task_url
stringlengths
30
116
task_name
stringlengths
2
86
task_description
stringlengths
0
14.4k
language_url
stringlengths
2
53
language_name
stringlengths
1
52
code
stringlengths
0
61.9k
http://rosettacode.org/wiki/Colour_pinstripe/Display
Colour pinstripe/Display
The task is to create 1 pixel wide coloured vertical pinstripes with a sufficient number of pinstripes to span the entire width of the graphics display. The pinstripes should either follow the system palette sequence,   or a sequence that includes: black,   red,   green,   blue,   magenta,   cyan,   yellow,   and   white:   after filling the top quarter, switch to a wider 2 pixel wide vertical pinstripe pattern,   halfway down the display, switch to 3 pixel wide vertical pinstripe,   finally to a 4 pixels wide vertical pinstripe for the last quarter of the display. See also   display black and white   print colour
#Julia
Julia
using Gtk, Graphics, Colors   function drawline(ctx, p1, p2, color, width) move_to(ctx, p1.x, p1.y) set_source(ctx, color) line_to(ctx, p2.x, p2.y) set_line_width(ctx, width) stroke(ctx) end   const can = @GtkCanvas() const win = GtkWindow(can, "Colour pinstripe/Display", 400, 400) const colors = [colorant"black", colorant"red", colorant"green", colorant"blue", colorant"magenta", colorant"cyan", colorant"yellow", colorant"white"] const numcolors = length(colors)   @guarded draw(can) do widget ctx = getgc(can) h = height(can) w = width(can) deltaw = 1.0 for (i, x) in enumerate(0:deltaw:w) drawline(ctx, Point(x, 0.25*h), Point(x, 0), colors[i % numcolors + 1], deltaw) end for (i, x) in enumerate(0:deltaw*2:w) drawline(ctx, Point(x, 0.5*h), Point(x, 0.25*h), colors[i % numcolors + 1], deltaw*2) end for (i, x) in enumerate(0:deltaw*3:w) drawline(ctx, Point(x, 0.75*h), Point(x, 0.5*h), colors[i % numcolors + 1], deltaw*3) end for (i, x) in enumerate(0:deltaw*4:w) drawline(ctx, Point(x, h), Point(x, 0.75*h), colors[i % numcolors + 1], deltaw*4) end end     show(can) const cond = Condition() endit(w) = notify(cond) signal_connect(endit, win, :destroy) wait(cond)  
http://rosettacode.org/wiki/Colour_pinstripe/Display
Colour pinstripe/Display
The task is to create 1 pixel wide coloured vertical pinstripes with a sufficient number of pinstripes to span the entire width of the graphics display. The pinstripes should either follow the system palette sequence,   or a sequence that includes: black,   red,   green,   blue,   magenta,   cyan,   yellow,   and   white:   after filling the top quarter, switch to a wider 2 pixel wide vertical pinstripe pattern,   halfway down the display, switch to 3 pixel wide vertical pinstripe,   finally to a 4 pixels wide vertical pinstripe for the last quarter of the display. See also   display black and white   print colour
#Kotlin
Kotlin
// version 1.1.0   import java.awt.* import java.awt.Color.* import javax.swing.*   class ColourPinstripeDisplay : JPanel() { private companion object { val palette = arrayOf(black, red, green, blue, magenta, cyan, yellow, white) }   private val bands = 4   init { preferredSize = Dimension(900, 600) }   override fun paintComponent(g: Graphics) { super.paintComponent(g) for (b in 1..bands) { var colIndex = 0 val h = height / bands for (x in 0 until width step b) { g.color = palette[colIndex % palette.size] g.fillRect(x, (b - 1) * h, b, h) colIndex++ } } } }   fun main(args: Array<String>) { SwingUtilities.invokeLater { val f = JFrame() f.defaultCloseOperation = JFrame.EXIT_ON_CLOSE f.title = "ColourPinstripeDisplay" f.add(ColourPinstripeDisplay(), BorderLayout.CENTER) f.pack() f.setLocationRelativeTo(null) f.isVisible = true } }
http://rosettacode.org/wiki/Color_of_a_screen_pixel
Color of a screen pixel
Task Get color information from an arbitrary pixel on the screen, such as the current location of the mouse cursor. The mouse cursor may or may not have to be active in a GUI created by your program. These functions are OS related.
#Phix
Phix
integer {r,g,b} = im_pixel(image, x, y)
http://rosettacode.org/wiki/Color_of_a_screen_pixel
Color of a screen pixel
Task Get color information from an arbitrary pixel on the screen, such as the current location of the mouse cursor. The mouse cursor may or may not have to be active in a GUI created by your program. These functions are OS related.
#PHP
PHP
$img = imagegrabscreen(); $color = imagecolorat($im, 10, 50); imagedestroy($im);
http://rosettacode.org/wiki/Color_of_a_screen_pixel
Color of a screen pixel
Task Get color information from an arbitrary pixel on the screen, such as the current location of the mouse cursor. The mouse cursor may or may not have to be active in a GUI created by your program. These functions are OS related.
#PicoLisp
PicoLisp
(in '(grabc) (mapcar hex (cdr (line NIL 1 2 2 2))) )
http://rosettacode.org/wiki/Color_wheel
Color wheel
Task Write a function to draw a HSV color wheel completely with code. This is strictly for learning purposes only. It's highly recommended that you use an image in an actual application to actually draw the color wheel   (as procedurally drawing is super slow). This does help you understand how color wheels work and this can easily be used to determine a color value based on a position within a circle.
#Racket
Racket
#lang racket   (require racket/draw colors)   (define DIM 500) (define target (make-bitmap DIM DIM)) (define dc (new bitmap-dc% [bitmap target])) (define radius 200) (define center (/ DIM 2))   (define (atan2 y x) (if (= 0 y x) 0 (atan y x)))   (for* ([x (in-range DIM)] [y (in-range DIM)] [rx (in-value (- x center))] [ry (in-value (- y center))] [s (in-value (/ (sqrt (+ (sqr rx) (sqr ry))) radius))] #:when (<= s 1)) (define h (* 0.5 (+ 1 (/ (atan2 ry rx) pi)))) (send dc set-pen (hsv->color (hsv (if (= 1 h) 0 h) s 1)) 1 'solid) (send dc draw-point x y))   target
http://rosettacode.org/wiki/Color_wheel
Color wheel
Task Write a function to draw a HSV color wheel completely with code. This is strictly for learning purposes only. It's highly recommended that you use an image in an actual application to actually draw the color wheel   (as procedurally drawing is super slow). This does help you understand how color wheels work and this can easily be used to determine a color value based on a position within a circle.
#Raku
Raku
use Image::PNG::Portable;   my ($w, $h) = 300, 300;   my $out = Image::PNG::Portable.new: :width($w), :height($h);   my $center = $w/2 + $h/2*i;   color-wheel($out);   $out.write: 'Color-wheel-perl6.png';   sub color-wheel ( $png ) { ^$w .race.map: -> $x { for ^$h -> $y { my $vector = $center - $x - $y*i; my $magnitude = $vector.abs * 2 / $w; my $direction = ( π + atan2( |$vector.reals ) ) / τ; $png.set: $x, $y, |hsv2rgb( $direction, $magnitude, $magnitude < 1 ); } } }   sub hsv2rgb ( $h, $s, $v ){ my $c = $v * $s; my $x = $c * (1 - abs( (($h*6) % 2) - 1 ) ); my $m = $v - $c; (do given $h { when 0..^1/6 { $c, $x, 0 } when 1/6..^1/3 { $x, $c, 0 } when 1/3..^1/2 { 0, $c, $x } when 1/2..^2/3 { 0, $x, $c } when 2/3..^5/6 { $x, 0, $c } when 5/6..1 { $c, 0, $x } } ).map: ((*+$m) * 255).Int }
http://rosettacode.org/wiki/Combinations
Combinations
Task Given non-negative integers   m   and   n,   generate all size   m   combinations   of the integers from   0   (zero)   to   n-1   in sorted order   (each combination is sorted and the entire table is sorted). Example 3   comb   5     is: 0 1 2 0 1 3 0 1 4 0 2 3 0 2 4 0 3 4 1 2 3 1 2 4 1 3 4 2 3 4 If it is more "natural" in your language to start counting from   1   (unity) instead of   0   (zero), the combinations can be of the integers from   1   to   n. See also The number of samples of size k from n objects. With   combinations and permutations   generation tasks. Order Unimportant Order Important Without replacement ( n k ) = n C k = n ( n − 1 ) … ( n − k + 1 ) k ( k − 1 ) … 1 {\displaystyle {\binom {n}{k}}=^{n}\operatorname {C} _{k}={\frac {n(n-1)\ldots (n-k+1)}{k(k-1)\dots 1}}} n P k = n ⋅ ( n − 1 ) ⋅ ( n − 2 ) ⋯ ( n − k + 1 ) {\displaystyle ^{n}\operatorname {P} _{k}=n\cdot (n-1)\cdot (n-2)\cdots (n-k+1)} Task: Combinations Task: Permutations With replacement ( n + k − 1 k ) = n + k − 1 C k = ( n + k − 1 ) ! ( n − 1 ) ! k ! {\displaystyle {\binom {n+k-1}{k}}=^{n+k-1}\operatorname {C} _{k}={(n+k-1)! \over (n-1)!k!}} n k {\displaystyle n^{k}} Task: Combinations with repetitions Task: Permutations with repetitions
#AWK
AWK
BEGIN { ## Default values for r and n (Choose 3 from pool of 5). Can ## alternatively be set on the command line:- ## awk -v r=<number of items being chosen> -v n=<how many to choose from> -f <scriptname> if (length(r) == 0) r = 3 if (length(n) == 0) n = 5   for (i=1; i <= r; i++) { ## First combination of items: A[i] = i if (i < r ) printf i OFS else print i}   ## While 1st item is less than its maximum permitted value... while (A[1] < n - r + 1) { ## loop backwards through all items in the previous ## combination of items until an item is found that is ## less than its maximum permitted value: for (i = r; i >= 1; i--) { ## If the equivalently positioned item in the ## previous combination of items is less than its ## maximum permitted value... if (A[i] < n - r + i) { ## increment the current item by 1: A[i]++ ## Save the current position-index for use ## outside this "for" loop: p = i break}} ## Put consecutive numbers in the remainder of the array, ## counting up from position-index p. for (i = p + 1; i <= r; i++) A[i] = A[i - 1] + 1   ## Print the current combination of items: for (i=1; i <= r; i++) { if (i < r) printf A[i] OFS else print A[i]}} exit}
http://rosettacode.org/wiki/Conditional_structures
Conditional structures
Control Structures These are examples of control structures. You may also be interested in: Conditional structures Exceptions Flow-control structures Loops Task List the conditional structures offered by a programming language. See Wikipedia: conditionals for descriptions. Common conditional structures include if-then-else and switch. Less common are arithmetic if, ternary operator and Hash-based conditionals. Arithmetic if allows tight control over computed gotos, which optimizers have a hard time to figure out.
#Maxima
Maxima
if test1 then (...) elseif test2 then (...) else (...);
http://rosettacode.org/wiki/Comments
Comments
Task Show all ways to include text in a language source file that's completely ignored by the compiler or interpreter. Related tasks   Documentation   Here_document See also   Wikipedia   xkcd (Humor: hand gesture denoting // for "commenting out" people.)
#PARI.2FGP
PARI/GP
(* This is a comment. It may extend across multiple lines. *)   { Alternatively curly braces can be used. }   (* This is a valid comment in Standard Pascal, but not valid in [[Turbo Pascal]]. }   { The same is true in this case *)
http://rosettacode.org/wiki/Comments
Comments
Task Show all ways to include text in a language source file that's completely ignored by the compiler or interpreter. Related tasks   Documentation   Here_document See also   Wikipedia   xkcd (Humor: hand gesture denoting // for "commenting out" people.)
#Pascal
Pascal
(* This is a comment. It may extend across multiple lines. *)   { Alternatively curly braces can be used. }   (* This is a valid comment in Standard Pascal, but not valid in [[Turbo Pascal]]. }   { The same is true in this case *)
http://rosettacode.org/wiki/Color_quantization
Color quantization
full color Example: Gimp 16 color Color quantization is the process of reducing number of colors used in an image while trying to maintain the visual appearance of the original image. In general, it is a form of cluster analysis, if each RGB color value is considered as a coordinate triple in the 3D colorspace. There are some well know algorithms [1], each with its own advantages and drawbacks. Task: Take an RGB color image and reduce its colors to some smaller number (< 256). For this task, use the frog as input and reduce colors to 16, and output the resulting colors. The chosen colors should be adaptive to the input image, meaning you should not use a fixed palette such as Web colors or Windows system palette. Dithering is not required. Note: the funny color bar on top of the frog image is intentional.
#Kotlin
Kotlin
// Version 1.2.41   import java.io.BufferedReader import java.io.InputStreamReader   fun main(args: Array<String>) { // convert 'frog' to an image which uses only 16 colors, no dithering val pb = ProcessBuilder( "convert", "Quantum_frog.png", "-dither", "None", "-colors", "16", "Quantum_frog_16.png" ) pb.directory(null) val proc = pb.start() proc.waitFor()   // now show the colors used val pb2 = ProcessBuilder( "convert", "Quantum_frog_16.png", "-format", "%c", "-depth", "8", "histogram:info:-" ) pb2.directory(null) pb.redirectOutput(ProcessBuilder.Redirect.PIPE) val proc2 = pb2.start() val br = BufferedReader(InputStreamReader(proc2.inputStream)) var clrNum = 0 while (true) { val line = br.readLine() ?: break System.out.printf("%2d->%s\n", clrNum++, line) } br.close() }
http://rosettacode.org/wiki/Conway%27s_Game_of_Life
Conway's Game of Life
The Game of Life is a   cellular automaton   devised by the British mathematician   John Horton Conway   in 1970.   It is the best-known example of a cellular automaton. Conway's game of life is described   here: A cell   C   is represented by a   1   when alive,   or   0   when dead,   in an   m-by-m   (or m×m)   square array of cells. We calculate   N   - the sum of live cells in C's   eight-location neighbourhood,   then cell   C   is alive or dead in the next generation based on the following table: C N new C 1 0,1 -> 0 # Lonely 1 4,5,6,7,8 -> 0 # Overcrowded 1 2,3 -> 1 # Lives 0 3 -> 1 # It takes three to give birth! 0 0,1,2,4,5,6,7,8 -> 0 # Barren Assume cells beyond the boundary are always dead. The "game" is actually a zero-player game, meaning that its evolution is determined by its initial state, needing no input from human players.   One interacts with the Game of Life by creating an initial configuration and observing how it evolves. Task Although you should test your implementation on more complex examples such as the   glider   in a larger universe,   show the action of the blinker   (three adjoining cells in a row all alive),   over three generations, in a 3 by 3 grid. References   Its creator John Conway, explains   the game of life.   Video from numberphile on youtube.   John Conway   Inventing Game of Life   - Numberphile video. Related task   Langton's ant   - another well known cellular automaton.
#XPL0
XPL0
def M=3; \array size char NowGen(M+2, M+2), \size with surrounding borders NewGen(M+2, M+2); int X, Y, I, J, N, Gen; code ChOut=8, CrLf=9;   [for Y:= 0 to M+1 do \set up initial state for X:= 0 to M+1 do [NowGen(X,Y):= ^ ; NewGen(X,Y):= ^ ]; NowGen(1,2):= ^#; NowGen(2,2):= ^#; NowGen(3,2):= ^#;   for Gen:= 1 to 3 do [for Y:= 1 to M do \show current generation [for X:= 1 to M do [ChOut(0, NowGen(X,Y)); ChOut(0,^ )]; CrLf(0); ]; CrLf(0);   for Y:= 1 to M do \determine next generation for X:= 1 to M do [N:= 0; \count adjacent live (#) cells for J:= Y-1 to Y+1 do for I:= X-1 to X+1 do if NowGen(I,J) = ^# then N:= N+1; if NowGen(X,Y) = ^# then N:= N-1; \don't count center NewGen(X,Y):= ^ ; \assume death if N=2 then NewGen(X,Y):= NowGen(X,Y) \actually no change else if N=3 then NewGen(X,Y):= ^#; \actually birth ]; I:= NowGen; NowGen:= NewGen; NewGen:= I; \swap arrays ]; ]
http://rosettacode.org/wiki/Colour_pinstripe/Display
Colour pinstripe/Display
The task is to create 1 pixel wide coloured vertical pinstripes with a sufficient number of pinstripes to span the entire width of the graphics display. The pinstripes should either follow the system palette sequence,   or a sequence that includes: black,   red,   green,   blue,   magenta,   cyan,   yellow,   and   white:   after filling the top quarter, switch to a wider 2 pixel wide vertical pinstripe pattern,   halfway down the display, switch to 3 pixel wide vertical pinstripe,   finally to a 4 pixels wide vertical pinstripe for the last quarter of the display. See also   display black and white   print colour
#M2000_Interpreter
M2000 Interpreter
  Module Checkit { Window 16, 14000,12000; Module Pinstripe { Smooth off ' use of GDI32 Dim colors(0 to 7) Colors(0)=#000000,#FF0000, #00FF00, #0000FF, #FF00FF, #00FFFF, #FFFF00, #FFFFFF pixelsX=scale.x/twipsX pixelsY=scale.y/twipsY zoneheight=scale.y/4 n=0 Refresh 5000 For i=1 to 4 { move 0, (i-1)*zoneheight pinw=i*twipsx For j=1 to pixelsX/i { Fill pinw, zoneheight, color(n) Step 0, -zoneheight n++:if n=8 then n=0 } } \\ now we make the refersh Refresh 100 } \\ draw to console window \\ now we make a window and draw there Pinstripe Layer 32 { Window 12, 10000,10000 Pinstripe Show } Declare Pinstripe Form Layer Pinstripe { Window 12, 10000,10000 Pinstripe motion 2000, 2000 } refresh 20 Thread { if control$="MAIN" then if mouse then player 32, mousea.x, mousea.y } as anyvar interval 100   Method Pinstripe, "Show", 1 Threads Erase Layer 32 {Hide} Cls } Checkit    
http://rosettacode.org/wiki/Colour_pinstripe/Display
Colour pinstripe/Display
The task is to create 1 pixel wide coloured vertical pinstripes with a sufficient number of pinstripes to span the entire width of the graphics display. The pinstripes should either follow the system palette sequence,   or a sequence that includes: black,   red,   green,   blue,   magenta,   cyan,   yellow,   and   white:   after filling the top quarter, switch to a wider 2 pixel wide vertical pinstripe pattern,   halfway down the display, switch to 3 pixel wide vertical pinstripe,   finally to a 4 pixels wide vertical pinstripe for the last quarter of the display. See also   display black and white   print colour
#Maple
Maple
  colors := [yellow, black, red, green, magenta, cyan, white]: plots:-display( [ seq( plot([1+i/10,y,y=5..6], color=colors[i mod 7 + 1],thickness=1), i = 1..500), seq( plot([1+i/10,y,y=4..5], color=colors[i mod 7 + 1],thickness=2), i = 1..500),seq( plot([1+i/10,y,y=3..4], color=colors[i mod 7 + 1],thickness=3), i = 1..500),seq( plot([1+i/10,y,y=2..3], color=colors[i mod 7 + 1],thickness=4,size=[interface(screenwidth)*20,interface(screenheight)*32]), i = 1..500)], axes=none);  
http://rosettacode.org/wiki/Colour_pinstripe/Display
Colour pinstripe/Display
The task is to create 1 pixel wide coloured vertical pinstripes with a sufficient number of pinstripes to span the entire width of the graphics display. The pinstripes should either follow the system palette sequence,   or a sequence that includes: black,   red,   green,   blue,   magenta,   cyan,   yellow,   and   white:   after filling the top quarter, switch to a wider 2 pixel wide vertical pinstripe pattern,   halfway down the display, switch to 3 pixel wide vertical pinstripe,   finally to a 4 pixels wide vertical pinstripe for the last quarter of the display. See also   display black and white   print colour
#Mathematica_.2F_Wolfram_Language
Mathematica / Wolfram Language
color[y_] := {Black, Red, Green, Blue, Magenta, Cyan, Yellow, White}[[Mod[y, 8] + 1]]; Graphics[Join[{Thickness[1/408]}, Flatten[{color[#], Line[{{# - 1/2, 408}, {# - 1/2, 307}}]} & /@ Range[408]], {Thickness[1/204]}, Flatten[{color[#], Line[{{2 # - 1, 306}, {2 # - 1, 205}}]} & /@ Range[204]], {Thickness[1/136]}, Flatten[{color[#], Line[{{3 # - 3/2, 204}, {3 # - 3/2, 103}}]} & /@ Range[136]], {Thickness[1/102]}, Flatten[{color[#], Line[{{4 # - 2, 102}, {4 # - 2, 1}}]} & /@ Range[102]]], ImageSize -> {408, 408}]
http://rosettacode.org/wiki/Color_of_a_screen_pixel
Color of a screen pixel
Task Get color information from an arbitrary pixel on the screen, such as the current location of the mouse cursor. The mouse cursor may or may not have to be active in a GUI created by your program. These functions are OS related.
#Processing
Processing
void draw(){ color c = get(mouseX,mouseY); println(c, red(c), green(c), blue(c)); }
http://rosettacode.org/wiki/Color_of_a_screen_pixel
Color of a screen pixel
Task Get color information from an arbitrary pixel on the screen, such as the current location of the mouse cursor. The mouse cursor may or may not have to be active in a GUI created by your program. These functions are OS related.
#Python
Python
def get_pixel_colour(i_x, i_y): import win32gui i_desktop_window_id = win32gui.GetDesktopWindow() i_desktop_window_dc = win32gui.GetWindowDC(i_desktop_window_id) long_colour = win32gui.GetPixel(i_desktop_window_dc, i_x, i_y) i_colour = int(long_colour) win32gui.ReleaseDC(i_desktop_window_id,i_desktop_window_dc) return (i_colour & 0xff), ((i_colour >> 8) & 0xff), ((i_colour >> 16) & 0xff)   print (get_pixel_colour(0, 0))
http://rosettacode.org/wiki/Color_of_a_screen_pixel
Color of a screen pixel
Task Get color information from an arbitrary pixel on the screen, such as the current location of the mouse cursor. The mouse cursor may or may not have to be active in a GUI created by your program. These functions are OS related.
#Racket
Racket
use GD::Raw;   my $file = '/tmp/one-pixel-screen-capture.png';   qqx/screencapture -R 123,456,1,1 $file/;   my $fh = fopen($file, "rb") or die; my $image = gdImageCreateFromPng($fh); my $pixel = gdImageGetPixel($image, 0, 0); my ($red,$green,$blue) = gdImageRed( $image, $pixel), gdImageGreen($image, $pixel), gdImageBlue( $image, $pixel);   say "RGB: $red, $green, $blue";   fclose($fh); unlink $file;
http://rosettacode.org/wiki/Color_wheel
Color wheel
Task Write a function to draw a HSV color wheel completely with code. This is strictly for learning purposes only. It's highly recommended that you use an image in an actual application to actually draw the color wheel   (as procedurally drawing is super slow). This does help you understand how color wheels work and this can easily be used to determine a color value based on a position within a circle.
#Ring
Ring
  #===================================================================# # Sample: Color Wheel # Author: Gal Zsolt, Bert Mariani, Ilir Liburn & Mahmoud Fayed #===================================================================#   load "guilib.ring"   xWidth = 400 yHeight = 400   MyApp = new qapp { win1 = new qwidget() { setwindowtitle("ColorWheel-FastDraw") setgeometry(500,150,xWidth,yHeight)   Canvas = new qlabel(win1) { ### daVinci paints the MonaLisa on the Canvas MonaLisa = new qPixMap2( xWidth, yHeight) color = new qcolor(){ setrgb(255,255,255,0) } pen = new qpen() { setwidth(1) } MonaLisa.fill(color)   daVinci = new qpainter() { begin(MonaLisa) #endpaint() ### This will Stop the Painting. For Animation comment it out }   setPixMap(MonaLisa) }   show() }   ColorWheel() exec() }   //=====================   Func colorWheel   #=====================================================================#  ? "Start Processing..." t1 = clock()  ? "Clock : " + t1 #=====================================================================#   aList = [] pi = 3.14159265359 diameter = pi * 2 radius = yHeight / 2 v = 1 // value/brightness 1 to 100 1=bright 0=dark   for i = 1 to xWidth iradius = i - radius p = pow( iradius, 2)   for j = 1 to yHeight   h = (atan2( iradius, j-radius ) + pi ) / diameter // hue/color 1 to 360 s = sqrt( p + pow( j-radius, 2)) / radius // saturation/intensity 1 to 100   if s <= 1 and h <= 1 aList + [i,j,h,s,v,1] ok   next next   #=====================================================================#  ? "Start drawing..." t2 = clock()  ? "Clock : " + t2 #=====================================================================#   daVinci.drawHSVFList(aList) Canvas.setPixMap(MonaLisa)   #=====================================================================#  ? "Done..." t3 = clock()  ? "Clock : " + t3 #=====================================================================#  ? "Processing Time: " + ( (t2-t1)/ClocksPerSecond() ) + " seconds "  ? "Drawing Time: " + ( (t3-t2)/ClocksPerSecond() ) + " seconds "  ? "Total Time: " + ( (t3-t1)/ClocksPerSecond() ) + " seconds " #=====================================================================#   return   //==================  
http://rosettacode.org/wiki/Color_wheel
Color wheel
Task Write a function to draw a HSV color wheel completely with code. This is strictly for learning purposes only. It's highly recommended that you use an image in an actual application to actually draw the color wheel   (as procedurally drawing is super slow). This does help you understand how color wheels work and this can easily be used to determine a color value based on a position within a circle.
#Ruby
Ruby
  def settings size(300, 300) end   def setup sketch_title 'Color Wheel' background(0) radius = width / 2.0 center = width / 2 grid(width, height) do |x, y| rx = x - center ry = y - center sat = Math.hypot(rx, ry) / radius if sat <= 1.0 hue = ((Math.atan2(ry, rx) / PI) + 1) / 2.0 color_mode(HSB) col = color((hue * 255).to_i, (sat * 255).to_i, 255) set(x, y, col) end end end  
http://rosettacode.org/wiki/Combinations
Combinations
Task Given non-negative integers   m   and   n,   generate all size   m   combinations   of the integers from   0   (zero)   to   n-1   in sorted order   (each combination is sorted and the entire table is sorted). Example 3   comb   5     is: 0 1 2 0 1 3 0 1 4 0 2 3 0 2 4 0 3 4 1 2 3 1 2 4 1 3 4 2 3 4 If it is more "natural" in your language to start counting from   1   (unity) instead of   0   (zero), the combinations can be of the integers from   1   to   n. See also The number of samples of size k from n objects. With   combinations and permutations   generation tasks. Order Unimportant Order Important Without replacement ( n k ) = n C k = n ( n − 1 ) … ( n − k + 1 ) k ( k − 1 ) … 1 {\displaystyle {\binom {n}{k}}=^{n}\operatorname {C} _{k}={\frac {n(n-1)\ldots (n-k+1)}{k(k-1)\dots 1}}} n P k = n ⋅ ( n − 1 ) ⋅ ( n − 2 ) ⋯ ( n − k + 1 ) {\displaystyle ^{n}\operatorname {P} _{k}=n\cdot (n-1)\cdot (n-2)\cdots (n-k+1)} Task: Combinations Task: Permutations With replacement ( n + k − 1 k ) = n + k − 1 C k = ( n + k − 1 ) ! ( n − 1 ) ! k ! {\displaystyle {\binom {n+k-1}{k}}=^{n+k-1}\operatorname {C} _{k}={(n+k-1)! \over (n-1)!k!}} n k {\displaystyle n^{k}} Task: Combinations with repetitions Task: Permutations with repetitions
#BBC_BASIC
BBC BASIC
INSTALL @lib$+"SORTLIB" sort% = FN_sortinit(0,0)   M% = 3 N% = 5   C% = FNfact(N%)/(FNfact(M%)*FNfact(N%-M%)) DIM s$(C%) PROCcomb(M%, N%, s$())   CALL sort%, s$(0) FOR I% = 0 TO C%-1 PRINT s$(I%) NEXT END   DEF PROCcomb(C%, N%, s$()) LOCAL I%, U% FOR U% = 0 TO 2^N%-1 IF FNbits(U%) = C% THEN s$(I%) = FNlist(U%) I% += 1 ENDIF NEXT ENDPROC   DEF FNbits(U%) LOCAL N% WHILE U% N% += 1 U% = U% AND (U%-1) ENDWHILE = N%   DEF FNlist(U%) LOCAL N%, s$ WHILE U% IF U% AND 1 s$ += STR$(N%) + " " N% += 1 U% = U% >> 1 ENDWHILE = s$   DEF FNfact(N%) IF N%<=1 THEN = 1 ELSE = N%*FNfact(N%-1)  
http://rosettacode.org/wiki/Conditional_structures
Conditional structures
Control Structures These are examples of control structures. You may also be interested in: Conditional structures Exceptions Flow-control structures Loops Task List the conditional structures offered by a programming language. See Wikipedia: conditionals for descriptions. Common conditional structures include if-then-else and switch. Less common are arithmetic if, ternary operator and Hash-based conditionals. Arithmetic if allows tight control over computed gotos, which optimizers have a hard time to figure out.
#MAXScript
MAXScript
if x == 1 then ( print "one" ) else if x == 2 then ( print "two" ) else ( print "Neither one or two" )
http://rosettacode.org/wiki/Comments
Comments
Task Show all ways to include text in a language source file that's completely ignored by the compiler or interpreter. Related tasks   Documentation   Here_document See also   Wikipedia   xkcd (Humor: hand gesture denoting // for "commenting out" people.)
#PASM
PASM
# This is a comment print "Hello\n" # This is also a comment end
http://rosettacode.org/wiki/Comments
Comments
Task Show all ways to include text in a language source file that's completely ignored by the compiler or interpreter. Related tasks   Documentation   Here_document See also   Wikipedia   xkcd (Humor: hand gesture denoting // for "commenting out" people.)
#Peloton
Peloton
  <@ OMT>This is a multiline comment</@>  
http://rosettacode.org/wiki/Color_quantization
Color quantization
full color Example: Gimp 16 color Color quantization is the process of reducing number of colors used in an image while trying to maintain the visual appearance of the original image. In general, it is a form of cluster analysis, if each RGB color value is considered as a coordinate triple in the 3D colorspace. There are some well know algorithms [1], each with its own advantages and drawbacks. Task: Take an RGB color image and reduce its colors to some smaller number (< 256). For this task, use the frog as input and reduce colors to 16, and output the resulting colors. The chosen colors should be adaptive to the input image, meaning you should not use a fixed palette such as Web colors or Windows system palette. Dithering is not required. Note: the funny color bar on top of the frog image is intentional.
#Mathematica_.2F_Wolfram_Language
Mathematica / Wolfram Language
ColorQuantize[Import["http://rosettacode.org/mw/images/3/3f/Quantum_frog.png"],16,Dithering->False]
http://rosettacode.org/wiki/Color_quantization
Color quantization
full color Example: Gimp 16 color Color quantization is the process of reducing number of colors used in an image while trying to maintain the visual appearance of the original image. In general, it is a form of cluster analysis, if each RGB color value is considered as a coordinate triple in the 3D colorspace. There are some well know algorithms [1], each with its own advantages and drawbacks. Task: Take an RGB color image and reduce its colors to some smaller number (< 256). For this task, use the frog as input and reduce colors to 16, and output the resulting colors. The chosen colors should be adaptive to the input image, meaning you should not use a fixed palette such as Web colors or Windows system palette. Dithering is not required. Note: the funny color bar on top of the frog image is intentional.
#Nim
Nim
import algorithm import nimPNG   type   Channel {.pure.} = enum R, G, B   QItem = tuple color: array[Channel, byte] # Color of the pixel. index: int # Position of pixel in the sequential sequence.   #---------------------------------------------------------------------------------------------------   proc quantize(bucket: openArray[QItem]; output: var seq[byte]) = ## Apply the quantization to the pixels in the bucket.   # Compute the mean value on each channel. var means: array[Channel, int] for qItem in bucket: for channel in R..B: means[channel] += qItem.color[channel].int for channel in R..B: means[channel] = (means[channel] / bucket.len).toInt   # Store the new colors into the pixels. for qItem in bucket: for channel in R..B: output[3 * qItem.index + ord(channel)] = means[channel].byte   #---------------------------------------------------------------------------------------------------   proc medianCut(bucket: openArray[QItem]; depth: Natural; output: var seq[byte]) = ## Apply the algorithm on the bucket.   if depth == 0: # Terminated for this bucket. Apply the quantization. quantize(bucket, output) return   # Compute the range of values for each channel. var minVal: array[Channel, int] = [1000, 1000, 1000] var maxVal: array[Channel, int] = [-1, -1, -1] for qItem in bucket: for channel in R..B: let val = qItem.color[channel].int if val < minVal[channel]: minVal[channel] = val if val > maxVal[channel]: maxVal[channel] = val let valRange: array[Channel, int] = [maxVal[R] - minVal[R], maxVal[G] - minVal[G], maxVal[B] - minVal[B]]   # Find the channel with the greatest range. var selchannel: Channel if valRange[R] >= valRange[G]: if valRange[R] >= valRange[B]: selchannel = R else: selchannel = B elif valrange[G] >= valrange[B]: selchannel = G else: selchannel = B   # Sort the quantization items according to the selected channel. let sortedBucket = case selchannel of R: sortedByIt(bucket, it.color[R]) of G: sortedByIt(bucket, it.color[G]) of B: sortedByIt(bucket, it.color[B])   # Split the bucket into two buckets. let medianIndex = bucket.high div 2 medianCut(sortedBucket.toOpenArray(0, medianIndex), depth - 1, output) medianCut(sortedBucket.toOpenArray(medianIndex, bucket.high), depth - 1, output)   #———————————————————————————————————————————————————————————————————————————————————————————————————   const Input = "Quantum_frog.png" const Output = "Quantum_frog_16.png"   let pngImage = loadPNG24(seq[byte], Input).get()   # Build the first bucket. var bucket = newSeq[QItem](pngImage.data.len div 3) var idx: Natural = 0 for item in bucket.mitems: item = (color: [pngImage.data[idx], pngImage.data[idx + 1], pngImage.data[idx + 2]], index: idx div 3) inc idx, 3   # Create the storage for the quantized image. var data = newSeq[byte](pngImage.data.len)   # Launch the quantization. medianCut(bucket, 4, data)   # Save the result into a PNG file. let status = savePNG24(Output, data, pngImage.width, pngImage.height) if status.isOk: echo "File ", Input, " processed. Result is available in file ", Output else: echo "Error: ", status.error
http://rosettacode.org/wiki/Conway%27s_Game_of_Life
Conway's Game of Life
The Game of Life is a   cellular automaton   devised by the British mathematician   John Horton Conway   in 1970.   It is the best-known example of a cellular automaton. Conway's game of life is described   here: A cell   C   is represented by a   1   when alive,   or   0   when dead,   in an   m-by-m   (or m×m)   square array of cells. We calculate   N   - the sum of live cells in C's   eight-location neighbourhood,   then cell   C   is alive or dead in the next generation based on the following table: C N new C 1 0,1 -> 0 # Lonely 1 4,5,6,7,8 -> 0 # Overcrowded 1 2,3 -> 1 # Lives 0 3 -> 1 # It takes three to give birth! 0 0,1,2,4,5,6,7,8 -> 0 # Barren Assume cells beyond the boundary are always dead. The "game" is actually a zero-player game, meaning that its evolution is determined by its initial state, needing no input from human players.   One interacts with the Game of Life by creating an initial configuration and observing how it evolves. Task Although you should test your implementation on more complex examples such as the   glider   in a larger universe,   show the action of the blinker   (three adjoining cells in a row all alive),   over three generations, in a 3 by 3 grid. References   Its creator John Conway, explains   the game of life.   Video from numberphile on youtube.   John Conway   Inventing Game of Life   - Numberphile video. Related task   Langton's ant   - another well known cellular automaton.
#XSLT
XSLT
<xsl:template match="/table"> <table> <xsl:apply-templates /> </table> </xsl:template>   <xsl:template match="tr"> <tr><xsl:apply-templates /></tr> </xsl:template>   <xsl:template match="td"> <xsl:variable name="liveNeighbours"> <xsl:apply-templates select="current()" mode="countLiveNeighbours" /> </xsl:variable>   <xsl:choose> <xsl:when test="(current() = 'X' and $liveNeighbours = 2) or $liveNeighbours = 3"> <xsl:call-template name="live" /> </xsl:when> <xsl:otherwise> <xsl:call-template name="die" /> </xsl:otherwise> </xsl:choose> </xsl:template>   <xsl:template match="td" mode="countLiveNeighbours"> <xsl:variable name="currentX" select="count(preceding-sibling::td) + 1" /> <xsl:variable name="precedingRow" select="parent::tr/preceding-sibling::tr[1]" /> <xsl:variable name="followingRow" select="parent::tr/following-sibling::tr[1]" />   <xsl:variable name="neighbours" select="$precedingRow/td[$currentX - 1] | $precedingRow/td[$currentX] | $precedingRow/td[$currentX + 1] | preceding-sibling::td[1] | following-sibling::td[1] | $followingRow/td[$currentX - 1] | $followingRow/td[$currentX] | $followingRow/td[$currentX + 1]" />   <xsl:value-of select="count($neighbours[text() = 'X'])" /> </xsl:template>   <xsl:template name="die"> <td>_</td> </xsl:template>   <xsl:template name="live"> <td>X</td> </xsl:template>
http://rosettacode.org/wiki/Colour_pinstripe/Display
Colour pinstripe/Display
The task is to create 1 pixel wide coloured vertical pinstripes with a sufficient number of pinstripes to span the entire width of the graphics display. The pinstripes should either follow the system palette sequence,   or a sequence that includes: black,   red,   green,   blue,   magenta,   cyan,   yellow,   and   white:   after filling the top quarter, switch to a wider 2 pixel wide vertical pinstripe pattern,   halfway down the display, switch to 3 pixel wide vertical pinstripe,   finally to a 4 pixels wide vertical pinstripe for the last quarter of the display. See also   display black and white   print colour
#Nim
Nim
import gintro/[glib, gobject, gtk, gio, cairo]   const Width = 420 Height = 420   const Colors = [[0.0, 0.0, 0.0], [255.0, 0.0, 0.0], [0.0, 255.0, 0.0], [0.0, 0.0, 255.0], [255.0, 0.0, 255.0], [0.0, 255.0, 255.0], [255.0, 255.0, 0.0], [255.0, 255.0, 255.0]]   #---------------------------------------------------------------------------------------------------   proc draw(area: DrawingArea; context: Context) = ## Draw the color bars.   const lineHeight = Height div 4   var y = 0.0 for lineWidth in [1.0, 2.0, 3.0, 4.0]: context.setLineWidth(lineWidth) var x = 0.0 var colorIndex = 0 while x < Width: context.setSource(Colors[colorIndex]) context.moveTo(x, y) context.lineTo(x, y + lineHeight) context.stroke() colorIndex = (colorIndex + 1) mod Colors.len x += lineWidth y += lineHeight   #---------------------------------------------------------------------------------------------------   proc onDraw(area: DrawingArea; context: Context; data: pointer): bool = ## Callback to draw/redraw the drawing area contents.   area.draw(context) result = true   #---------------------------------------------------------------------------------------------------   proc activate(app: Application) = ## Activate the application.   let window = app.newApplicationWindow() window.setSizeRequest(Width, Height) window.setTitle("Color pinstripe")   # Create the drawing area. let area = newDrawingArea() window.add(area)   # Connect the "draw" event to the callback to draw the color bars. discard area.connect("draw", ondraw, pointer(nil))   window.showAll()   #———————————————————————————————————————————————————————————————————————————————————————————————————   let app = newApplication(Application, "Rosetta.ColorPinstripe") discard app.connect("activate", activate) discard app.run()
http://rosettacode.org/wiki/Colour_pinstripe/Display
Colour pinstripe/Display
The task is to create 1 pixel wide coloured vertical pinstripes with a sufficient number of pinstripes to span the entire width of the graphics display. The pinstripes should either follow the system palette sequence,   or a sequence that includes: black,   red,   green,   blue,   magenta,   cyan,   yellow,   and   white:   after filling the top quarter, switch to a wider 2 pixel wide vertical pinstripe pattern,   halfway down the display, switch to 3 pixel wide vertical pinstripe,   finally to a 4 pixels wide vertical pinstripe for the last quarter of the display. See also   display black and white   print colour
#OCaml
OCaml
open Graphics   let () = open_graph ""; let width = size_x () and height = size_y () in let colors = [| black; red; green; blue; magenta; cyan; yellow; white |] in let num_colors = Array.length colors in let h = height / 4 in for i = 1 to 4 do let j = 4 - i in for x = 0 to pred width do set_color colors.((x / i) mod num_colors); moveto x (j * h); lineto x (j * h + h); done done; ignore(read_key())
http://rosettacode.org/wiki/Color_of_a_screen_pixel
Color of a screen pixel
Task Get color information from an arbitrary pixel on the screen, such as the current location of the mouse cursor. The mouse cursor may or may not have to be active in a GUI created by your program. These functions are OS related.
#Raku
Raku
use GD::Raw;   my $file = '/tmp/one-pixel-screen-capture.png';   qqx/screencapture -R 123,456,1,1 $file/;   my $fh = fopen($file, "rb") or die; my $image = gdImageCreateFromPng($fh); my $pixel = gdImageGetPixel($image, 0, 0); my ($red,$green,$blue) = gdImageRed( $image, $pixel), gdImageGreen($image, $pixel), gdImageBlue( $image, $pixel);   say "RGB: $red, $green, $blue";   fclose($fh); unlink $file;
http://rosettacode.org/wiki/Color_of_a_screen_pixel
Color of a screen pixel
Task Get color information from an arbitrary pixel on the screen, such as the current location of the mouse cursor. The mouse cursor may or may not have to be active in a GUI created by your program. These functions are OS related.
#REXX
REXX
/*REXX program obtains the cursor position (within it's window) and displays it's color.*/ parse value cursor() with r c . /*get cursor's location in DOS screen. */   hue=scrRead(r, c, 1, 'A') /*get color of the cursor's location. */ if hue=='00'x then color= 'black' /*or dark grey, dark gray. */ if hue=='01'x then color= 'darkblue' if hue=='02'x then color= 'darkgreen' if hue=='03'x then color= 'darkturquoise' /*or dark cyan. */ if hue=='04'x then color= 'darkred' /*or maroon. */ if hue=='05'x then color= 'darkmagenta' /*or dark pink. */ if hue=='06'x then color= 'orange' /*or dark yellow, orage, brown. */ if hue=='07'x then color= 'gray' /*or grey, gray, dark white. */ if hue=='08'x then color= 'gray' /*or grey, gray, dark white. */ if hue=='09'x then color= 'blue' /*or bright blue. */ if hue=='0A'x then color= 'green' /*or bright green. */ if hue=='0B'x then color= 'turquoise' /*or bright turquoise, cyan, britecyan.*/ if hue=='0C'x then color= 'red' /*or bright red. */ if hue=='0D'x then color= 'magenta' /*or bright magenta, pink, brite pink. */ if hue=='0E'x then color= 'yellow' /*or bright yellow. */ if hue=='0F'x then color= 'white' /*or bright, brite white. */ say 'screen location ('r","c') color is:' color /*display color of char at row, column.*/
http://rosettacode.org/wiki/Color_wheel
Color wheel
Task Write a function to draw a HSV color wheel completely with code. This is strictly for learning purposes only. It's highly recommended that you use an image in an actual application to actually draw the color wheel   (as procedurally drawing is super slow). This does help you understand how color wheels work and this can easily be used to determine a color value based on a position within a circle.
#Run_BASIC
Run BASIC
' ----------------------------------- ' color wheel ' ----------------------------------- global pi pi = 22 / 7 steps = 1   graphic #g, 525, 525     for x =0 to 525 step steps for y =0 to 525 step steps angle = atan2(y - 250, x - 250) * 360 / 2 / pi ' full degrees.... sector = int(angle / 60) ' 60 degree sectors (0 to 5) slope = (angle mod 60) /60 * 255 ' 1 degree sectors.   if sector = 0 then col$ = "255 "; str$( int( slope)); " 0" if sector = 1 then col$ = str$(int(256 - slope)); " 255 0" if sector = 2 then col$ = "0 255 "; str$( int( slope)) if sector = 3 then col$ = "0 "; str$( int( 256 -slope)); " 255" if sector = 4 then col$ = str$(int(slope)); " 0 255" if sector = 5 then col$ = "255 0 "; str$( int( 256 -slope))   red = val( word$( col$, 1)) grn = val( word$( col$, 2)) blu = val( word$( col$, 3)) p = ((x -270)^2 +(y -270)^2)^0.5 / 250 r = min(255,p * red) g = min(255,p * grn) b = min(255,p * blu) if p > 1 then #g "color white" else #g color(r,g,b) #g "set "; x; " "; y next y next x render #g end   function atan2(y,x) if (x = 0) and (y <> 0) then r$ = "Y" if y > 0 then atan2 = pi /2 if y < 0 then atan2 = 3 * pi /2 end if   if y = 0 and (x <> 0) then r$ = "Y" if x > 0 then atan2 = 0 if x < 0 then atan2 = pi end if   If r$ <> "Y" then if x = 0 and y = 0 then atan2 = 0 else baseAngle = atn(abs(y) / abs(x)) if x > 0 then if y > 0 then atan2 = baseAngle If y < 0 then atan2 = 2 * pi - baseAngle end if if x < 0 then If y > 0 then atan2 = pi - baseAngle If y < 0 then atan2 = pi + baseAngle end if end if end if end function
http://rosettacode.org/wiki/Color_wheel
Color wheel
Task Write a function to draw a HSV color wheel completely with code. This is strictly for learning purposes only. It's highly recommended that you use an image in an actual application to actually draw the color wheel   (as procedurally drawing is super slow). This does help you understand how color wheels work and this can easily be used to determine a color value based on a position within a circle.
#Rust
Rust
// [dependencies] // image = "0.23"   use image::error::ImageResult; use image::{Rgb, RgbImage};   fn hsv_to_rgb(h: f64, s: f64, v: f64) -> Rgb<u8> { let hp = h / 60.0; let c = s * v; let x = c * (1.0 - (hp % 2.0 - 1.0).abs()); let m = v - c; let mut r = 0.0; let mut g = 0.0; let mut b = 0.0; if hp <= 1.0 { r = c; g = x; } else if hp <= 2.0 { r = x; g = c; } else if hp <= 3.0 { g = c; b = x; } else if hp <= 4.0 { g = x; b = c; } else if hp <= 5.0 { r = x; b = c; } else { r = c; b = x; } r += m; g += m; b += m; Rgb([(r * 255.0) as u8, (g * 255.0) as u8, (b * 255.0) as u8]) }   fn write_color_wheel(filename: &str, width: u32, height: u32) -> ImageResult<()> { let mut image = RgbImage::new(width, height); let margin = 10; let diameter = std::cmp::min(width, height) - 2 * margin; let xoffset = (width - diameter) / 2; let yoffset = (height - diameter) / 2; let radius = diameter as f64 / 2.0; for x in 0..=diameter { let rx = x as f64 - radius; for y in 0..=diameter { let ry = y as f64 - radius; let r = ry.hypot(rx) / radius; if r > 1.0 { continue; } let a = 180.0 + ry.atan2(-rx).to_degrees(); image.put_pixel(x + xoffset, y + yoffset, hsv_to_rgb(a, r, 1.0)); } } image.save(filename) }   fn main() { match write_color_wheel("color_wheel.png", 400, 400) { Ok(()) => {} Err(error) => eprintln!("{}", error), } }
http://rosettacode.org/wiki/Color_wheel
Color wheel
Task Write a function to draw a HSV color wheel completely with code. This is strictly for learning purposes only. It's highly recommended that you use an image in an actual application to actually draw the color wheel   (as procedurally drawing is super slow). This does help you understand how color wheels work and this can easily be used to determine a color value based on a position within a circle.
#Sidef
Sidef
require('Imager')   var (width, height) = (300, 300) var center = Complex(width/2 , height/2)   var img = %O<Imager>.new(xsize => width, ysize => height)   for y=(^height), x=(^width) { var vector = (center - x - y.i) var magnitude = (vector.abs * 2 / width) var direction = ((Num.pi + atan2(vector.real, vector.imag)) / Num.tau) img.setpixel(x => x, y => y, color => Hash(hsv => [360*direction, magnitude, magnitude < 1 ? 1 : 0]) ) }   img.write(file => 'color_wheel.png')
http://rosettacode.org/wiki/Combinations
Combinations
Task Given non-negative integers   m   and   n,   generate all size   m   combinations   of the integers from   0   (zero)   to   n-1   in sorted order   (each combination is sorted and the entire table is sorted). Example 3   comb   5     is: 0 1 2 0 1 3 0 1 4 0 2 3 0 2 4 0 3 4 1 2 3 1 2 4 1 3 4 2 3 4 If it is more "natural" in your language to start counting from   1   (unity) instead of   0   (zero), the combinations can be of the integers from   1   to   n. See also The number of samples of size k from n objects. With   combinations and permutations   generation tasks. Order Unimportant Order Important Without replacement ( n k ) = n C k = n ( n − 1 ) … ( n − k + 1 ) k ( k − 1 ) … 1 {\displaystyle {\binom {n}{k}}=^{n}\operatorname {C} _{k}={\frac {n(n-1)\ldots (n-k+1)}{k(k-1)\dots 1}}} n P k = n ⋅ ( n − 1 ) ⋅ ( n − 2 ) ⋯ ( n − k + 1 ) {\displaystyle ^{n}\operatorname {P} _{k}=n\cdot (n-1)\cdot (n-2)\cdots (n-k+1)} Task: Combinations Task: Permutations With replacement ( n + k − 1 k ) = n + k − 1 C k = ( n + k − 1 ) ! ( n − 1 ) ! k ! {\displaystyle {\binom {n+k-1}{k}}=^{n+k-1}\operatorname {C} _{k}={(n+k-1)! \over (n-1)!k!}} n k {\displaystyle n^{k}} Task: Combinations with repetitions Task: Permutations with repetitions
#Bracmat
Bracmat
(comb= bvar combination combinations list m n pat pvar var .  !arg:(?m.?n) & ( pat =  ? & !combinations (.!combination):?combinations & ~ ) & :?list:?combination:?combinations & whl ' ( !m+-1:~<0:?m & chu$(utf$a+!m):?var & glf$('(%@?.$var)):(=?pvar) & '(? ()$pvar ()$pat):(=?pat) & glf$('(!.$var)):(=?bvar) & ( '$combination:(=) & '$bvar:(=?combination) | '($bvar ()$combination):(=?combination) ) ) & whl ' (!n+-1:~<0:?n&!n !list:?list) & !list:!pat | !combinations);
http://rosettacode.org/wiki/Conditional_structures
Conditional structures
Control Structures These are examples of control structures. You may also be interested in: Conditional structures Exceptions Flow-control structures Loops Task List the conditional structures offered by a programming language. See Wikipedia: conditionals for descriptions. Common conditional structures include if-then-else and switch. Less common are arithmetic if, ternary operator and Hash-based conditionals. Arithmetic if allows tight control over computed gotos, which optimizers have a hard time to figure out.
#MBS
MBS
INT x; x:=0; IF x = 1 THEN  ! Do something ELSE  ! Do something else ENDIF;
http://rosettacode.org/wiki/Comments
Comments
Task Show all ways to include text in a language source file that's completely ignored by the compiler or interpreter. Related tasks   Documentation   Here_document See also   Wikipedia   xkcd (Humor: hand gesture denoting // for "commenting out" people.)
#Perl
Perl
# this is commented
http://rosettacode.org/wiki/Comments
Comments
Task Show all ways to include text in a language source file that's completely ignored by the compiler or interpreter. Related tasks   Documentation   Here_document See also   Wikipedia   xkcd (Humor: hand gesture denoting // for "commenting out" people.)
#Phix
Phix
-- This is a comment
http://rosettacode.org/wiki/Color_quantization
Color quantization
full color Example: Gimp 16 color Color quantization is the process of reducing number of colors used in an image while trying to maintain the visual appearance of the original image. In general, it is a form of cluster analysis, if each RGB color value is considered as a coordinate triple in the 3D colorspace. There are some well know algorithms [1], each with its own advantages and drawbacks. Task: Take an RGB color image and reduce its colors to some smaller number (< 256). For this task, use the frog as input and reduce colors to 16, and output the resulting colors. The chosen colors should be adaptive to the input image, meaning you should not use a fixed palette such as Web colors or Windows system palette. Dithering is not required. Note: the funny color bar on top of the frog image is intentional.
#OCaml
OCaml
let rem_from rem from = List.filter ((<>) rem) from   let float_rgb (r,g,b) = (* prevents int overflow *) (float r, float g, float b)   let round x = int_of_float (floor (x +. 0.5))   let int_rgb (r,g,b) = (round r, round g, round b)   let rgb_add (r1,g1,b1) (r2,g2,b2) = (r1 +. r2, g1 +. g2, b1 +. b2)   let rgb_mean px_list = let n = float (List.length px_list) in let r, g, b = List.fold_left rgb_add (0.0, 0.0, 0.0) px_list in (r /. n, g /. n, b /. n)   let extrems lst = let min_rgb = (infinity, infinity, infinity) and max_rgb = (neg_infinity, neg_infinity, neg_infinity) in List.fold_left (fun ((sr,sg,sb), (mr,mg,mb)) (r,g,b) -> ((min sr r), (min sg g), (min sb b)), ((max mr r), (max mg g), (max mb b)) ) (min_rgb, max_rgb) lst   let volume_and_dims lst = let (sr,sg,sb), (br,bg,bb) = extrems lst in let dr, dg, db = (br -. sr), (bg -. sg), (bb -. sb) in (dr *. dg *. db), (dr, dg, db)   let make_cluster pixel_list = let vol, dims = volume_and_dims pixel_list in let len = float (List.length pixel_list) in (rgb_mean pixel_list, len *. vol, dims, pixel_list)   type axis = R | G | B let largest_axis (r,g,b) = match compare r g, compare r b with | 1, 1 -> R | -1, 1 -> G | 1, -1 -> B | _ -> match compare g b with | 1 -> G | _ -> B   let subdivide ((mr,mg,mb), n_vol_prod, vol, pixels) = let part_func = match largest_axis vol with | R -> (fun (r,_,_) -> r < mr) | G -> (fun (_,g,_) -> g < mg) | B -> (fun (_,_,b) -> b < mb) in let px1, px2 = List.partition part_func pixels in (make_cluster px1, make_cluster px2)   let color_quant img n = let width, height = get_dims img in let clusters = let lst = ref [] in for x = 0 to pred width do for y = 0 to pred height do let rgb = float_rgb (get_pixel_unsafe img x y) in lst := rgb :: !lst done; done; ref [make_cluster !lst] in while (List.length !clusters) < n do let dumb = (0.0,0.0,0.0) in let unused = (dumb, neg_infinity, dumb, []) in let select ((_,v1,_,_) as c1) ((_,v2,_,_) as c2) = if v1 > v2 then c1 else c2 in let cl = List.fold_left (fun c1 c2 -> select c1 c2) unused !clusters in let cl1, cl2 = subdivide cl in clusters := cl1 :: cl2 :: (rem_from cl !clusters) done; let module PxMap = Map.Make (struct type t = float * float * float let compare = compare end) in let m = List.fold_left (fun m (mean, _, _, pixel_list) -> let int_mean = int_rgb mean in List.fold_left (fun m px -> PxMap.add px int_mean m) m pixel_list ) PxMap.empty !clusters in let res = new_img ~width ~height in for y = 0 to pred height do for x = 0 to pred width do let rgb = float_rgb (get_pixel_unsafe img x y) in let mean_rgb = PxMap.find rgb m in put_pixel_unsafe res mean_rgb x y; done; done; (res)
http://rosettacode.org/wiki/Conway%27s_Game_of_Life
Conway's Game of Life
The Game of Life is a   cellular automaton   devised by the British mathematician   John Horton Conway   in 1970.   It is the best-known example of a cellular automaton. Conway's game of life is described   here: A cell   C   is represented by a   1   when alive,   or   0   when dead,   in an   m-by-m   (or m×m)   square array of cells. We calculate   N   - the sum of live cells in C's   eight-location neighbourhood,   then cell   C   is alive or dead in the next generation based on the following table: C N new C 1 0,1 -> 0 # Lonely 1 4,5,6,7,8 -> 0 # Overcrowded 1 2,3 -> 1 # Lives 0 3 -> 1 # It takes three to give birth! 0 0,1,2,4,5,6,7,8 -> 0 # Barren Assume cells beyond the boundary are always dead. The "game" is actually a zero-player game, meaning that its evolution is determined by its initial state, needing no input from human players.   One interacts with the Game of Life by creating an initial configuration and observing how it evolves. Task Although you should test your implementation on more complex examples such as the   glider   in a larger universe,   show the action of the blinker   (three adjoining cells in a row all alive),   over three generations, in a 3 by 3 grid. References   Its creator John Conway, explains   the game of life.   Video from numberphile on youtube.   John Conway   Inventing Game of Life   - Numberphile video. Related task   Langton's ant   - another well known cellular automaton.
#Z80_Assembly
Z80 Assembly
;MSX Bios calls CHPUT equ 000A2H ;print character A CHGET equ 0009FH ;wait for keyboard input INITXT equ 0006CH ;init TEXT1 mode (40 x 24), based on TXTNAM,TXTCGP and LINL40 LDIRVM equ 0005CH ;write BC times MEM(HL++) to VRAM(DE++)   ;MSX system variables TXTNAM equ 0F3B3H ;pattern name table TXTCGP equ 0F3B7H ;pattern generator table LINL40 equ 0F3AEH ;line length   ;defines LIFE_CHAR equ 0xDB ;MSX all-pixels-on character   ;variables screen equ 0E000H ;40x24 bytes scratch equ screen+(40*24) ;table for calculations     org 04000H ;********************************************************************* HEADER ;first 16 bytes of the rom. (as specified by MSX standard) ;********************************************************************* db "AB" ;id dw Main ;init dw 0 ;statement dw 0 ;device dw 0 ;text dw 0 ;reserved dw 0 ;reserved dw 0 ;reserved   init_tab1 db 0x18 dc 7, 0x17 db " Conway's Game Of Life " dc 8, 0x17 db 0x19 db 0x16 dc 38, " " db 0x16, 0x1A dc 38, 0x17 db 0x1B init_tab2 dc 41, 0x80 dc 38, 0 dc 41, 0x80   INITLINES equ 10 init_tab3 db " " db " X " db " X X " db " XX XX XX " db " X X XX XX " db " XX X X XX " db " XX X X XX X X " db " X X X " db " X X " db " XX "   Expand ld bc, 40 ldir ;copy top line push de ld bc, 40 ldir ;copy first middle line ex (sp), hl ld bc, 40*21 ldir ;repeat middle line pop hl ld bc, 40 ;copy bottom line ldir ret   InitGOL ;create empty screen ld hl, init_tab1 ld de, screen call Expand ;Now add intial pattern if INITLINES ld hl, init_tab3 ;glider gun start pattern ld de, init_tab3 ;de=hl, so ldi does not change RAM ld bc, 40*INITLINES ld ix, screen+40 InitGOLl ld a, (hl) cp 'X' jr nz, InitGOLe ld (ix), LIFE_CHAR InitGOLe inc ix ldi ;hl++ and bc-- (with flag!) jp pe, InitGOLl else ld hl, screen+(4*40)+18 ld a, LIFE_CHAR ;blinker start pattern ld (hl), a inc hl ld (hl), a inc hl ld (hl), a endif ret   DoGOL ld hl, init_tab2 ;initialize scratchpad (sums to zero, borders marked) ld de, scratch call Expand ;first loop: create sums in scratchpad ld bc, 40*24 ld hl, screen ld de, screen ;de=hl, so ldi does not change RAM ld ix, scratch DoGOLsuml ld a, (hl) cp LIFE_CHAR ;if cell is alive increase sums of all surrounding cells jr nz, DoGOLsume inc (ix-41) inc (ix-40) inc (ix-39) inc (ix-1) inc (ix+1) inc (ix+39) inc (ix+40) inc (ix+41) DoGOLsume inc ix ldi ;hl++, bc-- (with flag!) jp pe, DoGOLsuml ;second loop: update cell based on current state and sum ld bc, 40*24 ld hl, screen ld de, screen ;de=hl, so ldi does not change RAM ld ix, scratch DoGOLupdl ld a, (ix) cp 0x7f ;border -> keep the same jr nc, DoGOLupde cp 3 ;3 neighbors-> always live jr z, DoGOLlive cp 2 jr z, DoGOLupde ;2 -> stay the same DoGOLdie ld (hl), 0x20 ;1,4,5,6,7,8 -> always die jr DoGoLupde DoGOLlive ld (hl), LIFE_CHAR DoGOLupde inc ix ldi ;hl++, bc-- (with flag!) jp pe, DoGOLupdl ret   ;********************************************************************* Main ;********************************************************************* call INITXT call InitGOL Mainloop ld hl, screen ld de, (TXTNAM) ld bc, 40*24 call LDIRVM ;call CHGET call DoGOL jr Mainloop   ;force 16k ROM size binary output EndOfCode dc 0x8000 - EndOfCode, 0xFF end
http://rosettacode.org/wiki/Colour_pinstripe/Display
Colour pinstripe/Display
The task is to create 1 pixel wide coloured vertical pinstripes with a sufficient number of pinstripes to span the entire width of the graphics display. The pinstripes should either follow the system palette sequence,   or a sequence that includes: black,   red,   green,   blue,   magenta,   cyan,   yellow,   and   white:   after filling the top quarter, switch to a wider 2 pixel wide vertical pinstripe pattern,   halfway down the display, switch to 3 pixel wide vertical pinstripe,   finally to a 4 pixels wide vertical pinstripe for the last quarter of the display. See also   display black and white   print colour
#Perl
Perl
#!/usr/bin/perl -w use strict ; use GD ;   my $image = new GD::Image( 320 , 240 ) ; my %colors = ( "white" => [ 255 , 255 , 255 ] , "red" => [255 , 0 , 0 ] , "green" => [ 0 , 255 , 0 ] , "blue" => [ 0 , 0 , 255 ] , "magenta" => [ 255 , 0 , 255 ] , "yellow" => [ 255 , 255 , 0 ] , "cyan" => [ 0 , 255 , 255 ] , "black" => [ 0 , 0 , 0 ] ) ; my @paintcolors ; foreach my $color ( keys %colors ) { my $paintcolor = $image->colorAllocate( @{$colors{ $color }} ) ; push @paintcolors, $paintcolor ; } my $startx = 0 ; my $starty = 0 ; my $run = 0 ; my $barheight = 240 / 4 ; my $colorindex = 0 ; while ( $run < 4 ) { my $barwidth = $run + 1 ; while ( $startx + $barwidth < 320 ) { $image->filledRectangle( $startx , $starty , $startx + $barwidth , $starty + $barheight - 1 , $paintcolors[ $colorindex % 8 ] ) ; $startx += $barwidth ; $colorindex++ ; } $starty += $barheight ; $startx = 0 ; $colorindex = 0 ; $run++ ; } open ( DISPLAY , ">" , "pinstripes.png" ) || die ; binmode DISPLAY ; print DISPLAY $image->png ; close DISPLAY ;
http://rosettacode.org/wiki/Color_of_a_screen_pixel
Color of a screen pixel
Task Get color information from an arbitrary pixel on the screen, such as the current location of the mouse cursor. The mouse cursor may or may not have to be active in a GUI created by your program. These functions are OS related.
#Ring
Ring
  # Project : Color of a screen pixel   Load "gamelib.ring" r = 0 g = 0 b = 0 al_init() al_init_image_addon() display = al_create_display(1000,800) al_set_target_bitmap(al_get_backbuffer(display)) al_clear_to_color(al_map_rgb(255,255,255)) image = al_load_bitmap("stock.jpg") al_draw_rotated_bitmap(image,0,0,250,250,150,0) al_draw_scaled_bitmap(image,0,0,250,250,20,20,400,400,0) ring_getpixel(image,300,300) see "r = " + r + nl see "g = " + g + nl see "b = " + b + nl al_flip_display() al_rest(2) al_destroy_bitmap(image) al_destroy_display(display)   func ring_getpixel(image,x,y) newcolor = al_get_pixel(image,x,y) r=copy(" ",4) g=copy(" ",4) b=copy(" ",4) p1 = VarPtr("r","float") p2 = VarPtr("g","float") p3 = VarPtr("b","float") al_unmap_rgb_f(newcolor, p1 , p2 , p3 ) r = bytes2float(r) g = bytes2float(g) b = bytes2float(b) return [r,g,b]  
http://rosettacode.org/wiki/Color_of_a_screen_pixel
Color of a screen pixel
Task Get color information from an arbitrary pixel on the screen, such as the current location of the mouse cursor. The mouse cursor may or may not have to be active in a GUI created by your program. These functions are OS related.
#Ruby
Ruby
module Screen IMPORT_COMMAND = '/usr/bin/import'   # Returns an array with RGB values for the pixel at the given coords def self.pixel(x, y) if m = `#{IMPORT_COMMAND} -silent -window root -crop 1x1+#{x.to_i}+#{y.to_i} -depth 8 txt:-`.match(/\((\d+),(\d+),(\d+)\)/) m[1..3].map(&:to_i) else false end end end
http://rosettacode.org/wiki/Color_of_a_screen_pixel
Color of a screen pixel
Task Get color information from an arbitrary pixel on the screen, such as the current location of the mouse cursor. The mouse cursor may or may not have to be active in a GUI created by your program. These functions are OS related.
#Scala
Scala
def getColorAt(x: Int, y: Int): Color = new Robot().getPixelColor(x, y)
http://rosettacode.org/wiki/Color_wheel
Color wheel
Task Write a function to draw a HSV color wheel completely with code. This is strictly for learning purposes only. It's highly recommended that you use an image in an actual application to actually draw the color wheel   (as procedurally drawing is super slow). This does help you understand how color wheels work and this can easily be used to determine a color value based on a position within a circle.
#Smart_BASIC
Smart BASIC
' Runs on iOS GET SCREEN SIZE sw,sh xmax=0.45*3/7*(sw+sh) x0=sw/2!y0=sh/2 twopi=2*3.1415926 GRAPHICS GRAPHICS CLEAR DIM triX(1000), triY(1000) triX(0)=x0 ! triY(0)=y0 steps=INT(1^2*360)+1 dAngle=twopi/steps dAngle2=dAngle/2 REFRESH OFF FOR i=0 TO steps-1 pal(i/steps+TintOffset) ANGLE=i*dAngle FILL COLOR pal.r,pal.g,pal.b DRAW COLOR pal.r,pal.g,pal.b x=x0+(xmax-radius)*COS(ANGLE) y=y0-(xmax-radius)*SIN(ANGLE) k=0 FOR j=-dAngle2 TO dAngle2 STEP 0.02 k+=1 triX(k)=x0+xmax*COS(ANGLE+j) triY(k)=y0-xmax*SIN(ANGLE+j) NEXT j k+=1 triX(k)=x0+xmax*COS(ANGLE+dAngle2) triY(k)=y0-xmax*SIN(ANGLE+dAngle2) DRAW POLY triX,triY COUNT k+1 FILL POLY triX,triY COUNT k+1 NEXT i REFRESH ON END   DEF pal(tint) tint=tint*360 h=(tint%360)/60 ! f=FRACT(h) ! z=1-f ! ic=FLOOR(h)+1 ON ic GOTO s1,s2,s3,s4,s5,s6 s1: r=1 ! g=f ! b=0 ! GOTO done s2: r=z ! g=1 ! b=0 ! GOTO done s3: r=0 ! g=1 ! b=f ! GOTO done s4: r=0 ! g=z ! b=1 ! GOTO done s5: r=f ! g=0 ! b=1 ! GOTO done s6: r=1 ! g=0 ! b=z ! done: END DEF
http://rosettacode.org/wiki/Color_wheel
Color wheel
Task Write a function to draw a HSV color wheel completely with code. This is strictly for learning purposes only. It's highly recommended that you use an image in an actual application to actually draw the color wheel   (as procedurally drawing is super slow). This does help you understand how color wheels work and this can easily be used to determine a color value based on a position within a circle.
#Wren
Wren
import "graphics" for Canvas, Color import "dome" for Window import "random" for Random   class Game { static init() { Window.title = "Color Wheel" __width = 640 __height = 640 Window.resize(__width, __height) Canvas.resize(__width, __height) colorWheel() }   static colorWheel() { var cx = (__width/2).floor var cy = (__height/2).floor var r = (cx < cy) ? cx : cy for (y in 0...__height) { var dy = y - cy for (x in 0...__width) { var dx = x - cx var dist = (dx*dx + dy*dy).sqrt if (dist <= r) { var theta = dy.atan(dx) var h = (theta + Num.pi) / Num.pi * 180 var col = Color.hsv(h, dist/r, 1) Canvas.pset(x, y, col) } } } }   static update() {}   static draw(alpha) {} }
http://rosettacode.org/wiki/Combinations
Combinations
Task Given non-negative integers   m   and   n,   generate all size   m   combinations   of the integers from   0   (zero)   to   n-1   in sorted order   (each combination is sorted and the entire table is sorted). Example 3   comb   5     is: 0 1 2 0 1 3 0 1 4 0 2 3 0 2 4 0 3 4 1 2 3 1 2 4 1 3 4 2 3 4 If it is more "natural" in your language to start counting from   1   (unity) instead of   0   (zero), the combinations can be of the integers from   1   to   n. See also The number of samples of size k from n objects. With   combinations and permutations   generation tasks. Order Unimportant Order Important Without replacement ( n k ) = n C k = n ( n − 1 ) … ( n − k + 1 ) k ( k − 1 ) … 1 {\displaystyle {\binom {n}{k}}=^{n}\operatorname {C} _{k}={\frac {n(n-1)\ldots (n-k+1)}{k(k-1)\dots 1}}} n P k = n ⋅ ( n − 1 ) ⋅ ( n − 2 ) ⋯ ( n − k + 1 ) {\displaystyle ^{n}\operatorname {P} _{k}=n\cdot (n-1)\cdot (n-2)\cdots (n-k+1)} Task: Combinations Task: Permutations With replacement ( n + k − 1 k ) = n + k − 1 C k = ( n + k − 1 ) ! ( n − 1 ) ! k ! {\displaystyle {\binom {n+k-1}{k}}=^{n+k-1}\operatorname {C} _{k}={(n+k-1)! \over (n-1)!k!}} n k {\displaystyle n^{k}} Task: Combinations with repetitions Task: Permutations with repetitions
#C
C
#include <stdio.h>   /* Type marker stick: using bits to indicate what's chosen. The stick can't * handle more than 32 items, but the idea is there; at worst, use array instead */ typedef unsigned long marker; marker one = 1;   void comb(int pool, int need, marker chosen, int at) { if (pool < need + at) return; /* not enough bits left */   if (!need) { /* got all we needed; print the thing. if other actions are * desired, we could have passed in a callback function. */ for (at = 0; at < pool; at++) if (chosen & (one << at)) printf("%d ", at); printf("\n"); return; } /* if we choose the current item, "or" (|) the bit to mark it so. */ comb(pool, need - 1, chosen | (one << at), at + 1); comb(pool, need, chosen, at + 1); /* or don't choose it, go to next */ }   int main() { comb(5, 3, 0, 0); return 0; }
http://rosettacode.org/wiki/Conditional_structures
Conditional structures
Control Structures These are examples of control structures. You may also be interested in: Conditional structures Exceptions Flow-control structures Loops Task List the conditional structures offered by a programming language. See Wikipedia: conditionals for descriptions. Common conditional structures include if-then-else and switch. Less common are arithmetic if, ternary operator and Hash-based conditionals. Arithmetic if allows tight control over computed gotos, which optimizers have a hard time to figure out.
#MDL
MDL
<COND (<==? .X 1> <PRINC "one">) (<==? .X 2> <PRINC "two">) (T <PRINC "something else">)>
http://rosettacode.org/wiki/Comments
Comments
Task Show all ways to include text in a language source file that's completely ignored by the compiler or interpreter. Related tasks   Documentation   Here_document See also   Wikipedia   xkcd (Humor: hand gesture denoting // for "commenting out" people.)
#PHP
PHP
# this is commented // this is commented
http://rosettacode.org/wiki/Comments
Comments
Task Show all ways to include text in a language source file that's completely ignored by the compiler or interpreter. Related tasks   Documentation   Here_document See also   Wikipedia   xkcd (Humor: hand gesture denoting // for "commenting out" people.)
#Picat
Picat
  /* * Multi-line comment */   % Single-line Prolog-style comment  
http://rosettacode.org/wiki/Color_quantization
Color quantization
full color Example: Gimp 16 color Color quantization is the process of reducing number of colors used in an image while trying to maintain the visual appearance of the original image. In general, it is a form of cluster analysis, if each RGB color value is considered as a coordinate triple in the 3D colorspace. There are some well know algorithms [1], each with its own advantages and drawbacks. Task: Take an RGB color image and reduce its colors to some smaller number (< 256). For this task, use the frog as input and reduce colors to 16, and output the resulting colors. The chosen colors should be adaptive to the input image, meaning you should not use a fixed palette such as Web colors or Windows system palette. Dithering is not required. Note: the funny color bar on top of the frog image is intentional.
#Perl
Perl
use strict; use warnings;   use Imager;   my $img = Imager->new; $img->read(file => 'frog.png'); my $img16 = $img->to_paletted({ max_colors => 16}); $img16->write(file => "frog-16.png")
http://rosettacode.org/wiki/Color_quantization
Color quantization
full color Example: Gimp 16 color Color quantization is the process of reducing number of colors used in an image while trying to maintain the visual appearance of the original image. In general, it is a form of cluster analysis, if each RGB color value is considered as a coordinate triple in the 3D colorspace. There are some well know algorithms [1], each with its own advantages and drawbacks. Task: Take an RGB color image and reduce its colors to some smaller number (< 256). For this task, use the frog as input and reduce colors to 16, and output the resulting colors. The chosen colors should be adaptive to the input image, meaning you should not use a fixed palette such as Web colors or Windows system palette. Dithering is not required. Note: the funny color bar on top of the frog image is intentional.
#Phix
Phix
-- demo\rosetta\Color_quantization.exw include pGUI.e   function makeCluster(sequence pixels) sequence rs = vslice(pixels,1), gs = vslice(pixels,2), bs = vslice(pixels,3) integer n = length(pixels), rd = max(rs)-min(rs), gd = max(gs)-min(gs), bd = max(bs)-min(bs) atom score = n*rd*gd*bd -- atom score = n*(rd+gd+bd) -- (this is how/where to experiment) sequence centroid = sq_round({sum(rs)/n,sum(gs)/n,sum(bs)/n}), ranges = {rd,gd,bd} return {score,centroid,ranges,pixels} end function   function colorQuant(imImage img, integer n) integer width = im_width(img), height = im_width(img) -- Extract the original pixels from the image sequence original = {} integer dx = 1 for y=height-1 to 0 by -1 do for x=0 to width-1 do original = append(original,im_pixel(img, x, y)&dx) dx += 1 end for end for -- Divide pixels into clusters sequence cs = {makeCluster(original)}, unsplittable={}, centroid, volume, pixels while length(cs)<n do cs = sort(cs) -- cs = reverse(sort(cs)) -- (to deliberately show a much worse result) {?,centroid,volume,pixels} = cs[$] integer {vr,vg,vb} = volume integer pdx = iff(vr>vg and vr>vb?1:iff(vg>vb?2:3)), c = centroid[pdx] -- (ie r=1, g=2, b=3) sequence p1 = {}, p2 = {} for i=1 to length(pixels) do sequence p = pixels[i] if p[pdx]<c then p1 = append(p1,p) else p2 = append(p2,p) end if end for if length(p1) and length(p2) then cs[$] = makeCluster(p1) cs = append(cs,makeCluster(p2)) else  ?"unsplittable" unsplittable = append(unsplittable,cs[$]) cs = cs[1..$-1] n -= 1 end if end while cs &= unsplittable -- substitute all pixels with the centroid (aka cluster average) for i=1 to length(cs) do {?,centroid,?,pixels} = cs[i] for p=1 to length(pixels) do dx = pixels[p][4] original[dx] = centroid end for end for original = flatten(original) -- (needed for IupImageRGB) Ihandle new_img = IupImageRGB(width, height, original) return new_img end function   IupOpen()   atom pError = allocate(machine_word()) imImage im1 = imFileImageLoadBitmap("Quantum_frog.png",0,pError) if im1=NULL then ?"error opening Quantum_frog.png" abort(0) end if -- stolen from simple_paint (else im_pixel crashed): -- we are going to support only RGB images with no alpha imImageRemoveAlpha(im1) if im_color_space(im1)!=IM_RGB then imImage new_image = imImageCreateBased(im1, -1, -1, IM_RGB, -1) imConvertColorSpace(im1, new_image) im1 = imImageDestroy(im1) im1 = new_image end if   Ihandln image1 = IupImageFromImImage(im1), image2 = colorQuant(im1,16), label1 = IupLabel(), label2 = IupLabel() IupSetAttributeHandle(label1, "IMAGE", image1) IupSetAttributeHandle(label2, "IMAGE", image2)   Ihandle dlg = IupDialog(IupHbox({label1, label2})) IupSetAttribute(dlg, "TITLE", "Color quantization") IupShow(dlg)   IupMainLoop() IupClose()
http://rosettacode.org/wiki/Conway%27s_Game_of_Life
Conway's Game of Life
The Game of Life is a   cellular automaton   devised by the British mathematician   John Horton Conway   in 1970.   It is the best-known example of a cellular automaton. Conway's game of life is described   here: A cell   C   is represented by a   1   when alive,   or   0   when dead,   in an   m-by-m   (or m×m)   square array of cells. We calculate   N   - the sum of live cells in C's   eight-location neighbourhood,   then cell   C   is alive or dead in the next generation based on the following table: C N new C 1 0,1 -> 0 # Lonely 1 4,5,6,7,8 -> 0 # Overcrowded 1 2,3 -> 1 # Lives 0 3 -> 1 # It takes three to give birth! 0 0,1,2,4,5,6,7,8 -> 0 # Barren Assume cells beyond the boundary are always dead. The "game" is actually a zero-player game, meaning that its evolution is determined by its initial state, needing no input from human players.   One interacts with the Game of Life by creating an initial configuration and observing how it evolves. Task Although you should test your implementation on more complex examples such as the   glider   in a larger universe,   show the action of the blinker   (three adjoining cells in a row all alive),   over three generations, in a 3 by 3 grid. References   Its creator John Conway, explains   the game of life.   Video from numberphile on youtube.   John Conway   Inventing Game of Life   - Numberphile video. Related task   Langton's ant   - another well known cellular automaton.
#Yabasic
Yabasic
// Conway's_Game_of_Life   X = 59 : Y = 35 : H = 4   open window X*H,Y*H backcolor 0, 0, 0   dim c(X,Y) : dim cn(X,Y) : dim cl(X,Y)   // Thunderbird methuselah c(X/2-1,Y/3+1) = 1 : c(X/2,Y/3+1) = 1 : c(X/2+1,Y/3+1) = 1 c(X/2,Y/3+3) = 1 : c(X/2,Y/3+4) = 1 : c(X/2,Y/3+5) = 1   s = 0 repeat clear window alive = 0 : stable = 1 s = s + 1 for y = 0 to Y-1 for x = 0 to X-1 xm1 = mod(x-1+X, X) : xp1 = mod(x+1+X, X) ym1 = mod(y-1+Y, Y) : yp1 = mod(y+1+Y, Y) cn(x,y) = c(xm1,y) + c(xp1,y) cn(x,y) = c(xm1,ym1) + c(x,ym1) + c(xp1,ym1) + cn(x,y) cn(x,y) = c(xm1,yp1) + c(x,yp1) + c(xp1,yp1) + cn(x,y) if c(x,y) = 1 then if cn(x,y) < 2 or cn(x,y) > 3 then cn(x,y) = 0 else cn(x,y) = 1 alive = alive + 1 end if else if cn(x,y) = 3 then cn(x,y) = 1 alive = alive + 1 else cn(x,y) = 0 end if end if if c(x,y) then if cn(x,y) then if cl(x,y) color 0, 0, 255 // adult if not cl(x,y) color 0, 255, 0 // newborn else if cl(x,y) color 255, 0, 0 // old if not cl(x,y) color 255, 255, 0 // shortlived end if fill rect x*H,y*H,x*H+H,y*H+H end if next x next y   pause 0.06 // Copy arrays for i = 0 to X-1 for j = 0 to Y-1 if cl(i,j)<>cn(i,j) stable = 0 cl(i,j) = c(i,j) c(i,j) = cn(i,j) next j next i until(not alive or stable)   if not alive then print "Died in ", s, " iterations" clear window else print "Stabilized in ", s-2, " iterations" end if
http://rosettacode.org/wiki/Colour_pinstripe/Display
Colour pinstripe/Display
The task is to create 1 pixel wide coloured vertical pinstripes with a sufficient number of pinstripes to span the entire width of the graphics display. The pinstripes should either follow the system palette sequence,   or a sequence that includes: black,   red,   green,   blue,   magenta,   cyan,   yellow,   and   white:   after filling the top quarter, switch to a wider 2 pixel wide vertical pinstripe pattern,   halfway down the display, switch to 3 pixel wide vertical pinstripe,   finally to a 4 pixels wide vertical pinstripe for the last quarter of the display. See also   display black and white   print colour
#Phix
Phix
-- -- demo\rosetta\Colour_pinstripe.exw -- ================================= -- with javascript_semantics -- but not yet CD_PRINTER include pGUI.e constant colours = {CD_BLACK, CD_RED, CD_GREEN, CD_MAGENTA, CD_CYAN, CD_YELLOW, CD_WHITE} --constant colours = {CD_BLACK, CD_WHITE} procedure draw_to(cdCanvas cdcanvas) cdCanvasActivate(cdcanvas) integer {width, height} = cdCanvasGetSize(cdcanvas) for y=1 to 4 do integer x = 0, c = 1, h = floor(height/(5-y)) while x<width do cdCanvasSetForeground(cdcanvas, colours[c]) cdCanvasBox(cdcanvas, x, x+y, height-h, height) x += y c = iff(c=length(colours)?1:c+1) end while height -= h end for cdCanvasFlush(cdcanvas) end procedure Ihandle dlg, canvas cdCanvas cddbuffer, cdcanvas function redraw_cb(Ihandle /*ih*/) draw_to(cddbuffer) return IUP_DEFAULT end function function map_cb(Ihandle ih) cdcanvas = cdCreateCanvas(CD_IUP, ih) cddbuffer = cdCreateCanvas(CD_DBUFFER, cdcanvas) return IUP_DEFAULT end function function unmap_cb(Ihandle /*ih*/) cdKillCanvas(cddbuffer) cdKillCanvas(cdcanvas) return IUP_DEFAULT end function function print_cb(Ihandle /*ih*/) if platform()!=JS then cdCanvan print_canvas = cdCreateCanvas(CD_PRINTER, "pinstripe -d") if print_canvas!=NULL then draw_to(print_canvas) cdKillCanvas(print_canvas) end if end if return IUP_DEFAULT end function function exit_cb(Ihandle /*ih*/) return IUP_CLOSE end function procedure main() IupOpen() Ihandle file_menu = IupMenu({IupMenuItem("&Print",Icallback("print_cb")), IupMenuItem("E&xit", Icallback("exit_cb"))}) Ihandle main_menu = IupMenu({IupSubmenu("File", file_menu)}) canvas = IupCanvas(NULL) IupSetAttribute(canvas, "RASTERSIZE", "600x400") -- initial size IupSetCallback(canvas, "MAP_CB", Icallback("map_cb")) IupSetCallback(canvas, "UNMAP_CB", Icallback("unmap_cb")) dlg = IupDialog(canvas) IupSetAttribute(dlg, "TITLE", "Colour pinstripe") IupSetAttributeHandle(dlg,"MENU",main_menu) IupSetCallback(canvas, "ACTION", Icallback("redraw_cb")) IupShowXY(dlg,IUP_CENTER,IUP_CENTER) IupSetAttribute(canvas, "RASTERSIZE", NULL) -- release the minimum limitation if platform()!=JS then IupMainLoop() IupClose() end if end procedure main()
http://rosettacode.org/wiki/Color_of_a_screen_pixel
Color of a screen pixel
Task Get color information from an arbitrary pixel on the screen, such as the current location of the mouse cursor. The mouse cursor may or may not have to be active in a GUI created by your program. These functions are OS related.
#Smalltalk
Smalltalk
Display rootView colorAt:(10@10). Display rootView colorAt:(Display pointerPosition)
http://rosettacode.org/wiki/Color_of_a_screen_pixel
Color of a screen pixel
Task Get color information from an arbitrary pixel on the screen, such as the current location of the mouse cursor. The mouse cursor may or may not have to be active in a GUI created by your program. These functions are OS related.
#Standard_ML
Standard ML
open XWindows ; val disp = XOpenDisplay "" ;   val im = let val pos = #4 (XQueryPointer (RootWindow disp)) ; in XGetImage (RootWindow disp) (MakeRect pos (AddPoint(pos,XPoint{x=1,y=1})) ) AllPlanes ZPixmap end;   XGetPixel disp im (XPoint {x=0,y=0}) ;
http://rosettacode.org/wiki/Color_of_a_screen_pixel
Color of a screen pixel
Task Get color information from an arbitrary pixel on the screen, such as the current location of the mouse cursor. The mouse cursor may or may not have to be active in a GUI created by your program. These functions are OS related.
#Tcl
Tcl
package require Tcl 8.5 package require Tk   # Farm out grabbing the screen to an external program. # If it was just for a Tk window, we'd use the tkimg library instead proc grabScreen {image} { set pipe [open {|xwd -root -silent | convert xwd:- ppm:-} rb] $image put [read $pipe] close $pipe } # Get the RGB data for a particular pixel (global coords) proc getPixelAtPoint {x y} { set buffer [image create photo] grabScreen $buffer set data [$image get $x $y] image delete $buffer return $data }   # Demo... puts [format "pixel at mouse: (%d,%d,%d)" \ {*}[getPixelAtPoint {*}[winfo pointerxy .]]]
http://rosettacode.org/wiki/Color_wheel
Color wheel
Task Write a function to draw a HSV color wheel completely with code. This is strictly for learning purposes only. It's highly recommended that you use an image in an actual application to actually draw the color wheel   (as procedurally drawing is super slow). This does help you understand how color wheels work and this can easily be used to determine a color value based on a position within a circle.
#XPL0
XPL0
def Radius = 480/2; real Hue, Sat, Dist, I, F, P, Q, T; real XX, YY, RR, GG, BB; int X, Y, R, G, B; def Pi = 3.141592654; def V = 1.; \Value [SetVid($112); \640x480x24 graphics for Y:= -Radius to Radius do for X:= -Radius to Radius do [XX:= float(X); YY:= float(Y); Dist:= sqrt(XX*XX + YY*YY); if Dist <= float(Radius) then [Sat:= Dist/float(Radius); \0 >= Sat <= 1 Hue:= ATan2(YY, XX); \-Pi >= Hue <= Pi if Hue < 0. then Hue:= Hue + 2.*Pi; Hue:= Hue * 180./Pi; \radians to degrees Hue:= Hue / 60.; \0 >= Hue < 6 I:= Floor(Hue); \integer part of Hue F:= Hue - I; \fractional part of Hue P:= 1. - Sat; Q:= 1. - Sat*F; T:= 1. - Sat*(1.-F); case fix(I) of 0: [RR:= V; GG:= T; BB:= P]; 1: [RR:= Q; GG:= V; BB:= P]; 2: [RR:= P; GG:= V; BB:= T]; 3: [RR:= P; GG:= Q; BB:= V]; 4: [RR:= T; GG:= P; BB:= V]; 5: [RR:= V; GG:= P; BB:= Q] other [exit 1]; R:= fix(RR*255.); G:= fix(GG*255.); B:= fix(BB*255.); Point(X+Radius, Radius-Y, R<<16+G<<8+B); ]; ]; ]
http://rosettacode.org/wiki/Color_wheel
Color wheel
Task Write a function to draw a HSV color wheel completely with code. This is strictly for learning purposes only. It's highly recommended that you use an image in an actual application to actually draw the color wheel   (as procedurally drawing is super slow). This does help you understand how color wheels work and this can easily be used to determine a color value based on a position within a circle.
#zkl
zkl
var w=300,h=300,out=PPM(w,h); colorWheel(out); out.writeJPGFile("colorWheel.zkl.jpg");   fcn colorWheel(ppm){ zero,R:=ppm.w/2, zero; foreach x,y in (w,h){ v,hue:=(x - zero).toFloat().toPolar(y - zero); if(v<=R){ // only render in the circle if((hue = hue.toDeg())<0) hue+=360; // (-pi..pi] to [0..2pi) s:=v/R; // scale saturation zero at center to 1 at edge ppm[x,y]=hsv2rgb(hue,1.0,s); } } }   fcn hsv2rgb(hue,v,s){ // 0<=H<360, 0<=v(brightness)<=1, 0<=saturation<=1 // --> 24 bit RGB each R,G,B in [0..255] to24bit:=fcn(r,g,b,m){ r,g,b=((r+m)*255).toInt(),((g+m)*255).toInt(),((b+m)*255).toInt(); r*0x10000 + g*0x100 + b }; c:=v*s; x:=c*(1.0 - (hue.toFloat()/60%2 - 1).abs()); m:=v - c; if (0 <=hue< 60) return(to24bit(c, x, 0.0,m)); else if(60 <=hue<120) return(to24bit(x, c, 0.0,m)); else if(120<=hue<180) return(to24bit(0.0,c, x, m)); else if(180<=hue<240) return(to24bit(0.0,x, c, m)); else if(240<=hue<300) return(to24bit(x, 0.0,c, m)); else return(to24bit(c, 0.0,x, m)); }
http://rosettacode.org/wiki/Combinations
Combinations
Task Given non-negative integers   m   and   n,   generate all size   m   combinations   of the integers from   0   (zero)   to   n-1   in sorted order   (each combination is sorted and the entire table is sorted). Example 3   comb   5     is: 0 1 2 0 1 3 0 1 4 0 2 3 0 2 4 0 3 4 1 2 3 1 2 4 1 3 4 2 3 4 If it is more "natural" in your language to start counting from   1   (unity) instead of   0   (zero), the combinations can be of the integers from   1   to   n. See also The number of samples of size k from n objects. With   combinations and permutations   generation tasks. Order Unimportant Order Important Without replacement ( n k ) = n C k = n ( n − 1 ) … ( n − k + 1 ) k ( k − 1 ) … 1 {\displaystyle {\binom {n}{k}}=^{n}\operatorname {C} _{k}={\frac {n(n-1)\ldots (n-k+1)}{k(k-1)\dots 1}}} n P k = n ⋅ ( n − 1 ) ⋅ ( n − 2 ) ⋯ ( n − k + 1 ) {\displaystyle ^{n}\operatorname {P} _{k}=n\cdot (n-1)\cdot (n-2)\cdots (n-k+1)} Task: Combinations Task: Permutations With replacement ( n + k − 1 k ) = n + k − 1 C k = ( n + k − 1 ) ! ( n − 1 ) ! k ! {\displaystyle {\binom {n+k-1}{k}}=^{n+k-1}\operatorname {C} _{k}={(n+k-1)! \over (n-1)!k!}} n k {\displaystyle n^{k}} Task: Combinations with repetitions Task: Permutations with repetitions
#C.23
C#
using System; using System.Collections.Generic;   public class Program { public static IEnumerable<int[]> Combinations(int m, int n) { int[] result = new int[m]; Stack<int> stack = new Stack<int>(); stack.Push(0);   while (stack.Count > 0) { int index = stack.Count - 1; int value = stack.Pop();   while (value < n) { result[index++] = ++value; stack.Push(value);   if (index == m) { yield return result; break; } } } }   static void Main() { foreach (int[] c in Combinations(3, 5)) { Console.WriteLine(string.Join(",", c)); Console.WriteLine(); } } }
http://rosettacode.org/wiki/Conditional_structures
Conditional structures
Control Structures These are examples of control structures. You may also be interested in: Conditional structures Exceptions Flow-control structures Loops Task List the conditional structures offered by a programming language. See Wikipedia: conditionals for descriptions. Common conditional structures include if-then-else and switch. Less common are arithmetic if, ternary operator and Hash-based conditionals. Arithmetic if allows tight control over computed gotos, which optimizers have a hard time to figure out.
#Metafont
Metafont
if conditionA:  % do something elseif conditionB:  % do something % more elseif, if needed... else:  % do this fi;
http://rosettacode.org/wiki/Comments
Comments
Task Show all ways to include text in a language source file that's completely ignored by the compiler or interpreter. Related tasks   Documentation   Here_document See also   Wikipedia   xkcd (Humor: hand gesture denoting // for "commenting out" people.)
#PicoLisp
PicoLisp
# The rest of the line is ignored #{ This is a multiline comment }# NIL Immediately stop reading this file. Because all text in the input file following a top-level 'NIL' is ignored.   This is typically used conditionally, with a read-macro expression like `*Dbg so that this text is only read if in debugging mode.
http://rosettacode.org/wiki/Comments
Comments
Task Show all ways to include text in a language source file that's completely ignored by the compiler or interpreter. Related tasks   Documentation   Here_document See also   Wikipedia   xkcd (Humor: hand gesture denoting // for "commenting out" people.)
#Pike
Pike
// This is a comment. /* This is a multi line comment */   int e = 3; // end-of-statement comment.
http://rosettacode.org/wiki/Color_quantization
Color quantization
full color Example: Gimp 16 color Color quantization is the process of reducing number of colors used in an image while trying to maintain the visual appearance of the original image. In general, it is a form of cluster analysis, if each RGB color value is considered as a coordinate triple in the 3D colorspace. There are some well know algorithms [1], each with its own advantages and drawbacks. Task: Take an RGB color image and reduce its colors to some smaller number (< 256). For this task, use the frog as input and reduce colors to 16, and output the resulting colors. The chosen colors should be adaptive to the input image, meaning you should not use a fixed palette such as Web colors or Windows system palette. Dithering is not required. Note: the funny color bar on top of the frog image is intentional.
#PureBasic
PureBasic
  ; ColorQuantization.pb   Structure bestA_ ; table for our histogram nn.i ; 16,32,... rc.i ; red count within (0,1,...,255)/(number of colors) gc.i ; green count within (0,1,...,255)/(number of colors) bc.i ; blue count within (0,1,...,255)/(number of colors) EndStructure   ; these two functions appear to be rather self-explanatory UsePNGImageDecoder() UsePNGImageEncoder()   Procedure.i ColorQuantization(Filename$,ncol) Protected x,y,c   ; load our original image or leave the procedure If not LoadImage(0,Filename$)  :ProcedureReturn 0:endif   ; we are not going to actually draw on the original image... ; but we need to use the drawing library to load up ; the pixel information into our arrays... ; if we can't do that, what's the point of going any further? ; so then we would be wise to just leave the procedure [happy fred?] If not StartDrawing(ImageOutput(0)):ProcedureReturn 0:endif   iw=ImageWidth(0) ih=ImageHeight(0)   dim cA(iw,ih) ; color array to hold at a given (x,y) dim rA(iw,ih) ; red array to hold at a given (x,y) dim gA(iw,ih) ; green array to hold at a given (x,y) dim bA(iw,ih) ; blue array to hold at a given (x,y) dim tA(iw,ih) ; temp array to hold at a given (x,y)   ; map each pixel from the original image to our arrays ; don't overrun the ranges ie. use {ih-1,iw-1} for y=0 to ih-1 for x=0 to iw-1 c = Point(x,y) cA(x,y)=c rA(x,y)=Red(c) gA(x,y)=Green(c) bA(x,y)=Blue(c) next next   StopDrawing() ; don't forget to... StopDrawing()   N=ih*iw ; N is the total number if pixels if not N:ProcedureReturn 0:endif ; to avoid a division by zero   ; stuctured array ie. a table to hold the frequency distribution dim bestA.bestA_(ncol)   ; the "best" red,green,blue based upon frequency dim rbestA(ncol/3) dim gbestA(ncol/3) dim bbestA(ncol/3)   ; split the (0..255) range up xoff=256/ncol ;256/16=16 xrng=xoff ;xrng=16   ; store these values in our table: bestA(i)\nn= 16,32,... for i=1 to ncol xrng+xoff bestA(i)\nn=xrng next   ; scan by row [y] for y=0 to ih-1 ; scan by col [x] for x=0 to iw-1   ; retrieve the rgb values from each pixel r=rA(x,y) g=gA(x,y) b=bA(x,y)   ; sum up the numbers that fall within our subdivisions of (0..255) for i=1 to ncol if r>=bestA(i)\nn and r<bestA(i+1)\nn:bestA(i)\rc+1:endif if g>=bestA(i)\nn and g<bestA(i+1)\nn:bestA(i)\gc+1:endif if b>=bestA(i)\nn and b<bestA(i+1)\nn:bestA(i)\bc+1:endif next next next   ; option and type to: Sort our Structured Array opt=#PB_Sort_Descending typ=#PB_Sort_Integer   ; sort to get most frequent reds off=OffsetOf(bestA_\rc) SortStructuredArray(bestA(),opt, off, typ,1, ncol)   ; save the best [ for number of colors =16 this is int(16/3)=5 ] reds for i=1 to ncol/3 rbestA(i)=bestA(i)\nn next   ; sort to get most frequent greens off=OffsetOf(bestA_\gc) SortStructuredArray(bestA(),opt, off, typ,1, ncol)   ; save the best [ for number of colors =16 this is int(16/3)=5 ] greens for i=1 to ncol/3 gbestA(i)=bestA(i)\nn next   ; sort to get most frequent blues off=OffsetOf(bestA_\bc) SortStructuredArray(bestA(),opt, off, typ,1, ncol)   ; save the best [ for number of colors =16 this is int(16/3)=5 ] blues for i=1 to ncol/3 bbestA(i)=bestA(i)\nn next   ; reset the best low value to 15 and high value to 240 ; this helps to ensure there is some contrast when the statistics bunch up ; ie. when a single color tends to predominate... such as perhaps green? rbestA(1)=15:rbestA(ncol/3)=240 gbestA(1)=15:gbestA(ncol/3)=240 bbestA(1)=15:bbestA(ncol/3)=240   ; make a copy of our original image or leave the procedure If not CopyImage(0,1)  :ProcedureReturn 0:endif   ; draw on that copy of our original image or leave the procedure If not StartDrawing(ImageOutput(1)):ProcedureReturn 0:endif   for y=0 to ih-1 for x=0 to iw-1 c = Point(x,y)   ; get the rgb value from our arrays rt=rA(x,y) gt=gA(x,y) bt=bA(x,y)   ; given a particular red value say 123 at point x,y ; which of our rbestA(i's) is closest? ; then for green and blue? ; ============================== r=255 for i=1 to ncol/3 rdiff=abs(rbestA(i)-rt) if rdiff<=r:ri=i:r=rdiff:endif next   g=255 for i=1 to ncol/3 gdiff=abs(gbestA(i)-gt) if gdiff<=g:gi=i:g=gdiff:endif next   b=255 for i=1 to ncol/3 bdiff=abs(bbestA(i)-bt) if bdiff<=b:bi=i:b=bdiff:endif next ; ==============================     ; get the color value so we can plot it at that pixel Color=RGB(rbestA(ri),gbestA(gi),bbestA(bi))   ; plot it at that pixel Plot(x,y,Color)   ; save that info to tA(x,y) for our comparison image tA(x,y)=Color   next next StopDrawing() ; don't forget to... StopDrawing()   ; create a comparison image of our original vs 16-color or leave the procedure If not CreateImage(2,iw*2,ih)  :ProcedureReturn 0:endif ; draw on that image both our original image and our 16-color image or leave the procedure If not StartDrawing(ImageOutput(2)):ProcedureReturn 0:endif   ; plot original image ; 0,0 .... 511,0 ; . ; . ; 511,0 .. 511,511 for y=0 to ih-1 for x=0 to iw-1 c = cA(x,y) Plot(x,y,c) next next   ; plot 16-color image to the right of original image ; 512,0 .... 1023,0 ; . ; . ; 512,511 .. 1023,511 for y=0 to ih-1 for x=0 to iw-1 c = tA(x,y) Plot(x+iw,y,c) next next   StopDrawing() ; don't forget to... StopDrawing()   ; save the single 16-color image SaveImage(1, "_single_"+str(ncol)+"_"+Filename$,#PB_ImagePlugin_PNG )   ; save the comparison image SaveImage(2, "_compare_"+str(ncol)+"_"+Filename$,#PB_ImagePlugin_PNG ) ProcedureReturn 1 EndProcedure   ColorQuantization("Quantum_frog.png",16)      
http://rosettacode.org/wiki/Conway%27s_Game_of_Life
Conway's Game of Life
The Game of Life is a   cellular automaton   devised by the British mathematician   John Horton Conway   in 1970.   It is the best-known example of a cellular automaton. Conway's game of life is described   here: A cell   C   is represented by a   1   when alive,   or   0   when dead,   in an   m-by-m   (or m×m)   square array of cells. We calculate   N   - the sum of live cells in C's   eight-location neighbourhood,   then cell   C   is alive or dead in the next generation based on the following table: C N new C 1 0,1 -> 0 # Lonely 1 4,5,6,7,8 -> 0 # Overcrowded 1 2,3 -> 1 # Lives 0 3 -> 1 # It takes three to give birth! 0 0,1,2,4,5,6,7,8 -> 0 # Barren Assume cells beyond the boundary are always dead. The "game" is actually a zero-player game, meaning that its evolution is determined by its initial state, needing no input from human players.   One interacts with the Game of Life by creating an initial configuration and observing how it evolves. Task Although you should test your implementation on more complex examples such as the   glider   in a larger universe,   show the action of the blinker   (three adjoining cells in a row all alive),   over three generations, in a 3 by 3 grid. References   Its creator John Conway, explains   the game of life.   Video from numberphile on youtube.   John Conway   Inventing Game of Life   - Numberphile video. Related task   Langton's ant   - another well known cellular automaton.
#zkl
zkl
class Life{ fcn init(n, r1,c1, r2,c2, etc){ var N=n, cells=Data(n*n), tmp=Data(n*n), ds=T(T(-1,-1),T(-1,0),T(-1,1), T(0,-1),T(0,1), T(1,-1),T(1,0),T(1,1)); icells:=vm.arglist[1,*]; (N*N).pump(Void,cells.append.fpM("1-",0)); // clear board icells.pump(Void,Void.Read,fcn(row,col){ cells[row*N+col]=1 }); } fcn get(row,col){ if((0<=row<N) and (0<=col<N)) return(cells[row*N+col]); return(0); } fcn postToastie(row,col){ n:=ds.reduce('wrap(n,[(r,c)]){n+get(r+row,c+col)},0); c:=get(row,col); ((n==2 and c==1) or n==3).toInt() } fcn cycle{ tmp.clear(); foreach row in (N){ foreach col in (N) { tmp.append(postToastie(row,col)) } } t:=cells; cells=tmp; tmp=t; } fcn toString{ cells.pump(0,String,fcn(c,rn){ (if(c)"*" else "-") + (if(rn.inc()%N) "" else "\n") }.fp1(Ref(1))); } fcn toAnsi{ cells.pump(0,"\e[H",fcn(c,rn){ (if(c)"\e[07m \e[m" else " ") + (if(rn.inc()%N) "" else "\e[E") }.fp1(Ref(1))); } fcn dance(n=300){ do(n){ toAnsi().print(); Atomic.sleep(0.2); cycle(); } } }
http://rosettacode.org/wiki/Colour_pinstripe/Display
Colour pinstripe/Display
The task is to create 1 pixel wide coloured vertical pinstripes with a sufficient number of pinstripes to span the entire width of the graphics display. The pinstripes should either follow the system palette sequence,   or a sequence that includes: black,   red,   green,   blue,   magenta,   cyan,   yellow,   and   white:   after filling the top quarter, switch to a wider 2 pixel wide vertical pinstripe pattern,   halfway down the display, switch to 3 pixel wide vertical pinstripe,   finally to a 4 pixels wide vertical pinstripe for the last quarter of the display. See also   display black and white   print colour
#PicoLisp
PicoLisp
(de *Colors # Black Red Green Blue Magenta Cyan Yellow White ((0 0 0) (255 0 0) (0 255 0) (0 0 255) (255 0 255) (0 255 255) (255 255 0) (255 255 255) .) )   (let Ppm # Create PPM of 384 x 288 pixels (make (for N 4 (let L (make (do (/ 384 N) (let C (pop *Colors) (do N (link C)) ) ) ) (do 72 (link L)) ) ) ) (out '(display) # Pipe to ImageMagick (prinl "P6") # NetPBM format (prinl (length (car Ppm)) " " (length Ppm)) (prinl 255) (for Y Ppm (for X Y (apply wr X))) ) )
http://rosettacode.org/wiki/Colour_pinstripe/Display
Colour pinstripe/Display
The task is to create 1 pixel wide coloured vertical pinstripes with a sufficient number of pinstripes to span the entire width of the graphics display. The pinstripes should either follow the system palette sequence,   or a sequence that includes: black,   red,   green,   blue,   magenta,   cyan,   yellow,   and   white:   after filling the top quarter, switch to a wider 2 pixel wide vertical pinstripe pattern,   halfway down the display, switch to 3 pixel wide vertical pinstripe,   finally to a 4 pixels wide vertical pinstripe for the last quarter of the display. See also   display black and white   print colour
#Plain_English
Plain English
To run: Start up. Clear the screen. Imagine a box with the screen's left and the screen's top and the screen's right and the screen's bottom divided by 4. Make a color pinstripe given 1 pixel and the box. Draw the color pinstripe. Draw the next color pinstripe given the color pinstripe. Draw the next color pinstripe given the color pinstripe. Draw the next color pinstripe given the color pinstripe. Refresh the screen. Wait for the escape key. Shut down.   A color pinstripe has a width and a box.   To make a color pinstripe given a width and a box: Put the width into the color pinstripe's width. Put the box into the color pinstripe's box.   To draw a color pinstripe: Put the color pinstripe's box into a bound box. Put the color pinstripe's width into a width. Imagine a box with the bound's left and the bound's top and the width and the bound's bottom. Put the bound's right divided by the width into an amount. Loop. If a counter is past the amount, exit. Draw and fill the box with the black color. Move the box right the width. Draw and fill the box with the red color. Move the box right the width. Draw and fill the box with the green color. Move the box right the width. Draw and fill the box with the blue color. Move the box right the width. Draw and fill the box with the magenta color. Move the box right the width. Draw and fill the box with the cyan color. Move the box right the width. Draw and fill the box with the yellow color. Move the box right the width. Draw and fill the box with the white color. Repeat.   To draw the next color pinstripe given a color pinstripe: Add 1 pixel to the color pinstripe's width. Move the color pinstripe's box down the color pinstripe's box's height. Draw the color pinstripe.
http://rosettacode.org/wiki/Colour_pinstripe/Display
Colour pinstripe/Display
The task is to create 1 pixel wide coloured vertical pinstripes with a sufficient number of pinstripes to span the entire width of the graphics display. The pinstripes should either follow the system palette sequence,   or a sequence that includes: black,   red,   green,   blue,   magenta,   cyan,   yellow,   and   white:   after filling the top quarter, switch to a wider 2 pixel wide vertical pinstripe pattern,   halfway down the display, switch to 3 pixel wide vertical pinstripe,   finally to a 4 pixels wide vertical pinstripe for the last quarter of the display. See also   display black and white   print colour
#PureBasic
PureBasic
;Create a Pinstripe image with a pattern of vertical stripe colors Procedure PinstripeDisplay(width, height, Array psColors(1), numColors = 0) Protected x, imgID, psHeight = height / 4, psWidth = 1, psTop, horzBand, curColor   If numColors < 1: numColors = ArraySize(psColors()) + 1: EndIf   imgID = CreateImage(#PB_Any, width, height) If imgID StartDrawing(ImageOutput(imgID)) Repeat x = 0 curColor = 0 Repeat Box(x, psTop, psWidth, psHeight, psColors(curColor)) curColor = (curColor + 1) % numColors x + psWidth Until x >= width psWidth + 1 horzBand + 1 psTop = horzBand * height / 4 ;move to the top of next horizontal band of image Until psTop >= height StopDrawing() EndIf ProcedureReturn imgID EndProcedure   ;Open a window and display the pinstripe If OpenWindow(0, 0, 0, 1, 1,"PureBasic Pinstripe", #PB_Window_Maximize | #PB_Window_SystemMenu) Dim psColors(7) psColors(0) = RGB($00, $00, $00) ;black psColors(1) = RGB($FF, $00, $00) ;red psColors(2) = RGB($00, $FF, $00) ;green psColors(3) = RGB($00, $00, $FF) ;blue psColors(4) = RGB($FF, $00, $FF) ;magenta psColors(5) = RGB($00, $FF, $FF) ;cyan psColors(6) = RGB($FF, $FF, $00) ;yellow psColors(7) = RGB($FF, $FF, $FF) ;white   PicID = PinstripeDisplay(WindowWidth(0), WindowHeight(0), psColors()) ImageGadget(0, 0, 0, WindowWidth(0), WindowHeight(0), ImageID(PicID)) While WaitWindowEvent() <> #PB_Event_CloseWindow Wend EndIf
http://rosettacode.org/wiki/Color_of_a_screen_pixel
Color of a screen pixel
Task Get color information from an arbitrary pixel on the screen, such as the current location of the mouse cursor. The mouse cursor may or may not have to be active in a GUI created by your program. These functions are OS related.
#Wren
Wren
import "dome" for Window, Process import "graphics" for Canvas, Color import "input" for Mouse   class Game { static init() { Window.title = "Color of a screen pixel" Canvas.cls(Color.orange) // {255, 163, 0} in the default palette }   static update() { // report location and color of pixel at mouse cursor // when the left button is first pressed if (Mouse.isButtonPressed("left")) { var x = Mouse.x var y = Mouse.y var col = Canvas.pget(x, y) System.print("The color of the pixel at (%(x), %(y)) is %(getRGB(col))") Process.exit(0) } }   static draw(dt) {}   static getRGB(col) { "{%(col.r), %(col.g), %(col.b)}" } }
http://rosettacode.org/wiki/Color_of_a_screen_pixel
Color of a screen pixel
Task Get color information from an arbitrary pixel on the screen, such as the current location of the mouse cursor. The mouse cursor may or may not have to be active in a GUI created by your program. These functions are OS related.
#XPL0
XPL0
code ReadPix=44; int Color, X, Y; Color:= ReadPix(X, Y);
http://rosettacode.org/wiki/Combinations
Combinations
Task Given non-negative integers   m   and   n,   generate all size   m   combinations   of the integers from   0   (zero)   to   n-1   in sorted order   (each combination is sorted and the entire table is sorted). Example 3   comb   5     is: 0 1 2 0 1 3 0 1 4 0 2 3 0 2 4 0 3 4 1 2 3 1 2 4 1 3 4 2 3 4 If it is more "natural" in your language to start counting from   1   (unity) instead of   0   (zero), the combinations can be of the integers from   1   to   n. See also The number of samples of size k from n objects. With   combinations and permutations   generation tasks. Order Unimportant Order Important Without replacement ( n k ) = n C k = n ( n − 1 ) … ( n − k + 1 ) k ( k − 1 ) … 1 {\displaystyle {\binom {n}{k}}=^{n}\operatorname {C} _{k}={\frac {n(n-1)\ldots (n-k+1)}{k(k-1)\dots 1}}} n P k = n ⋅ ( n − 1 ) ⋅ ( n − 2 ) ⋯ ( n − k + 1 ) {\displaystyle ^{n}\operatorname {P} _{k}=n\cdot (n-1)\cdot (n-2)\cdots (n-k+1)} Task: Combinations Task: Permutations With replacement ( n + k − 1 k ) = n + k − 1 C k = ( n + k − 1 ) ! ( n − 1 ) ! k ! {\displaystyle {\binom {n+k-1}{k}}=^{n+k-1}\operatorname {C} _{k}={(n+k-1)! \over (n-1)!k!}} n k {\displaystyle n^{k}} Task: Combinations with repetitions Task: Permutations with repetitions
#C.2B.2B
C++
#include <algorithm> #include <iostream> #include <string>   void comb(int N, int K) { std::string bitmask(K, 1); // K leading 1's bitmask.resize(N, 0); // N-K trailing 0's   // print integers and permute bitmask do { for (int i = 0; i < N; ++i) // [0..N-1] integers { if (bitmask[i]) std::cout << " " << i; } std::cout << std::endl; } while (std::prev_permutation(bitmask.begin(), bitmask.end())); }   int main() { comb(5, 3); }
http://rosettacode.org/wiki/Conditional_structures
Conditional structures
Control Structures These are examples of control structures. You may also be interested in: Conditional structures Exceptions Flow-control structures Loops Task List the conditional structures offered by a programming language. See Wikipedia: conditionals for descriptions. Common conditional structures include if-then-else and switch. Less common are arithmetic if, ternary operator and Hash-based conditionals. Arithmetic if allows tight control over computed gotos, which optimizers have a hard time to figure out.
#min
min
(true) ("I'm true") ("I'm false") if  ; If first quotation evaluates to true,  ; evaluate second quotation.  ; Otherwise, evaluate the third.   (true) ("I'm true") when  ; If without the false quotation. (true) ("I'm false") unless  ; If without the true quotation.   2 (  ; For each quotation inside the case ((3 >) ("Greater than 3" puts!))  ; quotation, evaluate the second ((3 <) ("Smaller than 3" puts!))  ; quotation if the first quotation ((true) ("Exactly 3" puts!))  ; evaluates to true. Otherwise, move ) case  ; on to the next one.
http://rosettacode.org/wiki/Comments
Comments
Task Show all ways to include text in a language source file that's completely ignored by the compiler or interpreter. Related tasks   Documentation   Here_document See also   Wikipedia   xkcd (Humor: hand gesture denoting // for "commenting out" people.)
#PL.2FI
PL/I
/* This is a comment. */
http://rosettacode.org/wiki/Comments
Comments
Task Show all ways to include text in a language source file that's completely ignored by the compiler or interpreter. Related tasks   Documentation   Here_document See also   Wikipedia   xkcd (Humor: hand gesture denoting // for "commenting out" people.)
#PL.2FSQL
PL/SQL
--this is a single line comment
http://rosettacode.org/wiki/Color_quantization
Color quantization
full color Example: Gimp 16 color Color quantization is the process of reducing number of colors used in an image while trying to maintain the visual appearance of the original image. In general, it is a form of cluster analysis, if each RGB color value is considered as a coordinate triple in the 3D colorspace. There are some well know algorithms [1], each with its own advantages and drawbacks. Task: Take an RGB color image and reduce its colors to some smaller number (< 256). For this task, use the frog as input and reduce colors to 16, and output the resulting colors. The chosen colors should be adaptive to the input image, meaning you should not use a fixed palette such as Web colors or Windows system palette. Dithering is not required. Note: the funny color bar on top of the frog image is intentional.
#Python
Python
from PIL import Image   if __name__=="__main__": im = Image.open("frog.png") im2 = im.quantize(16) im2.show()
http://rosettacode.org/wiki/Color_quantization
Color quantization
full color Example: Gimp 16 color Color quantization is the process of reducing number of colors used in an image while trying to maintain the visual appearance of the original image. In general, it is a form of cluster analysis, if each RGB color value is considered as a coordinate triple in the 3D colorspace. There are some well know algorithms [1], each with its own advantages and drawbacks. Task: Take an RGB color image and reduce its colors to some smaller number (< 256). For this task, use the frog as input and reduce colors to 16, and output the resulting colors. The chosen colors should be adaptive to the input image, meaning you should not use a fixed palette such as Web colors or Windows system palette. Dithering is not required. Note: the funny color bar on top of the frog image is intentional.
#Racket
Racket
  #lang racket/base (require racket/class racket/draw)   ;; This is an implementation of the Octree Quantization algorithm. This implementation ;; follows the sketch in: ;; ;; Dean Clark. Color Quantization using Octrees. Dr. Dobbs Portal, January 1, 1996. ;; http://www.ddj.com/184409805 ;; ;; This code is adapted from the color quantizer in the implementation of Racket's ;; file/gif standard library.     ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;     ;; To view an example of the quantizer, run the following test submodule ;; in DrRacket: (module+ test (require racket/block net/url)   (define frog (block (define url (string->url "http://rosettacode.org/mw/images/3/3f/Quantum_frog.png")) (define frog-ip (get-pure-port url)) (define bitmap (make-object bitmap% frog-ip)) (close-input-port frog-ip) bitmap))    ;; Display the original: (print frog)  ;; And the quantized version (16 colors): (print (quantize-bitmap frog 16)))   ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;     ;; quantize-bitmap: bitmap positive-number -> bitmap ;; Given a bitmap, returns a new bitmap quantized to, at most, n colors. (define (quantize-bitmap bm n) (let* ([width (send bm get-width)] [height (send bm get-height)] [len (* width height 4)] [source-buffer (make-bytes len)] [_ (send bm get-argb-pixels 0 0 width height source-buffer)] [an-octree (make-octree-from-argb source-buffer n)] [dest-buffer (make-bytes len)]) (let quantize-bitmap-loop ([i 0]) (when (< i len) (let* ([i+1 (+ i 1)] [i+2 (+ i 2)] [i+3 (+ i 3)] [a (bytes-ref source-buffer i)] [r (bytes-ref source-buffer i+1)] [g (bytes-ref source-buffer i+2)] [b (bytes-ref source-buffer i+3)]) (cond [(alpha-opaque? a) (let-values ([(new-r new-g new-b) (octree-lookup an-octree r g b)]) (bytes-set! dest-buffer i 255) (bytes-set! dest-buffer i+1 new-r) (bytes-set! dest-buffer i+2 new-g) (bytes-set! dest-buffer i+3 new-b))] [else (bytes-set! dest-buffer i 0) (bytes-set! dest-buffer i+1 0) (bytes-set! dest-buffer i+2 0) (bytes-set! dest-buffer i+3 0)])) (quantize-bitmap-loop (+ i 4)))) (let* ([new-bm (make-object bitmap% width height)] [dc (make-object bitmap-dc% new-bm)]) (send dc set-argb-pixels 0 0 width height dest-buffer) (send dc set-bitmap #f) new-bm)))           ;; make-octree-from-argb: bytes positive-number -> octree ;; Constructs an octree ready to quantize the colors from an-argb. (define (make-octree-from-argb an-argb n) (unless (> n 0) (raise-type-error 'make-octree-from-argb "positive number" n)) (let ([an-octree (new-octree)] [len (bytes-length an-argb)]) (let make-octree-loop ([i 0]) (when (< i len) (let ([a (bytes-ref an-argb i)] [r (bytes-ref an-argb (+ i 1))] [g (bytes-ref an-argb (+ i 2))] [b (bytes-ref an-argb (+ i 3))]) (when (alpha-opaque? a) (octree-insert-color! an-octree r g b) (let reduction-loop () (when (> (octree-leaf-count an-octree) n) (octree-reduce! an-octree) (reduction-loop))))) (make-octree-loop (+ i 4)))) (octree-finalize! an-octree) an-octree))     ;; alpha-opaque? byte -> boolean ;; Returns true if the alpha value is considered opaque. (define (alpha-opaque? a) (>= a 128))       ;; The maximum level height of an octree. (define MAX-LEVEL 7)       ;; A color is a (vector byte byte byte)   ;; An octree is a: (define-struct octree (root  ; node leaf-count  ; number reduction-heads ; (vectorof (or/c node #f)) palette)  ; (vectorof (or/c color #f)) #:mutable) ;; reduction-heads is used to accelerate the search for a reduction candidate.     ;; A subtree node is a: (define-struct node (leaf?  ; bool npixels  ; number -- number of pixels this subtree node represents redsum  ; number greensum  ; number bluesum  ; number children  ; (vectorof (or/c #f node)) next  ; (or/c #f node) palette-index) ; (or/c #f byte?) #:mutable) ;; node-next is used to accelerate the search for a reduction candidate.     ;; new-octree: -> octree (define (new-octree) (let* ([root-node (make-node #f ;; not a leaf 0  ;; no pixels under us yet 0  ;; red sum 0  ;; green sum 0  ;; blue sum (make-vector 8 #f) ;; no children so far #f ;; next #f ;; palette-index )] [an-octree (make-octree root-node 0 ; no leaves so far (make-vector (add1 MAX-LEVEL) #f) ; no reductions so far (make-vector 256 #(0 0 0)))])  ; the palette  ;; Although we'll almost never reduce to this level, initialize the first  ;; reducible node to the root, for completeness sake. (vector-set! (octree-reduction-heads an-octree) 0 root-node) an-octree))     ;; rgb->index: natural-number byte byte byte -> octet ;; Given a level and an (r,g,b) triplet, returns an octet that can be used ;; as an index into our octree structure. (define (rgb->index level r g b) (bitwise-ior (bitwise-and 4 (arithmetic-shift r (- level 5))) (bitwise-and 2 (arithmetic-shift g (- level 6))) (bitwise-and 1 (arithmetic-shift b (- level 7)))))     ;; octree-insert-color!: octree byte byte byte -> void ;; Accumulates a new r,g,b triplet into the octree. (define (octree-insert-color! an-octree r g b) (node-insert-color! (octree-root an-octree) an-octree r g b 0))     ;; node-insert-color!: node octree byte byte byte natural-number -> void ;; Adds a color to the node subtree. While we hit #f, we create new nodes. ;; If we hit an existing leaf, we accumulate our color into it. (define (node-insert-color! a-node an-octree r g b level) (let insert-color-loop ([a-node a-node] [level level]) (cond [(node-leaf? a-node)  ;; update the leaf with the new color (set-node-npixels! a-node (add1 (node-npixels a-node))) (set-node-redsum! a-node (+ (node-redsum a-node) r)) (set-node-greensum! a-node (+ (node-greensum a-node) g)) (set-node-bluesum! a-node (+ (node-bluesum a-node) b))] [else  ;; create the child node if necessary (let ([index (rgb->index level r g b)]) (unless (vector-ref (node-children a-node) index) (let ([new-node (make-node (= level MAX-LEVEL) ; leaf? 0  ; npixels 0  ; redsum 0  ; greensum 0  ; bluesum (make-vector 8 #f) ; no children yet #f ; and no next node yet #f ; or palette index )]) (vector-set! (node-children a-node) index new-node) (cond [(= level MAX-LEVEL)  ;; If we added a leaf, mark it in the octree. (set-octree-leaf-count! an-octree (add1 (octree-leaf-count an-octree)))] [else  ;; Attach the node as a reducible node if it's interior. (set-node-next! new-node (vector-ref (octree-reduction-heads an-octree) (add1 level))) (vector-set! (octree-reduction-heads an-octree) (add1 level) new-node)])))  ;; and recur on the child node. (insert-color-loop (vector-ref (node-children a-node) index) (add1 level)))])))     ;; octree-reduce!: octree -> void ;; Reduces one of the subtrees, collapsing the children into a single node. (define (octree-reduce! an-octree) (node-reduce! (pop-reduction-candidate! an-octree) an-octree))     ;; node-reduce!: node octree -> void ;; Reduces the interior node. (define (node-reduce! a-node an-octree) (for ([child (in-vector (node-children a-node))] #:when child) (set-node-npixels! a-node (+ (node-npixels a-node) (node-npixels child))) (set-node-redsum! a-node (+ (node-redsum a-node) (node-redsum child))) (set-node-greensum! a-node (+ (node-greensum a-node) (node-greensum child))) (set-node-bluesum! a-node (+ (node-bluesum a-node) (node-bluesum child))) (set-octree-leaf-count! an-octree (sub1 (octree-leaf-count an-octree)))) (set-node-leaf?! a-node #t) (set-octree-leaf-count! an-octree (add1 (octree-leaf-count an-octree))))     ;; find-reduction-candidate!: octree -> node ;; Returns a bottom-level interior node for reduction. Also takes the ;; candidate out of the conceptual queue of reduction candidates. (define (pop-reduction-candidate! an-octree) (let loop ([i MAX-LEVEL]) (cond [(vector-ref (octree-reduction-heads an-octree) i) => (lambda (candidate-node) (when (> i 0) (vector-set! (octree-reduction-heads an-octree) i (node-next candidate-node))) candidate-node)] [else (loop (sub1 i))])))     ;; octree-finalize!: octree -> void ;; Finalization does a few things: ;; * Walks through the octree and reduces any interior nodes with just one leaf child. ;; Optimizes future lookups. ;; * Fills in the palette of the octree and the palette indexes of the leaf nodes. ;; * Note: palette index 0 is always reserved for the transparent color. (define (octree-finalize! an-octree)  ;; Collapse one-leaf interior nodes. (let loop ([a-node (octree-root an-octree)]) (for ([child (in-vector (node-children a-node))] #:when (and child (not (node-leaf? child)))) (loop child) (when (interior-node-one-leaf-child? a-node) (node-reduce! a-node an-octree))))    ;; Attach palette entries. (let ([current-palette-index 1]) (let loop ([a-node (octree-root an-octree)]) (cond [(node-leaf? a-node) (let ([n (node-npixels a-node)]) (vector-set! (octree-palette an-octree) current-palette-index (vector (quotient (node-redsum a-node) n) (quotient (node-greensum a-node) n) (quotient (node-bluesum a-node) n))) (set-node-palette-index! a-node current-palette-index) (set! current-palette-index (add1 current-palette-index)))] [else (for ([child (in-vector (node-children a-node))] #:when child) (loop child))]))))     ;; interior-node-one-leaf-child?: node -> boolean (define (interior-node-one-leaf-child? a-node) (let ([child-list (filter values (vector->list (node-children a-node)))]) (and (= (length child-list) 1) (node-leaf? (car child-list)))))     ;; octree-lookup: octree byte byte byte -> (values byte byte byte) ;; Returns the palettized color. (define (octree-lookup an-octree r g b) (let* ([index (node-lookup-index (octree-root an-octree) an-octree r g b 0)] [vec (vector-ref (octree-palette an-octree) index)]) (values (vector-ref vec 0) (vector-ref vec 1) (vector-ref vec 2))))       ;; node-lookup-index: node byte byte byte natural-number -> byte ;; Returns the palettized color index. (define (node-lookup-index a-node an-octree r g b level) (let loop ([a-node a-node] [level level]) (if (node-leaf? a-node) (node-palette-index a-node) (let ([child (vector-ref (node-children a-node) (rgb->index level r g b))]) (unless child (error 'node-lookup-index "color (~a, ~a, ~a) not previously inserted" r g b)) (loop child (add1 level))))))  
http://rosettacode.org/wiki/Colour_bars/Display
Colour bars/Display
Task Display a series of vertical color bars across the width of the display. The color bars should either use:   the system palette,   or   the sequence of colors:   black   red   green   blue   magenta   cyan   yellow   white
#6502_Assembly
6502 Assembly
lda #0 tax tay  ;clear regs   ;video ram on Easy6502 is four pages ranging from $0200-$0500   loop: sta $0200,x sta $0220,x sta $0240,x sta $0260,x sta $0280,x sta $02A0,x sta $02C0,x sta $02E0,x   sta $0300,x sta $0320,x sta $0340,x sta $0360,x sta $0380,x sta $03A0,x sta $03C0,x sta $03E0,x   sta $0400,x sta $0420,x sta $0440,x sta $0460,x sta $0480,x sta $04A0,x sta $04C0,x sta $04E0,x   sta $0500,x sta $0520,x sta $0540,x sta $0560,x sta $0580,x sta $05A0,x sta $05C0,x sta $05E0,x   inx txa  ;effectively increment A cpx #$20 ;32 columns of video memory beq exit jmp loop exit: brk  ;on easy6502 this terminates a program.
http://rosettacode.org/wiki/Conway%27s_Game_of_Life
Conway's Game of Life
The Game of Life is a   cellular automaton   devised by the British mathematician   John Horton Conway   in 1970.   It is the best-known example of a cellular automaton. Conway's game of life is described   here: A cell   C   is represented by a   1   when alive,   or   0   when dead,   in an   m-by-m   (or m×m)   square array of cells. We calculate   N   - the sum of live cells in C's   eight-location neighbourhood,   then cell   C   is alive or dead in the next generation based on the following table: C N new C 1 0,1 -> 0 # Lonely 1 4,5,6,7,8 -> 0 # Overcrowded 1 2,3 -> 1 # Lives 0 3 -> 1 # It takes three to give birth! 0 0,1,2,4,5,6,7,8 -> 0 # Barren Assume cells beyond the boundary are always dead. The "game" is actually a zero-player game, meaning that its evolution is determined by its initial state, needing no input from human players.   One interacts with the Game of Life by creating an initial configuration and observing how it evolves. Task Although you should test your implementation on more complex examples such as the   glider   in a larger universe,   show the action of the blinker   (three adjoining cells in a row all alive),   over three generations, in a 3 by 3 grid. References   Its creator John Conway, explains   the game of life.   Video from numberphile on youtube.   John Conway   Inventing Game of Life   - Numberphile video. Related task   Langton's ant   - another well known cellular automaton.
#ZPL
ZPL
program Life;   config var n : integer = 100;   region BigR = [0 .. n+1, 0 .. n+1]; R = [1 .. n, 1 .. n ];   direction nw = [-1, -1]; north = [-1, 0]; ne = [-1, 1]; west = [ 0, -1]; east = [ 0, 1]; sw = [ 1, -1]; south = [ 1, 0]; se = [ 1, 1];   var TW  : [BigR] boolean; -- The World NN  : [R] integer; -- Number of Neighbours   procedure Life(); begin -- Initialize world [R] repeat NN := TW@nw + TW@north + TW@ne + TW@west + TW@east + TW@sw + TW@south + TW@se; TW := (TW & NN = 2) | ( NN = 3); until !(|<< TW); end;
http://rosettacode.org/wiki/Colour_pinstripe/Display
Colour pinstripe/Display
The task is to create 1 pixel wide coloured vertical pinstripes with a sufficient number of pinstripes to span the entire width of the graphics display. The pinstripes should either follow the system palette sequence,   or a sequence that includes: black,   red,   green,   blue,   magenta,   cyan,   yellow,   and   white:   after filling the top quarter, switch to a wider 2 pixel wide vertical pinstripe pattern,   halfway down the display, switch to 3 pixel wide vertical pinstripe,   finally to a 4 pixels wide vertical pinstripe for the last quarter of the display. See also   display black and white   print colour
#Python
Python
  from turtle import *   colors = ["black", "red", "green", "blue", "magenta", "cyan", "yellow", "white"]   # Middle of screen is 0,0   screen = getscreen()   left_edge = -screen.window_width()//2   right_edge = screen.window_width()//2   quarter_height = screen.window_height()//4   half_height = quarter_height * 2   speed("fastest")   for quarter in range(4): pensize(quarter+1) colornum = 0   min_y = half_height - ((quarter + 1) * quarter_height) max_y = half_height - ((quarter) * quarter_height)   for x in range(left_edge,right_edge,quarter+1): penup() pencolor(colors[colornum]) colornum = (colornum + 1) % len(colors) setposition(x,min_y) pendown() setposition(x,max_y)   notused = input("Hit enter to continue: ")  
http://rosettacode.org/wiki/Colour_pinstripe/Display
Colour pinstripe/Display
The task is to create 1 pixel wide coloured vertical pinstripes with a sufficient number of pinstripes to span the entire width of the graphics display. The pinstripes should either follow the system palette sequence,   or a sequence that includes: black,   red,   green,   blue,   magenta,   cyan,   yellow,   and   white:   after filling the top quarter, switch to a wider 2 pixel wide vertical pinstripe pattern,   halfway down the display, switch to 3 pixel wide vertical pinstripe,   finally to a 4 pixels wide vertical pinstripe for the last quarter of the display. See also   display black and white   print colour
#QBasic
QBasic
SCREEN 12 w = 640: h = 480   h = h / 4 y2 = h - 1   FOR i = 1 TO 4 col = 0 y = (i - 1) * h FOR x = 1 TO w STEP i IF col MOD 15 = 0 THEN col = 0 LINE (x, y)-(x + i, y + h), col, BF col = col + 1 NEXT x NEXT i
http://rosettacode.org/wiki/Combinations
Combinations
Task Given non-negative integers   m   and   n,   generate all size   m   combinations   of the integers from   0   (zero)   to   n-1   in sorted order   (each combination is sorted and the entire table is sorted). Example 3   comb   5     is: 0 1 2 0 1 3 0 1 4 0 2 3 0 2 4 0 3 4 1 2 3 1 2 4 1 3 4 2 3 4 If it is more "natural" in your language to start counting from   1   (unity) instead of   0   (zero), the combinations can be of the integers from   1   to   n. See also The number of samples of size k from n objects. With   combinations and permutations   generation tasks. Order Unimportant Order Important Without replacement ( n k ) = n C k = n ( n − 1 ) … ( n − k + 1 ) k ( k − 1 ) … 1 {\displaystyle {\binom {n}{k}}=^{n}\operatorname {C} _{k}={\frac {n(n-1)\ldots (n-k+1)}{k(k-1)\dots 1}}} n P k = n ⋅ ( n − 1 ) ⋅ ( n − 2 ) ⋯ ( n − k + 1 ) {\displaystyle ^{n}\operatorname {P} _{k}=n\cdot (n-1)\cdot (n-2)\cdots (n-k+1)} Task: Combinations Task: Permutations With replacement ( n + k − 1 k ) = n + k − 1 C k = ( n + k − 1 ) ! ( n − 1 ) ! k ! {\displaystyle {\binom {n+k-1}{k}}=^{n+k-1}\operatorname {C} _{k}={(n+k-1)! \over (n-1)!k!}} n k {\displaystyle n^{k}} Task: Combinations with repetitions Task: Permutations with repetitions
#Clojure
Clojure
(defn combinations "If m=1, generate a nested list of numbers [0,n) If m>1, for each x in [0,n), and for each list in the recursion on [x+1,n), cons the two" [m n] (letfn [(comb-aux [m start] (if (= 1 m) (for [x (range start n)] (list x)) (for [x (range start n) xs (comb-aux (dec m) (inc x))] (cons x xs))))] (comb-aux m 0)))   (defn print-combinations [m n] (doseq [line (combinations m n)] (doseq [n line] (printf "%s " n)) (printf "%n")))
http://rosettacode.org/wiki/Conditional_structures
Conditional structures
Control Structures These are examples of control structures. You may also be interested in: Conditional structures Exceptions Flow-control structures Loops Task List the conditional structures offered by a programming language. See Wikipedia: conditionals for descriptions. Common conditional structures include if-then-else and switch. Less common are arithmetic if, ternary operator and Hash-based conditionals. Arithmetic if allows tight control over computed gotos, which optimizers have a hard time to figure out.
#MiniScript
MiniScript
x = 42 if x < 10 then print "small" else if x < 20 then print "small-ish" else if x > 100 then print "large" else print "just right" end if
http://rosettacode.org/wiki/Comments
Comments
Task Show all ways to include text in a language source file that's completely ignored by the compiler or interpreter. Related tasks   Documentation   Here_document See also   Wikipedia   xkcd (Humor: hand gesture denoting // for "commenting out" people.)
#Plain_English
Plain English
\A comment like this lasts until the end of the line Put 1 plus [there are inline comments too] 1 into a number.
http://rosettacode.org/wiki/Comments
Comments
Task Show all ways to include text in a language source file that's completely ignored by the compiler or interpreter. Related tasks   Documentation   Here_document See also   Wikipedia   xkcd (Humor: hand gesture denoting // for "commenting out" people.)
#Plain_TeX
Plain TeX
% this is a comment This is not.
http://rosettacode.org/wiki/Color_quantization
Color quantization
full color Example: Gimp 16 color Color quantization is the process of reducing number of colors used in an image while trying to maintain the visual appearance of the original image. In general, it is a form of cluster analysis, if each RGB color value is considered as a coordinate triple in the 3D colorspace. There are some well know algorithms [1], each with its own advantages and drawbacks. Task: Take an RGB color image and reduce its colors to some smaller number (< 256). For this task, use the frog as input and reduce colors to 16, and output the resulting colors. The chosen colors should be adaptive to the input image, meaning you should not use a fixed palette such as Web colors or Windows system palette. Dithering is not required. Note: the funny color bar on top of the frog image is intentional.
#Raku
Raku
use MagickWand; use MagickWand::Enums;   my $frog = MagickWand.new; $frog.read("./Quantum_frog.png"); $frog.quantize(16, RGBColorspace, 0, True, False); $frog.write('./Quantum-frog-16-perl6.png');
http://rosettacode.org/wiki/Color_quantization
Color quantization
full color Example: Gimp 16 color Color quantization is the process of reducing number of colors used in an image while trying to maintain the visual appearance of the original image. In general, it is a form of cluster analysis, if each RGB color value is considered as a coordinate triple in the 3D colorspace. There are some well know algorithms [1], each with its own advantages and drawbacks. Task: Take an RGB color image and reduce its colors to some smaller number (< 256). For this task, use the frog as input and reduce colors to 16, and output the resulting colors. The chosen colors should be adaptive to the input image, meaning you should not use a fixed palette such as Web colors or Windows system palette. Dithering is not required. Note: the funny color bar on top of the frog image is intentional.
#Sidef
Sidef
require('Image::Magick')   func quantize_image(n = 16, input, output='output.png') { var im = %O<Image::Magick>.new im.Read(input) im.Quantize(colors => n, dither => 1) # 1 = None im.Write(output) }   quantize_image(input: 'Quantum_frog.png')
http://rosettacode.org/wiki/Colour_bars/Display
Colour bars/Display
Task Display a series of vertical color bars across the width of the display. The color bars should either use:   the system palette,   or   the sequence of colors:   black   red   green   blue   magenta   cyan   yellow   white
#Action.21
Action!
PROC Main() BYTE i, CH=$02FC, ;Internal hardware value for last key pressed PALNTSC=$D014, ;To check if PAL or NTSC system is used PCOLR0=$02C0,PCOLR1=$02C1, PCOLR2=$02C2,PCOLR3=$02C3, COLOR0=$02C4,COLOR1=$02C5, COLOR2=$02C6,COLOR3=$02C7, COLOR4=$02C8   Graphics(10) PCOLR0=$04 ;gray PCOLR1=$00 ;black IF PALNTSC=15 THEN PCOLR2=$42 ;red for NTSC PCOLR3=$C6 ;green for NTSC COLOR0=$84 ;blue for NTSC COLOR1=$66 ;magenta for NTSC COLOR2=$A6 ;cyan for NTSC COLOR3=$FC ;yellow for NTSC ELSE PCOLR2=$22 ;red for PAL PCOLR3=$B6 ;green for PAL COLOR0=$74 ;blue for PAL COLOR1=$48 ;magenta for PAL COLOR2=$96 ;cyan for PAL COLOR3=$EC ;yellow for PAL FI COLOR4=$0F ;white   FOR i=0 TO 79 DO Color=i/10+1 Plot(i,0) DrawTo(i,191) OD   DO UNTIL CH#$FF OD CH=$FF RETURN
http://rosettacode.org/wiki/Colour_bars/Display
Colour bars/Display
Task Display a series of vertical color bars across the width of the display. The color bars should either use:   the system palette,   or   the sequence of colors:   black   red   green   blue   magenta   cyan   yellow   white
#ActionScript
ActionScript
  package {   import flash.display.Sprite; import flash.events.Event;   public class ColourBars extends Sprite {   public function ColourBars():void { if (stage) init(); else addEventListener(Event.ADDED_TO_STAGE, init); }   private function init(e:Event = null):void {   var colours:Array = [ 0x000000, 0xFF0000, 0x00FF00, 0x0000FF, 0xFF00FF, 0x00FFFF, 0xFFFF00, 0xFFFFFF ]; var w:Number = stage.stageWidth / 8, h:Number = stage.stageHeight; var x:Number = 0, i:uint, c:uint;   for ( i = 0; i < 8; i++ ) { c = colours[i]; graphics.beginFill(c); graphics.drawRect(w * i, 0, w, h); }   }   }   }  
http://rosettacode.org/wiki/Conway%27s_Game_of_Life
Conway's Game of Life
The Game of Life is a   cellular automaton   devised by the British mathematician   John Horton Conway   in 1970.   It is the best-known example of a cellular automaton. Conway's game of life is described   here: A cell   C   is represented by a   1   when alive,   or   0   when dead,   in an   m-by-m   (or m×m)   square array of cells. We calculate   N   - the sum of live cells in C's   eight-location neighbourhood,   then cell   C   is alive or dead in the next generation based on the following table: C N new C 1 0,1 -> 0 # Lonely 1 4,5,6,7,8 -> 0 # Overcrowded 1 2,3 -> 1 # Lives 0 3 -> 1 # It takes three to give birth! 0 0,1,2,4,5,6,7,8 -> 0 # Barren Assume cells beyond the boundary are always dead. The "game" is actually a zero-player game, meaning that its evolution is determined by its initial state, needing no input from human players.   One interacts with the Game of Life by creating an initial configuration and observing how it evolves. Task Although you should test your implementation on more complex examples such as the   glider   in a larger universe,   show the action of the blinker   (three adjoining cells in a row all alive),   over three generations, in a 3 by 3 grid. References   Its creator John Conway, explains   the game of life.   Video from numberphile on youtube.   John Conway   Inventing Game of Life   - Numberphile video. Related task   Langton's ant   - another well known cellular automaton.
#ZX_Spectrum_Basic
ZX Spectrum Basic
10 REM Initialize 20 LET w=32*22 30 DIM w$(w): DIM n$(w) 40 FOR n=1 TO 100 50 LET w$(RND*w+1)="O" 60 NEXT n 70 REM Loop 80 FOR i=34 TO w-34 90 LET p$="": LET d=0 100 LET p$=p$+w$(i-1)+w$(i+1)+w$(i-33)+w$(i-32)+w$(i-31)+w$(i+31)+w$(i+32)+w$(i+33) 110 LET n$(i)=w$(i) 120 FOR n=1 TO LEN p$ 130 IF p$(n)="O" THEN LET d=d+1 140 NEXT n 150 IF (w$(i)=" ") AND (d=3) THEN LET n$(i)="O": GO TO 180 160 IF (w$(i)="O") AND (d<2) THEN LET n$(i)=" ": GO TO 180 170 IF (w$(i)="O") AND (d>3) THEN LET n$(i)=" " 180 NEXT i 190 PRINT AT 0,0;w$ 200 LET w$=n$ 210 GO TO 80
http://rosettacode.org/wiki/Colour_pinstripe/Display
Colour pinstripe/Display
The task is to create 1 pixel wide coloured vertical pinstripes with a sufficient number of pinstripes to span the entire width of the graphics display. The pinstripes should either follow the system palette sequence,   or a sequence that includes: black,   red,   green,   blue,   magenta,   cyan,   yellow,   and   white:   after filling the top quarter, switch to a wider 2 pixel wide vertical pinstripe pattern,   halfway down the display, switch to 3 pixel wide vertical pinstripe,   finally to a 4 pixels wide vertical pinstripe for the last quarter of the display. See also   display black and white   print colour
#Racket
Racket
  #lang racket/gui   (define-values [W H] (get-display-size #t))   (define parts 4) (define colors '("Black" "Red" "Green" "Blue" "Magenta" "Cyan" "Yellow" "White"))   (define (paint-pinstripe canvas dc) (send dc set-pen "black" 0 'transparent) (send dc set-brush "black" 'solid) (define H* (round (/ H parts))) (for ([row parts]) (define Y (* row H*)) (for ([X (in-range 0 W (add1 row))] [c (in-cycle colors)]) (send dc set-brush c 'solid) (send dc draw-rectangle X Y (add1 row) H*))))   (define full-frame% (class frame% (define/override (on-subwindow-char r e) (when (eq? 'escape (send e get-key-code)) (send this show #f))) (super-new [label "Color Pinstripe"] [width W] [height H] [style '(no-caption no-resize-border hide-menu-bar no-system-menu)]) (define c (new canvas% [parent this] [paint-callback paint-pinstripe])) (send this show #t)))   (void (new full-frame%))  
http://rosettacode.org/wiki/Colour_pinstripe/Display
Colour pinstripe/Display
The task is to create 1 pixel wide coloured vertical pinstripes with a sufficient number of pinstripes to span the entire width of the graphics display. The pinstripes should either follow the system palette sequence,   or a sequence that includes: black,   red,   green,   blue,   magenta,   cyan,   yellow,   and   white:   after filling the top quarter, switch to a wider 2 pixel wide vertical pinstripe pattern,   halfway down the display, switch to 3 pixel wide vertical pinstripe,   finally to a 4 pixels wide vertical pinstripe for the last quarter of the display. See also   display black and white   print colour
#Raku
Raku
my ($x,$y) = 1280, 720;   my @colors = map -> $r, $g, $b { [$r, $g, $b] }, 0, 0, 0, 255, 0, 0, 0, 255, 0, 0, 0, 255, 255, 0, 255, 0, 255, 255, 255, 255, 0, 255, 255, 255;   my $img = open "pinstripes.ppm", :w orelse die "Can't create pinstripes.ppm: $_";   $img.print: qq:to/EOH/; P3 # pinstripes.ppm $x $y 255 EOH   my $vzones = $y div 4; for 1..4 -> $width { my $stripes = ceiling $x / $width / +@colors; my $row = [flat ((@colors Xxx $width) xx $stripes).map: *.values].splice(0,$x); $img.put: $row for ^$vzones; }   $img.close;
http://rosettacode.org/wiki/Combinations
Combinations
Task Given non-negative integers   m   and   n,   generate all size   m   combinations   of the integers from   0   (zero)   to   n-1   in sorted order   (each combination is sorted and the entire table is sorted). Example 3   comb   5     is: 0 1 2 0 1 3 0 1 4 0 2 3 0 2 4 0 3 4 1 2 3 1 2 4 1 3 4 2 3 4 If it is more "natural" in your language to start counting from   1   (unity) instead of   0   (zero), the combinations can be of the integers from   1   to   n. See also The number of samples of size k from n objects. With   combinations and permutations   generation tasks. Order Unimportant Order Important Without replacement ( n k ) = n C k = n ( n − 1 ) … ( n − k + 1 ) k ( k − 1 ) … 1 {\displaystyle {\binom {n}{k}}=^{n}\operatorname {C} _{k}={\frac {n(n-1)\ldots (n-k+1)}{k(k-1)\dots 1}}} n P k = n ⋅ ( n − 1 ) ⋅ ( n − 2 ) ⋯ ( n − k + 1 ) {\displaystyle ^{n}\operatorname {P} _{k}=n\cdot (n-1)\cdot (n-2)\cdots (n-k+1)} Task: Combinations Task: Permutations With replacement ( n + k − 1 k ) = n + k − 1 C k = ( n + k − 1 ) ! ( n − 1 ) ! k ! {\displaystyle {\binom {n+k-1}{k}}=^{n+k-1}\operatorname {C} _{k}={(n+k-1)! \over (n-1)!k!}} n k {\displaystyle n^{k}} Task: Combinations with repetitions Task: Permutations with repetitions
#CLU
CLU
% generate the size-M combinations from 0 to n-1 combinations = iter (m, n: int) yields (sequence[int]) if m<=n then state: array[int] := array[int]$predict(1, m) for i: int in int$from_to(0, m-1) do array[int]$addh(state, i) end   i: int := m while i>0 do yield (sequence[int]$a2s(state)) i := m while i>0 do state[i] := state[i] + 1 for j: int in int$from_to(i,m-1) do state[j+1] := state[j] + 1 end if state[i] < n-(m-i) then break end i := i - 1 end end end end combinations   % print a combination print_comb = proc (s: stream, comb: sequence[int]) for i: int in sequence[int]$elements(comb) do stream$puts(s, int$unparse(i) || " ") end end print_comb   start_up = proc () po: stream := stream$primary_output() for comb: sequence[int] in combinations(3, 5) do print_comb(po, comb) stream$putl(po, "") end end start_up
http://rosettacode.org/wiki/Conditional_structures
Conditional structures
Control Structures These are examples of control structures. You may also be interested in: Conditional structures Exceptions Flow-control structures Loops Task List the conditional structures offered by a programming language. See Wikipedia: conditionals for descriptions. Common conditional structures include if-then-else and switch. Less common are arithmetic if, ternary operator and Hash-based conditionals. Arithmetic if allows tight control over computed gotos, which optimizers have a hard time to figure out.
#.D0.9C.D0.9A-61.2F52
МК-61/52
x=0 XX x#0 XX x>=0 XX x<0 XX
http://rosettacode.org/wiki/Comments
Comments
Task Show all ways to include text in a language source file that's completely ignored by the compiler or interpreter. Related tasks   Documentation   Here_document See also   Wikipedia   xkcd (Humor: hand gesture denoting // for "commenting out" people.)
#Pop11
Pop11
;;; This is a comment
http://rosettacode.org/wiki/Comments
Comments
Task Show all ways to include text in a language source file that's completely ignored by the compiler or interpreter. Related tasks   Documentation   Here_document See also   Wikipedia   xkcd (Humor: hand gesture denoting // for "commenting out" people.)
#PostScript
PostScript
  %This is a legal comment in PostScript  
http://rosettacode.org/wiki/Color_quantization
Color quantization
full color Example: Gimp 16 color Color quantization is the process of reducing number of colors used in an image while trying to maintain the visual appearance of the original image. In general, it is a form of cluster analysis, if each RGB color value is considered as a coordinate triple in the 3D colorspace. There are some well know algorithms [1], each with its own advantages and drawbacks. Task: Take an RGB color image and reduce its colors to some smaller number (< 256). For this task, use the frog as input and reduce colors to 16, and output the resulting colors. The chosen colors should be adaptive to the input image, meaning you should not use a fixed palette such as Web colors or Windows system palette. Dithering is not required. Note: the funny color bar on top of the frog image is intentional.
#Tcl
Tcl
package require Tcl 8.6 package require Tk   proc makeCluster {pixels} { set rmin [set rmax [lindex $pixels 0 0]] set gmin [set gmax [lindex $pixels 0 1]] set bmin [set bmax [lindex $pixels 0 2]] set rsum [set gsum [set bsum 0]] foreach p $pixels { lassign $p r g b if {$r<$rmin} {set rmin $r} elseif {$r>$rmax} {set rmax $r} if {$g<$gmin} {set gmin $g} elseif {$g>$gmax} {set gmax $g} if {$b<$bmin} {set bmin $b} elseif {$b>$bmax} {set bmax $b} incr rsum $r incr gsum $g incr bsum $b } set n [llength $pixels] list [expr {double($n)*($rmax-$rmin)*($gmax-$gmin)*($bmax-$bmin)}] \ [list [expr {$rsum/$n}] [expr {$gsum/$n}] [expr {$bsum/$n}]] \ [list [expr {$rmax-$rmin}] [expr {$gmax-$gmin}] [expr {$bmax-$bmin}]] \ $pixels }   proc colorQuant {img n} { set width [image width $img] set height [image height $img] # Extract the pixels from the image for {set x 0} {$x < $width} {incr x} { for {set y 0} {$y < $height} {incr y} { lappend pixels [$img get $x $y] } } # Divide pixels into clusters for {set cs [list [makeCluster $pixels]]} {[llength $cs] < $n} {} { set cs [lsort -real -index 0 $cs] lassign [lindex $cs end] score centroid volume pixels lassign $centroid cr cg cb lassign $volume vr vg vb while 1 { set p1 [set p2 {}] if {$vr>$vg && $vr>$vb} { foreach p $pixels { if {[lindex $p 0]<$cr} {lappend p1 $p} {lappend p2 $p} } } elseif {$vg>$vb} { foreach p $pixels { if {[lindex $p 1]<$cg} {lappend p1 $p} {lappend p2 $p} } } else { foreach p $pixels { if {[lindex $p 2]<$cb} {lappend p1 $p} {lappend p2 $p} } } if {[llength $p1] && [llength $p2]} break # Partition failed! Perturb partition point away from the centroid and try again set cr [expr {$cr + 20*rand() - 10}] set cg [expr {$cg + 20*rand() - 10}] set cb [expr {$cb + 20*rand() - 10}] } set cs [lreplace $cs end end [makeCluster $p1] [makeCluster $p2]] } # Produce map from pixel values to quantized values foreach c $cs { set centroid [format "#%02x%02x%02x" {*}[lindex $c 1]] foreach p [lindex $c end] { set map($p) $centroid } } # Remap the source image set newimg [image create photo -width $width -height $height] for {set x 0} {$x < $width} {incr x} { for {set y 0} {$y < $height} {incr y} { $newimg put $map([$img get $x $y]) -to $x $y } } return $newimg }
http://rosettacode.org/wiki/Colour_bars/Display
Colour bars/Display
Task Display a series of vertical color bars across the width of the display. The color bars should either use:   the system palette,   or   the sequence of colors:   black   red   green   blue   magenta   cyan   yellow   white
#Ada
Ada
with SDL.Video.Windows.Makers; with SDL.Video.Renderers.Makers; with SDL.Video.Palettes; with SDL.Events.Events; with SDL.Events.Keyboards;   procedure Colour_Bars_Display is use type SDL.Events.Event_Types; use SDL.C;   Colours : constant array (0 .. 7) of SDL.Video.Palettes.Colour := ((0, 0, 0, 255), (255, 0, 0, 255), (0, 255, 0, 255), (0, 0, 255, 255), (255, 0, 255, 255), (0, 255, 255, 255), (255, 255, 0, 255), (255, 255, 255, 255)); Window  : SDL.Video.Windows.Window; Renderer  : SDL.Video.Renderers.Renderer; Event  : SDL.Events.Events.Events; Bar_Width : int; begin if not SDL.Initialise (Flags => SDL.Enable_Screen) then return; end if;   SDL.Video.Windows.Makers.Create (Win => Window, Title => "", Position => SDL.Natural_Coordinates'(0, 0), Size => SDL.Positive_Sizes'(0, 0), Flags => SDL.Video.Windows.Full_Screen_Desktop); SDL.Video.Renderers.Makers.Create (Renderer, Window.Get_Surface);   Bar_Width := Window.Get_Size.Width / 8; for A in Colours'Range loop Renderer.Set_Draw_Colour (Colour => Colours (A)); Renderer.Fill (Rectangle => (X => SDL.C.int (A) * Bar_Width, Y => 0, Width => Bar_Width, Height => Window.Get_Size.Height)); end loop; Window.Update_Surface;   Wait_Loop : loop while SDL.Events.Events.Poll (Event) loop exit Wait_Loop when Event.Common.Event_Type = SDL.Events.Keyboards.Key_Down; end loop; delay 0.050; end loop Wait_Loop; Window.Finalize; SDL.Finalise; end Colour_Bars_Display;
http://rosettacode.org/wiki/Colour_pinstripe/Display
Colour pinstripe/Display
The task is to create 1 pixel wide coloured vertical pinstripes with a sufficient number of pinstripes to span the entire width of the graphics display. The pinstripes should either follow the system palette sequence,   or a sequence that includes: black,   red,   green,   blue,   magenta,   cyan,   yellow,   and   white:   after filling the top quarter, switch to a wider 2 pixel wide vertical pinstripe pattern,   halfway down the display, switch to 3 pixel wide vertical pinstripe,   finally to a 4 pixels wide vertical pinstripe for the last quarter of the display. See also   display black and white   print colour
#Ring
Ring
  # Project : Colour pinstripe/Display   load "guilib.ring"   paint = null   new qapp { win1 = new qwidget() { setwindowtitle("archimedean spiral") setgeometry(100,100,500,600) label1 = new qlabel(win1) { setgeometry(10,10,400,400) settext("") } new qpushbutton(win1) { setgeometry(150,500,100,30) settext("draw") setclickevent("draw()") } show() } exec() }   func draw p1 = new qpicture() color = new qcolor() { setrgb(0,0,255,255) } pen = new qpen() { setcolor(color) setwidth(1) } paint = new qpainter() { begin(p1) setpen(pen) w = 100 h = 100 color = list(8) color[1] = [0 ,0, 0] color[2] = [255, 0, 0] color[3] = [0, 255, 0] color[4] = [0, 0, 255] color[5] = [255, 0, 255] color[6] = [0, 255, 255] color[7] = [255, 255, 0] color[8] = [255, 255, 255] y = h*4 for p = 1 to 4 y = y - h for x = 0 to w step 4*p col = random(7) + 1 color2 = new qcolor() color2.setrgb(color[col][1],color[col][2],color[col][3],255) mybrush = new qbrush() {setstyle(1) setcolor(color2)} setbrush(mybrush) paint.drawrect(x, y, 2*p, h) next next endpaint() } label1 { setpicture(p1) show() }  
http://rosettacode.org/wiki/Colour_pinstripe/Display
Colour pinstripe/Display
The task is to create 1 pixel wide coloured vertical pinstripes with a sufficient number of pinstripes to span the entire width of the graphics display. The pinstripes should either follow the system palette sequence,   or a sequence that includes: black,   red,   green,   blue,   magenta,   cyan,   yellow,   and   white:   after filling the top quarter, switch to a wider 2 pixel wide vertical pinstripe pattern,   halfway down the display, switch to 3 pixel wide vertical pinstripe,   finally to a 4 pixels wide vertical pinstripe for the last quarter of the display. See also   display black and white   print colour
#Scala
Scala
import java.awt.Color._ import java.awt._   import javax.swing._   object ColourPinstripeDisplay extends App { private def palette = Seq(black, red, green, blue, magenta, cyan, yellow, white)   SwingUtilities.invokeLater(() => new JFrame("Colour Pinstripe") {   class ColourPinstripe_Display extends JPanel {   override def paintComponent(g: Graphics): Unit = { val bands = 4   super.paintComponent(g) for (b <- 1 to bands) { var colIndex = 0 for (x <- 0 until getWidth by b) { g.setColor(ColourPinstripeDisplay.palette(colIndex % ColourPinstripeDisplay.palette.length)) g.fillRect(x, (b - 1) * (getHeight / bands), x + b, b * (getHeight / bands)) colIndex += 1 } } }   setPreferredSize(new Dimension(900, 600)) }   add(new ColourPinstripe_Display, BorderLayout.CENTER) pack() setDefaultCloseOperation(WindowConstants.EXIT_ON_CLOSE) setLocationRelativeTo(null) setVisible(true) } )   }