Words containing "the" substring Sum of the digits of n is substring of n Determine if a string is numeric Determine if a string is collapsible Determine if a string is squeezable Determine if a string has all unique characters Determine if a string has all the same characters Longest substrings without repeating characters Find words which contains all the vowels Find words which contains most consonants Find words which contains more than 3 vowels Find words which first and last three letters are equals Find words which odd letters are consonants and even letters are vowels or vice_versa Formatting Substring Rep-string Word wrap String case Align columns Literals/String Repeat a string Brace expansion Brace expansion using ranges Reverse a string Phrase reversals Comma quibbling Special characters String concatenation Substring/Top and tail Commatizing numbers Reverse words in a string Suffixation of decimal numbers Long literals, with continuations Numerical and alphabetical suffixes Abbreviations, easy Abbreviations, simple Abbreviations, automatic Song lyrics/poems/Mad Libs/phrases Mad Libs Magic 8-ball 99 Bottles of Beer The Name Game (a song) The Old lady swallowed a fly The Twelve Days of Christmas Tokenize Text between Tokenize a string Word break problem Tokenize a string with escaping Split a character string based on change of character Sequences Show ASCII table De Bruijn sequences Self-referential sequences Generate lower case ASCII alphabet
#Elixir
Elixir
defmodule Anagrams do def deranged(fname) do File.read!(fname) |> String.split |> Enum.map(fn word -> to_charlist(word) end) |> Enum.group_by(fn word -> Enum.sort(word) end) |> Enum.filter(fn {_,words} -> length(words) > 1 end) |> Enum.sort_by(fn {key,_} -> -length(key) end) |> Enum.find(fn {_,words} -> find_derangements(words) end) end   defp find_derangements(words) do comb(words,2) |> Enum.find(fn [a,b] -> deranged?(a,b) end) end   defp deranged?(a,b) do Enum.zip(a, b) |> Enum.all?(fn {chr_a,chr_b} -> chr_a != chr_b end) end   defp comb(_, 0), do: [[]] defp comb([], _), do: [] defp comb([h|t], m) do (for l <- comb(t, m-1), do: [h|l]) ++ comb(t, m) end end   case Anagrams.deranged("/work/unixdict.txt") do {_, words} -> IO.puts "Longest derangement anagram: #{inspect words}" _ -> IO.puts "derangement anagram: nothing" end
http://rosettacode.org/wiki/Anonymous_recursion
Anonymous recursion
While implementing a recursive function, it often happens that we must resort to a separate   helper function   to handle the actual recursion. This is usually the case when directly calling the current function would waste too many resources (stack space, execution time), causing unwanted side-effects,   and/or the function doesn't have the right arguments and/or return values. So we end up inventing some silly name like   foo2   or   foo_helper.   I have always found it painful to come up with a proper name, and see some disadvantages:   You have to think up a name, which then pollutes the namespace   Function is created which is called from nowhere else   The program flow in the source code is interrupted Some languages allow you to embed recursion directly in-place.   This might work via a label, a local gosub instruction, or some special keyword. Anonymous recursion can also be accomplished using the   Y combinator. Task If possible, demonstrate this by writing the recursive version of the fibonacci function   (see Fibonacci sequence)   which checks for a negative argument before doing the actual recursion.
#Elena
Elena
import extensions;   fib(n) { if (n < 0) { InvalidArgumentException.raise() };   ^ (n) { if (n > 1) { ^ this self(n - 2) + (this self(n - 1)) } else { ^ n } }(n) }   public program() { for (int i := -1, i <= 10, i += 1) { console.print("fib(",i,")="); try { console.printLine(fib(i)) } catch(Exception e) { console.printLine:"invalid" } };   console.readChar() }
http://rosettacode.org/wiki/Angles_(geometric),_normalization_and_conversion
Angles (geometric), normalization and conversion
This task is about the normalization and/or conversion of (geometric) angles using some common scales. The angular scales that will be used in this task are:   degree   gradian   mil   radian Definitions The angular scales used or referenced here:   turn   is a full turn or 360 degrees, also shown as 360º   degree   is   1/360   of a turn   gradian   is   1/400   of a turn   mil   is   1/6400   of a turn   radian   is   1/2 π {\displaystyle \pi }   of a turn   (or   0.5/ π {\displaystyle \pi }   of a turn) Or, to put it another way,   for a full circle:   there are   360   degrees   there are   400   gradians   there are   6,400   mils   there are   2 π {\displaystyle \pi }   radians   (roughly equal to 6.283+) A   mil   is approximately equal to a   milliradian   (which is   1/1000   of a radian). There is another definition of a   mil   which is   1/1000   of a radian   ─── this definition won't be used in this Rosetta Code task. Turns   are sometimes known or shown as:   turn(s)   360 degrees   unit circle   a (full) circle Degrees   are sometimes known or shown as:   degree(s)   deg   º       (a symbol)   °       (another symbol) Gradians   are sometimes known or shown as:   gradian(s)   grad(s)   grade(s)   gon(s)   metric degree(s)   (Note that   centigrade   was used for 1/100th of a grade, see the note below.) Mils   are sometimes known or shown as:   mil(s)   NATO mil(s) Radians   are sometimes known or shown as:   radian(s)   rad(s) Notes In continental Europe, the French term   centigrade   was used for   1/100   of a grad (grade);   this was one reason for the adoption of the term   Celsius   to replace   centigrade   as the name of a temperature scale. Gradians were commonly used in civil engineering. Mils were normally used for artillery   (elevations of the gun barrel for ranging). Positive and negative angles Although the definition of the measurement of an angle doesn't support the concept of a negative angle,   it's frequently useful to impose a convention that allows positive and negative angular values to represent orientations and/or rotations in opposite directions relative to some reference.   It is this reason that negative angles will keep their sign and not be normalized to positive angles. Normalization Normalization   (for this Rosetta Code task)   will keep the same sign,   but it will reduce the magnitude to less than a full circle;   in other words, less than 360º. Normalization   shouldn't   change   -45º   to   315º, An angle of   0º,   +0º,   0.000000,   or   -0º   should be shown as   0º. Task   write a function (or equivalent) to do the normalization for each scale Suggested names: d2d,   g2g,   m2m,   and  r2r   write a function (or equivalent) to convert one scale to another Suggested names for comparison of different computer language function names: d2g,   d2m,   and   d2r   for degrees g2d,   g2m,   and   g2r   for gradians m2d,   m2g,   and   m2r   for mils r2d,   r2g,   and   r2m   for radians   normalize all angles used   (except for the "original" or "base" angle)   show the angles in every scale and convert them to all other scales   show all output here on this page For the (above) conversions,   use these dozen numbers   (in the order shown):   -2   -1   0   1   2   6.2831853   16   57.2957795   359   399   6399   1000000
#J
J
  TAU =: 2p1 NB. tauday.com   normalize =: * * 1 | | NB. signum times the fractional part of absolute value   TurnTo=: &*   as_turn =: 1 TurnTo as_degree =: 360 TurnTo as_gradian =: 400 TurnTo as_mil =: 6400 TurnTo as_radian =: TAU TurnTo   Turn =: adverb def 'normalize as_turn inv m' Degree =: adverb def 'normalize as_degree inv m' Gradian =: adverb def 'normalize as_gradian inv m' Mil =: adverb def 'normalize as_mil inv m' Radian =: adverb def 'normalize as_radian inv m'  
http://rosettacode.org/wiki/Angles_(geometric),_normalization_and_conversion
Angles (geometric), normalization and conversion
This task is about the normalization and/or conversion of (geometric) angles using some common scales. The angular scales that will be used in this task are:   degree   gradian   mil   radian Definitions The angular scales used or referenced here:   turn   is a full turn or 360 degrees, also shown as 360º   degree   is   1/360   of a turn   gradian   is   1/400   of a turn   mil   is   1/6400   of a turn   radian   is   1/2 π {\displaystyle \pi }   of a turn   (or   0.5/ π {\displaystyle \pi }   of a turn) Or, to put it another way,   for a full circle:   there are   360   degrees   there are   400   gradians   there are   6,400   mils   there are   2 π {\displaystyle \pi }   radians   (roughly equal to 6.283+) A   mil   is approximately equal to a   milliradian   (which is   1/1000   of a radian). There is another definition of a   mil   which is   1/1000   of a radian   ─── this definition won't be used in this Rosetta Code task. Turns   are sometimes known or shown as:   turn(s)   360 degrees   unit circle   a (full) circle Degrees   are sometimes known or shown as:   degree(s)   deg   º       (a symbol)   °       (another symbol) Gradians   are sometimes known or shown as:   gradian(s)   grad(s)   grade(s)   gon(s)   metric degree(s)   (Note that   centigrade   was used for 1/100th of a grade, see the note below.) Mils   are sometimes known or shown as:   mil(s)   NATO mil(s) Radians   are sometimes known or shown as:   radian(s)   rad(s) Notes In continental Europe, the French term   centigrade   was used for   1/100   of a grad (grade);   this was one reason for the adoption of the term   Celsius   to replace   centigrade   as the name of a temperature scale. Gradians were commonly used in civil engineering. Mils were normally used for artillery   (elevations of the gun barrel for ranging). Positive and negative angles Although the definition of the measurement of an angle doesn't support the concept of a negative angle,   it's frequently useful to impose a convention that allows positive and negative angular values to represent orientations and/or rotations in opposite directions relative to some reference.   It is this reason that negative angles will keep their sign and not be normalized to positive angles. Normalization Normalization   (for this Rosetta Code task)   will keep the same sign,   but it will reduce the magnitude to less than a full circle;   in other words, less than 360º. Normalization   shouldn't   change   -45º   to   315º, An angle of   0º,   +0º,   0.000000,   or   -0º   should be shown as   0º. Task   write a function (or equivalent) to do the normalization for each scale Suggested names: d2d,   g2g,   m2m,   and  r2r   write a function (or equivalent) to convert one scale to another Suggested names for comparison of different computer language function names: d2g,   d2m,   and   d2r   for degrees g2d,   g2m,   and   g2r   for gradians m2d,   m2g,   and   m2r   for mils r2d,   r2g,   and   r2m   for radians   normalize all angles used   (except for the "original" or "base" angle)   show the angles in every scale and convert them to all other scales   show all output here on this page For the (above) conversions,   use these dozen numbers   (in the order shown):   -2   -1   0   1   2   6.2831853   16   57.2957795   359   399   6399   1000000
#Java
Java
import java.text.DecimalFormat;   // Title: Angles (geometric), normalization and conversion   public class AnglesNormalizationAndConversion {   public static void main(String[] args) { DecimalFormat formatAngle = new DecimalFormat("######0.000000"); DecimalFormat formatConv = new DecimalFormat("###0.0000"); System.out.printf(" degrees gradiens mils radians%n"); for ( double angle : new double[] {-2, -1, 0, 1, 2, 6.2831853, 16, 57.2957795, 359, 399, 6399, 1000000} ) { for ( String units : new String[] {"degrees", "gradiens", "mils", "radians"}) { double d = 0, g = 0, m = 0, r = 0; switch (units) { case "degrees": d = d2d(angle); g = d2g(d); m = d2m(d); r = d2r(d); break; case "gradiens": g = g2g(angle); d = g2d(g); m = g2m(g); r = g2r(g); break; case "mils": m = m2m(angle); d = m2d(m); g = m2g(m); r = m2r(m); break; case "radians": r = r2r(angle); d = r2d(r); g = r2g(r); m = r2m(r); break; } System.out.printf("%15s  %8s = %10s  %10s  %10s  %10s%n", formatAngle.format(angle), units, formatConv.format(d), formatConv.format(g), formatConv.format(m), formatConv.format(r)); } } }   private static final double DEGREE = 360D; private static final double GRADIAN = 400D; private static final double MIL = 6400D; private static final double RADIAN = (2 * Math.PI);   private static double d2d(double a) { return a % DEGREE; } private static double d2g(double a) { return a * (GRADIAN / DEGREE); } private static double d2m(double a) { return a * (MIL / DEGREE); } private static double d2r(double a) { return a * (RADIAN / 360); }   private static double g2d(double a) { return a * (DEGREE / GRADIAN); } private static double g2g(double a) { return a % GRADIAN; } private static double g2m(double a) { return a * (MIL / GRADIAN); } private static double g2r(double a) { return a * (RADIAN / GRADIAN); }   private static double m2d(double a) { return a * (DEGREE / MIL); } private static double m2g(double a) { return a * (GRADIAN / MIL); } private static double m2m(double a) { return a % MIL; } private static double m2r(double a) { return a * (RADIAN / MIL); }   private static double r2d(double a) { return a * (DEGREE / RADIAN); } private static double r2g(double a) { return a * (GRADIAN / RADIAN); } private static double r2m(double a) { return a * (MIL / RADIAN); } private static double r2r(double a) { return a % RADIAN; }   }
http://rosettacode.org/wiki/Amicable_pairs
Amicable pairs
Two integers N {\displaystyle N} and M {\displaystyle M} are said to be amicable pairs if N ≠ M {\displaystyle N\neq M} and the sum of the proper divisors of N {\displaystyle N} ( s u m ( p r o p D i v s ( N ) ) {\displaystyle \mathrm {sum} (\mathrm {propDivs} (N))} ) = M {\displaystyle =M} as well as s u m ( p r o p D i v s ( M ) ) = N {\displaystyle \mathrm {sum} (\mathrm {propDivs} (M))=N} . Example 1184 and 1210 are an amicable pair, with proper divisors:   1, 2, 4, 8, 16, 32, 37, 74, 148, 296, 592   and   1, 2, 5, 10, 11, 22, 55, 110, 121, 242, 605   respectively. Task Calculate and show here the Amicable pairs below 20,000; (there are eight). Related tasks Proper divisors Abundant, deficient and perfect number classifications Aliquot sequence classifications and its amicable classification.
#C
C
#include <stdio.h> #include <stdlib.h>   typedef unsigned int uint;   int main(int argc, char **argv) { uint top = atoi(argv[1]); uint *divsum = malloc((top + 1) * sizeof(*divsum)); uint pows[32] = {1, 0};   for (uint i = 0; i <= top; i++) divsum[i] = 1;   // sieve // only sieve within lower half , the modification starts at 2*p for (uint p = 2; p+p <= top; p++) { if (divsum[p] > 1) { divsum[p] -= p;// subtract number itself from divisor sum ('proper') continue;} // p not prime   uint x; // highest power of p we need //checking x <= top/y instead of x*y <= top to avoid overflow for (x = 1; pows[x - 1] <= top/p; x++) pows[x] = p*pows[x - 1];   //counter where n is not a*p with a = ?*p, useful for most p. //think of p>31 seldom divisions or p>sqrt(top) than no division is needed //n = 2*p, so the prime itself is left unchanged => k=p-1 uint k= p-1; for (uint n = p+p; n <= top; n += p) { uint s=1+pows[1]; k--; // search the right power only if needed if ( k==0) { for (uint i = 2; i < x && !(n%pows[i]); s += pows[i++]); k = p; } divsum[n] *= s; } }   //now correct the upper half for (uint p = (top >> 1)+1; p <= top; p++) { if (divsum[p] > 1){ divsum[p] -= p;} }   uint cnt = 0; for (uint a = 1; a <= top; a++) { uint b = divsum[a]; if (b > a && b <= top && divsum[b] == a){ printf("%u %u\n", a, b); cnt++;} } printf("\nTop %u count : %u\n",top,cnt); return 0; }
http://rosettacode.org/wiki/Animation
Animation
Animation is integral to many parts of GUIs, including both the fancy effects when things change used in window managers, and of course games.   The core of any animation system is a scheme for periodically changing the display while still remaining responsive to the user.   This task demonstrates this. Task Create a window containing the string "Hello World! " (the trailing space is significant). Make the text appear to be rotating right by periodically removing one letter from the end of the string and attaching it to the front. When the user clicks on the (windowed) text, it should reverse its direction.
#FBSL
FBSL
#INCLUDE <Include\Windows.inc>   FBSLSETTEXT(ME, "Hello world! ") RESIZE(ME, 0, 0, 220, 0) CENTER(ME) SHOW(ME) SetTimer(ME, 1000, 100, NULL)   BEGIN EVENTS STATIC bForward AS BOOLEAN = TRUE IF CBMSG = WM_TIMER THEN Marquee(bForward) RETURN 0 ELSEIF CBMSG = WM_NCLBUTTONDOWN THEN IF CBWPARAM = HTCAPTION THEN bForward = NOT bForward ELSEIF CBMSG = WM_CLOSE THEN KillTimer(ME, 1000) END IF END EVENTS   SUB Marquee(BYVAL forward AS BOOLEAN) STATIC caption AS STRING = FBSLGETTEXT(ME) STATIC length AS INTEGER = STRLEN(caption) IF forward THEN caption = RIGHT(caption, 1) & LEFT(caption, length - 1) ELSE caption = MID(caption, 2) & LEFT(caption, 1) END IF FBSLSETTEXT(ME, caption) END SUB
http://rosettacode.org/wiki/Animate_a_pendulum
Animate a pendulum
One good way of making an animation is by simulating a physical system and illustrating the variables in that system using a dynamically changing graphical display. The classic such physical system is a simple gravity pendulum. Task Create a simple physical model of a pendulum and animate it.
#C.2B.2B
C++
  #ifndef __wxPendulumDlg_h__ #define __wxPendulumDlg_h__   // --------------------- /// @author Martin Ettl /// @date 2013-02-03 // ---------------------   #ifdef __BORLANDC__ #pragma hdrstop #endif   #ifndef WX_PRECOMP #include <wx/wx.h> #include <wx/dialog.h> #else #include <wx/wxprec.h> #endif #include <wx/timer.h> #include <wx/dcbuffer.h> #include <cmath>   class wxPendulumDlgApp : public wxApp { public: bool OnInit(); int OnExit(); };   class wxPendulumDlg : public wxDialog { public:   wxPendulumDlg(wxWindow *parent, wxWindowID id = 1, const wxString &title = wxT("wxPendulum"), const wxPoint& pos = wxDefaultPosition, const wxSize& size = wxDefaultSize, long style = wxSUNKEN_BORDER | wxCAPTION | wxRESIZE_BORDER | wxSYSTEM_MENU | wxDIALOG_NO_PARENT | wxMINIMIZE_BOX | wxMAXIMIZE_BOX | wxCLOSE_BOX);   virtual ~wxPendulumDlg();   // Event handler void wxPendulumDlgPaint(wxPaintEvent& event); void wxPendulumDlgSize(wxSizeEvent& event); void OnTimer(wxTimerEvent& event);   private:   // a pointer to a timer object wxTimer *m_timer;   unsigned int m_uiLength; double m_Angle; double m_AngleVelocity;   enum wxIDs { ID_WXTIMER1 = 1001, ID_DUMMY_VALUE_ };   void OnClose(wxCloseEvent& event); void CreateGUIControls();   DECLARE_EVENT_TABLE() };   #endif // __wxPendulumDlg_h__  
http://rosettacode.org/wiki/Angle_difference_between_two_bearings
Angle difference between two bearings
Finding the angle between two bearings is often confusing.[1] Task Find the angle which is the result of the subtraction b2 - b1, where b1 and b2 are the bearings. Input bearings are expressed in the range   -180   to   +180   degrees. The  result  is also expressed in the range   -180   to   +180   degrees. Compute the angle for the following pairs: 20 degrees (b1) and 45 degrees (b2) -45 and 45 -85 and 90 -95 and 90 -45 and 125 -45 and 145 29.4803 and -88.6381 -78.3251 and -159.036 Optional extra Allow the input bearings to be any (finite) value. Test cases -70099.74233810938 and 29840.67437876723 -165313.6666297357 and 33693.9894517456 1174.8380510598456 and -154146.66490124757 60175.77306795546 and 42213.07192354373
#Clojure
Clojure
(defn angle-difference [a b] (let [r (mod (- b a) 360)] (if (>= r 180) (- r 360) r)))   (angle-difference 20 45) ; 25 (angle-difference -45 45) ; 90 (angle-difference -85 90) ; 175 (angle-difference -95 90) ; -175 (angle-difference -70099.74 29840.67) ; -139.59  
http://rosettacode.org/wiki/Anagrams/Deranged_anagrams
Anagrams/Deranged anagrams
Two or more words are said to be anagrams if they have the same characters, but in a different order. By analogy with derangements we define a deranged anagram as two words with the same characters, but in which the same character does not appear in the same position in both words. Task[edit] Use the word list at unixdict to find and display the longest deranged anagram. Related tasks Permutations/Derangements Best shuffle Word plays Ordered words Palindrome detection Semordnilap Anagrams Anagrams/Deranged anagrams Other tasks related to string operations: Metrics Array length String length Copy a string Empty string  (assignment) Counting Word frequency Letter frequency Jewels and stones I before E except after C Bioinformatics/base count Count occurrences of a substring Count how many vowels and consonants occur in a string Remove/replace XXXX redacted Conjugate a Latin verb Remove vowels from a string String interpolation (included) Strip block comments Strip comments from a string Strip a set of characters from a string Strip whitespace from a string -- top and tail Strip control codes and extended characters from a string Anagrams/Derangements/shuffling Word wheel ABC problem Sattolo cycle Knuth shuffle Ordered words Superpermutation minimisation Textonyms (using a phone text pad) Anagrams Anagrams/Deranged anagrams Permutations/Derangements Find/Search/Determine ABC words Odd words Word ladder Semordnilap Word search Wordiff  (game) String matching Tea cup rim text Alternade words Changeable words State name puzzle String comparison Unique characters Unique characters in each string Extract file extension Levenshtein distance Palindrome detection Common list elements Longest common suffix Longest common prefix Compare a list of strings Longest common substring Find common directory path Words from neighbour ones Change e letters to i in words Non-continuous subsequences Longest common subsequence Longest palindromic substrings Longest increasing subsequence Words containing "the" substring Sum of the digits of n is substring of n Determine if a string is numeric Determine if a string is collapsible Determine if a string is squeezable Determine if a string has all unique characters Determine if a string has all the same characters Longest substrings without repeating characters Find words which contains all the vowels Find words which contains most consonants Find words which contains more than 3 vowels Find words which first and last three letters are equals Find words which odd letters are consonants and even letters are vowels or vice_versa Formatting Substring Rep-string Word wrap String case Align columns Literals/String Repeat a string Brace expansion Brace expansion using ranges Reverse a string Phrase reversals Comma quibbling Special characters String concatenation Substring/Top and tail Commatizing numbers Reverse words in a string Suffixation of decimal numbers Long literals, with continuations Numerical and alphabetical suffixes Abbreviations, easy Abbreviations, simple Abbreviations, automatic Song lyrics/poems/Mad Libs/phrases Mad Libs Magic 8-ball 99 Bottles of Beer The Name Game (a song) The Old lady swallowed a fly The Twelve Days of Christmas Tokenize Text between Tokenize a string Word break problem Tokenize a string with escaping Split a character string based on change of character Sequences Show ASCII table De Bruijn sequences Self-referential sequences Generate lower case ASCII alphabet
#Erlang
Erlang
-module( anagrams_deranged ). -export( [task/0, words_from_url/1] ).   task() -> find_unimplemented_tasks:init_http(), Words = words_from_url( "http://www.puzzlers.org/pub/wordlists/unixdict.txt" ), Anagram_dict = anagrams:fetch( Words, dict:new() ), Deranged_anagrams = deranged_anagrams( Anagram_dict ), {_Length, Longest_anagrams} = dict:fold( fun keep_longest/3, {0, []}, Deranged_anagrams ), Longest_anagrams.   words_from_url( URL ) -> {ok, {{_HTTP, 200, "OK"}, _Headers, Body}} = httpc:request( URL ), string:tokens( Body, "\n" ).     deranged_anagrams( Dict ) -> Deranged_dict = dict:map( fun deranged_words/2, Dict ), dict:filter( fun is_anagram/2, Deranged_dict ).   deranged_words( _Key, [H | T] ) -> [{H, X} || X <- T, is_deranged_word(H, X)].   keep_longest( _Key, [{One, _} | _]=New, {Length, Acc} ) -> keep_longest_new( erlang:length(One), Length, New, Acc ).   keep_longest_new( New_length, Acc_length, New, _Acc ) when New_length > Acc_length -> {New_length, New}; keep_longest_new( New_length, Acc_length, New, Acc ) when New_length =:= Acc_length -> {Acc_length, Acc ++ New}; keep_longest_new( _New_length, Acc_length, _New, Acc ) -> {Acc_length, Acc}.   is_anagram( _Key, [] ) -> false; is_anagram( _Key, _Value ) -> true.   is_deranged_word( Word1, Word2 ) -> lists:all( fun is_deranged_char/1, lists:zip(Word1, Word2) ).   is_deranged_char( {One, Two} ) -> One =/= Two.
http://rosettacode.org/wiki/Anonymous_recursion
Anonymous recursion
While implementing a recursive function, it often happens that we must resort to a separate   helper function   to handle the actual recursion. This is usually the case when directly calling the current function would waste too many resources (stack space, execution time), causing unwanted side-effects,   and/or the function doesn't have the right arguments and/or return values. So we end up inventing some silly name like   foo2   or   foo_helper.   I have always found it painful to come up with a proper name, and see some disadvantages:   You have to think up a name, which then pollutes the namespace   Function is created which is called from nowhere else   The program flow in the source code is interrupted Some languages allow you to embed recursion directly in-place.   This might work via a label, a local gosub instruction, or some special keyword. Anonymous recursion can also be accomplished using the   Y combinator. Task If possible, demonstrate this by writing the recursive version of the fibonacci function   (see Fibonacci sequence)   which checks for a negative argument before doing the actual recursion.
#Elixir
Elixir
  fib = fn f -> ( fn x -> if x == 0, do: 0, else: (if x == 1, do: 1, else: f.(x - 1) + f.(x - 2)) end ) end   y = fn x -> ( fn f -> f.(f) end).( fn g -> x.(fn z ->(g.(g)).(z) end) end) end   IO.inspect y.(&(fib.(&1))).(40)  
http://rosettacode.org/wiki/Angles_(geometric),_normalization_and_conversion
Angles (geometric), normalization and conversion
This task is about the normalization and/or conversion of (geometric) angles using some common scales. The angular scales that will be used in this task are:   degree   gradian   mil   radian Definitions The angular scales used or referenced here:   turn   is a full turn or 360 degrees, also shown as 360º   degree   is   1/360   of a turn   gradian   is   1/400   of a turn   mil   is   1/6400   of a turn   radian   is   1/2 π {\displaystyle \pi }   of a turn   (or   0.5/ π {\displaystyle \pi }   of a turn) Or, to put it another way,   for a full circle:   there are   360   degrees   there are   400   gradians   there are   6,400   mils   there are   2 π {\displaystyle \pi }   radians   (roughly equal to 6.283+) A   mil   is approximately equal to a   milliradian   (which is   1/1000   of a radian). There is another definition of a   mil   which is   1/1000   of a radian   ─── this definition won't be used in this Rosetta Code task. Turns   are sometimes known or shown as:   turn(s)   360 degrees   unit circle   a (full) circle Degrees   are sometimes known or shown as:   degree(s)   deg   º       (a symbol)   °       (another symbol) Gradians   are sometimes known or shown as:   gradian(s)   grad(s)   grade(s)   gon(s)   metric degree(s)   (Note that   centigrade   was used for 1/100th of a grade, see the note below.) Mils   are sometimes known or shown as:   mil(s)   NATO mil(s) Radians   are sometimes known or shown as:   radian(s)   rad(s) Notes In continental Europe, the French term   centigrade   was used for   1/100   of a grad (grade);   this was one reason for the adoption of the term   Celsius   to replace   centigrade   as the name of a temperature scale. Gradians were commonly used in civil engineering. Mils were normally used for artillery   (elevations of the gun barrel for ranging). Positive and negative angles Although the definition of the measurement of an angle doesn't support the concept of a negative angle,   it's frequently useful to impose a convention that allows positive and negative angular values to represent orientations and/or rotations in opposite directions relative to some reference.   It is this reason that negative angles will keep their sign and not be normalized to positive angles. Normalization Normalization   (for this Rosetta Code task)   will keep the same sign,   but it will reduce the magnitude to less than a full circle;   in other words, less than 360º. Normalization   shouldn't   change   -45º   to   315º, An angle of   0º,   +0º,   0.000000,   or   -0º   should be shown as   0º. Task   write a function (or equivalent) to do the normalization for each scale Suggested names: d2d,   g2g,   m2m,   and  r2r   write a function (or equivalent) to convert one scale to another Suggested names for comparison of different computer language function names: d2g,   d2m,   and   d2r   for degrees g2d,   g2m,   and   g2r   for gradians m2d,   m2g,   and   m2r   for mils r2d,   r2g,   and   r2m   for radians   normalize all angles used   (except for the "original" or "base" angle)   show the angles in every scale and convert them to all other scales   show all output here on this page For the (above) conversions,   use these dozen numbers   (in the order shown):   -2   -1   0   1   2   6.2831853   16   57.2957795   359   399   6399   1000000
#JavaScript
JavaScript
  /*****************************************************************\ | Expects an angle, an origin unit and a unit to convert to, | | where in/out units are: | | --------------------------------------------------------------- | | 'D'/'d' ..... degrees 'M'/'d' ..... mils | | | 'G'/'g' ..... gradians 'R'/'r' ..... radians | | --------------------------------------------------------------- | | example: convert 150 degrees to radians: | | angleConv(150, 'd', 'r') | \*****************************************************************/ function angleConv(deg, inp, out) { inp = inp.toLowerCase(); out = out.toLowerCase(); const D = 360, G = 400, M = 6400, R = 2 * Math.PI; // normalazation let minus = (deg < 0); // boolean deg = Math.abs(deg); switch (inp) { case 'd': deg %= D; break; case 'g': deg %= G; break; case 'm': deg %= M; break; case 'r': deg %= R; } // we use an internal conversion to Turns (full circle) here let t; switch (inp) { case 'd': t = deg / D; break; case 'g': t = deg / G; break; case 'm': t = deg / M; break; case 'r': t = deg / R; } // converting switch (out) { case 'd': t *= D; break; case 'g': t *= G; break; case 'm': t *= M; break; case 'r': t *= R; } if (minus) return 0 - t; return t; }   // mass testing let nums = [-2, -1, 0, 1, 2, 6.2831853, 16, 57.2957795, 359, 399, 6399, 1e6], units = 'dgmr'.split(''), x, y, z; for (x = 0; x < nums.length; x++) { for (y = 0; y < units.length; y++) { document.write(` <p> <b>${nums[x]}<sub>${units[y]}</sub></b><br> `); for (z = 0; z < units.length; z++) document.write(` = ${angleConv(nums[x], units[y], units[z])}<sub>${units[z]}</sub> `); } }  
http://rosettacode.org/wiki/Amicable_pairs
Amicable pairs
Two integers N {\displaystyle N} and M {\displaystyle M} are said to be amicable pairs if N ≠ M {\displaystyle N\neq M} and the sum of the proper divisors of N {\displaystyle N} ( s u m ( p r o p D i v s ( N ) ) {\displaystyle \mathrm {sum} (\mathrm {propDivs} (N))} ) = M {\displaystyle =M} as well as s u m ( p r o p D i v s ( M ) ) = N {\displaystyle \mathrm {sum} (\mathrm {propDivs} (M))=N} . Example 1184 and 1210 are an amicable pair, with proper divisors:   1, 2, 4, 8, 16, 32, 37, 74, 148, 296, 592   and   1, 2, 5, 10, 11, 22, 55, 110, 121, 242, 605   respectively. Task Calculate and show here the Amicable pairs below 20,000; (there are eight). Related tasks Proper divisors Abundant, deficient and perfect number classifications Aliquot sequence classifications and its amicable classification.
#C.23
C#
using System; using System.Collections.Generic; using System.Linq;   namespace RosettaCode.AmicablePairs { internal static class Program { private const int Limit = 20000;   private static void Main() { foreach (var pair in GetPairs(Limit)) { Console.WriteLine("{0} {1}", pair.Item1, pair.Item2); } }   private static IEnumerable<Tuple<int, int>> GetPairs(int max) { List<int> divsums = Enumerable.Range(0, max + 1).Select(i => ProperDivisors(i).Sum()).ToList(); for(int i=1; i<divsums.Count; i++) { int sum = divsums[i]; if(i < sum && sum <= divsums.Count && divsums[sum] == i) { yield return new Tuple<int, int>(i, sum); } } }   private static IEnumerable<int> ProperDivisors(int number) { return Enumerable.Range(1, number / 2) .Where(divisor => number % divisor == 0); } } }
http://rosettacode.org/wiki/Animation
Animation
Animation is integral to many parts of GUIs, including both the fancy effects when things change used in window managers, and of course games.   The core of any animation system is a scheme for periodically changing the display while still remaining responsive to the user.   This task demonstrates this. Task Create a window containing the string "Hello World! " (the trailing space is significant). Make the text appear to be rotating right by periodically removing one letter from the end of the string and attaching it to the front. When the user clicks on the (windowed) text, it should reverse its direction.
#FreeBASIC
FreeBASIC
DIM C AS STRING = "Hello World! ", SIZE AS USHORT = LEN(C) DIM DIRECTION AS BYTE = 0 DIM AS INTEGER X, Y, BTNS DIM HELD AS BYTE = 0   SCREEN 19   DO LOCATE 1, 1 PRINT C   GETMOUSE X, Y, , BTNS   IF BTNS <> 0 AND HELD = 0 THEN 'remember if it was pressed, to not react every frame HELD = 1 IF X >= 0 AND X < SIZE * 8 AND Y >= 0 AND Y < 16 THEN DIRECTION = 1 - DIRECTION END IF ELSE HELD = 0 END IF   IF INKEY = CHR(255) + CHR(107) THEN EXIT DO   IF DIRECTION = 0 THEN C = RIGHT(C, 1) + LEFT(C, SIZE - 1) ELSE C = RIGHT(C, SIZE - 1) + LEFT(C, 1) END IF   SLEEP 100, 1 LOOP
http://rosettacode.org/wiki/Animate_a_pendulum
Animate a pendulum
One good way of making an animation is by simulating a physical system and illustrating the variables in that system using a dynamically changing graphical display. The classic such physical system is a simple gravity pendulum. Task Create a simple physical model of a pendulum and animate it.
#Clojure
Clojure
  (ns pendulum (:import (javax.swing JFrame) (java.awt Canvas Graphics Color)))   (def length 200) (def width (* 2 (+ 50 length))) (def height (* 3 (/ length 2))) (def dt 0.1) (def g 9.812) (def k (- (/ g length))) (def anchor-x (/ width 2)) (def anchor-y (/ height 8)) (def angle (atom (/ (Math/PI) 2)))   (defn draw [#^Canvas canvas angle] (let [buffer (.getBufferStrategy canvas) g (.getDrawGraphics buffer) ball-x (+ anchor-x (* (Math/sin angle) length)) ball-y (+ anchor-y (* (Math/cos angle) length))] (try (doto g (.setColor Color/BLACK) (.fillRect 0 0 width height) (.setColor Color/RED) (.drawLine anchor-x anchor-y ball-x ball-y) (.setColor Color/YELLOW) (.fillOval (- anchor-x 3) (- anchor-y 4) 7 7) (.fillOval (- ball-x 7) (- ball-y 7) 14 14)) (finally (.dispose g))) (if-not (.contentsLost buffer) (.show buffer)) ))   (defn start-renderer [canvas] (->> (fn [] (draw canvas @angle) (recur)) (new Thread) (.start)))   (defn -main [& args] (let [frame (JFrame. "Pendulum") canvas (Canvas.)]   (doto frame (.setSize width height) (.setDefaultCloseOperation JFrame/EXIT_ON_CLOSE) (.setResizable false) (.add canvas) (.setVisible true))   (doto canvas (.createBufferStrategy 2) (.setVisible true) (.requestFocus))   (start-renderer canvas)   (loop [v 0] (swap! angle #(+ % (* v dt))) (Thread/sleep 15) (recur (+ v (* k (Math/sin @angle) dt)))) ))   (-main)  
http://rosettacode.org/wiki/Angle_difference_between_two_bearings
Angle difference between two bearings
Finding the angle between two bearings is often confusing.[1] Task Find the angle which is the result of the subtraction b2 - b1, where b1 and b2 are the bearings. Input bearings are expressed in the range   -180   to   +180   degrees. The  result  is also expressed in the range   -180   to   +180   degrees. Compute the angle for the following pairs: 20 degrees (b1) and 45 degrees (b2) -45 and 45 -85 and 90 -95 and 90 -45 and 125 -45 and 145 29.4803 and -88.6381 -78.3251 and -159.036 Optional extra Allow the input bearings to be any (finite) value. Test cases -70099.74233810938 and 29840.67437876723 -165313.6666297357 and 33693.9894517456 1174.8380510598456 and -154146.66490124757 60175.77306795546 and 42213.07192354373
#COBOL
COBOL
  ****************************************************************** * COBOL solution to Angle difference challange * The program was run on OpenCobolIDE * I chose to read the input data from a .txt file that I * created on my PC rather than to hard code it into the * program or enter it as the program was executing. ****************************************************************** IDENTIFICATION DIVISION. PROGRAM-ID. ANGLE-DIFFERENCE.   ENVIRONMENT DIVISION. INPUT-OUTPUT SECTION. FILE-CONTROL.   SELECT IN-FILE ASSIGN TO 'C:\Both\Rosetta\Angle_diff.txt' ORGANIZATION IS LINE SEQUENTIAL.   DATA DIVISION.   FILE SECTION. FD IN-FILE. 01 IN-RECORD. 05 ALPHA-BEARING-1 PIC X(20). 05 FILLER PIC X. 05 ALPHA-BEARING-2 PIC X(20).   WORKING-STORAGE SECTION. 01 SWITCHES. 05 EOF-SWITCH PIC X VALUE 'N'.   01 COUNTERS. 05 REC-CTR PIC 9(3) VALUE 0.   01 WS-ALPHA-BEARING. 05 WS-AB-SIGN PIC X. 88 WS-AB-NEGATIVE VALUE "-". 05 WS-AB-INTEGER-PART PIC X(6). 05 WS-AB-DEC-POINT PIC X. 05 WS-AB-DECIMAL-PART PIC X(12).   01 WS-BEARING-1 PIC S9(6)V9(12). 01 WS-BEARING-2 PIC S9(6)V9(12).   01 WS-BEARING PIC S9(6)V9(12). 01 FILLER REDEFINES WS-BEARING. 05 WSB-INTEGER-PART PIC X(6). 05 WSB-DECIMAL-PART PIC X9(12).   77 WS-RESULT PIC S9(6)V9(12). 77 WS-RESULT-POS PIC 9(6)V9(12). 77 WS-INTEGER-PART PIC 9(6). 77 WS-DECIMAL-PART PIC V9(12). 77 WS-RESULT-OUT PIC ------9.9999.   PROCEDURE DIVISION. 000-MAIN. PERFORM 100-INITIALIZE. PERFORM 200-PROCESS-RECORD UNTIL EOF-SWITCH = 'Y'. PERFORM 300-TERMINATE. STOP RUN.   100-INITIALIZE. OPEN INPUT IN-FILE. PERFORM 150-READ-RECORD.   150-READ-RECORD. READ IN-FILE AT END MOVE 'Y' TO EOF-SWITCH NOT AT END COMPUTE REC-CTR = REC-CTR + 1 END-READ.   200-PROCESS-RECORD. MOVE ALPHA-BEARING-1 TO WS-ALPHA-BEARING. PERFORM 250-CONVERT-DATA. MOVE WS-BEARING TO WS-BEARING-1.   MOVE ALPHA-BEARING-2 TO WS-ALPHA-BEARING. PERFORM 250-CONVERT-DATA. MOVE WS-BEARING TO WS-BEARING-2.   COMPUTE WS-RESULT = WS-BEARING-2 - WS-BEARING-1. MOVE WS-RESULT TO WS-RESULT-POS. MOVE WS-RESULT-POS TO WS-INTEGER-PART. COMPUTE WS-DECIMAL-PART = WS-RESULT-POS - WS-INTEGER-PART. COMPUTE WS-INTEGER-PART = FUNCTION MOD(WS-INTEGER-PART 360). IF WS-RESULT > 0 COMPUTE WS-RESULT = WS-INTEGER-PART + WS-DECIMAL-PART ELSE COMPUTE WS-RESULT = (WS-INTEGER-PART + WS-DECIMAL-PART) * -1 END-IF.   IF WS-RESULT < -180 COMPUTE WS-RESULT = WS-RESULT + 360. IF WS-RESULT > 180 COMPUTE WS-RESULT = WS-RESULT - 360. COMPUTE WS-RESULT-OUT ROUNDED = WS-RESULT.   DISPLAY REC-CTR ' ' WS-RESULT-OUT.   PERFORM 150-READ-RECORD.   250-CONVERT-DATA. MOVE WS-AB-INTEGER-PART TO WSB-INTEGER-PART. MOVE WS-AB-DECIMAL-PART TO WSB-DECIMAL-PART. IF WS-AB-NEGATIVE SUBTRACT WS-BEARING FROM ZERO GIVING WS-BEARING END-IF.   300-TERMINATE. DISPLAY 'RECORDS PROCESSED: ' REC-CTR. CLOSE IN-FILE.   ****************************************************************** * INPUT FILE ('Angle_diff.txt' stored on my PC at: * 'C:\Both\Rosetta\Angle_diff.txt' ****************************************************************** * +000020.000000000000 +000045.000000000000 * -000045.000000000000 +000045.000000000000 * -000085.000000000000 +000090.000000000000 * -000095.000000000000 +000090.000000000000 * -000045.000000000000 +000125.000000000000 * -000045.000000000000 +000145.000000000000 * +000029.480300000000 -000088.638100000000 * -000078.325100000000 -000159.036000000000 * -070099.742338109380 +029840.674378767230 * -165313.666629735700 +033693.989451745600 * +001174.838051059846 -154146.664901247570 * +060175.773067955460 +042213.071923543730 ****************************************************************** * OUTPUT: ****************************************************************** * 001 25.0000 * 002 90.0000 * 003 175.0000 * 004 -175.0000 * 005 170.0000 * 006 -170.0000 * 007 -118.1184 * 008 -80.7109 * 009 -139.5833 * 010 -72.3439 * 011 -161.5030 * 012 37.2989 ******************************************************************  
http://rosettacode.org/wiki/Anagrams/Deranged_anagrams
Anagrams/Deranged anagrams
Two or more words are said to be anagrams if they have the same characters, but in a different order. By analogy with derangements we define a deranged anagram as two words with the same characters, but in which the same character does not appear in the same position in both words. Task[edit] Use the word list at unixdict to find and display the longest deranged anagram. Related tasks Permutations/Derangements Best shuffle Word plays Ordered words Palindrome detection Semordnilap Anagrams Anagrams/Deranged anagrams Other tasks related to string operations: Metrics Array length String length Copy a string Empty string  (assignment) Counting Word frequency Letter frequency Jewels and stones I before E except after C Bioinformatics/base count Count occurrences of a substring Count how many vowels and consonants occur in a string Remove/replace XXXX redacted Conjugate a Latin verb Remove vowels from a string String interpolation (included) Strip block comments Strip comments from a string Strip a set of characters from a string Strip whitespace from a string -- top and tail Strip control codes and extended characters from a string Anagrams/Derangements/shuffling Word wheel ABC problem Sattolo cycle Knuth shuffle Ordered words Superpermutation minimisation Textonyms (using a phone text pad) Anagrams Anagrams/Deranged anagrams Permutations/Derangements Find/Search/Determine ABC words Odd words Word ladder Semordnilap Word search Wordiff  (game) String matching Tea cup rim text Alternade words Changeable words State name puzzle String comparison Unique characters Unique characters in each string Extract file extension Levenshtein distance Palindrome detection Common list elements Longest common suffix Longest common prefix Compare a list of strings Longest common substring Find common directory path Words from neighbour ones Change e letters to i in words Non-continuous subsequences Longest common subsequence Longest palindromic substrings Longest increasing subsequence Words containing "the" substring Sum of the digits of n is substring of n Determine if a string is numeric Determine if a string is collapsible Determine if a string is squeezable Determine if a string has all unique characters Determine if a string has all the same characters Longest substrings without repeating characters Find words which contains all the vowels Find words which contains most consonants Find words which contains more than 3 vowels Find words which first and last three letters are equals Find words which odd letters are consonants and even letters are vowels or vice_versa Formatting Substring Rep-string Word wrap String case Align columns Literals/String Repeat a string Brace expansion Brace expansion using ranges Reverse a string Phrase reversals Comma quibbling Special characters String concatenation Substring/Top and tail Commatizing numbers Reverse words in a string Suffixation of decimal numbers Long literals, with continuations Numerical and alphabetical suffixes Abbreviations, easy Abbreviations, simple Abbreviations, automatic Song lyrics/poems/Mad Libs/phrases Mad Libs Magic 8-ball 99 Bottles of Beer The Name Game (a song) The Old lady swallowed a fly The Twelve Days of Christmas Tokenize Text between Tokenize a string Word break problem Tokenize a string with escaping Split a character string based on change of character Sequences Show ASCII table De Bruijn sequences Self-referential sequences Generate lower case ASCII alphabet
#F.23
F#
open System;   let keyIsSortedWord = Seq.sort >> Seq.toArray >> String let isDeranged = Seq.forall2 (<>)   let rec pairs acc l = function | [] -> acc | x::rtail -> pairs (acc @ List.fold (fun acc y -> (y, x)::acc) [] l) (x::l) rtail     [<EntryPoint>] let main args = System.IO.File.ReadAllLines("unixdict.txt") |> Seq.groupBy keyIsSortedWord |> Seq.fold (fun (len, found) (key, words) -> if String.length key < len || Seq.length words < 2 then (len, found) else let d = List.filter (fun (a, b) -> isDeranged a b) (pairs [] [] (List.ofSeq words)) if List.length d = 0 then (len, found) elif String.length key = len then (len, found @ d) else (String.length key, d) ) (0, []) |> snd |> printfn "%A" 0
http://rosettacode.org/wiki/Anonymous_recursion
Anonymous recursion
While implementing a recursive function, it often happens that we must resort to a separate   helper function   to handle the actual recursion. This is usually the case when directly calling the current function would waste too many resources (stack space, execution time), causing unwanted side-effects,   and/or the function doesn't have the right arguments and/or return values. So we end up inventing some silly name like   foo2   or   foo_helper.   I have always found it painful to come up with a proper name, and see some disadvantages:   You have to think up a name, which then pollutes the namespace   Function is created which is called from nowhere else   The program flow in the source code is interrupted Some languages allow you to embed recursion directly in-place.   This might work via a label, a local gosub instruction, or some special keyword. Anonymous recursion can also be accomplished using the   Y combinator. Task If possible, demonstrate this by writing the recursive version of the fibonacci function   (see Fibonacci sequence)   which checks for a negative argument before doing the actual recursion.
#Erlang
Erlang
  -module( anonymous_recursion ). -export( [fib/1, fib_internal/1] ).   fib( N ) when N >= 0 -> fib( N, 1, 0 ).   fib_internal( N ) when N >= 0 -> Fun = fun (_F, 0, _Next, Acc ) -> Acc; (F, N, Next, Acc) -> F( F, N - 1, Acc+Next, Next ) end, Fun( Fun, N, 1, 0 ).     fib( 0, _Next, Acc ) -> Acc; fib( N, Next, Acc ) -> fib( N - 1, Acc+Next, Next ).    
http://rosettacode.org/wiki/Angles_(geometric),_normalization_and_conversion
Angles (geometric), normalization and conversion
This task is about the normalization and/or conversion of (geometric) angles using some common scales. The angular scales that will be used in this task are:   degree   gradian   mil   radian Definitions The angular scales used or referenced here:   turn   is a full turn or 360 degrees, also shown as 360º   degree   is   1/360   of a turn   gradian   is   1/400   of a turn   mil   is   1/6400   of a turn   radian   is   1/2 π {\displaystyle \pi }   of a turn   (or   0.5/ π {\displaystyle \pi }   of a turn) Or, to put it another way,   for a full circle:   there are   360   degrees   there are   400   gradians   there are   6,400   mils   there are   2 π {\displaystyle \pi }   radians   (roughly equal to 6.283+) A   mil   is approximately equal to a   milliradian   (which is   1/1000   of a radian). There is another definition of a   mil   which is   1/1000   of a radian   ─── this definition won't be used in this Rosetta Code task. Turns   are sometimes known or shown as:   turn(s)   360 degrees   unit circle   a (full) circle Degrees   are sometimes known or shown as:   degree(s)   deg   º       (a symbol)   °       (another symbol) Gradians   are sometimes known or shown as:   gradian(s)   grad(s)   grade(s)   gon(s)   metric degree(s)   (Note that   centigrade   was used for 1/100th of a grade, see the note below.) Mils   are sometimes known or shown as:   mil(s)   NATO mil(s) Radians   are sometimes known or shown as:   radian(s)   rad(s) Notes In continental Europe, the French term   centigrade   was used for   1/100   of a grad (grade);   this was one reason for the adoption of the term   Celsius   to replace   centigrade   as the name of a temperature scale. Gradians were commonly used in civil engineering. Mils were normally used for artillery   (elevations of the gun barrel for ranging). Positive and negative angles Although the definition of the measurement of an angle doesn't support the concept of a negative angle,   it's frequently useful to impose a convention that allows positive and negative angular values to represent orientations and/or rotations in opposite directions relative to some reference.   It is this reason that negative angles will keep their sign and not be normalized to positive angles. Normalization Normalization   (for this Rosetta Code task)   will keep the same sign,   but it will reduce the magnitude to less than a full circle;   in other words, less than 360º. Normalization   shouldn't   change   -45º   to   315º, An angle of   0º,   +0º,   0.000000,   or   -0º   should be shown as   0º. Task   write a function (or equivalent) to do the normalization for each scale Suggested names: d2d,   g2g,   m2m,   and  r2r   write a function (or equivalent) to convert one scale to another Suggested names for comparison of different computer language function names: d2g,   d2m,   and   d2r   for degrees g2d,   g2m,   and   g2r   for gradians m2d,   m2g,   and   m2r   for mils r2d,   r2g,   and   r2m   for radians   normalize all angles used   (except for the "original" or "base" angle)   show the angles in every scale and convert them to all other scales   show all output here on this page For the (above) conversions,   use these dozen numbers   (in the order shown):   -2   -1   0   1   2   6.2831853   16   57.2957795   359   399   6399   1000000
#jq
jq
### Formatting   # Right-justify but do not truncate def rjustify(n): tostring | length as $length | if n <= $length then . else " " * (n-$length) + . end;   # Attempt to align decimals so integer part is in a field of width n def align($n): tostring | index(".") as $ix | if $ix then if $n < $ix then . elif $ix then (.[0:$ix]|rjustify($n)) +.[$ix:] else rjustify($n) end else . + ".0" | align($n) end ;   # number of decimal places ($n>=0) def fround($n): pow(10;$n) as $p | (. * $p | round ) / $p | tostring | index(".") as $ix | ("0" * $n) as $zeros | if $ix then . + $zeros | .[0 : $ix + $n + 1] else . + "." + $zeros end;   def hide_trailing_zeros: tostring | (capture("(?<x>[^.]*[.].)(?<y>00*$)") // null) as $capture | if $capture then $capture | (.x + (.y|gsub("0"; " "))) else . end;   def lpad($len): tostring | ($len - length) as $l | (" " * $l)[:$l] + .;  
http://rosettacode.org/wiki/Angles_(geometric),_normalization_and_conversion
Angles (geometric), normalization and conversion
This task is about the normalization and/or conversion of (geometric) angles using some common scales. The angular scales that will be used in this task are:   degree   gradian   mil   radian Definitions The angular scales used or referenced here:   turn   is a full turn or 360 degrees, also shown as 360º   degree   is   1/360   of a turn   gradian   is   1/400   of a turn   mil   is   1/6400   of a turn   radian   is   1/2 π {\displaystyle \pi }   of a turn   (or   0.5/ π {\displaystyle \pi }   of a turn) Or, to put it another way,   for a full circle:   there are   360   degrees   there are   400   gradians   there are   6,400   mils   there are   2 π {\displaystyle \pi }   radians   (roughly equal to 6.283+) A   mil   is approximately equal to a   milliradian   (which is   1/1000   of a radian). There is another definition of a   mil   which is   1/1000   of a radian   ─── this definition won't be used in this Rosetta Code task. Turns   are sometimes known or shown as:   turn(s)   360 degrees   unit circle   a (full) circle Degrees   are sometimes known or shown as:   degree(s)   deg   º       (a symbol)   °       (another symbol) Gradians   are sometimes known or shown as:   gradian(s)   grad(s)   grade(s)   gon(s)   metric degree(s)   (Note that   centigrade   was used for 1/100th of a grade, see the note below.) Mils   are sometimes known or shown as:   mil(s)   NATO mil(s) Radians   are sometimes known or shown as:   radian(s)   rad(s) Notes In continental Europe, the French term   centigrade   was used for   1/100   of a grad (grade);   this was one reason for the adoption of the term   Celsius   to replace   centigrade   as the name of a temperature scale. Gradians were commonly used in civil engineering. Mils were normally used for artillery   (elevations of the gun barrel for ranging). Positive and negative angles Although the definition of the measurement of an angle doesn't support the concept of a negative angle,   it's frequently useful to impose a convention that allows positive and negative angular values to represent orientations and/or rotations in opposite directions relative to some reference.   It is this reason that negative angles will keep their sign and not be normalized to positive angles. Normalization Normalization   (for this Rosetta Code task)   will keep the same sign,   but it will reduce the magnitude to less than a full circle;   in other words, less than 360º. Normalization   shouldn't   change   -45º   to   315º, An angle of   0º,   +0º,   0.000000,   or   -0º   should be shown as   0º. Task   write a function (or equivalent) to do the normalization for each scale Suggested names: d2d,   g2g,   m2m,   and  r2r   write a function (or equivalent) to convert one scale to another Suggested names for comparison of different computer language function names: d2g,   d2m,   and   d2r   for degrees g2d,   g2m,   and   g2r   for gradians m2d,   m2g,   and   m2r   for mils r2d,   r2g,   and   r2m   for radians   normalize all angles used   (except for the "original" or "base" angle)   show the angles in every scale and convert them to all other scales   show all output here on this page For the (above) conversions,   use these dozen numbers   (in the order shown):   -2   -1   0   1   2   6.2831853   16   57.2957795   359   399   6399   1000000
#Julia
Julia
using Formatting   d2d(d) = d % 360 g2g(g) = g % 400 m2m(m) = m % 6400 r2r(r) = r % 2π d2g(d) = d2d(d) * 10 / 9 d2m(d) = d2d(d) * 160 / 9 d2r(d) = d2d(d) * π / 180 g2d(g) = g2g(g) * 9 / 10 g2m(g) = g2g(g) * 16 g2r(g) = g2g(g) * π / 200 m2d(m) = m2m(m) * 9 / 160 m2g(m) = m2m(m) / 16 m2r(m) = m2m(m) * π / 3200 r2d(r) = r2r(r) * 180 / π r2g(r) = r2r(r) * 200 / π r2m(r) = r2r(r) * 3200 / π   fmt(x::Real, width=16) = Int(round(x)) == x ? rpad(Int(x), width) : rpad(format(x, precision=7), width) fmt(x::String, width=16) = rpad(x, width)   const t2u = Dict("degrees" => [d2d, d2g, d2m, d2r], "gradians" => [g2d, g2g, g2m, g2r], "mils" => [m2d, m2g, m2m, m2r], "radians" => [r2d, r2g, r2m, r2r])   function testconversions(arr) println("Number Units Degrees Gradians Mils Radians") for num in arr, units in ["degrees", "gradians", "mils", "radians"] print(fmt(num), fmt(units)) for f in t2u[units] print(fmt(f(num))) end println() end end   testconversions([-2, -1, 0, 1, 2, 6.2831853, 16, 57.2957795, 359, 399, 6399, 1000000])  
http://rosettacode.org/wiki/Amicable_pairs
Amicable pairs
Two integers N {\displaystyle N} and M {\displaystyle M} are said to be amicable pairs if N ≠ M {\displaystyle N\neq M} and the sum of the proper divisors of N {\displaystyle N} ( s u m ( p r o p D i v s ( N ) ) {\displaystyle \mathrm {sum} (\mathrm {propDivs} (N))} ) = M {\displaystyle =M} as well as s u m ( p r o p D i v s ( M ) ) = N {\displaystyle \mathrm {sum} (\mathrm {propDivs} (M))=N} . Example 1184 and 1210 are an amicable pair, with proper divisors:   1, 2, 4, 8, 16, 32, 37, 74, 148, 296, 592   and   1, 2, 5, 10, 11, 22, 55, 110, 121, 242, 605   respectively. Task Calculate and show here the Amicable pairs below 20,000; (there are eight). Related tasks Proper divisors Abundant, deficient and perfect number classifications Aliquot sequence classifications and its amicable classification.
#C.2B.2B
C++
  #include <vector> #include <unordered_map> #include <iostream>   int main() { std::vector<int> alreadyDiscovered; std::unordered_map<int, int> divsumMap; int count = 0;   for (int N = 1; N <= 20000; ++N) { int divSumN = 0;   for (int i = 1; i <= N / 2; ++i) { if (fmod(N, i) == 0) { divSumN += i; } }   // populate map of integers to the sum of their proper divisors if (divSumN != 1) // do not include primes divsumMap[N] = divSumN;   for (std::unordered_map<int, int>::iterator it = divsumMap.begin(); it != divsumMap.end(); ++it) { int M = it->first; int divSumM = it->second; int divSumN = divsumMap[N];   if (N != M && divSumM == N && divSumN == M) { // do not print duplicate pairs if (std::find(alreadyDiscovered.begin(), alreadyDiscovered.end(), N) != alreadyDiscovered.end()) break;   std::cout << "[" << M << ", " << N << "]" << std::endl;   alreadyDiscovered.push_back(M); alreadyDiscovered.push_back(N); count++; } } }   std::cout << count << " amicable pairs discovered" << std::endl; }  
http://rosettacode.org/wiki/Animation
Animation
Animation is integral to many parts of GUIs, including both the fancy effects when things change used in window managers, and of course games.   The core of any animation system is a scheme for periodically changing the display while still remaining responsive to the user.   This task demonstrates this. Task Create a window containing the string "Hello World! " (the trailing space is significant). Make the text appear to be rotating right by periodically removing one letter from the end of the string and attaching it to the front. When the user clicks on the (windowed) text, it should reverse its direction.
#Gambas
Gambas
'This code will create the necessary controls on a GUI Form   hLabel As Label 'Label needed to display the 'Hello World! " message hTimer As Timer 'Timer to rotate the display bDirection As Boolean 'Used to control the direction of the text '__________________________________________________ Public Sub Form_Open() Dim hPanel As Panel '2 Panels used to centre the Label vertically on the Form Dim hHBox As HBox 'Box to hold the Label   With Me 'Set the Form Properties .Arrangement = Arrange.Vertical 'Arrange controls vertically .Title = "Animation" 'Give the Form a Title .Height = 75 'Set the Height of the Form .Width = 225 'Set the Width of the Form End With   hPanel = New Panel(Me) 'Add a Panel to the Form HPanel.Expand = True 'Expand the Panel   hHBox = New HBox(Me) 'Add a HBox to the Form hHBox.Height = 28 'Set the HBox Height   hLabel = New Label(hHBox) As "LabelAnimation" 'Add new Lable with Event name   With hLabel 'Change the hLabel properties .Height = 35 'Set the Height of the Label .Expand = True 'Expand the hLabel .Font.Bold = True 'Set the Font to Bold .Font.size = 20 'Set the Font Size .Alignment = Align.Center 'Centre align the text .Tooltip = "Click me to reverse direction" 'Add a Tooltip .Border = Border.Plain 'Add a Border .Text = "Hello World! " 'Add the Text End With   hPanel = New Panel(Me) 'Add another Panel HPanel.Expand = True 'Expand the Panel   hTimer = New Timer As "Timer1" 'Add a Timer hTimer.delay = 500 'Set the Timer Delay hTimer.Start 'Start the Timer   End '__________________________________________________ Public Sub LabelAnimation_MouseDown() 'If the hLabel is clicked..   bDirection = Not bDirection 'Change the value of bDirection   End '__________________________________________________ Public Sub Timer1_Timer() 'Timer Dim sString As String = hLabel.Text 'To hold the text in the Label Dim sTemp As String 'Temp string   If bDirection Then 'If the text is to rotate left then.. sTemp = Left(sString, 1) 'Get the first charater of the Label Text e.g 'H' sString = Right(sString, -1) & sTemp 'Recreate sString with all the text less the 1st character e.g. 'ello World! ' and add the 1st character to the end e.g. 'ello World! H' Else 'Else if text is to rotate right then.. sTemp = Right(sString, 1) 'Get the last charater of the Label Text e.g '!' sString = sTemp & Left(sString, -1) 'Recreate sString with all the text less the last character e.g. ' Hello World' and add the last character to the begining e.g. '! Hello World' End If   hLabel.text = sString 'Display the result   End
http://rosettacode.org/wiki/Animate_a_pendulum
Animate a pendulum
One good way of making an animation is by simulating a physical system and illustrating the variables in that system using a dynamically changing graphical display. The classic such physical system is a simple gravity pendulum. Task Create a simple physical model of a pendulum and animate it.
#Common_Lisp
Common Lisp
(defvar *frame-rate* 30) (defvar *damping* 0.99 "Deceleration factor.")   (defun make-pendulum (length theta0 x) "Returns an anonymous function with enclosed state representing a pendulum." (let* ((theta (* (/ theta0 180) pi)) (acceleration 0)) (if (< length 40) (setf length 40)) ;;avoid a divide-by-zero (lambda () ;;Draws the pendulum, updating its location and speed. (sdl:draw-line (sdl:point :x x :y 1) (sdl:point :x (+ (* (sin theta) length) x) :y (* (cos theta) length))) (sdl:draw-filled-circle (sdl:point :x (+ (* (sin theta) length) x) :y (* (cos theta) length)) 20 :color sdl:*yellow* :stroke-color sdl:*white*) ;;The magic constant approximates the speed we want for a given frame-rate. (incf acceleration (* (sin theta) (* *frame-rate* -0.001))) (incf theta acceleration) (setf acceleration (* acceleration *damping*)))))     (defun main (&optional (w 640) (h 480)) (sdl:with-init () (sdl:window w h :title-caption "Pendulums" :fps (make-instance 'sdl:fps-fixed)) (setf (sdl:frame-rate) *frame-rate*) (let ((pendulums nil)) (sdl:with-events () (:quit-event () t) (:idle () (sdl:clear-display sdl:*black*) (mapcar #'funcall pendulums) ;;Draw all the pendulums   (sdl:update-display)) (:key-down-event (:key key) (cond ((sdl:key= key :sdl-key-escape) (sdl:push-quit-event)) ((sdl:key= key :sdl-key-space) (push (make-pendulum (random (- h 100)) (random 90) (round w 2)) pendulums))))))))
http://rosettacode.org/wiki/Angle_difference_between_two_bearings
Angle difference between two bearings
Finding the angle between two bearings is often confusing.[1] Task Find the angle which is the result of the subtraction b2 - b1, where b1 and b2 are the bearings. Input bearings are expressed in the range   -180   to   +180   degrees. The  result  is also expressed in the range   -180   to   +180   degrees. Compute the angle for the following pairs: 20 degrees (b1) and 45 degrees (b2) -45 and 45 -85 and 90 -95 and 90 -45 and 125 -45 and 145 29.4803 and -88.6381 -78.3251 and -159.036 Optional extra Allow the input bearings to be any (finite) value. Test cases -70099.74233810938 and 29840.67437876723 -165313.6666297357 and 33693.9894517456 1174.8380510598456 and -154146.66490124757 60175.77306795546 and 42213.07192354373
#Common_Lisp
Common Lisp
  (defun angle-difference (b1 b2) (let ((diff (mod (- b2 b1) 360))) (if (< diff -180) (incf diff 360) (if (> diff 180) (decf diff 360) diff))))  
http://rosettacode.org/wiki/Anagrams/Deranged_anagrams
Anagrams/Deranged anagrams
Two or more words are said to be anagrams if they have the same characters, but in a different order. By analogy with derangements we define a deranged anagram as two words with the same characters, but in which the same character does not appear in the same position in both words. Task[edit] Use the word list at unixdict to find and display the longest deranged anagram. Related tasks Permutations/Derangements Best shuffle Word plays Ordered words Palindrome detection Semordnilap Anagrams Anagrams/Deranged anagrams Other tasks related to string operations: Metrics Array length String length Copy a string Empty string  (assignment) Counting Word frequency Letter frequency Jewels and stones I before E except after C Bioinformatics/base count Count occurrences of a substring Count how many vowels and consonants occur in a string Remove/replace XXXX redacted Conjugate a Latin verb Remove vowels from a string String interpolation (included) Strip block comments Strip comments from a string Strip a set of characters from a string Strip whitespace from a string -- top and tail Strip control codes and extended characters from a string Anagrams/Derangements/shuffling Word wheel ABC problem Sattolo cycle Knuth shuffle Ordered words Superpermutation minimisation Textonyms (using a phone text pad) Anagrams Anagrams/Deranged anagrams Permutations/Derangements Find/Search/Determine ABC words Odd words Word ladder Semordnilap Word search Wordiff  (game) String matching Tea cup rim text Alternade words Changeable words State name puzzle String comparison Unique characters Unique characters in each string Extract file extension Levenshtein distance Palindrome detection Common list elements Longest common suffix Longest common prefix Compare a list of strings Longest common substring Find common directory path Words from neighbour ones Change e letters to i in words Non-continuous subsequences Longest common subsequence Longest palindromic substrings Longest increasing subsequence Words containing "the" substring Sum of the digits of n is substring of n Determine if a string is numeric Determine if a string is collapsible Determine if a string is squeezable Determine if a string has all unique characters Determine if a string has all the same characters Longest substrings without repeating characters Find words which contains all the vowels Find words which contains most consonants Find words which contains more than 3 vowels Find words which first and last three letters are equals Find words which odd letters are consonants and even letters are vowels or vice_versa Formatting Substring Rep-string Word wrap String case Align columns Literals/String Repeat a string Brace expansion Brace expansion using ranges Reverse a string Phrase reversals Comma quibbling Special characters String concatenation Substring/Top and tail Commatizing numbers Reverse words in a string Suffixation of decimal numbers Long literals, with continuations Numerical and alphabetical suffixes Abbreviations, easy Abbreviations, simple Abbreviations, automatic Song lyrics/poems/Mad Libs/phrases Mad Libs Magic 8-ball 99 Bottles of Beer The Name Game (a song) The Old lady swallowed a fly The Twelve Days of Christmas Tokenize Text between Tokenize a string Word break problem Tokenize a string with escaping Split a character string based on change of character Sequences Show ASCII table De Bruijn sequences Self-referential sequences Generate lower case ASCII alphabet
#Factor
Factor
USING: assocs fry io.encodings.utf8 io.files kernel math math.combinatorics sequences sorting strings ; IN: rosettacode.deranged-anagrams   : derangement? ( str1 str2 -- ? ) [ = not ] 2all? ; : derangements ( seq -- seq ) 2 [ first2 derangement? ] filter-combinations ;   : parse-dict-file ( path -- hash ) utf8 file-lines H{ } clone [ '[ [ natural-sort >string ] keep _ [ swap suffix ] with change-at ] each ] keep ;   : anagrams ( hash -- seq ) [ nip length 1 > ] assoc-filter values ;   : deranged-anagrams ( path -- seq ) parse-dict-file anagrams [ derangements ] map concat ;   : longest-deranged-anagrams ( path -- anagrams ) deranged-anagrams [ first length ] sort-with last ;
http://rosettacode.org/wiki/Anonymous_recursion
Anonymous recursion
While implementing a recursive function, it often happens that we must resort to a separate   helper function   to handle the actual recursion. This is usually the case when directly calling the current function would waste too many resources (stack space, execution time), causing unwanted side-effects,   and/or the function doesn't have the right arguments and/or return values. So we end up inventing some silly name like   foo2   or   foo_helper.   I have always found it painful to come up with a proper name, and see some disadvantages:   You have to think up a name, which then pollutes the namespace   Function is created which is called from nowhere else   The program flow in the source code is interrupted Some languages allow you to embed recursion directly in-place.   This might work via a label, a local gosub instruction, or some special keyword. Anonymous recursion can also be accomplished using the   Y combinator. Task If possible, demonstrate this by writing the recursive version of the fibonacci function   (see Fibonacci sequence)   which checks for a negative argument before doing the actual recursion.
#F.23
F#
let fib = function | n when n < 0 -> None | n -> let rec fib2 = function | 0 | 1 -> 1 | n -> fib2 (n-1) + fib2 (n-2) in Some (fib2 n)
http://rosettacode.org/wiki/Angles_(geometric),_normalization_and_conversion
Angles (geometric), normalization and conversion
This task is about the normalization and/or conversion of (geometric) angles using some common scales. The angular scales that will be used in this task are:   degree   gradian   mil   radian Definitions The angular scales used or referenced here:   turn   is a full turn or 360 degrees, also shown as 360º   degree   is   1/360   of a turn   gradian   is   1/400   of a turn   mil   is   1/6400   of a turn   radian   is   1/2 π {\displaystyle \pi }   of a turn   (or   0.5/ π {\displaystyle \pi }   of a turn) Or, to put it another way,   for a full circle:   there are   360   degrees   there are   400   gradians   there are   6,400   mils   there are   2 π {\displaystyle \pi }   radians   (roughly equal to 6.283+) A   mil   is approximately equal to a   milliradian   (which is   1/1000   of a radian). There is another definition of a   mil   which is   1/1000   of a radian   ─── this definition won't be used in this Rosetta Code task. Turns   are sometimes known or shown as:   turn(s)   360 degrees   unit circle   a (full) circle Degrees   are sometimes known or shown as:   degree(s)   deg   º       (a symbol)   °       (another symbol) Gradians   are sometimes known or shown as:   gradian(s)   grad(s)   grade(s)   gon(s)   metric degree(s)   (Note that   centigrade   was used for 1/100th of a grade, see the note below.) Mils   are sometimes known or shown as:   mil(s)   NATO mil(s) Radians   are sometimes known or shown as:   radian(s)   rad(s) Notes In continental Europe, the French term   centigrade   was used for   1/100   of a grad (grade);   this was one reason for the adoption of the term   Celsius   to replace   centigrade   as the name of a temperature scale. Gradians were commonly used in civil engineering. Mils were normally used for artillery   (elevations of the gun barrel for ranging). Positive and negative angles Although the definition of the measurement of an angle doesn't support the concept of a negative angle,   it's frequently useful to impose a convention that allows positive and negative angular values to represent orientations and/or rotations in opposite directions relative to some reference.   It is this reason that negative angles will keep their sign and not be normalized to positive angles. Normalization Normalization   (for this Rosetta Code task)   will keep the same sign,   but it will reduce the magnitude to less than a full circle;   in other words, less than 360º. Normalization   shouldn't   change   -45º   to   315º, An angle of   0º,   +0º,   0.000000,   or   -0º   should be shown as   0º. Task   write a function (or equivalent) to do the normalization for each scale Suggested names: d2d,   g2g,   m2m,   and  r2r   write a function (or equivalent) to convert one scale to another Suggested names for comparison of different computer language function names: d2g,   d2m,   and   d2r   for degrees g2d,   g2m,   and   g2r   for gradians m2d,   m2g,   and   m2r   for mils r2d,   r2g,   and   r2m   for radians   normalize all angles used   (except for the "original" or "base" angle)   show the angles in every scale and convert them to all other scales   show all output here on this page For the (above) conversions,   use these dozen numbers   (in the order shown):   -2   -1   0   1   2   6.2831853   16   57.2957795   359   399   6399   1000000
#Kotlin
Kotlin
import java.text.DecimalFormat as DF   const val DEGREE = 360.0 const val GRADIAN = 400.0 const val MIL = 6400.0 const val RADIAN = 2 * Math.PI   fun d2d(a: Double) = a % DEGREE fun d2g(a: Double) = a * (GRADIAN / DEGREE) fun d2m(a: Double) = a * (MIL / DEGREE) fun d2r(a: Double) = a * (RADIAN / 360) fun g2d(a: Double) = a * (DEGREE / GRADIAN) fun g2g(a: Double) = a % GRADIAN fun g2m(a: Double) = a * (MIL / GRADIAN) fun g2r(a: Double) = a * (RADIAN / GRADIAN) fun m2d(a: Double) = a * (DEGREE / MIL) fun m2g(a: Double) = a * (GRADIAN / MIL) fun m2m(a: Double) = a % MIL fun m2r(a: Double) = a * (RADIAN / MIL) fun r2d(a: Double) = a * (DEGREE / RADIAN) fun r2g(a: Double) = a * (GRADIAN / RADIAN) fun r2m(a: Double) = a * (MIL / RADIAN) fun r2r(a: Double) = a % RADIAN   fun main() { val fa = DF("######0.000000") val fc = DF("###0.0000") println(" degrees gradiens mils radians") for (a in listOf(-2.0, -1.0, 0.0, 1.0, 2.0, 6.2831853, 16.0, 57.2957795, 359.0, 399.0, 6399.0, 1000000.0)) for (units in listOf("degrees", "gradiens", "mils", "radians")) { val (d,g,m,r) = when (units) { "degrees" -> { val d = d2d(a) listOf(d, d2g(d), d2m(d), d2r(d)) } "gradiens" -> { val g = g2g(a) listOf(g2d(g), g, g2m(g), g2r(g)) } "mils" -> { val m = m2m(a) listOf(m2d(m), m2g(m), m, m2r(m)) } "radians" -> { val r = r2r(a) listOf(r2d(r), r2g(r), r2m(r), r) } else -> emptyList() }   println("%15s  %8s = %10s  %10s  %10s  %10s".format(fa.format(a), units, fc.format(d), fc.format(g), fc.format(m), fc.format(r))) } }
http://rosettacode.org/wiki/Amicable_pairs
Amicable pairs
Two integers N {\displaystyle N} and M {\displaystyle M} are said to be amicable pairs if N ≠ M {\displaystyle N\neq M} and the sum of the proper divisors of N {\displaystyle N} ( s u m ( p r o p D i v s ( N ) ) {\displaystyle \mathrm {sum} (\mathrm {propDivs} (N))} ) = M {\displaystyle =M} as well as s u m ( p r o p D i v s ( M ) ) = N {\displaystyle \mathrm {sum} (\mathrm {propDivs} (M))=N} . Example 1184 and 1210 are an amicable pair, with proper divisors:   1, 2, 4, 8, 16, 32, 37, 74, 148, 296, 592   and   1, 2, 5, 10, 11, 22, 55, 110, 121, 242, 605   respectively. Task Calculate and show here the Amicable pairs below 20,000; (there are eight). Related tasks Proper divisors Abundant, deficient and perfect number classifications Aliquot sequence classifications and its amicable classification.
#Clojure
Clojure
  (ns example (:gen-class))   (defn factors [n] " Find the proper factors of a number " (into (sorted-set) (mapcat (fn [x] (if (= x 1) [x] [x (/ n x)])) (filter #(zero? (rem n %)) (range 1 (inc (Math/sqrt n)))) )))     (def find-pairs (into #{} (for [n (range 2 20000) :let [f (factors n) ; Factors of n M (apply + f) ; Sum of factors g (factors M) ; Factors of sum N (apply + g)] ; Sum of Factors of sum :when (= n N) ; (sum(proDivs(N)) = M and sum(propDivs(M)) = N :when (not= M N)] ; N not-equal M (sorted-set n M)))) ; Found pair   ;; Output Results (doseq [q find-pairs] (println q))  
http://rosettacode.org/wiki/Animation
Animation
Animation is integral to many parts of GUIs, including both the fancy effects when things change used in window managers, and of course games.   The core of any animation system is a scheme for periodically changing the display while still remaining responsive to the user.   This task demonstrates this. Task Create a window containing the string "Hello World! " (the trailing space is significant). Make the text appear to be rotating right by periodically removing one letter from the end of the string and attaching it to the front. When the user clicks on the (windowed) text, it should reverse its direction.
#Go
Go
package main   import ( "log" "time"   "github.com/gdamore/tcell" )   const ( msg = "Hello World! " x0, y0 = 8, 3 shiftsPerSecond = 4 clicksToExit = 5 )   func main() { s, err := tcell.NewScreen() if err != nil { log.Fatal(err) } if err = s.Init(); err != nil { log.Fatal(err) } s.Clear() s.EnableMouse() tick := time.Tick(time.Second / shiftsPerSecond) click := make(chan bool) go func() { for { em, ok := s.PollEvent().(*tcell.EventMouse) if !ok || em.Buttons()&0xFF == tcell.ButtonNone { continue } mx, my := em.Position() if my == y0 && mx >= x0 && mx < x0+len(msg) { click <- true } } }() for inc, shift, clicks := 1, 0, 0; ; { select { case <-tick: shift = (shift + inc) % len(msg) for i, r := range msg { s.SetContent(x0+((shift+i)%len(msg)), y0, r, nil, 0) } s.Show() case <-click: clicks++ if clicks == clicksToExit { s.Fini() return } inc = len(msg) - inc } } }
http://rosettacode.org/wiki/Animate_a_pendulum
Animate a pendulum
One good way of making an animation is by simulating a physical system and illustrating the variables in that system using a dynamically changing graphical display. The classic such physical system is a simple gravity pendulum. Task Create a simple physical model of a pendulum and animate it.
#Delphi
Delphi
  unit main;   interface   uses Vcl.Forms, Vcl.Graphics, Vcl.ExtCtrls;   type TForm1 = class(TForm) procedure FormCreate(Sender: TObject); procedure FormDestroy(Sender: TObject); private Timer: TTimer; angle, angleAccel, angleVelocity, dt: double; len: Integer; procedure Tick(Sender: TObject); end;   var Form1: TForm1;   implementation   {$R *.dfm}   procedure TForm1.FormCreate(Sender: TObject); begin Width := 200; Height := 200; DoubleBuffered := True; Timer := TTimer.Create(nil); Timer.Interval := 30; Timer.OnTimer := Tick; Caption := 'Pendulum';   // initialize angle := PI / 2; angleAccel := 0; angleVelocity := 0; dt := 0.1; len := 50; end;   procedure TForm1.FormDestroy(Sender: TObject); begin Timer.Free; end;   procedure TForm1.Tick(Sender: TObject); const HalfPivot = 4; HalfBall = 7; var anchorX, anchorY, ballX, ballY: Integer; begin anchorX := Width div 2 - 12; anchorY := Height div 4; ballX := anchorX + Trunc(Sin(angle) * len); ballY := anchorY + Trunc(Cos(angle) * len);   angleAccel := -9.81 / len * Sin(angle); angleVelocity := angleVelocity + angleAccel * dt; angle := angle + angleVelocity * dt;   with canvas do begin Pen.Color := clBlack;   with Brush do begin Style := bsSolid; Color := clWhite; end;   FillRect(ClientRect); MoveTo(anchorX, anchorY); LineTo(ballX, ballY);   Brush.Color := clGray; Ellipse(anchorX - HalfPivot, anchorY - HalfPivot, anchorX + HalfPivot, anchorY + HalfPivot);   Brush.Color := clYellow; Ellipse(ballX - HalfBall, ballY - HalfBall, ballX + HalfBall, ballY + HalfBall); end; end;   end.
http://rosettacode.org/wiki/Almkvist-Giullera_formula_for_pi
Almkvist-Giullera formula for pi
The Almkvist-Giullera formula for calculating   1/π2   is based on the Calabi-Yau differential equations of order 4 and 5,   which were originally used to describe certain manifolds in string theory. The formula is: 1/π2 = (25/3) ∑0∞ ((6n)! / (n!6))(532n2 + 126n + 9) / 10002n+1 This formula can be used to calculate the constant   π-2,   and thus to calculate   π. Note that, because the product of all terms but the power of 1000 can be calculated as an integer, the terms in the series can be separated into a large integer term: (25) (6n)! (532n2 + 126n + 9) / (3(n!)6)     (***) multiplied by a negative integer power of 10: 10-(6n + 3) Task Print the integer portions (the starred formula, which is without the power of 1000 divisor) of the first 10 terms of the series. Use the complete formula to calculate and print π to 70 decimal digits of precision. Reference  Gert Almkvist and Jesús Guillera, Ramanujan-like series for 1/π2 and string theory, Experimental Mathematics, 21 (2012), page 2, formula 1.
#11l
11l
F isqrt(BigInt =x) BigInt q = 1 BigInt r = 0 BigInt t L q <= x q *= 4 L q > 1 q I/= 4 t = x - r - q r I/= 2 I t >= 0 x = t r += q R r   F dump(=digs, show) V gb = 1 digs++ V dg = digs + gb BigInt t1 = 1 BigInt t2 = 9 BigInt t3 = 1 BigInt te BigInt su = 0 V t = BigInt(10) ^ (I dg <= 60 {0} E dg - 60) BigInt d = -1 BigInt _fn_ = 1   V n = 0 L n < dg I n > 0 t3 *= BigInt(n) ^ 6 te = t1 * t2 I/ t3 V z = dg - 1 - n * 6 I z > 0 te *= BigInt(10) ^ z E te I/= BigInt(10) ^ -z I show & n < 10 print(‘#2 #62’.format(n, te * 32 I/ 3 I/ t)) su += te   I te < 10 I show digs-- print("\n#. iterations required for #. digits after the decimal point.\n".format(n, digs)) L.break   L(j) n * 6 + 1 .. n * 6 + 6 t1 *= j d += 2 t2 += 126 + 532 * d   n++   V s = String(isqrt(BigInt(10) ^ (dg * 2 + 3) I/ su I/ 32 * 3 * BigInt(10) ^ (dg + 5))) R s[0]‘.’s[1 .+ digs]   print(dump(70, 1B))
http://rosettacode.org/wiki/Angle_difference_between_two_bearings
Angle difference between two bearings
Finding the angle between two bearings is often confusing.[1] Task Find the angle which is the result of the subtraction b2 - b1, where b1 and b2 are the bearings. Input bearings are expressed in the range   -180   to   +180   degrees. The  result  is also expressed in the range   -180   to   +180   degrees. Compute the angle for the following pairs: 20 degrees (b1) and 45 degrees (b2) -45 and 45 -85 and 90 -95 and 90 -45 and 125 -45 and 145 29.4803 and -88.6381 -78.3251 and -159.036 Optional extra Allow the input bearings to be any (finite) value. Test cases -70099.74233810938 and 29840.67437876723 -165313.6666297357 and 33693.9894517456 1174.8380510598456 and -154146.66490124757 60175.77306795546 and 42213.07192354373
#D
D
import std.stdio;   double getDifference(double b1, double b2) { double r = (b2 - b1) % 360.0; if (r < -180.0) { r += 360.0; } if (r >= 180.0) { r -= 360.0; } return r; }   void main() { writeln("Input in -180 to +180 range"); writeln(getDifference(20.0, 45.0)); writeln(getDifference(-45.0, 45.0)); writeln(getDifference(-85.0, 90.0)); writeln(getDifference(-95.0, 90.0)); writeln(getDifference(-45.0, 125.0)); writeln(getDifference(-45.0, 145.0)); writeln(getDifference(-45.0, 125.0)); writeln(getDifference(-45.0, 145.0)); writeln(getDifference(29.4803, -88.6381)); writeln(getDifference(-78.3251, -159.036));   writeln("Input in wider range"); writeln(getDifference(-70099.74233810938, 29840.67437876723)); writeln(getDifference(-165313.6666297357, 33693.9894517456)); writeln(getDifference(1174.8380510598456, -154146.66490124757)); writeln(getDifference(60175.77306795546, 42213.07192354373)); }
http://rosettacode.org/wiki/Anagrams/Deranged_anagrams
Anagrams/Deranged anagrams
Two or more words are said to be anagrams if they have the same characters, but in a different order. By analogy with derangements we define a deranged anagram as two words with the same characters, but in which the same character does not appear in the same position in both words. Task[edit] Use the word list at unixdict to find and display the longest deranged anagram. Related tasks Permutations/Derangements Best shuffle Word plays Ordered words Palindrome detection Semordnilap Anagrams Anagrams/Deranged anagrams Other tasks related to string operations: Metrics Array length String length Copy a string Empty string  (assignment) Counting Word frequency Letter frequency Jewels and stones I before E except after C Bioinformatics/base count Count occurrences of a substring Count how many vowels and consonants occur in a string Remove/replace XXXX redacted Conjugate a Latin verb Remove vowels from a string String interpolation (included) Strip block comments Strip comments from a string Strip a set of characters from a string Strip whitespace from a string -- top and tail Strip control codes and extended characters from a string Anagrams/Derangements/shuffling Word wheel ABC problem Sattolo cycle Knuth shuffle Ordered words Superpermutation minimisation Textonyms (using a phone text pad) Anagrams Anagrams/Deranged anagrams Permutations/Derangements Find/Search/Determine ABC words Odd words Word ladder Semordnilap Word search Wordiff  (game) String matching Tea cup rim text Alternade words Changeable words State name puzzle String comparison Unique characters Unique characters in each string Extract file extension Levenshtein distance Palindrome detection Common list elements Longest common suffix Longest common prefix Compare a list of strings Longest common substring Find common directory path Words from neighbour ones Change e letters to i in words Non-continuous subsequences Longest common subsequence Longest palindromic substrings Longest increasing subsequence Words containing "the" substring Sum of the digits of n is substring of n Determine if a string is numeric Determine if a string is collapsible Determine if a string is squeezable Determine if a string has all unique characters Determine if a string has all the same characters Longest substrings without repeating characters Find words which contains all the vowels Find words which contains most consonants Find words which contains more than 3 vowels Find words which first and last three letters are equals Find words which odd letters are consonants and even letters are vowels or vice_versa Formatting Substring Rep-string Word wrap String case Align columns Literals/String Repeat a string Brace expansion Brace expansion using ranges Reverse a string Phrase reversals Comma quibbling Special characters String concatenation Substring/Top and tail Commatizing numbers Reverse words in a string Suffixation of decimal numbers Long literals, with continuations Numerical and alphabetical suffixes Abbreviations, easy Abbreviations, simple Abbreviations, automatic Song lyrics/poems/Mad Libs/phrases Mad Libs Magic 8-ball 99 Bottles of Beer The Name Game (a song) The Old lady swallowed a fly The Twelve Days of Christmas Tokenize Text between Tokenize a string Word break problem Tokenize a string with escaping Split a character string based on change of character Sequences Show ASCII table De Bruijn sequences Self-referential sequences Generate lower case ASCII alphabet
#FreeBASIC
FreeBASIC
' FB 1.05.0 Win64   Type IndexedWord As String word As Integer index End Type   ' selection sort, quick enough for sorting small number of letters Sub sortWord(s As String) Dim As Integer i, j, m, n = Len(s) For i = 0 To n - 2 m = i For j = i + 1 To n - 1 If s[j] < s[m] Then m = j Next j If m <> i Then Swap s[i], s[m] Next i End Sub   ' quicksort for sorting whole dictionary of IndexedWord instances by sorted word Sub quicksort(a() As IndexedWord, first As Integer, last As Integer) Dim As Integer length = last - first + 1 If length < 2 Then Return Dim pivot As String = a(first + length\ 2).word Dim lft As Integer = first Dim rgt As Integer = last While lft <= rgt While a(lft).word < pivot lft +=1 Wend While a(rgt).word > pivot rgt -= 1 Wend If lft <= rgt Then Swap a(lft), a(rgt) lft += 1 rgt -= 1 End If Wend quicksort(a(), first, rgt) quicksort(a(), lft, last) End Sub   Function isDeranged(s1 As String, s2 As String) As Boolean For i As Integer = 0 To Len(s1) - 1 If s1[i] = s2[i] Then Return False Next Return True End Function   Dim t As Double = timer Dim As String w() '' array to hold actual words Open "undict.txt" For Input As #1 Dim count As Integer = 0 While Not Eof(1) count +=1 Redim Preserve w(1 To count) Line Input #1, w(count) Wend Close #1   Dim As IndexedWord iw(1 To count) '' array to hold sorted words and their index into w() Dim word As String For i As Integer = 1 To count word = w(i) sortWord(word) iw(i).word = word iw(i).index = i Next quickSort iw(), 1, count '' sort the IndexedWord array by sorted word   Dim As Integer startIndex = 1, maxLength, ub Dim As Integer maxIndex() Dim As IndexedWord iWord = iw(1) maxLength = 0   For i As Integer = 2 To count If iWord.word = iw(i).word Then If isDeranged(w(iword.index), w(iw(i).index)) Then If startIndex + 1 < i Then Swap iw(i), iw(startIndex + 1) If Len(iWord.word) > maxLength Then maxLength = Len(iWord.word) Erase maxIndex ub = 1 Redim maxIndex(1 To ub) maxIndex(ub) = startIndex startIndex += 2 i = startIndex iWord = iw(i) ElseIf Len(iWord.word) = maxLength Then ub += 1 Redim Preserve maxIndex(1 To ub) maxIndex(ub) = startIndex startIndex += 2 i = startIndex iWord = iw(i) End If End If ElseIf i = count Then Exit For Else For j As Integer = i To count - 1 iWord = iw(j) If Len(iWord.word) >= maxLength Then startIndex = j i = startIndex Exit For End If Next End If Next   Print Str(count); " words in the dictionary" Print "The deranged anagram pair(s) with the greatest length (namely"; maxLength; ") is:" Print Dim iws(1 To maxLength) As IndexedWord '' array to hold each deranged anagram pair For i As Integer = 1 To UBound(maxIndex) For j As Integer = maxIndex(i) To maxIndex(i) + 1 iws(j - maxIndex(i) + 1) = iw(j) Next j If iws(1).index > iws(2).index Then swap iws(1), iws(2) '' ensure pair is in correct order For j As Integer = 1 To 2 Print w(iws(j).index); " "; Next j Print Next i   Print Print "Took "; Print Using "#.###"; timer - t; Print " seconds on i3 @ 2.13 GHz"   Print Print "Press any key to quit" Sleep
http://rosettacode.org/wiki/Anonymous_recursion
Anonymous recursion
While implementing a recursive function, it often happens that we must resort to a separate   helper function   to handle the actual recursion. This is usually the case when directly calling the current function would waste too many resources (stack space, execution time), causing unwanted side-effects,   and/or the function doesn't have the right arguments and/or return values. So we end up inventing some silly name like   foo2   or   foo_helper.   I have always found it painful to come up with a proper name, and see some disadvantages:   You have to think up a name, which then pollutes the namespace   Function is created which is called from nowhere else   The program flow in the source code is interrupted Some languages allow you to embed recursion directly in-place.   This might work via a label, a local gosub instruction, or some special keyword. Anonymous recursion can also be accomplished using the   Y combinator. Task If possible, demonstrate this by writing the recursive version of the fibonacci function   (see Fibonacci sequence)   which checks for a negative argument before doing the actual recursion.
#Factor
Factor
USING: kernel math ; IN: rosettacode.fibonacci.ar   : fib ( n -- m ) dup 0 < [ "fib of negative" throw ] when [  ! If n < 2, then drop q, else find q(n - 1) + q(n - 2). [ dup 2 < ] dip swap [ drop ] [ [ [ 1 - ] dip dup call ] [ [ 2 - ] dip dup call ] 2bi + ] if ] dup call( n q -- m ) ;
http://rosettacode.org/wiki/Angles_(geometric),_normalization_and_conversion
Angles (geometric), normalization and conversion
This task is about the normalization and/or conversion of (geometric) angles using some common scales. The angular scales that will be used in this task are:   degree   gradian   mil   radian Definitions The angular scales used or referenced here:   turn   is a full turn or 360 degrees, also shown as 360º   degree   is   1/360   of a turn   gradian   is   1/400   of a turn   mil   is   1/6400   of a turn   radian   is   1/2 π {\displaystyle \pi }   of a turn   (or   0.5/ π {\displaystyle \pi }   of a turn) Or, to put it another way,   for a full circle:   there are   360   degrees   there are   400   gradians   there are   6,400   mils   there are   2 π {\displaystyle \pi }   radians   (roughly equal to 6.283+) A   mil   is approximately equal to a   milliradian   (which is   1/1000   of a radian). There is another definition of a   mil   which is   1/1000   of a radian   ─── this definition won't be used in this Rosetta Code task. Turns   are sometimes known or shown as:   turn(s)   360 degrees   unit circle   a (full) circle Degrees   are sometimes known or shown as:   degree(s)   deg   º       (a symbol)   °       (another symbol) Gradians   are sometimes known or shown as:   gradian(s)   grad(s)   grade(s)   gon(s)   metric degree(s)   (Note that   centigrade   was used for 1/100th of a grade, see the note below.) Mils   are sometimes known or shown as:   mil(s)   NATO mil(s) Radians   are sometimes known or shown as:   radian(s)   rad(s) Notes In continental Europe, the French term   centigrade   was used for   1/100   of a grad (grade);   this was one reason for the adoption of the term   Celsius   to replace   centigrade   as the name of a temperature scale. Gradians were commonly used in civil engineering. Mils were normally used for artillery   (elevations of the gun barrel for ranging). Positive and negative angles Although the definition of the measurement of an angle doesn't support the concept of a negative angle,   it's frequently useful to impose a convention that allows positive and negative angular values to represent orientations and/or rotations in opposite directions relative to some reference.   It is this reason that negative angles will keep their sign and not be normalized to positive angles. Normalization Normalization   (for this Rosetta Code task)   will keep the same sign,   but it will reduce the magnitude to less than a full circle;   in other words, less than 360º. Normalization   shouldn't   change   -45º   to   315º, An angle of   0º,   +0º,   0.000000,   or   -0º   should be shown as   0º. Task   write a function (or equivalent) to do the normalization for each scale Suggested names: d2d,   g2g,   m2m,   and  r2r   write a function (or equivalent) to convert one scale to another Suggested names for comparison of different computer language function names: d2g,   d2m,   and   d2r   for degrees g2d,   g2m,   and   g2r   for gradians m2d,   m2g,   and   m2r   for mils r2d,   r2g,   and   r2m   for radians   normalize all angles used   (except for the "original" or "base" angle)   show the angles in every scale and convert them to all other scales   show all output here on this page For the (above) conversions,   use these dozen numbers   (in the order shown):   -2   -1   0   1   2   6.2831853   16   57.2957795   359   399   6399   1000000
#Lua
Lua
range = { degrees=360, gradians=400, mils=6400, radians=2.0*math.pi } function convert(value, fromunit, tounit) return math.fmod(value * range[tounit] / range[fromunit], range[tounit]) end   testvalues = { -2, -1, 0, 1, 2, 6.2831853, 16, 57.2957795, 359, 399, 6399, 1000000 } testunits = { "degrees", "gradians", "mils", "radians" } print(string.format("%15s  %8s = %15s  %15s  %15s  %15s", "VALUE", "UNIT", "DEGREES", "GRADIANS", "MILS", "RADIANS")) for _, value in ipairs(testvalues) do for _, fromunit in ipairs(testunits) do local d = convert(value, fromunit, "degrees") local g = convert(value, fromunit, "gradians") local m = convert(value, fromunit, "mils") local r = convert(value, fromunit, "radians") print(string.format("%15.7f  %8s = %15.7f  %15.7f  %15.7f  %15.7f", value, fromunit, d, g, m, r)) end end
http://rosettacode.org/wiki/Amicable_pairs
Amicable pairs
Two integers N {\displaystyle N} and M {\displaystyle M} are said to be amicable pairs if N ≠ M {\displaystyle N\neq M} and the sum of the proper divisors of N {\displaystyle N} ( s u m ( p r o p D i v s ( N ) ) {\displaystyle \mathrm {sum} (\mathrm {propDivs} (N))} ) = M {\displaystyle =M} as well as s u m ( p r o p D i v s ( M ) ) = N {\displaystyle \mathrm {sum} (\mathrm {propDivs} (M))=N} . Example 1184 and 1210 are an amicable pair, with proper divisors:   1, 2, 4, 8, 16, 32, 37, 74, 148, 296, 592   and   1, 2, 5, 10, 11, 22, 55, 110, 121, 242, 605   respectively. Task Calculate and show here the Amicable pairs below 20,000; (there are eight). Related tasks Proper divisors Abundant, deficient and perfect number classifications Aliquot sequence classifications and its amicable classification.
#CLU
CLU
% Generate proper divisors from 1 to max proper_divisors = proc (max: int) returns (array[int]) divs: array[int] := array[int]$fill(1, max, 0) for i: int in int$from_to(1, max/2) do for j: int in int$from_to_by(i*2, max, i) do divs[j] := divs[j] + i end end return(divs) end proper_divisors   % Are A and B and amicable pair, given the proper divisors? amicable = proc (divs: array[int], a, b: int) returns (bool) return(divs[a] = b & divs[b] = a) end amicable   % Find all amicable pairs up to 20 000 start_up = proc () max = 20000 po: stream := stream$primary_output() divs: array[int] := proper_divisors(max)   for a: int in int$from_to(1, max) do for b: int in int$from_to(a+1, max) do if amicable(divs, a, b) then stream$putl(po, int$unparse(a) || ", " || int$unparse(b)) end end end end start_up
http://rosettacode.org/wiki/Animation
Animation
Animation is integral to many parts of GUIs, including both the fancy effects when things change used in window managers, and of course games.   The core of any animation system is a scheme for periodically changing the display while still remaining responsive to the user.   This task demonstrates this. Task Create a window containing the string "Hello World! " (the trailing space is significant). Make the text appear to be rotating right by periodically removing one letter from the end of the string and attaching it to the front. When the user clicks on the (windowed) text, it should reverse its direction.
#Haskell
Haskell
import Graphics.HGL.Units (Time, Point, Size, ) import Graphics.HGL.Draw.Monad (Graphic, ) import Graphics.HGL.Draw.Text import Graphics.HGL.Draw.Font import Graphics.HGL.Window import Graphics.HGL.Run import Graphics.HGL.Utils   import Control.Exception (bracket, )   runAnim = runGraphics $ bracket (openWindowEx "Basic animation task" Nothing (250,50) DoubleBuffered (Just 110)) closeWindow (\w -> do f <- createFont (64,28) 0 False False "courier" let loop t dir = do e <- maybeGetWindowEvent w let d = case e of Just (Button _ True False) -> -dir _ -> dir t' = if d == 1 then last t : init t else tail t ++ [head t] setGraphic w (withFont f $ text (5,10) t') >> getWindowTick w loop t' d   loop "Hello world ! " 1 )
http://rosettacode.org/wiki/Animate_a_pendulum
Animate a pendulum
One good way of making an animation is by simulating a physical system and illustrating the variables in that system using a dynamically changing graphical display. The classic such physical system is a simple gravity pendulum. Task Create a simple physical model of a pendulum and animate it.
#E
E
#!/usr/bin/env rune pragma.syntax("0.9")   def pi := (-1.0).acos() def makeEPainter := <unsafe:com.zooko.tray.makeEPainter> def makeLamportSlot := <import:org.erights.e.elib.slot.makeLamportSlot> def whenever := <import:org.erights.e.elib.slot.whenever> def colors := <import:java.awt.makeColor>   # -------------------------------------------------------------- # --- Definitions   def makePendulumSim(length_m :float64, gravity_mps2 :float64, initialAngle_rad :float64, timestep_ms :int) { var velocity := 0 def &angle := makeLamportSlot(initialAngle_rad) def k := -gravity_mps2/length_m def timestep_s := timestep_ms / 1000 def clock := timer.every(timestep_ms, fn _ { def acceleration := k * angle.sin() velocity += acceleration * timestep_s angle += velocity * timestep_s }) return [clock, &angle] }   def makeDisplayComponent(&angle) { def c def updater := whenever([&angle], fn { c.repaint() })   bind c := makeEPainter(def paintCallback { to paintComponent(g) { try { def originX := c.getWidth() // 2 def originY := c.getHeight() // 2 def pendRadius := (originX.min(originY) * 0.95).round() def ballRadius := (originX.min(originY) * 0.04).round() def ballX := (originX + angle.sin() * pendRadius).round() def ballY := (originY + angle.cos() * pendRadius).round()   g.setColor(colors.getWhite()) g.fillRect(0, 0, c.getWidth(), c.getHeight()) g.setColor(colors.getBlack())   g.fillOval(originX - 2, originY - 2, 4, 4) g.drawLine(originX, originY, ballX, ballY) g.fillOval(ballX - ballRadius, ballY - ballRadius, ballRadius * 2, ballRadius * 2)   updater[] # provoke interest provided that we did get drawn (window not closed) } catch p { stderr.println(`In paint callback: $p${p.eStack()}`) } } })   c.setPreferredSize(<awt:makeDimension>(300, 300)) return c }   # -------------------------------------------------------------- # --- Application setup   def [clock, &angle] := makePendulumSim(1, 9.80665, pi*99/100, 10)   # Initialize AWT, move to AWT event thread when (currentVat.morphInto("awt")) -> {   # Create the window def frame := <unsafe:javax.swing.makeJFrame>("Pendulum") frame.setContentPane(def display := makeDisplayComponent(&angle)) frame.addWindowListener(def mainWindowListener { to windowClosing(_) { clock.stop() interp.continueAtTop() } match _ {} }) frame.setLocation(50, 50) frame.pack()   # Start and become visible frame.show() clock.start() }   interp.blockAtTop()
http://rosettacode.org/wiki/Almkvist-Giullera_formula_for_pi
Almkvist-Giullera formula for pi
The Almkvist-Giullera formula for calculating   1/π2   is based on the Calabi-Yau differential equations of order 4 and 5,   which were originally used to describe certain manifolds in string theory. The formula is: 1/π2 = (25/3) ∑0∞ ((6n)! / (n!6))(532n2 + 126n + 9) / 10002n+1 This formula can be used to calculate the constant   π-2,   and thus to calculate   π. Note that, because the product of all terms but the power of 1000 can be calculated as an integer, the terms in the series can be separated into a large integer term: (25) (6n)! (532n2 + 126n + 9) / (3(n!)6)     (***) multiplied by a negative integer power of 10: 10-(6n + 3) Task Print the integer portions (the starred formula, which is without the power of 1000 divisor) of the first 10 terms of the series. Use the complete formula to calculate and print π to 70 decimal digits of precision. Reference  Gert Almkvist and Jesús Guillera, Ramanujan-like series for 1/π2 and string theory, Experimental Mathematics, 21 (2012), page 2, formula 1.
#AArch64_Assembly
AArch64 Assembly
  /* ARM assembly AARCH64 Raspberry PI 3B */ /* program calculPi64.s */ /* this program use gmp library */ /* link with gcc option -lgmp */   /*******************************************/ /* Constantes file */ /*******************************************/ /* for this file see task include a file in language AArch64 assembly*/ .include "../includeConstantesARM64.inc"   .equ MAXI, 10 .equ SIZEBIG, 100   /*********************************/ /* Initialized data */ /*********************************/ .data szMessDebutPgm: .asciz "Program 64 bits start. \n" szMessPi: .asciz "\nPI = \n" szCarriageReturn: .asciz "\n"   szFormat: .asciz " %Zd\n" szFormatFloat: .asciz " %.*Ff\n" /*********************************/ /* UnInitialized data */ /*********************************/ .bss Result1: .skip SIZEBIG Result2: .skip SIZEBIG Result3: .skip SIZEBIG Result4: .skip SIZEBIG fIntex5: .skip SIZEBIG fIntex6: .skip SIZEBIG fIntex7: .skip SIZEBIG fSum: .skip SIZEBIG fSum1: .skip SIZEBIG sBuffer: .skip SIZEBIG fEpsilon: .skip SIZEBIG fPrec: .skip SIZEBIG fPI: .skip SIZEBIG fTEN: .skip SIZEBIG fONE: .skip SIZEBIG /*********************************/ /* code section */ /*********************************/ .text .global main main: // entry of program ldr x0,qAdrszMessDebutPgm bl affichageMess mov x20,#0 // loop indice 1: mov x0,x20 bl computeAlmkvist // compute mov x1,x0 ldr x0,qAdrszFormat // print big integer bl __gmp_printf   add x20,x20,#1 cmp x20,#MAXI blt 1b // and loop   mov x0,#560 // float précision in bits bl __gmpf_set_default_prec   mov x19,#0 // compute indice ldr x0,qAdrfSum // init to zéro bl __gmpf_init ldr x0,qAdrfSum1 // init to zéro bl __gmpf_init   ldr x0,qAdrfONE // result address mov x1,#1 // init à 1 bl __gmpf_init_set_ui   ldr x0,qAdrfIntex5 // init to zéro bl __gmpf_init ldr x0,qAdrfIntex6 // init to zéro bl __gmpf_init ldr x0,qAdrfIntex7 // init to zéro bl __gmpf_init ldr x0,qAdrfEpsilon // init to zéro bl __gmpf_init ldr x0,qAdrfPrec // init to zéro bl __gmpf_init ldr x0,qAdrfPI // init to zéro bl __gmpf_init ldr x0,qAdrfTEN mov x1,#10 // init to 10 bl __gmpf_init_set_ui   ldr x0,qAdrfIntex6 // compute 10 pow 70 ldr x1,qAdrfTEN mov x2,#70 bl __gmpf_pow_ui   ldr x0,qAdrfEpsilon // divide 1 by 10 pow 70 ldr x1,qAdrfONE // dividende ldr x2,qAdrfIntex6 // divisor bl __gmpf_div   2: // PI compute loop mov x0,x19 bl computeAlmkvist mov x20,x0 mov x1,#6 mul x2,x1,x19 add x6,x2,#3 // compute 6n + 3   ldr x0,qAdrfIntex6 // compute 10 pow (6n+3) ldr x1,qAdrfTEN mov x2,x6 bl __gmpf_pow_ui   ldr x0,qAdrfIntex7 // compute 1 / 10 pow (6n+3) ldr x1,qAdrfONE // dividende ldr x2,qAdrfIntex6 // divisor bl __gmpf_div   ldr x0,qAdrfIntex6 // result big float mov x1,x20 // big integer Almkvist bl __gmpf_set_z // conversion in big float   ldr x0,qAdrfIntex5 // result Almkvist * 1 / 10 pow (6n+3) ldr x1,qAdrfIntex7 // operator 1 ldr x2,qAdrfIntex6 // operator 2 bl __gmpf_mul   ldr x0,qAdrfSum1 // terms addition ldr x1,qAdrfSum ldr x2,qAdrfIntex5 bl __gmpf_add   ldr x0,qAdrfSum // copy terms ldr x1,qAdrfSum1 bl __gmpf_set     ldr x0,qAdrfIntex7 // compute 1 / sum ldr x1,qAdrfONE // dividende ldr x2,qAdrfSum // divisor bl __gmpf_div   ldr x0,qAdrfPI // compute square root (1 / sum ) ldr x1,qAdrfIntex7 bl __gmpf_sqrt   ldr x0,qAdrfIntex6 // compute variation PI ldr x1,qAdrfPrec ldr x2,qAdrfPI bl __gmpf_sub   ldr x0,qAdrfIntex6 // absolue value ldr x1,qAdrfIntex5 bl __gmpf_abs   add x19,x19,#1 // increment indice   ldr x0,qAdrfPrec // copy PI -> prévious ldr x1,qAdrfPI bl __gmpf_set   ldr x0,qAdrfIntex6 // compare gap and epsilon ldr x1,qAdrfEpsilon bl __gmpf_cmp cmp w0,#0 // !!! cmp return result on 32 bits bgt 2b // if gap is highter -> loop   ldr x0,qAdrszMessPi // title display bl affichageMess   ldr x2,qAdrfPI // PI display ldr x0,qAdrszFormatFloat mov x1,#70 bl __gmp_printf     100: // standard end of the program mov x0, #0 // return code mov x8, #EXIT // request to exit program svc #0 // perform the system call qAdrszMessDebutPgm: .quad szMessDebutPgm qAdrszCarriageReturn: .quad szCarriageReturn qAdrfIntex5: .quad fIntex5 qAdrfIntex6: .quad fIntex6 qAdrfIntex7: .quad fIntex7 qAdrfSum: .quad fSum qAdrfSum1: .quad fSum1 qAdrszFormatFloat: .quad szFormatFloat qAdrszMessPi: .quad szMessPi qAdrfEpsilon: .quad fEpsilon qAdrfPrec: .quad fPrec qAdrfPI: .quad fPI qAdrfTEN: .quad fTEN qAdrfONE: .quad fONE /***************************************************/ /* compute almkvist_giullera formula */ /***************************************************/ /* x0 contains the number */ computeAlmkvist: stp x19,lr,[sp,-16]! // save registers mov x19,x0 mov x1,#6 mul x0,x1,x0 ldr x1,qAdrResult1 // result address bl computeFactorielle // compute (n*6)! mov x1,#532 mul x2,x19,x19 mul x2,x1,x2 mov x1,#126 mul x3,x19,x1 add x2,x2,x3 add x2,x2,#9 lsl x2,x2,#5 // * 32   ldr x0,qAdrResult2 // result ldr x1,qAdrResult1 // operator bl __gmpz_mul_ui   mov x0,x19 ldr x1,qAdrResult1 bl computeFactorielle   ldr x0,qAdrResult3 bl __gmpz_init // init to 0   ldr x0,qAdrResult3 // result ldr x1,qAdrResult1 // operator mov x2,#6 bl __gmpz_pow_ui   ldr x0,qAdrResult1 // result ldr x1,qAdrResult3 // operator mov x2,#3 bl __gmpz_mul_ui   ldr x0,qAdrResult3 // result ldr x1,qAdrResult2 // operator ldr x2,qAdrResult1 // operator bl __gmpz_cdiv_q   ldr x0,qAdrResult3 // return result address 100: ldp x19,lr,[sp],16 // restaur 2 registers ret // return to address lr x30 qAdrszFormat: .quad szFormat qAdrResult1: .quad Result1 qAdrResult2: .quad Result2 qAdrResult3: .quad Result3 /***************************************************/ /* compute factorielle N */ /***************************************************/ /* x0 contains the number */ /* x1 contains big number result address */ computeFactorielle: stp x19,lr,[sp,-16]! // save registers stp x20,x21,[sp,-16]! // save registers mov x19,x0 // save N mov x20,x1 // save result address mov x0,x1 // result address mov x1,#1 // init to 1 bl __gmpz_init_set_ui ldr x0,qAdrResult4 bl __gmpz_init // init to 0 mov x21,#1 1: // loop ldr x0,qAdrResult4 // result mov x1,x20 // operator 1 mov x2,x21 // operator 2 bl __gmpz_mul_ui mov x0,x20 // copy result4 -> result ldr x1,qAdrResult4 bl __gmpz_set add x21,x21,#1 // increment indice cmp x21,x19 // N ? ble 1b // no -> loop   ldr x0,qAdrResult4 ldp x20,x21,[sp],16 // restaur 2 registers ldp x19,lr,[sp],16 // restaur 2 registers ret // return to address lr x30 qAdrResult4: .quad Result4 /********************************************************/ /* File Include fonctions */ /********************************************************/ /* for this file see task include a file in language AArch64 assembly */ .include "../includeARM64.inc"  
http://rosettacode.org/wiki/Almkvist-Giullera_formula_for_pi
Almkvist-Giullera formula for pi
The Almkvist-Giullera formula for calculating   1/π2   is based on the Calabi-Yau differential equations of order 4 and 5,   which were originally used to describe certain manifolds in string theory. The formula is: 1/π2 = (25/3) ∑0∞ ((6n)! / (n!6))(532n2 + 126n + 9) / 10002n+1 This formula can be used to calculate the constant   π-2,   and thus to calculate   π. Note that, because the product of all terms but the power of 1000 can be calculated as an integer, the terms in the series can be separated into a large integer term: (25) (6n)! (532n2 + 126n + 9) / (3(n!)6)     (***) multiplied by a negative integer power of 10: 10-(6n + 3) Task Print the integer portions (the starred formula, which is without the power of 1000 divisor) of the first 10 terms of the series. Use the complete formula to calculate and print π to 70 decimal digits of precision. Reference  Gert Almkvist and Jesús Guillera, Ramanujan-like series for 1/π2 and string theory, Experimental Mathematics, 21 (2012), page 2, formula 1.
#ARM_Assembly
ARM Assembly
  /* ARM assembly Raspberry PI */ /* program calculPi.s */ /* this program use gmp library package : libgmp3-dev */ /* link with gcc option -lgmp */   /* REMARK 1 : this program use routines in a include file see task Include a file language arm assembly for the routine affichageMess conversion10 see at end of this program the instruction include */ /* for constantes see task include a file in arm assembly */ /************************************/ /* Constantes */ /************************************/ .include "../constantes.inc"   .equ MAXI, 10 .equ SIZEBIG, 100   /*********************************/ /* Initialized data */ /*********************************/ .data szMessPi: .asciz "\nPI = \n" szCarriageReturn: .asciz "\n"   szFormat: .asciz " %Zd\n" szFormatFloat: .asciz " %.*Ff\n" /*********************************/ /* UnInitialized data */ /*********************************/ .bss Result1: .skip SIZEBIG Result2: .skip SIZEBIG Result3: .skip SIZEBIG Result4: .skip SIZEBIG fInter5: .skip SIZEBIG fInter6: .skip SIZEBIG fInter7: .skip SIZEBIG fSum: .skip SIZEBIG fSum1: .skip SIZEBIG sBuffer: .skip SIZEBIG fEpsilon: .skip SIZEBIG fPrec: .skip SIZEBIG fPI: .skip SIZEBIG fTEN: .skip SIZEBIG fONE: .skip SIZEBIG /*********************************/ /* code section */ /*********************************/ .text .global main main: @ entry of program mov r4,#0 @ loop indice 1: mov r0,r4 bl computeAlmkvist @ compute mov r1,r0 ldr r0,iAdrszFormat @ print big integer bl __gmp_printf   add r4,r4,#1 cmp r4,#MAXI blt 1b @ and loop   mov r0,#560 @ float précision in bits bl __gmpf_set_default_prec   mov r4,#0 @ compute indice ldr r0,iAdrfSum @ init to zéro bl __gmpf_init ldr r0,iAdrfSum1 @ init to zéro bl __gmpf_init   ldr r0,iAdrfONE @ result address mov r1,#1 @ init à 1 bl __gmpf_init_set_ui   ldr r0,iAdrfInter5 @ init to zéro bl __gmpf_init ldr r0,iAdrfInter6 @ init to zéro bl __gmpf_init ldr r0,iAdrfInter7 @ init to zéro bl __gmpf_init ldr r0,iAdrfEpsilon @ init to zéro bl __gmpf_init ldr r0,iAdrfPrec @ init to zéro bl __gmpf_init ldr r0,iAdrfPI @ init to zéro bl __gmpf_init ldr r0,iAdrfTEN mov r1,#10 @ init to 10 bl __gmpf_init_set_ui   ldr r0,iAdrfInter6 @ compute 10 pow 70 ldr r1,iAdrfTEN mov r2,#70 bl __gmpf_pow_ui   ldr r0,iAdrfEpsilon @ divide 1 by 10 pow 70 ldr r1,iAdrfONE @ dividende ldr r2,iAdrfInter6 @ divisor bl __gmpf_div   2: @ PI compute loop mov r0,r4 bl computeAlmkvist mov r5,r0 mov r1,#6 mul r2,r1,r4 add r6,r2,#3 @ compute 6n + 3   ldr r0,iAdrfInter6 @ compute 10 pow (6n+3) ldr r1,iAdrfTEN mov r2,r6 bl __gmpf_pow_ui   ldr r0,iAdrfInter7 @ compute 1 / 10 pow (6n+3) ldr r1,iAdrfONE @ dividende ldr r2,iAdrfInter6 @ divisor bl __gmpf_div   ldr r0,iAdrfInter6 @ result big float mov r1,r5 @ big integer Almkvist bl __gmpf_set_z @ conversion in big float   ldr r0,iAdrfInter5 @ result Almkvist * 1 / 10 pow (6n+3) ldr r1,iAdrfInter7 @ operator 1 ldr r2,iAdrfInter6 @ operator 2 bl __gmpf_mul   ldr r0,iAdrfSum1 @ terms addition ldr r1,iAdrfSum ldr r2,iAdrfInter5 bl __gmpf_add   ldr r0,iAdrfSum @ copy terms ldr r1,iAdrfSum1 bl __gmpf_set     ldr r0,iAdrfInter7 @ compute 1 / sum ldr r1,iAdrfONE @ dividende ldr r2,iAdrfSum @ divisor bl __gmpf_div   ldr r0,iAdrfPI @ compute square root (1 / sum ) ldr r1,iAdrfInter7 bl __gmpf_sqrt   ldr r0,iAdrfInter6 @ compute variation PI ldr r1,iAdrfPrec ldr r2,iAdrfPI bl __gmpf_sub   ldr r0,iAdrfInter6 @ absolue value ldr r1,iAdrfInter5 bl __gmpf_abs   add r4,r4,#1 @ increment indice   ldr r0,iAdrfPrec @ copy PI -> prévious ldr r1,iAdrfPI bl __gmpf_set   ldr r0,iAdrfInter6 @ compare gap and epsilon ldr r1,iAdrfEpsilon bl __gmpf_cmp cmp r0,#0 bgt 2b @ if gap is highter -> loop   ldr r0,iAdrszMessPi @ title display bl affichageMess   ldr r2,iAdrfPI @ PI display ldr r0,iAdrszFormatFloat mov r1,#70 bl __gmp_printf     100: @ standard end of the program mov r0, #0 @ return code mov r7, #EXIT @ request to exit program svc #0 @ perform the system call iAdrszCarriageReturn: .int szCarriageReturn iAdrfInter5: .int fInter5 iAdrfInter6: .int fInter6 iAdrfInter7: .int fInter7 iAdrfSum: .int fSum iAdrfSum1: .int fSum1 iAdrszFormatFloat: .int szFormatFloat iAdrszMessPi: .int szMessPi iAdrfEpsilon: .int fEpsilon iAdrfPrec: .int fPrec iAdrfPI: .int fPI iAdrfTEN: .int fTEN iAdrfONE: .int fONE /***************************************************/ /* compute almkvist_giullera formula */ /***************************************************/ /* r0 contains the number */ computeAlmkvist: push {r1-r4,lr} @ save registers mov r4,r0 mov r1,#6 mul r0,r1,r0 ldr r1,iAdrResult1 @ result address bl computeFactorielle @ compute (n*6)!   mov r1,#532 mul r2,r4,r4 mul r2,r1,r2 mov r1,#126 mul r3,r4,r1 add r2,r2,r3 add r2,#9 lsl r2,r2,#5 @ * 32   ldr r0,iAdrResult2 @ result ldr r1,iAdrResult1 @ operator bl __gmpz_mul_ui   mov r0,r4 ldr r1,iAdrResult1 bl computeFactorielle   ldr r0,iAdrResult3 bl __gmpz_init @ init to 0   ldr r0,iAdrResult3 @ result ldr r1,iAdrResult1 @ operator mov r2,#6 bl __gmpz_pow_ui   ldr r0,iAdrResult1 @ result ldr r1,iAdrResult3 @ operator mov r2,#3 bl __gmpz_mul_ui   ldr r0,iAdrResult3 @ result ldr r1,iAdrResult2 @ operator ldr r2,iAdrResult1 @ operator bl __gmpz_cdiv_q   ldr r0,iAdrResult3 @ return result address   pop {r1-r4,pc} @ restaur des registres iAdrszFormat: .int szFormat iAdrResult1: .int Result1 iAdrResult2: .int Result2 iAdrResult3: .int Result3 /***************************************************/ /* compute factorielle N */ /***************************************************/ /* r0 contains the number */ /* r1 contains big number result address */ computeFactorielle: push {r1-r6,lr} @ save registers mov r5,r0 @ save N mov r6,r1 @ save result address mov r0,r1 @ result address mov r1,#1 @ init to 1 bl __gmpz_init_set_ui ldr r0,iAdrResult4 bl __gmpz_init @ init to 0 mov r4,#1 1: @ loop ldr r0,iAdrResult4 @ result mov r1,r6 @ operator 1 mov r2,r4 @ operator 2 bl __gmpz_mul_ui mov r0,r6 @ copy result4 -> result ldr r1,iAdrResult4 bl __gmpz_set add r4,r4,#1 @ increment indice cmp r4,r5 @ N ? ble 1b @ no -> loop   mov r0,r1   pop {r1-r6,pc} @ restaur des registres iAdrResult4: .int Result4   /***************************************************/ /* ROUTINES INCLUDE */ /***************************************************/ .include "../affichage.inc"  
http://rosettacode.org/wiki/Angle_difference_between_two_bearings
Angle difference between two bearings
Finding the angle between two bearings is often confusing.[1] Task Find the angle which is the result of the subtraction b2 - b1, where b1 and b2 are the bearings. Input bearings are expressed in the range   -180   to   +180   degrees. The  result  is also expressed in the range   -180   to   +180   degrees. Compute the angle for the following pairs: 20 degrees (b1) and 45 degrees (b2) -45 and 45 -85 and 90 -95 and 90 -45 and 125 -45 and 145 29.4803 and -88.6381 -78.3251 and -159.036 Optional extra Allow the input bearings to be any (finite) value. Test cases -70099.74233810938 and 29840.67437876723 -165313.6666297357 and 33693.9894517456 1174.8380510598456 and -154146.66490124757 60175.77306795546 and 42213.07192354373
#Delphi
Delphi
  -module(bearings).   %% API -export([angle_sub_degrees/2,test/0]).   -define(RealAngleMultiplier,16#10000000000). -define(DegreesPerTurn,360). -define(Precision,9). %%%=================================================================== %%% API %%%===================================================================   %%-------------------------------------------------------------------- %% @doc %% @spec %% @end %%-------------------------------------------------------------------- %% angle_sub_degrees(B1,B2) when is_integer(B1), is_integer(B2) -> angle_sub(B2-B1,?DegreesPerTurn); angle_sub_degrees(B1,B2) -> NewB1 = trunc(B1*?RealAngleMultiplier), NewB2 = trunc(B2*?RealAngleMultiplier), round(angle_sub(NewB2 - NewB1,  ?DegreesPerTurn*?RealAngleMultiplier) /?RealAngleMultiplier,?Precision).   %%%=================================================================== %%% Internal functions %%%===================================================================   %% delta normalises the angle difference. Consider a turn from 350 degrees %% to 20 degrees. Subtraction results in 330 degress. This is equivalent of %% a turn in the other direction of 30 degrees, thus 330 degrees is equal %% to -30 degrees.     angle_sub(Value,TurnSize) -> NormalisedValue = Value rem TurnSize, minimise_angle(NormalisedValue,TurnSize).   % X rem Turn result in 0..Turn for X > 0 and -Turn..0 for X < 0 % specification requires -Turn/2 < X < Turn/2. This is achieved % by adding or removing a turn as required. % bsr 1 divides an integer by 2 minimise_angle(Angle,Turn) when Angle + (Turn bsr 1) < 0 -> Angle+Turn; minimise_angle(Angle,Turn) when Angle - (Turn bsr 1) > 0 -> Angle-Turn; minimise_angle(Angle,_) -> Angle.   round(Number,Precision) -> P = math:pow(10,Precision), round(Number*P)/P.   test() -> 25 = angle_sub_degrees(20,45), 90 = angle_sub_degrees(-45,45), 175 = angle_sub_degrees(-85,90), -175 = angle_sub_degrees(-95,90), 170 = angle_sub_degrees(-45,125), -170 = angle_sub_degrees(-45,145), -118.1184 = angle_sub_degrees( 29.4803,-88.6381), -139.583283124=angle_sub_degrees(-70099.742338109,29840.674378767), -72.343918514=angle_sub_degrees( -165313.66662974,33693.989451746), -161.50295231=angle_sub_degrees( 1174.8380510598,-154146.66490125), 37.298855589=angle_sub_degrees( 60175.773067955,42213.071923544),   passed.  
http://rosettacode.org/wiki/Anagrams/Deranged_anagrams
Anagrams/Deranged anagrams
Two or more words are said to be anagrams if they have the same characters, but in a different order. By analogy with derangements we define a deranged anagram as two words with the same characters, but in which the same character does not appear in the same position in both words. Task[edit] Use the word list at unixdict to find and display the longest deranged anagram. Related tasks Permutations/Derangements Best shuffle Word plays Ordered words Palindrome detection Semordnilap Anagrams Anagrams/Deranged anagrams Other tasks related to string operations: Metrics Array length String length Copy a string Empty string  (assignment) Counting Word frequency Letter frequency Jewels and stones I before E except after C Bioinformatics/base count Count occurrences of a substring Count how many vowels and consonants occur in a string Remove/replace XXXX redacted Conjugate a Latin verb Remove vowels from a string String interpolation (included) Strip block comments Strip comments from a string Strip a set of characters from a string Strip whitespace from a string -- top and tail Strip control codes and extended characters from a string Anagrams/Derangements/shuffling Word wheel ABC problem Sattolo cycle Knuth shuffle Ordered words Superpermutation minimisation Textonyms (using a phone text pad) Anagrams Anagrams/Deranged anagrams Permutations/Derangements Find/Search/Determine ABC words Odd words Word ladder Semordnilap Word search Wordiff  (game) String matching Tea cup rim text Alternade words Changeable words State name puzzle String comparison Unique characters Unique characters in each string Extract file extension Levenshtein distance Palindrome detection Common list elements Longest common suffix Longest common prefix Compare a list of strings Longest common substring Find common directory path Words from neighbour ones Change e letters to i in words Non-continuous subsequences Longest common subsequence Longest palindromic substrings Longest increasing subsequence Words containing "the" substring Sum of the digits of n is substring of n Determine if a string is numeric Determine if a string is collapsible Determine if a string is squeezable Determine if a string has all unique characters Determine if a string has all the same characters Longest substrings without repeating characters Find words which contains all the vowels Find words which contains most consonants Find words which contains more than 3 vowels Find words which first and last three letters are equals Find words which odd letters are consonants and even letters are vowels or vice_versa Formatting Substring Rep-string Word wrap String case Align columns Literals/String Repeat a string Brace expansion Brace expansion using ranges Reverse a string Phrase reversals Comma quibbling Special characters String concatenation Substring/Top and tail Commatizing numbers Reverse words in a string Suffixation of decimal numbers Long literals, with continuations Numerical and alphabetical suffixes Abbreviations, easy Abbreviations, simple Abbreviations, automatic Song lyrics/poems/Mad Libs/phrases Mad Libs Magic 8-ball 99 Bottles of Beer The Name Game (a song) The Old lady swallowed a fly The Twelve Days of Christmas Tokenize Text between Tokenize a string Word break problem Tokenize a string with escaping Split a character string based on change of character Sequences Show ASCII table De Bruijn sequences Self-referential sequences Generate lower case ASCII alphabet
#GAP
GAP
IsDeranged := function(a, b) local i, n; for i in [1 .. Size(a)] do if a[i] = b[i] then return false; fi; od; return true; end;   # This solution will find all deranged pairs of any length. Deranged := function(name) local sol, ana, u, v; sol := [ ]; ana := Anagrams(name); for u in ana do for v in Combinations(u, 2) do if IsDeranged(v[1], v[2]) then Add(sol, v); fi; od; od; return sol; end;   # Now we find all deranged pairs of maximum length a := Deranged("unixdict.txt");; n := Maximum(List(a, x -> Size(x[1]))); Filtered(a, x -> Size(x[1]) = n); # [ [ "excitation", "intoxicate" ] ]
http://rosettacode.org/wiki/Anonymous_recursion
Anonymous recursion
While implementing a recursive function, it often happens that we must resort to a separate   helper function   to handle the actual recursion. This is usually the case when directly calling the current function would waste too many resources (stack space, execution time), causing unwanted side-effects,   and/or the function doesn't have the right arguments and/or return values. So we end up inventing some silly name like   foo2   or   foo_helper.   I have always found it painful to come up with a proper name, and see some disadvantages:   You have to think up a name, which then pollutes the namespace   Function is created which is called from nowhere else   The program flow in the source code is interrupted Some languages allow you to embed recursion directly in-place.   This might work via a label, a local gosub instruction, or some special keyword. Anonymous recursion can also be accomplished using the   Y combinator. Task If possible, demonstrate this by writing the recursive version of the fibonacci function   (see Fibonacci sequence)   which checks for a negative argument before doing the actual recursion.
#Falcon
Falcon
function fib(x) if x < 0 raise ParamError(description|"Negative argument invalid", extra|"Fibbonacci sequence is undefined for negative numbers") else return (function(y) if y == 0 return 0 elif y == 1 return 1 else return fself(y-1) + fself(y-2) end end)(x) end end     try >fib(2) >fib(3) >fib(4) >fib(-1) catch in e > e end
http://rosettacode.org/wiki/Angles_(geometric),_normalization_and_conversion
Angles (geometric), normalization and conversion
This task is about the normalization and/or conversion of (geometric) angles using some common scales. The angular scales that will be used in this task are:   degree   gradian   mil   radian Definitions The angular scales used or referenced here:   turn   is a full turn or 360 degrees, also shown as 360º   degree   is   1/360   of a turn   gradian   is   1/400   of a turn   mil   is   1/6400   of a turn   radian   is   1/2 π {\displaystyle \pi }   of a turn   (or   0.5/ π {\displaystyle \pi }   of a turn) Or, to put it another way,   for a full circle:   there are   360   degrees   there are   400   gradians   there are   6,400   mils   there are   2 π {\displaystyle \pi }   radians   (roughly equal to 6.283+) A   mil   is approximately equal to a   milliradian   (which is   1/1000   of a radian). There is another definition of a   mil   which is   1/1000   of a radian   ─── this definition won't be used in this Rosetta Code task. Turns   are sometimes known or shown as:   turn(s)   360 degrees   unit circle   a (full) circle Degrees   are sometimes known or shown as:   degree(s)   deg   º       (a symbol)   °       (another symbol) Gradians   are sometimes known or shown as:   gradian(s)   grad(s)   grade(s)   gon(s)   metric degree(s)   (Note that   centigrade   was used for 1/100th of a grade, see the note below.) Mils   are sometimes known or shown as:   mil(s)   NATO mil(s) Radians   are sometimes known or shown as:   radian(s)   rad(s) Notes In continental Europe, the French term   centigrade   was used for   1/100   of a grad (grade);   this was one reason for the adoption of the term   Celsius   to replace   centigrade   as the name of a temperature scale. Gradians were commonly used in civil engineering. Mils were normally used for artillery   (elevations of the gun barrel for ranging). Positive and negative angles Although the definition of the measurement of an angle doesn't support the concept of a negative angle,   it's frequently useful to impose a convention that allows positive and negative angular values to represent orientations and/or rotations in opposite directions relative to some reference.   It is this reason that negative angles will keep their sign and not be normalized to positive angles. Normalization Normalization   (for this Rosetta Code task)   will keep the same sign,   but it will reduce the magnitude to less than a full circle;   in other words, less than 360º. Normalization   shouldn't   change   -45º   to   315º, An angle of   0º,   +0º,   0.000000,   or   -0º   should be shown as   0º. Task   write a function (or equivalent) to do the normalization for each scale Suggested names: d2d,   g2g,   m2m,   and  r2r   write a function (or equivalent) to convert one scale to another Suggested names for comparison of different computer language function names: d2g,   d2m,   and   d2r   for degrees g2d,   g2m,   and   g2r   for gradians m2d,   m2g,   and   m2r   for mils r2d,   r2g,   and   r2m   for radians   normalize all angles used   (except for the "original" or "base" angle)   show the angles in every scale and convert them to all other scales   show all output here on this page For the (above) conversions,   use these dozen numbers   (in the order shown):   -2   -1   0   1   2   6.2831853   16   57.2957795   359   399   6399   1000000
#Mathematica.2FWolfram_Language
Mathematica/Wolfram Language
ClearAll[NormalizeAngle, NormalizeDegree, NormalizeGradian, NormalizeMil, NormalizeRadian] NormalizeAngle[d_, full_] := Module[{a = d}, If[Abs[a/full] > 4, a = a - Sign[a] full (Quotient[Abs[a], full] - 4) ]; While[a < -full, a += full]; While[a > full, a -= full]; a ] ClearAll[Degree2Gradian, Degree2Mil, Degree2Radian, Gradian2Degree, Gradian2Mil, Gradian2Radian, Mil2Degree, Mil2Gradian, Mil2Radian, Radian2Degree, Radian2Gradian, Radian2Mil] NormalizeDegree[d_] := NormalizeAngle[d, 360] NormalizeGradian[d_] := NormalizeAngle[d, 400] NormalizeMil[d_] := NormalizeAngle[d, 6400] NormalizeRadian[d_] := NormalizeAngle[d, 2 Pi] Degree2Gradian[d_] := d 400/360 Degree2Mil[d_] := d 6400/360 Degree2Radian[d_] := d Pi/180 Gradian2Degree[d_] := d 360/400 Gradian2Mil[d_] := d 6400/400 Gradian2Radian[d_] := d 2 Pi/400 Mil2Degree[d_] := d 360/6400 Mil2Gradian[d_] := d 400/6400 Mil2Radian[d_] := d 2 Pi/6400 Radian2Degree[d_] := d 180/Pi Radian2Gradian[d_] := d 400/(2 Pi) Radian2Mil[d_] := d 6400/(2 Pi) MapThread[Construct, {{Degree2Gradian, Degree2Mil, Degree2Radian, Gradian2Degree, Gradian2Mil, Gradian2Radian, Mil2Degree, Mil2Gradian, Mil2Radian, Radian2Degree, Radian2Gradian, Radian2Mil}, {-2, -1, 0, 1, 2, 6.2831853, 16, 57.2957795, 359, 399, 6399, 1000000}}]
http://rosettacode.org/wiki/Amicable_pairs
Amicable pairs
Two integers N {\displaystyle N} and M {\displaystyle M} are said to be amicable pairs if N ≠ M {\displaystyle N\neq M} and the sum of the proper divisors of N {\displaystyle N} ( s u m ( p r o p D i v s ( N ) ) {\displaystyle \mathrm {sum} (\mathrm {propDivs} (N))} ) = M {\displaystyle =M} as well as s u m ( p r o p D i v s ( M ) ) = N {\displaystyle \mathrm {sum} (\mathrm {propDivs} (M))=N} . Example 1184 and 1210 are an amicable pair, with proper divisors:   1, 2, 4, 8, 16, 32, 37, 74, 148, 296, 592   and   1, 2, 5, 10, 11, 22, 55, 110, 121, 242, 605   respectively. Task Calculate and show here the Amicable pairs below 20,000; (there are eight). Related tasks Proper divisors Abundant, deficient and perfect number classifications Aliquot sequence classifications and its amicable classification.
#Common_Lisp
Common Lisp
(let ((cache (make-hash-table))) (defun sum-proper-divisors (n) (or (gethash n cache) (setf (gethash n cache) (loop for x from 1 to (/ n 2) when (zerop (rem n x)) sum x)))))   (defun amicable-pairs-up-to (n) (loop for x from 1 to n for sum-divs = (sum-proper-divisors x) when (and (< x sum-divs) (= x (sum-proper-divisors sum-divs))) collect (list x sum-divs)))   (amicable-pairs-up-to 20000)
http://rosettacode.org/wiki/Animation
Animation
Animation is integral to many parts of GUIs, including both the fancy effects when things change used in window managers, and of course games.   The core of any animation system is a scheme for periodically changing the display while still remaining responsive to the user.   This task demonstrates this. Task Create a window containing the string "Hello World! " (the trailing space is significant). Make the text appear to be rotating right by periodically removing one letter from the end of the string and attaching it to the front. When the user clicks on the (windowed) text, it should reverse its direction.
#HicEst
HicEst
CHARACTER string="Hello World! "   WINDOW(WINdowhandle=wh, Height=1, X=1, TItle="left/right click to rotate left/right, Y-click-position sets milliseconds period") AXIS(WINdowhandle=wh, PoinT=20, X=2048, Y, Title='ms', MiN=0, MaX=400, MouSeY=msec, MouSeCall=Mouse_callback, MouSeButton=button_type) direction = 4 msec = 100 ! initial milliseconds DO tic = 1, 1E20 WRITE(WIN=wh, Align='Center Vertical') string IF(direction == 4) string = string(LEN(string)) // string ! rotate left IF(direction == 8) string = string(2:) // string(1) ! rotate right WRITE(StatusBar, Name) tic, direction, msec SYSTEM(WAIT=msec) ENDDO END   SUBROUTINE Mouse_callback() direction = button_type ! 4 == left button up, 8 == right button up END
http://rosettacode.org/wiki/Animate_a_pendulum
Animate a pendulum
One good way of making an animation is by simulating a physical system and illustrating the variables in that system using a dynamically changing graphical display. The classic such physical system is a simple gravity pendulum. Task Create a simple physical model of a pendulum and animate it.
#EasyLang
EasyLang
on animate clear move 50 50 circle 1 x = 50 + 40 * sin ang y = 50 - 40 * cos ang line x y circle 5 vel += sin ang / 5 ang += vel . ang = 45
http://rosettacode.org/wiki/Almkvist-Giullera_formula_for_pi
Almkvist-Giullera formula for pi
The Almkvist-Giullera formula for calculating   1/π2   is based on the Calabi-Yau differential equations of order 4 and 5,   which were originally used to describe certain manifolds in string theory. The formula is: 1/π2 = (25/3) ∑0∞ ((6n)! / (n!6))(532n2 + 126n + 9) / 10002n+1 This formula can be used to calculate the constant   π-2,   and thus to calculate   π. Note that, because the product of all terms but the power of 1000 can be calculated as an integer, the terms in the series can be separated into a large integer term: (25) (6n)! (532n2 + 126n + 9) / (3(n!)6)     (***) multiplied by a negative integer power of 10: 10-(6n + 3) Task Print the integer portions (the starred formula, which is without the power of 1000 divisor) of the first 10 terms of the series. Use the complete formula to calculate and print π to 70 decimal digits of precision. Reference  Gert Almkvist and Jesús Guillera, Ramanujan-like series for 1/π2 and string theory, Experimental Mathematics, 21 (2012), page 2, formula 1.
#C.23
C#
using System; using BI = System.Numerics.BigInteger; using static System.Console;   class Program {   static BI isqrt(BI x) { BI q = 1, r = 0, t; while (q <= x) q <<= 2; while (q > 1) { q >>= 2; t = x - r - q; r >>= 1; if (t >= 0) { x = t; r += q; } } return r; }     static string dump(int digs, bool show = false) { int gb = 1, dg = ++digs + gb, z; BI t1 = 1, t2 = 9, t3 = 1, te, su = 0, t = BI.Pow(10, dg <= 60 ? 0 : dg - 60), d = -1, fn = 1; for (BI n = 0; n < dg; n++) { if (n > 0) t3 *= BI.Pow(n, 6); te = t1 * t2 / t3; if ((z = dg - 1 - (int)n * 6) > 0) te *= BI.Pow (10, z); else te /= BI.Pow (10, -z); if (show && n < 10) WriteLine("{0,2} {1,62}", n, te * 32 / 3 / t); su += te; if (te < 10) { if (show) WriteLine("\n{0} iterations required for {1} digits " + "after the decimal point.\n", n, --digs); break; } for (BI j = n * 6 + 1; j <= n * 6 + 6; j++) t1 *= j; t2 += 126 + 532 * (d += 2); } string s = string.Format("{0}", isqrt(BI.Pow(10, dg * 2 + 3) / su / 32 * 3 * BI.Pow((BI)10, dg + 5))); return s[0] + "." + s.Substring(1, digs); }   static void Main(string[] args) { WriteLine(dump(70, true)); } }
http://rosettacode.org/wiki/Angle_difference_between_two_bearings
Angle difference between two bearings
Finding the angle between two bearings is often confusing.[1] Task Find the angle which is the result of the subtraction b2 - b1, where b1 and b2 are the bearings. Input bearings are expressed in the range   -180   to   +180   degrees. The  result  is also expressed in the range   -180   to   +180   degrees. Compute the angle for the following pairs: 20 degrees (b1) and 45 degrees (b2) -45 and 45 -85 and 90 -95 and 90 -45 and 125 -45 and 145 29.4803 and -88.6381 -78.3251 and -159.036 Optional extra Allow the input bearings to be any (finite) value. Test cases -70099.74233810938 and 29840.67437876723 -165313.6666297357 and 33693.9894517456 1174.8380510598456 and -154146.66490124757 60175.77306795546 and 42213.07192354373
#Erlang
Erlang
  -module(bearings).   %% API -export([angle_sub_degrees/2,test/0]).   -define(RealAngleMultiplier,16#10000000000). -define(DegreesPerTurn,360). -define(Precision,9). %%%=================================================================== %%% API %%%===================================================================   %%-------------------------------------------------------------------- %% @doc %% @spec %% @end %%-------------------------------------------------------------------- %% angle_sub_degrees(B1,B2) when is_integer(B1), is_integer(B2) -> angle_sub(B2-B1,?DegreesPerTurn); angle_sub_degrees(B1,B2) -> NewB1 = trunc(B1*?RealAngleMultiplier), NewB2 = trunc(B2*?RealAngleMultiplier), round(angle_sub(NewB2 - NewB1,  ?DegreesPerTurn*?RealAngleMultiplier) /?RealAngleMultiplier,?Precision).   %%%=================================================================== %%% Internal functions %%%===================================================================   %% delta normalises the angle difference. Consider a turn from 350 degrees %% to 20 degrees. Subtraction results in 330 degress. This is equivalent of %% a turn in the other direction of 30 degrees, thus 330 degrees is equal %% to -30 degrees.     angle_sub(Value,TurnSize) -> NormalisedValue = Value rem TurnSize, minimise_angle(NormalisedValue,TurnSize).   % X rem Turn result in 0..Turn for X > 0 and -Turn..0 for X < 0 % specification requires -Turn/2 < X < Turn/2. This is achieved % by adding or removing a turn as required. % bsr 1 divides an integer by 2 minimise_angle(Angle,Turn) when Angle + (Turn bsr 1) < 0 -> Angle+Turn; minimise_angle(Angle,Turn) when Angle - (Turn bsr 1) > 0 -> Angle-Turn; minimise_angle(Angle,_) -> Angle.   round(Number,Precision) -> P = math:pow(10,Precision), round(Number*P)/P.   test() -> 25 = angle_sub_degrees(20,45), 90 = angle_sub_degrees(-45,45), 175 = angle_sub_degrees(-85,90), -175 = angle_sub_degrees(-95,90), 170 = angle_sub_degrees(-45,125), -170 = angle_sub_degrees(-45,145), -118.1184 = angle_sub_degrees( 29.4803,-88.6381), -139.583283124=angle_sub_degrees(-70099.742338109,29840.674378767), -72.343918514=angle_sub_degrees( -165313.66662974,33693.989451746), -161.50295231=angle_sub_degrees( 1174.8380510598,-154146.66490125), 37.298855589=angle_sub_degrees( 60175.773067955,42213.071923544),   passed.  
http://rosettacode.org/wiki/Anagrams/Deranged_anagrams
Anagrams/Deranged anagrams
Two or more words are said to be anagrams if they have the same characters, but in a different order. By analogy with derangements we define a deranged anagram as two words with the same characters, but in which the same character does not appear in the same position in both words. Task[edit] Use the word list at unixdict to find and display the longest deranged anagram. Related tasks Permutations/Derangements Best shuffle Word plays Ordered words Palindrome detection Semordnilap Anagrams Anagrams/Deranged anagrams Other tasks related to string operations: Metrics Array length String length Copy a string Empty string  (assignment) Counting Word frequency Letter frequency Jewels and stones I before E except after C Bioinformatics/base count Count occurrences of a substring Count how many vowels and consonants occur in a string Remove/replace XXXX redacted Conjugate a Latin verb Remove vowels from a string String interpolation (included) Strip block comments Strip comments from a string Strip a set of characters from a string Strip whitespace from a string -- top and tail Strip control codes and extended characters from a string Anagrams/Derangements/shuffling Word wheel ABC problem Sattolo cycle Knuth shuffle Ordered words Superpermutation minimisation Textonyms (using a phone text pad) Anagrams Anagrams/Deranged anagrams Permutations/Derangements Find/Search/Determine ABC words Odd words Word ladder Semordnilap Word search Wordiff  (game) String matching Tea cup rim text Alternade words Changeable words State name puzzle String comparison Unique characters Unique characters in each string Extract file extension Levenshtein distance Palindrome detection Common list elements Longest common suffix Longest common prefix Compare a list of strings Longest common substring Find common directory path Words from neighbour ones Change e letters to i in words Non-continuous subsequences Longest common subsequence Longest palindromic substrings Longest increasing subsequence Words containing "the" substring Sum of the digits of n is substring of n Determine if a string is numeric Determine if a string is collapsible Determine if a string is squeezable Determine if a string has all unique characters Determine if a string has all the same characters Longest substrings without repeating characters Find words which contains all the vowels Find words which contains most consonants Find words which contains more than 3 vowels Find words which first and last three letters are equals Find words which odd letters are consonants and even letters are vowels or vice_versa Formatting Substring Rep-string Word wrap String case Align columns Literals/String Repeat a string Brace expansion Brace expansion using ranges Reverse a string Phrase reversals Comma quibbling Special characters String concatenation Substring/Top and tail Commatizing numbers Reverse words in a string Suffixation of decimal numbers Long literals, with continuations Numerical and alphabetical suffixes Abbreviations, easy Abbreviations, simple Abbreviations, automatic Song lyrics/poems/Mad Libs/phrases Mad Libs Magic 8-ball 99 Bottles of Beer The Name Game (a song) The Old lady swallowed a fly The Twelve Days of Christmas Tokenize Text between Tokenize a string Word break problem Tokenize a string with escaping Split a character string based on change of character Sequences Show ASCII table De Bruijn sequences Self-referential sequences Generate lower case ASCII alphabet
#Go
Go
package main import ( "fmt" "io/ioutil" "strings" "sort" )   func deranged(a, b string) bool { if len(a) != len(b) { return false } for i := range(a) { if a[i] == b[i] { return false } } return true }   func main() { /* read the whole thing in. how big can it be? */ buf, _ := ioutil.ReadFile("unixdict.txt") words := strings.Split(string(buf), "\n")   m := make(map[string] []string) best_len, w1, w2 := 0, "", ""   for _, w := range(words) { // don't bother: too short to beat current record if len(w) <= best_len { continue }   // save strings in map, with sorted string as key letters := strings.Split(w, "") sort.Strings(letters) k := strings.Join(letters, "")   if _, ok := m[k]; !ok { m[k] = []string { w } continue }   for _, c := range(m[k]) { if deranged(w, c) { best_len, w1, w2 = len(w), c, w break } }   m[k] = append(m[k], w) }   fmt.Println(w1, w2, ": Length", best_len) }
http://rosettacode.org/wiki/Anonymous_recursion
Anonymous recursion
While implementing a recursive function, it often happens that we must resort to a separate   helper function   to handle the actual recursion. This is usually the case when directly calling the current function would waste too many resources (stack space, execution time), causing unwanted side-effects,   and/or the function doesn't have the right arguments and/or return values. So we end up inventing some silly name like   foo2   or   foo_helper.   I have always found it painful to come up with a proper name, and see some disadvantages:   You have to think up a name, which then pollutes the namespace   Function is created which is called from nowhere else   The program flow in the source code is interrupted Some languages allow you to embed recursion directly in-place.   This might work via a label, a local gosub instruction, or some special keyword. Anonymous recursion can also be accomplished using the   Y combinator. Task If possible, demonstrate this by writing the recursive version of the fibonacci function   (see Fibonacci sequence)   which checks for a negative argument before doing the actual recursion.
#FBSL
FBSL
#APPTYPE CONSOLE   FUNCTION Fibonacci(n) IF n < 0 THEN RETURN "Nuts!" ELSE RETURN Fib(n) END IF FUNCTION Fib(m) IF m < 2 THEN Fib = m ELSE Fib = Fib(m - 1) + Fib(m - 2) END IF END FUNCTION END FUNCTION   PRINT Fibonacci(-1.5) PRINT Fibonacci(1.5) PRINT Fibonacci(13.666)   PAUSE
http://rosettacode.org/wiki/Angles_(geometric),_normalization_and_conversion
Angles (geometric), normalization and conversion
This task is about the normalization and/or conversion of (geometric) angles using some common scales. The angular scales that will be used in this task are:   degree   gradian   mil   radian Definitions The angular scales used or referenced here:   turn   is a full turn or 360 degrees, also shown as 360º   degree   is   1/360   of a turn   gradian   is   1/400   of a turn   mil   is   1/6400   of a turn   radian   is   1/2 π {\displaystyle \pi }   of a turn   (or   0.5/ π {\displaystyle \pi }   of a turn) Or, to put it another way,   for a full circle:   there are   360   degrees   there are   400   gradians   there are   6,400   mils   there are   2 π {\displaystyle \pi }   radians   (roughly equal to 6.283+) A   mil   is approximately equal to a   milliradian   (which is   1/1000   of a radian). There is another definition of a   mil   which is   1/1000   of a radian   ─── this definition won't be used in this Rosetta Code task. Turns   are sometimes known or shown as:   turn(s)   360 degrees   unit circle   a (full) circle Degrees   are sometimes known or shown as:   degree(s)   deg   º       (a symbol)   °       (another symbol) Gradians   are sometimes known or shown as:   gradian(s)   grad(s)   grade(s)   gon(s)   metric degree(s)   (Note that   centigrade   was used for 1/100th of a grade, see the note below.) Mils   are sometimes known or shown as:   mil(s)   NATO mil(s) Radians   are sometimes known or shown as:   radian(s)   rad(s) Notes In continental Europe, the French term   centigrade   was used for   1/100   of a grad (grade);   this was one reason for the adoption of the term   Celsius   to replace   centigrade   as the name of a temperature scale. Gradians were commonly used in civil engineering. Mils were normally used for artillery   (elevations of the gun barrel for ranging). Positive and negative angles Although the definition of the measurement of an angle doesn't support the concept of a negative angle,   it's frequently useful to impose a convention that allows positive and negative angular values to represent orientations and/or rotations in opposite directions relative to some reference.   It is this reason that negative angles will keep their sign and not be normalized to positive angles. Normalization Normalization   (for this Rosetta Code task)   will keep the same sign,   but it will reduce the magnitude to less than a full circle;   in other words, less than 360º. Normalization   shouldn't   change   -45º   to   315º, An angle of   0º,   +0º,   0.000000,   or   -0º   should be shown as   0º. Task   write a function (or equivalent) to do the normalization for each scale Suggested names: d2d,   g2g,   m2m,   and  r2r   write a function (or equivalent) to convert one scale to another Suggested names for comparison of different computer language function names: d2g,   d2m,   and   d2r   for degrees g2d,   g2m,   and   g2r   for gradians m2d,   m2g,   and   m2r   for mils r2d,   r2g,   and   r2m   for radians   normalize all angles used   (except for the "original" or "base" angle)   show the angles in every scale and convert them to all other scales   show all output here on this page For the (above) conversions,   use these dozen numbers   (in the order shown):   -2   -1   0   1   2   6.2831853   16   57.2957795   359   399   6399   1000000
#Nim
Nim
import math import strformat   const Values = [float -2, -1, 0, 1, 2, 6.2831853, 16, 57.2957795, 359, 399, 6399, 1000000]   func d2d(x: float): float {.inline.} = x mod 360 func g2g(x: float): float {.inline.} = x mod 400 func m2m(x: float): float {.inline.} = x mod 6400 func r2r(x: float): float {.inline.} = x mod (2 * Pi)   func d2g(x: float): float {.inline.} = d2d(x) * 10 / 9 func d2m(x: float): float {.inline.} = d2d(x) * 160 / 9 func d2r(x: float): float {.inline.} = d2d(x) * Pi / 180   func g2d(x: float): float {.inline.} = g2g(x) * 9 / 10 func g2m(x: float): float {.inline.} = g2g(x) * 16 func g2r(x: float): float {.inline.} = g2g(x) * Pi / 200   func m2d(x: float): float {.inline.} = m2m(x) * 9 / 160 func m2g(x: float): float {.inline.} = m2m(x) / 16 func m2r(x: float): float {.inline.} = m2m(x) * Pi / 3200   func r2d(x: float): float {.inline.} = r2r(x) * 180 / Pi func r2g(x: float): float {.inline.} = r2r(x) * 200 / Pi func r2m(x: float): float {.inline.} = r2r(x) * 3200 / Pi   # Normalizing and converting degrees. echo " Degrees Normalized Gradians Mils Radians" echo "———————————————————————————————————————————————————————————————————————————————————" for val in Values: echo fmt"{val:15.7f} {d2d(val):15.7f} {d2g(val):15.7f} {d2m(val):15.7f} {d2r(val):15.7f}"   # Normalizing and converting gradians. echo "" echo " Gradians Normalized Degrees Mils Radians" echo "———————————————————————————————————————————————————————————————————————————————————" for val in Values: echo fmt"{val:15.7f} {g2g(val):15.7f} {g2d(val):15.7f} {g2m(val):15.7f} {g2r(val):15.7f}"   # Normalizing and converting mils. echo "" echo " Mils Normalized Degrees Gradians Radians" echo "———————————————————————————————————————————————————————————————————————————————————" for val in Values: echo fmt"{val:15.7f} {m2m(val):15.7f} {m2d(val):15.7f} {m2g(val):15.7f} {m2r(val):15.7f}"   # Normalizing and converting radians. echo "" echo " Radians Normalized Degrees Gradians Mils" echo "———————————————————————————————————————————————————————————————————————————————————" for val in Values: echo fmt"{val:15.7f} {r2r(val):15.7f} {r2d(val):15.7f} {r2g(val):15.7f} {r2m(val):15.7f}"
http://rosettacode.org/wiki/Angles_(geometric),_normalization_and_conversion
Angles (geometric), normalization and conversion
This task is about the normalization and/or conversion of (geometric) angles using some common scales. The angular scales that will be used in this task are:   degree   gradian   mil   radian Definitions The angular scales used or referenced here:   turn   is a full turn or 360 degrees, also shown as 360º   degree   is   1/360   of a turn   gradian   is   1/400   of a turn   mil   is   1/6400   of a turn   radian   is   1/2 π {\displaystyle \pi }   of a turn   (or   0.5/ π {\displaystyle \pi }   of a turn) Or, to put it another way,   for a full circle:   there are   360   degrees   there are   400   gradians   there are   6,400   mils   there are   2 π {\displaystyle \pi }   radians   (roughly equal to 6.283+) A   mil   is approximately equal to a   milliradian   (which is   1/1000   of a radian). There is another definition of a   mil   which is   1/1000   of a radian   ─── this definition won't be used in this Rosetta Code task. Turns   are sometimes known or shown as:   turn(s)   360 degrees   unit circle   a (full) circle Degrees   are sometimes known or shown as:   degree(s)   deg   º       (a symbol)   °       (another symbol) Gradians   are sometimes known or shown as:   gradian(s)   grad(s)   grade(s)   gon(s)   metric degree(s)   (Note that   centigrade   was used for 1/100th of a grade, see the note below.) Mils   are sometimes known or shown as:   mil(s)   NATO mil(s) Radians   are sometimes known or shown as:   radian(s)   rad(s) Notes In continental Europe, the French term   centigrade   was used for   1/100   of a grad (grade);   this was one reason for the adoption of the term   Celsius   to replace   centigrade   as the name of a temperature scale. Gradians were commonly used in civil engineering. Mils were normally used for artillery   (elevations of the gun barrel for ranging). Positive and negative angles Although the definition of the measurement of an angle doesn't support the concept of a negative angle,   it's frequently useful to impose a convention that allows positive and negative angular values to represent orientations and/or rotations in opposite directions relative to some reference.   It is this reason that negative angles will keep their sign and not be normalized to positive angles. Normalization Normalization   (for this Rosetta Code task)   will keep the same sign,   but it will reduce the magnitude to less than a full circle;   in other words, less than 360º. Normalization   shouldn't   change   -45º   to   315º, An angle of   0º,   +0º,   0.000000,   or   -0º   should be shown as   0º. Task   write a function (or equivalent) to do the normalization for each scale Suggested names: d2d,   g2g,   m2m,   and  r2r   write a function (or equivalent) to convert one scale to another Suggested names for comparison of different computer language function names: d2g,   d2m,   and   d2r   for degrees g2d,   g2m,   and   g2r   for gradians m2d,   m2g,   and   m2r   for mils r2d,   r2g,   and   r2m   for radians   normalize all angles used   (except for the "original" or "base" angle)   show the angles in every scale and convert them to all other scales   show all output here on this page For the (above) conversions,   use these dozen numbers   (in the order shown):   -2   -1   0   1   2   6.2831853   16   57.2957795   359   399   6399   1000000
#Perl
Perl
use strict; use warnings; use feature 'say'; use POSIX 'fmod';   my $tau = 2 * 4*atan2(1, 1); my @units = ( { code => 'd', name => 'degrees' , number => 360 }, { code => 'g', name => 'gradians', number => 400 }, { code => 'm', name => 'mills' , number => 6400 }, { code => 'r', name => 'radians' , number => $tau }, );   my %cvt; for my $a (@units) { for my $b (@units) { $cvt{ "${$a}{code}2${$b}{code}" } = sub { my($angle) = shift; my $norm = fmod($angle,${$a}{number}); # built-in '%' returns only integers $norm -= ${$a}{number} if $angle < 0; $norm * ${$b}{number} / ${$a}{number} } } }   printf '%s'. '%12s'x4 . "\n", ' Angle Unit ', <Degrees Gradians Mills Radians>; for my $angle (-2, -1, 0, 1, 2, $tau, 16, 360/$tau, 360-1, 400-1, 6400-1, 1_000_000) { print "\n"; for my $from (@units) { my @sub_keys = map { "${$from}{code}2${$_}{code}" } @units; my @results = map { &{$cvt{$_}}($angle) } @sub_keys; printf '%10g %-8s' . '%12g'x4 . "\n", $angle, ${$from}{name}, @results; } }
http://rosettacode.org/wiki/Amicable_pairs
Amicable pairs
Two integers N {\displaystyle N} and M {\displaystyle M} are said to be amicable pairs if N ≠ M {\displaystyle N\neq M} and the sum of the proper divisors of N {\displaystyle N} ( s u m ( p r o p D i v s ( N ) ) {\displaystyle \mathrm {sum} (\mathrm {propDivs} (N))} ) = M {\displaystyle =M} as well as s u m ( p r o p D i v s ( M ) ) = N {\displaystyle \mathrm {sum} (\mathrm {propDivs} (M))=N} . Example 1184 and 1210 are an amicable pair, with proper divisors:   1, 2, 4, 8, 16, 32, 37, 74, 148, 296, 592   and   1, 2, 5, 10, 11, 22, 55, 110, 121, 242, 605   respectively. Task Calculate and show here the Amicable pairs below 20,000; (there are eight). Related tasks Proper divisors Abundant, deficient and perfect number classifications Aliquot sequence classifications and its amicable classification.
#Cowgol
Cowgol
include "cowgol.coh";   const LIMIT := 20000;   # Calculate sums of proper divisors var divSum: uint16[LIMIT + 1]; var i: @indexof divSum; var j: @indexof divSum;   i := 2; while i <= LIMIT loop divSum[i] := 1; i := i + 1; end loop;   i := 2; while i <= LIMIT/2 loop j := i * 2; while j <= LIMIT loop divSum[j] := divSum[j] + i; j := j + i; end loop; i := i + 1; end loop;   # Test each pair i := 2; while i <= LIMIT loop j := i + 1; while j <= LIMIT loop if divSum[i] == j and divSum[j] == i then print_i32(i as uint32); print(", "); print_i32(j as uint32); print_nl(); end if; j := j + 1; end loop; i := i + 1; end loop;
http://rosettacode.org/wiki/Animation
Animation
Animation is integral to many parts of GUIs, including both the fancy effects when things change used in window managers, and of course games.   The core of any animation system is a scheme for periodically changing the display while still remaining responsive to the user.   This task demonstrates this. Task Create a window containing the string "Hello World! " (the trailing space is significant). Make the text appear to be rotating right by periodically removing one letter from the end of the string and attaching it to the front. When the user clicks on the (windowed) text, it should reverse its direction.
#Icon_and_Unicon
Icon and Unicon
import gui $include "guih.icn"   class WindowApp : Dialog (label, direction)   method rotate_left (msg) return msg[2:0] || msg[1] end   method rotate_right (msg) return msg[-1:0] || msg[1:-1] end   method reverse_direction () direction := 1-direction end   # this method gets called by the ticker, and updates the label method tick () static msg := "Hello World! " if direction = 0 then msg := rotate_left (msg) else msg := rotate_right (msg) label.set_label(msg) end   method component_setup () direction := 1 # start off rotating to the right label := Label("label=Hello World! ", "pos=0,0") # respond to a mouse click on the label label.connect (self, "reverse_direction", MOUSE_RELEASE_EVENT) add (label)   connect (self, "dispose", CLOSE_BUTTON_EVENT) # tick every 100ms self.set_ticker (100) end end   # create and show the window procedure main () w := WindowApp () w.show_modal () end  
http://rosettacode.org/wiki/Animate_a_pendulum
Animate a pendulum
One good way of making an animation is by simulating a physical system and illustrating the variables in that system using a dynamically changing graphical display. The classic such physical system is a simple gravity pendulum. Task Create a simple physical model of a pendulum and animate it.
#Elm
Elm
import Color exposing (..) import Collage exposing (..) import Element exposing (..) import Html exposing (..) import Time exposing (..) import Html.App exposing (program)   dt = 0.01 scale = 100   type alias Model = { angle : Float , angVel : Float , length : Float , gravity : Float }   type Msg = Tick Time   init : (Model,Cmd Msg) init = ( { angle = 3 * pi / 4 , angVel = 0.0 , length = 2 , gravity = -9.81 } , Cmd.none)   update : Msg -> Model -> (Model, Cmd Msg) update _ model = let angAcc = -1.0 * (model.gravity / model.length) * sin (model.angle) angVel' = model.angVel + angAcc * dt angle' = model.angle + angVel' * dt in ( { model | angle = angle' , angVel = angVel' } , Cmd.none )   view : Model -> Html Msg view model = let endPoint = ( 0, scale * model.length ) pendulum = group [ segment ( 0, 0 ) endPoint |> traced { defaultLine | width = 2, color = red } , circle 8 |> filled blue , ngon 3 10 |> filled green |> rotate (pi/2) |> move endPoint ] in toHtml <| collage 700 500 [ pendulum |> rotate model.angle ]   subscriptions : Model -> Sub Msg subscriptions _ = Time.every (dt * second) Tick   main = program { init = init , view = view , update = update , subscriptions = subscriptions }
http://rosettacode.org/wiki/Almkvist-Giullera_formula_for_pi
Almkvist-Giullera formula for pi
The Almkvist-Giullera formula for calculating   1/π2   is based on the Calabi-Yau differential equations of order 4 and 5,   which were originally used to describe certain manifolds in string theory. The formula is: 1/π2 = (25/3) ∑0∞ ((6n)! / (n!6))(532n2 + 126n + 9) / 10002n+1 This formula can be used to calculate the constant   π-2,   and thus to calculate   π. Note that, because the product of all terms but the power of 1000 can be calculated as an integer, the terms in the series can be separated into a large integer term: (25) (6n)! (532n2 + 126n + 9) / (3(n!)6)     (***) multiplied by a negative integer power of 10: 10-(6n + 3) Task Print the integer portions (the starred formula, which is without the power of 1000 divisor) of the first 10 terms of the series. Use the complete formula to calculate and print π to 70 decimal digits of precision. Reference  Gert Almkvist and Jesús Guillera, Ramanujan-like series for 1/π2 and string theory, Experimental Mathematics, 21 (2012), page 2, formula 1.
#C.2B.2B
C++
#include <boost/multiprecision/cpp_dec_float.hpp> #include <boost/multiprecision/gmp.hpp> #include <iomanip> #include <iostream>   namespace mp = boost::multiprecision; using big_int = mp::mpz_int; using big_float = mp::cpp_dec_float_100; using rational = mp::mpq_rational;   big_int factorial(int n) { big_int result = 1; for (int i = 2; i <= n; ++i) result *= i; return result; }   // Return the integer portion of the nth term of Almkvist-Giullera sequence. big_int almkvist_giullera(int n) { return factorial(6 * n) * 32 * (532 * n * n + 126 * n + 9) / (pow(factorial(n), 6) * 3); }   int main() { std::cout << "n | Integer portion of nth term\n" << "------------------------------------------------\n"; for (int n = 0; n < 10; ++n) std::cout << n << " | " << std::setw(44) << almkvist_giullera(n) << '\n';   big_float epsilon(pow(big_float(10), -70)); big_float prev = 0, pi = 0; rational sum = 0; for (int n = 0;; ++n) { rational term(almkvist_giullera(n), pow(big_int(10), 6 * n + 3)); sum += term; pi = sqrt(big_float(1 / sum)); if (abs(pi - prev) < epsilon) break; prev = pi; } std::cout << "\nPi to 70 decimal places is:\n" << std::fixed << std::setprecision(70) << pi << '\n'; }
http://rosettacode.org/wiki/Angle_difference_between_two_bearings
Angle difference between two bearings
Finding the angle between two bearings is often confusing.[1] Task Find the angle which is the result of the subtraction b2 - b1, where b1 and b2 are the bearings. Input bearings are expressed in the range   -180   to   +180   degrees. The  result  is also expressed in the range   -180   to   +180   degrees. Compute the angle for the following pairs: 20 degrees (b1) and 45 degrees (b2) -45 and 45 -85 and 90 -95 and 90 -45 and 125 -45 and 145 29.4803 and -88.6381 -78.3251 and -159.036 Optional extra Allow the input bearings to be any (finite) value. Test cases -70099.74233810938 and 29840.67437876723 -165313.6666297357 and 33693.9894517456 1174.8380510598456 and -154146.66490124757 60175.77306795546 and 42213.07192354373
#Excel
Excel
ANGLEBETWEENBEARINGS =LAMBDA(ab, DEGREES( BEARINGDELTA( RADIANS(ab) ) ) )     BEARINGDELTA =LAMBDA(ab, LET( sinab, SIN(ab), cosab, COS(ab),   ax, INDEX(sinab, 1), bx, INDEX(sinab, 2), ay, INDEX(cosab, 1), by, INDEX(cosab, 2),   rem, "Sign * dot product", IF(0 < ((ay * bx) - (by * ax)), 1, -1 ) * ACOS((ax * bx) + (ay * by)) ) )
http://rosettacode.org/wiki/Anagrams/Deranged_anagrams
Anagrams/Deranged anagrams
Two or more words are said to be anagrams if they have the same characters, but in a different order. By analogy with derangements we define a deranged anagram as two words with the same characters, but in which the same character does not appear in the same position in both words. Task[edit] Use the word list at unixdict to find and display the longest deranged anagram. Related tasks Permutations/Derangements Best shuffle Word plays Ordered words Palindrome detection Semordnilap Anagrams Anagrams/Deranged anagrams Other tasks related to string operations: Metrics Array length String length Copy a string Empty string  (assignment) Counting Word frequency Letter frequency Jewels and stones I before E except after C Bioinformatics/base count Count occurrences of a substring Count how many vowels and consonants occur in a string Remove/replace XXXX redacted Conjugate a Latin verb Remove vowels from a string String interpolation (included) Strip block comments Strip comments from a string Strip a set of characters from a string Strip whitespace from a string -- top and tail Strip control codes and extended characters from a string Anagrams/Derangements/shuffling Word wheel ABC problem Sattolo cycle Knuth shuffle Ordered words Superpermutation minimisation Textonyms (using a phone text pad) Anagrams Anagrams/Deranged anagrams Permutations/Derangements Find/Search/Determine ABC words Odd words Word ladder Semordnilap Word search Wordiff  (game) String matching Tea cup rim text Alternade words Changeable words State name puzzle String comparison Unique characters Unique characters in each string Extract file extension Levenshtein distance Palindrome detection Common list elements Longest common suffix Longest common prefix Compare a list of strings Longest common substring Find common directory path Words from neighbour ones Change e letters to i in words Non-continuous subsequences Longest common subsequence Longest palindromic substrings Longest increasing subsequence Words containing "the" substring Sum of the digits of n is substring of n Determine if a string is numeric Determine if a string is collapsible Determine if a string is squeezable Determine if a string has all unique characters Determine if a string has all the same characters Longest substrings without repeating characters Find words which contains all the vowels Find words which contains most consonants Find words which contains more than 3 vowels Find words which first and last three letters are equals Find words which odd letters are consonants and even letters are vowels or vice_versa Formatting Substring Rep-string Word wrap String case Align columns Literals/String Repeat a string Brace expansion Brace expansion using ranges Reverse a string Phrase reversals Comma quibbling Special characters String concatenation Substring/Top and tail Commatizing numbers Reverse words in a string Suffixation of decimal numbers Long literals, with continuations Numerical and alphabetical suffixes Abbreviations, easy Abbreviations, simple Abbreviations, automatic Song lyrics/poems/Mad Libs/phrases Mad Libs Magic 8-ball 99 Bottles of Beer The Name Game (a song) The Old lady swallowed a fly The Twelve Days of Christmas Tokenize Text between Tokenize a string Word break problem Tokenize a string with escaping Split a character string based on change of character Sequences Show ASCII table De Bruijn sequences Self-referential sequences Generate lower case ASCII alphabet
#Groovy
Groovy
def map = new TreeMap<Integer,Map<String,List<String>>>()   new URL('http://www.puzzlers.org/pub/wordlists/unixdict.txt').eachLine { word -> def size = - word.size() map[size] = map[size] ?: new TreeMap<String,List<String>>() def norm = word.toList().sort().sum() map[size][norm] = map[size][norm] ?: [] map[size][norm] << word }   def result = map.findResult { negasize, normMap -> def size = - negasize normMap.findResults { x, anagrams -> def n = anagrams.size() (0..<(n-1)).findResults { i -> ((i+1)..<n).findResult { j -> (0..<size).every { k -> anagrams[i][k] != anagrams[j][k] } \ ? anagrams[i,j]  : null } }?.flatten() ?: null }?.flatten() ?: null }   if (result) { println "Longest deranged anagram pair: ${result}" } else { println 'Deranged anagrams are a MYTH!' }
http://rosettacode.org/wiki/Anonymous_recursion
Anonymous recursion
While implementing a recursive function, it often happens that we must resort to a separate   helper function   to handle the actual recursion. This is usually the case when directly calling the current function would waste too many resources (stack space, execution time), causing unwanted side-effects,   and/or the function doesn't have the right arguments and/or return values. So we end up inventing some silly name like   foo2   or   foo_helper.   I have always found it painful to come up with a proper name, and see some disadvantages:   You have to think up a name, which then pollutes the namespace   Function is created which is called from nowhere else   The program flow in the source code is interrupted Some languages allow you to embed recursion directly in-place.   This might work via a label, a local gosub instruction, or some special keyword. Anonymous recursion can also be accomplished using the   Y combinator. Task If possible, demonstrate this by writing the recursive version of the fibonacci function   (see Fibonacci sequence)   which checks for a negative argument before doing the actual recursion.
#Forth
Forth
:noname ( n -- n' ) dup 2 < ?exit 1- dup recurse swap 1- recurse + ; ( xt )   : fib ( +n -- n' ) dup 0< abort" Negative numbers don't exist." [ ( xt from the :NONAME above ) compile, ] ;
http://rosettacode.org/wiki/Angles_(geometric),_normalization_and_conversion
Angles (geometric), normalization and conversion
This task is about the normalization and/or conversion of (geometric) angles using some common scales. The angular scales that will be used in this task are:   degree   gradian   mil   radian Definitions The angular scales used or referenced here:   turn   is a full turn or 360 degrees, also shown as 360º   degree   is   1/360   of a turn   gradian   is   1/400   of a turn   mil   is   1/6400   of a turn   radian   is   1/2 π {\displaystyle \pi }   of a turn   (or   0.5/ π {\displaystyle \pi }   of a turn) Or, to put it another way,   for a full circle:   there are   360   degrees   there are   400   gradians   there are   6,400   mils   there are   2 π {\displaystyle \pi }   radians   (roughly equal to 6.283+) A   mil   is approximately equal to a   milliradian   (which is   1/1000   of a radian). There is another definition of a   mil   which is   1/1000   of a radian   ─── this definition won't be used in this Rosetta Code task. Turns   are sometimes known or shown as:   turn(s)   360 degrees   unit circle   a (full) circle Degrees   are sometimes known or shown as:   degree(s)   deg   º       (a symbol)   °       (another symbol) Gradians   are sometimes known or shown as:   gradian(s)   grad(s)   grade(s)   gon(s)   metric degree(s)   (Note that   centigrade   was used for 1/100th of a grade, see the note below.) Mils   are sometimes known or shown as:   mil(s)   NATO mil(s) Radians   are sometimes known or shown as:   radian(s)   rad(s) Notes In continental Europe, the French term   centigrade   was used for   1/100   of a grad (grade);   this was one reason for the adoption of the term   Celsius   to replace   centigrade   as the name of a temperature scale. Gradians were commonly used in civil engineering. Mils were normally used for artillery   (elevations of the gun barrel for ranging). Positive and negative angles Although the definition of the measurement of an angle doesn't support the concept of a negative angle,   it's frequently useful to impose a convention that allows positive and negative angular values to represent orientations and/or rotations in opposite directions relative to some reference.   It is this reason that negative angles will keep their sign and not be normalized to positive angles. Normalization Normalization   (for this Rosetta Code task)   will keep the same sign,   but it will reduce the magnitude to less than a full circle;   in other words, less than 360º. Normalization   shouldn't   change   -45º   to   315º, An angle of   0º,   +0º,   0.000000,   or   -0º   should be shown as   0º. Task   write a function (or equivalent) to do the normalization for each scale Suggested names: d2d,   g2g,   m2m,   and  r2r   write a function (or equivalent) to convert one scale to another Suggested names for comparison of different computer language function names: d2g,   d2m,   and   d2r   for degrees g2d,   g2m,   and   g2r   for gradians m2d,   m2g,   and   m2r   for mils r2d,   r2g,   and   r2m   for radians   normalize all angles used   (except for the "original" or "base" angle)   show the angles in every scale and convert them to all other scales   show all output here on this page For the (above) conversions,   use these dozen numbers   (in the order shown):   -2   -1   0   1   2   6.2831853   16   57.2957795   359   399   6399   1000000
#Phix
Phix
constant units = {"degrees","gradians","mils","radians"}, turns = {1/360,1/400,1/6400,0.5/PI} function convert(atom a, integer fdx, tdx) return remainder(a*turns[fdx],1)/turns[tdx] end function constant tests = {-2,-1,0,1,2,2*PI,16,57.2957795,359,399,6399,1000000} printf(1," angle unit  %9s %9s %9s %9s\n",units) for i=1 to length(tests) do for fdx=1 to length(units) do printf(1,"%9g %-8s",{tests[i],units[fdx]}) for tdx=1 to length(units) do printf(1," %9g",convert(tests[i],fdx,tdx)) end for puts(1,"\n") end for puts(1,"\n") end for
http://rosettacode.org/wiki/Amicable_pairs
Amicable pairs
Two integers N {\displaystyle N} and M {\displaystyle M} are said to be amicable pairs if N ≠ M {\displaystyle N\neq M} and the sum of the proper divisors of N {\displaystyle N} ( s u m ( p r o p D i v s ( N ) ) {\displaystyle \mathrm {sum} (\mathrm {propDivs} (N))} ) = M {\displaystyle =M} as well as s u m ( p r o p D i v s ( M ) ) = N {\displaystyle \mathrm {sum} (\mathrm {propDivs} (M))=N} . Example 1184 and 1210 are an amicable pair, with proper divisors:   1, 2, 4, 8, 16, 32, 37, 74, 148, 296, 592   and   1, 2, 5, 10, 11, 22, 55, 110, 121, 242, 605   respectively. Task Calculate and show here the Amicable pairs below 20,000; (there are eight). Related tasks Proper divisors Abundant, deficient and perfect number classifications Aliquot sequence classifications and its amicable classification.
#Crystal
Crystal
  MX = 524_000_000 N = Math.sqrt(MX).to_u32 x = Array(Int32).new(MX+1, 1)   (2..N).each { |i| p = i*i x[p] += i k = i+i+1 (p+i..MX).step(i) { |j| x[j] += k k += 1 } }   (4..MX).each { |m| n = x[m] if n < m && n != 0 && m == x[n] puts "#{n} #{m}" end }  
http://rosettacode.org/wiki/Animation
Animation
Animation is integral to many parts of GUIs, including both the fancy effects when things change used in window managers, and of course games.   The core of any animation system is a scheme for periodically changing the display while still remaining responsive to the user.   This task demonstrates this. Task Create a window containing the string "Hello World! " (the trailing space is significant). Make the text appear to be rotating right by periodically removing one letter from the end of the string and attaching it to the front. When the user clicks on the (windowed) text, it should reverse its direction.
#J
J
coinsert'jgl2' [ require'gl2'   MESSAGE =: 'Hello World! ' TIMER_INTERVAL =: 0.5 * 1000 NB. Milliseconds DIRECTION =: -1 NB. Initial direction is right -->   ANIM =: noun define pc anim closeok;pn "Basic Animation in J"; minwh 350 5; cc isi isigraph flush; pcenter;pshow; )   anim_run =: verb def 'wd ANIM,''; ptimer '',":TIMER_INTERVAL' NB. Set form timer anim_timer =: verb def 'glpaint MESSAGE=: DIRECTION |. MESSAGE' NB. Rotate MESSAGE according to DIRECTION anim_isi_mbldown=: verb def 'DIRECTION=: - DIRECTION' NB. Reverse direction when user clicks anim_close =: verb def 'wd ''timer 0; pclose; reset'' ' NB. Shut down timer anim_isi_paint =: verb define glclear '' NB. Clear out old drawing glrgb 255 0 0 gltextcolor'' glfont '"courier new" 36' gltext MESSAGE )   anim_run ''
http://rosettacode.org/wiki/Animation
Animation
Animation is integral to many parts of GUIs, including both the fancy effects when things change used in window managers, and of course games.   The core of any animation system is a scheme for periodically changing the display while still remaining responsive to the user.   This task demonstrates this. Task Create a window containing the string "Hello World! " (the trailing space is significant). Make the text appear to be rotating right by periodically removing one letter from the end of the string and attaching it to the front. When the user clicks on the (windowed) text, it should reverse its direction.
#Java
Java
import java.awt.event.MouseAdapter; import java.awt.event.MouseEvent; import java.awt.event.WindowAdapter; import java.awt.event.WindowEvent; import java.util.Timer; import java.util.TimerTask; import javax.swing.JFrame; import javax.swing.JLabel; import javax.swing.WindowConstants;   public class Rotate {   private static class State { private final String text = "Hello World! "; private int startIndex = 0; private boolean rotateRight = true; }   public static void main(String[] args) { State state = new State();   JLabel label = new JLabel(state.text); label.addMouseListener(new MouseAdapter() { @Override public void mouseClicked(MouseEvent event) { state.rotateRight = !state.rotateRight; } });   TimerTask task = new TimerTask() { public void run() { int delta = state.rotateRight ? 1 : -1; state.startIndex = (state.startIndex + state.text.length() + delta) % state.text.length(); label.setText(rotate(state.text, state.startIndex)); } }; Timer timer = new Timer(false); timer.schedule(task, 0, 500);   JFrame rot = new JFrame(); rot.setDefaultCloseOperation(WindowConstants.DISPOSE_ON_CLOSE); rot.add(label); rot.pack(); rot.setLocationRelativeTo(null); rot.addWindowListener(new WindowAdapter() { @Override public void windowClosed(WindowEvent e) { timer.cancel(); } }); rot.setVisible(true); }   private static String rotate(String text, int startIdx) { char[] rotated = new char[text.length()]; for (int i = 0; i < text.length(); i++) { rotated[i] = text.charAt((i + startIdx) % text.length()); } return String.valueOf(rotated); } }
http://rosettacode.org/wiki/Animate_a_pendulum
Animate a pendulum
One good way of making an animation is by simulating a physical system and illustrating the variables in that system using a dynamically changing graphical display. The classic such physical system is a simple gravity pendulum. Task Create a simple physical model of a pendulum and animate it.
#ERRE
ERRE
  PROGRAM PENDULUM   ! ! for rosettacode.org !   !$KEY   !$INCLUDE="PC.LIB"   PROCEDURE PENDULUM(A,L) PIVOTX=320 PIVOTY=0 BOBX=PIVOTX+L*500*SIN(a) BOBY=PIVOTY+L*500*COS(a) LINE(PIVOTX,PIVOTY,BOBX,BOBY,6,FALSE) CIRCLE(BOBX+24*SIN(A),BOBY+24*COS(A),27,11) PAUSE(0.01) LINE(PIVOTX,PIVOTY,BOBX,BOBY,0,FALSE) CIRCLE(BOBX+24*SIN(A),BOBY+24*COS(A),27,0) END PROCEDURE   BEGIN SCREEN(9) THETA=40*p/180  ! initial displacement G=9.81  ! acceleration due to gravity L=0.5  ! length of pendulum in metres LINE(0,0,639,0,5,FALSE) LOOP PENDULUM(THETA,L) ACCEL=-G*SIN(THETA)/L/100 SPEED=SPEED+ACCEL/100 THETA=THETA+SPEED END LOOP END PROGRAM  
http://rosettacode.org/wiki/Almkvist-Giullera_formula_for_pi
Almkvist-Giullera formula for pi
The Almkvist-Giullera formula for calculating   1/π2   is based on the Calabi-Yau differential equations of order 4 and 5,   which were originally used to describe certain manifolds in string theory. The formula is: 1/π2 = (25/3) ∑0∞ ((6n)! / (n!6))(532n2 + 126n + 9) / 10002n+1 This formula can be used to calculate the constant   π-2,   and thus to calculate   π. Note that, because the product of all terms but the power of 1000 can be calculated as an integer, the terms in the series can be separated into a large integer term: (25) (6n)! (532n2 + 126n + 9) / (3(n!)6)     (***) multiplied by a negative integer power of 10: 10-(6n + 3) Task Print the integer portions (the starred formula, which is without the power of 1000 divisor) of the first 10 terms of the series. Use the complete formula to calculate and print π to 70 decimal digits of precision. Reference  Gert Almkvist and Jesús Guillera, Ramanujan-like series for 1/π2 and string theory, Experimental Mathematics, 21 (2012), page 2, formula 1.
#Common_Lisp
Common Lisp
(ql:quickload :computable-reals :silent t) (use-package :computable-reals) (setq *print-prec* 70) (defparameter *iterations* 52)   ; factorial using computable-reals multiplication op to keep precision (defun !r (n) (let ((p 1)) (loop for i from 2 to n doing (setq p (*r p i))) p))   ; the nth integer term (defun integral (n) (let* ((polynomial (+r (*r 532 n n) (*r 126 n) 9)) (numer (*r 32 (!r (*r 6 n)) polynomial)) (denom (*r 3 (expt-r (!r n) 6)))) (/r numer denom)))     ; the exponent for 10 in the nth term of the series (defun power (n) (- 3 (* 6 (1+ n))))   ; the nth term of the series (defun almkvist-giullera (n) (/r (integral n) (expt-r 10 (abs (power n)))))   ; the sum of the first n terms (defun almkvist-giullera-sigma (n) (let ((s 0)) (loop for i from 0 to n doing (setq s (+r s (almkvist-giullera i)))) s))   ; the approximation to pi after n terms (defun almkvist-giullera-pi (n) (sqrt-r (/r 1 (almkvist-giullera-sigma n))))   (format t "~A. ~44A~4A ~A~%" "N" "Integral part of Nth term" "×10^" "=Actual value of Nth term") (loop for i from 0 to 9 doing (format t "~&~a. ~44d ~3d " i (integral i) (power i)) (finish-output *standard-output*) (print-r (almkvist-giullera i) 50 nil))   (format t "~%~%Pi after ~a iterations: " *iterations*) (print-r (almkvist-giullera-pi *iterations*) *print-prec*)  
http://rosettacode.org/wiki/Angle_difference_between_two_bearings
Angle difference between two bearings
Finding the angle between two bearings is often confusing.[1] Task Find the angle which is the result of the subtraction b2 - b1, where b1 and b2 are the bearings. Input bearings are expressed in the range   -180   to   +180   degrees. The  result  is also expressed in the range   -180   to   +180   degrees. Compute the angle for the following pairs: 20 degrees (b1) and 45 degrees (b2) -45 and 45 -85 and 90 -95 and 90 -45 and 125 -45 and 145 29.4803 and -88.6381 -78.3251 and -159.036 Optional extra Allow the input bearings to be any (finite) value. Test cases -70099.74233810938 and 29840.67437876723 -165313.6666297357 and 33693.9894517456 1174.8380510598456 and -154146.66490124757 60175.77306795546 and 42213.07192354373
#F.23
F#
let deltaBearing (b1:double) (b2:double) = let r = (b2 - b1) % 360.0; if r > 180.0 then r - 360.0 elif r < -180.0 then r + 360.0 else r   [<EntryPoint>] let main _ = printfn "%A" (deltaBearing 20.0 45.0) printfn "%A" (deltaBearing -45.0 45.0) printfn "%A" (deltaBearing -85.0 90.0) printfn "%A" (deltaBearing -95.0 90.0) printfn "%A" (deltaBearing -45.0 125.0) printfn "%A" (deltaBearing -45.0 145.0) printfn "%A" (deltaBearing 29.4803 -88.6381) printfn "%A" (deltaBearing -78.3251 -159.036) printfn "%A" (deltaBearing -70099.74233810938 29840.67437876723) printfn "%A" (deltaBearing -165313.6666297357 33693.9894517456) printfn "%A" (deltaBearing 1174.8380510598456 -154146.66490124757) printfn "%A" (deltaBearing 60175.77306795546 42213.07192354373) 0 // return an integer exit code